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Summary

In positron emission tomography (PET) emission density images are formed by photon

coincidence measurements. This process is complicated, particularly with regard to the

photons that can be scattered in the inhomogeneous patient. A method to incorporate

Monte Carlo simulations into the image formation process to model the scattering is

presented. This is achieved by simulating the system matrix that describes the map

from emission density to detected coincidences. The problem of the very large size

of the matrix is met by fitting and B-spline compression of Monte Carlo results. A

dedicated Monte Carlo code for system matrix calculation using variance reduction

techniques is presented to reduce simulation time. Other desirable properties like

reduced sensitivity to Monte Carlo noise and the possibility for sequential compression

are met by the presented compression method. In proof-of-principle simulations of

single ring scanners it is shown that the matrices compressed by this scheme are good

approximations to the uncompressed matrices and that scatter artifacts in the images

are strongly suppressed. In the last part, noise in the images introduced by the noise

of the Monte Carlo simulated system matrices is investigated and quantified.

Zusammenfassung

In der Photonenemissionstomographie (PET) werden Bilder der Aktivitätsverteilung

aus Photonen-Koinzidenzmessungen errechnet. Das ist insbesondere wegen der Streu-

ung der Photonen im inhomogenen Patienten kompliziert. In der vorgestellten Meth-

ode werden Monte Carlo Simulationen in der Bildberechnung benutzt, um die Pho-

tonenstreuung zu bestimmen. Dabei wird die Systemmatrix, die die Abbildung der

Aktivitätsverteilung auf meßbare Koinzidenzen beschreibt, mittels Monte Carlo Sim-

ulationen berechnet. Durch Parametrisierung und B-Spline Komprimierung wird die

Größe der Matrix soweit reduziert, dass die Speicherung im Hauptspeicher möglich ist.

Es wird ein Monte Carlo Programm vorgestellt, dass auf Systemmatrix Berechnungen

spezialisiert ist und Varianzreduktionsmethoden verwendet. Andere wünschenswerte

Eigenschaften wie geringe Anfälligkeit gegenüber Monte Carlo Rauschen und die Mög-

lichkeit einer schrittweisen Kompression werden durch das vorgestellte Kompression-

schema erfüllt. In Simulationen von Ein-Ring-Scannern wird beispielhaft gezeigt, dass

die komprimierten Matrizen gute Näherungen der unkomprimierten Matrizen sind und

dass Streuartefakte in den Bildern stark reduziert sind. In einem letzten Teil wird das

Bildrauschen, das durch das Monte Carlo Rauschen der Matrizen verursacht wird,

untersucht und quantifiziert.
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1. Introduction

Imaging is an important branch of medical diagnostics. Medical imaging methods

provide the physician with information about the location of normal or pathological

processes and structures in the human body. This information can be obtained indi-

rectly by measuring physical properties of tissue. These properties include electron

density, the density of hydrogen nuclei and nuclear spin relaxation times, or elastic

properties. Medical imaging methods that can perform this task are planar X-ray

imaging, (X-ray-)computed tomography (CT), (nuclear) magnetic resonance imaging

(MRI)1, and ultrasound imaging. The advantage of these methods is the usually rather

high resolution (especially of X-ray based images) and the often low noise in the im-

ages. However, these methods are usually not well suited to measure and visualize

biological or biochemical processes, because the measured physical quantities do of-

ten not provide the required information. Contrast agents (for all methods) and scan

parameters (especially for MRI) can be used to add further physiological information,

but still the possibilities are rather limited.

Other methods, based on emission measurements, are better suited to provide in-

formation about biochemical processes. In emission measurements a radioactive sub-

stance is brought into the patient (usually by injection) and the photons that leave

the body are detected. The photons are either a direct product of the decay process

or originate from annihilation of the positron in the vicinity of the decaying radionu-

clide. The latter effect is used in positron emission tomography (PET) and the first

in scintigraphy and single photon emission computed tomography (SPECT). X-ray

imaging, computed tomography, scintigraphy, single photon computed tomography

and positron emission tomography are all based on ionizing radiation. The two first

methods, however, are based on transmission measurements. Those methods use an

external source of photons on one side and detectors on the other side of the patient

to measure the attenuation.

In emission tomography2, radioactive tracers or biomarkers are used to visualize

1The word ”nuclear” is usually not used in medical context, because it sounds dangerous.
2The word tomography stands for a method to obtain images that represent slices of the scanned

patient/object, nowadays also often used as a synonym for volume imaging.
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1. Introduction

biochemical processes under investigation. These tracers are molecules which are de-

signed to accumulate in certain regions of the body under specific circumstances.

Usually these molecules are similar or even identical to molecules that are part of

the human metabolism. In order to be localizable, at least one atom of the tracer is

radioactive. In the case of PET this atom is a β+-emitter, in the case of SPECT it is a

photon emitter. Common β+-emitters in nuclear medicine are F-18 (τ1/2 = 110 min),

O-15 (2.0 min), C-11 (20.5 min) and N-13 (10.0 min). Common photon emitters are
99mTc(6 h) or I-123 (13 h). In contrast to SPECT radionuclides, PET radionuclides

are rather short lived and therefore special infrastructure is needed. The radioactive

atoms that can be used in PET are very common in biochemical molecules. Tracer

molecules range from the very common 18F-FDG (fluorodeoxyglucose, PET) which re-

sembles glucose and therefore gets accumulated in regions of high energy consumption

like tumors, over oxygen-sensitive tracers like F-MISO (PET) that can be used to lo-

cate hypoxic areas, I-123 (SPECT) that can be used in thyroid diagnostic, and 99mTc

(SPECT) that is used in bone scans, to very specific ligands for selected metabolic

processes (PET, SPECT).

The tracers in SPECT are located by detecting the decay photons that leave the

patient. Before the photons reach the detector they must pass a collimator. A colli-

mator is made of a highly absorbing material (such as tungsten or lead) that is placed

in front of the detectors and which restricts the detected photons to those that reach

the detector within a certain incident angle interval. In this way the origin of the

emission can be localized to a part of the patient. The information of many of such

photons that are detected after passing the collimators can be used to determine the

most likely emission density (or activity distribution). This process, the calculation

of images using the given measured data, is called reconstruction. On one side, the

collimators provide more detailed information about the origins of the decays, but on

the other side the number of detected photons is strongly reduced. In SPECT usually

99.9% or even more of the emitted photons are blocked by the collimators. This leads

to a reduced sensitivity and noise in the reconstructed images. In constrast to trans-

mission tomography where the position of the source of photons is known (and which

therefore defines together with the position of detection the path of the photons), the

collimation therefore increases strongly the noise in the measured data. An additional

problem of emission tomography is the limited amount of tracer that can be injected

due to the dose that is deposited in the patient. In contrast to transmission tomogra-

phy this is more limiting, because dose is not only deposited during the examination,

but also later due to the remaining tracer in the patient. Therefore, there is a great

benefit in increasing the fraction of detected photons.

2



In positron emission tomography an alternative method is used to localize the po-

sition of decay. The positron is annihilated in the vicinity of the decay position (sub-

millimeter to several millimeter according to tissue) and two photons are created that

travel approximately in opposite directions. In PET, a coincidence measurement with

two detectors replaces the collimation that is used in SPECT. When two photons are

measured in coincidence they are supposed to originate from the same decay. In ring

PET the detectors are organized in rings around the patient. In analogy to transmis-

sion tomography where two points define the origin of the decay (the X-ray source and

the detector), in PET the two detectors reduce the possible decay position to those

points from where the photons can reach both detectors. Under the assumption that

none of the two photons were scattered, this possible decay area is reduced to a tube

that is defined by the surfaces of the two detectors that are in coincidence. This region

between the two detectors is usually called line of response(LOR) or tube of response.

Due to the reduction of possible origin positions, this process is sometimes also called

electronic collimation.

Older PET scanner are two dimensional PET scanners. Two dimensional scanners

are scanners where coincidences between detectors of different rings are blocked. The

blocking is achieved by lead or tungsten rings between the detector rings that reach

further into the inside of the scanner. These high density rings are called septa. Two

dimensional scanners therefore use electronic as well as conventional collimation. The

septa reduce the problem of localization of the decay position to a two-dimensional

problem.3 Since a PET scanner has many detectors (≈ O(104)) organized in usually ≈
15−30 rings, this leads to a reduction of the very large reconstruction problem to many

but much smaller sub problems. This simplification that makes data processing and

especially reconstruction much easier, is bought with the reduced number of detected

photons that is caused by the collimating septa.

Collimation in 2D PET is therefore achieved by two effects: collimation by the

septa and by electronic collimation. Collimation by septa is less effective and in

addition reduces strongly the number of coincidences. In most modern scanners septa

are therefore removed and the scanners are working in 3D mode. This causes a very

strong increase in the complexity: Much more detector-detector combinations generate

coincidences and the idealizing concept of lines of responses becomes less correct in

view of the strong increase of scatter. In modern scanners therefore the measured data

is re-organized and simplified before reconstruction. This simplification reduces the

accuracy of the reconstructed images. The main problem, however, is caused by the

3In real 2D PET scanners usually coincidence between neighboring rings are allowed, but larger ring
differences are blocked. The problem is therefore quasi two dimensional.
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1. Introduction

increased scatter. Due to the complex and inhomogeneous patient a correct treatment

of the scatter is very difficult.

The measured data (the detected coincidences) depends in very good approximation

linearly on the (unknown) emission density. When the emission density is discretized,

it is therefore possible to describe the map from emission density to measured data

by a matrix. This matrix is called system matrix and it is in general ill-conditioned,

not quadratic, and very large (around 106×108 matrix elements for a full 3D system).

When scatter is neglected this matrix is quite sparse. The storage of the matrix

including scatter is impossible due to its size. The storage of the scatter-free matrix

is difficult [Johnson, 1997, Kehren, 2001] and only possible when symmetries are used

that are not present in the matrix including scatter. The elements of the scatter-free

matrix are therefore often calculated on-the-fly when they are needed. The calculation

of the elements of the full matrix (including scatter) is however more time consuming

and many non-zero elements exist. The images are reconstructed iteratively by first

starting with an image guess (like a uniform image). The system matrix can then be

used to calculate hypothetical measured data. This operation is called projection. This

hypothetical data is compared to the real measured data and (using the information

of the system matrix) a better guess of the emission density is calculated (and so on).

This process is called back-projection.

Due to the size of the matrix a direct incorporation of scatter in the reconstruction

is not possible. Therefore the scatter-free matrix is used in the iterative reconstruction

process. Scatter can be estimated by analytical methods [Bailey and Meikle, 1994] of-

ten using further information like the energy of the detected photons [Grootoonk et al.,

1996]. Analytical scatter calculation is very difficult in inhomogeneous media (like the

patient) and is therefore only very approximate. Monte Carlo(MC) simulations are

better suited to calculate the scatter contribution, because they can also be used

in inhomogeneous environments and because of the underlying inherently probabilis-

tic quantum mechanical physics. Unfortunately, these simulations are slow and it is

therefore important how to include these simulations in the reconstruction process.

There are several possibilities to include Monte Carlo simulations into the recon-

struction algorithms. The least difficult but also least accurate way is to reconstruct

an approximate estimate of the emission density without considering scatter and to

simulate the data that would be obtained by this emission density. This data can then

be used to correct the measured data [Levin et al., 1995]. A more advanced method

simulates scatter in the projector of the iterative algorithm (which is straight forward

but time consuming), but use simply the scatter-free matrix elements in the back-

projector [Ollinger, 1996, Watson, 2000, Beekman et al., 2002, Werling et al., 2002].

4



1.1. Motivation and thesis outline

This approach will be called dual matrix approach. The incorporation of scatter into

the back-projector is problematic, because it requires the storage of the matrix.

The reconstruction of images using an algorithm with the full matrix including scat-

ter in the projector and back-projector for a human sized PET scanner is not possible

due to the size of the matrix. For similar (less storage demanding problems) this is

however possible. The usage of this full matrix approach for problems like small animal

PET imaging (ignoring scatter in the animal, but correctly simulating the geometry

of the scanner and detector scatter)[Rafecas et al., 2003, 2004b,a], small animal PET

imaging with simplified animal and low number of detectors [Shoukouhi et al., 2004,

Shoukouhi, 2005] or human SPECT imaging [Lazaro et al., 2004b, Buvat et al., 2003,

Lazaro et al., 2004a, 2005] was shown recently.

1.1. Motivation and thesis outline

The usage of a Monte Carlo based system matrix including patient scatter in recon-

struction (full matrix approach) would solve many problems that are present in PET

image reconstruction, because many effects can be included into the simulations that

are otherwise difficult or impossible to handle. The system matrix describes the map

from the emission density to the measured data. In modern scanners, the emission

density is usually described by roughly O(106) voxels, and the scanner consists of

O(104) detectors, allowing roughly O(107) detector-detector combinations (LORs).

The system matrix of such a scanner therefore comprises roughly O(1013) elements.

This large number of elements is very problematic to store and to calculate.

Current reconstruction and scatter correction methods for human PET systems

therefore do not make use of a stored full matrix. Due to increasing computer speed

and storage capacities it is however worthwhile to think about storage methods and

the behavior and performance of algorithms that use such a matrix. This thesis deals

with these two topics.

After the introduction of PET physics, the process of image reconstruction is ex-

plained. Thereupon, the implemented Monte Carlo code is presented. This code is

needed for the simulations and is designed for fast system matrix calculations. A com-

pression scheme is introduced that allows a sufficiently efficient compression of the

matrix. The choice of the compression method is motivated by matrix properties and

by computational constraints.

In the first part of the evaluation section the simulated scanners and phantoms are

presented and measures for the quantification of the quality of the compressed matrices

5



1. Introduction

are introduced. It is shown that the code simulates correctly by comparing simulation

results with Geant4 simulations. Then the compression scheme is evaluated. Due to

the Monte Carlo based evaluation it was possible to verify the patient scatter aspect

of the reconstruction problem and to use a single ring scanner simulation as a proof-

of-concept. The reduced number of detectors allowed the comparison of compressed

matrices to full matrices directly (otherwise not possible due to memory limitations).

Apart from the direct comparison of the matrices, reconstructed images using com-

pressed matrices are compared to reconstructed images using the full matrix or dual

matrix approach. Finally, noise propagation during iterative reconstruction algorithms

using the dual matrix and the full matrix approach is simulated and compared. This

completes the proof of principle to use a full Monte Carlo generated system matrix for

reconstruction and shows that the usage of such a matrix for 3D scanners is promising

to increase the signal to noise ratio and to allow the reconstruction of more quantitative

images.

6



2. Physics of PET

A PET examination starts with the injection of a radioactive tracer into the patient.

The tracer is then metabolized and the density of radionuclides evolves with the elapsed

time. The patient is placed in the scanner and during one time interval (static image

acquisition) or several time intervals (dynamic image acquisition1) the escaping pho-

tons (and especially photons in coincidence) are detected. The collected information

is then used to form images of the estimated emission density at one or several time

points. The physical processes that are responsible for the image formation therefore

include the decay of a radionuclide, the annihilation of the positron and the creation of

photons, possible interactions in the patient, and finally the detection of the photons.

2.1. Positron emission and annihilation

During the decay of the radionuclide that is incorporated in the tracer molecule a

positron and a neutrino are created. The neutrino leaves the patient, but the positron

usually travels some distance (the positron range), losing most of its kinetic energy

by causing ionization and excitation, before it annihilates with an electron of the sur-

rounding tissue. Two photons (E ≥ 0.511 keV) are created that travel approximately

in opposite directions. The deviation from 180◦ is caused by the residual momen-

tum of the positron and electron and is called non-collinearity. The mean expected

non-collinearity (FWHM2 around 0.6◦, [Jan et al., 2004]) as well as the positron range

(see Table 2.1, [Haber et al., 1990, Levin and Hoffman, 1999, Harrison et al., 1999,

Sanchez-Crespo et al., 2004]) depend on the emitting nucleus and on the surrounding

tissue, but are both rather small. In Table 2.1 FWHM and FWTM are stated to em-

phasize the non Gaussian character of the positron range. To a small extent (around

0.5 %, depending on the energy of the positron and the material) it is possible that

1In modern scanners often the coincidences are recorded as single events with time tags (list mode).
In this way it is later possible to assign the coincidences to different time intervals (frames).
This process is called framing. It is therefore possible to choose the time intervals after the
measurement.

2FWHM=full width half maximum, FWTM=full width third maximum

7



2. Physics of PET

nucleus maximal energy FWHM FWTM
F-18 634 keV 0.19 mm 0.91 mm
C-11 960 keV 0.28 mm 1.70 mm
N-13 1198 keV 0.33 mm 2.12 mm
O-15 1732 keV 0.41 mm 3.10 mm

Table 2.1.: Maximal positron energy [Bushberg et al., 2002] and positron range in soft
tissue for different radio-nuclei [Sanchez-Crespo et al., 2004].

more than two photons of lower energy are created [Harpen, 2004]. In this case the

electron and the positron form a molecule-like system (positronium) before they anni-

hilate. Since the probability for this effect is very small and the energy of the photons

usually is below the energy threshold of the detectors, this effect is to be neglected. In

order to obtain information about the location of the emission, detectors are located

outside the object (the patient).

2.2. The detection system

A ring PET scanner usually consists of several rings of scintillator crystals (for ex-

ample 24 rings with 384 detectors). Common crystals are BGO (Bi4Ge3O12), LSO

(Lu2SiO5: Ce), and GSO (Gd2SiO5: Ce) [Knoll, 2000, Humm et al., 2003]. In general

several crystals are organized in detector blocks (for example 8× 8 crystals per block,

in this case the scanner would consist of 3 block detector rings) which are connected

to the same number or often a smaller number (like 2 × 2) of photo multiplier tubes

(PMT) that amplify the signal. When a photon leaves the patient and hits a crystals

it is converted to lower energy photons which in turn are amplified by the photo multi-

plier tubes. When a smaller number of PMT is used for the readout, logic circuits like

Anger logic circuits calculate the most likely position where the original high energy

photon entered the crystals. Often neighboring scintillator blocks are combined to

larger systems (called buckets), to simplify electronics. Intra-bucket coincidences are

then impossible to detect.

In recent small animal PET scanners avalanche photo diodes(APD) are used [Nuyts,

2000], which, in contrast to PMTs, are much less affected by magnetic fields and

therefore good candidates for multi modal PET/MRI scanners. Even more recent

research has been pursued in using Geiger mode avalanche photo diodes which are

basically grids of very small APDs run in Geiger mode (each small cell APD being

8



2.2. The detection system

(a) Example for a scanner [Wikipedia, PET] (here ECAT EX-
ACT HR+).

Septa

(b) Single ring, 2D scanner, and 3D
scanner. Possible detector-detector
combinations (LORs).

Figure 2.1.: Ring PET scanner.

therefore binary) and directly detect the high energy photons. While the energy in

conventional crystal/PMT and crystal/APD is proportional to the current (or at least

derivable from the current) in Geiger mode APD the energy is derived from the number

of activated small APDs in a detector unit.

Independent of the kind of detector, in PET the detected events are either stored

in histograms (histogram mode) or lists (list mode). While in the first approach the

count number of a LOR is incremented when the appropriate event is detected, the

latter stores each event separately. It is always possible to generate histograms from

list mode data, but not vice versa, because when the events are binned, information

like the energy and time of the events gets lost.

All detection systems have limits to the rate at which events may be processed. The

electronics or also intrinsic detector characteristics like crystal afterglow [Humm et al.,

2003, Knoll, 2000] might be the limiting factor by having a finite maximum rate. In

PET, usually, pulse pile-up is the main reason for this so called dead time. This means

that several coincidences occur, but they cannot be detected as single events, because

they occur so close together. Therefore, less events are detected than truly happen.

The corresponding loss is called dead time loss. At high count-rates such losses can

become very significant.

As mentioned before, there exist basically two kinds of ring PET scanners, 2D and

3D scanners. Ideal 2D scanners consist of one detection ring observing only one slice

of the patient. The set of all LORs of this ideal 2D system is called sinogram. Real 2D

scanners consist of several detection rings, each ring shielded by so called septa from
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2. Physics of PET

the other rings (Fig. 2.1(b)). These septa are made of high-density and well absorbing

material such as tungsten. Usually scanners in 2D mode also allow coincidences be-

tween opposing detectors in adjacent rings. Two non-transversal sinograms (oblique

sinograms), are usually averaged to form an artificial transversal sinogram. Nowadays,

many scanners are 2D/3D or dedicated 3D scanners. These scanner can either retract

the septa or do not possess septa at all. The advantage of the scanner running in 3D

mode is the increased sensitivity. While many photons get absorbed in the septa of the

2D scanner, these photons can reach the detectors in 3D scanners. The disadvantage

is the increase in randoms, and more severely the increase in scattered photons.

2.3. Geometry and interactions in the patient

In ring PET (that is considered solely in this thesis) the patient is surrounded by

detectors that work in coincidence mode. This means when two photons are detected

detectors

attenuating and
scattering medium
(patient)

b

c

a

Figure 2.2.: The principle of PET: a tracer accumulates in certain regions of the body,
the radionuclide emits a positron which annihilates and two photons are
created. A true direct event (a), a scattered event (b), and a random
event (c) are shown.

by different detectors within a coincidence time window, they are considered to orig-

inate from the same positron. The smaller this time window the more valid is this

proposition. However, due to travel time differences, even two photons originating

from the same annihilation process usually reach the detectors at different times. The

coincidence time window should be chosen in such a way that all true coincidences

can be detected. For human PET scanners usually coincidence windows 2τ of at least

10



2.3. Geometry and interactions

interaction mass attenuation coefficient µ/ρ(cm2/g)
Compton effect 9.58 × 10−2

Rayleigh scattering 2.15 × 10−4

Photo effect 1.78 × 10−5

Table 2.2.: Mass attenuation coefficients for photons in H2O at 0.511 keV [NIST]. Not
only in water, but in almost all human tissue the Compton effect is by
far the most likely interaction at photon energies 200 − 1000 keV that are
relevant for PET [Kinahan et al., 2003].

a few nanoseconds are required. When both photons have not been scattered, the

position where the positron was annihilated must lay on the line (or better ”tube”)

that is defined by the position of the two detectors (see Fig. 2.2). This line is called

line of response (LOR). When the photons originate from the same decay process, the

coincidence is called a true coincidence. True coincidences comprise scattered coin-

cidences (at least one of the photons is scattered) and not scattered coincidences or

direct coincidences3. Usually the number of measured scattered coincidences is labeled

S while the number of coincidences of not scattered photons is labeled T and called the

trues. The origin of the two photons of a scattered coincidence is not located on the

LOR. Scattered events are therefore unwanted. The interactions that are responsible

for the scattering of the photons (see Table 2.2 and section 4.1.2) are mostly inelastic

(Compton effect) and to a small extent elastic (Rayleigh scattering).

In addition it is also possible that a random coincidence is detected. A random

coincidence is caused by two positrons and is not a true coincidence. This kind of

event can occur when the time difference between two positron annihilations is so small

that two of the four photons that originate from different positrons can be detected

within the coincidence time window. The two other photons from this annihilations

are either absorbed (Photo effect), their energy drops below the energy threshold of

the detectors(Compton effect) or the photons are simply not detected (either due

to geometrical reasons or due to non-ideal detector efficiency). Three (or even four)

simultaneously detected events are usually discarded. The number of detected random

coincidences is called randoms R. Single events (one detector detects a photon, the

other not) can also be recorded and can give insight into the frequency of random

events (see 2.3.3).

3In some publications true coincidences are defined to be a coincidence from not scattered photons
only. Direct coincidences are sometimes (but not in this thesis) defined to be coincidences between
detectors of the same ring (in 3D PET).
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2. Physics of PET

Time information is not used in conventional PET. PET using time information to

further localize the annihilation position is called time of flight PET (TOF-PET). The

detector physics and electronics limits the time resolution to around ∆t = 0.2− 1.2 ns

[Moses and Derenzo, 1999, Defrise et al., 2005, Conti et al., 2005, Vandenberghe et al.,

2006] and therefore the possible spatial resolution along the line of response to roughly

∆x = c∆t/(2n) ≈ 3 − 15 cm (c/n=effective speed of light between the two detectors,

n(511 keV) ≈ 1.0). The sole usage of time information to determine the annihilation

position is therefore not practicable. Recently, however, Conti et al. [2005] showed

that the usage of time of flight information can be used to improve considerably the

signal to noise ratio of the reconstructed images for a modern PET scanner for humans.

Other recent results show that TOF PET can also be used to reduce the angular sam-

pling while compromising only little the resolution [Vandenberghe et al., 2006]. Time

of flight does not eliminate scattered coincidences.

2.3.1. Scattered coincidences

While direct coincidences are best suited for image reconstruction, detected and un-

corrected scattered coincidences degrade the image. The degradation has two reasons.

Firstly, scattered photon pairs give less accurate information about the origin of the

annihilation position. While in the case of true unscattered coincidences the positron

must have been annihilated somewhere on the LOR, in the case of the scattered events

the origin can also lie in the vicinity of the LOR or even further away depending on

the scatter angle (limited by the energy threshold of the detectors) and the size of

the scanner. This leads to a reduced effective resolution of the scanner. Secondly, all

reconstruction algorithms so far are based on some approximate and often simplified

scatter treatment. This wrong scatter modeling might not only lead to resolution re-

duction but also to wrong activity distributions. Since the scatter is patient dependent,

correct scatter treatment is very difficult.

The ratio

fS =
# of scattered coincidences

# of all true coincidences (including scatter)
(2.1)

is called scatter fraction. A small scatter fraction is desirable. The scatter fraction

mainly depends on the scanner (around 10− 20% for 2D scanners and around 40+ %

for 3D scanners according to Adam et al. [1999] and Lodge et al. [2006]) and also on

the patient, because for a larger patient the ratio of scattered photons to not scattered

photons increases. In human PET scanners most photons are scattered in the patient,
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2.3. Geometry and interactions

but some photons are scattered in the gantry (the surrounding of the patient opening

i.e. the detection system + supporting structure) [Adam et al., 1999].

The scatter fraction can be reduced by choosing a high lower energy threshold for

the detectors. The lower energy threshold for the detectors is usually set between 250

and 450 keV. Due to finite energy resolution of the detector, the energy threshold

cannot be set arbitrarily close to 511 keV. This would reduce considerably the number

of detected true direct coincidences.

2.3.2. Attenuation

All the aforementioned interactions, predominantly Compton effect, but also Photo

effect and Rayleigh scattering lead to a reduced number of direct counts. This effect is

called attenuation. Attenuation has to be considered in the process of reconstructing

the images, because otherwise the emission density inside the patient is underesti-

mated. While there is an extra correction in conventional reconstruction (see also

section 2.4), in the presented Monte Carlo based reconstruction this is considered

implicitly in the Monte Carlo system matrix.

In contrast to SPECT where it is rather difficult to estimate the attenuation caused

by the patient, attenuation correction is rather straightforward in PET. Each photon

of the two photons that are created at the annihilation point, often named pink and

blue photon for convenience, can interact during their way to the detectors.

ppink = e
−

R x1
x0

dx µ(x)

pblue = e
−

R x2
x0

dx′ µ(x′)
with x′ = −x

ppink∧blue = ppink · pblue = e
−

R x2
x1

dx µ(x)
(2.2)

The probabilities that the photons will not interact with the patient on their way

(from x0 to x1 or to x2) to the detector are ppink and pblue respectively (µ(x) being the

total linear attenuation coefficient at location x). The probability that both photons

reach the detectors is ppink∧blue which equals the probability of a photon starting at one

of the two involved detectors and reaching the other detector without interaction. The

latter probability can therefore be obtained by a transmission scan and the probability

does not depend on the position of the annihilation point on the LOR. It is then

either possible to correct the measured counts for LOR i by multiplying them with

attenuation correction factor

e
+

R x2(i)

x1(i)
dx µ(x)
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2. Physics of PET

or to consider

e
−

R x2(i)

x1(i)
dx µ(x)

during iterative reconstruction and incorporate this factor into the model of the scan-

ning system (described by the system matrix).

2.3.3. Random correction

Random coincidences are even less desirable than scattered photons, because they

carry no information about the origin of the photon pair. Fortunately, their frequency

can be estimated rather straightforwardly.

Random correction can be performed applying two basic approaches [Brasse et al.,

2005, Knoll, 2000], either by delayed coincidence correction and by estimating the

randoms from single counts. In coincidence measurements, when a signal at time t in

t

dw
��������

dt

s1s2

ττ τ2

t∆

Figure 2.3.: Differential time spectrum. The abscissa t is the time interval length or
time delay, the ordinate is the count rate w for an infinitesimal coincidence
window dt at time delay t.

one detector is measured and the other detector detects a photon within a coincidence

time window [t− τ, t + τ ], it can be assumed that the detected photons are correlated

and come from the same event. Unfortunately, due to the finite time window τ , also

photons not originating from the same positron, hence random events, are counted.

Fig. 2.3 shows the typical differential count rates that can be expected for different

time delays t and an infinitesimal coincidence window dt. For large time delays (finite

coincidence time window [t+∆t−τ, t+∆t+τ ]) the detected counts are not correlated
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and in this case the random count rate is [Knoll, 2000]

r̄ = 2τs1s2 . (2.3)

For small time delays t this is still true, but in addition true coincidences are detected.

It is therefore possible to subtract r̄ from the total count rate for the coincidence

time window [t − τ, t + τ ]. This approach is therefore based on the estimate of r̄

by the single count rates s1 and s2 of the two involved detectors. This approach

essentially introduces no additional noise [Brasse et al., 2005], but can introduce bias,

if some of the factors in (2.3) are estimated wrongly. The second approach on the

other hand introduces additional noise, but does not introduce a bias [Brasse et al.,

2005]. Instead of measuring the single rates s1 and s2 the mean random rate r̄ is

directly measured using this strongly delayed window (see Fig. 2.3) about ∆t. For

both methods different improvement schemes, like ”smoothed delays method” or other

singles based approaches exist [Brasse et al., 2005].

2.4. Acquisition

After injection of the tracer and after some chosen time delay for perfusion, the photons

emitting from the patient can be measured. This process is called emission scan.

2.4.1. PET

In conventional PET in addition a blank and a transmission scan are used to correct

for the attenuation in the patient (see section 2.3.2). Both scans are usually obtained

by a rod source that rotates around the patient (transmission scan) or in the empty

scanner (blank scan). Ideally the transmitting photons should also be in the energy

range around 511 keV. For this reason usually either 137Cs (γ-emitter, 662 keV) or
68Ge(τ1/2 = 288 d) is used. The latter source decays to 68Ga which primarily decays

by positron emission [Bushberg et al., 2002]. Using the information obtained by both

scans it is possible to calculate the attenuation caused by the patient. The blank

scan can be used to correct for differently responding detectors (like different amplifier

gains) [Defrise et al., 1991]. This is called normalization. The transmission scan can

be performed before or after injection, but the latter adds noise from the emitting

photons.

Apart from the mentioned needed corrections, the data has to be corrected for the

exponential decay of activity. Since the scan time and the half life of the radio-tracer is
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2. Physics of PET

of similar order, the reduction of the activity during the scan cannot be neglected. This

is especially important for dynamic studies. Dead time loss should be also corrected

for [Mazoyer et al., 1985].

2.4.2. PET/CT

A PET/CT scanner is a combined system of a PET and a CT scanner [Beyer et al.,

2001, 2002]. The obtained images combine the advantage of showing exact and very

fine morphological information (CT-image) as well as information about tracer uptake

(PET-image) in the same coordinate system. Especially in the case when highly spe-

cific tracers are used, the additional information from the CT image can be crucial to

associate the sometimes very localized higher uptake to some morphological structure.

While it would be ideal to have both scanners at the same position, nowadays both

machines are placed next to each other due to hardware limitations. The patient first

passes the CT scanner and is then moved into the PET scanner. While a PET scan

can take from a couple of minutes to up to an hour per bed position, a similar CT

scan can be easily performed in less than 15 s. The shorter the PET scan the noisier

are the obtained images due to bad statistics of the measured sinograms.

In PET/CT the transmission scans in general are replaced by the CT scan [Beyer et al.,

2004]. The advantage of the CT scan is the great increase in accuracy of the atten-

uation map and the fast acquisition. One disadvantage is the different energy of the

photons (around 40 − 140 keV [Kinahan et al., 1998, 2003] where Photo effect and

Compton effect are both important). The attenuation has to be calculated for pho-

tons of 511 keV where the Compton effect is dominant. The calculation is therefore

not trivial and cannot be exact, since the exact atomic numbers Z and mass number

A of the involved atoms and their concentration ratio are unknown. Usually linear

attenuation coefficients at CT energy are mapped to linear attenuation coefficients at

PET energy by using simple piece-wise linear functions based on some assumptions on

the tissue [Nuyts and Stroobants, 2005, Kinahan et al., 2003]. This problem occurs

also in MC simulation. In section 4.1.1 it is shown how this problem is approached. A

perhaps more severe disadvantage (being an advantage at the same time) is the fast

transmission scan used for attenuation correction. Any shift of the patient during the

PET acquisition with respect to the CT acquisition can then lead to artifacts induced

by wrongly attenuation corrected LORs. This especially applies for lung motion, which

is averaged in PET, but the obtained CT image and CT-based attenuation map might

only show one snapshot of the motion.
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3. Image Reconstruction

The process of calculating the emission density given the detected coincidences is called

image reconstruction. Numerous algorithms exist to perform this task [Qi and Leahy,

2006]. The algorithms can be classified into two groups of algorithms: iterative re-

construction algorithms and algorithms that lead to the emission density by direct

inversion (often called analytic reconstruction algorithms). The latter are usually

based on the Radon transform.

3.1. The Radon transform and its inverse

x

y

(a)

= x

ρ

a

x

y

A

(0,0)

b = x cos

ρ y

b

+cos ϕ sin ϕ

ϕ
sina = y ϕ

ϕ ϕ

ϕ

(b)

Figure 3.1.: The Radon transform

In all ray based tomographic imaging like computed tomography, single photon

emission computed tomography and also PET, the images are obtained indirectly by

measuring projections. A projection ŷϕ is obtained by integrating the density of an

object x̂ (emission density in PET, electron density in CT) along lines with angle ϕ,

reducing the two-dimensional image to one dimension (see Fig. 3.1(a) and Fig. 3.2).

The set of all projections for angles ϕ ∈ [0, π[ can be described by a two-dimensional
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3. Image Reconstruction

Figure 3.2.: Example: LORs that belong to a projection in ring PET.

function ŷ(ϕ, ρ) ≡ ŷϕ(ρ). This function is obtained by applying the Radon transform

R [Toft, 1996, Kak and Slaney, 1999] on the object density function1

ŷ(ϕ, ρ) ≡ R(x̂(x, y)) ≡
∫ ∞

−∞

∫ ∞

−∞
dxdy δ(ρ − x cos ϕ − y sin ϕ)x̂(x, y) . (3.1)

In PET (and also CT) ŷ(ϕ, ρ) is called sinogram. The sinogram of a point like emission

density at (x0, y0) is a sinusoidal function

ρ − x0 cos ϕ − y0 sin ϕ
!
= 0 =⇒ ρ = x0 cos ϕ + y0 sin ϕ. (3.2)

This is the reason for the name ”sinogram”.

Using the Fourier transform2 (FT ) and the inverse Fourier transform(FT −1), it is

possible to relate the sinogram and the emission density in an elegant manner. The

two-dimensional Fourier transform of the emission density is

X̂(kx, ky) ≡ FT (x,y)→(kx,ky)x̂(x, y) ≡
∫ ∞

−∞

∫ ∞

−∞
x̂(x, y)e−i2π(kxx+kyy)dxdy . (3.3)

With the introduction of polar frequency parameters kx = ν cos ϕ, ky = ν sin ϕ equa-

1Here δ(∗) is the delta distribution.
2In the following derivation the Fourier transform based on ordinary frequency ν instead on the

circular frequency ω = 2πν is used. In this way the transformation is unitary without a factor
1/

√
2π. This form is often used in the field of signal processing.
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tion (3.3) becomes

X̂(ν cos ϕ, ν sin ϕ) =

∫ ∞

−∞

∫ ∞

−∞
x̂(x, y)e−i2π(xν cos ϕ+yν sin ϕ)dxdy

=

∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
x̂(x, y)δ(ρ− x cos ϕ − y sin ϕ)e−i2πνρdxdy

)

dρ

=

∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
x̂(x, y)δ(ρ− x cos ϕ − y sin ϕ)dxdy

)

e−i2πνρdρ

=

∫ ∞

−∞
ŷ(ϕ, ρ)e−i2πνρdρ (3.4)

≡ FT ρ→ν ŷ(ϕ, ρ) ≡ Ŷ (ϕ, ν) .

The two-dimensional Fourier transform of the emission density equals3 the one di-

mensional Fourier transform (with respect to ρ) of the sinogram. This result is called

Fourier slice theorem. It is therefore possible to calculate x̂(x, y) from ŷ(ϕ, ρ) and vice

versa.

The most used inversion scheme, however, is filtered back-projection(FBP). This

scheme is derived by using the inverse Fourier transform of the emission density

x̂(x, y) =

∫ ∞

−∞

∫ ∞

−∞
X̂(x, y)ei2π(kxx+kyy)dkxdky (3.5)

and introducing polar coordinates

x̂(x, y) =

∫ 2π

0

∫ ∞

0

νX̂(ν cos ϕ, ν sin ϕ)ei2πν(x cos ϕ+y sinϕ)dνdϕ

=

∫ π

0

∫ ∞

−∞
|ν|X̂(ν cos ϕ, ν sin ϕ)ei2πν(x cos ϕ+y sin ϕ)dνdϕ

(3.4)
=

∫ π

0

∫ ∞

−∞
|ν|
(∫ ∞

−∞
ŷ(ϕ, ρ̃)e−i2πνρ̃dρ̃

)

ei2πν

ρ
︷ ︸︸ ︷

(x cos ϕ + y sin ϕ)dν

︸ ︷︷ ︸

z(ϕ,ρ)≡FT −1
ν→ρ(|ν|FT ρ̃→ν(ŷ(ϕ,ρ̃)))

dϕ . (3.6)

The emission density is therefore calculated by filtering the projections according to

3Exactly when the signal processing version of the Fourier transform is used, but up to a normal-
ization factor when the angular frequency version is used.
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ρ with a ramp filter and then this filtered sinogram z(ϕ, ρ) is back-projected.

x̂(x, y) =

∫ π

0

z(ϕ, x cos ϕ + y sin ϕ)dϕ

=

∫ π

0

∫ ∞

−∞
z(ϕ, ρ)δ(ρ − x cos ϕ − y sin ϕ)dρdϕ (3.7)

The last equation (3.7) has a similar structure like (3.1) and is therefore named back-

projection. The ramp filter is a high pass filter. Although being theoretically correct,

this strong high pass filter is not ideal, because the measured sinograms are usually

quite noisy. In real application deviations of the ramp filter like Shepp-Logan, Hann,

Hamming, or Butterworth filters [Kehren, 2001] are used that mimic a ramp filter for

low frequencies but reduce high frequency parts of the projections.

Because of the finite number of detectors the sinogram of a PET scanner is always

discrete. There exist discrete versions of the Fourier slice theorem and FBP [Toft,

1996, Kak and Slaney, 1999] which will not be introduced in detail, because both

algorithms are not used in this dissertation. A discrete projection(see Fig. 3.2) is the

set of all LORs with the same angle ϕ. One value of such a discrete projection, the

number of detected counts of a LOR is called bin [Alenius, 1999]. It can be seen that

the LORs are not equally spaced, especially close to the gantry [Fahey, 2002]. The

projections used in FBP must therefore be corrected for this effect. This correction is

called arc correction.

3.2. Iterative algorithms

The above introduced approaches based on the inversion of the Radon transform are

based on geometrical considerations and assume that only true direct coincidences

are detected. They therefore lack the possibility to correct for scatter during recon-

struction. It is possible to formulate the problem to be the solution of a set of linear

equations that include all relevant physics. For this purpose the phantom/patient is

discretized. The patient is decomposed into volume elements/basis functions β(r−ri)

located at grid node positions ri and the activity is represented by a linear combination

of such basis functions. The decomposition is usually a regular grid with NV voxels

(in this case the basis functions are B0-spline basis functions), but also more general

basis functions are possible [Lewitt, 1992, Fessler, 2004]. The activity is approximated
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by

activity(r) =

NV∑

i=1

x̂iβ(r − ri) (3.8)

The activity can therefore be represented by a NV-dimensional vector x̂.

3.2.1. The system matrix

Because the emitted photons are not influencing each other, the system response of

two different voxels filled with activity is independent. The system response of several

voxels (coincidences, the sinogram) is therefore a linear combination of the system

response of the single voxels (coincidences, unit sinogram). In other words, there is a

linear relation between the emission density x̂ and the sinogram ŷ

ŷ = M x̂ . (3.9)

This relation is very general and the system matrix M describing the map from activity

to sinogram can also include scatter and attenuation.

The goal is the calculation of x̂ for a measured sinogram ŷ and a given model of

the scanner described by the system matrix M . Usually M is not a quadratic matrix

and, more severely, equation (3.9) is inherently ill posed like all inversion problems

in tomographic imaging. In addition, especially for 3D scanners, the matrix M is

very large (around 106 × 108 elements or even more). While ideally the system matrix

should include all physics like attenuation and scatter in the patient, randoms, scanner

geometry, detectors (and normalization if not done before) and electronics, due to its

immense size it is not possible to include all this. Usually normalization and attenua-

tion, the scanner geometry and some kind of detector modeling are included into the

matrix. Randoms are not included (see section 2.3.3). Most difficult is the inclusion

of patient scatter into the matrix, because this requires a recalculation of the matrix

for each patient, and in contrast to scanner dependent contributions it is not possible

to reduce the problem due to scanner symmetry, because the patient is asymmetric.

In contrast to small animal PET the scatter contribution of the patient cannot be

neglected in human 3D PET. Instead of addressing the problem directly by including

scatter into the matrix, scatter is treated conventionally during the reconstruction or

even guessed before the reconstruction which always involves some approximations or

assumptions (see section 3.4).
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3.2.2. The objective function

Since in real applications the matrix M is not invertible, an approximate solution of

(3.9) must be calculated differently. While minimizing

|ŷ − M x̂|2 (3.10)

gives an approximate solution, especially for low statistics measurements the mini-

mization of

F (x̄) ≡ P (ŷ|x̄) =

NL∏

j=1

e−ȳj
ȳ

ŷj

j

ŷj!
, ȳ = M x̄ (3.11)

results in better images. P (ŷ|x̄) is the likelihood that the a sinogram ŷ is measured

given the mean emission density x̄ and assuming that each LOR ŷj varies according

to Poissonian statistics. ȳ is the expected mean value for ŷ. The goal is to find the

unknown mean x̄ of the activity, given the measured sinogram ŷ. The mean emission

density x̄ that maximizes (3.11) represents the most likely emission density. Since

logarithmizing is a monotone transformation and therefore preserving the maximum,

it is possible to maximize the log likelihood

f̃(x̄) ≡ log(F (x̄)) =

NL∑

j=1

(−ȳj + ŷj log ȳj − log (ŷj!))

=

NL∑

j=1



−
NV∑

i=1

mjix̄i + ŷj log

(
NV∑

i=1

mjix̄i

)

− [log (ŷj!)]
︸ ︷︷ ︸

constant



 (3.12)

instead of (3.11). This is advantageous, because every product is reduced to a sum.

The last addend can be ignored, because it is constant. The Hessian of the function

f = f̃ +
∑NL

j log (ŷj!) is

∂2f

∂x̄k∂x̄l

= −
NL∑

j

ŷj
mjkmjl

(
∑NV

i=1 mjix̄i

)2 (3.13)

and therefore

NV∑

k,l=1

x̄k
∂2f

∂x̄k∂x̄l
x̄l = −

NL∑

j=1

ŷj

(
NV∑

k=1

mjkx̄k
∑NV

i=1 mjix̄i

)2

≤ 0 ∀x (3.14)
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negative semi-definite. For all ŷj ≥ 0, ∀mjk > 0, and x̄i > 0 the inequality (3.14)

is even strictly fulfilled4. For positive emission density there exists therefore unique

maximizer.

3.2.3. Maximum likelihood expectation maximization

Since the emission density is always positive, equation (3.12) has to be maximized

subject to the constraint

x̄i ≥ 0 . (3.15)

This constraint can be incorporated into (3.12) by the introduction of the Lagrange

function L with the Lagrange parameter λ

L(x̄, λ) ≡ f(x̄) −
NV∑

i=1

λix̄i (3.16)

and requiring (Nocedal and Wright [1999]) that the Karush-Kuhn-Tucker conditions

are satisfied:

∇x̄k
L(x̄, λ) =

NL∑

j=1

(

−mjk + ŷjmjk
1

∑NV

i=1 mjix̄i

)

− λk = 0 ∀k (3.17)

x̄i ≥ 0 ∀i (3.18)

λix̄i = 0 ∀i . (3.19)

The last constraint (3.19) is also known as the complementary slackness. When mul-

tiplying (3.17) with x̄k and inserting (3.19), it is possible to get rid of the Lagrange

parameter λ due to the complementary slackness. This leads to

x̄k∇xk
L(x̄, λ) =

NL∑

j=1

(

−mjkx̄k +
ŷjmjkx̄k
∑NV

i=1 mjix̄i

)

!
= 0 (3.20)

or

x̄k =
x̄k

∑NL

j=1 mjk

NL∑

j=1

(

ŷjmjk
∑NV

i=1 mjix̄i

)

. (3.21)

4When online random subtraction is performed, negative values for ŷj are possible. In this case
usually the sinogram values are set to zero or a different objective function that considers random
subtraction is used [Fessler, 2004].
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3. Image Reconstruction

It is always possible [Vardi et al., 1985] to simplify (3.21) by rescaling the matrix and

the activity.

x
′

i = x̄i

NL∑

j=1

mji (3.22)

m
′

ij =
mij

∑NL

j
′
=1

mj
′
i

(3.23)

In this way (3.21) simplifies to

x
′

k = x
′

k

NL∑

j=1

(

ŷjm
′

jk
∑NV

i=1 m
′

jix
′

i

)

=
[

C
(

x
′

)]

k
(3.24)

Equation (3.24) is a fixed point equation. Applying a fixed point algorithm [Johnson and Sofer,

2000] to (3.24) yields

x
′(α+1) = C

(

x
′(α)
)

(3.25)

This is the update equation of the ML-EM algorithm applied to emission tomography.

Vardi et al. [1985] showed (following the idea of Dempster et al. [1977]) that (3.25)

converges to the maximum of (3.11) in the presence of more detectors than voxel.

Equation (3.25) is often splitted into two coupled equations

P : ȳ(α+1) = Mx(′α)

B : x
′(α+1)
i = x

′(α)
i

NL∑

j=1

(

ŷjmji

ȳ
(α+1)
j

)

(3.26)

with a projector P and a back-projector B.

There exist a vast number of variants of the ML-EM algorithm and also several

other iterative algorithms [Fessler, 2004]. Variants of the ML-EM algorithm are

usually introduced to speed up the rather slow performance of the ML-EM algo-

rithm. A very common algorithm is OSEM, ordered subset expectation maximization

[Hudson and Larkin, 1994], which is a block iterative not convergent, but much faster,

descendant of the ML-EM. This algorithm can often be found in commercial scanners.

In block iterative algorithms all pixels are updated using a subset of the measured

data at one time. In contrast, in the ML-EM algorithm all voxels are updated at once

using all available data. In other algorithms like the row action maximum likelihood

24



3.3. 3D scanners

algorithm (RAMLA) [Browne and De Pierro, 1996] or algebraic reconstruction tech-

nique (ART) [Herman and Meyer, 1993] all voxels are updated once using one row

(with respect to the system matrix) of the data once at a time. These algorithms

are called row action algorithms. The opposite are sequential algorithms that update

only one pixel using all data at each iteration like SAGE [Fessler, 2004] or coordinate

descent.

Usually objective functions should include a regularization term. This can lead to

algorithms that are less ill-posed, and might converge faster. There exists a large

number of possible regularization terms [Ollinger and Fessler, 1997, Alenius, 1999].

3.3. Reconstruction with 3D scanners

The aforementioned reconstruction methods work well with 2D scanners. Reconstruc-

tion using 3D scanners can be performed by producing artificial 2D sinograms (either

by single-slice, by multi-slice, or by the more advanced Fourier-slice rebinning which is

often used in commercial scanners together with OSEM) [Kehren, 2001] or by directly

using the 3D data. The approximate 2D sinograms can be used in the same way as

described in the previous sections.

For 3D data, there exist generalizations of Fourier slice reconstruction and of FBP

[Toft, 1996], but due to the increased amount of scatter, analytical methods are not

preferable. Iterative reconstruction algorithms can be used for 3D PET data without

modification, but due to the large amount of data the reconstruction is very time

consuming. In general, therefore the 3D data is simplified. The 3D data can be divided

into LORs from the same ring (transversal sinograms) or in LORs from different rings

(oblique sinograms). Usually, the transversal sinograms are used unmodified, but

neighboring oblique sinograms are combined. This reduces the size of the data, but

also the resolution [Kehren, 2001] and results in an increase of the detected counts of

such combined sinograms. In the same way the neighboring bins of similar angle (of

the same oblique or transversal sinogram) can be grouped together. This process is

called mashing and also reduces the resolution and the data size [Fahey, 2002].

3.4. Scatter correction

There are different ways to treat the scatter in positron emission tomography. Due

to the problem of accurate modeling of the system matrix (see chapter 1), many

different approximation schemes [Bergström et al., 1983, Ollinger, 1996, Zaidi, 2000,
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3. Image Reconstruction

Beekman et al., 2002, Zaidi and Koral, 2004] were proposed that can roughly be grouped

into four methods [Markiewicz et al., 2004]:

1. pre-correction of the data

2. post-correction of the image

3. incorporation of scatter in the projector (dual matrix)

4. incorporation of scatter in the matrix (full matrix)

In the first method the the sinogram is corrected for scatter and the corrected data

is used in the reconstruction algorithm. Different approaches exist to estimate the

scatter. It can be estimated by using energy information of the detected photons

(energy window based scatter correction) [Grootoonk et al., 1996], by simulating the

scatter by means of Monte Carlo methods [Levin et al., 1995] or by (iterative) convo-

lution of the estimated true image with a scatter kernel to obtain scatter data that can

be subtracted [Bailey and Meikle, 1994]. The two latter pre-correction methods need

therefore a first guess of the activity. All pre-corrected data can be used in principle

also in analytical reconstruction like FBP. The post correction methods improve the

image that is reconstructed with uncorrected data [Zaidi and Koral, 2004]. This can

for example be done by reconstructing an image using the scatter estimate and sub-

tract this obtained scatter image from the image that was obtained for uncorrected

data [Lercher and Wienhard, 1994]. The last two scatter correction groups either

model the scatter in the projector only (dual matrix) [Ollinger, 1996, Beekman et al.,

2002] or incorporate the scatter in the matrix [Rafecas et al., 2004b, Shoukouhi, 2005,

Lazaro et al., 2005]. Both methods usually use Monte Carlo simulation and only work

together with iterative reconstruction. Monte Carlo based dual and especially full ma-

trix reconstructions are theoretically superior to the other correction methods since

they model the scatter based on physical processes in each iteration and do not require

a first estimate of the activity distribution. Both methods are further explained in

chapter 6.1 and chapter 6.2.
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4. A Fast Monte Carlo Code for

System Matrix Calculations

The purpose of the Monte Carlo code YaPRA was the simulation of the system ma-

trix. Several Monte Carlo codes for PET like GEANT4 (generic), SimSET (dedicated)

[Harrison] exist. While generic codes usually carry an overhead that increases com-

putation time, dedicated codes are trimmed down to become fast. Generic codes are

not a good choice for the very time consuming task of system matrix calculation. Ex-

isting dedicated codes are used to simulate sinograms for a given extended emission

density. System matrix calculation is based on the simulation of sinograms of single

voxels. The decision was therefore to develop a new Monte Carlo code that could trace

particles in the patient and that was optimized to perform this task.

This codes is inspired by two publications [Haynor et al., 1990, 1991] that explain

the variance reduction techniques used in SimSET. Parts of the main photon track-

ing algorithm (without variance reduction techniques) as well as the pseudo random

number generator RANMAR were taken from the Monte Carlo code XVMC for dose

calculation used in radiotherapy [Fippel, 1999, 2000].

4.1. Particle tracing

4.1.1. Linear attenuation coefficients

The simulation requires knowledge about the probability of particle interaction at a

given location in the patient. This probability depends on the tissue. In medical

situations, it is not possible to obtain an exact map of the tissue of the patient. It

is therefore necessary to estimate at which position which mean cross section should

be used. This approximation usually is based on tomographic images. Since the cross

sections for the Compton effect and the Photo effect mostly depend on the electron

density of the material, the assumed cross sections are based on density images that

can be obtained by CT scanners or by attenuation maps obtained by rotating rod

sources (see section 2.4.1). This assignment of density values to cross sections or
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Figure 4.1.: Mass attenuation coefficients for H2O. Taken from the photon cross sec-
tions data base XCOM [NIST]

linear attenuation coefficients is called ”segmentation”. Usually this segmentation is

discrete (e.g. GEANT, SimSET), meaning that for a certain density interval a specific

tissue with the corresponding cross sections is assumed. In the presented code the

segmentation is continuous. This approach, which is adopted from , is based on the

observation that in the case of body tissue (and E & 0.2 MeV) the cross section

for Compton scattering (and Photo effect) varies weakly for materials of comparable

density. Thus, it is reasonable to assume a mapping

ρ −→ µρ, (4.1)

especially, if the density information is the only information given. Here ρ is the mass

density, and µρ is the linear attenuation coefficient that can be expected when the

material is body tissue of the density ρ. A similar map as in XVMC was used1:

Compton effect: µC
ρ (E) ≈







µC
H2O

(E) ρ/ρH2O ρ ≤ 1 g/cm3

µC
H2O

(E) (0.85 ρ/ρH2O + 0.15) ρ > 1 g/cm3
(4.2)

Photo effect: µP
ρ (E) ≈







µP
H2O

(E) ρ/ρH2O ρ ≤ 1.1 g/cm3

µP
H2O

(E) ρ/ρH2O (1 + 8
√

ρ/ρH2O − 1.1) ρ > 1.1 g/cm3

1Some small simplifications for low density linear attenuation coefficients of the Photo effect com-
pared to XVMC are used. Because the Photo effect is unlikely (≈ 1%), the corresponding devia-
tions are neglegible.
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4.1. Particle tracing

This mapping was obtained by fit to ICRU data [Fippel, 2000, ICRU, 1992]. The

linear attenuation coefficients for the Compton effect µC
ρ (E) and for the Photo ef-

fect µP
ρ (E) are functions of the respective linear attenuation coefficients µC

H2O
(E) and

µP
H2O

(E) for water, the density ρ, and the energy E of the photon.

4.1.2. Tracing of particles in voxelized phantoms

In the simulation the positron range as well as the rest energy before annihilation

is assumed to be zero. Therefore, the simulation starts with two photons at the

position of the emission that travel in opposite directions. Since the rest energy of the

positron and the electron is zero, the two photons have the energy 511 keV and the

non-collinearity is zero.

The random generator used in the simulation was the pseudo random number gen-

erator RANMAR which was taken from XVMC [Fippel, 1999, 2000]. This random

number generator provides a uniform random number RND ∈ [0, 1[.

The direction of the two photons is determined by

ϕ = 2πRND

ϑ = arccos (RND) . (4.3)

Equation (4.3) guarantees that this direction is uniformly sampled.

ϑ

ϕ

z

x

y

= scanner axis

Figure 4.2.: Definition of the angles and the coordinate system with respect to the
tomograph.
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The probability that a particle does interact before it covered the distance x in a

material with the (total) linear attenuation coefficient µ is

P (x) = 1 − exp(−µx) (4.4)

and the probability that the particle does interact at position x is

p(x) =
∂P

∂x
= µ exp(−µx) . (4.5)

In the Monte Carlo code this probability distribution is used to obtain the location of

the position where the next interaction will occur. The problem of sampling from this

non uniform probability function p(x) was overcome by using the inverse transform

method. When p(x) should be sampled in the interval [0, xleave[, then the normalized

cumulative distribution function F (x; xleave) can be interpreted itself as a uniformly

distributed random number RND in the interval [0, 1[

F (x; xleave) =
P (x)

∫ xleave

0
p(x′) dx′ =

1 − exp (−µx)

1 − exp (−µ xleave)
!
= RND , (4.6)

and by inversion

µx = − ln (1 − RND · (1 − exp (−µ xleave))) (4.7)

it is possible to sample the distance x according to the non uniform probability distri-

bution p(x) by using the uniformly sampled RND. Equation (4.7) will be used later in

section 4.3.1 when the variance reduction techniques are explained. In the Monte Carlo

simulation without variance reduction it is possible that the particle never interacts

with the phantom This implies xleave → ∞ and (4.7) simplifies to

l ≡ µx = − ln (1 − RND) . (4.8)

A nice property of (4.8) is the fact that the right part does only depend on the

random number RND. The introduced dimensionless variable l is called attenuation

path length henceforth. When the medium is homogeneous, the next interaction

therefore occurs after the distance l/µ. In a medium with varying linear attenuation
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4.1. Particle tracing

coefficient, l becomes

l =

∫

C

dx′ µ(x′) ≈
C∑

i

∆C
i µi . (4.9)

The right part of (4.9) is the simplification in the case of a voxelized phantom.

Unfortunately, the set of paths {∆C
i } is in general not equally spaced and has to be

calculated successively.

?

Figure 4.3.: Determination of the location of the next interaction. The steps that
are needed to determine the interaction position in a voxelized phantom
are shown. At each step it is shown how far the photon would travel if
the rest of the voxels had the same linear attenuation coefficient as the
present voxel. When this distance is smaller than the distance to the next
voxel, the successive reduction of l ends (lower right image). Dark voxels
represent high density, bright voxels low density.

Fig. 4.3 shows how the distance to the position of interaction is determined. Let

us assume that voxel i is the voxel in which the particle starts. In this voxel i with

the linear attenuation coefficient µi the path length would be x = l/µi If x is smaller

than the distance to the next voxel along the particle’s path, the interaction occurs at

the position specified by x within this voxel. In the other case l is reduced by ∆C
i µi

(with ∆C
i = traveled distance within voxel i). Then the voxel index i is replaced by

the index of the neighboring voxel in which the particle travels in a straight line and

the the same process is started again. Eventually, the particle interacts within the

phantom or leaves it without any interaction. In the latter case it can be checked if

the particle hits the detector surface.

Photo effect

This interaction was determined by calculating the linear attenuation coefficients of the

Compton effect and the Photo effect according to section 4.1.1. Rayleigh scattering was
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neglected, because the relevance is rather small and there exist no reasonable map from

density (or electron density) to the corresponding linear attenuation coefficient. The

Photo effect was included, because it is very easy to incorporate the effect. Whenever

the interaction was a Photo effect the photon history simply ended. This happened

whenever

RND <
µPhoto

µCompton + µPhoto
. (4.10)

Compton effect

As mentioned before (see section 2.3), the most common interaction at photon energies

between 0.2 MeV and 1 MeV in body tissue is by far the Compton effect. The Compton

effect describes the inelastic collision of a photon with an electron (of mass me). Since

the considered energy range E > 0.2 MeV is beyond atomic or molecular binding

energy in tissue, the electron can be considered as being at rest. Hence, in good

approximation the energy of the scattered photon (4.11) can be calculated assuming

conservation of relativistic momentum and energy.

Enew = ER(E, ϑ) with R(E, ϑ) =
1

1 + α(1 − cos ϑ)
and α =

E

mec2
(4.11)

The Klein-Nishina [Knoll, 2000] formula describes the differential cross section of

an incoming photon of energy E with a free electron at rest

dσ

dΩ
(E, ϑ) =

1

2
rel

(
R(E, ϑ) − R(E, ϑ)2 sin2 ϑ + R(E, ϑ)3

)
(4.12)

with rel = 1
4πǫ0

e2

me
being the classical electron radius. Sampling from this probability

distribution has to be divided into two parts, because two variables ϑscatter and ϕscatter

need to be determined. The latter variable, the azimuthal angle ϕscatter is obtained by

ϕscatter = 2πRND . (4.13)
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4.1. Particle tracing

The scatter angle ϑscatter is calculated using the probability distribution

pE(ϑ) =
dσ

dϑ
(E, ϑ) =

∫ 2π

0

dσ

dΩ
(E, ϑ) sin ϑ dϕ

= πrel

(
1

1+α(1−cos ϑ)
+ α (1 − cos ϑ) + cos2 ϑ

)

sin ϑ

(1 + α (1 − cos ϑ))2 . (4.14)

The inverse transform method (see section 4.1.2) is used to sample from this non

uniform probability function pE(ϑ). Again, the normalized cumulative distribution

function PE(ϑ; ϑ0, ϑmax) can be interpreted itself as a uniformly distributed random

number RND in the interval [0, 1[:

RND ≡ PE(ϑ; ϑ0, ϑmax) =

∫ ϑ

ϑ0

p̄E(ϑ′) dϑ′ =

∫ ϑ

ϑ0

pE(ϑ′) dϑ′
∫ ϑmax

ϑ0
pE(ϑ′′) dϑ′′

(4.15)

Its inverse P inv
E (RND) provides the random number X = ϑ distributed according to

pE(ϑ).

X = P inv
E (RND) (4.16)

In case it is impossible to form P inv like in the case of pE(ϑ), it is reasonable to use

a discrete approximation P̃ inv of P inv.

RND
P̃ inv

−→







X0 for RND ∈ [0, 1
n
[

X1 for RND ∈ [ 1
n
, 2

n
[

· · ·
Xn for RND ∈ [n−1

n
, 1[

(4.17)

The inverse function can be represented by a vector with n+1 elements. This vector

is calculated by numerical integration of p̄E(ϑ). The integration is approximated by a

Riemann sum with respect to the mth regular subdivision on [ϑ0, ϑmax] with m ≫ n.

Whenever the Riemann sum exceeds 1/n, 2/n, 3/n, . . . (n − 1)/n at positions ϑ1, ϑ2,
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ϑ3, . . . , ϑn−1 an approximate value for Xi=0···n is calculated by forming

Xi =







1/2 (ϑi+1 + ϑi) for 0 ≤ i < n

1/2 (ϑmax + ϑn) for i = n.

In this way by sampling uniformly the interval [0, 1[ is possible to get an approximate

scatter angle ϑscatter = P̃ inv(RND). A discretization with ϑ0 = 0, ϑmax = π, n = 5000

and m = 10 n yields reasonable results. The formation of this vector Xi is repeated for

different energies. Since the energy dependence of p̄E(ϑ) is not very strong, the used

energy separation of approximately 125 eV is reasonably small enough. Altogether, this

requires the storage of less than 106 values and provides a very fast way to calculate

the scatter angle ϑscatter. The energy of the scattered photon is calculated easily by

applying equation (4.11).

4.2. Simulated particle detection

The focus of the simulations is the incorporation of patient scatter into the system

matrix. The simulated model of the scanner uses simplified detectors. Photons that

hit the detector surface and exceed a certain energy threshold are counted as being

detected. Together with dead time (which is not simulated), this leads to an over-

estimation of the absolute number of counts when compared to more realistic scanners,

but should give good insight into relative distributions which was important for the

evaluation of the proposed compression scheme. In some simulations Gaussian energy

blurring

Eblurred = E + δE (4.18)

was applied to the energy of the photons before they hit the detector surface and were

thresholded. δE was Gaussian distributed around mean 0 with standard deviation

σ = R
√

mec2
√

E
2
√

2 ln 2
and with the energy resolution R at E = mec

2 = 511 keV.

4.3. Variance reduction techniques

Although the previously discussed way to simulate photon transport in the phantom

is quite fast, the number of useful LORs per emitted photon pair is rather small. Only

a small fraction of the started photons hit a detector, most leave the phantom without

ever passing the detector ring or are scattered and not detected because the energy
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drops below the threshold of the detectors . The number of detected events is limited

even more because two photons are needed to form a coincidence. The goal is therefore

the improvement of the fraction of detectable coincidences. In order to achieve this,

two different variance reduction techniques were used. These techniques favor certain

outcomes (here the detection of a coincidence) over outcomes that are not wanted or

that do not carry useful information (here photons that leave the simulated volume

without being detected or which are absorbed). These variance reduction techniques

are inspired by [Haynor et al., 1990, 1991].

4.3.1. Forced detection

The first technique mostly improves the number of detected scattered events and is

based on the method of importance sampling. In importance sampling, a given prob-

ability distribution is replaced by an alternative probability distribution that favors

wanted outcomes. The resulting bias is removed by the normalization of the outcome

with the correct weight. Translated into the problem of reducing the variance of the

detected coincidences, favorable outcomes are detected coincidences. Forced detection

improves therefore the detection of a coincidence by improving the detection of single

photons.

For a simulated photon in the phantom (either just created or already scattered) four

possibilities exist: (a) either it escapes and is detected, (b) the particle escapes without

detection, (c) the particle does not leave the phantom, but its energy drops below the

lower energy threshold of the detectors2 or (d) the particle stays in the phantom with

energy larger than the energy threshold. While the three first possibilities represent

final states of a particle, the last represents an intermediate state. The first outcome

is wanted, the second and third are not wanted and the last is undefined, but has to

be pursued due to this reason.

Since case (a) and partially case (d) are favorable, it is reasonable to ensure that

photons only leave the phantom in the direction of the scanner ring(s) and that photons

are forced to stay in the phantom. While the first is always favorable, the second is

only favorable to a certain degree. The number of interactions inside the phantom

(scatter order) of the modified simulations should not increase considerably the average

scatter order in the original simulation without variance reduction techniques, because

otherwise too much time is spent on the simulation of rarely occurring events. This

suggests to link the modified simulation somehow to the original simulation. This is

done as follows:

2Photo electric absorption is treated like a photon of zero energy.
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In an original simulation a photon is traced through the phantom. During its way

copies of the photon are created with correct weights that are forced to interact within

the phantom and scattered in directions that lead to a hit on the detector ring(s).

These forced photons are counted. When the original photon leaves the phantom, the

tracing of this photon ends and the photon is discarded to avoid double counting.

The interaction forcing inside the phantom can be achieved by using (4.7):

l̂ = − ln (1 − RND · (1 − exp (−x̂leave))) with x̂leave =

C∑

i

∆C
i µi (4.19)

Here x̂leave is the attenuation path length of the photon that would leave the patient

on a straight line C. In contrast to (4.8), the right part of equation (4.19) also depends

on the linear attenuation coefficients of the voxels (in x̂leave). It is therefore necessary to

calculate x̂leave before this interaction forcing is done. A random number RND ∈ [0, 1[

always enforces an interaction in the phantom somewhere on the line C. The position

of the next interaction is then determined in the same way as in section 4.1.2 by

reducing successively the attenuation path l̂ by ∆C
i µi.

The forcing of the scattered (copied) photon in the direction of the detector ring(s)

is done in the following way. First the azimuthal angle ϕ is chosen randomly from the

interval [0, π[. This specifies a plane of interaction. Usually this plane of interaction

intersects with the detector ring(s). Depending on the location and direction of the

plane relative to the scanner, it is possible that the plane intersects along two segments

(usually most likely for photons that are scattered inside the scanner), along one

segment (when the plane is approximately transversal) or not at all (only possible

when the photon is scattered outside the scanner and the plane is approximately

transversal). One example of the most likely case of two intersecting segments is

shown in Fig. 4.4(a).

For simplicity the plane in Fig. 4.4(a) is aligned along the symmetry axis of the

scanner, but in general this is not the case. When the scattering angle ϑ is chosen in

such a way, that the photon travels towards these segments, and no further scattering

occurs, the photon hits the scanner surface. The segments are computed by calculating

the intersection points of the two rings that define the inner opening at the front side

and the back side of the scanner. This results in up to four points on the plane of

interaction. The correct angle intervals are determined by a case differentiation. The

scattering angle was chosen according to the integral Klein-Nishina formula3 in these

3Here, integral Klein-Nishina formula means that the differential Klein-Nishina is integrated over ϕ
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(a) Sideview of the scanner Instead of sampling the integral
Klein-Nishina distribution in the interval [−π, π[ it is only sampled
in the intervals ∆α and ∆β.
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(b) Forced detection Instead
of photons of the original simu-
lation (arrows), copied photons
are counted (dashed arrows).

Figure 4.4.: (a) direction forcing and (b) the calculation of the weight of the forced
photons. In (b) each rectangle represents an interaction. Dashed lines rep-
resent forced photons, and the solid line represents the original simulation.
The corresponding probabilities can be found in equation (4.24).

interval(s).

A photon inside the scanner can always be forced in the direction of the scanner and

also for a photon outside the scanner this is often the case. The code should therefore

also be suited well to simulate out of field of view (FOV) scatter. The two proposed

changes must be inserted in the simulation process without introducing any bias. In

Fig. 4.4(b) it can be seen how this is achieved. First, when the photon is started, it

is checked whether it would hit the surface of a detector if not scattered. If this is the

case, a hit is stored using the weight p0 = pleave accounting for the probability of this

event. Then a copy of the original photon is forced to interact during its passage in the

phantom and after sampling randomly ϕ, the scatter angle ϑ is sampled as described

ensuring a direction towards the detector ring surface. The weight of this photon has

(see section 4.3.1).
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to be adapted for the probability that (b) the photon interacts within the phantom

(pint), (c) the process is a Compton scatter and not a Photo effect (or Rayleigh, which

at present is not handled) (pratio), (d) the probability that the photon is scattered

in the direction towards the scanner ring (pdir) and (a) no further interaction occurs

(pleave).

a) pleave(x,p) = exp (−x̂leave(x,p)) (4.20)

b) pint(x,p) = 1 − pleave(x,p) (4.21)

c) pratio(x, E) =
µCompton(x, E)

µtotal(x, E)
(4.22)

d) pdir(x,p; ϕleave) = (see text below) (4.23)

Here x̂leave(x,p) is again the attenuation path along the straight way of the unscat-

tered photon (starting at position x with momentum p until it leaves the phantom).

The change of the weight due to the change of the scattering angle (pdir) is basically

the ratio of the gray area in Fig. 4.4(a) and the ”white+gray” area being two times the

integral of the integral Klein Nishina distribution. In Fig. 4.4(b) it can be seen how

photons of higher scatter order are forced to be detected. While the original photon is

tracked in a normal fashion, directly after each interaction a copied photon is forced

to interact on its way through the phantom. The scatter angle is chosen from those

that guarantee a hit on the scanner surface. The weights in Fig. 4.4(b) are:

pn =







pleave(x0,p0) for n = 0

pint(x0,p0) pratio(xf , Ef) pdir(xf ,pf ; ϕleave) pleave(xf ,pleave) for n = 1
(∏n−1

i=1 pratio(xi, Ei)
)
pint(xn−1,pn−1)

×pratio(xf , Ef) pdir(xf ,pf ; ϕleave) pleave(xf ,pleave) for n ≥ 2 .

(4.24)

One emission can therefore lead to several ”detected” coincidences of photons of usu-

ally very small weight. This forced detection scheme therefore introduces a correlation

between the counts of different LORs.

4.3.2. Stratification

So far, the quality of the estimate for the scattered detected events is increased con-

siderably. The corresponding estimate for the unscattered photons, however, is almost
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not improved at all. The sole usage of forced detection leads to a disproportionate

emphasis on scatter coincidences.

The reason why rather few coincidences that are not scattered are detected is due to

the fact that the uniformly sampled starting direction (equation (4.3)) of most photon

pairs is not directed towards the detector ring. This uniform sampling is therefore

highly inefficient. In order to improve the sampling, the set of all starting angles was

divided into NΩ disjoint subsets Ωi, called stratification cells. A starting probability

ni ∈]0, 1] with
∑

i ni ≡ 1 and a starting weight wi are assigned to each subset with

index i. The starting probability ni is the probability that the starting angle lies in

the corresponding cell i. This allows us to increase the probability that a photon

pair is started in certain directions while the probability for other directions (like in

z-direction, the direction of the scanner axis) can be decreased. The predefinition of

the starting weights

wi =
Fi

ni

(4.25)

with

Fi =
|Ωi|
4π

with |Ωi| def
=

∫

Ωi

dΩ and
∑

i

|Ωi| = 4π (4.26)

avoids any bias. While heuristically chosen ni (large n for directions approximately

towards scanner ring and small n for directions close to z-axis) can already result in a

strong acceleration of the code, it is possible to maximize the acceleration for a given

set of stratification cells {Ωi} by minimizing the variance σ2 ≡ σ2(Σy) of the sum of

all detected coincidences

Σy ≡
NL∑

j=1

yj =

N̆∑

k=1

w̆k . (4.27)

Since usually stratification is used together with forced detection, it can happen

that multiple small weighted coincidences are detected for a single emission only. Also

it is important to notice, that w̆k is the weight of a detected coincidence, therefore

w̆k = w̆photon1
k w̆photon2

k and not the weight of single photons in contrast to section 4.3.1.

It is shown in appendix A.2 that for reasonable large N̆ (N̆=total number of detected

counts) the variance of the detected counts can be approximated by the sum of the
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squared detected weights w̆

σ2 ≈
N̆∑

k=1

w̆2
k . (4.28)

Furthermore, it is possible to estimate the variance σ2 for arbitrary ni, wi based on

previously4 recorded weights w̆P
i,k (kth weight from stratification cell i) and the number

of the corresponding emissions NP
i from cell i.

σ2 ∝
∑

i

ni

NP
i

∑

k

(wiw̆
P
i,k)

2 (4.25)
=

∑

i

1

ni

F 2
i

NP
i

∑

k

(w̆P
i,k)

2

︸ ︷︷ ︸

≡π2
i

=
∑

i

π2
i

ni

(4.29)

Equation (4.29) assumes that the starting weights of the detected weights w̆P
i,k are

equal to one (for this reason NP
i can be used). This is not a restriction. For non-

uniform starting weights, it is possible to simulate the particles with uniform starting

weights, then store w̆P
i,k (for stratification purpose) and later multiply the weights with

the non uniform starting weight in order to restore the initial simulation.

It is possible to find ni that minimize σ2 by minimizing

∑

i

π2
i

ni
subject to

∑

i

ni = 1 . (4.30)

Equation (4.30) can be solved with the help of Lagrange parameters. The solution

is

ni =
πi
∑

i πi
. (4.31)

The new starting weights wi can be calculated with the help of equation (4.25). The

optimal number of emission per cells ni can be therefore calculated after at least a first

simulation was performed that resulted in w̆P
i,k and NP

i . In a second run the starting

angles and starting weights are then chosen according (4.31) and (4.25). From then

on it is in principle possible to update w̆P
i,k and NP

i after each started photon pair and

calculate optimal ni and wi based on more accurate simulations. Since this update

also requires some calculations and therefore computation time, a reasonable update

interval was 100-500 emissions. This interval should be also chosen depending on the

4The superscript P stands for previously, and ˘ for recorded.
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number of stratification cells and the number of initially simulated emissions in the

first run.

The first run should result in a sufficient number of recorded particles in all stratifica-

tion cells in order to provide a reliable estimate. Although the subsequent simulations

are used to improve the accuracy of w̆P
i,k and NP

i , this first estimate needs to be good

enough to avoid a totally wrong assignment of ni.

The Monte Carlo code should be optimized for system matrix calculations. This

implies that the activity is usually not distributed over the whole phantom, but located

in some well defined small volume representing a voxel or other basis function. This

means that it is easy to predict starting directions that can result in direct counts and

starting directions that will never lead to direct counts. It is reasonable to divide the

starting directions into cells that do not result in direct coincidences and into cells

that result primarily in direct coincidences. It is not difficult in the case of voxels to

calculate the maximal angle ϑmax below which only scattered coincidences can occur

(Fig. 4.5).

The number of cells is chosen to be rather small, since also very high noise matrices

(with less than 104 emissions/voxel in the case of 2D scanners) should be possible to

simulate. More stratification cells require a larger number of simulated emissions in

the first run. In order to have fewer cells, and for simplicity, only ϑ (and not ϕ) was

used to define the border between neighboring cells.

Ωi = [ϑi−1, ϑi] × [0, 2π] ϑi ∈ ]0, π/2] (4.32)

Due to the fact that two photons are started in opposite directions, it is enough

to sample ϑi ∈ [0, π/2[ and ϕ ∈ [0, 2π[. Larger intervals would result in redundant

information. In the simulations usually only five stratification cells were used together

with 1000-2000 emitted photon pairs in the first run. This resulted in good enough

estimates of w̆P
i,k and NP

i even in the case of ideal one-ring scanners with very low

scatter fractions below 5%. Due to the requirement that sometimes matrices of very

bad statistics are to be simulated, it is necessary to bias the number of starting photon

pairs already in the first run. This can be done without violating (4.25) by choosing

ninitial
i =

1

2

(

Fi +
1

NΩ

)

. (4.33)

Since the cells that can lead to direct coincidences are smaller than the other cells,

this choice improves the number of detected direct coincidences.
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only scattered

possible
coincidences

both

ϑ

scanner axis

ϑmax

Figure 4.5.: Randomly positioned photon pairs within the boundary of the marked
voxel started into directions ϑ < ϑmax can only be detected when they
were scattered.

A method to avoid inefficiently small weights or very large weights of the simulated

photons, weight control [Haynor et al., 1990, 1991] was not implemented. This method

can be used to further increase the efficiency.

4.4. Implementation and parallelization

The Monte Carlo code was implemented in C++ [Schildt, 1998, 2000, Stroustrup,

2000]. System matrix calculation and sinogram calculation is parallelized using the

parallel virtual machine library, PVM 3.4.4 [PVM 3.4.4] using an extension called

PVM++ of Wilhelmi [2001-06-27], a C++ - library providing convenient wrapper

classes for PVM. The simulations were parallelized by dividing the set of voxels into

disjoint sets. If this was not possible (like for sinograms of single voxels, or if the

number of voxels was not a multiple of the number of processors), the emission of

some voxels were distributed amongst the processors. The simulations usually ran on

a 16 processor cluster with identical processors. The lack of load balancing therefore

did not influence the performance.
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The key to high quality and quantitative imaging is a correct internal model of the

scanner and the relevant physical processes in the patient. This includes scatter in

inhomogeneous phantoms/patients, the simulation of different radionuclides, and tem-

porally varying patients (for example breathing, heart beat). Monte Carlo simulations

are very well suited for this task. Proposals how to include Monte Carlo simula-

tions into the reconstruction algorithms of emission tomography have recently been

made. The proposals are considering SPECT [Beekman et al., 2002, Buvat et al.,

2003, Lazaro et al., 2004a,b, 2005], small animal PET [Rafecas et al., 2003, 2004a,b,

Shoukouhi et al., 2004, Shoukouhi, 2005] or human PET systems [Levin et al., 1995,

Ollinger, 1996, Watson, 2000, Beekman et al., 2002, Werling et al., 2002]. Ideally, the

Monte Carlo simulations are used directly to calculate the matrix elements.

In the case of SPECT [Buvat et al., 2003, Lazaro et al., 2004a,b, 2005] and small

animal PET [Rafecas et al., 2003, 2004a,b, Shoukouhi et al., 2004, Shoukouhi, 2005]

the incorporation of scatter directly into the system matrix was achieved, because the

matrix was small enough to be stored. The storage is necessary, because on-the-fly

Monte Carlo simulations of the matrix elements during the reconstruction are too time

consuming. The reconstruction of images for human PET scanners was improved by

using Monte Carlo simulations in the projector of the reconstruction algorithm but not

in the back-projector. The storage of the system matrix of a human scanner including

scatter caused by the patient is not possible due to the high scatter fraction, the missing

symmetry, and the large amount of detectors and voxels. In this chapter a novel way

how to incorporate Monte Carlo based scatter into the reconstruction algorithm is

presented. This is achieved by using a compressed matrix that can be stored in

memory. A compression scheme for the system matrix is introduced that can achieve

a sufficient compression and on-the-fly read-out during the reconstruction. This system

matrix including scatter can be used in any iterative reconstruction algorithm.
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5.1. Goals and requirements

The aim of the matrix compression is the storage of the matrix in the memory. In

addition to this important goal there are several other requirements that have to be

considered when thinking about a compression scheme. The uncompressed matrix is

orders of magnitude larger than the available memory. A simultaneous compression of

the matrix is therefore not possible. The compression scheme should allow a sequential

calculation. This means that it should only be necessary to keep a small part of the

original (uncompressed) matrix in the memory at the same time. Another requirement

is the speed of the compression and extraction (read-out). Here, the read-out speed

is more limiting than the compression speed, because the matrix must be read out at

each iteration step. The read-out speed should be at least faster than the simulation

of the matrix. Preferably, the read-out is much faster. Depending on the number

of iterations, it might be still reasonable that the compression is slower than the

simulation, but of course also here the time needed for compression should in general

not exceed the simulation time. Lastly, the compression scheme should not (or only

very weakly) affect the resolution of the scanner and in good approximation correctly

describe the matrix.

5.2. Properties of the system matrix

Not only do the aforementioned requirements influence the choice of the compression

method, but also the properties of the system matrix. The system matrix consists of

many matrix elements that are non-zero due to scatter and a small percentage of non-

zero elements that also comprise direct (unscattered) counts. Due to the large values

of the latter elements, they dominate the sinogram. The values of the scatter-only

elements are much smaller. However, due to the much larger number of such elements

they also influence the reconstruction.

In Fig. 5.1 sinograms of single voxels are shown. These unit sinograms represent the

columns of the system matrix. The sinograms are depicted as gray value images. A

sinogram is usually shown in a (ρ, ϕ) coordinate system: the projection angle ϕ varies

vertically and the distance ρ (or bin number) varies horizontally. A horizontal line in

Fig. 5.1 is therefore a projection at a fixed angle. The sinograms were obtained by

simulations with 108 emissions in an inhomogeneous phantom using variance reduction

techniques. Typical projections of neighboring voxels at the same angle ϕ are shown

in Fig. 5.2. The sinusoidal form of the sinograms in Fig. 5.1 can be obtained by a

Radon transform (and therefore independently of the patient), but the value depends
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on the attenuation in the patient.

The scatter-free unit sinograms (only photons of scatter order zero are used to

form coincidences) are strongly peaked (see Fig. 5.2(a)). The position and the value

(logarithmic scale!) of the maximal bin is clearly changing for neighboring voxels. The

part of the unit projections that are caused solely by scattered photons (the scatter

tails) in the projections are much broader (Fig. 5.2(b)). The maximum of this unit

scatter projections is usually located at the position of the maximum of the scatter-

free projection. For unit sinograms of voxels at or close to the border of the phantom

this might not always be true (Fig. 5.1(d)), but for the vast majority of the voxels

inside the patient boundary this applies. The shape of neighboring voxels only changes

slowly (see Fig. 5.2(b)). The shape is not shift-invariant (compare Fig. 5.1(c) and

Fig. 5.1(d)) and also inhomogeneity inside the phantom can influence the shape of

the scatter sinograms (see Fig. 5.1(b) or Fig. 5.1(c)).

All these figure are obtained by simulations using a very high number of photons and

applying variance reduction techniques. System matrices that are calculated by Monte

Carlo simulations within a more realistic time (and often also measured sinograms)

are much noisier. In low photon number simulations only very few single scattered

photons are simulated. This leads to very noisy scatter projections (Fig. 5.3).

5.3. Compression scheme

Fig. 5.3 suggests to save the matrix in a sparse manner. Sparse storage means that

only non-zero elements of the matrix are stored. For the following reason the obtained

reduction in size is not large enough. A 3D scanner has usually at least around

ND ≈ 104 detectors and should provide volume imaging with around NV ≈ 106 voxels.

The number of matrix elements that are non-zero due to unscattered coincidences can

be estimated by Ndirect ≈ O(NVND) = 106 ·104 = 1010. Therefore, it is already difficult

to store the direct coincidences of the matrix in a sparse manner. The sparse storage

of the whole matrix of 3D scanners with present computers is not feasible.

The total number of matrix elements N is given by N ∼ O(NVNL) where NV is

the number of voxels (or number of columns of the matrix) and NL the number of

lines of response (LORs) (or number of rows). A substantial reduction of the size of

the matrix requires that both the number of columns and the number of rows of the

matrix are effectively reduced.

The requirements and properties of the matrix (section 5.2) rule out some approaches

that appear reasonable at first glance. All approaches based on (rotational) symmetries

45



5. System Matrix Compression

ϕ
ρ

(a) scatter-free

ϕ
ρ

(b) scatter only

ϕ
ρ

(c) central position

ϕ
ρ

(d) position at the
border

Figure 5.1.: Typical sinograms of single voxels. Fig. (a) and (b) show scatter-free
and scatter-only sinograms of the same single voxel, respectively. Fig. (c)
and (d) show both scatter and direct counts, (c) is a sinogram of a rather
central voxel and the last image (d) shows the sinogram of a single voxel
placed at the border of the phantom (but not at the border of the field of
view). Gray value scaling was applied in order to visualize scatter in (b),
(c), and (d): the whole dynamic range of gray values is used for a subset
of sinogram values (windowing). Small values are visualized by black and
large values by white.

will fail due to to the asymmetric patient. Possible approaches to compress the matrix

can be basically divided into three schemes. In one scheme single rows or groups of

few rows of the matrix are compressed simultaneously. This is not reasonable, because

it is difficult to change the Monte Carlo simulations in such a way that the rows can

be simulated successively. In a second scheme the whole matrix is compressed at once.

This is not possible due the memory constraints during the compression. The last

scheme comprises the compression of single columns or groups of a small number of

columns. Single columns (or a small number of columns) can be simulated directly.
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Figure 5.2.: Projections of sinograms of single voxels that are in the vicinity of each
other. Two voxels are placed next to each other and a third voxel is placed
3 (or 4) voxels from the others.

Therefore symmetry considerations (like in Johnson [1997] or Kehren [2001]), com-

pression schemes that make use of the transformation of the whole matrix (like straight

forward Fourier transform or wavelet transforms) or statistical methods that need the

whole matrix (like principal component analysis of the whole matrix) are not good

choices.

The presented method compresses successively small groups of columns of the system

matrix (without using symmetries). In the next sections this compression method is

described. To motivate the final method, first the basic idea is explained.

5.3.1. Principle

As discussed, the compression scheme should provide a way to effectively compress

the matrix in the voxel and in the LOR domain. A compression in voxel space (i.e. a
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Figure 5.3.: A projection of a typical high and low statistic simulation using variance
reduction techniques. In the low count simulation it is difficult to recognize
the shape of the scatter tail.

reduction of the number of columns of the matrix) is problematic to achieve without

degrading the resolution. Therefore the part of the matrix mainly responsible for

the resolution (or small structures respectively high space frequencies), namely the

scatter-free part of the matrix, is separated from the rest of the matrix. This can be

done and does not infringe the aforementioned requirements, because the scatter-free

or attenuation matrix A can be calculated on-the-fly or be stored due to its very sparse

nature [Kehren, 2001].

This suggests to decompose the matrix M like

M = A + S, (5.1)

where S is the scatter only part of the system matrix M . The matrix A should factor in

geometrical effects, attenuation, and detector efficiency and normalization (if the data

is not corrected for it). The matrix A can be calculated approximately by conventional

methods [Kehren, 2001]. The remaining goal is therefore the reduction of the storage

size of matrix S.

The proposed compression of matrix S consists of two steps: A compression of the

lines of response (LORs) for a given voxel and a compression in the voxel domain. In

the following the compression for a single ring scanner (one transversal sinogram) is

explained. The compression in the LOR domain is based on the assumption that the
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left and right parts of the projections of the unit scatter sinogram of a single voxel can

be approximated well by a function of few parameters. The sum of a Gaussian and an

exponential function (see Fig. 5.4) was chosen. For voxels inside the patient, Monte

Carlo simulations (see Fig. 5.2) as well as measurements of rod sources at different

positions inside a phantom [Bergström et al., 1983] show that this is a good choice.

The left (L) and right (R) part of the scatter projections are described by functions

g
L/R
ϕ,x (ρ) = h

L/R
ϕ,x (ρ − ρ0) defined by

hL/R
ϕ,x (ρ) = exp

(
aL/R

ϕ,x + bL/R
ϕ,x ρ

)
+ exp

(
cL/R
ϕ,x + dL/R

ϕ,x ρ2
)
, (5.2)

where ρ0 = ρ0(ϕ,x) is the geometrically expected maximum of the unit scatter projec-

tion at the angle ϕ for a voxel at position x ≡ (x1, x2, x3)
T (see Fig. 5.4).

The geometrically expected maximum ρ0 is determined by assuming that the maxi-

mum of the projections of the direct and scattered counts coincide. Since the position

of the maximum of the unscattered (direct) counts can be determined by a simple

Radon transform, ρ0 can be calculated by geometrical considerations.

This assumption fails in the case of voxels that are located outside the phan-

tom/patient, because there the real maximum of the scatter projections does usually

not coincide with the geometrically expected maximum and a stronger deviation of the

Gaussian/exponential shape can be expected. In the following it is assumed that the

patient boundary can be determined accurately as it is the case for PET/CT scanners

and ρ0 will be calculated by the Radon transform. Voxels that are outside the patient

boundary need not to be reconstructed, because by definition no activity is to be found

there. The wrong position of the geometrically expected maximum has therefore no

influence and in addition this leads to a reduction of the number of columns of the

system matrix. Scatter from outside the FOV can be included directly in the system

matrix by adding columns to the system matrix that represent unit sinograms of large

areas (for example sectors) outside the FOV. These columns consist only of scattered

coincidences and need not to be compressed because of the small number of these vox-

els. The incorporation of scatter into the system matrix therefore offers a consistent

way of out of FOV scatter treatment.

The compression is achieved by only storing the parameters aϕ,x, bϕ,x, cϕ,x, and dϕ,x

that describe these Gaussians and exponentials (see equation (5.2)). The number of

parameters needed to describe the matrix S is therefore so far (with nϕ being the

number of projections):

n2D
L = 8nϕNV. (5.3)
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Figure 5.4.: Radon transform of the center of a voxel yields the geometrical expected
maximum of a projection of the scatter. The scatter tails are approxi-
mated by the sum of an exponential and a Gaussian.

A characteristic of the system matrix described in section 5.2 provides the idea for

the additional compression in voxel space. It can be assumed that the shape of the

unit scatter sinograms (described by the parameters) varies more slowly from voxel to

voxel than the counts in the unscattered sinograms of matrix A or the position ρ0 of

the geometrically expected maximum of the scatter. Since the latter quantities can be

calculated on-the-fly, a reduction in the number of parameters leads directly to a reduc-

tion in memory consumption. This reduction is achieved by B-spline approximation

of the parameters in the voxel domain. In the present implementation B1-spline and

B2-spline curves are chosen, because these continuous functions are based on B-spline

basis functions [Unser, 1999] that have the smallest support while being still contin-

uous. The small finite support is important for a reasonable read-out speed during

reconstruction. In the following, the term kernel is used for a multidimensional (here

2D or 3D) B-spline-basis function (see Fig.5.5). B-spline curves that are composed of

fewer kernels than voxels yield the claimed reduction in memory consumption.

The functions g
L/R
ϕ,x (ρ) are approximated by

gL/R
ϕ,x (ρ) = hL/R

ϕ,x (ρ − ρ0) ≈ h̃L/R
ϕ,x (ρ − ρ0)

= Bn(x) ⊗
∑

κ

h̄L/R
ϕ,κ (ρ − ρ0) δ(x − xκ) . (5.4)

Here δ is the delta function, ⊗ the convolution, and κ is a (vector-) index specifying
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(a) B1-spline function constructed by using B1-
spline basis functions

(b) B2-spline

(c) Discrete B1-2D-spline kernels in the voxel domain

Figure 5.5.: B-spline as a superposition of B-spline basis functions. Low order B-
spline functions (like B1 or B2) are evaluated by adding only few basis
functions at a given location.
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Figure 5.6.: Schematic diagram showing the compression and the decompression of
the system matrix (left: principle, right: used improved scheme) and
explaining the formation of a compressed parameter sinogram (upper text)
and the extraction of one unit sinogram from the compressed matrix (lower
text).

a B-spline node. Equation (5.4) is the convolution of a support limited kernel with a

weighted comb function. For a given voxel v at position x this summation is reduced to

few terms only (see figure 5.5). Instead of aϕ,x, bϕ,x, cϕ,x, and dϕ,x only the parameters

aϕ,κ, bϕ,κ, cϕ,κ, and dϕ,κ that describe h̄
L/R
ϕ,κ (ρ−ρ0) need to be stored. Since the number

of B-spline nodes nκ is smaller than the number of voxels nv, this leads to a reduction

of the parameters.

These parameters must guarantee good approximate functions h̃
L/R
ϕ,x (ρ − ρ0). The

left pictogram in Fig. 5.6 shows how this could be achieved. Firstly, the projections

are parametrized. Since the parameters vary slowly, they are then approximated by

a B-spline in the voxel domain. The compression of a matrix with this basic method
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5.3. Compression scheme
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Figure 5.7.: Unit projections of single voxels inside a kernel are shifted in such a way
that the geometrical expected maxima coincide.

would already result in a compressed scatter matrix of sufficiently small size. The

method must however be modified in order to meet other requirements of section 5.1.

5.3.2. Increasing robustness of compression scheme

The compression consists in finding good approximate values for the as, bs, cs, and ds

that define the functions h̄
L/R
ϕ,κ (ρ−ρ0). This necessarily involves a fitting algorithm and

the reduction of the voxel grid to the coarser spline node grid. The fitting algorithm

can lead to unreasonable results if not enough data points or too few trustworthy data

points are provided. This problem is strongly reduced by collecting and aligning (Fig.

5.7) the unit scatter sinograms of the voxels for a given kernel and using these collected

data for fitting. Let the set

ωv,ϕ = {(ρl; yv,ϕ,l)}l (5.5)

represent a discrete (arc corrected) unit scatter projection at angle ϕ of voxel v. The

pair (ρl; yv,ϕ,l) represents the position ρl and value yv,ϕ,l of bin l of such a projection.

Instead of using only single projections as input for the fitting algorithm, projections

at angle ϕ of all voxels vm = v1, . . . , vnκ
that are located inside kernel κ are aligned

(shifted by the geometrically expected maximum ρ0
vm,ϕ of voxel m) and collected.
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5. System Matrix Compression

This collection Ωκ,ϕ of data (a ”collected projection”) is then processed by the fitting

algorithm.

Ωκ,ϕ = {(rκ,ϕ,α; yκ,ϕ,α)}α ≡
nκ⋃

m=1

{(ρl − ρ0
vm,ϕ; yvm,ϕ,l)}l (5.6)

Here, a new index α ≡ lnκ + m is introduced. Equation (5.6) shows such a ”collected

projection”. The available information for fitting is strongly increased. This allows

stable fitting even if the unit scatter sinogram of single voxels are extremely noisy.

A drawback is however the large amount of points which results in very long fitting

procedures if the data is not preprocessed.

5.3.3. Increasing compression speed

Even though this large increase of available data points facilitates stable fitting for

matrices of very bad statistics, the high number of available points leads to a very

long fitting procedure. A strong acceleration was achieved by grouping the collected

data points of a projection into intervals I(t) = [ρ(t−1), ρ(t)[ before fitting (see Fig.

5.8). Each interval was represented by a point at weighted mean position ρ(t) with the

weighted mean number of counts y(t) and a weighted mean ”standard deviation” σ(t).

Σ(t)
κ,ϕ =

∑

α∈G(t)

Bn(xm − xκ); ρ(t)
κ,ϕ =

1

Σ
(t)
κ,ϕ

∑

α∈G(t)

Bn(xm − xκ)ρα,ϕ

y(t)
κ,ϕ =

1

Σ
(t)
κ,ϕ

∑

α∈G(t)

Bn(xm − xκ)yα,ϕ ; σ(t)
κ,ϕ =

1
√

y
(t)
κ,ϕΣ

(t)
κ,ϕ

(5.7)

Here G(t) is the set of all points that are located in the interval I(t). It is important

to notice that σ
(t)
κ,ϕ is not a standard deviation but a heuristic way to account for the

importance of a LOR by using information about the location relative to the kernel

κ and the number of the detected counts y
(t)
κ,ϕ. The intervals I(t) close to ρ = 0 were

chosen to be smaller than the intervals at large |ρ|. In this way it was possible to

obtain a good fit close to the steeper and more important maximum at ρ = 0 while

the number of points is reduced considerably. The borders of the intervals I(t) were

chosen to be

ρ(t) ∝ − ln (1 − t

tmax
) with t ∈ N0 ∧ t < tmax . (5.8)
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5.3. Compression scheme

0 ρ

Figure 5.8.: Pictogram showing the reduction of points to be fitted by grouping them
into intervals. In the lower part an example of two projections (one black,
the other white) is shown. The projections are aligned in such a way that
the geometrical expected maxima coincide (at ρ = 0). For each interval a
mean point is calculated (upper part, gray circles).

The proportionality factor was chosen so that around tmax = 15 to 25 points were

used to be fitted. The fitting was performed by the Levenberg-Marquardt algorithm

using the GNU scientific library [Galassi et al., 2006]. The fewer points, the faster the

Levenberg-Marquardt algorithm [Press et al., 2002]. A minimum of points should be

used in order to correctly describe the scatter.

5.3.4. Read-out

The extraction of the unit-sinograms from the compressed matrix (see Fig. 5.6U) was

achieved by evaluating the parametrized and shifted unit projections of all kernels κ

that cover the voxel x in question. These evaluated projections then are weighted

according to the position of the voxel inside the respective kernel and added to form

the extracted unit-projection (see equation (5.4)). All projections of the voxel then

form the unit-sinogram or column of the matrix.
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5. System Matrix Compression

5.3.5. Memory saving for 2D scanners and outlook for 3D-scanner

matrix compression

Using the described compression scheme, in total only

n2D
LV = 8nϕnxny (5.9)

parameters have to be stored. Here nxny is the number of B-spline kernels needed

to describe the 2D B-spline function. For a nR-ring 3D scanner with span=1 and

maximum ring difference RD=nR − 1 the number of parameters would be

n3D
LV = 4nϕnxnynz(nR + 1)nR (5.10)

under the reasonable assumption that the same or a very similar compression approach

can be used for oblique sinograms (for the definition of span or maximum ring differ-

ence see for example [Kehren, 2001, Fahey, 2002]). In contrast a discrete non-spare

storage of the matrix S would require the storage of

N =
1

2
nϕnbinsNV(nR + 1)nR, (5.11)

values. This corresponds to a compression ratio of

ratio =
8nxnynz

nbinsNV
. (5.12)

A significant reduction is therefore possible (NV ≫ nxnynz, nbins ≫ 8).

In 3D scanners there can in addition be oblique unit-sinograms and it is possible

that unit-sinograms have no direct coincidences. This might require a change of the

functions that describe such scatter projections, especially the geometrically expected

maximum has to be calculated differently for oblique sinograms. But the principle of

fitting of scatter projections and B-spline compression in the voxel domain should be

still feasible. In addition, some of these unit-sinograms might have so few counts that

they can be set to zero (see Fig. 5.9).
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5.3. Compression scheme

dcab

Figure 5.9.: Possible unit-sinograms for a voxel of a 3D scanner. (a) transversal
sinogram, (b) oblique sinogram with direct coincidences and (c) and (d)
transversal and oblique sinograms without direct coincidences. Depending
on the distance of the latter to the voxel, they might be neglected.
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6. Implemented Reconstruction

Algorithms

All implemented reconstruction algorithms are based on the maximum likelihood ex-

pectation maximization. This algorithm was chosen because it is well understood and

widely used. Accelerated (but not necessarily convergent) versions of it like ordered

subset expectation maximization are used in clinical scanners. Accelerated version of

ML-EM were not used in this work, however, because often they are not guaranteed

to converge and because the correct physical modeling of the scatter and not the con-

vergence speed should be investigated. All reconstruction algorithms used a uniform

starting image with 1’s in all voxels if not otherwise mentioned.

6.1. Monte Carlo maximum likelihood expectation

maximization

6.1.1. Full matrix

The full matrix approach is the most straightforward way to include scatter into the

reconstruction process. This is achieved by simulating uniform activity within voxels

and storing the obtained coincidences in the columns of the full matrix M and using

this matrix directly in the ML-EM reconstruction algorithm. The matrix M was

not stored in a sparse manner, because matrices with a higher number of simulated

emissions anyhow had a substantial non-zero fraction. The equations

Pfull : y(k+1) = Mx(k)

Bfull : x
(k+1)
i = x

(k)
i

NL∑

j=1

(

y⋆
j mji

y
(k+1)
j

)

. (6.1)

describe this algorithm. Here k stands for the iteration number, y is the measured
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6. Implemented Reconstruction Algorithms

(or in this case the simulated) sinogram, and M and mji the matrix and the matrix

elements respectively. The algorithm is divided into a projector Pfull and a back-

projector Bfull as described in section 3.2. The full matrix approach can only be used

in problems of reduced size like in the considered proof-of-principle single ring scanner

simulations. Otherwise the storage of the matrix would be impossible.

6.1.2. No scatter modeling

The same algorithm like in section 6.1.1 was used to investigate the performance of

ML-EM reconstruction without consideration of scatter. In that case the matrix M

in (6.1) was simply replaced by the scatter-free matrix A. The images that were

reconstructed using this algorithm were mostly used to identify and compare regions

where artifacts due to the incorrect scatter treatment occur.

6.1.3. Compressed matrix

Other images were reconstructed by using the compressed scatter matrix Ŝ. The

principle of this algorithm is shown in (6.2). Here U is the decompression operator.

PUC : y(k+1) = (A + (UŜ))(x(k))

BUC : x
(k+1)
i = x

(k)
i

NL∑

j=1

(

y⋆
j (A + (UŜ))ji

y
(k+1)
j

)

. (6.2)

The reconstruction was not performed by uncompressing the whole matrix at once

which (6.2) could suggest (and which would be not possible for larger problems). The

matrix was uncompressed in a column-wise manner. Equation (6.3) describes the

implementation.

y(n) = MULT(A, Ŝ;x(n))

y
′(n)
j =

y⋆
j

y
(n)
j

f (n) = TMULT(y′(n); A, Ŝ)

x
(n+1)
i = x

(n)
i f

(n)
i (6.3)

The first line of (6.3) describes the projector and the three other lines the back-
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6.2. Dual matrix maximum likelihood expectation maximization

projector. The operators MULT and TMULT that represent matrix and transverse

matrix multiplication with the compressed matrix (A, Ŝ) are defined as follows:

Y = MULT(A, Ŝ;x) : Y =
∑

i

xi

(

coli(A) + COLi(Ŝ)
)

(6.4)

X = TMULT(y; A, Ŝ) : [X]i =
〈(

coli(A) + COLi(Ŝ)
)

,y
〉

(6.5)

Here COLi(Ŝ) is the extracted (and uncompressed) column of compressed matrix

Ŝ for voxel i, coli(A) the ith column of A, and 〈·, ·〉 the inner product. The expected

geometrical maximum can be calculated by using the voxel index i (and therefore the

position of the voxel). In this way the projection can be aligned correctly before added

(see also section 5.3.4). In the compressed matrix algorithm only voxels of non-zero

density were used.

6.2. Dual matrix maximum likelihood expectation

maximization

Dual matrix expectation maximization was also implemented. This algorithm uses

different physics in the projector and in the back-projector. The back-projector is

based solely on the scatter-free matrix A alone and does therefore not include scatter.

The projector does model scatter. Scatter is incorporated in the projector by running

a Monte Carlo simulation at each iteration.

P ′ : y(k+1) = MC′(x(k))

BDM : x
(k+1)
i = x

(k)
i

NL∑

j=1

(

y⋆
jaji

y
(k+1)
j

)

(6.6)

There is no need to store a matrix including scatter, but the algorithm is not guaran-

teed anymore to converge. The algorithm (6.6) is also not ideal from a numerical point

of view. Especially for low count simulations, it is likely that the denominator y
(k+1)
j

(which is obtained by Monte Carlo simulation [MC′(x(k))]j) becomes zero for given

a index j, but the nominator y⋆
j aji is greater than zero. This is very likely especially

for LORs tangential to the phantom boundary. Simulations confirmed this effect and

therefore this algorithm was not further used. Instead, a slightly different algorithm

was used. The problem of a zero denominator was avoided by introducing a projector

61



6. Implemented Reconstruction Algorithms

that uses the scatter-free matrix A.

PDM : y(k+1) = Ax(k) + s(k)

BDM : x
(k+1)
i = x

(k)
i

NL∑

j=1

(

y⋆
jaji

y
(k+1)
j

)

(6.7)

with [A]ji ≡ aji

Here the sinogram s(k) = MCscatter(x
(k)) is calculated by a scatter-only simulation.

Like (6.6), (6.7) is still not guaranteed to converge, but the numerical problem of the

denominator becoming zero is avoided. The problem of convergence is based on the

relatively unpredictable behavior of the algorithm. Since the projector is changed at

every iteration step due to the Monte Carlo simulation, the progress made in one

iteration can be canceled partially in the next iteration. A similar problem arises

from the fact that projector and back-projector differ in terms of scatter, therefore

not leading to optimal search directions.

The first iteration was performed with s(0) ≡ 0 and a first guess of the activity and

the total number of emissions was obtained. Then a fixed fraction p of the guessed

emissions x
(k)
i were simulated in the following iterations. The obtained simulated

scatter sinograms s(k) were scaled by a factor 1/p in order to correct for the lower

number of simulated emissions.

6.3. A hybrid approach

In order to show the potential a stored compressed matrix, an algorithm that is a

mixture of the dual matrix and compressed matrix algorithm is introduced:

y(k+1) = c1(A + Scomp)x(k) + c2(Ax(k) + s(k))

x
(k+1)
i = x

(k)
i

NL∑

j=1

(

y⋆
j (aji + scomp

ji )

y
(k+1)
j

)

(6.8)

Here c1, c2 are constant parameters that must fulfill c1 + c2 = 1. Since this algo-

rithm was only introduced to show the additional flexibility which is obtained by the

compressed matrix, values c1 = c2 = 0.5 were chosen ad-hoc. Better values might be

found. Like in the dual matrix algorithm, in this algorithm the voxel index is only
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6.3. A hybrid approach

running over non-zero density voxels and the scatter sinogram s(k) was simulated using

a fraction p of the emission density x(k).
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7. Evaluation

7.1. Simulated phantoms and scanner geometries

In the simulations, different phantoms and scanner geometries were used. As a phan-

tom either an inhomogeneous cylindrical (phantom A and A’, Fig. 7.1, Table 7.1) or

a inhomogeneous generalized cylinder of elliptic cross section (phantom B, Fig. 7.2,

Table 7.1) was used in the simulations. The cylinder was placed in the center of the

scanner, but the elliptic cylinder was placed off-centrally. Directly at the border of

the phantoms intermediate density/activity voxel values were used in order to better

approximate the cylindrical shape (like the partial volume effect).

(80 voxel)

density activity

40 cm (80 voxels)

40 cm

32 cm

32 cm

2.0 cm x 2.0 cm

0.5 cm x 0.5 cm
to

1.5 cm

Figure 7.1.: Phantom A[A’]. Density: 0(outside) : 0.1[0.26](crosses) : 1(cylinder)
: 2[1.46](spots) g/cm3. Activity ratio: 0(outside,spots) : 1(cylinder) :
3(spots) : 5(spots) : 10(spots).

The density and the activity grid were always arranged in such a way that the center

of the scanner, of the density grid, and of the activity grid coincided. Phantom A’
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11.875 x 2.5 cm
(19 x 4 voxels)

50 cm
(80 voxel)

44 cm

36 cm

density activity

1.875 cm
(3 voxels)

1.25 cm (2 voxels)

50 cm (80 voxels)

Figure 7.2.: Phantom B. Density: 0(outside) : 0.26(crosses) : 1(cylinder) : 1.46(spots)
g/cm3, activity ratio: 0(outside,spots) : 1(cylinder) : 3(spots) : 6(spots)

phantom # of voxels voxel size (density) voxel size (activity) ⊘
A 80 × 80 × 1 5 × 5 × 100 mm3 5 × 5 × 6.45 mm3 32 cm
A’ 80 × 80 × 1 5 × 5 × 100 mm3 5 × 5 × 6.45 mm3 32 cm
B 80 × 80 × 1 6.25 × 6.25 × 100 mm3 6.25 × 6.25 × 6.45 mm3 44/36 cm

Table 7.1.: Phantom dimensions.

scanner # of rings # of detectors ⊘ detector ring depth
a 1 384 82.4 cm 0.645 cm
b 1 384 82.4 cm 10 cm

Table 7.2.: Scanner dimensions

setup phantom scanner # of projection bins # of projection angles
Aa A a 95/96 384
A’b A’ b 95/96 384
Ba B a 135/136 384
Bb B b 135/136 384

Table 7.3.: Simulated geometries.
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7.2. Measures used for quantification

differed from phantom A only in terms of density. The density in A’ was chosen in

such a way that it matched densities of bone and lung as defined in GEANT4. Two

single ring scanners were simulated. Scanner ’a’ was an idealized two-dimensional

scanner with a detector ring depth of 0.645 cm, scanner ’b’ was a scanner with a large

detector ring depth of 10 cm (see Table 7.2). The latter scanner was simulated in

order to investigate scanners with large scatter fraction or large span. Multiple ring

scanners were not simulated in order to allow the direct storage of the full matrix. The

number of detectors per ring was always 384 and the number of voxels was 80×80×1.

The dimension of the grid describing the density and the grid describing the activity

distribution differed for phantom B (see Table 7.1). The number of projection bins

was larger for phantom B, because more bins were needed to cover the larger field of

view.

7.2. Measures used for quantification

The outcome of the simulations and reconstructions is multidimensional (sinograms

and images). These outcomes should be compared with reference sinograms or images.

This can be accomplished by using a metric. The outcome and the reference can both

be represented by a vector (v and vref respectively). With this convention the following

metric can be defined:

(RK ,RK) −→ R (7.1)

(v,vref) −→ NRMSE(v,vref) ≡ 1

NE(vref)

√
√
√
√ 1

K

K∑

i=1

(vi − vref
i )2 (7.2)

with NE(vref) =
1

K

K∑

i=1

vref
i (7.3)

This metric NRMSE is called normalized root mean squared error and is applied to

reconstructed images and simulated sinograms. Whenever images are compared, this

metric is called xNRMSE and the expression sNRMSE is used to make clear that

sinograms are evaluated. A similar measure was used when there was the need to
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quantify the variance of a set of images {xα} (represented as a set of vectors).

(RK , · · · ,RK

︸ ︷︷ ︸

Nα times

;RK) −→ R (7.4)

({xα};xtrue) −→ NRMV
(
{xα};xtrue

)
≡ 1

NE(xtrue)

√
√
√
√ 1

K

K∑

i=1

σ2
i (7.5)

with σ2
i =

1

Nα − 1

Nα∑

α=1

(xi,α − x̄i)
2 (7.6)

x̄i =
1

Nα

Nα∑

α=1

xi,α (7.7)

The true image xtrue is used to scale the NRMV (normalized root mean variance).

Apart from these metrics gray value images and profiles are used to give further insight

into the local quality of the outcomes.

7.3. Verification of the Monte Carlo code

The Monte Carlo code (chapter 4) was compared against GEANT4 simulations using

setup A’b. The large detector ring depth was used because of the slow performance of

GEANT4. In both codes idealized detectors (no Gaussian filtering) were used and in

both cases Rayleigh scattering was neglected. In this way it was possible to check the

simulation of attenuation and scatter in the phantom/patient using the same physics.

In the GEANT4 simulations 108 positrons of zero kinetic energy were created. In

the YaPRA simulation 106 photon pairs were simulated using variance reduction tech-

niques. Both sinograms were then normalized and compared. The total number of

detected coincidences as well as unscattered coincidences agreed both within 1%. In

Fig. 7.3 it can be seen that the Monte Carlo code YaPRA describes correctly the geo-

metric effects. Fig. 7.4 shows the quantitative agreement between the two codes. Due

to the variance reduction techniques, Monte Carlo noise is suppressed stronger in the

YaPRA simulations (left part of the LOR profile). In the right part of Fig. 7.4 (LOR

profile bin numbers of 160 or higher) there is a good agreement between the results of

the YaPRA and the GEANT4 Monte Carlo code. That region includes coincidences

of unscattered photons. The oscillations occur, because sometimes only parts of the

detectors can be reached by photons without being scattered and sometimes the whole

detector can be reached.
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detector 1
de

te
ct

or
 2

(a) YaPRA
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 2
(b) GEANT4

Figure 7.3.: Simulated detected coincidences using YaPRA and GEANT4 of an off-
central single voxel with activity. White represents large values and black
small values. The same gray value scaling was applied to both figures in
order to show scattered coincidences. The dashed lines mark the profiles
shown in Fig. 7.4.

7.4. Compressed matrix

In this section the reconstruction of images using the proposed compressed matrix is

evaluated. The evaluation can be divided into three parts. The first part comprises

the comparison of the compressed matrix with an uncompressed reference matrix.

This reference matrix cannot be calculated exactly. Therefore, a matrix simulated

with a very high number of photon pairs is used instead. In the second part of the

evaluation, images reconstructed using the compressed and using the high statistic

matrix are compared. Further, images reconstructed with other methods like the dual

matrix approach or with the introduced hybrid method were evaluated for comparison.

In the last part results with modified compression parameters are presented.

All system matrices were calculated using Monte Carlo simulation with the variance

reduction techniques stratification and forced detection. Scatter matrices Sref with

1, 280, 000 simulated emissions per voxel were used as the reference scatter matrix.

The low count scatter matrices Sorig with 40, 000 simulated emissions per voxel were

compressed to the compressed matrices Scomp. The compression was achieved by using

10 × 10 × 1 B1-spline-kernels. In this way a total reduction of the storage size of the

scatter matrices by a factor of 1076 could be achieved (384 projections with 134 or 135
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Figure 7.4.: Profiles through the histograms of Fig. 7.3. In regions where only scatter
coincidences occur the Monte Carlo code YaPRA suppresses Monte Carlo
noise (left part of the graph). In the region where direct (unscattered)
coincidence occur, the probability of detection follows the GEANT4 sim-
ulation in good agreement.

bins, no interleaving). For the reconstruction also a high statistic scatter-free matrix

A with 10, 240, 000 simulated emission per voxel was calculated. This matrix A was

used in the back-projector of the dual matrix approach and the matrix M = A + Sref

was used in the full matrix approach. Two setups were simulated. In one setup the

phantom was placed in a single ring scanner with a small ring detector depth (setup

Ba) and in the other in a single ring scanner with a large detector ring depth (setup

Bb). Both setups are described in section 7.1.

7.4.1. Comparison of full matrix and compressed matrix

The sNRMSE was used to compare directly the compressed matrix Scomp and the

uncompressed reference matrix Sref. For each column i of the matrix the sNRMSEi =

sNRMSE(scomp
i , sref

i ) was calculated. Here s
comp
i , sref

i are the column i of Scomp and

Sref, respectively. Because each column of the matrices represents the sinogram of a

single voxel, gray value images can be created that are meaningful. The gray value

of a pixel represents the sNRMSE of the corresponding column of the matrix. In this

way it was possible to get a good overview over the local quality of the compressed
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7.4. Compressed matrix

matrices. These sNRMSE images can be seen in Fig. 7.5. Small values are represented

(a) setup Ba (b) setup Bb

Figure 7.5.: sNRMSE images for setup Ba and Bb. Black corresponds to a small and
white to a large error. In Fig. 7.5(a) the size of the B-spline kernel can
be seen. When the values for a kernel are not well fitted, the whole area
appears white.

by black color and large values by white color. Due to the small amount of scatter in

setup Ba, there the fitting did sometimes not perform ideally (circular white regions

in Fig. 7.5(a) or white noise-like areas). The circular white regions can be explained

by bad parameters of a kernel. This mainly occurred for zero-density voxels (outside

the phantom) that were not used for reconstruction. The white noise-like regions are

probably caused by projections that are fitted by too steep Gaussians. This can lead

to aliasing effects which, however, did not influence the reconstructed images due to

the small scatter fraction. The larger scatter fraction of setup Bb is the reason that

the simulated matrix Sorig for this setup is less noisy. This is the explanation for the

relatively homogeneous sNRMSE image (see Fig. 7.5(b)). Especially for voxels inside

the phantom boundary this is the case. Almost no spline grid effect can be seen.

Fig. 7.6 provides insight into the quality of the fits. The column with the smallest

sNRMSE and the column with the largest sNRMSE are chosen and the best and

worst fitted projection of each column are shown. It should be stressed that the fits

to the low statistics matrix Sorig (40,000 emissions per voxel) are compared to the

high statistics reference matrix Sref (1,280,000 emissions per voxel). Although there

can be stronger deviations at the border of the phantom (Fig. 7.6(b)) the fits to

this low statistics matrix are quite stable. The deviation in Fig. 7.6(b) (worst voxel)

can be explained by the used fitting algorithm. Rising scatter tails were suppressed

during the Levenberg-Marquardt iteration by setting the parameters in the exponent
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Figure 7.6.: Comparison of projections of A + Scomp with projections of M for setup
Bb. Projections of voxels with smallest sNRMSE (in the middle of the
phantom) and largest sNRMSE (at the border of the phantom) are shown.
The quality of the fit was quantified by the sum of the squared errors for
each bin. This measure was used to find the best and worst projection.

of the Gaussian and the exponential to large negative values in order to avoid a scatter

maximum that does not coincide with the expected maximum. This means that if the

fitting fails totally, the compressed matrix is approximated by matrix A (no scatter).

At the border of the phantom this might happen (Fig. 7.6(b)), but it has no visible

influence on the reconstructed image.

7.4.2. Comparison of reconstructed images

The images were reconstructed using the reconstruction algorithms that are introduced

in chapter 6. Each algorithm was iterated 500 times. In the dual-matrix approach

roughly 3.2 × 106 emissions were simulated in the projector (in the hybrid approach

1.6 × 106 emissions). The emissions for the dual matrix approach was chosen in such

a way that the reconstruction time matched approximately the compressed matrix

method. The sinograms y⋆
j were simulated using 6.4 × 1010 and 3.2 × 1010 emissions

for setup Ba and setup Bb respectively. Due to this large number of simulated particles

the dependency of the quality of the reconstructed images on the noise in the sinogram

could be strongly reduced. The simulations of the sinograms did not make use of

variance reduction techniques.

Fig. 7.7 shows the reconstructed images that were obtained after 500 iterations of

the respective reconstruction methods for setup Ba. Due to the small scatter fraction

of this setup the images cannot be distinguished by visual impression. Even without
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(a) M (b) A (c) compressed

(d) dual matrix (e) hybrid

Figure 7.7.: Reconstructed images for setup Ba (small detector ring depth) using dif-
ferent reconstruction algorithms at iteration step 500.

scatter treatment (Fig. 7.7(b)) there are no visible artifacts. This is not the case

for setup Bb (Fig. 7.8). The images that are reconstructed solely using matrix A

(Fig. 7.8(b)), show severe artifacts in regions where the density differs from the back-

ground density of the cylinder. Those artifacts are largely suppressed when using the

compressed matrix (Fig. 7.8(c)), dual matrix (Fig. 7.8(d)), or hybrid (Fig. 7.8(e))

approach. The full matrix approach (Fig. 7.8(a)) was considered to be the ideal case.

In Fig. 7.9(a), Fig. 7.9(b), and Fig. 7.9(c) diagonal profiles through the recon-

structed images are shown. While for setup Ba all reconstruction methods results in

practically the same images, there are some small deviations in the images of setup

Bb. The profile of Fig. 7.8(b) is also shown to mark the position of high density and

low density voxels.
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(a) M (b) A (c) compressed

(d) dual matrix (e) hybrid

Figure 7.8.: Reconstructed images for setup Bb using different reconstruction algo-
rithms at iteration step 500.
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Figure 7.9.: Diagonal profiles (upper left corner = voxel 0, lower right corner = voxel
79; see Fig. 7.7 and Fig. 7.8) through the reconstructed images at iteration
number 500.
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Figure 7.10.: xNRMSE of the reconstructed images for setup Ba using different recon-
struction methods.
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Figure 7.11.: xNRMSE of the reconstructed images for setup Bb using different recon-
struction methods.
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In Fig. 7.10 and Fig. 7.11 a measure for the closeness of the reconstructed activ-

ity to the true activity (the xNRMSE) is plotted as a function of iteration number.

It can be seen that images reconstructed with the compressed matrix (compressed

matrix ML-EM and hybrid approach) show a similar xNRMSE-shape like images re-

constructed with matrix M for both setup Ba and setup Bb, whereas the dual matrix

approach results in a different shape (stronger early convergence and then staying

rather constant). The hybrid approach performs best for both scanners.

7.4.3. B-spline order and grid dimensions

It is possible to influence the compression quality by changing the B-spline order or

by changing the dimensions of the spline node grid.
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Figure 7.12.: Improvement by adjusting the number of nodes, using B2-spline, and
odd spline grid size/voxel size ratio: Diagonal profiles (upper left corner
= voxel 0) through the reconstructed images at iteration number 500
(setup Bb).

It was possible to improve the reconstructed images using a compressed matrix

that is compressed using B2-spline kernels instead of B1-spline kernels and by slightly

increasing the size of the spline node grid from a 10× 10× 1 grid that covered exactly

the volume to be reconstructed (node to node distance exactly 1/9 of 50 cm, used in

the previous sections) to a 10×10×1 grid with node-to-node distance of 1/8.3831987

of 50 cm. The first measure reduced the susceptibility to Monte Carlo noise due to the

larger support of the kernels. The latter reduced aliasing like effects (see Fig. 7.13).

Both measures improved convergence (Fig. 7.14).
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Figure 7.13.: Gray value images of sNRMSEi for a compressed matrix with 4 × 104

emissions/voxel and 10× 10× 1−B2 compression for setup Ba (7.13(a))
and setup Bb (7.13(c)) and diagonal (upper left - lower right corner)
profiles through these sNRMSE images and sNRMSE images obtained
by compressing a 2.5 × 103 matrix.
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Figure 7.14.: xNRMSE of the reconstructed images for setup Bb using different recon-
struction methods and statistics.

7.5. The influence of Monte Carlo noise on the

reconstructed images

7.5.1. Propagation of noise in iterative reconstructions

An interesting and important aspect of iterative reconstruction algorithms is the prop-

agation of error. The sources of error are the noise in the sinogram, the incorrect

system matrix, and (in the case of the dual matrix approach) noise introduced by the

Monte Carlo simulation in the projector. The problem is therefore to find the relation:

error in sinogram or

error in matrix or

error in forward projector

−→ error in reconstructed image at iteration k (7.8)

The propagation of sinogram noise in reconstruction with the ML-EM algorithm

was investigated theoretically [Barrett et al., 1994] and by simulations [Wilson et al.,

1994]. The problem of the investigation of the influence of noise in the system matrix

is the long calculation time needed for the simulation of the matrices. The error in-

troduced by the system matrix can be divided into two parts. A systematical error
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introduced by wrong modeling and (in the case of a Monte Carlo based system matrix)

a statistical error introduced by Monte Carlo noise. While it is difficult to find a rela-

tion between wrong modeling and the resulting error in the reconstructed images due

to problem of precisely defining the modeling error, the investigation of the statistical

error and its influence on the reconstructed images is straight forward. If the system

matrix is calculated by Monte Carlo simulations and the modeling is considered to be

correct, there should be a monotone relation between any error measure and the num-

ber of simulated emissions. In other words, the word ”error” in (7.8) can be replaced

by ”noise”, and this ”noise” in the sinogram, matrix, or forward projection can be

related to the number of simulated emissions.

The variance of a voxels i at an iteration step k can the be calculated by taking N

reconstructed images x
(k)
α (α = 1, · · · , N) using N matrices that were calculated with

different seeds.

σ2
i matrix(k) =

1

N − 1

N∑

α=1

(

x
(k)
i,α − x̄

(k)
i

)2

(7.9)

x̄
(k)
i ≡ mean value of voxel i at iteration k

The same approach is applicable to the sinogram error by keeping the matrix seed

fixed. For consistency the same number of sinograms was used. The sinograms were

simulated without using variance reduction techniques.

In the case of the DM reconstructions three sources of error exist: the sinogram, the

matrix A, and the Monte Carlo scatter projection (leading to the sinogram s(k)). The

influence of each source can be measured again by varying the seed of the corresponding

Monte Carlo simulation and keeping the two other seeds constant.

The normalized root mean variance NRMV introduced in (7.5) on page 68 is used as

a global metric (in contrast to the voxelwise metric of (7.9)) to define the noise in the

reconstructed images. The NRMV is calculated at each iteration step. It is possible

to relate the NRMV to the other global metric NRMSE. At iteration k the image x(k)

is obtained by successive application of the projector and back-projector operators on

the starting image x(0). The back-projector is containing explicitly the sinogram y⋆

while both depend on the system matrix M .

x(k) =

(
k∏

n=1

BP
)

x(0) ≡ F
(k)
y⋆,M(x(0)) (7.10)

80



7.5. The influence of Monte Carlo noise on the reconstructed images

With the help of a Taylor expansion it is possible to estimate the total error ǫi(k) =

xi(k) − xtrue
i .

ǫi
2(k) ≈

∑

j

(

∂F
(k)
i

∂y⋆
j

)2

∆y⋆
j
2

︸ ︷︷ ︸

≈σ2
i sinogram(k)

+
∑

j,l,r,s

∂F
(k)
i

∂mjl

∂F
(k)
i

∂mrs
Cov (mjl, mrs)

︸ ︷︷ ︸

≈σ2
i matrix(k)

+ (convergence error)2 (7.11)

Here the noise in the sinogram bins (∆y⋆
j ) and the matrix elements ( ∆mji) is not cor-

related, because different simulations (with different Monte Carlo seeds) are started.

A correlation between two matrix elements, however, is in principle possible due to the

variance reduction techniques that are used for the simulation of the elements. The

relation (7.11) is Gauss’ law of error propagation modified due to the potential corre-

lation of the matrix elements Cov (mjl, mrs) and with an additional term to account

for the fact that the algorithm is not converged. This latter addend decreases to zero

for large k in case of convergence. Therefore, for large k the convergence error can be

neglected and the following inequality can be derived using the triangle inequality.

NRMSE(k) . NRMVsinogram(k) + NRMVmatrix(k) (7.12)

This inequality above is also valid when using higher order Taylor expansions which

is necessary in the case of large errors.

7.5.2. Convergence and noise propagation of the full matrix and

the dual matrix algorithm

The noise propagation was investigated for two reconstruction algorithms: the full

matrix and the dual matrix approach. The simulation of the matrices is very time

consuming. For this reason only are rather small number of N = 9 scatter-free matrices

Aα and also nine full matrices Mα (including scatter and direct coincidences) were

simulated using different Monte Carlo seeds. The simulated scanner was scanner ’a’

(detector ring depth of 0.645 cm) and the used phantom was phantom A (see Fig. 7.1

and Table 7.1). For a fixed sinogram then images were reconstructed using these nine
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emissions per voxel non-zero elements
160, 000 40.5 %
40, 000 23.0 %
10, 000 9.8 %

160, 000 (no scatter) 1.9 %

Table 7.4.: The influence of the number of simulated particles (with variance reduc-
tion) on the fraction of non-zero elements in the matrix (setup Aa).

matrices.

In order to investigate the influence of the number of simulated emissions on the

error in the reconstructed emission, sinograms and matrices of different statistics were

simulated. The sinograms were either simulated with 5× 109 or 1× 109 emissions (no

variance reduction). This corresponds roughly to 30 and 5 min scans of (average) 6

Becquerel/ml initially. The detectors were idealized (and no Gaussian energy filtering

was applied)1.

The system matrices Aα and Mα were calculated simulating a fixed number of

photon pairs per voxel. Due to the high number of voxels a simulation without variance

reduction techniques was not possible. Both stratification and forced detection were

used in the simulation. The number of simulated emissions per voxel were 1 × 104,

4 × 104, and 1.6 × 105. In Table 7.4 the fraction of non-zero elements for matrices of

different statistics can be seen. The total number of matrix elements was 234,700,800.

The total number of simulated emissions (in the case of the 160,000-matrix) was

1.024 × 109 emissions.

In Fig.7.15 the NRMSE of the reconstructed images with matrices of different statis-

tics can be seen. The figure shows the typical property of the iterative solution of an

(unregularized) ill-posed problem: after a relatively fast convergence the algorithm

starts to ”focus” on the noise and to drift away from the true solution.

Clearly, better statistics resulted in a smaller NRMSE, but the difference between

the 1.6× 105-matrix and the 4× 104-matrix was already much smaller than the differ-

ence between the latter and the 1× 104-matrix. Better the matrix statistics lead to a

shift of the minimum (best agreement between true and reconstructed image) towards

higher iterations.

Fig. 7.16 shows the NRMSE using the same matrices as in Fig. 7.15, but applying

the algorithm to the low count sinogram with 1×109 emissions. The error introduced

1Therefore, the statistics of the sinograms was better than in real experiments (with the same
emission density).
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Figure 7.15.: Error vs. iteration number for full matrix reconstructions with different
statistics as indicated. The R-R graph shows the NRMSE when using a
starting image with random voxels xi ∈ [0, 2[ instead of a uniform image
with voxels xi ≡ 1. The sinogram was simulated with 5 × 109 emissions
in total. Iteration number zero corresponds to errors of images after the
first iteration.
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Figure 7.16.: Error vs. iteration number for full matrix reconstructions of a sinogram
simulated with 1×109 emissions in total and matrices of different statis-
tics.
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by the sinogram is bigger. The shape of the NRMSE at higher iterations is mostly

determined by this error. The bigger total noise induced error results in a shift of

the minimum of the NRMSE towards early iterations. At the first iterations, there

is only a small deviation between the corresponding NRMSE curves in Fig. 7.16 and

Fig. 7.15. This is caused by the strong influence of the starting image which is in

both cases the same. In both figures the validity of inequality (7.12) for large iteration

numbers can be verified. Fig. 7.17 shows the relative importance of the matrix error
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Figure 7.17.: The ratio of the NRMVmatrix/NRMVsinogram for a sinogram with 1× 109

emissions and sinogram with 5 × 109 emissions is shown for different
matrix and sinogram statistics.

vs. the sinogram error in the case of full matrix reconstruction. The matrix error

became comparable to the error caused by the sinogram for the 5× 109-sinogram and

the 10,000-matrix (i.e. the ratio is approximately one). The ratio can be used to

determine the required number of simulated emissions per voxel: the error caused by

the sinogram should be larger than the error caused by the matrix. At higher iteration

numbers the ratio of the influences of both error sources seems to be independent of

the iteration number.

Fig. 7.18 shows the NRMSE for full matrix and dual matrix reconstructions with

different statistics. For the dual matrix reconstructions a fraction p of 0.001, 0.0001 or

0.00001 of the guessed activity was simulated in the forward Monte Carlo simulation,

corresponding to approximately 5× 106, 5× 105 or 5× 104 simulated emissions. More

simulated particles led to smaller NRMSE as expected.
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Figure 7.19.: NRMSE and NRMV of dual matrix reconstruction with matrix A for
the sinogram with 5 × 109 emissions and different fractions of simulated
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Figure 7.20.: Ratios NRMVA/NRMVsinogram and NRMVMonte Carlo scatter/NRMVsinogram

in dual matrix reconstruction

A characteristic feature of the dual matrix reconstruction is the faster initial con-

vergence. This feature might, however, be related to the uniform starting image. Very

typical are also the noise like fluctuations that can be seen in the p = 0.00001-curve.

This feature is also very weakly present in the p = 0.0001 curve (and extremely weekly

in the p = 0.001 curve). These fluctuations decreased the more particles were simu-

lated in the forward Monte Carlo simulation.

Fig. 7.19 shows the contribution of the different sources of error for the dual matrix

reconstruction. Clearly, the error caused by the sinogram dominated. The error

introduced by the system matrix A had similar features like the matrix induced error

in the full matrix reconstruction.

The error introduced by the forward Monte Carlo scatter increased initially and

soon stayed rather constant. This suggests that the algorithm converges to some

mean solution and oscillates randomly around this solution with rather constant mean

amplitude.

In analogy to Fig. 7.17, Fig. 7.20 shows the importance of the error introduced

by matrix A and the forward Monte Carlo scatter simulation relative to the sinogram

induced error. Again the error caused by the sinogram dominates. The small error

due to the forward Monte Carlo scatter simulation can be explained by the fact that

the system was a 2D system with low scatter contribution. Therefore the scatter free

matrix A which occurs both in the projector and back-projector mostly determines
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the convergence properties. The error ratio introduced by matrix A shows similar

properties like the error ratio in full matrix reconstruction (an almost constant non-

zero ratio at high iteration numbers). This is not the case for the error introduced by

the Monte Carlo forward simulation.

(a) 160, 000-matrix, iteration 85 (b) 10, 000-matrix, iteration 64

(c) DM, p = 0.001, iteration 83 (d) DM, p = 0.00001, iteration
78

Figure 7.21.: Reconstructed images for the 5 × 109-emissions-sinogram at minimal
NRMSE

Fig. 7.21 shows the reconstructed images. Clearly the difference is very small which

can be accounted to the small scatter fraction.

In the following figures, the voxel dependency of the error is shown. Images of

minimal NRMSE were chosen. The likelihood of the EM-algorithm was not used

to define the iteration number of the images, because the likelihood itself depends

on the quality of the matrix but not on the difference to the true activity. The

choice of the minimal NRMSE as a criteria for selection in general leads to different

iteration numbers. This should be kept in mind when comparing images. The absolute
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error (standard deviation) or the relative error (standard deviation divided by the

mean value) for each voxel is visualized as the gray value of the corresponding voxel

(white ≡ big error, black ≡ small error) .

Fig. 7.22 shows the absolute and relative error caused by the sinogram. The absolute

error did not depend much on the reconstruction method. More emissions in a voxel

resulted in a larger absolute error, which is in agreement with the study on noise

properties of the EM algorithm by Wilson et al Wilson et al. [1994].

On the other hand, more emissions lead to a reduced relative error. In both full

matrix and dual matrix reconstruction the error seemed not to depend on the phantom

density of the voxels. This might be different for scanners with large scatter fraction.

The density change at the border of the phantom, however, clearly influenced the

relative error introduced by the sinogram. This is probably caused by the fact, that

both algorithms converged much faster outside the phantom to small (zero) activities.

(a) abs. error, iteration 85 (b) rel. error, iteration 85

Figure 7.22.: Sinogram induced absolute and relative error for the 5 × 109-emissions-
sinogram and the 160,000-matrix at minimal NRMSE (white ≡ big error,
black ≡ small error). The very large relative error of voxels outside the
cylinder often exceeded the gray value scaling. The error of these voxels
is therefore represented by white color.

In dual matrix reconstruction (Fig. 7.24), the error caused by the scatter-free ma-

trix A has the same features. In the case of the error introduced by the forward

scatter simulation a similar behavior can be seen, but in addition the noise outside

the phantom seems to be structured (see Fig. 7.24(d)). This can be seen only in the

relative error images, because the reconstructed activity outside the phantom is small.

Therefore, this effect is negligible for single ring scanners with low scatter fraction.
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(a) abs. error, iteration 64 (b) rel. error, iteration 64

Figure 7.23.: Matrix induced absolute and relative error for the 5 × 109-sinogram
and the 10,000-matrix at minimal NRMSE (white ≡ big error, black ≡
small error)

7.5.3. Discussion

The log-likelihood that is to be maximized by the algorithm is based on the ap-

proximated noisy matrix and the approximated noisy sinogram. The algorithm does

therefore not converge to the maximum of the ideal problem but to a shifted maxi-

mum (image x∞). Before converging to this shifted maximum, the NRMSE can even

become smaller than at higher iterations, because the uniform starting image encour-

ages smooth reconstructed images which often agree better with the original image

xtrue. The fading influence of this starting image at higher iteration numbers leads to

a positive slope of the NRMSE. The NRMSE eventually approaches asymptotically

NRMSE(x∞) > NRMSE(xtrue) ≡ 0.

This explanation can be verified by looking at graph R in Fig. 7.15 where the

starting image is an image with random voxel values between zero and two. The

agreement between the true image and this random starting image is much smaller.

This leads to an almost horizontal slope at higher iterations and a shift of the minimum

of the NRMSE towards higher iterations.

The fading influence of the starting image during the reconstruction process is asso-

ciated with a growing influence of the given information (the matrix and the sinogram)

on the reconstructed images. Since the matrix and the sinogram are noisy, the corre-

sponding NRMVs should grow as well. This can be verified in Fig. 7.15 which shows

monotonously increasing NRMVs.

In both Fig. 7.15 and in Fig. 7.16 the NRMV curve of the sinogram induced
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(a) abs. error, matrix A induced (b) rel. error, matrix A induced

(c) abs. error, forward scatter
induced

(d) rel. error, forward scatter
induced

Figure 7.24.: Error in dual matrix reconstruction with p = 0.00001 at iteration
78=minimal NRMSE (white ≡ big error, black ≡ small error)

error with the 10,000 matrix is below the two other curves using the higher statistics

matrices for iteration numbers & 230 and & 170 respectively. This means that the

NRMV of the sinogram somehow depends on the number of simulated emission of

the matrix. This can have three reasons. The derivative of F
(k)
y⋆,M in (7.11) depends

implicitly on the matrix. Therefore, the NRMV of the sinogram should be positioned

randomly around some mean NRMV curve. In the case of bad matrix statistics this

deviation should be larger and the considered curve could be positioned below the two

other curves. However, this is not very likely, because the NRMV is the average over

many voxels. Secondly, in the case of few simulated emissions, the non-zero fraction of

the matrix is small. This might lead to a reduced rank of the matrix which should also

influence the mentioned derivative. Thirdly, it is possible that due to a large matrix

error higher order terms in the Taylor expansion can not be neglected anymore. This
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would lead also to a dependency of the considered NRMV on the matrix statistics.

Simulations of a similar one-ring scanner with larger detector ring width (and phan-

tom), and therefore scatter fraction, could give more insight into the noise propagation

and performance of the two algorithms in 3D scanners. Preliminary simulations of such

a scanner showed that relative to the full matrix algorithm the position of the minimum

of the NRMSE curve of the dual matrix algorithm is positioned at smaller iteration

numbers, while the minimal NRMSE is increasing. It can be therefore expected that

in the case of 3D scanners the dual matrix algorithm is initially converging faster than

the full matrix algorithm.

While the position of the minimum of the dual matrix approach relative to the full

matrix approach seems to be rather sensitive to the scatter fraction, it can be expected

that the qualitative shape of the NRMV curves (monotonously increasing influence of

matrix or sinogram noise) should stay the same. For large iteration numbers, there

should be an upper bound NRMSE (x∞) for the NRMSE as discussed at the beginning

of this section. Together with (7.11) this suggests that there exists an upper bound

for the NRMVs as well, independently of the scatter fraction. The property of the

NRMVMC to stay at a constant level after only few iterations is probably also present

in the case of 3D scanners. It can be expected that the influence of this forward scatter

simulation will increase when more scatter is present. While in the case of 3D scanners

the variance of the voxels will most likely also be correlated to the activity of these

voxels, there might be an additional correlation to the density which was not present

in the 2D case.

7.6. Performance

Although the main purpose of the simulations in this chapter is the proof of concept

of the compression scheme as well as the investigation of the noise propagation, the

performance of the used algorithms and methods is important.

Due to the very large number of simulated photons, the calculation of the system

matrices were parallelized. A small computer cluster of eight two-processor boards

with AMD Athlon MP 2800+ was used for this purpose. The calculation time for a

matrix with 10,000, 40,000, and 160,000 emissions/voxel was around 3 1/2, 14, and

50 minutes.

The compression of a matrix (section 7.4) on a single AMD Athlon MP 2800+

computer was performed in around 4 1/2 minutes. In Table 7.5 the time needed per

iteration step for the different reconstruction algorithms (section 7.4) can be seen. A
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resident matrix was used in the case of the full matrix approach. This is the reason

for the short iteration time. If the matrix elements had been re-calculated at each

iterations step, the algorithm would perform impractically slowly. The compression

Method Time per iteration
resident full matrix ca. 5 sec

dual matrix ca. 2 min
compressed matrix ca. 2 min

hybrid ca. 2 1/2 min

Table 7.5.: Time needed per iteration using a single AMD MP 2800+ processor.

of the matrix as well as the reconstruction algorithms can be parallelized. Groups

of spline-kernels or single spline-kernels can be compressed in parallel. This was not

implemented but should allow the compression of the matrix on the 16 processor cluster

in around 20 seconds. The presented reconstruction algorithms are fully parallelizable

[Fessler, 2004]. Therefore a reduction of the time per iteration from 2 minutes to

roughly 10 seconds can be expected, when the this cluster is used.

The simulations of 108 photon pairs took more than 8 h with GEANT4 (no variance

reduction), around 90 minutes with YaPRA and variance reduction, and around 7 1/2

minutes without variance reduction.
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The reconstruction of the emission density in PET examinations relies on the correct

modeling of the system. In contrast to small animal imaging where the scatter and

perhaps even the attenuation in the animal might be neglected, a good approximate

model of a PET scan of humans must comprise the scanner and the patient. Especially

3D scanners, which become more and more common due to their increased sensitivity,

are very difficult to model because of their complicated system response. The efficient

and correct modeling of the attenuation and the scanner geometry and hardware is

demanding. However, the complexity is introduced by the scatter in the patient that

varies from scan to scan and that is completely asymmetrical.

Monte Carlo simulations are well suited to approximate the attenuation and espe-

cially the scatter in the patient. Different approaches to incorporate these simulations

in the reconstruction process were investigated. For this purpose a fast Monte Carlo

code that is capable of tracking photons in the patient was implemented. Stratifica-

tion and forced detection were used in the Monte Carlo simulations. These variance

reduction techniques were optimized for system matrix calculation. Sinograms could

be simulated without variance reduction techniques in a reasonable time. This was

advantageous, because the simulations then showed similar statistical properties like

measurements. Reconstructions were performed based on maximum likelihood expec-

tation maximization. The ideal way of scatter treatment, the simulation of the whole

matrix including patient scatter (full matrix approach) is impracticable for 3D scan-

ners, because of the simulation time, the reconstruction time (due to the large number

of non-zero elements), and especially because the storage of the matrix in memory is

not feasible with present hardware (O(1013+) matrix elements).

Three different ways to include Monte Carlo calculated scatter into the reconstruc-

tion were investigated. The full matrix approach was compared to the incorporation

of Monte Carlo scatter in the projector only (dual matrix approach, storage of the ma-

trix not necessary), and to a new method that uses a compressed Monte Carlo matrix.

Single ring scanners were simulated as a proof of principle and because in this way the

uncompressed matrix could be kept in memory for comparative reconstructions.

The compression method reduced the size of the scatter part of the matrix so that
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the storage of the matrix for a 3D scanner should become feasible. The compression

scheme separated scatter from direct coincidences. The compression of this scatter

matrix is based on a parametrization of the columns of the matrix (i.e. sinograms of

single voxels) and an approximate description of the change between columns. The

implementation allowed a compression of very noisy system matrices. Together with a

reasonable compression speed, this allowed the calculation of system matrices of single

ring scanners within several minutes on a small computer cluster.

In a second part, the convergence and especially the noise propagation of dual

matrix ML-EM and full matrix ML-EM was investigated. The approximate dual

matrix approach showed a faster early convergence in the case of a uniform starting

image, but the compressed approach yielded less variance of voxel values. Due to the

low scatter fraction of the simulated single ring scanner, the noise propagation was

dominated by the uncertainty of unscattered coincidences. The propagation of noise

of the sinogram, of the noise in the matrix elements and in the forward projection was

investigated. As the influence of the starting images decreases the influence of the

matrix and the sinogram increases. The noise in the sinogram will be given by the

measurement, but the system matrix will always be simulated and can be improved by

longer simulations or faster computers. Theoretical considerations and extrapolation

of the results showed that there is an upper bound for the introduced error in the

reconstructed images. The influence of the noise in the forward projector Monte Carlo

simulation (dual matrix approach) on the reconstructed images is more difficult. The

simulations showed that this noise introduces an error that oscillates randomly.

In summary, three different possibilities to incorporate Monte Carlo simulations

into the reconstruction process were investigated. In a proof of concept a novel way

to circumvent the matrix storage problem by compressing the matrix was introduced

and compared to the incorporation of scatter only in the forward projector (dual

matrix or relative approaches). The proposed scatter matrix compression scheme

allows the storage of the matrix for a 3D human scanner with patient scatter which

otherwise would be impossible. The presented results form the basis of further projects

which may include more realistic simulations, the investigation of a greater variety of

algorithms, and the improvement of the implementation of the compressed matrix

approach.

It would therefore be worthwhile to simulate realistic 3D scanners. This implies the

implementation of a compression scheme for oblique sinograms similar to the presented

scheme for transversal sinograms and a more realistic modeling of detectors, which

were simplified in the presented simulations. A fast but precise incorporation of the

detectors in the simulations should be possible when the detector response (depend-
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ing on the incoming photon location, energy, and incidence angle) is parametrized.

These parameters could be obtained either by measurements or by detailed simu-

lations (for example with generic Monte Carlo codes like GEANT4). Monte Carlo

based reconstruction is very well suited for studies on noise propagation and therefore

alternative reconstruction algorithms like ordered subset expectation maximization

[Hudson and Larkin, 1994], RAMLA [Browne and De Pierro, 1996] or primal dual ap-

proaches [Johnson, 1997, Johnson et al., 2000, Johnson and Sofer, 2000] should be

investigated. Regularization which should insure less noisy images and sometimes an

improved convergence speed should be investigated in terms of noise propagation and

together with a compressed matrix. Finally, reconstructions based on Monte Carlo

simulations offer great advantage where conventional reconstruction techniques are

limited or erroneous. This includes temporally varying patients which can be simu-

lated easily by Monte Carlo simulations. Triggered and listmode PET/CT or future

simultaneous PET/MR scans can be used as the basis for such simulations. ”Dirty”

isotopes like 86Y or 124I that can be used to monitor cancer treatment are very prob-

lematic to model correctly with conventional methods due to their prompt γ emissions

but can be simulated well by Monte Carlo simulations.
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Magdalena Rafecas, Guido Böning, Bernd J. Pichler, Eckhart Lorenz, Markus

Schwaiger, and Sibylle I. Ziegler. Effect of noise in the probability matrix used

for statistical reconstruction of PET data. IEEE Trans. Nucl. Sci., 51(1):149–156,

2004b.

Alejandro Sanchez-Crespo, Pedro Andreo, and Stig A. Larsson. Positron flight in

human tissue and its influence on PET image spatial resolution. European Journal

of Nuclear Medicine and Molecular Imaging, 31(1):44–51, 2004.

Herbert Schildt. C/C++ programmers reference. Osborne/McGraw-Hill, 2000.

Herbert Schildt. Teach yourself C++. Osborne/McGraw-Hill, 1998.

S. Shoukouhi, P. Vaska, S. Southekal, D. Schlyer, M. Purschke, V. Dzordzhadze,

C. Woody, S. Stoll, D. L. Alexoff, D. Rubins, A. Villanueava, and S. Krishnamoor-

thy. Statistical 3D image reconstruction for the RatCAP PET tomograph using

a physically accurate, Monte Carlo based system matrix. In Conference Record

NSS/MIC. IEEE, 2004.

Sepideh Shoukouhi. Image Reconstruction and Image Performance Simulation of Rat-

CAP (Rat Conscious Animal PET). PhD thesis, Stony Brook University, 2005.

Bjarne Stroustrup. C++ Programmiersprache. Addison-Wesley, 2000.

Peter Aundal Toft. The Radon Transform - Theory and Implementation. PhD dis-

sertation, Department of Mathematical Modelling – Section for Digital Signal Pro-

cessing – Technical University of Denmark, 2800 Lyngby, Denmark, 1996. URL

http://pto.linux.dk/PhD/.

Michael Unser. Splines: A perfect fit for signal and image processing. IEEE Signal

Processing Magazine, 16(2):22–38, 1999.

Stefaan Vandenberghe, Margaret E. Daube-Witherspoon, Robert M. Lewitt, and

Joel S. Karp. Fast reconstruction of 3D time-of-flight PET data by axial rebin-

ning and transverse mashing. Phys. Med. Biol., 51:1603–1621, 2006.

Y. Vardi, L. A. Shepp, and L. Kaufman. A statistical model for positron emission

tomography. Journal of the American Statistical Association, 80:7, 1985.

103

http://pto.linux.dk/PhD/


Bibliography

C. C. Watson. New, faster, image-based scatter correction for 3D PET. IEEE Trans.

Nucl. Sci., 47(4):1587–1594, 2000.

Alexander Werling, Olaf Bublitz, Josef Doll, Lars-Eric Adam, and Gunnar Brix. Fast

implementation of the single scatter simulation algorithm and its use in iterative

image reconstruction of PET data. Phys. Med. Biol., 47:2947, 2002.

Wikipedia(PET). Positronen-emissions-tomography. URL

http://de.wikipedia.org/wiki/Positronen-Emissions-Tomographie.

Sebastian Wilhelmi. PVM++, 2001-06-27. URL

http://pvm-plus-plus.sourceforge.net/.

Donald W. Wilson, Benjamin M W Tsui, and Harrison H Barrett. Noise properties

of the EM algorithm: Ii. Monte Carlo simulations. Phys. Med. Biol., 39:847–871,

1994.

Habib Zaidi. Comparative evaluation of scatter correction techniques in 3d positron

emission tomography. European Journal of Nuclear Medicine, 27:1813, 2000.

Habib Zaidi and Kenneth F. Koral. Scatter modelling and compensation in emission

tomography. European Journal of Nuclear Medicine and Molecular Imaging, 31(5):

761–782, 2004.

104

http://de.wikipedia.org/wiki/Positronen-Emissions-Tomographie
http://pvm-plus-plus.sourceforge.net/


Index

pdir, 38

pleave, 38

pint, 38

pratio, 38
18F-FDG, 2

FT , 18

FT −1, 18

x̂leave, 36

2D PET scanner, 3

3D PET scanner, 8

activity distribution, 2

algebraic reconstruction technique, 25

analytic reconstruction algorithm, 17

APD, 8

arc correction, 20

ART, 25

attenuation, 13, 15

attenuation correction factor, 13

attenuation path length, 30

avalanche photo diodes, 8

B-spline basis function, 50

back-projection, 4, 20

back-projector, 24, 60

BGO, 8

bin, 20

biomarkers, 1

blank scan, 15

C-11, 2

coincidence, 35

coincidence time window, 10

collimation, 2

complementary slackness, 23

Compton effect, 11, 31, 32

computed tomography, 1, 17

crystal afterglow, 9

CT, 1, 16

dead time, 9

dead time loss, 9

delayed coincidence, 14

detector blocks, 8

direct coincidence, 11

discrete projection, 20

dual matrix approach, 5, 93

dual matrix expectation maximization,

61

dynamic image acquisition, 7

electronic collimation, 3

emission density, 2, 7, 17

emission measurement, 1

emission scan, 15

emission tomography, 1

energy window based scatter correction,

26

expected geometrical maximum, 61

105



Index

F-18, 2

FBP, 19, 20

field of view, 37, 67

filtered back-projection, 19

fixed point equation, 24

Fourier slice theorem, 19, 20

Fourier transform, 18

FOV, 37

frame, 7

framing, 7

full matrix, 26, 59

full matrix approach, 5

FWHM, 7

FWTM, 8

gantry, 13, 20

GEANT4, 27, 68

Geiger mode avalanche photo diodes, 8

geometrically expected maximum, 56

GSO, 8

histogram mode, 9

I-123, 2

image reconstruction, 17

importance sampling, 35

interaction forcing, 36

inverse Fourier transform, 18

inverse transform method, 33

iterative reconstruction algorithm, 17

Karush-Kuhn-Tucker conditions, 23

Lagrange function, 23

Lagrange parameter, 23

likelihood, 22

line of response, 3, 11

linear attenuation coefficient, 28, 31

list mode, 7, 9

log likelihood, 22

LOR, 11

lower energy threshold, 13

LSO, 8

magnetic resonance imaging, 1

mashing, 25

mass attenuation coefficient, 11

maximum likelihood expectation maxi-

mization, 59

MC, 4

ML-EM algorithm, 24

Monte Carlo, 4

MRI, 1

N-13, 2

non-collinearity, 7, 29

normalization, 15

normalized root mean squared error, 67

normalized root mean variance, 68, 80

NRMSE, 67

NRMV, 68

O-15, 2

oblique sinogram, 10, 25

ordered subset expectation maximiza-

tion, 24, 59, 95

OSEM, 24

parallel virtual machine, 42

PET, 1, 15, 16

PET/CT, 16

Photo effect, 31

photo multiplier tubes, 8

PMT, 8

positron emission tomography, 1

positron range, 7

positronium, 8

projection, 4, 17

106



Index

projector, 24, 60

pseudo random number generator, 27,

29

PVM, 42

PVM++, 42

Radon transform, 17, 18, 44

RAMLA, 25, 95

ramp filter, 20

random coincidence, 11

random events, 14

RANMAR, 27, 29

Rayleigh scattering, 31

reconstruction, 2

ring PET scanner, 8

RND, 29

row action algorithm, 25

scatter fraction, 12

scatter order, 35

scatter projection, 49

scatter-free unit sinogram, 45

scattered coincidence, 11

scintillator crystals, 8

segmentation, 28

sensitivity, 2

septa, 3, 9

SimSET, 27

single event, 11

single photon emission computed tomog-

raphy, 1, 17

sinogram, 9, 18, 21, 44

small animal PET, 21

sNRMSE, 67

sparse, 45

SPECT, 1

static image acquisition, 7

stratification cells, 39

system matrix, 4, 14, 21

time of flight PET, 12

TOF-PET, 12

tomography, 1

tracer, 1

transmission scan, 13, 15

transversal sinogram, 25

true coincidence, 11

trues, 11

tube of response, 3

ultrasound imaging, 1

unit scatter projection, 45

unit sinogram, 21, 44

variance reduction techniques, 35

volume imaging, 1

weight control, 42

xNRMSE, 67

XVMC, 28, 29

107



Index

108



Acknowledgments

To Markus Alber, whom I owe the topic of the thesis, for financial support, for fruitful

discussions, for the help with publications, and for (sometimes cynical) explanations

of the world of (life) science.

To Prof. Schick for his support and kindness.

To my collegues:
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A. Calculations

A.1. Gaussian sampling

Random numbers δE (section 4.2) that vary according to Gaussian statistics with stan-

dard deviation σ were obtained by applying the Box-Muller method to two uniformly

distributed random variables RND1 ∈ [0, 1[ and RND2 ∈ [0, 1[.

ρ =
√

(2 max(0 , − ln(1 − RND1)) (A.1)

φ = 2πRND2 (A.2)

δE = σρ cos φ (A.3)

A.2. Variance of detected weighted counts

Let y be the counts of a LOR or the sum of the counts of LORs. Then y is a random

variable calculated by

y =

N̆∑

k=1

w̆k , (A.4)

where the detected weights w̆, as well as the number of detected weights N̆ are random

numbers as well. The variance of y is given by

σ2 = 〈N̆〉σ2
w̆ + σ2

N̆
〈w̆〉2 . (A.5)

Since the number of emissions follows Poissonian statistics, N is also distributed ac-

cording to this statistics. The mean and the variance of N are therefore

〈N̆〉 = N̆ and σ2
N̆

= N̆ . (A.6)
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A. Calculations

The variance of w̆ is given by

σ2
w̆ =

1

N̆ − 1





N̆∑

k=1

w̆2
k −

y2

N̆



 with
y

N̆
= 〈w̆〉 . (A.7)

The preceding equations lead to

σ2 =
N̆

N̆ − 1





N̆∑

k=1

w̆2
k −

y2

N̆



 +
y2

N̆

N̆≫1−−−→ σ2 =

N̆∑

k=1

w̆2
k (A.8)

For reasonably large N̆ the variance of the counts can be approximated as the sum of

the squared detected weights. This derivation follows de Vries et al. [1990].
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Monte Carlo �MC� simulations in positron emission tomography �PET� play an important role in

detector modeling and algorithm testing. Whereas the simulations are widely used in a forward

projection manner to accomplish this task, ideally they should be included into the reconstruction

process itself. It is therefore desirable to investigate the convergence properties and the propagation

of MC noise of these kinds of reconstruction algorithms. MC simulations were integrated into the

maximum likelihood expectation maximization �ML-EM� algorithm in two different ways. In the

full matrix approach the system matrix was calculated by running MC simulations, including

scatter. This matrix was used in both the projector and the backprojector. In the dual matrix �DM�
approach, MC simulations were used to incorporate scatter in the projector, whereas the backprojec-

tor only comprised attenuation. Repeated reconstructions with different MC seeds allowed a statis-

tical analysis of the error at each iteration step and made it possible to investigate separately the

propagation of the MC noise that was introduced by the sinogram, by the projector, and by the

matrix. Both approaches resulted in similar images, but the DM approach with unmatched projector

and backprojector yielded a faster initial convergence when compared to the ideal full matrix

approach. The analysis of the noise sources for the modeled single ring scanner in full matrix

reconstruction showed that the noise introduced by the matrix became comparable to the noise

introduced by the sinogram when using a matrix that was simulated with 10 000

emissions/voxel. © 2006 American Association of Physicists in Medicine.

�DOI: 10.1118/1.2239165�

Key words: positron emission tomography, reconstruction, Monte Carlo, noise

I. INTRODUCTION

Monte Carlo �MC� simulations in positron emission tomog-

raphy �PET� play an important role in detector modeling and

algorithm testing.
1,2

Whereas the simulations are widely used

in a forward projection manner to accomplish this task, ide-

ally they should be included into the reconstruction process

itself as proposed by Floyd et al.
3 �henceforth labeled the full

matrix approach�. The usage of a system matrix including all

relevant parts in reconstruction �modeling of isotope, patient,

scanner geometry, and detectors� should solve problems in-

troduced to reconstruction by using simplified matrices. For

human scanners the correct treatment of patient scatter plays

a dominant role. The incorporation of this kind of scatter into

the matrix is therefore crucial for full matrix reconstruction.

In the field of single photon emission computed tomogra-

phy �SPECT�, Lazaro et al.
4,5

reconstructed images with a

matrix calculated by MC simulations including patient scat-

ter. Another approach also using MC simulations to accu-

rately calculate the �re-�projector was used by Beekman et

al.
6

However, their algorithm �dual matrix ordered subset,

DM-OS� used a simplified backprojector rendering of a stor-

age of the matrix unnecessary. Both approaches can also be

used in the case of PET reconstructions. While the first ap-

proach is theoretically superior and at the same time compu-

tationally very demanding, the second approach reduces the

computational burden at the expense of a possible inaccu-

racy.

Therefore it appears desirable to compare these two meth-

ods for PET and investigate the reconstruction accuracy in

light of the MC noise. For this purpose we developed a fast

parallelized ring-PET MC code YaPRA to fulfill the task of

scatter and attenuation simulation in the patient and the for-

mation of a system matrix.

Simulations were run and matrices were calculated to ac-

complish three different tasks: First, the convergence proper-

ties of the full matrix reconstruction for different matrix sta-

tistics were investigated. Second, the noise propagation in

the reconstruction process was examined. In order to be able

to distinguish between the error introduced by the noisy si-

nogram or the noisy matrix, a method was developed to

quantify the respective errors by running multiple MC simu-

lations with different seeds. Lastly, the convergence proper-

ties and the error propagation of the full matrix approach and

the dual matrix maximum likelihood expectation maximiza-

tion �DM� approach were compared.

The simulated scanner was a single ring scanner. A three

dimensional �3D� scanner could not be simulated, because

the storage requirement of the full system matrix for such a

scanner exceeded the available memory by far. Although the

results of a single ring scanner should differ from more in-

teresting results of 3D scanners, some features of the results

3498 3498Med. Phys. 33 „9…, September 2006 0094-2405/2006/33„9…/3498/10/$23.00 © 2006 Am. Assoc. Phys. Med.



should be qualitatively similar or be weakly present, making

the investigation of a single ring scanner worthwhile.

II. METHODS

A. Geometry and phantom

The ring of the scanner was modeled to be the surface of

a cylinder divided into 384 detector units. The detector ring

width of the cylinder was 6.45 mm and the radius was

41.21 cm. As a phantom a voxelized water cylinder of radius

16 cm was used. The depth of the water cylinder was 10 cm.

Its center was located at the center of the scanner. The den-

sity of the phantom was approximated by a 80�80�1 voxel

grid of voxel dimensions 5�5�100 mm3 covering a total

volume of 40�40�10 cm3 �see Fig. 1�a��. The activity was

described by the same grid, but reducing the voxels in the z

direction to the depth of the scanner �6.45 mm� �Fig. 1�b��.
The scatter fraction of this ideal single ring scanner and the

phantom shown in Fig. 1 was 4.2%.

All lines of responses �LORs� with a minimum of 96 de-

tectors between the registrating pair of detectors were used

for reconstruction. The LORs that were not taken into ac-

count lay outside the volume to be reconstructed.

B. Monte Carlo code

For the simulations, our MC code YaPRA for ring PET

scanners was used. Similar to SimSET,
7,8

it uses the variance

reduction techniques stratified sampling and forced detection

�a specialization of importance sampling� in the phantom/

patient. Both techniques, however, differed slightly from the

ones used in the SimSET code. The detectors were idealized.

Photons that hit the detector surface and exceeded a certain

energy �here 350 keV� were counted. Dead time and single

events were not simulated.

In order to translate density information into linear attenu-

ation coefficients, the method of Fippel
9,10

was used. In con-

trast to the usual �discrete� segmentation approach it used

functions fitted to ICRU data to map from density to linear

attenuation coefficients. The advantage of this approach is

the possibility to map directly from CT data to linear attenu-

ation coefficients for the full bandwidth of human tissue.

Stratified sampling similar to the stratification described

by Haynor et al.
7,8

was used to lessen inefficient starting

directions for the photon pairs. Since the MC code is mainly

used for system matrix calculation, stratified sampling for

each voxel was performed.

The forced detection also followed the scheme described

by Haynor et al., but differed in the way of choosing proper

scatter angles. Like in their approach, the distribution deter-

mining the scatter angles was a modified Klein-Nishina dis-

tribution, compensating the difference to the correct distribu-

tion by adjusting the weights of the photons properly.

However, a different replacement for the Klein-Nishinia dis-

tribution was chosen, using an even smaller support. First the

azimuthal scattering angle, �, was sampled using a uniform

distribution in the interval �0,��. The choice of � fixed a

plane of interaction in which the incoming momentum vector

and the outgoing �scattered� momentum vector of the photon

must lie. Instead of sampling � by using the �integral� Klein-

Nishina distribution like in the unforced case, the possible

angles that are used for sampling were reduced to those that

guarantee a hit on the scanner surface �see Fig. 2�. The con-

trast to the method of Haynor et al. lies in the fact that these

proper intervals were calculated on the fly, assuring always

the right scattering angles for every direction and position of

the incoming photon. The advantage of our method is based

upon the fact that for scanners without septa and/or photons

positioned out of the field of view, good forced detection can

still be achieved.

In order to speed up the calculation, a cluster of eight

two-processor computers �AMD MP 2800+� together with

the PVM library �PVM�parallel virtual machine� were

used, which allowed a reduction of the calculation time by a

factor of roughly 16.

The correctness of the code was tested by running simu-

lations with YaPRA and with GEANT4.70pl with the same

geometry and type of interactions �ideal detectors, no Ray-

leigh scattering�. For this purpose, a scanner like in Sec. II A

FIG. 1. Cylindrical phantom with density 0 �outside�, 0.1 �cross�, 1 �cylin-

der�, and 2 �spots� g/cm3 and activity ratio 0 �black�:1:3:5:10 �white�.
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was simulated that had a larger detector ring width of 10 cm

in order to cope with the slower performance of GEANT4.

The density grid was the same as described in Sec. II A, but

the grid of the activity was adjusted to match the density grid

�and the detector ring width�. In order to facilitate the seg-

mentation in GEANT4 slightly different densities �as com-

pared to Fig. 1�a�� like lung and bone were used instead of

0.1 and 2 g/cm3 in these comparative simulations. The sino-

grams of voxels �almost central and off-central� were com-

pared �108 emissions in GEANT4 and 106 emissions in

YaPRA with variance reduction�. The detected counts

�direct+scatter� as well as the primaries alone agreed to

within 1%. In addition, no systematic difference in the sino-

grams could be found.

C. Sinogram and system matrix

In order to stay as realistic as possible, sinograms were

calculated without applying variance reduction techniques.

In this way the number of simulated particles could be di-

rectly translated into Becquerel/ml with the expected statistic

uncertainties corresponding to real measurements. The num-

ber of simulated emissions were 1�109 and 5�109, which

corresponds roughly to 5 and 30 min scans with �average� 6

Becquerel/ml initially.

The system matrix was calculated simulating a fixed num-

ber of photon pairs per voxel. Due to the high number of

voxels, a simulation without variance reduction techniques

was not possible. Both stratification and forced detection

were used in the simulation. The number of simulated emis-

sions per voxel were 1�104, 4�104, and 1.6�105. The

elements m ji of the matrix M were normalized to be the

probability of the detection of an event in LOR j given one

photon pair was started in voxel i.

In Table I the fraction of nonzero elements for matrices of

different statistics can be seen. The total number of matrix

elements was 234,700,800. The maximal number of simula-

tions �in the case of the 160 000-matrix� was 1.024�109

simulations. The calculation time on the 16 processor cluster

was approximately 48 min for this matrix. The mere calcu-

lation time for the 10 000 matrix was less than four minutes.

D. Reconstruction

Images were reconstructed using the well known maxi-

mum likelihood expectation maximization algorithm �ML-

EM�. In the first reconstruction method the system matrix M

including scatter was used in the projector Pfull and also in

the backprojector Bfull of the algorithm. Therefore the same

physics was used in the projector and in the backprojector.

This approach with a matrix including scatter was called full

matrix approach. With m ji��M� ji, xi��x�i, and y j
*��y*� j

being the matrix elements, the unknown activity and the

measured or �in this case� simulated sinogram, respectively,

this algorithm is defined by the two equations:

Pfull: y�k+1� = Mx�k� �1�

Bfull: xi
�k+1� = xi

�k��
j=1

NL � y j
*
m ji

y j
�k+1�� . �2�

Here k is the iteration number and NL is the number of

LORs.

The ML-EM algorithm was used because it is clearly de-

fined and well understood, and it forms the basis for several

algorithms. The starting image was a uniform image with 1’s

in all voxels. This influenced, of course, the reconstruction,

especially at early iterations. In order to show this effect, one

reconstruction was performed using a starting image with

random values xi� �0,2� in each voxel.

A second set of images was reconstructed using the dual

matrix �DM� reconstruction. DM is a reconstruction tech-

nique with unmatched projector/backprojector pairs. The

projector is modeled by MC simulation �and therefore in-

cludes scatter in the patient�, yet the backprojector does not

include scatter. The advantages of this approach are the fact

that the MC system matrix need not be stored and that fewer

particles have to be simulated in total �in case of a reasonable

number of iterations�. The disadvantage is the relatively un-

predictable behavior of the algorithm. Since the projector is

changed at every iteration step due to the MC simulation, the

progress made in one iteration can be canceled partially in

FIG. 2. Side view of the scanner: Instead of sampling the integral Klein-

Nishina distribution in the interval �� �−� ,��, it was only sampled in the

intervals �� ,�+��� and �−�−�� ,−��, which ensured a hit on the detector

if no further interactions occurred. The borders of these intervals were cal-

culated using the intersection points of the two rings defining the scanner

cylinder and the plane of interaction. Depending on the position and direc-

tion of the photon before interaction and the uniformly sampled angle �,

0–2 valid intervals for � did exist. Shown is the most likely case of two

intervals.

TABLE I. The influence of the number of simulated particles on the fraction

of nonzero elements in the matrix.

Emissions per voxel Nonzero elements

160 000 40.5%

40 000 23.0%

10 000 9.8%

160 000 �no scatter� 1.9%
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the next iteration. A similar problem arises from the fact that

projector and backprojector differ in terms of scatter, there-

fore leading to suboptimal search directions.

The DM reconstruction was performed in the following

manner: First, a MC matrix A was calculated ignoring all

scattered events �simulated with 160 000 emissions/voxel�.
This matrix was used in the backprojector BDM. The projec-

tor PDM. used this matrix as well, but added an additional

scatter sinogram s�k�. This sinogram was calculated by per-

forming a scatter-only MC simulation of the calculated ac-

tivity x�k� at iteration k. The efficiency of these simulations

was enhanced by the variance reduction techniques described

in Sec. II B:

PDM: y�k+1� = Ax�k� + s�k�, �3�

BDM: xi
�k+1� = xi

�k��
j=1

NL � y j
*
a ji

y j
�k+1�� , �4�

with �A� ji�a ji.

The first iteration was performed with s0�0 and a first

guess of the activity and the total number of emissions was

obtained. Then a fixed fraction p=0.001,0.0001, or 0.000 01

of the guessed emissions x
i

�k�
were simulated in the following

iterations. The obtained simulated scatter sinograms s�k� were

scaled by a factor 1 / p in order to correct for the lower num-

ber of simulated emissions.

E. Evaluation

In order to quantify the closeness to the true solution xtrue,

the normalized root mean squared error �or NRMSE for

short� of the reconstructed images was calculated for each

iteration step:

NRMSE =
1

NE

	 1

NV
�
i=1

NV

�xi − xi
true�2,

NV = number of voxels,

NE = average number of emission per voxel, �5�

i.e.,

=
5 � 109

NV

or
1 � 109

NV

.

The NRMSE can be assigned to different sources of error.

At early iterations, the algorithm is far from being converged

and the major source of error can be accounted to this fact. If

this were the only source of error, clearly the NRMSE should

be monotonically decreasing. However, this is not the case.

The inexact matrix and the noisy sinogram must be respon-

sible for the positive slope of the NRMSE at higher itera-

tions.

It is possible to quantify the error induced by the sino-

gram by simulating N sinograms that are identical but do

have different MC seeds. In this way, for each iteration step

k and each voxel i the variance 	i sinogram
2 �k� caused by the

noise in the sinogram can be calculated:

	i sinogram
2 �k� =

1

N − 1
�
�=1

N

�xi,�
�k� − x̄i

�k��2,

x̄i
�k� � mean value of voxel i at iteration k . �6�

Although the values x
i,�
�k�

are probably not exactly following

Gaussian statistics, the second central moment is neverthe-

less a useful measure of the error.

The same approach is applicable to the system matrix.

The calculation of several matrices with different seeds is, of

course, more time consuming than just calculating the sino-

grams. For this reason only a small number of matrices were

calculated �nine matrices�. The same number of sinograms

was simulated for consistency. Because of the small number

of N simulations a further analysis by means of bootstrap

methods was not pursued.

In the case of the DM reconstructions, three sources of

error exist: the sinogram, the matrix A, and the MC scatter

projection �leading to the sinogram s�k��. The influence of

each source can be measured again by varying the seed of

the corresponding MC simulation and keeping the two other

seeds constant.

Analogously to the NRMSE, a measure for the total in-

duced error can be introduced, normalized root mean vari-

ance, or for short, NRMV henceforth:

NRMV�k� =
1

NE

	 1

NV
�
i=1

NV

	i
2�k� . �7�

It is possible to relate this quantity to the previously in-

troduced NRMSE. At iteration k the image x�k� is obtained

by successive application of the projector and backprojector

operators on the starting image x�0�. The backprojector is

containing explicitly the sinogram y* while both depend on

the system matrix M.

x�k� = �

n=1

k

BP�x�0� � F
y*,M

�k� �x�0�� . �8�

With the help of a Taylor expansion, it is possible to es-

timate the total error 
i�k�=xi�k�−xi
true,

�9�

Here the noise in the sinograms bins ��y j
*� and the matrix

elements ��m ji� are not correlated, because different simula-

tions �with different MC seeds� are started. A correlation

between two matrix elements, however, is, in principle, pos-

sible due to the variance reduction techniques that are used
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for the simulation of the elements. The relation �9� is Gauss’

law of error propagation modified due to the potential corre-

lation of the matrix elements Cov�m jl ,mrs� and with an ad-

ditional term to account for the fact that the algorithm is not

converged. This latter addend decreases to zero for large k in

case of convergence. Therefore, for large k the convergence

error can be neglected and the following inequality can be

derived using the triangle inequality:

NRMSE�k� � NRMVsinogram�k� + NRMVmatrix�k� . �10�

This inequality is also valid when using higher order Tay-

lor expansions, which is necessary in the case of large errors.

III. RESULTS

In Fig. 3, the NRMSE of the reconstructed images with

matrices of different statistics can be seen. The figure shows

the typical property of the iterative solution of an �unregu-

larized� ill-posed problem: after a relatively fast convergence

the algorithm starts to “ focus” on the noise and to drift away

from the true solution.

Clearly better statistics resulted in a smaller NRMSE, but

the difference between the 1.6�105 matrix and the 4�104

matrix was already much smaller than the difference between

the latter and the 1�104 matrix. The better the matrix sta-

tistics the more the minimum �best agreement between true

and reconstructed image� is shifted toward higher iterations.

Figure 4 shows the NRMSE using the same matrices as in

Fig. 3, but applying the algorithm to the low count sinogram

with 1�109 emissions. The error introduced by the sinogram

is bigger. The shape of the NRMSE at higher iterations is

mostly determined by this error. The bigger total noise in-

duced error results in a shift of the minimum of the NRMSE

toward early iterations. At the beginning, there is only a

small deviation between the corresponding NRMSE curves

in Figs. 3 and 4. This is caused by the strong influence of the

starting image, which is in both cases the same. In both fig-

ures the validity of inequality �10� for large iteration num-

bers can be verified.

Figure 5 shows the relative importance of the matrix error

vs. the sinogram error in the case of full matrix reconstruc-

tion. The matrix error became comparable to the error caused

by the sinogram for the 5�109 sinogram and the 10 000

matrix �i.e., the ratio is approximately one�. The ratio can be

used to determine the required number of simulated emis-

sions per voxel: the error caused by the sinogram should be

larger than the error caused by the matrix. At higher iteration

numbers the ratio of the influences of both error sources is

independent of the iteration number.

Figure 6 shows the NRMSE for full matrix and DM re-

constructions with different statistics. For the DM recon-

structions, a fraction p of 0.001, 0.0001 or 0.000 01 of the

guessed activity was simulated in the forward MC simula-

tion, corresponding to approximately 5�106, 5�105, or 5

�104 simulated emissions. More simulated particles led to

smaller NRMSE, as expected.

A characteristic feature of the DM reconstruction is the

faster initial convergence. Very typical are also the noise like

FIG. 3. Error versus iteration number for full matrix reconstructions with

different statistics, as indicated. The R-R graph shows the NRMSE when

using a starting image with random voxels xi� �0,2� instead of a uniform

image with voxels xi�1. The sinogram was simulated with 5�109 emis-

sions in total. Iteration number zero corresponds to errors of images after the

first iteration.

FIG. 4. Error versus iteration number for full matrix

reconstructions of a sinogram simulated with 1�109

emissions in total and matrices of different statistics.
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fluctuations that can be seen in the p=0.000 01 curve. This

feature is also very weakly present in the p=0.0001 curve

�and extremely weak in the p=0.001 curve�. These fluctua-

tions decreased the more particles were simulated in the for-

ward MC simulation.

Figure 7 shows the contribution of the different sources of

error for the DM reconstruction. Clearly, the error caused by

the sinogram dominated. The error introduced by the system

matrix A had similar features like the matrix induced error in

the full matrix reconstruction.

The error introduced by the forward MC scatter increased

initially and soon stayed rather constant. This suggests that

the algorithm converges to some mean solution and oscillates

randomly around this solution with rather constant mean am-

plitude.

In analogy to Fig. 5, Fig. 8 shows the importance of the

error introduced by matrix A and the forward MC scatter

simulation relative to the sinogram induced error. Again, the

error caused by the sinogram dominates. The small error due

to the forward MC scatter simulation can be explained by the

fact that the system was a 2D system with a low scatter

contribution. Therefore the scatter free matrix A that occurs

both in the projector and backprojector mostly determines

the convergence properties. The error ratio introduced by

matrix A shows similar properties, like the error ratio in full

matrix reconstruction �a constant nonzero ratio at high itera-

tion numbers�. This is not the case for the error introduced by

the MC forward simulation.

Figure 9 shows the reconstructed images. Clearly the dif-

ference is not very big, which can be accounted to the rela-

tively small scatter fraction.

In the following figures, the voxel dependency of the error

is shown. Images of minimal NRMSE were chosen. The

likelihood of the EM algorithm was not used to define the

iteration number of the images, because the likelihood itself

depends on the quality of the matrix, but not on the differ-

ence to the true activity. The choice of the minimal NRMSE

as a criteria for selection in general leads to different itera-

tion numbers. This should be kept in mind when comparing

images. The absolute error �standard deviation� or the rela-

tive error �standard deviation divided by the mean value� for

each voxel is visualized as the gray value of the correspond-

ing voxel �white � big error, black � small error�.
Figure 10 shows the absolute and relative error caused by

the sinogram. The absolute error did not depend much on the

reconstruction method. More emissions in a voxel resulted in

a larger absolute error, which is in agreement with a study on

noise properties of the EM algorithm by Wilson

et al.
11

On the other hand, more emissions lead to a reduced rela-

tive error. In both full matrix and DM reconstruction, the

error seemed not to depend on the phantom density of the

voxels. The density change at the border of the phantom,

however, clearly influenced the relative error introduced by

the sinogram. This is probably caused by the fact that both

algorithms converged much faster outside the phantom to

small �zero� activities.

In Fig. 11 the error caused by the system matrix is visu-

alized. A density dependency inside the phantom could not

FIG. 5. The ratio of the NRMVmatrix /NRMVsinogram for a

sinogram with 1�109 emissions and a sinogram with

5�109 emissions is shown for different matrix and si-

nogram statistics.

FIG. 6. NRMSE for full matrix reconstructions and DM reconstructions.

Sinogram 5�109 emissions.
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be found. Again a higher number of emissions lead to an

increased absolute error but a reduced relative error. The

same behavior can be seen in DM reconstruction �Fig. 12�
for the error caused by the scatter-free matrix A. In the case

of the error introduced by the forward scatter simulation, a

similar behavior can be seen, but, in addition, the noise out-

side the phantom seemed to be structured �see Fig. 12�d��.
However this could be seen only in the relative error images,

because the reconstructed activity outside the phantom is

small. Therefore at least in 2D this effect seems to be negli-

gible.

IV. DISCUSSION

The log-likelihood that is to be maximized by the algo-

rithm is based on the approximated noisy matrix and the

approximated noisy sinogram. The algorithm does therefore

not converge to the maximum of the ideal problem but to a

shifted maximum �image x��. Before converging to this

shifted maximum, the NRMSE can even become smaller

than at higher iterations, because the uniform starting image

encourages smooth reconstructed images that often agree

better with the original image xtrue. The fading influence of

this starting image at higher iteration numbers leads to a

positive slope of the NRMSE. The NRMSE eventually ap-

proaches asymptotically NRMSE�x��
NRMSE�xtrue��0.

This explanation can be verified by looking at graph R in

Fig. 3, where the starting image is an image with random

voxel values between zero and two times the mean expected

activity. The agreement between the true image and this ran-

dom starting image is much smaller. This leads to an almost

horizontal slope at higher iterations and a shift of the mini-

mum of the NRMSE toward higher iterations.

The fading influence of the starting image during the re-

construction process is associated with a growing influence

of the given information �the matrix and the sinogram� on

the reconstructed images. Since the matrix and the sinogram

are noisy, the corresponding NRMVs should grow as well.

This can be verified in Fig. 3, which shows monotonously

increasing NRMVs.

In both Fig. 3 and in Fig. 4 the NRMV curve of the

sinogram induced error with the 10 000 matrix is below the

two other curves using the higher statistics matrices for it-

eration numbers �230 and �170, respectively. This means

that the NRMV of the sinogram somehow depends on the

number of the simulated emission of the matrix. This can

have three reasons. The derivative of F
y*,M

�k�
in �9� depends

implicitly on the matrix. Therefore, the NRMV of the sino-

gram should be positioned randomly around some mean

NRMV curve. In the case of bad matrix statistics this devia-

tion should be larger and the considered curve could be po-

sitioned below the two other curves. However, this is not

very likely, because the NRMV is the average over many

voxels. Second, in the case of few simulated emissions, the

nonzero fraction of the matrix is small. This might lead to a

reduced rank of the matrix which should also influence the

mentioned derivative. Third, it is possible that due to a large

matrix error higher order terms in the Taylor expansion can-

not be neglected anymore. This would lead also to a depen-

dency of the considered NRMV on the matrix statistics.

FIG. 7. NRMSE and NRMV of DM reconstruction with

matrix A for the sinogram with 5�109 emissions and

different fractions of simulated forward scatter. The

small figure shows more enlarged NRMV curves

caused by the matrix A and by the forward MC

simulation.

FIG. 8. Ratios NRMVA /NRMVsinogram and NRMVMC scatter /NRMVsinogram in

DM reconstruction.
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An additional algorithm was also tested. The algorithm is

closely related to the DM algorithm

P�: y�k+1� = MC��x�k�� �11�

BDM: xi
�k+1� = xi

�k��
j=1

NL � y j
*
a ji

y j
�k+1�� . �12�

It uses a projector P� that only consisted of a MC simulation

�with unscattered and scattered events� with the same num-

ber of simulated emissions like in PDM. This tested algorithm

that is not using the matrix A in the projector proved to be

clearly inferior to the DM algorithm. Even a reconstruction

with p=0.001 �or roughly 5�106 emissions per iteration�
was unstable. Problems arose always when a LOR y

i

�k+1�
in

the denominator of �12� was zero while the nominator y j
*a ji

was not zero. This problem occurred mainly for LORs tan-

gential to the phantom boundary. This unstable behavior of

the algorithm could be avoided by defining a projector PDM,

as proposed in Sec. II D.

FIG. 9. Reconstructed images for the 5�109 emissions sinogram at minimal

NRMSE.

FIG. 10. Sinogram induced absolute and relative error for the 5�109 emis-

sions sinogram and the 160 000 matrix at minimal NRMSE �white � big

error, black � small error�. The very large relative error of voxels outside

the cylinder often exceeded the gray value scaling. The error of these voxels

is therefore represented by white color.
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Simulations of a similar one-ring scanner with a larger

detector ring width �and phantom�, and therefore scatter frac-

tion, could give more insight into the noise propagation and

performance of the two algorithms in 3D scanners. Prelimi-

nary simulations of such a scanner showed that relative to

the full matrix algorithm the minimum of the NRMSE curve

of the DM algorithm is positioned at smaller iteration num-

bers, while the minimal NRMSE is increasing. It can be

therefore expected that in the case of 3D scanners the DM

algorithm is initially converging faster than the full matrix

algorithm.

While the position of the minimum of the DM approach

relative to the full matrix approach seems to be rather sensi-

tive to the scatter fraction, it can be expected that the quali-

tative shape of the NRMV curves �monotonously increasing

influence of matrix or sinogram noise� should stay the same.

For large iteration numbers, there should be an upper bound

NRMSE�x�� for the NRMSE, as discussed at the beginning

of this section. Together with �9�, this suggests that there

exists an upper bound for the NRMVs as well, independently

of the scatter fraction. The property of the NRVMMC of stay-

ing at a constant level after only few iterations is probably
FIG. 12. Error in DM reconstruction with p=0.000 01 at iteration

78�minimal NRMSE �white�big error, black�small error�.

FIG. 11. Matrix induced absolute and relative error for the 5�109 sinogram

and the 10 000 matrix at minimal NRMSE �white � big error, black � small

error�.
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also present in the case of 3D scanners. It can be expected

that the influence of this forward scatter simulation will in-

crease. While in the case of 3D scanners the variance of the

voxels will most likely also be correlated to the activity of

these voxels, there might be an additional correlation to the

density that was not present in the 2D case.

Apart from the crucial question of the performance and

noise propagation in the case of 3D scanners, it would also

be interesting to compare the convergence and noise proper-

ties of the full matrix approach and DM approach using dif-

ferent starting images �like images obtained by filtered back-

projection, which might lead to superior convergence of the

full matrix approach�, and also to investigate different recon-

struction algorithms �like, for example, primal-dual

methods
12,13� or the influence of regularization.

V. CONCLUSIONS

A method to quantify the error introduced by MC simu-

lations in reconstruction algorithms was introduced. The

noise propagation and performance of the ML-EM algorithm

in the full matrix and DM version were investigated in a

single ring scanner.

The full matrix simulations showed that the noise intro-

duced by the matrix and by the sinogram became comparable

in the case of reconstructions with a system matrix with a

relatively small number of simulated emissions per voxel

�10 000 with variance reduction�. This matrix was simulated

in less than four minutes calculation time on a small com-

puter cluster, which shows that the much more demanding

task of the simulation of a matrix of a 3D scanner might

become feasible. The storage of the matrix, however, is still

problematic, although approaches like compression of the

matrix
14

were presented that might reduce the severity of this

limiting factor.

A simpler way to avoid the storage problem is to use the

DM algorithm for reconstruction. In a broader sense, not

only the DM-OS algorithm from Beekman et al., but also the

well known single scatter simulation algorithm
15

falls into

this class of algorithms. In the case of the investigated ide-

alized one-ring scanner and a uniform starting image, the

DM algorithm performed slightly better than the algorithm

using the full scatter matrix. Although theoretically the DM

approach should be inferior to the full matrix approach, be-

cause it is not guaranteed to converge and additional noise by

the forward MC simulation is introduced into the algorithm,

it performed very well.
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Abstract

Monte Carlo (MC) simulations in positron emission tomography (PET) play an important role in detector modeling and algorithm

testing. Nowadays, these simulation are also increasingly used for scatter correction during reconstruction. This can be done ideally by

using MC simulations to calculate the system matrix including scatter (full matrix approach). Another approach to incorporate MC

simulations into the reconstruction is using a MC based projector and attenuation based back-projector, avoiding the storage of the

matrix (dual matrix (DM) approach). It appears desirable to compare these two methods for PET and investigate the reconstruction

accuracy in the light of MC noise. For this purpose a method to estimate the error introduced by the matrix, the sinogram or the

projector based on repeated simulations with different MC seeds is introduced. Simulations of a single ring scanner (due to storage

limitations) were performed.

r 2006 Elsevier B.V. All rights reserved.

PACS: 87.57.�s

Keywords: Positron emission tomography; Reconstruction; Monte Carlo; Noise

1. Introduction

In the field of single photon emission computed

tomography [1] as well as in the case of small animal

positron emission tomography (PET) [2,3] system matrices

were simulated in the last years by means of Monte Carlo

(MC) methods to accurately model the scanner [1–3] and

the scatter in the patient or small animal [1,3]. Although

the correct simulation of the system matrix with MC

methods of sufficient statistics guarantees the correct

treatment of difficult scanner geometries and scatter in

the reconstruction, this approach is problematic due to

very long simulation times and very large system matrices.

The problem of storing the matrix can be avoided by using

a MC based projector including scatter, but using a simpler

back-projector without scatter [4]. Especially in the case of

human PET the latter approach is very appealing, because

the size of the system matrix. Therefore, it appears

desirable to compare these two methods for PET and

investigate the reconstruction accuracy in the light of the

MC noise.

2. Methods

2.1. Geometry and MC simulations

The modeled scanner was an ideal one-ring scanner with

0:645 cm scanner width and a diameter of 82:4 cm. The

phantom was described by 80� 80� 1 voxels and had

the total dimensions of 40� 40� 0:645 cm3 (see Fig. 1).

The simulated phantom was cylindrical with density

0(outside), 0.1, 1(cylinder), and 2 g=cm3 and an activity

distribution with the activity ratios 0(outside):1(cylin-

der):3:5:10. The used fast parallelized ring-PET MC code

YaPRA concentrated on phantom scatter and used ideal

detector physics: no dead time simulation, ideal energy

resolution with detection of photons X350 keV. Singles

were not simulated.
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2.2. Sinograms and system matrices

The sinogram was simulated without using variance

reduction techniques with 5� 109 emissions (high statis-

tics) and 1� 109 emission (lower statistics) which corre-

sponds roughly to 5 and 30min-scans with (average)

6Becquerel/ml initially. The system matrices including

scatter ðMÞ were calculated with 160 000, 40 000, and

10 000 emission per voxel using the variance reduction

techniques stratification and forced detection. The scatter-

free matrix ðAÞ was simulated with 160 000 emission per

voxel using the same variance reduction techniques.

2.3. Reconstruction

The images were either reconstructed using the ML-EM

algorithm with a matrix M of different statistics (full

matrix approach) or using the attenuation only matrix A in

the back-projector and a forward projector P including

MC scatter estimates based on the previously reconstructed

activity xðkÞ at iteration number k (dual matrix (DM)-

approach). In both cases a uniform image ðx � 1Þ was the

starting image.

Full matrix: DM:

x
ðkþ1Þ
i ¼ x

ðkÞ
i

P

NL

j¼1

y%j mji

½MxðkÞ�j

 !

P : yðkþ1Þ ¼ AxðkÞ þ sðkÞ

B : x
ðkþ1Þ
i ¼ x

ðkÞ
i

P

NL

j¼1

y%
j

aji

y
ðkþ1Þ
j

 !

with ½A�ji � aji, ½M�ji � mji, ½x�i � xi, ½y�j � yj, y% �

simulated sinogram, NL � number of LORs, and sðkÞ �

sinogram obtained by scatter only MC simulation using

xðkÞ.

The forward scatter simulation was performed with a

fraction p ¼ 0:001; 0:0001; 0:00001 of the reconstructed

emissions xðkÞ. A normalization of sðkÞ with 1=p assured

the correct scatter fraction in the projector.

2.4. Evaluation

In order to quantify the closeness to the true solution

xtrue the normalized root mean squared error (NRMSE) of

the reconstructed images was calculated for each iteration

step. The error introduced by the matrix was estimated by

simulating matrices using different MC seeds but the same

activity. The same approach was used to estimate the

sinogram induced error. In both cases nine simulations

were run. In this way, for each iteration step k and each

voxel i the variance s2i ðkÞ caused by the noise in the matrix

(or sinogram) could be calculated:

s
2
i ðkÞ ¼

1

8

X

9

a¼1

ðx
ðkÞ
i;a � x̄

ðkÞ
i Þ2

where x̄
ðkÞ
i � mean value of voxel i at iteration k.

In the case of the DM reconstruction three sources of

error exist: the sinogram, the matrix A, and the MC scatter

projection (leading to the sinogram sðkÞ). The influence of

each source can be measured again by varying the seed of

the corresponding MC simulation and keeping the two

other seeds constant.

Analogously to the NRMSE, a measure for the total

induced error (normalized root mean variance (NRMV))

can be introduced:

NRMVðkÞ ¼
1

NE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NV

X

NV

i¼1

s
2
i ðkÞ

v

u

u

t

where NV is the number of voxels and NE the average

number of emissions per voxel.

3. Results

Fig. 2(a) (sinogram with 5� 109 emission) and Fig. 2(b)

(1� 109 emissions) show the NRMSE curves for matrices

of different statistics. In addition a measure for the

introduced error (the NRMV) is shown. The sinogram

ARTICLE IN PRESS

Fig. 1. Phantom: (a) density; (b) activity xtrue.

N. Rehfeld, M. Alber / Nuclear Instruments and Methods in Physics Research A 571 (2007) 211–214212



induced as well as the matrix induced error is mono-

tonously increasing as the influence of the starting image is

decreasing. The matrix induced error became comparable

to the sinogram induced error in the case of the 10 000-

emissions/voxel matrix (160 000 emissions in total). This

matrix could be calculated in less than 4min on a 16

processor cluster.

In Fig. 3 the NRMSE of the full matrix and DM

approach can be seen. The difference in the 10 000, 40 000

and 160 000 curves of the full matrix approach are mostly

due to different statistics of unscattered counts. Differences

of the DM NRMSE is due to different scatter statistics.

In Fig. 4 the NRMSE and NRMV (sinogram, attenua-

tion matrix A and forward MC scatter) is shown for

reconstructions with different p. The forward MC scatter

induced error is rather small due to the very small scatter

fraction of the ideal one ring scanner ð4:2%Þ and shows

characteristic noise like fluctuations due to the MC

projector. In scanners with higher scatter fractions an

increase in the NRMV and an increase of the amplitude of

the fluctuations can be expected.

In Fig. 5(a) and (b) the voxel dependency of the error

ðsi ¼
ffiffiffiffiffi

s
2
i

p

Þ of the sinogram induced and matrix M induced

error can be seen. The relative error for voxel i is si=x̄i.
While the absolute error increases with higher activity, the

relative error decreases. This behavior can be seen for all

kinds of induced error: sinogram, matrix M as well as

matrix A (Fig. 5(c)) and forward MC (Fig. 5(d)). The

relative error of the forward MC induced error is

inhomogeneously structured outside the phantom in

contrast to the other induced errors. This effect is very

small and cannot be seen in the absolute error images. A

density dependent effect inside the cylinder could not be

found.
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4. Conclusions

A method to quantify and investigate the propagation of

error during a reconstruction that uses either MC

simulated system matrices or MC simulated projectors

was introduced. The error propagation of an one-ring

scanner was investigated by simulations. Simulations of

this ideal system show that the DM approach is converging

faster initially in the considered case of a uniform starting

image.
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Reconstruction of PET Images with a Compressed

Monte Carlo Based System Matrix – a Comparison

to Other Monte Carlo Based Algorithms
Niklas Rehfeld, Student Member, IEEE, Matthias Fippel, and Markus Alber

Abstract— A new method to compress the system matrix of
a PET scanner calculated by Monte Carlo (MC) simulations is
introduced. The proposed method reduces the size of the matrix
drastically and allows a considerable reduction in the number of
simulated particles. The images reconstructed with such a com-
pressed matrix are compared to images reconstructed with other
MC based algorithms, namely the dual-matrix algorithm [1] and
the full-matrix algorithm (reconstruction using the uncompressed
MC matrix).

Index Terms— positron emission tomography, reconstruction,
Monte Carlo, system matrix, compression.

I. INTRODUCTION

Monte Carlo (MC) simulations are widely used in the field

of positron emission tomography, mainly for the purpose of

scanner development and reconstruction algorithm testing. The

simulations also can be used to accurately simulate the system

matrix (including the patient), however (a) the very long sim-

ulation time and (b) especially the immense storage demands

make this direct approach not practicable.

The common way to avoid the latter shortcoming and to

reduce the simulation time (but still to use MC simulations in

reconstruction) is to accurately simulate the (re-)projector but

to approximate the back-projector ([2], [1]). The approximated

back-projector usually only comprises attenuation information,

but lacks any scatter information.

A new approach solving the problem of drawback (b) is

the compression of the MC-matrix. A method to compress

the matrix of a 2D PET scanner including a voxelized density

phantom is introduced in this work. A generalization for the 3D

case with oblique sinograms should be possible. The achieved

compression factor is of the order of 103. In addition, a drastic

reduction of the number of simulated particles can be obtained

while achieving similar reconstructed images.

A matrix which is compressed by this method is used to

reconstruct images and the images are compared to images re-

constructed with the full MC-matrix (i.e. a MC matrix used for

the projector and back-projector) and to images reconstructed

with a dual-matrix approach as proposed by Beekman et al[1].

II. METHODS

A. Geometry and Monte Carlo simulations

The modeled scanner consisted of one ring of depth 0.645

cm, a diameter of 82.4 cm, and 384 detectors. The density

(a) side view
(b) front view

Fig. 1. Side and front view: black=scanner, green=density, red=activity

was described by 80x80x1 voxels with dimension 5x5x100

mm3 and placed in the center of the scanner. A phantom,

a heterogeneous density cylinder of diameter 32 cm, was

approximated using this voxel grid. The activity was modeled

by 80x80x1 voxels of dimension 5x5x6.45 mm3.

The simulations were performed using a self written MC-

code YaPRA, which is tracing photons in voxelized density

phantoms, but implements only simple detector modeling by

accepting all photons in an energy window (here 350-650

keV). The sinogram was simulated using 5 × 109 photon

pairs without applying variance reduction techniques. In this

way realistic noise properties could be obtained. The number

of particles roughly corresponded to a 30 min scan with 6

kBq/ml initially. In the case of the system matrix this approach

was too time consuming. Therefore the matrix was simulated

with stratified sampling and forced detection, similar to the

SimSET techniques [3]. Density to attenuation coefficients

conversion according to M. Fippel[4] was used in order to

obtain attenuation coefficients from density information. For

the simulations a cluster of eight two-processor-computers with

AMD XP2800+ were used. The MC simulation of a matrix with

4×104 photon pairs per voxel (2.56×108 photon pairs in total)

needed approximately 12 min.

0-7803-9221-3/05/$20.00 ©2005 IEEE
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(a) Density: 0, 0.1, 1, 2
g/cm3

(b) Activity: ratio
0:1:3:5:10
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Fig. 2. Radon transform of the center of a voxel yields the geometrical
expected maximum of a projection of the scatter

B. Compression

Since the attenuation-matrix A (no scatter, only attenuation)

alone can be approximated well and fast by numerous algo-

rithms and a substantial compression would most likely lead to

image artifacts, the MC matrix M is divided into two matrices

M = A + S (S = scatter only matrix) assuming that A is

calculated on-the-fly or stored in a sparse manner.

The compression of matrix S is twofold. Firstly, the scatter

tails of the projections of the sinograms of the matrix were fitted

by functions g(ρ) = exp(a+ b(ρ−ρ
0))+exp(c + d(ρ − ρ

0)2)
(see Fig. 4 and 5), shifted by the geometrically expected

maximum ρ
0 of the scatter (see Fig. 2). Each scatter sinogram

of matrix S is therefore described by 8 × 384 parameters,

achieving a compression factor of 96/8=12 (96 being the

number of bins per projection). MC simulations as well as

measurements [5] showed that exponential scatter tails are a

reasonable approximation.

A further compression is achieved by B1-spline interpolation

of the parameters in the voxel domain. These interpolating

functions have the nice property of being continuous and that

the corresponding kernels are small and of finite support,

which is rather crucial for a reasonable calculation time in

reconstruction.

In principle there are two different ways to perform this

additional compression. One approach is to obtain the param-

Fig. 3. Discrete B1-spline kernels in the voxel domain

eters for each voxel by fitting the projections and then to

approximate these parameters by B-splines. The disadvantage

of this approach is the large number of detected events needed,

because only the events of one voxel contribute to a projection.

Too few events result in unstable fits.

The other approach is to use the sinograms of the voxels

belonging to a B-spline kernel (see Fig. 3) and to collect all

detected events (with the appropriate weights). The advantage

is the increased number of events used to determine the parame-

ters: if n voxels belong to a B-spline-kernel, on average n times

more events contribute to the parameter-fits. Unfortunately, the

sinograms of the kernel cannot simply be added before fitting

because this would result in a flattened and smeared scatter

peak. When the expected geometrical scatter maximum of the

projections for all voxels in the kernel are aligned, however,

only the shape of the tails is averaged but not the position of

the peak.

The usage of 20 × 20 × 1 (or 5 × 5 × 1) B-splines-kernels

(instead of 80 × 80 × 1 voxels) resulted therefore in a total

reduction of the matrix size by a factor of 12×4×4 = 192 (or

12×16×16 = 3072). Only voxels inside the cylinder (i.e. with

non-zero density) were considered resulting in an additional

reduction of the size of the matrix by almost a factor of 2.

The Levenberg-Marquardt algorithm was used for fitting.

Since especially for large kernels many points have to be fitted,

the data was re-organized before fitting, grouping several points

at the far ends of the scatter tails into one point, but grouping

less and less points the more ρ approaches the expected peak

of the scatter. This assured a correct fit close to the scatter peak

and proved to result in rather stable fits and fast fitting.

C. Reconstruction and evaluation methods

Maximum likelihood expectation maximization (ML-EM)

without regularization was used for reconstruction. The normal-

ized mean squared error (NMSE) of the reconstructed activity

(compared to the true activity) was plotted vs. iteration number.

The minimal value of this plot as well as well as the slope

for higher iteration numbers was used as a measure for the

correctness of the matrix. Matrix A was calculated by a high

statistics MC simulation with 1.024 × 107 photon pairs/voxel.

Dual matrix (DM) reconstruction was performed with A as the
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Fig. 4. A projection of the matrix (voxel (56,50,0)) and compressed versions of the projections.
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Fig. 5. A projection of the matrix (voxel (56,50,0)).
Only 10 000 photon pairs are started in this voxel
to estimate the scatter. It can be seen that the larger
kernel in the case of the 5×5×1-compression assures
a more stable fit.

(a) 1.024 × 107 photon pairs/voxel (b) 20×20×1, direct: 1.024×107 + scatter:
6.4 × 105 photon pairs/voxel

(c) 20×20×1, direct: 1.024×107 + scatter:
4 × 104 photon pairs/voxel

(d) direct: 1.024 × 107 + scatter: 4 × 104

photon pairs/voxel
(e) 5 × 5 × 1, direct: 1.024 × 107 + scatter:
6.4 × 10

5 photon pairs/voxel
(f) 5 × 5 × 1, direct: 1.024 × 107 + scatter:
4 × 10

4 photon pairs/voxel

Fig. 6. Sinograms of the voxel (56,50,0). Gray-values are windowed to [0,10−8] normalized counts in order to show scatter. It can be seen that the 5× 5× 1-
compression resulted in more stable fits in the case of low statistics scatter (compare Fig. 6(c) to Fig. 6(f)), but also in a less correct description of the scatter
tails in the case of higher scatter statistics (compare Fig. 6(b) to Fig. 6(e)).
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back-projector and P (xi) = Axi + si as the projector, where

si is the (pure) scatter sinogram of the activity xi at iteration

i.

III. RESULTS

Images were reconstructed in seven different ways: Using a

MC matrix including scatter (1.024 × 107 photon pairs/voxel

simulated), using DM with roughly 5× 106 or 5× 105 photon

pairs/iteration for the scatter sinogram s, and using compressed

matrices (matrix A+ matrix S with 6.4×105 or 4×104 photon

pairs/voxel with either 20x20x1 or 5x5x1 spline compression).

It can be seen that the visual results did not differ too much

(Fig. 7). This was due to the reason that the simulated scanner

was an ideal 2D scanner. The reconstruction methods only

differed in the way of treating scatter, and since the scatter

fraction was small, the difference was not very big.

The NMSE plots (Fig. 8) were more meaningful. A positive

slope is a sign for an improper sinogram (noisy) or a not

correct matrix (noisy or wrong). It can be seen in Fig. 8 that

the full-MC-matrix reconstruction as well as the compressed

matrix reconstruction result in similar slopes at higher iteration

numbers. The fact that a compressed matrix (20 × 20 × 1
with 6.4 × 105 photon pairs simulated per voxel for scatter)

resulted in better images than the full matrix showed that the

the description of the scatter tail as the sum of a Gaussian and

an exponential function is good enough. Larger spline kernels

proved to be superior when used for low statistics simulations

(compare 20x20x1 compression and 5x5x1 compression when

simulating 4×104 photon pairs in Fig. 8). This is in agreement

with the fact that they provide more data points and therefore

should result in more stable fits. For higher statistics simulation,

however, smaller kernels were superior, because the higher

number of splines allowed a more subtle description of the

matrix.

The DM approach is initially faster converging. This, how-

ever, cannot be accounted for the fact that the ”matrix” is

in better agreement with the reality. Strictly speaking this

algorithm is not an EM - algorithm, because two different

matrices are used.

The fact that the MC-matrix is not performing best may

rely on the fact that this matrix was calculated simulating

1.024×107 photon pairs per voxel including scatter, whereas all

others use this number of pairs for direct counts plus additional

simulated particles for scatter. More likely is however simply

a better approximation of the ”reality” by the fitted smooth

scatter tails of the 20x20x1 compressed matrix than by the

discrete high statistics MC simulation (see Fig. 4).

IV. CONCLUSION

A new way to incorporate MC scatter in the reconstruction

process was introduced. The method allowed a significant

reduction of the matrix size and simulation time. Images

obtained were comparable with images obtained using the dual

matrix algorithm or the full MC matrix approach. A larger

spline kernel could be used to counterbalance a decrease in

(a) original (b) MC, 1.024×10
7 /voxel

(c) DM, ≈ 5×10
6/iteration (d) DM, ≈ 5×10

5 /iteration

(e) 20x20x1, 6.4×105/vox. (f) 5x5x1, 6.4 × 105/voxel

(g) 20x20x1, 4×104/voxel (h) 5x5x1, 4 × 104/voxel

Fig. 7. Reconstructed images. The images with minimal NMSE were chosen.

the statistics, providing a handle to reduce the simulation

time without degrading the images too much. When using

the same spline compression, the quality of the images could
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Compression of a Monte-Carlo Based System Matrix

for Iterative Reconstruction of PET Images
Niklas Rehfeld, Student Member, IEEE, Markus Alber, Matthias Fippel, and Fridtjof Nüsslin

Abstract— Modern human PET-scanners often have high scat-
ter fractions due to the lack of septa. This work treats the
scatter in a straight forward manner by calculating the system
matrix elements directly with Monte-Carlo (MC) methods. A
parametric compression method was used to scale down memory
consumption. The resulting images (reconstructed with either
the compressed or with the uncompressed MC-matrix) were
compared.

Index Terms— positron emission tomography, Monte Carlo,
system matrix, compression.

INTRODUCTION

Modern PET scanners require a correct treatment of scat-

tered events due to their high scatter fraction. Monte Carlo

(MC) simulations are the methods of choice for correct scatter

calculation. Unfortunately, they are very time consuming.

One approach to overcome this shortcoming is to use accel-

erated MC calculations in combination with fast reconstruction

algorithms. Beekman et al [1] showed that this is possible for

single photon emission computed tomography (SPECT). Single

scatter simulation [2], [3], a comparable technique for PET, is

using random scatter points to estimate the scatter.

The other way to handle this problem is to calculate the

matrix once at the beginning and store it, retrieving matrix

elements from memory whenever necessary. Recently, Rafecas

et al [4] used a MC-based system matrix for reconstruction

in a small animal PET scanner, storing the matrix with the

help of a data base management system. The advantage of a

stored matrix over the first approach relies in the much faster

retrieval of matrix elements which facilitates not only the usage

of scatter in the forward projection but also in other parts of

the reconstruction algorithm.

For human 3D-PET-scanners direct storage of the system

matrix is however prohibitive, because of the larger number of

detectors and scattering in the patient which can be neglected in

small animal PET systems. A compression of the matrix might

resolve this storage problem. Not only the resulting matrix is

smaller, but also the compression can lessen effects which occur

due to low MC statistics.

This work presents first investigations in the two dimensional

case. In two dimensions the matrix can be stored without

problems and images reconstructed by either the uncompressed

matrix or the compressed matrix can be compared.

METHODS

The simulations were performed by a dedicated ring-PET

MC-code which is in parts derived from the MC-code XVMC

used in radiotherapy [5]. Detection forcing, implemented in

a similar manner originally in SimSET [6], has been used.

Stratification which should result in additional speed-up of the

simulations has not yet been implemented. Absorption due

to the photo effect has been neglected but could be easily

implemented if needed. The simulations were performed in

voxelized density phantoms using linear attenuation coefficients

calculated from the density information as described in [5].

The system matrix was filled with data obtained by succes-

sive MC sub-simulations. Each sub-simulation started a defined

number of photon pairs randomly positioned in a voxel. The

obtained sinograms for each voxel j formed columns of the

system matrix Pij where i represented a line of response

(LOR).

The rows (constant φ, variable ρ) in a sinogram of a single

voxel j were modeled by functions fφj(ρ). These functions

were composed out of three parts: a central discrete part and

two lateral mono-exponentials (see Fig. 1).
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Fig. 1. Compression of a row of an off-central voxel.

The left and right slopes were fitted in the log-plot by

a least squares method to straight lines, assuming Poisson

statistics . A similar method has been proposed by Bergström

for experimental data [7].

The simulated scanner had a diameter of 96 cm and consisted

of one ring with 4 cm depth and 384 detectors. The larger than

usual depth was used to obtain better statistics. The detectors

0-7803-8701-5/04/$20.00 (C) 2004 IEEE0-7803-8700-7/04/$20.00 (C) 2004 IEEE 3945



Fig. 2. Uncompressed (left) and compressed (right) sinogram of an off-
central voxel (windowed gray-values to show scatter).

of the scanner were considered to be ideal: 100% efficiency,

curved along the nappe of the cylinder, with no depth and

without inter-detector or inter-crystal spacing. An energy cut-

off for energies below 300 keV was assumed for the detectors.

As a phantom a water filled cylinder (Ø = 30 cm, 4 cm long)

with an L-shaped hole was used. The cylinder was filled with

uniform activity, whereas two areas were left without activity

and other two areas were filled with 4× and 2× the background

activity (see Fig. 3 right).

Fig. 3. Left: density, right: activity (ratio 0:1:2:4)

The whole volume to be reconstructed was 40× 40× 4 cm3

(64 × 64 × 1 voxel). The images were reconstructed using

maximum likelihood expectation maximization (ML-EM) with-

out any regularization. The reconstruction started with uniform

activity in all voxels.

RESULTS

Using 5 × 107 started photon pairs for the simulation of

the sinogram of the phantom and 5 × 106 started photon pairs

for each voxel of the system matrix (150,208,512 elements),

the reconstructed images which can be seen in Fig. 4 were

obtained.

The image reconstructed with the compressed matrix was

more grainy. The reason for this could be either some badly

Fig. 4. Reconstructed with uncompressed matrix (left) and compressed matrix
(right), both after 20 iterations of ML-EM.

fitted rows or a faster convergence of the algorithm when using

the compressed matrix. Since different matrices were used,

a direct comparison of the log likelihood was unfortunately

not the best way of evaluating the convergence properties.

Looking at a compressed sinogram of the matrix (Fig. 2

right) revealed that a fit/compression in φ direction would

most likely lessen the number of badly fitted rows considerably.
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Fig. 5. Vertical profile at x = 31.

A vertical (Fig. 5) and horizontal (Fig. 6) profile through the

middle of the reconstructed activity distributions were taken.

The less smooth profiles through the activity reconstructed

with the compressed matrix (Fig. 4 right) confirm the grainy

impression of this image. For both matrices, the higher activity

concentrations (4× and 2× background activity) matched very

well, whereas the zero activity regions reached only approxi-

mately 25% of the background activity in air (lower L-shape)

and even only 50% in water (upper L-shape). Outside the

cylinder there was virtually no activity reconstructed.

The proposed fitting-compression scheme did reduce the

matrix size about a factor of 26. The system matrix was

calculated using the the PVM (parallel virtual machine)-library

on 14 2.8-GHz-processors. The calculation time was about 22 h.
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Fig. 6. Horizontal profile at y = 31.

CONCLUSION

Images reconstructed with MC-based system matrices and

ML-EM are rather smooth and activity artefacts outside the

phantom are not present at all. Compression of the matrix did

not improve the image quality, but resulted in more grainy

images. Since regularization was not used, it is difficult to judge

if the graininess can be accounted for a faster convergence

and therefore less dependence on the starting image or for

the fact that the fitting procedure does not work well for

some data. Older simulations with worse statistics, showed that

compression improved image quality, especially smoothness.

Altogether it can be concluded that the system matrix can

be compressed by parameterization and using this compressed

matrix still yields reasonable reconstructed images. However,

further refinement of the compression scheme is needed. Fur-

ther research to improve the compression scheme as well

as the MC- code is therefore worthwhile and the effect of

regularization should be examined.
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[4] M. Rafecas, G. Böning, B. J. Pichler, E. Lorenz, M. Schwaiger, and

S. I. Ziegler, “Effect of noise in the probability matrix used for statistical
reconstruction of PET data,” IEEE Trans. Nucl. Sci., vol. 51(1), pp. 149–
156, 2004.

[5] M. Fippel, “Fast Monte Carlo dose calculation for photon beams based on
the VMC electron algorithm,” Med. Phys., vol. 26, p. 1466, 1999.

[6] D. R. Haynor, R. L. Harrison, and T. K. Lewellen, “The use of importance
sampling techniques to improve the efficiency of photon tracking in
emission tomography simulations,” Med. Phys., vol. 18(5), p. 990, 1991.

[7] M. Bergström, L. Eriksson, C. Bohm, G. Blomqvist, and J. Litton,
“Correction for scattered radiation in a ring detector positron camera by
integral transformation of the projections,” J. Comput. Assist. Tomogr., vol.
7(1), p. 42, 1983.

0-7803-8701-5/04/$20.00 (C) 2004 IEEE0-7803-8700-7/04/$20.00 (C) 2004 IEEE 3947


	Introduction
	Motivation and thesis outline

	Physics of PET
	Positron emission and annihilation
	The detection system
	Geometry and interactions
	Scattered coincidences
	Attenuation
	Random correction

	Acquisition
	PET
	PET/CT


	Image Reconstruction
	The Radon transform …
	Iterative algorithms
	The system matrix
	The objective function
	Maximum likelihood expectation maximization

	3D scanners
	Scatter correction

	Monte Carlo Code
	Particle tracing
	Linear attenuation coefficients
	Tracing of particles in voxelized phantoms

	Simulated particle detection
	Variance reduction
	Forced detection
	Stratification

	Implementation and parallelization

	System Matrix Compression
	Goals and requirements
	Properties of the system matrix
	Compression scheme
	Principle
	Increasing robustness of compression scheme
	Increasing compression speed
	Read-out
	Memory saving for 2D scanners and outlook for 3D-scanner matrix compression


	Implemented Reconstruction Algorithms
	Monte Carlo maximum likelihood expectation maximization
	Full matrix
	No scatter modeling
	Compressed matrix

	Dual matrix maximum likelihood expectation maximization
	A hybrid approach

	Evaluation
	Simulated phantoms and scanner geometries
	Measures used for quantification
	Verification of the Monte Carlo code
	Compressed matrix
	Comparison of full matrix and compressed matrix
	Comparison of reconstructed images
	B-spline order and grid dimensions

	The influence of Monte Carlo noise on the reconstructed images
	Propagation of noise in iterative reconstructions
	Convergence and noise propagation of the full matrix and the dual matrix algorithm
	Discussion

	Performance

	Conclusions and Outlook

