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1. Introduction 

1.1  AAA proteins 

 

The AAA proteins, a new family of „ATPases Associated with diverse cellular 

Activities“ were first described by Erdmann et al. (1991). They found that proteins 

associated with different biological processes ranging from DNA repair and 

replication to organelle biogenesis, membrane trafficking, transcriptional regulation, 

and protein quality control, share a highly conserved domain responsible for ATP 

binding. The conserved ATPase domain (AAA) with a length of 200-250-amino acid 

residues was found to contain Walker A and B motifs - two sequences typical for P-

loop nucleoside triphosphatases (NTPases) (Walker et al, 1982). These motifs are 

involved in binding of the triphosphate moiety of the substrate and coordination of an 

Mg2+ ion, which is important for subsequent hydrolysis of the ATP. Another region of 

high sequence conservation, the so-called ‘second region of homology’ (SRH) found 

between the two Walker motifs (Swaffield et al., 1992), makes AAA family 

distinguishable from the larger and more diverse family of AAA+ proteins (Lupas and 

Martin, 2002).  The domain architecture of AAA proteins consists of a non-ATPase 

N-terminal domain, which is the putative substrate binding site, followed by one or 

two copies of AAA domains (named D1 and D2) (Fig. 1.1.). All AAA proteins whose 

oligomeric structure has been investigated up to now form hexameric rings (Fig. 1.2) 

(Hartman and Vale, 1999). Some AAA proteins, like katanin, can exist as dimers and 

only hexamerize in a substrate-dependent manner (Scott et al., 2005). Further 

oligomerization to dodecameric complexes was also noticed for some proteins (Wolf 

et al., 1998; Scott et al., 2005). In members that contain two copies of AAA domains, 

one of the domains may be degenerate such as D1 in p97/CDC48 or D2 in 

Sec18/NSF, and may be primarily involved in structural stability of the hexamer 

complex (Singh et al., 1999).  

 

 

 

Figure 1.1 Schematic diagram of domain organization of the AAA proteins 

N ATPase ATPaseN ATPase ATPase

D1 D2 
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There are several crystal structures of the AAA proteins or their AAA modules in the 

PDB database (http://www.rcsb.org/pdb/) that confirm their remarkably well 

conserved structure and mechanism of interaction with nucleotides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Structure of the hexameric p97 N terminal (red) and D1 (blue) domains 

(1E32) 

 

Proteins of the AAA family are found in all three kingdoms of life and their utility is 

evident by their abundant genomic representation. Mechanistically, it is thought that 

these proteins exert their activity through the energy-dependent disassembly and 

unfolding of macromolecules. To energize such a mechanical work they use the AAA 

module like a chemo-mechanical converter (motor) powered by ATP hydrolysis. The 

conserved features of AAA domains imply a common mechanism for the operation of 

the ‘motor’. Yet, small differences in nucleotide-sensing residues and in the domains 

attached to the ‘motor’ may determine the direction and timing of the forces that are 

exerted, as well as substrate specificity of these proteins. Sequence divergence in the 

AAA domains, followed by gene duplication in case of AAA proteins with two AAA 
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domains, could indeed produce an array of biological activities from a common 

‘ancestral’ protein (Kunau et al., 1993). Further divergence in function of the AAA 

family comes from the wide variety of N-terminal domains. These domains act as tool 

heads interacting with substrates, either directly or through adaptor molecules 

(Dougan et al., 2002). Recently was shown that they can control also ATPase activity 

of the protein (Gerega et al., 2005). Extensive research on the mechanisms, which 

AAA proteins use for disassembly of their substrates, showed that they include 

processes like threading, unwinding and pulling apart of protein substrates (Maurizi 

and Li, 2001).  Differences in the mechanism of action in proteins belonging to this 

family could at the end arise from differences in sequence and structure of the N-

terminal domains, AAA domains or connecting regions between these two parts. 

 

1.1.1 Phylogenetic analysis of AAA proteins 
 

Several authors tried to analyze the phylogeny of AAA proteins based on their AAA 

domains over the last decade (Kunau et al., 1993; Beyer, 1997; Wolf et al., 1998; 

Frohlich, 2001). These analyses used different sequence subsets depending on the 

available data (sequenced genomes) and differed in the selection of sequences, e.g. 

exclusion of canonical divergent members or inclusion of degenerative, inactive and 

fast-evolving sequences. Even though there was some inconsistency in the selection 

of sequences, these analyses converged to the picture of five main clades of AAA 

domains in the family of AAA proteins, corresponding to proteasome subunits, 

metalloproteases, the loosely defined meiotic group, and D1 and D2 of the proteins 

with two AAA domains. Recently, a phylogenetic analysis of AAA proteins was 

performed with an automated approach (Frickey and Lupas, 2004). Clustering of the 

AAA+ superfamily, based on their ATPase domains included a well defined and 

compact group of AAA proteins. Filtering of these sequences was done based on their 

sequence conservation in Walker A and B motifs, and canonical residues in their 

SRH-region. Based on this approach, a phylogenetic tree was generated that 

comprised of six major clades. The five clades mentioned before and a new clade 

named BCS1, which consists of mitochondrial inner membrane proteins (Fig 1.3). 

Some proteins, which could not be assigned to any of major clades, form minor clades 

with long-branching sequences. Five of these were radiating from the root of the tree 
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(belphegor, Pch2p, ORF300, ORF5, and YC46) because they showed no closer 

relation to any major clade. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 1.3 Phylogeny of AAA domains. Length and angle of each clade reflect the 

maximum branch length and number of sequences belonging to that clade. The 

presumed root of the tree is marked by a black circle and minor clades whose 

monophyly is unclear are colored in gray. Methanogens and ARC cluster colored in 

red are discussed in text (Frickey and Lupas, 2004)  

 

Two other minor clades, even though with deep branching, were located next to major 

clades: ARC next to the D1 and D2 clade, and a group of methanogenic sequences 

next to the metalloproteases, named AMA for its occurrence in Archaeoglobus 

fulgidus and methanogenic archaea. Most of the minor clades close to the root have 

gapped SRH regions and are similar to the AAA+ proteins in the positions of the 

conserved arginine residues (arginine fingers), which may indicate an ancestral trait of 

these sequences. Clear clustering of the eukaryotic clades and predominance of 

prokaryotic sequences in deep branching clades suggests that the AAA family had 

already reached most of its diversity before the three domains of life separated. Such a 

scenario is also favorable from the significance of these proteins in the control of all 

major cellular processes like cell division, protein degradation, cytoskeleton, etc. 
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The N-terminal domains of the AAA proteins give another dimension of diversity to 

this group of proteins. A cluster analysis of N-terminal domains resolved these 

sequences into 20 groups (Appendix Fig. 1., Frickey and Lupas, 2004). This implies 

that the wide variety of biological functions of these proteins originates primarily 

from divergence in their N-terminal domains. Some of these differences were 

acquired after the division into plants and other eukaryotes (fungi and animals) as 

observed in the BCS1 clade. Others family members show high divergence in their N-

terminal domains although their ATPase domains are obviously of monophyletic 

origin suggesting an evolutionary exchange of N-domains (like smallminded and Yta7 

in the D1 clade). The most surprising findings of this cluster analysis were N-terminal 

homologies between the CDC48/p97 group and the deep branching AMA group as 

well as between ARC (AAA ATPase forming Ring shaped Complexes) and 

proteosomal ATPases.  Sequence analysis of N-terminal domains of AMA proteins 

using PSI-Blast (Altschul et al., 1997) and 3D-PSSM (Kelley et al., 2000) led to the 

assumption that these proteins adopt a structure similar to the β-clam fold found in N-

terminal domains of the CDC48/p97 group. The homology between ARC and PAN 

proteins was proposed earlier (Wolf et al., 1998) mainly because of the presence of a 

coiled-coil region on the very end of the N-terminal domains and a similar genomic 

context (proteasome loci). Additional analysis found that significant similarity 

between these proteins is extended to the region between the coiled coil and the AAA 

domain, which is rich in β-strands and may form a β-barrel (Frickey and Lupas, 

2004). 

It was shown before that in AAA+ proteins the N-terminal domains either determine 

substrate specificity (Mogk et al., 2003) or bind to adaptor molecules which indirectly 

regulate their activity (Dougan et al., 2002). There are however conflicting data about 

the involvement of N-terminal domains in the unfoldase/chaperone activity of AAA 

proteins (Golbik et al., 1999; Lo et al., 2001; Beinker et al., 2002; Hinnerwisch et al., 

2005). Such activity in some groups of proteins, like PAN, was not designated to any 

particular domain because the study was done only on full proteins (Benaroudj and 

Goldberg, 2000). Some new findings showed that N-terminal domains can also 

simply control the activity of an ATP motor module without having a defined role in 

substrate binding (Garega et al., 2005).  
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1.2   VAT protein 

 

VAT (Valosine-containing-protein-like ATPase of Thermoplasma acidophilum) is an 

archaeal member of the CDC48/p97 group of AAA proteins and is characterized by 

its tripartite domain structure N-D1-D2 which is characteristic for this group (Fig.1.4). 

ATPase activity of VAT is Mg2+ dependent at an optimal temperature of 

approximately 70°C (Pamnani et al, 1997). Electron microscopy revealed that the 

members of this family, including VAT, form hexameric rings with the kidney-shaped 

N-terminal domain positioned at the edge of the ring structure (Fig. 1.5) (Rockel et 

al., 1999). These findings were further confirmed by the crystal structures of the p97 

N-D1 complex (Fig. 1.2; Zhang et al, 2000) and of the complete protein (DeLaBarre 

and Brunger, 2005), as well as by the NMR structure of the N-terminal domain of 

VAT (Coles et al., 1999).   

 

 

 

 

Figure 1.4 Schematic representation of the domain organization in VAT protein 

 

In the presence of the nucleotide and Mg2+ the hollow cylinder with an approximate 

diameter of 15nm undergoes a conformational change (Rockel at al., 2002) similar to 

its eukaryotic homologue NSF (Fleming et al., 1998). Other eukaryotic homologues 

of VAT from vertebrates (p97) and yeast (CDC48) play a role in homotypic 

membrane fusion events (Peters et al., 1990, Latterich et al., 1995). These proteins 

also participate in ubiquitin–dependent protein degradation through interaction with 

ubiquitin fusion degradation proteins (UFDs) (Ghislain et al., 1996; Meyer et al., 

2000). Furthermore, it was shown that p97 interacts with the DNA unwinding factor 

(DUF) which is imported into the nucleus (Yamada et al., 2000). This raised questions 

about an involvement of this protein in DNA replication. Nevertheless, since archaea 

do not contain cell organelles or ubiquitin, VAT must fulfill some different cellular 

function from its eukaryotic counterparts, which is up to date still unknown.  

1 187 464 745

N D1 D2

1 187 464 745

N D1 D2
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Figure 1.5 2-D average images of VAT (a) and VATΔN (b). Subtractions of the 

image b from image a gives clear look (c) on position and shape of the N-terminal 

domain (from Rockel et al., 1999) 

 

Connection of the function of CDC48/p97 with protein degradation together with the 

finding that, unlike other archea, the genome of Thermoplasma contains no 

homologues of the proteasomal ATPases PAN (Proteosome Activating Nuclease) led 

to the hypothesis that VAT could functionally substitute PAN (Ruepp et al., 2001). 

This hypothesis is underlined by the fact that VAT was able to refold or unfold 

heterologous protein substrates in vitro, depending mainly on the Mg2+ concentration 

(Golbik et al., 1999). The difference between a ‘low activity mode’ which accelerated 

refolding of the non-permissive substrate penicillinase and ‘high activity mode’ which 

accelerated unfolding of the same substrate were accompanied with differences in 

thermal stability. The results suggested the existence of at least two different 

conformational states in the presence of different concentrations of Mg2+ ions. 

Moreover, the same study showed that the separately expressed N-domain of VAT 

possessed the ability to bind another permissive substrate, cyclophilin, and prevented 

its aggregation.  

Recently, it was shown that VAT had Mg2+ dependent ATP hydrolysis and in vitro 

unfoldase activity against an ssrA-tagged GFP protein (Garega et al., 2005). 

Surprisingly, deletion of the N-terminal domain (VATΔN) increased ATP hydrolysis 

approximately 24 times, and led to an even more drastic increase (250-fold) in 

unfoldase activity. These data indicate the role of the kidney-shaped N-terminal 

domain in the regulation of activity of the full protein, but do not generally exclude 

the idea that this domain might have a second role in substrate or adaptor molecule 
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binding. Up to now the function of the VAT protein in T. acidophilum and the definite 

role of its N-terminal domain remain unclear.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 NMR structure of the N-terminal domain of VAT protein from 

Thermoplasma acidophilum (1CZ5) 

 

1.2.1  Structure of the VAT-N domain  
 

The structure of the N-terminal domain of VAT (VAT-N) was solved in 1999 by 

Coles et al. (Fig 1.6) using NMR spectroscopy. The structure contains two 

subdomains. The first 92 amino acid residues (named VAT-Nn) adopt a double-psi 

barrel fold, and the C-terminal subdomain (VAT-Nc, 93-185) folds into a so-called β-

clam. VAT-N is monomeric and has the kidney-shape that was already proposed from 

electron microscopy data (Rockel et al, 1999). By comparison of electron microscopy 

data on VAT and VAT-ΔN, the position of the N-domains in the hexameric structure 

could be mapped (fig. 1.5). The two subdomains of VAT-N form a hydrophobic cleft 

that points towards the center of the hexameric ring. The orientation and hydrophobic 

character of the cleft perfectly match the requirements for a peptide binding pocket. 
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Yet, unfoldase/chaperone assays with either the VAT-N domain or with the full VAT 

protein (Golbik et al., 1999) never included mapping of the substrate binding site.  

1.2.2  VAT-Nn  
 

The double-psi barrel fold of the N-terminal subdomain (VAT-Nn) is one of the most 

complicated folds in nature. In general the fold consists of a six-stranded β barrel 

capped from both sides by small α-helices. Figure 1.7 shows schematically the 

topology of the fold so that the pseudo-twofold rotational symmetry becomes 

apparent. The double-psi structure is formed by two interlocked motifs, each of which 

comprises a loop and a strand that together resemble the Greek letter psi (Castillo et 

al., 1999), from which comes the name of the barrel. 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 1.7 Topology of the double-psi barrel fold. The two psi-structures are shown 

in red color.  

 

VAT-Nn shows a high degree of symmetry at the levels of secondary and tertiary 

structure, which is reflected in a sequence identity of 38% between the two halves. 

Two loops together with the protruding β-strands are forming a positively charged 

α2

β6 β5 β4

β3

α1

β2β1

α2

β6 β5 β4

β3

α1

β2β1
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cleft (colored blue in the surface model) that is predicted to be a binding pocket for 

possible substrates (Fig 1.8) (Coles et al., 1999). There is some experimental evidence 

from structural and functional work on the UFD1-N domain, a homologue of VAT-N, 

that the region between the two psi-loops is important for the binding of substrate 

proteins (Park et al., 2005). 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.8 Ribbon diagram and surface model of the VAT-Nn double-psi barrel 

(1CZ4) 

 

The same fold is also found in other proteins like aspartate α-decarboxylase, dimethyl 

sulphoxide (DMSO) reductase, endoglucanase V, in other members of the 

CDC48/p97 group and, with a circular permutation, in aspartic proteinases. Pseudo-

twofold symmetry of the double-psi barrel fold suggests that it evolved from a 

homodimer by duplication (Castillo et al., 1999). While symmetry in VAT-Nn is 

recognizable also on the sequence level, other proteins that share the same fold keep 

the fold symmetry but no homology can be detected between the two halves. The 

most simple proteins that were found in a search with a sequence profile based on 

VAT-Nn repeats contained one copy of the repeat sequence and formed the barrel 

fold of VAT-Nn by dimerisation (Fig. 1.9) (Coles et al., 1999). There are two groups 

of such sequences. The first comprises archaeal transcription factors and the sequence 

of their repeat is entirely alignable with the VAT-Nn repeats (colored in blue Fig. 
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1.9). Proteins from this group have a long stretch of amino acid residues in front of 

this repeat which vary in length and which can raise questions of their complete 

structure. Another group included known and hypothetical transcription factors 

(colored in red Fig. 1.9) from bacteria and archaea that contain a circular permutation 

(Grishin, 2001) of the first β-strand to the C-terminus, forming a βαββ-element with a 

more simplified topology then the related VAT-Nn repeat. Based on the conservation 

of two beta strands that flank the α-helix and the conservation of a Gly-Asp motif 

(referred to as GD box), that makes an orthogonal turn in this motif, Coles et al. 

(1999)  proposed an evolutionary path for the double-psi barrel fold. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.9 Alignment of the VAT-Nn sequence with related sequences. Positions in 

the alignment that are highly conserved or belong to the hydrophobic core are marked 

in red and blue, respectively; the conserved GD-box is highlighted by a red box. The 

secondary structure elements are indicated above the alignment; s=strand, h=helix. 

Archaeoglobus fulgidus Af1504 (gi 26409072), Bacillus subtilis Bs 1EKT/AbrBN(gi 

113009), Methanococcus jannaschii Mj0056 (gi 2495770), Pyrococcus horikoshii 

Phs018 (gi 3256814), Methanobacterium thermoautotrophicum Mt6002757 

Thermoplasma acidophilum Ta1217 (gi 16082225), Guillardia theta UFD1 Gth (gi 

13812083) 

 

This path follows the evolution of a simple 40 residue βαββ motif throughout the 

postulated duplication and circular permutation events first to the double-psi barrel 

repeat                  
|--------------------------------------------|

β 1       Ψ β 2   α 1              β 3    
sssssss ssss hhhhh ssssss

VAT-Nn Ta      mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr
KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV 90          

UFD1 Gth mkrleftLKTYPLSFIGKSFLENGDKIVLPQSILNYLNQNDDLNPIIFEILnldnnk
KCHCGVYEFTSD----DGCAYIPYWMFKNLEIN-EGSPLCFIQK [79]        
sssss ssss hhhhh sssss

Af1504      [121] gvDLTFTQKYDYEG----SDVAFLAEDIMNAIGVK-EGEYVSVKK
NGTVNLRVLPYSK---EGFIVVPTWVREKLGVK-VNDFVEVVRR 201         
ssss sss hhhhhh ssss

PhS018           mDVLAKFHTTVHR------IGRIIIPAGTRKFYGIE-QGDFVEIKIVkyegee
PKEGTFTARVGE------QGSVIIPKALRDVIGIK-PGEVIEVLLLghykprn 92          

sssss sssss hhhhhhh sssssss
Mj0056 [ 90] DGAIVVPKKTYHSSE-IIEIIAPMKLREQFNLK-DGDVIKILIKgdkde 136         
Mt1500 [ 75] EGAILFPLKTHHRQG-CLEFVAPVNLRKTLKLR-DGDTVSLDIDtseiqe 122         

sssss sss hhhhhhh ssssssss
Mt6002757  mameDVGVPFSNRLTR----QGNIKVPADLRDALKLK-PGDLLVVEIKkvdrs 48          

ssssss hhhhhhh sssssss sssssss
Bs 1EKT/AbrBN MKSTGIVRKVDE-----LGRVVIPIELRRTLGIA-EKDALEIYVDD—EKIILKKYkpnmt 53          
Ta1217      mtdnkkiMDIARMTKRGA------SVRVTIPKKVLKKLNFK-DEDLIAFYESED-GRIYIDLLk 56

repeat                  
|--------------------------------------------|

β 1       Ψ β 2   α 1              β 3    
sssssss ssss hhhhh ssssss

VAT-Nn Ta      mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr
KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV 90          

UFD1 Gth mkrleftLKTYPLSFIGKSFLENGDKIVLPQSILNYLNQNDDLNPIIFEILnldnnk
KCHCGVYEFTSD----DGCAYIPYWMFKNLEIN-EGSPLCFIQK [79]        
sssss ssss hhhhh sssss

Af1504      [121] gvDLTFTQKYDYEG----SDVAFLAEDIMNAIGVK-EGEYVSVKK
NGTVNLRVLPYSK---EGFIVVPTWVREKLGVK-VNDFVEVVRR 201         
ssss sss hhhhhh ssss

PhS018           mDVLAKFHTTVHR------IGRIIIPAGTRKFYGIE-QGDFVEIKIVkyegee
PKEGTFTARVGE------QGSVIIPKALRDVIGIK-PGEVIEVLLLghykprn 92          

sssss sssss hhhhhhh sssssss
Mj0056 [ 90] DGAIVVPKKTYHSSE-IIEIIAPMKLREQFNLK-DGDVIKILIKgdkde 136         
Mt1500 [ 75] EGAILFPLKTHHRQG-CLEFVAPVNLRKTLKLR-DGDTVSLDIDtseiqe 122         

sssss sss hhhhhhh ssssssss
Mt6002757  mameDVGVPFSNRLTR----QGNIKVPADLRDALKLK-PGDLLVVEIKkvdrs 48          

ssssss hhhhhhh sssssss sssssss
Bs 1EKT/AbrBN MKSTGIVRKVDE-----LGRVVIPIELRRTLGIA-EKDALEIYVDD—EKIILKKYkpnmt 53          
Ta1217      mtdnkkiMDIARMTKRGA------SVRVTIPKKVLKKLNFK-DEDLIAFYESED-GRIYIDLLk 56
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fold and further to the more complex fold of aspartic proteinases which comprise four 

similar motifs (Appendix Fig. 2). In parallel with the evolution of the fold structure, 

proteins function of the proteins changed from DNA binding in transcription factors 

to protein binding and processing in chaperones/unfoldases and aspartic proteinases. 

It was predicted also that members that are at the “beginning of the path” like AbrB-N 

and Ta1217 would fold into a barrel structure without psi-loops.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 A) Ribbon diagram of the NMR structure of the AbrB transcription factor 

from B. subtilis (1EKT; top and side view); B) Crystal structure of the addiction 

antidote MazE a homologue of AbrB (1MVF; top and side view) 

 

When determined by Cavanagh’s group, the structure of the AbrB (Fig. 1.10 A.) 

transcription factor from Bacillus subtilis (Vaughn et al., 2000) differed greatly from 

the predicted barrel-like structure. The solved structure was indeed a dimer, but it was 

A. 

B. 
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formed side-by-side from two three-stranded beta meanders, with alpha helices placed 

over the beta strands and connected to them via long loops. The fold was designated 

new and named „looped-hinge helix”. Discrepancy of the solved AbrB-N structure 

with the prediction (Coles et al., 1999) and moreover with the crystal structure of the 

homology-related MazE (1MVF) (Fig. 1.10 B.), an addiction antidote from E. coli 

(Loris et al., 2003), together with a collection of experimental evidences for the 

postulated evolution of the double-psi barrel fold were one starting point of this 

project.  

 

1.2.3 VAT-Nc  

 
The C-terminal part of VAT-N (VAT-Nc) adopts a so called ‘β-clam’ or CDC48 

domain 2-like fold as defined by SCOP (Structural Classification of Proteins; 

http://scop.mrc-lmb.cam.ac.uk/scop/; Murzin et al., 1995).  As it can be seen from 

Figure 1.11 its six β-strands do not form a real barrel, but rather a clam like structure 

that is closed on one side with an α-helix. Also noticeable is the existence of two very 

long loop regions between β1 and the helix and between β3 and β4 that were not 

resolved well in the final structure (Coles et al., 1999).  
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Figure 1.11 Structure of the VAT-Nc subdomain (1CZ4; top and side view). Strands 

forming the clam like structure are labeled β1-β6.  

In the cluster analysis of proteins from the AAA family mentioned before (Frickey 

and Lupas, 2004), one of the minor clades, named methanogens, showed similarity in 

its N-terminal region with the β-clam domain of the CDC 48 group. This clade, which 

contains sequences from methanogenic archaea and Archeoglobus fulgidus (named 

AMA), shows a clear connection in the ATP module with the neighboring FtsH 

(metalloprotease) clade (Fig. 1.3). Clustering of the N-terminal domains placed 

sequences of the ‘methanogen’ group together with the CDC48 group (Appendix Fig. 

1) and sequence analysis by the structure prediction server 3D-PSSM (Kelley et al., 

2000) showed that these domains are likely to assume the ‘β-clam’ fold. AMA 

proteins differ from the CDC48 group in the absence of the N-terminal double-psi 

barrel domain and of the additional AAA module. Up to now nothing is known about 

this group and their domain organization. Additionally their position in the 

phylogenetic tree makes them interesting for experimental studies. 

1.3  PAN and ARC proteins 

 

The proteasome is a self-compartmentalizing protease, which can be found 

consistently in archaea and eukaryotes (Zwickl, 2002), whereas in bacteria it is found 

only in some members of Actinobacteria (De Mot et al., 1999; Zhang et al., 2004). 

The eukaryotic 26S proteasome degrades ubiquitin-conjugated and certain non-

ubiquitinated proteins in an ATP-dependent manner (Coux et al., 1996, Voges et al., 

1999). The 26S complex is composed of the 20S core proteasome surrounded by two 

19S regulatory complexes, which contain six homologous ATPase subunits each. 

Archaea lack ubiquitin and 26S proteosome, but still their 20S proteasome resembles 

its eukaryotic homolog in architecture and function (Lowe et al., 1995). Proteosome 

Activating Nucleotidases (PANs) are archaeal homologues of the six eukaryotic 

ATPases in the 19S complex of the proteasome. In comparison to their eukaryotic 

counterparts, which form hetero-oligomeric complexes, PAN members are making 

homo-oligomeric complexes. Addition of ATP to a mixture of PAN complex and 20S 

proteasomes stimulates the formation of higher order complexes (Fig. 1.12) similar to 

the eukaryotic 26S proteasome, which is capable of degrading a wide variety of 
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protein substrates (Wilson et al., 2000). It was also shown that the PAN complex 

exhibits an ATP-independent chaperone activity enhanced in the presence of ATP 

(Benaroudj and Goldberg, 2000). Based on structure prediction PAN consists of three 

domains: an N-terminal coiled-coil domain followed by an β-strands rich one and an 

AAA domain at the C-terminus, but the structure of the protein at atomic resolution 

was not yet determined. Phylogenetic analysis of the AAA proteins (Frickey and 

Lupas, 2004) resulted in a well defined proteasomal clade that contained sequences 

from both archaea and eukaryotes (Fig. 1.3). Clustering of the N-terminal domains 

indicated a well defined group with PAN-N domains, which additionally contained N-

domains of ARC proteins. 

 

 

 

 

 

 

 

 

 

Figure 1.12 Transmission electron micrograph of reconstituted 20S proteasome and 

PAN proteins. The arrowhead indicates the cylindrical 20S proteasome assembly with 

apparent assemblies of PAN at both ends (bar represents distance of 20nm) (from 

Wilson et al., 2000) 

 

When discovered in the actinomycete Rhodococcus erythropolis by the group of 

Baumeister (Wolf et al., 1998) ARC was immediately proposed to be a homolog of 

PAN and the 19S subunits of the proteasome. This was based on its domain 

composition that resembles the domain organization of PAN and its eukaryotic 

homologs. The fact that the gene for ARC lies in one of the proteasome operons and 

that no PAN-like sequences except ARC was found in the genomes of those bacteria 
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supports this theory. It was noticed that the same gene organization was also found in 

other members of Actinobacteria that contain 20S proteasomes (Wolf et al., 1998; 

Zhang et al., 2004). In the before mentioned cluster analysis of the N-terminal 

domains of AAA proteins (Frickey and Lupas, 2004), it was found that the N-domain 

of ARC proteins is similar with N-domains of the proteasome subunits. Similarity was 

not only significant in the coiled-coil segments (Wolf et al., 1998) but also in the β-

strand rich interdomains, thus indicating homology. The AAA module of ARC 

proteins grouped in a long-branching clade between D2 and proteosome subunits 

clades (Fig. 1.3). When expressed alone the AAA domain of the ARC protein 

abolished hexamer formation. To restore the hexameric structure of the protein, the 

ATP domain had to be expressed covalently linked to the β-strand rich inter-domain. 

1.4  Aims of this work 

 

The general aim of this study was to perform a structural and biochemical 

characterization of different N-terminal domains of AAA proteins in the light of the 

proposed evolutionary connection between diverse members of the AAA family with 

homologous N-domains. In particular, their similarities were found between PAN and 

ARC, and between p97/CDC48/VAT and AMA, in a bioinformatic analysis of the 

AAA family. To elucidate these relations experimentally, N-domains of ARC and 

PAN as well as their subdomains were expressed and assayed for their possible 

chaperone activity. Structural features that might be a prerequisite for the function of 

these domains were tested through a set of mutations. In the course of this work we 

did the first characterization of A. fulgidus AMA AAA protein was preformed which 

confirmed the relation of its N-terminal β-clam domain with a homologous domain 

from VAT through a series of chimeric proteins.  

Sequence similarity, but structural discrepancy, between VAT-Nn and the 

transcription factor AbrB prompted us to propose and study the origin of the double-

psi barrel fold of VAT-Nn from an ancestral βαββ-motif. In search for experimental 

evidence for this evolutionary path we performed structural and biochemical 

characterization of several natural sequences closely related to either VAT-Nn or 

AbrB.  
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2. Materials 
 

2.1  Chemicals and materials 

 

All chemicals were ordered from Merck, Sigma Applichem, Fluka or Roth. DNA 

oligonucleotides were ordered from Sigma Genosys, Steinheim.  

 

2.1.1 Escherichia coli strains 
 

strain  relevant genotype reference 

DH10B (TOP10) 

 
F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZ 
ΔM15 ΔlacX74 recA1 endA1 araD139Δ 
(ara, leu)7697 galU galK λ- rpsL nupG  
 

Grant et al., 1990; 
Invitrogen 

C41 (DE3) 

 
E. coli B F- ompT hsdSB (rB- mB-) gal dcm 
endA Hte Tetr 

 

Miroux & Walker,  
1996 

BL21 gold (DE3) 
 
E. coli B F- ompT hsdSB (rB- mB-) gal dcm 
 

Weiner et al., 1994 

 

2.2   Buffers and solutions 

2.2.1 Molecular Biology 
 

50xTAE buffer, pH 7.6 

Tris-acetate 2M 

EDTA        50mM 

 

10xTE buffer, pH 7.4 

Tris Cl  100mM 

EDTA    10mM 

10xTBE buffer 

Tris base               0.89M 

Boric acid             0.89M 

EDTA                   20mM 

Loading buffer 

Xilene cyanol   0.1%    Bromphenol blue    0.1% 

SDS                  0.5%    EDTA,pH 8.0         0.1M 

Glycerol  50% 
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10xM9 minimal medium salts (per liter)

68 g   Na2HPO4 

30 g   KH2PO4 

5 g     NaCl 

Bacterial culture media: 

 

LB broth (1l), pH 7.0 

Bactotriptone        10g 

Yeast extract          5g 

NaCl                      10g 

 

Antibiotics stock solution 

50mg/ml of Kanamycin in dH2O 

100mg/ml of Ampicilin in dH2O 

37mg/ml of Chloramphenicol in EtOH 

 

100xVitamin solution (per liter) 

100 mg   Choline chloride        

100 mg   D-Calcium pantothenate   

100 mg   Folic Acid    

200 mg   i-Inositol       

2.2.2 Protein Biochemistry 
 

SDS PAG-Electrophoresis 

Running gel buffer               Stacking gel buffer                 Electrophoresis buffer 

1.5 M  TRIS/HCl, pH 8.8    0.5 M  TRIS/HCl, pH=6.8       25 mM  TRIS/HCl, pH=8.3 

0.4 %   SDS                          0.4%   SDS                              192 mM glycin 

                                                                                             0.1%  SDS     

Sample buffer 

130 mM    TRIS/HCl, pH 6.8 

   10%        SDS 

   10%        β-mercaptoethanol 

   20%        glycerol 

0.06%        bromphenolblue 

     2%        LiDS

LB agar 

1.5% Agar in LB broth 

LB-Kan (Amp, Chl) agar 

50μg Kan in ml of LB agar 

100μg Amp in ml of LB agar 

37μg Chl in ml of LB agar 

 

 

Coomassie staining solution                             

0.2 %  Coomassie Brilliant-Blue G 250   

10 %   acetic acid & 50 %   methanol 

Destaining solution 

10 %   acetic acid 

30 %   EtOH 

100 mg   Nicotinamide       

100 mg   Pyridoxal hydrochloride      

10   mg   Riboflavin       

100 mg   Thiamine hydrochloride 
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GST elution buffer (D) 

50 mM TRIS/HCl pH 8.0 

10 mM glutathione 

 

His-tagg protein purification 

Lysis (loading) buffer (A)  

30 mM    TRIS/HCl, pH 7.9 

300 mM  NaCl 

 

Elution buffer (C) 

30 mM    TRIS/HCl, pH 7.9 

300 mM  NaCl 

1 M         Imidazole     

 

Loading buffer* (A1) 

50 mM    TRIS/HCl, pH 7.9 

30 mM    Na-phosphate, pH 7.9 

8M          Urea 

Elution buffer* (C1) 

50 mM    TRIS/HCl 

30 mM    Na-phosphate, pH 4.7 

8 M          Urea 

 

1xPBS buffer (per liter) 

8 g       NaCl 

1.15 g  Na2HPO4 

0.2 g    KCl 

0.2 g    KH2PO4 

 

 

 

 

 

Phenylmethansulfonylchloride(PMSF)        2.2 mg/ml    (stock) 

 

 

Washing buffer (B) 

30 mM    TRIS/HCl, pH 7.9 

300 mM  NaCl 

50 mM    Imidazole 

Washing buffer* (B1) 

50 mM    TRIS/HCl 

30 mM     Na-phosphate, pH 6.2 

8M           Urea 

*Under denaturing conditions 

Chaperone assay buffer 

30mM     HEPES, pH 7.2 

+ 5mM    MgCl2 

+120mM KCl 

30xthrombin cleavage buffer (TCB) 

1.5 M     TRIS/HCl pH 8.0 

3 M        NaCl 

75 mM   CaCl2 
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BCA assay Solution A (Pierce) 

Contains BCA, sodium carbonate, sodium tartrate and sodium bicarbonate in 0.1 M 

NaOH (pH 11.25) 

 

BCA assay Solution B 

4% CuSO4 x 5H2O 

Bradford reagent 

100 mg   Coomassie Brilliant Blue G-250 

50 ml      Ethanol (95%) 

100 ml    phosphoric acid (w/v) (85%) 

water up to 1 l 

 

Western blot 

Towbin buffer                                                                    TBS-buffer   

    25 mM   TRIS-HCl, pH 7.5                                             50 mM    TRIS-HCl 

  192 mM   Glycin                                                              150 mM    NaCl 

       29 %    Methanol 

0.0375 %    SDS 

 

M-TBS                                                                               TBS-T 

5 %   milk powder in TBS buffer                                       0.1 %      Tween 20 in TBS 

 

Malachite Green Solution 

0.3 g Malachite Green Oxalate  

2    g Sodium Molybdate  

0.5 g Triton X-100 

Bring to 1 liter total volume with 0.7 M HCl. Store in dark bottle at 4°C 

 
 
 
 
 
 
 
 
 
 



Materials 

 21

 

2.3  Plasmids 

pET30b 

Source: Novagen

pET28b
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Source: Amersham

pT7-7 vector

PT7
MCS

ColE
1 o

ri

Am
p r

NdeI EcoRI SmaI BamHI SalI HindIII ClaI

pT7-7 vector

PT7
MCS

ColE
1 o

ri

Am
p r

NdeI EcoRI SmaI BamHI SalI HindIII ClaI
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Source: Invitrogen 
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2.4 Oligonucleotides 

 

Name  Sense Sequence (5’→ 3’) Comment 

Sequencing primers for plasmids    

T7 promotor s TAA TAC GAC TCA CTA TAG GG pET30, 
pET28 

T7 terminator as GCT AGT TAT TGC TCA GCG G pET30, 
pET28 

pGEX prom. s CCA GCA AGT ATA TAG CAT GG pGEX-4T-1 

pGEX 
termin. 

as CCG GGA GCT AGA GCA TGT GTC GG pGEX-4T-1 

VAT-Nn project primers    

Fvatnn1 s TCT AGA TAA GAA GGA GTA TAG GAT CCA TGG AAT CAA ACA ACG G    XbaI, Rbs, 
BamHI 

Rvatnn1 as CTC GAG CAT ATG GAT CCA TCT CCT TCT TGT GAT TAA CGA ACT  TTT TCG 
AT   

XhoI, NdeI, 
BamHI, Rbs 

Fvatnn1db s GCT CTA GAA AGA AGG AGA TAT AGG ATC CAT GGA ATC AAA CAA CGG  XbaI, Rbs, 
BamHI 

Rvatnn1db as GGG AAT TCC ATA TGA CGA ACT TTT TCG AT NdeI 

Rvatnn1db as GGG AAT TCC ATA TGA CGA ACT TTT TCG AT NdeI 
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Name  Sense Sequence (5’→ 3’) Comment 

Fvatnn1nw s GGA ATT CCA TAT GAA CGG TAT CAT CCT CCG TGT TGC A NdeI 

Rvatnn1nw as CCC AAG CTT AAC GAA CTT TTT CGA T HindIII 

R-per1va- as CCG CTC GAG TTA TGT CAT GTT TGG TTT GTA TTT TTT TAG TAT TAT TTT TTC 
ACG AAC TTT TTC G 

XhoI 

F-vatnn2 s CGC CAT ATG GTT CGT AAA ACT GTT GGT CGT G NdeI 

F-gstvatnn2 s CGG GAT CCG TTC GTA AAA CTG TTG GTC BamHI 

R-gstvatnn2 as GGC TCG AGT TAA ACT TTA CGA ACT TTT AC XhoI 

Rvatnn2his as CGC CCC AAG CTT AAT GAT GAT GAT GAT GAT GGC CGC CAA CTT TAC GAA C HindIII 

Rvatnn2 as CCC AAG CTT AAA CTT TAC GAA CTT TTA C HindIII 

VnnM F 1 s ATG GAA TCA AAC AAC GGT ATC ATC CTC CGT GTT GCA GAA GCA AAC TC AA 
CTG ATC CG 

 

VnnM R 1 as AAG CAG ACG TCG CGA TGA TTC ATC AAC ACG GAT ACG TGA CAT ACC CGG 
ATC AGT TGA G 

 

VnnM F 
2 

s GTT GAT GAA TCA TCG CGA CGT CTG CTT GAT GCA GAA ATC GGT GAT GTA 
GTT GAA ATC G 

 

VnnM R 2 as ACG TGC ACG ATA AAC ACG ACC AAC AGT TTT ACG AAC TTT TTC GAT TTC 
AAC TAC ATC 

 

VnnM F 3 
 

s GGT CGT GTT TAT CGT GCA CGT CCT GAA GAC GAA AAT AAA GGT ATT CTC 
CGT GTT GAC 
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VnnM R 3 as CCG CAA TTA TTA CGC ATA ACT GAG TCA ACA CGG AGA ATA CC  

Name  Sense Sequence (5’→ 3’) Comment 

VnnM F 
4 

s TCA GTT ATG CGT AAT AAT TGC GGT GCA TCA ATC GGT GAC AAA GTA AAA 
GTT CG 

 

VnnM 
R4 

as GCC CAA GCT TAA ACT TTA CGA ACT TTT ACT TTG TCA CC HindIII 

VnnMBet
a R1 

as GAT TCC GGG ATG ATG ATA CGA CCC ATA CCC GGA TCA GTT GAG TTT GCT 
TCT GC 

 

VnnMBet
a F2 

s GGT ATG GGT CGT ATC ATC ATC CCG GAA TCA TCG CGA CGT CTG CTT GAT 
GCA GAA ATC G 

 

VatwlF1 s GGA ATT CCA TAT GGA ATC AAA CAA CGG TAT CAT CCT CCG TGT TGC AGA 
AGC AAA CAT GT 

NdeI 

VatwlF2 s CCG TGT TGC AGA AGC AAA CAT GTC ACG TGT TCG TCT CGA TG  

VatwlF3 s GTT TAT CGT GCA CGT AAA GGT ATT GTT CGT ATT GAC TCA G  

VatwlgstF s CGC GGA TCC GAA TCA AAC AAC GGT ATC ATC CTC CG BamHI 

VatwlgstR as GCC GCT CGA GTT AAA CTT TAC GAA CTT TTA CTT TGT CAC C XhoI 
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2ndwlF1   s GGA ATT CCA TAT GAA AAC TGT TGG TCG TGT TTA TCG TGC ACG TAA AGG 
TAT TGT TCG 

NdeI 

2ndwlF2   s CGT GCA CGT AAA GGT ATT GTT CGT ATT GAC  

2ndwlR as GCC CAA GCT TAA ACT TTA CGA ACT TTT ACT TTG TCA CCG HindIII 

2ndwlRdb as CTG TTT TGC GTG GTT CTT CGC CCT CAA CTT TAC GAA CTT TTA CTT TGT CAC 
C 

 

Cper2F    s GGA ATT CCA TAT GGC ACG TCC TGA AGA CGA AAA TAA AGG  

Name  Sense Sequence (5’→ 3’) Comment 

Cper2R1 as AAC TTT ACG AAC TTT TAC TTT GTC ACC G  

Cper2R2 as GCC CAA GCT TAA CGA TAA ACA CGA CCA ACA GTT TTA CGA ACT TTA CGA 
AC 

HindIII 

CperCR as GCC CAA GCT TAA CGA TAA ACA CGA CCA ACG CAT TTA CGA ACT TTA CGA 
AC 

HindIII 

VnncbetaTaR as CCA AGC TTA TTT GAG GAG GTC GAT ATA GAT ACG ACC GTC TTC AAC TTT 
ACG AAC TTT TAC 

 

DbNncwl F1  s CAA TCG GTG ACA AAG TAA AAG TTC GTA AAG TTG AGG GCG AAG AAC CAC 
GCA AAA CAG TAG 

 

DbNncwl R1 as ACA CTA TCT ATT CTT ACT ATT CCT TTT CTT GCT CTA TAT ACT CTT CCT ACT 
GTT TTG CG 

 

DbNncwl F2 s GAA AAG GAA TAG TAA GAA TAG ATA GTG TAA TGA GAA ATA ATT GTG GAG 
CAA GTA TAG G 

 

DbNncwl R2 as GCC CAA GCT TAT ACT TTT CTT ACT TTT ACT TTA TCT CCT ATA CTT GCT C HindIII 
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VAT-Nn related project primers    

Wid F1 s GGA ATT CCC ATA TGG TTC GTA AAA CAG TTG GTC GTG TTT ATC GTG CAC 
GTC CTG AAG ACG 

NdeI 

Wid R1 as CCT AAT TCA TCA ACT TTA CGT ACA ATA CCA GTA GAT TTG CCG TTA ACT 
TTA CGA ACT TTT ACT TTG TCA CCG 

 

Wid F2 s CGG TGA CAA AGT AAA AGT TCG TAA AGT TAA CGG CAA ATC TAC TGG TAT 
TGT ACG TAA AGT TGA TGA ATT AGG 

 

Name  Sense Sequence (5’→ 3’) Comment 

Ta1217-F1 s TGG CCA TAT GCA TCA TCA TCA TCA TCA TGG CGG TAC TGA CAA CAA A NdeI 

Ta1217-R1 as GGT CAT GCG GGC GAT ATC CAT AAT TTT TTT GTT GTC AGT AC  

Ta1217-F2 s CCG CAT GAC CAA ACG CGG TGC TAG CGT CCG TGT AAC CAT TCC G  

Ta1217-R2 as TTC ATC TTT GAA GTT CAG TTT TTT CAG TAC TTT TTT CGG AAT GGT TAC  

Ta1217-F3 s ACT TCA AAG ATG AAG ATC TGA TTG CAT TTT ATG AAA GCG AAG ATG GCC  

Ta1217-R3 as GCC AAG CTT ATT TCA GCA GGT CGA TGT AAA TGC GGC CAT CTT CG HindIII 

Mt1500gst-F1 s GGA TCC GAA GGC GCC ATC CTG TTC BamHI 

Mt1500-F1 s CAT CGC ATA TGC ATC ATC ATC ATC ATC ATG GTG GTG AAG GCG CC NdeI 

Mt1500-R1 as CGG TGA TGG GTT TTC AGC GGG AAC AGG ATG GCG CCT TCA  

Mt1500-F2 s ATC CTG TTC CCG CTG AAA ACC CAT CAC CGC CAG GGC TGT CTG GAA TTT 
GTG GCG CCG GTG A 

 

Mt1500-R2 as CGC GCA GTT TCA GGG TTT TAC GCA GGT TCA CCG GCG C  

Mt1500-F3 s CCT GCG TAA AAC CCT GAA ACT GCG CGA TGG CGA TAC CGT GAG CCT GGA  
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TAT CGA CAC C 

Mt1500-R3 as TGC AAG CTT ATT CCT GAA TTT CGC TGG TGT CGA TAT CC HindIII 

Mt6002757gst-
F1 

s GGA TCC GCG ATG GAG GAT GTT GGC BamHI 

Mt6002757-F1 s ATG TCA TAT GCA TCA TCA TCA TCA TCA TGG CGG CGC GAT GGA GG NdeI 

Mt6002757-R1 as GGC GGT TGC TGA ACG GCA CGC CAA CAT CCT CCA TCG C  

Name  Sense Sequence (5’→ 3’) Comment 

Mt6002757-F2 s GTT GGC GTG CCG TTC AGC AAC CGC CTG ACC CGC CAG GGC AAC ATT AAA 
GTG CCG 

 

Mt6002757-R2 as CAG TTT CAG CGC ATC ACG CAG GTC CGC CGG CAC TTT AAT G  

Mt6002757-R3 as TGC AAG CTT AGC TGC GGT CAA CTT TTT TGA TCT CCA CC HindIII 

Mt6002757-F3 s CGG ACC TGC GTG ATG CGC TGA AAC TGA AAC CGG GTG ACC TGC TGG TGG 
TGG AGA TCA AA 

 

MT60errF s ATG GCG ATG GAG GAT GTT GGC GTG CCG TTC AGC AAC CGC CTG ACC CGC 
CAG GGC 

 

Mt60gstR as GGC GAG CTC TTA GCT GCG GTC AAC TTT TTT GAT CTC CAC C XhoI 

Mt60newF1 s GGA ATT CCA TAT GGC GAT GGA GGA TGT TGG CGT GCC G NdeI 

Mt60dbR1 as GGA ATT CCA TAT GGC CGC TGC GGT CAA C NdeI 

MT60dbgstF s CGC GGA TCC GCG ATG GAG GAT GTT GGC G BamHI 

MT60dbgstR as CCG CTC GAG TTA GCT GCG GTC AAC TTT TTT GAT CTC CAC C XhoI 

Mt60dbF s TCT AGA AAG AAG GAG AGT CCG AGC TT A TGG CGA TGG AGG ATG XbaI, Rbs 
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PhF1 s CGC CAT ATG CAG AAC CAG CAG AAA ACC GTT GAA CCG CTG GCT AAA TTC 
CAT GCT 

NdeI 

PhR1 as AAC CGG AAC AAC CAG CTG ACC TTT GAT GTT AAC GCT AGC ATG GAA TTT  

PhF2 s GGT CAG CTG GTT GTT CCG GTT AAA GAC CGT GAA GTT TTC GGT CTG AAA 
CGT GGT GAC ATC CTG GAA ATC ATC GTT 

 

PhR2 as GAT ATG GAT TTT ACC GTT GAT AAC GTC GAA GCT ACG AAC GAT GAT TTC C  

Name  Sense Sequence (5’→ 3’) Comment 

PhF3 s GTT ATC AAC GGT AAA ATC CAT ATC AAA AAA CGT GCT TAC ATC CTG GTT 
CGT CTG AGC AGC AAA GGT CTG ATC ACC ATC 

 

PhR3 as CGG GCT GAT ACC CAG TTC ACG ACG AAC TTC TTC CGG GAT GGT GAT CAG  

PhF4 s CGT CGT GAA CTG GGT ATC AGC CCG GGT GAC ACC GTT GAA GTT CTG CTG 
GTT GGT TTC CAT AAA TTC GAC GAA CTG 

 

PhR4 as GAT CAG TTT AGC GAT CTG TTT ACC TTT TTC GGT AAC CAG TTC GTC GAA  

PhF5 s GGT AAA CAG ATC GCT AAA CTG ATC CAG GCT AAC ACC CAC ATG CGT CTG 
ATC ACC AGC GAA GAA GAA AAA ACC ATC 

 

PhR5 as CCC AAG CTT AAA CGT AGT AGG TAC GGC TTT TTT CGA TGA TGG TTT TTT C HindIII 

MjvatF s GGA ATT CCA TAT GGT GAA ATT GAT GAT TAT TGA GGG AGA AGT AGT TTC 
AGG 

NdeI 

MjvatR as GCC CAA GCT TAT TCA TCT TTA TCT CCC TTA ATT AGT ATT TTT ATA AC HindIII 

AbrB and related project primers 
 

   

AB F s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TTT TAT GAA ATC TAC TGG NdeI 
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TAT TGT ACG 

AB R as GCC CAA GCT TAG TTT GGT TTA TAT TTT TTA AGG ATG ATT TTT TCA TCA TC HindIII 

SpF s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TAA AGC AAC CGG TAT CGT 
ACG TCG TAT TGA TGA CTT AGG 

NdeI 

SpR as CCG CTC GAG TTA CTG TTC CAT TTG ACG AGC CAA AAA TCC AGC TGC TGT TTC AAC 
GGC 

XhoI 

Name  Sense Sequence (5’→ 3’) Comment 

SpcF s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGG AGA CTT TGC AAA GGA 
GTA TGC AGA CGC GCT TTA CGA CAG CC 

NdeI 

forSpVOp s CGT AAA TTT TGT TAC TCT CTG GTG TAT ATT ACA TTT GAT GTG ACG GAT 
ACT AAT TTC AAG CGA GGC GGA AGG TAC ATA AAG TAA CTG CTT TAG GTC 
TTT 

 

revSpVOp as AAT ACG ACG TAC GAT ACC GGT TGC TTT CAT CTC TGG TGC CTC TCT TTC ATT TGA 
TGG TAT ATA CAT GTG GGA AAG ACC TAA AGC AGT TAC TTT ATG TAC 

 

Bofc4For s GGT GCT CAT GAT TAT CGC CTG CTG CTA CGG CGC GGC TTT AGC AGG G  

Bofc2For s GGC GTG ATT TGG ATC TTT GCG GCA TTG TAT TTT TTC AGT GCC TTT CTG 
ACG 

 

BofcRev as GCC AAG TGC GCG GGA AGG AGC TCC TAT TAA AAA TAC TGC CGC  

Per2F1       
 

s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGC GGG CCA AGA GCA GCA 
GGT TCG CGT G 

NdeI 

Per2R1       
 

as CAT CAC GGT CAA TGC CGG CAC GTT TCA GCG CAG AAA CCG GAA TAG ACA 
CGC GAA CCT GC 

 

Per2F2       s CGG CAT TGA CCG TGA TGA TCA GCT GCA GCT GAA AGT TCG CAA CGA CGC  
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 CTT AGT TCT GG 

Per2R2      
 

as AAG CTT AGT ACT GTT GCC ATT GCG GCT GGC GCG GTT TAA TTT TCT CCA GAA CTA 
AGG CGT CGT TGC G 

HindIII 

Per1F1 s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TTC TAA AAC CCC GTA CCA 
GCT GAC CCT 

NdeI 

Name  Sense Sequence (5’→ 3’) Comment 

Per2Rshort as CCC AAG CTT ACT GGC GCG GTT TAA TTT TCT CCA GAA CTA AGG HindIII 

Per1R1 as GCT GGT TAT GTT TCA GGT GCA GTT CAG ACA CAA TTT CAT CCG GCA GGG 
TCA GCT GGT ACG 

 

Per1F2 s GCA CCT GAA ACA TAA CCA GCC GCT GAA CCT GAC CCT GCG TAA CGG CCA 
GCT GAT CAT TC 

 

Per1R2 as GCC CAA GCT TAG GTC TGG CGC TCG TTC GGA TTG TTG GTC TGT TGA ATG 
ATC AGC TGG C 

HindIII 

F1op s CTT CAT CAA TCG TTC CTC CTC ATA ATT GTG GTC TCC CTG TTT AGG GTA 
CCT GAA ATT AAC AGT CAG GAC AAT CAA TAT ATC ATA TCT TTT GC 

 

R1op as CAT AAT TTA TCA GAG CGG AGG AAA GAT ATT GCT CCC ACA CAT ACT GAA TTA TTA 
TCA TCG TAA TCT GTT TTT GCA AAA GAT ATG ATA TAT TGA TTG TCC 

 

F2op s CAG TAT GTG TGG GAG CAA TAT CTT TCC TCC GCT CTG ATA AAT TAT GTA 
AAG ATA CAA ATT GAT TTA TAT AAA GCG CTT AAA AAT TAG TAT AAG 

 

R2op as GTACAAGTATTATATCATCTTGGATGTTCCGTGAAAAAAATACTGTATAGTAAATAACTTATACTAATTTTTAA
GCGCTTTATATAAA 

 

F3op s CAC GGA ACA TCC AAG ATG ATA TAA TAC TTG TAC TAA ATA AAT ACA AAT 
CGC ATT ATG CCT TCT GTA TTT ATA AAC ATC AAT TTT CAT CTC GAG 
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R3op as CGA TAT TTC TTA TAG ATG AAA TGA ATT GAA CGG CGG GCA  AAT ATT TGC AAT ATT 
AAA CGA CAG GTA GTA TCA ATT TTT TCT CGA GAT GAA AAT TGA TG 

 

    

Name  Sense Sequence (5’→ 3’) Comment 

VAT-Nc and related project primers    

V-NCF s GGG AAT TCC ATA TGC GTA CCG AAA TCG CTA AAA AGG TTA CTC TGG CA NdeI 

V-NCR as GCC CAA GCT TAA TGG TGA TGG TGA TGG TGA CCA CCT TCC TCG AGA AC HindIII 

RV-NCwH as GCC CAA GCT TAT TCC TCG AGA ACT TCT GAA GCC GG HindIII 

AfclF s GGA ATT CCA TAT GGC AAA GAG GGA AAC GGC TGA GTT GAG ATA CCT GAT 
AG 

NdeI 

AfclhisF s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGC AAA GAG GGA AAC GGC 
TGA G 

NdeI 

AfclR as GCC CAA GCT TAG TCT CTG ACA ATT TCG GTC TCG ATA ACT CTG GGG TCG 
CTT TCC 

HindIII 

MjclF s GGA ATT CCA TAT GAG TAA AAT TGG ATT TAA TCC AAT AAA AAT AAA ATC 
TTT TTC 

NdeI 

MjclR as GCC CAA GCT TAT TTT TTA AAC TGT GTT CTA AGA ACT TTT TTA GGA GTT 
TGT AA 

HindIII 

AfAMAfll R as GCG CGG ATC CTT AAA CGA ACA TTT GCT TGG GCG GCT GTC TTG AGG G BamHI 

AfAM3A F s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGT TAT CAC GCT GGA CGA 
TGT GGT TGG G 

NdeI 

CC-AMA R as CTC AAC TCA GCC GTT TCC CTC TTT GCC GGC GGC TGA CCG AGT CTG TCG  
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ACT TCT TC 

CC-AMA F s GTC GAC AGA CTC GGT CAG CCG CCG GCA AAG AGG GAA ACG GCT GAG TTG 
AGA TAC C 

 

Name  Sense Sequence (5’→ 3’) Comment 

AfAMAMF1 s GGT GAA GGC CCG AAG GTC TTT GAT GTT TAC GCT AAA GAC CAG TGG AAG 
GGG GAG TTT GTG 

 

AfAMAMF2 s GGA ATT CCA TAT GGC AAA GAG GGA AAC GGC TGA GTT GAG ATA CCT GAT 
AGT TCG TCC TTT GGG CTA CCC CCT CAA GGC GAG CTA TCA CGG TGA AGG 
CCC  

 

V-NC6F1 s GAA TAT CCC CAG GTG GAT AAT ATT GAA GAA TAT GTT CAA CGT GCA CTG 
ATC CGT CGT CCG ATG CTG G 

 

V-NC6F2 s GGA ATT CCA TAT GGT TAA AAA GGT TAC TCT GGC ACC GAT CAT TCG TAA 
GGA TCA GCG TCT GAA ATT TGG TGA AGG CGA ATA TCC CCA GGT GGA TAA T 

 

AfAMA Y-A s GCA AAG AGG GAA ACG GCT GAG TTG AGA TAC CTG ATA GTT CGT CCT TTG 
GGC GCA CCC CTC AAG GCG AGC TAT CAC GAA TAT CCC  

 

AfAMA L-A s GCA AAG AGG GAA ACG GCT GAG TTG AGA TAC CTG ATA GTT CGT CCT TTG 
GGC TAC CCC GCA AAG GCG AGC TAT CAC GAA TAT CCC  

 

AfAMA YL-A s GCA AAG AGG GAA ACG GCT GAG TTG AGA TAC CTG ATA GTT CGT CCT TTG 
GGC GCA CCC GCA AAG GCG AGC TAT CAC GAA TAT CCC  

 

AfAMA delta2 s AAG GCG AGC TAT CAC GAA TAT CCC CAG GTG GAT AAT CCG  

AfAMA delta1 s GCA AAG AGG GAA ACG GCT GAG TTG AGA TAC CTG ATA GTT CGT CCT TTG 
AAG GCG AGC TAT CAC GAA TAT CCC CAG G 

 

HMVNC_For s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGC TCC CGT TGC GGA CCG NdeI 
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TAT CGT GCT CTC GTT TGC CCC CAG CGC CGC CGA TGG GGA C 

HMVNC_Rev as GCC CAA GCT TAT GGC GCG GTC TCG GCG TCG TTA CGG GGA TGA ATG GCA AGC GTC GTT 
GCG TCG CC 

HindIII 

Name  Sense Sequence (5’→ 3’) Comment 

F1-AMAlo s AAG GAT CAG CGT CTG AAA TTT GGT GAA GGC AAG GTC TTT GAT GTT TAC 
GCT AAA GAC CAG TGG AAG GGG G 

 

F2- AMAlo s GGA ATT CCA TAT GGC AAA GAG GGA AAC GGC TGA GTT GAG ATA CCT GAT 
AGT TCG TAA GGA TCA GCG TCT GAA ATT TGG TGA AGG C 

 

For1-VatAMA s CCT TTG GGC TAC CCC CTC AAG GCG AGC TAT CAC GAA TAT CCC CAG GTG 
GAT AAT CCT ATT GAA GAA TAT GTT CAA CGT GCA CTG ATC CGT CGT CCG 

 

For2-VatAMA s GGA ATT CCA TAT GGT TAA AAA GGT TAC TCT GGC ACC GAT CAT TCG TCC 
TTT GGG CTA CCC CCT CAA GGC GAG CTA TCA CGA ATA TCC CCA GG 

NdeI 

VAMA F1 s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGT TAA AAA GGT TAC TCT 
GGC ACC GAT CAT TCG TCC TTT GGG CTA CCC CCT CAA GGC G 

 

VAMA R1 as GCC TTC CTC TTT GCC TCT TCC TGC CCA ACC ACA TCG TCC AGC GTG ATG TCT 
CTG ACT TCC TCG AGA ACT TCT GAA GCC GG 

 

VAMA F2 s CCG GCT TCA GAA GTT CTC GAG GAA GTC AGA GAC ATC ACG CTG GAC GAT 
GTG GTT GGG CAG GAA GAG GCA AAG AGG AAG GC 

 

AmconF s GGA AAG CGA CCC CAG AGT TAT CGA GAC CGA AAT TGT CAG AGA CAT CAC 
GCT GGA CGA TGT GGT TGG GCA GGA AGA GGC AAA GAG GAA GG 

 

FP1500   s GGA ATT CCA TAT GGA GGG TGT CAT AAT GTC GGA GCT GAA GTT AAA GC NdeI 

AmconR as CCT TCC TCT TTG CCT CTT CCT GCC CAA CCA CAT CGT CCA GCG TGA TGT CTC 
TGA CAA TTT CGG TCT CGA TAA CTC TGG GGT CGC TTT CC 
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FP1500   s GGA ATT CCA TAT GGA GGG TGT CAT AAT GTC GGA GCT GAA GTT AAA GC NdeI 

FPHis1500   s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGA GGG TGT CAT AAT GTC 
GGA GCT GAA G 

NdeI 

Name  Sense Sequence (5’→ 3’) Comment 

RP1500 as GCC CAA GCT TAC GTT CTG ATA AGG GTA AGT TTT TGT TCA TCA ATT ATC HindIII 

RP1500Xh as CCG CTC GAG TTA CGT TCT GAT AAG GGT AAG TTT TTG TTC ATC AAT TAT C XhoI 

RPh15AMA  as GCC CAA GCT TAA GGA TGG GTA ACA AGC GTT ATT TTC GTC CTA TCT TCT 
ACC 

HindIII 

FPh15OB s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGT TGA TGT ACT AGA GGC 
TAA AAT TAA GG 

NdeI 

CCPh15Rev as CAG GTT TTC ATC CAG GAT CAC ATC CTT AAT TCC TCC CGA CGG CGG CTG ACC GAG TCT 
GTC GAC TTC TTC ACG AAG TGC G 

 

Ph15CCFor s GTC GAC AGA CTC GGT CAG CCG CCG TCG GGA GGA ATT AAG GAT GTG ATC 
CTG GAT GAA AAC CTG ATA GTG GTA ATA ACT G 

 

EndoF s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TAA CAA AAA CTT ACC CTT 
ATC AGA ACG TGA AAG GGC CCT TAA GAT AAT AAA GAT TCT C 

NdeI 

EndoR as GGC CAA GCT TAT TGG CTA GAG GTA TCC TGA ACG CCA ATT TTT GGA CAG AGT CCC C HindIII 

HVVncF s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TAC GAC CGA ACC GAC GGC 
GAC CCG CGT GGT CGT CTC C 
 

NdeI 

HVVncR as GCC CAA GCT TAC CGCT GTT CCG CCG TCG AGG AGA CCG GCC CGT CCG CGC TCT GGA CGC HindIII 

CC-F s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TAG CTC GAC AGA GAA CCC NdeI 
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GGA TTC GG 

Name  Sense Sequence (5’→ 3’) Comment 

CC-VNC R as AAC CTT TTT AGC GAT TTC GGT ACG CGG CGG CTG ACC GAG TCT GTC GAC 
TTC TTC 

 

CC-VNC F s GAA GTC GAC AGA CTC GGT CAG CCG CCG CGT ACC GAA ATC GCT AAA AAG 
GTT ACT CTG GC 

 

AfNCthioF  CAT GCC ATG GCA AAG AGG GAA ACG GCT GAG TTG AGA TAC CTG ATA GTT 
CGT CCT TTG GG 

NcoI 

AfNCthioR  GCT CTA GAG CTT AGT CTC TGA CAA TTT CGG TCT CGA TAA CTC TGG GG Xba1 

PAN and ARC related project primers    

ForPyr s GGG AAT TCC ATA TGC ATC ATC ATC ATC ATC ATG TGA GTG TAA TGA GTG 
GTG ACG AAG 

NdeI 

RevPyr as CGC CCA AGC TTA TTC TAT GAC CTC AAA TCC CAG TAC TG HindIII 

Arch fulg F s GGG AAT TCC ATA TGC ATC ATC ATC ATC ATC ATG GCG ATA GCG AAA TAC 
AAT ACC TCC 

NdeI 

Arch fulg R as CGC CCA AGC TTA CTC CTC CAC CTC AAA GCC GTA AAC C HindIII 

Met. Jan. F s GGG AAT TCC ATA TGC ATC ATC ATC ATC ATC ATG TTT TTG AAG AAT TTA 
TTT C 

NdeI 

Met. Jan. R as CGC CCA AGC TTA TTC ATC AAC TTC CAT TGC TTT AGC HindIII 

MjPNG F s CGC GGA TCC GTT TTT GAA GAA TTT ATT TCA ACT GAA TTG AAG BamHI 

APaFll R as CCG CTC GAG TTA AAC GAA CAT CAC TCC CTT CAA ATC GGG TAT CGG AGT CGT CTT CTT 
GAG C 

XhoI 
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Name  Sense Sequence (5’→ 3’) Comment 

AfPthioF s CAT GCC ATG GGC GAT AGC GAA ATA CAA TAC CTC CTG GAA AAG TTG AAG 
AAG CTG G 

NcoI 

AfPthioR as GCT CTA GAG CTT ACT CCT CCA CCT CAA AGC CGT AAA CCA TTG GGT CTT 
TGG 

XbaI 

APccF s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TCC GCC ATT ACT CGT AGG 
TGT TGT TTC 

NdeI 

CC forw s CGA AGA TCT GGT TCT CGA GGA ACC GCC GAG CTC GAC AGA GAA CCC GGA 
TTC GGT TGC GG 

 

CC rev   as GCC CAA GCT TAC TGA CCG AGT CTG TCG ACT TCT TCA CGA AGT GCG ATG 
AGC TGC 

HindIII 

ID forw s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TCC GCC GAG CGG TTA CGG 
AGT CCT TCT C 

NdeI 

ID rev   as GGT TCT CTG TCG AGC TCG GCG GTT CCT CGA GAA CCA GAT CTT CGA CCT 
CGG CCT TCG G 

 

OB1 rev as GCC CAA GCT TAC TGC TCG TAG GTG CCG GCC TCG ACG ATG GTG AGT GCC  

Farcpancc s GGC TGA GAA GTG AAG TTG AAA GAT TAC GCT CAC CGC CGA GCG GTT ACG 
GAG TCC TTC TCT CGG TAC ACG AGG 

 

Rarcpancc1 as CCT CGT GTA CCG AGA GAA GGA CTC CGT AAC CGC TCG GCG GTG AGC GTA ATC TTT CAA 
CTT CAC TTC TCA GCC 

 

Rarcpancc2 as CCG CTC GAG TTA TTC CTC GAG AAC CAG ATC TTC GAC CTC GGC CTT CGG GAT GCG CTC XhoI 
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Name  Sense Sequence (5’→ 3’) Comment 

Fpanarccc s CGT GAA GAA GTC GAC AGA CTC GGT CAG CCG CCG TTA CTC GTA GGT GTT 
GTT TCA GAC ATA CTT GAA GAC GG 

 

Rpanarccc as CCG TCT TCA AGT ATG TCT GAA ACA ACA CCT ACG AGT AAC GGC GGC TGA CCG AGT CTG 
TCG ACT TCT TCA CG 

 

FullNosFw s GGG AAT TCC ATA TGC ATC ATC ATC ATC ATC ATG ACG ATA TTG ATT TAC 
AGA ACC TTG ACA GTT GG 

NdeI 

NosRev as CGC CCA AGC TTA CCC ACC ACT ACG AAT ATG TAG GCG AGG CTT AAC TTT 
AGC 

HindIII 

NosOBFw s GGG AAT TCC ATA TGC ATC ATC ATC ATC ATC ATT TGG AAT ATG GGG TCT 
TTC TCG GTA AAT GCC C 

NdeI 

GcnAfPanF1 s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TAG AAT GAA ACA ACT TGA 
AGA CAA GGT TGA AGA ATT GCT TTC GAA AAA TTA TCA CTT GG 

NdeI 

GcnAfPanF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG CCG CCA TTA CTC GTA GGT GTT GTT TCA GAC ATA CTT G 

 

GAPP-AAF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG GCC GCC TTA CTC GTA GGT GTT GTT TCA GAC ATA CTT G 

 

GAPP-PAF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG CCG GCC TTA CTC GTA GGT GTT GTT TCA GAC ATA CTT G 

 

GAPP-PWF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG CCG TGG TTA CTC GTA GGT GTT GTT TCA GAC ATA CTT G 

 

GAPP-APF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG GCC CCA TTA CTC GTA GGT GTT GTT TCA GAC ATA CTT G 
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Name  Sense Sequence (5’→ 3’) Comment 

GCARCF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG CCG CCG AGC GGT TAC GGA GTC CTT CTC TCG G 

 

MjchArR1 as AGC CAA TAC TTG TCC TTT TCT TCT GTC AAT TAT TGG CGG CTG ACC GAG TCT GTC GAC 
TTC TTC ACG AAG TGC G 

 

MjchArF2 s CGC ACT TCG TGA AGA AGT CGA CAG ACT CGG TCA GCC GCC AAT AAT TGA 
CAG AAG AAA AGG ACA AGT ATT GGC T 

 

MjchArR2 as GCC CAA GCT TAC TTT CCA CCA ATA ACT CTT GTT ATC TTG TAT TGA CCA ACT GC HindIII 

MjIAr F2 s CGT GAA GAA GTC GAC AGA CTC GGT CAG CCG CCA AGC GGA CAA GTA TTG 
GCT ATA ATG GGA GAT ATG GTT CAA ATT ATG GAC TTG CAA ACT TAC G 

 

MjIArR1 as CGT AAG TTT GCA AGT CCA TAA TTT GAA CCA TAT CTC CCA TTA TAG CCA 
ATA CTT GTC CGC TTG GCG GCT GAC CGA GTC TGT CGA CTT CTT CAC G 

 

EcchArR as GCG TTG AAC CAT TTT ACG ATA CCA GTC ATT TTA CCG GAC AGC AGT GGC GGC TGA CCG 
AGT CTG TCG ACT TCT TCA CGA AGT GCG 

 

EcchArF1 s CGC ACT TCG TGA AGA AGT CGA CAG ACT CGG TCA GCC GCC ACT GCT GTC 
CGG TAA AAT GAC TGG TAT CGT AAA ATG GTT CAA CGC 

 

EcchArR1 as GCC CAA GCT TAC AGG CTG GTT ACG TTA CCA GCT GCC GGG CCT TTA GCG CCG C HindIII 
EccSAR as GCC CAA GCT TAG TAG GTG CCG GCC TCG ACG ATG GTG AGT GCC TCG TTG AGG CGC ACC 

GTC TGA CCT TCG TCC AGA GAT TTG TAA CCA TCG 
 

GCECCSF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG CCG CC ACT GCT GTC CGG TAA AAT GAC TGG TAT CG 

 

Name  Sense Sequence (5’→ 3’) Comment 

EccFor s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TTC CGG TAA AAT GAC TGG  
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TAT CGT AAA ATG G 

GCECANwF2 s GTT GAA GAA TTG CTT TCG AAA AAT TAT CAC TTG GAA AAT GAG GTT GCC 
AGA TTA AGA TCG CCG CCA TCC GGT AAA ATG ACT GGT ATC GTA AAA TGG 

 

EcchArNewR as GCG TTG AAC CAT TTT ACG ATA CCA GTC ATT TTA CCG GAT GGC GGC TGA 
CCG AGT CTG TCG ACT TCT TCA CGA AGT GCG 

 

EcchArNewF1 s CGC ACT TCG TGA AGA AGT CGA CAG ACT CGG TCA GCC GCC ATC CGG TAA 
AAT GAC TGG TAT CGT AAA ATG GTT CAA CGC 

 

AbrPaR as CGT AAT CTT TCA ACT TCA CTT CTC AGC CTT CTT ACT TCT CTT TCA TAG CTG CCG TTT 
GGT TTA TAT TTT TTA AGG ATG ATT TTT TCA TC 

 

ABrPaF s GAT GAA AAA ATC ATC CTT AAA AAA TAT AAA CCA AAC GGC AGC TAT GAA 
AGA GAA GTA AGA AGG CTG AGA AGT GAA GTT GAA AGA TTA CG 

 

Arc2OBF s GGA ATT CCA TAT GCA TCA TCA TCA TCA TCA TGT CGG TGA GAT CAG CAC 
GCT CCG TGA GGT ACT CGA CGA CGG C 

NdeI 

Arc2OBR as GCC CAA GCT TAT TCC TCG AGA ACC AGA TCT TCG ACC TCG GCC TTC GGG ATG CGC TCG 
AAG G 

HindIII 

ARCPP-AAF s GCA CTT CGT GAA GAA GTC GAC AGA CTC GGT CAG GCC GCC AGC GGT TAC 
GGA GTC CTT CTC TCG GTA CAC GAG G 

 

ARCPP-AAR as CCT CGT GTA CCG AGA GAA GGA CTC CGT AAC CGC TGG CGG CCT GAC CGA GTC TGT CGA 
CTT CTT CAC GAA GTG C 

 

ARCPP-PAF s GCA CTT CGT GAA GAA GTC GAC AGA CTC GGT CAG CCG GCC AGC GGT TAC 
GGA GTC CTT CTC TCG GTA CAC GAG G 

 

Name  Sense Sequence (5’→ 3’) Comment 

ARCPP-PAR as CCT CGT GTA CCG AGA GAA GGA CTC CGT AAC CGC TGG CCG GCT GAC CGA GTC TGT CGA 
CTT CTT CAC GAA GTG C 
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ARCPP-PWF s GCA CTT CGT GAA GAA GTC GAC AGA CTC GGT CAG CCG TGG AGC GGT TAC 
GGA GTC CTT CTC TCG GTA CAC GAG G 

 

ARCPP- PWR as CCT CGT GTA CCG AGA GAA GGA CTC CGT AAC CGC TCC ACG GCT GAC CGA GTC TGT CGA 
CTT CTT CAC GAA GTG C 

 

ARCPP-APF s GCA CTT CGT GAA GAA GTC GAC AGA CTC GGT CAG GCC CCG AGC GGT TAC 
GGA GTC CTT CTC TCG GTA CAC GAG G 

 

ARCPP-APR as CCT CGT GTA CCG AGA GAA GGA CTC CGT AAC CGC TCG GGG CCT GAC CGA GTC TGT CGA 
CTT CTT CAC GAA GTG C 
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3. Methods 
 

3.1   Molecular biology methods 

 
 

3.1.1 Polymerase chain reaction (PCR) 
 

The polymerase chain reaction was carried out with specific primers to amplify DNA 

fragments from plasmids, genomic DNA or primers themselves. The same method was 

used to introduce restriction sites, deletions, insertions and point mutations. Annealing 

temperatures (Ta) for primers were calculated with the program “Tm of primers” (made 

by Yakov Sergeev), and if they were different for each primer the lower one was chosen. 

Total volume of the reaction was usually 50μl, except in colony PCRs where it was 30 μl. 

A reaction usually contained up to 2ng of plasmid or 500ng of genomic DNA, 100μM 

dNTPs, 0.6-1pM of primers, 1U Pfu-Polymerase (in case of colony-PCR 0.5U of Taq-

Polymerase was used) and 1x of the recommended reaction buffer.  

The temperature program is shown in Table 3.1. Length of cycles was varying for 

different constructs depending on the length of DNA fragments that were amplified. 

 

Denaturation  94°C 

 Denaturation  94°C 

 Annealing  Ta 

 Extension 72°C 

Final extension  72°C 

 

                            Table 3.1 Typical program used for PCR reaction 

 

18-27  
cycles 
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3.1.2 Isolation and purification of DNA 
 
 

Plasmid DNA was isolated from bacterial cultures by a small-scale purification method, 

known as mini-prep. The standard protocol of the QIAGEN Miniprep Kit with centrifuge 

was carried out using 1-3ml of 6-8 hours old bacterial culture, giving a yield of 10-20ng 

DNA. DNA was eluted with sterile water to be used directly for DNA sequencing and 

restriction.  

To check yield, purity, size and digestion of DNA plasmids and amplified fragments, 

agarose electrophoresis was carried out. Agarose was dissolved in TAE-buffer using a 

microwave oven. To detect DNA, ethidium-bromide was added to a final concentration 

of 0.5μg/ml in the cooled solution. The solution was poured in a mould containing a well-

forming comb.  

 

The agarose content was chosen according to the expected size of DNA-fragments: 

 

≥ 2000bp 0.8 – 1 %

500 – 2000bp 1 – 1.5 %

≤ 500bp 1.5 – 2 %

 

TAE-buffer was used for electrophoresis. Agarose gels were submerged in a horizontal 

electrophoresis apparatus and DNA samples mixed with loading buffer were loaded. 

Electrophoresis was performed at 60-90V for 30-60 min at room temperature. DNA size 

markers (Fermentas GeneRulerTM 50bp or 1kb DNA ladder) were included, depending on 

size of electrophoresed DNA fragments (Appendix). For detection and photographing of 

DNA the Biorad Chemi Doc™ gel documentation system was used with the Quantity 

One® software. 

DNA fragments separated by electrophoresis were excised from agarose gels and 

extracted with the Qiagen Gel extracting Kit following the manufacturer’s protocol. DNA 

was eluted with sterile water and nucleic acid content was measured by absorbance at 260 
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nm. An OD of 1 corresponds to 50μg/ml for double stranded DNA. The ratio 

OD260/OD280 was calculated to estimate purity of DNA (ratio of 1.8 was desirable). 

 

3.1.3 Photometric determination of DNA concentration 
 

Nucleic acid concentration was measured at 260 nm. Nucleic acid concentration was 

calculated using the following equation: c [µg/µl] = E260 * f * (dilution), f = 0.02 (for 

oligonucleotides, ss-DNA, RNA), f = 0.04 (for ds-DNA, plasmids). The ratio 

OD260/OD280 was calculated to estimate purity of DNA. An OD ratio of >1.8 was 

desirable. 

 

3.1.4 DNA digestion with restriction enzymes 
 

Double-stranded DNA molecules were digested with 2-5 U of the restriction enzyme per 

µg of DNA at optimal temperature (usually 37°C) in the buffer recommended by the 

supplier. If digestion was done with two enzymes, the most compatible buffer was used. 

In cases where it was not possible to do digestion with two or more enzymes at the same 

time, sequential restriction was used with DNA electrophoresis and purification steps in-

between(Qiagen Gel extracting Kit) .  

 

3.1.5 5'-DNA-dephosphorylation 
 

To avoid re-ligation of blunt-ended plasmid DNA after digestion, the 5΄-phosphates were 

removed with calf alkaline phosphatase. 1-2 µg DNA were incubated for 30 min at 37°C 

with 0.2U alkaline phosphatase in phosphatase buffer. Dephosphorylated plasmid DNA 

was loaded on a DNA agarose gel, electrophoresed and purified by standard procedure 

with the Qiagen Gel extracting Kit. 
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3.1.6 Ligation of DNA fragments 
 

DNA fragments were ligated with DNA ligase, using the T4 DNA Ligation Kit (NEB or 

Fermentas) according to supplier instructions. If possible, a vector/insert ratio 1:5 to 1:9, 

was used. 

 

3.1.7 Purification of DNA by precipitation with ethanol 
 

To precipitate DNA from solution, 1/10 of the total volume 3 M Na-acetate (pH 4.5) and 

two volumes of 98.9% ice-cold ethanol were added. The sample was precipitated at -

20°C for 1 h. The sample was centrifuged for 15 min at 12000 × g and 4°C and the 

supernatant was discarded. The pellet was washed with 750 µl of chilled 70 % ethanol 

and centrifuged for 10 min at 12000 × g and 4°C. The supernatant was again discarded, 

and the pellet was dried and re-suspended in appropriate 1 x buffer or sterile dH2O. 

 

3.1.8 DNA sequencing 

 

DNA sequencing was done in automated “in house” genome sequencing facility, using 

fluorescent dye labelling, by the following program: 

                     Temperature (°C) Time

 96 20’’ 

30 cycles  50 20’’ 

 40 4’ 

                                    4 ∞ 

 

Mixture for the PCR reaction contained 5-10pM of sequencing primers, BDT mix (Big 

Dye Terminator), 1x sequencing buffer and 10-20pM of plasmid DNA in final volume of 

10μl. 
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3.2  Cloning strategies 

 
 
 
 
All constructs were cloned directly into the expression vectors and positive clones were 

sequenced. Vectors that were used for expression were pET30b, pGEX4T-1 and 

pThioHis (Fig. 3.1), with exception of ARC-N, ARC-Nn and ARC-Nc clones in the pT7-

7 vector, which were a generous gift of Dr. Peter Zwickl from the MPI for Biochemistry 

in Martinsried. Constructs in pGEX4T-1 and pThioHis were N-terminal fused to 

glutathione S-transferase (GST) and thioredoxin, respectively. 

The Hind III site which does not exist in the commercial pGEX4T-1 vector was 

introduced with the primer of one clone. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Cloning strategy for pET30b, pGEX4T-1 and pThioHis vectors that was used 

for most of the constructs 
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Chimeric proteins were made using overlapping primers (Fig. 3.2 A) and without use of 

the additional restriction sites which simplified cloning strategy to the one shown in Fig. 

3.1. The same strategy was used for the clones with mutations in the connecting regions 

or inside the genes (Fig. 3.2 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 (A.) Simplified schemes for producing chimeras and (B.) mutants 
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A more complicated strategy was used to produce duplicated constructs (VAT-Nnc db, 

MT6002757 db, etc), as it involved introduction of the ribosome binding site (Rbs) and 

restriction sites in the primers that were used (Fig. 3.3). Some of the constructs were built 

entirely from primers by serial PCR reactions, and the final sequence was introduced 

directly into the expression vector like in Figure 3.1.  

 

 

 

 

 

 

 

 

Figure 3.3 Simplified scheme for making doubled constructs and their insertion in 

expression vectors 

3.3  Microbiological methods 

 

3.3.1 Competent cells 
 

5 ml of LB medium were inoculated with a single bacterial colony (TOP10, BL21, 

BL21Gold or C41 cells) and incubated over night at 37°C at 200 rpm. 0.5 ml of the 

culture were transferred into 50 ml of fresh LB medium and grown at 37°C (200 rpm) to 

0.3-0.4 OD600. The culture was cooled on ice for 10 min and centrifuged at 2500 × g for 

10-15 min at 4°C. The pellet was resuspended in 10 ml ice cold CaCl2 (0.1 M) and 

centrifuged once more (2500 × g, 10 min, 4°C). The pellet was again resuspended in 2 ml 
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ice cold 0.1 M CaCl2 supplemented with 15-20 % glycerol and incubated at least for 2 h 

on ice, aliquoted (100 µl) and stored at -80°C. 

           

3.3.2 Standard transformation of competent E. coli cells 
 

The DNA ligation reaction (10 µl) was added to 100 µl competent cells, mixed gently 

and then incubated on ice for 30 min. Cells were heat-shocked at 42°C for 1 minute and 

incubated on ice for 10 min. 600 µl of LB medium were added and cells were incubated 

at 37°C for 45 min with agitation (200-250 rpm). Cell suspension was centrifuged shortly 

(5 seconds) and 600 µl of the LB medium were removed. The remaining 100 µl were 

spread on LB agar plates with appropriate antibiotics. Plates were incubated in an 

inverted position for 12-16 h at 37°C.  

 

3.3.3 Rapid transformation of competent E. coli cells 

 

One aliquot of competent cells was thawed on ice. 100 ng of plasmid DNA (max) was 

added and mixed. After 20 minutes on ice the mixture was spread on LB agar plates 

containing the appropriate antibiotic and incubated at 37°C O/N. 

 

3.3.4 Glycerol stock cultures  

 
1-3 ml of an over night bacterial culture was centrifuged (2 min, 10,000 x g). The pellet 

was suspended in 1 ml of a LB medium containing 20% glycerol and stored at -80°C. 

Constructs for the clone libraries were kept in Top10 cells to avoid recombination events 

that can occur in some of the expression strains.   
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3.4  Protein chemistry methods 

 

 

All constructs were expressed in the E. coli BL21 gold (DE3) or C41 (DE3) cells. 

Constructs were tested for expression in a small volume (5ml) prior to expression on 

large scale either in LB medium or in a minimal medium with the labeled compounds and 

with corresponding antibiotics. 800μl of the non-induced culture were mixed with 200μl 

of the 80% glycerol and kept as glycerol stocks in a -80°C freezer. Fresh transformants or 

glycerol stocks were used for inoculation of overnight pre-cultures. Such pre-cultures 

were used for the inoculation of a big-scale expression in the amount of 2-3% of the final 

medium volume. Cells were usually grown at 37°C, induced at OD600∼0.6 with 1mM 

IPTG and harvested after 4h. 

 

3.4.1 Expression of labeled proteins for NMR spectroscopy 
 

Comprehensive study of protein structure by nuclear magnetic resonance (NMR) 

spectroscopy would not be possible without labeling of the recombinant proteins of 

interest (Goto and Kay, 2000). Bacterial cultures were grown in M9-minimal medium 

consisting of: M9-salt mixture, glucose, NH4Cl, MgSO4, CaCl2, vitamin supplements, 

micronutrients and adequate antibiotic(s). After adjusting optimal conditions for the 

protein expression, pre-cultures were grown in medium containing labeled compound(s), 
15N-labeled NH4Cl (0.7g/l) and/or 13C-labeled glucose (2g/l). In the cases where triple 

labeling was needed (Ph1500C and Ph1500), cells were first grown in increasing amounts 

of D2O in medium, to get accustomed to it. When 80% of D2O was reached in the 

medium, pre-cultures were grown containing also deuterated-13C-glucose (2H13C-

glucose) and 15N-labeled NH4Cl. Use of the 2H13C-glucose enable more then 90% 

deuteration of protein side chain hydrogen atoms. Suppression of the 1H-1H relaxations 

plays a great role in obtaining distances and constrains in large proteins or multimers like 

in our case (Le Master, 1990). Cells were grown at 37°C, induced at OD600∼0.6 and 



Methods 

 
52

harvested after 4 to 6 hours. Cell cultures for the triple labeled samples where induced 

and harvested after overnight expression at 30°C. 

 

3.4.2 Expression of Se-Met labeled proteins for crystallography 
 

Plasmids expressing proteins of interest were first transformed to the Met-auxotroph 

strain of E. coli, B834 (DE3) (Novagen). Expression of the proteins in this strain gives 

99% labeling of Met-residues. Test expression was done from fresh transformants in M9-

minimal medium with the double amount of the M9-salts and glucose (4mg/l), and 

unlabeled Met (4mg/l). After optimizing expression conditions cells were grown in 

medium containing the same amount (4mg/l) of Se-Met instead of the unlabeled Met. 

Cells were grown at 37°C, induced at OD600∼0.8 and harvested after overnight expression 

at 30°C. 

 

3.4.3 Purification of soluble proteins 
 

 

3.4.3.1 Proteins with 6xHis-tag or thioredoxin fusions 
 

Frozen cell pellets containing protein with either 6xHis-tagg or N-terminally fused 

thioredoxin, modified to bind metal chelating resins, were suspended in lysis buffer (A) 

and thawed on ice (15 min). Prior to lysis by French press, 1 mM MgCl2, 0.1 mM PMSF 

and DNAse (Sigma) were added to mixture. Cells were additionally lysed by sonification 

(microtip setting 5, on ice, 3 x 10 s) in case of 6xHis tagged proteins. Cell homogenate 

was centrifuged (16000 x g, 30 min, 4°C). Supernatant was filtrated through a sterile 

filter (Millipore, φ0.22 μm) and applied to a self-packed column with Ni-NTA Superflow 

resin (GE-Healthcare). Purification is done on the HP Pharmacia Purifier or ÄKTA 

Purifier (GE Healthcare). Column was washed with washing buffer (B) until OD280 was 

constant. The protein of interest was eluted in 5 ml fractions with a linear gradient from 
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50 mM (B) to 1M imidazole elution buffer (C). Fractions were checked by SDS-PAGE 

and those containing protein of interest were pooled and dialyzed overnight against the  

buffer that was used for gel-filtration. The protein sample was concentrated with 

Vivaspin or Millipore centricons, with different cut-off membranes depending on the 

protein size, and applied on a gel-filtration column (superdex 75, superdex 200 or 

whatever; GE healthcare, depending on protein size). Fractions containing protein were 

pooled, concentrated and kept at 4°C with addition of Na-azide (final conc. 0.02% v/v) or 

at -80°C in buffer containing glycerol (final v/v 15%) before usage.  

 

3.4.3.2 Proteins with GST-tag 
 

A frozen cell pellet containing protein with an N-terminal fusion to GST were suspended 

in PBS buffer and thawed on ice (15 min). MgCl2 (1 mM), PMSF (0.1 mM) and DNAse 

(Sigma) were added prior to lysis by French press. Cell homogenate was centrifuged 

(16000 x g, 30 min, 4°C). Supernatant was filtrated through a sterile filter (Millipore, 

φ0.22 μm), applied on a pre-packed 5 ml GSH column (GE-Healthcare) and washed with 

PBST (PBS buffer + 0.1% Triton X-100) buffer until OD280 reached a baseline. Protein 

was eluted in 2.5 ml fractions with GST-elution buffer (D) and analyzed by SDS-PAGE. 

Fractions containing fusion protein were pooled and concentrated. 30xThrombin cleavage 

buffer (TCB), 2-mercaptoethanol (βME) (final conc. 0.1% v/v) and thrombin (2U per mg 

of fusion protein) were added to the sample and mixed 2 hours at room temperature (or 

overnight at 4°C) to perform thrombin cleavage. The cleaved sample was dialyzed 

against PBST buffer and applied to the GST column again. The column flowthrough was 

collected, concentrated and checked for protein purity by SDS PAGE. Protein samples 

were filtrated (Millipore, φ0.22 μm) and applied on the gel filtration column. Fractions 

containing protein were pooled, concentrated and stored at 4°C with addition of Na-azide 

(final conc. 0.02% v/v) or in buffer containing glycerol (final v/v 15%) at -80°C. 
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3.4.3.3 Proteins without tags 

The frozen cell pellet containing the protein of interest was thawed on ice in low salt 

buffer (pH 7.0-7.5, 50 mM NaCl or KCl). Prior to lysis by French press, 1 mM MgCl2, 

0.1 mM PMSF and DNAse (Sigma) were added to mixture. The cell homogenate was 

centrifuged (16000 x g, 30 min, 4°C). Supernatant was filtrated through a sterile filter 

(Millipore, φ0.22 μm) and applied on a high load anion or cation exchange 

chromatography column, depending on the protein’s isoelectric point. Proteins were 

eluted in 5-8 ml fractions by a linear gradient with high salt buffer (pH 7.0-7.5, 1 M NaCl 

or KCl). Fractions were analyzed by SDS-PAGE and those containing the protein of 

interest were pooled, concentrated and, if protein was not pure enough, dialyzed against 

low-salt buffer for a re-run on the ion exchange chromatography.  The protein sample 

was then applied on a gel filtration column for the final purification step.. Fractions 

containing protein were pooled, concentrated and kept at 4°C with addition of Na-azide 

(final conc. 0.02% v/v) or in the buffer containing glycerol (final v/v 15%) at -80°C till 

used . 

3.4.4 Purification of the insoluble proteins 

 

3.4.4.1 Purification of the insoluble proteins (6xHis-tag) 
 

Frozen cell pellet containing protein of interest were suspended in lysis buffer (A) and 

thawed on ice (15 min). Prior to lysis by French press 1 mM MgCl2, 0.1 mM PMSF and 

DNAse (Sigma) were added to mixture. Cell homogenate was centrifuged (16000 x g, 30 

min, 4°C). Loading buffer containing 8 M urea (A1) was added to the pellet and 

incubated shaking at room temperature for 30 min. The mixture was centrifuged (16000 x 

g, 30 min, 20°C) and the supernatant was filtrated (Millipore, φ0.22 μm). The filtrated 

supernatant was applied on a Ni-NTA column equilibrated with the loading buffer (A1). 

The column was washed with loading buffer (A1) and washing buffer (B1) until OD280 
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reached baseline. The protein was eluted either by elution buffer (C1) or washing buffer 

(B1) containing 0.5 M imidazole, and 5ml fractions were collected. Fractions containing 

protein were pooled and dialysed over night against refolding buffer. The usual refolding 

buffer contained 30 mM TRIS/HCl or phosphate buffer, 150 mM salt (NaCl or KCl) and 

5% glycerol, but this composition was changed depending on the protein’s behavior. In 

some cases, denatured protein was refolded by rapid dilution in refolding buffer. The 

refolded protein was concentrated and applied to a gel filtration column for the last step 

of the purification. Fractions containing protein were pooled, concentrated and kept at 

4°C with addition of Na-azide (final conc. 0.02% v/v) or in the buffer containing glycerol 

(final v/v 15%) at -80°C till used.  

 

3.4.4.2 Purification of insoluble non-tagged proteins 
 

Frozen cell pellet containing protein of interest were suspended in a buffer with low salt 

(50mM TRIS/HCl pH 7.2, 50mM NaCl) and thawed on ice (15 min). Prior to lysis by 

French press 1 mM MgCl2, 0.1 mM PMSF and DNAse (Sigma) were added to mixture. 

Cell homogenate was centrifuged (16000 x g, 30 min, 4°C). Protein of interest that was in 

inclusion bodies was resolubilized by addition of low salt buffer containing 8 M urea. 

After 30 minutes of shaking on room temperature, the mixture was centrifuged (16000 x 

g, 30 min, 20°C) and the supernatant was filtrated (Millipore, φ0.22 μm). Filtrated 

supernatant was loaded on an anion or cation exchange chromatography column and the 

column was washed until OD280 reached baseline level. Protein was eluted in 

fractions of 5-10 ml by a linear gradient of high salt buffer (50 mM TRIS/HCl pH 7.2, 1 

M NaCl) containing 8 M urea. Fractions containing protein were pooled and, if additional 

purification was needed, run over a second ion-exchange column. Refolding and storage 

of the protein was done like in case of his-tagged proteins (chapter 3.4.4.1) 
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3.4.5 Circular dichroism (CD) spetroscopy and measurment of thermal stability 
 

Circular dichroism spectroscopy was used to estimate the secondary structure content of 

the protein. All CD spectra were recorded at room temperature at 190-240nm (6-fold 

accumulation) with a JASCO J-810 Spectropolarimeter, using 1 mm cuvettes at 0.2 nm 

resolution, 1nm bandwidth, 1 s time constant and sensitivity of 100 mdeg. For the 

measurements of CD spectra, protein samples (1-10 µM) were dialyzed against PBS or 

10 mM TRIS/HCl pH 7.2-7.6, 150 mM NaCl buffer. When it was possible lower salt (or 

NaF) and borate buffer were used to overcome the problem of the absorption of circularly 

polarized light by some ions.  

Thermally induced protein denaturation was also monitored by CD spectroscopy using a 

Peltier-controlled sample holder unit. In this case 1 cm cuvettes were used and protein 

sample was mixed with a magnet. CD spectra were recorded for the protein at room 

temperature and 95°C prior to measurement of the thermal denaturation curve. The 

wavelengths which showed the biggest changes between the two different temperatures 

were used to determine the melting temperature of the protein. These were usually 222 

nm and 216nm, where the changes in α-helical and β-strand signals are highest. 

Temperature profiles were recorded in 1°C increments with 0.2° pitch from room 

temperature to max 98°C. In all cases, a temperature probe connected to the cuvette was 

used to provide an accurate temperature record. 

 

3.4.6 Protein concentration 
 

Protein concentration during purification steps was determined using three different 

methods. For most of the pure protein samples, ultraviolet absorption of the proteins at 

280 nm was used. Extinction coefficients for proteins were calculated using ProtParam 

software (http://www.expasy.ch/tools/protparam.html - Gasteiger et al., 2005) and protein 

concentration was calculated from the measured absorbance. 

Concentration of the protein was double checked using a commercial available BCA 

assay (Pierce; Smith et al., 1985). Protein samples were diluted 5-10 times in a final 

volume of 50 μl in the cuvettes for measurement, and subsequently 1 ml of BCA working 
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solution was added. Serial dilutions of a 1 mg/ml BSA stock were used for preparing a 

standard curve. Mixtures were incubated 30 minutes at 37°C until the color reaction was 

developed. Samples were cooled to room temperature and absorbance at 562 nm was 

determined. Protein concentration was determined from the standard curve equation.  

A modification of the Bradford assay (Bradford, 1976), the “drop assay”, was used to 

follow purification of the protein on a gel filtration column or in cases when protein did 

not absorb at 280 nm. 10 μl of the fractions from gel filtration were mixed with 30 μl of 

the Bradford reagent in a drop on a clean stripe of Parafilm® M. Steady blue color was a 

sign for the protein presence in tested fractions, which were then further analyzed by 

SDS-PAGE.   

 

3.4.7 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
 

SDS-PAGE electrophoresis was done using the GE-Healthcare apparatus. In table 3.2 the 

recipe for polyacrylamide gels are shown:  

 

Stacking gel  4 % Running gel    18 %      15 % 

Stacking gel buffer   9.4  ml Running gel buffer 18.75 ml   18.75 ml 

Water 18.4  ml Water        3 ml   10.5   ml 

AA/Bis (37.5%):(1%)   5.6  ml AA/Bis 37.5:1      45 ml   37.5   ml 

TEMED   1.9  ml TEMED   3.75 ml    3.75  ml 
APS 1.4%   1.9  ml APS 1.4%   3.75 ml    3.75  ml 
SDS 10%  0.38 ml SDS 10 %   0.75 ml    0.75  ml 

 

Table 3.2 Recipes for SDS-PAGE gels 

Protein samples were mixed with 4x sample buffer and heated at 95°C for 3 min. In some 

cases urea (final conc. 6M) was added to the sample. 15 % and 18 % gels were used for 

effective separation range between 10-60 and 5-30 kDa, respectively.  Gels were run at a 

constant current at 25 mA for 45-60 min and stained with Coomassie Blue for 30 min 

with gentle agitation. In some cases rapid silver staining was used (Nesterenko et al., 
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1994). Gels were afterwards distained or used unstained for the electrotransfer in western 

blotting. 

To estimate protein size, the Low molecular weigh-SDS Marker Kit (GE-Healthcare) was 

used Table 3.3: 

 

LMW-SDS Marker Kit MW (kDa) 

α-lactalbumin 14.4 

Trypsin inhibitor 20.1 

Carbonic anhydrase 30 

Ovalbumin 45 

Albumin 66 

Phosphorylase b 97 
               

Table 3.3 The list of proteins and their sizes used for SDS-PAGE electrophoresis 

3.4.8 Western blot 
 

After the separation of samples by SDS-PAGE, western blot was done using the semi-

dry-electrotransfer. At the end of electrophoresis the gel was removed and attached to a 

PVDF membrane that had been activated in methanol for 5 min. A 3 mm Whatman paper 

was soaked in blot buffer, placed on the anode and gently pressed to remove air-bubbles. 

Then, the activated PVDF membrane was placed on the paper. On top of the PVDF 

membrane the SDS-PAGE gel was placed, and another soaked 3 mm Whatman paper 

was placed on top. Again, air-bubbles were removed. Finally, the cathode was placed on 

the top and transfer was done with a current of 2-3 mA/cm2 of gel (20 V) for 2-3 h. After 

the transfer the gel was stained with Coomassie Blue for 30 min. The PVDF membrane 

was stained with Ponceau S for 5 min. When the proteins were visible the membrane was 

washed with deionised water and photographed. Afterwards, the membrane was 

incubated for 1 h in blocking solution (M-TBS buffer). Then, membrane was incubated 

for 1 h with the primary antibody diluted in M-TBS buffer. After washing with M-TBS (2 

x 5’), the membrane was incubated with the secondary antibody diluted in M-TBS buffer 
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for 1 h. Washing was repeated. For chemoluminiscence detection a mixture of 2 ml of 

solution A and 50 µl of solution B of the ECL-Plus western blotting detection kit was 

prepared. The mixture was uniformly distributed over the surface of the membrane and 

incubated for 5 min. Finally, a Hyperfilm-ECL chemoluminiscence-sensitive film was 

exposed from 5’’to 5’. 

 

3.4.9 Protein-DNA interaction assays 
 

Agarose and polyacrylamide gels were used for detection of the differences in DNA 

mobility after protein binding (DNA mobility shift assay). Targeted or random DNA 

sequences (100-400bp) were mixed with increasing amounts of the protein sample. 

Mixtures were incubated for 30 minutes in binding buffer (30 mM HEPES pH 7.5, 50 

mM NaCl, 1 mM DTT, 1 mM EDTA and 8-10% glycerol) and then applied on the gel. 

2% agarose gel was used for a separation of DNA and the DNA-protein complex. For 

detection of DNA, ethidium-bromide was added in the gel to the final concentration of 

0.5μg/ml,. 7-10 % polyacrylamide gels (TBE buffer) were also used to follow the 

migration of DNA-protein complexes. Two gels loaded with the same samples were run 

under same conditions in a GE-Healthcare electrophoresis chamber. TBE buffer was used 

as electrophoresis buffer, and was mixed between anode and catode chamber every 10 

minutes to ensure constant buffer conditions (reduce the so called “smiling effect” and 

uneven distribution of pH through the gel.) Gels were fixated with a 0.25 % solution of 

glutaraldehyde. One gel was stained with ethidium-bromide (1 μg/ml) for DNA and the 

other with the rapid silver-staining protocol for proteins. Comparison of the two gels 

revealed co-migration of DNA and protein. For detection and photographing of the gels, 

the Biorad Chemi Doc™ gel documentation system with the Quantity One® software was 

used. 
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3.4.10 Chaperone assays 
 

 

Chaperone activity of the proteins was tested in heat-induced protein aggregation assays, 

with firefly luciferase (Promega) and porcine citrate synthase (Sigma) as substrates. 

Luciferase (0.15 μM) was mixed with the respective recombinant protein in different 

molar ratios in assay buffer (30mM HEPES pH 7.2, 5 mM MgCl2, 100mM KCl). 

Thermal aggregation was monitored at 45°C as an increase in attenuance at 320nm, using 

a PerkinElmer Lambda 25 UV/VIS Spectrometer equipped with a thermostatted cuvette 

holder. For the assay with citrate synthase (0.2 μM), aggregation was monitored at 50°C 

in assay buffer (30mM HEPES pH 7.2). In cases where AAA modules or complete AAA 

proteins were tested for activity, 5 mM MgCl2 was added in the buffer. When indicated, 

ATP or other compounds (ATPγS, AMP-PNP, ADP, etc) were added to the samples. All 

experiments were performed three times and the curves shown in results represent the 

average of three measurements. 

Complexes of the tested proteins and their substrates were isolated by pull-down assay 

using 6xhis-tags on the recombinant protein or antibodies against the substrate proteins. 

Luciferase or citrate synthase were incubated with the protein of interest in eppendorf 

tubes in the same conditions described above for 30-40 minutes. Samples were 

centrifuged (13000 x g, 10 minutes) and the supernatant was used for pull-down. 

Antibodies and resins (Ni-NTA sepharose, Protein G (A) sepharose) were added to 

supernatant and the mixture was incubated for 30 minutes on room temperature. Resins 

were washed several times with washing buffer (buffer B for his-tag, PBS-T for Protein 

G (A) sepharose) and the proteins were eluted with 2xSDS sample buffer. Samples were 

analyzed by SDS-PAGE.  

 

3.4.11 ATPase activity assay 
 

ATPase activity of purified AAA proteins was measured at different temperatures in 

20mM MOPS/NaOH pH 7.3, 150mM NaCl, 5mM MgCl2 by a modified malachite green 

assay for nanomolar amounts of inorganic phosphate (Lanzetta et al., 1979, Veldhoven 
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and Mannaerts, 1987). Protein samples were preincubated at the respective temperatures 

for 15 min prior to addition of ATP. Reactions were stopped by addition of EDTA (5 

mM) and malachite green solution, and incubated 15 minutes at room temperature. 

Absorbance was measured at 650 nm. A calibration curve with KH2PO4 was used to 

determine the concentration of free phosphate produced in the assays. Values of control 

samples without protein were subtracted to account for spontaneous ATP hydrolysis at 

high temperatures.  

 

3.4.12 Negative staining electron microscopy of the protein complexes  
 

Macromolecules were adsorbed on the carbon-coated Pioloform support film that had 

been subjected to glow-discharging in a vacuum unit (Edwards Plasmaglo ion 

bombardement E09021000) prior to use to improve surface hydrophilicity. After 

adsorption the excess liquid was removed with a filter paper. The grids were washed with 

water to remove buffer salts and negatively stained with 1% aqueous uranyl acetate. 

Samples were analyzed in a Philips CM10 transmission electron microscope at 60 kV 

acceleration voltage using a 30 µm objective aperture at a primary magnification of 52 

000x. Images were recorded on MACO EM film EMS of 4x5 inches size (Hans Mahn & 

Co., Stapelfeld, Germany) and scanned at 1200 dpi resolution (Epson Expression Pro 

1680). Electron microscopy at low resolution was done by Heinz Schwarz at the 

microscopy service unit of the MPI for developmental biology, Tuebingen. High 

resolution microscopy and image averaging was done by Beate Rockel at MPI for 

Biochemistry, Dept. of Molecular Structural Biology, Martinsried. 

3.5 Bioinformatics  

 

Several servers and software were used for the bioinformatical analysis of protein 

sequences. BLAST and PSI-BLAST (Altschul et al., 1997) search was used to retrieve 

locally similar sequences with an input amino acid sequence. Search was done against 

protein non-redundant database at NCBI (http://www.ncbi.nlm.nih.gov/entrez). Multiple 
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sequence alignment of the BLAST and PSI-BLAST searches was done using MUSCLE 

(multiple sequence comparison by log-expectation; Edgar, 2004), BLAMMER or 

MACAW (Schuler et al., 1991). Comparison of two alignments with each other was done 

with HHalign (http://protevo.eb.tuebingen.mpg.de/toolkit/). 

 Publicly available PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/; Jones, 1999) and JNET 

(http://www.compbio.dundee.ac.uk/~www-jpred/; Cuff and Barton, 1999) servers were 

used to predict the secondary structure proteins. Quick2D, which summarizes and 

compares outputs of several secondary structure prediction servers, was also used 

(http://protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=psipred). 

For tertiary structure prediction of proteins we used either our in-house server HHpred 

(http://protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=hhpred) or the 3-DJury 

structure prediction Meta server (http://bioinfo.pl/Meta/). Models of protein structures 

were generated automatically by servers those servers or through Swiss Model - an 

automated comparative protein modelling server, through an alignment interface 

(http://swissmodel.expasy.org/).  Refinement of the modeled structure was done with 

software from Barry Honig’s bioinformatics group (http://honiglab.cpmc.columbia.edu/).  

Clustering as well as graphical representation of the clustered sequences was done using 

the CLANS software (Frickey and Lupas, 2004). The software can be downloaded from: 

http://protevo.eb.tuebingen.mpg.de/cgi-bin/download/download.pl. 
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4. Results 
 

4.1 VAT-Nn and VAT-Nn mutants (introductory remarks) 

 
 
Vat-Nn represents the N-terminal subdomain of the VAT protein (gi: 6435755; amino 

acids 1-91) which adopts a double psi-barrel fold. A number of important questions 

had to be answered in connection with the evolution of this complicated fold 

(Appendix Fig.3). In search for the possible answers I build a series of constructs that 

were supposed to mimic possible intermediates that arose in near or far history of this 

fold (Fig. 4.1). Such intermediates would at the end help to interpret possible events 

that happened during the evolution. 

The relationship of VAT-Nn with a postulated ancestral βαββ sequence (Appendix 

Fig. 2) was elucidated by constructing series of VAT-Nn half sequences with circular 

permutation of the first β-strand (VAT-Nnc cp) or by addition of the last strand from 

similar sequences like AbrB (a transcription factor from Bacillus subtilis) or Ta1217 

(a hypothetical protein from Thermoplasma acidophilum) (VAT-Nnc+βTa1217). 

These constructs (Fig 4.1, violet sequences) were made to address a possible circular 

permutation event and to connect the fold of AbrB-like transcription factors with the 

family of double-psi barrels.   

Since the ancestral sequence of VAT-Nn was probably created by duplication of an 

“ancestral half-barrel”, it was important to know if the two halves of the VAT-Nn 

barrel (VAT-Nnc and VAT-Nnn) can fold by themselves. It was assumed, that these 

constructs would fold into homodimers as well as would their native counterpart, 

excisionase-like protein from a plasmid of Methanothermobacter thermautotrophicus 

(green group of sequences in Fig. 4.1).  

The gene of the “ancestral half-barrel” would by time, in the evolution, be duplicated 

(VAT-Nnc/Nnn db), to result in an ancestral protein containing two “equal” halves in 

one polypeptide chain (Fig. 4.1, blue sequence). The fold of this ancestral protein is 

expected to be close to the one that is present in VAT-Nn today.   

The role of the psi-loop as well as its length was examined by designing “loopless” 

constructs (VAT-Nn/Nnc ll or VAT-Nnc db ll – red group in Fig. 4.1). These designs 
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were based on sequence comparisons of the VAT-Nn sequence with presumably 

loopless “hypothetical transcription regulator” from Pyrococcus h. (Phs018). Most of 

the ‘rational’ constructs were based only on sequence similarities between VAT-Nn 

and other homologous proteins. Structural data was restricted, beside Vat-N (1CZ4), 

to the structure of AbrB-N (1EKT), which prompted us to express and structurally 

characterize other “native counterparts” from the sequence alignment (Fig. 1.9). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

4.1.1 Expression and purification of VAT-Nn and halves 
 

Expression of the VAT-Nn and VAT-Nnc constructs from the pGEX-4T1 vector 

resulted in very high amounts of GST-fusion proteins. The VAT-Nnn construct was 

expressed from the pET30b vector with a 6xHis-tag (Fig. 4.2). VAT-Nn and VAT-

Nnc were purified on a GSH column and fused-GST was removed by thrombine 

                                        repeat                     
                    |--------------------------------------------| 
                       β1       Ψ      β2   α1              β3     
                    sssssss           ssss hhhhh          ssssss    
VAT-Nn Ta      mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
                    KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV     90    
VAT-Nnc db        mvKTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKVgh  
                    KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV                 
                      
                      ssss            sss  hhhhhh          ssss                            
PhS018           mDVLAKFHTTVHR------IGRIIIPAGTRKFYGIE-QGDFVEIKIVkyegee 
                  PKEGTFTARVGE------QGSVIIPKALRDVIGIK-PGEVIEVLLLghykprn   92   
VAT-Nn ll      mesnnGIILRVAEAN------MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
                    KTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKV  
VAT-Nnc dbll      mvKTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKVegeepr 
                    KTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKV                 
                                  
                     sssss             sss hhhhhhh       ssssssss 
Mt6002757       mameDVGVPFSNRLTR----QGNIKVPADLRDALKLK-PGDLLVVEIKkvdrs   48    
VAT-Nnn        mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
VAT-Nnc           mvKTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV  
 
                     ssssss                hhhhhhh       sssssss    sssssss 
Bs 1EKT/AbrB-N     MKSTGIVRKVDE-----LGRVVIPIELRRTLGIA-EKDALEIYVDD—EKIILKKYkpnmt 
 53                                        
Ta1217      mtdnkkiMDIARMTKRGA------SVRVTIPKKVLKKLNFK-DEDLIAFYESED-GRIYIDLLk  56    
                                      ssss hhhhh          ssssss   sssssss 
VAT-Nnc cp                 mARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV---KTVGRVYR 
Vat-Nnc+βTa1217   mvKTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKVED-GRIYIDLLk 

Figure 4.1 Alignment representing VAT-Nn, related sequences and constructs that were 

made to track possible events during the evolution of the fold as well as relations between 

different groups. Details of colored groups are given in text. 
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cleavage. Gel filtration of VAT-Nn revealed two distinguishable species that 

correspond by size to a monomers and dimers. VAT-Nnc showed the same patterns, 

presumably forming dimers and tetramers. The two species could be separated by gel 

filtration and behaved different in cross-linking experiment (Fig. 4.3). 

 

      

 

 

 

 

 

 

Figure 4.2 Test expressions of (A.) 6xHis-VAT-Nnn and (B.) GST-VAT-Nn proteins. 

Black arrows indicate expressed proteins. PM – peptide marker; LMW – low 

molecular weight marker 

 

 

 

 

 

 

 

 

 

Figure 4.3 Crosslinking of VAT-Nn dimer (VNnD) and monomer (VNnM) with 

0.3% glutaraldehyde. Shown on the left side is a control without crosslinker. Arrows 

indicate the positions of monomers, dimmers, etc. 
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CD spectra of purified VAT-Nn monomers and dimers and VAT-Nnc dimers and 

tetramers were almost identical and indicated folded proteins with both α-helix and β-

strand content (Fig. 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 CD spectrum of VAT-Nn dimer. Typical α helical minima at 209 and 222 

nm are pronounced. 

 

VAT-Nnn was expressed and purified as a soluble protein, but its CD spectra and 

treatment with proteinase K indicated that the protein was not folded (data not 

shown).  

VAT-Nnc db (blue sequence in Fig. 4.1) contained two copies of VAT-Nnc, the C-

terminal half of the VAT-Nn barrel, connected by a Gly-His linker. It was expressed 

as a GST-fusion protein, purified on a GSH column and cleaved from the fusion 

protein using thrombin. VAT-Nnc db eluted as a monomer from gel sizing column 

and was folded according to the CD spectrum (Fig. 4.5) and resistance to proteinase K 

treatment. Further analysis of this protein by NMR spectroscopy revealed that it 

showed peaks that are characteristic for a VAT-Nn spectrum. Therefore, we assumed 

that it adopts the double-psi barrel fold. 
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Figure 4.5 CD spectrum of VAT-Nnc duplicated (VAT-Nnc db) construct 

 

 

4.1.2 Chaperone activity of VAT-Nn and VAT-Nnc 
 

 

The chaperone-like activity of VAT-N (Golbik et al., 1999) prompted us to test our 

folded constructs (VAT-Nn, VAT-Nnc) in similar assays. VAT-N protein was 

expressed from the pET28b vector in C41 cells and purified over a Ni-NTA column 

using a C-terminal 6xHis-tag. The protein was further purified using gel filtration to 

achieve more than 95% purity.  

Proteins of interest were mixed in different ratios with protein substrates (citrate 

synthase and luciferase) and heated. Aggregation was then followed by the change of 

absorbance at 320nm. Protein aggregation was calculated relative to the total 

aggregation of the protein substrate alone (Fig. 4.6).  
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It is noticeable that only the dimer of VAT-Nn and the tetramer of VAT-Nnc showed 

chaperone activity, thus preventing heat aggregation of citrate synthase (Fig. 4.6 A). It 

is also important that this activity could be titrated by changing the ratio of active 

protein versus protein substrate, indicating the requirement of the ‘chaperone’ protein 

in this process (Fig. 4.6 B). Monomers of VAT-Nn, dimers of VAT-Nnc, VAT-N and 

BSA, which was used as a negative control, did not show any activity. 
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Figure 4.6(A.) Citrate synthase(cs) heat aggregation assay in the presence of 

different proteins. VAT-Nnd stands for the dimer of VAT-Nn; VAT-Nnc(d/t) 

stand for dimer or tetramer of VAT-Nnc. Assays were done with a six-fold 

excess of the protein of interest. Note: lower % of the relative aggregation means 

higher chaperone activity. (B.) Citrate synthase heat aggregation assay in the 

presence of different concentrations of VAT-Nnd. Numbers in brackets represent 

molar ratio of the VAT-Nnd over citrate synthase 
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4.1.4 VAT-Nn(c) loopless and circular permutation mutants 

 
 
Several constructs were made from VAT-Nn and its halves (VAT-Nnn/VAT-Nnc) in 

order to reconstruct hypothetical evolutionary events and to further elucidate the 

importance of the psi-loop length (Fig 4.7). All constructs were expressed and 

purified like soluble fusion proteins with N-terminally fused GST. Upon cleavage of 

GST with thrombin, most of the constructs were soluble except the VAT-Nn 

loopless(VAT-Nn ll) construct, which precipitated immediately after cleavage and 

could not be refolded under any condition tested. Excision of the psi-loop either in 

VAT-Nnc (ll) or VAT-Nnn (ll) resulted in soluble proteins, but they were not folded 

based on CD spectra, proteinase K treatment and NMR spectroscopy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Alignment of natural sequences of VAT-Nn, Phs018 and Ta1217, with 

loopless (red) and circular permutated (violet) constructs made from VAT-Nn(c) to 

resemble natural sequences and to elucidate the importance of differences on the 

sequence levels. 

 

Duplication of the VAT-Nnc loopless construct with “the connector” (EGEEP) from 

the Phs018 protein resulted in soluble and folded protein as judged by CD (Fig. 4.8) 

                                        repeat                     
                    |--------------------------------------------| 
                       β1       Ψ      β2   α1              β3     
                    sssssss           ssss hhhhh          ssssss    
VAT-Nn Ta      mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
                    KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV     90   
                      
                      ssss           sss  hhhhhh          ssss                           
PhS018           mDVLAKFHTTVHR------IGRIIIPAGTRKFYGIE-QGDFVEIKIVkyegee 
                  PKEGTFTARVGE------QGSVIIPKALRDVIGIK-PGEVIEVLLLghykprn   92  
VAT-Nn ll      mesnnGIILRVAEAN------MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
                    KTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKV  
VAT-Nnc dbll      mvKTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKVegeepr 
                    KTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKV   
VAT-Nnc ll        mvKTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKV 
               
                                  
Ta1217      mtdnkkiMDIARMTKRGA------SVRVTIPKKVLKKLNFK-DEDLIAFYESED-GRIYIDLLk  56 
                                             
                                      ssss hhhhh          ssssss   sssssss 
VAT-Nnc cp                 mARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV---KTVGRVYR 
Vat-Nnc+β         mvKTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKVED-KTVGRVYR 
Vat-Nnc+βTa1217   mvKTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKVED-GRIYIDLLk 
VAT-Nncll+βTa1217 mvKTVGRVYRAR------KGIVRIDSVMRNNCGAS-IGDKVKVRKVED-GRIYIDLLk 
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and NMR spectra. Structure determination of this protein by NMR spectroscopy is an 

on-going project. 

Constructs that had circular permutations, addition of the first β-strand to the C-

terminus (VAT-Nnc cp and VAT-Nnc+β), or addition of the last β-strand from 

Ta1217 (VAT-Nnc+β-Ta1217 and VAT-Nnc ll+β-Ta1217) were soluble after 

cleavage from the GST-fusion with thrombin. But CD and NMR spectra indicated 

that these proteins were not folded (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 CD spectrum of VAT-Nnc duplicated loopless protein 

 

4.1.5 Expression and characterization of Ph1179 and MT6002752. DNA binding 
activity 
 

Ph1179 (gi 14591004) of Pyrococcus horikoshii was generated synthetically from 

primers by PCR and was cloned into the pET30b vector. Expression in E. coli at 37°C 

yielded insoluble protein that was purified under denaturing conditions in 6 M urea on 

a SP Sepharose FastFlow (Fig 4.9) cation exchange chromatography column (GE 

Healthcare) and refolded by dialysis against 50 mM Tris, pH 7.4 with 200 mM NaCl 

at ambient temperature. 
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Figure 4.9 Purification of the Ph1179 protein under denaturing conditions on SP 

FastFlow cation exchange (GE Healthcare). Fractions were protein was eluted are 

with 0.7-0.8 M NaCl. 

 

 

Mt6002757 (gi 6002752) of Methanothermobacter thermautotrophicus was also 

generated synthetically from primers by PCR and was cloned into the pET30b vector 

with an N-terminal His6-tag. Additionally, a construct was made by PCR that 

contained duplicated Mt6002757 sequence connected by a linker encoding for Gly-

His (Mt6002757db). Expression in E. coli at 37°C yielded in both cases insoluble 

protein that was purified under denaturing conditions in 6 M guanidinium 

hydrochloride on a Ni-NTA Sepharose chromatography column (GE Healthcare) and 

refolded by dialysis against 30 mM sodium phosphate buffer, pH 7.4 with 250 mM 

NaCl in the presence of heterologous DNA at ambient temperature. CD spectra of the 

refolded proteins were recorded, which indicated folded proteins with a mixture of α-

helices and β-strands (Fig. 4.10). 
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Figure 4.10 CD spectrum of Mt6002757db protein after refolding. 

 

The purified proteins Ph1179 and Mt6002757 were analyzed on a calibrated Superdex 

G-75 size exclusion chromatography column (GE Healthcare) for their oligomeric 

state in 30 mM sodium phosphate buffer pH 7.4 and 250 mM NaCl. Ph1179 migrated 

like a dimer, but had the tendency to further oligomerize at higher concentrations, 

which made this protein not suitable for NMR spectroscopy. Nevertheless we 

recorded several 15N spectra (Fig. 4.11), which showed characteristic peaks for VAT-

Nn spectra. This prompted us to solve the structure of the homologous protein Phs018 

(Coles et al., in preparation, 2GLW) adopting a RIFT barrel fold, which is related to 

the double psi-barrel. RIFT barrel is named for its occurrence in Riboflavin synthases, 

F1ATPase and Translation factors. Based on the calibration of the gel filtration 

column, Mt6002757 was migrating like a dimer, while the doubled construct had the 

size of a monomer, showing no tendency for further oligomerization. Both proteins 

were too unstable for structure determination, but still enough data could be collected 

by NMR spectroscopy to assume that the fold is similar to Phs018. 
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Figure 4.11 15N HSQC spectra of Ph1179. Circles show signals with low resolution 

that were the product of protein aggregation  

 

Because of their sequence homology with the Bacillus subtilis transcription factor 

AbrB, unspecific DNA binding of the proteins was tested. Both Ph1179 and 

Mt6002757 had DNA binding activity. The VAT-Nn monomer was meant to function 

as a negative control, because it has protein-binding and chaperone activity. 

Surprisingly, the VAT-Nn monomer did also bind DNA in an unspecific manner (Fig. 

4.12), suggesting an intrinsic DNA binding activity of the double-psi barrel fold. This 

observation was further explored in titration experiments, which gave similar results 

(data not shown). 
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Figure 4.12 DNA shift mobility assay in presence of increasing amounts of the 

Mt6002757 and Ph1179. Monomeric form of VAT-Nn surprisingly also binds DNA. 

Control (con) was DNA fragment in binding buffer without addition of protein. 

 

 

Bioinformatic analysis using PSI-BLAST (Altschul et al., 1997) in order to find 

homologous sequences to Mt6002757 did not give any results. Therefore, this protein 

was annotated as a singleton. Yet, recently we found several environmental sequences 

that share some sequence homology with the Mt6002757 protein.  

A bioinformatic analysis of Ph1179 using the gene annotation and analysis tool “The 

SEED” (http://theseed.uchicago.edu) revealed homologous sequences. Besides the 

gene for Phs018 from Pyrococcus horikoshii (Coles et al., unpublished), there were 

six genes in Thermococcus kodakaraensis. Among these, four were in one single gene 

locus (Fig. 4.13). One sequence was found in the Pyrococcus abysii genome. Gene 

loci in the different genomes did not have high similarity, except for three 

hypothetical proteins (numbered 2, 3 and 4 in Fig. 4.13) with no specified function 

and rather low sequence complexity.  
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Figure 4.13 Output of a search for homologous proteins with “the SEED”, using 

Ph1179 as query. Ph1179-like genes are labeled with number 1 and colored red. 

Genes labeled with different colors and numbers are conserved in the gene loci with 

Ph1179-like genes. (Pyr.hor.OT - Pyrococcus horikoshii OT3; The.kod. - 

Thermococcus kodakaraensis). 

 

4.1.6 Expression and purification of the AbrB-N homolog –Ta1217  
 

 

Ta1217 (gi16082225) of Thermoplasma acidophilum was generated synthetically 

from primers by PCR and was cloned into the pET30b vector. A 6xHis-tag was 

introduced at the N-terminus. Expression in E. coli at 37°C yielded soluble protein 

that was purified on a Ni-NTA column (GE healthcare), pooled and dialyzed against 

50 mM TRIS/HCl, pH 7.4 with 250 mM NaCl at ambient temperature. Cross-linking 

using 0.15 % glutaraldehyde after 5 or 10 minutes gave 90% of the protein in form of 

a dimer, which was also observed by gel filtration on a calibrated gel-sizing column. 

A DNA mobility shift assay under non-specific conditions and in the presence of 

increasing amounts of Ta1217 clearly showed an interaction of the protein with DNA 

(Fig. 4.14).  

After storage at 4°C the majority of the protein was precipitated and could be 

resolubilize in 6M guanidinum.  Refolding was done by overnight dialysis against 50 

mM TRIS/HCl, pH 7.4 with 250 mM NaCl buffer at ambient temperature. Cold 

sensitivity as well as the fact that it could not be concentrated to higher concentrations 

(max. 0.05 mM) made this protein not suitable for structure determination by NMR 

spectroscopy.  
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Figure 4.14 DNA mobility shift assay in the presence of different concentrations of 

the Ta1217 protein. On the far right side is a DNA control (con) without protein. 

 

4.1.7 NMR structure of AbrB-N  
 

 

Since we could not determine the structure of Ta1217, we decided to re-determine the 

structure of AbrB-N, the N-terminal domain of a transcription factor from Bacillus 

Subtilis. The structure was published to adopt a looped-hinge helix fold, which we 

considered wrong because of the homology of AbrB-N to proteins like MazE or 

MraZ, which adopt a fold resembling the double-psi barrels (Coles et al., 2005). The 

AbrB-N construct (encoding amino residues 1-53 of AbrB, gi113009) was amplified 

from B. subtilis PY79 chromosomal DNA by polymerase chain reaction (PCR) and 

cloned into the pet30b vector (Novagen). The construct contained a 6xHis-tag at the 

amino terminus to facilitate purification. For expression in E. coli C41 strain, cells 

were grown in LB medium at 37°C, induced at OD600~0.6 with 1 mM IPTG and 

harvested after 4h. Uniformly 15N- or 13C-labeled AbrB-N was made by growing 

bacteria in M9 minimal medium, using 15NH4Cl (0.7 g/l) and 13C6-glucose (2 g/l) as 

sole nitrogen or carbon sources. A mixed 15N- and 13C-labeled AbrB-N was prepared 

by combining equal amounts of harvested cells prior to lysis. Proteins were purified 

by a combination of immobilized metal affinity chromatography (IMAC), ion 

exchange and gel sizing chromatography. For NMR measurements, samples were 

Ta1217 

con 
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cradle  loops 

concentrated to 8 mg/ml in buffer containing 20 mM potassium phosphate, 50 mM 

KCl, 0.02% (w/v) NaN3, pH 5.8. The sample purified natively from mixed cell pellets 

behaved the same in NMR like a sample that was mixed, purified under denaturing 

conditions in 8M urea and then refolded, indicating an equilibrium in the folding-

unfolding process of the AbrB-N dimer. The structure of AbrB-N (1YFB and 1YSF) 

was solved by Murray Coles and Vincent Truffault with an RMSD for the final set of 

20 dimeric structures (residues G7-Y50) of 0.27 Å for backbone atoms and 0.71 Å for 

all heavy atoms (Fig. 4.15 and 4.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Structure of the AbrB-N in side view (1YFB). Black arrows indicate 

position of the cradle loops analogous to the psi-loops of VAT-Nn  
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Figure 4.16 Structure of the AbrB-N in top view (1YFB). Strands flanking the cradle-

loops loops are labeled β1 and β2, for the first chain, and β1’ and β2’ for the second. 

Loops are indicated by arrows. 

 

The protein dimerizes by interleaving the four β-hairpin elements, such that each one 

only makes contacts to those of the dimeric partner. The result is an eight-stranded, 

swapped-hairpin β-barrel closed at each end by a helix (Fig. 4.16). It is noticeable that 

the loops between β1 and β2 (β1’ and β2’) project above the surface of the barrel, 

giving the protein a characteristic horned profile (Fig. 4.15). Overall similarity 

between the AbrB-N structure and the double-psi barrel fold is striking, even though 

these are classified into different folds. The fold presented here is markedly different 

from the one originally presented by Vaughn et al., where β2 and therefore one β 

hairpin was absent and no interleaving of monomeric elements occurred (Fig. 1.10A). 

The structure of AbrB-N rather resembles the fold of MazE (Fig. 1.10B), as was 

predicted before by bioinformatics. 

β1 

β2 

β1’ 

β2’ 

cradle loop 1 

cradle loop 2 
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4.1.8 Bioinformatic analysis of AbrB homologues 
 

Search for sequences homologues to AbrB was done using HHsenser, a method that 

combines the PSI-BLAST search strategy SENSER (Koretke et al., 2002) with a 

method for comparing profile Hidden Markov Models (HHsearch; Soeding, 2004). 

After convergence of the sequence searches, which resulted in 724 sequences (580 

unique proteins), the obtained sequences were clustered using the program CLANS 

(Frickey & Lupas, 2004) at a P-value cutoff of e-4 (Fig. 4.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Cluster analysis of the AbrB superfamily. The eight main clusters are 

highlighted in different colors. Subclusters of the core AbrB cluster (black) and Vir 

(green) are labeled differently (AbrB:AbrB, SpoVT and PrlF; Vir: Vir and VagC). 

The different groups and singleton sequences (red) are discussed later. 
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The clustering is based on those parts of the proteins that are homologous to AbrB, 

which were almost always fragments of the complete sequences. In some proteins like 

MraZ, two fragments homologous to AbrB were recovered and named MraZ-C and 

MraZ-N, where C and N stands for the fragment close to either carboxy or amino 

terminus. The individual clusters were reexamined manually, as well as all proteins 

that were not clearly assigned to one cluster, but no false positives were detected. 

More sequences could be identified by searching with each cluster as the starting 

point. Some of the outliers in the clusters were sequences with a misassigned start 

codon in the database. These shortened AbrB domains had lower P-values. This 

problem is seen particularly clearly in the MraZ clusters, where the N-domain cluster 

is much more irregular than the C-domain cluster. 

 

 

4.1.9 Bioinformatic analysis of the SpoVT sequence 

 

 

SpoVT (Stage V sporulation protein T) is a transcription factor involved in positive 

and negative regulation of sigma-G-dependent genes during the process of sporulation 

in Bacillus subtilis. PSI-BLAST analysis using the SpoVT sequence (gi 586883) 

converged with 22 unique sequences – all in sporulating bacteria (see Appendix Fig. 

4).  Analysis of the gene locus using the already mentioned gene annotation/analysis 

server “The SEED” showed clear conservation through Bacilli and related species 

(Fig. 4.18). Additional sporulation genes were found in the same locus (numbered 2, 

6, 7, 13 and 15 in Fig. 4.18), as well as genes for conserved proteins with different 

cellular functions (3, 4, 5, 9, 10, 11, 14).  The gene (8) encoding the MazG protein, a 

nucleoside triphosphate pyrophosphohydrolase, was constantly found in the 

neighborhood.  

Interestingly, the sequence identity in the first 55 residues of SpoVT proteins from 

different bacteria is in the range of 95%, while it drops to 25-30 % in the C-terminal-

125 residue domain (see Appendix Fig 3.).  
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Q SpoVT 1 MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRDGEVILKKYSP   51 (178)
Q Consensus         1 MKstGivRKiD~LGRVVIPkEiRrtL~I~e~D~LeifVd~d~~IIlkKY~P 51 (178)

|||||||||||+|||||||||+||+|+|+++|+||||||+| +||++||+|
T Consensus         3 MKstGivRKiD~LGRIVIPkElRrtL~I~~kd~lei~Vd~~-~IIL~KY~p 52 (96)
T AbrB 3 MKSTGIVRKVDELGRVVIPIELRRTLGIAEKDALEIYVDDE-KIILKKYKP   52 (96)

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Analysis of the SpoVT gene locus using “The SEED” server. SpoVT 

genes are labeled with red color and number 1. Analysis involved several genomes of 

sporulating gram-positive Bacilli species: Bacillus (subtilis, anthracis and 

licheniformis), Geobacillus (caustophilus and stearotermophilus) and Oceanobacillus 

iheyensis. 

 

Further analysis of the protein sequence was done using structure prediction servers at 

BioInfoBank Institute-MetaServer (http://bioinfo.pl/meta/) or our in-house HHpred 

server (http://protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=hhpred). The first 

51 residues of SpoVT share 60% sequence identity with the AbrB-N sequence (Fig. 

4.19), suggesting that it also adopts a cradle-loop barrel fold.  

 

 

 

 

Figure 4.19 Alignment of SpoVT N-terminal part (1-51 aa) with the sequence of 

AbrB-N. Red and yellow colored boxes represent parts of the sequence that adopt β-

strands or α-helices, respectively. 
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Q SpoVT 52 ISELGDFAKEYADALYDSLGHSVLICDRDVYIAVSGSSKKDYLNKSIS-EMLERTMDQRSSVLESDAKSVQLVNGIDEDM  130 (178)
Q Consensus        52 I~EL~dFakeYAeal~~s~gh~v~I~DrD~~IaVaG~~KKey~~k~is-~~~e~~me~rks~~~~~~~~~~~~~~~~e~~  130 (178)

+..|..-+....+++.+...-.+.+-|.+.++..+....-.-..-+++ ..+..+..++++++..+...-.--...+...
T Consensus        45 ~~~L~~~~~ll~~~l~~~d~~giyl~d~~~l~l~a~~g~~~~~~ip~G~Gi~G~v~~~g~~iiv~Dv~~~~~~~~~~~~~  124 (195)
T GAF/PAS domain   45 LATLANTSALLYERLTDINWAGFYLLEDDTLVLGPFQGKIACVRIPVGRGVCGTAVARNQVQRIEDVHVFDGHIACDAAS  124 (195)

Q SpoVT 131 NSYTVGPIVANGDPIGAVVIFSKDQ-TMGEVEHKAVETAAGFLA  173 (178)
Q Consensus       131 ~~y~i~PIia~GDpIGaVii~sk~~-~~gevE~K~aetAa~FL~  173 (178)

.|....||+.++..||...+.|.+. .+.+-++.+.++-|.-++
T Consensus       125 ~S~l~vPL~~~~~viGVL~v~s~~~~~FteeD~~lL~~lA~qiA 168 (195)
T GAF/PAS domain  125 NSEIVLPLVVKNQIIGVLDIDSTVFGRFTDEDEQGLRQLVAQLE  168 (195)

Q SpoVT 52 ISELGDFAKEYADALYDSLGHSVLICDRDVYIAVSGSSKKDYLNKSIS-EMLERTMDQRSSVLESDAKSVQLVNGIDEDM  130 (178)
Q Consensus        52 I~EL~dFakeYAeal~~s~gh~v~I~DrD~~IaVaG~~KKey~~k~is-~~~e~~me~rks~~~~~~~~~~~~~~~~e~~  130 (178)

+..|..-+....+++.+...-.+.+-|.+.++..+....-.-..-+++ ..+..+..++++++..+...-.--...+...
T Consensus        45 ~~~L~~~~~ll~~~l~~~d~~giyl~d~~~l~l~a~~g~~~~~~ip~G~Gi~G~v~~~g~~iiv~Dv~~~~~~~~~~~~~  124 (195)
T GAF/PAS domain   45 LATLANTSALLYERLTDINWAGFYLLEDDTLVLGPFQGKIACVRIPVGRGVCGTAVARNQVQRIEDVHVFDGHIACDAAS  124 (195)

Q SpoVT 131 NSYTVGPIVANGDPIGAVVIFSKDQ-TMGEVEHKAVETAAGFLA  173 (178)
Q Consensus       131 ~~y~i~PIia~GDpIGaVii~sk~~-~~gevE~K~aetAa~FL~  173 (178)

.|....||+.++..||...+.|.+. .+.+-++.+.++-|.-++
T Consensus       125 ~S~l~vPL~~~~~viGVL~v~s~~~~~FteeD~~lL~~lA~qiA 168 (195)
T GAF/PAS domain  125 NSEIVLPLVVKNQIIGVLDIDSTVFGRFTDEDEQGLRQLVAQLE  168 (195)

The C-terminal part of SpoVT (residues 52-178) is predicted with high significance 

by both servers to adopt the GAF or the very similar PAS domain fold (Fig. 4.20). 

The name GAF comes from “cGMP-specific and –stimulated phosphodiesterases, 

Anabaena Adenylate cyclases and Escherichia colt FhlA”(Aravind and Ponting, 

1997). The PAS domain was named after three proteins it occurs in: period circadian 

protein (Per), Ah receptor nuclear translocator protein (Arnt) and single-minded 

protein (Sim). PAS and GAF domains are involved in many signaling pathways 

where they function as sensor domains for small signaling molecules like cGMP.  

 

 

 

 

 

 

 

Figure 4.20 Alignment of the SpoVT C-terminal domain (52-173aa) with the 

sequence of the GAF domain from the E. coli YebR protein (pdb code: 1VHM). Red 

and yellow colored boxes represent part of the sequence that adopt β-strand or α-

helix, respectively. 

 

Based on sequence similarities with the YebR protein from E. coli (1VHM), a model 

of the SpoVT GAF domain was constructed using the alignment interface of the 

SWISS MODEL server (http://swissmodel.expasy.org/). The structure of the model 

was refined using the software “Loopy” from Barry Honig’s bioinformatics group at 

Columbia University (http://honiglab.cpmc.columbia.edu/). The software created 20 

different models based on loop modeling and energy minimization of  the complete 

structure. Models were ranked from 1-20 based on the computed energies and the best 

model is shown in Figure 4.21. 
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Figure 4.21 Model of the predicted SpoVT GAF domain based on the alignment to 

the YebR protein (1VHM) and refined with the software “Loopy”. 

 

4.1.10 Crystal structure of SpoVT 
 

 

SpoVT and SpoVT-C (residues 57-178) were amplified from B. subtilis PY79 

chromosomal DNA by polymerase chain reaction (PCR) and cloned into the pET30b 

vector (Novagen). Both constructs contained an N-terminal 6xHis tag to facilitate 

purification. For expression in the E. coli C41 strain, cells were grown in LB medium 

at 37°C, induced at OD600~0.6 with 1 mM IPTG and harvested after 4h. Proteins were 

purified by a combination of Ni-NTA affinity chromatography and gel filtration on 

the Sephadex G-75 (GE Healthcare) column. Purity of the proteins (>95%) was 

checked using SDS-PAGE. For crystallization the buffer was changed by dialysis to 

10 mM MOPS, pH 7.2, 100mM NaCl. Crystallization was done by the hanging drop 

method using a 1:1 volume ratio of protein solution to the precipitant. Plates and 

crystal screens from Hampton Research were used. Crystals were obtained in several 

conditions with both the full length protein and the SpoVT-C domain (Fig. 4.21).  
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Figure 4.21(A.) Crystals of the SpoVT protein (c = 28mg/ml, 2.0 M (NH4)2SO4, 

precipitant 5% v/v iso-propanol); (B.) Crystals of the C-terminal domain of SpoVT (c 

= 20mg/ml, 0.1 M HEPES, pH 7.5, 0.2 M NaCl, precipitant 25 % w/v PEG 3350) 

 

The structure of the SpoVT C-domain (residues 57-178) was determined at 1.8 Å 

resolution by Iris Asen (MPI for Biochemistry, Martinsried) from crystals of the Se-

Met derivate grown using 25 % w/v PEG 3350 as precipitant, 0.1 M HEPES, pH 7.5 

buffer and 0.2 M MgCl2. The SpoVT-C domain crystallized as a dimer, as had been 

observed before in size exclusion chromatography. Two GAF domains dimerized via 

a four-helix bundle (Fig. 4.22) built from the first (α1, α1’) and last (α4, α4’) helix of 

each chain.  

 

 

 

A. 

B. 
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Figure 4.22 Structure of the dimeric GAF domain of SpoVT. Helices forming the 

four-helix bundle between two chains are labeled (α1, α4 and α1’, α4’ for chain A 

and B, respectively) 

 

The model that was created by bioinformatics tools had a root-mean-square deviation 

(RMSD) from the actual crystal structure of 1.8 Å calculated on the overall structure. 

Models that were generated directly by structure prediction servers (HHpred, 

MetaServer) and without additional loop modeling and energy minimization had 

higher RMSD (>3.5 Å).  

The crystal structure of the complete protein was solved by Iris Asen (MPI for 

Biochemistry, Martinsried) from a dataset of 2.5 Å resolution, using an average NMR 

structure of AbrB-N (1YFB) for molecular replacement of the N-terminal domain 

(Fig. 4.23). The structure of the full protein reveals a tetrameric protein complex via 

the mentioned four helix bundle formed by C-terminal GAF domains, and 

additionally via their N-terminal domains, which form an AbrB-N-like cradle-loop 

barrel (Fig. 4.23A). The GAF domains are tilted approximately 45° in respect to each 

other. This tilting angle is further transferred to the orientation of the cradle-loops in 

the swapped-hairpin barrel domains (Fig. 4.23B). 

α1

α1’

α4’

α4 
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Figure 4.23(A.) Structure of the SpoVT tetramer in top view; each chain is colored 

differently; N-terminal domains that form the AbrB-N like cradle-loop barrels are 

highlighted by a red box. (B.) SpoVT tetramer structure in side view; black arrows 

indicate the position of the so called cradle-loops which are tilted by approximately 

45° in respect to each other. 

 

Partial proteolysis of the SpoVT protein was performed in the presence of possible 

GAF binding ligands using 0.26µg of trypsin. Samples were incubated at 25 °C in 

0.12 ml of buffer containing 20 mM TRIS/HCl, pH 8.0, 1 mM MgCl2, 1mM 

dithiothreitol, and 0.5 mM EDTA. At various time points, 10 µl samples were 

removed, denatured, and subjected to SDS-PAGE (Fig. 4.24). Binding was tested with 

cGMP, GTP, cAMP, ATP, Leu, Ile and Val, at concentration of 10mM. The same 

A. 

   cradle loops B. 
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experiments were repeated using chymotrypsin (0.52µg) and proteinase K (0.4µg) for 

proteolysis. A different pattern as well as a change in overall stability in the presence 

of protease was observed only in experiments where GTP was added to the protein 

solution would indicate that GTP is the ligand for GAF domain of SpoVT (Fig. 

4.24A). Control with BSA had same patterns whether the GTP was present or not in 

mixture (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Partial proteolysis of the SpoVT protein with trypsin. On the bar above 

lines is indicated in which samples 5 mM GTP was added; time points of aliquots are 

indicated under the figure. The lane on the far right side represents protein control 

(con) without added trypsin and the lane in the middle is the LMW marker.  

 
 
 
 
 
 
 
 
 
 

with GTP + trypsin without GTP + trypsin

10’20’30’60’ 10’20’30’60’ con

with GTP + trypsin without GTP + trypsin

10’20’30’60’ 10’20’30’60’10’20’30’60’ 10’20’30’60’ conLMW 
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                              repeat                     
                    |--------------------------------------------| 
                       β1       Ψ      β2   α1              β3     
                    sssssss           ssss hhhhh          ssssss    
VAT-Nn Ta      mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
                    KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV  90 
                     sssss          sssss  hhhhhhh       sssssss 
Af2106        [190] EGAIVIPKRTHYPAE-ILEVISPVKLRDKLGLK-DGDFVEVEVIl 
 233 
Ta1064        [178] PCFVIMPERTVYTD--VIEIISDKYLREEINLH-DGDRVSVEVYt 
 220 
Ph0660        [170] EGAIVIPSRTVHPPK-IAEVIAPVNLRKTLNLQ-DGDKVRIKVL  212 
 
Mj0056        [ 90] DGAIVVPKKTYHSSE-IIEIIAPMKLREQFNLK-DGDVIKILIKgdkde 136 
Mt1500        [ 75] EGAILFPLKTHHRQG-CLEFVAPVNLRKTLKLR-DGDTVSLDIDtseiqe 122 

4.1.11 Bioinformatic analysis of Mj0056 
 

A PSI-BLAST search using Mj0056 (gi 2495770) as the query sequence was 

performed and resulted in two distinct sets of sequences. Both sets of sequences 

showed similarity with one canonical half of the VAT-Nn barrel at their C-termini, 

while the N-terminal part that was alignable with any sequence. The first set of 

proteins was of similar size as Mj0056 (120-150 residues, blue box in Fig. 4.25), 

while the second group of protein sequences had relatively longer sequences (200-250 

residues, red box in Fig. 4.25). 

 

 

 

 

 

 

 

 

Figure 4.25 Alignment of VAT-Nn with Mj0056 and related sequences. The two sets 

of sequences are labeled with different colored boxes. Residues forming the 

hydrophobic core of the barrel are colored blue; GD box and positive charges are 

colored red. 

 

An analysis with “The SEED” using different sequences from these groups as starting 

points revealed, that the majority of genes for Mj0056-like proteins are connected 

with the gene for 3,4-dihydroxy-2-butanone-4-phosphate synthase, an enzyme of the 

riboflavin biosynthesis pathway (Fig 4.26). Therefore, Mj0056-like proteins are 

annotated as transcriptional regulators of the riboflavin synthesis pathway in most 

sequenced genomes. Conservation of the gene loci and gene orientation as well as the 

short distance between the two genes (10-30 bp) are in favor of such an annotation, 

but no experimental data are available to support this hypothesis.   
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Figure 4.18 Analysis of the Mj0056 gene locus using “The SEED”; Mj0056-like 

genes are labeled with red color and number 1; the gene labeled by green color and 

number 2 encodes the 3, 4-dihydroxy-2-butanone 4-phosphate synthase, an enzyme 

from the riboflavin biosynthesis pathway. Genomes are (from top to bottom): 

Methanocaldococcus jannaschii, Archaeoglobus fulgidus, Halobacterium sp., 

Methanobacterium thermoautotropicum, Methanosarcina mazei and Methanosarcina 

acetivorans.  

 

4.1.8 NMR structure of Mj0056 

 
 
Mj0056 was amplified from genomic DNA of Methanocaldococcus jannaschii by 

polymerase chain reaction (PCR) and cloned into the pET30b vector (Novagen). For 

expression in E. coli C41, cells were grown in LB medium at 37°C, induced at 

OD600~0.6 with 1 mM IPTG and harvested after 4h. The protein was purified using a 

combination of MonoQ HR 5/5 (GE Healthcare) anion exchange and SP-Sepharose 

Fast Flow (GE Healthcare) cation exchange columns. The final step of the 

purification included buffer exchange by gel filtration on a Superdex G-75 column 

(GE Healthcare). The protein was concentrated to 10mg/ml and prepared for 
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crystallization in 20 mM MOPS, pH 7.25, 120 mM NaCl. Crystallization was done by 

the hanging drop method using a 1:1 volume ratio of protein to precipitant solution 

with Hampton research plates and crystal screen solutions. Crystals of similar shape 

were noticed in two drops, both containing 2.0 M (NH4)2SO4 as precipitant (Fig. 

4.26).  

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 4.26 Crystals of the Mj0056 protein (c = 10 mg/ml, 0.1 M Na-acetate, pH 4.6, 

precipitant 2.0 M (NH4)2SO4) 

 

Crystals of the Mj0056 were diffracting to a resolution of 6 Å and Se-Met derivates 

improved the resolution to 3.3 Å, but even this resolution was too low for structure 

calculation, since no good model could be built for molecular replacement. The 

protein structure was solved using NMR spectroscopy. Uniformly 15N- or 13C-labeled 

Mj0056 protein was produced by growing bacteria in M9 minimal medium with 
15NH4Cl (0.7 g/l) and 13C6-glucose (2 g/l) as sole nitrogen or carbon sources. The 

protein was purified by the same method described above, with the exception that the 

final buffer was Na-phosphate, pH 7.4, 150 mM NaCl. The structure of Mj0056 (Fig. 

4.27) was solved by Murray Coles and Vincent Truffault, but was not yet refined and 

submitted to the RSCB Protein Data Bank (http://www.rcsb.org/pdb). The NMR 

structure of the Mj0056 protein will be used like a model for molecular replacement 

and calculation of the crystal structure. In such way we will check for possible 

presence of the ligand that could not be seen in the NMR structure.  
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Figure 4.27(A.) NMR structure of the Mj0056 protein (side view); (B.) Top view on 

structure of the Mj0056 protein; black arrows indicate position of the loops that are 

analogous to the psi-loops of VAT-Nn or the cradle-loops of AbrB-N 

 

The structure of Mj0056 resembles a 6-stranded beta barrel fold capped from both 

sides with small helices. The overall structure of the barrel is very similar to the 

structure of the Phs018 protein (Coles et al., in preparation) with insertions of 

additional secondary structure elements in several loops. The topology and connection 

of the Mj0056 structure with structures of other members of double-psi, swapped-

hairpin and RIFT barrels is discussed later. 

 

 

 
 
 
 

A. B. 

cradle loops 
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4.2 β-clam domains  

 

 

 

 

Phylogenetic analysis of the AAA family of proteins revealed a new subgroup of 

AAA proteins which are in most of databases designated to be FtsH or cell division 

control AAA proteins. We have named this subgroup of AAA proteins AMA, since 

they can be found only in Archeglobus f. and the methanogenic group of 

archaeabacteria. Bioinformatic analysis of the N-terminal domain of AMA proteins 

showed that they could assume a CDC48 domain 2-like fold, a six stranded clam-like 

structure. This fold is found in the N-terminal part of CDC48-like proteins and also in 

UFD1 proteins. In those two groups of proteins this domain is following another 

domain (double psi-barrel fold) forming a kidney-shaped structure. It has been shown 

that the combination of the two named domains, like in VAT (Cdc48/p97 homolog 

from Thermoplasma acidophilum) and yeast UFD1 play a role in binding protein 

substrates (Golbik et al., 1999; Park et al., 2005).  Characteristic of AMA proteins is 

that a clam-like domain is the sole N-terminal domain. This prompted us to check 

whether the N-terminal domain of AMA proteins can still bind protein substrates and 

prevent their aggregation, since it is missing a double psi-barrel domain.  

 

4.2.2 Expression and purification of AMA constructs 
 

DNA sequences encoding AfAMA (Af1285) and its N-terminal and ATPase domains, 

AfAMA-N (residues 1-101) and AfAMA-∆N (residues 102-352), respectively, were 

amplified by PCR from genomic DNA of A. fulgidus. The Mj-AMA (Mj1494) and 

MjAMA-N (residues 1-120) sequence were amplified by PCR from genomic DNA of 

M. jannaschii. Constructs were cloned into the pET-30b expression vector (Novagen) 

via the NdeI and HindIII restriction sites. All constructs were generated as N-terminal 

6xHis-tag fusions to facilitate protein purification, but if required were recloned 

without tag (AfAMA-N, MjAMA-N). AfAMA-N was also cloned into the 

pThiohis(b) vector (Invitrogen) as a C-terminal fusion to a modified thioredoxin 

(Thio-AfAMA-N), using NcoI and XbaI restriction sites. The identity of all constructs 
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was confirmed by DNA sequencing. All proteins were expressed in E. coli C41 (DE3) 

at 37°C after induction with 1mM IPTG at OD600~0.6.  With the exception of 

AfAMA-N, all His6-tagged proteins remained in the soluble fraction of cellular 

extracts and were purified by a combination of immobilized metal affinity and gel-

size exclusion chromatography. The majority of AfAMA-N was found in inclusion 

bodies. This fraction was solubilized in low-salt buffer (50mM Tris/Hcl, pH 7.3, 

50mM NaCl) containing 8M urea, and purified by ion-exchange chromatography 

under denaturing conditions with 8M urea. 95% of the protein was refolded by 

overnight dialysis against PBS, 1mM DTT and 5% glycerol. AfAMA-N from the 

soluble fraction of the lysate was purified first by ion-exchange chromatography. 

Samples from both purification procedures were finally purified by gel-size exclusion 

chromatography. Protein purity was >95% as judged by SDS-PAGE. Both AfAMA-N 

protein preparations, soluble and refolded, behaved identically and had a very low 

solubility (0,4 mg/ml) in the absence of 5% glycerol. To avoid precipitation, we 

expressed AfAMA-N fused to the C-terminus of thioredoxin (Thio-AfAMA-N) 

(Hammarstrom et al., 2002). Indeed, solubility of the fusion protein was 40-50 times 

increased, but removal of thioredoxin by cleavage with Factor Xa (Novagen) led 

again to precipitation. To obtain information about the molecular mass and oligomeric 

state of all proteins, samples were analyzed on analytical Superose 6 and 12 columns 

(GE Healthcare), calibrated with gel filtration standards (Sigma) and additional 

standard proteins. Since oligomerization of some AAA proteins is ATP dependent, 

samples were also analyzed in the presence of 5 mM ATP (Fig. 4.28 and 4.29).  

The retention time of AfAMA was between the two size markers thyroglobulin (669 

kD) and ferritin (474 kD), and based on a monomeric MW of 40 kD for AfAMA, this 

suggests a dodecameric complex of approx. 480 kD., AfAMA-∆N (29 kD), which 

comprises of the AMA ATPase domain, did not form higher oligomers but was eluted 

as a dimer on gel-size exclusion columns. The presence of ATP did not change the 

oligomerization state. 
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Figure 4.28 Elution profiles of AfAMA and AfAMA-∆N in the absence or presence 

of nucleotide (ATP) on a Superose 6 gel-size exclusion column. Arrows above the 

elution profiles indicate the elution volumes of proteins used for calibration of the 

column. 

 
 
As the oligomerization of AfAMA was obviously a consequence of its N-terminal 

domain AfAMA-N, we determined also the native molecular weight for this domain 

(monomeric size 12 kD). Based on elution on the Superose 12 gel-size exclusion 

column the size is approx. 70 kD, corresponding to a hexameric complex (Fig 4.29). 

Likewise, Thio-AfAMA-N (monomeric size 26 kD) and MjAMA-N, the homologous 

N-domain from Methanocaldococcus jannaschii, migrated as hexamers on the gel 

filtration column (data not shown). 
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Figure 4.29 Elution profiles of AfAMA-N in the absence and presence of nucleotide 

(ATP) on a Superose 6 gel-size exclusion column. Arrows above the elution profiles 

indicate the elution volumes of proteins used for calibration of the column. To put 

emphasis on molecular weight only two molecular weight markers are shown (BSA 

and carbonic anhydrase) 

 

CD spectra of all constructs indicated folded proteins with a mixture of α-helix and β-

strand content for AfAMA and AfAMA-∆N (minima at 222 and 209 nm), and mainly 

β-sheet content for AfAMA-N (minimum at 216 nm) (Fig. 4.30).  
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Figure 4.30 CD spectra of recombinant AfAMA, AfAMA-ΔN and AfAMA-N 

proteins 

 

Thermal denaturation curves revealed melting temperatures (Tm) for AfAMA-∆N and 

AfAMA of 84±1°C and 88±1°C, respectively (Fig 4.31). The sigmoidal shape of the 

melting curves indicates that the unfolding process in both proteins is cooperative, 

excluding a folding defect as reason for the behavior of AfAMA-∆N. The lower Tm 

for AfAMA-∆N is probably due to the missing N-terminal domain.  

 

Tm for AfAMA-N could not be determined by this method, as the CD spectrum did 

not show any obvious changes up to 98°C (data not shown). This indicates a very high 

stability of the isolated N-domain complex. CD spectra recorded after boiling the 

protein 5 minutes at 100°C did not show any changes to the one shown in Figure 4.31. 

This stability is further substantiated by the finding that AfAMA-N is stable in SDS-

sample buffer, even after 5 min of boiling at 95°C (Fig. 4.32). 
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Figure 4.31 CD heat-denaturation curves of AfAMA and AfAMA-ΔN. The fractional 

signal represents an arbitrary scale based on difference of signals of folded and 

unfolded state of protein (or signal at room temperature and 98°C)  

 

 

 

 

 

 

 

 

Figure 4.32 SDS-PAGE gel of hexameric and monomeric AfAMA-N after incubation 

in SDS-containing buffer at 95°C. When indicated, 6 M urea was added to the sample 
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4.2.2 Electron microscopy of the AMA constructs 
 

Images of AfAMA-N complexes were recorded using electron microscopy (EM) at 

the in-house EM service facility with the help of Dr. Heinz Schwarz. When adsorbed 

to carbon-coated grids, negatively stained AfAMA-N particles appeared as ring 

structures with a stain-filled center (Figure 4.33). Interestingly, the addition of a 

6xHis tag to AfAMA-N resulted in a totally different appearance of the sample in 

EM. The formation of elongated, chain-like structures was observed (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 AfAMA-N particles negatively stained in uranyl acetate. Some of the 

ring structures are encircled.  

 

Averaging of negatively stained AfAMA-N particles was done in collaboration with 

Dr. Beate Rockel from MPI of Biochemistry in Martinsried. Averages of the AfAMA-

N particles display hexameric symmetry, which is obvious from the eigenvectors 

obtained from the analysis of a particle stack. Those particle images were centered 

and afterwards corrected for their rotation (Fig. 4.34A, B). The diameter of the 

hexameric class averages is approx. 9 nm with a stain-filled centre of approx. 1.5 nm 

in diameter. 
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Figure 4.34(A.) Class average of AfAMA-N representing hexameric top views. The 

scale bar represents 10 nm. (B.) Sixfold symmetrized class average. 

 

Images of the AfAMA complex could not be obtained at good resolution. Ring 

structures were visible but the overall shape of the particles appeared to be non-

uniform, which made averaging of the images impossible. Addition of glycerol (5-10 

% v/v) to the sample buffer improved the behavior of the complex (data not shown). 

 

 

4.2.3 Chaperone activity of AMA constructs 
 

The physiological role of AMA proteins is unknown. Yet, it is reasonable to assume 

that AMA proteins, like other AAA ATPases, are involved in protein unfolding and 

the dissociation of complexes, possibly in cooperation with other chaperones or 

proteases. Therefore AfAMA was tested for its ability to interact with non-native 

proteins, as they may also be presented during unfolding of physiological substrate 

proteins. These artificial substrates were generated by heat-induced denaturation of 

two model proteins, firefly luciferase (Fig. 4.35) and porcine citrate synthase (Fig. 

4.36). The resulting aggregation of these proteins was measured as increase in 

attenuance caused by light scattering. 
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Figure 4.35 Chaperone activity of AMA proteins. Heat-inducible aggregation of 

luciferase at 43 °C is measured in the presence of equimolar concentrations of 

AfAMA, AfAMA-ΔN, or AfAMA-N. 

 

When AfAMA or AfAMA-N were present in stoichiometric concentrations during the 

heat-incubation period, aggregation of both citrate synthase and luciferase was 

suppressed, demonstrating an intrinsic chaperone activity of AfAMA, which resides 

in the N-terminal domain. AfAMA-∆N had no effect in these assays, indicating that 

either the ATPase domain of AMA is not involved in substrate binding, at least with 

the proteins we tested, or that it requires the hexameric ring structure to make stable 

contacts with non-native proteins. 
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Figure 4.36 Chaperone activity of AMA proteins. Heat-inducible aggregation of 

citrate synthase at 50 °C in the absence or presence of a threefold molar excess of 

AfAMA, AfAMA-ΔN or AfAMA-N. 

 

According to the generic reaction mechanism of AAA ATPases, the interaction of 

AfAMA with non-native proteins should be affected by available nucleotides for 

hydrolysis. Indeed, when ATP was present in the reaction mixture from the 

beginning, AfAMA did not suppress aggregation anymore, suggesting that substrate 

protein was released immediately after binding or was not bound in the first place 

(Fig. 4.37). Similarly, release of substrate protein could be induced by addition of 

ATP at later time points (Fig. 4.37). In the latter case, the concerted release of 

proteins by addition of ATP is expected to generate at once high concentrations of 

unfolded polypeptides in solution, resulting in very rapid aggregation. Non-

hydrolyzable analogs ATPγS and AMP-PNP were not effective in dissociating 

substrate protein (Fig. 4.37), indicating that hydrolysis rather than mere binding of 

ATP is required to elicit this step. Nucleotides had no effect on the interaction of 

proteins with AfAMA-N (not shown). 
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Figure 4.37 Citrate synthase aggregation in the absence or presence of a fivefold 

molar excess of AfAMA. To test for effects of nucleotides, ATP, ATPγS or AMP-

PNP were either present from the beginning or, in case of ATP, added at a later time-

point (indicated by arrow). 

 
 

4.2.4 Temperature dependant ATPase activity of AMA constructs 
 

 

A defining feature of the AAA protein family is their ATPase activity, which serves 

to dissociate bound substrates and to switch the complex between high- and low-

affinity states. Given the thermostable nature of AfAMA, I assayed all constructs for 

ATPase activity at high temperatures (Fig. 4.38). AfAMA showed maximal ATPase 

activity close to the optimal growth temperature of A. fulgidus (80°C), but had no 

activity at temperatures below 45°C. Interestingly, AfAMA-∆N had an even more 

pronounced ATPase activity, with a maximum at 75°C (Fig. 4.38).  
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Figure 4.38 ATPase activity of AfAMA (▲) and AfAMA-∆N (■) measured at 

different temperatures. 

 

In fact, the specific activity of AfAMA-∆N was approximately three-fold higher than 

that of full-length AfAMA (~990 nmol mg-1 min-1 vs. ~380 nmol mg-1 min-1 at 70°C), 

the latter one being in the same range as the ATPase activity of FtsH at 37°C (~450 

nmol mg-1 min-1) (Karata et al., 1999). As expected, AfAMA-N did not have any 

ATPase activity (data not shown).  
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4.2.5 GYPL and deletion mutants of AMA 
 

Sequence similarity searches using BLAST or PSI-BLAST with the AMA-N domain 

like a query did not yield matches outside the AMA group. Nevertheless, the 

similarity of this domain to the β-clam part of the N-domain found in proteins of the 

Cdc48/p97 clade (Appendix Fig. 4) is readily apparent with more advanced methods, 

such as HHsenser, which uses Hidden Markov Model comparisons (Söding, 2004). 

The alignment of these domains to their homolog from T. acidophilum (VAT-Nc) is 

shown in Figure 4.39. Besides the relatively longer loop region between the first β-

strand and α-helix, a characteristic of the AMA-N sequences is the presence of a 

conserved GYPL motif in the same loop. To elucidate the importance of this motif 

using standard site-directed mutagenesis techniques, I constructed the AfAMA 

mutants Y19A, L21A, double mutant Y19A; L21A as well as a deletion mutant 

AMA-N-ΔGYPL. Constructs were cloned into the pET30b expression vector 

(Novagen) with Nde I and HindIII restriction sites. All constructs were generated as 

N-terminal 6xHis-tag fusions to facilitate protein purification. Proteins were 

expressed in E. coli C41 (DE3) at 37°C after induction with 1mM IPTG at OD600~0.6.   

With the exception of AMA-N-ΔGYPL all His6-tagged proteins remained in the 

soluble fraction of cellular extracts and were purified by a combination of 

immobilized metal affinity and gel-size exclusion chromatography. Refolding of the 

AMA-N-ΔGYPL was not possible under any of the tested conditions. Mutant proteins 

were analyzed on analytical Superose 6 and 12 columns (GE Healthcare), calibrated 

with gel filtration standards (Sigma) and additional standard proteins to obtain 

information about their oligomerization. It was found that AfAMA requires an intact 

GYPL motif for hexamerization, as single or double mutations in the conserved 

GYPL motif resulted in the loss of the oligomeric ring structure (Fig. 4.40, mutant 

data are shown only for AfAMA L21A).  
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Figure 4.39 (A.) Alignment of AMA-N sequences with the homologous 

VAT-Nc domain. Red and yellow boxed residues are forming β-strands 

and α-helix, respectively. The blue box highlights the position of the 

GYPL motif in the AMA-N domains, which is absent in VAT-Nc.  

(B.) Structure of the VAT-Nc domain (1CZ4, residues 95-174). The 

arrow indicates the position of the GYPL motif in homologous AMA-N 

domains 
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Figure 4.40 Elution profiles of AfAMA L21A mutant in the absence or presence of 

nucleotide (ATP) on a Superose 6 gel-size exclusion column. 

 

To check whether the presence of nucleotides can favors oligomerization, column 

runs for mutant proteins were repeated in the presence of ATP. However, there was 

no change in any of the chromatograms (shown exemplary for the L21A mutant in 

figure 4.40), showing that AfAMA mutants are dimers also under these conditions, 

and lost their ability to assemble into hexameric rings.  

All mutant forms of AfAMA were folded and gave CD spectra with pronounced α-

helical minima at 222 nm and 209 nm similar to wild type AfAMA. The sigmoidal 

shape of the melting curves indicates that the unfolding process in all mutants was 

cooperative, and the melting temperatures of AfAMA mutants showed little variation 

from wild-type protein: 87±0.5°C for AfAMA Y19A, 86±1°C for AfAMA L21A and 

87±1°C for AfAMA Y19A;L21A. AfAMA dimeric mutants did not show any 

significant chaperone activity when assayed with luciferase or citrate synthase as 

substrates (data not shown). Another striking result is that all dimeric mutants, 

defective in the GYPL motif in the N-domain, had ATPase activity similar to 

AfAMA-∆N, which is dimer by itself (Fig. 4.41).  
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Figure 4.41 Comparison of the ATPase activity of AfAMA, AfAMA-∆N and 

AfAMA-L21A measured at three different temperatures. 

 

4.2.6 Chimeras of AMA and VAT-Nc 
 

VAT-Nc domain of VAT protein from T. acidophilum (gi 6435755, residues 93-174) 

was cloned into the pET30b expression vector (Novagen) with NdeI and HindIII 

restriction sites. The construct was generated with a C-terminal 6xHis tag to facilitate 

purification. Proteins were expressed in E. coli C41 (DE3) at 37°C after induction 

with 1mM IPTG at OD600~0.6. After purification using combined affinity and size 

exclusion chromatography, the protein was assayed for its possible chaperone activity. 

No activity was observed in assays with different protein substrates. Measurement of 

the native size on a calibrated size-exclusion column (Superose 12) indicated 

monomeric state of the protein with a molecular weight of approximately 10 kD. 

From these results and results obtained in Chapter 4.2.5, it became important to 

completely understand the role of the GYPL motif and the loop where this motif is 

settled.  Based on the alignment of AMA-N domains with VAT-Nc (Fig. 4.39) we 

designed a couple of chimeric loop constructs. Loops following the first β-strand were 

either partly or totally interchanged between the β-clam domains of AfAMA-N and 
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VAT-Nc (Fig. 4.42). Constructs were generated using long forward primers, which 

introduced the loop changes and an N-terminal 6xHis-tag in the sequence to expedite 

protein purification. All constructs were expressed as soluble proteins in E. coli C41 

(DE3) cells at 37°C after induction with 1mM IPTG at OD600~0.6.  Proteins were 

purified over Ni-NTA affinity matrix followed by gel filtration (Superdex G-75). 

Constructs were analyzed for their oligomeric state (Fig. 4.42) using calibrated 

Superose 6 and 12 columns.     

 

 

 

 

 

 

 

 

 

 

Figure 4.42 Oligomeric states of native β-clam domains (AfAMA-N and TaVAT-Nc) 

and the constructed chimeric proteins (AfAMA-N short and VAT-AMA loop hybrid 

1(2)). The GYPL motif is colored in green; loops from AfAMA and VAT-Nc are 

designated with blue and red color, respectively.  

 

Those chimeric β-clam domains that contained the GYPL motif had higher tendency 

to oligomerize (Fig. 4.42). The AfAMA-N construct that contained the GYPL motif 

but a shorter loop (AfAMA-N short), resembling by length the loop of VAT-Nc 

protein was a labile hexamer in comparison to the wild type AfAMA-N. The stability 

of the protein was drastically affected, which made it impossible for use in heat 

aggregation assays. It is important to mention again that deletion of the GYPL motif 

(AMA-N-ΔGYPL) in the AfAMA-N resulted in an insoluble product that we were not 

able to refold. Proteins were tested for possible chaperone activity in heat aggregation 

assays using citrate synthase as protein substrate. Chaperone activity of the chimera 

>AfAMA-N
MAKRETAELRYLIVRPLGYPLKASYHEYPQ-VDNPKV…
>AfAMA-N short
MAKRETAELRYLIVRPLGYPLKASYH-----GEGPKV…

>VAT-AMA loop hybrid 1
VRTEIAKKVTLAPIIRK----DQRLKFGEYPQVDNEG…
>VAT-AMA loop hybrid 2
VRTEIAKKVTLAPIIRPLGYPLKASYHEYPQVDNPIE…
>TaVAT-Nc
VRTEIAKKVTLAPIIRK----DQRLKF--GEGIEEYV…

oligomeric state 

6 

6 

   1 

3 

1 
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proteins and wild type domains was compared using equimolar ratios of proteins and 

citrate synthase in the assay (Fig. 4.43). The trimeric VAT-AMA loop hybrid 2 was 

the only construct, besides wild type AfAMA-N protein, which was able to prevent 

heat aggregation of citrate synthase to some extent. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.43 Citrate synthase heat aggregation assay in presence of AMA-N, VAT-Nc 

or two hybrids (hyb 1 and 2); each bar represents relative aggregation of CS after 40 

minutes of heating at 50 °C 

4.2.7 Structure determination of AMA proteins 
 

Purified AfAMA, MjAMA and MjAMA-N proteins were set up for crystallization 

using the hanging or sitting drop method and crystal screens from Hampton Research 

and Sigma. First screens for AfAMA and MjAMA proteins in 20 mM MOPS, pH 

7.25, 150 mM NaCl did not result in crystallization due to later observed uncontrolled 

aggregation in this buffer. Addition of 5% glycerol and presence of ADP or non-

hydrolyzable ATP analogs in the sample buffer resulted in stable proteins that 

crystallized under several conditions (Fig. 4.44). Measurement of diffraction data and 

structure determination is an ongoing project. MjAMA-N crystals were obtained by 

the hanging drop method in the Index screen of Hampton research (0.05 HEPES, pH 

7.5, 0.2 M KCl, 35% v/v Pentaerythritol Propoxylate (5/4 PO/OH) with different 

additives (Fig. 4.45). 
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Figure 4.44 (A.) Crystals of the AfAMA with ADP (c = 10mg/ml, 0.1 M TRIS/HCl, 

pH 8.5, CaCl2x2H2O, precipitant 30% w/v PEG 4000); (B.) Crystals of AfAMA with 

ATPγS (c = 10mg/ml, 0.1 M TRIS/HCl, pH 7.0, 0.2 M MgCl2x6H2O, precipitant 2.5 

M NaCl) 

 
Diffraction data at a resolution of 2.8 Å was collected, and models for molecular 

replacement were generated based on the similarity of the AMA-N domain with 

VAT-Nc structure. We expect to solve the molecular structure of this domain in the 

neer future. 

 

 

 

 

 

 

Figure 4.45 (A.) Crystals of the MjAMA-N domain (c = 9mg/ml0.05 HEPES, pH 7.5, 

0.2 M KCl, 35% v/v Pentaerythritol Propoxylate (5/4 PO/OH) 

A. 

B. 
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Modeling of the AfAMA-N domain based on EM data and its similarity to VAT-Nc 

was done by Dr. Beate Rockel from the MPI for Biochemistry. The model was made 

by building a hexameric EM model of the beta-clam domain of VAT-N (residues 95-

174) which was low-pass filtered to 2.0 nm using a pixel size of 2.65 Å. The 

hexameric model of VAT-Nc was used to build a surface and ribbon model of the 

AMA-N β-clam which was fitted into the refined EM data (Fig. 4.46). Based on data 

obtained from the GYPL-motif single point or deletion mutants, loops containing the 

motif were placed in the central pore of the hexamer. This orientation of the loops 

favours the proposed role of GYPL in oligomerization and/or binding of protein 

substrates. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.46 Ribbon and surface representation of the hexameric model of the AMA-

N beta-clam domain 
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4.3 PAN-N and ARC-N domains 
 
 
 
 
Clustering of the N-terminal domains of AAA proteins indicated a well defined group 

of PAN-N domains, which additionally contained N-domains of ARC proteins 

(Appendix Fig.1). Similarity between these sequence was not only significant in the 

coiled-coil segments (Wolf et al., 1998) but also in the β-strand rich interdomains 

(Frickey and Lupas, 2004). Since the structural data on ARC and PAN proteins were 

limited to the level of the electron microscopy methods (Wolf et al., 1998; Wilson et 

al., 2000; Zhang et al., 2004) we have tried to further characterize those proteins by 

crystallography or NMR spectroscopy. The comparative analysis of the chaperone 

function of the N-terminal domains of PAN and ARC was based on the knowledge 

that PAN and its eukaryotic homologs, subunits of the 19 S proteasome, can prevent 

aggregation of different protein substrates (Braun et al., 1999; Strickland et al., 2000; 

Benaroudj and Goldberg, 2000). Structural and functional characterization of the 

Ph1500 protein from P. horikoshii (gi 3257925) was done due to the fact that this 

protein was predicted to contain domains found in the N-termini of four different 

clades of AAA proteins (CDC48/p97, ARC, PAN and AMA). N-terminal part of the 

protein (residues 1-77) is predicted to assume β-clam fold found in the CDC48/p97 

and AMA group, while  C-terminus (78-148) shares structural similarity with β-strand 

rich domain of PAN and ARC proteins. Therefore, despite not being an AAA protein 

itself, Ph1500 is making an important link between the clades of AAA family.   

 

4.3.1 Crystal structure of ARC-Nc domain 
 

 

Constructs of ARC-N (residues 1–227, gi 3790601), ARC-Nn (1-77) and ARC-Nc 

(78-227) in pT7-7 vector (Zhang et al, 2004) were a generous gift from Dr. Peter 

Zwickl from MPI for Biochemistry in Martinsried. All constructs were generated with 

C-terminal 6xHis-tag to facilitate purification. ARC proteins were expressed in E. coli 
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BL21 (DE3) at 37°C after induction with 1mM IPTG at OD600~1.0 and purified by a 

combination of Ni-NTA affinity chromatography and gel filtration. Purified proteins 

were dialyzed overnight against 20mM MOPS, pH 7.25, with 120 mM NaCl buffer 

which was used for crystallization screens. Commercially available ready made 

crystal screens from Hamptone Research and Sigma were used for protein 

crystallization. ARC-N and ARC-Nc were set up for crystallization using the hanging 

drop method by mixing a 1:1 solution of protein and precipitant. ARC-Nc crystals of 

cubic shape were obtained using 30% v/v PEG monomethyl ether 550 as a precipitant, 

in 0.1 M Bis-TRIS, pH 6.5 buffer with 0.05 M CaCl2 (Fig. 4.47). 

 

 

 

 

 

 

 

 

 
 

Figure 4.47 Crystals of the ARC-Nc (c = 3.6 mg/ml, 0.1 M Bis-TRIS, pH 6.5, 0.05 M 

CaCl2x2H2O, precipitant 30 % v/v PEG monomethyl ether 550) 

 

 

Crystal structure of the ARC-Nc domain was solved by Dr. Kornelius Zeth (from a 

dataset of up to 1.6 Å resolution. The structure reveals a hexameric complex of two 

almost identical OB-barrel folds (oligosaccharide binding) in each protomer (Fig. 

4.48). Duplication of the OB folds is not obvious on the sequence level because of the 

20 residue insertion in the loop following the helix of the second OB fold. This loop 

was also not seen in crystal structure, which is probably due to its flexibility (Fig. 

4.49). 
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Figure 4.48 Crystal structure of the ARC-Nc (residues 78-227) hexamer complex in 

top and side view  
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Figure 4.49 Structure of ARC-Nc protomer showing position and sequence of the 

missing loop 

 

4.3.2 Expression and characterization of PAN-N domains 

 

DNA sequences encoding AfPAN-N (1-134) and its subdomains AfPAN-Cc (Cc-

coiled coil, residues 1-60) and AfPAN-Ob (OB fold, residues 61-134) respectively, 

were amplified by PCR from genomic DNA of A. fulgidus and cloned into the 

pET30b vector (Novagen). All three constructs contained an N-terminal 6xHis tag to 

facilitate purification. For expression in the E. coli C41 strain, cells were grown in LB 

medium at 37°C, induced at OD600~0.6 with 1 mM IPTG and harvested after 4h. 

AfPAN-Cc and AfPAN-Ob were purified by a combination of Ni-NTA affinity 

chromatography and gel filtration on a Sephadex G-75 (GE Healthcare) column. 

Purity of the proteins (>95%) was checked using SDS-PAGE. The majority of 

AfPAN-N was found in inclusion bodies. The protein was solubilized in buffer A1 

containing 8M urea, and purified by Ni-NTA affinity chromatography under 

VFADPEADIIAYDADSPTR 
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denaturing conditions. 95% of the protein was refolded by overnight dialysis against 

50 mM Na-Phosphate, pH 7.4, 150 mM NaCl, 1mM DTT and 8% glycerol. To obtain 

information about the molecular mass and oligomeric state of all constructs, samples 

were analyzed on analytical Superose 6 and 12 columns (GE Healthcare), calibrated 

with gel filtration standards (Sigma) and additional standard proteins. While AfPAN-

Cc and AfPAN-Ob were behaving like dimers, the AfPAN-N domain formed soluble 

oligomers with high molecular weights in the range of 1 MDa. Electron microscopy 

of the protein sample showed round shaped complexes of uniform size (Fig. 4.50)  

 

 

 

 

 

 

 

 

 

Figure 4.50 Class averages of the uranyl-acetate stained AfPAN-N particles  

Instability of the AfPAN-Ob subdomain and the size of AfPAN-N particles rendered 

them unsuitable for structure determination by NMR spectroscopy. The purified N-

terminal domain of M. janaschii PAN protein behaved like a dimer but also showed 

instability. Expression of PAN-N domain with N-terminal thioredoxin fusion gave 

soluble protein. After purification on Ni-NTA affinity chromatography and gel 

filtration the protein behaved like a dimer. The fusion protein was dialyzed against 20 

mM MOPS, pH 7.2, 150mM NaCl buffer and set up for crystallization, but no crystals 

were obtained. The complete PAN protein (PAN-N+AAA domain) from A. fulgidus 
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was cloned and purified for the structural studies. Crystallization of PAN is still an 

on-going project in the moment.   

 

4.3.3 Chaperone activity of ARC and PAN N-domains 
 

 

Based on prior knowledge that full PAN protein from M. janaschii can prevent heat-

induced aggregation of protein substrates (Benaroudj and Goldberg, 2000) N-terminal 

domains (and sub-domains) of PAN and ARC were assayed for possible activity 

against different protein substrates. Chaperone activity was restricted to fully 

expressed N-domains (Fig. 4.51 and 4.52), while sub-domains alone did not show any 

activity (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.51 Luciferase heat aggregation assay (43°C) in the presence of different 

concentration of Thioredoxin-PAN-N (TPAN-N) and ARC-N. Numbers in brackets 

represent the molar ratio of the assayed proteins towards citrate synthase. Note: lower 

% of the relative aggregation means higher chaperone activity. 
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Figure 4.52 Citrate synthase heat aggregation assay (50°C) in the presence of 

different concentrations of Thioredoxin-PAN-N (TPAN-N) and ARC-N. Numbers in 

brackets represent the molar ratio of the assayed proteins towards citrate synthase.  

 

Pull-down assays using Ni-NTA beads showed that citrate synthase (Fig. 4.53) and 

luciferase (not shown) can interact with PAN-N and ARC-N only when they are 

unfolded, the control with a non-heated mixture resulted in binding of 6xHis-tagged 

protein only. 

 

 

 

 

 

 

 

 

 

 

Figure 4.53 Ni-NTA pull-down after citrate synthase (Cs) heat aggregation assay in 

presence of AfPAN-N. Cs con – represents total input of citrate synthase in aggreg. 

assay. Cs not heated – is the control for unspecific binding of CS to Ni-NTA. 

LMW    AfPAN-N AfPAN-N +Cs
not heated 

AfPAN-N +Cs
heated 

Cs  
not heated 

Cs con 
 

AfPAN-N 

Cs 
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ARC-N1MJC 2EIFARC-N1MJC1MJC 2EIF2EIF

4.3.4 Chaperone activity of chimeric constructs 
 

 

It was noticeable after the first assays that only full N-domains, containing both 

coiled-coil and OB fold(s) were active in assays. Sub-domains by themselves, coiled 

coil or OB fold(s), could not prevent aggregation of any tested substrate, which 

illustrates the importance of the structural arrangement of these domains in one 

polypeptide chain. To test if the unique combination of the coiled-coil and OB folds 

in ARC-N and PAN-N makes these proteins active ARCPAN or PANARC chimeras 

were constructed. In similar fashion ‘frankenstein’ chimeras were constructed where 

either one or both sub-domains were exchanged with a structurally but not 

functionally similar domain. The coiled-coil segment of the GCN4 transcription factor 

from S. cerevisiae was used to substitute ARC-N and PAN-N coiled-coils. OB folds 

of the translation initiation factor from M. janaschii (2EIF) and RNA-binding cold 

shock protein from E. coli (1MJC) were found using 3D protein structure comparison 

and alignment (http://cl.sdsc.edu/; Shyndyalov & Bourne, 1998) with OB folds of 

ARC-N (Fig. 4.54). By joining GCN4 coiled-coil with the mentioned OB folds we 

have constructed proteins that beside structural architecture had nothing in common 

with the original N-domains of PAN and ARC.  

 

 

 

 

 

 

 

 

Figure 4.54 Comaparison of the OB-folds from ARC-N, E. coli cold shock protein 

(1MJC) and translation initiation factor from M. janaschii (2EIF). The two structures 

were used to construct ‘frankenstein’ proteins. 

 

Influence of the length of the coiled-coil segment on the activity of the N-domains 

was elucidated through a series of PAN-N constructs with shorter coiled-coil sub-

domains (Table 4.1).  
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Table 4.1 Chimera (blue text), ‘frankenstein’ (orange) and shortened (green) 

ARC/PAN-N-like proteins; cc - coiled-coil, OB - OB fold; EcCS - E. coli cold shock 

protein; MjTIF - M. janaschii translation initiation factor. 

 

All proteins had an additional N-terminal 6xHis-tag to facilitate purification and were 

expressed from pET30b vector. After expression in the E.coli C41 strain, soluble 

proteins were purified by a combination of Ni-NTA affinity chromatography and gel 

filtration. The content of secondary structure of all proteins was tested by CD 

spectroscopy. Stability of proteins was tested by proteinase-K treatment and thermal 

denaturation. The ARC-N short construct was unstable at temperatures above 42°C, 

all other proteins had melting temperatures above 55°C. The activity of the chimeras, 

‘frankenstein’ and shortened proteins was tested in heat aggregation assays with 

luciferase and citrate synthase and compared with the activity of native ARC/PAN-N 

domains (Fig. 4.55). 

Construct           Origin 

ARCPAN cc ARC + OB AfPAN 

PANARC cc AfPAN + OBs ARC 

GARC cc GCN4 + OBs ARC 

GPAN cc GCN4 + OB AfPAN 

AECS cc ARC + OB EcCS 

ATIF cc ARC + OB MjTIF 

GECS cc GCN4 + OB EcCS 

PAN-N 3hep AfPAN-OB with cc of 3 heptades 

PAN-N 2hep AfPAN-OB with cc of 2 heptades 

PAN-N 1hep AfPAN-OB with cc of 1 heptades 

ARC-N short ARC-N without second OB fold 
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Figure 4.55 Heat aggregation assays of (A) luciferase (Luc) and (B) citrate synthase 

(Cs) in the presence of different proteins. Assays were performed with a five-fold 

excess of the protein of interest. Note: lower % of the relative aggregation means 

higher chaperone activity; for protein naming see the table 4.1. 
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PAN-N 
 
    hhhhhhhhhhh     sssssssss   sssssss   sssss 
>gi|3122632|Archaeoglobus fulgidus 
…EREVRRLRSEVERLRSPPLLVGVVSDILEDGRVVVKSSTGPKFVVNTSQ… 
>gi|3256587|Pyrococcus horikoshii OT3 
…ERELSRLRSEMSRLRQPPAFAGTVIEVLDEDRAIVQNYNGPRFVVRIAP… 
>gi|15669365|Methanocaldococcus jannaschii 
…LKENEILRRELDRMRVPPLIVGTVVDKVGERKVVVKSSTGPSFLVNVS… 
>gi|3122631|Methanothermobacter thermautotrophicus 
…DREVKSLRGEIERFRTPPLVIATVTEVLDDHRVAVKSTTGPHFVINYSR… 
>gi|25289940|Sulfolobus solfataricus 
…RKELNYYKAEMEKMLSPPLIEAVVLDVLPDGRVLVRSSSGPNLVVNIAS… 
 
ARC-N 
 
    hhhhhhhhhhh     sssssssss   ssssss  sssss 
>gi|3790601| Rhodococcus erythropolis 
…RQQLIALREEVDRLGQPPSGYGVLLSVHEDKTVDVFTSGRKMRLTCSPN… 
>gi|54040417|Mycobacterium bovis 
…RQQLLALREEVDRLGQPPSGYGVLLATHDDDTVDVFTSGRKMRLTCSPN
… 
>gi|467000|Mycobacterium leprae 
…RQQLLALREEVDRLGQPPSGYGVLLAAHDDETVDVFTSGRKMRLTCSPN
… 
>gi|29833219|Streptomyces avermitilis  
…RDQIVALKEEVDRLAQPPAGFGVFLTANEDGTADIFTGGRKLRVNVSPS… 
>gi|19552711|Corynebacterium glutamicum  

RDKLSVLFSQLEDMAQPPSVYGTFLETAKDGSNAEIFAGGRRMRVAVSP

Most of the chimeras and ‘frankenstein’ proteins were able to prevent heat 

aggregation of both substrates with preferences towards citrate synthase. Shortening 

of the coiled-coil region in the PAN-N construct (PAN-N 3-1hep) reduced activity of 

those proteins, where the PAN-N 1hep, with coiled-coil of only one heptade did not 

show any activity at all. 

 

4.3.5 Chaperone activity of PP-linker mutants 
 
 
Alignment of N-domains of ARC and PAN proteins from different organisms showed 

that besides their conservation of domain architecture, coiled-coil followed by OB 

fold, the connection between the two sub-domains is also highly conserved (Fig. 

4.56). Two prolin residues between the two sub-domains, that we named PP-linker, 

are almost invariant in all sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.56 Alignment of connector region in PAN-N and ARC-N sequences. Green 

and red residues represent parts of coiled-coil and OB fold sub-domains. The PP-

linker is shown in blue. The consensus secondary structure for each group is listed 

above the sequences (h/helix, s/strand). 
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Based on the structure of ARC-N OB folds, the second prolin residue is embedded 

between two protomers. Thus it might be crucial for the correct projection of the 

coiled-coil part from the core of the N-domain made up of OB folds. This implied an 

importance of these prolines in the chaperone activity of these proteins. To check if 

the two residues are important, we constructed a series of mutants with ARC-N and 

GPAN shown in Figure 4.57. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.57 Mutants of ARC-N and GPAN in PP-linker region. Residues belonging 

to coiled coil and OB fold are marked green and red, respectively. The PP-linker is 

marked in blue with introduced mutations in black.  

 

Mutants were expressed and purified with the same protocol used for the wild type 

proteins and tested for their chaperone activity in heat aggregation assays with 

luciferase and citrate synthase (Figure 4.58). Results were similar for the ARC-N and 

GPAN mutants, with the single alanine replacements preventing 60% and 80% of heat 

aggregation and the double replacement showing no chaperone activity. An exception 

was the PW mutant, as GPAN (PW) showed even greater chaperone activity then the 

unmutated chimera. ARC-N (PW) did not show greater activity from wild type 

protein, but reduction in the activity was much lower in comparison to the other 

mutants. 

ARC-N
…LREEVDRLGQPPSGYGVLLSVHE…

ARC-N(PA)
…LREEVDRLGQPASGYGVLLSVHE…

ARC-N(PW)
…LREEVDRLGQPWSGYGVLLSVHE…

ARC-N(AA)
…LREEVDRLGQAASGYGVLLSVHE…

ARC-N(AP)
…LREEVDRLGQAPSGYGVLLSVHE…

GPAN
...KNYHLENEVARLRSPPLLVGVVSD…

GPAN(PA)
...KNYHLENEVARLRSPALLVGVVSD…

GPAN(PW)
...KNYHLENEVARLRSPWLLVGVVSD…

GPAN(AA)
...KNYHLENEVARLRSAALLVGVVSD…

GPAN(AP)
...KNYHLENEVARLRSAPLLVGVVSD…
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Figure 4.58 Heat aggregation assays of luciferase (Luc) in the presence of a different 

PP-linker mutants. Assays were performed with a five-fold excess of the protein of 

interest. 
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4.3.6 Expression and characterization of Ph1500 and its domains 
 

The sequence of the Ph1500 protein from P. horikoshii (gi 3257925) was found from 

a PSI-BLAST search using VAT-Nc as the query sequence. Besides a β-clam domain 

(residues 1-77), the protein contains an additional second domain (residues 78-148), 

which was predicted to adopt the OB-fold. The OB-fold is usually designated as a 

structure that binds nucleic acids, but our studies on ARC and PAN proteins from the 

AAA family revealed the importance of this domain in the binding of protein 

substrates (Chapter 4.3). Therefore, despite not being a AAA protein itself, Ph1500 

contains domains found in the N-termini of four different clades of AAA proteins 

(CDC48/p97, ARC, PAN and AMA), making an important link between these clades.  

An additional BLAST search using the sequence of Ph1500 protein as a query spotted 

3 homologous sequences, two from Pyrococci (P. abyssi, P. furiosus) and one from T. 

kodakarensis. Analysis of gene loci conservation with “The SEED” server indicated 

gene coupling of the Ph1500-like proteins with a gene that is annotated as an 

endonuclease III (Fig. 4.59), an enzyme which makes excision repair of mismatched 

G-T pairs from damaged DNA molecules. 

 

 

 

   

 

 

 

 

 

Figure 4.59 Analysis of the Ph1500 gene locus using The SEED. Ph1500-like genes 

are labeled with red color and number 1; endonuclease III genes are labeled with 

green color and number 2. The genes were found only in the genomes of P. abyssi, P. 

furiosus, P. horikoshii and T. kodakarensis. 
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The DNA sequence of the Ph1500 protein and its domains Ph1500N (residues 1-77) 

and Ph1500C (residues 78-148) were amplified from genomic DNA of P. horikoshii. 

Constructs were cloned into the pET-30b expression vector (Novagen) with NdeI and 

HindIII restriction sites for Ph1500 and Ph1500N, and with NdeI and XhoI for 

Ph1500C. All proteins were generated with an N-terminal His-tag to facilitate 

purification. Proteins were expressed in E. coli C41 (DE3) at 37°C after induction 

with 1mM IPTG at OD600~0.6. After purification, using a combination of Ni-NTA 

affinity and gel filtration chromatography, the proteins were dialyzed against the 

buffer for crystallization screens (10mM MOPS, pH 7.25, 150 mM NaCl). This buffer 

was also used for subsequent crystallization screens.  Protein samples were run over a 

calibrated size exclusion column (Superose 12) to figure out their oligomerization 

state and molecular weight. Ph1500 and Ph1500C were eluted as oligomers with 

estimated molecular weights of 110 kD and 55 kD, respectively. These are close to 

the calculated molecular weights for hexameric complexes of these constructs: 102 

kD for Ph1500 and 54 kD for Ph1500C. The Ph1500N domain eluted as a monomer 

of approximately 10 kD (9.5 kD calculated). Constructs were analyzed for possible 

interaction with unspecific DNA fragments, but no binding was observed. The 

endonuclease III from P. horikoshii was also cloned and expressed, and purified 

protein mixed with the Ph1500 or its N- and C-domains. The proteins were tested for 

co-migration on a calibrated gel-sizing column, indicating complex formation. First 

results showed an interaction of endonuclease III with either N-domain (Ph1500N) or 

full Ph1500 protein. However, these results need to be confirmed by NMR or pull-

down assays. Ph1500 protein will be also assayed for interaction with single-stranded 

DNA, as well as with mismatch double-stranded DNA mimicking DNA damage. 

 

4.3.7 Electron microscopy and NMR structure of Ph1500 
 

Preliminary microscopy studies on Ph1500 (Fig. 4.60A) were done at low resolution 

at our in-house electron microscopy unit with kind help of Dr. Heinz Schwarz. Data 

collection of negatively stained Ph1500 protein particles (uranyl acetate) as well as 

selection and averaging of the obtained images was done by Dr. Beate Rockel from 
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the MPI for Biochemistry in Martinsried.  42 images were recorded on a CCD camera 

(24 μm pixel size) with a primary magnification of 45K and a post magnification of 

1,9, resulting in a final pixel size of 2.8 Å. From the images, 10003 particles were 

selected and subjected to translatory alignment in order to center the particles 

properly. An eigenvector-analysis of the aligned data set produced class averages with 

clear six-fold symmetry (Fig 4.60 B). Rotational alignment using hexameric class-

average revealed particles of two different ring sizes (Fig 4.60 C and D). 

 

 

 

 

 

 

 

 

 

Figure 4.60(A.) Ph1500 particles negatively stained in uranyl acetate. (B.) Class 

averages after eigenvector-analysis (C. and D.) Class averages with different ring size 

after rotational alignment. 

 

Since the crystallization screens did not provide crystals of Ph1500, we decided to 

solve the structure of this protein by NMR spectroscopy. The size of the Ph1500 

hexamer (106 kD) is far beyond usual limits of NMR studies, but the fact that the 

domains of the protein can be expressed separately and exhibit high stability enabled 

us to do structure determination by NMR spectroscopy. The Ph1500N domain was 

expressed in minimal media supplemented with 15N-labeled NH4Cl as the sole 

nitrogen source, and 13C-labeled glucose as the sole carbon source. The structure of 

the N-domain was determined by Ilka Varnay (PhD student at Technical University of 

Munich, Garching) and it resembles the β-clam fold of the VAT-Nc domain with 

noticeably shorter loops and prolonged secondary structure elements (Fig. 4.61).  

A. B.

C. D. 
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Structure determination of the C-terminal domain (Ph1500C) is an on-going project. 

For determination of the hexameric structure of Ph1500C, we are using a triple 

labeling strategy. In addition to the usual single or double labeling (15N, 13C) we are 

deuterating the sample up to 90% to obtain clear 15N-13C coupling data. Selective 

unlabeling of branched amino-acids (Leu, Ile, and Val) is another method that we are 

currently using to obtain selectively H-H couplings for the side chains interacting 

between two neighboring Ph1500C domains. The structure of the complete protein 

will be calculated from similar experiments using existing data on individual domains. 

 

 

 

 

 

 

 

 

 

 

Figure 4.61 Comparison of the NMR structures of the Ph1500N (left) and VAT-Nc 

domain (right, 1CZ4 89-175). Domains are orientated in a way that similarities and 

differences between them can be easily noticed.  
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5. Discussion 
 
 

5.1 Cradle-loop barrels 

 

5.1.1 Double-psi barrel 
 

Search for the experimental evidence that would sustain the proposed evolutionary 

path of the double-psi barrel fold (Coles et al, 1999) revealed an even more complex 

picture in the evolution of this fold. The chase for the simple 40 residue βαββ motif 

that would give rise to the members of the double-psi barrel fold through circular 

permutation we have started from the VAT-Nn sequence by reshaping it in a way to 

exemplify retrograde evolution (Fig. 5.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 Evolution of the double-psi barrel fold made through constructs based on 

VAT-Nn sequence and similarity to AbrB-N. Postulated events are written next to 

each step. Experimental path was done in different direction. Circular permutation of 

the strands is shown in color for clarity. The secondary structure elements are 

indicated above the alignment; s=strand, h=helix.  

 

                    sssssss           ssss hhhhh          ssssss    
VAT-Nn Ta      mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
                    KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV   
 
 
                                                         
VAT-Nnc db        mvKTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKVgh  
                    KTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV       
           
   
 
VAT-Nnn        mesnnGIILRVAEANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr 
VAT-Nnc           mvKTVGRVYRARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV  
 
 
 
VAT-Nnn cp                 mANSTDPG-MSRVRLDESSRRLLDAE-IGDVVEIEKVr--GIILRVA 
VAT-Nnc cp                 mARPEDEN-KGIVRIDSVMRNNCGAS-IGDKVKVRKV---KTVGRVYR 
 
                     ssssss                hhhhhhh       sssssss    sssssss 
Bs AbrB-N           MKSTGIVRKVDE-----LGRVVIPIELRRTLGIA-EKDALEIYVDD—EKIILKKYkpnmt
  
 

divergence of halves 

duplication of ββαβ element 

circular permutation 
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The construction of a double-psi barrel sequence with ‘equal’ halves by doubling the 

sequence of either VAT-Nnn or VAT-Nnc in one polypeptide chain resulted in folded 

proteins. Moreover, NMR spectra of VAT-Nnc db (doubled) could be compared to 

the spectra of the wild type VAT-Nn sequence. Such result is not surprising taking 

into account that sequence identity between the two halves of VAT-Nn is 38% over 

42 residues, which make up the core of the fold. Stability of VAT-Nnn db was much 

lower compared to the wild type VAT-Nn and the VAT-Nnc db construct and when 

the halves were expressed separately, without duplication (VAT-Nnc and VAT-Nnn), 

only VAT-Nnc was folded. It is interesting that similarity of folding properties of 

VAT-Nn and VAT-Nnc in making two distinguished species was further found at the 

functional level. Chaperone activity of the dimer and tetramer of VAT-Nn and VAT-

Nnc, respectively, would lead to the conclusion that a structural complex of four 

ββαβ-repeats is needed for binding of protein substrate. Unfortunately we were not 

able to determine the structure of either the VAT-Nn dimer or the VAT-Nnc tetramer 

by NMR spectroscopy. It can be speculated that two double-psi barrels formed in 

these two cases would take a side by side orientation with their psi-loops orientated 

towards one side, where one of the barrels would take the position of the beta-clam 

domain (VAT-Nc) (Fig. 5.2 A). Another more favorable orientation would be loops-

to-loops arrangement which would resemble fold and substrate binding site of aspartic 

proteases (Fig. 5.2 B). Such a structural arrangement would further support the 

postulated evolutionary path, in which two double-psi barrels will at the end give rise 

to complex fold of aspartic proteases (5.3).     

 

 

 

 

 

 

 

 

 

Figure 5.2 Two schematic models of VAT-Nn dimer binding substrate (A) side by 

side and (B) loops-to-loops.  

double psi-barrel

psi-loops

A. B.

peptide substratedouble psi-barrel

psi-loops

A. B.

peptide substrate
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Figure 5.2 Crystal structure of HIV protease (1W5X). Two double-psi barrel 

protomers are shown in yellow and blue; psi-loops and β-hairpins forming the binding 

sites are colored red.  

 

The similarity of VAT-Nn with AbrB-N and other proteins that were annotated to be 

transcriptional regulators (Mj0056, SpoVT, PemI) was further confirmed with DNA 

shift mobility assays in which only the monomeric VAT-Nn domain showed 

unspecific DNA binding. Competitive inhibition of the VAT-Nn chaperone activity 

where the DNA substrate was added to the heat aggregation assay with citrate 

synthase did not answer any question. First, because the VAT-Nn dimer did not show 

any DNA binding and second, the monomer of VAT-Nn did not exhibit any 

chaperone activity. Originally it was postulated that an ‘ancestral’ double-psi barrel 

had substrate binding sites between helices capping the barrel and loops following the 

first beta strands of each half of the barrel (Coles et al., 1999).  Evolution of the side 

loops would result in another binding site that would be placed between two loops. 

Based on the conserved positions of the Arg-residues (Fig1.9) and the charge 

distribution in the surface model of VAT-Nn barrel (Fig. 1.8), it can be deduced that 

binding of the DNA substrate would be equally favorable at both proposed sites, 

“original” and “evolved”. Fine mapping of the substrate binding in both cases using 
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NMR spectroscopy and determination of the VAT-Nn dimer structure would give 

more answers to possible binding scenarios.  

 

5.1.2 AbrB –swapped hairpin barrel 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Structures of the swapped hairpin barrels (AbrB-N, MazE and MraZ) and 

related double-psi barrel (VAT-Nn). The secondary structure of one symmetrical half 

of each domain is shown in the bold color, with the β2 strand in red. In the structure 

of MraZ one helical hairpin is left out for better representation of the barrel structure. 

 

The discrepancy of the AbrB-N structure from Cavanagh’s group (1EKT; Vaughn et 

al., 2000) with the prediction that was made based on the sequence similarity with 

VAT-Nn (Coles et al., 1999) and moreover with the crystal structures of the 

homology-related MazE (1MVF; Loris et al., 2003) and MraZ protein (1N0G; Chen et 
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al., 2004) prompted us to redetermine the structure of AbrB-N. The newly solved 

structure of the dimeric AbrB-N (1YSF; Coles et al., 2005) was in agreement with the 

crystal structures of its homologous, thus forming an eight stranded swapped-hairpin 

barrel (Fig. 5.4). Each monomer of AbrB-N consists of four β-strands arranged in two 

hairpins which are interleaved in the dimer. Two folds, double-psi and swapped 

hairpin barrel, are classified together as the cradle-loop barrels due to the profile and 

shape of the binding pocket. Although the double-psi and swapped hairpin barrels are 

clearly related at the level of the βαβ-element, the relationship between the two folds 

is not obvious, as they cannot be interconverted by a simple topological 

transformation, such as circular permutation (VAT-Nnn and VAT-Nnc cp; Fig. 5.1). 

Thus, expression of VAT-Nnn(c) cp constructs resulted in not folded proteins. The 

addition of a beta strand to the ββαβ-element in the case of VAT-Nnc+βTa1217, 

which would resemble ββαββ-element of ABrB did give soluble but not folded 

protein, which leads us to believe that there are more sequence and structural 

determinants that connect these two folds. Existing construct could be used in directed 

evolution experiment in the search for the folded protein that would make strong link 

between these folds.  

Bioinfomatical analysis in search for homologous of AbrB and subsequent clustering 

of the found sequences resulted in eight major groups of proteins (Fig. 4.17). The 

group of MraZ is the only group that contains two AbrB homologous sequences fused 

in one chain. MraZ is the first gene in the division and cell wall (dcw) cluster 

(Vincente et al, 1998) and our analysis suggests that it is a transcriptional regulator of 

the complete dcw cluster. Two halves of MraZ are nearest neighbors in the cluster 

map, suggesting that the protein originated through duplication and fusion of an 

ancestral homodimeric MraZ. The presence of the helical hairpin that connects two 

halves, also at the end of the second half, further sustains this hypothesis. The YjiW 

group is the only group that contains homodimeric and a single-chain version of 

AbrB. The single-chain version has as in the case of MraZ, two halves connected via 

a helical hairpin. Those proteins would be interesting from the structural point 

because the second copy lacks the first beta strand, which would suggest that the 

protein makes a seven stranded cradle-loop barrel.  

Two other clusters of proteins Vir (with subcluster VagC) and PemI, are grouping 

proteins with similar functions in two different systems, plasmid maintenance and 
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toxin-antitoxin system (Katz et al., 1992; Zhang et al., 2003). Proteins from both 

groups, Vir and PemI, are transcriptional factors (antitoxins) but they come together 

in complex with different toxins. These toxins have either exonuclease or 

endonuclease activity, which is not enough elucidated. MazE protein (Fig 5.4) from 

the MazEF complex of the toxin-antitoxin system belongs to the group of PemI, and 

the presence of this protein in cluster map is of importance since it shows a clear 

homology with AbrB-N domain on the sequence and structural level. 

Archeal PhoU sequences are found in phosphate-specific transport (pst) system 

operons, similar to the ones found in proteobacteria (Wanner, 1993). The N-terminal 

AbrB-like domain is connected to two PhoU-elements involved in phosphate uptake 

and it could regulate the pst operon directly since archaea lack the PhoRB two-

component signal transduction system, which regulates the expression of the pst 

operon in bacteria. In a similar fashion two permeases of Lactobacilli could regulate 

cell homeostasis directly through the transcriptional regulation via the N-terminally 

positioned AbrB-like domain. The cyanobacterial protein cluster represents 

hypothetical sequences that are found to be chromosomally linked to cytochrome C 

subunits and riboflavin synthase. 

 

5.1.3 SpoVT – transcriptional regulation through GAF domain  
 
 

The core of the AbrB cluster is divided into the two recognizable subgroups: AbrB 

and SpoVT. The difference in the length of the sequence between AbrB and SpoVT, 

90 compared with 180 residues, and different behavior of SpoVT and SpoVT-ΔC 

(Dong et al., 2004) prompted us to perform bioinformatical and structural analysis on 

this protein. It was shown that SpoVT protein is important in the transcriptional 

regulation of the last steps of spore formation in B. subtilis (Bagayan et al., 1996). 

This process is a series of cascades which are carefully regulated by multiple 

mechanisms.  Prediction and later confirmation, by crystal structure of a GAF-domain 

at the C-terminal part of SpoVT is thus not so surprising, since it is known that GAF-

domains tightly regulate function of other transcription factors (Babu and Teichmann, 

2003). Regulation is exerted through a conformational change upon binding of the 

different small molecules to the GAF domain (Levdikov et al., 2006).  Stringent 
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control of the last step in spore formation (Bagayan et al., 1996) is thus in good 

correlation with the structure of the SpoVT. The observed GTP binding affinity of 

SpoVT is also in the range of the binding affinity of the CodY protein (0.2-2mM), 

another transcription factor that regulates the transition from exponential growth to 

stationary phase in some gram positive bacteria (Ratnayake-Lecamwasam et al., 

2001). Based on genome-coupling data a gene encoding a nucleoside triphosphate 

pyrophosphohydrolase (MazG) is present in every SpoVT operon. One could thus 

speculate that possible ligand for SpoVT GAF domain would be guanosine-

tetraphosphate (ppGpp). A regulatory role of the ppGpp was already shown at 

different steps of the bacterial sporulation (Gentry et al., 1993), but this hypothesis for 

SpoVT has to be confirmed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Structure of the SpoVT tetramer (top view into the DNA binding pockets). 

The arrow indicates two DNA binding domains and the calculated distance between 

them.  

 

We have recently mapped a possible DNA binding sequence for SpoVT, which is a 

purin base rich palindrome-like sequence. The tetrameric structure of SpoVT gives us 

the possibility to propose that the role of the GAF domains in SpoVT is not only the 

regulation through ‘small molecule’ binding but also provides structural restrains for 

binding of such a DNA sequence. Since the dimerization of the N-terminal AbrB-like 

domain is forming one DNA binding site this would be sufficient for binding of only 

34Å
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one half of the palindrome and the presence of an additional dimer would be needed 

for complete binding of DNA. The tetrameric organization of SpoVT enables 

synchronized binding to a palindrome sequence and moreover dimerization of the 

GAF domains positions two DNA binding domains on ~34Å distance (Fig. 5.5). 

Importance of this distance is observed between two DNA binding domains in the 

structure of the catobolite activator protein (CAP) (Schultz et al., 1991) which binds 

similar palindromic sequences in two minor grooves of the DNA molecule. Ligand 

binding to SpoVT GAF domains might serve to fine-tune the orientation of the two 

DNA binding domains, as the binding of the DNA is not observed in absence of GTP. 

We are currently trying to co-crystallize SpoVT with the palindrome DNA sequence 

in presence of the GTP molecule. 

 

5.1.4 RIFT barrels – origin of the cradle-loop barrels 
 

 

The basis for the evolutionary model of the double-psi barrel (Vat-Nn), duplication of 

the βαβ-element and conservation of a GD-motif (GD box), was found to connect this 

fold with swapped hairpin barrels (AbrB) into a metafold named cradle-loop barrels 

(Fig. 5.4). An earlier proposed evolutionary path (Coles et al., 1999) connecting the 

two folds could not remain acceptable since inter-conversion of the folds by a simple 

topological modification, such as circular permutation was not possible. The NMR 

structure of the Phs018 protein from P. horikoshii (Fig. 5.6; Coles et al., submitted) 

showed a third topology of the duplicated conserved βαβ-element. The fold was 

named RIFT barrels, for its occurrence in Riboflavin synthases, F1ATPase and 

Translation factors. The structure of Phs018 represents an intermediate between 

VAT-Nn and AbrB-N. It shares the six-stranded barrels topology with double-psi 

barrel, but without the psi-loop forming the crossover. In this respect it resembles 

features of the swapped hairpin barrels though it misses the additional beta strand per 

element that is found in this eight-stranded barrel (Fig. 5.6). 
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Figure 5.6 Comparison of the three different folds of cradle-loop barrels. Structures 

are orientated so that position of the β2’ strand (blue) in respect to the β2 strand is 

easy to be seen. Notice the crossover of strands in VAT-Nn.   

 

Even though we were unable to determine the complete structure of the Mt6002757 

protein, limited NMR data show that a dimer of this protein assumes a fold of the 

Phs018 protein. Based on this data and conservation of the βαβ element in three folds 

it can be proposed that all of them arose from a sequence similar to the Mt6002757 

protein, one canonical half of the RIFT barrel that forms a homodimer. The invasion 

of an additional β-strand at the C-terminus would result in the swapped hairpin fold of 

AbrB, which by further duplication and fusion could form a monomeric MraZ like 

protein (Fig. 5.2). Duplication and fusion of the Mt6002757-like sequence would 

result in a RIFT-like barrel, which is what we obtained by fusing two Mt6002757 

sequences via a short two residue linker (Mt6002757 db). We were not able to 

determine the complete structure of this construct because of its instability, but 

limited NMR data shows that it assumes similar fold to the Phs018. The RIFT barrel 

fold would finally have given rise to the double-psi barrel through a strand swap of 

the first strand in each βαβ-element. CD spectroscopy data on the doubled loopless 

construct of VAT-Nnc (VAT-Nnc db loopless) and its overall stability make it 
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suitable for structure determination, which will give an answer to the importance of 

the length of psi-loops in the proposed strand swap event. 

In many cases RIFT barrels have been substantially changed by insertions, usually 

followed by a loss of internal symmetry, which makes them hard to find on the 

sequence level. The Mj0056 protein is one of such examples, where insertion of the 

four elements in the first half of the barrel, made bioinformatics tools able to 

recognize only C-terminal canonical half of the protein. After structure determination 

of the Mj0056 it was obvious that the topology of the protein is similar to Phs018 with 

insertion of a helix in one of the cradle loops and three additional beta strands after 

the helix of the first half of the RIFT barrel (Fig. 5.8). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Topology of two RIFT barrels Phs018 and Mj0056. Elements inserted in 

the Mj0056 protein are colored in green; cradle-loops are colored in red. 

 

Genome coupling data and annotation of the Mj0056 protein suggest that this protein 

is a transcriptional regulator of the riboflavin synthesis pathway, controlling the 

expression of the one of the rate limiting enzymes in this pathway, 3,4-dihydroxy-2-

butanone-4-phosphate synthase (Richter et al., 1997). However we have not observed 

any unspecific DNA binding of this protein. Yet it might be that the protein needs to 

bind one of the precursors of riboflavin to actually bind to DNA. We are currently 

testing by NMR spectroscopy different compounds, from the riboflavin synthase 

pathway, for the possible binding to Mj0056. We are also trying to use the NMR 

structure for the molecular replacement in a new diffraction data set (2.7Å) collected 

from Mj0056 crystals in the search for possible bound ligand. 

Phs018 Mj0056Phs018 Mj0056
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5.2 Beta-clam domains 

 

Sequence similarity searches with AMA proteins yield the best matches to the 

ATPase domain of AAA metalloproteases. In a clustering study (Frickey and Lupas, 

2004), it was shown that the AMA group is indeed closest to the metalloproteases and 

that phylogenetic reconstruction variously places it either at the root of this clade or 

even basally within it. Despite this, the ATPase domains of AMA sequences are 

clearly distinguished from those of metalloproteases by two main criteria, a gap of 

two residues in the 'second region of homology' (SRH), immediately adjacent to the 

arginine finger, and the presence of a sensor-2 arginine residue in the C-terminal 

helical subdomain. This residue makes contacts to the bound nucleotide and is present 

in most proteins of the AAA+ superfamily, but absent from virtually all AAA 

proteins. As was noted by Ogura et al. (2004), the presence of a sensor-2 arginine 

appears to exclude a second arginine in the SRH and indeed, AMA lacks the first 

arginine in the conserved SRH motif (RPGR) of AAA proteins (Appendix Fig. 4). 

Most of the literature data show that AAA proteins oligomerize through their AAA 

modules (Vale, 2000, Ogura and Wilkinson, 2001) and in some cases they need ATP 

hydrolysis for the oligomerization process (Hartman and Vale, 1999, Babst et al., 

1998). In contrast, AfAMA-∆N, which comprises the AMA ATPase domain, did not 

form a higher oligomer and eluted as a dimer on gel-size exclusion columns. This 

unexpected finding suggests a pivotal role of the hexameric N-domain of AMA to the 

oligomerization and stability of the full-length ATPase complex. The recent structure 

of the cytoplasmic part of FtsH protein showing six-fold symmetry at C-terminal 

protease domain and three-fold symmetry at the level of AAA domain (Suno et al., 

2006) would suggest that AMA would adopt a similar domain arrangement (Fig 5.9). 

This structure as well as our data on ATPase activity of the AfAMA and AfAMA-∆N 

would definitely exclude the possibility of a concerted way of the ATP hydrolysis in 

those proteins, since maximally three nucleotide binding sites can be occupied at the 

same time. The structure of the FtsH AAA domain alone, forming spiral hexamers in 

presence of AMP-PNP (Niwa et al., 2002) or dimers in absence of nucleotides 

(Krzywda et al., 2002) would lead us to hypothesize about the role of the AMA N-

terminal domain. This could be in indirect control of the ATPase activity of the AMA 

protein since the dimer of AfAMA-∆N had a three fold higher consumption of the 
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ATP in comparison to the full length construct. AAA domains in AfAMA-∆N 

construct would not be under stringent control of the N-domain hexamer, which 

would allow them to hydrolyze ATP at an elevated rate. This effect can not be seen in 

full AfAMA protein because of structural restraints opposed by the stable hexamer of 

the N-domain. More facts about the mechanism of ATP hydrolysis and the specificity 

of the AAA domain of AMA proteins will become evident from the structure of 

AfAMA. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Two possible arrangements of the N-terminal (orange) and AAA domains 

(blue) in AAA proteins. The C-terminal protease domain would take the role of the N-

domain in an FtsH model 

 

The physiological role of AMA proteins is unknown. Yet, it is reasonable to assume 

that, like other AAA ATPases, AMA proteins are involved in protein unfolding and 

the dissociation of complexes, possibly in cooperation with other chaperones or 

proteases. We therefore tested AfAMA for its ability to interact with non-native 

proteins, as they may also be presented during unfolding of physiological substrate 

proteins. It was shown that both AfAMA and AfAMA-N can prevent aggregation of 

non-native substrates in heat induced aggregation assays, demonstrating a basic 

chaperone activity of AfAMA, which resides in the N-terminal domain. AfAMA-∆N 

had no effect in these assays, indicating that the ATPase domain of AMA is not 

involved in substrate binding, at least for the proteins we tested. As the N-domain of 

AfAMA did not show ATPase activity, chaperone activity of the AfAMA protein is 

energy-independent. The coupling of ATP hydrolysis to substrate release from the N-

domain is seen after addition of ATP to AfAMA-substrate complexes, which leads to 

p97 like proteins AMA and FtsH like proteins
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dissociation of the denatured substrate protein, prevention of rebinding and 

subsequent aggregation. This would imply that ATP hydrolysis is responsible for a 

conformational change in the N-domain, which induces the release of substrate. There 

are several known examples for intrinsic chaperone activity of AAA and AAA+ 

proteins (Arlt, et al. 1996, Golbik 1999, Benaroudj and Goldberg, 2000). However, 

there are conflicting data on the importance of N-domains in binding of protein 

substrates (Golbik et al., 1999; Lo et al., 2001; Beinker et al., 2002; Hinnerwisch et 

al., 2005). Chaperone activity of structurally related N-domains has been reported 

before for Cdc48-like and UFD proteins (Golbik et al., 1999; Park et al., 2005), where 

– in contrast to AMA – the β-clam subdomain occurs in context with an additional N-

terminal double-psi barrel subdomain, which is supposed to share the ability to 

interact with non-native proteins. In the case of AMA proteins, the chaperone activity 

resides entirely within the β-clam like N-domain. 

Comparison of the sequences of AMA N-domains with β-clam domains of p97 

revealed the presence of a conserved sequence motif (GYPL), which resembles the 

pore motif in the ATPase domain of AAA+ proteins (Fig. 5.10;Yamada-Inagawa et 

al., 2003; Park et al., 2005). We did a detailed characterization of the functional and 

structural role of this conserved sequence motif and the loop, in which it is situated. 

We find that AfAMA requires an intact GYPL motif for hexamerization, as single or 

double mutations in this motif resulted in a loss of the oligomeric ring structure and 

formation of dimers. Moreover deletion of the motif ended in unfolded protein, but 

deletion of the eight residues following the GYPL motif in the same loop did not 

change the oligomeric state of the protein. 

An intact GYPL motif is also important for the function of the AfAMA-N domain and 

the full AfAMA protein, since single or double mutants totally abolish chaperone 

activity. Similar mutations in the pore motif of FtsH (Yamada-Inagawa et al., 2003) or 

ClpX (Siddiqui et al., 2004) abolished proteolysis or substrate binding. It is important 

to note that the positions of these motifs are quite different in the context of the two 

AAA proteins. 
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Figure 5.10 The pore motif in HslU, a member of the AAA+ superfamily. Alignment 

of GYVG motifs in ATPase domains of different AAA+ proteins 

 

The GYPL motif is found in N-terminal β-clam domains of AMA proteins while 

GYVG is exclusively positioned in the AAA domains of several AAA+ proteins. It is 

noteworthy that insertion of the loop containing GYPL motif into the homologous 

sequence of the VAT-Nnc beta-clam induced oligomerization of this domain 

(monomer to trimer). Furthermore, trimeric Vat-Nnc chimera gained chaperone 

activity in heat aggregation assays with citrate synthase as a substrate. These data 

support both a structural and functional role of the GYPL motif.  

Differences at the sequence level together with experimental data that we collected on 

the β-clam domain from Ph1500 protein (Ph1500N-monomer) and recently on a 

Haloarcula maritsomi protein (HmClam, gi: 55231035-trimer) indicate that the 

presence of a hydrophobic motif (AWI) and the length of the loop are important at 

least for oligomerization (Fig. 5.11), since none of these constructs had chaperone 

activity. Our hypothesis concerning the importance of the AWI motif, which is 

conserved in HmClam-like β-clams, needs to be further elucidated through mutational 

analysis  and the structure(s) of AfAMA, MjAMA-N or Hm55231035. 

 

 

HslU TKFTEVGYVGKEVKSI
ClpA LIGAPPGYVGFDQGGL
ClpB LVGAPPGYVGYEEGGY
ClpX TTLTEAGYVGEDVENI

HslU TKFTEVGYVGKEVKSI
ClpA LIGAPPGYVGFDQGGL
ClpB LVGAPPGYVGYEEGGY
ClpX TTLTEAGYVGEDVENI
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Figure 5.11 Alignment of the four different groups of β-clam domains. Proposed 

structural motifs, GYPL and AWI, are shown in red and green, respectively. 

Prediction of the secondary structure is indicated for each sequence; h-helix, s-strand. 

Conserved hydrophobic residues are colored blue. PH0687 (P. horikoshii gi: 

14590568); MM0304 (M. mazei gi: 21226406); PAB0458 (P. abyssi gi: 14520879); 

AAL74407.1 (H. volcanii gi: 18539473) 

 

Existing data on chaperone activity of β–clam domains in VAT-N (Golbik et al., 

1999) and AMA (Djuranovic et al., 2006), or their interaction with other proteins like 

UFD1 (Park et al., 2005) and Ph1500N (this study) would indicate that these domains 

represent universal protein-protein interaction modules.  

The difference in oligomerization and mode of the activity between those domains 

comes from the structural context in which they are found. Close connection with the 

double-psi barrel domain in VAT-N and UFD1 may have resulted in loss of the 

propensity for oligomerization and finally share of the function between both 

domains. This continues the discussion in the first part of this story where we showed 

the development of structure and chaperone activity of the double-psi barrel domain. 

One might speculate about a possible recruitment of a transcription factor with a 

RIFT-barrel like fold to an AMA-like beta-clam domain or a full AMA protein. 

Development of the RIFT barrel to the double-psi barrel fold was then followed by 

loss of AMA features in the beta-clam domain to result in UFD1 like proteins. Similar 

development but in context of a full AMA-like protein would result in an ancestral 

p97-like protein, which by duplication of the AAA module got today’s structural 

                             |--------loop----------|                
                    ssssssss                        hhhhhhhh   sss  
VatN-C         -AKKVTLAPiirkdqrlkfgeg-------------IEEYVQRALIRRPMLE… 
PH0687         -AKKVVLAPaqkgvivqi-----------------PGDIIKNNLLGRPVVK… 
                 ssssss                       hhhhhhhhhh sssssss   
AfAMA          -LRYLIVRPLGYPLkasyhey-PQVD-----NPKVFDVYAKDQWKGEFVHK… 
MM0304         -SELLILKPEGYPLsgmmeey-PVIE-----NRDVFEFYAREQWSGYVARK… 
                ssssss                            hhhhhhhhh  ssss  
Ph1500-N       -MSELKLKPLPKVELPPD-----------------FVDVIRIKLQGKTVRT… 
PAB0458        -VKRVKLKPMINVDIPQD-----------------FSEVIKSKLKGKVLKT… 
                sssss                           hhhhhhhh       sss  
Hm55231035     -ASRIVLSFapsaadgdpwsgvdTAWIVDELRGDTYQQYLRRAH-GgpVAV… 
AAL74407.1     -ATRVVVSFpdel----------SAWGHDQLTADRFVTYLRRVH-Ed-AAP… 
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arrangement. This scenario is purely hypothetical, but is one of the possible scenarios 

in evolution of these AAA proteins based on our results.  

Based on the proposed function and genome coupling data, the Ph1500 protein 

recruits or docks endonuclease III (Thayer et al., 1995) to sites of G-T mismatches 

induced by UV irradiation. According to the proposed mechanism, the hexamer of the 

C-terminal OB fold of Ph1500 slides down the DNA until it encounters a G-T 

mismatch, and the β-clam recruits endonucleas to fulfill its activity, which is excision 

of the mismatched pair. First results in which the beta-clam of Ph1500 co-elutes with 

endonuclease sustain this hypothesis, but further experiments have to be done to 

elucidate an interaction of Ph1500C domain with DNA and of Ph1500N with 

endonuclease.  

5.3 PAN and ARC  

 
 

The 26S proteasome, which is the major site of protein breakdown in mammalian 

cells, is composed of the 20S proteasome (molecular mass of 700 kDa) and two 19S 

regulatory complexes (700 kDa) (Coux et al., 1996; Baumeister et al., 1998). In the 

presence of ATP, the 19S complex associates with each end of the 20S cylinder and 

activate degradation of ubiquitinated and certain non-ubiquitinated proteins in an 

ATP-dependent process (Coux et al., 1996). The base of the 19S regulatory complex 

are six similar subunits which are members of the AAA family and were named RPT 

proteins (for Regulatory Particle Triple-A; Finley et al., 1998). Archaeal homologues 

of RPT subunits were also isolated and named PAN (for proteasome-activating 

nucleotidase; Zwickel et al., 1999). Several authors showed intrinsic chaperone 

activity of PAN and RPT in the absence of the proteasome (Braun et al., 1999; 

Strickland et al., 2000; Benaroudj and Goldberg, 2000) but no study mapped this 

activity to a certain domain of these proteins. Early studies on ARC from R. 

erythropolis predicted similarity between this protein and the ATPases of the 

eukaryotic 26S proteasome and their archaeal homologues of the PAN family (Wolf 

et al., 1998). These observations were usually based on the structural arrangement of 

the domains in these proteins, consisting of an N-terminal coiled-coil region followed 

by a β-strand rich interdomain and an AAA domain (Wolf et al., 1998; Zhang et al., 

2004; Frickey and Lupas, 2004), and on genomics of Actinobacteria which lack PAN 
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sequences in their genomes. Since the available structural data on ARC and PAN 

proteins was limited to electron microscopy images (Wolf et al., 1998; Wilson et al., 

2000; Zhang et al., 2004), we intended to further characterize those proteins by high-

resolution methods. We were able to solve the crystal structure of the ARC-Nc 

domain, which revealed two almost identical OB folds arranged in a hexameric 

complex. The second OB fold could not be predicted by bioinformatics, since it 

contains an insertion of 20 residues in the loop connecting helix and β-strand 4’ (Fig. 

4.49). This insertion is not resolved in the structure as well. The central pore of the 

hexameric ARC-Nc ring has diameter of approx. 12 nm which resembles by size and 

shape the pore of most hexameric AAA proteins. Based on former biochemical and 

electron microscopy data on the ARC protein (Zhang et al., 2004), showing that the 

AAA domain of the protein is either dimeric or aggregated when expressed 

separately, it is likely that ARC-Nc is the hexamerization module of the ARC protein. 

Both OB folds seem to be needed for hexamerization, since single expression of any 

of the two OB folds in combination with the coiled-coil part or solely do not give 

hexameric complexes. The structure of ARC-Nc does not include the N-terminal 

coiled coil region which is found in both proteins, PAN and ARC. But we are eager to 

get it from newly obtained crystals of full ARC-N. We were not able to obtain any 

structure of the PAN-N protein or its parts, but homology of PAN-N and ARC-N 

indicates that PAN-Nc adopts the same structure like the first OB fold of ARC-Nc 

(Fig. 5.12). Even though similarity between these domains is striking, PAN-N does 

not form hexameric complexes. PAN-N domains tend to make high molecular 

complexes around 1MDa, which could be broken into dimers when expressed with an 

N-terminally fused thioredoxin. Apparently, the presence of the thioredoxin on the N-

terminal coiled-coil region stabilizes dimers through sterical restrains that do not 

allow additional oligomerization of the coiled-coil region. The hexameric 

arrangement of the PAN-N subunits is restored in the context of the full PAN protein, 

thus showing that in this case the AAA module takes the role of the oligomerization 

interface.  
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Figure 5.12 Ribbon model of the PAN-N OB fold (green) based on the crystal 

structure of ARC-Nc (blue). 

 

Comparative analysis of the chaperone activity of the N-terminal domains of PAN 

and ARC showed that both domains are capable to prevent heat aggregation of 

different protein substrates: firefly luciferase and citrate synthase to high extent. The 

correct domain arrangement, N-terminal coiled-coil plus OB fold, was required for 

activity, since both subdomains did not show any activity when they were assayed by 

themselves. Earlier had been suggested that only the coiled-coil part is important for 

substrate recognition (Zhang et al., 2004; Reuter et al., 2004), but our results also 

indicate a prominent role for the OB fold domain.  Taken together, our results further 

support the theory that N-terminal domains of AAA proteins are the primary substrate 

binding modules of AAA and AAA+ proteins (Golbik et al., 1999, Lo et al., 2001).  

It is worth to note that ARC-N had in general a higher activity than the PAN-N 

construct. This might be explained by either the length of the coiled-coil part, 77 

residues in ARC-N compared to 60 in PAN-N, or by the presence of the second OB 

fold in the structure of ARC–Nc, which increases stability of the ARC-N domain. 

Both scenarios are likely since shortening of the coiled-coils (PAN-N 3 to1 heptade 

constructs) or deletion of the second OB fold in ARC (ARC-N short) led to either 

reduced (PAN-N 3hep and PAN-N 2hep) or totally abolished activity (PAN-N 1 hep 

and ARC-N short) of these constructs. 

Chimeras that were constructed from ARC-N and PAN-N parts (ARCPAN and 

PANARC) showed interchangeability of the coiled-coil and the OB fold subdomains. 
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Comparing the results among these chimeras (ARCPAN vs PANARC), and to the 

wild type N-terminal domains, it is noticeable that changes in the subdomains lead to 

the generation of proteins with differential affinity towards protein substrates. This 

can be attributed to the coiled-coil part of PAN-N and ARC-N domains, since this is 

the region with the most significant divergence. Several authors already implied that 

divergence of the coiled-coil region may be a determinant for the substrate specificity 

of PAN proteins (Zhang et al., 2004; Reuter et al., 2005; Medalia et al., 2006). 

Variability of the coiled-coil subdomain and its influence on the specificity and 

activity of these proteins was also confirmed by assaying “Frankenstein” proteins, 

where the coiled–coil of the wild type protein was substituted with the coiled-coil part 

of the GCN4 transcription factor from S. cerevisae (GARC, GPAN). Since the 

divergence of the OB folds in different PAN and ARC proteins is much lower then in 

coiled coil-part, we investigated also the importance of sequence conservation of the 

OB folds. The constructs AECS and ATIF, where the ARC-N coiled-coil is attached 

to OB folds from either cold shock protein of E. coli (AECS) or translation initiation 

factor from M. janaschii (ATIF), showed noticeable chaperone activity (up to 50% of 

ARC-N and PAN-N). Even more surprisingly, another ‘frankenstein’ construct, 

GECS, made completely from parts of proteins that are not related to ARC or PAN N-

domains (coiled coil from GCN4 and OB fold from cold shock protein), still showed 

over 30% activity. The intriguing finding, that just by combining the RNA-binding 

OB fold (from either translation initiation factor or cold shock protein) with any 

coiled-coil can result in protein binding and chaperone activity, indicates that just a 

simple domain recruitment step was needed for these OB folds to change affinity 

towards a fundamentally different substrate, namely from RNA to protein.  

Sequence analysis of the PAN and ARC N-terminal domains indicated that two 

proline residues in the hinge region between the coiled-coil and the OB fold(s) are 

highly conserved. The structure of the ARC-Nc revealed the position of only one of 

these prolines in each chain, which is buried between the OB folds of adjacent 

protomers. This happens in a way that rotation and isomerisation of this residue are 

very limited. Mutational analysis in which either one or both proline residues were 

substituted with alanine, greatly affected chaperone activity of both the wild type 

(ARC-N) and a “Frankenstein” protein (GPAN). Consequently, loss of both proline 

residues totally abolished chaperone activity of both constructs. In general, the 

activity was more reduced by mutation of the “buried” proline residue. Substitution of 
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that particular residue to the more bulky tryptophan resulted in a 3-fold higher 

chaperone activity of the “Frankenstein”-protein GPAN, but no obvious improvement 

or loss in the activity of wild type ARC-N. In summary, these results imply that strict 

orientation of the two subdomains, coiled-coil and OB fold, in ARC and PAN N-

terminal domains has to be achieved for productive cooperation in substrate binding.  

In the light of the presented results we are likely to propose that the surface area 

between the tips of the OB fold (first OB fold in ARC-N) and the coiled-coil 

subdomain is the substrate binding pocket in both ARC and PAN proteins. The 

position and sequence variability of the helix and loop connecting β3 and β4 strands 

in the predicted OB folds of different PAN and ARC proteins, which we noticed just 

recently, indicates that also this part is important for substrate binding. Yet, such 

hypothesis still waits to be experimentally confirmed. 
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6. Summary 
 
 
 
AAA proteins are part of the large superfamily of AAA+ proteins, which are 

ringshaped P loop NTPases, whose common function is unfolding macromolecules in 

an energy-dependant manner. AAA proteins usually consist of an N-terminal domain, 

and one or two ATPase domains named D1 and D2. ATPase domains are relatively 

conserved within the family of AAA proteins and they are also thought to mediate 

hexamerization. N-terminal domains are important for substrate recognition and 

binding and, in contrast to the ATPase domains, they vary in their folds.  

Based on published data and additional bioinformatic analysis of AAA 

proteins, we selected several different N-terminal domains from archaeal AAA 

proteins for functional and structural characterization. We also characterized proteins 

which share similar or related domains to the ones found in AAA proteins, making an 

important link between them. Heat and chemical aggregation assays of different 

substrate proteins were used to assay N-terminal domains, or full AAA proteins, for 

intrinsic chaperone activity. Protein structures were determined by crystallography or 

NMR spectroscopy. 

Results of this study indicate that the barrel-like N-terminal domains of AAA 

proteins originated from the similar nucleic acid binding domains. A change in the 

affinity for substrate, from nucleic acid to protein, may have occurred through 

different mechanisms in the evolution. In the case of double-psi barrels this has 

probably happened through the evolution of a simple βαβ-motif found also in the 

RIFT and swapped hairpin barrels which are transcription factors, i.e. DNA binders. 

Structures of Mj0056 and SpoVT indicate that RIFT and swapped hairpin barrels have 

evolved further either by insertion of different structure elements (Mj0056) or by 

domain recruitment (SpoVT).  

Similarity between the PAN and ARC N-domains was found to be both in 

structure and function. Both domains comprise a coiled-coil followed by one or two 

OB folds. OB stands for oligosaccharide binding and indicates that also this domain 

originated from a DNA-binding fold. Structure of the ARC-Nc subdomain and a 

comprehensive analysis of chimeric constructs of the coiled coils and OB folds 

indicate that ARC and PAN N-domains have arisen through evolution by domain 
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recruitment. Strict structural composition of the subdomains important in the 

chaperone function is maintained through the conserved PP-linker connecting the two 

subdomains.  

Structural and functional characterization of the AfAMA, a member of the 

novel group of AMA AAA proteins, showed that substrate binding function and 

chaperone activity of these proteins resides in its β-clam like N-terminal domain. This 

domain can fulfill these functions independently, in contrast to the other homologous 

domains. We were able to show the importance of oligomerization for activity of 

these domains and that oligomerization is mediated by a small GYPL-motif found in a 

loop that presumably projects to the center of the hexamer. The N-terminal domain of 

AMA mediates hexamerization of the full protein independently from the AAA part 

of the protein and ATP utilization, which differs largely from other families of AAA 

proteins. Functional data on other β-clam domains: VAT-Nc, Ph1500N and Hm-clam 

would indicate that these domains represent universal protein-protein interaction 

modules 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 6.1 Relations of the proteins included in this 
study. Related but distinct folds are connected with 
one-headed arrow. Proteins that include domains 
with same fold are connected with two-headed 
arrows. Red asterisk labels parts of the structures 
that are still in process of determination. 
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7. Appendix  
 
 
 

Figure 1. Clustering of the N-terminal domains of AAA proteins 
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Figure 2. Evolution of the double-psi barrel showing the main postulated events along the branches

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

>gi|467445|B. subtilis                   MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRDGEVILKKYSPISELGDFAKEYADALYDSLGHSVL
>gi|52078551|B. licheniformis            MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRDGEVILKKYSPISELGDFAKEYADALYDSMGHSVL 
>gi|42779133|B. cereus                   MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRDGEVILKKYSPISELGDFAKEYADALYDSLGHNVL 
>gi|30260245|B. anthracis                MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRDGEVILKKYSPISELGDFAKEYAEALYDSLGHNVL 
>gi|56378426|G. kaustophilus             MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRDGEVILKKYSPISELGDFAKEYAEALFDSLGQPVL 
>gi|22775742|O. iheyensis                MKATGIVRRIDDLGRVVVPKEIRRTLRIREGDPLEIFVDREGEVILKKYSPINELGHFAKEYAEALFQSLQTPVM 
>gi|51858058|S. thermophilum             MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRDGEVILKKYSPIGELGEFAKEYADSLYEAIGHTAL 
>gi|68170176|D. hafniense                MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDREGEVILKKYSPIGELGDFAKEYADSLYEATGHIAC 
>gi|77996477|C. hydrogenoformans         MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDRNGEVILKKYSPIGELGDFAKEYAESLHESLGHIAF 
>gi|68237484|M. thermoacetica            MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFVDREGEVILKKYSPIGELGDFAKEYADSLHEAIGHIAC 
>gi|82746892|C. beijerincki              MKATGIVRRIDDLGRVVIPKEIRRTLRIREGDPLEIFTDRDGGVILKKYSPIEELTNFSKEYCESLQQVIGHVVL 
>gi|82400554|C. saccharolyticus          ------------------PKEIRRTLKIREGDPLEIYTDNEGEVILKKYSPIGEMGAFAKEYADTLHQVSGHIVI 
 
 
>gi|467445|B. subtilis                   ICDRDVYIAVSGSSKKDYLNKSISEMLERTMDQR-SSVLES-----DAKSV--QLVNGID—EDMNSYTVGPIVAN  
>gi|52078551|B. licheniformis            ICDRDVYIAVSGGSKKDYLNKSISDMVEKAMDQR-TSVLDG-----DAKTI--QLIDGID—EEVASYTVGPIVAN 
>gi|42779133|B. cereus                   VCDRDSIIAVSGVSKKEYLNKSVGDLIEKTMEER-KSVIMT-----DESDI--SIIDGVT—EKVHSYTVGPIVAN 
>gi|30260245|B. anthracis                VCDRDSIIAVSGVSKKEYLNKSVGDLIEKTMEER-KSVIMT-----DESDV--SIIDGVT—EKVHSYTVGPIVAN 
>gi|56378426|G. kaustophilus             ICDRDVYIAVAGVSKKEYMNKSVSPLVEKAMEDR-NSILHT-----EEGEV--ELVDGMT—ETLKSYTIGPIVAN 
>gi|22775742|O. iheyensis                ITDRDDVIAVAGESKKEYLNKPISNAIADTIEGR-SQVFEV-----DTKSM--EIIDGQE—QQLQSYCIHPVIAN 
>gi|51858058|S. thermophilum             IADRDTIIAVAGAPKKEFLNKPIGSIVERAMEER-RSIVVSRAG--ETRQRGTIIGDDEDENRIPVYVVAPIVAG 
>gi|68170176|D. hafniense                IADRDVIIAVSGASKKEYLNKPIWSSIEQAMAER-KTVQLK-----AGEGK--PDEDEEH—VKLTSQVAAPIIAE 
>gi|77996477|C. hydrogenoformans         IADRDTIIAVAGAPKKEFLNKPIGPAVERAMNER-KTVLITAT--GEHEYCKECITAEEGKCLFTSEIIAPIIAE 
>gi|68237484|M. thermoacetica            IADRDNIIAVAGAPKKEFLDKPIGQAIERVMEER-KPLLANSP---SEDLF—PIDGEGEA-YKFTAEVIAPIIAE 
>gi|82746892|C. beijerincki              IADKDAFVSVSGAPKKDYIERKVSSELEKIMDGR-KTVLLNKA---DNAVI-PLHNDDDE-TEYTSQVISPIIAE 
>gi|82400554|C. saccharolyticus          ITDRDKVIALSGASKKDYMDKALSQELERVMEENTIVFVKSEN---DMSSI--PIVEGDT—TRYTAQIVSPILSE 
 
 
>gi|467445|B. subtilis                   GDPIGAVVIFS--KDQTM—GEVEHKAVETAAGFLARQMEQ 
>gi|52078551|B. licheniformis            GDPIGAVVIFS--KDQSI—GEVEHKAVETAAGFLARQMEQ  
>gi|42779133|B. cereus                   GDPIGAVIIFS--KEAII—SEIEHKAVNTAASFLAKQMEQ 
>gi|30260245|B. anthracis                GDPIGAVIIFS--KEAII—SEIEHKAVNTAASFLAKQMEQ 
>gi|56378426|G. kaustophilus             GDPIGAVIILS--REKTL-GEVEHKAVETAASFLARQMEQ 
>gi|22775742|O. iheyensis                GDPIGCVLIFS--KEEKL-SKIEQKAAETASTFLAKQME- 
>gi|51858058|S. thermophilum             GDPIGAVIICS—READAVMTETEIKLAETAAGFLAKQMEQ 
>gi|68170176|D. hafniense                GDPIGAVILMS—KDPNVKMGDLELKLVETAAGFLAKQMEQ 
>gi|77996477|C. hydrogenoformans         GDPIGAVIIAS—REPGVKFGTLEQKMAETAAHFLAKQMEQ 
>gi|68237484|M. thermoacetica            GDPIGAVILCS—REPGVKMGDMELKLAETAAGFLAKQMEQ 
>gi|82746892|C. beijerincki              GDEIGAVIILS--KEDGELGEVETKLVETAAAFLGKQMEQ 
>gi|82400554|C. saccharolyticus          GTVIGSVIMCS—TESNVKMGDSEYKLVQAATSFFGKQLEQ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Alignment of SpoVT-like sequences from different sporulating bacteria. The AbrB-like and GAF domains are 
shown in red and black, respectively 
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                             |--------loop1---------|                      |--------- 
                 sss|ssssssss                        hhhhhhhh   sss  ssssss           
VatN-C         -TEIAKKVTLAPIIRkdqrlkfgeg-------------IEEYVQRALIRRPMLEQDNISVpgltlagqtg 
thvo10972      -TEIAKKVTLAPiirkdqrlkfgeg-------------IEEYVQRALIRRPMLEQDNISVpgltlagqtg 
meth23963      -VKDAQKVVLAPvdqevi--------------------IRGDIRSAFLNRVLVKGDIIVSgirqhisggg 
meja28672      -IKEAKKVVLAPtqpirfgpg-----------------FEDFVKRKILGQVLSKGSKVTIgvlgta---- 
aful3736       -AKPAEKVTLAPtepvrlmg------------------GEAYLLRLLEGRPVIKGQKIRVevfght---- 
aful4530       -YQPAKTVILAPlkkmdlriygvd--------------IGEYLKHQFLKRPVVEGDLVPLvgspalsgfg 
pyho363348     -VKEARKVVLAPtepirfgrd-----------------FVEWLHERLVGRPVVRGDYIKIgvlgqe---- 
pyho362195     -VKEAKKVVLAPaqkgvivqi-----------------PGDIIKNNLLGRPVVKGDIVVAsgrgdlyyss 
hasp30078      -AEKADTLVLAPpeeasvqfgsd---------------AAGMVKRQILKRPVVARDIVPVmsstnhpfmr 
hasp31046      -VEPADRVTVSLpqnlqirgd-----------------LGSHLREHLVDQAVRAGQTVAFpigfgmfsgr 
hasp29931      -IKPAGGVTVALpqnlrvrgn-----------------IAPMVRDRLNGRPVTAGQTIPIsfgfggmsti 
suso10166      -VKPASTVKLAPsnfsitvdpg----------------FISYVKKRLKEFPLVEGDTVLIpvlgqa---- 
suso10402      -VQDATKVVLAPtqpisfsqs-----------------FVEYVKDWLMDKPISRGETISVptyvgs---- 
aepe423790     kVEPASKVVLAPtepirfgrd-----------------FVEYVKEFLLRKPISRGETIIVpvleg----- 
aepe423106     -VRTATKVKLAPvsytmtvdeg----------------FKRYVKKKLQGVPITEGDVVVVpvigqa---- 
pyba21772      -PKPAAFVKLAPvsmtiavdan----------------FLQYIKQRLREYVLVEGDMLQIhvlsqp---- 
pyba23306      -LKPAQRVVLTPtepvrvd-------------------SEYLKKQILLGKPVARGQAIDVpfygga---- 
                    ssssss     ssss               hhhhhhhhhh sssssss   ssss           
AfAMA          ----LRYLIVRPLGYPLkasyhey-PQVD-----NPKVFDVYAKDQWKGEFVHKNKLIFDmrmfpd---- 
PRS2_METJA     ----LKYVVLEPAGFPIrvssenvkVSTD-----DPILFNIYARDQWIGEIVKEGDYLFDnsilpd---- 
PRS2_METTH     ----AKLVVLQPVGYPFvcnlmea-PRIDav---NKELFEIYARDQWEGFRAAEGSYLFDqkllpd---- 
MM0304         ----SELLILKPEGYPLsgmmeey-PVIE-----NRDVFEFYAREQWSGYVARKGDYLFDrrmfpd---- 
MK1368         ------------MGYPVrepgmgkeVVVD-----SLEAFNAYAREQWLGEVVREGTILFDtgvvhs---- 
                   ssssss                            hhhhhhhhh  ssss   sssssss        
Ph1500-N       ----MSELKLKPLPKVELPPD-----------------FVDVIRIKLQGKTVRTGDVIGISILGKE---- 
H75108         ----VKRVKLKPMINVDIPQD-----------------FSEVIKSKLKGKVLKTGDVVSVDILGKE---- 
AAL81354.1     ----NMMIILKPLIEVDLPED-----------------FVDIIKAKLKGQTVKSGEIITVDILGKP---- 
                     sssss                  ssss     hhhhhhhh         hhhhhhh         
AAL74407.1     ----ATRVVVSFpdel----------SAWGHDQLTADRFVTYLRRVHEd--AAPGDEWEEFLDVGCcgds 
AAV47916.1     ----ASRVELSYpadl----------SGWGRDKIDGSPFRAYLRKTHNt--ATPGDVWTEFVGVGCcgdt 
AAV46454.1     ----ADRIVLSFapsaadgdpwsgvdTAWIVDELRGDTYQQYLRRAHGgp-VAVGEEWAEFVSCGCatpq 
 
               ---loop2------------| 
                                    sssssssss     sss   ssssss 
VatN-C         ---------------------LLFKVVKTLPSKVpVEIGEETKIEIREEPASevleevsr---------- 
thvo10972      ---------------------LLFKVVKTMPGKVpVEIGEETKIEIREEPASevleevsr---------- 
meth23963      lfdeffrdfmdisplge----IKLAVVSTSPAGV-VRVTPSTQVEMQQKPVDvsklegvknlvd------ 
meja28672      ---------------------LTFVVVSTTPAGP-VRVTDFTHVELKEEPVSeiketkvpd--------- 
aful3736       ---------------------LTFVITATRPSGV-VVVTRNTAIELKEKPAEevkravpd---------- 
aful4530       rynqqnqa-------------VVFVAVKTEPKGP-VVIDETTKVVYRDRPAKgferfgkag--------- 
pyho363348     ---------------------LTFVVTTTQPSGV-VQITEYTDFDISEKPVKevekrmttg--------- 
pyho362195     gtpfdeifrgffeamsvgfgeLKFMVVNTIPKGI-VQITYNTEVEVLPQAVEvreekipe---------- 
hasp30078      spgqa----------------IPLIAVETEPEGV-CLVTEDTDVELREEPISgfertggg---------- 
hasp31046      sgrr-----------------IPLRVVDTQPSGT-VVVQNTTEIEIADQSAQevsvesgepenttapa-- 
hasp29931      sgqq-----------------IPVKIAETEPSGT-VVVSNDTEIQLSERPAEeiapgageaaetgdptpn 
suso10166      ---------------------IPFTVVQVKPAGI-VLVNDDTIISISDKPVEpsrypr------------ 
suso10402      ---------------------IDFVVVSTQPSQS-VRITGRTSLEIRQEPVKesaavpk----------- 
aepe423790     ---------------------LPLVVVSTQPAHF-VYVTEATEVEIREKPVReeierlrgvpk------- 
aepe423106     ---------------------VQLQVVDARPKGA-VIVSEETIVDVLEKPVAqsrvpk------------ 
pyba21772      ---------------------LTFQVVQTKPSNTvLIITEDTQIQIFEKPVSgvkiph------------ 
pyba23306      ---------------------IRFVVVQVQPGPA-AYVSIDTEVTVREEPVKeaeltipr---------- 
                                     ssssssss      ss  sssssss     
AfAMA          ---------------------FAFEVIDCDPps--GYISDSTIILVESDPRVieteivrd---------- 
PRS2_METJA     ---------------------YAFKVISTYPkeg-GMITSETVFKLQTPKKVlrtqfkk----------- 
PRS2_METTH     ---------------------YAFKIIRAHPdg--SKITRNTSIILLENDREefhevrss---------- 
MM0304         ---------------------FAYRIIDVEPae--SMIGSSTSIIVTEEESGipssseikgd-------- 
MK1368         ---------------------YAFKVVRVVPsgm-GRITSSTRFVLRTRFEEdrmeipn----------- 
                                    ssssssss       sss   ssssss 
Ph1500-N       ---------------------VKFKVVQAYPSP--LRVEDRTKITLVTHP 
H75108         ---------------------IRFKVVQAMPSP--LTVDESTGVLLTRHS 
AAL81354.1     ---------------------IEFKVLYAEPSP--VKVTQKTQIKFAKGN 
                                   sssssssss       ss   sssssss         ssss 
AAL74407.1     l-------------------TLTLRVEELDPEGT-TRIDDETTVEFVEREgs-VHGGWCVQSADGPvs 
AAV47916.1     l-------------------DFPLQVESV--EGG-SAVTEDTEFVYTEREacgIAGGWQVQSAAGPte--- 

AAV46454.1     --------------------DVVLRVERI--EGG-MALGDATTLAIHPrndaetap--------------
-
Figure 3. Alignment of different β-clam domains. p97/CDC48 (green), AMA (blue), Ph1500-like 

(red) and Hm-like (black). The secondary structure prediction is written above each group.  
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7.1  Sequences of the proteins 

 
 
 
 
Thermoplasma acidophilum VAT ATPase (VCP-like ATPase) 
GI:16081896 
 
MESNNGIILRVAEANSTDPGMSRVRLDESSRRLLDAEIGDVVEIEKVRKTVGRVYRARPEDEN
KGIVRIDSVMRNNCGASIGDKVKVRKVRTEIAKKVTLAPIIRKDQRLKFGEGIEEYVQRALIR
RPMLEQDNISVPGLTLAGQTGLLFKVVKTLPSKVPVEIGEETKIEIREEPASEVLEEVSRISY
EDIGGLSEQLGKIREMIELPLKHPELFERLGITPPKGVILYGPPGTGKTLIARAVANESGANF
LSINGPEIMSKYYGQSEQKLREIFSKAEETAPSIIFIDEIDSIAPKREEVQGEVERRVVAQLL
TLMDGMKERGHVIVIGATNRIDAIDPALRRPGRFDREIEIGVPDRNGRKEILMIHTRNMPLGM
SEEEKNKFLEEMADYTYGFVGADLAALVRESAMNALRRYLPEIDLDKPIPTEILEKMVVTEDD
FKNALKSIEPSSLREVMVEVPNVHWDDIGGLEDVKREIKETVELPLLKPDVFKRLGIRPSKGF
LLYGPPGVGKTLLAKAVATESNANFISIKGPEVLSKWVGESEKAIREIFKKAKQVAPAIVFLD
EIDSIAPRRGTTSDSGVTERIVNQLLTSLDGIEVMNGVVVIGATNRPDIMDPALLRAGRFDKL
IYIPPPDKEARLSILKVHTKNMPLAPDVDLNDIAQRTEGYVGADLENLCREAGMNAYRENPDA
TSVSQKNFLDALKTIRPSVDEEVIKFYRTLSETMSKSVSERRKQLQDQGLYL 
 
*VAT-Nn underlined 
 
Methanothermobacter thermautotrophicus excisionase-like protein 
GI:6002757 
 
MAMEDVGVPFSNRLTRQGNIKVPADLRDALKLKPGDLLVVEIKKVDRS 
 
Pyrococcus horikoshii Ph1179 GI:3257596 
 
MQNQQKTVEPLAKFHASVNIKGQLVVPVKDREVFGLKRGDILEIIVRSFDVINGKIHIKKRAY
ILVRLSSKGLITIPEEVRRELGISPGDTVEVLLVGFHKFDELVTEKGKQIAKLIQANTHMRLI
TSEEEKTIIEKSRTYYV 
 
Thermoplasma acidophilum Ta1217 GI:16082225 
 
MTDNKKIMDIARMTKRGASVRVTIPKKVLKKLNFKDEDLIAFYESEDGRIYIDLLK 
 
Methanocaldococcus jannaschii Mj0056 GI:2128102 
 
MVKLMIIEGEVVSGLGEGRYFLSLPPYKEIFKKILGFEPYEGTLNLKLDREFDINKFKYIETE
DFEFNGKRFFGVKVLPIKILIGNKKIDGAIVVPKKTYHSSEIIEIIAPMKLREQFNLKDGDVI
KILIKGDKDE 
 
Pyrococcus horikoshii Ph1500 GI:3257925 
 
MEGVIMSELKLKPLPKVELPPDFVDVIRIKLQGKTVRTGDVIGISILGKEVKFKVVQA
YPSPLRVEDRTKITLVTHPVDVLEAKIKGIKDVILDENLIVVITEENEVLIFNQNLEELY
RGKFENLNKVLVRNDLVVIIDEQKLTLIRT 
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Bacillus subtilis AbrB GI: 113009 
 
MFMKSTGIVRKVDELGRVVIPIELRRTLGIAEKDALEIYVDDEKIILKKYKPNMTCQV
TGEVSDDNLKLAGGKLVLSKEGAEQIISEIQNQLQNLK 
 
*Abrb-N underlined 
Methanococcus jannaschii AMA Mj1494 GI: 3915816 
 
MSKIGFNPIKIKSFSKIKTYDDTLPSLKYVVLEPAGFPIRVSSENVKVSTDDPILFNIYARDQ
WIGEIVKEGDYLFDNSILPDYAFKVISTYPKEGGMITSETVFKLQTPKKVLRTQFKKAKFSEI
IGQEEAKKKCRIIMKYLENPKLFGEWAPKNVLFYGPPGTGKTLMARALATETNSSFILVKAPE
LIGEHVGDASKMIRELYQRASESAPCIVFIDELDAIGLSREYQSLRGDVSEVVNALLTELDGI
KENEGVVTIAATNNPAMLDPAIRSRFEEEIEFKLPNDEERLKIMELYAKKMPLPVKANLKEFV
EKTKGFSGRDIKEKFLKPALHRAILEDRDYVSKEDLEWALKKILGNRREAPQHLYL 
 
*MjAMA-N is underlined 
 
Archaeoglobus fulgidus AMA AF1285 GI: 2649294  
 
MAKRETAELRYLIVRPLGYPLKASYHEYPQVDNPKVFDVYAKDQWKGEFVHKNKLIFDMRMFP
DFAFEVIDCDPPSGYISDSTIILVESDPRVIETEIVRDITLDDVVGQEEAKRKAKVILEYLRN
PEKFGKWAPKNVLFYGPPGTGKTMMAKALSNEAKTPFLSVKSTKLIGEHVGDGARRVHELYER
ARQLAPCIVFLDEFDAIALDRGYQEIRGDVSEIVNALLTELDGTNSNEGICTIAATNRVELLD
ASIRSRFEEEIEFRLPSYEERLEILRRNLEEFPVPVKARLELVAAASEGFSGRDLVEKVIKAS
LHKAIAEGKDKIETEDLLTAAEKVKMPSRQPPKQMFV 
 
*AfAMA-N is underlined 
 
Archaeoglobus fulgidus PAN Af1976 GI:3122632 
 
MGDSEIQYLLEKLKKLEEDYYKLRELYRRLEDEKKFIESERIRYEREVRRLRSEVERL
RSPPLLVGVVSDILEDGRVVVKSSTGPKFVVNTSQYINEEELKPGARVALNQQTLAIV
NVLPTSKDPMVYGFEVEEKPEVSYEDIGGLDVQIEEIREAVELPLLKPELFAEVGIEPP
KGVLLYGPPGTGKTLLAKAVANQTRATFIRVVGSEFVQKYIGEGARLVREVFQLAKE
KAPSIIFIDELDAIAARRTNSDTSGDREVQRTMMQLLAELDGFDPRGDVKVIGATNRI
DILDPAILRPGRFDRIIEVPLPTFEGRIQIFKIHTRKMKLAEDVDFKELARITEGASGADI
KAICTEAGMFAIREERAKVTMLDFTKAIEKVLKKTTPIPDLKGVMFV 
 
*AfPAN-N is underlined 
 
Methanocaldococcus jannaschii PAN Mj1176 GI:2492524 
 
MVFEEFISTELKKEKKAFTEEFKEEKEINDNSNLKNDLLKEELQEKARIAELESRILKL
ELEKKELERENLQLMKENEILRRELDRMRVPPLIVGTVVDKVGERKVVVKSSTGPSF
LVNVSHFVNPDDLAPGKRVCLNQQTLTVVDVLPENKDYRAKAMEVDERPNVRYEDI
GGLEKQMQEIREVVELPLKHPELFEKVGIEPPKGILLYGPPGTGKTLLAKAVATETNA
TFIRVVGSELVKKFIGEGASLVKDIFKLAKEKAPSIIFIDEIDAIAAKRTDALTGGDREV
QRTLMQLLAEMDGFDARGDVKIIGATNRPDILDPAILRPGRFDRIIEVPAPDEKGRLEI
LKIHTRKMNLAEDVNLEEIAKMTEGCVGAELKAICTEAGMNAIRELRDYVTMDDFR
KAVEKIMEKKKVKVKEPAHLDVLYR 
 
*MjPAN-N is underlined 
Rhodococcus erythropolis ARC GI:3790601 
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MSSTENPDSVAAAEELHALRVEAQVLRRQLAQSPEQVRELESKVDSLSIRNSKLMDT
LKEARQQLIALREEVDRLGQPPSGYGVLLSVHEDKTVDVFTSGRKMRLTCSPNIDTD
TLALGQTVRLNEALTIVEAGTYEQVGEISTLREVLDDGLRALVVGHADEERIVWLAA
PLAAVFADPEADIIAYDADSPTRKLRPGDSLLVDTKAGYAFERIPKAEVEDLVLEEVP
DVHYDDIGGLGRQIEQIRDAVELPFLHKDLFHEYSLRPPKGVLLYGPPGCGKTLIAKA
VANSLAKKIAEARGQDSKDAKSYFLNIKGPELLNKFVGETERHIRMIFQRAREKASEG
TPVIVFFDEMDSIFRTRGSGVSSDVETTVVPQLLSEIDGVEGLENVIVIGASNREDMIDP
AILRPGRLDVKIKIERPDAESAQDIFSKYLVDGLPINADDLAEFGGDRTACLKAMIVR
VVDRMYAESEENRFLEVTYANGDKEVLFFKDFNSGAMIQNIVDRAKKYAIKSVLDT
GAPGLRVQHLFDSIVDEFAENEDLPNTTNPDDWARISGKKGERIVYIRTLVTGKNASA
SRAIDTESNTGQYL 
 
*ARC-N is underlined 
 
Haloarcula marismortui Hm clam GI:55231035 
 
MAPVADRIVLSFAPSAADGDPWSGVDTAWIVDELRGDTYQQYLRRAHGGPVAVGE
EWAEFVSCGCATPQDVVLRVERIEGGMALGDATTLAIHPRNDAETAP 
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ZUSAMMENFASSUNG 
 
 
AAA Proteine gehören zur großen Überfamilie der AAA+ Proteine. Diese sind ringförmige 
P-loop NTPasen, deren gemeinsame Funktion das engerieabhängige Entfalten von 
Makromolekülen ist. AAA Proteine bestehen im Allgemeinen aus einer N-terminalen 
Domäne und einer oder zwei ATPase Domänen, die mit D1 und D2 bezeichnet werden. Die 
ATPase Domänen innerhalb der Familie der AAA Proteine sind verhältnismäßig konserviert. 
Sie bewirken wahrscheinlich eine Hexamerisierung. Die N-terminalen Domänen sind wichtig 
für die Erkennung und Bindung des Substrats und unterscheiden sich im Gegensatz zu den 
ATPase Domänen strukturell. 
Auf der Grundlage veröffentlichter Daten und zusätzlicher bioinformatischer Analyse der 
AAA Proteine wurden mehrere verschiedene N-terminale Domänen von AAA Proteinen aus 
Archaebakterien für eine funktionelle und strukturelle Charakterisierung ausgewählt. Es 
wurden weiterhin Proteine charakterisiert, die ähnliche oder verwandte Domänen wie die 
AAA Proteine haben. Dabei wurde darauf Wert gelegt, Zusammenhänge und 
Gemeinsamkeiten herauszustellen. Es wurden Hitze- und chemische Aggregations Tests mit 
verschiedenen Substratproteinen durchgeführt, um die N-terminalen Domänen oder die 
gesamten AAA Proteine auf intrinsische Chaperon-Aktivität zu untersuchen. Die 
Proteinstrukturen wurden mit Röntgenstrukturanalyse oder mit NMR Spektroskopie 
bestimmt. Die Ergebnisse dieser Arbeit zeigen, dass die barrel-fömigen N-terminalen 
Domänen der AAA Proteine aus bauart-ähnlichen, Nukleinsäure bindenden Domänen 
hervorgingen. Die Substrataffinität hat sich wahrscheinlich durch verschiedene evolutionäre 
Mechanismen von Nukleinsäuren zu Proteinen gewandelt. Im Fall der doppelten Psi-Barrels 
ist dies vermutlich durch die Evolution eines einfachen βαβ-Motifs geschehen, das man auch 
in den RIFT und in den swapped hairpin-Barrels findet. Letztere sind Transkriptionsfaktoren, 
d.h. sie binden DNA. Die Struktur von Mj0056 und SpoVT  legt nahe, dass RIFT und 
swapped hairpin-Barrels entweder durch eine Insertion verschiedener Strukturelemente 
(Mj0056) oder durch die Rekrutierung einer Domäne (SpoVT) weiter evolviert sind. 
Ähnlichkeiten zwischen den N-terminalen Domänen von PAN und ARC wurden sowohl in 
Struktur und Funktion gefunden. Beide Domänen beinhalten eine coiled-coil Faltung, auf die 
eine oder zwei OB Faltungen folgen. OB steht für Oligosaccharid-Bindung und weist darauf 
hin, dass diese Domäne ebenfalls aus einer DNA-bindenden Struktur entstand. Die Struktur 
der ARC-Nc Subdomäne und eine umfassende Analyse von Chimären aus coiled-coil und OB 
Faltungen zeigen auf, dass sich die N-terminalen Domänen von ARC und PAN evolutionär 
durch die Rekrutierung von Domänen entwickelt haben. Die strikte strukturelle 
Zusammensetzung der Subdomänen ist wichtig für die Chaperon-Funktion und wird durch die 
konservierten PP-Linker, die die beiden Subdomänen verbinden, erhalten.  
Die strukturelle und funktionale Charakterisierung von AfAMA, das zu der neuen Gruppe der 
AMA AAA Proteine gehört, zeigte, dass die Substratbindefunktion und die Chaperon-
Aktivität dieser Proteine in ihrer β-clam ähnlichen N-terminalen Domäne liegen. Diese 
Domäne kann die genannten Funktionen unabhängig voneinander erfüllen, was sie von 
anderen homologen Domänen unterscheidet. Es war uns möglich, die Bedeutung der 
Oligomerisierung für die Aktivität dieser Domänen zu zeigen. Des Weiteren haben wir 
gezeigt, dass die Oligomerisierung durch ein kleines GYPL-Motif vermittelt wird, das auf 
einem Loop liegt, der vermutlich in das Zentrum des Hexamers zeigt. Die N-terminale 
Domäne von AMA bewirkt die Hexamerisierung des ganzen Proteins unabhängig von dem 
AAA Teil des Proteins und unabhängig von ATP Verbrauch. Darin weicht sie stark von 
anderen Familien der AAA Proteinen ab. Funktionelle Daten von anderen β-clam Domänen 
(z.B. VAT-Nc, Ph1500N und Hm-clam) würden darauf hinweisen, dass diese Domänen 
universelle Protein-Protein Wechselwirkungsmodule darstellen. 
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