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Abstract

Bugs in hardware cost money. Whenever an error creeps into a design, time
and money must be spent to locate the problem and correct it. With the growing
complexity of digital systems, and the tremendous pressure for early-time-to-
market schedules, the need for verification tools that can help designers to catch
bugs at an early stage in the design process cannot be overemphasized. Statisti-
cally, verification takes nearly 75% of the design time.

Traditional methods of verification are empirical in nature and are based on
extensive simulation of hand-written or automatically generated diagnostic test
vectors. Although, provably effective in early stages of the debugging process,
their effectiveness drops quickly along the maturity of the design. Hence, func-
tional verification has problems in catching the corner cases, therefore formal ver-
ification complements it in order to cope up with the design growth.

In formal verification efficient search procedures are used to automatically
determine whether the state space of a design satisfies an abstract logical speci-
fication (properties). In general, reachability analysis is known to be a key com-
ponent of formal verification. For large classes of properties, verification can be
reduced to reachability analysis. The term reachability analysis corresponds to
the set of states that can be reached by means of traversal step from a set of de-
fined initial states. The typical problem of such analysis is that after some steps of
traversal, the system can not handle the overwhelming state space anymore and
hence the memory overflow problem occurs. There is constant work on finding
algorithms to reduce the memory requirement bottlenecks. One such approach to
reduce the memory requirement is the symbolic representation of the state space,
where Binary Decision Diagrams (BDDs) are used as data structures. Therefore,
the state space traversal is then carried out symbolically by BDD manipulations.

However, large designs may require many millions of BDD nodes that also
often causes memory overflow. This phenomenon is well known as BDD blow-
up. There are several proposed solutions to deal with the large memory require-
ments of BDDs. One such novel proposal is to partition the BDD into two or
more pieces and handle them separately for further state space traversal. Al-
though there exists a few algorithms to partition the actual BDD, the lack of op-
timization in these algorithm are often responsible for the excessive growth of
the BDDs resulting in slow verification or memory problems. This thesis deals
with intelligent heuristics that optimizes the partitioning. The thesis contributes
two heuristics, MinOverlap for the full validation approach and Guiding for a fast
falsification approach.



To validate a design completely which is relatively large, a divide-and-conquer
approach is state-of-the-art. It partitions the original BDDs that exceeds a thresh-
old size of node count and deals with the partitions separately. The major prob-
lem of this methodology is revisiting of states in different partitions and is known
as state space overlap that results in redundant computations. The MinOverlap
algorithm aims at a reduction of state space overlap of different partitions that
minimizes the redundant computation and decreases the verification time. The
reduction is achieved automatically by means of collecting the information in the
form of influence table of state variables by exploiting the design’s transition re-
lation.

Similarly, to verify a property faster, guiding by means of providing hints is
state-of-the-art technique. However, this is not fully automatic and requires ex-
pert intervention. The Guiding algorithm in this thesis aims at steering the state
space traversal algorithm in the direction of the target states automatically. It
avoids the un-interesting state space saving memory and speeds up the finding
of bugs. The guiding is realized by exploiting the property and the transition re-
lation for information on target states, and utilizing them for the efficient guiding
and steering the traversal automatically. The experimental results shows substan-
tial speed up of the verification process by these heuristics.



Zusammenfassung

Hardwarefehler kosten Geld. Jedes Mal, wenn ein Fehler in einem Design auf-
taucht, müssen Zeit und Geld verschwendet werden, damit das Problem loka-
lisiert und korrigiert wird. Bei der wachsenden Komplexität digitaler Systeme
und des riesigen early-time-to-market Drucks kann die Notwendigkeit von Veri-
fikationsmitteln, die den Designern helfen, bugs im Frühstadium des Designpro-
zesses festzustellen, genug betont werden. Verifikation benötigt laut Statistiken
ungefähr 75% der Designzeit.

Die traditionellen Verifikationsmethoden sind empirischer Natur und stützen
sich auf extensive Simulation handgeschriebener oder automatisch erzeugter diag-
nostischer Testvektoren. Obwohl ihre Effektivität in frühen Stadien des debug-
ging Prozesses nachgewiesen ist, sinkt diese schnell sobald das Design weni-
ger Fehler aufweist. Deswegen hat die funktionelle Verifikation Probleme bei der
Feststellung von Randfällen und darum wird sie durch die formale Verifikation
ergänzt, um die Designentwicklung zu bewältigen.

Bei der formalen Verifikation werden effiziente Suchprozesse verwendet, um
automatisch zu bestimmen, ob der Zustandsraum eines Designs eine abstrakte
logische Spezifikation erfüllt (properties). Im Allgemeinen ist die Erreichbarkeits-
analyse als ein Hauptbestandteil der formalen Verifikation bekannt. Für gröβere
Eigenschaftsklassen kann Verifikation auf Erreichbarkeitsanalyse reduziert wer-
den. Die Erreichbarkeitsanalyse bezieht sich auf die Gruppe der Zustände, die
durch einen Schritt aus einer Gruppe definierter Eingangszustände erreicht wer-
den kann. Das typische Problem dieser Vorgehensweise ist, dass das System nach
einigen Schritten den überwältigenden Zustandsraum nicht mehr bewältigen kann
und folglich ein Speicherüberlauf eintritt. Es wird fortlaufend daran gearbeitet
Algorithmen zu finden, um die Speicherengpässe zu reduzieren. Ein solcher An-
satz, die Speicheranforderungen zu reduzieren ist die symbolische Darstellung
des Zustandsraums, in der Binary Decision Diagrams (BDD) als Datenstrukturen
verwendet werden. Hierbei wird das Traversieren des Zustandsraums symbo-
lisch durch Manipulieren von BDDs ausgeführt.

Groβe Designs können jedoch viele Millionen von BDD-Knoten benötigen,
was auch häufig einen Speicherüberlauf verursacht. Dieses Phänomen ist als BDD-
blow-up bekannt. Es sind mehrere Lösungen vorgeschlagen worden, um die groβen
Speicheranforderungen von BDDs zu bewältigen. Ein solcher neuer Vorschlag ist,
das BDD in zwei oder mehr Teile zu partitionieren und diese separat für die wei-
tere Zustandsraumtraversierung zu bearbeiten. Obwohl Algorithmen zum Parti-
tionieren des eigentlichen BDD existieren, sind diese oft nicht optimiert, und so-
mit für die exzessive Zunahme der BDDs verantwortlich, welches eine langsame
Verifikation oder Speicherprobleme nach sich zieht. Die vorliegende Doktorar-
beit befasst sich mit intelligenten Heuristiken, die das Partitionieren optimieren.
Die Dissertation trägt zwei Heuristiken bei, MinOverlap für den vollständigen
Validierungsansatz und Guiding für einen schnellen Falsification Ansatz.

Um ein relativ groβes Design vollständig zu validieren, ist eine divide-and-
conquer Vorgehensweise Stand der Technik. Sie partitioniert Original-BDDs, de-
ren Knotenzahl einen Schwellwert überschreiten, und bearbeitet die Partitionen



separat. Das Hauptproblem dieser Methodologie ist das wiederholte besuchen
von Zuständen in unterschiedlichen Partitionen. Dies ist als Zustandsraumüberdeckung
(state space overlap) bekannt und führt zu redundante Berechnungen. Der MinO-
verlap - Algorithmus bezweckt eine Reduktion der Zustandsraumüber-deckung
unterschiedlicher Partitionen, was die redundante Berechnung minimiert und
die Verifikationszeit verringert. Die Reduktion wird automatisch erreicht, indem
die Informationen in der Form von Einflusstabellen (influence tables) von Zu-
standsvariablen durch Auswerten der Transitionsrelation des Designs gesammelt
werden.

Gleichermaβen ist die schnellere Verifikation einer Eigenschaft durch guiding
Stand der Technik. Jedoch ist dies nicht vollautomatisch zu bewerkstelligen und
benötigt Intervention. Der Guiding-Algorithmus in dieser Doktorarbeit bezweckt,
den Zustandsraumtraversierungsalgorithmus automatisch in die Richtung der
Zielzustände zu steuern. Er umgeht den uninteressanten Zustandsraum, wodurch
Speicher gespart wird, und beschleunigt das Auffinden von Fehlern. Das Guiding
wird umgesetzt, indem Informationen der Eigenschaft und der Transitionsrelati-
on über Zielzustände ausgeschöpft und für effizientes Guiding angewendet wer-
den, um die Traversierung automatisch zu steuern. Die experimentellen Ergeb-
nisse zeigen eine beachtliche Beschleunigung des Verifikationsprozesses durch
diese Heuristiken.
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Chapter 1

Introduction

This thesis presents new heuristics for the optimization of the formal verification
of digital systems. This chapter outlines the motivation of the necessity for verifi-
cation tools as an aid to the design of digital systems. It provides an overview of
formal verification and the background on existing methods and it explains the
need of optimization using intelligent heuristics. Finally, there is a note on the
scope and the main contribution of the thesis.

1.1 Why Verification Tools?

The developments in electronic industry has witnessed continued growth since
the first integrated digital circuit until the present where complex circuits are de-
signed and fabricated at a faster rate than ever before. This increase in complexity
was predicted in particular by Moore’s law [1, 2], which states that the number of
transistors on a chip would double every eighteen months. This prediction has
roughly withstood the test of time for the last 35 years.

The boom of the electronics industry can be easily understood by our daily life
dependency on electronic hardware systems, like the embedded systems inside
automobiles, airplanes, cell phones, etc. The use of digital systems in daily living
is expected to grow even more. Along with the growing design complexity, the
business competitiveness also increased, putting tremendous pressure on early
time–to–market. Its ubiquitous use coupled with the demand for rapid design
requires that the digital systems function correctly in all possible scenarios.

Particularly safety critical applications like airplanes and automobiles require
a heightened level of correctness, since faulty designs could cause total disaster.
Apart from such safety critical systems, general electronics goods like MP3 play-
ers, DVD players, computers, digital cameras, etc. are also becoming common
household items. Hence, these products also require early time–to–market and
are expected to be bug–free, else the costs are often very high. The well known
Pentium floating point division bug cost the Intel corporation [3] almost half a
billion dollars [4], for example. A disk drive problem cost the Toshiba corpora-
tion [5] nearly a billion dollars. An earlier detection of these bugs would have
saved the corporations from such losses. These real life examples illustrate the
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importance of error proof design in today’s age of high productivity.
The tools that enable the designers to work at higher levels of abstraction take

care of the high productivity demand. The verification tools serve to aid the de-
signer in catching bugs at an early stage in the design process and thus help to
meet bug–free design.

1.2 Verification Methods

Verification methods for digital systems can be broadly classified as being either
empirical or formal. The empirical method has been the traditional methodol-
ogy used in industry and has only recently been complemented by the formal
methodology.

1.2.1 Empirical Methods

Empirical verification methods generally verify the design by generating test
cases for a design and applying those test cases to a model of the design by means
of simulations. Empirical methods do not attempt to prove the correctness of a
design, but rather aim to derive a level of confidence that the design is free of
any obvious errors. The effectiveness of empirical methods depends directly on
the effectiveness of the metrics used to grade the quality of the tests. Several cov-
erage metrics [6] like line coverage, basic block coverage, toggle coverage, state
coverage, tag coverage etc. have been proposed, but it is as of yet not clear which
metric is the most effective in exposing design errors.

Simulation is the most widely used method for validation of models and is
referred to as functional verification [7, 8] . The design to be tested is described
in some modelling language and is referred to as the design under test (DUT).
The design specification is then used to generate input and output test vectors.
The generation of test vectors according to the specification and the handling of
the output are defined to be the testbench. It can be modelled using the verifi-
cation language, such as e [9] . The stimulus routine modelled in the verification
language applies the input vectors to the models. The inputs are propagated
through the model by the simulation tool and thereby generating the outputs. A
monitor routine checks the output of the DUT against expected outputs for each
input test vector. If a mismatch is found, the designer can use debugging tools
to trace back and find the source of the problem. The problems arise from either
incorrect design or incorrect timing. Once the problem source is identified, the
designer can fix it and simulate the new model.

Empirical methods are provably effective in the very early stages of the de-
bugging process, where multiple bugs are present. However their effectiveness
drops along with increased design maturity, and requires substantially more time
to uncover the hard to reach bugs widely referred as corner case bugs . This charac-
teristic flaw has sparked an increased interest in the development of more formal
methods.



1.3 · What is Formal Verification? 3

1.2.2 Formal Methods

The term formal methods [10] refers to mathematically rigorous techniques and
tools for the specification, design and verification of software and hardware sys-
tems. The phrase ”mathematically rigorous” means that the specifications used in
formal methods are well–formed statements that follow mathematical logic. The
formal verifications are rigorous deductions in that logic, i.e., each step follows
from a rule of inference and thus can be checked by a mechanical process. These
techniques use mathematical formulations to verify designs and aim at establish-
ing that an implementation satisfies a specification. The term implementation
refers to a model of the design to be verified, while the term specification refers
to a more abstract model or a property with respect to which the correctness is to
be determined. The value of formal methods is that they provide a means to sym-
bolically examine the entire state space of a digital design (hardware or software)
and establish a correctness or safety property that is true for all possible inputs.

A formal model of the specific design with a precisely defined meaning allows
one to apply mathematical proof techniques. Such a model can be expressed in a
variety of mathematical formalisms. Examples of formalisms at the behavioural
level are data flow graphs, process algebras and higher order logics. At the lower
levels finite state machines and switch level models are often used. The design
can be modelled directly by one of these formalisms. Alternatively a formal
model can be constructed from a design description in a hardware description
language.

1.3 What is Formal Verification?

Formal verification [11, 12] means proving that a property holds in a model of
a design. The strength of verification lies in its ability to provide mathematical
proof, in contrast to conventional simulation. The empirical results from simula-
tions can tell us only that nothing went wrong on the specific cases. Of course, ex-
haustive attempts of every possible execution of a system is a valid proof. Formal
verification can be regarded as having a similar effect as exhaustive simulation.
However, specifying the property to prove and creating an accurate model of the
design are difficult to achieve. One can ponder endlessly the philosophical im-
possibility of proving a system correct: Is the spec correct? Is the model accurate?
Is the verifier correct? Is the computer we used to run the verifier correct? In [13]
Cohn gives an insightful and readable analysis of the fundamental obstacles in
proving a hardware design to be correct. Assuming that the model is indeed rep-
resentative of the actual design, and the specification is a golden reference model,
formal verification techniques can be applied.

In practice, we can choose the property to be one that ”conforms exactly to a
golden reference model which we assume is correct,” otherwise we can simply
prove easy-to-state properties that matter to us (e.g., absence of deadlock, inter-
face lines follow a handshake protocol, etc.). Ideally, the model we verify is as
close to the actual hardware as possible (e.g., a circuit extracted from the VLSI
layout), but for complicated designs, an abstracted model is usually needed to
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simplify the verification process. Although, formal verification of all kinds of
properties including timing, performance, reliability, etc. is conceivable, most
formal hardware verification research has focused on verifying functional cor-
rectness, which is also the focus of attention of this thesis.

1.4 Why Formal Hardware Verification?

People have researched formal verification of computer hardware and software
for decades. Traditionally, the emphasis had been on approaching the idea of
proving a system correct. The verification methods, typically a mathematically
expressive but computationally undecidable logic with support from a semi au-
tomated theorem prover, require considerable time and expertise to verify even
fairly simple systems. As a result, practical application has been limited to a few
domains, such as security and safety-critical systems, where ethical or legal re-
quirements demand the highest assurance of correctness, regardless of cost. For
normal hardware design projects processes such as, hiring or training formal ver-
ification experts, delaying a product launch to allow time for formal verification,
and reducing product performance or features to simplify formal analysis are all
economically unacceptable.

Current industrial interest in formal verification places its emphasis on devel-
oping formal verification techniques that explicitly recognize economic demands.
The other main focus is on the high design complexity and short design cycles
that are straining current validation methods. Bugs cost money, especially the
hard-to-find bugs that surface late in the design cycle. These bugs force an extra
spin of silicon, delay a product launch, or require a massive product recall. Any
technique that finds these bugs earlier is enormously valuable. So, instead of
trying to certify correctness, formal verification is used as a powerful debugging
tool. If the time and effort invested in formal verification is less than the time
and effort saved by uncovering difficult bugs earlier, then formal verification is
worthwhile, regardless of whether or not it allows us to make any claims about
proving the system correct. This cost benefit comparison favours formal verifica-
tion techniques that are automatic and easy-to-use, even if they lack theoretical
expressiveness. Not coincidentally, this practical debugging emphasis for formal
verification developed in parallel with new formal verification algorithms based
on Binary decision diagram that offer far greater automation than had previously
been possible. Binary decision diagram (BDD) is a data structure for representing
a Boolean function . Bryant [14] introduced the BDD in its current form, although
the general ideas have been around for quite some time.

1.5 Formal Verification Methods

Formal verification methods are often divided into two categories, theorem prov-
ing and model checking. A more comprehensive survey of formal verification
methods can be found in [15].
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1.5.1 Theorem Proving

Theorem proving, [16] also referred to as deductive verification, is an approach to
verification where the verification problem is described as a theorem in a formal
theory. A formal theory consists of, a language in which the formulas are written,
a set of axioms and a set of inference rules. The inference rules are syntactic
transformation rules for the formulas. With these rules and axioms, theorems can
be proven. Hence, the verification by theorem proving makes use of deductive
reasoning.

However, theorem proving is a time–consuming process that can be performed
only by those who are educated in logical reasoning and have considerable ex-
pertise. This lack of automation makes its usage rare and limited to guaranteeing
the correctness of safety critical systems and protocols. The prominent theorem
proving tools are Isabelle [17], PVS [18, 19] and HOL [20].

The advantage of this method is that it gives one the ability to reason about in-
finite state systems [21], and enables one to check for complex correctness condi-
tions in such large systems. Furthermore, theorem provers also support powerful
techniques, such as proof by induction, and they allow the direct verification of
parameterized designs without having to instantiate the parameters. However,
there is no bound on the time or memory that may be needed to find a proof.

1.5.2 Model Checking

Model checking is a formal technique for property verification and is developed
independently in the 1980’s by Clarke and Emerson [22] and by Queille and
Sifakis [23]. An efficient search procedure is used to check if a given finite state
transition system is a model for the specification. The model is represented as a
state transition system, which consists of a finite set of states, transitions between
states and labels on each state. The state labels are atomic properties that hold
true in that state. These atomic properties are expressed as Boolean expression
of the state variables in the model. The property to be verified on the model
is expressed as a temporal formula based on temporal logic [24]. The temporal
formula is formed using state variables and time quantifiers like always or even-
tually. Hence, model checking is a method to check these properties of a design,
where the properties are specified as temporal logic formulas [25].

For finite state models, this method can be fully automated. Model checking
lets us verify that a state machine obeys a property, for example, that a one-hot
encoded state machine is indeed one-hot encoded, that the machine is always
resettable, that every request is eventually acknowledged, etc. Assertions [26,
27] that have been used for simulation can also be used as properties for model
checking. The model checker works on the state transition system of the model
and the given property and produces a result TRUE if the property holds in the
model. If the property does not hold, the checker gives a counter–example to
show that the property is violated. This feature of model checking is very helpful
in debugging because it provides a ready made test case.

The idea behind model checking can be visualized by unrolling the transition
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system. We start with the initial state and form an infinite tree (called the com-
putation tree). Roughly speaking, the idea is to systematically explore the state
space of a finite state machine in order to check that the given temporal logic for-
mula holds on the machine. Temporal properties can by graphically visualized
on this computation tree. The major problem with model checking is the state
space explosion problem. The state transition system grows exponentially with
the number of state variables. Therefore, memory for storing the state transition
system becomes insufficient as the design size grows.

The invention of model checking was a theoretical breakthrough in the use of
temporal logic for formal hardware verification. Temporal logic is a formal way
of expressing properties that change over time. There are many different kinds of
temporal logic; for brevity, we will only consider a few examples taken from one
temporal logic called Computation Tree Logic (CTL) [28] which is one of the most
popular logics for formal hardware verification with model checking. The basic
idea is that we start with ordinary Boolean logic, and then add special temporal
operators for describing future events. For example, in CTL, the operator AX
means ”for all possible input values, in the next clock cycle”, the operator EX
means ”there exists an input such that in the next clock cycle”, the operator AG
means ”for all possible input values, it will always be true that”, the operator
EF means ”there exists a sequence of input values such that eventually”, and so
forth. The temporal operators can nest, so for example, AGEF(reset) says that it
is always possible to find a path back to reset, and AG(req → AFack) says that
every request is always eventually followed by an acknowledgment.

Symbolic model checking means using Binary decision diagrams (BDDs) as a
data structure in the model checking algorithm. The algorithms used in symbolic
model checking are a generalization of the reachability algorithm. The reachabil-
ity algorithm is basically computing the set of all reachable states from a defined
set of initial states. Using symbolic values in the reachability algorithm for the
signals one can reach all possible next states from a present state set. One step
ahead of this reachability algorithm is referred to as image computation and one
step backwards is referred to as pre–image computation. In symbolic model check-
ing pre–image computations are used to compute the set of all possible states the
machine could have been in during the preceding clock cycle. Computing EX
Y1 is just a single pre–image computation, and computing EF Y1 is just like the
reachability iteration, except that we start with Y1 and iterate with pre–image.
The other CTL operators are computed similarly. In practice, symbolic model
checking has limits due to the fact that the BDDs become too big.

1.5.3 Symbolic Simulation

Symbolic simulation [29] is a combination of conventional logic simulation with
the BDDs. The advantage of a conventional logic simulator is accuracy. Detailed
timing models, hazards, and oscillatory behaviour can all be simulated. The dis-
advantage of a conventional logic simulator is that only one simulation vector can
be run at a time. In Figure 1.1, we would have had to run four simulations with
the inputs equal to 00, 01, 10, and 11 to verify the circuit. A circuit with 20 inputs
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Figure 1.1: A simple XOR example.

would require over a million runs. Symbolic simulation adds two innovations
to conventional logic simulation that give the effect of running large numbers of
simulation vectors simultaneously. The first innovation is a third logic value X
that represents an unknown value. This value is propagated through the circuit
just as the 0 and 1 logic values are, although the X is always treated conserva-
tively. For example, 0 ∨ X is X , but 1 ∨ X is 1, since 1 is a controlling value for
OR. Setting an input to X gives the effect of simulating the circuit for both the
case where the input was 0 and the case where the input was 1, thereby cutting in
half the number of required simulation runs. However, using the value X results
in a loss of information.

In Figure 1.1, setting one or both inputs to X yields an X at the output, a
useless result for verification. The more important innovation is the introduction
of symbolic values, which avoids the information loss from using X values. The
basic idea is to set an input to a symbolic value that can be either 0 or 1, rather
than to a constant like 0, 1, or X . Alternatively, we can think of the symbolic
value as remembering whether we assigned a 0 or 1 to a given input. Returning
to Figure 1.1, suppose we set primary input Y to 1 and primary input Z to the
symbolic value a. The symbolic simulator would then calculate that the OR gate
will settle to 1 (since 1 OR anything is 1), that the NAND gate will settle to !a, and
that the AND gate will settle to !a. Thus, we have effectively run two simulation
vectors (Y Z equal to 10 and 11) at once, computing the output as a function of
the symbolic values.

To implement this idea, a conventional logic simulator is modified to use
BDDs to represent the values on wires as a function of the symbolic values. In
practice, the user must trade off using explicit 0s and 1s, the X value, and sym-
bolic values. Setting an input to an explicit value gives conventional logic simu-
lation. Setting an input to X halves the required number of simulation runs, but
loses information so the simulation result might not be useful. Setting an input
to a symbolic value halves the required number of simulation runs and does not
lose information, but makes the BDDs representing the values on the wires larger.
Too many symbolic values will make these BDDs too large to build.

1.6 The Industries Choice

There are a number of requirements which a formal verification method must
meet in order to be valuable in an industrial design environment. Eijk [30] pro-
vides a good overview of desirable parameters of a verification tool. In each of
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the requirements mentioned below, model checking emerges as the more appro-
priate match (as compared to theorem proving) in an industrial setting.

• Error Diagnosis

When an error is detected in a design description, the verification method
must help the designer in locating the error. It should at least be able to pro-
duce a pattern of input stimuli that forms a counterexample for the property
being verified.

• Predictable Performance

A formal verification method must be able to handle designs of industrial
complexity. The keywords are efficiency and predictability. Since formal
verification methods are typically computationally expensive, it is difficult
to meet the efficiency requirements. The performance of a formal veri-
fication tool must degrade gracefully with increasing design size. Small
changes in the design should not have a major negative impact on the per-
formance of the verification method. It is also important that the perfor-
mance is predictable. Before a specific phase of a design project is started,
it should be possible to predict whether a specific verification method will
be able to handle the design or not. In this regard, neither theorem proving
nor model checking are adequate, but there is growing evidence [31] of in–
house model checkers being developed in most advanced semiconductor
processor manufacturing companies.

• Seamless Integration in the Design Flow

To make a verification method convenient to use, it is necessary to tightly in-
tegrate it into the design environment. It should be possible to use the same
description for simulation and formal verification. A verification method
should be able to handle the design styles used in the implementation, and
also handle the hardware design description languages used to describe the
designs and the cell libraries.

• Automation

To minimize the required amount of user guidance, a formal verification
method must provide a high degree of automation. Model checking is more
amenable to automation than theorem proving, and its application requires
no user supervision or expertise in mathematical disciplines such as logic
and theorem proving.

Note that the desire to have methods with a high degree of automation does
not mean that a tool should not provide options for the user to guide the
verification process. Even for fully automated tools, a small amount of user
guidance can sometimes result in a significant increase in performance.

• Verification Options – Full Validation and Fast Falsification

In the early stage of the design process where it is highly possible that the
design might fail a specification, the designer or the verifier might require a
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fast detection approach for identification of such error cases. The approach
that does fast detection of errors is called Fast Falsification approach.

If the designer or the verifier intends to check the design for error freeness,
then he/she requires an approach that checks the design state space thor-
oughly. The approach that does a complete search for errors is called Full
Validation approach.

Therefore, model checking’s support for automation, error diagnosis, full val-
idation and fast falsification give it an advantage over theorem proving in an
industrial setting.

1.7 Scope of the Thesis

This thesis demonstrates the implementation of a heuristic for optimizing a prac-
tical automatic verification tool. Verification tools are of many types ranging from
explicit model checking to symbolic and SAT based to theorem proving. This the-
sis deals only with symbolic verification. The symbolic based approach differs in
the way it is verifying the design against the specified property. Here we will
see a symbolic verification tool that combines the symbolic simulation with the
on–the–fly bounded property checking called SymC [32] detailed in Chapter 2.
However, the applicability of this thesis results is not restricted to SymC.

This thesis covers the SymC tool that includes the verification algorithm based
on simultaneous traversal of the design and the property. Hence, the property
conversion to a traversable format, the symbolic state traversal and the terminat-
ing conditions have been discussed. The main topic of this thesis is the improve-
ment of the algorithm to increase the capacity of the SymC tool by means of di-
viding the work load into two or more parts and handling them sequentially. The
work load here is the design’s state space traversal and dividing this into num-
ber of smaller pieces is generally referred to be divide–and–conquer approach.
The divide–and–conquer approach can be applied for both full validation and
fast falsification. The main contributions of the thesis are the intelligent heuris-
tics for dividing the state space and traversing it efficiently in order to handle
comparatively larger designs and thus finish the verification process faster.

Therefore, this thesis details the methods and the intelligent heuristics of di-
viding the state space and its related issues that are not yet addressed in state–of–
the–art techniques. Finally, the experimental results proves the potential of the
new heuristic in improving the SymC tool.

1.8 Contribution and Results of the Thesis

This thesis presents a new method to optimize the divide–and–conquer approach.
Partitioning the one whole set of state space into a number of pieces and handling
each subset sequentially is known as the divide–and–conquer method. In princi-
ple, the method of partitioning the state space and handling them can be of two
different ways and is referred as Splitting and Windowing.
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• Splitting: In short, this method of partitioning divides one whole set of
states into two subsets and continues with the usual procedures of verifi-
cation on these subsets sequentially. There are no special restrictions that
have to be obeyed in future steps. The division is based on the Shannon
expansion explained in Chapter 2.

• Windowing: In short, this method of partitioning divides one whole set of
states into a pre–defined number of subsets. Each of the subsets is defined
to be a window and has a restriction that has to be obeyed in all future
steps. The windowing technique also continues with the usual verification
procedures in a breadth first fashion on all subsets. Although, depth first
approach is also possible, this thesis deals only with the breadth first. The
partitioning by window technique is detailed in Chapter 2.

In both the techniques the problem of work duplication prevails in different
forms. In other words, same states are visited in the different subsets, that leads
to the redundancy computation. One part of this thesis basically concentrates
on an algorithm that aims at minimizing this redundant computation in both the
splitting and the windowing techniques and compares the result. Minimization
of redundant computation basically improves the full validation approach that
is briefed in the section 1.6. The other part of the thesis concentrates on the fast
falsification approach (see section 1.6) by providing a heuristic for the splitting
technique and comparing the results with the state–of–the–art fast falsification
approach by windowing technique.

The heuristics and algorithms that are contributed by this thesis are listed
below:

• Static Overlap reduction – MinOverlap

This heuristic as a pre–processing step collects all the locality information
from the transition relation. This information is then utilized during the
partitioning process in order to minimize the redundant computation. This
algorithm is successfully applied to both windowing and splitting tech-
niques. This is an optimization method for the full validation approach.
Further, this algorithm adopts a dynamic means of removing the already
visited states.

• Guiding

This heuristic is to steer the traversal in the direction of error state by means
of some pre–processed information, hence making the whole verification
faster by finding the bugs faster. This approach is an optimization for the
fast falsification case. This heuristic uses two different methods to guide,
one is to utilize the state variables and the other is to utilize the input vari-
ables for guiding.

In general the ideas in this thesis are optimization of both full validation and
fast falsification approaches by the two partitioning techniques. These algorithms
are evaluated on publicly available benchmark circuits from the ISCAS–89 suite
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and the IBM benchmark suite. The orders of magnitude of improvement in the
results obtained when compared with earlier state–of–the–art schemes are re-
ported.

1.9 Overview of the Thesis

Chapter 2 introduces some preliminaries on logic manipulation. In particular, it
explains BDDs, their utilization, and the basics of modelling. It also briefs the
symbolic state traversal methods and its optimizations. This chapter also covers
the temporal logic that is the base of the property specification.

Chapter 3 briefly reviews the related work in the context of partitioning and
guiding. It introduces the symbolic bounded property verification tool SymC. It
also explains the translation of the property to a special automaton called AR-
automaton. It also analyzes the unaddressed problems that are covered in this
thesis.

Chapter 4 details the heuristics with small examples and the pre–processing
information collection and its ordering. Chapter 5 details the static overlap reduc-
tion algorithm and the dynamic overlap reduction. It also explains the adaptation
of the algorithm in order to apply it to the windowing technique.

Chapter 6 explains the guiding algorithm and the two variants of the guiding
approach. Chapter 7 demonstrates the practical usefulness of the new algorithms
by means of experimental results obtained over the standard benchmark suits. Fi-
nally, the chapter 8 concludes the thesis with summary and possible future work.



Chapter 2

Preliminaries

Boolean logic forms the basis for computation in modern binary computer sys-
tems. In general any algorithm or any electronic circuit can be represented using
Boolean functions . A Boolean function is an expression formed with binary vari-
ables and logical operators. Boolean algebra is the basic mathematical tool for
reasoning about Boolean functions and hence about digital systems. This chapter
introduces some basic definitions of Boolean functions. Binary decision diagrams
(BDD), a well known data structure to represent a Boolean function is introduced.
This chapter further elaborates on how digital systems can be modelled using
BDDs and how they are manipulated to solve verification problems. Moreover,
this chapter also discusses verification optimization concepts, which will be elab-
orated in the state–of–the–art chapter. Finally, there is a discussion of property
specifications.

2.1 Boolean Function and BDDs

A Boolean function is a mapping from Bn → B with n ≥ 0, where B = {0, 1}.
Each function can be expressed by a formula. A Boolean formula is an expression
composed of Boolean variables connected by the Boolean connectors. A Boolean
formula is a formula whose range are the discrete values {0,1}. A simple formula
consists of one of the constants 0 (denoted as ⊥) or 1 (denoted as >) or it consists
of a variable. Formally,

Definition 1 A Boolean formula is defined as a recursive expression with the following
grammar:

expr :: = ⊥ | > | (expr)
| < variable >

| expr “ ∨ “ expr (OR operator)
| expr “ ∧ “ expr (AND operator)
| “!“ expr (NOT operator)

(2.1)
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The above mentioned three basic binary operators AND, OR, NOT denoted as
∧, ∨ and ! respectively are the basis for other common operations. Some example
are shown in Table 2.1.

Table 2.1: Examples of Boolean formulas
formula Notation Definition

exclusive-or (XOR) f
⊕

g (f∧!g) ∨ (!f ∧ g)
equivalence (XNOR) f ≡ g (f ∧ g) ∨ (!f∧!g)

implication f → g !f ∨ g

If all the variables in a formula are chosen from a set X , then the formula is
said to be a function over X . The support of a formula f is the set of all variables
occurring in f , and is denoted by supp(f).

Quantification (∃ and ∀) and substitution (←) are the major operation used for
manipulation of boolean formulas and are shown in Table 2.2. The substitution
denoted as f(a← g) means in function all the occurrence of the variable a will be
replaced by the variable g. The positive cofactor of a Boolean formula f with re-
spect to a variable a is the formula that is obtained by replacing every occurrence
of a in f by the constant 1, and is denoted by fa. Similarly, the negative cofactor
of f with respect to a is the formula obtained by replacing every occurrence of a
by the the constant 0, and is denoted by f!a. Therefore, cofactoring of a Boolean
function to a variable is assigning a truth value to that variable. From now, if a
variable a occurs in a function f as a then it is said to be occurring as positive
cofactor in that function. Similarly, if the variable occurs as !a then it is said to
be occurring as negative cofactor in that function. The basis of BDD is Shannon
expansion and this relies on the use of cofactors. The equation 2.2 holds for every
Boolean formula and is known as Shannon expansion.

f = (a ∧ fa) ∨ (!a ∧ f!a) (2.2)

Cofactors are also used to define some common operations for quantifiers and
substitution (Table 2.2).

Table 2.2: Quantifiers and substitution
formula Notation Definition

existential quantification ∃a.f fa ∨ f!a

universal quantification ∀a.f fa ∧ f!a

substitution f (a← g) (g ∧ fa) ∨ (!g ∧ f!a)

A Boolean formula is said to be a tautology if and only if all the interpretations
or assignments lead to the constant 1. It is said to be satisfiable if at least one of
the assignments leads to the constant 1. A minterm of a Boolean formula f can
be defined as a logical statement that consists of the truth value assignments for
conjunction of all variables that belongs to supp(f) such that it satisfies the whole
formula. The notation ‖f‖ dentes the number of minterms of the formula f .



14 Chapter 2 · Preliminaries

��

������

�� ��

��

� �������

Figure 2.1: Representing Boolean functions

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDD) are a suitable data structure for representing
binary formulas. Bryant [33] proposed this representation by imposing restric-
tions on the representation introduced by Lee [34] and Akers [35] such that the
resulting form is canonical. BDDs are often substantially more compact than tra-
ditional representations such as truth tables, conjunctive normal form (CNF) and
disjunctive normal form (DNF). Moreover, manipulation of BDDs are very effi-
cient, hence, BDDs are used widely for variety of applications.

BDDs represent Boolean formulas as directed acyclic graphs, with internal
vertices corresponding to the variables over which the function is defined and
terminal vertices labelled by the function values 0 and 1. They form a canonical
representation, making testing of functional properties such as satisfiability and
equivalence straight forward. As an example, Figure 2.1 illustrates a BDD repre-
sentation of the formula f(x1, x2, x3) = (x1 ∨ x2) ∧ x3, for the special case where
the graph is actually a tree. Each nonterminal vertex v is labelled by a variable
var(v) and has arcs directed toward two children: lo(v) (shown as a dashed line)
corresponding to the case where the variable is assigned 0, and hi(v) (shown as
a solid line) corresponding to the case where the variable is assigned 1. Each
terminal vertex is labelled 0 or 1. For a given assignment to the variables, the
value yielded by the formula is determined by tracing a path from the root to a
terminal vertex, following the branches indicated by the values assigned to the
variables. The formula value is then given by the terminal vertex label. The mem-
ory requirements | f | of the Boolean function f is defined as the number of BDD
vertices or nodes.
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Figure 2.2: Transformation of BDD to ROBDD

2.2.1 Ordering and Reduction

An Ordered BDD (OBDD) , has a total ordering < over the set of variables. For
any vertex u, and either of the nonterminal children v, their respective variables
must be ordered var(u) < var(v). In the decision tree of Figure 2.1, for example,
the variables are ordered x1 < x2 < x3.

Furthermore, three transformation rules are defined over these graphs that
do not alter the function represented, but result in more compact and canonical
representations of the functions.

• Remove Duplicate Terminals: Eliminate all but one terminal vertex with a
given label and redirect all arcs into the eliminated vertices to the remaining
one.

• Remove Duplicate Nonterminals: If nonterminal vertices u and v have
var(u) = var(v), lo(u) = lo(v), and hi(u) = hi(v), then eliminate one of the
two vertices and redirect all incoming arcs to the other vertex.

• Remove Redundant Tests: If nonterminal vertex v has lo(v) = hi(v), then
eliminate v and redirect all incoming arcs to lo(v).

Starting with any BDD satisfying the ordering property, we can reduce its
size by repeatedly applying the transformation rules. We use the term ROBDD
to refer to a maximally reduced graph that obeys some ordering. For example,
Figure 2.2 illustrates the decision tree shown in Figure 2.1. Note that on applying
the first transformation, the number of terminal nodes are reduced from eight to
two, and then the number of nonterminal vertices are reduced by two after the
second transformation. On application of the third transformation rule another
two vertices are eliminated. Since we will always be using this data structure in
its ordered and reduced form, unless otherwise mentioned, henceforth we will
use the term BDD to mean ROBDDs.
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Figure 2.3: Effects of variable ordering

The resulting representation of a function is canonical, i.e., for a given order-
ing two BDDs for the same function are isomorphic. This property has several
important consequences. Functional equivalence can easily be tested. A function
is satisfiable if and only if its BDD representation does not correspond to the sin-
gle terminal vertex labelled 0. The tautological function must have the terminal
vertex labelled only with 1 in its BDD representation. If a function is independent
of variable x, then its BDD representation cannot contain any vertices labelled by
x. Thus, once BDD representations of functions have been generated, many func-
tional properties become easily testable.

2.2.2 Effects of Variable Ordering

The form and size of the BDD representing a function depends on the variable
ordering. For example, Figure 2.3 shows two BDD representations of the function
denoted by the Boolean expression (a1∧ b1)∨ (a2∧ b2)∨ (a3∧ b3) [36]. For the case
on the left, the variables are ordered a1 < b1 < a2 < b2 < a3 < b3 yielding a BDD
with 8 nodes, while for the case on the right they are ordered a1 < a2 < a3 < b1 <
b2 < b3 yielding a BDD with 16 nodes.

The difference of a factor of two in the previous example may not appear all
that dramatic. However, for the more general case of f = (a1∧b1)∨(a2∧b2)∨ . . .∨
(an∧bn), it can be proved that the first variable ordering a1 < b1 < a2 < b2 < . . . <
an < bn yields a BDD with 2(n+1) vertices, whereas the other choice of variable
ordering a1 < a2 < . . . < an < b1 < . . . < bn yields a BDD with 2n+1 vertices [37].
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For large values of n, the difference between the linear growth of the first order
and the exponential growth of the second has a dramatic effect on the memory
requirements and the efficiency of the manipulation algorithms.

Most applications using BDDs choose some ordering at the beginning and
construct graphs for all relevant functions according to this order. This ordering
is chosen manually or according to some heuristic guided analysis of the under-
lying functions in the design. For example, several heuristic methods have been
devised that, given a logic gate network, often can derive a good ordering for
variables representing the primary inputs [38, 39]. Note that these heuristic do
not need to find the best possible ordering. As long as an ordering can be found
that avoids an exponential growth, operations on BDDs remain reasonably effi-
cient.

A desirable ordering heuristic referred as dynamic ordering approach is usu-
ally supported by BDD package. The dynamic approach changes the ordering
during or after the BDD construction on demand only, i.e., only if a certain size
limit is exceeded.

2.3 Modeling Sequential Hardware with BDDs

In order to be suitable for formal verification, the system needs to be formally
modelled. The word system in this thesis scope means a synchronous digital sys-
tem. The model should capture all the functionalities of the system such that
correctness can be established. On the other hand, it should also abstract away
those details that do not effect the correctness of the system functionalities. For
example, when modelling a communication protocol the focus should be on the
exchange of messages rather than the content of the messages. Considering the
sequential reactive systems, which may need to interact with their environment
frequently, they cannot adequately be modelled by their input/output behaviour.
Therefore the other important feature that should be captured is state. A state is
a snapshot description of the system that captures the values of the variables at
a particular instant of time. Hence Finite State Machines (FSM) as defined in
definition 2 are being used to formally model the sequential hardware.

Definition 2 A Finite State Machine (FSM) of Mealy type is defined as a 6-tuple,M =
(S, S0, I , λ, T, O) where

• S is the set of states,

• S0 ⊆ S is the set of initial states,

• I is the input alphabet,

• λ is the output alphabet,

• T ⊆ S × I × S is the transition relation between states,

• O ⊆ S × I × λ is the output relation.
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The computation of a reactive system can be defined in terms of the transition
relation of the FSM. To capture this intuition about the computation of reactive
systems, a state transition graph called Kripke structure is being used. A Kripke
structure consists of a set of states, a set of transitions between states, and a func-
tion that labels each state with a set of atomic propositions that are true in this
state. Paths in a Kripke structure model the computations of the system. Al-
though these models are very simple, they are sufficiently expressive to capture
those aspects of temporal behaviour (see section 2.4) that are most important for
verifying the functional correctness. The Kripke structure [12] can be formally
defined as in definition 3.

Definition 3 Let A be a set of atomic propositions. A Kripke structure K over A is
defined as a 4-tuple, K = (S, s0, T, L) where

• S is the set of states,

• S0 ⊆ S is the set of initial states,

• T ⊆ S × S is the transition relation that must be total, that is, for every state s ∈ S
there is a state s

′ ∈ S such that T(s, s′),

• L: S → 2A is the function that labels each state with a set of atomic propositions
that are true in that state,

The Kripke structure is a closed system that models all possible behaviours
of the system. For a synchronous circuit the states are encoded by Boolean state
variables, for example if the set of Boolean state variables is E = {e1, . . . , ek} then
the set of possible states are S = {0, 1}k. A set of states can be represented as
a Boolean function S(E) with BDDs. For each state variable ei, there is a piece
of combinational logic which determines its next truth value. Let fi be the next
state function computed by this logic for variable ei. Then the transition rela-
tion S × S can be derived by the next state function vector, f = {f1, . . . , fk}. To
represent the transition relation using BDDs, we require a second set of state vari-
ables E

′
= {e′1, . . . , e′k} called next state variables. Then the transition relation of

synchronous circuit is denoted as T(E,E’) and it is defined as

T(E,E
′) = t1(E, e

′
1) ∧ . . . ∧ tk(E, e

′
k) where

ti(E, e
′
i) = (e

′
i ≡ fi(E))

This functional representation can be expressed by means of BDDs. This
method of representing the formulas and functions using BDDs are referred as
the symbolic representation . This method of modelling a synchronous circuit as
BDD can be illustrated by using an example. The digital circuit in Figure 2.4 is a
modulo-8 counter [40]. The set of state variables E = {e1, e2, e3} having 23 pos-
sible assignments forming that number of minterms otherwise the number states.
Let us use E

′
= {e′1, e′2, e′3} to denote the next state variables.



2.3 · Modeling Sequential Hardware with BDDs 19

��

��

��

�

�

�

�

�

�

��	
��
	
����
���
����
�	���

Figure 2.4: Synchronous modulo-8 counter

The next state function vector f = {f1, f2, f3} is given by

f1 = !e1,

f2 = e1 ⊕ e2,

f3 = (e1 ∧ e2)⊕ e3.

(2.3)

BDDs for these functions can be easily created. Assuming the initial state is
encoded with all the state variables being 0, we get a BDD for the initial state
by creating !e1∧!e2∧!e3. Given a BDD for the individual next state functions fi, it
is straightforward to compute the BDD that represents the individual transition
relation ti as follows:

t1(E, e
′
1) = (e

′
1 ≡!e1),

t2(E, e
′
2) = (e

′
2 ≡ e1 ⊕ e2),

t3(E, e
′
3) = (e

′
3 ≡ (e1 ∧ e2)⊕ e3).

(2.4)

Given a BDD for the individual transition relation ti, it is straightforward to
compute the BDD that represents the whole monolithic transition relation T as
follows,

T (E,E
′
) = t1(E, e

′
1) ∧ t2(E, e

′
2) ∧ t3(E, e

′
3).
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2.4 Temporal Logic

Temporal Logic is a formal specification language for use with a symbolic checker.
A temporal logic is a logic augmented with temporal modalities to allow the spec-
ification of variables valuation orders in time, without having to introduce time
explicitly. For example, a temporal logic with the modalities always and even-
tually will be able to specify the following property: “for all future moments in
which p holds there will be a future moment in which q holds”. Whereas tradi-
tional propositional logics can specify properties relating to the states of systems,
a temporal logic is better suited to describe ongoing behaviour of nonterminating
and interacting (reactive) systems.

There are two main kinds of temporal logics: linear and branching [41, 42].
In linear temporal logics (LTL) , each moment in time has a unique possible fu-
ture, while in branching temporal logics, each moment in time may have several
possible futures. In general, LTL can express properties of individual executions
and the semantics are defined in terms of set of executions. Computation tree is a
finitely branching infinite tree in which the traversal starts with the defined initial
set of states S0 and the successors are given by the T of the Kripke structure (see
Definition 3). The branching temporal logic can express properties of a computa-
tion tree, hence the name computation tree logic (CTL). CTL formulas can reason
about many executions at once. The CTL semantics are defined in terms of states.

Definition 4 Let Vars = {a, b, c, . . .} be a finite set of distinct symbols, called the variable
domain. Then the CTL syntax is defined as follows:

φ ::= v | !φ | φ ∧ φ | φ ∨ φ | φ→ φ

| AGφ | AFφ | A (φUφ) | AXφ

| EGφ | EFφ | E (φUφ) | EXφ

Where, v ∈ Vars,
X is neXt time operator,
F is Eventually (Finally) operator,
G is Globally operator,
U is Until operator,
A is All paths, the Universal quantifier,
E is Exists a path, the Existential quantifier.

(2.5)

Definition 5 Let V ars = {a, b, c, . . .} be a finite set of distinct symbols, called the vari-
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able domain. Then the LTL syntax is defined as follows,

φ ::= v | !φ | φ ∧ φ | φ ∨ φ | φ→ φ

| Gφ | Fφ | φUφ | Xφ

Where, v ∈ Vars,
X is neXt time operator,
F is Eventually (Finally) operator,
G is Globally operator,
U is Until operator.

(2.6)
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Figure 2.5: Semantics of LTL operators
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Figure 2.6: Semantics of CTL operators

LTL formulas are therefore interpreted over linear sequences and are regarded
as specifying the behaviour of a single computation of a system as shown in see
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Figure 2.5. CTL formulas, on the other hand, are interpreted over structures that
can be viewed as trees, each describing the behaviour of the possible computa-
tions of a nondeterministic system as shown in Figure 2.6. In the sense of ex-
pressiveness both CTL and LTL can not be compared [43]. Figure 2.7 shows that
CTL and LTL have a overlap of expressiveness, i.e. properties expressible in both
logics.

������
����

Figure 2.7: Expressiveness of CTL and LTL

For example, invariant properties like ”p never holds in any trace” can be
expressed in both logics as shown below:

AG !p or G !p

The reactivity properties like ”whenever p happens, eventually q will hap-
pen.” can also be expressed in both logics as shown below,

AG (p→ AF q) or G (p→ F q)

As explained, CTL considers the whole computation tree whereas LTL only
considers individual runs. Thus CTL allows to reason about the branching be-
haviour, considering multiple possible runs at once. For example, the CTL prop-
erty ”AG EF p” (reset property) is not expressible in LTL. An other instance is the
CTL property ”AF AX p” that distinguishes the two systems in Figure 2.8, but the
LTL property ”FX p” does not. The directed arrows represents the transitions and
the state pointed by the arrow from environment is the initial state of the system
shown in Figure 2.8

Even though CTL considers the whole computation tree, its state based se-
mantics is subtly different from LTL. Thus, there are also properties expressible
in LTL but not in CTL. For example, the LTL property ”FG p” is not expressible in

�

�

�

�

Figure 2.8: Expressiveness of CTL
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Figure 2.9: Expressiveness of LTL

CTL. The system in Figure 2.9 satisfies the LTL property but not the CTL property
”AF AG p”.

Though there is an overlap, each logic can express properties that the other
cannot. Hence the expressiveness of CTL and LTL is incomparable in general. As
shown in Figure 2.7, there is a logic called CTL* that combines the expressiveness
of both CTL and LTL. However, we will not deal with CTL and CTL* as its out
of this thesis scope. In this thesis we deal only with the LTL properties and its
extension Finite LTL (FLTL) with the interpretation of CTL* quantification.

The logic FLTL [32] is used as a property description language. FLTL is an
enrichment of pure LTL by time bounds which can be annotated to the temporal
operators. Furthermore the formulas are interpreted over finite runs.

Definition 6 The syntax of FLTL is recursively defined over the variable domain:

φ :: = v | ! φ | φ ∧ φ | X[m] φ | F[m,n] φ | G[m,n] φ

with v ∈ Vars, m ∈ N and n∈ N ∪ {∝}

Since we use a simulation approach, we represent the changes of variables by
traces:

Definition 7 A trace T [n..m] (m ≥ n) is a mapping T : {n, . . . , m} → 2Vars. If n and
m are clear from the context, we often simply write T instead of T [n..m]. The set of all
traces is denoted by T . The set of all traces T [0,m] with m =∞ is denoted by T ∞.

Finite traces are extended. These extensions are used to define formally the
semantics of FLTL over a three valued logic.

Definition 8 (Trace extension) Let T [0,m], T ′[0, n] be two traces with n > m. T ′ is
called a trace extension of T , if

for all j with 0 ≤ j ≤ m : T (j) = T ′(j) (2.7)

FLTL formulas are interpreted over traces. First we define the satisfiability
relation over infinite traces:

Definition 9 The satisfiability relation |=i⊂ (T ∞, LTL) is defined recursively over the
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structure of LTL formulas:

T |=i a ⇔ a ∈ T (i)
T |=i ¬f ⇔ T 6|=i f
T |=i f ∧ g ⇔ T |=i f and T |=i g
T |=i X[m]f ⇔ T |=i+m f
T |=i G[m,n]f ⇔ for all j with i + m ≤ j ≤ i + n

holds that T |=j f
T |=i F[m,n]f ⇔ there exists a j with i + m ≤ j ≤ i + n

such that T |=j f

Where a is a propositional variable, f is a LTL formula, X,G, F are temporal
operators and m,n, i ∈ N. The standard temporal operators (F, G) are special
cases of the timed operators by instantiating m, n with 0 and∞, respectively. The
semantics of FLTL is given by Definition 10.

Definition 10 Let f be a LTL formula and T ∈ T ∞ be a trace. T is said to satisfy f (i.e.
T |= f ) if T |=0 f .

We now interpret LTL formulas over finite traces. That is the reason why we
call the logic Finite Linear time Temporal logic (FLTL). A formula has one of three
states with respect to a given trace:

Definition 11 Let T [0..n] be a trace and f be a FLTL formula. f is called true with
respect to T (denoted by T |= f ) if for all trace extension T ′[0..∞] of T holds that T ′ |= f .
f is called false with respect to T if there exists no trace extension T ′[0..∞] of T such
that T ′ |= f . Otherwise f is called pending.

2.5 Symbolic State Traversal

Given the BDD for the initial state and the next state functions of a digital system,
symbolic algorithms can compute the successors or predecessors. The successors
are a set of next states that can be reached from the initial state in one step and is
referred to as image computation. The predecessors are also a set of states from
where the initial state can be reached in one step and this is referred as pre-image
computation. This computation can be done repeatedly to collect all the reachable
states and hence verification of the correctness of the system with regard to a
property can be checked. The next subsection explains why traversal is done
symbolically using BDDs.

2.5.1 Why Symbolic?

In the original implementation of the model checking algorithm [44], transition
relations were represented explicitly. For systems with small number of pro-
cesses, the number of states was usually fairly small, and the approach was often
quite practical. However, the systems with large number of states were too big to
handle. In [45] McMillan realized that by using a symbolic representation for the
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state transition graphs, much larger systems could be verified. Many tasks in dig-
ital systems can be formulated in terms of operations over small, finite domains.
By introducing a binary encoding of the elements in these domains, these prob-
lems can be further reduced to operations over Boolean values. Using a symbolic
representation of Boolean functions, one can express a problem in a very general
form. Solving this generalized problem by symbolic Boolean function manipula-
tion then provides the solutions for a large number of specific problem instances.
The new symbolic representation was based on Bryant’s BDDs [46]. By further
improvements in the BDD representation it became possible to verify some ex-
amples that had more than 1020 states [47]. Since then, various refinements of the
BDD based techniques by other researchers have pushed the state count to more
than 10120 [48, 49].

2.5.2 Image and Pre-image Computation

Verification of the correctness of a system can be achieved by repeatedly com-
puting all the reachable states from the defined initial states, this computation is
also called reachability analysis . In general reachability analysis is known to be a key
component of formal verification. The term reachability analysis corresponds to the
set of states that can be reached by means of traversal steps from a set of defined
initial states. Computing the reachable states is done step by step by collecting
the successors of the present state set at every step and replacing the present state
set by the successors for next step. This one step traversal or successors collection
is called image computation. In order to formally define the symbolic imge com-
putation, we denote the BDD representing the current set of states Sc by Sc(E),
where E = { e1, e2, . . ., ek } is the set of state variables.

Image(Sc(E), T ) = ∃ e1, e2, . . . , ek [Sc(E) ∧ T (E,E
′
)] (2.8)

The replacement of present state variables by successor state variables is done
by substitution:

Image(Sc(E), T ) (e
′
1, e

′
2, . . . , e

′
k ← e1, e2, . . . , ek) (2.9)

Similarly, the pre-image computation traverses backwards by collecting the
predecessors. The symbolic pre-image computation is defined as

Pre− image(Sc(E
′
), T ) = ∃ e

′
1, e

′
2, . . . , e

′
k [Sc(E

′
) ∧ T (E

′
, E)] (2.10)

Figure 2.10 delineates the basic fix-point state space computation algorithm.
Lines 1 and 2 initialize the variables with the initial state set. Lines from 5 to 8
is the fix-point loop. The new states that are reached by the image computation
are added to the variable fixnew. At one point there will be no more new states
added that ends the loop showing the reach of fix-point.
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1fixnew = initialstates;
2present = initialstates;
3

4do
5fixold = fixnew;
6next = Image(present);
7present = next;
8fixnew = fixold ∪ present;
9while ( fixnew 6= fixold )

Figure 2.10: Pseudo code for fix-point iteration of state space traversal.



Chapter 3

State Of The Art

This chapter discusses briefly the progress in the development of the formal meth-
ods techniques and their optimizations for verifying complex hardware systems.
The main disadvantage of model checking is the state explosion problem. In 1987
McMillan used Bryant’s BDDs to represent state transition systems efficiently.
The BDD based representation of the state space and the transitions are referred
to as a symbolic technique and it increases the size of the systems that could be
verified. Other promising approaches to alleviate the state explosion include the
exploitation of partial order information [50], localization reduction [51], and se-
mantic minimization [52] to eliminate unnecessary states from a system model.
Most of these techniques are used in modern symbolic verification tools, in order
to increase the capability of the tool to handle bigger size and make the verifica-
tion faster and easier.

Although, symbolic and other techniques improved the traditional explicit
model checker to handle comparatively large state space, there is still the problem
of the state explosion prevailed beyond a limit but this time as a BDD explosion
due to its symbolic nature. So the researchers re-engineered and altered the basic
algorithm of the traditional model checker to be a symbolic forward traversal
tool that verifies the property on the fly. These tools are referred with the name
symbolic property checkers [32]. Some of these symbolic checkers are altered not
to do the traditional fixed point iteration and hence to avoid the maintenance
of the state space history, which in turn decreases the memory requirement of
verification. These tools verify the property by different means, one among them
is converting the property to an automaton, and traversing it in parallel along
with the model and proving the correctness. The interesting point is that the
optimizations that were developed for symbolic model checking also perfectly
suit and improve the symbolic property checkers.

However, the present industrial large design requirement demands more than
what these tools can provide. In other words, the traditional state traversal ap-
proach as shown in Figure 3.1 computes the image of the state space by con-
structing a monolithic transition relation. Construction of one whole monolithic
transition relation BDD of a industrial size designs often causes BDD explosion.
Moreover, the state space reached also grows very fast creating memory prob-
lems. In order to keep up the tools with their memory explosion problem for
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Figure 3.1: Monolithic image computation

large designs number of methodologies were proposed. These methodologies are
briefed in the section 3.1. One of these methodologies is ”divide–and–conquer”
approach which is the main topic of this thesis and hence the sections 3.2 and 3.3
concentrate on the state–of–the–art techniques of this method. The un-addressed
problems of the state–of–the–art methods and techniques are discussed in section
3.4. Later in section 3.5 the symbolic verification tool SymC is introduced which
is used for implementing and experimenting the algorithms that addresses the
problems mentioned in the section 3.4.

3.1 Improvements and Optimization Methodologies

There have been several improvements to formal techniques, particularly in sym-
bolic verification. The below listed improvements and optimizations are very
efficient and enhance the symbolic verification technique to handle much larger
designs in comparison to what it could handle before.

1. Partitioned Transition Relation:

Originally, only a monolithic transition relation was used. Unfortunately,
for most designs the BDD representing the monolithic T (E, E

′
) itself is of-

ten very big. In practice, each ti can be usually represented by a smaller
BDD. However, the size of the BDD representing the entire transition rela-
tion may grow as the product of the sizes of the individual parts. This size
might be too large to handle and exactly this was the limitation of symbolic
verification until then. In [49] the authors introduced the method of keeping
the parts separate, which are implicitly conjuncted. This new representation
is referred to be the conjunctive partitioned transition relation.

Image computation, as noted earlier, is the fundamental operation of sym-
bolic verification. For a conjunctive partitioned transition relation, the im-
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age computation equation 2.8 is then rewritten as follows:

Image(S(E), T ) = ∃e1, . . . , ek[S(E) ∧ (t1(E, e
′
1) ∧ . . . ∧ tk(E, e

′
k))] (3.1)

One major difficulty in computing the image without building the mono-
lithic transition relation is that existential quantification does not distribute
over conjunction. This problem was overcome by the method called early
quantification [53, 54] and this technique is based on two observations.
First, circuits exhibit locality, i.e, every ti(E, ei

′) usually depends on only
a small number of state variables. Second, although the conjunction does
not commute with existential quantification, sub-formulas can be moved
out of the scope of existential quantification if they do not depend on any of
the variables being quantified. These techniques significantly increase the
size of circuits that can be verified compared to the previous methods.

2. Cone of Influence Reduction:

Cone of Influence is a very straightforward but effective state reduction
technique. This reduction is the universal way of pruning away unrelated
variables that increase the state space in vain. Before running a symbolic
checker on the model, this technique finds the set of variables that can po-
tentially affect the property, and removes all the other variables from the
model. In other words, Cone of Influence reduction is based on the idea
that if the property ”p” refers only to variables v ⊆ V ars, then we can re-
duce the problem of checking that p is true in model M to the problem of
checking that p is true in a possibly much simpler model N whose states
give values only for a small subset of variables containing v.

The dependency is computed by first taking the variables that directly oc-
cur in the property, adding to this set those variables that appear on the
right hand side of the assignments to the variables already in the set, and
doing this repeatedly until no new variables can be added. Removing this
unnecessary variables, the state space of the model is reduced, and hence
the BDD nodes required. This enables the model checker to verify designs
faster and handle bigger designs.

3. Divide–and–Conquer:

In principle, there are two different techniques of divide–and–conquer ap-
proach. One is Windowing technique and the other is Splitting technique.

• Windowing
In [55] the authors have defined a method to divide the Boolean state
space into pre-defined ”k” partitions and represent a function over
each partition as a separate BDD. Further they showed that these parti-
tions can be exponentially more compact than monolithic BDDs. Based
on this partitioned ordered BDDs (POBDDs) further developments were
presented which are discussed in depth in the section 3.2.
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This method is mainly to avoid or reduce the memory explosion in
symbolic model checking by utilizing the partitioned-OBDDs (POB-
DDs). In [55] the authors introduced POBDDs that are compact, canon-
ical and efficient for manipulation of Boolean functions rather than ma-
nipulating one big BDD. Generally, BDDs represent all the state sets
and the transition relation in symbolic traversal. This representation
can grow large if the set of states to be represented is big and this corre-
sponds directly to more memory requirements. The memory require-
ments | f | of a Boolean function f is defined as the number of BDD
nodes. In order to reduce the memory requirements one can partition
a Boolean function into smaller parts, whose union is the whole set.
The balancing condition i.e., maximum size of each partitions are de-
fined over the memory requirement, for example if a Boolean function
f represented as BDD is partitioned into two function f1 and f2 then
the balancing condition could be specified as | fi |≤ 1

2
| f |. Any BDD

can be divided into n partitions and represent it as POBDDs and this is
defined as

Definition 12 [Boolean function partitioning] [55] Given a Boolean func-
tion f : Bn → B defined over k inputs Xk = {x1, . . . , xk}, a POBDD rep-
resentation Xf of f is a set of n function pairs Xf = {(r1, w̃1), . . . , (rn, w̃n)}
where ri : Bk → B and w̃i : Bk → B, for 1 ≤ i ≤ n are also defined as Xk

and satisfy the following conditions:
– ri and w̃i are represented as BDDs with variable ordering πi, for 1 ≤ i ≤

n,
– r1 ∨ r2 ∨ . . . ∨ rn = 1,
– w̃i = ri ∧ f , for 1 ≤ i ≤ n.

The set {r1, . . . , rk} is denoted by R, and each ri is called a window func-
tion. The window function ri represents a part of the Boolean space
over which f is defined. Every pair (ri, w̃i) represents a partition of the
function f . The states that make the condition ri true are the states that
are defined to be the owned states of the window w̃i and all the other
states are defined to be the non–owned states. Hence, the window func-
tion is a restriction that the state space has to hold to be in that window.
The traversal of this windowing technique is showed in the Figure 3.2
where the local or restricted image is computed for every window and
the non–owned states that are reached from the owned states are com-
puted and distributed. The non-owned states that are reached from
the owned states are referred as cross–over states. Detailed explanation
of the figure is given in section 3.2.1. In this thesis we see a slightly
altered version of the partitioning, where k = 2m and m ∈ N partitions
are recursively done as shown in the Figure 3.3 and the partitioning
are based on the following definition.

Definition 13 Given a Boolean function f : Bn → B, then Boolean function
partitioning is defined as
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Figure 3.2: Image computation by windowing technique where k = 4

f = f1 ∨ f2 where f1 = v ∧ fv and f2 = v̄ ∧ fv̄

The variable v is called the splitting variable. This splitting variable
defines the partitioning of the function f into f1 and f2.
The Figure 3.3 shows the recursive partitioning for windows based on
the definition 13. In order to relate the Figures 3.3 and 3.2, consider the
state space named S in Figure 3.3 and the state space named Image1 in
Figure 3.2 are the same for the partitioning step.
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Figure 3.3: Recursive partitioning for windowing technique with m = 2

• Splitting
Splitting is also a POBDD, except that the partitions are always di-
vided into two and the partition is based on the Shannon expansion
(see equation 2.2) as shown in the Figure 3.4. The major difference of
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Figure 3.4: Image computation by splitting technique

splitting technique compared to the windowing is that the former only
restricts the state space only once while partitioning where as the later
applies the restriction in every step from the time of partition. Detailed
explanation and comparison is given in section 3.2.1
Although, splitting and windowing techniques are comparable, only
the windowing technique was highly concentrated and developed by
researchers as the former suffers from the problem of redundant com-
putation. The redundant computation is caused by the reaching al-
ready visited states and this phenomenon of revisiting states in differ-
ent partitions is referred as the state space overlap.
However, this problem is avoided in windowing with a trade–off of
some overheads. The state–of-the–art developments in windowing
techniques are discussed in section 3.2. The section 3.4 addresses the
redundant computation or overhead problems and discusses the nec-
essary optimizations and other necessary improvements. Chapters 4
till 7 discusses in detail the new heuristics that addresses these prob-
lems and improvements in both splitting and windowing techniques
and shows the benefits by experimental results.

4. Approximation and Guiding

Nevertheless, the above divide–and–conquer technique is quite efficient in
representing the function, research has been also in the direction of reduc-
ing the unnecessary state space from the model to be verified. This method
prunes away some un-interesting state space and guides the traversal based
on some heuristics or to approximate the model in order to accelerate the
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traversal. However, the approximation and guiding can also be categorized
under the divide–and–conquer approach with the assumption that the in-
teresting set of states will be reached before all the partitions are explored.
Therefore, in this thesis the approximation and guiding techniques or its
combination are seen as divide–and–conquer techniques. The details of
the state–of–the–art of this approximation and guiding techniques are dis-
cussed in the section 3.3.

3.2 Partitioned-BDDs (POBDD)

The idea of partitioning was used to discuss a function representation scheme
called partitioned-BDDs in [56], which was then extensively developed in [55].
Partitioning of BDDs is enabled only when the BDD representing the state space
reaches a certain threshold value, for example the memory limit. There are two
variants of applying this POBDDs, one is partitioning a BDD into a pre-defined or
dynamically decided number of parts known as windowing techniques(see Figure
3.2), where each part is referred to be a window. Every window is differentiated
by unique combination of variables called restriction, and the state space belong-
ing to that window should satisfy that restriction. This leads to the concept of
owned and non-owned state space of a window, hence by this concept the state
space overlap among the windows can be totally avoided. The second variant is
to always partition a BDD into two and follow one while stacking the other called
as splitting (see Figure 3.4). The splitting technique is dynamic by nature as the
partitioned part can be re-splitted again into two if it grows beyond the threshold
after some traversal steps. Splitting does not have any restriction as windows,
hence there is no owned and non-owned state space to any splits.

The way the windows are handled in the windowing technique can make
the technique to be a fast falsification or a full validation approach. In contrast,
the partitioning methodology decides whether the splitting technique is a fast
falsification or full validation approach. Although both the variants have their
own advantages and disadvantages, many criteria are identical and hence tuning
them improves both approaches.

3.2.1 Sequential POBDD

In [57] the authors presented a technique that is based on the windowing tech-
nique and partitioned transition relation. Each partition can have a different vari-
able ordering and it requires only one partition to be in memory at any given time.
This technique claims to be effective in total memory utilization by introducing
the reachability analysis with the owned and non-owned states of a window. The
reachability analysis introduced in this paper suggests a method to restrict the
transition relation in order to keep the image state space of a window to be com-
pletely within that partition. In other words, transition relations are restricted in
order to get only the owned next states. In Figure 3.2 the state space is represented
by a BDD called Image1, where it is partitioned into four subsets defined by the
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windows W1 . . .W4. The local image of a window is denoted by the L − Imagei,
and the non–owned state space of any window have to be transported to the
owner window. This transportation of state space is known to be the state space
communication and it is denoted by the four direction arrow. Once the fixed
point is reached within that window, then the non owned states are computed
and passed or communicated (shown in dotted lines) to the other windows that
it belongs by means of secondary storage.

This idea of reachability analysis by partitioning the state space and repre-
senting it as POBDDs was then realized in a CTL model checking tool in [58, 59].
These papers proposed the use of dynamic repartition, where the number of par-
titions can vary on the fly. Secondly, these papers also claim by theoretical ev-
idence [60], that dynamic repartition can be exponentially more compact than
an approach using the fixed constant number of partitions. The paper also de-
scribes a new algorithm for CTL model checking that aims at faster falsification,
claiming to be the first algorithm to take full advantage of the ideas of POBDDs
at an algorithmic level in the model checking. Thirdly, they devised a practical
and competitive strategy to discover a path leading to an erroneous state other-
wise called counter example generation. However, BDD approaches have a high
sensitivity to parameter configuration, hence this paper also introduced a simple
technique to handle this instability in BDD based verification by automatically se-
lecting the best configuration for partitioning the state space from multiple short
previews of the reachability computation. The above introduced techniques are
studied more in detail and tuned in [61]. The basic problems that are addressed:

• If we must partition, what constitutes the axis of partitioning?
e.g., what splitting variables should be used for creating windows?

• Is the static partitioning effective or is more partitioning required?

• Does local or temporary blow-up needs partitioning?

• How should the processing of partitions be prioritized?

In the Figure 3.4 the splitting technique is shown. Basically this approach
splits the actual BDD into two and continues the image computation process us-
ing one BDD while stacking the other for future exploration. The advantage of
splitting over windowing is that there are no restrictions on the partitions in fu-
ture traversal steps as in windows, hence there is no owned and non-owned state.
This avoids the expensive communication of state space to the owned ones, al-
though this leads to a draw back of overlap of states in different splits. The fol-
lowing subsections discusses the common factors that are important for both the
approaches.

3.2.1.1 Splitting variable selection

The choice of splitting variables is critical to the effectiveness of the partitioning
approach. In case of pre-defined partitioning, once a blowup is detected the goal is
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to create small and relatively balanced 2n partitioning windows (n = 1 for splitting
approach) by selecting n splitting variables. The splitting variable is selected by
means of a cost function, for instance, as described in [57]. For each variable,
the cost function takes into account the relative BDD sizes of the positive and
negative co-factors with respect to the BDD size of the original one.

3.2.1.2 Dynamic and Local partitioning

Initially, the partitioning is done using one splitting variable. At this point, each
new partition is checked to see whether the blow-up has subsided. If not, dynamic
repartitioning is recursively performed on that partitions. A threshold on maxi-
mum number of partitions is kept to prohibit the method to produce exponential
number of partitions.

During each step of the image computation, many steps of alternating com-
position and conjunction are performed. It is often found that the BDD size
blow-up occurs during this intermediate steps, which is apparently a temporary
phenomenon which eventually subsides by the time the image computation is
completed. In such a case the invocation of dynamic repartitioning could create
a large number of partitions, whose BDD sizes eventually become very small.
Hence, it is advantageous to create these partitions locally only for that particular
image computation and then recombine them before the end of the image com-
putation. If local partitioning does not reduce the blow-up, then dynamic global
repartitioning can be invoked.

The splitting approach is dynamic by nature, i.e, the splitting is done when-
ever the threshold is reached. Optionally this calling can be prohibited for the
same reason of exponential partitions. In this thesis the windowing technique is
handled with a pre-defined number of windows and not with the dynamic parti-
tioning method.

3.2.1.3 Partition ordering

The goal of ordering the partitions is to discover error states as early as possible
in the state space traversal. The expectation is that the probability of catching
an error is higher as more of the state space is covered. So the partitions are
characterized in terms of time taken to cover the state space symbolically in that
partition. This is measured in terms of a cost for processing the partitions. There
are two different metrices that are used for assigning a scheduling cost, namely,

• Density based scheduling : The density , similar to [62], of a partition is
defined as the ratio of the number of reachable states discovered in that
partition to the size of the BDD representing the reachable states. In the
interest of greater and faster state space coverage, it is better to first process
partitions with a higher density.

Density =
Number of Minterms

Number of BDD nodes
(3.2)
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• Time based scheduling : Another useful metric is the time required for the
least fixed point computation within each partition. The trail runs gives
an idea of the time taken by the partitions. Therefore it is advantageous to
select partitions that takes less time.

The cost for processing a partition is given by,

Time taken for recent fixed point computation of a partition

Density of that partition (see equation 3.2)
(3.3)

For the splitting approach, density based scheduling is done aiming at fast
coverage of the state space. The fast coverage of the state space directly means
higher chance of finding the error state.

3.2.2 Distributed POBDD

Although this distributed environment is out of the scope of this thesis, we briefly
discuss the state-of-the-art. Section 3.2.1 explaind the optimization of the win-
dowing techniques, but no parallelization done. The paper [63] presents a scal-
able method for parallel symbolic reachability analysis on a distributed memory
environment where all the windows are handled in parallel. This paper also in-
troduces a new cost function for finding the splitting variable taking the reduction
and redundancy factors into account. This cost function aims at the balanced par-
titions of the state space S among the distributed environment. The cost function
is defined as,

Definition 14 The cost function [63] is defined as,

cost(f, v, α) = α ∗ Max(|fv|, |fv|)
|f | + (1− α) ∗ |fv|+ |fv|

|f | (3.4)

where f is the BDD representing the state space S, v is the variable for which cost is
calculated and α is the adaptive value that decides the reduction factor.

The Max(|fv|,|fv|
|f | ) factor gives an approximate measure to the reduction achieved

by the partition. The |fv |+|fv|
|f | factor gives an approximate measure of the amount

of sharing of BDD nodes between fv and fv and therefore reflects the redundancy
in the partition.

The cost function depends on a choice of 0 ≤ α ≤ 1. An α = 0 means that
the cost function completely ignores the reduction factor, while α = 1 means that
the cost function completely ignores the redundancy factor. The algorithm uses a
novel approach in which α is adaptive and its value changes in each application
of the partitioning algorithm, so that the following goals are achieved.

• The size of each split is below the given threshold δ.

• Redundancy is kept as small as possible.



3.2 · Partitioned-BDDs (POBDD) 37

The actual algorithm initially attempts to find a BDD variable which only min-
imizes the redundancy factor (α = 0), while reducing the memory requirements
below the threshold i.e., Max(|fv|, |fv|) ≤ |f | − δ. If such a partitioning does not
exist the algorithm increases α i.e., allows more redundancy, gradually until the
condition is achieved. The balancing condition δ is given as in the equation 3.5
below,

δ =
| f |

numberofpartitions
(3.5)

The distributive methodology in [64] utilizes the network communication rather
than the secondary storage devices in [63] in order to distribute the non-owned
states to the corresponding network node. This methodology requires an ad-
ditional network node called coordinator to do the network communication effi-
ciently. The coordinator takes care of owned and non-owned state distribution,
along with an on-the-fly memory balancing scheme among the network nodes.
However, the splitting approach has also been implemented in a distributive en-
vironment and presented in [65].

Although this method is quite interesting concerning distributive computa-
tion, it is a static allocation method. In other words, it immediately splits the state
space into as many partitions as the number of network nodes and does not free
them until the verification terminates. Thus, static distributive method occupies
all the network nodes throughout the verification time regardless of the actual
need. This leads to an inefficient splitting because it partitions a relatively small
BDD (early steps of traversal) into many small splits. Moreover, this method
does not provide a means to overcome the memory overflow that occurs during
an image computation or an exchange operation.

However, these problems are addressed in [66] by means of dynamic alloca-
tion and reallocation of network nodes. This paper introduces the concept of co-
ordinators and workers. Each worker can be either active or free. It is initialized
with one active worker that runs a symbolic verification algorithm, starting from
the set of initial states. During its run, workers are allocated and freed, as needed.
In the case of a high work load at one of the co-workers, this algorithm can sim-
ply split again. It may also happen that the memory requirement of few workers
decreased below a certain threshold, then all of these workers are combined and
given to one of them where all other are set free.

This feature provides this algorithm with strength and flexibility, and allows
to reduce the splitting complexity. It is important to note that splitting occurs
only ”as needed”, when a worker actually has a memory overflow. Thus the
algorithm is ”work-efficient”, i.e., it exploits to the maximum the resources of the
active workers before allocating additional ones. Moreover the paper claims the
algorithm can effectively exploit any network size, thus, the larger the available
network, the larger the systems that can be verified.

In any case all these windowing based distributive algorithms and advance-
ments have a drawback of synchronization, i.e., the network nodes have to syn-
chronize or wait for other nodes at some time point. In [67] the authors intro-
duced the asynchronous distributive algorithm based on the splitting approach,
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and this algorithm comes with the interesting side effect of automatic load bal-
ancing among the network nodes.

3.3 Accelerated Traversal

Splitting and windowing techniques are one way of approaching the BDD explo-
sion problem. There are other effective methods like Approximation and Guiding
in order to enable this BDD based techniques to cope with the explosion problem.
In principle, approximation is the problem of extracting a smaller function from
a given function. Guiding is a methodology to find an interesting path and slic-
ing others by means of some heuristics. Basically, in this thesis guiding is used
to prioritize the partitions to be followed, or to steer the state space traversal in
right directions. This accelerated traversal in general is a key point which could
increase the POBDDs capability of finding error states faster also called as fast
falsification.

3.3.1 Approximation

Although, there is a reasonable number of techniques to optimize the verification
process, one of the basic techniques is to utilize the optimization techniques of
the under lying data structure, the BDDs. BDD approximation is the problem of
deriving from a given BDD an another BDD smaller in size by BDD node count.
If α(f) is the BDD produced by the application of approximation algorithm α to
the BDD of f , then the minterms (states) represented by the approximated BDD is
required to be either a subset (⊂) or superset (⊃) of the minterms represented by
the input function, called under-approximation or over-approximation respectively,
i.e,

minterm(α(f)) ⊂ minterm(f) (under-approximation)
minterm(α(f)) ⊃ minterm(f) (over-approximation)

A natural way to rank different approximations is by their density (see equa-
tion 3.2). High density corresponds to a concise representation, i.e., a relatively
smaller BDD that can represent more number of states. This high density is of
interest for the symbolic verification as smaller the BDD size usually faster the
verification process. Moreover, the high density BDDs is not only small but it cov-
ers the majority of the state space and therefore it is desirable. In general, given
a BDD representing a state space, the under-approximation is much suitable to
find the concise representation. In [62] two algorithms for under-approximation
have been proposed, namely,

• Heavy-branch subsetting : Determines how many minterms are in the func-
tion rooted at each internal node, and how many nodes would be elimi-
nated by replacing arcs pointing to it.

• Short-path subsetting : It is based on the idea that short paths in a BDD cor-
respond to large implicants of the function and use few nodes.
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These two under-approximation techniques can be used in the sequential split-
ted traversal (without windowing) for faster falsification. This under-approximation
provides a means of fast falsification as it generates a relatively concise BDD and
in general traversing a smaller BDD is much faster. Moreover, as the BDD repre-
sents most of the actual state space, there is a higher chance of reaching the error
state faster. However, it is not so attractive for parallel algorithms or for win-
dowing as they do not produce a balanced partitions. Following this in [68] the
authors introduced a safe under-approximation algorithm. This approximation
can be directly compared to the density based scheduling explained in subsection
3.2.1.3.

3.3.2 Guiding

In practice, verification tools are usually more useful to find bugs than for prov-
ing properties. However, finding a bug that is hard to locate is difficult as large
portion of the state space of the design actually satisfy the specification. Hence,
the verification tool devotes much effort verifying correct portions of the design.
This kind of behaviour of the verification tool usually leads to the BDD explosion
problem, which could be easily avoided if the tool is provided with the knowl-
edge of the state space partitions in which the probability of finding a bug is
higher.

This approach has evolved into the idea of guiding the state space traversal.
In [69] the main subject is about biasing the search towards reaching particular
states. There were several heuristics discussed in it and all aim at enhancing
the verification tool with the bug finding capability also called guiding. These
heuristics basically optimize the verification process by searching the state space
that is most likely to contain design flaws. There are four different heuristics
proposed and these heuristics have been demonstrated to be very effective in
guiding the search to find the violation of properties in designs. However some
heuristics work better for some designs and others not. In general the authors
out of their experience claim that the Target enlargement combined with Tracks and
Guideposts heuristics can consistently find errors much faster than their individual
performance or breadth first search. All of them are described below.

However, these guiding ideas are experientially tried on explicit model check-
ing and are on the way to be adapted and used along with the POBDDs.

3.3.2.1 Hamming distance

The first search heuristics uses the Hamming distance, which is defined as the
number of bits that are different between two bit vectors [70]. Those states that
have the lowest Hamming distance to the error states are explored first. In essence,
it is believed the states with very few bits differing from the error states will re-
quire very few cycles to reach that target.



40 Chapter 3 · State Of The Art

3.3.2.2 Target Enlargement

It is an effort to make the set of states bigger that will violate the assertion, called
error states, so that it can be found with less searching. The pre-image of the
these error states is the set of states that in one cycle can reach an error state. If
it is possible to reach a state in the pre-image from a start state, then it is also
possible to reach an error state. Each successive pre-image potentially describes
an even larger set of states that can reach the error states. The larger target in-
creases the opportunity for the guided search to find a path to the error states
and consequently reduces the amount of searching that needs to be done.

3.3.2.3 Tracks

In practice, a subset of the state variables can control most of the behaviour of the
design. A track computes a series of pre-images that are approximate of the actual
pre-images based on a given set of variables that strongly control the behaviour
of the system. Using multiple tracks implicitly conjoined, it may be possible to
construct a sufficiently accurate pre-image that aids the guided search. Tracks
computation are defined formally as,

Trackk+1
i = PreImage(T, ProjVi

(Trackk
i ))

Where Track is one layer of one track, i is the Track number, Vi is the variables
in Track i, and k is the layer number, or number of cycles away from the largest
enlarged target. Track0

i is the largest enlarged target. In essence, the next layer
of a track is the pre-image of the projection of the last layer onto the variables
in the track. Because all the variables that are not in the track are projected out,
the resulting pre-image is always a superset of the actual pre-image. The pro-
jection also reduces the size of the BDD and thus enables computation of more
pre-images.

During the guided search, the state’s score depends on which layer the state
belongs. The score is the least layer number in which all tracks contain the state.
The score is the minimum cycle number that satisfies the implicit conjunction of
all the tracks. Consequently, this evaluation function greedily chooses the layer
number that is closest to the target. States that have the smallest score, or those
that are closest to the error states are explored first.

3.3.2.4 Guideposts

In addition to above mentioned automated heuristic, designers can also provide
hints to the guided search. The hints, called Guideposts, are a series of conditions
that the designer believe to be interesting or which are even required precondi-
tions for the property to be violated. A guidepost encodes the number of hints
that the search has gone through. The evaluation function of the guideposts is,

Score = (TGuideposts − PGuideposts) ∗MCycles + ScoreTracks
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Where TGuideposts is the total number of guideposts, PGuideposts is the number of
guideposts that the current state and its ancestors have past through. MCycles is
the maximum number of cycles in all the tracks. ScoreTracks is the score from the
Tracks evaluation function. This evaluation function biases the search towards
going through the guideposts and passage of more guideposts should indicate
a lower score. And the lower score is deemed to be a state that is closer to the
target.

However, in [69] the author addressed the usage of hints or guideposts with
the explicit state traversal. In [71], the authors addressed the usage of hints in
symbolic traversal and also showed the way to identify good hints. Apart from
pointing the way towards the target states, the hints used in symbolic guided
traversal try to address the difficulties of image computation. This idea was
then extended in [72] to allow nested fixpoints and to use hints to obtain over-
approximation.

3.4 Unaddressed Problems

In the above sections we have seen recent research and developments in order to
tackle the BDD explosion problem. Although the above mentioned methods and
techniques are efficient, there are some interesting aspects that have not yet been
addressed. These unaddressed factors are the topics of this thesis work. This
thesis identifies important tuning and effective changes of the above mentioned
works to improve their efficiency. Basically, the alterations of the heuristics are
implemented in the variant of property verification tool called SymC which is a
bounded symbolic property verifier. The aspects that are addressed:

• Reduction of redundant computation caused by overlap of state space

• Property based guiding of the POBDD based traversal to the interesting
state

3.4.1 Reduction of State Overlap

In the section 3.2, we have discussed the advantage of using the POBDDs for ef-
ficient representation and traversal by both splitting and windowing techniques.
In the splitting technique the state space is partitioned into two when the BDD
representing it grows beyond a threshold limit which is defined as BDD node
counts. The traversal will be continued with one of the partition where as the
other will be stacked for future traversal if required. The traversal of the stacked
state spaces is required in case of full validation of the property and errors are
not detected in the earlier traversal. In this situation of full validation, traversal
of the stacked state spaces might revisit some states that were already visited in
the previous traversal as shown in the Figure 3.5. This phenomenon of revisit-
ing the state space is known as state space overlap and this contributes to the
redundant computation.
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Figure 3.5: State space overlap due to traversal after splitting

The problem of minimizing the state space overlap in the splitting technique
has not been addressed straight in any of the state–of–the–art techniques. How-
ever, this problem has been addressed indirectly by utilizing the windowing tech-
nique which does not allow the state overlap. But this benefit comes along with
a trade off, i.e., additional overhead of distribution of non–owned states.

The partitioning of the state space based on windowing can be divided into
n number of windows for traversal. Each window is obliged to contain only its
owned states and while traversal the non–owned states that are reached are then
passed to its respective owner. The transformation or exchange of non–owned
states by windows is handled in different styles aiming at an efficient method-
ology. However, every researcher stated this exchange of non–owned states is
a bottleneck of the windowing methodology, independent of whether the win-
dows are handled sequentially or in parallel. Moreover, the naive heuristics of
windowing might lead to unbalanced partitions that results in an unequal win-
dow size. And if the cross–over states are not distributed at every step and are
handled at last then in most cases many windows end up empty due to factor
that all owned states reach to non–owned states.

The problem of minimizing the cross–over states and empty windows has
not yet been addressed either. Therefore, part of this thesis work concentrates
on providing intelligent heuristics for minimizing the state space overlap in the
splitting technique. Also an on–the–fly method of partitioning for windowing
technique to address the empty windows and cross-over reduction.

3.4.2 Guided Splitting

In the section 3.3, we have seen a couple of techniques to accelerate the traversal
by means of external guiding (see Figure 3.6) or approximation. The acceleration
of the traversal is due to the consideration of only a subset of the actual state
space for traversal by introducing the incompleteness. Although, this method
is incomplete it is a valid approach if it can reach the interesting state and can
be categorized as the fast falsification approach as the traversal is made faster
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Figure 3.6: Guiding the traversal to the target state

by reducing the size of the state space. However, if this technique can not reach
the interesting states then a back tracking mechanism is required to ensure com-
pleteness. Most of the techniques are addressing the explicit traversal, although
the methodology using ”hints” has been upgraded to symbolic traversal. In any
case, the methodology of guiding by hints has a bigger disadvantage of requiring
human intervention.

Hitherto, the guiding by means of hints needs the verification engineer to have
a good knowledge about the design that is being verified in order to accelerate
the traversal. And the approximation technique makes the traversal faster by
avoiding some state space but it never steers the traversal to the interesting set of
states.

There has not been any major work done in this area of guiding the traversal
by means of fully automated heuristics. Therefore, the other part of this the-
sis contributes to this area of guiding by providing a heuristic that intelligently
collects the set of important variables from the property and utilizes them for the
automatic guiding of traversal. This guiding heuristics are further improved with
the combination of approximation.

3.5 Symbolic Simulation and Verification

The optimizations and the improvements that were discussed above are incorpo-
rated and the unaddressed problems are answered using the symbolic bounded
property verification tool called SymC. Typically the tool SymC takes a design and
a couple of properties and proves their correctness. If the proof fails, a counter
example may be generated. The major difference in the SymC [32] tool compared
to model checking tools is that the former do not maintain the history of state
space. The reason for avoiding this history is as it could grow beyond a man-
ageable limit, making it a problem for verifying large designs. The history of the
state space has to be maintained in order to calculate the fixed point, which is the
foundation of the verification algorithm in the model checking where as in SymC



44 Chapter 3 · State Of The Art

the verification is simultaneously while traversing.
Therefore, model checking is the matter of choice for verifying small or av-

erage sized modules on block level. In order to extend the model checking to
the verification of whole systems or the larger modules researchers re-engineered
the basic model checking algorithm aiming at avoiding the huge history. SymC,
as mentioned, is one such approach where the verification is done by symbolic
forward traversal [73].

SymC approach is a forward symbolic traversal where the verification is done
in parallel by checking for the violation of a property. Although this advantage
comes with a compromise of allowing bounded properties, it is not necessarily a
disadvantage. Bounded properties are often useful to check the timing informa-
tion, and makes the property writing exact. This also allows the design to explore
only to the necessary point making it possible to verify comparatively larger de-
signs. However, SymC also allows the usual LTL properties. That is the violation
in case of the temporal operator Always or the acceptance in case of temporal
operator Eventually can be verified.

SymC takes a property specification and a system description and translates
both inputs into a symbolically simulatable representation. Therefore, the prop-
erties are translated to a special automata called AR-automaton. During the sym-
bolic simulation the states of the AR-automaton are observed and SymC reports
a success or a failure to the user. Trivially, the translation of the design can be
avoided by providing the design in a symbolically simulatable representation.
Figure 3.7 shows an overview of the SymC verification process. The following
sections explains the SymC approach and it’s basic algorithm.
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Figure 3.7: Overview of SymC verification process

3.6 Bounded Property Checker - SymC

SymC is a new formal verification technique that combines the property checking
and symbolic simulation. It adapts the symbolic simulation to traverse the design
and the property in parallel which turns out to be a verification methodology
on the fly. Since it uses the same property specifications as simulation based
approaches and model checking techniques it can seamlessly be integrated in the
verification flow.

One symbolic simulation step corresponds to one image computation of the
given state set. The image computation is the process of obtaining all possible
next states from the given state set. This is shown in the Figure 3.8.
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{one symbolic simulation step

actual state set next state set

Figure 3.8: Symbolic Simulation step

The properties are given in the linear time temporal logic (LTL, [74]) which
has been enriched by timing constraints (FLTL, finite linear time temporal logic)
. The temporal logic formulas will be translated to a special finite state machines
(AR- automata [75]) which can then be used in the symbolic simulation phase.
The design can be modelled directly using the SymC’s typical input language.
The translation of LTL / FLTL properties to AR-automata is briefed in section 3.7.

The algorithm shown in Figure 3.9 sketches the core of the symbolic simu-
lation engine for one AR-automaton verification. In line 5 the simulation step
is initialized and in line 9 the product machine of both the design and the AR-
automaton is built. The lines 11 - 26 sketches the main loop of the SymC verifica-
tion process that loops till the bound is reached or till the terminating condition
is reached.

Line 15 shows the first step of image computation where only the AR-automaton
image is computed, and this is done separately to reduce the intermediate BDD
size and for an efficient traversal. The image of the AR-automaton is checked for
the termination condition as showed in the lines 17 - 23. For universally quanti-
fied property SymC reports a failure if there is at least one reject state and reports
a acceptance only if all the states are accepted. It is vice versa for the existentially
quantified property.

The set ”start” is the set of initial states to start with the simulation. SymC has
different options how to choose this set:

• Starting only from a defined initial state set of the design. In this case, SymC
checks only those states of the system which are reachable within the bound
from the initial state set. Other states are not considered in the verification.

• Starting the simulation in all possible states of the design. This may include
states which are probably not reachable from initial state and the algorithm
may report a false negative result.

• Starting from known reachable states of the design. This means, the de-
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1// start is the initial state space to start the traversal
2// AR− aut is a special automata equivalent to the property
3// bound is the number of the simulation steps
4symSimulate ( in: start, AR− aut, bound)
5t = 0;
6

7// build product state of the system and the AR-Automaton
8

9act = start ∧ AR-aut.start;
10

11while ( t ≤ bound)
12

13// compute Accept-Reject-Automaton (AR-Automaton) image
14

15act = imageAR−aut(act);
16

17if (check universally)
18if ( act ∧ AR-aut.reject 6= false ) reportFailure();
19if ( act ∧ AR-aut.accept = act ) reportAcceptance();
20

21if (check existentially)
22if ( act ∧ AR-aut.accept 6= false ) reportAcceptance();
23if ( act ∧ AR-aut.reject = act ) reportFailure();
24

25act = imageT (act); // image computation
26t = t + 1;

Figure 3.9: Symbolic simulation loop of the design and the AR-automaton.

signer specifies an invariant condition defining a set of states which is known
reachable. This approach lies in between the first and the second alternative.

The traversal starts with the initialization step where one of the ”start” set
of the design is conjuncted with the initial state of the AR-automaton to form
the product state. The product state is named as ”act” the actual state set. Then
the traversal steps are done by looping the below processes till a termination
condition is satisfied or the pre-defined time bound is reached.

The main iteration of SymC verification algorithm works in two steps.

• In the first step it computes the successor states (image) of the AR- automata
and it checks whether a formula is accepted or rejected, i.e, the termination
condition. The acceptance and rejection conditions of an AR-automaton are
defined below,

– For a property that should universally hold, we report a failure if one
reject state is reached or success if all current states of an AR-automaton
are accept states.
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– For a property that should existentially hold, we report a failure if all
current AR-automata states are reject states or success if at least one of
the states is an accept state.

If the termination condition is not satisfied then, SymC continues to the sec-
ond step.

• In the second step of each iteration SymC performs one symbolic simula-
tion step on the system under inspection. During the image computation
the conjunction of all the transition relation partitions is built on-the-fly to
obtain the successor state set. This image computation is accelerated by a
variety of standard improvements like early quantification and by using a
partitioned transition relation as explained in section 3.1.

The above steps form the basic verification algorithm of SymC. Although, this
approach helps to verify larger design compared to traditional model checking
tool, it also has its own limitations in sense of the BDD explosion and time for
verification. These limitations are reduced to some extent by BDD optimization
and reduction techniques as explained in section 3.1. But to take the SymC tool
to next step we have to use the divide–and–conquer approach by adopting SymC
to the new heuristics that optimizes this approach by means of state overlap re-
duction and guiding. In the next coming sections we will see the AR-automaton
generation and the extension of SymC environment to embed the new divide–
and–conquer heuristics.

3.7 Translation of LTL into AR-automata

The verification algorithm mainly depends on the AR-automaton , as this is the
one that leads to the acceptance or rejection of a property. This section addresses
the construction of an AR-automaton for a given LTL/FLTL formula [75]. The
main translation of temporal logic formulas into AR-automata works bottom-
up in the syntax graph of the formula. The algorithm starts in the leaves and
constructs successively more and more complex AR-automata until it reaches the
root of the graph. This means at each internal node the computation of a new AR-
automaton out of one or two AR-automata (depending on the arity of the logic
operator) is necessary.

The atomic AR-automaton (i.e. atomic propositions, signals of the design) as
shown in Figure 3.10 accepts a trace if the signal s is true in the current simula-
tion cycle. The doubly circled state represents the initial states. The states labelled
with ”A” belong to the set A of accepting states and the states labelled with ”R”
belong to the set R of rejecting states. For the rest of this chapter, we do not distin-
guish between the state set representation A and the labelling representation ”A”.
The constructed AR-automata are then consecutively composed to more complex
AR-automata with respect to the operators in the FLTL formula. The swap oper-
ation exchanges the sets A and R, i.e., a state labelled with ”A” will be labelled
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Figure 3.10: Basic AR-automaton
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Figure 3.11: Negated formula AR-automaton

with ”R” and vice versa as shown in Figure 3.11 and this accepts a trace if the
signal !s is true. This operation corresponds to the negation in the FLTL formula.

Till now only simple atomic formulas have been shown with their AR-automata
equivalent. More complex formulas that are coupled with temporal operators are
shown below. Assume a formula with a next time operator ”X”. Figure 3.12 in
left shows the plain LTL equivalent AR-automata and the right shows the FLTL
equivalent where there is a time bound (ex: X[n]).
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Figure 3.12: left: Next operator X equivalent AR-automaton, right: X[n] equiva-
lent AR-automaton

The conjunction and disjunction operation is done by merging two AR-automaton
A and B that constructs one new AR-automaton by joining the initial states and
appending the remaining transition relations of both AR-automata. The AR-
automaton in Figure 3.13 left shows the merged AR-automata for signals a and b.
This merge operation may generate a non-deterministic AR-automaton.

A major operation during the bottom-up construction is the removal of non-
determinism, i.e., the translation of a non-deterministic to a deterministic state
machine. The AR-automaton can be treated like standard finite state machines in
order to remove the non-determinism by enabling the application of standard al-
gorithms (e.g., sub-set construction [76]). If the sub-set construction is applied for
removing non-determinism, the resulting AR-automaton consists of states which
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are themselves sets of states of the original AR-automata. These subsets may
contain labelled states.

R
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Figure 3.13: left: Original AR-automaton, right: Deterministic AR-automaton

The ”A” and ”R” states of the new automaton are defined over the rules called
inheritance patterns shown in Figure 3.14. The inheritance patterns are used for
constructing the A-set and the R-set of the new automaton. Strong inheritance
leads to conjunction and weak inheritance to disjunction. Figure 3.13 right shows
the deterministic AR-automata that are merged for the signals a and b.

Inheritance Strong Weak

Accept A state will be labelled with A if A state will be labelled with A if one
all sub-states are labelled with A of the sub-states is labelled with A

Reject A state will be labelled with R if A state will be labelled with R if all
one of the sub-states is labelled with R the sub-states are labelled with R

Figure 3.14: Inheritance patterns

The temporal operators ”G” globally and ”F” eventually without time bound
are constructed by adding all the new transitions that start from the initial state
and leading to the initial state for all possible variable combinations as shown in
Figure 3.15.

A

R

a

a aa

A

R

aa

Figure 3.15: left: AR-automaton for variable a, right: AR-automaton for formula
F a or G a
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Adding a chain of new initial states and connecting all of them with the initial
state of the original operator results in the construction of the globally respective
eventually operator with lower and upper time bounds as shown in Figure 3.16.

In the case of an operator with interval [n,m], m new states should be added,
the first m − n + 1 states of the chain become the new initial states. In the case
of n = 0, the initial state of the original AR-automaton remains initial. The next
time operator ”X” is a special case of this operation where n = m, and n number
of states are added in chain and only the first state becomes the new initial state.
The non-determinism has to be removed after every operation and the type of
inheritance which is used in the current construction step is determined by the
temporal operator in the FLTL formula. The globally operator ”G” utilizes the
strong inheritance pattern and the ”eventually” operator ”F” utilizes the weak
inheritance pattern (see Figure 3.14). For example, Figure 3.17 left shows the
non-deterministic AR-automaton that represents both F[1]req and G[1]req. Figure
3.17 right shows the deterministic AR-automaton where the A-set and the R-set
defined over the inheritance patterns.
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Figure 3.16: left: AR-automaton for variable a, right: Automaton for F and G
extended by time bound [2,4]
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Figure 3.17: Non-deterministic to deterministic AR-automaton

Naive application of the construction rules can easily lead to huge AR-automata.
This is in particular true for deeply nested formulas or formulas containing tem-
poral quantifiers with very large time bounds. The basic structure of the gener-
ated AR-automaton by the naive construction contains huge number of equiv-
alent states, i.e., bisimilar states. The bisimilar states are handled by the stan-
dard merging based on a partitioning algorithm explained in [77]. It starts with
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a coarse partition and consecutively applies refinement steps. The algorithm is
then repeated until a fix-point is reached. In [75] the authors utilize the standard
partitioning algorithm by initially defining three equivalence classes, all accept-
ing states, all rejecting states and the pending states i.e., neither accepting nor
rejecting. The reduction is shown in Figure 3.18.
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ab

ab

ab
1
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R

A
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ab

Figure 3.18: left: Original AR-automaton, right: Reduced AR-automaton

The bisimulation reduction dramatically shrinks the state space of an AR-
automaton. To avoid an early combinational explosion of the state space, the
bisimulation reduction is applied after each determinization step.
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Figure 3.19: AR-automaton for the formula G(req→ F[2] ack)
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Figure 3.20: AR-automaton for the formula G[1] req→ F[2] ack

Figure 3.19 and 3.20 show a couple of real formulas and their equivalent AR-
automata. The first formula expresses that always if req is true then eventually
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within two clocks ack have to be true. The second formula expresses that if al-
ways req is true till clock 1, then eventually within two clock cycles ack have to
be true.

3.8 SymC Extensions and Optimizations

The basic version of the tool SymC pioneers in verifying relatively larger designs.
However, beyond a limit SymC has the problem of BDD explosion. Although the
problem of BDD explosion can not be totally eradicated, still the methodologies
based on POBDD explained in the section 3.2 can improve the situation and keep
the memory requirement under control.

The basic verification loop of SymC has been adopted with these methodolo-
gies in order to further extend the horizon of design size handled by it. The
algorithm is been altered in order to adopt both the partitioning techniques i.e.,
splitting and windowing. Either of the technique can be optionally selected in the
command line option at the start for the verification process. Subsections 3.8.1
and 3.8.2 details the adoption of these techniques.

3.8.1 Splitting Technique

The splitting technique is based on the POBDDs and whenever the BDD node
count representing the present state set reaches a threshold value, it is partitioned
into two sub sets. This process of partitioning a BDD into two is called splitting.
The two sub parts of the splitting together represent the whole state space. The
splits that are obtained are expected to be smaller and balanced in size, which are
then easily traversed one after the other. Thus the splitting technique is referred
by the term divide-and-conquer approach. The interesting point of this splitting
technique is that one of the splits is traversed first while storing the other. So
if the target state is already reached in the first split, then SymC saves time and
memory by quitting the traversal of the other split as shown in the Figure 3.21.
The option of quitting the traversal of a partition or not gives the opportunity of
specializing this technique for both full validation and fast falsification.

Adopting this splitting technique to SymC includes the alteration of the ter-
mination condition and deciding on the algorithm that partitions the BDD. The
important factor of the splitting is to have smaller splits that are easier to traverse.
There are different algorithms in order to split a BDD into two. Each of them is
based on different heuristics having its own advantage. The following is the list
of state–of–the–art partitioning algorithm.

• VarDisjDecomp : This variable disjunction decomposition algorithm is pro-
vided by the BDD package CUDD [78]. This aims at balanced partition by
selecting a best variable depending in its heuristics.

• BalancedDecomp : This algorithm is the naive one that partitions the state
space into two balanced parts independent of whether it is the smallest pos-
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Figure 3.21: Splitting technique

sible. This algorithm is the first one to be implemented in SymC to realize
the splitting technique.

• EqualDistDecomp : This algorithm a variant of the one presented in [63] is
aiming not only at balanced partition, but it also considers the reduction
and redundancy factors for cost calculation, given in Definition 14. Hence,
the BDD partition is both balanced and also the smallest possible.

• ShortPathSubset : This algorithm is presented in [62] for under-approximation
and provided by the CUDD package. Here in SymC it is used for splitting
where the resulting partitions are not balanced but one of the splits is com-
paratively small but representing more state space. This algorithm is specif-
ically useful for the fast falsification approach. This could perform bad in
case of validation.

• HeavyBranchSubset : This algorithm is also presented in [62] as an alternative
under-approximation technique for ShortPathSubset, which is based on a
different heuristic. But it also aims at fast falsification by unbalanced split-
ting and representing more state space. Although aiming at fast falsifica-
tion note that these under-approximation algorithms does not intelligently
guide or steer the traversal to the target states.

The above listed algorithms are the state–of–the–art partitioning algorithms
that are available to realize the splitting technique. However, these algorithms
do not address the problems mentioned in the section 3.4. Therefore this thesis
provids the below listed algorithms addressing those problems.

• MinOverlap : This algorithm is one of the main topics of this thesis, where it
aims not only for a balanced and small partitions but also for minimal over-
lap. In other words, this algorithm splits the BDD in a way that in future
traversal of those splits have minimal overlapping of states i.e., minimal
revisiting of states. This minimal overlap of states reduces the duplicate
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of work. Reduction in duplicates makes this algorithm suit better for the
full validation in which every partition has to be traversed and this finally
reduces the verification time. This algorithm is detailed in chapter 5.

• Guiding : This algorithm is the other topic of this thesis, where it aims for
fast falsification. Hence, this algorithm will not give a good balancing, but
splits and guides the traversal to follow the right one that has the higher
chance of reaching the target states. Due to the fact that it partitions in a
way that one of the split is smaller and contains more of potential target
states, following that guided split could get to the error states faster. This
algorithm is detailed in chapter 6.

The algorithm shown in Figure 3.22 sketches the splitting adoption into the
SymC core simulation engine for one AR-automaton. The lines 10 - 16 in the
algorithm check the BDD node count for the threshold value. If true, the current
state set act will be splitted into two sets s1 and s2. One of the splits will be
stacked (line 14) for future traversal in case of necessity, while the other split is
considered as the current state set (line 16) and traversal is continued with it.

The terminating condition of SymC is adopted as follows,

• In case of universal correctness, if one of the splits has been reported a fail-
ure then the whole verification can be stopped reporting the failure (lines
25 and 26). But if a split is reported a acceptance then the other splits have
to be traversed for proving the full acceptance (lines 28 - 31).

• In case of existential correctness, if one of the splits has been reported for
acceptance then the whole verification can be stopped reporting the accep-
tance (lines 35 and 36). But if a split has been reported a rejection or failure,
then the other splits have to traversed (lines 38 - 42).

The terminating condtion for the universal and existential correctness of the
property is exactly the opposite.

There are few optimizations adopted in SymC that increases its capability. For
example, if the traversal reaches the state ”A” or ”R” in the AR-automaton then
it loops in the same state. Hence, such states can be removed from the traversal,
which reduces the load of the symbolic traversal. This is shown in the line 45 in
the algorithm by the call to the function uninterestingStates() that returns a BDD
representing the uninteresting states.

3.8.2 Windowing Technique

The other POBDD technique is windowing, where a pre-defined number of win-
dows are partitioned at the start of the simulation or at reaching the threshold
size of the BDD. Every window is identified by its unique combination of vari-
ables and the actual state space is partitioned and allocated to its respective win-
dow. All the window sub parts together represents the whole state space (see
Definition 12). In SymC the windowing technique is adopted with a pre-defined
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1// start is the initial state space to start the traversal
2// AR− aut is a special automata equivalent to the property
3// bound is the number of the simulation steps
4symSimulate ( in: start, AR− aut, bound)
5t = 0;
6// build product state of the system and the AR-Automaton
7act = start ∧ AR-aut.start;
8while ( t ≤ bound ) // Check for the bound to stop
9// Check BDD size for threshold size
10if (act.nodeCount ≥ threshold)
11// s1 and s2 are splitted set
12Split(act, & s1, & s2)
13// stacking one of the split
14stack( s2)
15// traversal of the other split
16act = s1

17

18// restarting point
19restart:
20

21// compute AR-Automaton image
22act = imageAR−aut(act);
23

24if (check universally) // if univ. quanti. prop.
25if (act ∧ AR-aut.reject 6= false)
26reportFailure();
27// acceptance have to be in all splits
28if (act ∧ AR-aut.accept = act)
29if (stack.size == 0) reportAcceptance();
30else
31act = stack.pop();
32goto restart;
33

34if (check existentially) // if exist. quanti. prop.
35if (act ∧ AR-aut.accept 6= false)
36reportAcceptance();
37// rejection have to be in all the splits
38if (act ∧ AR-aut.reject = act)
39if (stack.size == 0) reportFailure();
40else
41act = stack.pop();
42goto restart;
43

44// remove uninteresting states
45act = act ∧ ! unintrestingStates();
46

47act = imageT (act); // early quant etc.
48t = t + 1; // simulation step counter

Figure 3.22: Splitting based SymC.



56 Chapter 3 · State Of The Art

number of windows taken as a command line input. In contrast to the splitting
techniques, all the windows are traversed simultaneously, i.e., breadth first, as
shown in Figure 3.23.
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Figure 3.23: Windowing technique

In general the partitioning in windowing is different to the splitting technique,
as in the later case the splits are always two whereas the former usually more
than 2 windows. Moreover, in the splitting technique partitioning at later stage
is possible if the BDD reaches the threshold limit. But in SymC the windowing is
adopted to have a static number of windows. Due to the fact that all the windows
are traversed simultaneously the partitioning algorithm should partition the set
into relatively balanced subparts. In the naive form of partitioning there is a
higher chance that some of the windows end up empty, i.e., there might be no
states that belong to it. However, after some traversal steps these windows might
get some states due to the cross over states as shown in Figure 3.23. Trivially, the
power of the windowing technique comes to limelight only when every window
has some state space to proceed. Because if some windows are empty then it is
not of interest as more work load will be on other windows. Particularly, this
emptying of windows is a total failure of the windowing technique in case of a
distributive environment where many computing power is made idle. Therefore,
in the windowing technique the restrictions should be created with some refined
heuristics in order to avoid the emptiness of the window.

Due to the fact that the windowing technique has the concept of owned and
non-owned states the state overlap problem is avoided. But this advantage comes
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with the overhead of communicating the non-owned states to its respective owner
and this non-owned states are known as cross-over states. Reduction of the cross-
over states at every traversal step is also an important factor to highlight the ad-
vantage of this technique, because computing these cross-over states could take
lot of time and memory and additional time to be communicated and verified.
The overhead of computing and communicating the cross-over states lead to the
idea of separating the fast falsification and full validation methods under win-
dowing. Hence, the full validation approach is the one where the cross-over states
are computed and communicated at every step of the traversal. The fast falsifica-
tion approach is where the cross-over states are not computed and communicated
till end of the traversal of all windows. This makes the window traversal faster
and expecting the target states are reachable in these window limits. In case the
target states are only reachable by the cross-over states, the method does not help
and therefore has to compute and communicate the cross-over states separately.

Figure 3.24 shows the adoption of the windowing technique into the SymC
algorithm. The lines 12 and 13 show the initialization of the windows by their re-
spective restrictions and assigning the owned state space. The terminating condi-
tion is similar to the splitting technique except the window that is universally ac-
cepted or existentially rejected will be cleared as shown in the line 28 and 39. The
local image computation of the windows are computed (line 44) and the equation
3.6 defines the local image computation. Once all the windows are finished with
owned state computation the non-owned or cross-over states are computed and
distributed by the function CrossOverstates() (line 48).

Limage(wi) = image(wi ∧ r
′
i)

Where wi is the window,

r
′
i is the restriction with next state variable and

0 ≤ i ≤ N-1

(3.6)

The cross over states are computed and disjuncted to their respective win-
dows by the function in line 48. The cross-over states computation from a win-
dow i to j is shown in the equation 3.7, where it is then disjuncted with the exist-
ing state space in the window wj .

CrossOverstates(W ) = wj ∨ image(wi ∧ r
′
j)

Where W = wi, 0 ≤ i, j ≤ N-1 and i 6= j
(3.7)

The state of the art techniques suggests to compute the cross over states at later
stages, where the aim is to find fast failure. However the SymC is implemented
with the proper validation approach, where cross over states are computed for
every step.

Trivially, the splits and windows could be handled in a distributive environ-
ment for better performance. Hence, as an extension to sequential SymC a parallel
version of it is also implemented. The parallel version of SymC is out of this thesis
scope, so until otherwise mentioned SymC always means the sequential version.
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3.9 Tutorial for SymC Verification

This section gives a short tutorial of the SymC tool and its verification process.
Consider an example design that is shown in Figure 3.25 left. The design has
three states and the transitions are shown as a directed arrows. The initial state is
shown by doubly circled notation. The transition from the state s3 can only hap-
pen by consuming a Boolean signal a, whereas the other transitions can happen
at every clock and without any input. Assume that we are interested in verify-
ing a property that the Boolean signal a is consumed eventually within two clocks
steps starting from the initial state. The property is represented as a FLTL formula
F[2]a and it’s corresponding AR-automaton is shown in Figure 3.25 right.

This tutorial is based on the basic SymC algorithm shown in Figure 3.9. The
product of the initial state of the design and the AR-automaton is constructed as
shown in the line 9. The traversal starts at the time point 0 (line 5) and loops
till the explicit bound (line 11) is reached or until the termination condition is
reached. In the loop, image of the AR-automaton is computed first (line 15) and
checked for the terminating condition.

It will enter the check universally condition loop (line 17) if the property is spec-
ified to be universal property, i.e., the property has to hold in all the traces. In case
of an existential property it will enter the check existentially condition loop (line 21)
i.e., the property has to hold in at least one of the traces. If the terminating condi-
tion is not solved then the image of the design is computed (line 25) and the time
point or the traversal step is incremented and loops the same again.

If we assume the property to be an universal property, then after 2 time steps
the one of the universal terminating conditions will be true. i.e., the act set will
contain at least one reject state. Figure 3.26 shows the traversal steps of the prod-
uct machine. The final set of states are labelled as per the weak inheritance shown
in the Figure 3.14 because the property contains an eventual operator. Because we
require an universal validation we utilize the strong inheritance on the final set of
states to validate the property. Due to the strong inheritance there will be at least
one reject state. Therefore, the property will be rejected for universal property
(line 18).

However, if we consider the property to be a existential property then the
Figure 3.26 is labelled with weak inheritance for both the eventual operator and
also for the existential case. Therefore there will be at least one accept state and so
the existential terminating condition (line 22) will be true and the whole property
will be accepted. In case of rejection or failure of a property, optionally a counter
example can be generated by the pre-image computation.
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1// start is the initial state space to start the traversal
2// AR− aut is a special automata equivalent to the property
3// bound is the number of the simulation steps
4symSimulate ( in: start, AR− aut, bound)
5t = 0, count = 0;
6// Pre-defined number of windows
7N = 4;
8WindowSplit(); // Partitioning for windows
9// build product state of the system and the AR-Automaton
10act = start ∧ AR-aut.start;
11// initializing windows by its owned state space
12for i = 0 to N-1
13wi = act * ri // wi - window and ri - restriction
14while ( t ≤ bound )
15while (count < N)
16act = wcount;
17// compute AR-Automaton image
18act = imageAR−aut(act);
19

20if (check universally) // Univ. prop.
21if (act ∧ AR-aut.reject 6= false)
22reportFailure();
23// acceptance have to be in all the windows
24if (act ∧ AR-aut.accept = act )
25if (allWindow == accept) //check all partitions
26reportAcceptance();
27else
28wcount = false;
29count++;
30break ;
31if (check existentially) // Exist. prop.
32if (act ∧ AR-aut.accept 6= false)
33reportAcceptance();
34// rejection have to be in all the windows
35if (act ∧ AR-aut.reject = act )
36if (allWindow == failure)
37reportFailure();
38else
39wcount = false;
40count++;
41break ;
42// remove uninteresting states
43act = act ∧ ! unintrestingStates();
44act = L_{image}(act) // local image computaion
45wcount = act;
46count++;
47// cross-over compt. and dist., W is set all windows
48CrossOverstates(W);
49t = t + 1; // simulation step counter

Figure 3.24: Windowing based SymC.
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Figure 3.25: left: Design, right: property AR-automaton
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Figure 3.26: Design and AR-automaton traversal



Chapter 4

Influence Information and
Manipulation

Chapter 3 discussed the state-of-the-art techniques and approaches in the formal
verification field. Partitioning the actual BDD into a number of smaller BDDs
called POBDDs and handling them separately is one among them. This method-
ology enables the control over memory requirements of the verification tool, al-
lowing the tool to handle comparatively larger designs. However, in practice this
methodology might not scale up, due to a wrong selection of parameters.

This methodology needs some refined and intelligent heuristics to be applied
efficiently to address the problems mentioned in section 3.4. Trivially, the aim
of POBDD based approach is to minimize the size of the partitioned BDD and
also to have balanced partitions as presented in [63], which requires less memory
compared to the original BDD. Hitherto, this is the only heuristic that has been
applied to realize this partitioning methodology. But partitioning based on BDD
size and the balancing factor only, does not explore the whole potential of this
methodology, because this POBDD based methodology can be applied in two
different verification scenarios, namely full validation and fast falsification. Both
the scenarios require totally different approaches in the method of partitioning.
However, the POBDD based verification can be realized by two different tech-
niques called Splitting and Windowing that is briefed in the section 3.8.

The partitioning heuristics should be based on the scenarios of the verifica-
tion. For example, in case of the splitting technique the fast falsification does
not require a balanced partition whereas for full validation the balancing factor
is an important issue. In contrast, the windowing technique requires balanced
partitions and non empty windows independent of the verification scenarios.

The following sections discuss in detail the two techniques under both scenar-
ios. The combination of techniques in different scenarios require different heuris-
tics for partitioning. Despite different heuristics, all are based on a special cat-
egorization of variables that is referred as the influence factor information. The
influence factor of variables is basically the static information that can be obtain
from the partitioned transition relation. This chapter details the manipulation of
partitioned transition relation to collect the influence factors of the variables that
are utilized in the heuristics of splitting technique and for the on-the-fly method
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of partitioning for the windowing technique.

4.1 Intelligent Partitioning

The idea of partitioning is similar in both splitting and windowing techniques.
However, there are crucial differences between them. Both techniques differ by
the concept of owned and non-owned states and both handle the partitions in a
totally different way as explained in the section 3.6. In general, if a property can
be decided to be verified under the full validation or fast falsification scenario,
then both the partitioning techniques can be optimized for such a verification
by means of intelligent partitioning heuristics. This section discusses both the
scenarios under splitting and windowing techniques and therefore the goals of
the heuristics to be applied. The following details the goals of the full validation
and the fast falsification scenarios.

• Full validation: Full validation aims at exploring all the traces in order to
validate the property and shows it holds in all. The full validation scenario
better suits the properties that are universally accepted or existentially re-
jected. Therefore full validation approach can not offered to do any approx-
imation or restriction as it has to explore all the traces. Hence, in general it
is more time consuming compared to fast falsification, but this is the best
approach in terms of time for an universal verification where the property
holds in all traces.

• Fast falsification: The aim of fast falsification is to find at least one trace faster
compared to full validation approach that either satisfies the property in
case of existential verification or that violates the property in case of uni-
versal verification. In other words, this fast falsification approach better
suits the properties that are universally rejected or existentially accepted. If
the satisfying trace is found faster then the verification process is finished,
hence the term fast falsification. The term falsification is due to the fact that
existential satisfaction is inverse of the universal violation of the property.
In order to find at least one trace faster, fast falsification does not require
to explore all the traces and therefore can offered to utilize either under ap-
proximation or restriction of actual state space. Of course, in worst case i.e.,
not finding at least one trace, it has to handle all the traces, which will be
time consuming.

The following subsections detail splitting and windowing techniques in both
scenarios and briefs the problems that arise.

4.1.1 Intelligent Splitting

Splitting is a partitioning technique that is based on the Shannon expansion. As-
sume, a BDD f representing the actual state space of a design and if | f | ≥ Nt
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where Nt is the threshold value of the node count limit for partitioning. Then f
is partitioned into f1 and f2, as shown in equation 4.1.

f1 = a ∧ fa

f2 =!a ∧ f!a

f = f1 ∨ f2

(4.1)

where a ∈ supp(f) is the partitioning variable, fa is the positive cofactor rep-
resenting part of the state space and f!a is the negative cofactor representing the
other part of the state space of f with respect to the variable a. Once the partition-
ing is finished either fa or f!a is assigned to the actual state space f and continued
with traversal while stacking the other. Splitting is called again whenever the ac-
tual state set f is crossing the threshold value Nt. Depending on the verification
scenario, the splitting technique can be optimized and this leads to the intelligent
selection of the variable a such that it scales for that scenario.

• Full validation: For full validation of a property in a design, SymC is ex-
pected to traverse all the partitions. Therefore, the partitions are expected
to have relatively balanced sizes so that the they are traversed at ease. Obvi-
ously, to minimize the effort of traversing the partitions, revisiting of states
has to be avoided or reduced. This phenomenon of revisiting states in dif-
ferent partitions is referred as the state overlap among partitions. This state
overlap leads to the duplicate computation, which is waste of time and
memory and results in degradation of the splitting approach and hence, the
tool. Thus the splitting for full validation approach should concentrate on
reducing the state space overlap along with relatively balanced partitions.

• Fast falsification: For fast falsification of a property in a design SymC is ex-
pected to find at least one trace that satisfies the property and that trace
should be found faster. This trace can be found by means of reliable guid-
ing method that steers the traversal to the target states. Splitting based on
guiding requires more interesting states in one of the partitions that could
lead to the target state and prioritizing that partition to be followed first.
Although guiding increases the possibility of reaching the target states rel-
atively faster, it can be further optimized and made faster when combined
with an under-approximation technique. This combination of guiding and
under-approximation results in finding the target states faster. Trivially, the
other partitions need not to be traversed if the target state is reached in the
previous partition, hence, the size balancing between the partitions is of
second priority than to the selected variable which covers more interesting
states.

4.1.2 Intelligent Windowing

Windowing is partitioning technique based on definition 12. In this technique
the partitions are referred to as windows. The main intension of the windowing
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technique is to partition the state space in a way that every window has some
state space at every step of its traversal. Thus in contrast to the splitting technique
the balancing condition is important in the windowing technique independent of
the scenarios. In this technique the fast falsification and full validation scenarios
differ only by the state space considered for the traversal.

• Full validation: For full validation of a property the whole state space has
to be considered. Thus the cross-over states have to be computed at every
step and distributed to the owners for further traversal. This cross-over
state computation and distribution is considered to be the bottleneck and
therefore have to be reduced. The partitioning algorithm should be caring
about the empty windows as this could degrade the technique.

• Fast falsification: The fast falsification in this technique can be realized in
two ways, first by traversing sequentially, i.e., depth wise, all the windows
and to stop if the target is reached. The second by traversing all the win-
dows at the same time step, i.e., breadth first, but without computing and
distributing the cross-over states. The second approach is utilized in this
thesis. The idea of not distributing the cross-over states reduces both the
overheads and the additional state space to be traversed and hence the
traversal of only the owned states of the windows is faster. In other words,
if the target states can be detected by traversing the window without dis-
tributing the cross-over states will be much faster compared to the one with
cross-over distribution. Trivially, if the target states are not detected by the
non-distributed traversal then the cross-over states have to be considered.
Hence, if a target state is reachable from the initial owned state space then
it is faster to find. However, this also requires a non empty windows and
balanced partitions.

We require some sort of information about the design that is verified in order
to address the problems and to achieve the required goals of both the techniques
in different scenarios. The collection of such information about the design is dis-
cussed in the next section. An on-the-fly partitioning approach is introduced in
section 4.3 for the windowing technique addressing the problem of balanced par-
titions that has a possibility of indirect or hidden advantage of less cross-over
states.

4.2 Influence Factors

In order to address the problems that arise in the splitting technique, we require
some defined information of the design that is to be verified. This information
should be capable of providing some knowledge that could be utilized in solv-
ing or minimizing the problems. The search for such information results in the
collection of influence factors which is based on the cone of influence of the par-
titioned transition relation. The partitioned transition relation is the state-of-the-
art technique and was discussed in section 3.1. In [53] Burch et al. introduced the
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partitioned transition relation in order to reduce the complexity of BDD based
symbolic verification. This partitioned transition relation exhibits a locality infor-
mation that could be further utilized to improve the formal verification tool. The
locality information is collected and ordered to form the influence factor table
that are extensively used in order to optimize the splitting and the windowing
techniques.

The locality information is collected as a pre-processing step by statically an-
alyzing the design. The locality information manipulation and its correspond-
ing influence factors collection is explained by means of an example. Assume
a synchronous circuit design with m number of state variables (E) and n num-
ber of input variables (I), then there are 2m possible states that belong to the
set of states S. The set of states is represented as BDD and is denoted as S(E),
where E = {e1, . . . , em} is the set of Boolean state variables. To represent the
transition relation using BDDs, we require a second set of states S ′ encoded by
E ′ = {e′1, . . . e′m} called next state variables. Then the BDD representing the tran-
sition relation T is denoted as T (E, E ′).

The partitioned transition relation is constructed based on the piece of combi-
national logic that determines how a state variable ei is updated. Let fi be the next
state function computed by this logic, then the next state value of the ei is given
by e′i = fi(E). This sub equations in turn define the whole transition relation as,

T (E, E ′) = T1(E, E ′) ∧ . . . ∧ Tm(E, E ′)
where Ti(E, E ′) = (e′i ≡ fi(E)).

From now on we denote Ti(E, E ′) as Ti. The transition relation can be ex-
pressed as a conjunction of relations and it is represented as a list of parts, which
are implicitly conjuncted. This list representation is called the partitioned transi-
tion relation. The image computation step with the partitioned transition relation
is then improved by a method called early quantification. This method is based
on an important observation of circuit locality, i.e, only a small number of vari-
ables in E is forming the next state function fi, formally, support(fi) ⊂ E, where
support returns the variables involved in the function.

Let us assume the partitioned transition relation shown in the equation 4.2
and discuss the locality information and the influence factor collection. Let us
also assume the set of state variables E = { e1, e2, e3} and the input variables
I = {i1, i2 } and the transition relation T = { T1, T2, T3 }. From the equation
4.2 one can see that not all the sub transition relation depend on all the state
variables and the input variables. The dependency in most cases is a subset of
the actual set of state variables and the input variables. This subset dependency
of the partitioned transition relation is called the locality information which is
collected and ordered in a fashion to form the influence factors. In principle, the
influence factor is an ordered collection of all the variables that influence the next
state value of a specific state variable.

T1 = (e′1 ≡ f1)wheref1 = (¬e2 ∨ e3) ∨ i1

T2 = (e′2 ≡ f2)wheref2 = e2 ∨ (¬i2 ∨ i1)

T3 = (e′3 ≡ f3)wheref3 = e2 ∧ (¬e3 ∨ i2)

(4.2)
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The influence factors are different for the input and the state variables. The
influence factor collection for the state variables can be calculated repeatedly, i.e.,
looping the collection for a defined number of steps, whereas for the input vari-
ables it is calculated for only once. We have two different factors, first, lookaheads
denoted by D↑s(e, l), is a set containing all the next state variables (equivalent
present state variables) that are influenced by the variable e over l steps. Second,
lookback denoted as D↓s(e

′
, l), is a set containing all the state variables that influ-

ence the next state variable e
′ in l steps back. If either of the factor is computed

then the other can be obtained. A formal definition of influence is given below,

Definition 15 Let l1, l2 ∈ N be the influence limits. For a given FSM A, the influence
Φl1,l2(e) ∈ [−1, 1] of a state variable e ∈ E, with |E| = m, is defined as,

Φl1,l2(e) =
|D↑s(e, l1)| − |D↓s(e, l2)|

m
. (4.3)

where the factors lookaheads and lookback definitions are formally given by
the equations 4.4 and 4.5.

D↑s(e, 1) = {v1, . . . , vm} (4.4)

where vi ∈ E, e ∈ supp(fvi
), v′i ≡ fvi

and 1 ≤ i ≤m.

D↓s(e, 1) = supp(fe) (4.5)

where fe is the next state function of the variable e such that e′ ≡ fe.

D↑s(e, l1 + 1) = D↑s (D↑s(e, l1),1)

For D↑s(e, 1), we collect the corresponding ei represented by the partitions Ti

that contain e and we iterate it for l1 > 1. The implementation of the influence
lookaheads is shown in the Figure 4.1. The algorithm picks all the state variables
e ∈ E one by one (line 8) and checks for its presence in the next state function fv

that corresponds to the transition relation partition tv (line 11). If present in the
support set then the present state variable v is inserted in the influence which is
equivalent to v′ where tv = (v′ ≡ fv). Completing the loop for all the partitions
ti then depending on the l value it either jumps to line 24 where the lookahead is
stored else it loops from the line 16 to 23. In this loop the variables in the influence
are again checked for their influence and are appended to the actual influence and
this loops l - 1 times.

For D↓s(e, 1) we count the state variables in the support of Ti. This is shown
in the Figure 4.2. Although the computation of lookback for more than one step
is possible, it is not utilized here in this thesis. The lookback algorithm is shown
in Figure 4.2. For all the partitioned transition relation te (line 8) the support set
supp(te) is collected (line 10), and all the variables v in the support set and in E
are inserted in the lookback set for the variable e (lines 11 - 12).

In reference to our example the transition relation shown in equation 4.2, the
corresponding influence factors are shown in equation 4.6. The lookahead(e1)
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1// T is the Partitioned transition relation
2// l is the integer value for look ahead
3// E is the set of all state variables
4// te is the next state function of the variable e

5// D↑s (e, l) is the influence that maps string to set of string

6look-ahead ( in: T , l; out: D↑s (e, l))
7j = 1
8for all e ∈ E
9Inf.clear()
10for all tv ∈ T
11if e ∈ supp(tv) then
12Inf.insert( v)
13//where tv = v′ ≡ fv, v′ is next state var. of v
14If = Inf
15// e is present state variable name of e′

16while j < l
17for all if ∈ If

18temp-inf.clear()
19for all v ∈ if .second
20temp-inf.insert(( If .find( v)).second)
21temp- If [ if .first] = temp-inf
22If = temp- If

23j++

24D↑s (e, l) = If

Figure 4.1: Influence lookaheads algorithm.

for one step is a empty set as it does not occur in any of the support set of the
transitions. However, the variables e2 and e3 are not empty as it is in the support
set of some transitions.

D↑s(e1, 1) = {}
D↑s(e2, 1) = {e1, e2, e3}
D↑s(e3, 1) = {e1, e3}

D↓s(e1, 1) = {e2, e3}
D↓s(e2, 1) = {e2}
D↓s(e3, 1) = {e2, e3}

(4.6)

Similar to the lookback factor of the state variables, lookback factor of the in-
put variables can also be collected. It is denoted as D↓i (e, 1) and used in the fast
falsification scenario of the splitting technique and is detailed in chapter 6. The
lookback factor of the input variables is a set containing all the input variables
that are present in supp(te). Formally, the lookback input influence factor is de-
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1// T is the Partitioned transition relation
2// E is the set of all state variables

3// D↓s (e, 1) is the lookback influence of var e
4// support is the support set
5// e is the present state variable that t depend on
6// te is transition relation of the variable e

7look-back ( in: T , E; out: D↓s (e, 1) )
8for all te ∈ T
9Inf.clear()
10support = supp(te)
11for all v ∈ support ∧ v ∈ E
12Inf.insert( v)

13D↓s (e, 1) = Inf

Figure 4.2: Influence lookback algorithm.
1// T is the Partitioned transition relation
2// I is the set of all input variables
3// Di (e) is the lookback influence for input vars.
4// support is the support set
5// te is transition relation of the state variable e
6look-back ( in: T , I; out: Di (e))
7for all te ∈ T
8Inf.clear()
9support = supp(te)
10for all i ∈ I
11if i ∈ support
12Inf.insert( i)
13Di (e) = Inf

Figure 4.3: Input influence lookback algorithm.

fined as in the equation 4.7.

D↓i (e, 1) = {i1, . . . , in} (4.7)

where n is the number of input variables and ij ∈ supp(te) ∩ I . The input
influence factor is always calculated for 1 step and it is always lookback, hence
the notation can be simplified as Di(e). Figure 4.3 shows the algorithm of input
influence collection. The loop takes every partition of the transition relation te
(line 7) and collects the support set of te (line 9). The second loop checks for the
presence of any input variable and if yes, then inserts that i in to the set (lines 10
- 12). The input variable influence of our transitions in equation 4.2 is shown in
the equation 4.8,

Di(e1) = {i1}
Di(e2) = {i1, i2}
Di(e3) = {i2}

(4.8)
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This influence factors are extensively used in the algorithms that address the
problems of the splitting technique. The influence factors are effectively manipu-
lated in order to find a interesting splitting variable for controlling the state space
overlap and also for guiding. These are detailed in sections 5.1 and 6.1 respec-
tively.

The next section 4.3 details the on-the-fly balanced partitioning method for the
windowing technique and explains the indirect effect of reduction of cross-over
states.

4.3 On-The-Fly Partitioning Method for Windowing
Technique

Section 4.1.2 pointed out that the windowing technique requires balanced parti-
tions and reduced cross over states. Partitioning using the naive methods create
problems of unbalanced partitions and often many empty windows. In this sec-
tion an on-the-fly partitioning technique is proposed which address the more bal-
anced partition and empty windows. This method has an interesting and indirect
side effect, i.e., the possibility of reduced cross-over states among the windows
partitioned by this method.

In the usual naive method of pre-defined windowing technique for 2n win-
dows n variables are required and every window is defined by the restriction ri

which is the unique combination of those n variables. Algorithmically, finding
such n variables for a balanced distribution is time consuming, hence this thesis
utilize a variant of this approach to find the variables on-the-fly while solving the
the balancing condition.

On-the-fly balanced distribution can be explained by assuming a set of states
represented by the BDD S as shown in Figure 4.4. The first variable is selected in
a way that it partitions the set into two balanced parts Sv and Sv with respect to
the variable v based on the Shannon expansion. The balancing condition is de-
fined by δ as shown in equation 3.5. Then the two parts are taken separately and
searched for the second variable that partitions it according to the balancing con-
dition. This procedure is repeated until 2n windows are formed. The difference
between the usual naive method to this method is that for 2n windows there can
be a maximum of 2n − 1 variables involved by the on-the-fly method in contrast
to only n variables in naive method. In other words, the naive method always
utilizes the same variables for second partitioning, whereas the on-the-fly can
use different variables. Figure 4.4 (a) shows the on-the-fly balanced distribution
of window partitioning, where there are 3 variables involved in order to form 4
windows. In contrast Figure 4.4 (b) shows the usual method of window parti-
tioning, where there are only 2 variables involved. The different variable utilized
for the partitioning is shown in the dotted circles and their combinations form
the restriction ri of the windows, where 1 ≤ i ≤ 2n windows.

The on-the-fly window partitioning method, although utilizing a higher num-
ber of variables, it still holds the definition of windowing (see definition 12) and
makes the distribution efficient and easier. It also produces a balanced partition



70 Chapter 4 · Influence Information and Manipulation

among windows and our experiments shows that it hardly creates any empty
windows during the traversal.
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Figure 4.4: (a). On-the-fly window, (b) Usual window partitioning

The interesting side effect of this method is explained with the example shown
in Figure 4.4. In general, the unique identification (restrictions) of windows makes
it hard to reduce the cross-over states. For example, if 4 windows (w1, . . . , w4) are
required then a maximum of 2 variables are used to identify the 4 windows by the
naive partitioning method. Equation 4.9 shows the unique identification or the
restrictions of the 4 windows by the usual method, where the selected variables
are e1 and e2. The equation 4.10 shows the restrictions of the 4 windows by the
on-the-fly partitioning, where the selected variables are e1, e2 and e3.

r1 = e1 ∧ e2

r2 = e1∧!e2

r3 =!e1 ∧ e2

r4 =!e1∧!e2

(4.9)

r1 = e1 ∧ e2

r2 = e1∧!e2

r3 =!e1 ∧ e3

r4 =!e1∧!e3

(4.10)

As mentioned earlier the cross-over states of the window wn are the set of next
states that do not satisfy the restriction rn. Formally,

Cross-Over = Image(wn, T )∧!rn (4.11)

In order to completely remove the cross-over states, the restrictions, i.e., the
selected partitioning variables have to have the next state function transition de-
pending on itself, as shown in equation 4.12. But this type of transition function
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hardly exists in practical design, hence we have to look for an option that might
reduce this problem.

Te = (e′ ≡ fe) where fe = e (4.12)

Let us compare the usual naive method to the on-the-fly method to prove that
the later approach is better for easy distribution and also has the indirect effect of
cross-over state reduction.

As we have seen above, the usual method of windowing requires 2 variables
to form 4 windows. The restrictions defines the owned state space of the win-
dows. Therefore, given a state, it can be decided to which window it belongs,
i.e., which is the owner window of the state. Equation 4.13 shows the owner or
the distribution of the state space to windows depending on the truth value of
the variable en. Similarly, the on-the-fly method requires 3 variables to form the 4
windows. Equation 4.14 shows the owner or the distribution of the state space to
windows according to the truth value of the variable en.

Trivially, the distribution of the state space among windows by the usual
method is more conservative than the distribution of the on-the-fly method. In
other words, except the state variable e1, other variables can be true in 3 different
windows by the on-the-fly method, in contrast to only 2 windows by the usual
method. This reveals that the on-the-fly method can distribute the state space
comparatively easier and faster as the state variables can be true in more win-
dows.

e1 ⇔ {w1, w2}
!e1 ⇔ {w3, w4}
e2 ⇔ {w1, w3}
!e2 ⇔ {w2, w4}

(4.13)

e1 ⇔ {w1, w2}
!e1 ⇔ {w3, w4}
e2 ⇔ {w1, w3, w4}
!e2 ⇔ {w2, w3, w4}
e3 ⇔ {w1, w2, w3}
!e3 ⇔ {w1, w2, w4}

(4.14)

Concerning the indirect effect of reduced cross-over states, the variable e1 is
of no interest as it has the same priority level (number of windows) in both the
methods, therefore, let us see the next variable e2. Given a state space where the
variable e2 is true, then depending on the variable e1, the states should be owned
by one of the windows in the set {w1, w3, w4}, that are partitioned by on-the-
fly method. For instance, if state space S = { 001, 010 } is encoded by the state
variables E = {e1, e2, e3 } then window w3 will hold {001} and w4 will hold {010}.
If we assume a transition relation in equation 4.15 such that the next state space



72 Chapter 4 · Influence Information and Manipulation

N = { 011, 000 } where only the variable e2 will be changed to false, then the set
N will be in the window set {w3, w4} where window w3 will hold { 011 } and w4

will hold { 000 }. In this example there is no cross-over states among windows.

{(001→ 011),

(010→ 000)} (4.15)

In contrast, the naive method with the same example will have some cross-
over states, i.e., the window w4 will hold the state { 001 } and w3 will hold { 010
}. Assuming the same transition in equation 4.15, then window w3 will hold {
011 } whereas w4 will hold { 000 }. This reveals that there are cross-over states
between the windows w3 and w4, where by on-the-fly method there are no cross-
over states. This advantage comes as the indirect effect of utilizing more variables
in partitioning.

However, there might be cross-over states among the windows in on-the-fly
method, but the possibility of automatic reduction does exists, whereas in the
usual method this is totally impossible. Therefore, the on-the-fly method is giving
some hope of automatic reduction of cross-over states.



Chapter 5

Static Overlap Reduction and
Dynamic Removal

The divide-and-conquer approach for memory control proved to be a promising
approach. However this approach has some vital points that have to be tuned in
order to obtain the full benefits of it. Chapter 4 discussed the problems and the
methods to tune them. This chapter details further on minimizing the overlap in
the splitting technique and also the balanced distribution and cross over state re-
duction and its implementation details. The implementation of overlap reduction
heuristics for splitting is basically adapted to the windowing techniques.

The main problem of POBDD based traversal is the redundant computation,
which exists in different forms in both splitting and windowing technique. The
minimal overlap algorithm aims at reducing such computation by reducing the
state overlap or the cross over states. This is done by the minimal overlap al-
gorithm that selects an intelligent variable for splitting. However, the minimal
overlap algorithm can control the state overlap only to some extent. This is fur-
ther handled by the dynamic overlap removal method. This chapter explains the
static and the dynamic minimal overlap algorithms and its implementation.

5.1 Influence Factors and Overlap Reduction

The state space overlap of two sets originates from states in different sets having
transitions to the same next states. However, in reality partitioning a set into two
sets can hardly result in totally disjoint sets of next states, but one can put some
effort in selecting the splitting variable v to minimize the overlap. For finding
such a good variable v, we utilize the influence factor table that is collected as
explained in the Section 4.2.

Let us refer to Figure 5.1 in order to see how locality information affects the
overlap of sets of states. For example, assume that the set of states
S = {001, 010, 011, 100, 110, 111} that are encoded by the state variables
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Figure 5.1: Splitting variable and their possible overlap of subsets after an image
computation.

E = {e1, e2, e3}. The partitioned transition relation is given in equation 5.1.

T1 = (e′1 ≡ f1)wheref1 = ¬e2 ∨ e3

T2 = (e′2 ≡ f2)wheref2 = e2

T3 = (e′3 ≡ f3)wheref3 = e2 ∧ ¬e3

(5.1)

Let us see with this small example, how the splitting variable could affect
the overlap of the two sets. Assume that the set S is splitted into two sets S1

and S2 by the variable e1 as shown in Figure 5.1(a). The splitted set of states
will be S1 = {100, 110, 111} and S2 = {001, 010, 011}. Then the image of both
sets S1 and S2 by applying the partitioned transition relation (see equation (5.1))
will be {011, 100, 110}, where there is 100% overlap. If the splitting variable is e2

as shown in Figure 5.1(b), the splitted sets will be S1 = {010, 011, 110, 111} and
S2 = {001, 100}. Then the image of the set S1 will be {011, 110} and the image of
set S2 will be {100}. Therefore there is 0% overlap. Finally, if the splitting variable
is e3 as shown in Figure 5.1(c), the splitted sets will be S1 = {001, 011, 111} and
S2 = {010, 100, 110}. The image of the set S1 will be {100, 110} and the image of
set S2 will be {011, 100}, where there is a partial overlap. The interesting point
is, given a set of states and the partitioned transition relation, the overlap of the
image of the splitted sets can vary depending on the splitting variable.

A good splitting variable that reduces the state overlap can be found heuris-
tically by analyzing the locality of the design that is implicitly given by the par-
titioned transition relation. The algorithm MinOverlap pioneers in exploiting this
locality or the static information of a partitioned transition relation T to find a
good splitting variable v. To understand how the locality or influence factors
could help finding the best variable, assume the same example in Figure 5.1(a),
where e1 is the splitting variable. The locality information shows that none of
the next state functions fi depend on that variable e1, i.e, D↑s(e1, 1) = { } In other
words, the variable e1 does not influence any of the next state function (next state
variables). Obviously, splitting with e1 does not restrict any of the next state vari-
able e′i values. Hence this increases the probability of having same values in both
splitted sets, eventually leading to a state overlap.
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In the other case shown in Figure 5.1(b), e2 is the splitting variable. The locality
information result shows that the variable (e2) influences all the three fi’s i.e.,
D↑s(e2, 1) = {e1, e2, e3}. Therefore, the splitting with the variable e2 adds on more
restrictions. Hence this restriction constrains the possibilities of the next state
variables, and trys to pull the image state space of the splits wide apart resulting
in minimal overlap. The locality information, i.e, the influence factors (see equation
5.2) is collected in the pre-processing step and represented as tables mapping each
variable to its value in descending order as explained in the section 4.2.

Φ1,1(e2) = 0.66

Φ1,1(e3) = 0

Φ1,1(e1) = −0.66

(5.2)

As explained above, splitting with a high influence variable will lead to fewer
cross transitions between the resulting partitions. Our algorithm performs better
if the splitting variable is conjunctively connected and degrades if disjunctively
connected in the partitioned transition relations Ti. However, it is computation-
ally expensive to analyze all Boolean connectives of the clauses of every Ti. The
actual MinOverlap algorithm (refer to Figure 5.2 for the pseudo code) picks a op-
timal state variable for splitting.

5.2 Static Overlap Reduction - MinOverlap Algorithm

The above section detailed with an example that the selected splitting variable
could control the state space overlap of traversal steps. It also discussed that the
high influence factor variables can control the growth of state overlap to some ex-
tent. Therefore the minimal overlap algorithm takes the high influence variables
into account for the state space splitting.

The minimal overlap algorithm is also referred to as the static overlap reduc-
tion method, because the overlap reduction is achieved by collecting the variable
influence which is a static information from the partitioned transition relation.
The next sub sections details the MinOverlap algorithm and the dynamic overlap
removal. On-the-fly method pseudo algorithm for the windowing technique is
discussed at last.

5.2.1 MinOverlap Algorithm for Splitting Technique

The minimal overlap (MinOverlap) algorithm is called by the main loop of the
SymC verification process whenever the BDD node count, representing the cur-
rent state space, crosses the threshold level defined by the user. The minimal
overlap algorithm partitions the state space into two parts and following one and
stacking the other. However the algorithm aims at reduced overlap, the algo-
rithm itself is motivated for full validation, which means the other stacked parts
have to be also traversed at some point. Hence the partitions have to satisfy some
balancing condition. Although not equal partitions, but at least the maximum of
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the two parts should not be bigger than 2
3

rd of the actual BDD node count. In
other words, the new balancing condition is defined by the equation 5.3,

Max(|fv|, |fv|) ≤ δ (5.3)

where δ = 2
3
| f | and f is the BDD to be partitioned.

Figure 5.2 shows the abstract implementation details of the minimal overlap
algorithm. The state variables are categorized based on their influence and put
into different sets (see line 9). The function getCandidateSet starts with the set
containing variables with a high influence and check them against a balancing
condition (see line 11). Alongside, the cost of these variables is computed with
the cost function from [63] that consists of a redundancy and a reduction factor.
If none of the examined variables satisfied the balancing condition, the variable
with minimal cost is selected (see line 15).

1// S is the current state set
2// Φ is the influence table
3// δ is the memory balance factor
4// α is the weight for the cost function
5// S1 and S2 are the resulting partitions
6MinOverlap ( in: S, Φ, δ, α; out: S1, S2)
7bestVar := Φ.top() // picks the highest influence var.
8minCost := cost( S, bestVar, α) // checks for the

balancing condition
9//Below loop collects the set of high influence variables

and checks for its cost
10while C = getCandidateSet( Φ) ∧ C 6= ∅
11for all w ∈ C
12if max( |Sw|, |Sw|) ≤ δ|S| then
13v := w; goto do_split
14else
15thisCost := cost(S, w, α)
16if thisCost < minCost then
17minCost := thisCost; bestVar := w
18v := bestVar
19do_split: S1 := Sv; S2 := Sv

Figure 5.2: State set splitting with the MinOverlap algorithm.

The main traversal loop gets the two splits S1 and S2 and checks for the bal-
ancing condition. If it passes then it stacks the S2 part, and continues with S1. If
the balancing condition is not satisfied then the main loop compromises the over-
lap for the balancing condition. So the main loop updates the influence limit, i.e.,
considers the next set of lower influence factor variables and calls the MinOver-
lap algorithm again. This time the getCandidateSet() function takes the next set of
influence factor variables into account. This iteration goes on till the algorithm
finds a split that satisfies the balancing condition.

The compromise algorithm is outlined in Figure 5.3. As mentioned above the
state variables are categorized into 4 subsets according to their influence factors.
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1// S is the current state set
2// δ is the memory balance factor
3// S1 and S2 are the resulting partitions
4split ( in: S, δ; out: S1, S2)
5influence = 4
6while influence > 0
7MinOverlap( S, Φ, δ, α; S1, S2)
8if max( |S1|, |S2|) ≤ δ then
9influence = 0
10else // updates next set of inf. vars.
11update( getCandidateSet() )
12influence--

Figure 5.3: Algorithm for compromising overlap for balancing factor.

The 4th subset contains the highest influence variables where as the 1st subset
contains the lowest influence variables. The split algorithm calls the Minoverlap
algorithm, where the getCandidateSet() starts with the highest 4th subset. If the
balancing condition is not satisfied (line 8) then the function getCandidateSet() is
informed to take the next level influence factors by the update() function (lines
11 and 12) and the loop continues till the balancing condition is satisfied or all
the state variables are considered. The balancing condition is based on the cost
function in definition 14. However this cost function finds the best variable to
partition into two equal halves, i.e., δ = 1

2
| S | balancing condition for two par-

titions. In MinOverlap algorithm equal balancing is a secondary factor, moreover
checking for all the α values is a time consuming process. Therefore, for the Mi-
nOverlap algorithm, an average value of 0.5 for α is used in the cost function and
the the balancing condition is defined as δ = 2

3
| S |. Although, fixing α to a con-

stant will not result in highly concise BDD partitions, but will save splitting time
and produces acceptable conciseness. The reason for compromising the equal
distribution δ is due to the factor that high influence factor variables might not
always distribute equally.

5.2.2 Dynamic Overlap Reduction for Splitting Technique

The splitting technique based on MinOverlap algorithm only controls and mini-
mizes the state overlap of partitions to some extent. Depending on the design
this might vary from few traversal steps to tens of steps. This can be seen in the
experimental section 7. This activated the option of further removing the overlap
dynamically while traversing. Hence, the visited states of a traversed partition is
stored at every defined time period and later the traversal of other partitions will
check and remove the visited states from its actual state space. Therefore the new
partition will have only the new set of states. This simple approach proves to be
an excellent time saving method in some designs that tends to have too much of
overlap.

In particular, the sequential SymC has to traverse the splits one after the other.
Moreover, the splits themselves can reach the threshold level and activates the



78 Chapter 5 · Static Overlap Reduction and Dynamic Removal

��

��

��

��

��

�

�������� �������� �������	 
������� 
������� 
������
 
�������

��

�	
��
��������
�


Figure 5.4: Dynamic Overlap removal

splitting process. The pseudo algorithm is shown in Figure 5.5. The dynamic
overlap removal approach keeps storing its state space called visited states (see
lines 8 - 12) for the first split traversal at every defined period of time. The
later traversal splits have to remove the visited states and update the visited state
space at the defined time limit (see lines 14 - 17).

Figure 5.4 shows the state space traversal, where there is three different splits
made at different time point. The first split is at time step 1, and SymC follows
the split S1 storing the split S2. Let us assume that the dynamic overlap removal
time period 2, i.e., every second step of the traversal dynamic removal procedure
should be activated. Therefore, the state space at the time step 3 has to be stored
and continued. Figure 5.4 shows that the split S1 at time step 4 is crossing the
threshold, hence, the second splitting is done resulting in continuing with S3 and
stacking S4. The state space of the split S3 will be stored in the visited state space.

Assume, that SymC starts the resimulation at time step 6, then split S4 will be
considered for the next traversal. Split S4 at time step 5 has to remove its visited
state space compared to the split S3 and updates with only unvisited states and
continues. Similarly, when split S2 starts its traversal, it has to check at time step
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1// t is the time period for dynamic removal
2// cycle is the present simulation time step
3// reSim is the resimulation indicator of other splits
4// split is the time step of first splitting
5// V states is the map of visited states to the time step
6// S is the actual state space
7dynamic ( in: t, cycle)
8if !reSim
9if split
10if cycle == split + t
11Vstates[cycle] = S
12split = cycle
13else
14if V states.find(cycle) 6= V states.end()
15Overlap = S ∧ V states(cycle)
16S = S ∧ ! Overlap
17V states(cycle) = V states(cycle) ∨ S

Figure 5.5: Psedo algorithm for Dynamic overlap removal.

3. The figure shows that even after removing the visited states still it needs to be
partitioned and typically this removal procedure continues at time step 5 for the
other split also.

5.3 On-the-fly Algorithm for Windowing Technique

The aim of the windowing technique is to have balanced and non empty win-
dows rather than aiming at reduction of cross over states. The on-the-fly method
is implemented to adopt the windowing technique and to split the state space
into more than two parts.
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Figure 5.6: Subset tracking for windows

The on-the-fly algorithm finds a maximum of 2k − 1 variables for 2k splits,
which is better for a balanced distribution and non emptiness among the win-
dows as explained in section 4.3. In principle, the on-the-fly method can utilize
any of the partitioning algorithms to find the set of partitioning variables, but in
this thesis we utilize MinOverlap algorithm. The pseudo code for obtaining the
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window restriction variables is shown in Figure 5.7. The algorithm identifies the
partition and the variable by right shifting the window number. Figure 5.6 pic-
tures the tracking of obtaining the restriction variables for the window w5, for
example.

1// S is the BDD representing the actual state set to be
partitioned

2// k defines the number of windows to be created i.e., 2k

3// V ar is the splitting variable selected by MinOverlap
alg.

4// encode is the unique window restriction
5getSubset ( in: S, k)
6

7for i = 1 . . . 2k

8n = i
9Temp = S;
10encode = True
11for j = 1 . . . k
12MinOverlap(Temp, Φ, δ, α; g, h, V ar);
13if (n % 2)
14Temp = g; // skip h for positive bit
15enclode = encode ∧ V ar
16else
17Temp = h; // skip g for negative bit
18enclode = encode ∧ ! V ar
19n = n >> 1; // get next bit
20Window − id[i] = encode

Figure 5.7: On-the-fly algorithm for window partitioning.

The lines 11 to 17 in Figure 5.7 shows the collection of variables for windows
and this is pictured in Figure 5.6 for a explicit value of i = 5 where k = 3. The
binary coding of 5 is ”101” which tracks first the g subset and the after the right
shifting tracks to the split h and again to the split g. The high influence variables
used by the MinOverlap algorithm tries to balance the distribution of state space
among the windows. Experimental results shows that by this approach window
emptiness is greatly reduced more over the maximal influence variables reduce
the number of crossover states rather than the minimal influence variables.



Chapter 6

Guiding

Chapter 4 discussed the efficiency of POBDD based verification for solving larger
problems under two different scenarios, i.e., full validation and fast falsification.
Chapter 5 detailed the algorithms for optimizing the full validation approach for
splitting technique and discussed an on-the-fly partitioning algorithm for win-
dowing technique. This chapter details on the fast falsification scenario of the
splitting technique by means of guiding and its types. The fast falsification in the
windowing technique is realized by avoiding both computation and distribution
of cross-over states and therefore does not require any special optimization al-
gorithm. Hence, fast falsification by windowing is only used for comparing the
results of the fast falsification of splitting technique.

Guiding is in principle a special method to traverse only a small subset of
traces rather than set of all traces. This small subset of traces are identified to
be interesting for a particular verification run by the information collected from
the property to be verified. Trivially, this approach of guided splitting fastens the
traversal and finds the target states faster. Hence, the guiding in SymC is a prop-
erty based one, where the interesting variables are collected from the property
and used in two different flavours as briefed in section 6.1. The different types of
guiding in SymC are,

• State variable guiding : The actual state set is partitioned into two parts
using one of the best state variables that are collected.

• Input variable guiding : The actual state set is restricted to take transitions
that only accepts the selected input variables.

Both types of guiding basically aim at fast finding of at least one trace that
either validate or falsifies the property depending on the quantification. The in-
formation used by both type of guiding are extracted from the property that is to
be verified. The sections below detail the information collection and the imple-
mentation of both types of guiding.
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6.1 Guiding Heuristics

Naturally, the full validation of a design is an important factor but at some stage
of the design process one may be interested to check for errors in a faster way.
Although the error can be detected by the full validation approach it might con-
sume relatively more time, therefore we require an alternative approach for fast
detection of errors. Such a heuristic should steer the traversal in the direction of
errors that would save time and memory of the whole verification process. One
of such heuristics is implemented and is called guiding. The guiding algorithm
basically aims at reaching the target states faster and thus it partitions in a way
that one of the splits is a smaller BDD and that split contains a higher percentage
of potential target states. The potential target states are those states that will reach
the target states after some traversal steps. Generally, small BDD means faster im-
age computation and having the higher probability of reaching the target states
in that split directly means finding the target states faster.
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Figure 6.1: Guided splitting

The guiding algorithm is a property based heuristic. The algorithm basically
collects the interesting signals that are present in the property that defines the
validation of it. Once having those details the guiding algorithm can be imple-
mented in two different flavours. The first one is to use the design’s state vari-
ables, that are of interest, to partition and the second is to collect and utilize the
input signals as hints to steer the traversal. Both approaches guide the traversal
depending whether the property is supposed to hold in all traces, i.e., an univer-
sal property or if the property should hold in at least one of the traces, i.e., an
existential property.

• In case of an universal property the heuristic should guide the traversal to
the traces that have higher chance of rejecting the property.

• In case of an existential property the heuristic should guide the traversal in
the direction of the traces that have higher chance of accepting the property.
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Figure 6.1 portrays the guided splitting, where the grey spots are the poten-
tial target states that are identified by the information that is obtained from the
property. The splitted partitions are in such a way that one partition has a higher
concentration of potential target states and is relatively small in size, i.e., low BDD
node count. Therefore, this is realized by first under-approximating the BDD for
a low node count that represents more state space and identifying the potential
target states in that under-approximated BDD using the collected information.

6.1.1 Guiding by State Variable

Guiding based on state variables is basically partitioning the state space into two
sets by splitting using a selected state variable in such a way that one of the splits
has a higher concentration of potential target states and is comparatively smaller.
Let us assume the same example from the section 5.1 where S is the set of states
and E is the set of state variables that encodes the states in S. The transition re-
lation is shown again by equation 6.2. Let us define a property P1 that is to be
verified.

P1 = F[1]e3 (6.1)

T1 = (e′1 ≡ f1)wheref1 = ¬e2 ∨ e3

T2 = (e′2 ≡ f2)wheref2 = e2

T3 = (e′3 ≡ f3)wheref3 = e2 ∧ ¬e3

(6.2)

The above property expresses that variable e3 should be eventually true within
1 clock cycle. The information that can be obtained from the property is that the
variable e3 is the only interesting variable that could define the property to be
valid or not. From the equation T3 in 6.2 we observe that the next state value of
the variable e3 is dependent only on the present values of the variables e2 and
e3. Hence, the enlarged interesting set of state variables for the guiding is G =
{e2, e3}.

First, let us assume the property is to be proven universally, hence, the guiding
should steer the traversal to the traces that do not accept the property. As we
know that set G is the set of variables that decides the e3’s next state value, we
partition the state space with only those variables in the set G.

So if the state space is assumed to be S = {010, 100, 110}, and if the set S
is partitioned with the variable e3 then one of the split is an empty partition as
shown in Figure 6.2. Due to the balancing condition obviously it is not the right
choice. Hence the next possible variable e2 is tried that has a better partition with
S1 = {100} and S2 = { 010, 110 } as shown in Figure 6.3. The partition is done
with one of the interesting variable, but now the question is which one of the
splits contains more of the potential error states. To identify the right split to
be traversed a cost function (see section 6.3) is implemented. The cost function
utilizes the transition relation to decide and selects the right split in order to steer
the traversal. The cost function basically constrains the variable that is used for
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Figure 6.2: Unbalanced guided splitting for universal property

partitioning, which is one of the variable in the set G. Depending on the number
of minterms from the resulting constrained BDD, it returns the cofactor of the
variable in the transition and hence the split to be followed.
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Figure 6.3: Balanced guided splitting for universal property

In our example, constraining the variable e2 in the transition T3 with ”1”
makes the resulting BDD having one minterm and if constrained with ”0” the
resulting BDD ends up with no minterm. Hence, the constraining with ”1” is
much stronger than constraining with ”0” for the variable e2 in transition T3. In
other words, when the variable e2 is constrained to ”0” then the whole transition
is empty, i.e., no minterms remain. That unveils that the variable e2 is only present
as the positive cofactor, so the negative cofactor of that variable might lead to the
value ”0” for the variable e3. Therefore we conclude to follow the partition that is
”!e2”.

Figure 6.3 shows that following the negative cofactor of the variable e2 leads
to the failure of the property, giving an idea of the guiding heuristic. Assume
the property shown in equation 6.1 should be proven existentially, then guiding
is exactly done the same way except the interesting variable set. The interesting
variable set G for existential property guiding is obtained as shown in the equa-
tion 6.3.

G = E − G (6.3)
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Figure 6.4: Guided splitting for existential property

where, E is the set of state variables of the design.
For the property in equation 6.1 to be proven existentially the interesting vari-

able set for guiding will be G = { e1}. Figure 6.4 shows that both the partitions
have a trace that leads to the acceptance of the property.

6.1.2 Guiding by Input Variable

Guiding based on input variables is basically restricting the possible next state set
to a smaller subset. The restriction is in such a way that the subset has a higher
concentration of potential target states. Further traversing this smaller subset is
faster and easier to reach the error states. In contrast to the state variable guiding,
input variable guiding does not depend on the high influence factor rather it
depends only on the variables in the factor Di(e).

Let us adopt the transition relation shown in equation 5.1 to the equation
shown in the equation 6.4 in order to explain the guiding by input variables. Let
us assume the set of input variables I = { i1, i2 }.

T1 = (e′1 ≡ f1)wheref1 = (¬e2 ∨ e3) ∨ i1

T2 = (e′2 ≡ f2)wheref2 = e2 ∨ (¬i2 ∨ i1)

T3 = (e′3 ≡ f3)wheref3 = e2 ∧ (¬e3 ∨ i2)

(6.4)

To demonstrate the guiding with input variables, let us consider the property
P2 in equation 6.5 that expresses that the variable e3 should be true in the next
step.

P2 = Xe3 (6.5)

Di(e1) = {i1}
Di(e2) = {i1, i2}
Di(e3) = {i2}

(6.6)

From equation T3 in 6.4 we observe that the next state value of the variable e3

is partially dependent on the input variable i2. The same is shown in the input
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influence collection equation 6.6. Hence, the interesting set of input variable for
the guiding is I = { i2 }.

If we assume the property is to be proved universally, then the guiding should
steer the traversal to the traces that do not accept the property. As we know that
the set I is the set of variables that influences the e3’s next state value, we partition
by restricting the state space to only those transitions with variables in the set I.
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Figure 6.5: Complete next state set after the image computation step

If the state space is assumed to be S = {001, 011, 111, 100} then Figure 6.5
shows the whole set of next states as a result of the image computation. In order
to guide using the input variables, the transitions are restricted to one of the cofac-
tors of the input variable i2, so that the next state space is automatically restricted.
However, similar to the state variable guiding, the right cofactor restriction is a
question. Therefore, the cost function that constrains the input variable in the
transition relation is utilized. The cost function decision is based on the minterm
count of both positive and negative cofactors of the input variable.
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Figure 6.6: Guided by input variable !i2

In our example the input variable i2 is present in its positive form which will
be identified by the cost function. Hence, the input variable guiding should re-
strict the next state space to the negative cofactor of i2. The restriction is done by
conjuncting the !i2 to the set S. During the image computation the transitions with
the i2 get removed automatically, hence restricting the next state space as shown
in Figure 6.6. So restricting the set S with !i2 leads to the next state space S1 = {
110, 100 } and this state space already found a rejection case of our property P2.

If property P2 should be proved existentially, then guiding is exactly done the
same way except for the interesting variable set. The interesting variable set I for
existential property guiding is obtained as shown in the equation 6.7.

I = I − I (6.7)
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Figure 6.7: Guided by input variable !i1

where, I is the set of input variables of the design.
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Figure 6.8: Guided by input variable i1

For the property to be proved existentially the interesting variable set for guid-
ing will be I = { i1 }. The Figures 6.7 and 6.8 shows that both restrictions have
a trace that leads to the acceptance of the property, hence following any of the
restrictions will lead to the acceptance of the property.

6.2 Property Based Guiding Information

Properties in SymC is specified in FLTL or LTL formulas. The properties are usu-
ally of the form,

A→ C

where A and C are FLTL/LTL formulas, with A as the assumption and C as
the commitment. In some cases the properties contain only the commitment part,
i.e., there is no assumptions. It is logical to extract the guiding information from
the properties because they are the one that have to be verified against the de-
sign. The information that is supposed to be collected are the ones that decides
the result of a property whether it is holding or failing in a design. Hence, for
guiding only the commitment part of the property is of interest. Because the tool
SymC is highly optimized for the traversal, the traces that are not satisfying the as-
sumption part of the property will be automatically removed form the traversal.
Therefore, whatever the property type is, for guiding all the signals that appears
in the commitment part is collected. This thesis deals only with the commitment
signal collection and does not cover the handling of the temporal operators of the
commitment signals.
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The property is taken and manipulated as a string in order to identify the
commitment part and collects the set of signals that are involved in that part of
the property. The property manipulation for the collection of interesting signals
and their influence collection for both state and input variable guiding are shown
in Figure 6.9. The commitment signals are identified by the function getCommit-
ment() as shown in line 8 that takes the property as input and returns the set of
commitment signals. All the interesting signals that are collected are then identi-
fied and categorized as a state variable or an output signal of the design. If any of
the interesting signal is an output signal then the state variables that are involved
in their definition are collected. The tracking down of output signals to a set of
state variables is implemented in the function getDefinition() (line 12) that takes
the output signal name and returns the set of state variables involved.

1// P is the property to be verified
2// G is the interesting state variables
3// I is the interesting input variables
4// sst1, sst2, sst3, sst4 are set of string
5// st, s are present state variables
6// i is the input variable
7prop_info ( in: P ; out: G, I)
8commit = getCommitment(P) // collects the commitment part
9sst1 = decompose(commit) // collects the interesting set of

vars.
10for all st ∈ sst1
11if st == output-variable
12sst2 = getDefinition(st)
13for all s in sst2

14sst3.insert( D↓s (s, 1)) // state vars in supp(ts)
15sst4.insert( Di (s)) // input vars in supp(ts)
16else

17sst3.insert( D↓s (st, 1))
18sst4.insert( Di (st))
19

20G[s] = sst3
21I[i] = sst4

Figure 6.9: Guiding variables collection algorithm.

Therefore, the interesting signals are always a set of state variables. This set of
variables are the ones that together define the property to be valid or not. Hence,
the validation of one property is now decomposed into validation of a set of vari-
ables. The variables of this set are the target variables that have to be restricted
in order to guide the traversal, but this set of variables is usually small and re-
striction can not benefit that much. So this set of variables can be improved in
order to obtain a broader scope of guiding by collecting the set of variables that
influence this small set of target variables. This set of new influencing variables
can be either state variables or input variables. The influence variable collection
can be seen as a variant of the target enlargement method discussed in the section
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3.3. Although this enlargement is done for only one step it is an approximation
for more steps.

This enlargement or the collection of influencing variables are obtained using
the influence factors for every variable in the interesting set (line 10). Line 11
checks whether the signal is an output signal. If yes then it gets the definition part
of that output signal to identify the set of state variables involved (line 12). For
every such variables the lookback or the support set of the next state function of
that variable is searched for the state and input variables involved and is collected
in different sets (lines 13 - 15). If the interesting signal is not a output signal then
the support set is searched directly as shown in the lines 16 - 18. The final set
of enlarged number of variables are categorized into state variables and input
variables and are updated in the set G and I respectively (lines 20 and 21).

Obviously, the guiding technique is more efficient if the property contains
only a subset of the actual set of state or output variables. For example if the
property is specified to check the reachability of a state, then set G and I will be
the same as the set of state and input variables, respectively. In that case guid-
ing is of no interest as there is no special set of variables. In other words every
variable is of interest, leading to no special restriction that could be applied for
fast falsification. The next sections details the cost function that steers the traver-
sal, and apply the set of collected interesting variables for fast falsification by the
guiding algorithms.

6.3 Cost Function for Steering

Guiding in SymC is basically composed of two steps. One is to partition the state
space into two, with one of the partitions having a higher scope of reaching the
target states and second is to identify that partition and traversing it first. The
second step of the guiding procedure is called Steering and it is implemented by
the Cost() function. This part of steering is equally important like the part of find-
ing the right set of variables for partitioning. Because, if steering is wrong then
the guiding approach will traverse the wrong partition, which trivially increases
the time for finding the target states.

A = !x1 ∧ x2 ∧ x3 (6.8)

Let us consider an example in order to explain the heuristic behind the Cost()
function. The aim of the guiding cost function is to find the actual cofactor of
a given variable in a given expression and therefore it only returns a ’0’ or ’1’.
Assume the expression A as shown in equation 6.8, where x1, x2 and x3 are the
variables. If the cost function has to identify the cofactor of the variable x1 in
the equation A, then the Cost() function works as follows: It restricts the variable
x1 to its positive cofactor in the expression A, therefore the expression A will
be reduced to A = ⊥. The number of minterms of this expression is 0. However,
restricting the variable x1 to its negative cofactor the expression A will be reduced
to A = x2 ∧ x3 having 1 minterm. The cofactor restriction that leads to a higher
minterm count is the actual cofactor of the variable, i.e., the variable x1 when
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restricted to its negative cofactor results in a higher minterm count. Therefore the
actual cofactor of the variable x1 is negative in the expression A. In other words
!x1 is present in the expression A.

1// T is the Partitioned transition relation
2// γ set of interesting signals collected from the property
3// Φ is the set of variable to be checked for its cofactor
4// Res is an integer variable
5// Pcofactor count of Minterms after +ve restriction of v
6// Ncofactor count of Minterms after −ve restriction of v
7

8Cost ( in: T , γ, Φ; out: Res)
9Pcofactor = 0;
10Ncofactor = 0;
11for all c ∈ γ
12tc = T.find(c ’) // identifying the trans. of c
13temp = tc
14for all v ∈ Φ
15temp = temp.restrict(v) // +ve restriction of v
16Pcofactor = Pcofactor + temp.CountMinterm()
17temp = tc
18for all v ∈ Φ
19temp = temp.restrict(!v) // −ve restriction of v
20Ncofactor = Ncofactor + temp.CountMinterm()
21if Pcofactor >= Ncofactor
22return 1
23else
24return 0

Figure 6.10: Steering algorithm for guiding - Cost() function.

Of course, the argument here clearly assumes that the variables in the ex-
pression are conjunctively connected. This assumption is not always true in case
of the next state function and therefore both best and worst performance of the
cost function can not be avoided. However, with the assumption of conjunctive
expression, the actual cofactor of a variable in the expression is the cofactor re-
striction with the highest minterm count.

The Cost() function is shown in Figure 6.10. This steering algorithm depends
on the interesting set of variables (or tracked down state variables) that are col-
lected from the property. The transition relation of every variable of the interest-
ing set is identified as shown in the lines 11 and 12. Then the set of interesting
variables is restricted to its positive cofactor in its corresponding transitions and
the number of minterms are counted (line 14 - 16). Again, the original transitions
are restricted with the negative cofactor and minterms are counted (line 17 - 20).
The counting of minterm is the key idea of guessing the cofactor of the variable
in the transitions. For example if the variables are connected as positive cofactor
with some other variables, then restricting the variable to be ”True” will leave the
remaining variables in the function. These remaining variables form a minterm
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of the function. If the same is present as a negative cofactor, then restricting it as
”True” will result the whole function to be ”False”, i.e, no minterm if it is conjunc-
tively connected. The cost function returns a 1 (True) in case of higher number of
minterms for positive cofactor restriction (lines 21 and 22) else returns a 0 (False)
as shown in the line 22.

6.4 Implementation of State Variable Guiding

The state variable guiding as briefed in section 6.1.1 is a splitting technique based
on the Shannon expansion,

f = (v ∧ fv) ∨ (!v ∧ fv)

where v is the variable that partitions the function. In the state variable guiding
the variable v is always from an interesting subset of state variables. The set of
interesting state variables basically depends on the property’s quantification. If
the property is to be verified universally then the set G (see Figure 6.9 line 2 and
23) is the set of interesting variables and if it should be verified existentially then
the set G as defined in equation 6.3 is taken into account. In any case the vari-
able v, either from G or G, is selected as defined in the balancing condition. The
selected variable v is one of the variables that defines the validation of the prop-
erty. Therefore, depending on the Boolean connectivity of the selected variable
the validity of the property might differ depending on its truth value.

The algorithm for state variable guiding is shown in Figure 6.11. Assume that
the variable v is selected from the set G, i.e, an universal property (line 9 -13), then
that variable’s truth value directly influences the validation of the property. The
current state set S will be partitioned into two splits S1 and S2 as shown in the line
25, where S1 is the set that contains only the positive cofactor of the variable v and
vice versa for S2. Hence, splitting the set S into two with v, increases the chance
of the property to be true in one of the splits. Although this totally depends on
the Boolean connectivity the best case is assumed. However, guiding is achieved
by traversing the split that fails the property by means of steering as shown in
the lines 25 - 27. The correct split that fails the property is identified by the Cost()
function and it is obtained by manipulating the transitions of the corresponding
interesting signals and the cofactor of the variable v. The Cost() function (line
26) is the one that steers the traversal and it is detailed in section 6.3. The cost
function identifies the potential target states by considering the transitions of the
set of guiding variables. It returns a 1 (True) for the selected variable only if the
variable is present in its positive cofactor form in the set of transition, hence,
exchanging the set to be traversed (line 27). In other words, the guiding signals
should not be allowed to be true and therefore we follow the negative restriction
of the splitting variable. Because the restricted variable is present in its positive
form in the transitions and following the negative cofactor might not allow the
interesting set of variables to be true and therefore the traversal leads to the error
states.
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In contrast, if the variable is selected from the set G, i.e., an existential property
(line 9 - 13), then that variable’s truth value does not influence the validation
of the property. Hence, splitting the set S into two with v makes sure that the
property will hold in both splits. Traversing either of the splits will eventually
lead to at least one trace that satisfies the property.

1// S is the current state set
2// G is the interesting state variables
3// E is the set of state variables
4// S1 and S2 are the resulting partitions
5// δ is the memory balance factor
6// α is the is the weight for the cost function
7guide ( in: S, G, E; out: S1, S2)
8minCost := cost( S, bestVar, α)
9if universal property then
10Φ := G
11else
12G := E - G
13Φ := G
14

15bestVar := Φ.top()
16C := ShortPathSubset(S)
17for all w ∈ Φ
18if max( |Sw|, |Sw̄|) ≤ δ|S| then
19v := w; goto do_split
20else
21thisCost := Balancing-cost(S, w, α)
22if thisCost < minCost then
23minCost := thisCost; bestVar := w
24v := bestVar
25do_split: S1 := Sv; S2 := Sv̄

26if Cost(v)
27Exchange( S1, S2)
28S2 := S2 ∨ (S ∧ !C)

Figure 6.11: State variable Guiding algorithm.

Although the guiding helps the traversal to steer it in a right direction, still
the image computation is a major and time consuming step. Hence this algo-
rithm utilizes the under approximation technique ”Short Path Subset” in order to
obtain the small BDD that represents majority of the states (line 16). This small
BDD is then splitted with one of the interesting variables that is selected by the
cost function that depends on the memory balance factor. The subset S1 is taken
for the further guided traversal, where the other subset is disjuncted with the re-
maining part of the under approximation (line 28) and stored in the queue as a
matter of completion.
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6.5 Implementation of Input Variable Guiding

The input variable guiding as briefed in section 6.1.2 is not a straightforward
splitting technique, but it is a form of a restriction that restricts the next state set.
The restricted next state set is only the subset of actual next state set, therefore the
input variable guiding is categorized under the splitting technique. This input
variable guiding is a variant of the hint based guiding that is discussed in section
3.3.2.4. The vital difference between the hint based guiding and the input variable
guiding is that the later is fully automatic, although both approaches utilize the
input variables for guiding.

Guiding the traversal by input variables works differently from the state vari-
able guiding. Although both utilize different sets of variables, the input variable
guiding utilizes all the variables in the set I for universal properties and I for
the existential properties in contrast to the state variable guiding where exactly
one of the best selected variables is used. This is due to the fact that state vari-
able guiding does straight splitting of the state space, where the other restricts the
next set of states. The set of interesting input variables depends basically on the
property’s quantification. If the property is to be verified universally then the set
I is the set of interesting variables and if it should be verified existentially then
the set I.

1// S is the current state set
2// I is the guiding input variables
3// I is the set of all input variables
4// S1 and S2 are the resulting
5hint_guide ( in: S, I, I; out: S1, S2)
6if universal property then
7Φ := I
8else
9I = I - I
10Φ := I
11C := ShortPathSubset(S)
12if Cost( Φ)
13for all i ∈ Φ
14C := C ∧ !i // restriction of current set
15else
16for all i ∈ Φ
17C := C ∧ i // restriction of current set
18S1 := C; S2 := S // S is stacked in case of failure of

guiding

Figure 6.12: Input variable Guiding algorithm.

The input variable guiding algorithm is given in Figure 6.12. Depending on
the property quantification the guiding variables are taken into account as shown
in the lines 7 - 11. Line 12 shows the application of under-approximation to the
actual state space for the efficiency that is discussed before. The function Cost()
in line 13 returns a 0 (False) if the input variables are connected as negative in



94 Chapter 6 · Guiding

the transition of the interesting set of variables. This leads to the restriction of
transitions with positive cofactor of the input variables. In other words, the set
of variables in I are conjuncted with the current state set (lines 17 - 18). Thus the
image computation of that set will not allow the transitions that do not satisfy the
condition imposed by the set of conjuncted variables. Therefore, this restriction
results in traversing the trace that does not satisfy the property (fast falsification
for universal property). If the property is an existential one then the restriction
makes sure that the satisfaction trace of the property is appearing in both restric-
tions as different set of variables are used.

Although the function Cost() (section 6.3) works in most cases, some times due
to the complexity of the design, this might fail. Line 19 shows that the algorithm
stacks the actual state space in case the tool does not find the target state by means
of guiding. In this case the original state space is considered with usual traversal.
That is, in case of failure of guiding then as a completion of the algorithm it is
adopted to quit the guiding and continue with the non-guided traversal.



Chapter 7

Experimental Results

This chapter proves the claims that are discussed so far by means of experimen-
tal results. All the experiments are conducted on a Sun Blade 1500, SunOS 5.8,
with 1GB RAM. The designs that are used in this thesis to prove the static over-
lap reduction and guiding algorithms are taken from standard benchmark suites,
i.e., IBM benchmarks suite [79]and the ISCAS’89 benchmarks [80]. One other de-
sign is a holon example [81], where a couple of robots moves work pieces to and
among processing units by storing them in buffers.

Although this thesis proposes optimization algorithms that can be exploited
with any verficiation tool, the experiments are conducted with the symbolic bounded
property verification tool SymC. The tool SymC utilizes the CUDD BDD package
[78]. All experiments are conducted with dynamic variable ordering switched off
and compares the optimization algorithms. The standard partitioning algorithms
that are compared with the new MinOverlap and Guiding algorithms are partially
from the CUDD package and the others are the state-of-the-art algorithms.

However, it is also important to show that the tool SymC without the proposed
optimization is comparable and out performs other state-of-the-art tools for some
designs. Figure 7.1 lists the runtime comparison of SymC and the state-of-the-art
tools, where the un-optimized SymC could finish the verification of some listed
ISCAS’89 designs compared to time out by the other. The first row shows the
number of completed simulation steps, the second row lists the time required for
the verification and the third lists the verification results, i.e., whether the prop-
erty is accepted or rejected. The time out is denoted as Tout if the tool consumed
more than two hours and still did not finish the verification.

Verification Tools s1269 s1423 s3271 s4863
Completed traversal steps SymC: 2 10 15 1

SMV-LTL: - - - -
Awaited time in sec SymC: 349 2206 2593 Tout

SMV-LTL: Tout Tout Tout Tout

Verification Result SymC: Uni. Rejected Uni. Rejected Uni. Rejected -
SMV-LTL: - - - -

Figure 7.1: SymC versus state-of-the-art tools for universal properties.

The other scalability comparison of SymC [73] with state-of-the-art tool is mea-
sured with a bus arbiter. The bus arbiter is the benchmark often used in the area
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of formal methods [82, 83]. The arbiter combines a priority arbitration with a
round robin technique for guaranteeing fairness, i.e., each requesting cell will fi-
nally get access to the bus. If the arbiter is very busy and works therfore in the
round-robin mode, a request has to be hold at least 2n − 1 time steps, where n is
the number of cells. The property in FLTL is expressed as:

G[0,2n−1]req → F[0,2n−1]ack (7.1)
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Figure 7.2: SymC tool performance compared to state-of-the-art tools with arbiter
example.

Figure 7.2 shows the scalability of SymC to state-of-the-art tools by comparing
the run time (y-axis) to the size of the designs (number of arbiter cells, x-axis).
This comparison proves that un-optimized SymC is equivalent to state-of-the-art
tools in performance and also better in some cases.

The optimized SymC experimental results are organized and compared in
the following order: Section 7.1 compares the full validation approach, first by
the splitting technique and later by the Windowing technique. In the splitting
technique section, the standard and state-of-the-art algorithms are compared to
the static overlap reduction MinOverlap algorithm for the verification time. The
standard partitioning algorithms from CUDD package are the variable disjunction
decomposition algorithm called VarDisjDecomp, and the under-approximation algo-
rithm called ShortPathSubset. The state-of-the-art algorithms are the equal balanced
partitioning that considers the reduction and redundancy factors called EqualD-
istribution. The windowing technique compares the usual windowing algorithm
with the on-the-fly algorithm. This windowing technique better suits the dis-
tributive environment rather than the sequential environment. The distributive
environment is out of this thesis scope, therefore the advantage of the on-the-
fly approach is compared by means of the number of empty windows and the
memory utilization of both algorithms.
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Section 7.2 compares the results of the fast falsification approach, which com-
pares the guiding algorithm with the standard algorithms and the fast falsifica-
tion mode of the windowing technique. In this comparison of fast falsification,
the on-the-fly algorithm is used for the windowing, where the cross-over states
are not distributed among windows but kept for the second phase of verification.

Section 7.1 details and proves the strength of the static overlap reduction al-
gorithm MinOverlap and the on-the-fly algorithm. Section 7.2 discusses the results
of both the State and the Input guiding. There are two sets of experiments con-
ducted, one for comparing the guiding algorithms with other standard partition-
ing algorithms for fast falsification. The second set of experiments is to prove that
the guiding algorithm does not degrade so much with fully valid properties. All
results are discussed by means of graphs and tables.

7.1 Static Overlap Reduction Results - MinOverlap

The properties for the IBM benchmarks are obtained from the suite itself and
except the 29-batch all others are altered in order to make the property universally
rejected, in order to bring the guiding effect to the picture. For ISCAS89 circuits
we had no information regarding their behaviour. Therefore, the properties are
the reachability of a state at high hamming distance from the initial states. For the
circuit s1423 the properties are utilized from the [84] with a time bound of 14. In
general, the pre-processing time is hardly 2% of the total verification time, except
30-batch which requires more than 15%. In the holonic production system, the
property specifies the consumption of a work piece.

7.1.1 Splitting Results

In this section the static overlap reduction heuristic MinOverlap algorithm is com-
pared to a variant of the partitioning heuristic from [63], labelled EqualDist, and
the variable disjunction decomposition algorithm from the CUDD package [78],
labelled as VarDisj. Although, there are a number of partitioning algorithms from
the CUDD package, VarDisj algorithm is the best performing one out of all those
algorithms. The EqualDist algorithm has been selected as it is the state-of-the-art
algorithm that partitions the state space into minimal and equal pieces.

Design Number of required Number of traversal Awaited Memory Verification
traversal steps steps finished time in sec utilized in MB Result

s1269 5 2 351.92 287 Uni. Rejected
s1423-I 10 10 2206.17 753 Uni. Rejected
s4863 4 1 - 42 Tout

18-batch 130 45 - 77 Tout

19-batch 130 46 - 110 Tout

20-batch 130 52 - 110 Tout

28-batch 18 17 604.8 126 Uni. Rejected
29-batch 30 20 - 172 Tout

30-batch 10 10 899.73 214 Uni. Rejected
nh2-I 1500 279 - 895 Tout

Figure 7.3: SymC tool performance without splitting.
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There is a table (see Figure 7.3) that projects SymC’s performance without
splitting for few of the designs. The table shows time out for 6 out of 10 designs,
written as Tout, i.e. it required more than 2 hours. The remaining 4 designs were
proven, but it consumed much longer time than the same verification by SymC
done with splitting (see Figure 7.5). Moreover, the memory requirement of SymC
for the verification process without splitting is much higher than with splitting
that is compared in the graph shown in the Figure 7.4. This comparison shows
that the splitting technique enables the SymC tool to handle bigger designs, as it
requires less memory and faster verification.
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Figure 7.4: Memory requirement of SymC tool with and with out splitting

However, the splitting technique improves the SymC tool performance, the
MinOverlap algorithm can optimize the splitting technique further. Figure 7.5
compares the verification time gain by the static reduction of overlap and also
the memory requirement of each algorithm. The first, second and ninth column
lists the design name, the splitting threshold limit and the verification result re-
spectively, where as the third till eighth column lists the verification run time (Rt)
of the algorithms and the memory utilization (Mem.) in MB respectively. Figure
7.6 lists the verification time gain and the graph shown in Figure 7.4 shows that
the memory requirement of the MinOverlap algorithm is stable and it is always in
the lower limit compared to other algorithms in the graph. Despite the fact, for
very few cases (for exampl s3271 in Figure 7.5), the other listed algorithms require
relatively lower memory revealing the instability of the approach.

Figure 7.5 lists the results with the dynamic overlap reduction enabled for all
algorithms. It clearly shows the gain in the verification time by the MinOverlap
algorithm. This time gain is due to the reduction of duplicate image computa-
tion in the splits caused by the state overlap. This state overlap calculation can
be achieved better in the distributive environment and is hard to calculate in a
sequential environment. This is due to the fact that the overlap calculation in a
sequential environment can only be started after all the stacked partitions are tra-
versed. Moreover, the number of partitions increases over time steps, i.e., upon
reaching the threshold value splitting is done repeatedly, making the calculation
of average state overlap and fair comparison over time steps impossible.

In general, static overlap reduction is advantageous for most designs, how-
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Design Thres. MinOverlap EqualDist VarDisj Result
Limit Rt sec. Mem. MB Rt sec. Mem. MB Rt sec. Mem. MB

s1269 5000 149.56 132 161.19 159 Tout 231 Uni. Rejected
s1423-I 50000 446.94 266 490.84 246 475.58 256 Uni. Rejected
s3271 20000 4543.25 855 5935.16 601 5028.84 595 Uni. Rejected
s4863 20000 252.99 95 317.73 95 Tout #1 Uni. Rejected

04-batch 20000 3789.14 64 5417.12 69 4935.73 70 Uni. Accepted
05-batch 20000 1249.25 58 1665.29 57 1490.92 60 Uni. Accepted
18-batch 20000 696.01 58 809.36 61 921.3 57 Uni. Rejected
19-batch 20000 1090.21 60 1176.28 58 1194.9 59 Uni. Rejected
20-batch 20000 610.69 58 809 61 913.3 59 Uni. Rejected
28-batch 20000 194.14 64 269.54 65 239.6 65 Uni. Rejected
29-batch 50000 391.44 77 1541.44 100 574.99 72 Uni. Rejected
30-batch 50000 395.72 156 541.73 152 490 149 Uni. Rejected

nh2-I 50000 2753.31 206 3496.87 238 12831 570 Uni. Rejected

Figure 7.5: Comparison of MinOverlap with other heuristics.

ever, there are exceptional designs in which static overlap heuristic suffers a mi-
nor degradation in the verification time. This is shown in Figure 7.7, where the
first column lists the designs and the second, third and fourth column lists the
verification time in seconds for MinOverlap, EqualDist and VarDisj algorithms re-
spectively. The performance of the heuristic also improves along the depth of
the property to be verified. For example, the depth of the property of the design
nh2-II in Figure 7.7 is 200, where as the depth of the property in the design nh2-I
shown in the Figure 7.5 is 1500. This design shows that Minoverlap gains over the
depth of the property for some designs.

However, the degradation can be of two different cause, the first is due to the
BDD characteristics. That is, more BDD nodes are required to represent less state
space in comparison to represent more state space. Therefore, in some cases while
the heuristic tries to keep the state overlap as minimal as possible, the BDD node
count increases. This increase directly corresponds to a increase in the image
computation time and finally the whole verification time. The authors of [62]
have given evidence for the claim of increase in time with BDD node count by
discussing the density of the BDDs. This revels that more number of minterms
(states in our case) can be represented by relatively smaller BDDs. In any case
these results has been published in the paper [85] where distributive SymC is the
topic.

The second is due to the worst case condition of the heuristic, where the tran-
sition relation is mostly connected with disjunctive connectors. Otherwise, it is
also possible that the selected set of variables are not satisfying the memory bal-
ancing condition of the partition. Therefore, the MinOverlap algorithm compro-
mises with the state overlap by adding more variables into the set. However, the
MinOverlap algorithm degrades only for few designs and it is never the worst
performed algorithm and moreover it is always in the toleration level. For ex-
ample, Figure 7.7 also shows that for the designs s1512-II and 09-batch the VarDisj
performs relatively better. But Figure 7.5 shows that for the deigns s1269 and
s4863 VarDisj performs the worst and similarly the EqualDist. This reveals that
the MinOverlap algorithm is stable for all the designs in comparison to the other
algorithms.
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Figure 7.6: MinOverlap verification time comparison

Design MinOverlap EqualDist VarDisj
Rt in sec. Rt in sec. Rt in sec.

s1512-II 2962.67 3151.28 2801.35
01-batch 588.18 532.22 553.62
09-batch 784.25 647.9 604.07
nh2-II 375.17 290.67 304.95

Figure 7.7: Degradation of MinOverlap algorithm for few cases.

Therefore, the results confirm that the MinOverlap algorithm performs better
and also stable for most of the cases in terms of both run time and the memory
requirement in compared to the other state-of-the-art splitting algorithms.

7.1.2 Windowing Results

The windowing technique is the other application of the static overlap reduc-
tion algorithm. This algorithm has been adopted for this technique and aimed at
minimizing the empty windows and reducing the memory usage. This section
lists the results of windowing technique with static overlap reduction technique
called on-the-fly windowing and compared to the Equal-Dist windowing method.
The number of windows are pre-fixed to 8 for both the approaches, however in-
creasing the number of windows in most cases gives better results. The window-
ing technique generally suits best for the distributive environment of the SymC
tool rather than the sequential SymC. Therefore, this section concentrates on com-
paring the memory requirement and number of empty windows rather than the
verification time of the approach itself.

However, Figure 7.8 compares the on-the-fly static algorithm with the equal
distribution method applied in the windowing technique for few of the designs.
The first column lists the design name, the second and fourth column lists the
verification time of the on-the-fly windowing approach and the usual window-
ing approach where EqualDist algorithm is applied respectively. The third and
fifth column lists the number of empty windows created in the on-the-fly and
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the usual approach, respectively. The total number of windows is fixed to 8, and
the verification is done in the full validation mode, i.e., cross over states are dis-
tributed to the owners at every step of the traversal.

The Figure 7.8 compares only few of the designs as in most cases both the
methods ended up in Timeout case. However, this situation can be handled by in-
creasing the pre-fixed number of windows. The results of this designs shows that
the on-the-fly approach is efficient by means of verification time by not allowing
the windows to be empty. This situation is highly desired in the distributive envi-
ronment as all the network nodes will have the job to proceed. However, the cross
over states can not be fairly compared, because in the on-the-fly approach there
are no empty windows and hence there are relatively a higher number of cross
over states compared to the usual method where there are more empty windows.

Design MinOverlap Windows EqualDist
Rt sec. Empty windows Rt sec. Empty windows

s1423-I 1382.23 0 1835.65 2
s1512-II 2078.69 0 2480.9 0
01-batch 319.5 0 322.2 0
05-batch 713.39 0 1282.79 6
30-batch 1138.61 0 1554.33 2

Figure 7.8: Comparison of run time and empty windows by on-the-fly and tradi-
tional windowing technique.

Figure 7.9 compares the memory requirement and the number of empty win-
dows for the designs. Both the approaches of the windowing technique in se-
quential SymC do not differ much in terms of verification time, but clearly shows
up in the distributive environment. But the distributive verification environment
is out of this thesis scope, hence comparing the number of empty windows and
the memory requirement of two approaches can give a fair idea of the advan-
tage of the on-the-fly approach. The non-empty number of windows and the low
memory utilization is the symbol of a fast and efficient verification. Figure 7.9
reveals that on-the-fly approach requires comparatively less memory and always
zero empty windows. The first column lists the design name, where as the second
and the fourth column lists the maximum memory requirement of the windows
in both on-the-fly and the usual approach respectively. The third and fifth column
lists the number of empty windows in both the approaches.

Therefore, the results illustrates that the windowing technique is better tunned
and the potential of this approach can be improved by the On-the-fly method of
partitioning rather than the usual EqualDist method.

7.2 Guiding Results

This section discusses the results of the fast falsification approach [86], where
the properties are disproved faster. The comparison is done between the guid-
ing technique and the usual approachs which are the VarDisj algorithm and the
under-approximation algorithm called ShortPathSubset from CUDD package and
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Design MinOverlap Windows EqualDist-Windows
Max. Memory in MB No. Empty windows Max. Memory in MB No. Empty windows

s1269 139 0 150 4
s1423-I 265 0 405 2
s1512-II 82 0 78 0
01-batch 53 0 57 0
04-batch 62 0 79 6
05-batch 60 0 66 6
19-batch 55 0 62 4
20-batch 58 0 63 4
23-batch 48 0 57 4
30-batch 163 0 192 2
nh2-II 481 0 725 0

Figure 7.9: Comparison of memory requiremnet and empty windows of the win-
dowing techniques.

the fast falsification mode of the windowing technique. To prove the advantage of
the guiding techniques, three different sets of experiments have been conducted.

The first set of experiments compares the time gain of the guiding technique to
the other approaches for both the universal and existential properties. The second
set of experiments is a fairness comparison that compares all the algorithms with
and without the state space under-approximation (u-approx). This impartiality
comparison is due to the fact that state space u-approx is itself a part of the guid-
ing technique and therefore it is important to compare all the algorithms with
and without state space u-approx. The last set of experiments is for the complete-
ness, to show guiding do not degrade for full validation. Although the guiding
algorithm is mainly meant for fast falsification or faster hunting of errors, in case
if the design is error free then the guiding algorithm should be able to finish the
verification process within the tolerance level of verification time, i.e., double the
verification time required by other algorithms. The SubsetShortPath is used in our
experiments not only as a splitting algorithm but also as a u-approx technique.

All the properties of the designs in this section are randomly guessed for uni-
versal rejection and existential acceptance. The properties that are used in this
section generally expresses the reachability of a set of states. Figure 7.10 and 7.11
list the verification runtime in seconds for different partitioning algorithms for
the universal and the existential properties. The least runtime is highlighted in
the table and the speedups are explicitly given. Different set of properties are
used for universal and existential verification results. The algorithms listed from
third to the seventh columns are as follows: VD is the variable disjunctive de-
composition algorithm provided by CUDD. Win-8 is the windowing technique
with 8 windows. SP is the u-approx algorithm that is also provided by CUDD,
and IG is the guiding with input variables and SG is the guiding algorithm with
state variables. The first column lists the design name and the second column
shows the number of flipflops. The last column SUp is the speed up obtained by
our guiding algorithms compared to the highest in the table.

The windowing technique in SymC is adopted for the fast falsification by
avoiding the computation and distribution of cross-over states among windows.
However, the results of the designs s3271, 23-batch and 29-batch shows that fast
falsification by windowing technique is not by means of intelligent guiding of
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Design FFs VD Win-8 SP IG SG SUp

in sec. in sec. in sec. in sec. in sec.
s1269 37 >2 hrs >2 hrs 3546.0 2.5 >2 hrs 1418.4

s1423-I 74 >1 hr 708.8 300.5 122.5 232.7 5.7
s1423-II 74 469.6 364.9 175 85.78 146.8 5.4

s3271 116 245.8 Cover 322 26.3 282.3 12.2
s4863 104 >1 hr >1 hr 1198.2 579.6 1093.7 2.06

18-batch 143 921.3 1691.6 909.5 637.6 522.2 3.2
19-batch 181 1194.9 3362.4 1433.9 1206.9 846.4 3.9
20-batch 148 913.3 1675.6 869.1 662.5 582.0 2.8
23-batch 192 205.9 Cover 177.6 73.9 109.3 2.7
28-batch 109 239.6 562.3 324.1 204.8 169.1 3.3
29-batch 95 322.4 Cover 128.1 139.9 88.4 3.6
30-batch 191 493 587 294 284 205 2.8

Figure 7.10: Verification time comparison for Universal properties.

Design FFs VD Win-8 SP IG SG SUp

in sec. in sec. in sec. in sec. in sec.
s1423-I 74 > 1 hr 806.9 336.1 199.9 331.8 4.0
s1423-II 74 > 1 hr 689 320.1 181.9 249.3 3.7
10-batch 297 447.8 215.7 247 202.2 201.4 2.2
23-batch 192 243.6 401.1 190.1 139.2 155.8 2.8
28-batch 109 266.9 704.8 329.1 251.7 307.2 2.8
29-batch 95 569.1 600.7 257.7 175.6 190.1 3.4
30-batch 191 2623.6 1810 872.9 360.8 589.6 7.2

Figure 7.11: Verification time comparison for Existential properties.

traversal but it is only by chance if the target state is reached within the window.
The lack of intelligence in the fast falsification approach of windowing technique
is visible as the target state is not found and can only be reached through cross-
over (Cover) states. In general the results show that the Input Var. and State Var.
guiding is efficient.

To analyze the results we look at the number of input and state variables in-
volved in the guiding process, that are listed in Figure 7.12 and Figure 7.13. The
first column Design lists the design name, the second through the sixth are as fol-
lows: Pv gives the total number of variables involved in the property, In lists the
total number of input variables, Ui lists the number of input variables utilized for
Input Var. guiding, Sn lists the total number of state variables, Us lists the number
of state variables utilized for State Var. guiding.

Design Pv Input Guiding State Guiding
In Ui Sn Us

s1269 24 18 15 37 36
s1423-I & II 1 17 9 74 27

s3271 43 26 26 116 42
s4863 9 49 33 104 40

18-batch 40 111 4 143 93
19-batch 6 175 4 181 131
20-batch 40 123 5 148 85
23-batch 7 153 6 192 24
28-batch 8 35 7 109 30
29-batch 49 12 2 95 92
30-batch 5 36 3 191 45

Figure 7.12: State and Input variables utilization for Universal properties.
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For Input Var. guiding for universal properties the designs s1269, s3271, s4863
utilizes from 67% to 100% (Figure 7.12) of the total input variables, while for s1423
it is 41% and for 28 and 29-batch it is around 18% and for all other design it is less
than 5%. For the existential property (Figure 7.13) all the designs perform better
with Input Var. guiding, although the designs vary in the percentage of utiliza-
tion of input variables. Therefore, one can generalize that, higher the number
of involved input variables, the more efficient the Input Var. guiding is for both
universal and existential properties.

Design Pv Input Guiding State Guiding
In Ui Sn Us

s1423-I & II 1 17 8 74 27
10-batch 18 125 109 297 9
23-batch 2 153 153 192 24
28-batch 8 47 40 109 30
29-batch 49 10 2 95 13
30-batch 2 36 36 191 45

Figure 7.13: State and Input variables utilization for Existential properties.

The number of state variables involved in SG (Figure 7.12) are as follows: The
designs 18, 19, 20, 29-batch, utilizes more than 60% to 90% of state variables for
guiding, and the results are better for these designs. The design s1269 utilizes
almost 100% but it degrades due to the fact that there is no special set of variables.
In other words, all the state variables are in the interesting variable set thereby
degrading the State Var. guiding approach to the usual one. The other designs
vary from 25% to 40% resulting in moderate time gain. However, as an exception,
the design 23-batch utilizes only 3% (8%) of input (state) variables but still gives
a comparatively good result. For the existential property (Figure 7.13) all the
designs perform average with State Var. guiding, although the designs vary in
the percentage of utilization of state variables. This reveals that although guiding
in general increases the probability of finding a target state faster it is never 100%
accurate, because it totally depends on the design and its transition relation.

Although the guiding algorithm picks up the right path, in most cases the
BDD node count is large, resulting in expensive image computation steps. Thus,
guiding without under-approximation works only for some designs. In order to
make it applicable for wide range of the designs we combine the under- approx-
imation along with guiding which leads to an efficient combination. Our exper-
iments exhibited that both guiding combined with under-approximation proved
to be more efficient than the other combination as shown in the Figures 7.14 and
7.15. It is a impartial comparison that compares all the algorithms with and with-
out (u-approx). For the ShortPath algorithm which itself is an u-approx technique
it is under-approximated two times. The symbols VD stands for Variable Disjunc-
tion Decomposition, SP stands for Short Path Subset, IG stands for the Input Variable
Guiding and SG stands for State Variable Guiding.

The guiding algorithm aims at a fast falsification, i.e., to find the bugs as fast
as possible. However, it should also perform better in case of no errors in the
design. Therefore we conducted full validation experiments with two examples,
s1512 and 04-batch (Figure 7.16).
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Figure 7.14: Fairness comparison IBM designs.

For the example s1512 the Input Var. guiding takes the maximum time, while
State Var. guiding performs comparatively the same. For the example 04-batch,
both Input Var. and State Var. guiding performs better than other algorithm except
the windowing. Figure 7.16 shows that although the guiding algorithms is meant
for fast falsification it does not degrade so much for full validation.
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Conclusions and Future Work

Today’s digital systems are designed by a team of designers and particularly it is
verified by a different team of verification engineers. The verification team has
to obtain design knowledge from the designers team. However, each individual
designer has a very detailed understanding of the working of his or her unit and
the way it interfaces with other units in the system. The designer’s understanding
of the other part of the design is at a much higher level of abstraction.

Understanding a design at various levels of abstraction is perhaps the only
way a human mind can deal with the tremendous complexity of today’s designs.
Therefore, a designer can only be confident about certain local properties rele-
vant to his or her unit. In any case the verification engineers have to verify the
whole system and the interface of all the units by collecting properties of units
individually and to get a overall picture. Hence, automatic optimization of the
formal verification process helps the verification engineers to increase the confi-
dence level and ease their work of getting detailed in the design.

Automatic optimization of the verification process directly requires one or
more intelligent heuristics that decide the verification efficiency of a particular
design. In order to do this these heuristics pre-process the design and extract
some information for verification use. Trivially, these heuristics can be applied in
different areas of the verifying process. The state-of-the-art verification process
mainly concentrates on the divide-and-conquer approach. Hence, it is appropri-
ate to concentrate on optimizing this approach further.

The key idea of this thesis is optimizing the divide-and-conquer approach.
Sets of states that are to be traversed are represented symbolically by BDDs.
Along with the traversal the number of states grows and hence the BDD that
represents those states also grows. In order to keep the BDD growth in control
the BDDs are partitioned into two or more pieces and handled separately. As a
result this divide-and-conquer method makes the traversal easy and keeps the
memory requirement under control. The optimization is done by an intelligent
selection of variables that partitions the state space for efficient traversal or a di-
rected traversal in search of errors for large designs.

It is exactly this phenomenon that is implemented in the MinOverlap and Guid-
ing algorithm respectively. The MinOverlap algorithm is a static state overlap re-
duction algorithm that reduces the duplication of verification. The Guiding algo-
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rithm is a property based automatic steering algorithm that guides the traversal
to the interesting set of states.

8.1 Technical Contributions

In order to make MinOverlap and Guiding a viable partitioning scheme for both
splitting and windowing techniques, the key technical challenges addressed in
this thesis :

• An innovative categorization of state variables by the locality of the design.
(Chapter 4)

• An efficient pre-processing method that analyzes the transition relation of
the design and categorizes the variables according to their influence factor.
(Chapter 4)

• An optimal partitioning algorithm that selects the right variable for efficient
traversal considering both minimal overlap and the balancing condition of
the splits. (Chapter 5)

• An innovative identification of interesting variables that influences the truth
value of the property to be verified. (Chapter 6)

• An intelligent partitioning or under-approximation algorithm that selects
the right partition to traverse for finding the bug faster. (Chapter 6)

8.2 Results

The ideas in this thesis have been evaluated on publicly available benchmark cir-
cuits from the ISCAS-89 and IBM suites. The experiments show orders of magni-
tude improvement in the quality of results obtained when compared with earlier
schemes of partitioning. The ideas have also been evaluated on a large multi
module Holonic design.

Using MinOverlap and Guiding as underlying partitioning schemes has en-
abled us to verify the large designs faster and with relatively low memory re-
quirement. This can be automatically handled by the symbolic verification tool.
Moreover, these heuristics can be easily incorporated in other verification tools.

8.3 Possible Future Work

Like any thesis, although some answers are provided, many more questions are
raised. Even as there is some progress in automatically verifying digital systems,
there is still a long way to go before any design is automatically verified. In this
section, some ways in which this work can be further extended are suggested.
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8.3.1 Hybrid Influence Calculation

The overlap reduction heuristic that minimizes the overlap of states space of dif-
ferent partitions totally depends on the locality information. The locality infor-
mation is basically the variable interdependence in the transition relation. The
collection of this interdependence is referred to as influence factor and this calcu-
lation can be repeated over a number of steps, which is referred as lookahead and
lookback factors. Throughout this thesis, the experiments have been conducted
with one step lookahead and one step lookback.

However, this lookback and lookahead can be increased by a few more steps
to complement this heuristic. Although this point sounds interesting at first, not
all designs behave the same or shows improvements for multiple step calcula-
tion. Moreover, the experience shows that the number of steps to be calculated
for optimal traversal is different for different designs. Hence, this influence cal-
culation for a design can be further studied and improved to decide the optimal
number of steps for the influence calculation.

8.3.2 Automatic Dynamic Overlap Removal

This thesis explains the dynamic overlap removal of state space that basically re-
moves the already visited states from further traversal. Although this technique
is very useful and optimizes most designs, there are few exceptions where this
state space removal increases the BDD node counts. This increase in the BDD
node count eventually increases the image computation time and hence the veri-
fication time.

This dynamic algorithm can be further optimized by a heuristic that decides
whether the removal decreases or increases the BDD node count. And depending
on this result the dynamic overlap removal procedure can be activated.

8.3.3 Accurate Cost Function

The Cost() function that is utilized in the Guiding heuristic is based on assumption
that the next state function mostly consists of conjunctive connections. Trivially,
this assumption is not always true, hence leads to less accuracy. This cost function
can be further studied to generalize this assumption further and improve the
scope of accuracy.

8.4 Discussion

The power of formal methods, like model checking, property checking, is that
they can cover all possible outcomes and hence give absolute guarantees of cor-
rectness. But that same power is also its limitation. The number of possible out-
comes is astronomically large for today’s large designs, and formal methods do
not scale well to deal with such large problem sizes. Therefore, one of the keys for
formal methods is to find a better divide-and-conquer methods. The MinOverlap
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and Guiding algorithms appears to be an effective divide-and-conquer methods
to help meet this challenge.

Formal verification with in-built optimization techniques appears to be very
fruitful and promising area for further research. Given the rapid increase in
the complexity of today’s designs, the traditional simulation based empirical
approach of validation will have to be necessarily augmented with divide-and-
conquer formal methods.

Given the pressures of early-time-to-market and the reluctance of designers
to educate themselves on latest formal verification methods, it is imperative that
formal verification tools be automated and easy to use. Thus, efficient automatic
optimization heuristics have to be incorporated into the formal tools. Even as
this thesis helps in this automatic optimization in formal tools by enhancing the
verification process of large hardware designs, there is room for improvement
and a long way to go before any design is automatically verified.
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