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Abstract

One of the main challenges of nowadays low-energy physics remains the
description of the internal structure of hadrons, strongly connected to the
electromagnetic properties of matter.

In this vein, the success of the relativistic quark model in the analysis of
the hadron structure constitutes a solid motivation for the study carried out
throughout this work. The relativistic quark model is extended to the inves-
tigation of static electromagnetic properties of both heavy and light baryons.
The bare contributions to the magnetic moments of the single-, double- and
triple-heavy baryons are calculated. Moreover, the relativistic quark model
allows the study of the electromagnetic properties of the light baryon octet
incorporating meson cloud contributions in a perturbative manner. The long
disputed values of the multipole ratios E2/M1 and C2/M1 and the electro-
magnetic form factors of the N → ∆γ transition are successfully reproduced.

The relativistic quark model can be viewed as a quantum field theory
approach based on a phenomenological Lagrangian coupling light and heavy
baryons to their constituent quarks. In our approach the baryon is a compos-
ite object of three constituent quarks, at least in leading order. The effective
interaction Lagrangian is written in terms of baryon and constituent quark
fields. The effective action preserves Lorentz covariance and gauge invari-
ance. The main ingredients of the model are already introduced at the level
of the interaction Lagrangian: the three-quark baryon currents, the Gaussian
distribution of the constituent quarks inside the baryon and the composite-
ness condition which sets an upper limit for the baryon-quark vertex. The
S-matrix elements are expressed by a set of Feynman quark-diagrams. The
model contains only few parameters, namely, the cut-off parameter of the
Gaussian quark distribution and the free quark propagator, which are un-
ambiguously determined from the best fit to the data. The heavy quark
limit within this model reveals an exact agreement in leading order with
the model-independent predictions for the magnetic moments of the heavy
baryons. For the light sector, a Lorentz covariant chiral quark Lagrangian
is used to dress the constituent quarks by pseudoscalar meson clouds. The
main achievement consists in the factorization of the valence quark contribu-
tions and the meson cloud contributions in the calculation of electromagnetic
properties of light baryons.



Abstrakt

Eine der Hauptherausforderungen der heutigen Niederenergiephysik besteht
in der Beschreibung der internen Struktur von Hadronen, welche im en-
gen Zusammenhang mit den elektromagnetischen Eigenschaften der Ma-
terie zusammenhängt. Der vorherige Erfolg des relativistischen Quarkmod-
ells in der Analyse der Hadronenstruktur stellt eine solide Grundlage für
die Untersuchungen, welche in dieser Arbeit durchgeführt werden, dar. In
diesem Zugang wird das Baryon, zumindest in führender Ordnung, durch
den Bindungszustand aus Konstituentenquarks beschrieben.

Das relativistische Quarkmodell wird in der vorliegenden Arbeit erweitert,
um die statischen, elektromagnetischen Eigenschaften von schweren und le-
ichten Baryonen zu untersuchen. Das relativistische Quarkmodell basiert auf
einen quantenfeldtheoretischen Zugang, welcher, in einer phänomenologischen
Lagrange-Dichte formuliert, die Kopplung von leichten und schweren Bary-
onen an die Konstituentenquarks beschreibt. Die entsprechende effektive
Wirkung erhält Lorentz-Kovarianz und Eichinvarianz. Die Hauptannahmen
des Modells werden auf dem Niveau der Wechselwirkungs Lagrange-Dichte
eingeführt: Drei-Quark Baryonen-Ströme, die Gauss-Verteilung der Konsti-
tutentenquarks im Baryon und die sogenannte ’compositeness condition’,
welche die Kopplung der nackten Baryonen an die Konstituentenquarks bes-
timmt. Die entsprechenden S-Matrix Elemente werden durch einen Satz von
Feynman-Quark-Diagrammen ausgedrückt. Das relativistische Quarkmodell
beinhaltet einen Satz von wenigen Parametern: Breite der Gaussverteilung
und Konstituentenquarkmassen, welche durch Anpassung an vorherige Daten
fixiert werden.

Die Valenzquarkbeiträge zu den magnetischen Mometen der einfach, dop-
pelt und dreifach schweren Baryonen werden berechnet. Im Limes schw-
erer Quarkmassen kann innerhalb dieses Modells in führender Ordnung ex-
akte Übereinstimmung mit den modell-unabhängigen Vorhersagen zu den
magnetischen Momenten schwerer Baryonen erreicht werden. Im leichten
Baryonen-Sektor wird zusätzlich ein Lorentz kovariante, chirale Quark-La-
grange-Dichte genutzt, um die See-Quark Beiträge, ausgedrückt durch pseu-
doskalare Mesonen, in Konsistenz mit chiraler Symmetrie einzubinden. Die
chirale Lagrange-Dichte wird zur Ordnung O(p4) und in der Einschleifen-
Näherung ausgewertet, um die durch die chiralen Effekte angezogenen Quark-
operatoren zu bestimmen. Das Hauptergebnis dieser Technik ist, dass die
Beiträge der Mesonen und der Valenzquarks in den elektromagnetischen,



baryonischen Amplituden faktorisieren. Anwendungen dieser chiralen Er-
weiterung des relativistischen Quarkmodell auf elektromagnetischen Eigen-
schaften des leichten Baryonen-Oktetts werden ausgearbeitet. Zusätzlich
studieren wir die elektromagnetischen N − ∆ Übergänge, wo relativistische
Effekte eine entscheidende Rolle spielen. Insbesondere können die Multi-
polverhältnisse E2/M1, C2/M1 und die elektromagnetischen Formfaktoren
des radiativen Übergangs N → ∆γ erfolgreich reproduziert werden.



Contents

1 Introduction 9

1.1 Models of the baryons . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Chiral Perturbation Theory . . . . . . . . . . . . . . . . . . . 14

1.3 Heavy Quark Effective Theory . . . . . . . . . . . . . . . . . . 23

2 Relativistic Three Quark Model 29

2.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Three-quark baryon currents . . . . . . . . . . . . . . . . . . . 33

2.3 Compositeness condition . . . . . . . . . . . . . . . . . . . . . 45

2.4 Electromagnetic interaction . . . . . . . . . . . . . . . . . . . 47

3 Magnetic moments of heavy baryons 51

3.1 Baryon mass operator and matrix
elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Heavy-quark limit and matching to Heavy Hadron ChPT . . . 63

3.3 Numerical results and discussion . . . . . . . . . . . . . . . . . 66

4 Magnetic moments of light baryons 75

4.1 Matrix elements of valence quark operators . . . . . . . . . . . 83

4.2 Matching to ChPT . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Light baryon magnetic moments . . . . . . . . . . . . . . . . . 86

5 N − ∆γ transition 101

6 Summary 121

A Representations of the Lorentz group 127

7



8 CONTENTS

B Three-quark currents 131
B.1 Light baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2 Heavy baryons . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.3 Baryon wave functions . . . . . . . . . . . . . . . . . . . . . . 134

C Feynman rules for the non-local electromagnetic vertex 137

D Calculation of matrix elements 141

E Non-relativistic spin-flavor wave functions and magnetic mo-
ments 145

F Relativistic form factors for the N → ∆γ transition 147

G Uniqueness of the ∆+(1232) three-quark current 149



Chapter 1

Introduction

In this work we investigate the structure of baryons applying a relativistic
constituent quark model. Properties of both light and heavy baryons are
studied in a quantum field theory approach [1, 2].

Baryons are systems governed by the strong interaction. We aim to de-
scribe such interactions introducing a phenomenological Lorentz covariant
and gauge invariant Lagrangian. Due to the success of the naive quark model
predictions for static baryon properties [3, 4, 5, 6] and motivated by the re-
sults of deep inelastic lepton scattering, it is reasonable to think of baryons
in leading order as composite systems of three quarks. The prototype of a
such system is the nucleon. The model we describe here has been already
developed and applied to the nucleon, and later on improved for a series of
low energy processes obeyed by other heavier states [7, 8, 9, 10, 11, 12].

Among various attempts to describe the low-energy behaviour of nucleons
in a relativistic framework, our approach has particular advantages: it is
rather intuitive, employs a solid and within quantum field theory consistent
calculational technique, has a fixed and small number of parameters. Our
results are in good agreement with other models and effective approaches.
Moreover, our approach recovers model independent predictions, as the ones
offered by chiral perturbation theory and heavy quark effective theory.

Having in mind the importance and success of these approaches we will
start by giving a short overview on the naive quark models, on the basics of
chiral perturbation theory and heavy quark symmetry. We continue with an
overview of the main issues of the relativistic quark model, followed by two
applications: the calculation of magnetic moments of single-, double-, triple-
heavy baryons and the calculation of magnetic moments of light baryons,
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10 CHAPTER 1. INTRODUCTION

taking into consideration meson cloud effects. A challenging aspect is the
study of the N → ∆ transition, which we will present in the last part of this
work.

The nucleon and its observed detailed properties are of great impor-
tance to understand and test the theory of strong interaction. A theoretical
study of the nucleon collects phenomena associated with QCD (confinement,
spontaneous symmetry breaking, and asymptotic freedom) as well as phe-
nomenological approaches, that is models. At low energies it is possible to
obtain model independent predictions (from chiral perturbation theory, for
instance), whereas at high energies one can make use of a perturbative anal-
ysis. Among the most popular non-perturbative methods used to describe
low-energy properties of hadrons are lattice gauge theory, chiral perturba-
tion theory (ChPT), various models based on a effective QCD action, heavy
quark effective theory (HQET) and QCD sum rules.

1.1 Models of the baryons

Non-perturbative approaches are essential for practical calculations in the
low-energy regime. For momentum transfers of 2Q < 1 GeV the running
coupling αs(Q

2) of QCD is of order 1 such that an expansion in powers
of αs is not useful. Thus, an analysis of the nucleon structure from first
principles is difficult. Phenomenological models preserve and use some of the
most important aspects of QCD and provide an insight into the structure of
hadrons.

Among various approaches, models still remain a powerful tool for prac-
tical calculation and are successful especially in the determination of static
properties. Understanding the nucleon and its structure has been the task
of many years of theoretical work, especially in phenomenological frame-
works. There are three classes of models that have dealt with the nucleon
and analyzed experimental data [13]: the non-relativistic quark models [3, 4],
the bag models [14] and the soliton models [15]. In the non-relativistic quark
model, which uses ingredients of the phenomenological shell-model in nuclear
physics, baryons are composite objects of three constituent quarks which are
treated non-relativistically in a confining potential. The main and original
achievement of this model is a good description of the anomalous magnetic
moments of the baryon octet, as well as the baryon spectrum. The drawback
of this model is that it treats the quarks as virtual particles, massive enough
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to move non-relativistically, whereas quarks are relativistic particles.
The bag models promote the hadrons as bags where the valence quarks

are confined to a spherical cavityand which are singlets under SU(3) color
transformation. A particular class among bag models are the chiral bag
models which use important aspects of chiral symmetry. As a consequence,
the quarks interact with pseudoscalar Goldstone bosons generated by spon-
taneous chiral symmetry breaking.

In soliton models, the picture of the nucleon emerges from the energy
density created by quarks and mesons. The chiral solitons, in particular,
are systems formed by the non-linear interaction of quarks and pions. A
well known version of the soliton models is the Skyrme model, working with
topological solitons [16]. This model is based on the effective Lagrangian of
the non-linear sigma model.

Though non-fundamental, the approaches above have proved to be phe-
nomenologically succesful and give a good understanding of the baryon struc-
ture.

Zweig [3] and Gell-Mann [4] gave a primary understanding of the nucleon
structure, by using a simple non-relativistic algebraic model of quarks. In the
constituent quark model frame, the main ingredient is the assumption that
quarks exist as quasi-particles inside the baryons. These constituents are not
the fundamental QCD quarks, but they preserve their fundamental proper-
ties: electric charge, baryon number, color and flavor, they are fermions and
their masses are larger than the current-quark masses, due to the dressing
by the strong interactions. A constituent quark is often defined in the vast
literature as a massive object whose mass arises from the interaction of the
“bare” valence quark with the surrounding clouds of quark-antiquark pairs
and gluons. The coupling of such massive quasi-particles with the quark
quantum numbers to Goldstone bosons, due to spontaneous chiral symme-
try breaking, was not historically described in the framework of constituent
models.

In the nonrelativistic quark model the baryon wave function is constructed
by the three constituents moving in a confining potential, each being a single
particle state created by a creation operator acting on the vacuum. Us-
ing the anticommutation algebra and assuming that the constituents are in
their lowest orbits, that is s-states, one can obtain the color singlet baryon
wave function. The input in such models is the effective constituent quark
mass. Using the Dirac formula for magnetic moments of fermions one can
easily calculate the baryon magnetic moments as matrix elements of the non-
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relativistic magnetic moment operator. The magnetic moments are in very
good agreement with the experimental values, as the nucleon wave functions
display the SU(6) symmetry properties, but do not emerge from detailed
dynamical reasons. Within the constituent quark model also the N → ∆
transition magnetic moment has been calculated [17]. It is worth to men-
tion that, unfortunately, in the naive quark picture the electric quadrupole
moment E2 of the N → ∆ transition vanishes. A broad introduction to the
N → ∆γ transition properties can be found in Ref. [18].

Georgi, deRujula and Glashow [5] improved the model by introducing
further QCD aspects into the dynamics of the constituent quarks. Their
model is a non-relativistic SU(6)-symmetric model, but the SU(3) symmetry
breaking is induced by the quark masses as in QCD. The potential contains a
long-range confining force, on one side, and a short-range spin-flavor depen-
dent interaction part, on the other side, emerging from the ideal assumption
of one-gluon exchange between the quarks. The potential energy will contain
therefore a confining-like form and a more extended form which includes: a
Coulomb term, a Darwin term, a spin-spin interaction term, a spin-orbit
interaction term and a tensor term. The SU(3) breaking is obtained by con-
veniently rewriting the Hamiltonian in terms of a SU(3) symmetric piece and
a symmetry breaking piece. The eigenstates of the full Hamiltonian are the
SU(6) multiplets. Mass formulas can be derived with good accuracy, like the
mass splitting between the ∆ and the nucleon.

The Isgur-Karl model [6] adds to the harmonic oscilator potential an
anharmonic part, responsible for SU(6) breaking, and omits the spin-orbit
contributions. In this picture the predictions for the baryon spectra are im-
proved. In the study of the N → ∆ transition, a new ingredient is considered
within this frame: the admixture of d-states into the N and ∆ wave func-
tions. This admixture is introduced via a residual tensor force between the
quarks, induced by the one gluon exchange (OGE) supplementing potential.
Though the magnetic monopole transition M1 is dominant, as a consequence
of a small d-state admixture, the value of the electric quadrupole transition
E2 is not zero as predicted by the simple quark models, but has a small non-
vanishing value, as also shown in experiments. Various quantities (diagonal
transition amplitudes, radiative decay widths, etc) can be calculated with
the phenomenologically simple Hamiltonian proposed by Isgur and Karl, the
success of the model relying in the combination of the SU(6) group theory
and a sufficient dynamical input.

Although the non-relativistic quark models use a long-range confining
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potential to express the effect of confinement on quarks, they do not rep-
resent the physical picture of confinement itself as understood from QCD.
In the framework of soliton models, Lee [15] proposed that a quasi-classical
theory is a good choice for modelling confinement. In this vein the QCD vac-
uum is treated as a color dia-electric medium; any color charge introduced
in such a medium will produce a vacuum-hole, so that a charge will be sur-
rounded by a perturbative vacuum cavity. This charge will feel repulsion to
the charges placed on the surface of the vacuum-cavity and the energy needed
to shrink this vacuum-hole will be proportional to a confining-like term. One
writes down a Lagrangian density in terms of valence quarks, a scalar field
corresponding to the lowest energy state and a term which involves a di-
electric function treated perturbatively; when there are no valence quarks
(non-perturbative vacuum) the scalar field potential describes the vacuum
energy state, and when the quark density is high (perturbative vacuum), the
scalar field potential has a small value.

The Bag models, widely used in the late 60’s and 70’s have as a basis the
model of Bogoliubov [14]. A way to make quarks confined was to consider
them massive enough and bound in a deep potential so that the hadronic
states will still have reasonable masses. Bogoliubov [14] proposed that the
quark masses m → ∞ and placed them in a sphere with radius R (put in by
hand), within which they felt an attractive scalar field. When QCD arose as
a theory, together with the asymptotic freedom at short distances, the bag
models tried to incorporate this property as well. The whole philosophy is to
devide the space into two regions, one inside the bag, where the quarks had
small masses and felt decreased forces, and the exterior of the bag, where
quarks were not allowed to propagate. The model of Bogoliubov solves the
Dirac equation for a particle of mass m inside a spherical cavity of radius R
which feels a constant scalar potential. It was not suitable for a spectroscop-
ical analysis, but the MIT bag model (70’s-80’s) overcame this problem, by
a formulation which leaves the radius to be determined dynamically, giving
a relativistic description of the baryon structure [19],[20]. The Lagrangian
involves quark fields, a term which distinguishes between the interior (per-
turbative vacuum) and the exterior (non-perturbative vacuum) of the bag
and a bag-surface term essential to confine the quarks.

There are also variations of the bag model which incorporate chiral sym-
metry, the chiral quark models [21]. The Lagrangian is invariant under the
chiral transformations and the surface term is responsibe for chiral symme-
try breaking. To overcome the problem of dynamical symmetry breaking
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leading to massless Goldstone bosons, this Lagrangian includes a pion field
which couples to the confined quarks so that, under chiral transformation of
these two fields, the Lagrangian is invariant. One example of a famous model
in the late 70’s is the cloudy bag model [22], which, besides the ingredients
of the MIT bag model, introduces pion-quark interaction in the Lagrangian.
The pion is treated perturbatively. Other models have been developed, all
derived from the original bag model, incorporating chiral symmetry. The
merit of all these approaches relies on a better insight into the hadron struc-
ture and spectroscopy. Their effective nature is underlined, for example, by
the assumption that the pion is an elementary field, in the long wave-length
limit.

1.2 Chiral Perturbation Theory

Nowadays, a widely used technique in the study of hadron structure at low
energies is Chiral Perturbation Theory (ChPT) [23, 24]. At small momentum
transfers the elementary degrees of freedom of QCD (quarks and gluons) are
replaced by effective degrees of freedom, namely by composite hadrons. Their
dynamics is described by an effective action, instead of the original QCD
action. The main reason of such a replacement is founded in a manifest
symmetry of the QCD Lagrangian at low energies, the chiral symmetry.

Chiral symmetry is a symmetry of the QCD Lagrangian achieved in the
limit where the light quark masses, up, down and strange, vanish, that is
mu,d,s → 0. In reality the quark masses are small, but not zero and Chiral
Perturbation Theory provides a tool for treating the quark masses as small
perturbations. As elsewhere in field theory one expects that due to a contin-
uous symmetry the corresponding currents are conserved. Chiral symmetry
is related to the conserved right- or left-handness of the light quarks which
leads to the conservation of the vector and axial vector currents. Though
being an approximate symmetry one deals with the concept of sponaneous
and explicit breaking of the symmetry.

The concept of spontaneous breaking of a symmetry is translated as fol-
lows: the Hamiltonian of the system is invariant under the symmetry trans-
formation laws, whereas the ground state of the theory is not. As consequence
we have the appearance of massless modes, called the Goldstone-bosons. Ac-
tually, Goldstone’s theorem implies the existence of eight pseudoscalar Gold-
stone bosons in the case of the SU(3)L × SU(3)R invariance of the QCD
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Lagrangian for massless light quarks. We take as an example the pion. Ad-
mitting that the pion is not massless is to admit that chiral symmetry is not
an exact symmetry of the nature, which is perfectly valid. But the pion has
a mass, in the sense that is smaller than other hadron masses of the order of
1 GeV.

In ChPT, the masses of the light quarks (5-9 MeV) are typically much
smaller than the QCD energy scale ΛQCD ∼200 MeV. Thus, one makes use of
chiral symmetry in the low energy regime where the processes are dominated
by light mesons and where all observables can be expressed as expansions in
light meson masses and momenta. This procedure is know as Chiral Pertur-
bation Theory. Of course, heavier states like the vector mesons can also be
taken into consideration. There should be no confusion between ChPT as a
perturbation theory in terms of Goldstone boson masses and momenta and
the perturbation theory in the strong coupling αs. The range of applicabil-
ity of ChPT is suited for the investigation of non-perturbative, low-energy
physics, thus ChPT is not a perturbation theory in the QCD coupling con-
stant. A perturbative expansion in the strong coupling αs is not reasonable,
as in the low energy regime αs → 1.

Following Refs. [23] and [24] we will try to give a short overview on ChPT
as a tool. The symmetry property of any Lagrangian under some transforma-
tion will lead, via the Noether theorem, to a conserved current and further,
to a conserved “charge”. The chiral symmetry transformations belong to the
class of unitary transformations. Adding a mass term into the Lagrangian,
which explicitly breaks the symmetry, leads to the non-conservation of the
current, in our case to the breaking of chiral symmetry due to the physical
quark masses, finite but not zero. The masses of the light quarks are much
smaller than the masses of the lightest hadrons containing light quarks and
also much smaller than the energy scale of spontaneous symmetry breaking.
Thus, to study spontaneous symmetry breaking and hence the appearance of
non-vanishing light scalar condensates, it is customary to omit the heavy de-
grees of freedom in the QCD Lagrangian. The QCD Lagrangian for massless
light quarks reads as:

L0
QCD =

∑

f=u,s,d

q̄f i 6Dqf −
1

4
Gµν,aG

µν
a . (1.1)

The interesting property of this Lagrangian is that it remains invariant under
the global SU(3)L ×SU(3)R ×U(1)V transformations. These global symme-
tries become transparent when we project the quark fields onto their chiral
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components qL and qR. The Noether theorem leads to conserved currents
associated with the two independent global trasformations of the left- and
right-handed quark fields, SU(3)L and SU(3)R, respectively, defined as a set
of 3 × 3 unitary matrices:

exp[−i
8∑

a=1

θL
a

λa

2
] ,

exp[−i
8∑

a=1

θR
a

λa

2
] (1.2)

where θL,R
a are real numbers and λa are the Gell-Mann matrices. There

are eight conserved currents associated with the transformations of the left-
handed quarks and eight conserved currents associated with the transforma-
tion of the right-handed quarks. One uses two linear combinations of the
chiral “left” and “right” currents which transform under parity as vector and
axial-vector quantities, respectively. Equivalently, the Lagrangian is invari-
ant under SU(3)V × SU(3)A. The vector currents and the eight axial vector
currents are conserved

V µ,a = q̄γµ λa

2
q, ∂µV

µ,a = 0 ,

Aµ,a = q̄γµγ5
λa

2
q, ∂µA

µ,a = 0 . (1.3)

A mass term added to the Lagrangian (1.1), namely −(q̄fMqf ), where
M =diag{mu,md,ms} is the current quark mass matrix, is reflected, in gen-
eral, in non-vanishing values of the divergencies of the symmetry currents.
In fact for equal quark masses mu = md = ms the eight vector currents V µ,a

are conserved, while the eight axial currents have explicit divergencies, that
is

∂µV
µ,a = iq̄[M,

λa

2
]q ,

∂µA
µ,a = iq̄{λa

2
,M}γ5q . (1.4)

Hence, the axial symmetry is not a good one for finite quark masses, but
an approximate one as long as the quark masses stay small compared to the
QCD energy scale ΛQCD ∼ 200 MeV. The approximate symmetry of the
axial current results in the partial conservation of this current. The slight
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breaking of the invariance of the Lagrangian under axial transformations,
due to small, but finite masses, of the light quarks, leads to a new concept
in the theory: the Partial Conserved Axial Current (PCAC). As long as the
symmetry breaking is small, the effect of a partial conservation of the axial
current can be treated using the perturbation theory tools.

It is known that a good way to illustrate PCAC is to study the weak decay
of the pion π+ → µ+νµ. Together with the πN strong interaction analysis
this will lead to the famous Goldberger-Treiman relation. The PCAC relation
relates the matrix element of the divergence of the axial-vector current in the
pion decay to the mass of the pion. As long as the mass of the pion can be
considered small with respect to hadronic scales, the divergence of the axial
current is nonzero, but very small and the current is partially conserved

< 0|∂µA
µ,a(x)|π(q)b >= −iFπm2

πδabe−iqx (1.5)

where Fπ = 93MeV is the decay constant, q is pion momentum and πb is the
pion field. From here one can define the pion field as the divergence of the
axial-vector current

Aµ,a
pion = Fπ∂µπa(x) . (1.6)

The Goldberger-Treiman relation comes as more evidence for the con-
servation of the axial current. To check this, one can write down the axial
current for the nucleon

Aµ,a
nucleon = gAΨ̄Nγµγ5λ

a/2ΨN (1.7)

and observe that the divergence of this current is proportional to the mass
of the nucleon, which by no means can be considered smaller than the QCD
scale

∂µA
µ,a
nucleon = igAMNΨ̄Nγ5λ

aΨN 6= 0 . (1.8)

Thus, we do not expect the axial current of the nucleon to be conserved.
Writing the total axial current for the pion-nucleon interaction as a sum
of the pion and nucleon contributions and requiring that the total current
is conserved one ends up with a Klein-Gordon equation for a massless pion
coupled to the nucleon field. So, the requirement of a conserved axial current
leads to a massless pion. However, when a pion finite mass term is added,
that is when requiring the PCAC relation to be valid, one can relate the
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pion-nucleon couplig constant to the weak pion decay constant and obtain
the Goldberger-Treiman relation

gπNN = gA
MN

Fπ

. (1.9)

The relation is remarkably well fulfilled when inserting the experimental val-
ues.

To illustrate the necessity of spontaneous breaking of chiral symmetry, one
also looks at the hadronic mass spectrum, for example at the mass difference
between the pion and the σ−meson, as well as the one between the ρ−meson
and the a1. If the axial transformation, which rotates the π into a σ and
the ρ into a a1, were an exact symmetry then these particles should have the
same mass eigenvalues. The small difference between u and d current quark
masses cannot explain a difference of nearly 600 MeV between the ρ and the
a1 meson masses. In addition, the apparent paradox of a partially conserved
axial current, but a non-representation of the axial symmetry in the mesonic
spectrum can be also explained in the framework of spontaneous symmetry
breaking. The axial-vector symmetry is spontaneously broken, that is the
ground state does not preserve this symmetry whereas the Hamiltonian does.
Due to spontaneous symmetry breaking the mass of the pion is zero, but via
an axial transformation one expects a finite scalar quark condensate 〈q̄q〉 6=
0. This is consistent with the PCAC relation. A pedagogical overview is
given in [23], where a classical mechanics analogue is offered to understand
spontaneous symmetry breaking.

In literature the concepts of spontaneous symmetry breaking and explicit
symmetry breaking are realized in the simple frame of toy models: the linear
sigma-model and the improved version, the non-linear sigma-model.

Introduced by Gell-Mann and Levy [25], the linear sigma-model is a chiral
invariant model involving pions and nucleons. The Lagrangian of the model
is a Lorentz scalar and invariant under vector and axial-vector transforma-
tions. The meson-nucleon interaction is given by two terms. One piece is a
pseudoscalar combination of the nucleon field multiplied by the pion field.
The other piece is a scalar conbination of the nucleon field multiplied by
the sigma-meson field. This term has the structure of a nucleon mass term
and possesses the advantage of introducing the mass of the nucleon without
explicitly breaking the chiral symmetry. To mimic the spontaneous breaking
of chiral symmetry a potential term is added to this Lagrangian. This po-
tential generates the vacuum expectation value Fπ of the σ field and remains
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invariant under vector and axial-vector transformations, thus it is a function
of the invariant structure (π2 + σ2), like below:

V (π2 + σ2) ∼ (π2 + σ2 − F 2
π )2 . (1.10)

Due to its shape this potential is often called the ”Mexican-hat” potential.
The total invariant Lagrangian will also involve the kinetic terms for the
nucleons, pions and the σ−mesons. In the linear sigma-model the axial
vector is calculated and shown to fulfill the PCAC relation. To explicitly
break the chiral symmetry one should reproduce the effect of a mass term in
the Lagrangian (∼ −mq̄q) of the sigma-model. This translates into adding
a parameter ǫ in the ”Mexican-hat” potential, which gives a measure of the
symmetry breaking. The explicit symmetry breaking is illustrated by slightly
tilting the ”Mexican-hat”. In fact, allowing for a small breaking one allows
the spontaneous symmetry breaking effect to be larger than the effect of the
explicit symmetry breaking (the light quark masses are much smaller than
the QCD energy scale). In the linear sigma-model the mass generated by
explicit breaking is the small pion mass (that is the axial-vector symmetry
is still partially fulfiled), whereas the spontaneous breaking generates the
mass of the nucleon. The mass of the pion is proportional to the breaking
parameter. Due to explicit symmetry breaking a small change in the mass of
the nucleon is produced. This small change can be experimentally deduced
and is know under the name of the pion-nucleon term σπN . The pion-nucleon
sigma term gives a relation between this change and the symmetry breaking
(SB) parameter, as follows:

σπN = δMχSB
N ≃ ǫ .

In literature one can find other well-known relations that can be derived
in the context of chiral symmetry constraints, which mainly link the scalar
quark condensate to measurable quantities like fπ,mπ, σπ,N . For example, the
pion-nucleon sigma term is the expectation value of the explicit symmetry
breaking piece in the Lagrangian, taken between the nucleon states:

σπN =
mu + md

2
< N |ūu + d̄d|N > .

The famous Gell-Mann-Oakes-Renner formula relates the mass of the pion
to the quark condensate:

m2
πF 2

π = −mu + md

2
< 0|ūu + d̄d|0 > .
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The other toy-model, the non-linear sigma model, has been developed
from the simple idea that the σ field has not been identified with any phys-
ical particle. The σ−meson field is removed from the above Lagrangian by
sending its mass to infinity. The consequence is that the dynamics is ex-
pressed now only with pion and nucleon fields and the coupling between
pions and nucleons is expressed via derivatives (momenta) of the pion field.
The effect on the ”Mexican-hat” potential is that it becomes infinitely steep
in the sigma-direction and vanishes on the circle defined by its minimum.
The explicit breaking of chiral symmetry in the non-linear sigma-model is
introduced via an explicit pion mass term.

Chiral perturbation theory is a systematic tool for the investigation of
the low-energy properties of QCD. At very low energies the effective La-
grangian of ChPT is expressed in terms of the members of the pseudoscalar
octet (π,K, η) degrees of freedom which are the Goldstone bosons of the
spontaneous breaking of the SU(3)L × SU(3)R chiral symmetry down to
SU(3)V . The light pseudoscalar mesons achieve masses in the explicit sym-
metry breaking process. The non-vanishing scalar quark condensate in the
chiral limit is a sufficient condition for the spontaneous symmetry breaking
of QCD. The construction of the effective Lagrangian which describes the
dynamics of the Goldstone bosons and, implicitly, the concept of sponta-
neous symmetry breaking, is based on the following conditions: firstly, the
effective Lagrangian is invariant under SU(3)L ×SU(3)R ×U(1)V in the chi-
ral limit. Secondly, it should contain eight pseudoscalar degrees of freedom
which transform as an octet under SU(3)V . Also, the ground state should
be invariant under SU(3)V × U(1)V , which is the symmetry group of the ef-
fective Lagrangian after the spontaneous breaking. The notation commonly
used for the fields of the effective Lagrangian [24] is a 3 × 3 unitary matrix
U(x) in its exponential representation:

U(x) = exp

(
i
Φ(x)

Fπ

)
, (1.11)

where the fields Φ(x) are given by

Φ(x) =
8∑

a=1

λaΦa(x) ≡




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η


 . (1.12)
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The SU(3) matrix U(x) transforms under SU(3)L × SU(3)R as:

U(x) → RU(x)L† . (1.13)

The most general effective Lagrangian with the above properties reads as:

Leff =
F 2

π

4
Tr(∂µU∂µU †) , (1.14)

where the free parameter Fπ ≈ 93 MeV is the pion decay constant. The
Φa(x) fields describe the eight independent massless Goldstone bosons. The
expansion of the exponential (1.11)

U = 1 +
iΦ

Fπ

+ ...

∂µU =
i∂µΦ

Fπ

+ ... (1.15)

generates the kinetic part and meson-meson interaction part in the effective
Lagrangian, respectively:

Leff =
1

2
∂µΦa∂

µΦa + Lint . (1.16)

The chiral “left” and “right” currents associated with the invariance of this
Lagrangian are conserved, as well as their vector and axial vector combina-
tions. The finite masses of the Goldstone bosons are achieved by adding a
mass term in the above Lagrangian, which explicitly breaks the symmetry.
Though the mass matrix M is just a constant matrix, M should transform
under SU(3)L × SU(3)R as the U(x) matrix:

M → RML† , (1.17)

such that the full Lagrangian is invariant under the transformations (1.13)
and (1.17). The explicit symmetry breaking term at lowest order in powers
of M is given by:

Lsym.break =
F 2

πB0

2
Tr(MU † + UM †) , (1.18)

where B0 is related to the scalar quark condensate as:

3F 2
πB0 = −〈q̄q〉 . (1.19)
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The masses of the Goldstone bosons are identified with the terms of second
order in the fields Φa in the symmetry breaking part (1.18):

Lsym.break = −B2
0

2
Tr(Φ2M) + ... (1.20)

Using the explicit form (1.12) for the fields Φa one obtains the Goldstone
boson masses to the lowest order in the quark masses mu = md = m and ms:

M2
π = 2B0m, M2

K = B0(m + ms), M2
η =

2

3
B0(m + 2ms) . (1.21)

These relations together with the relation (1.19) for the B0 parameter are
also referred in the literature as Gell-Mann, Oakes, Renner formulas. The
calculation of S-matrix elements with the above Lagrangian is strongly con-
nected to a theorem originally introduced by Weinberg. A consequence of the
theorem of Weinberg for the perturbative description in terms of a general
effective Lagrangian, uniquely derived from the underlying symmetry prin-
ciples, is that the effective ChPT Lagrangian contains an infinite number of
terms involving an infinite number of free parameters. Therefore one needs
a systematic method to organize the Lagrangian and to count the relevant
diagrams generated by the interaction part of the Lagrangian to the physical
matrix elements. This method is known in the literature as the Weinberg
power counting scheme. The basic idea is to relate the chiral dimension of
a given diagram to the number of vertices and the number of independent
loops of the diagram. According to this scheme the effective Lagrangian de-
scribing the dynamics of the Goldstone bosons, for example, is a summation
of terms with increasing number of derivatives and quark mass terms and,
consequently, the chiral orders are always even:

Leff = L2 + L4 + L6 + ... . (1.22)

In the above expression the subscripts indicate the order of the momentum
and quark mass expansion: two derivatives or one mass term, respectively,
are of order O(p2), as prescribed by the Feynman rules and the on-shell
condition for the Goldstone bosons M2 = p2. Each term includes tree-level
diagrams and loop diagrams, as dictated by the expansion in powers of the
field operator (1.15).

In fact, the appropriate effective chiral Lagrangian which describes the
real physical processes at low energies involves also couplings to external
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fields. The coupling to external fields is realized in an elegant fashion through
functional methods. One can obtain in principle the chiral Green func-
tions through a functional derivative with respect to the external fields of
an effective generating functional involving the coupling to external fields.
Moreover, one can obtain the relations among the chiral Green functions
known as the Ward identities. We refer the reader to the procedure of Gasser
and Leutwyler [26] of introducing external fields into the Lagrangian. How-
ever, such an approach requires a locally invariant chiral Lagrangian under
SU(3)L × SU(3)R.

A series of processes can be investigated at lowest order: the weak pion
decay, pion-pion scattering. The masses of the Goldstone bosons can be
derived in ChPT at O(p4), by means of the construction of the most general,
locally chiral invariant Lagrangian containing four derivatives of the meson
fields. Chiral perturbation theory is suitable to the study of baryons as well,
especially for the description of the nucleon-meson interactions. At lowest
order, the locally invariant effective Lagrangian under SU(3)L × SU(3)R

symmetry group is now written in terms of meson fields, nucleon (baryon)
fields (using the convenient notation of (1.11)) and the coupling to external
fields. A famous application at the tree level is the calculation of the matrix
element of the axial vector between nucleon states and the derivation of the
Goldberger-Treiman relation.

Chiral perturbation theory is a powerful consistent calculational tech-
nique that provides model independent predictions for a series of low-energy
hadronic interactions: pion photoproduction, pion electroproduction, nu-
cleon electromagnetic interaction, etc.

1.3 Heavy Quark Effective Theory

In the past decades, the experimental progress in heavy flavor physics has
lead to improvements in the theoretical approaches as well. The discovery
and formulation of heavy quark symmetry became the basis for constructing
a new effective theory, the heavy quark effective theory (HQET). The HQET
analyzes properties of heavy hadrons with one heavy quark using as technique
an expansion in the inverse of the heavy quark mass. In the following we will
try to explain the main ingredients of HQET and its achievements.

The heavy quark symmetry is exhibited in single heavy-quark systems
when the mass of the heavy quark is larger than the QCD scale (∼ 200
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MeV). The running coupling constant of the heavy quark αs(mQ) becomes
smaller, which implies that on length scales comparable to the Compton
wave-length λQ ∼ 1/mQ one can make use of perturbative QCD to describe
strong interactions. The picture that emerges in systems of the type Qqq,
one heavy quark and two light flavors, is that of a heavy quark surrounded
by a cloud composed of light quarks, antiquarks and gluons. The Compton
wavelength at the QCD scale is proportional to the inverse of the heavy quark
mass, therefore small enough, and smaller than the hadron’s size λQ ≪ Rhad,
to be considered for a soft gluon exchange between the heavy quark and the
light quarks. The main conclusion is that the light degrees of freedom become
blind to the flavor and the spin orientation of the heavy quark. The only field
they feel is the color field (a long range confining force) of the heavy quark,
so that the whole composite object is colorless. Since the heavy quark spin
participates in the interaction only through relativistic effects, in the rest
frame of the heavy quark, when we attain the limit mQ → ∞, this limit
provides for the decoupling of the heavy-quark spin. The conclusion is that
in the limit mQ → ∞, single-heavy systems will have the same configuration
of their light degrees of freedom, though the spin and flavor quanum num-
bers of the heavy constituent are different. From this last statement, some
approximate symmetries of the strong interactions of heavy quarks can be
derived. If the heavy quark is assigned the velocity v, the configuration of
the light degrees of freedom does not change when replacing the heavy quark
with another heavy quark of the same velocity, but different spin-flavor quan-
tum numbers. The color field generated by each of the two heavy quarks is
similar. Thus there is a SU(2) × SU(2) spin-flavor symmetry under which
the strong interaction Lagrangian is invariant. In contradistinction to chi-
ral symmetry displayed by the QCD Lagrangian, in the limit of light-quark
masses mq → 0, the heavy-quark symmetry , in the limit of the heavy-quark
masses mQ → ∞ is not a symmetry of the Lagrangian. The heavy-quark
symmetry is a symmetry of an effective theory that is a good approximation
to QCD in the low energy regime. The heavy-quark symmetry manifests
itself in a certain kinematic region: when heavy quarks exchange only soft
gluons. This effective low energy theory preserves Lorentz invariance [27].
The heavy quark carries most of the energy and momentum of the baryon,
thus moves with the velocity of the baryon. If the whole system has the
4-velocity vµ, the 4-momentum is pµ = mQvµ

Q, and when the mass of the
heavy quark is large compared to the QCD energy scale, ΛQCD, then one can
approximate mB ∼ mQ.
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If an interaction takes place at a fixed momentum transfer value, then in
the limit mQ → ∞, the new velocity of the system is v

′µ
Q ∼ vµ

Q. Therefore the
velocity is a constant and defines the quark field of a certain heavy-quark.
This is the starting point for constructing the HQET Lagrangian from the
QCD Lagrangian; thus for a heavy quark we have

LQ = Q̄(i 6D − mQ)Q , (1.23)

where 6D = γµDµ is the covariant derivative involving the gluon field. As
an infinite heavy quark is irrelevant in the low energy regime, the next step
would be to remove this degree of freedom. The procedure of removing
the heavy quark degree of freedom consists of three steps: first, the heavy
quark field is “integrated out” in the generating functional of the Green
functions of the theory. Then, the resulting non-local action is rewriten as
an infinite series of local terms using the Operator Product Expansion. Such
an expansion corresponds to an expansion in powers of 1/mQ. It is this step
that makes a separation between the long-distance physics (interaction below
the QCD scale ΛQCD) and the short-distance physics (interactions above the
scale imposed by mQ). The low energy interactions are included in the local
effective theory generated, while the large virtual momenta interactions arise
from quantum corrections. Such short-distance interactions are not contained
in the effective theory, since the heavy quark field has been integrated out,
therefore a third step is necessary: the addition of short-distance effects in a
perturbative manner, using renormalization group techniques.

As mentioned, the heavy quark moves with the same velocity as the
hadron and is almost on-shell

pµ
Q = pµ

B = mQvµ
Q + kµ , (1.24)

where kµ is called residual momentum exchanged by the heavy quark with the
light quarks. If an interaction takes place on the hadron, its momentum will
be conserved, the residual momentum will change as well as the heavy quark
momentum. But, as long as the variation ∆kµ ∼ ΛQCD with ΛQCD ≪ mQ

(that is the heavy quark exchanges only soft gluons with the light quarks and,
hence, its momentum fluctuates around the mass shell by an amount of order
ΛQCD), then the fluctuation of the heavy quark velocity is ∆vµ ∼ ∆kµ

mQ
→ 0

in the limit mQ → ∞.
Based on this property one can split the heavy quark field into ”smaller”

and “larger” components, rewrite the Lagrangian, observe that the large
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component does not introduce mass terms, therefore describes massless par-
ticles. The small component introduces terms ∼ 2mQ and one tries to elim-
inate these heavy degrees of freedom. Various ways are illustrated in Ref.
[28], the most elegant one being the derivation of the effective Lagrangian
by integrating out the heavy degrees of freedom in the functional integral
framework . One will end up with an effective Lagrangian written in terms
of large components only. Following [28] we briefly show the construction of
the low-energy effective theory. The heavy quark field is written in terms of
“large” and “small” components:

Q(x) = e−imQv·x[hv(x) + Hv(x)] , (1.25)

where the “large” component field hv and “small” component Hv field are
given by:

hv(x) = eimQv·xP+Q(x)

Hv(x) = eimQv·xP−Q(x) (1.26)

and P± = 1±6v
2

are projection operators. The new fields satisfy the following
equations:

6vhv = hv

6vHv = −Hv , (1.27)

which means that the hv field operator anihilates a heavy quark with velocity
v, whereas the Hv field operator creates a heavy antiquark with velocity v.
Substituting in the QCD Lagrangian (1.23) for the heavy quark we have:

LQ = h̄viv · D hv − H̄v(iv · D + 2mQ)Hv + h̄vi 6D⊥Hv + H̄vi 6D⊥hv , (1.28)

where 6Dµ
⊥ = Dµ−vµv·D is the orthogonal part of the covariant derivative and

thus v ·D⊥ = 0. It is obvious that the heavy degree of freedom which must be
removed is the small component, since it introduces fluctuations with twice
mQ. The third and fourth terms in the Lagrangian mix the two components
and describe the pair creation and anihilation of heavy quarks and antiquarks.
In fact there are two types of virtual processes involving pair creation: the
propagation of a heavy quark forward and backward in time and the heavy
quark loops. Both phenomena are short-distance effects, they are excluded
from the effective theory, provided that the small components are integrated
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out. The short-distance processes are proportional to the small coupling
αs(mQ) and are calculated in perturbation theory; their effects are added to
the new constructed effective theory in the renormalization procedure. The
heavy degrees of freedom Hv are eliminated in a classical way, using the
equation of motion. The variation of (1.28) with respect to H̄v leads to

(iv · D + 2mQ)Hv = i 6D⊥hv , (1.29)

which leads to the formal solution

Hv =
1

2mQ + iv · Di 6D⊥hv . (1.30)

The solution above indicates clearly that the small component is of or-
der 1/mQ and inserting this solution into (1.28) the non-local effective La-
grangian of the theory is obtained:

Leff = h̄viv · D hv + h̄vi 6D⊥
1

2mQ + iv · Di 6D⊥hv . (1.31)

The second term is responsible for the first type of virtual processes men-
tioned above and can be equivalently written as:

h̄vi 6D⊥
1

2mQ + iv · Di 6D⊥hv = h̄vi 6D⊥
2mQ − iv · D

4m2
Q

i 6D⊥hv

= h̄vi 6D⊥(
1

2mQ

− iv · D
4m2

Q

)i 6D⊥hv ,(1.32)

where v2 = 1. In the heavy quark limit mQ → ∞ this term vanishes and the
effective Lagrangian of the HQET is obtained:

L∞ = h̄viv · D hv , (1.33)

leading to the appropriate Feynman rules. The derivation of this Lagrangian
can be also done by employing the generating functional for the QCD Green
functions containing heavy quark fields as shown in [28]. Before ending this
short description of the basic ingredients of HQET we remind that the only
term (1.33) which survives in the heavy quark limit provides for the SU(2Nf )
symmetry of the Lagrangian for Nf -flavors. In the expression (1.33) no Dirac
structures appear and consequently the interaction of the heavy quark with
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the gluons does not change its spin. Thus, the Lagrangian L∞ is invariant un-
der the SU(2) symmetry. Also, since the heavy quark mass does not appear
in (1.33), for two different heavy quarks moving with the same velocity, the
effective Lagrangian is invariant under SU(2) flavor transformations. The
parameter of HQET is the heavy quark mass, used in the phase redefinition
of the heavy quark field Eq. (1.25). Using the perturbation theory technique
one can perform an expansion of the new Lagrangian in terms of 1/mQ. The
definition of the mass of the heavy quark has to do with some subleties of
the theory, like the residual mass term (provided by quantum correction)
and the binding energy, which are non-perturbative parameters of HQET. In
fact a term containing the residual mass must be included in the Lagrangian
(1.33). To understand how these parameters affect the theory and how one
can proceed further to include the short-distance effects using the perturba-
tive QCD prescription, the problem of renormalization and how to calculate
observables, we recommend [28]. We mention only a few of the applications
of HQET : spectroscopy of the heavy mesons B and D, analysis of various
decay processes and calculation of the Isgur-Wise function.

After this compact introduction of the main concepts both relevant in
modelling baryons and linked to the underlying QCD, we turn to the spe-
cific model considered in the present work. First we offer a comprehensive
overview of the Relativistic Three-Quark Model (RTQM) and elaborate in
detail on the main ingredients of the model: the three-quark currents and
the compositeness condition. We also present the procedure of gauging the
non-local interaction of baryons, constituent quarks and the electromagnetic
field. In the third chapter we focus on the calculation of magnetic moments
of heavy baryons. In the fourth and fifth chapter we extend the applicability
of the RTQM and give results for the magnetic moments of light baryons
and the N → ∆ transition properties. Moreover, in the study of the light
baryon sector, we take into consideration meson cloud corrections. Using a
Lorentz covariant chiral quark Lagrangian we perform the dressing of the
constituents by light pseudoscalar mesons. We collect the main conclusions
of this work in the Summary.



Chapter 2

Relativistic Three Quark Model

2.1 General overview

In view of the difficulties of describing baryons as relativistic three-quark
systems many methods and models have been developed. Of particular im-
portance are the electromagnetic properties of baryons, which provide a great
deal of information on their internal structure. In this chapter we present the
main ingredients of the relativistic quark model, which later will be applied to
study magnetic moments of the ground state heavy baryons, of light baryons
and to investigate an old problem in hadron physics, the electromagnetic
properties of N → ∆ transition.

The model has been developed and applied already for a series of pro-
cesses: a study of the electromagnetic form factors of the nucleon, an analysis
of the semileptonic decays of the double heavy baryons and of the semilep-
tonic decays of Λb and Λc baryons as well as in the investigation of the strong
and radiative decays of heavy baryons [7, 8, 9, 10, 11, 29, 30, 31, 32]. Ref. [7]
contains a study of the electromagnetic properties of the nucleon: magnetic
moments, electric and magnetic charge radii.

In Refs. [8, 9, 29] the exclusive semileptonic, nonleptonic strong and
electromagnetic decays of single heavy baryons have been calculated in the
heavy quark limit; [11] constitutes a first attempt to extend the model to
double heavy baryons. In Ref. [30] the model was extended to the study
of heavy-baryon transitions at finite values of the heavy-quark mass with no
explicit expansion in terms of the inverse heavy quark mass mQ .

In our approach the baryon is a composite system of three constituent

29
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quarks. Motivated by quantum field theory, we write a phenomenological
Lagrangian, which models the interaction of the light and heavy baryons
with their own constituents. The effective action preserves gauge invariance
and Lorentz covariance.

The main ansaetze of the model are already made in the definition of the
effective Lagrangian. The coupling of the baryon to its own constituents can
be determined numerically (though not necessarily) by the compositeness
condition (see Section 2.3). Starting with the Lagrangian we are able to
write the S-matrix elements of baryon-baryon interaction. Further we derive
the Feynman rules related to a set of Feynman quark-diagrams which are to
be to computed for a given process. The model contains a few parameters:
the constituent quark masses and the parameters related to the size of the
distribution of the quarks inside the baryon. In all references already given
above the same set of model parameters has been consistenly employed.

The coupling of a baryon B to its own constituents q1, q2, q3 is described
by the strong interaction Lagrangian

Lstr
int(x) = gBB̄(x)

∫
dy1

∫
dy2

∫
dy3FB(x; y1, y2, y3)JB(y1, y2, y3) + h.c. (2.1)

where JB(y1, y2, y3) is the three-quark current with the quantum numbers of
the baryon under consideration and FB(x; y1, y2, y3) is the vertex function.
For the beginning we display the general form of a three-quark current, later
on we give a detailed discussion on various aspects regarding the currents,
as well as the choice of specific currents. In general the three-quark current
is given by:

JB(y1, y2, y3) = ǫabcΓ1q
Ta
1 (y1)q

b
2(y2)CΓ2q

c
3(y3) , (2.2)

where Γ1,2 are Dirac structures and C = γ0γ2 is the charge conjugation
matrix; a, b, c are the color indices.

The vertex function FB(x; y1, y2, y3) can be related to the scalar part of
the Bethe-Salpeter amplitude and characterizes the finite size of the baryon
[33, 34]. In principle a solution for the Bethe-Salpeter (or Fadeev-Popov)
equation for baryons as bound states of three quarks could be obtained. As
by now, a form for this function has not been given, the shape of our vertex
function is established based on intuitive and phenomenological reasons.
The function FB(x; y1, y2, y3) must be invariant under translation
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FB(x + a; y1 + a, y2 + a, y3 + a) = FB(x; y1, y2, y3) , (2.3)

where a is any four-vector.
This function should be chosen in such manner that, at the level of com-

puting Feynman graphs, the loop- integrals will converge in the ultraviolet
region. Therefore, any shape for FB(x; y1, y2, y3) is appropriate as long as
it falls off sufficiently fast in this region. From a phenomenological point
of view , as FB(x; y1, y2, y3) is responsible for the finite size of the baryon,
such a requirement is reasonable enough to set the appropriate shape of this
function, though there is some freedom in the choice of the vertex function.
The function FB(x; y1, y2, y3) depends on the baryon and quark coordinates
as:

FB(x; y1, y2, y3) = δ4(x −
3∑

i=1

ωiyi) ΦB[
∑

i<j

(yi − yj)
2] . (2.4)

The correlation function of the three constituent quarks, ΦB, depends on the
sum of the three-quark four-space coordinates; the delta functions assures the
center-of-mass system frame, the baryon has the four-coordinate x and sits at
the center-of-mass (CM). The variable ωi = mi

m1+m2+m3
, where m1,m2,m3 are

the constituent quark masses, depends only on the relative Jacobi coordinates
(ξ1, ξ2). Among the possible choices to relate Jacobi coordinates to the four-
space coordinates, we choose

ξ1 =

√
1

2
(y2 + y3 − 2y1) ,

ξ2 =

√
3

2
(y3 − y2) . (2.5)

From this definition it follows that

y1 = x − ξ1√
2
(ω2 + ω3) +

ξ2√
6
(ω2 − ω3) ,

y2 = x +
ξ1√
2
ω1 −

ξ2√
6
(ω1 + 2ω3) ,

y3 = x +
ξ1√
2
ω1 +

ξ2√
6
(ω1 + 2ω2) , (2.6)
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where x =
∑3

i=1 ωiyi is the center-of-mass coordinate.
Now we express the three-quark correlation function ΦB in Jacobi coor-

dinates

ΦB[
∑

i<j

(yi − yj)
2] = ΦB[ξ2

1 + ξ2
2 ] . (2.7)

The Fourier transform reads

ΦB[ξ2
1 + ξ2

2 ] =
∫ d4k1

(2π)4

∫ d4k2

(2π)4
× e−ik1ξ1−ik2ξ2Φ̃B(−k2

1 − k2
2) . (2.8)

We continue with the discussion about the specific form of the correlation
function ΦB. As already mentioned this is a priori free function , except that
it should deliver Feynman graphs UV finite. In the previous work of Ref. [35]
related to the pion-nucleon form factors, various shapes of this function have
been tested: monople, dipole, Gaussian and Coulomb form. The conclusion
is that basic observables in low-energy physics (pion weak decay constant,
pion charge form factor, etc.) depend weakly on the specific choice of the
vertex function.

In this work we choose an universal Gaussian function, which in Minkowski
space becomes

Φ̃B(−k2
1 − k2

2) = exp(
k2

1 + k2
2

Λ2
B

) . (2.9)

A Gaussian shape has the advantage to be easily used in momentum
space. We call it universal, because we will use the same shape for all baryons.
However, we will allow for a dependency on the flavor, in the sense that the
cut off parameter ΛB in the denominator of the exponential varies with the
flavor: this parameter, related to the size of the baryon, will have a larger
value as the baryon is heavier, and a smaller one for a lighter baryon. Still,
within the heavy sector, the cut-off parameter will have different values,
either for single, double or triple heavy baryons. The range parameter enters
actively the analytical expressions of the matrix elements and at the end
is replaced with numerical values obtained from the best fit to data of the
observables of interest. The Feynman diagrams are calculated in Euclidean
space where the above vertex function decreases rapidly. That is, with k2

1,2 →
−k1,2E we have

Φ̃B(k2
1E + k2

2E)
.
= exp(− k2

1E + k2
2E

Λ2
B

) . (2.10)
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2.2 Three-quark baryon currents

An important issue of our Lagrangian is related to the three-quark currents.
In general, hadronic currents are constructed as products of quark fields,
normal ordered with respect to the perturbative vacuum and singlets under
color SU(3) transformation:

ΨABC
αβγ (x, y, z) =: ΨAa

α (x)ΨBb
β (y)ΨCc

γ (z) : ǫabc , (2.11)

where ΨAa
α is a Dirac spinor with flavour A and color a and ”::” denotes the

normal-ordered product with respect to the perturbative vacuum.
Following Ref. [36] we will list briefly the properties of the linear com-

binations of the operators ΨABC
αβγ (x, y, z) under Lorentz transformations and

SU(3) flavour transformations. We only consider operators which do not
contain derivatives of the quark fields, thus we describe the baryon ground
state. If α, β, γ are the Dirac indices, µ, ν, λ, ρ the Lorentz indices and C
the charge conjugation matrix, then for u, d, s flavours the three-quark prod-
uct : uαdβsγ : can be decomposed into the irreducible representations (see
Appendix A) D(1/2,0), D(1,1/2), D(3/2,0) of the Lorentz group.
In the D(1/2,0) representation there are 5 different operators :

(uT Cd)sγ ,

(uT Cγ5d)sγ ,

(uT Cγ5γµd)(γ5γµs)γ ,

(uT Cγµd)(γµ)sγ ,

(uT Cσµνd)(σµνs)γ . (2.12)

In the D(1,1/2) representation there are 3 different operators :

(uT Cγρd)[(gµρ − 1
4
γµγρ)s]γ ,

(uT Cγ5γρd)[(gµρ − 1
4
γµγρ)s]γ ,

(uT Cσρλd)[(gµρ − 1
4
γµγργλ)s]γ . (2.13)

The spin-3/2 components of these operators must satisfy the Rarita-Schwinger
constraint γµΨµ = 0.
In the D(3/2,0) representation there is only one operator :

(uT Cσρλd)[(gµρgνλ − 1

2
gνλγµγρ +

1

2
gµλγνγρ 1

2
σµνσρλ)s]γ , (2.14)
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which satisfies the constraints Ψµν = −Ψνµ and γµΨµν = 0.
All other operators without derivatives , like (dT Cs)u can always be re-

duced to the ones listed above using Fierz transformations, which will be
discussed later. For now we observe that it is possible to decompose all these
operators into irreducible representations of flavour SU(3). In D(1/2,0) there
are four octets and one singlet to form a basis for this representation. The
following form is suitable for the singlet:

(uT Cd)sγǫuds . (2.15)

For the octet there are two types of operators, the Λ−type
√

1

6
{2(uT Cγ5d)sγ + (uT Cγ5s)dγ − (dT Cγ5s)uγ} ,
√

1

6
{(uT Cd)γ5sγ + (uT Cs)γ5dγ − (dT Cs)γ5uγ} (2.16)

and Σ−type
√

1

2
{(uT Cγ5s)dγ + (dT Cγ5s)uγ} ,
√

1

2
{(uT Cs)dγ + (dT Cs)uγ} . (2.17)

These operators contain spin-1/2 components, therefore they are suitable
to describe the spin-1/2 baryons. The number of operators reduces if two
flavours are identical, like in the case of the nucleon, when only one most
general operator can be written in D(1/2,0)

a(uT Cγ5d)uγ + b(uT Cd)γ5uγ (2.18)

where a, b are arbitrary constants.
For the D(1,1/2) there is one decuplet operator

√
1

3
(uT Cγµd)sγ + (dT Cγµs)uγ + (sT Cγµu)dγ (2.19)

and two octet operators, one Λ−type
√

1

6
(gµρ − 1

4
γµγρ)βγ[2(uT Cγ5γρd)sγ + (uT Cγ5γρs)dγ − (dT Cγ5γρs)uγ]

(2.20)
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and one Σ−type
√

1

2
(gµρ − 1

4
γµγρ)βγ[(u

T Cγ5γρs)dγ + (dT Cγ5γρs)uγ] . (2.21)

In this representation there are contributions from both the spin-1/2 and
spin-3/2 components. If two flavours are chosen equal, there is only one
operator left

(uT Cγ5d)[(gµρ − 1

4
γµγρ)u]γ . (2.22)

The D(3/2,0) representation contains only one decuplet, containing only the
spin-3/2 components.

An important property of the interpolating fields is the parity transfor-
mation. If the quark field Ψα is assigned internal positive parity

PΨα(x) = γ0
αα

′Ψα′ (x
′

) , (2.23)

then the parity transformation properties are easily obtained for the compos-
ite fields. For example, a structure like Ψ̄γ5Ψ transforms like a pseudoscalar
under parity transformation, but (Ψ̄αCγ5Ψβ)Ψγ, where C = γ0γ2, is positive
under parity. The parity of any of the operators listed above can be reversed
by simply multiplying with γ5. The role played by the charge conjugation
matrix C is to preserve the non-relativistic limit of these currents, by an
appropriate mixing of the upper and lower components.

Following the literature provided by Ref. [36] one can choose the optimal
interpolating field as constrained by a set of inequalities for the baryonic
masses. In fact, based on the approach suggested by Shifman, Vainshtein
and Zakharov [37], a baryon sum rule investigation is carried out in [36], tak-
ing into consideration also non-perturbative terms, due to the non-vanishing
value of quark and gluon condensates. The inclusion of non-perturbative
effects plays an important role for the selection of the appropriate baryonic
currents. In the language of baryon QCD sum rules, the inclusion of non-
perturbative effects resumes to using the full propagator, perturbative and
non-perturbative piece. For example, in the case of spin−(1/2)+ baryons,
the calculation of the two-point correlation function for a specific baryon is
given by the time-order product of the above relevant currents, on one side,
and can be expressed by the dispersion relation (Lehmann representation),
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on the other side. A Borel tranformation of this sum rule sets two indepen-
dent inequalities for the baryon masses. The experimental measurement of
the spectral function rules out certain structures for the currents and sets an
upper limit for the baryon masses. Also, the non-perturbative piece in the
propagator indicates that the baryon mass receives an important contribu-
tion from the scalar condensate. The calculation of the two-point correlation
function at high momenta is done within perturbative QCD, while the non-
perturbative parameters are obtained from the fit to experimental values of
the spectral function. In principle, more complicated operators can be used,
including fields with more than three quarks or with derivatives of the quark
fields.

We will retain from all this additional extension only the basic principle
of constructing three-quark currents. To strengthen the main ideas on the
choice of the currents, we offer another example, given in Ref. [38]. For
the ∆++ isobar, the physical state consists of s-wave quarks so that the
introduction of derivatives of the quark fields is not desired. Ioffe constructs
currents from current quarks and underlines the simplicity of using three-
quark currents as products of only three quark fields, and not to use p-wave
current quarks.

In this vein, the form of the current with the necessary quantum numbers
of ∆++ (isospin T = 3

2
and JP = 3+

2
) reads

Ψ = (uTaCγµu
b)ucǫabc . (2.24)

The dependence on the coordinate has been omitted and for simplicity it has
been assumed to be a local operator. Futhermore, it can be proven [38] that
all other non-zero currents can be expressed via this relation. All possible
currents can be written in the most general form

Ψ = (uTaCOku
b)γµOku

cǫabc (2.25)

with Ok = {1, γ5, γµ, γµγ5, σµν}. If we perform transposition of the spinors
ua and ub and use CT = −C then we have

uTaCubǫabc = uTaCγ5ubǫabc = uTaCγνγ5u
bǫabc = 0 . (2.26)

The transposition of the spinors ub and uc and the use of Fierz transformation
give

(uTaCσλνu
b)γµσλνu

cǫabc = −1

2
(uTaCσλν)γµσλνu

cǫabc . (2.27)
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With the help of the Fierz transformation and the relation (2.26) we obtain

(uTaCγλu
b)σλµu

cǫabc = i(uTaCγµu
b)ucǫabc . (2.28)

It can be seen that the form proposed a priori (2.24) is a unique current for
the ∆++ isobar. There is a non-relativistic limit for this current, which is
desirable.

In the case of the nucleon one proceedes similarly. Using the above equal-
ities, one employes the following three-quark current with quantum numbers
of the nucleon and without quark field derivatives:

Ψ = (uTaCγµu
b)γ5γ

µdcǫabc . (2.29)

There is one more current without derivatives and with the desired properties,
the tensor current

Ψ1 = (uTaCσµνu
b)σµνγ5d

cǫabc . (2.30)

However, in the sum rule approach this current is discarded in practical
calculations, since the contribution of the amplitudes of the baryon transition
into the tensor current are small [38].

To convince the reader of the uniqueness of the three-quark current for the
∆++ state, we refer to a detailed discussion of the QCD equalities for baryon
matrix elements in [39]. First of all, Ref. [39] gives a justification of the
basic ideas of writing such general QCD motivated expression for three-quark
currents. This work is focused on the fundamental QCD equalities based
directly on the symmetries of the QCD path integral. Furthermore, such
equalities must be met by any model which aims to describe nonperturbative
QCD. A good approximation and the only one used in this work is the isospin
limit, mu = md, as ΛQCD ≫ (md − mu). Important aspects in this work
related to the construction of three-quark currents may be found: a review
of the path integral formalism and a discussion of the operators used to
calculate current matrix elements for low-lying baryons.

It is well known that in field theories the calculation of hadronic properties
is centered around the QCD vacuum expectation values of the appropriate
operators. In the path-integral formalism the expectation values are calcu-
lated using the functional integral. The exponent contains the gauge action
and a mass term depending on the gauge field. One can perform the func-
tional integration and observe that every pair of fermion-antifermion fields
generates the well-known free fermion propagator.
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The essence of QCD equalities lies in those terms that contain the fermion
propagators multiplied by various Dirac structures, thus the physical differ-
ence between various hadrons. The rest of the terms (the exponential of the
gauge action and the determinant of the mass) are common to any hadron
considered. To calculate the current matrix elements one uses the time-
ordered product of three operators: an operator exciting the hadron from
the vacuum, followed by a current operator, the one suitable to the calcula-
tion of the desired properties, followed by an operator which anihilates the
hadron to the vacuum.

Ref. [39] also contains a discussion of the simplest case of ∆++ and the
unique choice of the three-quark current. Also it is shown that operators
which couple to the other ∆’s are obtained from the one for ∆++ by using
the isospin-lowering operator. Other decuplet baryon fields are obtained by
a proper substitutions among the quark fields. In the case of the nucleon,
there are two local fields of minimal dimension, being commonly used a linear
combination of the two forms.

To calculate observables, one needs to calculate the two-point correlation
function, thus the quark field operator pairs have to be contracted, which
leads to the quark propagators. For the baryonic currents we therefore con-
sider non-local operators as product of three constituent quark fields linearly
combined in such way that the full expression has the quantum numbers of
the baryon under consideration.

Since the mathematical technique for writing all possible three-quark
baryon currents is the same, with disregard whether one uses current quarks
or constitutent quarks, we rewrite the most general form of a nonlocal bary-
onic current with no quark field derivatives as

JB(y1, y2, y3) = Γ1q
Ta
1 (y1)[q

b
2(y2)CΓ2q

c
3(y3)]ǫ

abc , (2.31)

which we employ for the description of the properties of the ground state
baryons all way through this work. In the above expression the antisymmetric
tensor ǫabc preserves the baryon as a color singlet and yi, i = 1, 2, 3 are the
four-space coordinates of the three quarks; the flavour matrix is omitted.
The Γ matrices provide the right spin quantum numbers of a given baryon
with Γ1,2 = 1, γ5, γµ, γµγ5, σµν .

One can construct five bilinear covariants under Lorentz transformations
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Scalar JS = γ5 qTa
1 qb

2 C qc
3 ǫabc ,

Pseudoscalar JP = qTa
1 qb

2 C γ5 qc
3 ǫabc ,

V ector JV = γµ γ5 qTa
1 qb

2 C γµ qc
3 ǫabc ,

Axial − vector JAV = γµ qTa
1 qb

2 C γµ γ5 qc
3 ǫabc ,

T ensor JT = σµν qTa
1 qb

2 C σµν qc
3 ǫabc .

(2.32)

In the following we will discuss the non-relativistic limit of these currents
and the Fierz transformation. In principle, for a given baryon one should take
the linear combination of all the five forms, but due to these transformations
one can restrict their number. Later on, we will see that a study of heavy
baryons helps in choosing a unique form, based on symmetry considerations.

To illustrate in an intuitive fashion the usefulness of the Fierz transforma-
tions, let us make the following notations for various Dirac matrix products
entering the currents

P = I ⊗ Cγ5 ,

S = γ5 ⊗ C ,

A = γµ ⊗ Cγµγ5 ,

V = γµγ5 ⊗ Cγµ ,

T =
1

2
σµνγ5 ⊗ Cσµν . (2.33)

The factor 1
2

in front of the tensor form provides for a proper normalization.
The Fierz identities allow to rewrite the product of two spinor bilinears as a
linear combination of products of two spinor bilinears [40].

Most generally, the Fierz transformations for the 16 Dirac structures read:

Γαβ
1 ⊗ Γρσ

2 = Γαµ
1 ⊗ Γρν

2 δµβδνσ (2.34)

with the completeness condition

δµβδνσ =
1

4

∑

l

Oµσ
l Oνβ

l . (2.35)

It follows that

Γαβ
1 ⊗ Γρσ

2 =
1

4
Γαµ

1 ⊗ Γρν
2

∑

l

Oµσ
l Oνβ

l

=
1

4

∑

l

(Γ1Ol)
ασ ⊗ (Γ2Ol)

ρβ .

(2.36)
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So, the various Dirac matrices can be easily related to other Dirac matrices
via

Γ1 ⊗ Γ2 =
1

4

∑

l

(Γ̃1Ol) ⊗ (Γ̃2Ol) . (2.37)

In our case (see the notations (2.33)), Fierz transformations relate the fol-
lowing structures

S =
1

4
[S̃ + P̃ − Ṽ + Ã +

T̃

2
] ,

P =
1

4
[S̃ + P̃ + Ṽ − Ã +

T̃

2
] ,

V = P̃ − S̃ − 1

2
[Ṽ + Ã] ,

A = S̃ − P̃ − 1

2
[Ṽ + Ã] ,

T = 3(S̃ + P̃ − T̃

2
) . (2.38)

From here one can extract the relations

P + S =
1

2
[P̃ + S̃ +

T̃

2
] ,

P − S =
1

2
[Ṽ − Ã] . (2.39)

To show the behaviour in the non-relativistic limit we choose as an exam-
ple the nucleon currents. There are two possibilities for the nucleon: vector
and tensor current with

JV
p = γµγ5dTaubCγµu

cǫabc ,

JT
p =

1

2
σµνγ5dTaubCσµνu

cǫabc . (2.40)

Keeping in mind that C = γ0γ2 = (
0 σ2

σ2 0
) and Cγ5 = (

σ2 0
0 σ2

), we list

below the non-relativistic limits:

Pseudoscalar : uTaubCγ5dcǫabc
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= ǫabcχfl
u χcolor

a (
1
0

)χs1χ
fl
u χcolor

b (
1
0

)χs2(
0 σ2

σ2 0
)

× χfl
d χcolor

c (
1
0

)χs3

= ...(
1
0

)χs1χs2σ2χs3

Scalar : γ5uTaubCdcǫabc → 0

Axial − V ector : γµuTaubCγµγ5d
cǫabc

= γ0uTaubCγ0γ5d
cǫabc − ~γuTaubC~γγ5d

cǫabc

︸ ︷︷ ︸
= 0

= ...(
1
0

)χs1χs2σ2χs3

V ector : γµγ5dTaubCγµu
cǫabc

= γ0γ5dTaubCγ0u
cǫabc − ~γγ5dTaubC~γucǫabc

= ...~σ(
1
0

)χs1χs2σ2~σχs3

Tensor :
1

2
σµνγ5dTaubCσµνu

cǫabc

= σ0iγ5dTaubCσ0iu
cǫabc

= ...~σ(
1
0

)χs1χs2σ2~σχs3 (2.41)

Here, σi stands for the Pauli matrices and χsi
stands for the quark spin wave

functions. In each expression above the dots stand for the spin-wave function
of the baryon χ+

sB
(1 0). Hence, in the non-relativistic limit, both

pseudoscalar and axial-vector =⇒ (
1
0

)χs1χs2σ2χs3 ,

vector and tensor =⇒ ~σ(
1
0

)χs1χs2σ2~σχs3 , (2.42)

become degenerate. In a more transparent notation, the pseudoscalar current
(PS), for example, can be written in its non-relativistic (NR) form as:

PSNR → 12×2 ⊗ σ2 × (uu d) × (↑↑↓) , (2.43)
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where ↑ and ↓ represent the quark spinors +1
2

and −1
2
, respectively, and u, d

are the quark flavours.
As shown it is suitable to choose two nucleon currents, vector (V) and

tensor (T), as the scalar current vanishes in the non-relativistic limit and,
due to the Fierz transformations, the other two currents can be easily related
to V and T.

Now we will discuss the heavy baryon currents. In our approach mag-
netic moments are calculated for single-, double- and triple heavy baryons.
The three-quark currents with correct quantum numbers are of two types,
according to the symmetry/antisymmetry of the baryon wave function under
permutation of flavour indices of the second and third quark, respectively.
Therefore, we have Λ−type baryons, bound states of a quark and a diquark
system (with spin 0), and Σ−type baryons, bound states of a quark and
diquark system (with spin 1). The Λ−type non-derivative currents that in
general can be constructed are pseudoscalar, scalar and axial-vector. These
currents are antisymmetric under permutation of flavour indices of quark 2
and 3 as indicated by the symbol [...]

JP
Λq1[q2q3]

= ǫabcqTa
1 qb

2Cγ5q
c
3 ,

JS
Λq1[q2q3]

= ǫabcγ5qTa
1 qb

2Cqc
3 ,

JA
Λq1[q2q3]

= ǫabcγµqTa
1 qb

2Cγµγ5q
c
3 . (2.44)

The Σ−type non-derivatives currents that can be constructed are vector and
tensor. These currents are symmetric in flavour indices of quark 2 and 3 as
indicated now by the symbol {...}

JV
Σq1{q2q3}

= ǫabcγµγ5qTa
1 qb

2Cγµq
c
3 ,

JT
Σq1{q2q3}

= ǫabcσµνγ5qTa
1 qb

2Cσµνq
c
3 . (2.45)

qi stands for a light or heavy quark, so that qiqj, i, j = 2, 3 can be a light-
diquark system or a heavy-diquark system. In each case we will restrict to
one form: the pseudoscalar form for Λ−type baryons and the vector form
for Σ−type baryons. As we saw these currents have the right non-relativistic
limit. The scalar current goes to zero in the non-relativistic limit, the pseu-
doscalar and the axial-vector become degenerate; the naive quark model
spin-flavor wave function matching these currents reads:

|Λq1[q2q3] >=
1

2
|q1(q2q3 − q3q2) > | ↑ (↑↓ − ↓↑) > . (2.46)
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The same degeneracy in the non-relativistic limit is encountered by the vector
and the tensor currents; the naive quark model spin-flavor wave function
reads:

|Σq1q2q3 >=
1

2
√

3
|q1(q2q3 + q3q2) > | ↑ (↑↓ + ↓↑) − 2 ↓↑↑> . (2.47)

With these identities, one can safely employ one of the forms in each case.
We restrict to spin-1/2+ baryons.

Now we will discuss the choice of the three-quark currents used to study
the N −∆ transition. In the calculation of the baryon matrix elements of the
valence quarks we deal only with light flavours and display the isospin limit
explicitly. As we know already from the discussion of Ioffe [38], the ∆+(1232)
has the most simple choice for the current. One can write a nonlocal three-
quark vector-type current, with no derivatives, to meet the correct quantum
numbers of a Rarita-Schwinger spinor, JP = 3

2

+

Jµ
∆ = ǫabcΓ1d

Ta(y1)u
b(y2)CΓ2u

c(y3) , (2.48)

with Γ1 = 1 and Γ2 = γµ. For the sake of completeness we will return to Ref.
[39] to illustrate how the tensor and the vector form can be expressed using
the above form. One can start with a vector current for ∆+, as in Ref. [39],
with

Jµ
∆+ =

ǫabc

2
√

3
[dTaubCγµuc + 2uTaubCγµdc]

=
ǫabc

2
√

3
[dTaubCγµuc + dTaubCγµuc + γ5d

TaubCγµγ5uc − iγνd
TaubCσµνuc]

=
ǫabc

2
√

3
[2dTaubCγµuc − iγνd

TaubCσµνuc] , (2.49)

where we made use of the following Fierz transformations in the last two
lines

Vµ = 1 ⊗ Cγµ ,

Tµ = iγν ⊗ Cσµν ,

Vµ =
1

2
[Ṽµ + Ãµ − T̃µ] ,

Aµ =
1

2
[Ṽµ + Ãµ + T̃µ] ,

Tµ = −Ṽµ + Ãµ .

(2.50)
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The general current is then given by

αVµ + βAµ + γTµ = Ṽµ[
α

2
+

β

2
− γ] + Ãµ[

α

2
+

β

2
+ γ] + T̃µ[−α

2
+

β

2
] ,

(2.51)

where the structures enter with various weights α, β and γ. Redefining

β = 0
α + β

2
+ γ = 0

α =
α

2
+

β

2
− γ

γ = −α − β

2
,

we obtain

β = 0
α

2
= −γ ,

and the left-hand side of Eq. (2.51) becomes

α[Vµ − Tµ

2
] .

In this way we obtain the terms in the last line of Eq. (2.49). In fact, it
is common to absorbe the factor 1

2
in Eq. (2.49) in the redefinition of the

tensor current (see also Eq. (2.33)).
As already mentioned, for the nucleon we will choose the vector and tensor

currents, testing also the sensitivity of the observables on such a choice. In
a most general notation we have for the non-local current

J i
p = ǫabcΓ1d

Ta(y1)u
b(y2)CΓ2u

c(y3) , (2.52)

where

i = V → Γ1 = γµγ5 , Γ2 = γµ ,

i = T → Γ1 = σµνγ5 , Γ2 = σµν . (2.53)

A complete list of the three-quark currents for all the baryon states can be
found in Appendix B.
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2.3 Compositeness condition

In the interaction Lagrangian (2.1), both hadron and quark degrees of free-
dom enter. To make sure that there is no double counting, in our approach
we will use the concept provided by the compositeness condition.

The coupling constants gB in the Lagrangian can be determined by this
condition. The compositeness condition implies that the renormalization
constant of the hadron wave function is set to zero:

ZB = 1 − Σ′
B(mB) = 1 − g2

BΠ′
B(mB) = 0, (2.54)

where Σ′
B is the derivative of the baryon mass operator.

Before explaining the consequences and the physical meaning of this con-
dition, we give a brief overview of the historical hypothesis and the necessity
of the compositeness condition.

A first formulation of the compositeness condition has been given by
Weinberg in 1962 [41]. He attempts to rewrite a non-relativistic theory by
introducing fictitious elementary particles. In the Hamilton formalism it
is proven that the physical observables are not affected by this procedure,
as long as the interaction part of the Hamiltonian is properly modified (it is
sufficiently weak to allow the use of perturbation theory). The basic idea is to
represent real composite particles, such as baryons, by fictitious elementary
particles.

In this vein, a fictitious elementary particle is in fact a real elementary
particle with infinite unrenormalized bare mass, therefore with a wave func-
tion renormalization constant Z equal to zero.

Weinberg further discusses the consequences of introducing quasi-elemen-
tary particles in a theory in such way that the physical predictions are not
affected. The equivalence with the original theory is given by imposing that
bare energy of the quasi-particles is much larger than any energy explored
by the experiment.

The main achievement emerging from this condition is the calculation
of the coupling of a real composite particle to its own constituents. The
compositeness condition distinguishes between bound states and elementary
particles, providing a sum rule for the coupling of the bound state to its
presumed constituents. For a full understanding of the mathematical method
used to introduce quasi-particles, we recommend the reading of Ref. [41].
Here we retain only that Z1/2 is the matrix element between the physical
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state, the baryon for example, and the bare state, the fictious elementary
baryon:

< B0|B >= Z1/2 . (2.55)

One can see that the emerging inequality 0 < Z < 1 sets an upper limit for
the coupling constant of the physical particle to its constituents, the limit
attended at Z = 0, equivalent to stating that the physical particle (|B >
one-particle state) is not elementary at all.

Further insight in the compositeness criteria of particles has been realized
in Ref. [42]. In a Lagrangian approach, a composite particle in Quantum
Field Theory is a composite one provided that it is not included in the original
Lagrangian and can be eliminated from the Lagrangian by setting its wave
function renormalization constant to zero.

The work of Ref. [42] illustrates the case of a Yukawa interaction be-
tween a scalar field and a Dirac field, i.e. between nucleons and pions. It is
proven that in the picture of a pion as a composite of nucleon-antinucleon,
the unrenormalized Yukawa coupling tends to the Fermi coupling. Several
equivalence proofs between compositeness condtion in Quantum Field The-
ory and the S-matrix theory may be found.

The condition ZB = 0 imposes that the physical state does not contain
the bare one, therefore the physical baryon is described as a bound state.

The full Lagrangian, the interaction part and the free part, contains
both the constituent degrees of freedom (quarks) and the physical particles
(baryons) which are taken to be bound states of the constituents. As a result
of the interaction of the bound state with its own constituents and the conse-
quences of the compositeness condition, it comes out that the physical state
can exist only as a dressed one. That is, its mass and wave function have
to be renormalized. Thereby the ZB = 0 condition effectively excludes the
constituent degrees of freedom from the physical space. The picture which
emerges from this condition is that constituents can exist only as virtual
states.

As a corrolary, the compositeness condition provides for the absence of a
direct interaction of the dressed charged particle (the physical baryon) with
the electromagnetic field. The interaction with external fields holds only at
the level of the constituent quark.

Taking into account both the tree-level diagram and the diagrams with
self-energy insertions into the external legs (by means, the tree-level diagram
times (ZB − 1)), a common factor ZB is obtained and this one is equal zero.
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To describe hadron observables a model has been proposed and devel-
oped by the Dubna group [7, 31, 32, 43]. The subject of the compositeness
condition and the basic ideas are strongly connected to confinement and
QCD-hadronization, two main ingredients which are included in the Quark
Confinement Model, a QCD-motivated model. A complete mathematical
procedure with respect to the link between Quantum Field Theory and the
compositeness condition is given in Ref. [43].

2.4 Electromagnetic interaction

In the following we will show how to introduce the electromagnetic interaction
in our non-local baryon-quark Lagrangian. First of all, we use the standard
free Lagrangians for quarks and baryons

Lfree(x) = B̄(x)(i 6∂ − mB)B(x) +
∑

q

q̄(x)(i 6∂ − mq)q(x) . (2.56)

When introducing the interaction with the electromagnetic field, the free
Lagrangians are gauged in the standard manner using minimal substitution

∂µB → (∂µ − ieBAµ)B , ∂µB̄ → (∂µ + ieBAµ)B̄ ,

∂µqi → (∂µ − ieqi
Aµ)qi , ∂µq̄i → (∂µ + ieqi

Aµ)q̄i , (2.57)

where eB is the electric charge of the baryon B and eqi
the electric charge of

the quark of flavor qi. The resulting Lagrangian reads as

L
em(1)
int (x) = eBB̄(x) 6AB(x) +

∑

q

eq q̄(x) 6Aq(x) . (2.58)

As we stated before, due to the compositeness condition, the electromagnetic
field does not couple directly to the charged physical field, but it couples to
the virtual particles, the constituents.

To introduce the electromagnetic interaction in the nonlocal baryon-quark
Lagrangian in such a fashion that gauge invariance is preserved, we will follow
the prescription of Ref. [44] and already successfully used in Ref. [7].

We will explain in brief the main ideas used in Ref. [44]. An easy example
is the gauging of a local theory which couples quarks to photons, a case in
which one makes use of the standard minimal substitution

L = q̄(x)[γµ∂µ − ieQAµ(x)]q(x) +
1

4
FµνF

µν (2.59)
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with Q being the charge matrix of the quarks. This Lagrangian preserves
gauge invariance as can be easily checked when performing the infinitesimal
transformations

q(x) → [1 + iα(x)Q]q
′

(x) ,

q̄(x) → q̄
′

(x)[1 − iα(x)Q] ,

Aµ(x) = A
′

(x) +
1

e
∂µα(x) . (2.60)

This is a well-known result; we show a useful method employing a similar
procedure for gauging a non-local interaction, which couples quarks, baryons
and photons. Based on a path-exponential formalism introduced by Bloch
and a path-ordered formalism used by Wilson, Ref. [44] develops a method
of gauging nonlocal Lagrangians. The path-ordering of Wilson is useful for
introducing the weak interaction, while for Abelian groups, like the U(1)
group of the electromagnetic gauge field, the path-exponential formalism is
used.

A free-quark action

S =
∫

dx4
∫

dy4q̄(x)δ(x − y) 6∂ q(y)

=
∫

dx4
∫

dy4q̄(x)[−6∂yδ(x − y)]q(y) (2.61)

is gauged by introducing an exponential of a line integral of the gauge field.
The same procedure is used in the path-exponential formalism for nonlocal
actions, the path exponential has certain properties under the infinitesimal
gauge transformations above

e−ieQ
∫ y

x
Aµdzµ

= [1 + iα(x)Q] e−ieQ
∫ y

x
A

′
µdzµ

[1 − iα(y)Q] . (2.62)

The simple properties of the path exponential are preserved in the path-
ordering for non-Abelian groups. Using this property, the action becomes
(FµνF

µν is ignored) gauge invariant

S =
∫

dx4
∫

dy4q̄(x)[−6∂yδ(x − y)]e−ieQ
∫ y

x
Aµdzµ

q(y)

=
∫

dx4
∫

dy4q̄(x)δ(x − y) 6∂ye
−ieQ

∫ y

x
Aµdzµ

q(y) . (2.63)

When expanding the exponential in the last line up to the desired order,
the derivative ∂y will act on the line integral of the electromagnetic field.
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Mandelstam [45] solved this ambiguity by introducing the notation

I(x, y, P ) ≡
∫ y

x
Aµdzµ (2.64)

to show the explicit dependence of the line integral on the path P from x to
y. The derivative of I(x, y, P ) is defined as

lim
dyµ→0

dyµ
∂

∂yµ
I(x, y, P ) ,

= lim
dyµ→0

I(x, y + dy, P
′

) − I(x, y, P ) . (2.65)

with P
′
being the path obtained by shifting the end-point y of the path P

by the quantity dyµ. With the definition above we obtain

∂

∂yµ
I(x, y, P ) = Aµ(y) (2.66)

and the derivative of the path integral is independent of the path. In the
expression of the gauge invariant action, if the path P shrinks to a point
(that is the action becomes local), not to a closed loop, that is, if x → y,
then δ(x − y)I(x, y, P ) = 0 and

S =
∫

dx4
∫

dy4q̄(x)δ(x − y)(γµ∂µ − ieQAµ)q(y) , (2.67)

where the standard minimal substitution is recovered.
We return to our action and following all the steps above, we will multiply

each quark field q(yi) in the strong interaction part Lagrangian Lstr
int of (2.1)

with an exponential of the gauge field Aµ.
One obtains

L
str+em(2)
int (x) = gBB̄(x)

∫
dy1

∫
dy2

∫
dy3FB(x; y1, y2, y3)

× ǫabcΓ1e
−ieq1I(y1,x,P )qa

1(y1)e
−ieq2I(y2,x,P )qb

2(y2)

× CΓ2e
−ieq3I(y3,x,P )qc

3(y3) , (2.68)

where

I(yi, x, P ) =
∫ yi

x
dzµA

µ(z) . (2.69)
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The full Lagrangian suitable to calculate electromagnetic properties of any
baryon is given now by

Lfull(x) = Lfree(x) + L
em(1)
int (x) + L

str+em(2)
int (x) . (2.70)

If one performs the gauge transformations

qi(x) → eieqi
f(x)qi(x),

q̄i(x) → q̄i(x)e−ieqi
f(x),

Aµ(x) → Aµ(x) + ∂µf(x),

B(x) → eieBf(x) B(x) ,

B̄(x) → B̄(x) e−ieBf(x) , (2.71)

the full Lagrangian remains invariant. The total baryon charge is eB
∑3

i=1 eqi
.

The next step is to expand each gauge exponential up to a certain power of
Aµ relevant to the desired order of perturbation theory in a given process.

That is how the second term of the electromagnetic interaction L
em(2)
int arises.

Actually, in calculating static properties, such as magnetic moments, one will
retain only terms proportional to Aµ. To obtain such terms it is sufficient to
multiply with the gauge exponential only one quark field.

The photon couples equally to any of the three constituents and at the end
we will sum up all contributions. Though one may think that the observables
will depend on the path P, which connects the end points in the path integral,
that is x and yi, the results will obviously only depend on the derivatives
of the path integral. Using the formalism suggested by Terning [44], the
derivatives of the path-integral I(y, x, P ) are defined as path-independent
(see Eqs. (2.65) and (2.66)).

In Appendix C we explicitly give the derivation of Feynman rules for a
non-local Lagrangian coupling hadrons to photons and quarks.



Chapter 3

Magnetic moments of heavy
baryons

In the past decades great amount of information has been provided by exper-
iments in the heavy hadron sector. The spectra of single charm and single
bottom baryons were confirmed by numerous Fermilab in the early 80’s and
90’s [46, 47, 48]. Information on double heavy flavored hadrons came later
with the first observation of the Bc meson in an experiment performed by
the CDF Collaboration in 1998, B+

c → J/Ψl+νl, [49]. The Selex-Fermilab
Collaboration [50] reported three candidates for the doubly charmed baryon
Ξ+

cc with masses around 3520 MeV/c2 in Ξ+
cc → Λ+

c K−π+. The measured
static properties were in good agreement with the prescriptions of the naive
quark model. Though there is still not enough information listed in the PDG
for static properties of double heavy baryons, using various theoretical ap-
proaches theorists can give predictions which hopefully will be confirmed by
future experiments.

The study of the electromagnetic interaction is relevant for gaining insight
to the hadronic structure. The success of the naive quark model in describing
baryon spectra, magnetic moments and other static observables, together
with the indications from deep inelastic lepton scattering form a solid basis
for the consideration that, a baryon is described by a three quark bound
state at least in the leading order.

In the literature one can find different approaches to calculate magnetic
moments of mainly single heavy baryons. In Refs. [51, 52, 53, 54, 55, 56]
the naive quark model was extensively used based on different realizations
of spin-flavor symmetry. In Refs. [57, 58, 59, 60] the magnetic moments of

51
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charmed and bottom hyperons have been calculated using advanced quark
models which incorporate the ideas of hadronization, confinement, chiral
symmetry and Poincare covariance. Soliton-type approaches have been used
in Refs. [61, 62, 63], while QCD sum rules in the presence of an external
electromagnetic field have been used to calculate the magnetic moments of
the Σc and Λc baryons [64] and the magnetic moments of Λb and Λc [65].

In a series of papers [66, 67, 68, 69, 70] the heavy quark symmetry has
been combined with elements of chiral symmetry, a theory known under the
generic name of heavy hadron chiral perturbation theory (HHChPT), and
used to calculate magnetic moments of single heavy baryons. The general
Lagrangian describing the soft interactions of single heavy systems contains
heavy hadrons, light mesons and external fields, the photons. As explained
in the introductory part, in the heavy quark limit, mQ → ∞, single heavy
baryons can be classified according to the spin of the light diquark system.
The Λ−type baryons are antisymmetric states, 3̄ states with the total spin of
the light diquark system sl = 0 (isosinglet ΛQ with quark content Q[ud] and
isodoublet ΞQ with quark content Q[us] and Q[ds]). The Σ−type baryons
are symmetric states, 6 states with the total spin of the light diquark system
sl = 1 (isotriplet ΣQ with quark content Quu,Qud,Qdd and isodoublet Ξ

′

Q

with quark content Qus and Qds). In the first case the total spin of the
heavy baryon is made up by the spin of the heavy quark, so that in the
heavy quark limit the magnetic moment of such baryons vanishes. In the
second case the magnetic moments in the heavy quark limit are nonzero, as
the light degrees of freedom give contributions. The leading order O[1/mQΛχ]
long-distance contributions to Λ−type baryon magnetic moments come from
spin symmetry breaking, which leads also to the mass splitting Σ∗

Q−ΣQ [68].
The next-to-leading order corrections are of order O[1/mQΛ2

χ]. The scale
parameter Λχ ≃ 1.2 GeV is related to the spontaneous breaking of chiral
symmetry. The next-to-leading order corrections are of order O[1/mQΛ2

χ] and
have been calculated in Ref. [69]. For the Σ−type baryons the leading order
corrections coming from the light- and heavy-quark magnetic interactions are
of order O[1/Λχ] and O[1/mQ], respectively [67]. The next-to leading order
contributions are of order O[1/Λ2

χ] [69].
All the approaches listed above have both advantages and drawbacks. As

the sector of double flavored baryons is barely discussed, we find it useful to
apply the Relativistic Three-Quark Model (RTQM) to the computation of
magnetic moments of single-, double- and triple-heavy baryons.

As in Eq. (2.1) the nonlocal coupling of the three constituent quarks to
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any baryon is given by the effective interaction Lagrangian

Lstr
int(x) = gBB̄(x)

∫
dy1

∫
dy2

∫
dy3FB(x; y1, y2, y3)JB(y1, y2, y3) + h.c.

(3.1)

The most general form of a three quark current is given in Eq. (2.2), whereas
the vertex function FB of (2.4) and the definition of the four-space quark and
baryon coordinates in terms of Jacobi coordinates have been discussed in Eq.
(2.6). Of course, the calculation will be carried in momentum space, so we
will use the Fourier transform of the vertex function (three-quark correlation
function) as given in Eq. (2.8). We also motivated the choice of a universal
Gaussian shape of the vertex function (see Eq. (2.9)).

In our study of heavy baryon magnetic moments we will split the model
into three parts: (1) an exact calculation with no approximation, using a
”full” baryonic correlation function and a free quark propagator, indicated as
BCF (Baryonic Correlation Function). We furthermore consider two specific
limits for the correlation functions and heavy quark propagators: (2) the
heavy quark limit for the heavy-quark masses in the expression of the BCF
will be called HQL BCF approximation. For single heavy baryons the heavy-
quark limit means that they are treated as bound states of a heavy quark
and a light diquark system. In addition, the heavy quark is placed in the
center of the system and is surrounded by the light degrees of freedom. This
limit will eliminate the heavy quark degree of freedom m1 = mQ → ∞ which,
replaced in the definition for the kinematical quantity ωi, translates into

ω1 → 1

ω2 → 0

ω3 → 0

and therefore

y1 → x .

Double heavy baryons are considered as bound states of a light quark and a
heavy diquark system, which sits in the center of the double heavy baryon
system. This corresponds to the limit: m2 = mQ → ∞,m3 = mQ′ → ∞
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which in turn corresponds to

ω1 → 0

ω2 → 1/2

ω3 → 1/2 .

With respect to the triple heavy baryons we point out two examples : the
Ω+

ccb is a bound state of a heavy bottom quark, while the double charm
system is considered relatively “light”; so m1 = mb → ∞ and therefore ω1 →
1, ω2 → 0, ω3 → 0 as in the case of a single heavy baryon; the Ω0

cbb baryon
is a bound state of a relatively “light” charm quark and a heavy diquark
system composed of the bottom flavours, so that m2 = m3 = mb → ∞ and
ω1 → 0, ω2 → 1/2, ω3 → 1/2, similarly to the structure of a double heavy
baryon in the heavy quark limit. Following this philosophy one can easily
simplify the correlation functions expressed through Jacobi coordinates. As
a last approximation (3), we take the heavy-quark limit both for the baryonic
correlation function and the heavy-quark propagator (only for single-heavy
baryons), refered as HQL BCF + HQP.

With respect to the three-quark currents, in the previous chapter we gave
a list of possibilities for the Σ−type and Λ−type and explained our choice
based on the previous study of Chung and Ioffe [36, 38]. We stress that
for the Σ−type baryons we choose to work with vector currents and for the
Λ−type we choose to work with pseudoscalar currents.

Also, a useful classification of the heavy-baryon states (spin-parity, flavor
content and quantum numbers, mass spectrum) is given in Table 1 for the
single charm baryons, in Table 2 for the single bottom baryons and in Table 3
for double and triple heavy baryons. All data are taken from Refs. [71, 72, 73]
and apply to the JP = 1+

2
states.
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Table 1. Single charm 1/2+ baryons

Notation Content JP SU(3) I3 S C Mass (GeV)

Λ+
c c[ud] 1/2+ 3̄ 0 0 1 2.286

Ξ+
c c[su] 1/2+ 3̄ 1/2 -1 1 2.466

Ξ0
c c[sd] 1/2+ 3̄ -1/2 -1 1 2.472

Σ++
c cuu 1/2+ 6 1 0 1 2.453

Σ+
c c{ud} 1/2+ 6 0 0 1 2.451

Σ0
c cdd 1/2+ 6 -1 0 1 2.452

Ξ′+
c c{su} 1/2+ 6 1/2 -1 1 2.574

Ξ′0
c c{sd} 1/2+ 6 -1/2 -1 1 2.579

Ω0
c css 1/2+ 6 0 -2 1 2.698

Table 2. Single bottom 1/2+ baryons

Notation Content JP SU(3) I3 S B Mass (GeV)

Λb b[ud] 1/2+ 3̄ 0 0 1 5.624

Ξ0
b b[su] 1/2+ 3̄ 1/2 -1 1 5.80

Ξ−
b b[sd] 1/2+ 3̄ -1/2 -1 1 5.80

Σ+
b buu 1/2+ 6 1 0 1 5.82

Σ0
b b{ud} 1/2+ 6 0 0 1 5.82

Σ−
b bdd 1/2+ 6 -1 0 1 5.82

Ξ′0
b b{su} 1/2+ 6 1/2 -1 1 5.94

Ξ′−
b b{sd} 1/2+ 6 -1/2 -1 1 5.94

Ω−
b bss 1/2+ 6 0 -2 1 6.04
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Table 3. Double and triple heavy 1/2+ baryons

Notation Content JP I3 S C B Mass (GeV)

Ξ++
cc u{cc} 1/2+ 1/2 0 2 0 3.519

Ξ+
cc d{cc} 1/2+ -1/2 0 2 0 3.519

Ω+
cc s{cc} 1/2+ 0 -1 2 0 3.59

Ξ0
bb u{bb} 1/2+ 1/2 0 0 2 10.09

Ξ−
bb d{bb} 1/2+ -1/2 0 0 2 10.09

Ω−
bb s{bb} 1/2+ 0 -1 0 2 10.18

Ξ+
cb u[cb] 1/2+ 1/2 0 1 1 6.82

Ξ0
cb d[cb] 1/2+ -1/2 0 1 1 6.82

Ω0
cb s[cb] 1/2+ 0 -1 1 1 6.91

Ξ′+
cb u{cb} 1/2+ 1/2 0 1 1 6.85

Ξ′ 0
cb d{cb} 1/2+ -1/2 0 1 1 6.85

Ω′0
cb s{cb} 1/2+ 0 -1 1 1 6.93

Ω+
ccb bcc 1/2+ 0 0 2 1 8.0

Ω0
cbb cbb 1/2+ 0 0 1 2 11.5

Having all the ingredients, we discuss now the full Lagrangian, which is
given by the standard free fermion Lagrangian for baryons and quarks and
the two interaction terms: one coming from the coupling of the photon to the
free fields (using the minimal standard substitution) and one coming from
the coupling of the photon to the baryon-quark interaction vertex (using the
path exponential formalism for gauging).

We list the complete Lagrangian and refer to the previous chapter where
we explained the technique of introducing external fields in the interaction
Lagrangian:

Lfull(x) = B̄(x)(i 6∂ − mB)B(x) +
∑

q

q̄(x)(i 6∂ − mq)q(x)

+ eBB̄(x) 6AB(x) +
∑

q

eq q̄(x) 6Aq(x)

+ gBB̄(x)
∫

dy1

∫
dy2

∫
dy3 FB(x, y1, y2, y3) ǫa1a2a3 Γ1e

−ieq1I(y1,x,P )

× qa1
1 (y1) e−ieq2I(y2,x,P ) qa2

2 (y2)C Γ2 e−ieq3I(y3,x,P ) qa3
3 (y3) + h.c.
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(3.2)

In Fig. 1 we give a diagramatic representation of the interaction vertices
arising from the Lagrangian of Eq. (3.2). Fig. 1(a) shows the non-local vertex
coupling involving the constituent quarks (thin line), the photon (wiggly line)
and the baryon (thick line). Fig. 1 (b) represents the interaction vertex
arising from the coupling of the photon to the elementary baryon, while Fig.
1 (c) shows the interaction vertex of the constituent quark with the photon.
Fig. 1 (a) corresponds to the last term of the full Lagrangian (3.2), Fig. 1 (b)
and (c) correspond to the second and the third term in (3.2), respectively.

γ γ γ

p
q

q

q

1

2

3

q

p p‘ q q‘

( a ) ( c )( b )

Fig. 1 (a) Coupling vertex of baryon (thick line), photon (wiggly line) and
three quarks (thin line); (b) Coupling vertex of baryon and photon; (c)

Coupling vertex of constituent quark and photon.

The free part in the Lagrangian leads to the free fermion propagator for
the constituent quark of the form:

i Sq(x − y) = 〈0|T q(x) q̄(y)|0〉 =
∫ d4k

(2π)4i
e−ik(x−y) S̃q(k) , (3.3)

where

S̃q(k) =
1

mq− 6k − iǫ
(3.4)

is the usual free fermion propagator in momentum space. We shall avoid
the appearance of unphysical imaginary parts in the Feynman diagrams by
postulating the condition that the baryon mass must be less than the sum
of the constituent quark masses MB <

∑
i mqi

.
We will discuss now the set of parameters used in the calculation of the

heavy baryon magnetic moments. As already mentioned, the constituent
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quark masses are parameters in our model. We will use the following set
taken from Refs. [11, 30]:

mu(d) ms mc mb

0.42 0.57 1.7 5.2 GeV
(3.5)

Although the vertex function has the same shape for all baryons considered,
the size of the quark distribution is different,varying from state to state.
However, for the study of heavy baryons we can limit the number of these
cutoff parameters to three: ΛBQqq

is the size parameter of the quark distri-
bution for single heavy baryons, ΛBqQQ

the one for the double heavy baryons
and ΛBQQQ

refers to the triple heavy baryons. We give a list below:

ΛBqqq
ΛBQqq

ΛBqQQ
ΛBQQQ

1.25 1.8 2.5 5 GeV
(3.6)

The numerical values for these parameters as well as for the constituent quark
masses mu = md,ms,mc and mb are motivated by fits made in previous
analyses on the properties of single and double heavy baryons [11, 30]. The
size parameter for the triple-heavy quark system arises some questions, since
it was not constrained previously by phenomenological considerations. Its
value is fixed at 5 GeV on the basis of the naive relation: ΛBQqq

: ΛBqQQ
:

ΛBQQQ
≃ mBQqq

: mBqQQ
: mBQQQ

, where the masses have typical values
for the single-, double- and triple-heavy baryons, respectively. The value
chosen for ΛBQQQ

is approximate, but later on we will perform an analysis
displaying the sensitivity of the magnetic moments of triple-heavy baryons
on the variation of this parameter in the range of 3-7 GeV.

3.1 Baryon mass operator and matrix

elements

To calculate magnetic moments we need to compute the baryon matrix ele-
ments of the electromagnetic current. As usual, the matrix elements can be
expressed in terms of Pauli and Dirac form factors as

Mµ = ūB(p′) Λµ(p, p′)uB(p) ,

Λµ(p, p′) = γµFD(q2) +
i

2mB

σµνq
νFP (q2) , (3.7)
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Fig. 2 Baryon mass operator

where uB(p) is the baryon spinor with the normalization condition ūB(p)uB(p)
= 2mB. The 4-momenta p, p

′
refer to the incoming and outgoing baryon re-

spectively, and q = p
′ − p is the photon momentum. The definition of the

magnetic moment is then:

µB = [ FD(0) + FP (0) ]
mp

mB

(in units of n.m.) (3.8)

where mp is the proton mass. The nuclear magneton (n.m) is defined as
µN = e

2mp
with h̄ = 1.

The most easy diagram to compute is the baryon mass operator indicated
in Fig. 2.

The vertex function Λµ(p, p
′
) is actually obtained by computing the three

diagrams relevant for the calculation of magnetic moments, the so-called
triangle diagrams and “bubble” diagrams given in Fig. 3.
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Fig. 3 Diagrams contributing to the baryon electromagnetic vertex
function: triangle (a), bubble (b) and (c) diagrams.

These diagrams arise from the derivation of the Feynman rules, as shown in
Appendix C. The electromagnetic field couples to each quark, hence a sum
over all contributions is needed (there is great deal of simplification when
two of the quarks are identical, for example quark 2 and quark 3: once we
know how to calculate the diagram for the coupling to quark 2, we obtain
the diagram for the quark 3 by the simple replacement m2 ↔ m3 we obtain
the diagram for the quark 3). The photon does not couple to the physical
particles, the baryons, as it is forbidden by the compositeness condition. The
“bubbles” represent the coupling of the photon to the nonlocal baryon-quark
vertex, as contained in the last term of the Lagrangian (3.2).

For off-shell baryons the electromagnetic vertex function can be sepa-
rated conveniently into two terms: an “orthogonal” and a “parallel” term.
To clarify the terminology: orthogonal and parallel refer to the photon mo-
mentum transfer; the separation can be done, since we are able to use for
the four-vectors the following representation :

γµ = γ⊥
µ + qµ

6q
q2

, kµ = k⊥
µ + qµ

kq

q2
(3.9)

such that γ⊥
µ qµ = 0 and k⊥

µ qµ = 0. Then, for instance, the orthogonal
vertex function Λ⊥

µ (p, p′) is expressed in terms of γ⊥
µ and k⊥

µ .
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The full electromagnetic vertex function is:

Λµ(p, p′) =
qµ

q2
eB

[
ΣB(p′) − ΣB(p)

]
+ Λ⊥

µ (p, p′) . (3.10)

Each term in the full electromagnetic vertex function, the parallel and the
perpendicular, contains contributions from the triangle (◦) and bubble (∆)
diagrams. For the othogonal vertex function we have

Λ⊥
µ (p, p′) = Λ⊥

µ, ∆(p, p′) + Λ⊥
µ, ◦(p, p

′) . (3.11)

The importance of such a separation is clear: it helps to verify the Ward-
Takahashi identities, thus the gauge invariance of the theory (though the
Lagrangian is gauge invariant by construction). The Ward-Takahashi iden-
tity relates the baryon vertex function to the mass operator :

qµΛµ(p, p′) = eB

[
ΣB(p′) − ΣB(p)

]
. (3.12)

For on mass-shell baryons 6p = mB and q = 0 the Ward identity emerges as

Λµ(p, p) = eB
∂

∂pµ

ΣB(p) . (3.13)

In the following we offer a list of the analytical expressions for the mass
operator, the triangle and the bubble diagrams, both when the photon cou-
ples to the left and to the right side of the diagram (that is Fig. 3 (b) and
(c)). The expression for the mass operator is

ΣB(p) = αB

∫
dk123 Φ̃2(z0) RΣ(k+

1 , k+
2 , k+

3 ) (3.14)

We denote αB = 6g2
B, where the coupling constant gB is defined by the

compositeness condition (2.54), and dk123 = d4k1d4k2d4k3

(2π)8i2
δ4(k1 + k2 + k3); Φ̃2

is the square of the Fourier transform of the correlation function and z0 =
−6(k2

1 +k2
2 +k2

3). The RΣ(r1, r2, r3) = Γ1fSq1(r1)Γ1i tr [Γ2fSq2(r2)Γ2iSq3(−r3)]
represents the trace over the quark momenta. The explicit evaluation of the
mass operator of Eq. (3.14) resumes to the calculation of three integrals and
to performing the trace algebra. Introducing the following notations :

k+
i = ki + pωi

k′+
i = ki + p′ωi ,
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z1(q) = −12q2(ω2
2 + ω2ω3 + ω2

3) − L1q ,

z2(q) = −12q2(ω2
1 + ω1ω3 + ω2

3) − L2q ,

z3(q) = −12q2(ω2
1 + ω1ω2 + ω2

2) − L3q ,

Li = 12(ki −
3∑

j=1

kjωj) (3.15)

and

R⊥
µ , ∆1

(r1, r2, r3, q) = Γ1fSq1(r1 + q)γ⊥
µ Sq1(r1)Γ1itr [Γ2fSq2(r2)Γ2iSq3(−r3)] ,

R⊥
µ , ∆2

(r1, r2, r3, q) = Γ1fSq1(r1)Γ1i tr
[
Γ2fSq2(r2 + q)γ⊥

µ Sq2(r2)Γ2iSq3(−r3)
]

,

R⊥
µ , ∆3

(r1, r2, r3, q) = −Γ1fSq1(r1)Γ1i tr
[
Γ2fSq2(r2)Γ2iSq3(−r3)γ

⊥
µ Sq3(−r3 − q)

]
.

(3.16)

we display the analytical form of the vertex function corresponding to the
bubble and triangle diagrams:

Λ⊥
µ, ∆(p, p′) = αB

∫
dk123

3∑

i=1

eqi
Φ̃(z0) Φ̃[z0 + zi(q)]

× R⊥
µ ,∆i

(k+
1 , k+

2 , k+
3 , q) ,

Λ⊥
µ, ◦L

(p, p′) = −αB

∫
dk123

3∑

i=1

eqi
L⊥

iµ Φ̃(z0)

×
1∫

0

dt Φ̃′[z0 + tzi(−q)] RΣ(k′+
1 , k′+

2 , k′+
3 ) ,

Λ⊥
µ, ◦R

(p, p′) = −αB

∫
dk123

3∑

i=1

eqi
L⊥

iµ Φ̃(z0)

×
1∫

0

dt Φ̃′[z0 + tzi(q)] RΣ(k+
1 , k+

2 , k+
3 ) .

(3.17)

The prime with Φ̃′ denotes the derivative:

Φ̃′(s) =
dΦ̃(s)

ds
. (3.18)
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The two bubble diagrams can be related to each other by simply exchanging
the initial with the final external momentum.

Λ⊥
µ, ◦L

(p, p′) ≡ Λ⊥
µ, ◦R

(p′, p) . (3.19)

Details for the further explicit evaluation of the mass operator and the vertex
functions are given in Appendix D.

3.2 Heavy-quark limit and matching to Heavy

Hadron ChPT

In the first chapter we introduced the notion of the heavy quark limit with
the corresponding symmetry generating an effective theory, the heavy quark
effective theory (HQET). In this subsection we will discuss important fea-
tures of heavy hadron chiral perturbation theory (HHChPT), a theory that
has been successfully used in the calculation of magnetic moments of single
heavy baryons [69]. We will check the consistency of our results with such
model-independent predictions. HHChPT is a combination of chiral pertur-
bation theory (ChPT) and heavy-quark effective theory, which is suitable
for the description of the soft interactions of hadrons containing one heavy
quark with light pseudoscalar mesons and photons. It is well known that in
the limit mu,md,ms → 0, the QCD Lagrangian for light quarks exhibits a
SU(3)L × SU(3)R × U(1)V symmetry, which is spontaneously broken down
to SU(3)V × U(1)V . The low-energy interactions of the eight pseudoscalar
mesons (Golstone bosons) can be analyzed using the calculational technique
of perturbation theory. Thus, ChPT is a systematic and rigorous expansion
of the chiral Lagrangian in terms of momenta and masses of the Goldstone
bosons. The pseudoscalar octet is organized in the chiral Lagrangian as an
exponential representation which contains as an argument a parametrization
of the Goldstone bosons. Making use of the chiral transformations of such
an exponential, the effective theory is based on the most general Lagrangian
consistent with chiral symmetry, involving this exponential (implicitly, the
meson fields) and its derivatives. When we add the quark masses, we ex-
plicitly break chiral symmetry. This breaking is included in the Lagrangian
by a light mass matrix χ which in turn reveals quadratic pseudoscalar mass
terms. With this Lagrangian one proceeds further to expand matrix elements
in powers of (p/Λχ) and (mq/Λχ), where p is the low meson momentum and
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Λχ ∼ 1GeV the chiral symmetry scale. This scales gives the suppression of
higher-order terms in the theory. In the same vein one takes the advantages
of another effective theory that can be constructed in the limit mc,b → ∞,
the HQET discussed in the introductory part. In some kinematical region,
not far from the chiral and heavy quark limit one can make use of both
approaches ChPT and HQET to study the low-energy properties of heavy
hadrons [69]. One constructs a Lagrangian in terms of meson fields and
heavy hadrons which can be extended to incorporate the electromagnetic
field [57]. The interaction picture is that of a heavy hadron interacting with
a light pseudoscalar meson, which does not change the velocity of the heavy
hadron. Thus, in the frame of HQET, mesonic loops can dress the hadrons,
in a chiral fashion and the photon field can be included. Further information
about obtaining calculable expressions for the magnetic moments of single
heavy baryons can be found in Ref. [69]. They predict the folloing expres-
sions for the ΛQ and ΣQ baryons in the leading (∼ 1/mQ) and next-to-leading
(∼ 1/Λχ) order:

µΛQ[q2q3]
=

eQ

2mQ

+
cΛQq2q3

mQ Λχ

+
dΛQq2q3

mQ Λ2
χ

+ . . . ,

µΣQ{q2q3}
= − eQ

6mQ

+
cΣQq2q3

Λχ

+
dΣQq2q3

Λ2
χ

+ . . . (3.20)

Here eQ is the heavy quark charge and cBQq2q3
and dBQq2q3 are unknown

coupling factors of HHChPT. The values of these couplings can be predicted
in our approach [1]. The spontaneous symmetry breaking scale is taken as
Λχ = 4πFπ ∼ 1.2 GeV, with Fπ the pion decay constant, which fixes the
normalization of the unknown couplings.

Looking at the magnetic moment of the Λ−type baryons we see that the
leading contribution, coming from the coupling of the photon to the heavy
quark, should vanish as mQ → ∞. The leading contribution (∼ 1/Λχ) for
the Σ−type baryons survives in the heavy quark limit and it comes from the
coupling of the photon to the light system, though the leading contribution
coming from the coupling to the heavy quark of the order (∼ 1/mQ) vanishes
as well. All these qualitative predictions are model-independent and should
be satisfied by any model approach. The other terms in the expansions, pro-
portional to the c and d couplings represent chiral corrections, thus mesonic
cloud contributions. Such corrections can be computed using the formalism
developed in Ref. [74] which is consistent with ChPT as one performs a
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matching at the level of matrix elements: the physical amplitudes calculated
in both approaches are matched at the baryonic level. In the next chapters
we will show how one can employ our model and include chiral symmetry
ingredients in the calculation of the magnetic moments of the light baryons
and other observables, as the N → ∆ transition, taking into consideration
the meson cloud.

For now we discuss how the leading contributions to the ΛQ and ΣQ

baryons arise in our model, taking into account only the valence quark degrees
of freedom. Details and results for the unkown couplings are found in Ref.
[1].

The leading contributions are obtain by performing an expansion of the
heavy quark free propagator in powers of 1/mQ, while keeping just the leading
term

S̃Q(k + p) =
1

mQ− 6k− 6p = − 1+ 6v
2 (kv + Λ̄q2q3)

+ O(1/mQ) . (3.21)

Here v = p/mB is the four-velocity of the single heavy baryon and the pa-
rameter Λ̄q2q3 is the mass difference between the heavy baryon mass and the
heavy quark mass in the heavy quark limit:

mBQq2q3
= mQ + Λ̄q2q3 + O(1/mQ) . (3.22)

This quantity Λ̄q2q3 , related to the distribution of the light degrees of freedom
in the heavy baryon system, was fixed previously [8, 9, 10, 11, 29, 30]. Its
values are usually extracted from an analysis performed on the exclusive
semileptonic decays of bottom and charmed baryons and on the strong and
radiative decays of heavy baryons, resulting in:

Λ̄uu = Λ̄ud = Λ̄dd = 600 MeV ,

Λ̄us = Λ̄ds = 750 MeV ,

Λ̄ss = 900 MeV . (3.23)

The procedure in evaluating the magnetic moments with the expansion (3.21)
is just the same as with the full propagator. We refer to Appendix D and to
the previous sections, as well. Carrying out the trace algebra and computing
the four-dimensional integrals we can extract the magnetic moments of the
single heavy baryons in the heavy-quark limit, which are in agreement with
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HHChPT

µheavy
ΛQ[q2q3]

=
eQ

2mQ

,

µheavy
ΣQ{q2q3}

= − eQ

6mQ

.

In general both the triangle and the bubble diagrams contribute to the
magnetic moments. When the photon couples to the heavy quark and one
calculates the baryon magnetic moment in the HQL BCF+HQL, the leading
order term is only given by the triangle diagram. The bubble diagrams do not
contribute at this order. For the Λ−type baryons, we obtain agreement with
the HHChPT, as at the order 1/mQ the γ−heavy-quark coupling contribution
vanishes. For the Σ−type baryons the γ−light-diquark system contribution
still survives in the leading order and the calculated values are given in the
third column of Table 4.

The leading contribution of the light system is proportional to the ratio
of two integrals dependent on the light constituent masses and other model
parameters [1]. Furthermore, it is inversely proportional to the size parame-
ter which enters the single-heavy baryon vertex function. The model is also
able to give predictions for the unknown HHChPT couplings, when taking
the heavy-quark limit both in the baryonic correlation function (BCF) and
in the heavy quark propagator [1]. Following the notation of Ref. [69], the cS

coupling depends on the light-quark content of the heavy baryon. This cou-
pling also depends on flavour because we break SU(3) symmetry. Therefore,
the coupling’s values depend on whether the heavy baryons are non-strange,
single-strange or double-strange. Even in the case of single-strange heavy
baryons, so for the cascade states Ξ

′

Qus and Ξ
′

Qds, we get different predictions
for cS as the contributions of u and d−quarks enter with different coefficients.
Once again, this coupling does not depend on the heavy flavour, but on the
light flavour content [1]. The cS notation of Ref. [69] refers to the coupling
of the photon to single c or b baryons members of a 6 multiplet, organized
each in a 3× 3 matrix. We do not refer to higher order contributions and do
not consider Goldstone boson loop corrections.

3.3 Numerical results and discussion

In the following, in Table 4 we display the results for the magnetic moments
of the single-heavy baryons. The first column contains the exact results
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derived from the full theory, with no approximation in the correlation func-
tion and in the propagator. The second column shows the results obtained
when using the heavy-quark limit approximation in the baryonic correlation
function (HQL BCF). In the third column the results displayed are for the
heavy-quark limit taken both in the correlation function and the propagator
(HQL BCF+HQP). The two values displayed in the round parenthesis rep-
resent the contribution to the magnetic moment coming from the coupling
of the heavy quark (c or b) to the photon and the contribution coming from
the light degrees of freedom coupled to the photon, respectively. In the last
column we present for comparison the predictions of the NRQM calculated
with the non-relativistic spin-flavor wave functions listed in Table 5. A com-
plete description of the non-relativistic spin-flavor wave functions is found in
Appendix E.
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Table 4. Magnetic moments of single heavy baryons (in units of µN)

Baryon RQM NRQM

full HQL BCF HQL BCF+HQP

Λ+
c 0.42 (0.41; 0.01) 0.38 (0.38; 0.003) 0.37 (0.37; 0) 0.37 (0.37; 0)

Λ0
b -0.06 (-0.06; 0.002) -0.06 (-0.06; 0.001) -0.06 (-0.06; 0) -0.06 (-0.06; 0)

Ξ+
c 0.41 (0.40; 0.01) 0.37 (0.37; 0.01) 0.37 (0.37, 0) 0.37 (0.37; 0)

Ξ0
c 0.39 (0.40; -0.01) 0.37 (0.37; -0.004) 0.37 (0.37; 0) 0.37 (0.37; 0)

Ξ0
b -0.06 (-0.06; 0.002) -0.06 (-0.06; 0.001) -0.06 (-0.06; 0) -0.06 (-0.06; 0)

Ξ−
b -0.06 (-0.06; -0.003) -0.06 (-0.06: -0.001) -0.06 (-0.06; 0) -0.06 (-0.06; 0)

Ξ′+
c 0.47 (-0.11; 0.58) 0.10 (-0.11; 0.21) 0.08 (-0.12; 0.20) 0.51 (-0.12; 0.63)

Ξ′0
c -0.95 (-0.11; -0.84) -0.38 (-0.11; -0.27) -0.37 (-0.12; -0.25) -0.98 (-0.12; -0.86)

Ξ′0
b 0.66 (0.02; 0.64) 0.22 (0,02; 0.20) 0.22 (0.02; 0.20) 0.65 (0.02; 0.63)

Ξ′−
b -0.91 (0.02; -0.93) -0.23 (0.02; -0.25) -0.23 (0.02; -0.25) -0.84 (0.02; -0.86)

Σ++
c 1.76 (-0.11; 1.87) 0.58 (-0.11; 0.69) 0.53 (-0.12; 0.65) 1.86 (-0.12; 1.98)

Σ+
c 0.36 (-0.11; 0.47) 0.06 (-0.11; 0.17) 0.04 (-0.12; 0.16) 0.37 (-0.12; 0.49)

Σ0
c -1.04 (-0.11; -0.93) -0.46 (-0.11; -0.35) -0.44 (-0.12; -0.32) -1.11 (-0.12; -0.99)

Σ+
b 2.07 (0.02; 2.05) 0.68 (0.02; 0.66) 0.67 (0.02; 0.65) 2.01 (0.02; 1.99)

Σ0
b 0.53 (0.02; 0.51) 0.18 (0.02; 0.16) 0.18 (0.02; 0.16) 0.52 (0.02; 0.50)

Σ−
b -1.01 (0.02; -1.03) -0.31 (0.02; -0.33) -0.30 (0.02; -0.32) -0.97 (0.02; -0.99)

Ω0
c -0.85 (-0.11; -0.74) -0.32 (-0.11; -0.21) -0.31 (-0.12; -0.19) -0.85 (-0.12; -0.73)

Ω−
b -0.82 (0.02; -0.84) -0.17 (0.02; -0.19) -0.17 (0.02; -0.19) -0.71 (0.02; -0.73)
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In Table 6 we show the results for the magnetic moments of the double-
and triple-heavy baryons. In these two cases it is possible to use the heavy-
quark limit in the baryonic correlation function, but not in the propagator.
The results are organized as follows: the first column contains the results
from the full approach, the second column contains the results in the HQL
BCF approximation and the third column shows the NRQM predictions.
Again, for all results we show the contributions coming from the coupling of
γ to the heavy-quark system and, separately, to the light degrees of freedom
(where it is the case).
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Table 5. Heavy baryon wave functions and magnetic moments
in the non-relativistic quark model, where q, q′ = u or d and Q,Q′ = c or b.

Baryon Wave function Magnetic moment

ΛQ[ud]
1√
2
Q(ud − du) χA

eQ

2mQ

ΞQ[qs]
1√
2
Q(qs − sq) χA

eQ

2mQ

ΣQ{qq′}
1√
2
Q(qq′ + q′q) χS − eQ

6mQ
+

eq

3mq
+

eq′

3mq′

ΩQ{ss} Qss χS − eQ

6mQ
+ 2es

3ms

Ξq{QQ′}
1√
2
q(QQ′ + Q′Q) χS − eq

6mq
+

eQ

3mQ
+

e′Q
3m′

Q

Ωs{QQ} sQQ χS − es
6ms

+
2eQ

3mQ

Ξq[cb]
1√
2
q(cb − bc) χA

eq

2mq

Ξq{cb}
1√
2
q(cb + bc) χS − eq

6mq
+ ec

3mc
+ eb

3mb

Ωs[cb]
1√
2
s(cb − bc) χA

es
2ms

Ωs{cb}
1√
2
s(cb + bc) χS − es

6ms
+ ec

3mc
+ eb

3mb

Ωb{cc} bcc χS − eb
6mb

+ 2ec
3mc

Ωc{bb} cbb χS − ec
6mc

+ 2eb
3mb
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Table 6. Magnetic moments of double and triple heavy baryons (in units
of µN)

Baryon RQM NRQM

full HQL BCF

Ξ++
cc 0.13 (0.52; -0.38) 0.25 (0.51; -0.26) -0.01 (0.49; -0.50)

Ξ+
cc 0.72 (0.52; 0.20) 0.64 (0.51; 0.13) 0.74 (0.49; 0.25)

Ξ0
bb -0.53 (-0.06; -0.47) -0.42 (-0.08; -0.34) -0.58 (-0.08; -0.50)

Ξ−
bb 0.18 (-0.06; 0.24) 0.09 (-0.08; 0.17) 0.17 (-0.08; 0.25)

Ω+
cc 0.67 (0.53; 0.14) 0.60 (0.50; 0.10) 0.67 (0.49; 0.18)

Ω−
bb 0.04 (-0.08; 0.12) 0.14 (-0.06; 0.20) 0.10 (-0.08; 0.18)

Ξ+
cb 1.52 (0.002; 1.52) 0.75 (0.001; 0.75) 1.49 (0; 1.49)

Ξ0
cb -0.76 (0.002, -0.76) -0.38 (0.001; -0.38) -0.74 (0; -0.74)

Ξ′+
cb -0.12 (0.24; -0.36) 0.18 (0.42; -0.24) -0.29 (0.21; -0.50)

Ξ′0
cb 0.42 (0.24; 0.18) 0.54 (0.42; 0.12) 0.46 (0.21; 0.25)

Ω0
cb -0.61 (0.002; -0.61) -0.26 (0.001; -0.26) -0.55 (0; -0.55)

Ω′0
cb 0.45 (0.25; 0.20) 0.50 (0.42; 0.08) 0.39 (0.21; 0.18)

Ω+
ccb 0.53 (0.02; 0.51) 0.14 (0.02; 0.12) 0.51 (0.02; 0.49)

Ω0
cbb -0.20 (-0.08; -0.12) -0.13 (-0.05; -0.08) -0.20 (-0.08; -0.12)
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Next we will indicate a list of the most recent analyses (QCD sum rules
[64, 65]; soliton approaches [61]-[63]; other quark models [57]-[60] for the
direct study of the magnetic moments of heavy baryons. In each case we
compare the previous results to our predictions. The general conclusion is
that we agree in the single heavy quark sector with the model independent
approaches, like HHCPT [69], as any Lorentz covariant model should. With
our approach we reproduce the leading term in the expansion of the magnetic
moments in powers of 1/mQ and 1/Λχ. It is also possible to give predictions
for the HHCHPT coupling factors of value cS = 0.26 − 0.55. The results of
the full approach in the relativistic three-quark model are close to the ones
obtained in Ref. [58]:

µΛ+
c

= µΞ+
c

= µΞ0
c

= 0.35

µΣ++
c

= 2.37 − 2.45 , µΣ+
c

= 0.50 − 0.52 , µΣ0
c

= −(1.36 − 1.40)

µΞ′+
c

= 0.75 − 0.78 , µΞ′0
c

= −(1.12 − 1.15) , µΩ0
c

= −(0.88 − 0.89)

µΣ+
b

= 2.50 − 2.59 , µΣ0
b

= 0.64 − 0.66 , µΣ−
b

= −(1.22 − 1.26)

µΞ′0
b

= 0.88 − 0.92 , µΞ′−
b

= −(0.98 − 1.01) , µΩ−
b

= −(0.74 − 0.75)

(3.24)

and in Ref. [59]:

µΛ+
c

= µΞ+
c

= µΞ0
c

= 0.38 ,

µΣ++
c

= 2.33 , µΣ+
c

= 0.49 , µΣ0
c

= −1.35 ,

µΞ′+
c

= 0.65 , µΞ′0
c

= −1.18 , µΩ0
c

= −1.02 .

(3.25)

The limited results of the QCD sum-rule approach are [64]:

µΣ++
c

= 2.1 ± 0.3 , µΣ+
c

= 0.6 ± 0.1 , (3.26)

µΣ0
c

= −(1.6 ± 0.2) , µΛ+
c

= 0.15 ± 0.05 , (3.27)

and

µΛ+
c

= 0.40 ± 0.05 , µΛ0
b

= −(0.18 ± 0.05) . (3.28)

as taken from [65]. The QCD sum-rule results are very similar to our pre-
dictions in the full approach.
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Solitonic approaches (Skyrme model) of Refs. [61]-[63] were used for a
detailed analysis of the magnetic moments of single heavy baryons. The
values for the Λ baryons are smaller [63]:

µΛ+
c

= 0.12 − 0.13 , µΛ0
b

= −0.02 , (3.29)

while the magnetic moments obtained for the Σ baryons are larger [63]:

µΣ++
c

= 2.45 − 2.46 , µΣ0
c

= −1.96 , (3.30)

µΣ+
b

= 2.52 , µΣ−
b

= −(1.93 − 1.94) , (3.31)

than in our full approach. A detailed reason for this discrepancy cannot be
given, since our approach and the Skyrme model are based on different model
assumptions. A recent work [60] using a relativistic quark model involving
three different forms of relativistic kinematics, determines the magnetic mo-
ments of single-charm baryons. It was shown that for single heavy Λ−type
baryons the dependence on the specific kinematics is small with the results:

µΛ+
c

= 0.39 − 0.52 , µΞ+
c

= 0.39 − 0.47 , µΞ0
c

= 0.39 − 0.47 . (3.32)

In contrary, for the Σ−type baryons the results of

µΣ++
c

= 0.90 − 3.07 , µΣ0
c

= −(0.74 − 1.78) , µΩ0
c

= −(0.67 − 1.03) .(3.33)

strongly depend on the relativistic kinematics. As for the results obtained in
both of our heavy-quark limit approximations, they are close to the predic-
tions given in the context of the MIT bag model [57]:

µΣ++
c

= 0.70 , µΣ0
c

= −0.44 , µΩ0
c

= −0.35 , (3.34)

µΣ+
b

= 0.83 , µΣ−
b

= −0.40 , µΩ−
b

= −0.30 . (3.35)

Further we discuss the magnetic moments of double and triple heavy
baryons in comparison to various frameworks within they have been cal-
culated. For example, Ref. [60] using the so-called ”point form” of the
relativistic kinematics obtains:

µΞ++
cc

= 0.29 − 0.30 , µΞ+
cc

= 0.68 − 0.69 , µΩ+
cc

= 0.66 , (3.36)

which is close to our prediction in the HQL BCF approximation.
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Some agreement is found when comparing to the predictions given by the
relativistic quark potential model of Ref. [58]:

µΞ+
cc

= 0.78 − 0.79 , µΩ+
cc

= 0.66 , µΞ0
bb

= −(0.71 − 0.73) , (3.37)

µΞ−
bb

= 0.23 − 0.24 , µΩ−
bb

= 0.11 , µΞ+
cb

= 1.50 − 1.54 , (3.38)

as well as for the triple heavy baryons:

µΩ+
ccb

= 0.49 , µΩ0
cbb

= −0.20 . (3.39)

Though not evaluated, predictions could also be naturally obtained for
the double and triple sector using an extended NRQCD framework [75, 76].

We close this discussion by pointing out the agreement with the NRQM
values. First of all, these values are obtained by employing specific spin-flavor
wave functions of baryons which correspond to our choice for the relativistic
baryonic currents in the non-relativistic limit. Using other spin-flavour struc-
tures will have as consequence other results. With our particular choice, the
NRQM gives results for the double and triple heavy baryons close to those
obtained with the full model.

As mentioned in the introductory part of this chapter, the choice of the
cut-off parameter for triple-heavy baryons is fixed by intuitive reasons, vary-
ing in the range of 3-7 GeV. Therefore, we test the sensitivity of the magnetic
moments on the variation of ΛBQQQ

. For the Ω+
ccb and Ω0

cbb baryons the cor-
responding magnetic moments are:

µΩ+
ccb

= 0.58 − 0.50 , µΩ0
cbb

= −(0.21 − 0.20) (3.40)

in the “full” model and

µΩ+
ccb

= 0.09 − 0.16 , µΩ0
cbb

= −(0.11 − 0.14) (3.41)

in the HQL BCF scheme, where the range of indicated values corresponds to
the variation in ΛBQQQ

.



Chapter 4

Magnetic moments of light
baryons

The magnetic moments of light baryons can be calculated using the rela-
tivistic three-quark model as illustrated in the previous chapter. However, in
this chapter we discuss an improved method by implementing pseudoscalar
mesonic corrections. The formalism, based on a Lorentz covariant chiral
quark Lagrangian, has been proposed and developed in Ref. [12]. This
chapter offers an overview of the method of dressing constituent quarks by
light mesonic clouds in a consistent chiral fashion. We will point out the
most important features of the Lorentz covariant chiral quark model, but
we will focus on the application itself: the calculation of static properties
of light baryons. We stress that the calculational technique for the S-matrix
elements is adressed to the relativistic three-quark model. The main achieve-
ment is the determination of the bare constituent quark distribution in the
nucleon, as calculated in the relativistic three-quark model. In practice, as
will be outlined in the following, meson contributions are factorized and give
multiplicative corrections to the bare matrix elements.

The general belief that both valence and sea-quarks contribute to the elec-
tromagnetic properties of light baryons is the starting point for the derivation
the Lorentz covariant chiral quark model of Ref. [12]. The approach is based
on a non-linear chiral Lagrangian written in terms of constituent quarks
degrees of freedom and pseudoscalar mesonic fields. An initial and earlier
attempt to introduce chiral quarks has been made by Manohar and Georgi
in Ref. [77]. They argue that the confinement scale ΛQCD ≃ 100− 300 MeV
and the sponaneous breaking scale ΛχSB ≃ 1GeV are not the same.

75
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To describe the physics relevant for the energy region between the two
scales, Georgi and Manohar pioneered an effective field theory which is able
to explain qualitatively the success of the non-relativistic quark model. An
effective Lagrangian between the two scales will contain as fundamental fields
the quark fields, the Goldstone boson fields and the gluon fields. The quark-
gluon interaction is described still by a SU(3)color gauge theory. However,
spontanesous chiral symmetry breaking of SU(3)L × SU(3)R at the scale
ΛχSB implies the existence of an octet of Goldstone bosons, which enter the
theory as fundamental fields.

A consistent inclusion of higher-order terms has been proposed by Becher
and Leutwyler in Ref. [78]. They formulate an effective chiral Lagrangian
written in terms of the meson field and the nucleon Dirac spinors split into
two parts: a mesonic part and a baryonic part. The mesonic part is the
well known meson Lagrangian containing an even number of derivatives of
meson fields, while the nucleon part is bilinear in the Dirac spinors Ψ̄, Ψ
and contains both an even and odd number of derivatives in the expansion
[78]. Each term with derivatives of order n in the nucleon part represents a
term of order n in powers of the nucleon momentum p. This expansion is
carried out up to power p4. For a certain quantity, as for the scalar nucleon
form factor, the total contribution is given by summing up certain graphs of
the perturbation series. A general method is developed to keep track of the
relevant graphs. This method is called “infrared regularization” and is based
on dimensional regularization. Reliable conclusions are drawn based on the
analysis of the infrared singularities of loop integrals for any dimension d. For
a simple example one can refer to the self-energy graph discussed in Ref. [78].
Compared to heavy hadron chiral perturbation theory, the method proposed
in this paper provides manifest Lorentz invariance of the Lagrangian.

All terms in the Lagrangian obey chiral symmetry. The dimensional
regularization preserves the chiral symmetry invariance of the Lagrangian
at every order of the perturbation theory. The concept of renormalizability,
characteristic for the high-energy region, is irrelevant in the context of an
effective low energy theory. The leading infrared singularity lies in the region
of small loop momenta. In a low energy expansion of graph with l loops, m
mesonic fields and n nucleon propagators, the infrared singularity is of order
pdl−2m−n, that is counting the powers is similar to the heavy baryon chiral
perturbation theory.

Our phenomenological constituent quark-light meson interaction inspired
by the original work of [77] is used to dress the constituent quarks by a
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cloud of light mesons. Then, within a proper chiral expansion, we calculate
the dressed transition operators, relevant for the interaction of the dressed
quarks with external fields, taken between baryonic states. The calculational
technique of dressing involves infrared dimensional regularization of loop di-
agrams (see appendix Ref. [12]).

The chiral quark Lagrangian as based on [78], used to perform the dressing
of the constituents by mesonic fields, is formulated in terms of quarks and
meson degrees of freedom. Up to order four in the external momentum, such
Lagrangian contains five terms, four terms coming from the quark-meson
interaction and the fifth from the meson-meson interaction. We organize the
Lagrangian into two pieces:

LqU = Lq + LU (4.1)

where

Lq = L(1)
q + L(2)

q + L(3)
q + L(4)

q + · · · ,LU = L(2)
U + · · · (4.2)

The superscript (i) denotes the low-energy dimension of the Lagrangian.
Explicitly, each term is given by:

L(2)
U =

F 2

4
< uµu

µ + χ+ > ,

L(1)
q = q̄

[
i /D − m +

1

2
g /u γ5

]
q ,

L(2)
q = − c2

4m2
< uµuν > (q̄ Dµ Dν q + h.c. ) +

c4

4
q̄ i σµν [uµ, uν ] q

+
c6

8m
q̄ σµν F+

µν q + · · · ,

L(3)
q =

id10

2m
q̄ [Dµ, F+

µν ] D
ν q + h.c. + · · · ,

L(4)
q =

e6

2
< χ+ > q̄ σµν F+

µν q +
e7

4
q̄ σµν {F+

µν , χ̂+} q

+
e8

2
q̄ σµν < F+

µνχ̂+ > q − e10

2
q̄ [Dα, [Dα, F+

µν ]]σ
µν q + · · · , (4.3)

Here we used the notations: χ̂+ = χ+ − 1
3

< χ+ >, with < > indicating the
trace over flavor indices.
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The full form of the chiral Lagrangian is found in Ref. [12]. The form
displayed above contains only the terms relevant for the derivation of the
electromagnetic dressed quark current operator.

In the above expressions m stands for the quark mass, g for the axial
charge in the chiral limit, whereas ci, di and ei denote the second-, the third-,
and the fourth-order low-energy couplings, respectively.

As suggested [77], the scale parameter of spontaneous chiral symmetry
breaking Λχ ≃ 4πF ∼ 1 GeV (F being the octet decay constant) can be
used as a dimensional parameter in the higer-order terms, instead of using
the constituent mass. This comes just to a redefinition of the low-energy
coupling constants; c2 is replaced by c2(m/Λχ)2 and d10 by d10(m/Λχ). The
usual scale parameter, m, and the new one Λχ contribute to the same order
in the chiral expansion, by means of order O(1). The octet of pseudoscalar
fields is denoted by the usual 3×3 unitary matrix U = u2 = exp(iΦ/F ) with:

φ =
8∑

i=1

φiλi =
√

2




π0/
√

2 + η/
√

6 π+ K+

π− −π0/
√

2 + η/
√

6 K0

K− K̄0 −2η/
√

6


 .(4.4)

We will make use of other commonly used notations [78, 79, 26]. For the
covariant derivative and for the external fields Γµ we have

Dµ = ∂µ + Γµ, Γµ =
1

2
[u†, ∂µu] − i

2
u†Rµu − i

2
uLµu

† (4.5)

where the fields Rµ and Lµ include the external fields (electromagnetic Aµ,
weak Zµ,Wµ):

Rµ = eQAµ + · · · , Lµ = eQAµ + · · · (4.6)

where Q = diag{2/3,−1/3,−1/3} is the quark charge matrix. The meson
fields are defined via:

uµ = iu†∇µUu† (4.7)

and the mass breaking terms via:

χ± = u†χu† ± uχ†u, χ = 2BM + · · · (4.8)

with the mass matrix of the current quark masses M = diag{m̂, m̂, m̂s}. We
restrict to the isospin symmetry limit with m̂u = m̂d = m̂ = 7 MeV and the
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mass of the strange quark m̂s is related to the nonstrange one as m̂s = 25 m̂.
B is the quark condensate parameter denoted in the usual way by

B = − 1

F 2
< 0|ūu|0 >= − 1

F 2
< 0|d̄d|0 > . (4.9)

Also the tensor F+
µν in the Lagrangian is defined by

F+
µν = u†FµνQu + uFµνQu† , (4.10)

where Fµν = ∂µAν − ∂νAµ is the well known photon field strength tensor.
We mention that the current quark masses are denoted by m̂i while the
constituent quark masses wear no additional symbol. The masses used for
the pseudoscalar mesons are given in the leading order by

M2
π = 2m̂B, M2

K = (m̂ + m̂s)B, M2
η =

2

3
(m̂ + 2m̂s)B . (4.11)

In our numerical analysis we use the values: Mπ = 139.57 MeV, MK =
493.677 MeV Mη = 574.75 MeV. For the decay constants we use: Fπ = 92.4
MeV, FK/Fπ = 1.22 and Fη/Fπ = 1.3 [26].

Once armed with such a Lagrangian, we proceed to dress the bare quarks
and construct out the dressed current operators. When considering electro-
magnetic properties we refer only to one-body operators, the γ couples to
a constituent quark dressed by the pion. Two-body operators contributions
are not considered in this work. Also we will consider the dressing only with
pseudoscalar mesons, though the technique of dressing with vector mesons
has already been studied in Ref. [12].

A bare one-body quark operator can be dressed using the above derived
chiral Lagrangian. First, we start from the bare electromagnetic quark op-
erator:

jbare
µ,em(x) = q̄(x) γµ Qq(x) , (4.12)

which in momentum space reads as:

Jbare
µ, em(q) =

∫
d4x e−iqx jbare

µ, em(x) . (4.13)

The bare quark operator has a vector-like current form and has been used
to compute current matrix elements also in the previous chapter. Dressing
this operator by pions will generate a number of loop diagrams which con-
tribute to the dressed electromagnetic quark operator. These diagrams (Fig.
4 a) are evaluated using the techniques of infrared dimensional regularization.
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(1) (2)

�

(3)

�

(4)

(5) (6)
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(7)

(8) (9)

(10) (11) (12)

Fig. 4 a Diagrams including pseudoscalar meson contributions to the elec-
tromagnetic quark transition operator up to fourth order. Solid, dashed and
wiggly lines refer to quarks, pseudoscalar mesons and the electromagnetic
field, respectively. Vertices denoted by a black filled circle, box and dia-
mond correspond to insertions from the second, third and fourth order chiral
Lagrangian.
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The formalism has been suggested and developed in Ref. [78]. Such
technique provides the link between loop expansion and chiral expansion in
terms of quark masses and external momenta. Here we will not illustrate
the steps in performing the infrared dimensional regularization, but a good
understanding of this matter can be found in Ref. [12] and references therein.
The dressed quark operator in coordinate space is given by:

jdress
µ, em(x) =

∑

q=u,d,s

{
f q

D(−∂2) [q̄(x)γµq(x)] +
f q

P (−∂2)

2mq

∂ν [q̄(x)σµνq(x)]
}

(4.14)

and its Fourier transform reads as:

Jdress
µ, em(q) =

∫
d4x e−iqx jdress

µ, em(x) =
∫

d4x e−iqx

×
∑

q=u,d,s

q̄(x)
[
γµ f q

D(q2) +
i

2mq

σµν qν f q
P (q2)

]
q(x) . (4.15)

The constituent quark mass mq is generated by the chiral Lagrangian [12].
Since the photon does not couple point-like to a quark line, but to a quark
dressed by mesonic clouds, we have the Dirac and Pauli form factors of the
u, d and s quarks: fu

D(q2), fd
D(q2), f s

D(q2) and fu
P (q2), fd

P (q2), f s
P (q2). As the

dressed quark operator satisfies current conservation ∂µjdressed
µ,em (x) = 0, the

normalization for the Dirac form factors follows from charge conservation,
thus : f q

D(0) ≡ 0.
Once the dressed current operator is given we can proceed further to

project this operator between physical baryon states B(p) and, moreover,
obtain a parametrization of the cloud contributions.

For the diagonal 1
2

+ → 1
2

+
transition we have:

< B(p′)|Jdress
µ,em (q)|B(p) >

= (2π)4δ4(p′ − p − q)ūB(p′)
{
γµF

B
1 (q2) +

i

2mB

σµνq
νFB

2 (q2)
}
uB(p)

= (2π)4δ4(p′ − p − q)
∑

q=u,d

{
f q

D(q2) < B(p′)|jbare
µ,q (0)|B(p) >

+ i
qν

2mq

f q
P (q2) < B(p′)|jbare

µν,q (0)|B(p) >
}

. (4.16)
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The baryon states are normalized as

< B(p′)|B(p) >= 2EB (2π)3 δ3(~p − ~p ′) (4.17)

and the spinor states uB(p) are normalized as

ūB(p)uB(p) = 2mB . (4.18)

mB is the physical baryon mass and EB =
√

m2
B + ~p2 is the baryon energy.

The first line of the master formula (4.16) is the well known generalization
of the matrix element of a electromagnetic current coupling to a composite
object with the momentum dependent baryonic form factors FB

1 (q2) (Dirac)
and FB

2 (q2) (Pauli). However, adding in a chiral consistent fashion the me-
son cloud contributions (as given by the chiral quark Lagrangian), these form
factors take a factorized form. Therefore, the second line connects the matrix
element of a dressed quark operator to the matrix elements of the bare quark
operators, while the Dirac and Pauli quark form factors parametrize the me-
son cloud contributions and they simply multiply the bare matrix elements.
Finally, our approach allows to perform a model independent factorization
between two effects: the chiral dynamic effects, contained in the relativistic
Dirac and Pauli quark form factors and the hadronization/confinement ef-
fects contained in the bare quark operator matrix elements. It is thus possible
to calculate these two contributions independently.

The bare matrix element multiplying the Dirac quark form factor has the
vector current form,

jbare
µ,q (0) = q̄(0)γµq(0) , (4.19)

while the one multiplying the Pauli quark form factor has the tensor form

jbare
µν,q (0) = q̄(0)σµνq(0) . (4.20)

To evaluate the matrix elements of the bare current operators we use the rela-
tivistic three-quark model which incorporates in a phenomenological manner
hadronization and confinement. The technique is discussed in detail in the
previous chapter. The calculation of the Dirac and Pauli quark form factors
is based on the formalism of Ref. [12], with an effective chiral Lagrangian
written in terms of constituent quarks and consistent with chiral symmetry.
The explicit forms of f q

D(q2) and f q
P (q2) are given in Appendix C of Ref. [12].



4.1. MATRIX ELEMENTS OF VALENCE QUARK OPERATORS 83

4.1 Matrix elements of valence quark opera-

tors

Based on the detailed discussion in the previous chapters on the relativistic
three-quark model, here we briefly discuss the calculation of the two baryonic
matrix elements, relevant for computation of the magnetic moments of light
baryons and, later on, of the N → ∆ transition:

< B(p′)| jbare
µ,q (0) |B(p) > and < B(p′)| jbare

µν,q (0) |B(p) > (4.21)

induced by the vector-like and tensor-like bare quark operators, respectively:

jbare
µ,q (0) = q̄(0) γµ q(0) , and jbare

µν,q (0) = q̄(0) σµν q(0) . (4.22)

The starting point is the effective interaction Lagrangian (2.1) with the gen-
eral three-quark current of Eq. (2.2). The finite size of the baryon is charac-
terized by the function FB given in Eq. (2.4), with the correlation function
of the three constituents ΦB chosen to be a Gaussian function (2.9). The
cutoff parameter ΛB gives the distribution of the light quarks inside the
baryon. We set one specific value for all the light octet baryons as based
on a previous analysis of nucleon properties [7]. We keep the choice on the
definition (though not unique) of the four-space quark coordinates in terms
of the Jacobi coordinates and the center of mass coordinate as in Eq. (2.6).
All calculations will be carried out in momentum space.

With respect to the choice of the three-quark currents, following the dis-
cussion in Chapter 2 and the SU(3) flavour symmetry of the light baryons,
one can construct two independent currents: vector and tensor. In Appendix
B we list the three-quark currents for the light baryon octet. The vector and
the tensor currents of the octet are degenerate in the nonrelativistic limit.
Moreover, we will show that they give similar predictions for the magnetic
moments of the light baryons.

As before, we can make use of the compositeness condition to determine
the couplings of the baryons to their constituents. This implies the calcula-
tion of the derivative of the baryon mass operator as shown in Eq. (2.54).

The electromagnetic interaction is incorporated in the effective Lagrangian
by using the path-exponential formalism, discussed in Chapter 2 and devel-
oped in Ref. [44]. The full Lagrangian enables then to calculate matrix
elements. These are described by one triangle diagram and two bubble di-
agrams as already pictured in Fig. 3 and in complete analogy to the heavy
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baryon case. The calculation of these graphs involves quark-loop integrals
and trace algebra. We again use the free fermion propagator of Eq. (3.3),
while the problem of confinement is handled by postulating MB <

∑
i mqi

.
The set of parameters for light baryons, determined in a previous work

[7],[30] is given by:

mu = md = 420 MeV ,

ms = 570 MeV , ΛB = 1.25 GeV . (4.23)

The strange quark mass has been set to the average value above as a conse-
quence of the study made on Λ+

c → Λ0+e++νe decay [8]. The size parameter
does not vary with the flavor content of the baryon, but we set one value for
all light octet members.

4.2 Matching to ChPT

On the basis of some symmetry constraints it is possible to derive a set of
relationships between the baryon form factors and quark form factors at zero
momentum transfer. Ref. [12] exploits Lorentz and gauge invariance, chiral
symmetry constraints, charge conservation and isospin invariance to derive
a full set of such relations between nucleon and quark form factors, at their
normalization point of zero momentum transfer.

We will briefly list these constraints for the nucleon, while for a full un-
derstanding of their consequences we recommend Ref. [12]. First of all,
Lorentz covariance and gauge invariance allow us to decompose any bare
matrix element as :

< B(p′)| jbare
µ,q (0) |B(p) >

= ūB(p′)
{
γµ FBq

1 (q2) +
i

2 mB

σµν qν FBq
2 (q2)

}
uB(p) ,

i
qν

2 mq

< B(p′)| jbare
µν,q (0) |B(p) >

= ūB(p′)
{
γµ GBq

1 (q2) +
i

2 mB

σµν qν GBq
2 (q2)

}
uB(p) .

(4.24)

where FBq
1(2)(q

2) and GBq
1(2)(q

2) are the Dirac (index 1) and Pauli (index 2) form
factors giving the u, d, s quark distributions in baryon B. Both the vector- and
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tensor-like bare current operators can be written in terms of Dirac and Pauli
form factors. These form factors should not be confused with the quark
form factors, nor with the baryon form factors. The baryon form factors
FB

1,2(q
2) naturally express the extended structure of the baryons, as tested in

the electromagnetic interaction. The constituent quark form factors f q
D,P (q2)

represent the ”structure” of a constituent quark dressed by the meson cloud.
Due to charge conservation and isospin invariance we can obtain at q2 = 0

the following relations:

F pu
1 (0) = F nd

1 (0) = 2 , F pd
1 (0) = F nu

1 (0) = 1 , GNq
1 (0) = 0 ,

F pu
2 (0) = F nd

2 (0) , F pd
2 (0) = F nu

2 (0) ,

Gpu
2 (0) = Gnd

2 (0) , Gpd
2 (0) = Gnu

2 (0) . (4.25)

The GBq
1(2)(q

2) is related to the bare nucleon tensor charge δbare
Nq (see Ref. [12]).

The second set of constraints, the chiral symmetry constraints, enable the
following identities:

1 + F pu
2 (0) − F pd

2 (0) = Gpu
2 (0) − Gpd

2 (0) =
(

gA

g

)2 mN

m̄
,

1 + F nd
2 (0) − F nu

2 (0) = Gnd
2 (0) − Gnu

2 (0) =
(

gA

g

)2 mN

m̄
, (4.26)

where m̄ = mu = md are the dressed nonstrange constituent masses in
the isospin limit. These relations follow from the infrared-singular structure
of QCD, resulting in the reproduction of the so-called leading non-analytic
terms terms for the nucleons magnetic moments and charge radii [80]-[81]:

µp = −g2
A

8π

Mπ

F 2
π

◦
mN + · · · ,

< r2 >E
p = − 1 + 5g2

A

16 π2 F 2
π

ln
Mπ
◦
mN

+ · · · ,

< r2 >M
p =

g2
A

16 π F 2
π µp

◦
mN

Mπ

+ · · · (4.27)

where gA and
◦
mN are the axial charge and mass of the nucleon in the chi-

ral limit, respectively. Further conditions can be built up from the chiral
symmetry constraints, like the matching between low-energy couplings at a
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certain order in the ChPT Lagrangian and the low-energy couplings in our
Lagrangian (see Ref. [12]), which is beyond the scope of this work. Also,
SU(6) symmetry of the naive quark model involving ratios of the magnetic
moments and tensor charges of the nucleon sets well-known relations between
FNi

2 (0) and GNi
2 (0). Nevertheless, in this work we employ a relativistic model

(beyond naive SU(6) predictions)to derive the matrix elements and the con-
tributions of the valence degrees of freedom.

4.3 Light baryon magnetic moments

Using the relativistic quark model to compute the bare matrix elements and
the chiral Lagrangian to calculate the mesonic contributions we are able to
display the light octet magnetic moments and to split the valence quark
µbare

B and sea-quark µcloud
B contributions. First we give the definition of the

magnetic moments in terms of Dirac and Pauli form factors, as in the previous
chapter:

µB = [ FB
1 (0) + FB

2 (0) ]
e

2mB

(4.28)

with h̄ = 1. In terms of the nuclear magneton µN = e h̄
2mp

, Eq. (4.28) is
written as

µB = [ FB
1 (0) + FB

2 (0) ]
mp

mB

(in units of n.m.) (4.29)

The total contribution can be also written as:

µB = µbare
B + µcloud

B (4.30)

with

µbare
B =

∑

q=u,d,s

f q
D(0)

(
FBq

1 (0) + FBq
2 (0)

)
,

µcloud
B =

∑

q=u,d,s

f q
P (0)GBq

2 (0) . (4.31)

Related to the factorization we observe that each contribution to the mag-
netic moment, meson-cloud part and bare part, is given by a product of a
meson-cloud form factor with a valence-quark form factor at q2 = 0.
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In the expression of µcloud
B there is no contribution from the Dirac part

GBq
1 (0), since this valence quark form factor is zero, due to charge conser-

vation (4.25). Also, the meson-cloud Dirac form factor f q
D(0) is the quark

charge with f q
D(0) ≡ eq due to charge conservation. The mesonic cloud form

factors f q
D, f q

P are explicitly calculated in Ref. [12], while the valence quark
form factors FBq

i , GBq
i are calculated in a similar fashion as already demon-

strated for the case of the heavy sector calculations of the previous chapter.
For the octet states two three-quark currents contribute to the observables

of interest (see Chapter 2), the vector current and the tensor current. It was
shown in Chapter 2 that besides being degenerate in the nonrelativistic limit,
in a relativistic approach the two currents give similar contributions to the
magnetic moments. This is valid for all the baryon states and does not depend
on the flavor content of the barions. It is known that the magnetic moments
of light baryons are dominated by nonrelativistic contributions, while the
relativistic corrections are of higher order and small. This explains why the
naive quark model has been so successful in describing static properties of
the light octet. Therefore, a study of these properties possibly does not
offer significant insight on the choice of the currents, but a study of other
quantities, like the well-known ratios E2/M1 and C2/M1 in the N − ∆
transition, which are sensitive to the choice of the currents, is more suitable.
We will discuss this transition and its properties in the next chapter.

Now we can calculate the values of the light octet baryon, obtaining a very
good agreement with experimental values. First of all, the set of parameters
is fixed as follows: the constituent quark masses, working within the isospin
limit, are mu = md = 420 MeV, ms = 570 MeV; the size parameter for
all light baryons is set to have the value of ΛB = 1.25 MeV. We test the
sensitivity of the observables on the choice of the cutoff parameter, using
another two values: ΛB = 0.8 MeV and ΛB = 0.75. In Table 7 we list the
magnetic moments of the light octet baryons using the three-quark vector
current. For completeness, we also show the results for the diagonal 1+

2
→ 1+

2

transition Σ0 → Λγ and for the non-diagonal 1+

2
→ 3+

2
transition N → ∆γ.

The results and the characteristics of the N → ∆γ transition will be discussed
in the next chapter. We indicate the contribution of the valence quarks and
the sea-quarks separately and also show the variation of all these values with
respect to the size parameter ΛB, as follows: Set I (ΛB = 1.25 GeV), Set II
(ΛB = 0.8 GeV) and Set III (ΛB = 0.75 GeV).
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Table 7. Magnetic moments of the light baryon octet (in units of the nucleon magneton µN ). Results are
calculated for a purely vector current and for three sets of the size parameter ΛB.

Set I (ΛB = 1.25 GeV) Set II (ΛB = 0.8 GeV) Set III (ΛB = 0.75 GeV)

Bare Meson Total Bare Meson Total Bare Meson Total Experiment [71, 82]

(3q) cloud (3q) cloud (3q) cloud

µp 2.530 0.263 2.793 2.614 0.179 2.793 2.621 0.172 2.793 2.793

µn -1.530 -0.383 -1.913 -1.634 -0.279 -1.913 -1.643 -0.270 -1.913 -1.913

µΛ -0.575 -0.038 -0.613 -0.579 -0.034 -0.613 -0.578 -0.033 -0.613 -0.613 ± 0.004

µΣ+ 2.336 0.196 2.532 2.423 0.148 2.571 2.430 0.130 2.560 2.458 ± 0.010

µΣ− -0.942 -0.327 -1.269 -0.960 -0.223 -1.183 -0.962 -0.135 -1.197 -1.160 ± 0.025

µΞ0 -1.240 -0.096 -1.336 -1.303 -0.082 -1.385 -1.310 -0.076 -1.386 -1.250 ± 0.014

µΞ− -0.599 0.033 -0.566 -0.567 0.012 -0.555 -0.562 0.014 -0.548 -0.6507 ± 0.003

|µΣ0Λ| 1.273 0.293 1.566 1.372 0.335 1.617 1.385 0.202 1.607 1.61 ± 0.08

µN∆ 2.357 0.443 2.796 2.984 0.354 3.338 3.102 0.356 3.458 3.642 ± 0.019 ± 0.085
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The mesonic cloud contributions to the magnetic moments have been
already calculated in Ref. [12] using the chiral Lagrangian approach. The
parameters used for such a calculation are the constituent quark mass m and
the axial-charge g in the chiral limit. Another set of parameters is given
by the low-energy coupling constants relevant at this order, c2, c6, e7 and
e8. The first constant c2 is fixed by the analysis of the nucleon mass, the
meson-nucleon sigma term and the momentum transfer dependence of the
nucleon form factors [12]. The rest of the couplings are fitted in such way
to reproduce the experimental values of the magnetic moments µn, µp and
µΛ. In our analysis we fit the last three parameters c6, c7 and c8, which differ
from the values of [12].

In the following we show the origin of these parameters and we briefly
discuss the procedure of obtaining their values used in the specific calculation
of the magnetic moments of light baryons and the N → ∆γ properties. For a
better understanding we show the low-energy dimension terms starting with
dimension two in the chiral quark Lagrangian as derived in [12] up to order
O(p4):

L(2)
q = c1 〈χ+〉 q̄q − c2

4m2
〈uµuν〉 (q̄ Dµ Dν q + h.c. ) +

c3

2
〈uµ uµ〉q̄q

+
c4

4
q̄ i σµν [uµ, uν ] q +

c6

8m
q̄ σµν F+

µν q − q̄Mq + c5q̄χ̂+q + . . . ,

L(3)
q =

id10

2m
q̄ [Dµ, F+

µν ] D
ν q + h.c. + . . . ,

L(4)
q = − e1

16
〈χ+〉2 q̄ q +

e2

4
〈χ+〉(q̄ q) − e3

16
〈χ̂2

+〉q̄q −
e4

16
〈χ+〉q̄χ̂+q − e5

16
q̄χ̂2

+q

+
e6

2
〈χ+〉 q̄ σµν F+

µν q +
e7

4
q̄ σµν {F+

µνχ̂+} q +
e8

2
q̄ σµν 〈F+

µνχ̂+〉 q

− e10

2
q̄ [Dα, [Dα, F+

µν ]]σ
µν q + . . . ,

(4.32)

The use of the physical masses and decay constants for the pseudoscalar
mesons in Eq. (4.11) incorporates only partially the corrections due to SU(3)
flavor symmetry-breaking, while the quark mass term q̄Mq and the terms
containing the low-energy coupling constants (LECs) c5, e4, e5, e7 and e8 in
Eq. (4.32) generate another part of the SU(3) flavor symmetry-breaking
corrections. In fact, the quark mas term and the terms containing the LECs
c5, e4 and e5 are responsible for the decoupling of the mass of the strange
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quark from the isospin-averaged value, m. The terms proportional to the
fourth-order couplings e7 and e8 introduce explicit SU(3) symmetry breaking
corrections to the magnetic moments of the constituents and baryons, which
is sufficient to obtain agreement with the experimental values [80].

Although in [12] the meson cloud contributions have been calculated in-
cluding heavier states, in the follwoing we restrict only to the pseudoscalar
meson contributions. As already mentioned for the calculation of the static
properties of the light octet and N → ∆γ transition only the terms multiplied
by the constants c2, e6, e7 and e8 are needed, while the additional constants
c4, d10 and e10 enter the calculation of the q2−dependent quantities of the
N → ∆γ transition . We explain here how we extract the parameter values,
although the full calculation of the N → ∆γ transition properties is discussed
in the next chapter. Together with the terms in (4.32), the full chiral quark
Lagrangian serves to the calculation of the electromagnetic form factors of
the nucleon and the meson-nucleon sigma-terms [12]. In fact, besides the
c6, e7 and e8 all the other constants required in the calculations performed in
this work have been fixed in [12] and we will use their specific values. In [12]
the constants c6, e7 and e8 are fixed using the SU(6) symmetry constraints of
the naive non-relativistic quark model which draw relations among the form
factors FNi

2 and GNi
2 .

The nucleon mass and the meson-nucleon sigma-term are important quan-
tities of low energy nucleon physics. They are constrained by the Feynman-
Hellmann theorem [83] which relates the derivative of the nucleon mass with
respect to the current quark mass to the pion-nucleon sigma-term σπN and
to the strange quark condensate in the nucleon:

σπN ūN(p)uN(p)
.
= m̂〈N(p)|ū(0)u(0) + d̄(0)d(0)|N(p)〉

= m̂
∂mN

∂m̂
ūN(p) uN(p) ,

ys ūN(p)uN(p)
.
= 〈N(p)|s̄(0)s(0)|N(p)〉 =

∂mN

∂m̂s

ūN(p) uN(p) .

In quantum field theory the nucleon mass mN is defined as the matrix element
of the trace of the energy-momentum tensor. Considering only the one-body
interactions between the light quarks, this matrix element is given by:

mN ūN(p)uN(p)
.
= 〈N(p)|Hmass(0)|N(p)〉 . (4.33)

The term Hmass(x) = q̄(x) mq q(x) is the quark mass term in the Hamiltonian,
where mq = diag{mu,md,ms} is the matrix of constituent quark masses with
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mu = md = m̄ (isospin invariance). We showed in (4.16) that the baryon
matrix elements are calculated as expectation values of the dressed quark
operators. In analogy, we define the nucleon mass and the sigma-terms as
expectation values of the dresses quark operators. The bare quark mass term
is given by:

Hbare
mass(x) = m q̄(x) q(x) , (4.34)

which is in fact the quark mass term at leading order of the chiral expansion
(in the chiral limit). We remind that m is the constituent quark mass in
the chiral limit introduced in the Lagrangian (4.3). The nucleon mass in the

chiral limit
◦
mN is defined by:

◦
mN ūN(p) uN(p) = 〈N(p)|Hbare

mass(0)|N(p)〉 = m〈N(p)|q̄(0) q(0)|N(p)〉 .(4.35)

On the other hand, the dressed quark mass term and the physical nucleon
mass are given by:

Hdress
mass(x) = q̄(x) mq q(x) , (4.36)

mN ūN(p) uN(p) = 〈N(p)|Hdress
mass(0)|N(p)〉 = 〈N(p)|q̄(0) mq q(0)|N(p)〉 .

In our case the constituent quark masses are the masses at one loop with
inclusion of chiral corrections and with mu = md in the isospin limit. Clearly,
using the Lagrangian (4.3) the nontrivial dependence of the constitutent
quark masses mq

.
= mq(m̂, m̂s) on the current quark massess, m̂, m̂s can be

calculated [12]. In [12] the constituent quark masses are calculated at one
loop and at O(p4) with

mq = m + Σq(m) , (4.37)

where Σq = diag{Σu, Σd, Σs} is the quark mass operator, with Σu = Σd = Σ̄
due to isospin invariance. The quark mass operator is evaluated on the mass-
shell 6p = m, this quantity is ultraviolet-finite by construction. The renor-
malization of the fourth-order constants e1, e3, e4 and e5 which contribute to
the mass operator Σq removes the UV divergencies. The mass operator Σq

is described by the diagrams in Fig. 4 b.
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(1)

�
(2)

(3) (4) (5)

Fig. 4 b. Diagrams contributing to the mass operator of the quark at one
loop. Vertices denoted by a black filled circle and diamond correspond to
insertions from the second and fourth order chiral Lagrangian.

Further on, the quark mass operator is expanded in powers of pseu-
doscalar and vector meson masses, as it is done in [12]. Taking into consid-
eration only the pseudoscalar mesons restricts the number of renormalized
low-energy constants which enter this expansion. In the most general case,
however, these constants are fixed in the follwoing way: using the chiral sym-
metry constraints and the matching of the nucleon mass calculated within
the chiral quark Lagrangian approach to the model-independent derivation
of [78] allows certain relations between the parameters used in [12] and the
ones used in Baryon ChPT. An example is the term referd to in the literature
as the leading nonanalytic term (LNA). Using this requirement the value of
the axial charge of the constituent quark in the chiral limit and the axial
charge of the nucleon in the chiral limit are related as:

g2
A ūN(p) uN(p) = g2〈N(p)|q̄(0) q(0)|N(p)〉 . (4.38)

This matching condition gives a constraint for the scalar condensate, for
which a resonable value is obtained using gA = 1.25 and g ∼ 1. Using (4.38)
the final expression for the nucleon mass at one loop is:

mN =
◦
mN + ΣN , (4.39)

where

mN =
(

gA

g

)2

m̄ ,
◦
mN =

(
gA

g

)2

m (4.40)
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and ΣN is the nucleon mass operator written as an expansion in powers of
meson masses, as well. Due to (4.39) the constituent quark mass is removed
from the expressions of the nucleon (baryon) observables. The next step,
as shown in [12], is to literally compare the expression of the nucleon mass
as derived by [12] and the one derived by [78], which in fact leads to a set
of conditions between the low-energy coupling constants (LEC) of the chiral
quark Lagrangian (4.32) and the ones of the ChPT Lagrangian (at one loop
and up to fourth-order).

On the other hand, the calculation of the meson-nucleon sigma-terms
imposes also new restrictions on the parameters of the chiral quark model. In
general the pion-nucleon sigma-term σπN is calculated as the derivative of the
term in the QCD Hamiltonian, which explicitly breaks the chiral symmetry,
with respect to the current quark mass. In the context of the present model
one uses the derivative of the dressed Hamiltonian Hdress

mass(x) with respect
to the current quark mass of flavor i = u, d, s, m̂i. This defines the dressed
scalar current operator jdress

i (x) relevant for the calculation of meson-nucleon
sigma-terms, as follows:

jdress
i (x)

.
=

∂Hdress
mass(x)

∂m̂i

= q̄(x)
∂mq

∂m̂i

q(x) = q̄(x)
∂Σq

∂m̂i

q(x) . (4.41)

For the σπN term we have:

σπN ūN(p) uN(p)
.
= m̂ 〈N(p)| jdress

u (0) + jdress
d (0) |N(p)〉 , (4.42)

which is consistent with the Feynmann-Hellmann theorem (see Ref.[12]). The
calculation of the nucleon mass and the meson-nucleon sigma-terms involves
the following set of parameters g, m, c1, c2, c5, ē1, ē3, ē4 and ē5, where ēi are
renormalized constants. However, for the study of the magnetic moments
of the light baryons out of the above parameters only the constants g, m
and c2 are relevant. The parameters g and m are constrained by the second
matching condition in (4.40). In literature the value of the axial charge of
the constituent quark varies between 0.9 to 1 [84] to justify perturbation
theory. The nucleon mass in the chiral limit was estimated in HBChPT:
◦
mN= 770± 110 MeV [85] and

◦
mN= 890± 180 MeV [86]. Using these values

for the axial quark charge and the nucleon mass in the chiral limit and the
experimental value gA = 1.267 [71] in Eq. (4.39) one obtains the following
limiting values for the constituent quark mass in the chiral limit:

m ≃ 500 ± 167 MeV . (4.43)
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The choice of g is constrained also by the bare magnetic moments of the
nucleon and, as we will show later, the value of the axial quark charge is
varied between 0.9 and 1, in the calculation of the magnetic moments of the
light baryon octet. The LEC constants mentioned above, among which c2 is
of interest, are fixed by the following conditions:

mN = 938.27 MeV , σπN = 45 MeV , yN = 0.2 , ms − m̄ ≃ 170 MeV ,

(4.44)

where the quantity yN is the strangeness content of the nucleon. In [12] it is
further discussed that the pion cloud contribution is dominant to the total
value obtained for the σπN . In [12] the constraints imposed on the choice of
g by the naive SU(6) calculation of the bare contribution to the magnetic
moments of the proton, give:

µbare
p ≡ − 3

2
µbare

n =
3

5

(
gA

g

)4

. (4.45)

With a value of g = 0.9 one obtains a reasonable bare contribution of µbare =
2.357. where the remaining value to match the experimental total value
comes from the meson cloud.

Now we discuss briefly the parameters entering the meson cloud contribu-
tions to the magnetic moments of light baryons. These are the second-order
low-energy constant c2, c6, and the fourth-order renormalized LECs ē6, ē7 and
ē8. The constant ē6 is absorbed after a certain redefinition on c6, therefore
we remain with three constant only. To constrain these values we need also
the experimental value of the magnetic moment of another light baryon,
the Λ0 baryon is chosen, besides the experimental values for the proton and
neutron. In [12] the valence quark Sachs form factors associated with the
expectation values of the vector and tensor currents are calculated using the
naive picture of the SU(6) symmetry group. Here, as already mentioned, the
valence quark form factors are calculated using the relativistic quark model.
However, in both cases at zero momentum transfer the parameters c6, c2 and
the renormalized constants ē6, ē7 and ē8 contribute to the Pauli quark form
factor f q

P (0). The values obtained for the constants c6 and e7, e8 differ from
the ones obtained in [12] since in the present approach the bare contributions
to the magnetic moments are calculated using the relativistic quark model,
hence the total value to be fitted to the experimental value is slightly different
from the one obtained within the naive picture.
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As will be discussed in the next chapter, in the calculation of the q2−dependence
of the meson-cloud contribution to the N → ∆γ transition, the following ad-
ditional low-energy couplings of the chiral Lagrangian [12] and Eq. (4.3)
enter: c4 and d̄10, ē10. In [12] the values for these LECs were obtained by a
fit to the q2−dependence of the electromagnetic form factors of the nucleon.

We now list the values of these parameters. As input parameters we use
the physical nucleon mass mN = mp = 938.27 MeV and the axial charge
of the nucleon gA = 1.267. Using the chiral constraints of Eq. (4.26) we
can easily determine the quark axial charge value for each set of baryon size
parameters:

SetI g = 0.94 ,

SetII g = 0.92 ,

SetIII g = 0.92 .

For the low-energy coupling c2 we use the value fixed in [12] of c2 = 2.502
GeV−2, while the other low-energy couplings have the following values:
Set I

c̃6 = 0.163, ē7 = −0.426 GeV −3, ē8 = −0.097 GeV −3 , (4.46)

Set II

c̃6 = 0.067, ē7 = −0.318 GeV −3, ē8 = −0.076 GeV −3 , (4.47)

Set III

c̃6 = 0.067, ē7 = −0.314 GeV −3, ē8 = −0.082 GeV −3 . (4.48)

These are the relevant modified low-energy coupling constants for the meson
cloud contributions at zero momentum transfer. The values of the relevant
constants that enter the expressions of the q2−dependent quantities are taken
from [12].

c4 = 01.693 GeV −1, d̄10 = 1.110 GeV −2, ē10 = 0.039 GeV −3 . (4.49)
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In all equations above the couplings ē7, ē8, ē10 and d̄10 are in fact renormalized
coupling constants [12] and the coupling c̃6 is related to the renormalized ē6

via c̃6 = c6 − 16m(2m̂ + m̂s)Bē6.
Further details on the electromagnetic meson-cloud form factors and their

calculation based on the infrared dimensional regularization procedure can
be found in [12].

As already discussed, in Ref. [12] the valence quark contributions to
the magnetic moments have been fixed by gauge, isospin and chiral symme-
try constraints. Furthermore, previously naive SU(6) symmetry constraints
have been employed, whereas in this work these contributions are directly
calulated employing the effective Lagrangian of the relativistic three-quark
model. That does not mean that we will not make use of the symmetry
constraints derived in Ref. [12] and listed in this work, but the contribution
of the valence quarks does not emerge from these constraints, but from the
systematic use of the relativistic three-quark model. The gauge invariance
and the isospin invariance constraints are satisfied by the valence quark form
factors, whereas the chiral symmetry constraints will be slightly violated in
the direct calculation. With the set of parameters of Set I (ΛB = 1.25 GeV)
we get:

1 + F pu
2 (0) − F pd

2 (0) ≡ 1 + F nd
2 (0) − F nu

2 (0) = 4.06 ,

Gpu
2 (0) − Gpd

2 (0) ≡ Gnd
2 (0) − Gnu

2 (0) = 3.51 , (4.50)

with Set II (ΛB = 0.8 GeV):

1 + F pu
2 (0) − F pd

2 (0) ≡ 1 + F nd
2 (0) − F nu

2 (0) = 4.25 ,

Gpu
2 (0) − Gpd

2 (0) ≡ Gnd
2 (0) − Gnu

2 (0) = 3.62 , (4.51)

and with Set III ΛB = 0.75 GeV:

1 + F pu
2 (0) − F pd

2 (0) ≡ 1 + F nd
2 (0) − F nu

2 (0) = 4.26 ,

Gpu
2 (0) − Gpd

2 (0) ≡ Gnd
2 (0) − Gnu

2 (0) = 3.63 . (4.52)

The chiral identities of Eq. (4.26) are important model-independent relations,
so it is desired to keep them valid in our approach. To do so, one has to modify
the vector current q̄γµq or the tensor current q̄σµνq used in the evaluation of
the F and G form factors. We show in the following that a modification of the
GNq

2 form factor is favoured to give the necessary constraints. This particular
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choice is motivated by physical considerations. If we choose to modify the
FNq

1 and FNq
2 form factors, we modify the physical bare magnetic moments,

as the charge conservation keeps the Dirac quark form factor fixed. This is not
desired. A modification of the GNq

2 form factor instead and an appropriate
modification of the Pauli f q

P (0) form factor will lead to the invariance of
the meson cloud contribution to the magnetic moment, but will render the
fulfilment of the chiral symmetry constraints. To summarize, introducing the
modifications

GNq
2 → G̃Nq

2

f q
P (0) → f̃ q

P (0) (4.53)

gives

µcloud
N ≡

∑

q=u,d

f q
P (0)GNq

2 (0) ≡
∑

q=u,d

f̃ q
P (0)G̃Nq

2 (0) . (4.54)

Specifically, the modification f q
P (0) → f̃ q

P (0) involves a redefinition of the
low-energy coupling constans c6, e7 and e8. This redefined form factor has
no physical meaning. The modification of the low-energy coupling constants
is just used to parametrize the modified form factor.

On the other hand, the modification for GNq
2 is aquired by adding the

so-called “chiral” counterterm. This term is constructed with nucleon fields.
We analyze the case of the tensor current used in the evaluation of this form
factor. The tensor current is built with quark fields, the corresponding matrix
element is < B(p

′
)|jbare

µν,q (0)|B(p) > and can be modified by adding a term
which consists of nucleon fields:

q̄(x)σµνq(x) → q̄(x)σµνq(x) +
m̄

mN

N̄(x)σµν δGNqN(x) , (4.55)

where δGNu = diag{δGpu, δGnu} and δGNd = diag{δGpd, δGnd} are diagonal
2 × 2 flavor matrices and q = u or d.

The matrix elements will now give an increase of GNq
2 (0) such that we

can preserve the chiral constraints. Actually, from the direct calculation of
the Pauli form factors FBq

2 (0) and GBq
2 (0) with the numerical values of Eqs.

(4.50-4.52) we understand that we need to increase Gpu
2 (0) − Gpd

2 (0) from
3.51 to 4.06, as for example in Set I, such that the chiral constraints (4.26)
are fulfilled. But this modifications will affect the normalization of the GNq

2

form factors. However, to fulfil the chiral constraints of Eq. (4.26) we have
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to fix the constants δGNq in the expression of the modified tensor current
Eq. (4.55) as follows:
Set I

δGpu ≡ δGnd ≃ −4δGpd ≡ −4δGnu = 0.440 , (4.56)

Set II

δGpu ≡ δGnd ≃ −4δGpd ≡ −4δGnu = 0.504 , (4.57)

and Set III

δGpu ≡ δGnd ≃ −4δGpd ≡ −4δGnu = 0.504 . (4.58)

The effect of introducing a counter term in the tensor current of the matrix
elements translates into a modification of the GNq

2 form factors as follows:

GNq
2 (0) → G̃Nq

2 (0) = GNq
2 (0) + δGNq

2 (0) . (4.59)

With the two modifications operating on f q
P (0) and GNq

2 the invariance of the
meson-cloud contributions to the nucleon magnetic moment is not lost. We
therefore extend this procedure to the other baryons. We will use the addition
of the chiral counterterm in the expression of the quark tensor current and
modify the Pauli quark form factors such that the chiral constraints are
fulfiled and the meson-cloud contribution to the baryon magnetic moments
is invariant:

q̄(x)σµνq(x) → q̄(x)σµνq(x) +
m̄

mB

∑

B

B̄(x)σµνδG
BqB(x) + · · ·(4.60)

where δGBq = are fixed due to the meson-cloud invariance

µcloud
B ≡

∑

q=u,d,s

f q
P (0)GBq

2 (0) ≡
∑

q=u,d,s

f̃ q
P (0)G̃Bq

2 (0) . (4.61)

The strange form factors f s
P ≡ f̃ s

P and GBs
2 ≡ G̃Bs

B are not modified. It is
not necessary to do so since there are no special constraints on the strange
quark contribution. Also, the dots in the expression above stand for the
modification operated in the non-diagonal terms, relevant for the transition
N → ∆, which can be written in analogy.
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Table 8. Sensitivity of the bare contributions to the light baryon magnetic
moments on the choice of the octet baryon 3q-current (in units of the

nuclear magneton µN). The scale parameter is chosen to be ΛB = 0.8 GeV.

Vector current Tensor current Experiment [71, 82]

µp 2.614 2.804 2.793

µn -1.634 -1.814 -1.913

µΛ -0.579 -0.594 -0.613 ± 0.004

µΣ+ 2.423 2.509 2.458 ± 0.010

µΣ− -0.960 -0.973 -1.160 ± 0.025

µΞ0 -1.303 -1.385 -1.250 ± 0.014

µΞ− -0.567 -0.560 -0.6507 ± 0.003

|µΣ0Λ| 1.372 1.398 1.61 ± 0.08

µN∆ 2.984 2.740 3.642 ± 0.019 ± 0.085

In Table 8 we test the sensitivity of the bare contributions to the magnetic
moments on the choice of the three-quark current. Again, for completeness,
we show results for the diagonal transition Σ0 → Λγ and for the non-diagonal
transition N → ∆γ. Here we chose the size parameter to be ΛB = 0.8
GeV. Both forms, either the vector or the tensor current, yield numerical
predictions which are very close to each other. Hence, the magnetic moments
are not necessarily suitable to test the detailed three-quark current structure
of the nucleon. Out of this similarity, in Table 7 we only showed the complete
results for the vector current calculations.

As will be shown in the next chapter, observables of the N → ∆ transition
are more suitable to elaborate on the relativistic current structure of the
valence quarks. In fact, as will be demonstrated with a value of 0.75−0.8 GeV
for the size parameter ΛB, the central values of the N → ∆ characteristics can
be fixed in consistency with the reasonable results for the magnetic moments
displayed in Table 7.
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Chapter 5

N − ∆γ transition

We will employ the method outlined in the previous chapter for the calcula-
tion of important properties of the N → ∆γ transition. This analysis is of
particular importance as it allows to probe the structure of both the nucleon
and the ∆(1232)−isobar and can shed light on their possible deformation.
Furthermore, this reaction represents itself a crucial test for the theoreti-
cal approaches. For example, the naive quark models based on the SU(6)
symmetry in modeling the nucleon and its first resonance as the spherical
symmetric 3q-configurations fail in generating non-vanishing values for the
electric GE2 and Coulomb GC2 quadrupole form factors of the N → ∆γ
transition.

In Refs. [87, 88, 89] a model-independent analysis of the N → ∆γ transi-
tion amplitude has been performed. Based on gauge and Lorentz covariance
it was shown that the corresponding vertex function is expressed in terms of
three linear independent form factors. All other characteristics like helicity
or multipole amplitudes are expressed in terms of these form factors.

A comprehensive review of the role of nucleon resonances in nuclear struc-
ture has been done in [90]. A pedagogical introduction to the N −∆ transi-
tion underlying the main theoretical ideas and predictions of the constituent
quark model (CQM) and its applications to the electromagnetic properties
of nucleon and nuclei is given in [18]. The paper reviews the Isgur-Karl
model and basic formulas for calculations of the baryon spectrum. Quarks
are fundamental carriers of the electric charge of hadrons and the coupling
of the photon is introduced at the quark level. The model is used in the
calculation of the electromagnetic properties: nucleon form factors, the ∆
electromagnetic form factors, excitations of the nucleon resonances. Further

101
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improvements are pointed out: inclusion of relativistic effects, introduction
of pion degrees of freedom, etc.

An effective Lagrangian incorporating chiral symmetry has been used
in [91]. This Lagrangian includes at the tree level the pseudo vector Born
terms, leading t−channel vector-meson exchanges, s− and u−channel ∆-
isobar exchanges. The magnetic dipole M1 and electric quadrupole E2 ampli-
tudes are expressed in terms of two independent gauge couplings at the γN∆
vertex. The investigation of pion photoproduction from threshold through
the ∆(1232) resonance region is done using various unitarization methods,
therefore the errors obtained for both E2 and M1 reflect the theoretical un-
certainties and model dependence.

Ref. [92] analyzed the vector and axial form factors of the NN and N∆
systems as well as the πNN and πN∆ coupling constants (calculated defin-
ing two effective Lagrangians for the πNN and πN∆ interactions) within a
constituent quark model. The main observation is that while the Goldberger-
Treiman relation remains still valid, the experimental couplings are found to
be larger than the ones predicted in the model. The use of a constituent
quark model provides significant mass-dependent corrections to the naive
predictions of SU(6) symmetry.

Complex form factors were calculated to order O(ǫ3) in the small scale
expansion formalism (the inclusion of the ∆ degrees of freedom consistent
with the chiral symmetry) in the framework of a chiral effective theory [93].
The small scale ǫ denotes, collectively, small momenta, the pion mass and
the delta-nucleon mass splitting. The small scale is used in [93] to perform a
systematic power counting and to indicate which diagrams are included in the
calculation up to a certain order in ǫ. It is shown that the low q2 dependence
of the three transition multipoles M1(q2), E2(q2) and C2(q2) is governed by
the πN and π∆ loop effects. The effective chiral lagrangian incorporates
the spontaneous and explicit breaking of chiral symmetry. The way that the
unknown low energy constants affects the ratios EMR(q2)=E2(q2)/M1(q2)
and CMR(q2)=C2(q2)/M1(q2) is elucidated as well as estimated values for
these couplings are obtained.

In Ref. [94] it was shown that the C2/M1 ratio is related to the netron
elastic form factor ratio Gn

C/Gn
M , not only at zero momentum transfer, but

for the range of momenta transfer where data are available. In the context of
this approach relations are given between the charge quadrupole transition
form factor and the elastic nucleon charge form factor on one side, and the
magnetic dipole transition form factor and the elastic neutron magnetic form
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factor, on the other side. For example, at zero momentum transfer, the
transition quadrupole moment and the neutron charge radius are related,
leading the authors to the conclusion that the phenomena of deviation from
nucleon’s spherical symmetry has the origin in a nonspherical cloud of quark-
antiquark pairs in the nucleon. Performing an extrapolation of the C2/M1
result to Q2 → ∞ the ratio asymptotically approaches a small negative
constant in qualitative agreement with perturbative QCD (pQCD).

In Ref. [95] it was studied the chiral behaviour (Mπ dependence) of the
ratios EMR and CMR of the multipole form factors of the γN∆ transition,
using a relativistic effective chiral Lagrangian of pion and nucleon fields sup-
plemented with relativistic ∆-isobar fields. The calculation of observables
is done corresponding to the pion electroproduction amplitude to next-to-
leading order (NLO) in the δ-expansion. The δ-expansion scheme has been
developed in a previous work of [95] to serve as power counting for the pion
electroproduction amplitude. The small parameter δ is proportional to the
excitation energy of the ∆−resonance, which is treated as a light scale of
the theory, and inversely proportional to Λ ∼ 1 GeV, representing the heavy
scale of the theory. The parameters entering the calculation of different cross
sections are the couplings gM , gE and gC characterizing the M1, E2 and C2
transitions.

In Ref. [96] a theoretical framework has been suggested for the calculation
of the γ∗N → ∆ transition using the light-cone sum rule approach. All
three possibilities for the virtual photon polarization are allowed, hence the
transition is described by three independent form factors. This approach
provides a rigorous separation of hard and soft dynamics and provides a tool
for the study of the transition region between hard perturbative and soft
non-perturbative QCD. The main conclusion on the result for the magnetic
form factor is that the ”soft” contribution is dominant at the experimentally
accessible momentum transfers, while in the region above Q2 ∼ 2 GeV2

calculations of the magnetic form factor are close to the experimental data.
There are a few interesting problems to address in this chapter. First

we aim to investigate how important the contributions of both the valence
quarks and the meson cloud to the N → ∆ transition observables are, second,
in detail we elaborate on the necessary ingredients in our approach to explain
the experimental data for the E2/M1 and C2/M1 ratios.

As before we will use the prescriptions of the relativistic three-quark
model to compute the bare electromagnetic matrix elements and the chiral
Lagrangian to calculate the meson cloud corrections. At the end, using the
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factorization of valence quarks and meson cloud contributions, one can cal-
culate the dressed current matrix elements and extract the properties of the
N → ∆ transition. We will underline the few additional differences which
arise in the calculational technique of non-diagonal matrix elements.

Again we split the analysis into two parts: first, the evaluation of the
bare vector and tensor quark operators between the N and the ∆(1232)
states and the projection of the dressed quark operator between these two
states. Replacing the final nucleon state in Eq. (4.16) with the ∆ state, the
dressed quark operator matrix element is:

< ∆(p′)|Jdress
µ,em (q)|N(p) >= (2π)4δ4(p′ − p − q)ūν

∆(p′)Λµν(p, p
′)u(p)

= (2π)4δ4(p′ − p − q)
∑

q=u,d

{
f q

D(q2) < ∆(p′)|jbare
µ,q (0)|N(p) >

+i qν

2mq
f q

P (q2) < ∆(p′)|jbare
µν,q (0)|N(p) >

}
.

(5.1)

Here, Λµν(p, p
′
) is the N → ∆ vertex function, uN(p) is the nucleon spin-1/2

Dirac spinor and ū∆(p
′
) is the spin-3/2 Rarita-Schwinger spinor. Spin-3/2

particles obey the Rarita-Schwinger equations. A Rarita-Schwinger spinor
fulfils the conditions:

ūν
∆(p′) γν = 0 and ūν

∆(p′) p′ ν = 0 . (5.2)

Due to gauge invariance considerations one can decompose the vertex func-
tion Λµν(p, p

′
) for the nucleon and the ∆−isobar which are both on-shell, in

terms of:

Λµν(p, p
′) = [gµνb1(q

2) + pµqνb2(q
2) + γµqνb3(q

2) + qµqνb4(q
2)]γ5 (5.3)

where the bi(q
2), i = 1, 2, 3, 4, are relativistic form factors. Moreover, gauge

invariance dictates a relation for the fourth form factor as being a linear
combination of the other three form factors with

b1(q
2) + b2(q

2)pq + b3(q
2)m+ = −q2b4(q

2) , (5.4)

where m∆ = 1232 MeV is the mass of the ∆−isobar; the notations used
in the previous equations are: pq = (m+m− − q2)/2 and m± = m∆ ± mN .
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Therefore, the vertex function can be rewritten in a gauge invariant form,
involving only the relativistic form factors b1, b2 and b3 :

Λµν(p, p
′) = [g⊥

µνb1(q
2) + p⊥µ qνb2(q

2) + γ⊥
µ qνb3(q

2)]γ5 , (5.5)

or, relating the value of b1 in terms of b2, b3 and b4 form factors from Eq.
(5.4), the gauge invariant vertex function is:

Λµν(p, p
′) =

[
L⊥

2 µν b2(q
2) + L⊥

3 µν b3(q
2) + L⊥

4 µν b4(q
2)
]
γ5 . (5.6)

The superscript ⊥ refers to the following expressions:

g⊥
µν = gµν −

qµqν

q2
, p⊥µ = pµ − qµ

pq

q2
, γ⊥

µ = γµ − qµ
6q
q2

,

L⊥
2 µν = p⊥µ qν − g⊥

µν pq , L⊥
3 µν = γ⊥

µ qν − g⊥
µν m− , L⊥

4 µν = −g⊥
µν ,

(5.7)

and

g⊥
µν qµ = 0 , p⊥µ qµ = 0 , γ⊥

µ qµ = 0 . (5.8)

which are the transverse components relative to the photon momentum. All
the last terms represent Lorentz structures perpendicular to the photon mo-
mentum, so that at the end the full vertex function we have written above is
the perpendicular component. The longitudinal component also enters the
expression of the vertex function. Though, we have shown for the diagonal
transitions that such component is proportional to the mass operator, for
non-diagonal transition this term is proportional to

ΣN∆(p
′

) − ΣN∆(p) . (5.9)

Although we use the same notation, the indices differ; these quantities are
not mass operators of some baryon state, as the final and initial states are
different.

Now it is easy to show that the matrix element of the nondiagonal N → ∆
transition fulfils the Ward-Takahashi identities and therefore gauge invari-
ance

qµ Λµν(p, p
′) = 0 . (5.10)
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The decomposition used in Eq. (5.3) is not unique. There are several ways
of decomposing the matrix element in terms of relativistic form factors. A
pedagogical introduction to this topic can be found in Ref. [18]. In Appendix
F we indicate alternative sets of relativistic form factors defining the N → ∆
transition.

For the calculation of the N → ∆ matrix element we use the dressed
electromagnetic quark operator of Eq. (4.15). The relativistic three-quark
model is used to compute the bare matrix elements < ∆(p

′
)|jbare

µ,q (0)|N(p) >

and < ∆(p
′
)|jbare

µν,q (0)|N(p) >, as we already proceeded for the case of the
light octet baryons.

The diagrams which contribute to the vector-like bare matrix element are
the triangle and the two bubble graphs, while for the tensor-like bare matrix
element only the contribution from the triangle diagram is requested.The
diagrams are summarized in Fig. 5. A particular additional diagram of Fig.
5 (d), the so-called ”pole” diagram, gives a contribution to the non-diagonal
N → ∆ transition. This diagram is included in the full ”vector”-like matrix
element in order to preserve gauge invariance. It describes the transition of
the nucleon into a ∆−isobar via a quark loop, followed by an interaction
of the isobar with the electromagnetic field. An analogous diagram can be
pictured for the nucleon itself: the nucleon interacts with the external field
and then converts into a ∆. However, this contribution is zero because of
the Rarita-Schwinger conditions.
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B B
′

(a)

×

B B
′

(b)

×

B B
′

(c)

×
N ∆ ∆

(d)

Fig. 5 Diagrams contributing to the matrix elements of the bare quark
operators: triangle (a), bubble (b) and (c), pole (d) diagrams. Symbol ×
corresponds to the source of the external field.

In the discussion related to light baryon octet, we used a decomposition
of the bare vector- and tensor-operators into Dirac and Pauli form factors,as
based on Lorentz and gauge invariance, describing the distribution of the
quarks inside the baryon Eq. (4.24). Here we will make use of a decompo-

sition for the non-diagonal 1
2

+ → 3
2

+
transitions as well, but now involving

the three relativistic form factors

< ∆(p′)| jbare
µ,q (0) |N(p) > = ūν

∆(p′)
4∑

i=2

L⊥
i µν bV

i (q2) γ5 uN(p)

(5.11)

and

i
qν

2 mq

< ∆(p′)| jbare
µν,q (0) |N(p) > = ūν

∆(p′)
4∑

i=2

L⊥
i µν bT

i (q2) γ5 uN(p)

(5.12)
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where bV
i (q2) are the relativistic form factors that arise from the general

decomposition Eq. (5.3) corresponding to the vector-current operator. The
form factors bT

i (q2) are the ones corresponding to the tensor-current operator.
The bi form factors receive contributions from the bare matrix elements as
well as from the meson cloud, where either of these contributions arise from
vector-like or tensor-like contributions. To clearly express this combination,
let us write the general form factor bi of Eq. (5.3) as

bi(q
2) = bbare

i (q2) + bcloud
i (q2) . (5.13)

The bare part is

bbare
i (q2) =

∑

q=u,d

eqb
V
i (q2) , (5.14)

while the meson cloud part is given by

bcloud
i (q2) =

∑

q=u,d

[(f q
D(q2) − eq)b

V
i (q2) + f q

P (q2)bT
i (q2)] . (5.15)

From the above relations, the relativistic form factors bi can be also written
as a sum of vector and tensor contributions.

We next define important properties exhibited in the N → ∆ transition.
First of all, the observables we study are easily expressed in terms of the
relativistic form factors (expressions in terms of form factors can be found
using the relations given in Appendix F and in Refs. [18],[87]-[96]) as follows:
1) Magnetic form factor GM1(Q

2):

GM1(Q
2) =

1

4

{
b3(Q

2)
m+(3m∆ + mN) + Q2

m∆

+ b2(Q
2)(m+m− + Q2) − 2b4(Q

2)Q2
}

. (5.16)

2) Electric form factor GE2(Q
2):

GE2(Q
2) =

1

4

{
b3(Q

2)
m+m− − Q2

m∆

+ b2(Q
2)(m+m− + Q2) − 2b4(Q

2)Q2
}

. (5.17)
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3) Coulombic form factor GC2(Q
2):

GC2(Q
2) =

|~q |
2

{
b3(Q

2) + b2(Q
2)EN + b4(Q

2)ω
}

. (5.18)

4) Helicity amplitudes A3/2 and A1/2:

A3/2(Q
2) = −

√
π α ω

2m2
N

[GM1(Q
2) + GE2(Q

2)] ,

A1/2(Q
2) = −

√
π α ω

6m2
N

[GM1(Q
2) − 3 GE2(Q

2)] . (5.19)

5) Ratios EMR = E2/M1 = −GE2(Q
2)/GM1(Q

2) and
CMR = C2/M1 = −GC2(Q

2)/GM1(Q
2):

EMR(Q2) = − GE2(Q
2)

GM1(Q2)
, and CMR(Q2) = − GC2(Q

2)

GM1(Q2)
. (5.20)

6) Transition dipole moment µN∆:

µN∆ =
2√
6

GM1(0) . (5.21)

7) Transition quadrupole moment QN∆:

QN∆ = −
√

6
m+ m−
m∆ mN

GE2(0) . (5.22)

8) ∆+ → N + γ decay width:

Γ(∆+ → pγ) =
m∆ mN

8 π

[
1 − m2

N

m2
∆

]2 {
|A1/2(0)|2 + |A3/2(0)|2

}
(5.23)

where Q2 = −q2 is an Euclidean momentum squared, α = 1/137 is the fine
structure coupling and we made use of the follwoing notations for the nucleon
energy

EN = m∆ − ω =
m2

∆ + m2
N + Q2

2m∆

(5.24)

and for the photon energy

ω =
m2

∆ − m2
N − Q2

2m∆

. (5.25)
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The 3-momentum of the virtual photon in the ∆-isobar rest frame is given
formally by

|~q | =
λ1/2(m2

∆,m2
N ,−Q2)

2m∆

, (5.26)

where

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (5.27)

is the Källen triangle function. Further ways of equivalent definitions of
all the observables above in terms of relativistic form factors are listed in
Appendix F and also in Refs. [18],[87]-[96]. It is possible to simplify the
definitions for the magnetic form factor and the quardupole electric form
factor of the transition by making use of the relation (5.4). This allows us to
re-express these two form factors in terms of b1(Q

2) and b3(Q
2) only:

GM1(Q
2) =

1

2

{
−b1(Q

2) + b3(Q
2)

m2
+ + Q2

2m∆

}
,

GE2(Q
2) =

1

2

{
−b1(Q

2) − b3(Q
2)

m2
+ + Q2

2m∆

}
. (5.28)

Thus, the sum of the magnetic and electric form factors equals the relativistic
form factor b1(Q

2), while the difference of these two form factors equals the
b3(Q

2) form factor

GM1(Q
2) + GE2(Q

2) = −b1(Q
2) ,

GM1(Q
2) − GE2(Q

2) = b3(Q
2)

m2
+ + Q2

2m∆

. (5.29)

In the following we will show the results obtained for above properties and
will discuss in detail the value obtained for the experimental ratio E2/M1.
As shown in the previous chapter, the results for the magnetic moments
of the light baryons are only slightly sensitive to the choice of either the
vector or the tensor current. We concluded that these quantities do not
offer sensitive test on the linear combination of these currents. However, the
situation changes in the case of the nondiagonal transition N → ∆. The
important quantities E2/M1 and C2/M1 are sensitive to relativistic effects,
thus one can learn about a suitable choice of currents for the nucleon. We
have underlined that for the ∆−isobar only the vector current is possible .
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For example, using a pure vector current for the nucleon, one recovers
the correct negative sign for the ratios E2/M1 and C2/M1, while the use
of the tensor current delivers a wrong negative sign for both ratios. Based
on this observation we will further proceed to employ only the vector-vector
combination for the N → ∆ observables. In fact, the best choice would be
the use of a linear combination of vector and tensor currents for the nucleon.
We show explicitly the sensitivity of the ratios E2/M1 and C2/M1 on the
relative weight of these two current contributions.

To support the idea of a pure vector form in the description of the leading
nucleon current we also refer to a QCD sum-rule analysis [97], where the
vector current is shown to be preferred. However, the currents used in QCD
sum-rules are written down in terms of current quarks, while in the present
approach we deal with constitutent quarks.

Table 9. Results for the N → ∆γ transition (Set I: ΛB = 1.25 GeV)

Bare (3q) Meson cloud Total Experiment [71, 82, 98]

EMR (%) at Q2 = 0 -3.22 0.29 -2.93 -2.5 ± 0.5; -3.07 ± 0.26 ± 0.24
EMR (%) at Q2 = 0.06 GeV2 -3.14 0.42 -2.72 -2.28 ± 0.29 ± 0.20
CMR (%) at Q2 = 0 -3.69 0.34 -3.35
CMR (%) at Q2 = 0.06 GeV2 -4.75 0.44 -4.31 -4.81 ± 0.27 ± 0.26

A1/2(0) in 10−3 GeV−1/2 -87.4 -11.8 -99.2 -135 ± 6
A3/2(0) in 10−3 GeV−1/2 -173.0 -20.9 -193.9 -250 ± 8

GE2(0) 0.093 0.002 0.095 0.137 ± 0.012 ± 0.043
GM1(0) 2.887 0.359 3.246 4.460 ± 0.023 ± 0.104
GC2(0) 0.107 0.008 0.115

QN∆ ( fm2) -0.073 -0.001 -0.074 -0.108 ± 0.009 ± 0.034
µN∆ 2.357 0.439 2.796 3.642 ± 0.019 ± 0.085

Γ∆→γ (MeV) 0.30 0.09 0.39 0.58 - 0.67
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Table 10. Results for the N → ∆γ transition (Set II: ΛB = 0.8 GeV)

Bare (3q) Meson cloud Total Experiment [71, 82, 98]

EMR (%) at Q2 = 0 -3.41 0.31 -3.10 -2.5 ± 0.5; -3.07 ± 0.26 ± 0.24
EMR (%) at Q2 = 0.06 GeV2 -3.34 0.33 -3.01 -2.28 ± 0.29 ± 0.20
CMR (%) at Q2 = 0 -3.95 0.26 -3.69
CMR (%) at Q2 = 0.06 GeV2 -5.13 0.35 -4.78 -4.81 ± 0.27 ± 0.26
A1/2(0) in (10−3 GeV−1/2) -110.0 -14.3 -124.3 -135 ± 6
A3/2(0) in (10−3 GeV−1/2) -219.4 -25.3 -244.7 -250 ± 8

GE2(0) 0.125 0.002 0.127 0.137 ± 0.012 ± 0.043
GM1(0) 3.655 0.434 4.089 4.460 ± 0.023 ± 0.104
GC2(0) 0.144 0.007 0.151

QN∆ ( fm2) -0.098 -0.001 -0.099 -0.108 ± 0.009 ± 0.034
µN∆ 2.984 0.354 3.338 3.642 ± 0.019 ± 0.085

Γ∆→Nγ (MeV) 0.49 0.12 0.61 0.58 - 0.67

Table 11. Results for the N → ∆γ transition (Set III: ΛB = 0.75 GeV)

Bare (3q) Meson cloud Total Experiment [71, 82, 98]

EMR (%) at Q2 = 0 -3.43 0.30 -3.13 -2.5 ± 0.5; -3.07 ± 0.26 ± 0.24
EMR (%) at Q2 = 0.06 GeV2 -3.35 0.30 -3.05 -2.28 ± 0.29 ± 0.20
CMR (%) at Q2 = 0 -3.98 0.25 -3.73
CMR (%) at Q2 = 0.06 GeV2 -5.17 0.33 -4.84 -4.81 ± 0.27 ± 0.26
A1/2(0) in (10−3 GeV−1/2) -114.3 -14.3 -128.6 -135 ± 6
A3/2(0) in (10−3 GeV−1/2) -228.1 -25.4 -253.5 -250 ± 8

GE2(0) 0.130 0.002 0.132 0.137 ± 0.012 ± 0.043
GM1(0) 3.800 0.435 4.235 4.460 ± 0.023 ± 0.104
GC2(0) 0.151 0.007 0.158

QN∆ ( fm2) -0.102 -0.002 -0.104 -0.108 ± 0.009 ± 0.034
µN∆ 3.102 0.356 3.458 3.642 ± 0.019 ± 0.085

Γ∆→Nγ (MeV) 0.53 0.13 0.66 0.58 - 0.67
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In Tables 9, 10 and 11 we list the complete results for the N → ∆
observables for three different values of the size parameter ΛB = 1.25, 0.8,
and 0.75 GeV , respectively : the helicity amplitudes, the GE2, GM1 and GC2

form factors at zero momentum transfer, the dipole µN∆ and quadrupole
QN∆ moments, the decay width and the ratios EMR = E2/M1 and CMR =
C2/M1. We indicate our results for these ratios both at zero recoil and for
finite Q2 = 0.06 GeV 2 (recently the A1 Collaboration [98] measured these
quantities at this kinematic point).

Our predictions are in good agreement with further experimental data
by the LEGS Collaboration at Brookhaven [82] and by the GDH, A1, A2
Collaborations at Mainz [98, 99]. The electric, magnetic and Coulomb form
factor, the helicity amplitudes, the dipole and quadrupole moments and the
decay width are sensitive to the choice of the size parameter. An easy expla-
nation of such a dependence can be given just by looking at the behaviour of
the dipole moment µN∆ (and implicitly to the GM1 form factor) which seems
to be the most sensitive among the observables. The definition of GM1 in
terms of the relativistic form factors of Eq. (5.16) shows a strong dependence
on the variation of the size parameter ΛB, since at zero momentum transfer
it has the following dependence on b2 and b3:

µN∆ ∼ b3(0)
m+(3m∆ + mN)

m∆

+ b2(0)m+m− .

(5.30)

The main contribution actually comes from the b3(0) form factor which has
dimension 1/M . The contribution of the valence quarks to µN∆ shows that b3

scales like 1/ΛB. Hence, decreasing the value of ΛB leads to an increase of the
value of b3(0) and therefore of the dipole moment, closer to the experimental
value. The value ΛB ≃ 0.75 GeV gives the best fit to data. The same
arguments hold for GM1 and other quantities in the tables. We conclude
that a good description of data can be achieved with values for the size
parameter between 0.75 − 0.8 GeV.

In Figs. 6-12 we display the Q2 dependence of the most important ex-
perimental quantities: the GE2, GM1, GC2 form factors, the helicity ampli-
tudes A1/2, A3/2 and the ratios EMR and CMR. The values are indicated for
Q2 = 0÷0.2 GeV. The solid line corresponds to the full contribution (valence
quarks and meson-cloud corrections), while the dashed line corresponds to
the bare contributions only. For the Figs. 6-12 we fix the value of the size
parameter at ΛB = 0.8 GeV.
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Fig. 6 Helicity amplitude A1/2(Q
2). The solid line is the total result,

whereas the dashed line corresponds to the valence quark contribution.
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The curves obtained within our approach are in good agreement with the
present data. We remind that the meson-cloud contributions to the static
quantities and to the q2−dependent quantities depend on a set of low-energy
parameters: the constituent quark mass m, the axial quark charge in the
chiral limit and a set of low-energy coupling constants, as shown in the chiral
quark Lagrangian (4.3). The determination of these parameters has been
widely discussed in the Section 4.3.

We shall also discuss the importance of choosing the vector current for
nucleon. As mentioned above, a correct negative sign for the two ratios,
the EMR and CMR, is achieved with the choice of a pure vector current.
The occurence of the desired sign is based on the dependence of these two
ratios on the relativistic form factors. We will neglect the b4 contribution
as it appears in the ratios as b4(0)/b3(0) ≃ −1/10 and b4(0)/b2(0) ≃ 1/5.
Neglecting temporarly also the b2(0) form factor we recover a result well-
known in the literature [87]-[96], when the two rations become degenerate
and equal to

EMR = CMR = − m−
3m∆ + mN

≃ −6% . (5.31)

Therefore to achieve a good agreement with data the b2(0) dependence
is rather important. First of all the sign of this form factor is negative
either for a pure vector or a tensor current. However, in the case of the
tensor current, the b2 form factor has a value twice as large than required
phenomenologically. This results in a change of sign for GE2 and GC2 from
positive to negative. As GM1 carries a negative sign, the overall result of
the EMR and CMR ratios will be positive. It is not the same for the vector
current, since b4 contributes with a reasonable value, such that GE2 and GC2

keep a positive sign and bring the desired negative sign to the ratios. The
vector current for the nucleon is therefore preferred by the phenomenology
of the N → ∆ transition. To further elaborate quantitatively on this point,
in Table 12 we test the sensitivity of EMR and CMR on the choice of the
three-quark current at Q2 = 0 for all three values of the cutoff parameter
ΛB = 0.75, 0.8, 1.25 GeV. We use a linear combination of vector and tensor
currents:

Jp = (1 − β)JV
p + βJT

p (5.32)

with β as mixing parameter. β = 0 corresponds to a pure vector current,
whereas β = 1 indicates the limit of a to pure tensor current. We observe that
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an increased contribution by the tensor current leads to a stronger deviation
from data. Future and more precise experiments on the ratios EMR and
CMR could give a narrow range for the mixing parameter β. Of course, there
is room for improvement in our approach as well: tests of the functional
form of the vertex function as well as including confinement in the quark
propagator.



Table 12. Sensitivity of the EMR and CMR ratios to the choice of the proton 3q-current

Mixing parameter β

0 0.025 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.75 1

Set I (ΛB = 1.25 GeV)

EMR (%) -2.93 -2.54 -2.28 -2.04 -1.80 -1.35 -1.08 -0.55 -0.19 0.15 0.47 1.05 2.29 3.19

CMR (%) -3.35 -3.03 -2.72 -2.42 -2.13 -1.59 -1.08 -0.61 -0.17 0.25 0.63 1.35 2.81 3.95

Set II (ΛB = 0.8 GeV)

EMR (%) -3.10 -2.83 -2.56 -2.30 -2.06 -1.60 -1.17 -0.77 -0.40 -0.05 0.28 0.87 2.09 3.03

CMR (%) -3.69 -3.35 -3.03 -2.64 -2.35 -1.80 -1.29 -0.81 -0.37 0.04 0.43 1.14 2.58 3.69

Set III (ΛB = 0.75 GeV)

EMR (%) -3.13 -2.84 -2.58 -2.33 -2.07 -1.62 -1.19 -0.79 -0.41 -0.07 0.26 0.85 2.10 3.00

CMR (%) -3.73 -3.39 -3.06 -2.75 -2.44 -1.87 -1.34 -0.85 -0.40 0.03 0.43 1.16 2.65 3.80



Chapter 6

Summary

In this work we pursue a fully covariant quark model (RQM) to study the
electromagnetic properties of baryons, both heavy and light. In our frame-
work the baryon is in leading order described as a composite object of three
constituent quarks.

The first part of this work was dedicated to the underlying principles of
the relativistic quark model. The relativistic quark model can be viewed as a
quantum field theory approach based on a phenomenological Lagrangian of
light and heavy baryons interacting with their constituent quarks. Such an
interaction Lagrangian is written in terms of baryon and quark fields. The
quark fields are hidden in the relativistic baryon three-quark currents. We
have used an universal Gaussian shape for the baryon-quark vertex and we
argue about the choice of the relativistic vertex function. Since a solution
of the Faddeev-Popov equations for baryons as bound states is not available,
we have free choice on the shape of the relativistic vertex function, as long as
the particular form chosen falls rapidly enough in the ultraviolet region. The
wave function of the three constituent quarks as given by an analysis in the
Bethe-Salpeter approach should indicate a shape for our phenomenological
distribution of the constituent quarks inside the baryon, possibly from first
principles. As in the previous applications of the relativistic quark model, the
choice of the Gaussian shape is universal for all baryon states, while we allow
for the free cut-off parameter to vary with the flavour content. However,
the cut-off parameters fall into three categories for the heavy sector: single-
, double- and triple-type parameters for single-, double-, and triple-heavy
baryons, respectively. The specific values of these parameters have been
extracted from the best fit to the data. One can elaborate more on the

121
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choice of the vertex function and test the sensitivity of the basic hadronic
observables, as has been done in [35].

The constituent quark fields enter the Lagrangin via the three-quark cur-
rents. One considers two important aspects when deriving such currents: the
description of ground state baryons is restricted to the use of non-derivative
currents and the structures involved should meet the right quantum num-
bers of the baryons. We explicitly discussed the formalism involved in the
derivation of the three-quark currents and exemplified the structures with the
similar mathematical procedure used in the QCD sum rule approaches. Of
course, in our case the relevant degrees of freedom are the constituent quarks
and a linear combination of all the possible currents is taken into consider-
ation. However, one can choose specific forms for the three-quark currents
as restricted by the symmetry or antisymmetry properties of the baryon
wave function under the permutation of relevant flavor indices. Moreover,
as expected, some classes of relativistic currents give similar predictions to
those observables which have low sensitivity to relativistic effects. On the
other hand, there are observables highly dominated by relativistic effects and,
therefore, highly sensitive to the combination of the currents.

One important ingredient of the relativistic quark model is the compos-
iteness condition. Originally, Weinberg [41] proposed this condition for the
description of the deuteron as a bound state of proton and neutron. Gener-
ally speaking, the compositeness condition applies to the description of any
bound state and sets an upper limit for the coupling of the physical particle
to its own constituents. This limit is achieved when the matrix element be-
tween the physical particle and its corresponding bare state is zero. By this
means, the baryon is a composite object and exists dressed by the interaction
only through its virtual constituent quarks.

After we specified all the ingredients of the Lagrangian and after deriv-
ing the Feynman rules one can proceed with the calculation of the S-matrix
elements describing the hadron-hadron interaction. The observables will be
expressed by a set of quark diagrams. We have shown that for the calculation
of the magnetic moments several processes contribute, the triangle and the
two bubble diagrams. These diagrams are generated by the coupling of the
photon to the individual quark lines in the baryon-quark vertex. We have
shown that the incorporation of the electromagnetic interaction into the ef-
fective Lagrangian is consistenly done within the path-exponential formalism.
The relativistic quark model provides a self consistent powerful calculational
technique, a reduced number of free parameters (the cut-off parameter and
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the constituent quark masses entering the free fermion propagator).
In the second part of this work we concentrated on the calculation of

the magnetic moments of single-, double- and triple-heavy baryons using the
relativistic quark model. An interesting aspect is the ability of the RQM to
recover the model-independent HHChPT predictions, as any model should
aim for. Therefore, the analysis of the magnetic moments of heavy baryons
has been carried out taking into consideration the heavy-quark limit, both
in the baryonic correlation functions (BCF) and in the BCF and the heavy
quark propagators (HQP). We also performed the calculation of the magnetic
moments within a non-relativisic framework, where the non-relativistic spin-
flavor wave functions of the baryon are chosen to match the non-relativistic
limit of our relativistic currents. In the numerical discussion, we showed
that the magnetic moments of Λ−type baryons are practically the same in
all three models (full approach, heavy-quark limit in BCF and heavy-quark
limit in both BCF and HQP), because the main contribution comes from
the coupling of the photon to the heavy degree of freedom. However, for the
Σ−type baryons the main contribution comes from the coupling of the photon
to the light diquark system (as also predicted by the non-relativistic quark
model) in the full approach, while in the heavy quark limit this contribution
is suppressed. The last affirmations are in full agreement with the HHChPT
prescriptions. We showed explicitly that we exactly recover the magnetic
moments of the Λ−type and Σ−type baryons in the heavy quark limit in
correspondence with the model-independent predictions of HHChPT. We
also noticed that the contribution of the bubble diagrams is suppressed with
respect to the contribution of the triangle diagram. Further on, a comparison
of our results to the ones obtained in various theoretical approaches, for
example in the relativistic quark models of [58] and [60], in QCD sum rules
[64], shows a good agreement. However, we do not agree with the Skyrme
model predictions [63].

In the last part of this work we extended the relativistic quark model to
the analysis of the electromagnetic properties of light baryons. In particu-
lar we calculated the magnetic moments of the light baryon octet and the
properties of the N → ∆γ transition including the pseudoscalar meson cloud
corrections. We proved the consistency when introducing the chiral correc-
tions into the relativistic quark model by deriving a master formula which
highlights a model-independent factorization: cloud effects are encoded in a
set of relativistic quark form factors, whereas the effects of confinement and
hadronization are contained in the bare electromagnetic quark operators.
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Thus, the dressed electromagnetic quark operators sandwiched between the
baryon states can be expressed in terms of bare matrix elements multiplied
by meson cloud contributions. The dressing of the bare quark operator is
done using the baryon chiral perturbation theory prescriptions by writing
a Lorentz covariant chiral quark Lagrangian in terms of constituent quarks
and chiral fields as effective degrees of freedom. We considered only one
body operators for the dressed quark operators. Such an operator has been
calculated [12] up to the order O(p4) in external momenta using the infrared
dimensional regularization technique. The calculation of bare matrix ele-
ments has been done using the relativistic quark model. In addition to the
triangle and bubble diagrams, for the non-diagonal transition there is an ex-
tra ”pole”-diagram contribution, due to gauge invariance requirements. In
the practical calculations we used the vector and tensor currents for the nu-
cleon and we tested the sensitivity of the magnetic moments of light baryons
on the choice of these currents. Since the relativistic contributions to the
magnetic moments are small and only of higher order, we argued that the
vector and tensor currents are expected to give similar predictions for these
quantities. That explains the success of the naive quark model results. For
the N → ∆γ transition we calculated helicity amplitudes, electromagentic
form factors and the long disputed multipole ratios E2/M1 and C2/M1,
indicating also results for the recent kinematical points. We performed a
q2−dependent analysis of the helicity amplitudes and of the multipole ratios
which shows a good agreement with the latest data. In the analysis of the
properties of the light baryons we indicated results separately for the con-
tributions of the valence quarks and for the meson-cloud contributions and
therefore we offered a good understanding of the necessity of taking such
corrections into consideration.We conclude that the contribution of the me-
son cloud to the static properties of light baryons counts up to 20%, a value
consistent with the perturbative nature of such contributions. Together with
the relativistic corrections we can improve the naive predictions offered in the
SU(6) picture. Also, the two experimental values for the multipole ratios are
succesfully recovered with our approach. We have analyzed how relativistic
effects count to recover the correct negative sign and reasonable values for
these quantities. The ratios E2/M1 and C2/M1 are significantly dominated
by relativistic effects, thus it is worth testing the sensitivity of these quan-
tities on the choice of the currents. The correct minus sign is achieved with
high or maximum contribution of the nucleon vector current.

Further improvement is needed with respect to the weight of the nucleon
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tensor current. In future, chiral corrections due to heavier states may be
included in a similar fashion. In the heavy baryon sector one could elab-
orate and include meson cloud contributions, as well. On the other hand,
the relativistic quark model predictions can be improved by considering an
appropriate vertex function as derived for example from Bethe-Salpeter ap-
proaches. Another important aspect to be considered in the future is related
to the choice of the baryon three-quark current.
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Appendix A

Representations of the Lorentz
group

The Lorentz group is defined as a set of 4 × 4 matrices which leave the
space-time interval

s2 = c2t2 − xixi = xµgµνx
ν (A.1)

invariant and gµν is the metric of the group. If all signs within the metric were
positive then the group would be O(4). As the signs alternate, the Lorentz
group can be labeled as O(3, 1), that means three positive signs and one
negative sign within the metric. Following that, the difference between the
Lorentz group and the O(4) group translates into that the invariant distance
can be both positive or negative within the Lorentz group and only positive
within the O(4) group. Despite this crucial difference, the representations of
the two groups share common properties.
The action of the Lorentz group on some fields is written:

Lµν = i(xµ∂ν − xν∂µ) . (A.2)

with pµ = i∂µ and which generates the algebra of the Lorentz group

[lµν , Lρσ] = igνρLµσ − igµρLνσ − igνσLµρ + igµσLνρ . (A.3)

Defining U(Λ) = exp(iǫµνLµν), the action of the Lorentz group on a vector
field is given by

U(Λ)Φµ(x)U−1(Λ) = (Λ−1)µ
νΦν(x

′

) (A.4)
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The Lorentz boosts of coordinates xµ′
= Λµ

νx
ν can be written in terms of

Mµν , generators of O(N), with the definitions

J i = 1
2
ǫijkM jk ,

Ki = M0i . (A.5)

The Lorentz boost in the x direction is eiKxvx

= cosh Φ+ i sinh ΦKx with vx

the x−component of the velocity (velocity components are the parameters of
the Lorentz boosts). The K matrices do not form a closed algebra (a boost
in the y direction followed by a boost in the x direction does not generate
another Lorentz boost), therefore the rotation group O(3) is introduced, with
the three generators Jx, Jy, Jz. Then the K and J generate a closed algebra,
the algebra of the Lorentz boosts and rotations. They fulfil the commutation
relations

[Ki, Kj] = −iǫijkJk , [J i, J j] = iǫijkJk , [J i, Kj] = iǫijkKk .

(A.6)

Taking a linear combination of these generators

Ai =
1

2
(J i + iKi) ,

Bi =
1

2
(J i − iKi) , (A.7)

the algebra of the Lorentz group splits into two pieces

[Ai, Bj] = 0 . (A.8)

Additionally, if one exploits the similarities between the Lorentz group alge-
bra and the SO(4) algebra and the fact that SO(4) = SU(2) × SU(2), we
notice that each piece Ai and Bj generates a separate SU(2). Changing the
sign in the metric, the Lorentz group is written as SU(2) × SU(2), so that
irreducible representations (j) of SU(2), j = 0, 1/2, 3/2, ... etc, can be used to
construct representations of the Lorentz group, labeled (j, j

′
), by pairing two

representations of SU(2). A spinorial representation of the Lorentz group is
obtained, if j + j

′
is half-integral.

A four-spinor can be decomposed as

Ψ = (
ΨR

ΨL
) (A.9)
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The two spinors, right- and left-handed can be chosen as

(1/2, 0) =
1 + γ5

2
Ψ ,

(0, 1/2) =
1 − γ5

2
Ψ . (A.10)

To construct higher spin fields one can take tensor products between the
spinors. Vectors can be constructed as the product of two spinors

(1/2, 0) ⊗ (0, 1/2) = (1/2, 1/2) . (A.11)

A spin-3/2 field can be written in the most common way as the product of a
spinor and a vector

(1/2, 1/2) ⊗ (1/2, 0) = (1, 1/2) ⊕ (0, 1/2) , (A.12)

which corresponds to the construction of a four-spinor with a vector index
attached

Ψµ = (
ΨµR

ΨµL
) . (A.13)

The (0, 1/2) spinor corresponds to the contraction of spin-3/2 spinor with a
gamma matrix

(0, 1/2) = γµΨµ . (A.14)

The (1, 1/2) representation corresponds to a spin-3/2 field and has zero con-
traction on a gamma matrix.

(1, 1/2) = Ψµ − 1

4
γµγ

νΨν . (A.15)

This discussion is useful for a complete understanding of the decomposition
of a three-quark current operator into the irreducible representations of the
Lorentz group.
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Appendix B

Three-quark currents

B.1 Light baryons

Here we present a list of the three-quark currents of the baryon octet.
I. Vector currents:

JV
p = εa1a2a3γµγ5da1ua2Cγµu

a3 ,

JV
n = −εa1a2a3γµγ5ua1da2Cγµd

a3 ,

JV
Σ+ = −εa1a2a3γµγ5sa1ua2Cγµu

a3 ,

JV
Σ0 =

√
2 εa1a2a3γµγ5sa1ua2Cγµd

a3 , (B.1)

JV
Σ− = εa1a2a3γµγ5sa1da2Cγµd

a3 ,

JV
Ξ− = εa1a2a3γµγ5da1sa2Cγµs

a3 ,

JV
Ξ0 = εa1a2a3γµγ5ua1sa2Cγµs

a3 ,

JV
Λ0 =

√
2

3
εa1a2a3γµγ5(ua1da2Cγµs

a3 − da1ua2Cγµs
a3) . (B.2)

II. Tensor currents:

JT
p = εa1a2a3σµνγ5da1ua2Cσµνu

a3 ,

JT
n = −εa1a2a3σµνγ

5ua1da2Cσµνd
a3 ,
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JT
Σ+ = −εa1a2a3σµνγ5sa1ua2Cσµνu

a3 ,

JT
Σ0 =

√
2 εa1a2a3σµνγ5sa1ua2Cσµνd

a3 , (B.3)

JT
Σ− = εa1a2a3γµγ5sa1da2Cγµd

a3 ,

JT
Ξ− = εa1a2a3σµνγ5da1sa2Cσµνs

a3 ,

JT
Ξ0 = εa1a2a3σµνγ5ua1sa2Cσµνs

a3 ,

JT
Λ0 =

√
2

3
εa1a2a3σµνγ5(ua1da2Cσµνs

a3 − da1ua2Cσµνs
a3) . (B.4)

The three-quark (vector) currents of the ∆-isobar are:

Jµ
∆++ = εa1a2a3ua1ua2Cγµua3 ,

Jµ
∆+ =

1√
3
εa1a2a3(da1ua2Cγµua3 + 2ua1ua2Cγµda3) ,

Jµ
∆0 =

1√
3
εa1a2a3(ua1da2Cγµda3 + 2da1da2Cγµua3) ,

Jµ
∆− = εa1a2a3da1da2Cγµda3 . (B.5)

We also display the currents for a diquark subsystem of two identical quarks
(two “up” or two “down” quarks):

Jµ
∆+ =

1√
3
εa1a2a3(2da1ua2Cγµua3 − iγνd

a1ua2Cσµνua3) ,

Jµ
∆0 =

1√
3
εa1a2a3(2ua1da2Cγµda3 − iγνu

a1da2Cσµνda3) . (B.6)

B.2 Heavy baryons

We display the complete list of three-quark curents used in the calculation
of magnetic moments of single-, double-, triple-heavy baryons.

JΣ++
c = γµγ5ca(ubCγµu

c)ǫabc

JΣ0
c = γµγ5ca(dbCγµd

c)ǫabc

JΣ+
c =

√
2γµγ5ca(ubCγµd

c)ǫabc
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JΩ0
c = γµγ5ca(sbCγµs

c)ǫabc

JΛ+
c =

√
2

3
γµγ5[da(ubCγµc

c) − ua(dbCγµc
c)]ǫabc

JΞS+
c =

√
2γµγ5ca(ubCγµs

c)ǫabc

JΞA+
c =

√
2

3
γµγ5[sa(ubCγmuc

c) − ua(sbCγµc
c)]ǫabc

JΞS0
c =

√
2γµγ5ca(dbCγµs

c)ǫabc

JΞA0
c =

√
2

3
γµγ5[sa(dbCγmuc

c) − da(sbCγµc
c)]ǫabc

JΣ+
b = γµγ5ba(ubCγµu

c)ǫabc

JΣ−
b = γµγ5ba(dbCγµd

c)ǫabc

JΣ0
b =

√
2γµγ5ba(ubCγµd

c)ǫabc

JΩ−
b = γµγ5ba(sbCγµs

c)ǫabc

JΛ0
b =

√
2

3
γµγ5[da(ubCγµb

c) − ua(dbCγµb
c)]ǫabc

JΞS0
b =

√
2γµγ5ba(ubCγµs

c)ǫabc

JΞA0
b =

√
2

3
γµγ5[sa(ubCγmub

c) − ua(sbCγµb
c)]ǫabc

JΞS−
b =

√
2γµγ5ba(dbCγµs

c)ǫabc

JΞA−
c =

√
2

3
γµγ5[sa(dbCγmub

c) − da(sbCγµb
c)]ǫabc

JΞ++
cc = −γµγ5ua(cbCγµc

c)ǫabc

JΞ+
cc = −γµγ5da(cbCγµc

c)ǫabc

JΩ+
cc = −γµγ5sa(cbCγµc

c)ǫabc

JΞ0
bb = −γµγ5ua(bbCγµb

c)ǫabc

JΞ−
bb = −γµγ5da(bbCγµb

c)ǫabc

JΩ−
bb = −γµγ5sa(bbCγµb

c)ǫabc

JΞS+
bc =

√
2γµγ5ba(ubCγµc

c)ǫabc

JΞA+
bc =

√
2

3
γµγ5[ca(ubCγmub

c) − ua(cbCγµb
c)]ǫabc
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JΞS0
bc =

√
2γµγ5ba(dbCγµc

c)ǫabc

JΞA0
bc =

√
2

3
γµγ5[ca(dbCγmub

c) − da(cbCγµb
c)]ǫabc

JΩS0
bc =

√
2γµγ5ba(sbCγµc

c)ǫabc

JΩA0
bc =

√
2

3
γµγ5[ca(sbCγmub

c) − sa(cbCγµb
c)]ǫabc

JΩ+
bcc = γµγ5ba(cbCγµc

c)ǫabc

JΩ0
bbc = −γµγ5ca(bbCγµb

c)ǫabc

(B.7)

B.3 Baryon wave functions

Below we give the explicit construction of baryon wave functions based on
symmetry principles.

Light Baryons (19=8[octet]+1[singlet]+10[decuplet] states) where ”[...]” is
the the spin and flavour antisymmetric combination and {...} is the symmet-
ric one:

B1[23] = Σ0√
2

+ Λ0√
6
, B2[23] = Σ−, B3[23] = −Ξ−,

B1[31] = Σ+, B2[31] = −Σ[0]√
2

+ Λ0√
6
, B3[31] = Ξ0,

B1[12] = p, B2[12] = n, B3[12] = −2Λ0√
6

F [123] = Λ∗0

D{111} = ∆++, D{112} = ∆+√
3
, D{122} = ∆0√

3
, D{222} = ∆−,

D{113} = Σ∗+√
3
, D{123} = Σ∗0√

6
, D223 = Σ∗−√

3
,

D{133} = Ξ∗0√
3
, D{233} = Ξ∗−√

3
, D{333} = Ω−

Single Charm Baryons (18=9+3+6 states):
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B1[24] = Σ+
c√
2

+ Λ+
c√
6
, B2[41] − Σ+

c√
2

+ Λ+
c√
6
, B4[12] = −2Λ+

c√
6

B3[14] = Ξ+S
c√
2

+ Ξ+A
c√
6

, B1[43] = −Ξ+S
c√
2

+ Ξ+A
c√
6

, B4[31] = −2Ξ+A
c√
6

,

B3[24] = Ξ0S
c√
2

+ Ξ0A
c√
6
, B2[43] = −Ξ0S

c√
2

+ Ξ0A
c√
6
, B4[32] = −2Ξ0A

c√
6

,

B1[14] = Σ++
c B2[24] = Σ0

c B3[34] = Ω0
c .

F [124] = Λ∗+
c , F [134] = Λ∗+

cs , F [234] = Λ∗0
cs ,

D{114} = Σ∗++
c√

3
, D{124} = Σ∗+

c√
6
, D{224} = Σ∗0

c√
3
,

D{134} = Ξ∗+
c√
6
, D{234} = Ξ∗0

c√
6
, D{334} = Ω∗0

c√
3
.

Single Bottom Baryons (18=9+3+6 states):

B1[25] =
Σ0

b√
2

+
Λ0

b√
6
, B2[51] = −Σ0

b√
2

+
Λ0

b√
6
, B5[12] = −2Λ0

b√
6

B3[15] =
Ξ0S

b√
2

+
Ξ0A

b√
6
, B1[53] = −Ξ0S

b√
2

+
Ξ0A

b√
6
, B5[31] = −2Ξ0A

b√
6

,

B3[25] =
Ξ−S

b√
2

+
Ξ−A

b√
6

, B2[53] = −Ξ−S
b√
2

+
Ξ−A

b√
6

, B5[32] = −2Ξ−A
b√
6

,

B1[15] = Σ+
b B2[25] = Σ−

b B3[35] = Ω−
b .

F [125] = Λ∗0
b , F [135] = Λ∗0

bs , F [235] = Λ∗−
bs ,

D{115} =
Σ∗+

b√
3
, D{125} =

Σ∗0
b√
6
, D{225} =

Σ∗−
b√
3

,

D{135} =
Ξ∗0

b√
6
, D{235} =

Ξ∗−
b√
6
, D{335} =

Ω∗−
b√
3

.

Double Charm Baryons (6=3+3 states):

B4[41] = Ξ++
cc , B4[42] = Ξ+

cc, B4[43] = Ω+
cc,

D{144} = Ξ∗++
cc√

3
, D{244} = Ξ∗+

cc√
3
, D{344} = Ω∗+

cc√
3
.

Double Bottom Baryons (6=3+3 states):

B5[51] = Ξ0
bb, B5[52] = Ξ−

bb, B5[53] = Ω−
bb,

D{155} =
Ξ∗0

bb√
3
, D{255} =

Ξ∗−
bb√
3
, D{355} =

Ω∗−
bb√
3
.
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B1[45] =
Ξ+S

bc√
2

+
Ξ+A

bc√
6

, B4[51] = −Ξ+S
bc√
2

+
Ξ+A

bc√
6

, B5[14] = −2Ξ+A
bc√
6

,

B2[45] =
Ξ0S

bc√
2

+
Ξ0A

bc√
6
, B4[52] = −Ξ0S

bc√
2

+
Ξ0A

bc√
6
, B5[24] = −2Ξ0A

bc√
6

,

B3[45] =
Ω0S

bc√
2

+
Ω0A

bc√
6
, B4[53] = −Ω0S

bc√
2

+
Ω0A

bc√
6
, B5[34] = −2Ω0A

bc√
6

.

F [145] = Λ∗+
bc , F [245] = Λ∗0

bc , F [345] = Λ∗0
bcs.

D{145} =
Ξ∗+

bc√
6
, D{245} =

Ξ∗0
bc√
6
, D{345} =

Ω∗0
bcs√
6

.

Triple Heavy Baryons (6=2+4 states):

B4[45] = Ω+
bcc, B5[45] = Ω0

bbc.

D{444} + Ω∗++
ccc , D{445} =

Ω∗+
bcc√
3

D{455} =
Ω∗0

bbc√
3

D{555} = Ω∗−
bbb.
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Appendix C

Feynman rules for the non-local
electromagnetic vertex

In this appendix we derive the Feynman rules for the non-local vertex of Fig.
1 describing the coupling of a baryon, three quarks and the photon field.
The path integral over the electromagnetic field

I(x, y, P ) ≡
∫ y

x
dzµA

µ(z) (C.1)

enters the vertex

ΓB3qγ =
∫

d4x1

∫
d4x2 Φ(x2

1 + x2
2) eip1x1+ip2x2I(x+, x, P ) , (C.2)

where x+ = x±a1x1±a2x2 and where p1 and p2 are linear combination of the
loop momenta. The parameters a1,2 are related to the kinematical quantities
ωi = mi

3∑
i=1

mi

and the loop momenta, their specific form is not necessary for the

further derivation.
The following operator identity will be used

Φ(x2
1 + x2

2) =
∫ d4k1

(2π)4

∫ d4k2

(2π)4
Φ̃(−k2

1 − k2
2) eik1x1+ik2x2

=
∫ d4k1

(2π)4

d4k2

(2π)4
Φ̃(∂2

x1
+ ∂2

x2
) eik1x1+ik2x2

= δ4(x1) δ4(x2) Φ̃(∂2
x1

+ ∂2
x2

) ,

(C.3)

137



where Φ̃ is the Fourier transform of the vertex function Φ resulting in

ΓB3qγ =
∫

d4x1

∫
d4x2 δ4(x1) δ4(x2) Φ̃(∂2

x1
+ ∂2

x2
) eip1x1+ip2x2I(x+, x, P ) .

(C.4)
Applying the partial derivative operators on the exponentials we obtain

Φ̃(∂2
x1

+ ∂2
x2

)eip1x1+ip2x2I(x+, x, P ) = eip1x1+ip2x2Φ̃(D2
x1

+ D2
x2

)I(x+, x, P ) .
(C.5)

with Dxi≡∂xi
+ ip.

The expression needed to be evaluated is

Φ̃(D2
x1

+ D2
x2

)I(x+, x, P ) =
∞∑

n=0

Φ̃(n)(0)

n!
[D2

x1
+ D2

x2
]n I(x+, x, P ) , (C.6)

and we will make use of the definition of the derivative of a line integral as
shown in Section 2.4. The derivative of a line integral

I(x, y, P ) ≡
∫ y

x
Aµdzµ (C.7)

can be defined as follows:

lim
dyµ→0

dyµ
∂

∂yµ
I(x, y, P ) ,

= lim
dyµ→0

I(x, y + dy, P
′

) − I(x, y, P ) . (C.8)

One then obtains:

∂µ
xI(x, y, P ) = Aµ(x) , (C.9)

resulting in

[D2
x1

+ D2
x2

]I(x+, x, P ) = L(A) − (p2
1 + p2

2)I(x+, x, P ) , (C.10)

where

L(A) ≡ (∂x1 + ∂x2)A(x) + 2i(p1 + p2)A(x) . (C.11)
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Applying this as many times as requested by (C.6) we obtain the sequence

(D2
x1

+ D2
x2

)2I(x+, x, P ) = [D2
x1

+ D2
x2

− (p2
1 + p2

2)]L(A)

+ (−p2
1 − p2

2)
2I(x+, x, P ) (C.12)

(D2
x1

+ D2
x2

)3I(x+, x, P ) = [(D2
x1

+ D2
x2

)2 − (D2
x1

+ D2
x2

)(p2
1 + p2

2)

+(−p2
1 − p2

2)
2]L(A) + (−p2

1 − p2
2)

3I(x+, x, P ) , (C.13)

. . .

(D2
x1

+ D2
x2

)nI(x+, x, P ) =
n−1∑
k=0

(D2
x1

+ D2
x2

)n−1−k (−p2
1 − p2

2)
k L(A)

+ (−p2
1 − p2

2)
nI(x+, x, P ) = n

1∫
0

dt [(D2
x1

+ D2
x2

)t − (p2
1 + p2

2)(1 − t)]n−1 L(A)

+ (−p2
1 − p2

2)
n I(x+, x, P ) . (C.14)

Φ̃(D2
x1

+ D2
x2

)I(x+, x, P ) =

1∫

0

dt Φ̃′[(D2
x1

+ D2
x2

)t − (p2
1 + p2

2)(1 − t)] L(A)

+ Φ̃(−p2
1 − p2

2) I(x+, x, P )

=

∫
d4q

(2π)4
Ãµ(q)

{
iKµe−iqx+

1∫

0

dtΦ̃′[w(t)]

+ Φ̃[w(0)]

x+∫

x

dzµe−iqz
}

,

(C.15)

where
Kµ = a1[2p1 − q]µ + a2[2p2 − q]µ ,

w(t) = −(p1 − a1q)
2t − (p2 − a2q)

2t − (p2
1 + p2

2)(1 − t) .

Ãµ(q) is the Fourier-transform of the electromagnetic field and Φ̃′(z) =
dΦ̃(z)/dz. The last term of (B.10) vanishes due to the delta functions δ4(x1)
and δ4(x2) in the expression (B.4).
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Finally we have

ΓB3qγ = i
∫ d4q

(2π)4
e−iqx Ãµ(q) Kµ

1∫

0

dt Φ̃′[w(t)] . (C.16)
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Appendix D

Calculation of matrix elements

To illustrate the technique of calculating matrix elements we display as an
example the evaluation of the baryon mass operator. The generic integral is

IB(p) =
∫

dk123 Φ̃2(z0) RΣ(k+
1 , k+

2 , k+
3 ) . (D.1)

We set w1 = 1 and w2 = w3 = 0, then the integral becomes :

IB(p) =
∫ d4k1

π2i

∫ d4k2

π2i
Φ̃2(−12[k2

1 + k1k2 + k2
2]) Γ1f Sq1(k1 + p) Γ1i

× tr [Γ2f Sq2(k2) Γ2i Sq3(k1 + k2)] . (D.2)

The technique used is based on the following main ingredients:

• use of the Laplace transform of the vertex function, its derivative and
integral:

Φ̃(z0) =

∞∫

0

ds ΦL(s) e−sz0 ,

Φ̃′(z0) = −
∞∫

0

ds s ΦL(s) e−sz0 ,

∞∫

0

dα αn Φ̃(z0 + α) = Γ(n + 1)

∞∫

0

ds

sn
ΦL(s) e−sz0 ,
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• α-transform of the propagator functions Sq1 , Sq2 and Sq3

1

m2
q − (k + p)2

=

∞∫

0

dα e−α(m2−(k+p)2) ,

• differential representation of the numerator

( m+ 6k+ 6p) ekq =

(
m + γµ ∂

∂qµ
+ 6p

)
ekq .

• Gaussian integral over virtual momenta k1 and k2

n∏

j=1

∫ d4kj

π2i
exp[ kAk + 2Bk ] =

1

[detA]n
exp[−B A−1 B ]

where, in a general approach, A is a n×n matrix and B a n-component
vector. In the present application we have n = 2.

The integral becomes:

IB(p) =

∞∫

0

dα1

∞∫

0

dα2

∞∫

0

dα3

∞∫

0

dβ Φ̃2[−12(z + β)]
{

Γ1f D1 Γ1itr [Γ2f D2 Γ2i D3]

× −β Γ1f D1 Γ1itr [Γ2f γµ Γ2i γµ] (A−1
12 + A−1

22 )

− β Γ1f γµ Γ1itr
[
Γ2f γµ Γ2i D3A

−1
12 + Γ2f D2 Γ2i γµ(A−1

11 + A−1
12 )

]}
, (D.3)

where

Di = mqi
+ 6Pi , P1 = p − B1A

−1
11 , P2 = −B1A

−1
12 , (D.4)

P3 = −B1(A
−1
11 + A−1

12 ) , z = −
3∑

i=1

αim
2
qi

+ p2α1 − B2
1A

−1
11 . (D.5)

Here B1 = pα1 and A−1
ij are the elements of the inverse matrix Aij:

A =

(
1 + α1 + α3

1
2

+ α3
1
2

+ α3 1 + α2 + α3

)

A−1 =
1

detA

(
1 + α2 + α3 −(1

2
+ α3)

−(1
2

+ α3) 1 + α1 + α3

)
.

(D.6)
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The baryonic correlation function Φ̃ is specified in the last step of calcula-
tion after the integration over the virtual momenta. The traces which appear
in the evaluation of matrix elements, as well as the Dirac algebra, are per-
formed analytically using FORM programs. The three- and four-dimensional
integrals are performed using FORTRAN.
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Appendix E

Non-relativistic spin-flavor
wave functions and magnetic
moments

We present analytical results for the magnetic moments of heavy baryons
within the non-relativistic quark model (NRQM). It is well known that the
NRQM is able to describe successfully static properties, therefore it is desired
to check our relativistic model predictions with those of the NRQM. The
spin-flavor wave functions in the NRQM arise in our case by taking the non-
relativistic limit of the covariant three-quark currents carrying the quantum
numbers of the ground-state (JP = 1/2+) baryons. With the expressions
established in Section 2.2 (Eq. (2.46) and (2.47)) for the baryonic wave
functions we derive the magnetic moments using the formula

µBq1q2q3
= 〈Bq1q2q3|

3∑

i=1

eqi

2mqi

σi
3|Bq1q2q3〉 , (E.1)

where σi
3 is the third component of the spin operator acting on the quark i

and eqi
is the electric charge of the quark i. The following notations are used

for the symmetric χS and antisymmetric χA spin wave functions:

χA =

√
1

2

{
↑ (↑↓ − ↓↑)

}
, χS =

√
1

6

{
↑ (↑↓ + ↓↑) − 2 ↓↑↑

}
. (E.2)

We offer as an example the calculation of the non-relativistic magnetic mo-
ment of the Λ+

c[ud] baryon which corresponds to the calculation of the pro-
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jection of the relevant operator on the baryon spin-flavor states. First, we
remind that the relativistic current for this state is antisymmetric under the
permutation of the flavor indices u and d, as indicated by [...]. The non-
relativistic spin-flavor wave function is written as:

|Λ+
c[u] >= χA

Λ+
c
fA

Λ+
c

, (E.3)

where χA
Λ+

c
stands for the antisymmetric spin wave function and fA

Λ+
c

stands
for the antisymmetric flavor wave function. For the antisymmetric flavor
wave function fA

Λ+
c

we use (see Section 3.3, Table 5):

fA
Λ+

c
=

1√
2
(c[ud − du]) . (E.4)

Now we calculate the magnetic moment using (E.1) as follows:

µΛ+
c

= 〈Λ+
c |

3∑

i=1

eqi

2mqi

σi
3|Λ+

c 〉

= 〈
√

1

2
[cud − cdu]

√
1

2

{
↑ (↑↓ − ↓↑)

}
| eq1

2m1

σ3(1) +
eq2

2m2

σ3(2)

+
eq3

2m3

σ3(3)|
√

1

2

{
↑ (↑↓ − ↓↑)

}√
1

2
[cud − cdu]〉 . (E.5)

Using the following properties [52]:

eqi
c = ecc , eqi

u = euu , eqi
d = edd (E.6)

and

σ3 ↑=↑ σ3 ↓= − ↓ , (E.7)

we calculate the matrix element of eqi
σi

3 between the baryon spin-flavor states
and obtain for the magnetic moment:

µΛ+
c

=
1

4
(4

ec

2mc

) = µc. (E.8)

The contributions of the second and third quark vanish. Keeping in mind
that the correct non-relativistic spin-flavor wave functions are the ones cor-
responding to the non-relativistic limit of the three-quark baryon currents
and using the formula (E.1) one can calculate the non-relativistic magnetic
moments for all the baryon states (see Section 3.3, Table 5).
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Appendix F

Relativistic form factors for the
N → ∆γ transition

In the study of the N → ∆ transition there are several ways for decomposing
the vertex function Λµν(p, p

′
) [87]-[96] :

Λ(1)
µν (p, p′) = [(gµν 6q − γµqν)G1(q

2) + (gµνp
′q − p′µqν)G2(q

2)

+ (gµνq
2 − qµqν)G3(q

2)]γ5

Λ(2)
µν (p, p′) = −[(gµνq

2 + qµpν)a1(q
2) + a2(gµνm+m− + Pµpν)a2(q

2)

+ (gµνm+ + γµpν)a3(q
2)]γ5

Λ(3)
µν (p, p′) =

1

2mN

[(gµν 6q − γµqν)c1(q
2) + (gµνq

2 − qµqν)
c2(q

2)

2mN

+ (gµνpq − pµqν)
c3(q

2)

2mN

]γ5 (F.1)

where P = p + p′ and m± = m∆ ± mN .
The sets of the relativistic form factors Gi, ai, bi and ci are related to each
other as:

G1 = −a3 = b3 =
c1

2mN

,

G2 = −2a2 = b2 =
c3

4m2
N

,

G3 = −a1 + a2 = −b2 + b4 =
c2 − c3

4m2
N

, (F.2)

c4 ≡ 0 . (F.3)
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Appendix G

Uniqueness of the ∆+(1232)
three-quark current

In Ref. [39], applying Fierz transformations and using the identities (2.26),
one concludes that for the ∆+ current two forms are available. Here we will
show explicitly the calculation which makes these two forms equivalent to
the more general current, the vector current:

Jµ
∆+ = ǫabcΓ1d

Ta(y1)u
b(y2)CΓ2u

c(y3) . (G.1)

Starting with the expression of Ref. [39] we already derived an equivalent
form of the three-quark current in Section 2.2, Eq. (2.49). Considering that
for the ∆+−state one can write a totally symmetric in spin-flavor wave func-
tion (see Appendix B, Section B.3) , the three-quark current thus includes
the following structures:

Jµ
∆+ =

ǫabc

√
3
{uTaubCγµdc − i

2
γνu

TaubCσµνdc

+ uTadbCγµuc − i

2
γνu

TadbCσµνuc

+ dTaubCγµuc − i

2
γνd

TaubCσµνuc} . (G.2)

Now we use the following Fierz transformation: for the first and second
tensor-like terms, T = −Ṽ +Ã; for the third tensor-like term, T = V +A−2Ṽ ;
it follows that

Jµ
∆+ =

ǫabc

√
3
{uTaubCγµdc − 1

2
(−dTaubCγµuc + γ5dTaubCγµγ5uc)
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+ uTadbCγµuc − 1

2
(−dTaubCγµuc + γ5dTaubCγµγ5uc)

+ dTaubCγµuc − 1

2
(dTaubCγµuc + γ5dTaubCγµγ5uc − 2uTaubCγµdc)} .

(G.3)

The third, sixth and ninth terms vanish; the fifth and the eight terms cancel
each other and the fourth term equals uTaubCγµdc. Hence, the current can
be expressed as

Jµ
∆+ =

3

2

ǫabc

√
3
(dTaubCγµuc + 2uTaubCγµdc) . (G.4)

which proves the choice of a vector-type currrent for ∆+. Note the factor
3 in front which underlines the spin-flavor symmetric behaviour of the ∆+

wave function.
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los d́ıas después eran felices. Un beso para ti, pisicut bufos. Thank you for
teaching me physics, thank you for loving me, thank you for caring for me,
thank you for helping me in the most difficult time of my life. You know what
you have done for me and I will never, never be able to find a way to show
what you mean to me. Thank you for changing my life in better. Te quiero
con toda mi alma, Javi! Esta tesis es para ti, caramelo pequeño !

I thank his kind family for being by my side.

159



Curriculum Vitae

Personal Information

Name: Diana Nicmorus
Email: diana.nicmorus@uni-tuebingen.de
Nationality: Romanian
Date of Birth : 20 March 1979
Gender: Female

Academic preparation

Dates: June 2004 - March 2007
Title of qualification: PhD.
Thesis title: Electromagnetic Properties of Light and Heavy Baryons

in the Relativisitc Quark Model
Advisors : Prof. Dr. Thomas Gutsche
Institution: Institute of Theoretical Physics, University of Tuebingen, Germany

Dates: October 2002 - February 2004
Title of qualification: MSc.
Thesis title: New Symmetries describing Medium and Heavy Nuclei
Advisors : Prof. Dr. A.A. Raduta, Prof. Dr. Amand Faessler
Institution: Faculty of Physics, University of Bucharest, Romania

Dates: October 1998 - June 2002
Title of qualification: BSc.
Thesis title: Serial Communications in Transmitting Informations

with Microcontrollers
Advisors : Prof. Dr. Sever Spanulescu
Institution: Faculty of Physics, “Hyperion” University of Bucharest, Romania

Professional experience

Dates: March 2007 - present
Ocupation/Position held: Wissenschaftliche Ausgestellte
Institution: Institute of Theoretical Physics, University of Tuebingen, Germany

Dates: Fall 2005 - Summer 2006
Ocupation/Position held: Teaching Assistant/ Exercise classes, Particle and Nuclear Physics
Institution: Institute of Theoretical Physics, University of Tuebingen, Germany



Dates: Fall 2003 - Spring 2004
Ocupation/Position held: Research Assistant / Software development
Institution: Institute of Space Sciences, Bucharest, Romania

Fellowships awarded

Dates: March 2003 - October 2003
Fellowship: European Eramus - Socrate Program
Host university: University of Tuebingen, Germany

Dates: March 2004 - March 2007
Fellowship: DFG -Doctoral Fellowship
Host university: University of Tuebingen, Germany

My academic teachers were the following persons:
E. Barna, D. Blideanu, Ghe. Ciobanu, A. Costescu, A. Faessler, Ch. Fuchs, L. Giurgiu,
P. Grabmayr, Th. Gutsche, D. Koelle, St. Levai, T. Marian, Z. Gagyi-Palffi, C. Plavitu,
A. A. Raduta, V. Ruxandra, S. Spanulescu, C. Stoica, C. Vrejoiu.


