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Abstract In drug design, the prediction of the binding mode of drug-like substances in the
binding site of a receptor is one of the most important tools. Over the last years, many different
approaches have been developed and applied successfully to a number of substances. However,
some classes of substances are still hard to predict with docking techniques. One very important
class of such molecular complexes is the domain of carbohydrates binding to proteins.

This thesis introduces an approach to protein-carbohydrate docking. The method is based on
thorough analysis of those interactions, which are important for protein-carbohydrate complexes.
Computational models of these effects are employed for creating a scoring and an energy func-
tion for this kind of complexes. By integrating these functions into a docking programme, the
effectiveness of this new approach is proven.

After a brief introduction into the problem addressed by this theses, the biochemical back-
ground of protein-carbohydrate complexation is explained. The main characteristics of such
complexes, which are the basis for the development of the functions, are detailed. Furthermore,
physical models for the atomic interactions that are deemed important for protein-carbohydrate
complexes are explained. Based on these interactions, the SLICK package, consisting of an en-
ergy function and a scoring function is developed. The effectiveness of both functions is proven.
Eventually, their effectiveness in protein-carbohydrate docking is shown by integrating SLICK
into a molecular docking programme.

Zusammenfassung In der Wirkstoffentwicklung ist das so genannte Docking, also die Vorher-
sage des Bindungsmodus wirkstoffahnlicher Molekiile an einen Rezeptor, ein wichtiges Werkzeug.
In den letzten Jahren wurde eine Vielzahl von Methoden und Ansétzen entwickelt und fiir eine
Reihe von Wirkstoffklassen erfolgreich eingesetzt. Jedoch gibt es immer noch Bereiche, in denen
Dockingverfahren scheitern. Eine wichtige Klasse von Molekiilkomplexen, die mit Dockingver-
fahren immer noch schwer zu handhaben sind, stellen zuckerbindende Proteine dar.

Die vorliegende Arbeit stellt einen Ansatz vor, der das Docking von Zuckern an Proteine
ermoglicht. Dieses Verfahren basiert auf einer genauen Analyse der fiir Protein-Zucker-Komplexe
wichtigen Wechselwirkungen und der Modellierung jener Eigenschaften in Form einer Energie-
und einer Scoringfunktion. Es wird gezeigt, dass durch die Einbettung dieser beiden Funktionen
in ein Dockingprogramm eine automatische Vorhersage des Bindungsmodus von Protein-Zucker-
Komplexen méglich wird.

Nach einer knappen Einfiihrung in das zu behandelnde Problem beleuchtet diese Arbeit den
biochemischen Hintergrund der Bindung von Zuckern an Proteine. Dabei werden die Hauptmerk-
male erlautert, die fiir die Entwicklung eines Dockingverfahrens von Bedeutung sind. Desweiteren
werden physikalische Modelle fiir die fiir Protein-Zucker-Komplexe charakteristischen atomaren
Wechselwirkungen behandelt. Aufbauend auf diesen Modellen werden Scoring- und Energiefunk-
tion entwickelt, die zusammen das Paket SLICK bilden. Es wird gezeigt, dass die Scoringfunktion
in der Lage ist, aus einer groffen Menge von Dockingkandidaten viel versprechende Strukturen
herauszufiltern. AnschlieBend wird die Vorhersagequalitdt der Energiefunktion statistisch anhand
verfiigharer experimenteller Daten analysiert. Schliefilich wird durch die Integration von SLICK
in ein Dockingprogramm nachgewiesen, dass mit Hilfe der in dieser Arbeit entwickelten Verfahren
das bisher schwierige Problem des Dockings von Zuckern an Proteine l6sbar wird.
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1. Introduction

Today, progress in drug discovery is almost unthinkable without the help of computational models.
Many achievements of the last years would not have been possible without sophisticated computer
programmes, assisting pharmacists and chemists in the laboratories when designing new drugs
and improving existing drugs.

There are many problems to be addressed when developing or improving drugs. The active
agents have to cross biological barriers, get to the location where their effect is needed and then
interact strongly with a target molecule. At the same time, drugs have to be cheap and achieve
all this without harmful side-effects. Thus, the development of drugs is not a trivial challenge.

Drug discovery always requires experiments. With constantly improving experimental meth-
ods, the amount of data on molecular processes and their effects on living organisms is perpetually
increasing, giving new starting points for drugs development. Computational methods can fa-
cilitate the development of drugs by providing means of simulating the real processes, analysing
very large amounts of data in short time and predicting the properties of new chemical entities.
But computational models cannot be devised without knowledge gained from experiments, which
represent he basis for understanding how drugs interact with other molecules.

Drugs take effect on the patient’s metabolism by binding tightly to a target molecule, often
referred to as a receptor. In drug design, the first step is to find a target molecule which is
responsible for an illness. As soon as the target is defined, many different chemicals are tested
against that receptor, . e. the binding affinity of these molecules to the receptor is determined.
If a molecule binds well, it qualifies for further investigation. However, a binding molecule, a
so-called lead, is not necessarily a potent drug. In fact, most of the substances that are found to
be binding will do so rather weakly. Some might even be toxic compounds and therefore cannot
be used as a drug at all. Consequently, the goal is to pick a few promising binding substances
and use them as starting points for developing a real drug by optimising their pharmacological
properties. During this optimisation process, compounds derived from the lead molecule have to
be synthesised and tested over and over again, until a molecule is developed that can be tried in
animals and eventually in humans.

However, synthesising and testing new compounds in the laboratory is a very time-consuming
and expensive task. For that reason, scientists try to use computational methods for predicting
the binding affinity of a certain compound to a target molecule without actually synthesising it.
The goal is to reduce the necessary laboratory work and focus on promising compounds. Doing
so will dramatically reduce time and money needed during drug development. There are several
ways of predicting binding affinities. Some methods focus on chemical or physical properties of
the molecules, e. g. the number of hydrogen bond donors and acceptors available. These features
can e. g. be used in machine learning approaches which might give reasonable results with respect
to predicting the binding affinity. But apart from the binding affinity, the geometry of binding,
i. e. the actual three-dimensional structure of the molecules in the bound state, is crucial for
further developing the lead compound into a working drug. In this context, the geometry of a
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Figure 1.1.: The abstract docking scheme: Start from the spatial structures of receptor and lig-
and, (1) create a large number of putative docking candidates, (2) filter out bad approximations
and (3) evaluate the remaining structures energetically.

molecule is called conformation.
The process of computationally predicting the binding conformation of two molecules and their
binding affinity is called docking. In simple terms, the docking problem is the following:

Given two molecules A and B, which are known to form a complex AB, and their
conformations in the unbound state, compute the binding conformation and binding
affinity of the complex.

How can this problem be solved? The binding free energy of a molecular system is the amount of
energy that is liberated when two molecules form a complex. Nature always tries to reach states
of minimal energy. Consequently, two molecules will only form a complex if it is energetically
favourable to do so, i. e. if there is no additional energy necessary to form the complex and the
binding free energy is actually liberated during the process. Thus, if we know how to calculate
accurate energies of the system and use this knowledge for searching energetically minimal states,
we will be able to predict approximations of the real complex. This idea is the basis for compu-
tational molecular docking. Docking programmes are roughly based on the following scheme (see
Fig. 1.1):

Structure Generation Create a large number of putative complex structures, referred to as can-
didate structures or simply candidates.

Filtering Filter out candidates that are probably bad approximations of the real complex using a
fast scoring function. Such a function connects three-dimensional structure with a number,
the score. The better the score of a candidate is, the more probable it is a binding con-
formation. Such a function should be computationally inexpensive in order to score many
conformations in little time.

Energetic evaluation Evaluate the remaining candidates energetically, . e. compute the bind-
ing free energy of these candidates by means of an energy function. Such a function also
connects structure with a number, but in this case, the actual binding free energy is cal-
culated. As there are only few putative complexes left after filtering, this function can be
computationally more intensive than a scoring function.

However, this scheme is only a very coarse view on what docking programmes really do. In most
cases, during the process of structure generation, bad candidates will be filtered out immediately,
depending on the strategy used to generate candidates.



Docking programmes can be classified by their purpose. There are e. g. docking programmes
for protein-protein complexes or for small ligands binding to proteins. Additionally, docking
programmes are often distinguished by their structure generating strategy. There are many
different ways of creating putative complex structures, some of which will be discussed in this
work. However, the important classification for the pharmacist is most probably the range of
applicability of a docking programme in terms of chemical compounds predictable with a certain
method. Protein-ligand docking programmes usually are designed for arbitrary ligands. While
this might sound reasonable as it simplifies application of a method, it certainly is a very strong
claim. As a matter of fact, docking programmes do have a range of ligands for which they produce
satisfactory results. For others, they fail.

A prominent example of complexes that are notoriously hard to predict with general docking
programmes is the realm of protein-carbohydrate complexes. Such complexes are very interesting
from a pharmaceutical point of view. Protein-carbohydrate interactions are known to influence
many biologically important processes. They are crucial to pathogen recognition, play various
important roles in our immune system, and are directly connected to cancer diagnosis.

This thesis will introduce a docking method for protein-carbohydrate complexes. Up to now,
docking carbohydrates to protein receptors is only possible in a very limited range of complexes.
Thorough analysis of the literature available on docking of protein-carbohydrate complexes re-
vealed that there exists no systematic docking method for this type of complexes except for the
approaches by Coutinho and coworkers [1, 2, 3, 4] and the subsequent adaptation of the AutoDock
method [5] presented by Laederach in 2003 [6]. All other attempts at docking carbohydrates to
proteins were of very limited success. In most cases, the resulting structures had to be subjected
to additional computationally intensive treatment like molecular mechanics simulations or other
optimisation techniques in order to gain acceptable complex structures. Thus, the advantages
of a docking method — speed and low cost — vanished with the increased amount of work and
computing time necessary for gaining reasonable results.

The work of Coutinho and coworkers presented a system for docking carbohydrate oligomers
into protein binding sites that was based on AutoDock. This system used a two-stage approach.
First, the binding position of one sugar ring of the oligomer was spatially fixed based on prior
knowledge. Second, the oligosugar was docked with the previously fixed ring being kept rigid
throughout the docking process. Although the results were encouraging, the approach has an
obvious disadvantage — prior knowledge is required. In drug design application, this knowledge is
not necessarily given. Laederach improved Coutinho’s work by introducing a recalibrated version
of AutoDock [6] for docking carbohydrates into protein binding sites, which is not dependent
on prior knowledge of the complex under consideration. However, Laederach’s work does not
take the rather specific nature of protein-carbohydrate interactions into account. The CH---7
interaction, which is known to influence binding through ring-stacking, is completely missing and
solvation effects can only be covered as far as AutoDock already permits it. A thorough treatment
of polar and nonpolar solvation contributions is not possible.

Additionally, there are empirical methods designed for the optimisation of the molecular ge-
ometries of carbohydrates, but these approaches are hardly applicable for the calculation of
binding energies, let alone binding geometries, because they also neglect interactions which have
proven important in protein-sugar complexation. Clearly, a new method for docking protein-
carbohydrate complexes is necessary if these complexes are to be examined for drug design pur-
poses.



1. Introduction

The goal of this work is to develop and validate a scoring function and an energy function
that can be used in automated docking of protein-carbohydrate complexes. These functions will
be specifically designed for this problem, based on thorough analysis of structural data from
publicly available databases and energetic properties that were reported in literature. Moreover,
these functions will be incorporated into a docking method that will be applied to a rather large
set of known protein-carbohydrate complexes in order to prove their effectiveness. The resulting
system will comprise the first design of a docking method for protein-carbohydrate complexes
that is not based on mere reparameterisation of an existing docking method.

The method introduced in this thesis is called SLICK, which is an acronym for Sugar-Lectin
Interactions and DoCKing. It is a package consisting of SLICK /score, a scoring function for dock-
ing purposes, and SLICK/energy, an empirical energy function. SLICK introduces a new term
for so-called CH-- -7 interactions, which are not covered by energy functions used in docking pro-
grammes so far. These interactions, which will be discussed in Chapter 2, play an important role
in protein-carbohydrate binding and are very important in docking. Additionally, SLICK /energy
considers so-called solvation effects with state-of-the-art computational models, which is also un-
common in energy functions of docking programmes. Solvation effects arise from interactions of
the molecules with their surrounding solvent, in which biological processes take place.

Another very important part of SLICK is the consideration of hydrogen bonds. These bonds
strongly influence protein-carbohydrate binding. Van der Waals interactions are calculated with
a softened form of the well-known Lennard-Jones potential. Softening this potential makes cal-
culations much less susceptible to inaccuracies in the structural data. Such inaccuracies are often
introduced in docking experiments.

SLICK /energy is an energy function that was designed to predict interaction energies. This
goal is achieved by including two different types of computational approaches. On the one hand,
SLICK /energy employs models for calculating energies of whole molecular systems and computes
interaction energies by subtracting two different states of a system. For example, the van der
Waals component calculates the energy of the system in the bound state and in the unbound
state. The energy difference is then the interaction energy. On the other hand, SLICK embraces
models that calculate interactions directly. An example is the CH:--7 contribution, which is based
on geometric considerations and does not yield interaction energy but a score that discriminates
good from bad interactions. Merging these two approaches together results in a function that
is able to predict intermolecular interactions very well but cannot be used in optimisation or
molecular dynamics calculations. Although this is a drawback compared to energy functions
of molecular mechanics force fields, the model provides large flexibility in the choice of energy
contributions for a specific problem and is thus not limited to one domain.

Another important difference between force fields and SLICK is the parameterisation flexibility
of the model. Usually, an energy function has its own parameterisation that is based on fitting.
In the case of SLICK, another approach was chosen in order to avoid a full reparameterisation of
all involved models and to gain accuracy. In principle, every energy contribution in SLICK can
use its own set of parameters. For example, the solvation component needs two different sets of
radii, one for the polar part and one for the calculation of nonpolar effects. Using one parameter
set for both contributions reduces the prediction quality significantly, which is a result of the very
different theoretical background of both models. Thus, the flexibility of the SLICK approach
permits the highest possible accuracy in each involved contribution without the need of merging
different and possibly incompatible parameter sets into one.



The robustness and prediction quality of SLICK /energy is thoroughly evaluated by means of
statistical assessment. Both SLICK/score and SLICK /energy are incorporated into the docking
programme BALLDock [7], yielding a protein-carbohydrate docking tool called BALLDock/S-
LICK. This tool is validated on an extensive set of high-quality experimental data and the results
are compared to existing docking methods.

The results of this thesis are very encouraging. With SLICK/score, 13 top-scored structures
out of 20 complexes in the validation set are binding conformations. In four other cases a correct
pose was under the ten highest scoring structures. In only three cases, the binding conformation
was not determined correctly. SLICK/energy achieves very low error rates in statistical assess-
ment of the calibration with an average absolute error of as low as 1.3 kJ/mol and a maximum
absolute error of only 3.1 kJ/mol. In validation, it achieves an average absolute error of 2.1
kJ/mol. These numbers clearly indicate that SLICK is fit for being used in protein-carbohydrate
docking, although further improvement is most probably possible. By integrating SLICK into
BALLDock, high docking accuracy could be achieved. On the calibration set, BALLDock/S-
LICK outperformed two existing general docking methods in both ranking of docking candidates
and accuracy of the energy predictions. On a larger set of known protein-carbohydrate com-
plexes, BALLDock/SLICK also produced better results than the general docking programme it
was compared with.

Developing the method for protein-carbohydrate docking presented in this work requires ex-
pertise from many different fields, like molecular biology, physics and bioinformatics. The neces-
sary chemical and biological background and some additional information on the role of lectins
and sugars in pharmacy will be discussed in Chapter 2. Most importantly, this chapter will
detail the peculiarities of the lectin-sugar binding process. Knowing these features that make
protein-carbohydrate complexes special is the basis for finding computational models necessary
for calculating energies and predicting binding geometries. These models will be explained in
Chapter 3, along with basic principles of the underlying physics and the algorithmic approach
to molecular docking. However, the models alone are not sufficient. Predicting binding energies
with an empirical method like the one described in this thesis is depending on experimental data
on which functions are calibrated. The data sets and details on the preparation of available data
are presented in Chapter 4.

Having computational models and experimental data ready, the lectin-sugar docking method
can be assembled. Chapter 5 will explain the approaches to scoring and energetic evaluation
of protein-carbohydrate complexes, which were developed and implemented for this work. This
chapter also covers the integration of the resulting functions into a programme for molecular
docking and the analysis of the results gained from validating the method. Chapter 6 will then
review and critically assess the findings and conclude this thesis with a glimpse at the future of
protein-sugar docking based on SLICK.
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2. Biochemical Background

Sugar-binding proteins and carbohydrates have been getting more and more attention in pharma-
ceutical research over the last few years. One of the most prominent examples of sugar based drugs
being in headline news is the publication of the Seeberger group in 2005, in which they describe
the synthesis of an oligomeric sugar which could be the basis for a vaccine against Anthrax [8].
Protein-carbohydrate interactions are of great importance for many biological processes and thus
are very interesting from a pharmaceutical point of view. Among general sugar-binding proteins,
there is one class of special interest, the so-called lectins. These proteins bind sugars without
changing them, 7. e. they have no enzymatic ability. Lectins have many important properties and
functions. Therefore, this study focuses on lectins.

This chapter gives an overview of existing approaches exploiting protein-carbohydrate interac-
tions in pharmaceutical applications and models. Moreover, a short introduction to the chemistry
and structural features of carbohydrates and lectins will be given. More importantly, the pecu-
liarities of binding interactions in protein-carbohydrate complexes are reported in detail, which
will give the basis for understanding the strategy chosen in creating the functions of the SLICK
package.

2.1. Carbohydrates

Sugars are very important biomolecules. Their function as energy storage and structural element
e. g. in cellulose has been known for years, while their contribution to biology as active components
has been neglected for a long time. Fortunately, glycobiology gained more and more attention over
the past years [9], thus giving the opportunity to improve our knowledge about sugars and their
role in biological processes. Carbohydrates take part in cell recognition, apoptosis, fertilisation,
growth control, tumor spread and many more biologically relevant processes. Consequently,
sugars are very interesting from a pharmaceutical point of view because they can be utilised
as drug targets and drugs alike. Besides their aforementioned possible use as vaccines against
Anthrax [8], there are already a number of applications based on sugars. In mouse models, Anti-
tumor treatment is enhanced [10] by sugars and a method for enhancing cancer treatment by
coating particles with sugar was just recently reported [11]. Other fields of application include
treatment of Gaucher’s disease or the development of antibiotics, for which sugar-based drugs are
already on the market [12].

Carbohydrates are not only pharmaceutically relevant, they are are also information carriers
with huge capacity. Sugar polymers are non-linear compounds in contrast to proteins and DNA,
which both have a secondary and tertiary structure, but first of all are linear chains of amino
acids or nucleotides, respectively. With sugars it is possible to create large branched molecules
from a rather small set of building blocks. These large polycarbohydrates, which can e.g. be
found on the surface of cells, are called glycans and have been identified in numerous articles as
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Figure 2.1.: The glycocalyx of a cell [15].

the third large group of biomolecules carrying information [13, 14]. This led to coining the term
glycome as the third large source of information in molecular biology.

The glycans on the cell surface build the so-called glycocalyz (see Fig.2.1) coating the whole
cell with a very specific composition of sugars. It is known that this composition of sugars can
be seen as a kind of fingerprint discriminating cell types, which is a basis for cell recognition and
thus can be exploited for targeting specific cells.

In order to exploit sugars in pharmaceutical applications, it is necessary to understand the
structure of polycarbohydrates. From a simplistic point of view, sugar monomers are aliphatic
carbon rings. Each ring carbon is supporting a hydrogen and a hydroxyl group. The rings
derive from linear carbohydrate chains of four or more carbons, one of which is supporting a
functional group (aldehyde or ketone). By connecting the functional group with an OH group,
the linear chain spontaneously forms rings in solution by building hemiacetals and hemiketals.
Figure 2.2 shows an example for a sugar ring evolving from its linear form. Most simple sugars are
pentoses (five carbons) and hezoses (six carbons). They are further distinguished by the number
of ring carbons. Rings of five carbons and one oxygen are called pyranoses. Rings with only
four carbons and an oxygen are called furanoses. While the basic structure of sugars is relatively
simple, the number of isomers stemming from one configuration is rather large. The main reason
for that is the large number of asymmetric carbons in the molecule leading to enantiomerism
and diastereoisomerism. Additionally, the conformation of the sugar ring leads to two different
isomeric forms, one of which is energetically more stable.

Sugar monomers can contain substituents other than hydroxyl groups, like acetyl groups or aro-
matic rings, linked to hydroxyl oxygens or the aliphatic ring carbons, which makes the chemistry
very complicated. However, the sugar ligands investigated in this study support only methyl and
N-acetyl groups, if any. Sugars with aromatic ring systems would demand an additional model
covering aromatic ring interactions, which is not available in SLICK so far.

Sugar molecules are not limited to monomers consisting of only one sugar ring. Dimers, i. e.
molecules that are built from two sugar rings, can be created by building acetal bonds between
two hydroxyl groups of two different monomers. The two rings are then linked over one oxygen
which has a freely rotatable bond to each of the rings (see Fig. 2.3). The torsion angles of these
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Figure 2.2.: Linear (a) and pyranosylic form (b) of a pentose (glucose). The ring (c) usually
occurs in conformation (d). Note the large number of hydroxyl groups, which are anchor points
for dimerisation.
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Figure 2.3.: Building a glycosidic bond between two carbohydrate monomers.

Figure 2.4.: Torsion angles ¢ and 1 of the glycosidic bond.

two rotatable bonds are usually denoted with the greek letters ¢ and ¢ (cf.Fig.2.4). The link
connecting two sugar monomers over one oxygen is also called the glycosidic bond and is very
flexible.

The extent of this flexibility was analysed computationally by scanning the conformational
space of a sugar dimer in solution and calculating energies [16] for every investigated combination
of torsion angles. The resulting Ramachandran plot is given in Fig. 2.5. Furthermore, experi-
mental NMR studies have been conducted [17] in order to analyse the flexibility of such dimers.
These studies lead to the conclusion that contrast to e. g. peptides the minima of the energy plot
are rather shallow and very wide. This means that the energy of the sugar does not change much
if the combination of ¢ and v remains within the energy valley. If energy differences are small,
all conformations within the energy valley are approximately equally probable. Thus there is no
single favourite conformation of the sugar dimer, as would be in the peptide case, where energy
valleys tend to be much narrower and deeper. In the context of molecular docking, this behaviour
leads to a very large conformational space that has to be traversed during a docking experiment,
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Figure 2.5.: Torsion angle energy surface of a carbohydrate dimer [16]. The energy is drawn as
a surface with respect to the ¢ and 1 torsion angles. Note the rather shallow energy valley,
indicating that carbohydrates tend to rotate freely in the unbound state.

because one cannot reduce the set of possible angles to a small number of energetic favourable
ones.

Since a sugar monomer supports at least two hydroxyl groups, long chains of sugar can be
built. If the number of building blocks is rather small, such chains are called oligosugars or
oligosaccharides. If many single sugar rings build one molecule, the resulting compound is a
polysaccharide. Oligosaccharides are not necessarily linear chains. As there are so many hydroxyl
groups in one sugar monomer the number of possible bond partners is rather large. In pyranoses
derived from hexoses theoretically there are five positions for glycosidic bonds possible, although
sterical hindrance will not allow all of these hydroxyl groups to be linked to other monomers at
the same time. Nevertheless there is the possibility to create branched oligomers by binding two
sugar monomers to two different hydroxyl groups of the terminal ring of a linear oligomer (see
Fig. 2.6).

This non-linearity of carbohydrate polymers gives rise to a huge number of possible combi-
nations of monomers in one molecule. When comparing the three big classes of biomolecules
carrying information, the information content of sugar polymers clearly outperforms the possible
content of DNA strands or proteins [18] (see Tab.2.1).

From the physicochemical perspective, sugars are also remarkable molecules. Carbohydrates
have a polar surface because of the polar nature of the many hydroxyl groups. This leads to
high hydrophilicity. Furthermore, the polar surface of carbohydrates causes an anisotropic re-
arrangement of water molecules in solution [19] which in turn leads to entropic and enthalpic
contributions to the solvation energy of carbohydrates. This behaviour makes the prediction of
solvation effects very difficult because most approaches for determining these effects treat the
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Figure 2.6.: Building branched structures from several monomeric sugars. In principle, every
sugar ring can bind up to five other sugar rings.

Biomolecule Alphabet size Number of possible hexamers
DNA 4 4103
Proteins 20 6-107
Carbohydrates ~ 20 ~ 10"

Table 2.1.: Comparison of possible information content of different kinds of biomolecules [18].

solvent as a continuum, which clearly does not work for an anisotropic solvent structure. But
solvent effects are known to influence the binding behaviour. Therefore, a sophisticated treatment
of solvation seems necessary. Additionally, polar groups imply strong electrostatic interactions
with a putative binding partner. Hence, the calculation of the electrostatic interactions are very
important. Moreover, hydroxyl groups are known hydrogen bond donors and hydrogen bonds are
known to influence binding strongly. Because the hydroxyl groups of sugars are freely rotatable,
a sugar can “adapt” its hydrogen bond donors to the structural requirements of a binding site if
there are acceptors present. Consequently, hydrogen bonding needs special attention, too.

In summary, carbohydrates have many interesting properties. Sugar oligomers are information
carriers with a very high information density, although the monomeric building blocks are rather
simple in structure. The flexibility of the bond connecting two monomers leads to a huge con-
formational space making sugars a rather hard problem for molecular docking. Additionally, the
highly polar surface leads to strong intermolecular interactions when binding to another molecule
and to complicated solvation effects that might influence the binding behaviour. A prediction
model will have to address these interactions along with hydrogen bonding, which also influences
the binding noticeably.

2.2. Lectins

Like carbohydrates, lectins are also important biomolecules and can be found in virtually every
organism. Lectins have been found in many plants but also in animals and humans. In ani-
mal metabolism and immune systems they drive many important biological processes like cell
aggregation [20] and cell differentiation. Lectins are also involved in pathogen recognition [21]
and other immunologically important tasks like inducing maturation of dendritic cells [22]. One
group of lectins, the so-called galectins, have been used as helping agents in tumor suppression
[23] and are being investigated as a diagnostic element in detection of breast cancer [24, 25].
Their importance and their functions are based on the fact that lectins bind carbohydrates very

11
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Figure 2.7.: Left: binding site of UDA. Note that the ligand is lying on the surface rather than
binding into a binding groove. Right: binding site of an MHC complex. The bound peptide is
deeply buried in the binding site.

specifically [26]. This specificity turns lectins into decoding engines for the information stored in
large glycans and thus into very interesting targeting devices when it comes to drug targeting and
drug delivery. They have repeatedly been employed as mediating or functionalising components
in drug targeting [27, 28] and drug delivery [29] systems. Lectin conjugates were also used in
directed gene transfer [30]. Furthermore, lectins can be drug targets [31] as well.

Lectins are more or less ordinary proteins, linear chains of amino acids, which assume a certain
geometry in three-dimensional space. This conformation is crucial for their function. Thus lectins
rely on remaining in the same shape resulting in a rather rigid structure. This is common for
proteins, which are all functionally dependent on their three-dimensional structure. For a more
detailed introduction to proteins and structural bioinformatics in general see e. g. [32].

Lectin binding sites differ from most ordinary protein binding sites in shape. While binding
sites for peptides or other ligands often are deep binding grooves strictly defining the shape of
the binding partner, lectin binding sites are rather shallow [33]. Carbohydrates bind onto a
“binding surface” rather than into a binding groove. Figure 2.7 (left) shows the shallow binding
site of Urtica dioica agglutinin (UDA) binding to a trimer of N-acetyl-glucosamine (GlcNAc)!.
Apparently the binding mode of the ligand must be guided by other interactions that define
the geometry of binding rather than steric hindrance defining the binding shape. Figure 2.7
(right) shows an example of a nonapeptide binding to a human major histocompatibility complex
(MHC) molecule. Obviously the shape of the binding pocket strictly defines the conformation of
the binding peptide.

For developing a thorough energy function for lectin-carbohydrate interactions we had to decide
on the data basis for calibrating and validating the approach. We chose to focus on plant lectins
because these lectins are very well researched, both structurally and energetically. Moreover,

I Abbreviations of lectin and carbohydrate names are listed in Appendix D
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plant lectins are generally very stable against heat and digestion [34, 35]. These features make
plant lectins valuable for pharmaceutical applications where pro-drugs or functionalised drug
carrier systems have to survive the gastro-intestinal tract while retaining their function.
Additionally, animal lectins often contain glycosylated or phosphorylated amino acids, which
makes parametrisation of energy functions harder if these non-standard side chains are located
near the carbohydrate binding site. Furthermore, the binding behaviour of animal lectins, espe-
cially of C-type lectins, often depends on interactions mediated by metal ions (Ca, Mn) in the
binding site. This type of interactions is hard to model and not covered by our approach so
far. There are approaches to metal binding based on linear functions (see e. g. [36]) that might
broaden the range of addressable complexes, but they were not incorporated into this study.

2.3. Lectin-Carbohydrate Interactions

The chemical and structural properties of carbohydrates and lectins make the complex formation
somewhat special compared to protein-peptide and general protein-ligand models. Keeping in
mind that lectins bind very specifically to one kind of carbohydrate, it is evidently necessary to
identify the underlying interactions responsible for that behaviour in order to create a suitable
model for thoroughly predicting lectin-carbohydrate complexes.

Most peculiarities of lectins and sugars were already covered in Sections 2.1 and 2.2. There
is the high flexibility of polycarbohydrates, the polar nature of their surface, the many hydroxyl
groups and the resulting solvation effects on the one hand. On the other hand it is known that
lectin binding sites are very shallow, resulting in ligands rather lying on a binding surface than
delving deeply into a binding pocket, leaving steric hindrance out of the question when trying
to explain the high specificity of binding. There clearly must exist an interaction defining the
binding geometry other than spatial constraints.

Hydrogen bonds have a great influence on protein-carbohydrate binding. Every sugar ring
of a polysaccharide carries at least five hydroxyl groups and hence provides a large number of
hydrogen bond donors compared to the total number of atoms in the ligand. Additionally these
hydroxyl groups are freely rotatable, thus enabling the ligand to adapt itself to the binding site
in a multitude of ways.

However, hydrogen bonding is not the only important interaction. Looking at complexes of
Erythrina corallodendron lectin (ECorL) binding different sugars we find an intriguing structural
feature: One sugar ring always seems to be oriented quasi in parallel to the aromatic ring of
phenylalanine 131 in the lectin’s sugar binding site (see Fig.2.8). This behaviour is called ring
stacking. Generally, there are two forms of ring stacking, which are caused either by 7--- 7 or
CH---7 interactions, respectively. The 7--- 7 form is a stacking of aromatic rings, which cannot
be observed in complexes with ordinary sugars, because there are no aromatic groups in the
sugar structure. The CH---7 interaction, on the other hand, is the result of several CH groups
interacting with 7 orbitals of aromatic rings, which can be observed in sugar binding sites.

There are studies that indicate that this ring-stacking effect based on CH---m interactions
guides sugars into their binding mode [13, 37, 38]. This effect, which will be covered in detail
in Section 3.4.2, forms a weak hydrogen bond between aliphatic CH groups and aromatic ring
systems. As sugar rings are aliphatic carbon rings offering a large number of aliphatic CH groups
compared to their size, the impact on the binding mode is obvious.

The existence of ring stacking based on CH---7 interactions in protein-carbohydrate complexes
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o

Figure 2.8.: Ring stacking in complexes of ECorL with four different sugars. Clearly, one guiding
sugar ring stacks on the benzene ring in PHE 131 of ECorL.

was shown by Muraki in several experimental studies (see e.g. [38, 39, 40]), culminating in the
conclusion [38] that carbohydrate binding proteins rely on this kind of interaction. Furthermore,
Muraki theorises from the bound conformations of different sugars in the WGA binding site, that
CH---7 interactions tend to replace hydrogen bonds, thus making CH---7 the critical component
for shaping the bound ligand conformation.

CH---7 interactions have been under investigation for quite a while now, particularly by the
groups of Nishio (see e.g. his book on CH:--7 [41]) and Muraki. While Nishio’s research con-
centrates on general CH---7 interactions in protein-ligand interactions [42, 43], Muraki focuses
on the impact of CH:---7 on protein-carbohydrate complexes. Furthermore, the study of Brandl
etal. [44] examines the role of CH---7 for the stability of proteins and reveals that this interac-
tion occurs frequently between different amino acid side chains and even between side chains and
protein backbone. They conclude that CH---m accounts for a significant part of the structural
stability of proteins.

On the energy level, the binding of carbohydrates to lectin binding sites is rather difficult to
handle because the energy differences between different ligands binding to the same lectin are very
small. Moreover, the energy difference between different lectins binding the same carbohydrate
are also very small. This leads to several complexes having more or less the same free energy on
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binding, causing much trouble for a statistical analysis. Furthermore, it means that the prediction
model has to be extremely accurate in order to produce reasonable results.

Because of the polar nature of OH groups and the resulting charged surface the electrostatic
solvation effects and electrostatic interaction of the system can not be neglected. Computing a
thorough model for electrostatics is a computationally intensive task slowing down the calculation
of binding energies drastically. We tested two approaches for these calculations, a finite difference
Poisson-Boltzmann solver and the so-called Generalised Born model, the latter being the stronger
approximation, but with reasonable results for most test cases. These models will be explained
in Section 3.4.4.

2.4. Biochemical Importance of Solvents

Biological processes take place in a physiological environment which primarily means water.
Binding processes in general are heavily influenced by the solvent they occur in. Consequently
the effects of water on the binding processes have to be considered. From a computational point of
view, Water is a difficult solvent. It is highly polar, thus water molecules attract each other very
strongly. Additionally water molecules form hydrogen bonds easily leading to cage-like ordered
molecules around small hydrophobic solutes [45].

Chervenak and Toone [46] directly measured the enthalpic influence of solvent rearrangements
on the binding enthalpy of protein-ligand complexes. They proved that rearrangements account
for about 10% of the binding enthalpy of the investigated complexes. Liu and Brady have shown
that water molecules do rearrange around solvated sugar molecules in a clearly anisotropic fash-
ion [19] making it almost impossible to predict solvent behaviour with strongly approximating
approaches. Consequently, a thorough treatment of solvation effects seems necessary for a decent
computational prediction of binding free energies.
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3. Computational and Physical
Background

Creating a docking programme for protein-carbohydrate complexes requires deep insight into the
physical and computational background of the underlying interactions. Additionally, a model
describing molecules is necessary, as well as techniques for molecular docking. This chapter will
cover the interactions in detail — from the physical and the computational perspective — after
introducing the ideas of molecular modelling, which are the basis for the molecular description.
Furthermore, docking strategies and some statistical methods will be briefly addressed.

3.1. Basic Principles

The key question to be addressed when searching for new drugs is whether a new or adapted
compound will bind to a target molecule. Structural bioinformatics generally tries to predict
molecular properties based on physical and/or chemical properties of molecules with known three-
dimensional structure at atomic level. Although the computational models in use are usually
strong approximations of the real world, the underlying physical laws are always the basis for any
prediction.

In this context, the most important fact is that everything is driven by energy. The movement of
atoms is a direct consequence of the energy of a system which is the result of interactions between
atoms. These interactions can be abstractly formulated as potentials that link atom positions
with the energy of the system, although this formulation is in many cases much too complicated to
be done analytically. Therefore many interactions are modelled with an approximative numerical
method.

Why is the energy of a system so important? Nature always tries to reach a state of minimal
energy. If the total energy of a system can be minimised by forming a complex of two molecules,
then these molecules will bind with high probability. This is, of course, a very simplified picture
of nature’s behaviour, but it should clarify that having a method for reliably predicting energies
will at the same time reliably predict the physical behaviour of the molecules in question and
thus the binding affinity. Any model that aims at energetic accuracy has to embrace the physical
context.

This work aims at predicting the binding energy A of a molecular complex. This energy
is the difference between the energy E of the system when molecules A and B form a complex
and the energy of the system when these molecules are unbound.

Ebind

AEP — E(AB) — (E(A) + E(B)) (3.1)

If this difference AEP™ ig negative, then the formation released energy thus minimising the
total energy of the molecular system and obeying nature’s law. If the difference is positive, then

17



3. Computational and Physical Background

additional energy is necessary to form that complex, which means that this complex will not
occur in a natural environment.

Unfortunately, reality is not that simple. What we really want to predict is the binding free en-
ergy AGP™ which also accounts for the thermodynamics of the system and incorporates enthalpy
AH, entropy AS and temperature T of the system. The binding free energy is given by

AG = AH —TAS (3.2)

The methods described in this work do not consider thermodynamic properties explicitly, except
where otherwise noted, but assume that the thermodynamics of the system are covered by ad-
ditional constants. This is of course an approximation but valid under the assumption that the
difference in the thermodynamic state variables is small compared to the energetic change on
binding.

3.2. Molecular Modelling

In order to address the docking problem a concept for representing atoms, molecules and their
interactions is necessary. This section covers these representations and gives a short introduction
to molecular mechanics, which is the basis for computational molecular docking.

3.2.1. Modelling Molecules

Computing energies of molecular systems requires a model for the molecules under investigation,
1. e. a theoretical representation of the molecular features allowing to do computations on the
model. Molecules are built of atoms that consist of a nucleus and electrons. Simply speaking,
electrons move around the nucleus in a certain space around the nucleus. This space is called
electron orbital. These orbitals have particular shapes depending on the electronic configuration
of an atom. Bonds are formed by overlapping electron orbitals if merging the orbitals poses an
energetic advantage over not forming the bond. The mechanisms responsible for this process are
the subject of quantum mechanics and orbital theory.

Taking all these details into account when doing calculations on molecular representations
quickly boosts the complexity of the model to a level where computations are not feasible anymore.
iTherefore, the model of a molecular system must be an approximation of the real world if
reasonable computations shall be practical.

The necessary degree of approximation is clearly a function of the complexity of the systems
under consideration. While small systems can still be calculated using small approximations,
larger systems can only be calculated by using stronger approximating models of the physical
reality. Obviously the accuracy of the calculations is directly connected to the degree of approxi-
mation. In practise this means that the bigger the systems are, the stronger the approximations
have to be and the less accurate the results are.

When dealing with molecules as big as whole proteins with thousands of atoms and ten-
thousands of electrons, the approximations needed for calculating molecular features are very
strong. One fundamental assumption used in modelling molecules is the Born-Oppenheimer
model which assumes that the equations of motion of the nuclei and the electrons of a molecular
system can be separated. Calculating these functions for systems with a very small number of
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electrons (and nuclei) is feasible with pure quantum-mechanical methods. But the computational
complexity of these approximations of the quantum-mechanical reality is somewhere between
O(n*) and O(n®) with n being the number of electrons of the system. It is obvious that proteins
with tens of thousands of electrons cannot be calculated with such methods in acceptable time
scales.

Using the Born-Oppenheimer assumption, the approximation level can be driven to the point
where only the motions of the nuclei are relevant and the electronic structure can be neglected. It
is then necessary to define a potential which describes the motion of all nuclei. Finding a model
that defines a reasonably accurate potential for the description of the nuclear motions is far from
trivial.

This kind of modelling molecules is called molecular mechanics (MM). As the name suggests,
it describes the dynamic behaviour of a molecular system with the help of classical mechanics,
thus reducing the complexity of the molecular description from Schrodinger equations to much
simpler Newtonian mechanics. In molecular mechanics, electrons are not explicitly modelled
and only the much slower motion of atom nuclei are considered. The atoms themselves are
represented by discrete spheres with a certain radius depending on the atom’s element and its
chemical surrounding. Interactions between atoms are described by potentials from classical
mechanics. For example, the oscillation of two bound atoms about their ideal bond length can
be approximated by means of harmonic potentials, which are easily and rapidly computable. For
a more detailed and thorough treatise on molecular mechanics and force fields, see e. g. the book
by Leach [32].

3.2.2. Energy Functions

Energy functions are a general concept in structural bioinformatics. They are used for many tasks,
such as geometric optimisation of experimental structures (as a part of a force field, see below) and
simulation of the dynamics of a molecular system. In molecular mechanics, energy functions are
generally empirical energy functions. Such functions extrapolate from the information gathered
from experimental data, i. e. empirical knowledge.

In molecular modelling, energy functions always share the same mathematical structure. Dif-
ferent interactions between molecules result in different energetic contributions to the total energy
of a system. Therefore, energy functions consist of several individual terms, each representing one
kind of interaction. This formulation as individual terms is only possible under the assumption
that these energies are completely separable, i. e. truly independent terms. Generally, the model
has to make sure that energy contributions are independent. The general form of an empirical
energy function E describing the energy of a molecular system m is

E(m) = ¢y + Z i Ei(m) (3.3)

where the F; are different energy contributions and the ¢; are adjustable coefficients of the func-
tion. Frequently used energy contributions include the van der Waals energy of molecules, elec-
trostatic interactions, rotational entropy loss, hydrophobic interactions and many more energies
known to influence the kind of complex which is under investigation. Thus, designing a energy
function requires knowledge about the physical and chemical interactions governing the domain
of molecular systems one is interested in.
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Empirical methods are usually rather strong approximations. Their coefficients ¢; are fitted
against a set of experimental data in order to predict energies. The data set, often referred to
as calibration set, has to be two-fold. On the one hand, the binding free energies such molecular
systems is needed. One the other hand, structural data on the molecules is necessary, which
basically means that the atom positions, the bonds between atoms, and the element of each atom
have to be known. Additional information like atom radii and charges are usually not gained
from the experiment and have to parameterised for the calculations. Chapter 4 will cover the
experimental side in more detail.

The main advantage of empirical models is speed. Because the terms used in the empirical
formulation are chosen to be very simple, the computational effort necessary for calculating the
results is very low. In many molecular mechanics applications, speed is critical. However, the
speed obviously comes at the price of reduced accuracy.

But there are other problems. One problem associated with empirical energy functions is
the questionable transferability of results. Empirical methods are always fitted to a limited set
of experimentally accessible data. Thus the parameters obtained by fitting a method against
empirical data are in most cases only applicable in a very narrow region of relatively similar
problems. For example, if a molecular mechanics model is calibrated with data consisting only
of protein data, it will most certainly not be useful for predicting features of DNA strands.
Consequently, there are quite many empirical models for different problems available depending
on what the purpose of the model is.

3.2.3. Force Fields

The motion of atoms in a molecular system is caused by forces acting on every atom. In order
to determine the dynamics of a molecule, these forces must be calculated. Force and energy are
closely related. In fact, acting forces are the result of the current energy of a system.

Since nature always tries to reach the energetically minimal state, the forces acting on atoms
in a molecule are always directed to the energetic minimum of the system. Therefore, energy and
force are directly linked by the negative derivative of the energy function. In three-dimensional
space this derivative is represented by the Nabla-operator V. Every differentiable energy function
can be directly converted into a term defining the forces acting on a system by applying this
operator. In the simple case of one particle located in a position dependent energy field FE(r),
the force F(r) acting on the particle at location r is given by

F(r) = —VE(r) (3.4)

The generalisation of that concept to systems with many particles or bodies is straight-forward.

An energy function hence defines the forces acting on atoms, thus describing a force field.
In molecular mechanics, the term “force field” does not only denote an energy function but also
includes the atomic parameters necessary for calculating the energy function, which are combined
to a parameter set. For example, the AMBER force field consists of one energy function and a
large set of parameters for atoms and their interactions. In fact, there is not only one parameter
set for the AMBER energy function. Parameters can be adapted in such a way that the same
energy function is applicable to different problems, although the underlying model will only permit
a certain range of domains. In this study, the term “force field” will always refer to molecular
mechanics force fields.
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Figure 3.1.: The abstract docking scheme: Start from the spatial structures of receptor and lig-
and, (1) create a large number of putative docking candidates, (2) filter out bad approximations
and (3) evaluate the remaining structures energetically.

3.3. Molecular Docking

The main goal of this work is the creation of a molecular docking programme for the domain
of protein-carbohydrate complexes. In general, docking programmes are software tools for the
prediction of bound complexes of two chemicals, usually a protein with some sort of ligand. To
put it short, the docking problem can be formulated as follows: Given two molecules A and B,
which are known to form a complex, compute the complex structure AB and its binding affinity.

Roughly, docking programmes work by creating a rather large number of tentative complex
structures, filtering these tentative structures by certain, selectable features and evaluating the
remaining complex structures energetically, . e. calculating AGyinq. The complex structure with
the best free energy on binding should be a good approximation of the real complex. These pro-
grammes need some ingredients for working properly: the spatial structure of both receptor and
ligand, a strategy for creating putative complex conformations, a filter for sorting out bad puta-
tive complexes and an energy function for deciding how well a tentative complex approximates a
natural complex.

There are diverse approaches to molecular docking, differing in how complex creation, filtering
and evaluation are done, ordered or combined. Moreover, computer docking programmes are
divided into different domains of application. There are tools for docking proteins to proteins,
others for docking small ligands to protein binding sites which are further distinguished by the
type of ligand to be docked, e. g. peptides or drugs.

Energy function, filtering and strategy for complex creation define the major part of a docking
programme. In most cases, the latter is fixed, i.e. a docking programme may be adapted to
different domains by exchanging the energy function with a more suitable one, but the structure
creation strategy stays the same. Generally, in protein-ligand docking the ligand is considered as
flexible molecule, i.e. groups can rotate around bonds, thus changing the conformation of the
molecule. The receptor, however, stays fixed. This model is justified by the fact that in many
cases proteins do not drastically change their conformation on binding, while the binding ligands
have to change their conformation dramatically in order to build the correct interactions or fit into
the binding pocket. The complex creation step thus only searches the so-called conformational
space of the ligand and not of the protein.

This model clearly is an approximation, because amino-acid side chains in the binding site
of a protein will probably rearrange on binding, at least to some extent. Furthermore, there
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are cases where the whole protein will change its entire conformation when binding a ligand.
However, including receptor flexibility into the computational model will dramatically increase
the computational power required for a docking run. In most practically relevant cases the results
of docking to a rigid receptor seem to justify the approximation.

3.3.1. Scoring Functions

For filtering tentative complex structures generated during the first phase of docking experiments,
docking programmes frequently use a so-called scoring function. A scoring function is in princi-
ple an energy function calculating approximative binding affinities of a complex. In some cases,
energy functions are used for scoring tentative complexes, but several docking programmes dis-
tinguish between scoring and energetic evaluation. The discrepancy between scoring and energy
function then lies in computational demand and accuracy. While energy functions are designed to
calculate most accurate binding free energies and do so by employing rather complex and timely
computations, scoring functions have to be very fast in order to filter very many conformations
according to their putative binding affinity. Thus, the scores calculated by a scoring function
cannot be treated as real binding free energies.

Scoring functions are in most cases empirically determined functions consisting of several ad-
ditive contributions that determine the potency of two molecules to form a complex. The score
S of a complex is then the weighted sum of all contributions S; for a complex conformation m.

S(m) = s + ZsiSi(m) (3.5)

As in the case of energy functions, the choice of the individual contributions S; is determined by
the domain of complexes the scoring function has to work upon.

3.3.2. Strategies for Structure Generation

Molecular docking finds binding conformations by creating a large set of tentative complex struc-
tures and determining their binding affinity. Numerous approaches to creating such putative
complex structures have been developed. There are constructive approaches [47], building the
ligand up from small fragments or structure generators searching the conformational space based
on genetic algorithms [5, 48]. Some approaches use probabilistic methods or screen the conforma-
tional space based on geometric complementarity [49]. Many more different ways of generating
structures are existent and under development. For this study, such a strategy has to be chosen.

The choice of search strategy is usually based on speed and accuracy considerations. As docking
programmes are usually fixed in terms of energy function and search strategy, a direct comparison
between search strategies is not easily possible. Although there are many studies which try to
compare different docking programmes (see [50, 51, 52, 53, 54, 55] and many more) the only
real result gained from these studies is that docking programmes cannot be compared. When
trying to compare the setups and results of the different studies, the first striking observation is
that most setups are not comparable. This is clearly a consequence of the focus of the respective
studies regarding the choice of molecular complexes under investigation. Even with similar sets of
docking programmes and molecules, the results of some studies are contradictory. A programme
that performs well in one study can easily be found defeated in another. So the question for
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the best docking programme is still not answered and neither is the question for the best search
strategy.

In order to find a reasonable search strategy, a comparison should use several strategies but
only one energy function. Vieth and coworkers [51] compared different strategies which were
implemented in their group and adapted to all use the same energy function. They also included
the AutoDock programme [5] in their study. The docking schemes under investigation were a
genetic algorithm (GA), a simulated annealing approach (SA) and a Monte-Carlo strategy (MC).
AutoDock itself is based on a genetic algorithm variant. Additionally, the methods were assessed
with regard to the size of the set of molecules. Although the authors claim that their GA method
outperforms the other approaches, an analysis of their results leads to the conclusion that the
performance of the different strategies actually does not differ very much. Even AutoDock,
which in the authors’ opinion is inferior to the other programmes, performs reasonably well when
comparing RMSD values, energy gap and running time.

It seems that the choice of search strategy is more or less a matter of preference unless there
are clear structural indications why in an individual e. g. an incremental search should case be
better than a Monte-Carlo search. Considering this, the choice of search strategy for this study
was made in favour of an AutoDock-like method for practical reasons, because there was already
an implementation by Jan Fuhrmann [7] at hand, which is named BALLDock. This programme
employs a genetic algorithm for structure generation. The ideas behind docking with genetic
algorithms will be explained in the following section.

Docking with Genetic Algorithms

In nature, organisms adapt constantly to their environment in order to better cope with their
environmental conditions. In some sense, this evolutionary adaptation can be seen as solving an
optimisation problem. The idea of survival of the fittest combined with mutation and selection
build the basic principle behind genetic algorithms.

Generally, genetic algorithms are optimisation heuristics that employ ideas of evolutionary
processes in order to find a global extremum. The variables of the problem are encoded in
chromosomes with one gene for each variable. Such a chromosome represents a putative solution
for the problem to be solved. The fitness of a chromosome x is evaluated by the so-called fitness
function f(x). It must ensure that fitter chromosomes represent better solutions. Chromosomes
with higher fitness values are more likely to be selected for reproduction. When offspring is
generated, it inherits genes from both parents. The crossover operation decides which genes are
inherited from which parent. After crossover, offspring genes are mutated with a certain fixed
mutation probability and placed in the current population of individual chromosomes.

A rough outline of a genetic algorithm looks as follows:

1. Randomly create a fixed number of chromosomes, each representing a putative solution to
the optimisation problem (initial population).

2. Compute the fitness of each chromosome of the population.

3. If the predefined exit condition is not reached, go on, otherwise exit with the current
chromosome as solution of the problem.

4. Remove bad chromosome and leave only a fixed number of fit chromosomes in the popula-
tion (survival of the fittest).
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5. Create a new population out of the remaining chromosomes by repeating the following
steps until the population is complete.

a) Select two parents according to their fitness value.

b) Create offspring using the crossover operation.

¢) Mutate the offspring.

)
)
)
d)

Include the offspring in the new population.
6. Jump to step 2 with the new population.

If fitness function, crossover and mutation rate are reasonably defined, a genetic algorithm will
converge to an acceptable solution. While crossover will provide better solutions by incorporating
parts of the best solutions of the last generations, mutation will provide protection against sticking
to local minima of the fitness function. This scheme is only a very general form of a genetic
algorithm and many variants are in use and in development. For deeper insights into the inner
workings of genetic algorithms and their convergence behaviour, please see a text book on this
matter.

In flexible ligand docking, genetic algorithms can be used for traversing the search space, . e.
the conformational space of the ligand. The conformational state of the ligand must be defined
by chromosomes and the fitness function has to evaluate a conformation in terms of putative
binding affinity. Obviously a scoring or an energy function can be used for estimating the fitness
of a conformation defined by a chromosome.

The method implemented by Fuhrmann employs ideas from the AutoDock programme. AutoDock
is based on a so-called Lamarckian genetic algorithm (LGA) which uses Lamarck’s idea that ac-
quired phenotypic characteristics become inheritable genetic information. Although this theory
was proven wrong in biology, the idea is still existent in Lamarckian genetic algorithms, because in
optimisation, the local search can improve results significantly. In AutoDock, the state variables
encoded in genes and collected in chromosomes form the genotype of an individual. From this
genotype the phenotype of that individual can be computed. The fitness function then evaluates
the fitness of the phenotype instead of the genotype. Based on Lamarck’s idea that adaptations
of an individual during its lifetime will be incorporated into the genetic code, a local optimisation
is conducted in the phenotypic space. The result of that optimisation is then re-translated into
genotypic information which in turn can be inherited by offspring of that individual chromosome.
BALLDock is based on AutoDock’s ideas, but differs in several ways, which will be detailed in
Section 5.5.1.

3.4. Interactions

Protein-carbohydrate binding is presumably driven by a number of molecular interactions. Chap-
ter 2 already introduced the peculiarities of sugar binding, but did not give a thorough compu-
tational basis for exploiting these interactions in predictive calculations. The following sections
deal with all relevant interactions and their computational description in detail. Only with this
sound computational basis, the development of SLICK is possible.
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3.4.1. Hydrogen Bonds

Hydrogen bonds are formed between so-called hydrogen bond donors and hydrogen bond accep-
tors. Both, donor and acceptor, are highly electronegative elements. While the donor has to
be bound to a hydrogen, the acceptor must possess a lone pair of electrons. A hydrogen bond
then has the form D—H- - -A with D being the donor and A the acceptor. It is an example for
delocalised orbital formation in which all three participating atoms provide one atomic orbital.

Because of the orbital geometry, hydrogen bonds always follow a certain ideal geometry which
defines bond length as well as bond angle. This behaviour distinguishes hydrogen bonds from
undirected interactions like Van der Waals or Coulomb interactions.

Hydrogen bonds are considerably weaker than covalent bonds but nevertheless play an im-
portant role in ligand binding. Their strength can reach up to 20 kJ/mol depending on the
donor and acceptor atoms involved. Thus hydrogen bonds are stronger than other intermolecular
interactions and because of their specific binding characteristics can strongly influence or even
dominate the binding conformation of a ligand. In protein-ligand binding, hydrogen bonds occur
almost exclusively between oxygen and nitrogen atoms.

A computational model must reproduce the ideal geometry in order to model these interactions
correctly. There are several models for hydrogen bonds in use, ranging from undirected potentials
to purely geometric models based on the well-defined geometry of a hydrogen bond. The model
presented here is based on the one introduced by Bohm [56, 57|, which is part of many other
energy functions like ChemScore [36] or Fresno [58].

The Béhm hydrogen bonding term is a linearly formulated model scoring putative hydrogen
bonds according to their deviation from the ideal geometry. The better a hydrogen bond repro-
duces the ideal geometry, the higher the score of this individual bond is. The maximum score a
hydrogen bond can achieve is 1. The analytical form is defined as

Shb = f(A?", a{lb? bﬁb)f(A(% aﬁbv bﬁb) (36)

with Ar being the deviation of the putative hydrogen bond from the ideal length and A« being
the deviation from the ideal angle, as illustrated in Fig. 3.2.

The function f(z,a,b) is a function switching linearly from 0 to 1 or vice versa. The values a
and b define the limits of the transition. This function will be called base function. Its analytical
form is

1 <= rz<a
1-3=% <= a<z<) <~ a<b
0 <= z>b
220 = b<z<a — b<a
. 1 = T >a

and defines transition from 0 to 1 and vice versa depending on the relative size of the constants a
and b. If a is lower than b, the function will decline from 1 to 0. Otherwise the function will rise
from 0 to 1. This form was chosen to have one function in contrast to the two functions defined
by Béhm.

This linear base function is simple in calculation but has at least two drawbacks. First, the
function is not differentiable at two points, which makes this form virtually useless for force field
application. Second, the rigorous transition will make the results susceptible to small errors in
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Ad (R

Figure 3.2.: The Bohm model for scoring hydrogen bonds and a linear switching function. D is
the donor atom, A the acceptor in ideal position and A’ the actual acceptor position. The angle
« and the length d denote the ideal geometry values. The Béhm function scores deviations A«
and Ad from these ideal values.

the structure. Consequently a form of the base function that is differentiable and smoother in
transition is desirable.

In order to soften the transition, the base function for the Bohm model was exchanged with a
function based on the Fermi function

1
/AR N}
F(xz,a',b') = TR s ——y (3.8)

This sigmoid function defines a smooth transition from 0 to 1 (or vice versa), which we use for
scoring each value. Obviously, the coefficients a’ and b’ have to be deducted from the original
linear limits @ and b. Because a and b completely define the slope of the linear function, the Fermi
coefficients are calculated easily . The limits a and b define the interval of transition. Using the
constraint that the slope of F(x,d’,b') has to match the slope of the linear function at the centre
of the interval, the coefficients a’ and ¥’ can be calculated from the original linear parameters a
and b with

4
I
@ = —— (3.9)

Vo= d(a+t %(b — a)) (3.10)

The derivation of (3.9) and (3.10) is given in appendix C.1.

Comparing the different scoring schemes as shown in Fig. 3.3 demonstrates the advantages of
sigmoid scoring. In situations where the geometry is just slightly off the limits given by the Bohm
model, the linear term ignores the possible interaction. In the sigmoid form, the score is just very
low, which might prove useful when data is not very accurate. Consequently, interactions that
might get missed in the linear form can still be detected with the sigmoid scoring, albeit with a
low score.
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Figure 3.3.: The different base functions compared. Left: the linear transition defined by Bohm.
The green area denotes the range defined by the function’s limits. Right: the sigmoid base
function parameterised for the same limits range (see text).

3.4.2. CH:--7 Interactions

CH---7 interactions are weak hydrogen bonds between aliphatic CH groups and delocalised 7
orbitals of aromatic systems. The aromatic system acts thereby as hydrogen bond acceptor while
the CH group contributes the hydrogen for the bond, although the electronegativity of carbon
is rather weak. These interactions also appear between NH groups and 7 orbitals and were first
described for NH interacting with aromatic rings by Levitt and Perutz in 1988 [37]. In protein-
sugar complexes, these interactions are responsible for the characteristic aromatic-aliphatic ring
stacking [38]. The computational model has to be able to detect these situations.

There are several models available for the calculation of CH---7 interactions. Here, a simple
geometric model by Brandl and coworkers [44] was chosen, which is very close to the known
geometric formulation of ordinary hydrogen bonds. Each of the quantities of this model is scored
with a sigmoid scoring function based on the parameters given in [44] and our own observations
from crystallographic data.

The model consists of three “observables”, shown in Fig.3.4. It considers the distance dcx
between the carbon atom C and the centre of the aromatic ring, denoted with X. It also scores
the angle acpx between the CH bond and the connection between hydrogen atom and ring centre.
The third value is the distance dyx between ring centre X and the hydrogen atom projected into
the plane defined by the aromatic ring.

Brandl etal. only give limits for the geometry of a CH:--7 interaction. They state that if
dex < 4.5A, agx > 120° and 1.0A < dyx < 1.2A, an interaction is found. Starting from these
four limits, it seems hard to define ideal geometries similar to the case of hydrogen bonds. Thus,
the new computational model does not score deviations from ideal geometry but accordance with
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3. Computational and Physical Background

Figure 3.4.: The geometry of the CH---m interaction: dgx is the distance between aliphatic
carbon and ring centre, acyx denotes the angle between CH bond and the connection between
the hydrogen atom and the ring centre. dyx is the distance of H to the ring centre projected
into the ring plane.

the defined limits.

Parameter | Original Modified
Pex 4.5A 4.5A
Peux 120° 110°
Phx 1.0A 0.7A
Pii x 1.2A 1.7A

Table 3.1.: Parameters for the CH---7 interaction: pcx is the upper limit for the CX distance,
peux defines the lower limit on CHX angles, and pﬁlpx, pﬁpx denote the lower and upper limit for
the projected HX distance, respectively.

The limits found by Brandl are the results from analysing intramolecular CH---7 interac-
tions in proteins. Because it was not clear if these parameters are also applicable to the case of
protein-carbohydrate interactions, a number of lectin-sugar complexes from PDB was structurally
analysed and compared to the interactions found in the original article. Based on these investi-
gations, the parameters were slightly modified to reflect the intermolecular protein-carbohydrate
case. In Tab. 3.1, the original and the modified parameters are listed.

Two approaches for calculating CH---7 interactions were implemented and tested. The first
version only decided whether all observables were in the range defined by the Brandl parameters
and then returned the number of identified CH---7 contacts for a complex. This number was
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Figure 3.5.: Linear and sigmoid base function for CH---w. The blue dashed line denotes the
limit of the model. The transition interval is denoted by the green area.

used as a score for the complex in question. Although this simple approach improved results, it
is very sensitive against small changes in ligand conformations.

Consequently, the CH:--7m term was improved in order to gain a score telling more about the
actual interaction. Therefore, the simple yes/no scheme was successively replaced by the base
functions introduced for the hydrogen bonding term. Because the parameters provided by Brandl
et al. do not define intervals for the transition from 0 to 1, these intervals were defined by adding
and subtracting a constant e to/from the Brandl parameters. The value of € = 0.25A was defined
such that transition intervals are 0.5 A in width (see Fig 3.5). This arbitrary definition is based
on the experiences gained from the hydrogen bonding term and proved reasonable in the later
calculations. The results of distinct calculations with linear and sigmoid base function suggested
that choosing the sigmoid form performs better than the linear one. Therefore, the sigmoid base
function was chosen for further calculations.

With the sigmoid base function F', the parameters from Tab.3.1, and the definition of the
transition intervals in place, the analytical form of the improved CH---7 interaction scoring
becomes

1
SCHr = g(SCX + scHX + SHpX) (3.11)
with
scx = F(dex,pcx — €, pcx + €)
scax = F(ocux, Peax — €, Ponx + €)
SHpX = F(deX7p%-IPX - Eap%{PX + E)f(de)bpng - €7pgpx + 6)

The values of dcx, acux and dg,x can be calculated from the atom positions using simple vector
geometry.
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Figure 3.6.: Cross Section of CH:--7 over the benzene ring of PHE. The right figure displays
CH---7 scores calculated for the plane given as clipping plane in the left figure. Only the scores
above the ring plane are shown. The scores below the ring plane are symmetric.
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Figure 3.7.: A layer of probe groups for screening space and calculating the CH---7 section
presented in Fig. 3.6.

Figure 3.6 shows a contour plot of the CH---7 interaction created by placing CH groups above
the benzene ring of a phenylalanine amino acid. Because of the symmetry of the system, the
scores below the ring are just the mirrored case and not shown in the plot. The probes were
coordinated perpendicular to the plane defined by the aromatic ring and the space above the ring
was screened with many such groups. Fig. 3.7 displays one layer of probe groups.

The region of high scoring is clearly visible as a somewhat distorted torus above the ring.
Note that scores are still high in very close vicinity of the ring atoms, which is not realistic
because atoms would overlap in this region. An energy function must take care of this behaviour
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Figure 3.8.: Perfect ring stacking in 1K7U. Left: The aliphatic ring of the sugar (normal colours)
is perfectly stacked onto the aromatic ring in the binding site (orange). Right: three CH---7
interactions (green sticks) coordinate the stacking. All CH---7 interactions that are presumably
responsible for the binding mode are identified by the computational model.

and avoid atoms that overlap. Including Van der Waals interactions (see next section) provides
reliable prevention of overlapping atoms.

Using this simple geometric model, CH---7 interactions are identified reliably. Assessment of
this term was done on intramolecular CH:--7 bonds in structures considered in the Brandl article,
where CH---m bonds are listed explicitly, allowing for a direct comparison. Furthermore, CH---7
bonds in protein-carbohydrate complexes were analysed.

Ring stacking identified by this model in protein-carbohydrate complexes is exemplary illus-
trated in Fig. 3.8. It shows wheat germ agglutinin (WGA) binding a GlcNAc dimer. One of the
sugar rings stacks perfectly on the aromatic ring of TYR 64 in chain B of the protein. Three
CH---7 interactions dominate this stacking. They are identified correctly by the CH---w term
developed for this work.

3.4.3. Van der Waals Interactions

Van der Waals interactions are interatomic forces. They were discovered in the late 19th century
by J. D. van der Waals when he was investigating the differences between ideal and real gases.
From the pressure difference between ideal and real gases he concluded that there have to be
interatomic forces even between the atoms of uncharged inert gases that are at least in part
attractive. This attractive part is based on induced dipoles in the electron hulls of atoms which
are not dipoles themselves.

The energy of this attractive interaction can be described with the approximation by London.
It states that the so-called London energy, which is the attractive part of the van der Waals
energy, can be written as

30w 1

B = 2
L 4(47eg)? r6

(3.12)
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Figure 3.9.: The van der Waals potential (green) is composed of a repulsive (red) and an
attractive (blue) potential.

with r being the distance between the centres of two atoms. Without going into the details of
the London energy, the important information of equation (3.12) is that the attractive part of
van der Waals is a term of magnitude —%6.

Van der Waals forces also have a repulsive part which is based on the repulsion of charges with
the same sign and indirectly on the Pauli principle. Nuclei approaching each other will repel
mutually if they come too close. There are several approaches to modelling the repulsive part
of van der Waals interactions, e. g. the Heitler-London formulation, but they all share the same
form: a hard repulsive potential with very high energies for too close atoms.

Usually, van der Waals interactions are modelled with the Lennard-Jones potential illustrated
in Fig.3.9. For every pair of atoms 7,j of a molecular system, the van der Waals energy is
computed as

Evdw = Z % - féj (313)
i i ij
where 7;; is the distance between atoms ¢ and j. The parameters A;; and B;; denote atom type
dependent constants accounting for the van der Waals radii of the atoms.

Ferrari and coworkers have shown in [59] that in protein-ligand docking softening the potential
may account for conformational changes in the receptor binding site, thus generally increasing the
quality of docking results. The method can be seen as an approximation of the computation of
the side chain flexibility in the receptor binding site, based on the assumption that conformational
changes on binding are small. Moreover, a softened van der Waals potential will be less susceptible
to errors in the experimental data or the complex structures created by structure generators of
docking programmes because of diminished penalising of too close contacts.

Ferrari etal. used the approach of softening the van der Waals potential for enriching the
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Figure 3.10.: The softened form of the van der Waals potential. Values above a limit l,qy (blue
dashed line) are reduced by applying the logarithm. The graph on the right hand side shows
the form of the softened potential. The original van der Waals potential is shown as dashed
green line.

list of putative complex conformations in the structure generation process and filtering out false
complexes in a second re-evaluation step with the hard potential in place again. As a result
the overall performance of the docking increased with a drawback in a somewhat decreased
conformational accuracy.

In this study, a simple approach to softening the van der Waals term was chosen. The repulsive
part of the potential is softened by applying the natural logarithm to values above a predefined
upper bound lygy (Fig.3.10). The energy is then given by

eij = - (3.14)
Bl s
_ €ij if €ij < lydw
Evaw = Z{ luaw 4 10g(es;) if  ei > lyaw (3.15)

i7j

With this approach, the van der Waals model does not need reparameterisation, but the potential
is clearly not differentiable anymore. Nevertheless, results proved that softening increases docking
quality. There are other, more sophisticated softened van der Waals models in use. Ferrari
etal. suggest a 6-9 potential instead of the commonly used 6-12 potential [59]. However, such a
model would need complete reparameterisation and Ferrari’s work relies on a two-step algorithm
doubling computational effort, which was the reason for introducing this simpler approach.
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3.4.4. Electrostatics

Electrostatic interactions are probably the most important interactions. Most intra- and inter-
molecular interactions are caused by electrostatics. All interactions covered so far, i. e. hydrogen
bonds, CH---7 and van der Waals interactions are electrostatic interactions in nature but were
modelled on a higher, approximative level, leaving the underlying interactions untouched. The
simplifying model of molecular mechanics, treating atoms as spheres and considering them with-
out electrons, does not provide enough modelling accuracy for these effects to be calculated
exactly. This, of course, is an accepted reality of the approximation level adopted in these calcu-
lations.

This section will give a very brief introduction on the underlying physical principles. Further-
more, the relevance of electrostatic interactions to forming protein-carbohydrate complexes will
be explained in more detail.

Basics

When considering electrostatic interactions in molecular mechanics, atoms are at first treated as
point charges positioned at the atom centres. This simple model allows for rapid calculations
of interactions by employing the Coulomb law, which connects the electrostatic energy Fes of a
cloud of independent point charges ¢; at their respective positions r; in vacuum as follows:

_ 1 qiq;
47‘(60 i<j Tij

(3.16)

es

In this equation, g is the permittivity of vacuum, a natural constant, and r;; is the distance
between point charges ¢; and ¢;. This simple equation yields the total electrostatic energy of a
system of point charges in vacuum.

The electrostatic contribution to the binding free energy AG of a molecular complex is
simply the difference between the electrostatic energy of the complex AB and the sum of the
electrostatic energy of the individual molecules A and B.

bind
es

AER™ = Ee(AB) — (Eus(A) + Ees(B)) (3.17)

Thus, knowing the charges carried by individual atoms and the positions of these atoms is suffi-
cient to calculate this important contribution to the binding free energy. For readability reasons,
AFEq will from now on denote this binding contribution.

One important issue when calculating electrostatic interactions are the charges carried by the
atoms of the system. In theory, charges are indivisible quantities with their value being a multiple
of the unit charge eg. Physics tells us that charges are carried by electrons, which carry a charge
of —ep, and protons, which carry a charge of +¢ey. Atom nuclei are built from positively charged
protons and neutrons, which as the name suggests are neutral and do not carry charges. In their
ground state, atoms are always uncharged, which means that the number of positive and negative
charges are balanced and sum up to 0. Atoms can be charged by removing or adding electrons.
If an electron is missing, the charge balance of the atom is disturbed and the charge of the atom
becomes —1 which is short for —1 - eg. Thus, if a molecule is charged, the amount of missing or
excess charge is always a multiple of ey because the only way to charge it is removing or adding
charge carriers.
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Unfortunately, this static picture does not reproduce the natural behaviour of molecules too
well. In a simplified view, electrons can move freely in their orbital space. The probability to find
an electron at a certain point in space is defined by a probability density. This probability density
changes if there is a charge nearby. In that case, charges tend to be drawn into a certain direction,
disturbing the charge balance of an orbital. This phenomenon is called charge displacement.

Because of charge displacement, atoms in a molecular system do not seem to carry charges
of unit eg when observed over a prolonged period, although the charge carriers still do. That is
because of the permanent movement of the electrons in the orbitals under influence of external
fields changing the probability of observing electrons at a certain point in space. This behaviour
is accounted for in molecular mechanics by assigning so-called partial charges, which in some
sense represent a temporal mean value for the charge observed on an atom.

Obtaining values for these partial charges, which can be used in computing electrostatic ener-
gies, is difficult. There is the possibility to calculate these charges from quantum mechanical prin-
ciples, which is again a very complicated and time-consuming procedure. The usual approach is
the already introduced usage of standardised parameter sets, this time containing partial charges
which can be assigned to atoms of a molecule. There are several parameter sets. In most cases,
these charge sets are part of a force field parameter set like AMBER or CHARMM. These charge
sets are well-established and tested but apply best to the domain and energy functions defined in
the particular force field. Thus, a certain amount of pre-fitting is introduced into the calculations
which might diminish the generality of computed energies. See Section 3.4.10 for details on the
parameter set chosen in this thesis.

Importance for Protein-Carbohydrate Complexes

As mentioned before, electrostatic interactions are very important for all kinds of molecular
complexes. There are two main reasons: First, the energy contributed by electrostatic interactions
is quite large compared to the energies of other intermolecular interactions. Second, electrostatics
are rather long-ranged interactions in contrast to e.g. van der Waals. Electrostatics impact
atom movements over large distances, because the potential is reciprocal in the distance of two
interacting atoms. Potentials like van der Waals diminish much quicker.

In the simple view of Coulomb’s law, which assumes vacuum conditions and does not include
so-called non-classical effects, the range of influence of the electric fields resulting from atom
charges is already rather long-ranged. When including e. g. non-local effects, the potential can
even be more influencing on atoms further away [60]. As pointed out in Section 2.3, carbohydrates
carry many freely rotatable hydroxyl groups. These groups consist of an oxygen and a hydrogen.
Oxygens are far more electronegative than hydrogens, which means that the electrons of the
O-H bond are drawn into the direction of the oxygen atom. Thus, the partial charges of the
oxygen and the hydrogen of the group have different signs resulting in a so-called polar group.
Obviously, a polar group will develop much stronger electrostatic interactions than non-polar
groups where charge carriers are balanced and therefore lead to much smaller partial charges.
Having in mind that hexoses carry five hydroxyl groups, the strong impact of electrostatics on
the binding behaviour of carbohydrates becomes evident.
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Figure 3.11.: Desolvation at the molecular interface surfaces. Left hand side: Two molecules
completely solvated in water. The whole surface of both molecules is surrounded by water,
hence solvated. Right hand side: The molecules have bound. The binding surface, depicted by
a red line, is no longer covered by water. It has been desolvated.

3.4.5. Solvation

Biological processes take place inside living organisms. Hence, the systems we look at, i.e.
biomolecular complexes, will never be found in vacuum but in physiological milieu, which basically
means water. The process of bringing molecules into a solvent is called solvation. This process
is characterised energetically by the solvation free energy AG™Y which for any water-soluble
compound is negative because energy will be liberated during that process.

Solvation influences the binding process of molecules. In the unbound state, both molecules are
completely surrounded by the solvent. Their entire molecular surfaces are in contact with solvent
molecules. On binding, parts of these surfaces lose their contacts with the solvent and build
up contacts with the surface of the respective binding partner (see Fig.3.11). These interfacing
surface areas become desolvated, which is the reverse process of solvation and thus contributes to
the binding free energy.

How can these influences be modelled? As the solvent molecules interact with the solvated
molecules in more or less the same way as the binding partners do, the change in interactions on
binding can be computed by placing water molecules around the complex under investigation and
compute all the interactions explicitly. The problem is that there are so many water molecules to
be considered. When computing the interactions between binding partners and solvent molecules,
one has to ensure that there is a sufficient amount of water around the complex in order to satisfy
long-range interactions like electrostatics. For an average protein-carbohydrate complex, the
number of necessary water molecules easily reaches 10° and more. This approach needs too many
resources.

Implicit solvent models are a way out of this computational dilemma. They do not consider
the explicit water molecules but so-called bulk properties of a large amount of water molecules
representing the average influence on the solvated molecules. With this approximation, the
influence of a large amount of solvent molecules can be computed much more efficiently. The
following sections will provide details on solvation theory and the computational methods based
on implicit solvent models employed.
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Figure 3.12.: The different phases of the solvation model: 1. Before solvation, the molecule
is in vacuum. 2. A cavity of the size and shape is opened in the solvent and the molecule
is transfered into this cavity without its charges, yielding the nonpolar contribution. 3. The
molecule’s charges are transfered into the molecule, leading to electrostatic interactions between
molecule and solvent.

Solvation Theory

The solvation free energy AGY is the difference between the energy of a molecule in the ideal
gas phase and in solvated or ideal liquid phase.

AGSO]V _ Gsolvated phase G&as phase (318)

When complexes bind there is a change in solvation free energy because parts of the molecules’
surfaces become desolvated at the interface of these bound molecules. Let A and B be the binding
molecules and AB their complex, then the change in solvation free energy on binding is

AAGSOIV _ AGSO]V(AB) _ (AGSOIV(A) + AGSO]V(B)) (3_19)

Solvation theory divides the process of solvating a molecule into a solvent into two parts,
illustrated in Fig.3.12. The nonpolar part AG;%IV of the solvation free energy is caused by the
process of bringing a molecule into a solvent without considering electrostatic interactions between
solvent and solute. After that, charges are transfered into the molecule, generating in the second
part of AG®!, the polar or electrostatic part AG!Y. It results from electrostatic interactions
between solvent and solute. The sum of these two contributions is the total solvation free energy

of a molecule
AGSO]V — AG;%IV 4 AGECS)IV (320)

Solvation effects are of enthalpic and entropic nature. For this reason, the discussion of solvation
effects will include some references to enthalpic and entropic effects.
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Figure 3.13.: The different phases of the nonpolar solvation model: 1. The molecule is in gas
phase. 2. A cavity of size and shape of the molecule is opened in the solvent. 3. The molecule
is transfered into the cavity. Molecule and solvent can interact.

For simplicity reasons, the change of solvation free energy on binding AAG®Y will often be
referred to as solvation free energy or solvation energy in this chapter. It should always be clear
from context and formulae which solvation free energy is under consideration.

3.4.6. The Theory Behind Nonpolar Solvation Effects

Current theory divides nonpolar solvation energies into different contributions based on the pic-
ture that nonpolar solvation can be separated into independent steps. The first step is to create
space in the bulk solvent which is exactly as large as the molecule which will be transferred
into the solvent. From a theoretical point of view, in this phase infinitesimally small “holes” are
brought into the solvent, which in a manner of speaking are then blown up to the size of the
molecule that is to be solvated. Building this cavity obviously consumes energy. Additionally,
it creates a “forbidden space” for the solvent, thus contributing to a change in system entropy.
During this phase, there are no interactions to be considered because the molecule is still not in
the solvent.

The second step of nonpolar solvation is the transfer of the molecule into the cavity in the
solvent. As soon as the molecule is in place, the interactions between solute and solvent are
considered. For the nonpolar part, these interactions are merely van der Waals interactions. In
literature these are referred to as dispersive and repulsive interactions and are in some cases also
considered separately. The total nonpolar solvation energy sums up to

AGi%lv = AGcay + AGyaw = AGeay + AGqis + AGrep (321)

There are many approaches to calculating nonpolar solvation energies. The next few sections
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will introduce the most promising ones which were also implemented and tested during the de-
velopment of this work.

3.4.7. Computational Models
Surface Tension

The simplest model for the nonpolar contribution is based on surface tensions. It was found by
Uhlig [61] and used in several contexts. Some models use the Uhlig model as a mere cavitational
contribution while others compute the whole nonpolar part with an Uhlig-like term.

The model of Uhlig is based on a solubility expression derived directly from the Clausius-
Clapeyron equation

dp AS AH

dT ~ AV~ TAV
where p is the pressure, V is the volume, T is the temperature, .S is the entropy and H denotes
the Helmholtz energy (or enthalpy) of the system. This equation describes phase transitions of
substances and thus is a basis for calculating the transition from the gas-phase to the solvated
(or liquid) phase.

Uhlig’s model describes the solubility of an ideal gas in an ideal liquid. For solvating a spherical
gas molecule in a liquid a cavity has to be created in the liquid. The amount of work necessary
for creating this cavity is assumed to be given by the increase of cavity surface area multiplied by
the surface tension of the solvent. In addition to the cavity creation, interactions between solvent
and solute contribute to the solubility. This model uses a macroscopic concept in molecular
dimensions, an approach disregarding all effects that arise on atomic length scales. Using the
nomenclature of Uhlig’s article [61], the energy difference Au between solvated and low-pressure
gas phase of a spherical substance with radius r is

(3.22)

Au = 4nr’c — E (3.23)

with o being the molecular solvent surface tension and E being the interaction energy of the
solute with the solvent. Uhlig argues that variations in E in going from one solvent to another
are very small and that F will also be rather dispensable for ideal gases which only interact very
weakly with their surrounding. Thus the transfer energy and the solubility will mainly depend
on the term 47720 which is the surface area A of a sphere of radius r multiplied with the surface
tension o of the solvent. Thus the transfer energy can be written as

Au=c-A (3.24)

Translated in our nomenclature and arbitrary surfaces rather than only spherical ones, expres-
sion (3.24) becomes
AGEY =7+ A (3.25)

with - being a generalised surface tension and A being the surface area of the solute. This gener-
alisation is valid under the assumption that the surface tension approach is applicable to surfaces
other than spherical ones. Most sources use the letter v instead of o, mainly to discriminate a
pure surface tension from an approximative solubility coefficient.

The surface area A in equation (3.25) depends on the model used for calculating surface terms.
In most cases the solvent-accessible surface (SAS, [62]) is used. The SAS describes the surface
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accessible by solvent atoms and thus represents the boundary for solvent-solute interactions. In
this work molecular surfaces are always calculated with the SAS method.

Scaled Particle Theory

Uhlig’s approach is very simple, but shows acceptable accuracy for small molecules. Nevertheless,
it is frequently used on larger molecules, as well, although it often needs reparameterisation. In
the 1960’s, Reiss, Frisch, Lebowitz and coworkers [63, 64, 65, 66, 67, 68] developed a more
elaborate statistical mechanical theory of fluids based on radial distribution functions. Their
so-called scaled particle theory (SPT) describes solvation thermodynamics of dilute solutions. In
their work, Reiss etal. only consider interactions that are electrostatic, hence, van der Waals
interactions between solvent and solute are not considered in their theory for nonpolar solvation
effects. Consequently, the Reiss term should be regarded as a mere cavitational term.

In classical thermodynamics, the reversible work E(r) required for inserting a spherical molecule
of radius r into the solvent is defined as

E(r) = gﬂr?’P + 4y <1 — %) (3.26)
where P is the pressure, v denotes the surface tension and ¢ is a constant describing surface
curvature. In this equation, the first summand is the volume work and the second describes the
surface work with a corrective for surface curvature denoted by 4.

In the original formulation, SPT considers solvent and solute molecules as hard spheres with
different radii. From statistical mechanical considerations, Reiss et al. deduct an approximation
for E(r) of the form

E(r) = Ko+ K17 + Kor® + K313 (3.27)

which obviously has the the same form as the law of classical thermodynamics. The question re-
mains how the K; have to be defined. By comparison with the classical law, Reiss et al. determine
the constants K; to be

Ko = kT <—zn(1— g( L > > - —ﬂPrs (3.28)

kT
K = —— <6——|— 8( > > + 7Prd (3.29)
rs \ 1—y

kT Y

Ky = —— 12— 18 —— 27 P .

2 r%( 1—y+ 8<1_ >>—|—7rrs (3.30)
4

Ky = gmP (3.31)

with y = %m’gpg. Here, rg is the radius of the spherical solvent molecules, pg = % is the number
density of the solvent with N being the number of solvent molecules and V' being the volume of
the system.

Reiss et al. legitimate the occurrence of a constant term Ky by arguing that equation (3.26) is
a macroscopic formula while equation (3.27) will be used on microscopic length scales Therefore
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a correction term for very small effects that do not affect the classical case is needed in the
microscopic case.

The above form of the coefficients K; is quite unhandy. Pierotti reports in his review [69] the
following, more concise form. Let R = - be the ratio of the hard sphere radii. Then the work
for creating a cavity of radius r in a hard-sphere fluid with number density pg is

ER,ps) 3y 3y 9/ vy \\pn2, ¥P o3
= —In(l—y)+ T R + — 3l R+pskTR (3.32)

where y = %ﬂpgr‘g is the reduced number density of the solvent.

Equation (3.32) constitutes a theoretically well-defined expression for the calculation of the
work for cavity formation if the cavity is spherical. Unfortunately, proteins are scarcely spherical
in shape. Therefore, following the suggestion of Langlet and coworkers [70], the Reiss equation is
taken as an atomic contribution summed up over all atoms of a protein surface. The cavitational
energy is then

AGeay = Z A::—;?E(R,-, ps) (3.33)
where 7 is the index of the i-th atom of the solvated molecule, r; is the radius of that atom, rg
is the radius of the solvent molecules, R; = :—;, ps is again the number density of the solvent,
E(R;, ps) is the work for creating a cavity for that atom in the solvent and A; is the surface area
occupied by that atom on the solvent accessible surface of the protein. With this equation, every
atom of the solvated molecule contributes to the energy depending on its portion of the molecular
surface.

Like in the Uhlig case, this generalisation is valid under the assumption that the term for
surface work is applicable to surfaces that are not spherical. Nevertheless, volume work might be
underestimated or simply neglected in this formulation. However, in this study the application
of this term will be limited to calculating binding energies, i. e. differences between energies.
Assuming that the protein is rigid and thus does not change its volume and that the ligand is
so small that there are no atoms buried so deeply that they do not contribute to the surface of
the molecule, the difference between bound and unbound state will almost exclusively affect the
change in surface. Thus, in the difference, the volume work will annihilate.

Van der Waals Interaction between Solute and Solvent

Intending to use SPT as a term for calculating the cavitational energy implies that we still need
a term for solvent-solute interactions. When considering the nonpolar part of AG®Y, solvent
molecules do interact with the solute via van der Waals interactions. This bulk water interaction
can likewise be formulated as an interaction with a continuum. Huron and Claverie [71] developed
a theory for calculating the interactions of a molecule with its whole surrounding. The approach
is simple in idea but rather complicated in the mathematical formulation.

Their model starts from defining a potential for the interactions of solvent and solute molecules
by considering the atomic interactions. The potential is basically the van der Waals potential
introduced earlier, but it defines a different form for the repulsive part. Instead of using a r—'2
term, this potential, introduced by Kitaygorodski [72], employs an exp(—r) type function. Let
R; and R; be the van der Waals radii of atoms ¢ and j, r;; the distance between these two atoms
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and «a a potential parameter, then the energy contribution from these two atoms is defined as

_ dis rep _ o B
eij = €55 + € Cais(4R; R, ) 7’2] + Crep €Xp < \/mn]> (3.34)
with Cgis and Chep being adjustable coefficients of the model. At this point, the energy of the
whole system could be calculated by summing up over all atoms of the system including each
atom of every existing solvent molecule.

The potential (3.34) is a so-called 6-exp potential. In this work, however, van der Waals energies
are calculated with the help of the Lennard-Jones potential from the AMBER implementation in
BALL and its parameters. In order to avoid using an additional set of parameters introducing
another source of error and additional effort in implementing the energy calculations, the potential
used for nonpolar solvation effects had to be adapted to the form used for the Lennard-Jones
potential. Therefore, guided by the calculations of Huron and Claverie, the model was recalculated
using the Lennard-Jones potential.

The total van der Waals interaction EVIW between solute and solvent can be defined as a sum
of all pairwise van der Waals interactions of the atoms s of all solvent molecules and the atoms

m of the solute molecule:
VMd‘g = Z ZEVdW m,s) (3.35)
meM seS

Using the number density pg of solvent molecules this can be rewritten as a volume integral over
the volume Vs occupied by the solvent. In this formulation only the occurring atom types s’ are
considered. Let S’ be the set of all occurring atom types in the solvent, then the energy can be

written as
VMdQ:ZZ///pSEms (3.36)

meM s'€S’

The pairwise interaction energy F(m, s) usually depends on the distance of the two atoms m and
s, thus possesses a radial symmetry. With this starting point and the interaction potential

A B
vdw __
the solute-solvent interaction energy can be calculated by transforming the volume integral into
a surface integral. The details of this transformation are given in Appendix C.2.
The complete interaction energy of the solute and the solvent E]V\}vvg, can be obtained by sum-
ming the individual interaction contributions over all atoms of the solvent and the solute. Let

n(Sys) be the normal of the molecular surface Sy; at r, then the energy is given by

ati- 5 S ] (G -5 ) wonowa o

meM s'eS’

The surface integral [/, Sus ds can be approximated easily by summing up the surface areas of all
involved atoms. Let Ap; be the set containing the normalised surface areas a,, for all atoms
m € M. Then the energy is given by

X/(fivg = ps Z Z Z <97,12 - 37:68 ) am (3.39)

meM s'€S’ am€ANm

This triple sum can be calculated efficiently .
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3.4.8. The Theory Behind Polar Solvation Effects

The polar part AGS!Y of the solvation free energy in equation (3.20) is caused by electrostatic
interactions between the atoms of the solute molecule and the atoms of all solvent molecules. In
principle, the starting point for a computational formulation is again the Coulomb law introduced
in Section 3.4.4. While the Coulomb law was introduced for calculating electrostatic energies in
vacuum, from now on the treatment will include effects from a medium, e. g. a solvent.

Generally, matter which is permeated by an electrical field will react to it. By induction, the
field causes a charge shift, which will lead to the creation of a second field within the medium.
This response field or reaction field is of opposite sign. Because electrical fields are additive,
this induced field will dampen the strength of the original field. When molecules are solvated,
the strength of electrostatic interactions with surrounding molecules will hence be altered by the
reaction field in the solvent.

In order to compute these effects, some theory of electrical fields and potential is necessary.
Without going into the details of advanced electrostatics, the equations needed for the calculation
of electrostatic effects are introduced. A thorough treatment of this matter is beyond the scope
of this work. Every physics text book on electrostatics and electrodynamics, e. g. [73], will give
more insights into theory and its derivation.

A charge distribution p(r), e.g. the partial charges of atoms in a molecule, creates the elec-
trical potential ¢(r). Potential and charge distribution describe the electrostatic system. This is
formulated in the Poisson equation

V- Vé(r) = 50(? (3.40)

with g9 being the vacuum permittivity. The existence of a medium, also called dielectric, is
captured by the relative dielectric constant €, which is a material constant describing the damp-
ening effect caused by that material when an electrostatic field is permeating it. This constant
is derived from the electric flux density under the assumption that the medium in question is an
isotropic, homogeneous dielectric.

Potential and electrical field E(r) are connected directly via

E(r) = —Vé(r) (3.41)

With equations (3.40) and (3.41), every electrostatic quantity of a system can be calculated as
long as the dielectric constant is a real constant, 4. e. the dielectric constant is the same at every
point in space. Based on these equations, there are several methods for calculating solvation free
energies.

3.4.9. Computational Models

In this study, two elements comprise the calculation of the solvation free energy of a molecule.
First, there is the model of Jackson and Sternberg [74], which allows for calculating the influence
of solvation effects of the binding of two molecules very accurately by circumventing certain nu-
merical problems. This model relies on methods for doing the actual electrostatics computations.
Such a method represents the second element of our solvation model. In this study, two different
approaches to calculating electrostatic solvation interactions were investigated: a finite-difference
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Figure 3.14.: The different phases of the binding model of Jackson and Sternberg for calculating
the electrostatic free energy on binding. First a molecule is placed in the solvent and its
AG®V is calculated. Then a “ghost” molecule of the binding partner is inserted that does
not carry any charges. Calculating the difference between this system and the one without
the uncharged partner results in AAGZOIV and AAGSE?lV, resp. Inserting the charges into
the uncharged molecule allows the calculation of the interaction energy AGRY. The sum of
AAfolV, AAG%’IV and AGRY comprises the total electrostatic free energy on binding.

solver for the Poisson-Boltzmann equation and the so-called Generalised Born approach. The
next section will explain the Jackson-Sternberg framework, followed by a section for each of the
electrostatics models.

The Jackson-Sternberg Model

In their study [74], Jackson and Sternberg developed and applied a continuum model for protein-
protein interactions. Within the scope of their model, they describe a method for calculating the
electrostatic free energy on binding including both solvation and interaction contributions. Like
many other models, their method is based on the assumption that the processes of solvating a
molecule can be separated into several independent steps. They generalise this idea to the case of
binding processes in the solvated phase. The main advantage of the Jackson-Sternberg model is
that it is very robust. Additionally, the model achieves high accuracy in calculating electrostatic
energies.

Similar to the nonpolar solvation model introduced in Section 3.4.6, the electrostatic free energy
on binding AGE’Smd is separated into three independent components. It consists of the change in
electrostatic solvation free energy on binding AAGZOIV and AAG%’IV of the two participating
molecules A and B and the electrostatic interaction energy AG%Y between A and B. The
electrostatic free energy on binding AGP™ can then be written as

AGRM = AAGRY + AAGEY + AGRE (3.42)

Figure 3.14 illustrates the different phases. The change in solvation free energy of a molecule is
caused by desolvation of parts of the molecule on binding. In the computational model desolvation
of A is achieved by introducing a region of the size of the binding partner B into the solvent.
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This region is uncharged but contains the dielectric constant of the molecule instead of that of
the solvent. Creating this uncharged “ghost” molecule corresponds to the loss of solute-solvent
interactions of the first molecule when binding the second. After calculating this energy difference,
the charges of molecule B are transfered into the dielectric cavity and the electrostatic interaction

energy AGE}B between the two binding partners can be calculated which is given by

AGRE = Z 4idi (3.43)

where ¢; is a newly transfered charge in the molecular cavity of B and ¢; is the potential at the
position of ¢; generated by the charges of molecule A. The change in solvation energy must be
calculated for both molecules because both are partially desolvated. The interaction energy can
be calculated by considering the effect of the potential of A on the charges of B or vice versa.
Both interaction energy quantities should be of the same value.

Finite-Difference Poisson-Boltzmann Solvers

The Poisson equation (3.40) is a partial differential equation which can be solved with numerical
methods. There exist many different implementations of such solvers. Usually, these programmes
try to solve the even harder Poisson-Boltzmann equation

VeV $r? sinh (%) = —47p (3.44)

that includes additional effects of solvated ions (salt effects). With a solution to this equation,
electrostatic energies are directly computable. Unfortunately, equation (3.44) cannot be solved
analytically for molecular systems of the size of proteins, so numerical approaches have to be
employed.

Being able to calculate the electrostatics of a system enables us to calculate solvation effects
that are caused by electrostatic interactions. As stated in Section 3.4.5, the solvation free energy

1S
AGSOlV — Gsolvated phase Gas phase

In order to determine electrostatic solvation free energy, it is necessary to compute both phases.
AGY is the difference of the electrostatic energy Ges in gas phase and solvated phase:

solv __ ,solvated phase gas phase
AGYY = G — G& (3.45)

Consequently, computational effort doubles for these calculations.

There are several approaches to solving such a differential equation, ranging from boundary
element methods over finite elements to finite-difference approaches. The most successful and
wide-spread method is the finite-difference Poisson-Boltzmann (FDPB) solver. BALL provides
such a FDPB solver which is mainly based on the work by Zhou etal. [75] and Bruccoleri et al.
[76]. The following paragraphs will introduce the methodology to some extent.

Finite-difference methods solve the Poisson-Boltzmann equation through transforming it into
a set of difference equations by discretising space into an equally spaced three-dimensional grid,
illustrated in Fig. 3.15. Every grid point represents the physical properties of that point in space,
such as charge distribution and dielectric constant. These properties have to be mapped from the
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Figure 3.15.: Discretisation of space for FDPB calculations. A cubic grid represents space,
depicted here by black lines. The intersection points carry the charge for that spatial grid
point (circles). If a grid point is within the van der Waals radius of an atom (dark grey circle),
the atom’s charge is assigned to that point (red circles).

spatial information given by the molecular data. The solution of the difference equations yield
the electrostatic potential. From the potential, field strength and energy can be calculated.

The accuracy of a FDPB solver is tightly connected with the grid spacing chosen for the
calculation. The smaller this spacing is, the more accurate is the computation. But there remain
some numerical problems. The system contains a certain amount of energy called the self-energy.
The solvation energy is the energy difference between two states of the system. Consequently,
the self energy should vanish in the difference and the solvation contributions should remain.
Unfortunately, the self-energy of the system tends to be rather large compared to solvation
contributions so efficient elimination of the self-energy is imperative as differences between values
of very different magnitude tend to become very inaccurate. The problem of eliminating self-
energies was addressed by Zhou etal. in [75] and is integrated into the BALL FDPB solver.

Besides numerical problems, modelling physical properties accurately and efficiently is a non-
trivial task. The accuracy of the finite-difference approach is greatly influenced by the method
of mapping and representing the charge distribution and the (local) dielectric constant onto the
grid. Bruccoleri et al. proposed in [76] a model employing harmonic smoothing of the dielectric
properties of space and antialiasing of the charge distribution. This approach improves the
independence of the calculation against changes in the grid positioning and reduces numerical
problems introduced by the discretisation.

The basic idea is to “smear” charges across several discretisation points. Instead of assigning
a charge to a single grid point, a fraction of a charge is assigned to a grid point. This fraction
is determined by the amount of space surrounding that grid point that is occupied by an atom
as illustrated in Fig. 3.17. For this determination, space around the grid point is subdivided into
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Figure 3.16.: Representation of the dielectric in the spatial grid: The values of the dielectric are
given at points (big circles) on the connecting lines between single charge grid points (small
circles). The dielectric grid points are assigned with a constant representing the internal
molecular environment (green circles) or the surrounding solvent (blue circles) according to
their position relative to atom centres.
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Figure 3.17.: Charge antialiasing: Space around the grid point is further divided into small
boxes (blue dashed lines). If the centre of such a small box (small black dots) is within the
van der Waals radius of an atom (large grey circle), it is counted as occupied. The number of
occupied small boxes around a grid point designates the charge assigned to the grid point.
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Figure 3.18.: Dielectric smoothing: After assigning the dielectric values, for every grid point,
the dielectric value is assigned by computing the mean of the original value of all neighbouring
grid points within a predefined radius (dashed red circle).

small rectangular boxes. If the centre of such a small box is within the radius of an atom, it is
counted as occupied. The more boxes are occupied, the larger is the charge fraction.

With such a smooth representation of charges, the dependence of the calculated potential on
the actual positioning of the grid points relative to the atom centres will be decreased. Smoothing
also improves the accuracy of the finite difference method if applied to the dielectric properties of
a system. Usually, the dielectric boundaries are clearly defined by the molecular surface. Inside
the molecule, the dielectric constant (DC) is &;, outside the molecule it is &,, which in most cases
will be the DC of pure water. The dielectric constant of one grid point can be defined using a
volume filtering approach averaging the dielectric constant of sufficiently many neighbouring grid
points, depicted in Fig.3.18. The main idea of this method is to compute average values of the
DC around a grid point and to use this mean value in the actual calculation.

FDPB solvers require much time for calculating the electrostatics of systems as large as proteins.
In order to reduce the computation time, most models already include cut-off values limiting the
number of atom pairs considered interacting. The BALL FDPB implementation already provides
such means of acceleration. Nevertheless, some functions still have to traverse large sets of atoms
in order to find interacting pairs. Consequently, reducing the size of the actual system speeds up
the computations significantly.

For our calculations, further acceleration was desired. A simple way of doing so is the reduction
of the molecular system to areas of interest, which basically is the protein binding site. This
method is frequently used in docking calculations (cf. FlexX [47]). When cutting out interesting
portions of the molecular system, one has to make sure that the remaining part is large enough to
cover all relevant interactions. The idea realised here and depicted in Fig. 3.19 works as follows:
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Figure 3.19.: An original system (left, PDB-ID 1AXO0) in comparison to the cut-out system
(right). Note the significant reduction in size.

1. Calculate a bounding box around the ligand.

2. Extend the ligand bounding box evenly into every direction thus defining the “cut-out”
box.

3. Create a new system which only consists of residues which have atoms within the extended
bounding box.

4. Cap the residue chains which are not terminated correctly with ACE and NME caps.

The last step is necessary in order to balance charges of the discontinuous backbone. Test
calculations showed only small energy deviation of such a cut-out binding site compared to the
whole system while decreasing computation times significantly.

The FDPB calculations used in this work were done using harmonic antialiasing of the charges,
a trilinear filtering approach for smoothing the dielectric and electrostatic focusing for determining
the boundary values of the grid. Spacing of the grid was set to 0.5A. The extension of the cut-out
box was 8A into every direction in space.

3.4.10. Generalised Born

Besides FDPB approaches, methods based on the Generalised Born (GB) formulation become
more popular in molecular mechanics. For this study, several GB models were analysed and the
most promising one was implemented. This section covers GB in some detail and introduces into
the methods chosen for our calculations.

Generalised-Born models are computational methods that are based on the formulation of the
electrostatics of a single spherical solvated ion, which was first published by Max Born in 1920
[77]. In his model, the solvation free energy of the solvated ion is

1

AGSN = & 1-— (3.46)
s 2R Ew
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where ¢ is the charge of the ion, R denotes its radius and g, is the dielectric constant of the
solvent.

The Born approximation yields good agreement with experimentally determined solvation free
energies of spherical ions, but for larger non-spherical molecules, a new formulation has to be
found. Originally, the generalisation of the Born model was formulated as

solv __ L 4:9; . o qz
AGEY = ( >Z 6 — <1 >§; & (3.47)

T
=1 j=i+1 i

where the «; are the so-called generalised Born radii of the atoms, which roughly represent the
distance of an atom centre to the dielectric surface. These Born radii are crucial for the success of
a calculation and can be estimated on the basis of the Coulomb field approximation (see below).
Still and coworkers introduced in [78] a more concise formulation of the GB term

AGEN = —SMO ( ) 3 Z - i (3.48)

zl]l T”

which is the form now used in GB calculations. The function fij (rij) was introduced as

2
1§8) = || 7% + g exp (— . ) (3.49)
Q4
and combines the terms of equation (3.47) in a way such that classical electrostatics is repro-
duced correctly. This model predicts solvation free energies of small solutes very well. Sev-
eral modifications of the Still formulation of the GB model have since been developed (e.g
[79, 80, 81, 82, 83, 84, 85, 86]), which mostly differ in the estimation of the Born radii.

The GB model has some advantages over the FDPB methods in terms of running time. The
computationally most expensive part is the estimation of the Born radii. The actual summation
only needs very little resources. Additionally, the solvation free energy can be calculated with one
single calculation. Using the FDPB method, two calculations have to be performed, because the
solvation free energy is the difference between vacuum and the solvated phase. Thus both cases
have to be calculated and subtracted. However, FDPB models still represent the benchmark for
electrostatics calculations. The accuracy achieved with FDPB methods is generally better than
with GB calculations. Nevertheless, GB models are under constant development because of their
speed, which makes them applicable in molecular dynamics simulations.

Onufriev, Case, Bashford and coworkers improved the Still formulation [79, 80, 81, 82] with
larger molecules like proteins in mind. In [79] their GB model for macromolecules was presented.
It accounts for the fact that large molecules cannot be treated without considering their own
dielectric properties. Additionally, their model introduces a modification of the Born radii ap-
proximation. In [83] salt effects were included into the Born model, which are captured in the
Poisson-Boltzmann equation but were lacking in GB methods. These improved methods will be
described here as they build the basis for the GB model implemented for this work.

Estimating Born Radii

The Born radii used in the Still formulation are critical for the accuracy of the method. Many
methods use the formalism developed by Schaefer and Froemmel [87], which was improved by
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Hawkins and coworkers [84, 88]. The expression for calculating Born radii is based on an approx-
imation of the Coulomb integral, which is directly connected to the Born radius «; of atom 7. Let
R; be the intrinsic (van der Waals) radius of atom ¢ and r;; be the distance between atoms i and
7, then

o0
aii = R%- _Z/Hij(rijaRj)T_lng (3.50)
J R,

where ]flij is the fraction of the area of a sphere of radius r centred at atom 4 that is shielded by a
sphere of scaled radius s;; ;. The scaling factors s;; were introduced to compensate for overlap
effects of the individual spheres, which is not directly covered in the original Coulomb integral
approximation. The integral part of this equation can be approximated to a level where analytical
treatment is possible leading to a function H;;(rij, R;j) representing the integral [ Hr=2dr:

1 1 r 1 1 1 . L suR2(1 1

Hyrin Ry) = — - —+ 20 (Lo L) Lo le B0 (1 1) ga

1 if Tij + SjiRj § RZ
Lij={ R it ry;—s5R; < R <1+ s (3.52)

Tz'j — Sji if Rz § Tz'j — SjiRj

o 1 if Tij + SjiRj < R;
Uw o { Tz'j + SjiRj if RZ < Tij + SjiRj (3‘53)
With equations (3.51) — (3.53) the Born radius of atom i can be written as
-1
1 1

o = E — 5 ZJ: Hij(rij, Rj) (3.54)

The Onufriev Model

The modified GB model of Onufriev etal. uses the GB formulation of equation (3.48) and
introduces additional empirical constants into the Born radius approximation. Instead of using
scaling factors s;; depending on both atoms, Onufriev etal. use factors s;, which only depend
on atom j as introduced by Srinivasan etal. in [83]. Additionally, a factor A is introduced to
compensate for missing volume caused by the spherical approximation of the molecular surface.
Because this scaling tends to overcompensate and thus overestimate radii, the generalised Born
radii are slightly reduced by subtracting the constant §. The introduction of § was done for
practical reasons in order to avoid a full reparameterisation of the model. Finally, atomic radii
are reduced by Ry, which is an empirically determined offset marking the beginning of the actual
solvent (see [78]). The Onufriev model hence calculates Born radii as follows.

-1

1
R — Ry A;Hij(ﬂja sj(Rj —Ro)) | —6 (3.55)

Q; =

Srinivasan and coworkers [83] introduced an effective way of including salt effects into the
generalised Born model, a feature that Poisson-Boltzmann solvers naturally possess. Salt effects
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3. Computational and Physical Background

can be achieved by including the Debye-Hiickel screening parameter into the term describing the
dielectric effects. on
1 1 1 exp(—kf7°(ry;
<_ - _> — <_ _ ep(ndy | ”)> (3.56)
Em  Es Em €s

Salt effects can thus be easily covered by a GB calculator by simply exchanging the dielectric
term with a salt-aware form.

Onufriev etal. also give an expression for calculating the electrostatic potential at each atom
position. This potential is necessary to compute interaction energies in the Jackson-Sternberg
model. The potential ¢(r;) at the position r; of each atom ¢ is defined as

eXpl—kK GB Tij j i
¢(ri)=—<i— pl=rfyy ( )>ZGBQ7+iZq— (3.57)

Em €s j fij (Tij) Em i Tij

The empirical parameters used in the implementation created for this thesis were adopted
from literature. In the Born radii approximation, the constants are A = 1.33, Ry = 0.09A and
§ = 0.15A. The scaling factors s; were taken from [83] and are listed in Tab. 3.2. Unfortunately,
these scaling factors only include seven elements, which poses a certain limitation.

Element  s;
H 0.85
C 0.72
N 0.79
O 0.85
p 0.86
S 0.96
Fe 0.88

Table 3.2.: Scaling factors for GB models

Parameters for Electrostatic Contributions

Parameter sets are usually created by fitting computed quantities to experimental ones. It is also
possible to use the results of calculations at the quantum mechanical level as a calibration source
if these calculations are performed with sufficient accuracy. In general, choosing a parameter set
is not trivial because every set is calibrated on its own calibration source and thus the comparison
of parameter sets without actually using them in calculations is virtually impossible.

In this study, the parameter set chosen for electrostatic contributions to the binding free
energy is the PARSE parameter set developed by Sitkoff and coworkers [89]. These parameters
were optimised for reproducing solvation free energies of compounds representing amino acid
side chains with the FDPB method. Sitkoff etal. compared different existing parameter sets
that stem from several wide-spread force fields, among them AMBER [90], CHARMM [91] and
OPLS [92], with their own parameter set gained from FDPB calculations on a large set of small
compounds. Their results suggest that PARSE predicts solvation free energies with high accuracy,
outperforming the other parameter sets. The performance of PARSE in predicting solvation free
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energies in FDPB calculations was verified in the scope of a student research project [93] which
yielded reassuring results considering the choice of the parameter set. Additionally, in contrast
to many other force field parameters, PARSE rules are not depending on correct naming or
typing of atoms in the system. Thus, molecular data which does not comply to PDB, AMBER or
CHARMM naming conventions can easily be parameterised as long as the topological information
of the molecule is complete and includes bond orders.

Chemical Group Atom Charge
—OH @) -0.49
H 0.49

—NH, N -0.78
Hio 0.39

—CONH- C 0.55
@) -0.55

N -0.40

H 0.40

Table 3.3.: Example rules from the PARSE parameter set

The PARSE parameter set contains partial charges and radii for atoms of biomolecules. They
are assigned to a particular atom by means of rules that are based on whether the atom belongs
to a certain chemical group. Rule examples are shown in Tab. 3.3. These rules were integrated
into BALL by developing a flexible parsing and assigning mechanism that reads rules from a
file and applies these rules to a selectable set of atoms in the system under investigation. See
Appendix A for details on the implementation of PARSE rules in BALL.

3.5. Performance Measures

Empirical energy functions rely heavily on experimental data sets. The coefficients of an energy
function are fitted to the experimental data, which means that having a high quality data set is
imperative for creating energy functions with decent accuracy. In this light, statistical analysis
becomes important for the critical evaluation of the gained results.

Statistical methods provide valuable tools for analysing and assessing the quality of predictions
produced by computational models. Moreover, the calculations of coefficients for individual
energy contributions are most effectively done using statistical procedures. This section will
briefly cover the methods employed in this work.

3.5.1. Correlation Coefficients and Co.

Computational methods should reproduce experimental values with high accuracy. The deviation
of computed values ¢; from the experimental ones e; should be minimal. A first impression of
the quality of a prediction can hence easily be obtained by computing both the average absolute
error €, = % >, lci — €| and the maximum absolute error €, = max|c¢; — e;|. The first number
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3. Computational and Physical Background

gives an impression of the overall performance of the prediction. The second number reveals the
existence of largely deviating outliers, which should be investigated.

20
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R =0.964
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20

20

15

10

R =-0.060

Figure 3.20.: Two exemplary plots illustrating correlation. Left: very good correlation. Right:
correlation of a random assignment.

Plotting experimental versus computed values gives a more precise picture. A perfect prediction
would yield a graph with all points on the bisector in the first quadrant. An approximative
computational model will of course not produce perfect results. Hence a number denominating
how well both data sets are correlated would be desirable. A quantity generally considered for
this task is the correlation coefficient R which is a measure for the linear correlation between two
data sets x; and y; with IV elements and is defined as

SN (@i — ) (yi — §)
R = (3.58)
VEN (@ - 22/, 0 - 9)?

with 7 = & SN i and § = + SN | 4i. The values of R lie in the interval [~1,1]. If two data
sets are not correlated, R is zero. The more two data sets are linearly correlated, the more the
absolute value of R approaches 1. Fig. 3.20 illustrates this behaviour. In the context of energy
predictions, a prediction method with high accuracy should yield a correlation coefficient above
0.8.

3.5.2. Multiple Linear Regression

Empirical energy functions like SLICK /energy have to be calibrated with experimental data in
order to obtain values for the coefficients of the contributing terms. This calibration is done by
fitting. There are several techniques for fitting functions against data sets. Since we assume a
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linear correlation between predicted and experimental values, the method chosen was multiple
linear regression (MLR).

MLR is a generalisation of linear regression analysis that starts from a linear model y; =
a+ Bx; + €; with y; being the independent variable, which in our case are the experimental values
and x; the dependent variable, the predicted values. The ¢; denote the error for each estimate, the
so-called residues. Linear regression computes the linear best fit by minimising these ¢; values.
Generally the method used for minimising the residues is least squares fit. The optimisation
problem to be solved is

N N
minz € = Z:(yZ — (a + ba;))? (3.59)
i=1 i=1

In the case of ordinary linear regression the coefficients a and b can be calculated directly:

N (s — )y — G
b = E;Sﬁi(w )_(3;)2 ) (3.60)
o = §-bi (3.61)

In multiple linear regression the linear model contains M dependent variables per independent
variable. Thus, the model has N - M model variables x;; with coefficients a; and N independent
variables ;. The model then becomes

n
Y; = ag Z ;T + €; (3.62)
j=1

The method of resolution is basically the same. The residues of the individual estimates have
to be minimised, this time by solving a linear equation system. Details on solving MLR can be
found in any text book on descriptive statistics.

3.5.3. Cross-Validation

Because the calibration of a prediction method is strongly influenced by the data set, it is necessary
to assess the robustness of the method against changes in the calibration data, especially if data
sets are rather small. Cross-validation provides a thorough assessment of the susceptibility of the
energy function to changes in the calibration data set. The idea is simple: Split the data set into
two sets, calibrate it on one set and predict the energies of the second set. From the prediction
errors it is possible to gain information about the robustness of the function under investigation.

There are several ways of performing cross-validation. It was chosen here to do full leave-one-
out and randomised 5-fold cross-validation. Comparing the results of both methods will give a
better basis for assessing the analysis on such a small dataset than relying on just one number.
In leave-one-out, the data set is simply reduced by one member of the calibration set. After that,
the energy function is calibrated on the remaining data points and the previously removed data
point is predicted from the reduced set. This is done for every single data point.

In five-fold cross-validation, the data set is split into five equally large data sets. Every set is
then predicted with the energy function calibrated on the data of the four remaining sets and
the procedure is repeated for all combinations of data sets (see Fig.3.21). The data points can
be selected exhaustively or randomised, the latter meaning that the composition of the subsets is
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Ist Step 2nd Step 3rd Step

Calibration Set 2

Calibration Set 1
Calibration Set 3

DATA SET

Random Assignment

Prediction 1
Prediction 2
Prediction 3

N

1

Figure 3.21.: Cross-validation scheme: First, the data set is randomly divided into N equally
large data sets. Then, for every subset a prediction is made, which was calibrated on the N —1
remaining subsets. The red boxes represent the calibration set. The green boxes are predicted.

chosen randomly. From a statistical point of view, a sufficiently large number of randomly chosen
subsets will give satisfactory information on the robustness of the function.
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4. Experimental Data

Empirical energy functions have to be calibrated on experimentally measured data in order to
produce predictions. In the case of an additive function consisting of a weighted sum of individual
terms, the weights of these terms have to be fitted to experimental data. Because an energy
function connects the structure of a complex with its binding free energy, the necessary data is
two-fold. One the one hand, data on the spatial structure of the complex and on the other hand
data on the binding free energy of these complexes is necessary.

Structural data most often stems from X-ray crystallography. For this technique, crystals
are grown from solutions of the molecules or complexes in question and then examined with X-
ray light. The resulting X-ray spectra, illustrated in Fig.4.1, can be used to calculate electron
densities in space from which the spatial structure of the molecules in the crystal can be concluded.
This method has been in use for several decades and yields high quality structures of large
biomolecules. The resolution of these structures is usually in the range of several Angstrom (A)
Good structures should have resolutions below three Angstrom.

Although the quality of X-ray data is very high, there are drawbacks. One drawback of X-ray
structures is that hydrogen atoms cannot easily be “seen” in the experiment. Therefore, X-ray
structures usually do not contain the hydrogen positions. Besides X-ray crystallography there are
other methods for measuring the structure of a biomolecule, e. g. Nucleic Magnetic Resonance
(NMR), which does provide hydrogen positions but is limited to molecules with molecular weight
of less than 40 kDa. The data used here for calibration is purely X-ray data.

Binding free energies of biomolecular complexes are usually measured with isothermal titration

Figure 4.1.: Left: protein crystal for use in X-ray crystallography [94]. Right: X-ray diffraction
pattern of myoglobin [95].
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calorimetry (ITC). The basic idea is to measure the heat that is absorbed or released during
a reaction. From this quantity and the known amount of receptor and added ligand in the
experiments, enthalpy H and association constant K4 can be calculated. These can be used to
compute the binding free energy AGhng of a complex. A review on I'TC with protein-carbohydrate
complexes is found in [96].

Comparing the experimental environments of the experiments yielding structures on the one
hand and binding free energies on the other hand, several discrepancies show up, which have to
be kept in mind when analysing the quantities predicted from this data. First of all, the pH of
the measurements often differs drastically leading to different protonation states of amino acid
side chains. Furthermore, the temperature of the experiments is very different. Generally, X-ray
diffraction spectra are generated at very low temperatures while calorimetry usually is conducted
at room temperature. And last but not least, X-ray diffraction is done with crystallised proteins
while thermodynamics experiments take place in solution.

There are already many lectin-carbohydrate complexes recorded in structural databases, mainly
in the Protein Data Bank (PDB) [97]. PDB entries reveal many facts about the experimental
setup, like pH, temperature and, most significantly, resolution. Thus, finding high-quality struc-
tures is more or less straightforward. Unfortunately this data does not cover binding free energies
of the complexes. Consequently, data on the thermodynamics of the binding process from other
sources is needed. Such data is not found in databases but has to be obtained from literature.
A thoroughly conducted literature search yielded only 18 high-quality structures of plant lectins
binding carbohydrates of which binding free energies are of comparable quality.

Only structures of resolution of 3.0 A and better were accepted. Actual measurement reso-
lutions of our data range between 1.9 and 2.9 A. Additionally, structures with glycosilations or
phosphorylations near the carbohydrate binding site were discarded because of missing parameters
for the preparation of crystal structures and the fact that we want to predict lectin-carbohydrate
interactions, not carbohydrate-carbohydrate ones. If glycosilations are far away from the carbo-
hydrate binding site, these additional sugars can be removed without risking a distortion of the
results.

Complexes which are directly coordinated by metal ions were also discarded, again because of
missing parameters as well as uncertainty about the right model for coordinating metal ions in
this domain. Nevertheless, there are metal ions present in our data (Ca?*,Mn2?*). These ions
play a structurally stabilising role for the protein binding site but do not directly interact with
the ligand. Rather exotic ligands like thio-sugars or phosphates were also ignored because of their
peculiar chemistry and the resulting parameterisation problems.

The energetic data available was also investigated regarding the data quality. As stated earlier,
the difference between binding energies of different lectin-carbohydrate complexes is rather small
which made it imperative to particularly analyse the quality of the thermodynamic data that was
found in literature.

4.1. Preparation of the Structures

Before being able to use experimentally determined structures, the data has to be checked for
errors and then refined for the calculation. Error checking includes searching for disrupted back-
bones, missing side chain atoms and even completely missing side chains. If there are alternate
locations of atoms specified in the structure, one has to decide which location will be used in
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4.1. Preparation of the Structures

Figure 4.2.: Incorrect structures. Left: incorrectly specified alternate locations in 1DGL. Right:
Missing residues in 1BQP. The gap is far away from the binding site. End caps are attached
to the backbone ends.

the calculation. This can usually be decided easily by looking at the measured occupancy of the
atom. Sometimes, alternate locations are not specified correctly leading to malformed structures
as illustrated in Fig. 4.2.

If atom positions are missing in the data, one has to decide whether that data is useful at all.
Structures may be acceptable for the calibration set in spite of missing atoms if these errors are
far from the protein binding site, because in that case their influence on binding is very small.
If missing atoms are very close to the binding sites, the quality of prediction will most probably
decrease, even if these missing atoms are added and optimised before doing the calculations.
Such structures have to be discarded. However, missing atoms from distantly located residues
can be added and optimised without a great danger of decreasing prediction quality because
most interactions are short-ranged and even the long-range interactions like electrostatics decline
rather sharply. In this context, residues located more than 8 A away from the binding site are
considered distant.

If there are complete amino acids missing (which was encountered twice, see Fig.4.2) that are
far enough away from the binding site, there are two options: rebuild the backbone and residues
computationally or attach end caps to the open connections of the protein backbone and ignore
the gap in the amino acid sequence. Both approaches were tested. The differences were negligible,
so the computationally less demanding option can be chosen safely.

Since the structures stem from X-ray crystallography, they lack hydrogen atoms which have to
be added to the molecule using computational methods. Adding hydrogens involves optimising
the hydrogen positions of the resulting structure, which in turn needs a force field that is able
to find energetically favourable positions of these atoms. Therefore a force field is necessary that
can cope with carbohydrates and which is also known to create reasonably good results. Since in
the subsequent energy calculations parts of the interactions are computed with AMBER terms
and parameters, the decision was made in favour of the Glycam parameter set [98], version 2001a
for the AMBER94 [90] force field. Glycam is known to reproduce sugar conformations reasonably
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Figure 4.3.: Water molecules in the binding site of ECorL.. The molecule in the cleft on the
right hand side will be displaced by larger ligands.

well.

Optimising structures with force fields introduces an additional parameterisation and, in the
worst case, another source of error. Energy contributions that rely on hydrogen positions like
CH---7 and hydrogen bonding, are clearly directly affected by the results of the optimisation. At
the time of preparation, there was no force field available that included CH:---7 terms. Thus the
optimisation of the hydrogen positions is possibly not optimal for this investigation.

X-ray structures also include water molecules which sometimes are located in the binding site
even within complexes. Most visible water molecules do not participate in binding the ligand
to the protein. However, water molecules in close vicinity to the ligand in the active site of the
protein are often needed by the complex as a stabilising agent mediating hydrogen bonds between
ligand and protein. Although these special water molecules might play an important role in the
binding process, all water molecules were discarded from the crystal structures. The decision
for doing so was made because water-mediated hydrogen bonds pose a non-trivial problem for
docking methods [99] and while there are strategies under investigation [100, 101], there is still
no recipe for handling water molecules in docking simulations at hand. Finding such a strategy
is beyond the scope of this work.

Some lectins contain glycosilated amino acid side chains far away from the active site as de-
picted in Fig.4.4. These glycosilations are removed from the structures. There were also cases
where proteins contained oxidised cysteine side chains. These were transformed into standard
cysteines. UDA and WGA contain PCA side chains, which do not belong to the standard set of
proteinogenous amino acids. Parameters for these side chains were developed and included into
the BALL set of AMBER parameters.

Hydrogen atoms are added separately to crystal structures of the protein and the carbohydrate
ligand, respectively. The protein’s hydrogens are taken from a template library that extrapolates
the atom positions from the geometry of an amino acid side chain. This library is part of the
BALL framework [102, 103], which will be covered in more detail together with important issues
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Figure 4.4.: Glycosilations of Erythrina corallodendron lectin. The covalently bound glycan
(red) is on the far side of the binding site and will not impact the binding mode of the lactose
(green). Hence, it can be removed.

of the implementation in Appendix A. Since the templates currently available in BALL only cover
proteins and DNA, the carbohydrate hydrogens had to be added with another programme. The
Molecular Operating Environment (MOE) [104] of the Chemical Computing Group was chosen
for this task. Subsequently, the hydrogen positions were optimised while the heavy atoms of the
complex were kept fixed.

Having optimised the missing hydrogen atoms the structures still lack radius and charge pa-
rameters for the energy calculations. There is a large number of parameter sets, each customised
to reproduce experimental data in different chemical domains. Choosing a parameter set is not a
trivial task. In electrostatics calculations, the PARSE parameter set was chosen for complex radii
and protein charges (cf. Section 3.4.10 for details). The ligand charges were computed ab-initio.
The nonpolar part of the solvation contribution was calculated with Bondi [105] radii. Van der
Waals calculations were done with Glycam2000a [98] parameters.

For calculating the ligand charges ab-initio all ligand structures were rebuilt from scratch
using the MOE molecular modelling software instead of using the bound conformation. The
geometries of the ligand molecules were then optimised in vacuowith the GAMESS programme
[106]. Vacuum conformations were used instead of bound conformations in order to avoid a bias
introduced by the bound conformation into the data. Charges were then calculated using ab-initio
methods at the HF6-31G* level, which provides highly accurate results. These calculations were
also done with GAMESS.

4.2. Data Sets

There are three different data sets used in this study. The calibration set is used for calibrating
scoring and energy function. The calibration set consists of 18 structures of plant lectin complexes
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Lectin Ligand PDB Main AG Ref. for
(abbreviation) ID  Ref. [kJ/mol] AG
Artocarpus integri- Me-a-D-Man 1J4U  [107] -18.24 [108]
folia aggl. (AIA)
Concanavalin A Me-a-D-Man BCNA [109] -22.18 [110]
(ConA) Me-a-D-Gle 1GIC [111]  -19.25 [110]
Me-3-O-(a-D-Man)-a-D-Man 1QD0  [112]  -28.45 [110]
Me-6-O-(a-D-Man)-a-D-Man 1QDC  [112]  -22.18 [110]
Me-3,6-di-O-(a-D-Man)-a-D-Man  10NA  [113]  -30.96 [110]
Dioclea grandiflora  Me-3,6-di-O-(a-D-Man)-a-D-Man  1DGL  [114]  -34.31 [110]
lectin (DGL)
Erythrina corallo-  Gal 1AXZ  [115] -18.2 [116]
dendron lectin GalNAc 1AX0  [115] -17.9 [116]
(ECorL) Lac 1AX1  [115] -18.8 [116]
LacNAc 1AX2  [115] -22.7 [116]
Pisum sativum D-Glc 2BQP  [117] -14.0 [118]
lectin (PSL) D-Man 1BQP  [119] -16.6 [118]
Peanut agglutinin ~ Me-3-D-Gal 1QF3  [120] -16.96 [121]
(PNA) Lac 2PEL  [122] -17.76  [121]
Urtica dioica (GleNAc)s 1EHH  [40] -21.34 [123]
agglutinin (UDA)  (GlcNAc)4 1EN2 [124] -23.43 [123]
Wheat germ (GleNAc) 1K7U  [39] -21.34 [125]
agglutinin (WGA)

Table 4.1.: Data set for calibrating and validating the energy function.

Lectin Ligand PDB Main AG Ref. for

(abbreviation) ID  Ref. [kJ/mol] AG

Human galectin-7 (hGal-7) Lac 4GAL  [126]  -19.25 [127]
LacNAcIT 5GAL [126] -18.41  [127]

Table 4.2.: Galectin data set for validating the energy function.

with different carbohydrates listed in Tab.4.1. This set contains structures and energies. For

validating purposes, a small galectin set was defined.

It comprises two complexes of human

galectin-7 (cf. Tab.4.2). This set also contains structures and energies. Finally, a docking set
was created. The complexes in this set are used in the validation of the docking programme.
There are no binding free energies available for these complexes. This set, which is listed in
Tab. 4.3, contains 20 plant lectins and non-plant lectins.
For reference, the complete set of receptors is listed by PDB ID in Appendix D. Furthermore,
this appendix contains lists with all protein and carbohydrate abbreviations used in this thesis.

62



4.2. Data Sets

Lectin Ligand PDB Main
(abbreviation) ID Ref.
Plant lectins
Allium staving agglutinin (ASA) a-D-Man 1KJ1  [128]
Artocarpus integrifolia agglutinin (AIA) Me-Man 1IKUJ  [129]
Cratylia mollis lectin Me-Man IMVQ [130]
Psophocarpus tetragonolobus lectin (PTL) Me-Gal IWBL  [131]
Robinia pseudoacacia bark lectin (RPbA)  GlcNAc 1FNZ  [132]
Heltuba Man(1-3)Man 1C3M  [133]
Erythrina crista-galli lectin (ECL) Lac 1GZC  [134]
Maclura pomifera agglutinin (MPA) GalNAc-Gal 1JOT  [135]
Viscum album lectin (ML) Gal 1PUM  [136]

Lac 1PUU  [136]
Pisum sativum lectin (PSL) Me-a-D-glucopyranoside 1HKD  [137]

Mang 1RIN  [138]

Sucrose 10FS  [137]

Non-plant lectins and sugar binding proteins

Tetanus toxin Gal IDIW  [139]
Chemotactic protein receptor Gal IGLG  [140]
Anguilla anguilla lectin (AAnA) Fuc 1K12  [141]
Engineered maltose binding protein Mal INL5  [142]
Human galectin-7 (hGal-7) Gal 2GAL  [126]
Congerin 1 Lac 1C1L  [143]
S-lectin LacNAc ISLT  [144]

Table 4.3.: Data set for testing the docking programme.
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Chapter 3 introduced the computational models necessary for those interactions that are deemed
important for protein-carbohydrate interactions, as outlined in Chapter 2. On this basis, the
scoring function SLICK /score and the energy function SLICK /energy can now be “assembled”
using the different models. This chapter covers the SLICK, its calibration, and its validation.
Furthermore, the integration of SLICK into BALLDock and the comparison of the resulting
predictions with results from other docking programmes will be shown.

5.1. Scoring vs. Energetic Evaluation

As outlined in the introduction, in many docking methods, two distinct functions are used during
the computation, a fast scoring function for filtering putative complex conformations and an
energy function for predicting the actual binding free energies of the filtered conformations. Both
functions connect a complex conformation with a number. In the first case, this number is a score
that indicates how well a certain conformation represents a real binding conformation relative to
other putative complex structures. The score alone will not provide enough information about
a putative complex without a frame of reference, i. e. the other conformations of a docking run.
In the second case, this number represents an actual binding free energy, which is an absolute
number of unit kJ/mol.

In principle, every energy function should also qualify as a scoring function, because lower
binding energies can be seen as better scores. The more energy is liberated during the binding
process, the more likely the binding is. But energy functions with the ability of predicting accurate
binding free energies often have one critical disadvantage when it comes to filtering a large amount
of putative complex conformations. They are simply too slow to be applied to the vast amount
of structures. The obvious reason for this lies in the grade of approximation introduced into the
function. The stronger the approximations are, the worse are the predictions. But at the same
time, stronger approximations can drastically cut the necessary computational effort.

The developers of existing docking programmes use different ways to escape this dilemma.
The most trivial approach is to accept long running times and use a high-quality energy function
for filtering or scoring purposes. Another solution is to choose an energy function that does
not require much computational effort but will not reproduce energies with high accuracy. The
widely used FlexX [47] method uses this approach. Its relatively simple energy function, which is
based on the Bohm approach [56], produces very reliable filtering results. However, the energies
calculated by this function can hardly be taken as real binding free energies. Nevertheless, the
docking method achieves good structural results very rapidly.

AutoDock follows a different strategy. They use an energy function for their grid-based ap-
proach and precalculate real energies for probe groups on every grid point. During the actual
docking, the energy of a ligand is calculated by interpolating between grid points, which needs far
less resources than calculating the real function. Again, an approximation is introduced to speed
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up energy calculations during docking. On an abstract level, this can be seen as transforming
the real energy function into a fast and reliable scoring function for filtering out bad candidates.
There are numerous other examples for scoring functions, e. g. those based on purely geometric
considerations in protein-protein docking.

In the case of SLICK, the decision was to create two very similar functions. The scoring function
should be able to quickly rank candidates in the correct order. Therefore, computationally
intensive models could not be included into the model. The energy function should produce
binding energy estimates of high accuracy. Since computing time for the energetic evaluation is
not as critical as for filtering, the computational models could be more demanding. The choice
of models and the performance of the final functions will be addressed in the next sections.

5.2. SLICK

As mentioned before (Chapter 2), deep insight into the structural interactions is necessary to
create a specialised energy or scoring function. Based on the knowledge of the features and pe-
culiarities of protein-carbohydrate binding, two functions were created, one for scoring putative
complexes created during the structure generation phase of docking programmes and one for cal-
culating binding free energies of such complexes. The scoring function SLICK /score was designed
with efficiency in mind while the energy function SLICK /energy was aimed at reproducing high-
accuracy binding free energies. Both functions share the same physical basis, but differ in the
accuracy of certain models as well as the treatment of solvation effects. Together they constitute
the SLICK package.

As a short reminder: It was pointed out that the complexation of proteins with carbohydrates
is presumably driven by the following effects:

e Hydrogen bonds, because of the many freely rotatable hydroxyl groups at each sugar ring

e CH---7 interactions causing the characteristic ring stacking of sugar rings on aromatic rings
in the protein binding site

e Electrostatic interactions between protein and carbohydrate, increased by the many polar
hydroxyl groups of the sugar

e Solvation effects, i. e. electrostatic and non-polar interactions of the individual molecules
and the complex with its surrounding solvent

These different interactions have to be covered at least in part by energy and scoring functions.
Both SLICK functions are empirical functions built from the weighted sum of their respective

contributions. Each function has to be calibrated and validated on the domain of molecules they

were designed for. In the next sections the functions and their validation will be addressed.

5.3. SLICK/score

The SLICK /score scoring function consists of four terms deemed important for protein-carbohydrate
binding and especially for the structural basis of binding modes. It includes hydrogen bonding
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(Shp), CH---7 interactions (Scpr), van der Waals energies (AGyqw) and electrostatic interac-
tion energies (AGIIY), which are computed with the Coulomb law. The SLICK /score S(m) of a
molecular complex m is hence defined as

S(m) = so + scHrScHr (M) + 55bShb (M) + SvdwAGraw (M) + ses AGH (m) (5.1)

This function was calibrated on a set of docked structures. These docking candidates were
obtained by docking all plant lectins from the calibration set defined in Chapter 4. At this
stage docking candidates were created with the docking programme AutoDock [5]. AutoDock
is a general-purpose flexible ligand docking programme and should provide reasonable candidate
structures for protein-carbohydrate complexes, although its energy function is not aware of the
peculiarities of these complexes. The incorporation of SLICK /score into a docking programme
will be covered later.

Ligands were docked to the proteins using the standard AutoDock 3.0.5 parameters unless
otherwise noted. The energy grids were centred on the geometric centre of the respective ligand
in the binding site. The grid dimension were 65 x 65 x 65 points with a spacing of 0.375 A. The
energies were scaled employing the free energy model 140n coefficients. Non-polar hydrogens were
modelled explicitly. For monomers, the number of individuals and maximum energy evaluations
per generation was 60 and 1,800,000, respectively. For dimers, these values were doubled. For
each carbohydrate, 200 runs were performed. Each run resulted in a final conformation. All final
conformations were employed in the following calculations.

Figure 5.1.: Docking candidates generated by AutoDock covering the binding site of ECorL
(left, 1AX1) and PNA (right, 1QF3). There is a large cluster of binding conformations in the
binding site, but some structures are misplaced.

The set of candidates created by this procedure covers a sufficient fraction of the conformational
space of the ligand in the binding site. Calculation of the RMSD of every individual docking
candidate from the crystal structure shows that the range lies between about 0.5 and 13A. Figure
5.1 shows two examples illustrating the coverage of the binding site. The complete set of RMSD
distributions is given in appendix B.1.3.
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Figure 5.2.: Successful rescoring with CH---7m and hydrogen bonds only. These graphs show
scores (larger values are better).

5.3.1. Training and Validating SLICK /score

The optimisation of SLICK /score coefficients started from the assumption that CH---7 interac-
tions and hydrogen bonds are very important for the actual binding conformation. By using only
these two contributions it was already possible to identify some binding sites of the 18 complexes
in the calibration set. Figure 5.2 shows two examples of such successfully identified complexes.

Van der Waals interactions and electrostatics were added and coefficients for these contributions
were searched. While the calculations of van der Waals and electrostatic interactions result in
energies, the CH---m and hydrogen bond terms only give scores that have to be translated into
energy-like numbers. Scores are in the range between 0 and 1 depending on how well a found
interaction resembles the ideal case. Knowing that hydrogen bonds contribute in the range of
4-20 kJ/mol, the factor —20 was assumed for both contributions. Further investigation showed
that the electrostatic interaction seemed a bit overestimated by the Coulomb term included in
SLICK /score, which might be a result of the missing dampening effects of the unconsidered
solvent. Thus, electrostatic contributions were scaled down. Additionally, all numbers were
divided by ten. The final set of coefficients used for rescoring was sg = 0, su, = —2, ScHr =
—2, Syaw = 0.1 and s¢s = 0.08.

After rescoring the plant lectin complexes with SLICK /score, the root mean square deviation
(RMSD) of the ligand’s heavy atoms and ranks of the candidates were analysed. Table 5.1 lists the
for this analysis. In this context, the most interesting number is the rank of the first true positive
(FTP) of the rescored structures, i. e. the highest ranked structure with an RMSD. Candidates
with an RMSD lower than 1.5 A are considered as true positives in this analysis. There are
two complexes (1QDC, 1K7U) for which AutoDock did not manage to create candidates with an
RMSD lower than 1.5 A. These cannot be included in the analysis of SLICK /score’s performance
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Complex | Rgp  ditp  Rmin dmin  n-mer
A] A]
1J4U 1 1.11 20 0.96 1
5CNA 1 0.46 1 0.46 1
1GIC 1 0.59 1 0.59 1
1QD0 2 149 2 1.49 2
1QDC — — 4 2.19 2
10NA 1 1.14 2 1.12 3
1DGL 26 1.04 30 0.62 3
1AXZ 1 078 29 0.66 1
1AX0 1 089 76 0.70 1
1AX1 1 060 19 046 2
1AX2 25 1.01 28 0.89 2
2BQP 2 045 6 0.42 1
1BQP 1 078 76 0.71 1
1QF3 5 083 62 0.73 1
2PEL 34 1.06 70 1.01 2
1EHH 30 147 30 147 3
1EN2 1 1.25 8 0.88 4
1K7U — — 8 2.02 2
mean 8.31 0.94 28.75 0.82 -

Table 5.1.: Rescoring AutoDock candidates with SLICK /score: Ry, is the rank of the first true
positive, dg, is its RMSD from the crystal structure, Ry, is the rank of the candidate with
minimal RMSD, d, is its RMSD. The first true positive is the highest ranking structure with
an RMSD below 1.5 A. Docking runs without candidates below this limit are not included in
the mean of Ry, and dpp.

without distorting the results and were therefore discarded.

Table 5.1 lists the scores together with the rank of the candidates with lowest RMSD. In nine
cases, the first true positive (FTP) was at the same time the highest ranked structure. In three
cases, the FTP was found under the top five ranked structures. In the remaining four complexes,
the FTP was scored badly. The mean rank of the FTP is quite high at 8.31, which is caused
by the four badly scored complexes. Without these complexes, the mean rank becomes 1.50.
The mean RMSD of all FTPs is at 0.94 A while the mean RMSD of those structures with lowest
deviation is only slightly better at 0.82 A. Unfortunately, some top ranked structures show strong
deviations. Fig5.3 shows four exemplary RMSD plots. All RMSD plots are given in appendix
B.1.1.

In order to explain the deviations, the results were investigated structurally and individual
contributions to the overall score were analysed. A closer look at Tab. 5.1 reveals a correlation
between rescoring quality and size of the ligand. With one exception (1QF3), all monomers were
scored very well. Larger sugars seem to be harder to predict in terms of RMSD. Analysing the
actual predicted binding poses reveals an important fact. Dimers like Lac, which consists of Glc
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Figure 5.3.: Rescoring results: Exemplary plots of the candidate RMSD versus SLICK /score.
For 1J4U and 1K7U the plots indicate SLICK /score’s ability to identify good approximations
of the real complex. In 1AX1 and 1AX2 the results differ although the ligands are only differing

in the NAc substituents

and Gal, tend to bind tightly with one sugar ring into the binding site while the second ring is
directed into the solvent (shown exemplary in Fig. 5.4). This behaviour revealing a “pivotal” ring,
i. e. one guiding sugar ring, is observable in 1AX1, 1AX2, 2PEL, 1QDO and 1QDO. The second
ring seems to build hydrogen bonds to water molecules that are located close to the binding

70

SLICK/score [arb. units]

SLICK/score [arb. units]

-10

-15

-20

-25

-5

-10

-15

-20

SLICK/score of 1K7U

L
+ oyt .
+
+
1 +
£
"
+H
+ B+
.
T T T T T
2 4 6 8 10
RMSD [A]
SLICK/score of 1AX2
n
N
¥
§ s :
O S
%Jr + "
R fﬁ +
¥ LA Rt ok
.
+ iz % %‘F N *
4 + T4 %Hf o4
S THF
L
+ + i
* P + T
i +
Tt g
¥
0
T
i+t
*
i
+
4
T T T
4 6 8

RMSD [A]




5.3. SLICK /score

Figure 5.4.: Lac binding to ECorL: Gal binds deeply into the binding pocket while Glc is directed
into the solvent building water bridges. Left hand side: the ligand in the binding site with the
presumed water bridges. Right hand side: the participating side chains in the lectin.

site. Some of these waters even form hydrogen bonds to the protein, thus establishing a water
mediated hydrogen bond between ligand and protein.

The X-ray data available for the ECorL/Lac complex (1AX0) demonstrate the importance of
water molecules very well. In Fig. 5.4, the water molecules found in the X-ray data as well as
possible hydrogen bonds between water, ligand and proteins are shown. Obviously these water
bridges, which are neither modelled by SLICK /score nor by AutoDock, contribute significantly
to the energy and thus influence the binding pose. Additionally, the temperature factors of these
water molecules near the binding sites indicate a high probability to observe water molecules at
these positions. Since AutoDock does not take these water molecules into account, positioning
the second, water-surrounded sugar ring is rather difficult. Hence, scores of such complexes tend
to be worse than expected.

Another interesting question is whether there are contributions which influence the quality
of the scoring more than other terms. Therefore, the influence of every scoring contribution
on every complex was analysed. The bottom line of that analysis is that every term is strictly
necessary. For every energy term there is at least one example where this energy term performs
well and another where it performs poorly. There are complexes that are dominated by hydrogen
bonds and/or CH---7 interactions but generally, all contributions are necessary. In most cases
it is exactly the balanced combination of the terms that produces reasonable rescoring results.
Fig. 5.5 shows some examples comparing the influence of the individual contributions on the
overall score. The first row of plots in Fig.5.5 shows the AIA/Me-Man complex (1J4U). This
lectin does not have any aromatic rings in the binding site, which is why the CH:--m score is 0 for
every candidate. The plots reveal that for this complex hydrogen bonding is of great importance,
which corresponds exactly to the data found in the crystal structure. Additionally, the van
der Waals energies show the correct tendency for giving better candidates better scores. The
electrostatics term seems to favour other positions, though. Because electrostatic contributions
are scaled down and hydrogen bonding is weighted quite strongly, SLICK /score is able to identify
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Figure 5.5.: Influence of individual scoring terms on the overall score. The contributions are
ordered as follows. First column: hydrogen bonds, second column: CH---, third column: van
der Waals, fourth column: electrostatics. Note that hydrogen bonds and CH:--7 contributions
are scores (bigger is better) and van der Waals and electrostatics are energies (lower is better).
Details are given in the text.

the correct binding conformations in this case.

The second row shows the individual contributions to the scoring of the complex of ECorL with
Lac (1AX1). In this case, hydrogen bonds and CH:--7 clearly dominate the binding conformation,
although both contributions also score a conformation that deviates by 6 A. The van der Waals
scores are bad, while electrostatics do at least not worsen the overall score. Both contributions
seem to favour the other position, which surely is the reason why AutoDock generates many can-
didates in that cluster. In the third row, the picture gets worse. This complex is ECorL /LacNAc
(1AX2), which is almost identical to ECorL/Lac (1AX1). The ligands differ only in the NAc
group. Here the hydrogen bond and CH:---7 term also score the distorted conformation very
high, thus being unable to compensate for the bad scoring of van der Waals and electrostatics.

The reason for the “bad” van der Waals and presumably the electrostatics scoring is the Glc
ring of Lac and LacNAc, which in the crystal structure is almost completely surrounded by
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Figure 5.6.: Results of rescoring two galectin complexes with SLICK /score

the solvent. AutoDock tries to maximise van der Waals contacts and thus creates conformations
where Glc lies directly on the surface of the protein. These conformations produce a large number
of favourable van der Waals contacts dominating the overall score. In addition, the proximity
of the ligand atoms increases the energy of the electrostatic interactions and the probability of
finding CH---7 and hydrogen bonds.

5.3.2. SLICK/score and Non-Plant Lectins

Although it could be shown that the scoring function works on the plant lectins of the calibration
set, its performance on anything else is still elusive. So the test case for showing SLICK /score’s
ability was chosen to be human galectin-7 (hGal-7) in complex with either Lac or LacNAc.
Both complexes are available through PDB (4GAL and 5GAL) with reasonably high resolutions.
Additionally, binding free energies of these complexes were reported in [127].

Docking candidates for hGal-7 with its ligands were created in the same way as for the
plant lectin rescoring. Again, the 200 candidates obtained from AutoDock were rescored with
SLICK /score. The results are shown in Fig.5.6. As for hGal-7 binding with Lac, SLICK /score
is able to identify the binding site, although some conformations with higher RMSDs are ranked
better than the actual binding conformation. Structural analysis shows that in this case a similar
behaviour as in ECorL/Lac complexes is observable. The Glc ring of Lac is extended into the
solvent in the crystal structure. The docking programme does not include solvation effects nor
water bridges. Consequently, conformations that lie on the protein surface are scored higher
than those with the second ring sticking out into the water. The results of the hGal-7/LacNAc
complex are better but still the tendency is the same.
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5.3.3. Comparing SLICK/score with AutoDock Energies

The AutoDock programme does not distinguish between scoring and energy function. Therefore,
the energies calculated by AutoDock should also be applicable as a filtering criterion. In this sec-
tion, the fitness of the AutoDock energy function as a filter for protein-carbohydrate interactions
will be addressed and compared to the results from SLICK/score rescoring. The complete set of
RMSD plots of the complexes ranked with AutoDock is given in appendix B.1.2. Tab.5.2 lists
the respective numbers including highest ranks, best RMSDs and difference between best-scored
RMSD and best RMSD.

Complex | Ry ditp Ry  dpin n-mer
A] A]
1J4U 3 1.41 51  0.96 1
5CNA 1 0.89 90  0.46 1
1GIC 1 0.90 120  0.59 1
1QDO (175) (1.49) 175 149 2
1QDC - — 169  2.19 2
10NA 3 1.14 16 1.12 3
1DGL 9 1.04 46 0.62 3
1AXZ 1 1.20 139 0.66 1
1AX0 1 0.88 111 0.70 1
1AX1 78 0.49 99  0.46 2
1AX2 93 1.01 106 0.89 2
2BQP 73 0.47 86  0.42 1
1BQP 40 0.81 79 0.71 1
1QF3 54 0.98 107 0.73 1
2PEL (119) (1.18) 166 1.01 2
1EHH 91 1.47 91 1.47 3
1EN2 15 1.43 34  0.88 4
1K70 - - 44 2.02 2
mean 33.07 091 94.75 0.82 —

Table 5.2.: AutoDock results: Please find the description of the columns in Tab.5.1. Complexes
with an Ry, above 100 are treated as unsuccessful docking runs and are not included in the
average of Ry, and dry,. These numbers are given in brackets.

Comparing Tab. 5.2 with Tab. 5.1, the first striking observation is the high mean rank of the
first true positive using the AutoDock energy function as scoring method. While the RMSDs
of the first true positives are comparable to those of SLICK/score, the binding conformations
clearly cannot be identified with the AutoDock energy function. The plots of the candidate
RMSDs against AutoDock energies (cf. Appendix B.1.2) confirm this observation.

Summarising the results gained so far, the performance of SLICK /score for rescoring structures
created with a docking programme is satisfying. Binding conformations are well identified with
the exception of few problem cases, which presumably are a consequence of the difficulties of
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the underlying docking programme in coping with protein-carbohydrate complexes. Analysis
indicates that these cases on the one hand clearly result from the inadequate energy function
used during structure generation. On the other hand, water bridges seem to play an important
role. The former problem can be solved by integrating SLICK /score into a docking programme,
which will be addressed later in this thesis. The latter is a problem of the structure generator
and not of the scoring function.

5.4. SLICK/energy

Having a decent scoring function for filtering docking candidates is one step towards the creation
of reasonable docking results. But we still need a function for predicting real binding energies
which is the purpose of the energy function SLICK /energy. It basically has to cover the same
interactions as SLICK /score does. Consequently, SLICK /energy is in some sense the “tougher”
version of SLICK /score incorporating hydrogen bonds (Sy,), CH:--7 interactions (Scyy), van
der Waals energies (AGyqw) and electrostatic interactions (AGIY). In contrast to SLICK /score,
SLICK /energy also covers solvation effects (AGSSY and AGSY). The binding free energy AG is
calculated by SLICK /energy as

AG = ¢y + ccur AGcHr + i AGhp + CawAGyaw + eapAGEY + cos (AGEY + AGHY)  (5.2)

with hydrogen bonding, CH:--7, and van der Waals terms being the same as in SLICK /score. The
solvation effects and electrostatics are covered by a nonpolar solvation term AG%%IV calculating
interactions between molecules and solvent that are not caused by electrostatic effects. The polar
solvation term represents the electrostatic interactions between molecules and surrounding solvent
AG™. The electrostatic interactions between protein and carbohydrate are covered by AGRt,

All the effects caused by electrostatics, i. e. AG!Y and AGILY, are calculated with the Jackson-
Sternberg model [74] which was introduced and discussed in Section 3.4.9. The different polar
interactions can be computed by using a Finite-Difference Poisson-Boltzmann solver (FDPB) or
a generalised Born model (GB), which is a user-selectable option. In practise, FDPB results are
superior to GB results in terms of prediction accuracy. Nevertheless, given its drastically shorter
computation times, GB still performs reasonably well. The results presented in this thesis were
completely calculated using the FDPB approach except where stated otherwise.

In the first SLICK/energy model, nonpolar solvation effects were calculated with the surface
tension approach. The results were already encouraging, but improvement seemed possible. The
next step was to include the more sophisticated SPT approach for the cavitational part of the
solvation free energy and a Huron-Claverie term for the van der Waals interactions between
solvent and solute. Unfortunately, practical application of this elaborate model showed that
the Huron-Claverie term does not contribute significantly to the overall performance. In fact,
coefficients obtained by multiple linear regression were too small to justify inclusion of this term
into the calculation at all. It seems that the change in solvent-solute van der Waals interactions
on binding is too small to contribute to the binding energy of small ligands like the ones under
consideration here. Consequently, the nonpolar part of the change in solvation free energy on
binding is only calculated with the SPT approach. Nevertheless, using SPT instead of surface
tension models improved results noticeably.
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5.4.1. Calibration and Statistical Validation of SLICK/energy

SLICK /energy was calibrated by fitting the predicted binding free energies against experimentally
determined energies taken from literature. Please see Chapter 4 for experimental data and their
sources.

The coefficients of SLICK/energy were fitted with multiple linear regression (MLR) models
introduced in Section 3.5. The MLR was computed with the statistical software package R [145]
assisted by the RPy software [146]. For the individual contributions of SLICK /energy using
FDPB and GB electrostatics, MLR yielded the coefficients listed in Tab. 5.3.

Method Co Chb CCHn Cyvdw Cnp Ces
SLICK /encrgy (FDPB) | 2.72 -1.31 -0.74 0.022 0.50 -0.12
SLICK /energy (GB) | -2.51 -1.25 -0.65 0.017 0.41 -0.05

Table 5.3.: Coefficients of SLICK /energy obtained by MLR using FDPB and GB electrostatics

These coefficients emphasise the importance of solvation effects for calculating binding free
energies of lectin sugar complexes. Nonpolar energies, which generally are energetically less im-
portant in terms of absolute numbers, are weighted quite strongly, while van der Waals energies,
which tend to give larger absolute values, are scaled down. The electrostatics component con-
tains interaction and solvation effects, which presumably is the reason for the negative coefficient.
Favourable interactions seem to be compensated by solvation effects. Reducing the electrostat-
ics part to interaction energies significantly worsens the prediction quality. It is possible that
nonpolar effects are overestimated which is then compensated by the negative sign of the polar
solvation contribution. The reasons for this behaviour are still elusive and should be addressed
in further research.

The terms covering hydrogen bonding and CH---7 interactions are scoring terms resulting in
positive scores. As expected, These are contributing to the binding free energy as expected with
a negative coefficient. The absolute coefficient of the hydrogen bonds term is larger than the
CH:--7 coefficient, which is consistent with the fact that hydrogen bonds are known to be much
stronger than CH---7 interactions.

Plotting the predicted versus the experimentally determined energies, the graphs in Fig. 5.7
are obtained. Using FDPB electrostatics, the correlation coefficient of the calibration is 0.95, the
maximum absolute error of the prediction is 3.13 kJ/mol while the average absolute error is 1.27
kJ/mol. With GB electrostatics, these numbers do not change much. The correlation coefficient of
the GB version is 0.94, maximum absolute error is 3.33 kJ/mol and average absolute error stays
at 1.27 kJ/mol. These encouraging numbers (listed in Tab.5.4) indicate that SLICK/energy
permits prediction of binding energies with high accuracy. Thereby FDPB method seems to
perform slightly better. To ensure the robustness of the energy function, statistical methods will
be employed.

The statistical validation consisted of an extensive cross-validation of the results. The ro-
bustness of the energy function against changes in the calibration set was assessed by a full
leave-one-out (LOO) cross-validation and randomised 5-fold cross-validation. The randomised
approach was averaged over 1000 runs. SLICK /energy achieved a mean absolute error of 2.1 kJ /-
mol in LOO and 2.0 kJ/mol in average on the randomised 5-fold cross-validation. The histogram
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Figure 5.7.: Calibration graphs of SLICK/energy with FDPB (left, R = 0.95) and with GB
electrostatics (right, R = 0.94).

Method R max(AE) mean(AFE)
[kJ/mol]  [kJ/mol]

SLICK /encrgy (FDPB) | 0.05  3.13 1.27

SLICK /energy (GB) 0.94 3.33 1.27

Table 5.4.: Statistical data of the calibration with both electrostatics models. The correlation
coefficient is denoted by R, max(AFE) is the maximum absolute error and mean(AFE) is the
average absolute error of SLICK /energy in calibration.

in Fig. 5.8 shows the error distribution of the individual runs of the randomised cross-validation.
Judging from these analyses, SLICK /energy should perform well even when calibrated on different
sets of structures and energies.

After statistical assessment, SLICK /energy was applied for the prediction of the binding free
energies of the two galectin complexes. The results are listed in Tab.5.5. For the galectin
complexes, the absolute error of the predicted energies is higher than the mean absolute error of
the calibration but well within the limits of the maximum absolute error. Deducing a general
tendency from two numbers is impossible. However, the energy differences suggest that calibrating
SLICK /energy on plant lectins does not largely diminish its ability to predict lectins from other
domains as well.
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Figure 5.8.: The error distribution of the 1000 runs of randomised 5-fold cross-validation.

Complex | AGep  AGcomp AFE
[kJ/mol] [kJ/mol] [kJ/mol]
4GAL -19.25 -17.67 1.58
5GAL -18.11 -15.64 2.47

Table 5.5.: Binding free energies of the galectin complexes predicted with SLICK /energy.

Running times

As expected, the running times of SLICK /energy are significantly higher as those of SLICK /score.
The following numbers were computed on an AMD Opteron 250 with a CPU frequency of 2.4 GHz
and 4 GB of main memory. On the calibration set, the computation times of SLICK /score range
between 83 and 482 seconds. The average run time is 343.7 seconds. SLICK /energy needs between
1085 and 3151, with an average run time of 1587 seconds. Thus, SLICK /energy needs about 4.6
times more average computation time than SLICK/score. The computation time is dominated
by the electrostatics component. Although SLICK/energy’s electrostatics are calculated on an
already reduced system, the simple Coulomb interaction calculated in SLICK /score is much faster
than the full FDPB calculation.

5.4.2. Using SLICK/energy for Energetic Evaluation

Having both functions ready, the next step of validating their usefulness is to create a docking
scenario. SLICK/score’s ability to score docking candidates was assessed in Section 5.3. Now
SLICK /energy is used for energetic evaluation of the docking candidates. First, binding free
energies of the first true positives are computed and compared to the experimentally known
values. Furthermore, the ability of SLICK /energy to identify the correct binding pose within the
top ten ranked candidates is assessed.

Table 5.6 displays the results of energetic evaluation. The binding free energies of the first true
positives deviate by about 7.6 kJ/mol from the experimental energies. The largest deviations
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5.4. SLICK /energy

Complex | AGexp Ry, ditp AGh, AFE  n-mer
[kJ/mol] [kJ/mol] [A] [kJ/mol]
1J4U -18.24 1 1.11  -22.52 4.28 1
5CNA -22.18 1 0.46 -23.20 1.02 1
1GIC -19.25 1 0.59 -21.60 2.35 1
1QD0 -28.45 2 1.49 -28.25 0.20 2
10NA -30.96 1 1.14  -44.01 13.05 3
1DGL -34.41 26 1.04 -46.70 12.29 3
1AXZ -18.20 1 0.78 -22.37 4.17 1
1AX0 -17.90 1 0.89 -26.88 8.98 1
1AX1 -18.80 1 0.60 -19.19 0.39 2
1AX2 -22.70 25 1.01  -32.74 10.04 2
2BQP -14.00 2 0.45 -21.43 7.43 1
1BQP -16.60 1 0.78  -22.17 5.57 1
1QF3 -16.96 5 0.88 -21.71 4.75 1
2PEL -17.76 34 1.06 -33.91 16.15 2
1EHH -21.34 30 1.47  -3490 13.56 3
1EN2 -23.43 1 1.25  -40.67 17.24 4
mean — 8.31 0.94 — 7.59 —

Table 5.6.: SLICK /energy results: AGeyp denotes the experimental binding free energy, AGy,
is the computed binding free energy of the first true positive, df, is its RMSD and AE is the
energy difference between computed and experimental binding free energy. Complexes without
true positives were left out.

are found for large ligands, which is consistent with the results of SLICK /score. Oligomers are
more difficult to compute for both functions, but in the case of SLICK/energy, the errors are
much larger. For monomeric ligands, the mean deviation is about 1.7 kJ/mol lower than for the
complete set. Ironically, the lowest deviations are found for two dimers, namely the Me-Man
dimer binding to ConA and Lac binding to ECorL. Most surprisingly, LacNAc binding to the
same lectin deviates more than 10 kJ/mol from the experimental value.

At this stage it is important to find out if the energy function can rule out false positives,
i. e. structures that were scored well although they do not resemble the binding conformation. A
summary of the results is given in Tab. 5.7.

In Tab. 5.7, the filtering results are classified as true positives if the lowest energy conformation
is close to the binding conformation, 4. e. if the RMSD difference is below 1.5 A. If there is no
conformation with low RMSD within the ten top scored structures, a distinction between true
and false positive is not feasible. The results displayed in this table indicate that SLICK /energy
does not perform very well finding the binding conformation among the top ten scored structures.
In runs that yielded conformations with sufficient quality, SLICK /energy gave true positives in
only seven of 12 cases.

Energies tend to be strongly underestimated. Additionally, non-binding conformations fre-
quently get much lower energies than binding conformations. Comparing AE; and AFEy

min
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Complex AGexp AGdl dl AEdl Adein dmin AEdmin TP/FP
[kJ/mol] [kJ/mol] [A] [kJ/mol] [kJ/mol] [A] [kJ/mol|
1J4U -18.24 -22.41 1.06 4.17 -20.41  1.06 2.17 TP
5CNA -22.18 -24.38 0.56 2.20 -21.97 0.46 0.21 TP
1GIC -19.25 -31.10  3.85 11.85 -18.60  0.59 0.65 FP
1QDO -28.45 -40.36  4.13 11.91 -25.21 149 3.24 FP
1QDC -22.18 -37.35 4.15 15.17 -25.84 2.19 3.66 -
10NA -30.96 -49.41 9.09 18.45 -39.21  1.12 8.25 FP
1DGL -34.41 -48.95 1.94 14.54 -31.99 1.81 2.42 -
1AXZ -18.20 -23.34 0.77 5.14 -23.34 0.77 5.14 TP
1AX0 -17.90 -24.51 0.89 6.61 -22.85 0.84 4.95 TP
1AX1 -18.80 -24.69  0.71 5.89 -20.54  0.48 1.74 TP
1AX2 -22.70 -45.32  6.70 22.62 -26.38  6.08 3.68 -
2BQP -14.00 -25.29  0.68 11.29 -20.36  0.42 6.36 TP
1BQP -16.60 -24.53 11.07 7.93 -20.20 0.74 3.60 FP
1QF3 -16.96 -23.61 4.19 6.65 -20.09  0.85 3.13 FP
2PEL -17.76 -39.16  4.79 21.40 -30.53 448 1277 -
1EHH -21.34 -39.17 2,51 17.83 -35.03  1.90  13.69 -
1EN2 -23.43 -41.36 1.05 17.93 -37.67  0.88  14.24 TP
1K7U -21.34 -41.42 211 20.08 -33.41 2.02 12.07 -
mean - - 3.35 12.32 - 1.57 5.66 -

Table 5.7.: Filtering results: These numbers refer to the 10 best scored candidates of every
complex. AGey, denotes the experimental value for the binding free energy, AGy, is the lowest
computed binding free energy, d; is the RMSD of the candidate with the lowest computed
binding free energy, AFEy, is the absolute difference between experimental energy and lowest
computed energy, AGy . denotes the calculated binding free energy of the candidate with the
lowest RMSD, dp,in is the lowest RMSD, AE, . is the difference between experimental energy
and the energy of the structure with lowest RMSD. TP /FP displays whether the lowest energy
conformation of a complex is a true positive (TP) or a false positive (FP).

demonstrates that the candidates with lowest RMSD were always much better in terms of en-
ergy prediction quality than those with lowest energy. It seems that SLICK /energy is very well
able to predict accurate binding energies for structures that are very close to the actual binding
conformation found in the crystal structure. But it fails when it comes to evaluating docking
results.

The question is why SLICK /energy does so badly although SLICK/score performs quite well
in identifying the binding site. The functions only differ in solvation and electrostatics. Conse-
quently, there has to be a systematic error in those contributions. In order to find the culprit, the
influence of every energy contribution was analysed (listed in Tab.5.8). In this table, stronger
influence means higher contribution of one energy term to the overall energy compared to the the
other nine candidates of the top ten scored structures.

It seems that false positives are in most cases strongly influenced by the electrostatics term.
A possible reason for the supposedly bad influence of the polar term is the parametrisation of
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5.4. SLICK /energy

Complex | TP/FP | HB | CH---7 | VDW | NP | ES
1J4U TP | ++]| 0 +
5CNA TP + | +
1GIC FP ++ + ++
1QDO FP | ++ ++
10NA TP | + ++ | +
1AXZ TP | + +

1AX0 TP | + | ++

1AX1 FP + |+ |+
2BQP FP | ++ +
1BQP FP + 4+ | 4+
1QF3 TP | +

1EN2 TP +

Table 5.8.: Dominating contributions to the lowest energy candidates. Abbreviations used:
HB (hydrogen bonds), VDW (van der Waals term), ES (electrostatics term including polar
solvation), NP (nonpolar solvation term). A plus sign “+” means noticeable influence, two
plus signs “++4” denote strong influence on the the energy. A zero means “no influence” at all.
Only structures with positives within the top ten ranked structures are shown.

charges and especially radii. SLICK/score and SLICK /energy use PARSE charges and radii in
the receptor. The charges of the ligand are computed from semi-empirical models while its radii
are also taken from the PARSE parameter set. If the radii do not reproduce actual atomic radii
for that case, the solvation term will produce bad results because radii have a strong influence
on the calculation. This is true for both electrostatics models. The PARSE set was designed for
reproducing accurate solvation free energies for small compounds similar to amino acids, which is
the reason why it was chosen for these calculations. The results presented in the original PARSE
publication [89] were of high accuracy as were our own computations on small molecules that
were conducted before using this parameter set in the energy term. It is possible that this set of
parameters does not perform very well on protein-carbohydrate complexes, especially when the
radii are mixed with charges from semi-empirical calculations.

Finding a better source for electrostatics parameters is therefore imperative for the application
of SLICK /energy to the evaluation of docking results if the scoring function allows bad conforma-
tions to be scored high. The same is probably true for the nonpolar solvation term. The solvation
models themselves could also be the main error source, but judging from both published results
and the assessment done prior to the incorporation of the solvation models into SLICK /energy,
the parameter sets seem to be the more probable source of error. The binding free energies of can-
didates with low structural deviation from the native conformation are nevertheless reasonably
well predicted.
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5.5. Docking with SLICK

The analysis of SLICK /score showed that it is capable of identifying the binding conformations
of lectins when rescoring docking candidates generated by AutoDock. Since AutoDock does not
use SLICK /score in the structure generation process, the sets of conformations are not optimal
for sugar docking, because important interactions are not embedded into the structure generator.
Hence, a docking programme incorporating SLICK /score into the structure generation is the next
aim in order to create candidates more suitable for the lectin-sugar docking problem.

When docking ligands to a receptor, the binding site of this receptor is usually known. There-
fore, docking runs are limited to the region of the actual binding site in order to shorten run
times. If the binding site is not known, one has to dock against the whole receptor surface which
is very time consuming. In order to avoid global docking in the case of unknown binding sites, a
method for finding putative binding sites on receptor surfaces can be employed.

This section will report on the integration of SLICK /score into an existing docking programme
and discuss the results. Additionally, a binding pocket finder for lectins will be introduced. To-
gether these two programmes should provide a full featured docking suite for protein-carbohydrate
docking and even for lectins with unknown binding sites.

5.5.1. BALLDock/SLICK

SLICK was integrated into the docking programme BALLDock by Fuhrmann [7], which is a
grid-based flexible ligand docking programme. It is based on a genetic algorithm for searching
the conformational space of a ligand. For details on BALLDock beyond the introduction given
in Section 3.3.2, please see [7]. It should be noted that, although BALLDock uses ideas from
AutoDock, it does not include a local search for optimising ligand conformation before the creation
of new generations.

The speed of a docking programme is dominated by the time necessary for calculating the
energy of a ligand conformation. Grid-based methods use spatial discretisation for precomputing
energy contributions of ligand atoms in order to speed up energy calculations during a docking
run. The idea is to screen space with different probe groups that represent ligand atoms before
the actual docking begins. First, space is discretised into a three-dimensional grid. Then for
every grid point, a probe group is placed at the grid point location and the energy of that probe
group is calculated. This energy is stored at that position in the grid. During the docking, the
energy contribution of a ligand atom is then rapidly calculated by interpolating between the grid
points occupied by this atom instead of computing the full energy term.

Because BALLDock employs a genetic algorithm, the ligand state has to be encoded into genes
and chromosomes. Ligands are described by their translation, rotation and the torsion angles
of every rotatable bond. A chromosome in BALLDock hence consists of 7 + n floating point
numbers, three for the coordinates of the position of the ligand, four for a quaternion defining
its orientation and one for each of the n rotatable bonds of the ligand. From these numbers, the
coordinates of every ligand atom can be computed easily. The atomic coordinates represent the
phenotype of a ligand and will be evaluated together with information about the properties of
each atom by the fitness function.

BALLDock allows for docking being limited to a user-definable space. Ligand conformations
are only permitted within this defined region. Obviously, a reasonable definition of this region is
a sufficiently large area around the binding site providing enough freedom for generating many
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5.5. Docking with SLICK

different conformations. BALLDock is able to define this region from the dimension of the ligand
by calculating a bounding box of the ligand and extending it by a user-definable amount nto
every direction. If the binding site is not known from the crystal structure, a binding site finding
programme can be employed to define a suitable docking box.

The original energy function of BALLDock consists of three contributions. It comprises van
der Waals energy, electrostatics and conformational energy of the ligand. Like SLICK/score,
BALLDock uses a softened form of the AMBER implementation in BALL to calculate van der
Waals energies. Electrostatics are calculated with the Coulomb formula. The conformational
energy of the ligand is simply its AMBER energy.

BALLDock was adapted by incorporating the missing energy terms into the energy function.
The first approach was to include the SLICK /score hydrogen bond and CH---7 term into the grid
building programme. Since hydrogen bonds and CH:--7 interactions are modelled in a purely
geometric fashion, these models had to be adapted. In both cases, the position of the hydrogen
is of great importance. During the grid building process, this position is not known. So the
idea was to assume perfect hydrogen locations during the grid building process. This approach is
based on the assumption that a ligand will orientate its hydrogens in such a way that favourable
interactions can be established.

In the case of hydrogen bonds this meant to place a hydrogen donor atom on the grid point
and locate possible acceptors in the receptor. Then for every possible acceptor, a hydrogen was
added to the probe group at a position ideal for this particular hydrogen bond and the score was
calculated. The maximum score was then stored in the grid. For the CH---7 term, the approach
was similar. Instead of searching hydrogen bond acceptors, aromatic rings in the receptor had to
be located. A carbon atom is placed on the grid point and for every aromatic ring a hydrogen is
placed at an ideal position. Again, the maximum score is stored in the grid.

In practise, this approach improved docking results for sugars but the impact was still small.
The actual positions of hydrogen atoms of a putative ligand conformation proved too important
to be approximated in the grid scores. Therefore, the real scoring functions were incorporated into
the scoring computations instead of the grid based calculation. Thus, the actual conformation
of a ligand is scored instead of interpolating between grid points. Following this approach, the
docking results improved noticeably. The effect on running time is not very large because the
scoring functions calculate simple geometry and are optimised for efficiency. The next section
will present the results of this improved approach.

5.5.2. Sugar Docking Results

After integrating SLICK/score into BALLDock, the calibration data set was docked. Docking
runs were performed with a large initial population of 5000 individuals while the population size
during the docking was limited to 200 chromosomes for monomers and to 400 for larger sugars.
Mutation rate was defined as 0.05. Docking was performed in a docking box which extended 8 A
from the bounding box of the ligand known from crystal structure. For every monomer complex,
600 runs were performed and analysed. For larger sugars, the number of runs was raised to 1000.
The larger parameters for oligo-carbohydrates was necessary because of the high flexibility of the
ligands along the glycosidic bonds. With smaller parameters, the conformational space of these
ligands was not sufficiently scanned.

With these parameters, a sufficient coverage of the binding site was possible. Fig. 5.9 shows two
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5. Results

Figure 5.9.: BALLDock candidates covering the binding sites of ECorL (left, 1AX1) and PNA
(right, 1QF3). Please see Fig. 5.1 for comparison with AutoDock candidates.

examples of binding site coverage which compare directly to the binding sites shown in Fig. 5.1
on page 67. Docking results are summarised in Tab. 5.9. Plots of RMSD vs. scores of all docking
runs are given in appendix B.2.2 The RMSD distribution of the generated docking candidates
are listed in appendix B.2.1.

Looking at Tab 5.9, two observations become apparent. First, BALLDock/SLICK is very well
able to create and identify good approximations of binding conformations. In almost every case,
the first true positive is the top ranked structure and the mean deviation is at only 0.85 A. Second,
the mean absolute error of the binding free energy for the first true positive is below 4 kJ/mol.
This fact underlines the effectiveness of SLICK in docking protein-carbohydrate complexes.

Again, monomers seem to be easier to dock. This is not surprising because monomers are small
and much less flexible than oligomers. It is also consistent with the results from rescoring the
AutoDock candidates. Fig.5.10 shows exemplary docking plots of BALLDock/SLICK results.
All candidates with the exception of 2PEL show the correct tendency for scoring less deviating
conformations better. But in almost every docking run, a cluster of numerous largely deviating
structures is observable.

Analysis of the binding candidates produced by BALLDock/SLICK revealed the reasons for
the deviating clusters. In the monomer case, one encounters many rotated rings. Compared to
the binding conformation, these rings are rotated around the symmetry axis of the ring plane of
the sugar. The scoring function is able to distinguish the correct pose from the incorrect one.
The ConA/Me-Glc complex (1GIC) illustrates that very well. The scoring function identifies
two highly scored clusters, one at about 1 A RMSD and one at about 4 A deviation. The latter
cluster contains many rotated rings, which SLICK /score correctly identifies as a cluster of false
positions. An exemplary illustration of rotated monomers is given in Fig5.11.

In the case of dimers, clusters of large deviation are again caused by sugar residues that extend
into the solvent. Fig.5.12 shows an illustrating example for this behaviour. The second Man
ring, which is surrounded by solvent, is not sterically only limited by the highly flexible glycosidic
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PDB ID A(;'exp thp dftp AG(ftp A-Eftp Rmin dmin AG(min A-Emin
[kJ /mol] [A]  [kJ/mol] [kJ/mol] [A]  [kJ/mol] [kJ/mol]
1J4U -18.24 1 0.54 -17.30 0.94 1 0.54 -17.30 0.94
5CNA -22.18 1 091  -20.33 1.85 7 0.58  -19.00 3.18
1GIC -19.25 1 0.48  -17.85 1.40 1 0.48 -17.85 1.40
1QD0 -28.45 8 0.83 -22.05 6.40 58 0.80 -19.11 9.34
1QDC -22.18 2 0.80  -19.60 2.58 2 0.80  -19.60 2.58
10NA -30.96 1 1.32  -28.56 2.40 129  1.06 -21.84 9.12
1DGL -34.41 2 143 -26.14 8.27 4 091 -28.81 5.60
1AXZ -18.20 1 0.47  -15.79 241 15 0.26 -16.34 1.86
1AX0 -17.90 1 0.51 -21.06 3.16 2 0.29 -16.37 1.53
1AX1 -18.80 1 08 -19.39 0.59 10 0.60  -18.37 0.43
1AX2 -22.70 1 0.76  -19.12 3.58 2 0.53 -20.27 2.43
2BQP -14.00 1 0.72  -16.30 2.30 3 0.42 -15.91 1.91
1BQP -16.60 1 0.68 -15.65 0.95 2 0.64 -16.44 0.16
1QF3 -16.96 1 0.52  -18.26 1.30 19 0.24 -16.73 0.23
2PEL -17.76 - - - - 227 1.78  -19.79 2.03
1EHH -21.34 1 147 -32.09 10.75 3 0.93 -25.49 4.15
1EN2 -23.43 1 1.17  -29.54 6.11 ) 0.82  -27.06 3.63
1K7U -21.34 1 1.04  -2747 6.13 3 0.58  -28.35 7.01
mean - 1.53 0.85 - 3.60 27.39 0.68 - 3.20

Table 5.9.: Results of docking the calibration set with BALLDock/SLICK. AG®*® denotes the
experimental binding free energy, Ry, is the rank of the first true positive, dg, its RMSD,
AGhy, its computed binding free energy. AFEg, is the absolute difference between DGexp and
AGfp. The respective numbers are also given for the candidate with minimal RMSD (variables
with index min).

bond. BALLDock/SLICK creates many conformations with the tightly binding first ring in
perfect position while the pose of the second ring is rotated away from the binding mode. The
high flexibility of the glycosidic bond connecting these two rings makes thorough scanning of the
ligand’s conformational space imperative.

There remains only one problematic case, which is PNA binding Lac (2PEL). This is surprising
because other complexes with Lac or LacNAc seem to work reasonably well. Additionally, the
second PNA complex in the calibration set (1QF3) gives perfect results. The ligand in 1QF3 is
Me-Gal. In most Lac or LacNAc complexes, Gal is the ring that binds directly to the receptor
while the Glc ring extends into the solvent. Assuming this behaviour in the PNA /Lac complex
as well, it is not obvious why docking Lac with its Gal ring into the binding site of PNA should
fail.

A nice result is the good performance of the largest ligands in the calibration set. Docking
a GlcNAc trimer and tetramer to UDA (complexes 1EHH and 1EN2) results in top ranked
structures below 1.5 A. The lowest deviations achieved are at 0.93 and 0.82 A RMSD, respectively.

These complexes are strongly influenced by CH---7 interactions, which is reproduced by the model
very well (cf. Fig. 5.13).
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Figure 5.10.: Exemplary results of BALLDock/SLICK. Left: ECorLL/LacNAc (1AX2). Right:
ATA /Me-Man (1J4U). Note that 1J4U does not have CH---7 interactions in the binding site.

Figure 5.11.: Rotated monomer ring in the binding site of ConA. The best ranked structure
(normal colours) has an RMSD of below 1 A while the RMSD of the rotated monomer (reddish
colours) is about 4 A. Note the position of the ring oxygen.

The galectin test set was also docked and re-evaluated (see Tab.5.10 and Fig. 5.14). As in the
calibration set, the binding conformations of the two galectin complexes are found very accurately.
The prediction of the binding free energy of the complexes, however, is worse than in the plant
lectin case.
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5.5. Docking with SLICK

Docking an Extended Set of Sugar-Binding Proteins

For further assessment of the ability of BALLDock/SLICK to identify binding conformations
of protein-carbohydrate complexes, an additional set of 20 lectins and sugar-binding proteins

Figure 5.12.: Mannose-dimer binding to ConA. Left: comparison between crystal structure
(normal colours) and best scored docking candidate (greenish colours, RMSD 1.70 A, pivotal
ring RMSD 0.96 A). Right: crystal structure (normal colours) and one of many conformations
with the second ring rotated out of the binding site (reddish colours, RMSD 4.50 A, pivotal
ring RMSD 0.67 A).
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Figure 5.13.: CH- -7 scores of WGA and UDA complexes.
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PDBID | AGep Rip dip  AGgy AV
[kJ/mol| [A]  [kJ/mol] [kJ/mol]

4GAL -19.25 1 1.04 -29.58 10.33

5GAL -18.41 2 133 -31.84 13.43

mean - 1.50 1.19 - 11.88

Table 5.10.: Results of docking the galectin set with BALLDock/SLICK. Please find the de-
scription of the columns in Fig. 5.9.
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Figure 5.14.: Results of docking the galectin set with BALLDock/SLICK

was docked. The docking set is two-fold. One part contains only plant lectins, while the other
consists of animal lectins and general sugar-binding proteins. For these complexes no binding free
energies were found in literature. Consequently, the performance of SLICK /energy in evaluating
the docked compounds energetically is not assessable. The results of these docking runs are
summarised in Tab. 5.11. The docking plots are given in appendix B.2.3.

The docking set does not only cover non-plant lectins, it also contains sugar ligand that were
not included in the calibration set. The latter only contains sugars built from Man, Glc and Gal
monomers and their methylated and acetylated derivatives. In the docking set we find fructose,
fucose and maltose. While Man, Glc and Gal are pyranoses in D-conformation, fructose is a
furanose and fucose is a deoxy-L-galactose. Maltose is a Glc dimer. Since these ligands differ much
from the calibration set, docking these sugars will permit to assess whether BALLDock/SLICK
is able to cope with a broad range of sugar ligands or whether SLICK /score is biased too much
by the choice of the calibration set. In addition, some of the proteins in the docking set have very
deep binding pockets in contrast to the rather shallow binding sites of most plant lectins in the
calibration set.
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Complex Ry ditp Roin  dpin n-mer
A] A]
Plant Lectins
1KJ1 1 0.92 11 0.46 1
1KUJ 1 0.54 1 0.54 1
1MVQ 1 0.51 4 0.29 1
1WBL 1 0.31 3 0.31 1
1FNZ 1 1.00 2 1.00 1
1C3M 1 0.27 1 0.27 2
1GZC 1 0.93 2 0.45 2
1J0T 1 1.43 12 0.93 2
1PUM 10 0.74 114 0.51 1
1PUU 17 0.43 29 040 2
1HKD 1 1.25 11 0.70 1
1RIN 2 0.86 3 0.44 1
10FS 7 1.25 7 1.25 2
mean 3.46 0.80 15.38 0.58 —
Non-Plant Lectins
1DIW 17 1.13 202  1.01 1
1GLG 1 0.42 75 0.23 1
1K12 3 0.74 7 0.21 1
1NL5 1 1.03 1 1.03 2
2GAL (117) (0.54) 152 0.26 1
1C1L 1 0.68 1 0.68 2
1SLT 1 1.10 8 0.75 2
mean 4.00 0.85 63.71 0.59 —

| total mean | 3.63  0.82 323 059 -

Table 5.11.: Results of BALLDock/SLICK on the docking set. Please find the description of
the columns in Tab.5.1. Complexes with an Rf, above 100 are considered unsuccessful and
discarded from the FTP mean. These numbers are given in brackets.

In this section, the structural analysis of the docking runs is of great importance, especially
when it comes to non-plant lectins, because only on this basis insights for the further development
of BALLDock/SLICK and SLICK in general can be gained. Therefore, problem cases that occur
in these docking runs are analysed in depth in order to gain knowledge on the interactions and
the errors made by BALLDock/SLICK.

For the 13 plant lectins, the docking runs confirm the results achieved with the calibration set.
In nine cases, the first true positive is at the same time the top ranked structure. For another
two complexes the first true positive is found among the top ten candidates. The mean RMSD of
first true positives is only 0.8 A. The two wviscum album lectin complexes (1PUM, 1PUU) seem
to be harder to dock. Their lowest RMSD structures rank at 114 and 29, respectively, although
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in both cases candidates with very small deviation exist.

In these cases, the docking plots reveal two highly scored regions. In one case, good approx-
imations of the binding mode are scored well while in the other there is a cluster at about 3.5
A deviation. The latter cluster is dominated by electrostatic energy. Structural analysis showed
that in the close vicinity of the ligands five aspartic acid side chains (ASP 23, 26, 27, 28 and 45)
and one asparagine (ASN 47) can be found. This could explain the strong electrostatic interac-
tions dominating the scoring. Although there is a tryptophane in the binding site, which in the
crystal structure clearly is participating in many CH---7 bridges, the score for these interactions
is too low to compensate for the strong electrostatics term.

Some docking runs produced top ranked structures with large deviations from the native bind-
ing mode. In the case of 1RIN this is an outlier in an otherwise perfect plot. In 10FS, the bad
conformations with high scores are dominated by van der Waals energies. In this case, the ligand
is sucrose which consists of fructose and glucose. In contrast to all other monomers encountered
so far, fructose is a furanose, which means that the ring consists of four carbons and an oxygen
instead of five carbons and an oxygen. Thus, fructose is smaller than glucose and fits better into
the pocket sterically. Consequently, conformations which place fructose into the binding site are
scored better. The crystal structure, however, reveals that the bound conformation is exactly
opposite. The glucose ring binds to the receptor while the fructose ring is extended.

In summary, the results for the plant lectin part of the docking set is very satisfactory. In
comparison, the non-plant lectins results are only slightly inferior. In four cases the bound
conformation of the ligand is unambiguously found. The mean values of dg, and dpyi, are 0.85
and 0.59 A, respectively, which compares well to the plant lectin docking set.

In the case of 1K12 the tendency of the scoring function is correct, but the monomer is found
in many twisted conformations. In addition, there are several aromatic groups in the vicinity of
the binding site. Astonishingly, these groups seem to have little influence on the actual binding
conformation, judging from the pose found in the crystal structure (Fig.5.15). Twisted rings
that build CH---7 bridges are thus scored higher than those resembling the bound state, which
is compensated only partially by the other interactions.

The same seems true for the 1IDIW complex. Here one tyrosine is the only aromatic side chain
in the binding site. But this side chain does rather contribute electrostatically than as CH---w
partner in the crystal structure. Located below the sugar ring is an aspartic acid that can act
as hydrogen bond partner. But in the crystal structure, the Gal seems to build hydrogen bonds
to the backbone. Consequently, twisted conformations that build hydrogen bonds to the ASP
are ranked very high, which makes it difficult for SLICK /score to identify the real binding pose.
Additionally, the binding site is partially built from a very flexible coil, shown in Fig.5.15. The
question remains whether the crystal conformation is the only binding pose of Gal in this case.

The hGal-7/Gal complex (2GAL) is another example where twisted rings are favoured. In the
crystal structure, the only axial hydroxyl group of Gal is coordinated within the binding site
by two hydrogen bonds. The docking programme tends to twist the ring such that this axial
group stays out of the binding site. In this case, van der Waals, electrostatics and hydrogen bond
term agree that the twisted conformation is better than the crystal structure. Unfortunately, the
binding modes of Lac and LacNAc in other complexes reveal exactly the same behaviour relying
on the coordination of the axial hydroxyl group of Gal. Consequently, in this case SLICK /score
is completely unable to score the real binding pose accurately.

Considering the two complexes with deep binding pockets, SLICK /score is able to identify the
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Figure 5.15.: Left: binding site of 1K12 with many aromatic side chains. No CH---7 interactions
can be observed. Right: binding site of 1IDIW. TYR 1180 is the only aromatic side chain in
the vicinity, but it seems to contribute electrostatically only. A CH---7 interaction cannot be
built. Note the flexible coil above the sugar.

Figure 5.16.: The deeply buried ligand in the binding site of 1GLG.

binding positions correctly. The very limited space that the bound conformations of the proteins
provide for the ligands clearly impacts the conformational space of both ligands, making the
prediction rather easy. While in 1GLG the binding pocket is very narrow (see Fig.5.16), in 1NL5
the ligand has a bit more freedom, which is easily observable when comparing the RMSD plots
of both complexes.

In summary, the results prove that BALLDock/SLICK is well able to dock protein-carbohydrate
complexes from different domains and with a large variety of sugars as ligands. Although there are
some problem cases, the RMSD plots of the docked structures clearly indicate that SLICK /score
does in most cases identify the binding conformation. Additionally, the deviation of the first true
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PDB ID AG(exp thp dftp AG(ftp AEftp Rmin dmin AG(min A-Emin
[kJ/mol] [A]  [kJ/mol] [kJ/mol] [A]  [kJ/mol] [kJ/mol]

1J4U -18.24 3 1.41 -37.28 19.04 o1 0.96 -36.40 18.16
5CNA -22.18 1 0.89 -39.91 17.73 90 0.46  -38.99 16.81
1GIC -19.25 1 0.90 -39.25 20.00 120 0.59  -37.53 18.28
1QD0 -28.45  (175) (1.49) -42.93 14.48 175 149  -42.93 14.48
1QDC -22.18 - - - - 169 219  -44.52 22.34
10NA -30.96 3 1.14 -64.06 33.10 16 1.12  -61.59 30.63
1DGL -34.41 9 1.04 -63.85 29.44 46 0.62  -59.58 25.17
1AXZ -18.20 1 1.20 -34.90 16.70 139  0.66  -30.92 12.72
1AX0 -17.90 1 0.88 -41.59 23.69 111 070 -38.83 20.93
1AX1 -18.80 78 0.49 -39.91 21.11 99 0.46  -38.45 19.65
1AX2 -22.70 93 1.01 -46.07 23.37 106 0.89  -45.56 22.86
2BQP -14.00 73 0.47 -35.27 21.27 86 0.42  -35.10 21.10
1BQP -16.60 40 0.81 -35.35 18.75 79 0.71  -34.81 18.21
1QF3 -16.96 o4 0.98 -32.51 15.55 107 073  -31.76 14.80
2PEL -17.76 ~ (119) (1.18)  -42.26 24.50 166 1.01  -38.87 21.11
1EHH -21.34 91 1.47 -49.04 27.70 91 147 -49.04 27.70
1EN2 -23.43 15 1.43 -60.33 36.90 34 0.88  -58.20 34.77
1K7U -21.34 - - - - 44 2.02  -53.60 32.26
mean - 28.94 0.88 - 22.71 94.75 0.82 - 21.09

Table 5.12.: AutoDock energies for the calibration set. Please see Tab.5.9 for an explanation
of the columns. Complexes with an Ry, above 100 are considered unsuccessful and discarded
from means of Rf, and dyg,. These numbers are given in brackets.

positives created with BALLDock/SLICK is very low with many candidates below 1.5 A RMSD.

5.5.3. Comparison with existing Docking Programmes

The ability of docking carbohydrates into protein binding sites clearly distinguishes BALLDock-
/SLICK from many other docking programmes. In this section, a short comparison of BALL-
Dock/SLICK with two existing docking methods will be given.

AutoDock

The results of docking the calibration set with AutoDock were already shown in Section 5.3.3.
Here, the results will be summarised briefly. A comparison of BALLDock/SLICK and AutoDock
shows that the latter is clearly unable to identify binding modes of such complexes while the
former finds good approximations of the bound conformation with high accuracy. The structure
generator of AutoDock covers the conformational space of the ligand quite well and conformations
of low deviation are generated during a docking run. Although some binding modes were identified
correctly by the AutoDock energy function, most binding poses were ranked very poorly.

When comparing the predicted binding energies, the picture gets worse. AutoDock energies of
the first true positives deviate by as much as 22.7 kJ/mol in the mean. The energy function of
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Complex SLICK AutoDock
PDB n-  AGep | Rep  dip  AGcomp AFE Ry ditp AGeomp AFE
ID  mer [kJ/mol| [A]  [kJ/mol] [kJ/mol| [A]  [kJ/mol] [kJ/mol|
Reduced Calibration Set
1J4U 1 -18.24 1 1.11  -20.38 2.14 3 1.41 -37.28 19.04
5CNA 1 -22.18 1 0.46  -22.23 0.05 1 0.89 -39.91 17.73
1AXZ 1 -18.20 1 0.78  -21.57 3.37 1 1.20 -34.90 16.70
1BQP 1 -16.60 1 0.78 -21.10 4.50 40 0.81 -35.35 18.75
1AX2 2 -22.70 25 1.01  -30.44 7.74 93 1.01 -46.07 23.37
2PEL 2 -17.76 34 1.06  -33.90 16.14 | (119) (1.18) -42.26 24.50
1ONA 3 -30.96 1 1.14  -36.87 5.91 3 1.14 -64.06 33.10
1IEHH 3 -21.34 30 1.47  -36.48 15.14 91 1.47 -49.04 27.70
mean - 11.75 0.98 - 6.87 33.14  1.13 - 22.61
Energy Validation Set
1GIC 1 -19.25 1 0.59 -19.91 0.66 1 0.90 -39.25 20.00
1AX0 1 -17.90 1 0.89 -24.98 7.08 1 0.88 -41.59 23.69
2BQP 1 -14.00 2 0.45 -21.35 7.35 73 0.47 -35.27 21.27
1QF3 1 -16.96 5 0.88  -20.50 3.54 54 0.98 -32.51 15.55
1QDO 2 -28.45 2 1.49  -25.98 2.47 (175) (1.49) -42.93 14.48
1AX1 2 -18.80 1 0.60 -21.19 2.39 78 0.49 -39.91 21.11
4GAL 2 -19.25 2 1.27  -32.21 12.96 67 1.29 -37.61 18.36
5GAL 2 -18.41 3 1.13  -33.13 14.72 18 1.13 -41.17 22.76
1IDGL 3 -34.41 26 1.04  -41.85 7.44 9 1.04 -63.85 29.44
1EN2 4 -23.43 1 1.25  -37.53 14.10 15 1.43 -60.33 36.90
mean - 4.40 0.96 - 7.27 35.11  0.96 - 22.36

Table 5.13.: Results of rescoring and evaluating AutoDock candidates of calibration and valida-
tion set with SLICK. Ry, denotes the rank of the first true positive candidate (RMSD < 1.5A),
dgtp is the RMS deviation of the first true positive from crystal structure, AGcomp denotes the
computed binding free energy and AFE is the deviation of the predicted energy from the ex-
perimental binding free energy AGey,. Numbers are given for SLICK and AutoDock. The
complexes 1QDC and 1K7U of the calibration set are not shown. For orientation, the number
of monomers in the ligand is given in column n-mer. Complexes with an Ry, > 100 were
considered as unsuccessful docking runs and were discarded from the average. These numbers
are given in brackets.

AutoDock underestimates energies systematically. Although SLICK /energy does have weaknesses
when using it for filtering purposes, its performance on reasonable structures is satisfactory.
AutoDock is, of course, a general flexible docking programme while BALLDock/SLICK was
specially designed for protein-carbohydrate complexes.

Doing comparisons on SLICK’s calibration set alone is surely not fair. Consequently, the
calibration set was split into two sets, one for recalibrating SLICK and one for prediction. The
reduced calibration set was chosen to include plant lectins from every family. The validation
set contains the remaining plant lectins plus the two complexes of human galectin-7. Thus,
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the comparison of AutoDock with SLICK rescoring to original AutoDock scoring should become
more robust. Results of this comparison are given in Tab.5.13. Evidently, even on the drastically
reduced set, SLICK still improves docking results of this validation set compared to standard
AutoDock results.

FlexX

One of the most popular docking programmes is FlexX [47], which uses an incremental construc-
tion algorithm for creating putative binding conformation. FlexX is known for its speed and
often used in screening large substance libraries for possible binding candidates. But it is also
known for very accurate predictions of binding conformations of drug-like substances, which is
the reason for choosing this programme for comparison purposes.

Like AutoDock, FlexX is a programme for flexible ligand docking with the receptor kept rigid
throughout the computations. FlexX starts by separating the ligand into small fragments along
rotatable bonds. One of these fragments is chosen for the role of base fragment and placed into
the receptor binding site. A base fragment is chosen based on its size and interaction potential.
Usually, relatively large fragments with a large number of possible interaction partners are chosen.
The base fragment is then placed according to FlexX’s energy function. After the base fragment
has been put into the binding site, adjacent fragments are connected to the base fragment using
rotamer libraries for defining the dihedral angles of a newly connected fragment. This procedure is
repeated until all fragments have been consumed and the ligand has been re-built incrementally.
FlexX uses several heuristics to speed up the construction process and to avoid combinatoric
explosion, which will not be detailed here.

The first step in comparing FlexX with BALLDock/SLICK on protein-carbohydrate complexes
was docking the calibration set of SLICK with FlexX release 2.02. In these docking experiments,
FlexX standard parameters were used. Structures were taken from the PDB entries. The proto-
nation state was determined automatically by FlexX. Atomic parameters for the energy function
were automatically assigned. Ring conformations of the sugar rings of the ligand were taken from
the crystal structure instead of using CORINA conformations, which is reasonable given the very
rigid nature of sugar-rings. Receptor binding sites were defined by using spheres of 6.5 A around
ligand atoms, which is the default method. The base fragment was chosen automatically, as well
as the placement of the base fragment in the binding site.

Table 5.14 shows the result of these docking attempts. As in all previous analyses, only
solutions with a heavy-atom RMSD of below 1.5 A were considered as true positives. FlexX was
only able to create nine solutions of this quality. While most ligand conformations are at least in
the vicinity of this limit, two oligomers (GlcNAc trimer and tetramer binding to UDA) are very
far away from the native conformation with 5.7 A and 9.4 A deviation. While the ranking of true
positives is acceptable, the binding free energy estimates calculated by FlexX for the first true
positives are deviating by 11.4 kJ/mol in the mean, which is better than standard AutoDock but
still does not reach the prediction quality of SLICK.

The results obtained from FlexX indicate that it performs well in ranking the lectin-sugar
complexes as long as reasonable candidates are produced. In five of nine cases, the first true
positive is also the best ranked conformation. But in two cases (1AX0 and 2PEL), the rank of
the near-native conformation is very bad. Judging from these results, it seems that the FlexX
energy function seems to cope with protein-carbohydrate interactions only partially. The question
remains whether the overall performance is dominated by the structure generator or the energy
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PDB n- AG(exp thp dftp AG(ftp A-Eftp Rmin dmin A(;'min A-Emin
ID  mer | [kJ/mol] [A]  [kJ/mol] [kJ/mol] [A]  [kJ/mol] [kJ/mol]

1J4U 1 -18.24 1 0.76  -12.82 0.42 2 0.67 -12.70 5.54

5CNA 1 -22.18 1 0.89 -9.23 12.95 1 0.89 -9.23 12.95
1GIC 1 -19.25 1 0.84 -15.11 4.14 15 0.33 -9.26 9.99

1QD0 2 -28.45 - - - - 194 2.03 4.93 33.38
1QDC 2 -22.18 1 1.21 -13.62 8.56 2 0.80 -13.41 8.77

10NA 3 -30.96 3 147  -9.57 21.39 7 1.04 -7.37 23.59
1DGL 3 -34.41 1 0.75 -18.11 16.30 1 0.75  -18.11 16.30
1AXZ 1 -18.20 - - - - 16 2.24 -3.48 14.72
1AX0 1 -17.90 32 1.22 -8.02 9.88 46 1.14 -6.57 11.33
1AX1 2 -18.80 - - - - 115 3.43 -3.74 15.06
1AX2 2 -22.70 - - - - 190  2.00 0.48 23.18
2BQP 1 -14.00 - - - - 80 2.15 -4.16 9.84

1BQP 1 -16.60 - - - - 139 191 4.16 20.76
1QF3 1 -16.96 - - - - 108 1.51 -1.18 15.78
2PEL 2 -17.76 70 1.39 -5.55 12.21 109  0.69 -4.10 13.66
1EHH 3 -21.34 - - - - 7 5.67 7.82 29.16
1EN2 4 -23.43 - - - - 9 9.41 18.77 42.20
1K7U 2 -21.34 6 1.19 -9.28 12.06 6 1.19 -9.28 12.06
mean — — - 12.89 1.08 - 11.43 58.17 2.10 - 17.68

Table 5.14.: FlexX energies for the calibration set. Please see Tab. 5.9 for an explanation of the
columns.

function.

In order to assess the influence of FlexX’s energy function, the structures generated by FlexX
were re-evaluated with SLICK, shown in Tab.5.15. From the structures generated during the
FlexX docking, the 200 best structures were taken. The procedure for re-evaluation was the same
as for rescoring AutoDock candidates. Again, from the nine candidates below 1.5 A, five first true
positives are at the same time the highest ranked structures. Interestingly, the complexes with
that high prediction quality differ between the FlexX scoring and the SLICK scoring. Considering
5CNA, the FlexX score ranked a true positive at the top of the list, while SLICK/score only
achieves rank 26. On the other hand, 1AX0 and 2PEL are still under the top ten according to
SLICK /score while FlexX ranks a true positive at 32 and 70, respectively. The average first true
positive rank of the SLICK /score is at 4.7, which is considerably better than the mean rank of 12.9
achieved by FlexX. The biggest difference is found in the energy estimates. The energy difference
between calculated and experimental values is at 3.1 kJ/mol when using SLICK /energy for energy
calculations, which is well within the estimate obtained from the calibration of SLICK /energy.

Finally, the performance of FlexX was compared to BALLDock/SLICK on the docking set
that was already employed earlier. Tab.5.16 shows a summary of the results obtained by this
comparison. Apparently, FlexX achieves significantly better results on the docking set than on
the calibration set. Of the 20 structures of the docking set, 16 could be docked. The mean rank
of the first true positive is 4.0 and the mean RMSD of the first true positive is as low as 1.1 A.
BALLDock/SLICK produces three more successful docking runs and provides a better ranking
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PDB n- AG(exp thp dftp A(;'ftp AEftp Rmin dmin A(;'min AEmin
ID  mer | [kJ/mol] [A]  [kJ/mol] [kJ/mol] [A]  [kJ/mol] [kJ/mol]
1J4U 1 -18.24 1 0.67 -17.71 0.53 1 0.67 -17.71 0.53
5CNA 1 -22.18 26 127 -21.17 1.01 35 0.89 -27.36 5.18
1GIC 1 -19.25 1 0.63 -19.36 0.11 3 0.33  -21.08 1.83
1QD0 2 -28.45 - - - - 139  2.03  -20.19 8.26
1QDC 2 -22.18 2 0.80 -23.46 1.28 2 0.80  -23.46 1.28
10NA 3 -30.96 1 147 -29.91 1.05 38 1.04 -40.24 9.28
1DGL 3 -34.41 1 1.03  -27.89 6.52 3 0.75 -30.00 4.41
1AXZ 1 -18.20 - - - - 83 224  -24.76 6.56
1AX0 1 -17.90 4 122 -18.12 0.22 129 1.14  -19.95 2.05
1AX1 2 -18.80 - - - - 9 3.43  -18.47 0.33
1AX2 2 -22.70 - - - - 168  2.00 -28.45 5.75
2BQP 1 -14.00 - - - - 19 215  -15.80 1.80
1BQP 1 -16.60 - - - - 45 1.91 -15.16 1.44
1QF3 1 -16.96 - - - - 15 1.61  -14.57 2.39
2PEL 2 -17.76 ) 0.88 -24.16 6.40 12 0.69 -24.26 6.50
1EHH 3 -21.34 - - - - 1 5.67  -26.24 4.90
1EN2 4 -23.43 - - - - 26 9.41  -38.04 14.61
1K7U 2 -21.34 1 1.40  -32.38 11.04 5) 1.19  -32.09 10.75
mean  — - 4.67 1.04 - 3.13 25.33 0.83 - 4.65

Table 5.15.: SLICK re-evaluation of calibration set structures generated with FlexX. Please see
Tab. 5.9 for an explanation of the columns.

and deviation, but the differences are rather small.

In summary, the comparison of several different docking methods showed that SLICK is able
to enhance results on the energy level as well as in scoring putative binding poses. Tab.5.17
and 5.18 summarise this comparison. On the calibration set, using SLICK enhances the results
of AutoDock and FlexX in terms of ranking, RMSD, and energy calculation. For FlexX, the
correlation coefficient of the energy calculations also improve when using SLICK, although the
correlation of BALLDock/SLICK, FlexX and FlexX/SLICK results are not very good. Aston-
ishingly, the correlation of AutoDock is much better and is decreased when using SLICK on
AutoDock results. This contradicts the fact that SLICK was calibrated on exactly this data
and produced very good results, even in cross-validation. AutoDock’s energies are off by over 20
kJ/mol, but if this constant is valid for all sugar binding predictions with their energy function,
the reasons for this good correlation in comparison to the significantly worse ones produced with
SLICK should be investigated.

The performance differences are less pronounced on the docking set. These calculations were
only done with BALLDock/SLICK and FlexX. BALLDock/SLICK is able to successfully dock
three more complexes than FlexX, but the mean Ry, differs by only 0.37 in favour of BALL-
Dock/SLICK. Looking at the deviation, the difference between the mean dg;, only 0.28 A, again
in favour of BALLDock/SLICK.
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PDB n- FlexX BALLDock/SLICK
ID mer thp dftp Rmin dmin thp dftp Rmin dmin
Plant Lectins
1KJ1 1 10  1.41 17 1.37 1 0.92 11 0.46
1KUJ 1 1 0.94 2 0.53 1 0.54 1 0.54
1MVQ 1 1 0.67 81 0.59 1 0.51 4 0.29
1WBL 1 - - 5 1.84 1 0.31 3 0.31
1FNZ 1 1 1.21 1 1.21 1 1.00 2 1.00
1C3M 2 1 1.25 ) 0.43 1 0.27 1 0.27
1GZC 2 - - 44 3.48 1 0.93 2 0.45
1J0T 2 25 1.25 197 0.91 1 1.43 12 0.93
1PUM 1 6 1.06 23 1.02 10 0.74 114 0.51
1PUU 2 1 1.07 14 0.98 17 0.43 29 0.40
1HKD 1 1 0.66 10 0.50 1 1.25 11 0.70
1RIN 3 9 1.39 9 1.39 2 0.86 3 0.44
10FS 2 1 1.07 13 0.53 7 1.25 7 1.25
mean - 5.18 1.09 32.38 1.14 | 3.46 0.80 15.38 0.58
Non-Plant Lectins
1DIW 1 - — 179  2.58 17 1.13 202 1.01
1GLG 1 1 1.14 23 0.50 1 0.42 75 0.23
1K12 1 3 0.67 3 0.67 3 0.74 7 0.21
1NL5 1 1 1.47 10 0.57 1 1.03 1 1.03
2GAL 1 — - 17 1.97 | (117) (0.54) 152  0.26
1C1L 2 1 0.84 1 0.84 1 0.68 1 0.68
1SLT 2 1 1.44 1 1.44 1 1.10 8 0.75
mean — 1.40 1.11 33.42 1.22 | 4.00 0.85 63.71 0.60
| total mean — | 4.00 110 3275 1.17] 3.63 0.82 3230 0.59 |

Table 5.16.: Comparison of results on the docking set. For FlexX and BALLDock/SLICK, the
rank of the first true positive (Rgp) and deviation of the first true positive (dgy,) are given.
Additionally, rank and deviation of the structure with minimal RMSD are shown (R, and

dmin) .

Method Successfully Ry, ditp AV R
docked (mean) (mean) (mean)
AutoDock 14 33.07 1.01 23.17  0.834
AutoDock/SLICK 16 8.31 0.94 7.59  0.786
BALLDock/SLICK 17 1.53 0.85 3.60  0.602
FlexX 9 12.89 1.08 11.43  0.490
FlexX/SLICK 9 4.67 1.04 3.13  0.616

Table 5.17.: Statistical data on the performance of different methods applied to the 18 structures
of the SLICK calibration set.
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Method Successfully Ry, ditp
docked (mean) (mean)

BALLDock/SLICK 19 3.63 0.82

FlexX 16 4.00 1.10

Table 5.18.: Statistical data on the performance of different methods applied to the 20 structures
of the SLICK extended docking set.

5.5.4. A Programme for Finding Sugar Binding Sites

If the binding site of a protein is not known, a global docking has to be performed, i. e. the ligand
is docked to the whole receptor surface. Global docking can be very time-consuming. One way to
reduce the necessary computing power is the deployment of an automated pocket finder in order
to conduct only local searches after identifying regions of high interest.

The idea behind the programme LecXplorer [147] for finding sugar binding sites is based on
the Hammerhead programme by Jain, Ruppert and Welch [148, 149] and the GRID programme
by Goodford [150] for examination of binding pockets. While the methods for screening and
probing follow the ideas of Hammerhead, the potentials and the scoring function are partially
based on GRID. Clustering methods and the adaptation to protein-carbohydrate complexes were
implemented independently from these previous efforts. In contrast to these other programmes,
LecXplorer does not consider hydrogen atoms. The idea was to create a pocket finder that
is independent of hydrogen positions which are in most cases optimised with force fields, thus
introducing an additional level of parameterisation.

The programme roughly works as follows: The surface is scanned with probe groups and scores
are computed for every probe group position. Positions with high scores are then clustered in
order to find regions with high affinity. The clustering is done in two steps in order to find clusters
of the correct size and form. The overall scheme is as follows:

1. Find screening points on the surface

2. Compute scores for probe groups placed on these points
3. Cluster points with high scores

4. Rank clusters according to their overall score

Scores are composed of weighted individual terms in the same fashion as ordinary scoring functions
are. The main difference between scoring functions like SLICK /score and the scoring function
we use in the pocket finding programme is that the probe groups do not contain information
about the geometry of a putative ligand. Therefore, the terms included in the scoring function
have to be purely radially symmetric, which poses a certain limitation to terms like the CH---7
interaction which is completely based on geometric considerations.

Scoring function

The scoring function consists of four contributions which are weighted according to the results of a
manually conducted simple optimisation scheme for the contribution weights. The potentials were
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5.5. Docking with SLICK

chosen from the original GRID scoring function with the SLICK scoring function in mind while
at the same time focusing on speed. Nevertheless, the most important goal was the identification
of suitable binding sites on lectin surfaces.

The scoring function of the binding site finder consists of a van der Waals contribution, a term
scoring possible hydrogen bonds, simple electrostatics and a CH---7-like potential which basically
resembles the SLICK/score function. The Van der Waals potential is the standard AMBER
Lennard-Jones term. The electrostatics term scores polar interactions only and does certainly
not include solvation effects. Electrostatic interactions are computed as Coulomb interactions
with the potential used in the GRID implementation. This formulation (eqn. (5.3)) assumes a
planar interface between a homogeneous protein phase of dielectric constant €, and homogeneous
solvent of &;.

Ep—Es
qu] 1 Eptes
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es K€p <d /7d2 —|—482‘Si> ( )
The electrostatic interaction term estimates the spatial arrangement of protein atoms according
to approximations for macromolecules by Hopfinger [151] using the so-called nominal depths s;
and s; of protein atoms ¢ and j. For details on the spatial approximation please see the original

publication [150] of the GRID method.
Hydrogen bonds are scored with a pair potential similar to the one used in van der Waals

calculations:
A g
By, = (—6? - = ) (5.4)

T T
In the original GRID implementation this potential had a directed term including hydrogen bond
angles. Since there are no hydrogens in the structures used by this pocket finder, optimal angles
are assumed.

The CH---7 part of the scoring function is a flattened version of the CH---m terms used in
SLICK /score and SLICK /energy. Because the hydrogen position is not known, an “ideal” hydro-
gen is attached to the C probe group which is directed towards the centre of the aromatic ring.
This is in some sense the same model used in hydrogen bonds assuming ideal angles.

Finding probe group positions

Finding suitable positions for probe groups is quite important in order to obtain reasonable
interaction points that provide the basis for finding high-affinity areas on the protein surface. We
chose to use points on the solvent accessible surface (SAS) of the receptor in question. The SAS
defines the surface which is still accessible for solvent molecules thus representing the nearest
distance for any atom approaching the receptor. The implementation in BALL provided us with
a convenient way of creating a raster of points over the protein surface which can be used to
screen the receptor.

Clustering

Surface points are clustered in two steps. First, small and compact clusters are searched employing
single linkage clustering. These small clusters represent high affinity regions on the protein surface.
Second, proximate small clusters are combined to larger clusters using centroid method clustering.
These larger clusters then represent the actual binding site for the ligand.
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PDB Rank with Rank w/o | PDB Rank with Rank w/o
ID CH---m CH---m ID CH---7 CH---m
Calibration set
1J4U 13 2 1AX1 2 3
5CNA 2 3 1AX2 1 3
1GIC 1 1 2BQP 2 5
1QDO 2 7 1BQP 1 3
1QDC 2 3 1QF3 1 34
10NA 3 8 2PEL 2 20
1DGL 2 1 1EHH 2 12
1AX7Z 1 1 1EN2 4 34
1AX0 1 5 1K7U 6 18
Test set

4GAL 1 13

5GAL 2 15

113H 2 7

Table 5.19.: Ranks of the clusters resembling the lectin binding site. Ranks are given with and
without CH---7 integration in the scoring function of the pocket finder.

Single linkage clustering (SLC) and centroid method clustering (CMC) are both agglomerative
clustering algorithms but differ in the distance function used for combining smaller clusters. SLC
considers the minimum distance between any two elements from two different clusters. The
method is very fast and well suited for finding small clusters. CMC uses the distance of the
centres of gravity of two clusters for choosing the clusters which have to be merged. This method
needs more computing time because the centres have to be recalculated in every clustering step.
As the number of points is greatly reduced after the first clustering step, these clusters of clusters
can be found efficiently.

Size and shape of the resulting clusters are controlled by defining upper limits on the distances
allowed in one cluster. The first clustering step is supposed to find small high affinity regions.
Consequently, the upper limit on point distances has to be rather small compared to ligand size.
The second step combines these small high affinity regions to “sets” of attractive binding points
which then represent the whole binding site. Thus the upper limit of the second step has to be
chosen in the range of actual ligand dimensions.

Results

The cluster parameters were optimised manually on the calibration set and then tested on un-
related structures. Additionally, a comparison between the scoring function and the same term
without CH:--7 contributions was conducted. Clusters were ranked according to their binding
affinity and compared to the actual binding site found in the crystal structures.

Using 0.73A as upper limit for the SLC step and 4.0A for CMC and the SLICK /score scoring
function, the known binding sites were found among the four top ranked clusters for all lectins of
the calibration set with only two exceptions. In six cases, the top ranked cluster resembled the
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Figure 5.17.: Exemplary results of the LecXplorer programme: The best cluster (red balls) of
complexes 1AXO0 (left) and 1QF3 (right) with the ligand in the protein’s binding site.

actual binding site. The binding site of ATA (PDB ID 1J4U) was only found at rank 13, which
is probably due to the fact that there are no aromatic side chains in the binding site and thus no
CH---7 interactions are involved in binding. Therefore, the highly weighted CH---7 contribution
chose regions with aromatic side chains near the lectin surface. The binding site of WGA (PDB
ID 1K7U) was found at rank six.

For a first validation, LecXplorer was used on three complexes that are not included in the
calibration process Applying the pocket finder to the two hGal-7 complexes (PDB IDs 4GAL and
5GAL) showed that it also works for lectins not in the training set and even not in the domain
of plant lectins. For a ConA/Many complex (1I3H), LecXplorer identified the pocket at rank 2.

An interesting question is whether the inclusion of a CH---7 term improves results. As shown
in Tab. 5.19, using the scoring term without CH---7 interactions resulted in a significantly worse
identification of binding sites. As expected, complexes with a large number of CH---7 interactions,
e.g. UDA and WGA complexes, were ranked very poorly. This behaviour is consistent in the
calibration set as well as the small validation set.

Knowing that the scoring function creates decent results, a second validation was conducted by
applying LecXplorer to the complexes of the docking set. The results of this broader validation
are given in Tab.5.20. Although most binding sites could be identified with very good accuracy,
five binding sites were more difficult to determine. Nevertheless, the mean rank of 3.7 suggests
that the pocket finder provides sufficient accuracy in docking environments.
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Plant Lectins | Non-Plant Lectins
1KJ1 14 1DIW 14
1KUJ 1 1K12 2
1MVQ 1 1NL5 1
1WBL 8 1C1L 1
1FNZ 8 1SLT 1
1C3M 9 2GAL 1
1GZC 2 4GAL 1
1J0T 1 5GAL 2
1PUU 2 mean 2.88
1HKD 1

1RIN 1 total mean 3.70
10FS 3

mean  4.25

Table 5.20.: Results of applying LecXplorer to the docking set.
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6. Discussion

The main goal of this thesis was the development of a computational model of protein-sugar
interactions and the subsequent realisation of this model in a scoring function SLICK /score and
an energy function SLICK /energy suitable for application in molecular docking. Furthermore, the
actual effectiveness of both functions was shown by incorporation of the implemented functions
into an existing docking programme and comparison of its results with the results of other docking
programmes.

Both functions are empirical functions, which have to be calibrated using experimental data
that were gained from databases and literature. They consist of several additive contributions,
the calculation of which was implemented in C++ using the BALL framework for molecular
modelling. The quality of the predictions of both functions was assessed with suitable measures
yielding high quality results in the statistical assessment of both the energy function and the
scoring function. Inclusion of these functions into BALLDock, a programme for docking flexible
ligands into receptor binding sites employing genetic algorithms, yielded the first docking method
especially designed to predict protein-carbohydrate interactions.

Thorough analysis of the two components of SLICK showed that this package is indeed a valu-
able tool for investigating protein-sugar interactions. The scoring function SLICK /score is able
to correctly score docking candidates created by independent structure generators from different
docking programmes. The energy function SLICK /energy predicts binding free energies of com-
plex conformations near the native conformation with very high accuracy. Merging SLICK into
BALLDock yielded very good docking results on an extensive set of structurally known protein-
sugar complexes. In summary, the main result of this thesis is the creation of a docking method
for protein-carbohydrate complexes that predicts bound conformations with high accuracy.

However, there still remain unsolved problems. The scoring function SLICK /score seems to
rank almost all docking candidates it was applied to correctly. These results remain valid for
candidates created with different structure generators. This means that the topography of the
energy surface is at least approximatively reproduced by this very simple scoring function. As-
tonishingly, SLICK/energy seems to fail in ranking docking candidates correctly, although the
only difference between SLICK /score and SLICK /energy lies in the treatment of solvation effects.
Consequently, there must be a systematic error in the solvation handling component. The ques-
tion is, which part of the solvation component does fail? Calculating correct energy contributions
depends on

e accurate computational models for each energy term,
e correct implementation of the computational models, and
e adequate parameters for use in the calculations.

Each of these points has to be verified, but verification is only feasible if there is enough reliable
data that can be used for comparison. Accurate experimentally determined solvation free energies
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are hard to obtain, even for very small molecules, let alone proteins. However, in the case
of solvation models, the biggest problem is that polar and nonpolar contributions cannot be
measured independently. Consequently, the verification of these models based on experimental
data is not an easy task.

In literature, nonpolar solvation models are verified on sets of small molecules that do not
contain polar groups, like N-alkanes. The verification is then based on the assumption that polar
contributions are negligible and thus the solvation free energy from the experiment does only
consist of nonpolar contributions. Models for the polar contribution to the solvation free energy
are also verified on very small molecules, but this time these molecules have to be highly polar.
Again, the assumption is made that the contribution in question is so strong that it dominates the
whole solvation free energy and that other contributions can be neglected. In some cases, nonpolar
contributions are calculated by established methods and then integrated into the verification of
polar models, which adds uncertainty to the verification process. For proteins, polar models even
are verified by comparing calculated energies to other calculated energies, assuming that polar
contributions computed with FDPB models are accurate.

But not only are the two contributions to solvation free energy not directly accessible. The
computational models in question employ different parameters in their calculation, namely atomic
radii and atomic partial charges. These quantities themselves are approximations of the real
world, which means they also are results of computational models. There is a set of atomic radii
by Bondi [105] that contains experimental van der Waals radii for nonbonded atoms, but these
are hardly applicable for bonded atoms in different chemical environments. In the simplified view
of molecular mechanics, an aliphatic carbon will most probably have a different radius than an
aromatic one. Therefore, a wide variety of different parameter sets for atomic features exist,
which in most cases are the result of fitting computational models against experimental data.
In an exaggerated manner, one could say that the verification of these computational models
depends on computational models, which in turn depend on computational models and some
experimental data.

To make things worse, the models available for solvation effects are based on the description of
macroscopic effects but are applied to microscopic systems. It is not evident that these macro-
scopic models are transferable to molecular or even atomic length scales. In some formulations,
additive constants are included to account for effects on small length scales, but this can be
approximative at best. Nevertheless, the models for polar and nonpolar solvation models used
and analysed for this thesis seem to represent the state-of-the-art regarding the calculation of
solvation effects in molecular systems.

In this thesis, different combinations of models for solvation free energies were tested on sets
of small molecules because these were the only reliable sources of data at hand. The tests were
performed for several different models using several parameter sets. The calculations suggested
that the combination of models implemented in SLICK /energy should provide the best prediction
accuracy. Obviously this is only the case for conformations that are close to the native one.
Using SLICK /energy for rescoring docking candidates is not possible at the moment. At the
same time, the calibration of an energy function that neglects solvation produces drastically
worse correlations and predictions. Consequently, the conclusion is that solvation terms are very
important to the energy function and that the existing terms have to be analysed and revised.
Judging from the analysis of the different contributions to AG calculated by SLICK /energy, it
seems that the polar contribution has the strongest influence on erroneous energy predictions.
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This suggests that the Jackson-Sternberg model using PARSE parameters is the culprit. On the
other hand, the observed effects might be the result of overfitting. But further investigation is
necessary to confirm one of these hypotheses.

One possibility to rectify the behaviour of the solvation term could be the readjustment of
the parameters used in the calculations. Although the parameters used so far seem to produce
accurate numbers on small molecules, they might not be efficient in docking environments. A
new parameterisation specifically designed for SLICK could provide better scoring efficiency.
Nevertheless, this additional analysis goes beyond the scope of this thesis and should be addressed
by further research.

In addition to the influence of parameter sets of SLICK itself, the optimisation results gained
with AMBER, Glycam and GAMESS cannot be neglected. Hydrogen positions are crucial to
CH:--m and hydrogen bond calculations. The force fields used in optimisation do not include
these effects in their computations. Thus, the results of the calibration of SLICK might not be
optimal regarding these two contributions. A recalibration of SLICK with structures optimised
with a force field capable of reproducing these interactions might yield better results with respect
to ligand placement. The first force field including CH---7 is the CHARMM force field, which was
just recently adapted. Literature does not yet provide information on how this new formulation
of CHARMM integrates with the carbohydrate solution force field (CSFF) which is based in the
previous CHARMM energy function. Further investigation is needed to assess the effectiveness
of this approach for a possible reparameterisation of SLICK.

Another important issue for docking sugars in lectin binding sites and small ligand docking
in general is the treatment of water-mediated hydrogen bonds. Several studies emphasise the
importance of these water bridges for lectin-sugar complexes. The analyses presented in the
results of this thesis support the observation that ligands are strongly depending on these types
of interactions if parts of the ligand are extending into the solvent. For sugar-oligomers this is
seemingly often the case. The handling of water-mediated hydrogen bonds is still an unresolved
problem in molecular docking, but it is predominantly an issue of the structure generator, not
the energy function. SLICK offers a term for hydrogen bonds that is in principle applicable to
water bridges, but it depends on water molecules placed in or around the binding site in order to
function properly.

Although the current results of SLICK are very encouraging, there is still much room for
improvement. First of all, the calibration and the validation of SLICK needs more reliable
experimental data. One way of enlarging the data basis include non-plant lectins or general sugar
binding proteins into the calibration set. But this approach would also demand an additional
model for the coordination of ligands by metal ions in the binding site, because in animal lectins
and enzymes, the binding is heavily influenced by such ions, which directly interact with the
ligand. In plant lectins, metal ions usually influence the structure of the binding site and are
several Angstrom away from the ligand, which justifies the assumption that considering the
electrostatic effects only is sufficient. Additionally, new experimental data should be generated
to close the gap between available structural and thermodynamic data.

The van der Waals model used in this study employs a very simple form of softening energy
contributions. Although the softening approach improved results, there might be better ways of
doing so. Until now, the standard Lennard-Jones form of the van der Waals interaction model
was used, which is based on a repulsion term with exponent 12. Changing the exponent to 10 or
9 could produce better results, but this also requires readjusting the van der Waals parameters.
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Including CH---7 interactions into the energy function in order to cover ring stacking effects
distinctly enhanced the prediction quality for lectin-sugar complexes. However, aliphatic-aromatic
ring stacking is only one type of ring stacking observed in molecular complexes. Ring stacking of
two aromatic systems might be just as important in ligand docking. There are many drugs which
rely on this so-called 7--- 7 stacking when binding to their targets. The FlexX energy function
already includes aromatic interactions based on interaction surfaces. Developing a geometric
model similar to the CH---m component of SLICK could improve on the FlexX approach and
reproduce 7 7 stacking more accurately. An additional interaction term for 7 7 stacking would
broaden the applicability of SLICK far beyond the lectin-sugar case.

A more ambitious goal could be the transformation of SLICK into a force field. With such a
force field, the optimisation of docked complexes in the binding site as well as thorough energetic
analysis of the receptor surface and dynamics simulations of such systems would be possible.
Unfortunately, this transformation is not as straight-forward as it seems. An energy function
that is supposed to act in a force field has to be differentiable. Unfortunately, some of the models
used in SLICK do not have this property. The geometric approaches to CH:---m and hydrogen
bonds can be turned into differentiable functions with little effort as long as the sigmoid form is
used. The solvation component poses a bigger problem. There are derivatives for electrostatics
terms, but nonpolar models at the SPT level have not been differentiated for use in force field
calculations so far. Creating a consistent differentiable solvation term thus needs further work.

Considering the docking efforts, trying a different structure generation algorithm than the
genetic approach could improve results or at least reduce computational demand of the method.
At the moment, docking runs using the genetic algorithm for structure generation need a lot
of computing time, especially when compared to very fast algorithms like FlexX. On the other
hand, the extreme flexibility of oligo-sugars combined with the shallow binding grooves of lectins
supposedly are a serious problem for construction algorithms. FlexX uses a heuristic based
on energy estimates in order to avoid combinatorial explosion. If energy differences between two
distinct candidate conformations are very small, the algorithm is likely to fail because the decision
for the “correct” candidate cannot be made. Judging from the comparison between structures
generated by FlexX and BALLDock/SLICK, it seems that the construction algorithm is more
dependent on steric features of the binding site of the receptor. However, this could change if the
energy function of FlexX would include additional interactions.

In conclusion, the results obtained in this thesis show that sugar docking is possible with
high accuracy if the interactions that have proven important to lectin-sugar binding are included
in the calculations. With BALLDock/SLICK, a first docking method for protein-carbohydrate
complexes has been developed based on the thorough investigations that built the basis for SLICK.

With this method, various pharmaceutical applications could be devised. One example stems
from a research project called GELENA (“Nichtvirales Gentransfersystem auf Basis Lektin-
funktionalisierter Nanopartikel”) conducted at Saarland University from 2000 to 2002. The goal
of the project was the creation of a non-viral gene transfer system based on silica nanoparticles
functionalised by specifically designed lectins. It is based on the observation that cells can be
identified very specifically by sugars coating the cell surface. Because lectins bind to sugars very
specifically, the idea was to load charged nanoparticles with DNA, functionalise the particles with
specially designed lectins that were built for identifying a certain cell type and thus make the
loaded particles bind to exactly the type of cell which has to be targeted (see Fig.6.1). These
nanoparticles would then be internalised triggered by the binding process and release the loaded
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Figure 6.1.: Lectins as functionalising groups in a gene transfer system. A lectin with designed
specificity is connected to a nanoparticle by a spacer group. The charged nanoparticle is then
loaded with DNA fragments that have to be transported into a cell.

DNA fragments into the cytosol, where it would eventually be transported into the cell nucleus
and replicated through mitosis.

For such a system to work properly without having to synthesise and experimentally test every
thinkable lectin, it is obviously necessary to have means of predicting binding specificities of
artificially designed lectins derived from natural ones. Therefore a tool for molecular docking
designed for the computation of binding modes and energies of protein carbohydrate complexes
is essential.

Another example presents drugs based on sugars. Helicobacter pylori is a wide spread pathogen
which resides in the stomach and is held responsible for gastric ulcer as well as some forms of

% ¢ Adhesin

~

Figure 6.2.: Sugar mimetics as anti-microbial drugs. Please see text for details.
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gastric cancer. This bacterium binds to gastric epithelial cells by lectinlike adhesins binding
specifically to certain carbohydrate epitopes on the cells. Usual approaches to cure H. pylori
infections are based on antibiotics combined with drugs lowering the gastric acidity, but this kind
of therapy has some drawbacks. There are the general negative effects of antibiotics on patients
along with increasing allergy and drug-resistance of pathogens.

Instead of using traditional antibiotics alone for eradicating H. pylori from patients’ gastro-
intestinal tract, a combination with drugs inhibiting the adhesion of the bacterium to epithelial
cells would be most promising. One way of doing this is the design of carbohydrates that bind
to the adhesins of the pathogen surface and inhibit their binding to the epithelial cells. Thus,
the bacterium would be prevented from settling down in the gastric environment. There are
experiments of using porcine milk which contains similar carbohydrate epitopes as presented on
the surface of epithelial cells in order to block adhesion of H. pylori [152]. The next step could
be the design of sugars or sugar-like drugs with predefined features from the known specificity of
the Helicobacter adhesins. The approach presented in this thesis could accelerate and simplify
the development of such drugs.
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The methods described in this thesis were realised in C++ using BALL [103]. BALL is an AN-
SI/ISO a C++ framework for rapid software prototyping in molecular modelling, which was de-
signed using state-of-the-art software engineering paradigms. It is released under an open-source
license (LGPL [153]). The main goals behind the design of BALL are robustness, extensibility
and ease of use. The BALL architecture is highly modular and allows for transparent integration
of functionality based on well-defined and well-documented interfaces. The components compris-
ing SLICK were integrated into BALL based on the same design goals. This chapter gives a brief
overview of the development of SLICK.

A.1. Scoring Framework

BALL provides a framework for energy functions in the field of molecular mechanics (MM) force
fields. Unfortunately, this framework cannot be used for SLICK because of two main reasons.
First, the framework for MM energy functions relies on parameters being the same for every
contributing energy term. For example, when calculating electrostatic interactions or van der
Waals contributions, the radii stay the same. This is not the case in SLICK, where e. g. the
nonpolar solvation contribution needs another set of radius parameters as the polar solvation
component or the van der Waals term. Consequently, SLICK needs a new method for storing
atomic parameters for every energy contribution.

Second, the MM energy functions are not designed to integrate purely intermolecular interac-
tion terms. Calculating interaction energies with MM energy functions is only possible via the
difference of bound and unbound states. Let A be the receptor and B the ligand, which form the

int

complex AB, then the MM interaction energy AG'Yg is given by
AGTE = AGYY — (AGA™ + AGEM) (A1)

But some terms included in SLICK, namely hydrogen bonding and CH---7 contribution, calculate
interactions directly. Therefore, a generalised formulation based on bound-unbound differences
is not easily possible.

Consequently, a new, broader framework for energy and scoring functions in BALL is necessary.
This new framework is strongly based on the MM force field implementation, but extends over
the old framework by allowing the inclusion of very different energy contributions in one scoring
or energy function. The new framework exclusively calculates interaction scores or energies and
cannot be used for molecular mechanics at all, because there are virtually no restrictions for terms
that can be included into such a function.

The class responsible for these kinds of functions is called ScoringFunction'. Every ScoringFunction
contains a list of individual contributions, which are objects of the type ScoringComponent, and

'Please note that not only scoring functions can be implemented with this class. If the composition of
contributions is chosen properly, a ScoringFunction can actually be an energy function
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ScoringFunction
- moleculel_ : Molecule
- molecule2_ : Molecule
- base_function_ : ScoringBaseFunction
- components_ : vector<pair<ScoringComponent*, float>>
+ ScoringFunction(receptor : Molecule, ligand : Molecule)
+ setup()
+ calculateScore() : double
+ insertComponent(scoring_component : ScoringComponent)
- registerComponents_()

1
0..*

ScoringComponent
# scoring_function_ : ScoringFunction*
+ ScoringComponent(scoring_function : ScoringFunction)
+ setup()
+ calculateScore() : double

Figure A.1l.: A simplified UML diagram of ScoringFunction.

two objects of type Molecule representing the receptor and the ligand, respectively. Fig. A.1
shows a simplified UML diagram of the class ScoringFunction.

With this framework, a more flexible approach to calculating scoring or energy functions is
possible, including specialised parameterisations for every component and even every molecule.
A ScoringFunction can integrate models that rely on calculating energy differences of whole
systems as well as methods that calculate interaction scores or energies directly. However,
the construction has two drawbacks. First, a ScoringFunction is not an energy function of
a ForceField. Thus, it cannot be integrated in optimisation or molecular dynamics, even if the
object calculates a differentiable energy function. Second, a ScoringFunction cannot benefit
from the fast and optimised calculation methods used in ForceField, because the individual en-
ergy terms might not fit into the somewhat narrow definition of an energy function for molecular
mechanics.

Using ScoringFunction for building a computational model is very easy. Every object of
type ScoringComponent can be integrated into a scoring function with the help of the method
registerComponents_(), which has to be called in the constructor of the ScoringFunction
constructor. The setup() will then initialise every component with its own setup function. With
calculateScore(), the actual scoring calculation can then take place.

A small example illustrating the usage of this framework is presented below. The first listing
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shows the header definition of a scoring function that only consists of one component. In this
example, the scoring function just computes CH:- -7 scores.

#include <BALL/SCORING/COMMON/scoringFunction.h>
namespace BALL
{

class CHPIScoring
public ScoringFunction

{
public:
CHPIScoring() throw();
CHPIScoring(Molecule& protein, Molecule& ligand) throw();
virtual ~“CHPIScoring() throw();
private:

void registerComponents_() throw();

};
}

In this header, the actual scoring components are not yet chosen. It merely provides the inter-
face for something called CHPIScoring. It is important to declare the method registerComponents_()
in this header, because it will be responsible for the composition of the scoring function. The
actual definition of the scoring function is relatively easy. With the method insertComponent (),
which is derived from the base class, registerComponents_() can integrate objects of type
ScoringComponent into the scoring function. In all constructors, registerComponents () has
to be called. The listing below shows example code for our class CHPIScoring.

#include "CHPIScoring.h"
#include <BALL/SCORING/COMPONENTS/CHPI.h>

namespace BALL

{

CHPIScoring: :CHPIScoring() throw()
: ScoringFunction()
{

registerComponents_Q);

}

CHPIScoring: :CHPIScoring(Molecule& protein, Molecule& ligand) throw()
: ScoringFunction()
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setReceptor(protein) ;
setLigand(ligand);
registerComponents_Q);
setup();

CHPIScoring::“CHPIScoring() throw()

{
}

void CHPIScoring::registerComponents_() throw()

{

// This code defines the composition of the scoring function.
// In this litte example, only a CHPI term is included.

insertComponent (new CHPI(*this));

}
}

The inclusion of such a scoring function into a programme is very simple. Assume you want
to write a programme that just reads two molecules from files and calculate the CH:--7 score of
the putative complex. The following listing shows such a programme.

#include
#include
#include
#include

<BALL/FORMAT/HINFile.h>
<BALL/KERNEL/molecule.h>
"CHPIScoring.h"
<iostream>

using namespace BALL;
using namespace std;

int main()

{

// Load the receptor from a file.
Molecule receptor;

HINFile infile_receptor("receptor.hin");
infile_receptor >> receptor;
infile_receptor.close();

// Load the ligand from a file.
Molecule ligand;

HINFile infile_ligand("ligand.hin");
infile_ligand >> ligand;
infile_ligand.close();

CHPIScoring chpi_scoring(receptor, ligand);
float score = chpi_scoring.calculateScore();
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cout << "The CH/pi score is " << score << endl;

¥

By inserting other components of type ScoringComponent, the scoring function can be easily
tailored for any application. Of course, this simple example did not include any code necessary
to assign parameters of even check the contents of the files.

A.2. Implementation Details

This section presents some details on components that were implemented during the development
of SLICK. Many techniques employed in the implementation make heavy use of the functionality
provided by BALL.

The CH---7 Component

The CH---7 component is implemented in the class CHPI, which is derived from the class ScoringComponent.
It contains the two nested classes CHPI: : AromaticRing and CHPI: :CHGroup, which are used for

storing possible interaction partners of CH---w bridges. During the setup of this component,
aromatic rings and CH groups are searched. All possible pairs of interaction partners are then

stored in an STL vector. During the calculation of the scores, this vector is processed and the

CH---7 scores are calculated.

The nested classes provide functionality that simplifies the calculation of the necessary vector
geometry. For example, CHPI: :AromaticRing provides a helpful method getNormalVector(),
which returns the normal vector of the plane defined by the planar aromatic ring. This vector is
necessary to calculate the projection of the H atom into the ring plane.

A user may choose the base function (cf.section 3.4.1) of the scoring function through the
method setBaseFunction() of the ScoringFunction interface. At the moment, two base func-
tions are defined, the linear and the sigmoid one. The limits defining the transition interval of
the base function are an option of the CH---m component and accessible via the datatype Option
of the BALL framework. This datatype allows for easy modification of options.

Nonpolar Solvation Models

During the development of SLICK, several nonpolar solvation models were implemented and
tested. The implementations are based on the processor concept that is realised in BALL. Pro-
cessors are classes that apply a certain function to atoms of a system. BALL provides the
necessary framework to use such constructs in a very simple way. Once a processor is defined,
the method apply () takes care of the computation.

ExampleProcessor proc;
system.apply(proc) ;

Processors are derived from the generic processor base classes UnaryProcessor and BinaryProcessor.
In the case of nonpolar solvation models, a unary processor was sufficient to compute the solva-
tion effects. For example, computing the Uhlig solvation energy of a molecule is accomplished by
the following code fragment:
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PDBFile infile("infile.pdb");
System system;

infile >> system;
infile.close();

UhligCavFreeEnergyProcessor uhlig;
system.apply(uhlig);
float uhlig_energy = uhlig.getEnergy();

With the generic processor concept it was possible to implement one scoring component han-
dling several different nonpolar solvation models without having to write the same code several
times. Using dynamic binding, the method calculateScore() does not need to know, which
model is chosen by the user. It just uses the interface of UnaryProcessor in order to compute
the energy. The following code fragment illustrates the possibilities:

float calculateScore(UnaryProcessor* proc, System& system)
{

system.apply (*proc) ;

return (proc->getEnergy());

System system;
infile >> system;

UnaryProcessor* proc;

UhligCavFreeEnergyProcessor uhlig;
proc = &uhlig;
float uhlig_energy = calculateScore(proc, system);

PCMCavFreeEnergyProcessor reiss;
proc = &reiss;
float reiss_energy = calculateScore(proc, system);

Parameter Assignment

Assigning parameters to atoms is usually quite complicated. First, atom types have to be assigned
to individual atoms. These atom types are determined by the atom’s element and its chemical
surrounding. For example, in most cases, aromatic carbons are treated differently than aliphatic
ones. Second, the parameters like radius and charge have to be assigned based on that atom
type.

Since element and chemical environment determine the atom type, it is often possible to define
rules that unambigously identify atoms of a certain type. For this purpose, processors have been
developed that assign values to atoms based on an extensive set of user-definable rules. These rules
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can be defined directly as an argument to the constructor of a rule processor. For convenience
and easy modification, the user can create a file containing a large set of rules, based on the
INIFile datatype and file format defined by BALL. Objects of type ChargeRuleProcessor and
RadiusRuleProcessor can read such files and process them. The following listing shows some
exemplary rules from the PARSE parameter set:

[ChargeRules:H]

; carboxylic acid groups

.435 = connectedTo((-0(-C(=0))))
hydroxyl groups

.49 = connectedTo((-0))

; thiol hydrogens

.29 = connectedTo((-S(-%)))

O - O

o

[RadiusRules:H]

; methyl groups at aromatic rings (e.g. methylbenzene)

; are considered as united atoms: charge 0 and radius O
0.0 = connectedTo((-C(—*) (=*) (-*)))

; amine groups are also considered as united atoms

0.0 = connectedTo((-N(-*) (-*)))

.0 = true()

[

The square brackets define a section of such a rule file. As the name suggests, the section
ChargeRules defines rules for assigning charges to an atom, RadiusRules defines radius assign-
ment. After the colon, the element of an atom is defined. In the example above, the rules apply
to hydrogen atoms and are processed in the order in which they appear in the file. The first
matching rule is applied to the hydrogen atom. Using a RuleProcessor is as simple as using the
processors for nonpolar solvation. The user just needs to apply a processor to a system. Every
atom of the system will be traversed and the rules will be applied to the currently processed
atom.

The construction of the rules is fairly straight-forward. The user defines a pattern that rep-
resents atoms that are bound to the current atom. The patterns are simple strings and can be
arbitrarily long. Thus, the possible degree of detail of such a rule is virtually unlimited.

With this powerful framework, SLICK accomplishes almost all parameter assignments. PARSE
parameters, Bondi radii and Glycam atom types are assigned by using rules and processors. The
remaining parameters can be assigned from tables that are based on atom types.
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B. Detailed Results

B.1. AutoDock Calibration Set Candidates
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B.1. AutoDock Calibration Set Candidates
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B. Detailed Results

RMSD dist. of 1DGL

Frequency

o;
@ 4
54
5

RMSD [A]

RMSD dist. of 1AX1

100 120 140
L L |

80

Frequency

o;
P
54

RMSD (A]

RMSD dist. of 1BQP

Frequency

o;
P
54

RMSD [A]

122

Frequency

Frequency

Frequency

RMSD dist. of 1AXZ

°

RMSD [A]

RMSD dist. of 1AX2

°

0

4 6 8 10 2
RMSD [A]
RMSD dist. of 1QF3
T T T T T 1
4 6 8 10 2
RMSD [A]

Frequency

Frequency

Frequency

100

«

RMSD dist. of 1AX0

~ 4
ad

12

RMSD [A]

RMSD dist. of 2BQP

0 2 4 6 8 10 12
RMSD [A]
RMSD dist. of 2PEL
o 2 4 6 5w n

RMSD [A]



Frequency

RMSD dist. of 1EHH

RMSD [A]

Frequency

a0
|

B.1. AutoDock Calibration Set Candidates

RMSD dist. of 1EN2

RMSD [A]

RMSD dist. of 1K7U

RMSD [A]

123



B. Detailed Results

B.2. BALLDock/SLICK Results

B.2.1. RMSD Distributions of the Calibration Set
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B. Detailed Results

B.2.3. Docking Set — Plant Lectins
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B.3. Results of FlexX Docking

B.3.1. Calibration Set
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B.3.2. Docking Set — Plant Lectins
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C. Mathematical Details

C.1. Deriving Fermi Parameters from Switching Function
Limits

The aim is to derive parameters a/,b’ that ensure that the slope of linear base function and

sigmoid function are equal at the centre x of the interval defined by a and b.

x:a+%(b—a) (C.1)

Exploiting the fact that both functions have the value % at point x gives the first constraint:

1 _l Y S l .
e = b—ax—a(a+2(b a)) (C.2)

Now the derivatives of both functions have to be computed.

d 1 _ dexp(—dz+V)
de \1+exp(—ad'z +¥)) (14 exp(—ad'z+V))?

d T—a 1
%(1_b—a>_a—b (C4)

Inserting (C.1) and (C.2) into (C.3) yields

adexp(—dz+adz) o d (C.5)
(1+exp(—az +d'x))2  (1+1)2 4 '
Equating (C.4) and (C.5) yields
a 1 , 4
4 a—b = a_a—b (C.6)

C.2. Recalculation of Solvent-Solute Van der Waals
Interactions

The solvent volume Vg will be defined as that portion of space that is not enclosed by the solvent
accessible surface (SAS) of the solute molecule (see Fig. C.1). Since the SAS of the solute molecule
(henceforth denoted Shs) is easily calculated, it is convenient to transform the volume integral
into a surface integral. Huron and Claverie [71] employed Ostrogradsky’s formula [154] for this
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C. Mathematical Details
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Figure C.1.: The definition of the volumes and surfaces used. The molecular surface Sj; sepa-
rates the solute volume Vj; from the solvent volume Vyg. It is identical to the solvent surface
Sg, except for the surface normals which have opposing signs.

purpose. They introduce a sphere S(R) of radius R that completely encloses Sy;. The solvent
volume Vg(R) included between S(R) and Sg is then

///de dv = //w .7

Ss+S(R

where n(r) are the unit normals to Sg U S(R) directed towards the outside of the integration
volume and W is a vector field. Although the solvent surface Sg and the molecular surface Sys
are in principle identical their normals have opposing signs. Since the volume integral is over the
solvent volume, we have to use Sg instead of Syy.

If the volume and the surface integrals converge for R — oo, as is the case for any reasonable
choice of the Van der Waals interactions, the integral over the total solvent volume Vg can be

written as
// didev://W-nds+ lim //W nds (C.8)
Vs Ss

A radial symmetric vector field W (r) has to be determined such that its divergence gives the
function F'(r) that has to be integrated.

F(r) = divWw (C.9)

S W) = f(r)r (C.10)
with F(r) = V-(f(r)-r) (C.11)
F) = o f()+3/0) (C12)
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C.2. Recalculation of Solvent-Solute Van der Waals Interactions

Solutions to to the differential equation (C.12) are of the form

f(r)y = ! 22 F(x)dx + C (C.13)

3
Together with (C.9) and (C.11), a solution for the vector field W is

T

W(r) = T—lg / P2F(2)dz | r (C.14)

The choice of the lower integration limit ry (which corresponds to the integration constant C' in
(C.13)) in this equation changes the values of the two integrals in (C.8). It seems convenient to
choose rg such that one of these integrals vanishes. In fact, this is possible for the second integral

R
. . 1 2
Tlg&//W-nds = ngnoo// ﬁ/w F(z)dx | -R-nds (C.15)

S(R) S(R) 0

Since the surface integral is over the sphere S(R), the surface normals n have the same direction
as R:

R
Rn =R —-=R C.16
n x (©16)
1 ’ R
. 2
= Rh_Igo ﬁ/:n F(z)dx -R-Eds (C.17)
S(R) 7o
. R
— i 2
= Rh—l};o e /a: F(x)R// ds (C.18)
T0 S(R)
. R
e t 2 . 3
= Rh—l};o e /x F(a:) dr -AmR (C.lg)
ro
= 47T/x2F(x) dx (C.20)

To make this integral vanish, g = oo has to be chosen. Hence, the initial volume integral (C.8)

becomes
///F(T)dv = ///didev://W.nds_H) (C.21)
Vs Vs St
- // 713/ wF () d | xonds (C.22)

Sm 00
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C. Mathematical Details

This result can now be applied to the energy functions of interest, e. g. the 6-12 potential used
to describe the Van der Waals interaction energy E(r) between two particle with distance r.

A B

To determine the interaction energy of a single atom of the solute molecule m with a single atom
s of all solvent molecules surrounding the solute, the whole solute volume, i.e. the universe
outside the molecular surface of the solute, has to be integrated. Assuming an isotropic solvent
with number density pg, the Van der Waals interaction energy EVIW of the two atoms m and s is

A B
Vs Vs
(C.22) 1 / A B
=" ps // ﬁ/ﬁ <ﬁ x6> dz | r-n(Sg),ds (C.25)

Do / / / <$10 :UB4> dr | ron(Ss)ds  (C.26)
— s //T—g (—@ + ;%) ‘r-n(Ss)ds (C.27)
Ss

By using the normals to the molecular surface n(Sy;) = —n(Ss) instead of the normals to the
solvent surface, the integral can be written as

///PSEVdW(m, s)dv = ps //%3 (9% - %) - n(Syr) ds (C.28)
Vs

Sm
A B
= ps // <W - w) -r-n(Sy)ds (C.29)
Sm

The complete interaction energy of the solute and the solvent Eﬁvg, can be obtained by summing

over all atoms of the solvent and the solute.

JV\/(Iivg‘— Z ZPS//<97,12 - 37:65> ~r-n(Sy)ds (C.30)

meM seS

With this expression, it is now possible to include averaged structural information into the
calculation of the solvent-solute interaction energy. In a manner of speaking, this expression
describes the interaction of a molecule with a “structured continuum” surrounding it. Although
the complexity of this approach is high from the mathematical point of view, the data necessary
for the calculations and parts of the distribution function evaluation can be pre-computed. Hence,
the slow-down to be expected from this formulation is relatively small.
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D. Data Set Reference and
Abbreviations

D.1. Complexes Sorted by PDB ID

PDB ID | Lectin Ligand n-mer p/n
1AX0 | ECorL GalNAc 1 p
1AX1 ECorL Lac 2 p
1AX2 | ECorL LacNAc 2 p
1AXZ | ECorL Gal 1 p
1BQP | PSL D-Man 1 p
1C1L Congerin 1 Lac 2 n
1C3M | Heltuba Man(1-3)Man 2 p
1DGL | DGL Me-3,6-di-O-(a-D-Man)-a-D-Man 3 p
1IDIW | Tetanus toxin Gal 1 n
1EHH | UDA (GleNAc)s3 3 p
1EN2 | UDA (GleNAc)y 4 p
1FNZ | RPbA GIcNAc 1 p
1GIC | ConA Me-a-D-Gle 1 p
1GLG | Chemotactic receptor Gal 1 n
1GZC | ECL Lac 2 p
1HKD | PSL Me-a-D-glucopyranoside 1 p
1J4U ATA Me-a-D-Man 1 p
1JOT | MPA GalNAc-Gal 2 p
1K12 AAnA Fuc 1 n
1IK7U | WGA (GlcNAc)q9 2 p
1KJ1 ASA a-D-Man 1 p
1KUJ | ATA Me-Man 1 p
IMVQ | Cratylia mollis lectin Me-Man 1 p
1INL5 Eng. maltose bind. lectin Mal 1 n
10FS | PSL Sucrose 2 p
IONA | ConA Me-3,6-di-O-(a-D-Man)-a-D-Man 3 p
1PUM | ML Gal 1 p
1PUU | ML Lac 2 p
1QDC | ConA Me-6-O-(a-D-Man)-a-D-Man 2 p
1QDO | ConA Me-3-O-(a-D-Man)-a-D-Man 2 p
1QF3 | PNA Me-3-D-Gal 1 p

Table D.1 — Continued on next page ‘
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D. Data Set Reference and Abbreviations

PDB ID | Lectin Ligand n-mer p/n
1RIN PSL Mang 3 )
1SLT S-lectin LacNAc 2 n

1WBL | PTL Me-Gal 1 )
2BQP | PSL D-Gle 1 p
2GAL | hGal-7 Gal 1 n
2PEL | PNA Lac 2 p
4GAL | hGal-7 Lac 2 n
5CNA | ConA Me-a-D-Man 1 p
5GAL | hGal-7 LacNAc II 2 n
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D.2. Lectin Abbreviations

D.2. Lectin Abbreviations

Abbreviation Lectin

AAnA Anguilla anguilla lectin

ATA Artocarpus integrifolia agglutinin
ASA Allium sativum agglutinin

ConA Concanavalin A (Canavalia ensiformis lectin)
DGL Dioclea grandiflora lectin

ECL Erythrina crista-galli lectin
ECorLL Erythrina corallodendron lectin
Heltuba Helianthus tuberosus agglutinin
hGal-7 Human galectin-7

ML Viscum album lectin

MPA Maclura pomifera agglutinin

PNA Peanut agglutinin

PSL Pisum sativum lectin

PTL Psophocarpus tetragonolobus lectin
UDA Urtica dioica agglutinin

WGA Wheat germ agglutinin

Table D.2.: Lectin abbreviations

D.3. Carbohydrate Abbreviations

Abbreviation Carbohydrate

Fuc Fucose

Gal Galactose

GalNAc N-Acetyl-Galactosamine
Gle Glucose

GlecNAc N-Acetyl-Glucosamine
Lac Lactose

LacNAc N-Acetyl-Lactosamine
Man Mannose

Suc Sucrose

Table D.3.: Carbohydrate abbreviations
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