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1 Introduction 
 

Cells of organisms bacteria, lichens, fungi, plants, animals produce a large variety of 

organic compounds. Anciently many substances were obtained e.g. food stuff, building 

materials, dyes, medicines, and other extracts from nature. Plants and animals have provided 

substances used for their biological activity to heal or to kill and became the foundation of folk 

medicine. Recent natural product discovery and development of avermectin (anthelminthic), 

cyclosporin and FK-506 (immunosuppressive), mevinolin and compactin (cholesterol 

lowering), and taxol and camptothecin (anticancer) have revolutionized therapeutic areas in 

medicine.[1] 

 

Vastly diversed living organisms of the marine environment are a potential source of 

new drugs for treatment of antibiotic infections and other deadly diseases. Marine life 

comprises over half a million species. Due to their unique living environment as compared 

with the terrestrial organisms, marine organisms produce a wide variety of metabolic 

substances which often have various unprecedented chemical structures. Enzymes, lipids, poly 

heterosaccharides as well as secondary metabolites from marine sources can be defined as 

bioactive marine natural products. In recent years, an increasing number of marine natural 

products have been reported to exhibit various biological activities such as antimicrobial, 

physiological and pharmacological ones. Some metabolites have also been noted by their 

significant toxicities.[2, 3] The effort to find novel antitumor substances from organisms have 

been increased in recent years and several novel compounds (peptides, polyethers, alkaloids, 

prostanoids etc.), with antitumor activities, have been isolated from marine sponges, 

octocorals, algae, tunicates, nudibranchs, bryozoans and so on. Several compounds from 

marine invertebrates have reached clinical or pre-clinical anticancer trials. They include 

bryostatin, didemnin B, dolastatin, ecteinascidin, halichondrin B, and elutherobin. Many other 

compounds with different skeletal structures have also been bioassayed for antitumor activity. 

Juncusol from an estuarine marsh plant, aplysistatin from a sea hare and aeroplysinin-1 from 

sponges are only a few of the marine isolates which are undergoing further evaluation for 

anticancer activity. Table 1 summarizes the reports on antitumor research, involving 14 marine 
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compounds with determined mechanisms of action that included in vitro and/or in vivo studies 

with human cancer cell lines.[4] 

 

Table 1: Antitumor pharmocology of marine natural products with determined mode of 

action 

 

 

 

Currently, about half of all described medicines are extracted or derived from terrestrial plants 

and organisms. Many synthetic drugs were originally inspired by novel compounds in 

terrestrial organisms. Although few marine natural products are currently in the market or in 

clinical trails, marine organisms represent the greatest unexploited source of potential 

pharmaceuticals. Because of the unusual diversity of chemical structures isolated from marine 

organisms, there is an intense interest in screening marine natural products for their 

biomedical potential. New drug discoveries indicate that marine organisms have a tremendous 

potential for new pharmaceuticals and will become a much more prolific source than any other 

Compound Organism Chemistry 

Agosterol 

Aplidine 

Auristastatin 

Bryostatin 

Curacin D 

Dehydrothyrsiferol 

Dolastin 10 

Ecteinascidin 

Eleutherobin 

Jasplakinolide 

Naamidine A 

Octalactin 
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Spirulan 

Sponge 
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Synthetic. 

Bryozoa 

Alga 

Alga 

Tunicate 

Tunicate 

Coral 

Sponge 

Sponge 

Bacteria 

Coral 

Alga 

Terpene 

Depsipeptide 

Peptide 

Macrolide 

Polyketide 

Terpene 

Peptide 

Quinoline 

Terpene 

Peptide 

Imidazole 
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group of terrestrial organisms. The cyclodepsipeptide jasplakinolide (1) is a notable example 

of the marine toxins that shows promising biological activities. 

 

O
N O

O

O

O

OH

HN

Br

NH

HN

Jasplakinolide (1)  
 

Figure 1.1: Structure of marine natural product jasplakinolide 1 

 

Jasplakinolide (Figure 1.1) was isolated from the marine sponges Jaspis splendens.[5] 

Jasplakinolide was first described as having anthelminthic, antifungal properties.[6] It 

represents a new class of bioactive cyclic depsipeptides. The structure of jasplakinolide 

contains both peptide and polypropionate units as shown in Scheme 1. It is a part of a growing 

family of structurally related other natural products like geodiamolides A-F, 

neosiphoniamolide, chondramides, doliculide, with the first two having the same 

polypropionate structure as jasplakinokide, the 8-hydroxy acid 3 (Scheme 1). This hydroxy 

acid contains four methyl groups in 1,3-distance giving rise to two syn-pentane interactions 

and one 1,3-allylic interaction. Jasplakinolide and the other mentioned cyclodepsipeptides 

possess very high activity against a number of tumor-derived cell lines, and therefore appeared 

to be very promising candidates for cancer therapy. This has made them very attractive for 

further biological investigation and structure activity relationship (SAR) studies.  
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Scheme 1: Tripeptide and polypropionate parts of jasplakinolide 

 

Restricting the conformational flexibility of medium-sized polypeptides has proven a 

valuable approach towards understanding the structural and conformational features of 

bioactivity. Thus, in the case of peptide hormones, a number of studies in the past 20 years 

have shown that this approach can lead to the discovery of analogues with potential agonistic 

or antagonistic properties. The rationally designed conformationally constrained analogues are 

in both cases tools for understanding the structure activity relationships of the natively 

occurring polypeptides and lead structures for the development of novel compounds with 

therapeutic and diagnostic applications. 

 

In this direction, our target was focused on the design and synthesis of novel ω-amino- 

and hydroxy acids which have the similarity to the jasplakinolide polypropionate part 3 and to 

synthesize novel analogues of jasplakinolide using these amino- and hydroxy acids. 

Furthermore it was planned to study their solution conformations as well as biological 

activities to gain some information concerning their structure-activity relationships. The ω-

amino- and hydroxy acids were designed on the basis of non bonded interactions such as 1,3-

allylic strain and syn-pentane interactions to get the restricted conformations for the analogues. 
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2 Literature Review 
 

2.1 Summary of biological activity of Jasplakinolide and other related 
compounds 
 

Jasplakinolide (jaspamide), was first reported in 1986 as a novel biological active 

cyclodepsipeptide.[5, 7] It was isolated from the Indo-Pacific marine sponge Jaspis johnstoni 

(order Astrophorida), now known as Jaspis splendens or Jaspis sp. Quite unexpectedly, it was 

reencountered during bioassay-guided isolations with extract fractions from Auletta cf. 

constricta (order Halichondrida) possessing in vitro cytotoxicity to HT-29 cells. Jasplakinolide 

was also shown to possess potent antiproliferative activity[8] in the NCI-60 cell line screen, 

which prompted extensive further investigation of its properties and mechanism of action. 

Additional studies demonstrated jasplakinolide to be especially active against a number of 

tumor derived cell lines, human prostate carcinoma, and myeloid leukemia.[9] This drug was 

observed to be active in vivo against Lewis lung carcinoma and human prostate carcinoma 

xenografts.[10] A number of investigators have found jasplakinolide to be an invaluable tool to 

probe cytoskeletal proteins and to observe the role of actin microfilaments. For example, Bubb 

et al. found that jasplakinolide induces actin polymerization in a similar fashion to phalloidin. 

The results imply that jasplakinolide exerts its cytotoxic effect by inducing actin 

polymerization and/or inhibiting the depolymerization of muscle actin filaments.[11, 12] Actin is 

an extremely conserved protein which forms the cytoskeleton in all eukaryotic cells. The 

cytoskeleton is a dynamic three-dimensional structure that fills the cytoplasm. This structure 

involved in movement and stability of the cell. The long fibers of the cytoskeleton are 

polymers of subunits. The primary types of fibers comprising the cytoskeleton are 

microfilaments, microtubules, and intermediate filaments (Figure 2.1.1). 

 

 

  Figure 2.1.1 a) Intermediate filaments 
          b) Microtubules 

                        c) Microfilaments (actin) a c b 
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Microtubules are cylindrical tubes, 20-25 nm in diameter. They are composed of 

subunits of the protein tubulin, these subunits are termed alpha and beta. Microtubules act as a 

scaffold to determine cell shape, and provide a set of "tracks" for cell organelles and vesicles 

to move on. Microtubules also form the spindle fibers for separating chromosomes during 

mitosis. When arranged in geometric patterns inside flagella and cilia, they are used for 

locomotion. Actin is a globular structural protein that polymerizes in a helical fashion to form 

an actin filament (or microfilament). Actin filaments provide mechanical support for the cell, 

determine the cell shape, enable cell movements and participate in certain cell junctions, in 

cytoplasmic streaming and in contraction of the cell during cytokinesis. In muscle cells they 

play an essential role, along with myosin, in muscle contraction. Cellular actin exists in two 

forms: as monomeric actin (G-actin) and as filamentous actin (F-actin). Linking monomers 

(G-actin) to each other, forming long thread like structures, creates filamentous actin called F-

actin. F-actin has a polar structure with a fast growing barbed (+) end and slow growing 

pointed (-) end. The barbed end favored for polymerization and monomers (G-actin) 

preferentially are added to this end in their ATP-form.[13] After incorporation in F-actin, ATP 

hydrolyses to ADP and as such the monomer (G-actin) becomes less stable at the pointed end, 

leading in turn to depolymerization at the pointed end. This process is called tread milling 

(Figure 2.1.2). Like phalloidin, jasplakinolide seems to be bind in a cleft between two 

monomers of F-actin at the pointed end and thus prevents the depolymerization by disturbing 

the dynamic nature (steady state) of F-actin. In fact, it was demonstrated that exposure of 

living cells to jasplakinolide results in the formation of multinucleated cells and disruption of 

actin in these cells.[14-16] 

             

 
 

Figure 2.1.2: Formation of F-actin and process of tread milling 



Literature Review  7 
 

 

2.2 Modeling the jasplakinolide binding site on actin filaments 

 

 
 

Figure 2.2: Molecular docking studies of jasplakinolide bound to F-actin A) jasplakinolide 

(purple) binds between adjacent monomers and stabilizes lateral interactions in the filament B) 

Closeup of the same view as in A showing key actin residues that interact with jasplakinolide 

(purple). C) Expanded view of pocket showing the side groups of residues in host actin that 

interact with jasplakinolide, differences in parasite actin shown in brackets. His (195) in gold. 

 

Computer simulation studies of protein-protein interactions provided information about 

molecular interactions that occur during the actin nucleation and polymerization and these are 

highly relevant to binding of small molecules. Recent modeling studies[17] described the 

binding site for jasplakinolide in muscle actin filament. Jasplakinolide binds in a cleft between 

two adjacent monomers bridging lateral interactions between adjacent monomers in the 

filament (Figure 2.2). Notably, this same site is targeted by the related cyclic peptide 

phallodin, despite the fact that two structures are not highly similar. Binding of jasplakinolide 

bridges between long pitch strands of two monomers of F-actin, stabilizes the filament from 

depolymerization. Small molecule docking studies make very clear predictions about the 

residues on actin that are important for binding to jasplakinolide. Closer examination of the 

jasplakinolide molecule docked to the actin filament reveals that the closest residues are D187, 

T201-T202, R206 on one monomer and L176-R177-L178-D179 on the other (muscle actin 

numbering). All of these contacts are within ~4 Angstroms and likely are sufficiently close to 

interaction with the side groups of jasplakinolide (Figure 2.2 B). 
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2.3 The family of jasplakinolide 
 

 Cyclodepsipeptides are characterized by the presence of at least one ester bond because 

they contain a hydroxy acid. Furthermore they contain unusual amino acids, which may be 

extended, N- methylated, hydroxylated, or halogenated. Occasionally they contain fragments 

from other biosynthetic pathways, for example polyketides. The substituents on the polyketide 

fragment might be used as conformational controlling elements. Some illustrative examples of 

cyclodepsipeptides are jasplakinolide (1), geodiamolide (4), chondramide C (5), doliculide (6) 

(Figure 2.3.1). While jasplakinolide (1) has a 19-membered ring system, the chondramides and 

geodiamolide feature a smaller, 18-membered ring. Nevertheless, the similarity between 

jasplakinolide and the chondramides is quite high since they share essentially the same 

tripeptide fragment. Thus, there is a β-amino acid, an N-methyl-tryptophan, and an alanine in 

both depsipeptides. In the chondramides the ω-hydroxy acid is one carbon shorter than in 

jasplakinolide. On the other hand, the ω-hydroxy acid is the same in jasplakinolide and 

geodiamolide. A somewhat related biological activity is reported for the geodiamolides which 

supposedly cause microfilament disruption.[18] These observations highlight the role of the 

tripeptide fragment as determinant of the mode of action. Even though doliculide (6) seems to 

be similar to geodiamolide (4), in its biological activity it is comparable to jasplakinolide and 

chondramide C. 
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Figure 2.3.1 Structures of jasplakinolide and related depsipeptides. 

  

In a recent study[19] of doliculide (6) it was shown that it can potently enhance the 

assembly of purified actin and inhibit the binding of FITC (fluorescein isothiocyanate) 

labelled phallodin to actin polymer, like as the jasplakinolide, chondramide C, and phallodin. 

Treatment of cells with doliculide caused them to arrest at cytokinesis and caused substantial 

rearrangement of intracellular F-actin.[19] Similarly, Sasse et al.[20] found that chondramide and 

phallodin differed little in their ability to displace a fluorescent phallodin derivative from actin 

polymer. These observations suggest nearly identical affinity of the four compounds 

(doliculide (6), jasplakinolide (1), chondramide (5), phallodin) for actin polymer and 

encouraged to search for a common pharmacophore among these peptides. From the 

modelling studies (Figure 2.3.2), it can be noticed that almost every atom of doliculide 

overlaps with atoms in either jasplakinolide, phallodin or chondramide C. Of particular note is 

that the benzyl group of doliculide corresponds to the indole group of other peptides and that 

the iodine atom of doliculide overlaps reasonably well with the bromine atom of 
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jasplakinolide. In short, the phenyl ring and isopropyl group of doliculide occupy the same 

region of space as the indole and the phenyl rings of jasplakinolide. 

 

 
 

Figure 2.3.2: Comparison of computational volume overlap structures of doliculide with 

jasplakinolide, phalloidin, and chondramide C. The overlapping structures of doliculide with 

jasplakinolide (left), with phalloidin (center), and with chondramide C (right) are shown with 

the molecules separated but in the same orientation in space. For each vertical pair of 

molecules, matching atoms within their van der Waals radii are shown as spheres 

superimposed on the stick figure representations of each molecule. Carbon atoms are shown in 

green, oxygen in red, nitrogen in blue, sulfur in yellow, and halides in magenta. Hydrogen 

atoms are not shown. 
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2.4 Conformational (peptidomimetical) studies of small peptides 
 

For a number of biologically active peptides the incorporation of conformationally 

constrained amino acids has given rise to analogues with improved biological activities.[21] 

Presumably, a constrained analogue that retains biological activity is represented in solution  

 

 
 

Figure 2.4.1: Relation of conformation vs biological effect.[22] 

 

by a set of conformations that is smaller than that of the native unconstrained peptide, and that 

set of constrained analogue conformations in solution contains a larger fraction of the receptor 

bound conformation(s). Indeed, in certain cases multiple substitutions of constrained amino 
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acids have given potent analogues with sufficient rigidity to display discrete solution 

conformations that are suggestive of bioactive conformation. Peptides bearing conformational 

constraints have often displayed superior stability to enzymatic degradation as well.[23] In 

solution peptides exist as a variety of conformations that are in dynamic equilibrium with each 

other. If a conformational restriction is introduced to the bioactive conformation of the 

peptide, forms A and B (Figure 2.4.1) can not arise. Thus the interaction with alternative 

receptors and peptidases is suppressed or does not occur. In this fashion a desired biological 

effect can be obtained.[22] Figure 2.4.2 explains the analogue (peptidomimetic) drug design 

principles. 

 

Receptor

Scan peptide libraries for
binding affinity

Potential peptide agonist
  or antagonist

activity assays

Active peptide lead
 compounds

Identification of receptor residues
responsible for peptide recognition

Hypothesis of receptor-bound 
conformation

Biologically active peptides
alanine scan

Critical residues
reduce size

Define active core

Define local and global conformational parameters

D-amino acid scan 
non coded amino acid scan

Cyclization, turn mimetics,
isostere replacement

Generate active constrained analogues
         (peptidomimetics)

Molecular modelling of
Receptor and/or ligand

Conformational analysis
Physical studies

 

 

Figure 2.4.2: Analogue (peptidomimetic) drug design principles. 

 

Several possibilities exist for the synthesis of conformationally restricted and/or metabolically 

stable peptidomimetics at the amino acid level. The systematic exchange of individual amino 

acids by α-C alkylated, α-N alkylated, and D-amino acids is well established. In addition, α,β-
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unsaturated, cyclic and β-amino acids as well as amino acids with sterically demanding side 

chains may also be employed. The Table in the down describes the effect on conformation 

with the modification on the amino acid.[24] 
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Modification      conformational effect 

1. Backbone N-alkylation    φ, ψ, χ are constrained, facilitates cis-trans 

       isomerism. 

2. Backbone C-alkylation    φ, ψ are constrained to a helical or 

       extended linear structure. 

3. D-amino acid/proline substitution   Favors formation of β-turn structures. 

4. Peptide bond isosteres    ω can be fixed at 0 or 180o, or allowed 

       greater freedom of rotation. 

5. Cyclic amino acids     ω can be biased to 0 or 180o, φ, ψ are  

biased towards formation of β-turns or 

γ-turns, χ can also be affected. 

6. Dehydroamino acids      Fix χ at 0 or 180o. 

7. β-alkylation      Constrain χ, may also affect backbone 

       conformation. 

 

2.4.1 Secondary Structure Motifs: β turns 
  

So far a crucial disadvantage of modifications (above Table) is, that the resulting 

conformation can not be predicted. As a result biophysical investigations are necessary to 

obtain conformational-activity relationships for each and every derivative prepared. For this 

reason it is desirable to have methods available that induce a specific target conformation. A 

secondary structure mimetic is a building block that forces a defined secondary structure after 
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incorporation into a peptide. An ideal mimic will have a rigid scaffold that orients the 

sidechain residues in the same direction as the natural peptide, while confering better 

solubility and/or resistance to enzymatic degradation. β-Turns are the most frequently 

mimicked protein secondary structures. β-Turns are defined as a tetrapeptide sequence where 

the distance between α-Ci and α-Ci+3 is less than or equal to 7 Å (Figure 2.4.3). The turn can 

be stabilized by chelation of a cation, such as Ca2+ or intramolecular hydrogen bonds. In linear 

peptides turn arises mainly due to the tendency to form intra molecular hydrogen bonds. The 

β-turn is a structural motif common to many biologically active cyclic peptides[25] and has 

been postulated in many cases for the biologically active form of linear peptides. For this 

reason it is a frequently imitated secondary structure.[26]  
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Figure 2.4.3: β-turn. 

 

There are certainly several ways of constructing conformationally locked and well-defined 

structures of analogues of natural cyclic peptides using different strategies by introducing 

different amino acids which are having some key features to control the conformations. The 

following summary describes the utility of different kind of modifications of peptides which 

are having key features in controlling the conformations to give specific secondary structures 

such as β-turns. 

 

2.4.2 Sugar Amino acids (SAA) 
 

Since proteins tend to confer their biological activity through small regions of their 

folded structures, in principle their functions could be reproduced in much smaller designed 

molecules that retain these crucial surfaces. Introduction of sugar amino acids (SAA) in 

peptides can adopt secondary turn or helical structures and thus may allow to mimic helices or 
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sheets. Kessler et al.[27] explored the conformational influence of several SAA (Figure 2.4.5) 

into different model and biologically active peptides. After studying the NMR, CD and 

considering molecular modeling calculations, they came to the conclusion that sugar amino 

acids (SAA) can cause both global as well as local constraints. 
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Figure 2.4.4: Naturally occurring sugar amino acids. 
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Figure 2.4.5: Kessler’s β-sugar amino acids.[28] 

 

Somatostatin, a 14 amino acid peptide containing a 38-membered macrocycle is a hormone 

formed in the hypothalamus. Structure-conformation-activity studies had suggested that a β-

turn composed of Phe-Trp-Lys-Thr is important for biological activity. Much of reminder of 

the hormone apparently functions as scaffold and can be replaced with simpler structural units. 

Many simpler analogues were designed[29] and they proved to be very active against tumor cell 

growth and were able to induce apoptosis. 
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Fig 2.4.6: Model of the bioactive conformation of somatostatin hexapeptide analogues: [cyclo-

(Pro-Phe-D-Trp-Lys-Thr-Phe)]. 

  

Kessler et al. replaced proline in the bioactive conformation (Figure 2.4.6) of the somatostatin 

hexapeptide analogue with various sugar amino acids (SAA).[30] NMR and other studies 

showed that there was a β-turn due to the SAA. Somatostatin analogues 12 and 13 containing 

SAA 10 exhibit strong antiproliferative and apoptic activity against the multidrug resistant 

hepatomic carcinoma. Results reveal that by introducing the SAA in a peptide backbone, 

pharmacokinetic properties can easily be improved as well as bioavailability, and enzymatic 

stability of the compounds will most likely also be enhanced.  
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Figure 2.4.7: Sugar amino acid 10 containing compounds 12 and 13 with antiproliferative and 

apoptotic activity in the low μM range. 
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2.4.3 β-Amino acids 
 

A peptidomimetic approach that has emerged in recent years with significant potential 

is the use of β-amino acids. β-Amino acids are similar to α-amino acids in that they contain an 

amino terminus and carboxyl terminus. β-Amino acids, with a specific side chain, can exist as 

the R or S isomers at either α (C2) carbon or β (C3) carbon. This results, in a total of four 

possible isomers for any given side chain. The flexibility to generate a vast range of stereo and 

regio isomers, together with the possibility of disubstitutions, significantly expands the 

structural diversity of β-amino acids thereby providing enormous scope for molecular design. 

        

             

H2N
CO2HH2N

CO2H
H2N

CO2H
H2N

CO2H
 

 

Figure 2.4.8: Structure of β-amino acids and the side chain stereochemistry of the four 

possible isomers of a mono-substituted β-amino acid. 

 

The incorporation of β-amino acids has been successful in creating peptidomimetics that not 

only have potent biological activity, but are also resistant to proteolysis. In a recent study of 

designing enzyme inhibitors of the endo-peptidase, scissile α-amino acid was replaced with a 

β-amino acid against proteolysis. A likely mechanism for the stabilization of a peptide bond by 

a β-amino acid involves the displacement of scissile bond from the active site due to the 

presence of an additional carbon atom in the back bone and preventing proteolysis (Figure 

2.4.9).[31] 
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Figure 2.4.9: Schematic diagram of the binding of an α-peptide (upper panel) and a β-amino 

acid containing peptide (lower panel) to the active site of EP24.15 demonstrating how 

a β-peptide may bind but is not cleaved by the peptidase.[31] 

 

There are several biologically known active cyclic peptides containing β-amino acids. 

Jasplakinolide, the chondramides contain the β-phenyl alanine and taxol contains a α-hydroxy 

β-amino acid derivative. There are plenty of examples where an α-amino acid replaced by β-

amino acid resulting in higher biological activity and increased stability to proteolysis.[32, 33]   

 

2.4.4 N-Methyl amino acids (NMA) 
 

 NMA containing peptide natural products (peptides, depsipeptides) have been isolated 

from a variety of sources and their secondary metabolites (e.g. vancomycin, cyclosporin, 

actinomycin D) have found clinical use due in part to physical properties and chemical 

stability conferred by NMAs present in their structures.[34] Short poly N-methylated peptides 

or peptides containing altering N-methyl amide and normal amide bonds have been especially 

successful as inhibitors of amyloidosis ie the process of protein aggregation thought to be, at 

least partially responsible for Alzheimer’s disease, type II diabetes etc.[35, 36] (Amyloidosis 

refers to the extracellular deposition of a protein called amyloid. This protein deposition can 

affect multiple organs. The deposition of amyloid may be a byproduct of normal aging, or may 

occur with several other conditions). Studies of NMA containing peptides reveal that N-methyl 

amino acid residues increase the proteolytic stability, increase membrane permeability 

(lipophilicity), and alter the conformational characteristics or properties of amide bonds.[37]  
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In 1967, Goodmann et al. proposed that poly N-methyl alanine adopts a helical 

conformation by using low resolutions methods like circular dichroism (CD) spectroscopy, 

one dimensional 1H NMR spectroscopy and some theoretical calculations. In contrast to this 

work more recent literature, especially in biological journals, assumes that peptides containing 

N-methyl amino acids prefer an extended conformation. The rationale for this is a report by 

Viteroux et al. in which they studied the effect of N-methylation on the conformation of amide 

bonds through the use of homo- and hetero-chiral dipeptides, in which one amide bond was N-

methylated. In this paper it was suggested that homo-chiral dipeptides with an internal N-

methylated bond prefer a cis-amide form, giving the peptide β-turn characteristics while 

hetero-chiral dipeptides exist in the trans-amide form. Comparison of these effects with 

dipeptides containing a proline residue concluded that the effect of N-methylation giving a 

tertiary amide was less than the geometrical constraints conferred by proline residues.[38] More 

recently Arvidsson et al.[39] studied the synthesis and crystal structures of poly N-methyl 

alanine (penta and hexa) and hetero poly N-methyl peptide containing various α-amino acids. 

In this paper they found that both homo poly N-methyl alanine and hetero poly N-methyl 

peptide adopt an extended conformation (β-strand) and all amide bonds populated the trans 

amide form which allows the formation of hydrogen bond between natural α-peptides. The 

dihedral angle values revealed that, only every second residue can interact with the sheet 

conformation of α-peptide. These results exposed that the peptides with alternating N-methyl 

groups can inhibit the growth of β-sheet conformation of the natural α-peptide and thus can 

inhibit amyloidosis.  

 

2.4.5 Non bonded interactions 
 

 Most of the polyketides isolated from nature have very complex structures containing 

methyl groups in different configurations. One can wonder why nature makes such 

complicated molecules which are having many methyl groups in a symmetric or complex way. 

Such considerations strengthen the notion that the presence of the numerous methyl side 

groups is somehow connected with the backbone conformation of these molecules. The methyl 

groups do not affect the flexibility of the backbone, yet they reduce the number of low energy 

local conformers with the result that such molecules preferentially populate certain 
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conformations. In short, these polyketides may be called as ‘flexible molecules with defined 

shape’.[40] 

  

Two principles become evident, that nature uses to destabilize undesired conformations: one is 

to avoid the 1,3-allylic interaction and the other is to avoid syn-pentane interactions. In a 

substance as depicted in Figure 2.4.10, a single conformation of the vinylic bond is almost 

completely populated in which the H-C-C=C dihedral angle lies within 0±30o. The eclipsed 

interaction is consequently more costly (16.3 kJ mol-1) and the bond rotates in a way to release 

the repulsive interaction as shown in Figure 2.4.10. 
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Figure 2.4.10 Preferred local conformation of a 1,1-disubstituted allylic system 

  

A destabilizing syn-pentane interaction is created when a hydrocarbon chain is folded such a 

way that a gauche+ (60o) dihedral angle is followed by gauche- (300o) along the backbone as 

illustrated in Figure 2.4.11. This places in the case of Figure 2.4.11, two methyl groups into a 

similar spatial proximity, as formed in a 1,3-diaxial arrangement on a cyclohexane ring. The 

conformation shown in Figure 2.4.11 is no minimum on the energy hyper surface; rather the 

molecule relaxes by increasing the backbone dihedral angle. The resulting conformers are still 

higher in energy (about 14 kJ mol-1) than unstrained conformers. For this reason, linear 

hydrocarbon chains in alkanes adopt conformations that are free of such syn-pentane 

interactions. The methyl side groups in the polyketide natural products cause the substructures 

of the kind in Figure 2.4.11 to have only two conformations that are free from such 

destabilizing interactions.[41, 42] 
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Figure 2.4.11 a) Destabilized by syn-pentane interaction; b, c) diconformational segments of 

2,4,6… n-polymethylated alkane chains. 

 

The 8-hydroxy acid (3) of jasplakinolide (1) is a good example, which fits in the definition 

‘flexible molecule with defined shape’. The hydroxy acid 3 contains four methyl groups in a 

1,3-distance. One can identify two syn-pentane interactions and one 1,3-allylic interactions. 

Due to these interactions (because of methyl groups) both functional groups at both ends of the 

chain point in one direction and allow bridging with a peptide fragment. Based on the work of 

Hoffman et al. one can assume that the conformation of the chain is largely determined by the 

central double bond and the three other methyl groups. While definitely several low energy 

conformations are possible, an arrangement such as one depicted in Figure 2.4.12 should be 

accessible. Conformational search runs (Macromodel 7.0, MM2* force field, 1000 starting 

structures) for the hydroxy acid 3 found four conformers within 4.184 kJ mol-1 of the 

minimum in which the third lowest conformer (ΔE = 2.00 kJ mol-1) matches the expected 

conformation for hydroxy acid 3 depicted in Figure 2.4.12. This would allow an easy bridging. 

The conformation of the central part is governed by 1,3-allylic strain. The dihedral angles of 

the single bonds next to the allylic system are gauche+ (60o) and gauche- (300o), 

respectively.[43] 
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Figure 2.4.12: Possible conformation of the 8-hydroxy acid 3 due to the avoidance of CH3-

CH3 steric interactions. 

 

In recent sequel publications, Terracciano et al.,[44, 45] described the synthesis and 

conformational analysis of simplified analogues of jasplakinolide (Figure 2.4.13). In the first 

publication,[44] the polyketide part was modified by replacing the 8-hydroxy acid 3 with 

commercially available 5-aminopentanoic acid, 6-aminohexanoic acid, 8-aminooctanoic acid. 

In the peptide part D-N-methyl-2-bromotryptophane and D-β-tyrosine were replaced with D-

tryptophane and L-valine basing on the theory discussed earlier in section 2.3, in order to gain 

information about the pharmocophoric part of jasplakinolide. But there is no rational 

conformational constraint within the analogues 14, 15 and 16. Moreover, there was no 

significant biological activity. This may be due to the lack of conformational elements in the 

polyketide part of these analogues. In the second publication,[45] hydroxy acid 3 was replaced 

with substrate 17. Hydroxy acid 17 was designed by substituting the allylic part with a meta 

substituted aromatic part in the place of allylic part and replacing one of the methylene group 

in the chain with its isosteric oxygen. In addition, the methyl groups were removed in the 

design process. Therefore, while showing some constraint, hydroxy acid 17 is lacking the 

crucial syn-pentane interactions. The results revealed that there was neither good correlation in 

the conformations of the analogues with the natural product and nor specific biological activity 

towards the F-actin. There was no specific β-turn type II secondary structure for the analogues 

in which the hydroxy acid was specifically designed to get secondary structure motifs. It 

seems that in this publication, there was given more importance to the tripeptide part than the 

polyketide fragment as it was thought that the tripeptide fragment is the key determinant for 

exerting the biological activity. 
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Figure 2.4.13: Jasplakinolide analogues (above); replacement of the allylic part with an 

aromatic ring in the polyketide part of jasplakinolide.[45] 

 

 

2.5 Key reactions and mechanisms 
 

2.5.1 Stereo selective alkylation’s using chiral auxiliaries 
  

A classical strategy to obtain enantiomerically pure compounds is based on the use of 

chiral auxiliaries. Thus, a chiral, enantiomerically pure compound is attched to an achiral 

starting material. This way enantiotopic groups or faces become diastereotopic. After the 

diastereoselective reaction on the conjugate, removal of the auxiliary provides only the derived 

enantiomer of the product. The versatile oxazolidine-2-one based chiral auxiliary was first 

developed by Evans et al. in 1981.[46] The auxiliaries are easy to prepare from α-amino acids. 

Reduction of the amino acid to the amino alcohol and subsequent cyclization using diethyl 
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carbonate gives the chiral auxiliary. For instance chiral oxazolodin-2-ones 19-21 and 23 are 

available from valine, phenyl alanine, phenyl glycine, and norephedrine, respectively.[47, 48] 
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Scheme 3: Synthesis of chiral auxiliaries from the corresponding α-amino acids or amino 

alcohols. 

 

Evans chiral auxiliaries have been utilized in a wide variety of synthetic transformations[49] 

such as asymmetric syn-aldol reactions, stereoselective alkylations, stereoselective 

differentiation of enantiotopic groups in molecules bearing prochiral centers, asymmetric 

Diels-Alder reactions, and the synthesis of β-amino acids etc.[50] Scheme 4 describes some 

important reactions of propionyloxazolidinone 24 with various electrophiles. 
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Scheme 4: Different reactions using different bases and electrophiles on propionyl 

oxazolidinone 24. 

 

The high selectivity of alkylations using propionyl derivative 24 can be explained on the basis 

of a selective enolate formation and approach of the electrophile from the less hindered side of 

the enolate. Amides invariably give only Z-enolate upon treatment with bulky bases like LDA 

(Figure 2.5.1) because the A(1,2) torsional strain dominates over the 1,3-diaxial interaction in 

the chair like transition states of the deprotonation step. 
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Figure 2.5.1: Possible explanation for the formation of Z-enolate. 

 

There are two conformations possible for the propionyl derivative 24 and for the enolate 25. 

But because of the chelation of oxygens with lithium, one conformation (Figure 2.5.2) is 

highly favored due to the chelation. This way efficient differentiation of the two enolate faces 

is guaranteed. Now the enolate attacks the electrophile from the less hindered side (Figure 

2.5.3) forming the product with excellent diastereoselectivity for the compound 26.[50] 
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Figure 2.5.2: Possible conformations of chiral auxiliary and enolate. 
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Figure 2.5.3: Attack of enolate from less hindered side. 
 

2.5.2 Enzymatic hydrolysis using Pig liver esterase (PLE, EC 3.1.1.1) 
 

 Enzymes are now accepted as useful catalysts for a broad range of organic 

transformations due to their capacities for inducing efficient asymmetric transformations. 

Hydrolases are currently the enzyme group that receives the most attention. Among the 

hydrolases, the esterase that has seen most extensive utilization is pig liver esterase (PLE, EC 

3.1.1.1). PLE is a serine protease that catalyzes the hydrolysis of a broad range of carboxylic 

acid esters. The potential of PLE in organic synthesis first emerged when Sih and coworkers 

reported the PLE catalyzed enantioselective hydrolysis of diester 27 (Scheme 5). PLE is 

capable of enantiomeric and enantiotopic group specificity and widely employed for providing 

chiral acid ester synthons from prochiral diester substrates. In addition PLE can also be used to 

resolve racemic mono esters.[51] 
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Scheme 5: Asymmetric hydrolysis of symmetric diester. 
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Complications arose when PLE showed uncertainty about the stereochemistry towards certain 

substrate groups. For example within the homologous series of monocyclic meso diesters 31-

33, the stereoselectivity of PLE hydrolysis reverses itself. For the cyclobutane diester 31, the 

S-ester is hydrolyzed to give 34, while for the cyclohexane substrate 33, the acid-ester 36 from 

R-ester cleavage is formed. Both 34 and 36 are enantiomerically pure. The cyclopentane 

substrate 32 represents the changeover point, with the acid-ester 35 being virtually racemic. 

Initially it was thought that the variability in stereoselectivity is due to the commercially 

available PLE that contain the similar proteins with some having R- and other S- preference 

(isoenzymes). The separated PLE components did not change the stereospecificity of 31-33, 

thereby demonstrating that, although commercial PLE is a mixture, it behaves as if it is single 

species. 
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2.5.2.1 Modeling the active site of PLE 

 

 Due to the uncertainty in the stereochemistry of PLE towards certain substrates and the 

lack of an X-ray structure, an empirical approach was put forward, the active site model 

(Figure 2.5.4) for PLE, as proposed by Toone et al.[51] in 1990. This model is a theoretical 

approach using computer modeling studies and based on the analysis of experimental results 

of PLE catalyzed hydrolysis of literature known substrates. First, the active-site location of the 

catalytically vital serine residue involved in the ester hydrolysis was arbitrarily fixed in a 

unique location in the space. Then using computer graphics, for each substrate the ester group 

that becomes hydrolyzed was placed in the nucleophile region and the remaining parts of the 
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substrates were overlaid in order to identify the components that could occupy common 

volumes. The analysis resulted in an illustrative active-site model (Figure 2.5.4) for PLE. 
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Figure 2.5.4 Active-site model for PLE. 

 

The catalytically essential region is that of the serine residue, which initiates hydrolysis by its 

attack on the carbonyl group of the susceptible ester function. The binding regions controlling 

the specificity are composed of four pockets of which two are hydrophobic (HL(large) and 

HS(small)) which interact with the aliphatic or aromatic hydrocarbon portions of a substrate and 

two others that are more polar in character (PF(front) and PB(back)). The larger of two hydrophobic 

zones, HL, has a volume of approximately 33 Å3, while the smaller HS pocket has a roughly 

5.5 Å3. Polar groups such as hydroxyl, amino, carbonyl, nitro, etc. are excluded from these 

areas. However, the hydrophobic pockets can accommodate less polar hetero atom functions 

such as halogen, and ether, or ketal oxygen atoms, if necessary. The remaining two groups 

accept more polar or hydrophilic groups. They are located at the front (PF) and back (PB) of the 

active site, respectively. Unlike the other binding regions, the rear boundary is open, and 

hydrogen bonding or similar groups may extend out beyond the back of this region. The area 

above the model is also open, and is completely accessible to any substrate moiety that needs 

to locate there. Such groups may extend in this direction without restriction. This model 

reveals the differences in the stereochemistry of the homologous series 31-33 towards the 

hydrolysis with PLE. Small hydrophobic groups bind in HS until they become too large to do 

so, at which point the substrate orientation must turn around to place the large hydrophobic 

groups in HL pocket, where there is room to accommodate it. It is this ‘turning over’ 
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requirement that is responsible for the S-to-R (and vice versa) switches observed 

experimentally. Figure 2.5.5 explains the reversal of stereochemistry for the series 31-33. 
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Figure 2.5.5: A top perspective view of the active-site model for the hydrolysis of the 

homologous diester series 31-33.[52] 

 

The top perspective view of the active site model is used to illustrate the binding-mode 

selections for the diesters 31-33. Dimethyl cyclobutane-1,2-dicaroboxylate 31 bound into the 

active site with its ‘S’ centre ester in the serine sphere and thus being hydrolyzed (Figure 

2.5.5a). In this orientation the ‘R’ centre can locate acceptably within the PF pocket and the 

cyclobutyl group is directed in to the HS site, where it fits well. This is clearly a favorable ‘ES’ 

complex. The alternative binding mode required for hydrolysis of the R-centre ester would 
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place a portion of the cyclobutane ring in the HL pocket. Since binding of hydrophobic groups 

must occur in the HS rather than the HL site if sterically possible. It seems to be the 

hydrophobic part that is cyclobutane ring sterically fits well in HS leading to the formation of 

S-acid product 34. In the case of dimethyl cyclohexane-1,2-dicarboxylate 33 the binding 

depicted in Figure 2.5.5e shows the preferred ES-complex for hydrolysis of the R-center ester 

2R-acid 36, with the cyclohexane ring bound in the large hydrophobic pocket HL. Hydrolysis 

of the ‘S’ centre would require an orientation as shown in Figure 2.5.5f. This is precluded 

since the HS pocket is clearly too small to accept the six-membered ring. According to the 

active-site model (Figure 2.5.5c and d), hydrolysis of dimethyl cyclopentane-1,2-dicarboxylate 

32 is the intermediate between the two cases 31 and 33 since it can fit into both HS and HL but 

the cyclopentane group is marginally too large for an optimum fit into HS, resulting in a slight 

preference for hydrolysis on the R side (experimental result showed 17% ee) which satisfies 

the experimental result. 

 

2.5.3 Formation of protected amines (carbamates) via Curtius Rearrangement 
 

 The Curtius rearrangement (eq.1) involves the thermal decomposition of acyl azides 

into amines via an isocyanate intermediate. The reaction might be explained with the loss of 

nitrogen from the acyl azide forming an acyl nitrene species. Migration of the ‘R’ group to the 

electron deficient nitrene would then form the isocyanate. The isocyanate can be trapped by a 

variety of nucleophiles such as H2O, amines, or alcohols to get amines, acylureas, or 

carbamates, respectively (eq. 1). Curtius rearrangement is one of the most widely used 

methods to synthesize amine derivatives and over 1000 references can be found in the 

literature related to the rearrangement which points to the potential of the reaction.[53] This is a 

very general reaction and can be applied to any carboxylic acid: aliphatic, aromatic, acyclic, 

heterocyclic, unsaturated, and other polyfunctionalized carboxylic acids. 
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A number of methods have been developed to obtain acyl azides from carboxylic acid 

derivatives, such as acyl chlorides, mixed anhydrides, and hydrazides. Normally, obtaining the 

acyl chloride from carboxylic acid sometimes might cause racemization (if the compound has 

a chiral centre next to carbonyl group) or decomposition. In 1961, Weinstock reported the 

formation of acyl azides from the mixed anhydride which in turn can be obtained by treatment 

of carboxylic acid with ethyl chloroformate (eq. 2).[54] 
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Scheme 6: Formation of amines from isocyanate. 

 

Isocyanate 37 upon hydrolysis with H2O forms the amine via unstable carbamic acid 

intermediate 39 as shown in Scheme 6. The carbamic acid 39 decomposes in presence of base 

and gives amine 40.  
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Scheme 7: Formation of carbamate from isocyanate. 

 

Isocyanate 37 upon treatment with alcohols produces the protected amines which are called 

carbamates (Scheme 7). The mechanism is similar to that of Scheme 6, but here the 

carbamates are stable as opposed to the carbamic acid. A variety of alcohols can be used to 

produce the corresponding carbamates. For example t-BuOH produces the Boc-protected 

amine, fluorenyl alcohol gives the Fmoc-protected amine and benzyl alcohol produces the 

Cbz-protected amine. 

 

In 1974, Yamada et al.[55, 56] reported a modification of the Curtius rearrangement using 

diphenyl phosphoryl azide (DPPA) (Scheme 8). Using this reagent carboxylic acids yield 

amine derivatives (especially carbamates) in a single operation (does not require the acyl 

chlorides or mixed anhydrides). Diphenyl phosphorizidate serves as azide source as well as the 

coupling reagent, producing the mixed carboxylic phosphoric anhydride in the presence of 

triethyl amine. 
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Scheme 8: Modified Curtius rearrangement.[57, 58] 

 

The initial stage of the reaction involves the interaction of the carboxylate anion 47 with the 

phosphorous atom of DPPA 46 by releasing the azide anion to form the activated carboxylic 

phosphorus ester 48 (a mixed anhydride of carboxylic acid and phosphoric acid diester) as 

shown in Scheme 9. Now the azide attacks back on the carbonyl carbon of 48 to form the 
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carboxylic azide which on heating rearranges to the isocyanate according to same mechanism 

as that of ordinary Curtius rearrangement (eq 1). DPPA became the most widely used reagent 

for the one-pot synthesis of urethanes from carboxylic acids such as aliphatic, aromatic, 

heterocyclic ones etc. because the reaction needs neither a strong acid nor a strong base and it 

produces the acyl azide directly from the carboxylic acid without requirement of acid chlorides 

or mixed anhydrides. 
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Scheme 9: Possible mechanism for the formation of acyl azide using DPPA. 

 

There is the possibility that side products are formed when DPPA is being used in the Curtius 

rearrangement. In some cases, hydrazoic acid formed in the reaction mixture can react with the 

isocyanate to give a carbamoyl azide. Urea and ester derivatives can be formed, though in rare 

cases, by addition of the starting carboxylic acid to the isocyanate (Scheme 10). 
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Scheme 10: Possible side products in modified curtius rearrangement.[56] 
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Recently, Lebel et al.[53] reported a one-pot synthesis of Boc-protected amines via Curtius 

rearrangement using di-tert-butyl dicarbonate, sodium azide, tetrabutylammonium bromide 

and zinc(II) triflate (Scheme 11). 
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Scheme 11: One-pot synthesis of Boc-protected amines. 

 

In the above reaction, an excess of NaN3 is used to produce in situ BocN3 in the presence of 

phase transfer catalyst n-Bu4NBr. Upon the addition of 1-adamantancarboxylic acid to this 

mixture the formation of corresponding azide was observed. When the reaction mixture was 

heated to 80 oC, the Curtius rearrangement occurred and gave the desired carbamate. The acyl 

azide was converted to the corresponding isocyanate at 40 oC, but the carbamate was obtained 

in low yield. This observation suggested that the addition of tert-butoxy moiety to the 

isocyanate intermediate was slow at 40 oC. It was thought that the addition of Lewis acid in 

catalytic amounts can accelerate the formation of the carbamate. After examining several 

Lewis acids it was found that Zn(OTf)2 can act as very good Lewis acid catalyst for the above 

transformation at 40 oC which gave more than 90% yield. This study reveals that the Zn 

catalyst is not involved in the formation of the isocyanate, but rather accelerates the formation 

of the carbamate through the formation of a zinc carbamoyl bromide species. The exact 

kinetics and mechanism of this reaction are still unknown.    

 

2.5.4 Ireland-Claisen Rearrangement 
 

 The Ireland-Claisen rearrangement is a mild variant of the Claisen rearrangement, 

employing the allyl ester of a carboxylic acid ester instead of an allyl vinyl ether (Scheme 12). 

The ester is converted to its silyl ketene acetal which rearranges at temperatures below 100 oC. 

The intermediate product of the rearrangement, a carboxylic acid silyl ester can not be isolated 
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and is hydrolyzed during the workup. Thus, Ireland-Claisen rearrangement offers a simple 

access to chain extended carboxylic acids (1,4-unsaturated carboxylic acids). 
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Scheme 12: Ireland-Claisen rearrangement. 

 

Since its introduction in 1972, the Ireland-Claisen rearrangement[59] has became widely used 

in the synthesis of a diverse range of natural products and other targets.[60] The popularity of 

the reaction is due to several factors: (i) the ease of preparation of the allylic ester reactants; 

(ii) the ability to control the E/Z geometry of the ester enolate and hence the relative 

stereochemistry between C-2 and C-3 of the pentenoic acid product; (iii) the frequently high 

transfer between the allylic stereo center C-5 of the allyl ketene acetal and newly formed 

stereocenters at C-2 and/or C-3 of the pentenoic acid (Scheme 13); (iv) the generally high 

level of alkene stereocontrol.[61] 
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Scheme 13: Chair-like transition states in Ireland-Claisen rearrangement. 
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2.5.4.1 Effect of reaction conditions on the stereoselectivity of silyl ketene acetal 

formation 

 

 Silyl ketene acetal geometry is controlled by the selective formation of the E- and Z- 

ester enolates. Normally esters tend to form E-enolates with bases like LDA in THF at -78 oC 

by avoiding the severe 1,3 diaxial interactions between the N-isopropyl group of LDA and the 

substituent in the ester as shown in the six-membered transition state (Figure 2.5.6). 
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Figure 2.5.6: Transition state diagram for the enolate formation of esters with LDA. 

 

According to the transition state diagram (Figure 2.5.6), in THF solution the metal cation Li+ 

coordinates with the carbonyl carbon and the base. The kinetic enolization of esters in THF is 

postulated to operate through a cyclic transition state TS I (Figure 2.5.6). In 1991 Ireland et 

al.[62] reported that the addition of dipolar solvents (additives) such as HMPA, DMPU, or 

TMEDA can switch the enolate geometry to Z, favoring the thermodynamic product of the 

reaction. A switch from a preference of TS I in THF to TS II for the deprotonation in the 

presence of dipolar solvents appears questionable at first, due to a severe 1,3-diaxial 

interaction between the N-isopropyl group and R1 substituent in TS II. However, the presence 

of additives such as HMPA or DMPU results in greater degree of solvation of the lithium 

cation and weakened Li+-carbonyl oxygen interaction. A decrease in polarization of the 

carbonyl oxygen bond also results in a significantly less reactant like transition states, as the α-

C-H bond becomes more difficult to extend and break. It is important to note that a strong 
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solvation of Li+ ions may lead to a relative stabilization TS II over TS I through the 

occurrence of a late transition state. In a very strongly complexing solvent system, a continual 

change from an expanded to cyclic to an acyclic transition state is expected. In fact, an acyclic 

transition state can be considered as an extreme situation of an expanded cyclic transition state 

with a strongly solvated base counter ion (Figure 2.5.7).[62, 63] 
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Figure 2.5.7: Model for solvation of lithium with HMPA and deprotonation of an ester. 

 

Table 2 summarizes the effect of polar solvents on the formation of E/Z enolates of ethyl 

propionate. After examining different combinations of solvent systems, Ireland et al. reported 

that THF/45% DMPU or THF/23% HMPA are suitable solvent system for the formation of 

thermodynamic Z-enolate. This proves that enolate formation can proceed in both ways either 

under kinetic or thermodynamic control by changing the solvent system and thus controls the 

relative stereochemistry of newly forming chiral centers. But there is no comprehensive 

explanation for the formation of Z-enolate caused by the addition of dipolar solvents such as 

DMPU or HMPA until today. 
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Table 2. Effect of solvent on stereoselectvity of silyl ketene acetal formation of ethyl 

propionate with LDA 

 

  

Entry 

 

    Solvent 

 

   Ester:base 

         

     Z:E 

    

   Yield% 

    

   1 

   2 

   3 

   4 

   5 

   6 

   7 

 

THF 

THF/25%TMEDA 

THF/50%TMEDA 

THF/15% DMPU 

THF/30% DMPU 

THF/45% DMPU 

THF/23% HMPA 

          

          1:1 

          1:1 

          1:1 

          1:1 

          1:1 

          1:1 

          1:1 

      

      6:94 

     60:40 

       ---- 

    37:63 

    67:30 

    93:7 

    85:15 

      

     90 

     50 

       0 

     90 

     85 

     90 

     90 

 

 

2.5.5 Syn selective Evans Aldol reaction 
 

The aldol reaction is one of the most important methods of forming carbon-carbon 

bonds. The addition of an enolate to an aldehyde leads to the formation of at least one chiral 

center. This reaction, a classical method for the construction of carbon chains with oxygen 

functionality in 1,3-positions, has undergone remarkable changes in the last twenty years. The 

impulse for this development was given by the increasingly ambitious synthetic goals, which 

were provided in particular by the macrolide and polyether antibiotics with their many 

functional groups. New and particularly stereoselective variants of the aldol reaction have 

proved to provide the key to success. Chiral auxiliary chemistry has been exploited in 

asymmetric aldol reactions to generate both syn and anti selective products till to date since it 

was pioneered by Evans et al. in 1981.[46]  

 

In general, E-enolates of ketones or ester derivatives produce anti aldol products and Z-

enolates produce syn aldol reactions according to chair-like transition state proposed by 

Zimmerman, well known as Zimmerman-Traxler model (Scheme 14).[64] 



40                                                    Literature Review 
 

 

R1

OM
R2

H
M

R2

H

R3 O
O

R1

R1

O

R2
R3

OH

syn aldol
 product

R1

OM

R2

H

O

R3

R2
M

H

H

R3 O
O

R1

R1

O

R2
R3

OH

anti aldol
 product

H

O

R3

Z enolate

E enolate
 

 

Scheme 14: Zimmerman-Traxler transition states for E- and Z enolates. 

 

Evans et al. reported the application of chiral N-acyl oxazolidinones for diastereoselective syn 

aldol reactions.[65] After pioneering, this strategy became a very important tool in the synthesis 

of a broad range of bioactive natural products. Since acylated oxazolidinone is an imide, it 

forms exclusively Z-enolate (Figure 2.5.1) resulting in syn aldol product. To generate the Z-

enolate of N-acyl oxazolidinone, the combination of dibutylboron triflate and triethylamine 

were used since boron forms a strong and short bond with oxygen and thus forms a tight six 

membered chair like transition state that leads to syn aldol adduct with high preference. The 

observed high diastereoselectivity of one syn product over the other is due to the arrangement 

of the carbonyl group of the oxazolidinone and the C-O bond of enolate arranges in an anti 

fashion to each other in order to minimize dipole repulsions. In this arrangement the aldehyde 

approaches the enolate from the less hindered side of the chiral auxiliary (Scheme 15).  
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Scheme 15: Favored transition states in the asymmetric aldol addition of boron enolates of 

chiral N-acyl oxazolidinones. 

 

More recently, Crimmins and coworkers published a detailed account of their work in 

asymmetric aldol additions employing titanium(IV) enolates of N-acyloxazolidinones, N-

acyloxazolidinethiones and N-acylthiazolidinethiones.[66] Crimmins addressed the importance 

of the dialkylboron enolates of N-acyloxazolidinones as the most commonly used enolates for 

the preparation of the Evans syn products.  

 

The reaction with boron enolates proceeds via the non-chelated transition state 54 to deliver 

the well-known Evans syn products 55 (Scheme 16). However, the use of titanium(IV) 

enolates of N-acyloxazolidinethiones and N-acylthiazolidinethiones allows the reaction to 

proceed via the chelated transition state 56 to deliver the non-Evans syn products 60. 

Furthermore, Crimmins reported the potential of titanium(IV) enolates of N-acyloxazolidinone 

24, N-acyloxazolidinethiones 52 and N-acylthiazolidinethiones 53 for the preparation of both 

Evans and non-Evans syn aldol products by variation of the reaction conditions. 
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Scheme 17: Non-chelated (54) and chelated (56) transition states in the asymmetric aldol 

addition of titanium(IV) enolates of N-acyloxazolidinone, N-acyloxazolidinethiones and 

thiazolidinethiones. 

 

Crimmins found that the diastereoselectivity of the titanium(IV) enolates of N-

acyloxazolidinone, N-acyloxazolidinethiones and N-acylthiazolidinethiones to deliver the 

Evans syn product 55 is dependent on the nature and amount of the base used to generate the 

enolates. The Evans syn products were obtained, via the non-chelated transition state 54, when 

titanium enolates were formed in the presence of two equivalents of a base such as (–)-

sparteine. It was suggested that the second equivalent of amine coordinates to the metal center 

preventing further coordination of the imide or thioimide carbonyl to the metal center. Non-

Evans syn products were obtained when only one equivalent of amine was used to generate the 

enolates of N-acyloxazolidinethiones and N-acylthiazolidinethiones. In this case the imide 

carbonyl or the thiocarbonyl coordinated to the metal center to produce the highly ordered 

chelated transition state 56. Coordination of the imide carbonyl or thiocarbonyl to the metal 

center led to reversal of the π-facial orientation of the enolate in the transition state.[66] 
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2.5.6 Esterification using the Yamaguchi method and DCC/DMAP conditions 
 

2.5.6.1 Yamaguchi esterification 

 

 Yamaguchi esterification[67] is one of the important tools in the total synthesis of many 

biological active natural and unnatural lactones as they contain at least one ester bond in their 

core structure. The Yamaguchi esterification allows mild conditions for the synthesis of highly 

functionalized esters.[68-71] The reaction sequence involves the formation of mixed anhydride 

60 using the so-called Yamaguchi reagent i.e 2,4,6-trichlorobenzoyl chloride 59 with the 

carboxylic acid. The reaction of an alcohol with the mixed anhydride 60 in presence of DMAP 

generates the desired ester (Scheme 17).  
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Scheme 17: Yamaguchi esterification. 

 

The mechanism involves the replacement of the chloride in 2,4,6-trichlorobenzoyl chloride by 

the carboxylate giving rise to mixed anhydride 60. DMAP (64) is a stronger nucleophile than 

alcohol, therefore it attacks the mixed anhydride 60. Since the chlorine atoms on the benzene 

ring create steric crowding around the aromatic carbonyl group in the mixed anhydride 60, 

DMAP attacks regioselectively on the carbonyl group of the former carboxylic acid leading to 

the formation of an acylated pyridinium salt 62 between carboxylic acid and DMAP. As 

DMAP is a good leaving group, attack of alcohol is quite fast and leads to ester bond 

formation (Scheme 18).  
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Scheme 18: Mechanismof the Yamaguchi esterification. 

 

Recently Santalucia Jr. et al.[72] showed that aliphatic carboxylic acids can form ester bonds in 

a single step procedure by reacting with para-substituted unhindered benzoyl chlorides through 

the intermediacy of aliphatic symmetrical anhydrides. The byproduct of this step is the 

aliphatic carboxylate, which reenters the cycle (Scheme 19). Thus, until the regioselective 

completion of the reaction, there is always aliphatic carboxylate remaining, competing with 

the aromatic carboxylate, and the alcohol. The mechanism is based on the assumption that 

aliphatic carboxylates are better nucleophiles than aromatic carboxylates and alcohols. 

However, the aliphatic anhydride is also more electrophilic towards DMAP (not shown in the 

Scheme) or the alcohol than is the aromatic carbonyl of the mixed anhydride that is produced 

in situ. This proposed mechanism suggests that any aromatic acid chloride should be capable 

of producing preferentially and in situ the symmetric aliphatic anhydrides that then could be 

used in regioselective synthesis of aliphatic esters. It is important to consider the relationship 

between steric effects, electronic effects, and reactivity. The aliphatic anhydride produced in 

situ must be more electrophilic toward the alcohol than the aromatic carbonyl of the mixed 

aliphatic-aromatic anhydride for this procedure to succeed. p-Toluoyl chloride proved to be 

ideal for this transformation and catalytic amounts of DMAP are sufficient for the efficient 

transformation. 
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Scheme 19: Proposed reaction cycle for the esterification using aromatic acid chlorides. 

 

2.5.6.2 Esterification using DCC/DMAP conditions (Steglich esterification) 

 

 Esterification using dicyclohexylcarbodiimide (DCC) 65 is a mild reaction which 

allows the conversion of sterically demanding and acid labile substrates.[73, 74] It is one of the 

convenient methods for the formation of tert-butyl esters because t-BuOH tends to form 

carbocations and isobutene in acidic conditions. 

C
N

N

DCC
65  

      

Carboxylic acid reacts with DCC 65 to form O-acylisourea 66 intermediate, which offers 

similar reactivity to the corresponding acid anhydride like in the Yamaguchi esterification. 

Now the alcohol may attack the activated carboxylic acid to form an ester and stable 

dicyclohexyl urea 67 (DHU). But the attack of the alcohol is slower due to less nucleophilicity 

of the alcohol towards the O-acyl isourea 66. Without the presence of catalytic amounts of bi 

character species (nucleophile as well as leaving group) such as DMAP, the acyl group can 

migrate to the nitrogen, leading to the formation of N-acyl-dicyclohexyl urea 68. A common 

explanation of the DMAP acceleration suggests that DMAP, as a stronger nucleophile than 
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alcohol, reacts with the O-acylisourea 66 leading to a reactive acyl pyridinium species 62 

("active ester"). This intermediate cannot form intramolecular side products but reacts rapidly 

with alcohols. DMAP acts as an acyl transfer reagent in this way, and subsequent reaction with 

the alcohol gives the ester (Scheme 20). 
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Scheme 20: Mechanism for the formation of ester using DCC 62. 
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2.5.7 Coupling reagents in solution phase peptide synthesis 
 

 A large number of natural products are based upon a peptide framework and exhibit a 

spectrum of biological activity. Over 200 new peptide based drugs are under different stages 

of development with 50% of them under clinical trials are prior to approval.[75] Due to the 

importance of peptides, it has become a challenge for synthetic chemists to develop 

methodologies to construct peptides over the past few decades.[76, 77] A key step in the peptide 

production process is the formation of an amide bond. This requires activation of carboxylic 

acids which is usually carried out using so-called the ‘Peptide coupling reagents’ (Scheme 

21). 
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Scheme 21: General strategy for peptide bond formation. 

 

The area of coupling reagents began in the early 1950’s with the introduction of DCC 65, 

which at that time was already known and well studied. The difficulty in the complete removal 

of dicyclohexyl urea 67, the byproduct from the reaction mixture, led to the development of 

several modified carbodiimide reagents (Figure 2.5.9). 
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Figure 2.5.9: Various carbodiimide coupling reagents[78] 

 

Unfortunately, carbodiimides did not come close to being ‘ultimate’ coupling reagents, 

because their high reactivity provokes racemization and side reactions. As shown in the 

esterification with DCC (Scheme 20), N-protected amino acid reacts with carbodiimide to 

form O-acyl isourea 75 which is the active species for the amide bond formation (Scheme 22). 

The O-acyl isourea 75 can react with the free amino group of an amino acid to give the 

corresponding amide 76. This is the desired way of the process. The reactive O-acyl isourea 

75, however, can undergo enolization to 77 with a corresponding loss of chirality. 
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Scheme 22: Activation of N-protected amino acids with carbodiimide reagents. 

 

Furthermore, it can also suffer a rearrangement to give the N-acyl urea 78, which is not 

reactive. Last, but not least, it can sustain an intramolecular cyclization to give 5(4H)-

oxazolone 79, which is less reactive than the O-acyl isourea and can tautomerize to 80 with a 

corresponding loss of chirality as well.  

 

At the beginning of the 1970’s 1-hydroxy benzotriazole 81 (HOBt) was proposed as additive 

to DCC 65 to suppress racemization during the peptide coupling.[79, 80] Since then other 

benzotriazole derivatives such as 1-hydroxy-5-chloro-benzotriazole 82 (Cl-HOBt) or 1-
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hydroxy-7-aza-benzotriazole 83 have also been used. The OBt-active esters of amino acids are 

less reactive than the O-acyl isourea, but more stable and less prone to racemization. All these 

factors make the addition of benzotriazole derivatives almost mandatory to maintain high 

yields and chiral configuration during the peptide bond formation with carbodiimide activation 

(Scheme 23). 
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Scheme 23: Formation of peptide bonds via OBt esters. 

 

In the last decade onium (phosphonium and ammonium/uronium) salts of hydroxy-

benzotriazole derivatives have been introduced for the formation of peptide bonds.[77] 
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Figure 2.5.10: Common uronium coupling reagents. 

 

HATU = N-[Dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridine-1-methylene]-N-methaminium 

hexafluorophosphate; HBTU = N-[(1H-benzotriazolo-1-yl)(dimethylamino)methylene]-N-



Literature Review  51 
 

 

methylmethanaminium hexafluorphosphate N-oxide; HCTU = N-[(1H-6-Chlorobenzotriazolo-

1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorphosphate N-oxide. 

 

The species that reacts with onium salts is the carboxylate and therefore the presence of at 

least one equivalent of base is essential. The intermediate species, acyloxy-phosponium or 

amidinium salts have not been detected and react immediately with the benzotriazole 

derivative to give the corresponding OBt ester, which reacts with the amino component to give 

the corresponding amide (Scheme 24). 
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Scheme 24: Mechanism for the formation of peptide using uronium reagents. 

  

It is difficult to form a peptide bond with N-alkyl amino acids as the steric bulk of an alkyl 

group on the amine reduces its nucleophilicity, slowing the reaction rate and thus leading to 

undesired side products. Furthermore, racemization is more problematic because of the α-

proton which is now the most acidic proton whereas in natural amino acids the amide proton 

would be deprotonated first. It is important to note that in the case of N-methyl amino acids, 

HOBt suppresses the reaction rate and benzotriazole base reagents should be avoided in most 

cases. But there are some reagents which make the N-alkyl amino acid coupling feasible. 

PyBroP, PyCloP, BOP-Cl are the most general reagents for N-alkyl coupling reactions.[81]  

 



52                                                    Literature Review 
 

P
N N

N X PF6 N
P

N

O

Cl
OO

OO

X=Cl, PyCloP
  =Br, PyBroP

BOP-Cl92
93

94
 

 

Figure 2.5.11: Common reagents for the peptide coupling of N-alkyl amino acids derivatives. 

 

PyCloP = Chlorotrispyrrolidinophosphonium hexafluorophosphate;  

PyBroP = Bromotrispyrrolidiniphosphonium hexafluorophosphate;  

BOP-Cl = Bis(2-oxo-3-oxazolidinyl)phosphonic chloride. 
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3 Goal of research 
 

The purpose of the present project is to construct conformationally constrained 

analogues of the depsipeptide jasplakinolide. Constraining the conformation of a peptide 

fragment by incorporating it in a macrocyclic structure represents an important strategy for 

enhancing both the binding strength and selectivity. In addition, this maneuver can suppress 

unwanted proteolysis. Studying the solution conformation of such a macrocyclic structure can 

provide important information on the peptide surface structure and the area that is presented to 

a receptor. Jasplakinolide, geodiamolide, chondramide, and doliculide display similar 

biological properties. Although several syntheses of jasplakinolide had been reported when 

this project began, there were no reports where variations had been performed. Jasplakinolide 

is ideally suited for modification due to its modular structure. As we discussed earlier, 

jasplakinolide is composed of hydrophobic polypropionate and polar peptide chains. The 

interest for the construction of analogues of jasplakinolide and as well as the others in the 

family of these novel biologically active macrocycles, lies in the synthesis of the 

polypropionate fragment as it might function as a conformational constraining element for 

these macrocycles through non bonded interactions like syn-pentane and 1,3-allylic 

interactions. Even though the synthesis of the polypropionate part, a 8-hydroxy acid is 

feasible,[43, 82, 83] the preparation of larger amounts is quite costly. Keeping the non bonded 

interactions as conformational controlling elements in mind, novel ω-amino and hydroxy acids 

were rationally designed in order to synthesize and study the solution conformations of 

jasplakinolide like cyclic peptides and depsipeptides. 

 

Two recent publications from Terracciano et al. pointed to the importance of the 

polypropionate part in the construction of conformationally rigid analogues of 

jasplakinolide.[44, 45] Due to the lack of non bonded interactions in the polypropionate part of 

the Terracciano analogues, there were neither good restriction in the conformations nor good 

biological activity which supports our idea behind the synthesis of jasplakinolide analogues 

using rationally designed amino and hydroxy acids. 
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The objective of this study was the design and synthesis of novel amino and hydroxy 

acids which are bearing conformational controlling elements and to use them for constructing 

jasplakinolide like molecules in order to understand the structure-activity relationship using 

conformational and biological studies. These newly synthesized analogues should give some 

idea about the pharmacophoric part of the natural product.  
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4 Results and Discussion 
 

4.1 Design of the novel ω-amino and hydroxy acids 
 

The design of the amino acid 95 followed from looking at the conformational control 

elements in the hydroxy acid 3 (Figure 4.1.1). Thus, the 1,3-allylic interaction around the 

central trisubstituted double bond should position the allylic C-H in an eclipsed orientation to 

the double bond.[40] As a consequence, the methyl group at C-6 will point downwards and 

orient the 2-hydroxypropyl terminus to the other side, out of the plane of the double bond. The 

conformational situation at the carboxyl terminus seems to be less defined. Nevertheless, 

avoidance of syn-pentane interaction between C2-Me and C4-Me will cause the carboxyl 

group to point out of the plane of the central double bond as well. Our design plan then called 

for a rigidification of the vinylic C5-C6 bond. Accordingly, the allylic H was replaced with a 

two-carbon segment (see dashed lines in Figure 4.1.1), resulting in a meta-substituted aryl 

core. This simplification removes the stereocenter at C-6.   
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Figure 4.1.1: Design of the novel ω-amino acid 95.[84] 
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In order to probe the design process, conformational search runs (Macromodel 7.0, MM2* 

force field, 1000 starting structures) were carried out on hydroxy acid 3 and the amino acid 95 

(without the N-Boc protecting group). The search for the hydroxy acid 3 found four 

conformers within 4.184 kJ mol-1 of the minimum. The lowest conformer has the allylic C-H 

eclipsing the C4-Me, but only the carboxyl group is pointing out of the plane of the double 

bond (Figure 4.1.2). In the next lowest conformer 3b (ΔE = 0.93 kJ mol-1) 6-H, surprisingly, is  

 

95a

95b  
 

Figure 4.1.2: Calculated low energy conformations of the hydroxyacid 3 and amino acid 95 

(Chem3D representations). 

 

anti to the C4-Me. Basically, C4-Me is bisecting the angle C6-Me/C-6/C-7. This orients both 

termini to the other side of the central л-system. Conformers 3c (ΔE = 2.00 kJ mol-1) and 3d 

(ΔE = 4.10 kJ mol-1) actually match the expected conformation. Thus, 6-H eclipses the vinylic 

methyl and both termini extend nicely to one side. For the amino acid 95 we found two 

minimum energy conformers within 4.184 kJ mol-1 of the absolute minimum (E = 36.0 kJ mol-

1). In all cases the termini are pointed more or less orthogonal to the plane of the aryl ring. In 
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the second lowest conformer 95b (ΔE = 2.45 kJ mol-1) the termini point to the opposite side of 

the aryl ring. Conformer 95b does have striking similarity to the conformer 3c of the hydroxy 

acid. Most likely electrostatic interaction and hydrogen bonding cause a substantial gain in 

energy if both groups point to the same side. By looking at several of the calculated minima, it 

seems that the conformation of the aryl analogue is more ordered and less flexible. An overlay 

of 3c and 95b shows a decent overlap validating the original design (Figure 4.1.3). 

 

 
Figure 4.1.3: Overlay of the calculated conformers 3c and 95b (grey, hydroxy acid; black, 

aromatic amino acid). 

 

Based on the non-bonded interactions the hydroxy acid 96 and the corresponding ω-amino 

acid 97 were designed as well. These are truncated versions of the 8-hydroxy acid 3 of 

jasplakinolide. 
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Figure 4.1.4: Structures of hydroxy- and amino acids 96 and 97. 

 

It can be seen that the amino and hydroxy acids 96 and 97 have one 1,3–allylic interaction and 

one syn pentane interaction. Due to the non bonded interactions, the methyl groups avoid 

steric repulsions and make the molecules less flexible. As a result of this, the carboxyl and 

hydroxy or amino groups at the end of the chain might point in one direction, thereby allowing 

bridging with a peptide fragment. 
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4.2 Retrosynthetic analysis and synthetic pathways for the designed amino 
and hydroxy acids  

 

4.2.1 Retrosynthetic analysis of amino acid 95 
 

BocHN CO2H1
95

7
 

 

The amino acid 95 contains two stereocenters. If the amino function is generated by 

Curtius rearrangement, a possible precursor could be the C2 symmetric dicarboxylic acid 98. 

This symmetry might be exploited for the synthesis of 95 (Scheme 26).  
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Scheme 26: Retrosynthetic plan for the novel ω-amino acid 95. 

 

Initially, the synthetic plan was to create both stereocenters individually by using asymmetric 

Evans alkylation as shown in Scheme 27. The amino group in the amino acid 95 could be 

obtained from a Curtius rearrangement of the acid 101 which can be synthesized by the 

hydrolysis of Evans alkylation product, which in turn could be obtained by alkylation of 

propionyl oxazolidinone 100 with benzyl bromide derivative 99. As the benzyl bromide 

derivative 99 is not commercially available, it needs at least 3 steps to synthesize 99. The total 

sequence would require around 10 steps to synthesize the amino acid 95 excluding the 

synthesis of chiral reagent 100. 
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Scheme 27: Initial synthetic plan for the novel ω-amino acid 95. 

 

Based on the symmetry considerations discussed before, another route was developed for the 

sythesis of amino acid 95 from commercially available dibromo benzyl derivative 104 as 

shown in Scheme 28. In this pathway, amino acid 95 could be obtained by Curtius 

rearrangement and hydrolysis of the mono acid 103, which can be obtained from the diacid 98 

either by mono esterification in one step or by diesterification followed by selective enzymatic 

monohydrolysis in two steps. The diacid 98 can be obtained in two steps by double alkylation 

using propionyl oxazolidinone 100 with dibromo benzyl derivative 104 followed by hydrolytic 

removal of the chiral auxiliary.[85] 
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Scheme 28: Alternative pathway for amino acid 95. 

 

 

 



60                                            Results and Discussion 
 

4.2.2 Synthesis of amino acid 95 
 

The synthesis of amino acid 95 began with commercially available 1,3-

bis(bromomethyl)benzene (104), which was subjected to double alkylation with propionyl 

oxazolidinone 100. The propionyl oxazolidinone 100 was synthesized from R-phenylalanine 

105 according to an Evans procedure[86, 87] as shown in Scheme 29.  
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Scheme 29: Synthesis of N-propionyl-oxazolidinone 100. 

 

Initially for the alkylation, NaHDMS was used as a base. Even though the dialkylated product 

was formed, the yield was very low irrespective of the amount of excess chiral reagent 100 

used and the mono alkylated product formed predominantly. LDA proved to be good reagent 

for this dialkylation. In small scale reaction yields were moderate varying from 50-55% and in 

large scale reaction yields were better producing up to 60% of the desired compound 108. 

(Scheme 30). The yield might be increased by using excess of propionyl oxazolidinone. 

Oxidative hydrolysis of chiral auxiliary led to the diacid 98, which was in turn converted to the 

dimethyl ester 109 via DCC-mediated esterification. This maneuver was necessary in order to 

allow for a monohydrolysis of the homotopic ester groups. This could be achieved by esterase 

induced hydrolysis. It is necessary to use only catalytic amounts of pig liver esterase for this 

purpose. Otherwise, over hydrolysis can occur in no time and convert diester 109 back to the 

diacid 98. In this case, 100 units (2.5 mg) of pig liver esterase were used for the conversion of 
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one mmol of dimethyl ester 109 to mono ester 103 in 12 h at room temperature (Scheme 

30).[88] 
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Scheme 30: Synthesis of mono ester 105. 

 

With the monoester 103 in hand, the Curtius rearrangement was tried to synthesize the Fmoc 

protected amino acid in presence of DPPA/NEt3 and 9H-fluoren-9-ylmethanol (Scheme 31). 

However, the reaction did not work and the reactant got decomposed. The same was observed 

when benzyl alcohol was used in order to obtain the Cbz protected amino acid as reported in 

literature.[89] Also attempts failed to synthesize the unprotected amine by Curtius 

rearrangement using 1 N HCl as reported in our lab.[90] Then it was decided to follow the same 

procedure as reported in the original literature[57, 58] to make the Boc protected amino acid 

using t-BuOH as the nucleophile for attack on the isocyanate 110. Initially the reaction worked 

with very low yield and the major product obtained was the urea derivative 114. The reason 

for obtaining the urea 114 might be due to water in t-BuOH. Then some isocyanate could react 

with water and form the amine 113, which in turn would act as nucleophile and attack the 

isocyanate as shown in Scheme 32. This result was confirmed by using NMR and HRMS 

methods. As both products were not separable by column chromatography the NMR was not 

very pure. 

 



62                                            Results and Discussion 
 

OO

OHMeO

103

DPPA, NEt3

toluene, reflux, 
        3 h

N
CO

MeO

O

9H-fluoren 9-
ylmethanol

reflux

benzyl alcohol

reflux

1N HCl, reflux NH2

O

MeO

NHCbz
O

MeO

NHFmoc
O

MeO

110

111

112

113  
 

Scheme 31: Attempts to perform the Curtius rearrangement on acid 103. 
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Scheme 32: Mechanism for the formation of the urea 114. 

 

After realizing that tert-butanol can act as good nucleophile towards isocyanate 110, the mono 

acid 103 was treated with diphenylphosporyl azide followed by heating of the reaction mixture 

in the presence of distilled tert-butanol. This affected a Curtius rearrangement resulting in the 
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N-Boc protected ω-amino acid ester 115 in good yield. Basic hydrolysis of the ester led to the 

desired acid 95 (Scheme 33). This route secures the novel amino acid 95 in gram quantities. 

 

OO

OHMeO

103

DPPA, NEt3

toluene, reflux 
     3 h

N
CO

MeO

O

110

NHBoc
O

MeO

115

NaOH
THF/H2O
   80%

tBuOH

reflux
95

72%
 

 

Scheme 33: Synthesis of amino acid 95 

 

After successfully achieving the synthesis of ω-amino acid 95, we decided to synthesize the 

corresponding bromo amino acid 116 which has the bromine in the 3rd position of the aromatic 

ring of the amino acid 95. The purpose of the synthesis amino acid 116 is, that it can create 

conformational constraint in cyclic peptides and at the same time some side chains could be 

attatched to the resulting peptides through the aromatic region of this amino acid using various 

coupling reactions.  

 

BocHN CO2H

Br

116  
 

Almost the same strategy was used in order to synthesize bromo amino acid 116 (cf. Schemes 

30 and 33). The synthesis of amino acid 116 started with commericially available 3,5-

dimethylbromobenzene 117. Radical bromination of 117 using N-bromosuccinimide in 

presence of AIBN provided the tribromo benzyl derivarive 118 in 30% yield.[91, 92] Alkylation 

of propionyl oxazolidinone 100 with bromo benzyl derivative 118 using LDA at -78 oC 

produced the double alkylated product 119 in 53% yield (Scheme 34). Subsequent cleavage of 

the chiral auxiliary using mild oxidative hydrolysis conditions (H2O2 / LiOH) gave the diacid 
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120 in 89% yield. DCC mediated esterification of diacid 120 with methanol in presence of 

catalytic amounts of DMAP produced the dimethyl ester 121 in 75% yield. Enzymatic 

monohydrolysis of the diester 121 using Pig liver esterase led to the monoester 122 in 57% 

yield. Curtius rearrangement of the resulting monoester 122 using DPPA in presence of 

triethylamine in t-BuOH afforded the corresponding Boc protected amino acid methylester 

123 in 60% yield. Basic hydrolysis of the methylester 123 using 0.4 N NaOH produced the 

desired bromo amino acid 116 in 80% yield. 
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Scheme 34: Synthesis of bromo amino acid 116. 
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4.2.3 Synthesis of jasplakinolide analogues by incorporating the amino acid 95 
 

 With the amino acid 95 in hand, the synthesis of various macrocyles was targeted, in 

which the two ends of the acid 95 are bridged with some tripeptide fragments. Our goal was to 

prepare pairs of tripeptide fragments with one of them carrying a N-methyl group at the middle 

amino acid. The conformational analysis of the corresponding macrocycles should provide 

some hints on the mutual influence of the parts contained in the macrocycle. For this study L-

phenylalanine, D-alanine, L-alanine were chosen to form a tripeptide. The tripeptide was 

assembled by a classical Boc strategy as shown in Scheme 35. That is, DCC-mediated 

condensation of the phenylalanine derivative 124 with N-Boc-D-alanine 125 gave the dipetide 

126. After cleavage of the Boc protecting group with trifluoroacetic acid, coupling of the free 

amine with N-Boc-L-alanine using the coupling reagent 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDCI) provided the tripeptide 127 in 75% yield. Cleavage of Boc 

using TFA and TBTU mediated condensation of the resulting amine with the amino acid 95 

led to the acyclic tetrapeptide 128. Hydrolysis of the methyl ester, removal of the Boc group 

and macrolactam formation with 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

tetrafluoroborate (TBTU) in DMF (0.001 M) gave rise to jasplakinolide (geodiamolide) 

analogue 129 in 50% yield (Scheme 35). 
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Scheme 35: Synthesis of jasplakinolide (geodiamolide) analogue 129. 

 

In a similar manner, tripeptide 132 was assembled (Scheme 36). Here, N-Boc-N-methyl-D-

alanine[93, 94] 130 became the central amino acid fragment. For the formation of the peptide 

bond to the N-methylated amine, the coupling reagent bromotrispyrrolidinophosphonium 

hexafluorophosphate (PyBroP) came to use. After liberation of the terminal amine using TFA, 

EDCI-mediated condensation with the amino acid 95 provided the seco-compound 133. Ester 

hydrolysis, cleavage of the Boc protecting group and macrolactam formation using the same 

conditions as for 129 delivered the jasplakinolide (geodiamolide) analogue 134 with a N-

methyl amide group. 
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Scheme 36: Synthesis of jasplakinolide (geodiamolide) analogue 134 containing a N-methyl 

amide bond. 

 

One more pair of jasplakinolide analogues 135 and 136 were synthesized by incorporating the 

amino acid 95. These analogues were prepared using a similar strategy by Shazia Yasmeen. 

The variation of these analogues from the others 129 and 134 is the presence of a β-amino 

acid. The compounds 135 and 136 are structurally similar to jasplakinolide as both are 19-

membered macrocycles. The four analogues containing the amino acid 95 were synthesized in 

order to probe the conformational variations between the substrates containing different ring 

size and effect of N-methyl amide bond on the conformations of similar macrocycles.[84] The 

detailed conformational analysis will be discussed in the conformational analysis section. 
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Figure 4.2.1: Jasplakinolide analogues containing a β-amino acid and amino acid 95. 

 

4.2.4 Retrosynthetic analysis of hydoxy and amino acids 96 and 97 
 

While the amino acid 95 was relatively easy to synthesize, it seemed that the aryl ring 

imposes too much conformational constraint. Therefore we decided to design and synthesize 

truncated versions of the hydroxy acid 3 of jasplakinolide. By removing a syn-pentane 

interaction on the alcohol terminus we reached hydroxy acid 96 and amino acid 97. They 

should be easily accessible. One further advantage would be that the pair 96/97 should allow 

to probe the effect of an ester versus amide bond on the conformation of a derived macrocycle.    

 
HO2C

OR
HO2C

NHR

R = TBS or TBDPS R = Boc96 97

2 2 44 66

 
 

From a retrosynthetic point of view, one has to address the two chiral centers at C-2 and C-6 

and the double bond configuration. As both acids contain the same core structure and the 

amino acid 97 might be fashioned from the hydroxy acid 96, a divergent synthesis could be 

possible. The cleavage of the C4-C5 olefin bond results in two allylic fragments 137 and 138. 

The union of these two moieties may be envisaged via a metathesis coupling as shown in 

Scheme 37. As previous experience in our lab showed the cross metathesis leads to side 

products and does not really work for this alkene combination.[95, 96] An alternative would be 
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alkylation of propionyl oxazolidinone 100 with alkyl iodide 139. However, in this strategy 

synthesis of the alkyl iodide would require too many steps and costly the Roche ester as a 

starting material. Therefore, it was decided to use the Ireland-Claisen rearrangement as a key 

step to synthesize the hydroxy acid 96, as it has been reported in previous syntheses of 

jasplakinolide hydroxy acid 3. This way the synthesis of hydroxy acid 96 should require only 

5 steps. Evans syn aldol reaction[97] between N-propionyl oxazolidinone ent-100 and 

methacrolein 141 would provide the chiral center at C-6. The ester 140 could be obtained from 

aldol product 142 by subsequent reduction, monoprotection and acylation. Finally, the Ireland-

Claisen rearrangement of ester 140 would provide the chiral centre at C-2 and as well as the E-

configuration around the double bond. 
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Scheme 37: Possible retrosynthetic cuts for hydroxy acid 96. 

 

4.2.5 Synthetic pathway for hydroxy acid 96 

 

 The synthesis of the hydroxy acid 96 was started with a known syn selective aldol 

reaction between commercially available methacrolein 141 and propionyl oxazolidinone ent-

100.[97] The propionyl oxazolidinone ent-100 was synthesized from S-phenylalanine using the 

same procedure as shown in Scheme 29. The asymmetric Evans aldol reaction of methacrolein 
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141 with N-propionyl oxazolidinone ent-100 in the presence of dibutylboron triflate as Lewis 

acid and triethylamine as base at -78 oC produced the syn aldol product 142 in 75% yield 

(Scheme 38). A subsequent reductive removal of the chiral auxiliary using sodium 

borohydride (2.3 M in H2O) in THF (0.1 M) at 0 oC afforded the 1,3-diol 143 in 86% yield. 

Monoprotection of the primary alcoholic group with TBDPS-Cl in presence of imidazole at 23 
oC provided the mono protected silyl ether 144 in 97% yield. Subsequent acylation of alcohol 

using n-propionyl chloride in presence of pyridine at 0 oC provided the desired ester 140 to 

perform Ireland-Claisen rearrangement in 87% yield. 
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Scheme 38: Synthesis of ester 140. 

 

Ireland-Claisen rearrangement of the ester 140 would provide the required chiral center at C-2. 

The configuration at C-2 will depend on the geometry of enolate. The speciality of the Ireland-

Claisen rearrangement is that the geometry of the enolate can be controlled by using the 

appropriate reaction conditions. Thus, one can obtain selectively both configurations at the 

new chiral center by changing the solvents. In our case, Z-enolate will provide the required 

configuration at C-2 through a six-membered chair like transition state (Figure 4.2.2). As 

reported in the literature,[63] LDA in THF/HMPA was used as base to generate the Z-enolate.  
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Figure 4.2.2: Possible transition state to from the required configuration from Z-enolate. 

 

As we discussed earlier in section 2.5.4, the solution of ester 140 in THF (1.0 M) was added to 

a solution of LDA in THF/HMPA (7:3) at -78 oC. After 10 minutes, a solution of TBDMS-Cl 

in THF (nearly 2.0 M) was added to the reaction mixture at -78 oC in order to trap the enolate 

as silylketene actal. The rearrangement followed smoothly and formed the required acid in 

75% yield but with very poor diastereomeric ratio (3:1) at C-2 and it was almost impossible to 

separate the two diastreomers by column chromatography. The formation of Z-enolate 

depends on some important factors such as the solvent and the reaction time as the formation 

of the Z-enolate is a thermodynamically controlled reaction. Therefore, we decided to stir the 

reaction mixture longer prior to the addition of TBDMS-Cl. This time, the solution of 

TBDMS-Cl was added after 40 minutes and this logic worked nicely and high 

diasteroselectivity was observed with more than 95% of the desired product with 72% yield 

(Scheme 39). The 1H NMR (Figure 4.2.3) of both the diastereomeric mixture and the pure 

compound 96 illustrate the obtained results. 
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Scheme 39: Ireland-Claisen rearrangement of ester 140 under different reaction conditions. 

 

The highlighted regions of the spectra (Figure 4.2.3) correspond to the methyl protns of the 

hydroxy acid 96 at C-2 (0.95 ppm), C-6 (1.09 ppm) and C-4 (1.56 ppm) positons, respectively. 
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Figure 4.2.3: 1H NMR spectra of hydroxy acid 96 obtained under two reaction conditions. 

 

4.2.6 Retrosynthetic analysis of amino acid 97 

 

With a good route to hydroxy acid 96 available, we thought it might be the simplest to 

substitute the hydroxyl function with an amine equivalent (for example azide). However, this 

strategy would require several protection and deprotection steps. As an alternative, we 

considered introducing the amino function earlier, for example on primary alcohol 150 

(Scheme 40). Ireland-Claisen rearrangement of the ester 147 would provide the amino acid 97. 

The ester 147 could be prepared from the protected amino alcohol 148 by deprotection of the 

alcohol and acylation with n-propionyl chloride. The protected amino alcohol 148 might be 

obtained by Staudinger reaction of azide 149 followed by protection of the resulting amine. In 

turn, the azide 149 could be traced back to alcohol 150 and the aldol product 142. 
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Scheme 40: Retrosynthetic analysis of amino acid 97. 

 

4.2.7 Synthetic pathway for amino acid 97 

 

The synthesis of amino acid 97 started with the syn aldol product 142. Silylation (1.6 

equiv TBSOTf, 2.5 equiv of 2,6-lutidine at 23 oC, 12 h) of the secondary alcohol led to the 

silyl ether 151 in 90% yield. Reductive removal of the chiral auxiliary using sodium 

borohydride in THF at 0 oC afforded the secondary alcohol protected 1,3-diol 150 in 86% 

yield. Tosylation of 150 using tosyl chloride in presence of pyridine at 0 0C afforded the 

primary tosylate 152 in 92% yield. Attempts for the synthesis of azide 149 using sodium 

azide[98] at 80 oC in DMSO led to decomposition of the starting material with a very bad smell. 

The same was observed with mesylate 153. Using DPPA/DBU conditions to synthesize the 

azide 149 led to the formation of the corresponding phosphoryl ester along with some side 

products. The reason for the failure of the reaction might be due to the formation of [1,3]-

dipolar cycloadduct. 
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Scheme 41: Attempts for the synthesis of azide 149. 

 

At this point, it became necessary to consider other synthetic possibilities for the synthesis of 

amino acid 97 avoiding the azide pathway. The synthesis of amino acid 97 requires mainly 

introduction of an amine group, because the remainder of the synthesis will build upon the 

aldol reaction and Ireland-Claisen rearrangement. The amine could be synthesized by 

reduction of an amide which in turn should be available from the corresponding acid.[99] 

Keeping this strategy in mind, a second retrosynthetic plan was proposed for amino acid 97 

with the amide 154 as key intermediate (Scheme 42). The protected amino alcohol 148 would 

be synthesized from the amide 154 by reduction and protection of the resulting amine. The 

amide 154 would be prepared from the carboxylic acid 155 via amidation using a suitable 

ammonia source.[99] 
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Scheme 42: Retrosynthetic analysis for amino acid 100 through amide 154. 

 



76                                            Results and Discussion 
 

In this way, the synthesis of amino acid 97 started from the silylated syn aldol product 151 as 

shown in Scheme 44. Oxidative cleavage of 151 using H2O2/LiOH conditions provided the 

carboxylic acid 155 in 80% yield. The carboxylic acid 155 was converted to amide 154 using 

EEDQ 156 and (NH4)HCO3 at room temperature in 72% yield.[100, 101] The same 

transformation can be accomplished with ethyl chloroformate and triethylamine followed by 

NH3 or one can use coupling reagents like EDC (N-Ethyl-N'-(3-dimethylaminopropyl)-

carbodiimide hydrochloride) followed by NH3.[99] But, in this case the reaction did not work 

with the EDC/NH3 conditions. 

 

N OC2H5

C2H5O O

EEDQ 156

N OC2H5

O
C2H5 O

RO

O N

O
C2H5 O

O R

O

R O

O

O

O
C2H5

NH3.H2CO3

N

R NH2

O

 
 

Scheme 43: Possible mechanism for the formation of an amide from acid using EEDQ 156. 

 

Reduction of amide 154 using LiAlH4 (1.0 M solution in ether) under reflux for 1 h produced 

the desired amine 157 but with concomitant deprotection of the alcohol as shown in Scheme 

44. As the alcoholic functional group will not affect the protection of the amine using Boc 

anhydride, the crude amino alcohol was protected by using Boc-anhydride in presence of 

triethylamine providing the Boc protected amino alcohol 158 in 55% yield over two steps. 

Acylation of 158 using n-propionyl chloride in the presence of pyridine provided the required 

ester 147 for Ireland-Claisen rearrangement in 90% yield. LDA in THF/HMPA (7:3) was 

employed for the Ireland-Claisen rearrangement of the ester 147. But the reaction did not work 

and the starting material was recovered. The reason might be that the deprotonation occurred 

on the amine since only 1.1 eq of base was used for this rearrangement. Thus, the 

deprotonation of ester 145 requires more than two equivalents of base. Infact, Ireland-Claisen 

rearrangement using NaHDMS (6.0 eq) in THF/HMPA (7:3) at -78 oC, trapping the enolate 
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with TMS-Cl and acidic work-up produced the desired amino acid 97 in 58% yield with 

excellent diastereoselectivity (> 96%). 
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Scheme 44: Synthetic scheme for amino acid 97. 

 

4.2.8 Synthesis of jasplakinolide (geodiamolide) analogues using 96 and 97 
 

As we discussed earlier in Section 2.3, the comparative modeling studies of doliculide, 

jasplakinolide, and chondramide C revealed that the isopropyl group occupies the same 

volume as the phenyl group and the indole ring occupies the same volume as the benzyl group 

in space. On the basis of these considerations, in the design of analogues 159 and 160 of 

jasplakinolide we decided to replace the unusual amino acids N-methyl-2-bromo D-tryptophan 

and β-D-tyrosine with N-methyl-D-tyrosine and L-valine respectively and to substitute the 

polypropionate portion with the novel hydroxy and amino acids 96 and 97, respectively to 

form depsipeptide 159 and macrolactam 160. The conformational studies of these macrocycles 
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might provide some information regarding the influence of amide and ester bond on the 

solution structures. This was the idea behind the synthesis of the novel hydroxy- and amino 

acids 96 and 97.  
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Figure 4.2.4: Analogues of jasplakinolide (geodiamolide) containing hydroxy- and amino 

acids 96 and 97. 

 

As both analogues contain the same tripeptide, it was thought to synthesize the tripeptide 

fragment and couple it with the corresponding acids. Initially it was planned to synthesize 

analogue 159 using a classical Boc strategy, which would require a macrolactonization in the 

final steps. As the macrolactonization failed to give good yields in the total syntheses of 

jasplakinolide and geodiamolide, it was planned to combine a dipeptide fragment with an 

amino acid (valine)-hydroxy acid fragment which would allow for a more facile 

macrolactamization (Scheme 45). 
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Scheme 45: Coupling strategy for the synthesis of the analogue 159. 

 

The N-methyl D-tyrosine derivative D was synthesized from D-tyrosine methyl ester 164 in 

three steps.[102] First step was the protection of amine group using Boc anhydride, followed by 

silylation of the hydroxy function as silyl ether yielding fully protected tyrosine 166 as shown 

in Scheme 46. N-methylation of 166 by using NaH (60% dispersion in mineral oil) for 

deprotonation and MeI conditions at 0 oC afforded the N-methyl D-tyrosine derivative 167 in 

55% yield over 3 steps. Deprotection of the Boc group of 167 with trifluoroacetic acid (TFA) 

provided the corresponding free amine. PyBroP mediated coupling of the crude amine with N-

Boc-L-alanine provided the dipeptide 168 in 55% yield.[81, 103] The subsequent hydrolysis of 

the methyl ester on dipeptide 168 posed a challenge since conditions would have to be found 

that leave the phenolic silyl ether intact. Basic hydrolysis of dipeptide 168 using NaOH (0.4 

N) led to hydrolysis as well as cleavage of the silyl group on the phenol. Therefore, the mild 

reagent trimethyl tin hydroxide was used for the hydrolysis.[104, 105] Indeed, the methyl ester 

cleaved without disturbing the silyl group on the phenol giving the desired acid 162.  
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Scheme 46: Synthesis of dipeptide fragment 162. 

 

The other fragment A+B 163 could be obtained from the hydroxy acid 96 and Fmoc-L-valine 

in four steps. As the linear depsipeptide needs the deprotection of both the amine and the 

carboxylic group prior to cyclization, it would be ideal having similar protecting groups on 

both sides, which could be cleaved in a single step. As the dipeptide 162 has a Boc-protecting 

group at the N-terminus, it would be ideal to have a tert-butyl group on the C-terminus, so that 

both groups could simultaneously be cleaved by TFA. The synthesis of fragment 163 was 

started with the protection of hydroxy acid 96 with a tert-butyl group as shown in Scheme 47. 

DCC mediated esterification of hydroxy acid 96 with tert-butanol in presence of DMAP as 

catalyst provided the desired product 169 in very low yield around 25%. Addition of higher 

amounts of the catalyst did not improve the yield. Then it was decided to employ the 

Yamaguchi esterification using 2,4,6-trichlorobenzoyl chloride and DMAP. Esterification of 

hydroxy acid 96 with tert-butanol using Yamaguchi conditions with excess of reagents 

provided the desired protected acid 169 in almost quantitative yield.[70] After obtaining the 

protected hydroxy acid 169, the TBDPS group was removed in order to couple the resulting 

alcohol with Fmoc-L-valine. Deprotection of the silyl group using TBAF provided the 

hydroxy ester 170 in 90% yield. DCC mediated esterification of Fmoc-L-valine with hydroxy 

compound 170 furnished the ester 171 in 88% yield. Finally, removal of the Fmoc group using 
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diethylamine led to the desired amine 163 in 88% yield. This way the fragment A+B was 

obtained.  

 

HO2C
OR

96 R = TBDPS

, 
  Et3N, DMAP, tBuOH

toluene, -78 oC to rt
          97%

tBuO2C
OR

169 R = TBDPS

tBuO2C
OH

tBuO2C
O

O
NHFmoc

THF, 0 oC
   88%

Fmoc-L-Valine, 
DCC, DMAP

Et2NH, THF

CH2Cl2, 0 oC,
     88%

0 oC, 88%

tBuO2C
O

O
NH2

170 171

163

2,4,6-trichlorobenzoyl chloride

TBAF

 
 

Scheme 47: Synthesis of amine fragment 163. 

 

TBTU mediated coupling of the fragments 162 and 163 provided the desired linear depsipetide 

161 in 55% yield, but as a diastereomeric mixture with 3:2 ratio (Scheme 48). Careful 

inspection of the 1H- and 13C NMR spectra of 161 showed that several peaks were doubled. 

Even TLC showed two clear spots of the diastereomeric mixture. Hence, rotamers around the 

boc-group could be ruled out. This result was very unusual as the amine 163 was 

diastereomerically pure and TBTU mediated coupling in our experience always provided the 

coupled product without racemization. 
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Scheme 48: Synthesis of linear depsipeptide 161. 
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We suspected that the problem might lie within the dipeptide acid part 162. It was thought that 

racemization might have occured in the hydrolysis step (Scheme 46). In order to probe this 

hypothesis, the methyl ester was replaced with the benzyl ester which should allow for a 

racemization free hydrolysis. As the dipeptide acid 162 was known from literature,[102] we 

decided to follow the same strategy for the synthesis of dipeptide acid 162 as in the literature. 

For this purpose, D-tyrosine benzyl ester 172 was chosen and were followed similar steps as in 

Scheme 46 to the fully protected D-tyrosine derivative 173. Subsequent N-methylation of 173 

using NaH (60% dispersion in mineral oil) followed by addition of MeI provided the N-

methyl–D-tyrosine derivative 174. Deprotection of the Boc group using TFA and PyBroP 

mediated coupling of the resulting amine with N-Boc-L-alanine provided the dipeptide 175. 

Subsequent hydrogenation led to the dipeptide acid 162. TBTU mediated coupling of the acid 

162 with amine 163 provided the same result as in Scheme 48. The optical rotation of the 

dipeptide 175 was measured in order to compare the optical purity with the known literature 

value; surprisingly both values had no comparison. So the total problem lied somewhere in the 

synthesis of dipeptide and not the coupling step to 161. It might be possible that the 

racemization had occured during the N-methylation of the D-tyrosine derivative. To prove 

this, a series of experiments were performed (Scheme 49 and 50). The above sequence was 

repeated with L-tyrosine benzyl ester ent-172 in order to synthesize the dipeptide consisting of 

L-tyrosine and N-Boc-L-alanine. The synthesis was done in order to compare the NMR 

spectra of both compounds 175 and 176. 
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Scheme 49: Synthesis of dipeptide acid 162 from tyrosine benzylester 172. 

 

Finally, the L- and D- tyrosine derivatives 174 and ent-174 were prepared by a differenet 

method (Scheme 50).[106] The idea here was to see whether the N-methylation step caused 

racemization. In this pathway the syntheses of dipeptides 175 and 176 were started with the 

commercially available N-Boc-D- and L-tyrosine 177 and ent-177. Protection of the phenol 

group using TBDMS-Cl in presence of imidazole produced the disilylated products 178 and 

ent-178. Treatment of silyl esters with 1 N K2CO3 cleaved the silyl group on the acid leading 

to the phenol protected products 179 and ent-179. N-Methylation of 179 and ent-179 was 

achieved by producing the dianion using 2.5 eq of t-BuLi. Treatment of 179 and ent-179 with 

t-BuLi at -78 oC and subsequent addition of MeI produced the N-methyl tyrosine 180 and ent-

180 derivatives in good yields. Subsequent protection of the acid function with benzyl alcohol 

using DCC in presence of DMAP as catalyst gave the esters 174 and ent-174. Subsequent 

removal of the Boc group using TFA in CH2Cl2 at 0 oC gave the crude amine, and PyBroP 

mediated coupling of the crude amine with N-Boc-L-alanine in presence of Hünig’s base 

furnished the corresponding dipeptides 175 and 176, respectively. Surprisingly, the products 

174 and ent-174 that were synthesized according to Scheme 50 have nearly the same optical 
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rotation values with different signs +71.8 and -69.2. In contrast, optical rotation value of the 

compounds 174 and ent-174 (both Land D) synthesized via Scheme 49 showed zero. But, the 

optical rotation of the tyrosine derivative 173 (before N-methylation step) correlated with the 

literature value.[102] So, at this point we can clearly say that the base NaH (60% dispersion in 

mineral oil) caused the racemization at the α-chiral center in both the benzyl and the methyl 

esters. The 1H NMR spectra of dipeptides 175 and 176 derived from both Schemes 49 and 50 

clearly show the racemization pattern. The expanded regions of the spectra clearly showed the 

different chemical shift values for the chiral methyl groups (0.85 ppm in 175 and 1.18 ppm in 

176) in the compounds 175 and 176 (Figure 4.2.5). 

 

HO
NHBoc

O

OH  TBS-Cl, Imidazole
    DMAP (cat)

DMF, rt
TBSO

NHBoc
O

OTBS
1N K2CO3, THF

rt, 86% (2 steps)

TBSO
N

O

OBn

Boc

1. TFA, CH2Cl2, 0 oC

2. N-Boc-L-Ala, PyBroP,
    DIEA, CH2Cl2, 
       0 oC, 55%

TBSO
N

O

OBn

O

N
H

Boc

177        D-tyrosine
ent-177 L-tyrosine

178
ent-178

174
ent-174

175

TBSO
N

O

OH

BocH

t-BuLi, MeI, THF

-78 oC to rt,
       76% TBSO

N
O

OH

BocMe

BnOH, DCC, DMAP

CH2Cl2, 0oC
     89%179

ent-179
180
ent-180

176
 

 

Scheme 50: Synthesis of dipeptides 175 and 176 using D and L-tyrosine derivatives 177 and 

ent-177. 
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After proving that the racemization occurred in the N-methylation step with the base NaH 

(60% dispersion in mineral oil), the dipeptide 175 was then synthesized according to the 

Scheme 50. The dipeptide 175 was subjected to hydrogenation using Pd/C as catalyst in order 

to remove the benzyl protecting group resulting in the diastereomerically pure free acid 

compound 162 (Scheme 51). TBTU mediated coupling of 162 with amine 163 provided the 

linear depsipeptide 161 in 55% yield. Both protecting groups could now be removed in one 

step by using trifluoroacetic acid. After concentration of reaction mixture, the macrolactam 

formation was carried out in DMF (0.001 M) using TBTU in presence of HOBt at room 

temperature which led to the formation of the TBS protected cyclic depsipeptide. A final 

deprotection using TBAF gave the desired cyclic depsipeptide 159. 
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Scheme 51: Synthesis of analogue 159. 

 

In order to reach the amide analogue 160, it was decided to assemble tripeptide 182 and to 

combine it with amino acid 97 to get the seco-compound 181, which on macrolactamization 

should provide macrolactam 160 (Scheme 52).  
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Scheme 52: Coupling strategy for the analogue 160. 

 

The synthesis of analogue 160 was started with the dipeptide acid 162 which was synthesized 

according to Scheme 50. TBTU mediated coupling of 162 with L-valine methylester 

hydrochloride salt in presence of HOBt produced the tripeptide 181 in 71% yield. At this 

point, the Boc protecting group at the N-terminus was removed with trifluoroacetic acid, 

followed by amide formation of the resulting amine with amino acid 100 using TBTU to 

produce the linear tetrapeptide 181. Ester hydrolysis of 181 not only cleaved the ester function 

but also the silyl phenyl ether. Boc deprotection of the resulting product using TFA produced 

the seco-acid which on macrolactamization with TBTU in presence of HOBt produced the 

desired macrolactam 160 (Scheme 53). The detailed conformational analysis of the 

compounds 159 and 160 will be discussed in the conformational analysis section. 
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Scheme 53: Synthesis of jasplakinolide analogue 160. 

 

4.2.9 Synthesis of Nor-methyl Chondramide C 
 

 The chondramides are cyclodepsipeptides produced by strains of myxobacterium, 

Chondramyces crocatus.[107, 108] The structures of the chondramides published so far are 

related to jasplakinolide. Besides different substituents, the chondramides have an 18-

membered macrocyclic ring instead of the 19-membered ring system of jasplakinolide. Both 

compounds inhibit the growth of yeasts and show cytostatic activities. Chondramide C, which 

is quite similar to jasplakinolide, appears to have antiproliferative activity against carcinoma 

cell lines by targeting the actin cytoskeleton.[20, 109] Structurally and activity wise chondramide 

C is similar to jasplakinolide. Chondramide C contains a tripeptide similar to jasplakinolide 

except for the bromine on the indole ring and a hydroxy acid unit which is one carbon shorter 

than the jasplakinolide hydroxy acid. The hydroxy acid of chondramide C also has non bonded 

interactions like the jasplakinolide hydroxy acid. As the configuration of chondramide C was 

not yet fully determined, but based on the similar biological activity and same binding site as 

the jasplakinolide, the configuration of chondramide C proposed was similar to the one of 

jasplakinolide.[110]   
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Scheme 54: Retrosynthetic analysis of the proposed structure of chondramide C. 

 

The hydroxy acid 183 of chondramide C has four methyl groups and one double bond in 

which three of the methyl groups are placed in 1,3-distance to each other giving rise to one syn 

pentane interaction and one allylic strain which make the molecule less flexible. Two methyl 

groups are placed in 1,2-distance so that the rotation of methyl groups around the single bond 

might be restricted. Thus, the hydroxy acid 183 should have a definite conformation. If one 

compares the hydroxy acid of chondramide C and hydroxy acid 96, one can recognize that 

they have the same chain length and differ only by the methyl group at C-7. Thus, it was 

interesting to compare the biological activity of the chondramide C analogue containing the 

same tripeptide and hydroxy acid 96 which we call as nor methyl chondramide C 185.  

 

As nor methyl-chondramide C contains the tripeptide and hydroxy acid parts, it was decided to 

assemble the tripeptide 184 and to combine it with the ester 170 to form the linear 

depsipeptide which on macrolactam formation would provide the desired product 185 

(Scheme 56). The tripeptide part contains three different amino acids; β-D-tyrosine derivative, 

N-methyl D-tryptophane and L-alanine. As the tripeptide is similar to the tripeptide part in the 

analogue 134, it was decided to follow a similar strategy to construct the tripeptide. The 

necessary β-D-tyrosine derivative 186 was synthesized according to a known literature 
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procedure[111] using an Arndt-Eistert reaction as the key step. The dipeptide 187 was 

synthesized according to a known literature procedure as well.[112] 
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Scheme 55: Coupling strategy for normethyl chondramide C 185. 

 

The synthesis of β-D-tyrosine derivative 186 started with the silyl ether of p-hydroxy N-Boc-

L-phenyl glycine 189 as shown in Scheme 56. Accrording to a recent literature procedure, a 

commercially available solution of trimethylsilyl diazomethane in ether was employed to 

produce the diazoketone 190 instead of using diazomethane.[113] The acid 189 was treated with 

ethyl chloroformate in presence of triethylamine to produce the mixed anhydride. To this 

mixed anhydride a solution of trimethylsilyl diazomethane in ether was added in order to 

produce the diazoketone 190. However, all attempts failed to produce the diazoketone with 

trimethylsilyl diazomethane. There was no other way except using diazomethane to synthesize 

the compound 190 from acid 189. Accordingly, a freshly prepared solution of diazomethane 

solution in ether was added to the crude reaction mixture consisting the mixed anhydride at 0 
oC. The crude product 190 was almost pure on TLC after work up, so it was used for the Wolf-
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rearrangement without any purification. Rearrangement occurred without any problem with 

methanol in presence of silver benzoate, producing the desired product 186 in 80% yield 

(Scheme 56). The β-tyrosine derivative 186 was treated with trifluroacetic acid in order to 

deliver the crude amine 191. 
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Scheme 56: Synthesis and mechanism for the formation of β-tyrosine derivative 186. 

 

The synthesis of dipeptide 187 started with N-methyl D-tryptophane methyl ester 188 (Scheme 

57). PyBroP mediated coupling of N-Boc-L-alanine with N-methyl D-tryptophane methylester 
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188 in presence of diisopropylethylamine produced the desired dipeptide 187. At this point, 

the methyl ester at the C terminus was cleaved to produce the dipeptide acid 192. TBTU 

mediated coupling of dipeptide acid 192 and β-amino ester 191 in presence of HOBt produced 

the desired tripeptide 184 in 70% yield. Trimethyl tinhydroxide[104, 105] mediated hydrolysis of 

tripeptide 184 furnished the tripeptide acid which on esterification using DCC in presence of 

catalytic amounts of DMAP with hydroxy acid derivative 170 gave the seco compound 193 in 

80% yield for two steps. Trifluoroacetic acid mediated cleavage of both protecting groups Boc 

and tBu and subsequent macrolactam formation using TBTU in presence of HOBt in DMF at 

room temperature led to the TBS protected nor methyl chondramide C which on treatment 

with TBAF produced normethyl chondramide C 185 (Scheme 57). 
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Scheme 57: Total synthesis of normethyl chondramide C 185. 
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4.2.10 Design and the synthesis of analogues of hydroxy acid 96 

    

 Cyclic peptides provide ideal scaffolds for exploring structure-activity relationships in 

ligand-receptor interactions. Cyclization serves to increase membrane permeability by 

elimination the charged termini and facilitating internal hydrogen bonded conformers. 

Cyclization of peptides introduces an extra element of constraint (e.g. double bond, aromatic 

ring etc.), which confers conformational restriction to the peptide leading to an entropically 

advantageous mode of binding to the target protein.[114] As the hydroxy- or amino acid 96 or 

97 contain the central allylic system and a methyl group at the allylic position to the double 

bond, the resulting 1,3-allylic interaction makes the molecule less flexible. As we mentioned 

in the design of amino acid 95 (Figure 4.2.1), the m-xylol ring can provide a similar restriction 

as an allylic system. With this in mind the amino- and hydroxy acids 194 and 195 were 

designed in order to construct some cyclic peptides. Recently, some working groups[115-120] 

synthesized some small cyclic peptides (Figure 2.4.6) containing an aromatic ring as central 

part to mimic β-turns and they successfully created β-turn mimics . 
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Figure 4.2.6: Some examples of peptidomimetics containing aromatic ring as central part. 
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Scheme 58: Replacement of the allylic system of hydroxy acid 96 with a meta-substituted 

aromatic portion. 

 

4.2.11 Retrosynthetic analysis and synthesis of amino acid 194 

 

As one can see amino acid 194 contains a α-methyl carboxylic acid on one side and a 

methylamine group on the other side of the benzene ring. It should be possible to synthesize 

the α-methyl carboxylic acid by hydrolysis of the Evans alkylation product between propionyl 

oxazolidinone and a benzyl bromide derivative. The methylamine group could be obtained by 

reduction of a cyano group either by hydrogenation or by hydride reduction. In turn, the cyano 

group might be obtained by ipso substitution of the bromide with copper(I) cyanide.[120] Thus, 

a suitable electrophile for the synthesis of amino acid 194 might be 3-bromobenzyl bromide. 
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Scheme 59: Retrosynthetic analysis for amino acid 194. 
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The synthesis was started with commercially available 3-bromobenzylbromide 197 and 

propionyl oxazolidinone. Alkylation of propionyloxazolidinone 100 with 3-

bromobenzylbromide using a 2 M solution of NaHDMS at -78 oC produced the corresponding 

alkylated product 198 in 50% yield, contaminated with propionyl oxazolidinone 100 in about 

10%. The cyanation (SNAr reaction) of the alkylation product 198 using copper(I) cyanide in 

DMF at 100 oC produced the corresponding cyanide 196 in 58% yield.[120] Hydrogenation of 

the cyanide 196 in presence of Pd/C and formic acid  did not provide the corresponding amine 

.[119] Attempts to prepare the amine using hydrogenation in different solvents such as ethanol 

and ethyl acetate did not provide a good result. It might be possible that due to the steric 

crowding of the chiral auxiliary, cyanide can not sit on the surface of the catalyst, thus there is 

no hydrogenation. Therefore, the chiral auxiliary was cleaved by in situ generation of methoxy 

magnesium bromide using methylmagnesium bromide in methanol to get the corresponding 

methyl ester 199 in 55% yield. Hydrogenation of the nitrile 199 in presence of 10% Pd/C and 

formic acid in methanol produced the corresponding amine salt in 14 hours at room 

temperature. Protection of the amine using Boc-anhydride in presence of 1N NaOH produced 

the Boc-amino acid ester 200 in 70% yield. However, this hydrogenation was not really 

reproducable. In some runs we observed formation of the over reduced toluene derivative 201. 

This result was confirmed by NMR spectra. Even though the synthesis is short, the yields were 

quite low in each step and the hydrogenation is not a reliable procedure. 
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Scheme 60: Attempted route for the synthesis of amino acid 194.  

 

Since Scheme 60 led to the undesired side product in the hydrogenation, a method was sought 

that would provide the amino acid 194 in less number of steps. In the present Scheme, we 

decided to use dibromobenzyl derivative 104 to avoid the reduction of the cyanide group. The 

key steps involved in the present strategy were an asymmetric Evans alkylation and SN2 

displacement, reduction and hydrolysis. 
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Scheme 61: Retrosynthetic analysis for amino acid 194 using a mono alkylation strategy. 
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The crucial step in the synthesis using Scheme 61 is to achieve a selective mono alkylation. As 

we mentioned in the synthesis of the novel ω-amino acid 95, the dialkylated product can be 

synthesized using an excess of chiral reagent. It is obvious that using excess alkylating reagent 

should produce the mono alkalated product as major product due to reduced availability of the 

enolate. Synthesis of amino acid 194 was started with the commercially available benzyl 

bromide derivative 104 as shown in Scheme 62. Alkylation of propionyl oxazolidinone 100 

with 3 equivalents of benzyl bromide derivative 104 using LDA at -78 oC produced the mono 

alkylated product 203 in 60% yield. The excess benzylbromide derivative was recovered by 

washing the reaction mixture with hexane as it dissolves well in hexane. The SN2 displacement 

of bromide with azide using sodium azide in ethanol at 60 oC afforded the desired azide 202 in 

85% yield. The crude azide 202 was almost pure and it was used without further purification. 

The reduction of azide[121] to amine in presence of 10% Pd/C and hydrogen atmosphere 

produced the desired amine. Subsequent protection of the amine using Boc-anhydride in 

presence of 1 N NaOH delivered the Boc protected amino acid derivative 204 in 70% yield. 

The hydrolytic cleavage of the resulting product using 30 wt% H2O2 and lithium hydroxide led 

to the the desired amino acid 194 in 80% yield. This way the amino acid was secured in less 

number of steps with good yields (Scheme 62).  
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Scheme 62: Efficient synthesis of amino acid 194. 
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4.2.12 Synthesis of hydroxy acid 195 
 

Hydroxy acid 195 also has one methyl group α to the carboxylic group. Therefore, the 

synthesis of the hydroxy acid 195 should be possible from the mono alkylated product 203. 

Hydrolysis of monoalkylated product 203 would generate the carboxylic acid as well as cause 

nucleophilic attack of hydroxide at the benzylic position by replacement of the bromide. This 

way unprotected hydroxy acid 205 might be obtained in a single step. The protection of the 

hydroxy group as silyl ether and basic hydrolysis of the silyl ester should then provide the 

desired hydroxy acid 195 in just a few steps. 
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Scheme 64: Retrosynthetic analysis for hydroxy acid 195. 

 

The synthesis of hydroxy acid 195 started with the mono alkylation product 203. The 

hydrolytic cleavage of the chiral auxiliary indeed produced the desired unprotected hydroxy 

acid 205 in 70% yield. The protection of hydroxy acid using TBDMS-Cl in presence of 

imidazole led to the TBS protected hydroxy acid silyl ester which on treatment with 1M 

K2CO3 in THF produced the hydroxy acid 195 in 70% yield (Scheme 65). 
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Scheme 65: Synthesis of hydroxy acid 195. 
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4.3 Conformational studies 
 

4.3.1 Conformational studies of jasplakinolide analogues 129, 134, 135 and 136  

 

Aside from variations in the side chains, the major difference of the four analogs 129, 

134, 135 and 136 is the replacement of the polypropionate subunit with a m-xylyl containing 

amino acid 95. The 19-membered systems 135 and 136 are structurally closely related to the 

natural compound jasplakinolide. Compound 136 possesses a secondary amide in position 16 

(Figure 4.3.1). 1H and 13C resonance assignments via DQFCOSY, ROESY/NOESY and 

HMQC spectra were performed in DMSO-d6 and gave a single signal set for 135 and a 

doubled signal set for 136 with the trans isomer of the N-methylated amide populated for > 

99%. 
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Figure 4.3.1: Structures for the 19-membered ring analogs 135 and 136 with the numbering 

systems used. 

 

One large and one small 3JHH coupling constant (Table 3) for the methylene groups in 

positions 2, 6 and 10 of 130 and in positions 6 and 10 for 131 are typical for a well defined 

gauche-anti orientation with preference for the major rotamer(s) as distinguished by 

characteristic ROE signals. This allowed the assignment of the pro-R and pro-S protons of the 
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methylene groups. Due to signal overlay a statement on the methylene protons in position 2 of 

136 was not possible. 

 

Table 3. 3JHH coupling constants in Hz of the methylene protons in 129, 134, 135 and 136. 

Due to identical chemical shift for H10h/H10t of 129 and H2h/H2t of 136, resp. the coupling 

constants could not be determined. 

 

 129 134  135 136 
2JH1h,H1t 13.5 14.0 2JH2h,H2t 13.6 n.d. 
3JH1h,H2 n.d. 12.7 3JH2h,H1 4.3 n.d. 
3JH1t,H2 3.7 3.6 3JH2t,H1 10.4 n.d. 
2JH6h,H6t 13.1 13.1 2JH6h,H6t 13.0 12.9 
3JH6h,H5 6.1 ~ 7 (from COSY) 3JH6h,H5 10.6 9.0 
3JH6t,H5 4.1 ~ 5 (from COSY) 3JH6t,H5 3.7 4.7 
2JH10h,H10t n.d. 12.6 2JH10h,H10t 11.0 14.0 
3JH10h,H11 n.d. 11.3 (via H11) 3JH10h,H11 2.7 3.1 
3JH10t,H11 n.d. 4.0 3JH10t,H11 13.7 10.3 

 

With ROESY and NOESY measurements characteristic proton-proton interactions could be 

determined and transferred into proton-proton distances by integration. They are in very good 

agreement for compounds 135 and 136 corresponding to a minor influence of the N-

methylation in position 16 on the overall structure. No intensive cross signals were found 

between H α-protons of adjacent amino acids, thus proving trans conformation for all amide 

bonds. The methylated amide in 136 leads to an energy barrier which gives rise to a separated 

signal set for the cis-amide. The signal set for the cis isomer is populated to less than 1%. The 

significant preference for the trans rotamer, to such an extent unusual for a tertiary amide, was 

found for the natural compound jasplakinolide as well,[122] thus emphasizing the good analogy 

of synthetic analog and natural product. 

 

The dynamical properties of the whole macrocycles 135 and 136 are consistent including the 

side chains having the same dynamical behavior as the macrocyclic ring. The newly inserted 

m-xylyl unit performs an oscillating movement as ROESY data yield only mean proton-proton 
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distances for several possible orientations of the phenyl ring in relation to the macrocyclic 

ring. Via temperature measurements, which gave temperature coefficients for the amidic NH 

protons in the range of –3.7 to –6.0 ppb K-1, transannular hydrogen bonds could be excluded 

but nevertheless, as coupling constants and ROESY data show, the 19-membered analogs 135 

and 136 are rigid macrocyclic structures. 

 

Within a MD simulation, calculated structures of 135 and 136 are very well comparable with 

each other, the only difference being the orientation of the NH proton respectively the N-

methyl group in position 16 with the proton in 135 pointing into the middle of the macrocyclic 

ring and the methyl group in 136 oriented towards the lower side of the ring (Figure 4.3.2). 

 

 

 

 

 

 

 

                             

 

 

 

 

 

Figure 4.3.2: Energy-minimized structures for 135 and 136 after a 100 ps MD Simulation at 

300 K. In green torsion with the largest difference for 135 and 136 with the N-methyl group in 

136 oriented onto the lower side of the ring and the NH proton in position 16 of 135 pointing 

into the macrocyclic ring. 

 

The results presented above are in accordance with NMR structural investigations of 

jasplakinolide.[122] Jasplakinolide does not possess any hydrogen bonds nor a higher fraction of 

cis-amide, either. The 3J coupling constants yield a more flexible structure for the natural 

analog in comparison to the compounds 135 and 136, however the difference is small. The 

 

  
136 135
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orientation of the two aromatic side chains were not determined in detail in the study presented 

here. But a possible „tweezer“ structure as stated in literature cannot be supported by NOEs 

between side chain protons. 

 

The 18-membered rings of compounds 129 and 134 show several structural differences when 

compared to jasplakinolide. They are rather analogs of geodiamolide with a difference in the 

position of the aromatic amino acid (Figure 4.3.3).[121] 
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Figure 4.3.3: Structures for the natural compound geodiamolide and the 18-membered ring 

analog 129 with the numbering systems used. 

 
1H and 13C signal assignment was done by DQF-COSY, ROESY/NOESY, and HMQC spectra 

in DMSO-d6 with results comparable to the 19-membered macrocycles: a single signal set for 

129, the non-methylated amide and a doubled signal set for 134 with the cis isomer of the N-

methylated amide populated to less than 1%. Investigation of the NOESY/ROESY data results 

in mean values of proton-proton distances being significant for the fast exchange of several 

conformers. Thus the 18-membered rings 129 and 134 are more flexible than the systems 

described above and a preferred structure can not be calculated on the basis of experimental 

ROE data. ROESY data confirm a trans configuration for all amide bonds in 129, respectively 

134. Additionally the ROESY data reveal again an oscillatory movement for the m-xylyl unit 

like in 135 and 136. In case of the geodiamolide analogs 129 and 134 there are consistent 

dynamics for the whole molecule but rather an independent dynamical behavior of the side 
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chains, i. e. benzyl- and methyl groups, as seen in ROESY spectra with cross signals of 

different sign. The methylene groups in position 1 of 129 and in positions 1 and 10 of 134 

exhibit one large and one small 3JHH coupling constant (Table 3) defining a preferred gauche-

anti orientation whereas in position 6 the coupling constants possess mediated values upon the 

presence of several rotamers. Temperature measurements yield low temperature coefficients 

for NH4 and NH13 for both structures (NH4: -1.0 resp. –1.1 ppb K-1; NH13: +0.4 resp. –1.1 

ppb K-1) with a high probability for those NH protons to take part in an intramolecular 

hydrogen bond. 

 

When calculating only a partial structure for 134 with NOESY/ROESY data a betaII'-turn- 

like structure is obtained for the macrocyclic part containing the phenylalanine unit. For this 

case NH4 is part of a transannular hydrogen bond with CO(15) as partner, whereas for NH13 

there is no geometrically reasonable arrangement for the formation of a hydrogen bond (Figure 

4.3.4). At least for this section of the macrocyclic ring the ROESY data obtained are in 

accordance with the distances typical for betaII ‘turns. 

 

 
 

Figure 4.3.4: Comparison of the calculated partial structure of 134 with a betaII-turn 

structure. 

 

Nevertheless, the 18-membered rings 129 and 134 are more flexible compared to 135, 136 or 

jasplakinolide and an equilibrium of several fast exchanging conformers is existent. 
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4.3.2 Conformational studies of geodiamolide analogues 159 and 160 
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Figure 4.3.5: Structures for the 17-membered ring analogs 159 and 160 with the numbering 

systems used. 

 

The major variation between the analogues 159 and 160 and the natural product 

geodiamolide is the ring size, the former ones contain a 17-membered ring while the latter one 

contains a 18-membered ring. Compound 159 is a depsipeptide while 160 is a macrolactam. 

Homo- and heteronuclear signal assignments of 159 and 160 are based on DQF-COSY, HSQC 

and HMBC spectra, respectively. Rotating-frame NOESY (ROESY) and NOESY spectra 

corroborate the signal assignments. Each exhibits a single 1H and 13C NMR signal set in 

DMSO-d6 and the absence of NOE-contacts expected for cis-amide bonds approve the trans 

configuration for all amide bonds in both macrocyclic rings 159 and 160. 3JHH and 2JHH 

coupling constants are taken directly from the well-resolved 1H NMR spectra after Lorentz-

Gauss transformation. The temperature dependence of the NH chemical shifts yields 

information about the solvent accessibility of the amide protons.[124-127] Values between –5.8 

and  –7.6 ppb K-1 exclude strong intramolecular hydrogen bonds in both molecules.  

 

57 ROEs are observed for the lactone 159 and 45 ROEs for the lactam 160. The volume 

integrals translate into average proton-proton distances according to published methods.[128] 

The common motif Val-D-Tyr-Ala adopts a mainly extended conformation with interresidue 

CαHi - NHi+1 average distances between 2.2 and 2.4 Å and intraresidue CαHi - NHi distances 

approaching 3 Å. 1,3-allylic strain in the polypropionate moiety is documented by the strong 

ROE contact 4H – 6H3 in both molecules. 3JHH coupling constants and ROEs allow the 
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prochiral assignment of the pro-R and pro-S protons of the methylene groups’ 3-CH2 and 7-

CH2 which form the flexible joints between both termini of the polypropionate unit and the 

tripeptide unit. In both molecules, one of the 3JH3,H4 and one of the 3JH7,H8 coupling constants is 

small (Table 4), by this proving that a main rotamer is adopted around the 3C-4C and the 7C-

8C bond in both molecules. Differences between 159 and 160 are detected only for the 3-CH2 

which neighbours the lactone in 159 and the amide in 160, respectively. The rotamer with a 

gauche-anti orientation is dominating in 160 and the gauche-gauche orientation in 159. The 

18-CH2 protons are well resolved in the case of the lactone but form a higher-order spin 

system in the case of the lactam. Chemical shift differences between compounds 1 and 2 are 

restricted to the Northern half of the macrocyclic rings in the region of the Val residue. 

 

Selected NOEs and 3J coupling constants served as weak distance and torsional restraints in 

molecular dynamics simulations. The average structures represent minima on the potential 

energy surface and the energy minimized structures are shown in Figure 4.3.6. Structural 

differences are confined to the amino acid Val. The more folded structure of the lactone brings 

13-NMe and 6-Me in closer contact which is documented by a relatively short long-range 

NOE of 3.1 Å. The main difference between the ring-constrained analogs investigated here 

and the parent macrolide geodiamolide[123] is an approximately 180° rotation of the propionate 

relative to the tripeptide unit. As a consequence, the 6-Me group is oriented to the opposite 

side of the macrocyclic rings which is documented by the intense transannular 13-NMe – 6-

Me NOE. The distance between these two groups is 7.7 Å in geodeamolide where they are 

positioned on opposite ring sides (Figure 4.3.6). Such a strong effect of a ring contraction from 

a 18-membered ring in geodiamolide to a 17-membered ring in 159 and 160 is completely 

unexpected but well documented by the solution NMR data analyzed here. 
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Table 4: 2J and 3J coupling constants of 159and 160 in [Hz] 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.3.6: Energy minimized structures of compounds geodiamolide, 159, and 160. 

 

 

 

 

 

 

 

 

 

 

Coupling 159 160 
2JH3h,H3t 10.9 Hz 12.9 Hz 
3JH3h,H4 2.5 Hz 9.1 Hz 
3JH3t,H4 5.4 Hz 2.6 Hz 

2JH7h,H7t 15.1 Hz 16.0 Hz 
3JH7h,H8 <2 Hz <2 Hz 
3JH7t,H8 11.1 Hz ≈10 Hz (COSY) 
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Chapter II 

Approach towards the Synthesis of the Stereotetrad of 

Cruentaren-A 
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5 Introduction 

 

Benzolactones may be viewed as privileged structures in nature since there are so 

many of them and they do show a broad range of biological activity. They may be classified 

according to their ring size, the substituents on the benzoic acid, and the nature of the side 

chain that extends from the secondary alcohol function that is engaged in the lactone. 

Salicylihalamide A (206) and apicularen A (207) are members of the so-called benzolactone 

enamides (Figure 5.1).[130] These compounds possess an extended side chain with an enamide 

functionality that is necessary for the biological activity. It is assumed that protonation of the 

side chain generates an electrophilic acyliminium ion.[131] Many other benzolactones just have 

a methyl substituent at the lactone. Zearalenone (208) is a fungal metabolite that exhibits 

anabolic and antibacterial activity.[132] Among the benzolactones that shows promising 

biological activities, cruentaren A (209) is a notable example. 
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Figure 5.1: Structures of some important benzolactones 
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The macrolide cruentaren A is a highly cytotoxic and antifungal natural product, 

isolated from the strain Byssophaga cruenta by the Höfle research group in Braunschweig, 

Germany. Structurally it belongs to the benzolactone family of natural products (Figure 5.1). It 

features a 12-membered macrolactone ring and an allylamine side chain. Plus, there are some 

stereocenters, a further typical feature of polyketides. Cruentaren A was originally patented as 

a pesticide but in the meantime it turned out that it is a selective inhibitor of F-ATPase. But it 

does not inhibit the V-ATPase which is the target of the benzolactone enamides. This 

selectivity is quite impressive and synthesis of cruentaren analogues might provide some 

information about the groups on cruentaren A that are responsible for this difference. One 

might speculate that the allylamine rearranges to an enamide. It is interesting to note that there 

are some other allylamine containing natural products, for example leucasandrolide and 

ajudazol. Thus, synthetic chemistry will be necessary to clarify a range of questions posed by 

the above benzolactones. 

 

 A possible retrosynthetic analysis for cruentaren A is shown in Scheme 66. It is based 

on a Mitsunobu macrolactonization reaction. The seco-acid 210 would then be constructed 

from alkyne 211 and epoxide 212. Other equivalents for alkyne 211 are of course conceivable. 

On the other hand, compound 212 containing a stereotetrad seems to be an indispensable 

intermediate, even for other strategies such as alkyne ring-closing metathesis. 
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Scheme 66: Retrosynthetic pathway to cruentaren A. 

 

 Here, in this work a total synthesis of cruentaren A is not proposed. Instead, our target 

was an efficient synthesis of the stereotetrad 212. 

 

6 Synthesis of stereotetrad 212 

 

6.1.1 Retrosynthetic analysis of stereotetrad 212 
 

 From a retrosynthetic stand point one has to address the four chiral centers which are 

arranged in anti-syn-anti fashion.[133] It would be better to synthesize the epoxide in the final 

steps to avoid unnecessary side reactions. Thus, it was thought to start the synthesis from the 

right side of the epoxide 212. 
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Even though there are several accessible retrosynthetic analyses possible for the synthesis of 

stereotetrad 212, it was decided to follow Scheme 67 which involves an Evans syn aldol 

reaction[46] and a Sharpless dihydroxylation reaction[134] as key steps to create the stereo 

centers on positions 4, 5 and 6, respectively. 
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Scheme 67: Retrosynthetic analysis for the compound 212 

 

Epoxide 212 might be obtained from the corresponding olefin 213 in two steps using an 

asymmetric Sharpless dihydroxylation followed by closing the epoxide. It should be noted that 

the configuration of the hydroxyl group formed in the dihydroxylation could be analyzed by 

forming the six-membered acetal. In turn, the olefin 213 would be obtained from the syn aldol 

product 214 in few steps using protection, reduction, oxidation and Wittig olefination. The 

aldehyde 215 could be achieved in few steps using asymmetric alkylation as the key step. 

 

6.1.2 Synthesis of aldehyde 215  
 

There are several methods known to prepare aldehyde 215.[135-138] The synthesis of the 

aldehyde 215 followed almost the similar pathway as reported by Crimmins et al. [138] (Scheme 
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68). The synthesis began with alklylation of the Seebach auxiliary 216 with allyl bromide.[139] 

After successfully achieving the alkylated product 217, the chiral auxiliary was removed using 

NaBH4 in THF/H2O to get the alcohol 218 in almost quantitative yield. Subsequent protection 

of the alcohol 218 using pivaloyl chloride in presence of diisopropylethylamine and a catalytic 

amount of DMAP furnished the corresponding pivalate 219 in almost quantitative yield. 

Dihydroxylation of pivalate 219 by in situ generated osmium tetroxide using 

K2OsO4.2H2O/AcOH/H2O2
[140] produced the diol which on oxidative cleavage using sodium 

periodate gave the aldehyde which on reduction led to the alcohol 220. It should be noted that 

compound 220 could be obtained also by ozonolysis of the alkene 219. Subsequent silylation 

of the alcohol 220 using TBS-Cl in presence of imidazole produced the silylated alcohol 221 

in almost quantitative yields, which was subjected to reductive removal of the pivaloyl group 

using DIBAL-H at 0 oC leading to alcohol 222. The latter was subjected to Swern oxidation to 

give aldehyde 215. 

 

O N

O O

Ph Ph

1. NaHDMS (2M sol in THF)
          THF,  -78 oC, 2 h

2. allyl bromide, -78 oC to rt,
          90%

O N

O O

Ph Ph

NaBH4 in H2O, THF
           85%

piv-Cl, DIEA, cat. DMAP
          CH2Cl2, 100% PivO

1. K2OsO4.2H2O, AcOH, H2O2
          THF, H2O

2. NaIO4, THF/H2O (9:1)
3. NaBH4, THF, 0 oC

PivO
OH

1. TBS-Cl, imidazole,
    DMF, rt, 90%

2. DIBAL-H, CH2Cl2,
    0 oC, 90%

HO
OTBS (COCl)2, DMSO

Et3N, CH2Cl2
-78 oC, 92%

215

216 217

219

220 222

HO

218

 

 

Scheme 68: Synthesis of aldehyde 215. 

 

After having successfully synthesized aldehyde 215, an aldol reaction was performed between 

Evans reagent ent-100 and the aldehyde 215. However, a dibutylboron triflate mediated aldol 



Results and Discussion                         
 

 

115

reaction between the Evans reagent ent-100 and the aldehyde 215 in presence of triethylamine 

at -78 oC produced the aldol product 214 in very low yields. Attempts to increase the yield did 

not give better results. The corresponding TiCl4/(-)-sparteine mediated aldol reaction did not 

produce the product at all. At this point, we decided to follow a new strategy to synthesize the 

compound 212 by avoiding the aldol reaction with aldehyde 215 as the production of this 

aldehyde is costly and the aldol reaction might need an excess of aldehyde.  
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Scheme 69: Attempts to synthesis the compound 214 

6.1.3 Second retrosynthetic pathway for epoxide 212 
 

In the second retrosynthetic pathway we decided to synthesize the terminal hydroxyl group 

after introducing the syn methyl and hydroxyl groups in the stereotetrad 212. In this plan, the 

olefin 213 would originate from the alcohol 223 like in the last proposal (Scheme 70). The 

alcohol 223 could be prepared from the reduction of PMP-acetal 224 using DIBAL-H. The 

PMP-acetal 224 would be prepared from olefin 225 by dihydroxylation, oxidative cleavage, 

reduction and protection of the resulting alcohol. The olefin 225 could be prepared from the 

aldol product 226 by reduction and protection of the resulting diol with the p-methoxy 

benzaldehyde acetal.  
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Scheme 70: Second retrosynthetic pathway for the epoxide 212. 

 

6.1.4 Synthetic pathway 
 

The synthesis was started with the aldol reaction between the aldehyde 227 and the propionyl 

oxazolidinone ent-100. The aldehyde 227 was prepared by a known procedure.[141] n-

Butylboron triflate mediated aldol reaction in presence of the base triethylamine between the 

aldehyde 227 and the chiral reagent ent-100 furnished the aldol product 226 in 72% yield with 

good diastereoselectivity (Figure 6.1) as shown in Scheme 71. Subsequent reduction of the 

aldol product 226 using NaBH4 in H2O gave the diol which was protected using p-methoxy 

benzaldehyde dimethyl acetal in presence of catalytic amounts PPTS to furnish the PMP-

protected olefin 225. The alkene 224, was then subjected to dihydroxylation using potassium 

osmate dihydrate. The resulting diol then cleaved without further purification using sodium 

periodate. However this process was a very messy reaction. There could be no product 

observed in LC-MS. 
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Scheme 71: Attempts for the synthesis of alcohol 223 
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Figure 6.1: 13C NMR spectrum of syn aldol product 226. 

 

At this point, we decided not to introduce the PMP-acetal before oxidative cleavage of the 

double bond. Thus, the aldol product was silylated using TBDMS-triflate in presence of 2,6-

lutidine to get the silylated ether 228, which was on reductive cleavage of the chiral auxiliary 
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using sodium borohydride led to the 1,6-diol 229 (Scheme 72). TBAF mediated cleavage of 

the silyl ether in compound 229 produced the 1,3,6-triol 230 in 80% yield. Subsequent 

protection of 1,3-diol subunit using p-methoxybenzaldehydedimethyl acetal in presence of 

catalytic amounts of PPTS gave the 1,3 PMP-acetal product 231 in 75% yield. Protection of 

the terminal alcoholic group in 231 provided the PMP-acetal product 224. Regioselective 

reductive opening of the acetal 224 to PMB-alcohol 223 was achieved with DIBAL-H at 0 oC 

in 75% yield. The resulting alcohol 223 was oxidized under Swern oxidation conditions 

leading to the corresponding aldehyde 232 which was subjected to a Wittig olefination using 

methyltriphenylphosphonium iodide (Ph3P+CH3I-) in presence of n-BuLi at 0 oC giving the 

required olefin 213 72% yield. The synthesis of the epoxide 212 completely depends on the 

selectivity of the Sharpless dihydroxylation step.[129] Even if the selectivity will be low, both 

isomers might be separable. AD-mix-β mediated dihydroxylation of the olefin 213 produced 

the dihydroxylated product 233 in 70% yield in 3 days at 0 oC with an approximate 

diastereomeric ratio of 2:1 (determined from 13C NMR spectrum, Figure 6.2). Unfortunately, 

the two diastereomers could not be separated on flash chromatography. AD-mix-α mediated 

dihydroxylation produced a better selectivity 4:1 with opposite facial selectivity. In this case a 

few milligrams (around 5 mg) of pure product could be isolated by flash chromatography. The 

opposite facial selectivity could be explained using 13C NMR spectra of both diastereomeric 

mixtures as illustrated in Figure 6.2. The expanded region cleary showed the two different 

chemical shifts for the methyl group at 5th position for both diastereomeric mixtures (8.6 ppm 

for major diastereomer obtained using AD-mix-β and 11.4 ppm for major diastereomer 

obtained using AD-mix-α). Due to the small amounts of diols the configurations could not 

been designed definitely. At this point, one should note that one could in principle use the diol 

mixture. After epoxide opening separation of the diastereomers might be possible. Using 

appropriate reaction conditions for macrolactonization (Mitsunobu s. Yamaguchi) the two 

isomers should converge to one product.  
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Scheme 72: Synthetic pathway for epoxide 212. 
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Figure 6.2: 13C NMR spectra of dihydroxylation products 233 and diastereomer-233 

obtained by using AD-mix-β (upper) and AD-mix-α (lower). 
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The stereochemical outcome in the Sharpless dihydroxylation might be determined using the 

Rychnovsky 13C method.[142] Protection of the primary alcohol and removal of the PMB 

protecting group would provide the 1,3-diol which on protection using 2,2-dimethoxypropane 

in presence of CSA could provide the acetonide. It is known that the carbons of the methyl 

groups in the acetonide of a 1,3-diol will exhibit different chemical shifts depending on the 

relative stereochemistry. For example, in the case of a syn-1,3-diol acetonide, the two methyl 

groups adopt different orientations (one is axial and the other is equatorial). So they have 

different chemical shifts, and also the quarternery carbon typically appears at 98.5 ppm. In 

case of an anti 1,3-diol, however, the acetonide will adopt a twist-boat form and the two 

methyl groups become more equivalent. Therefore they have similar chemical shifts and the 

quaternary carbon usually appears at 100.6 ppm. 
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Figure 6.3: Rychnovsky 13C acetonide method for 1,3-diol stereo assignments. 
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7 Summary and Conclusion 
 

This dissertation contains two chapters. Chater I includes the efficient synthesis of rationally 

designed amino- and hydroxy acids 95, 96, 97, 116, 194, 195 which incorporate 

conformational constraints due to non bonded interactions such as syn-pentane and 1,3-allylic 

strain. The design of the novel amino and hydroxy acids was guided by the polypropionate 

sector 3 of the depsipeptide jasplakinolide. 
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Figure 7.1 Rational design of the novel ω-amino and hydroxy acids based on non bonded 

interactions 

 

The syntheses of these amino- and hydroxy acids were achieved in a few steps with good 

yields. The amino acid 95 and 116 were synthesized in a similar pathway in six steps by using 

a double alkylation, enzyme mediated hydrolysis of a homotopic diester and a Curtius 

rearrangement as key steps. This way, the novel ω-amino acids 95 and 116 can be prepared in 

gram quantities. 
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Scheme 73: Key substrates in the synthesis of novel amino acids 95 and 116 

 

The amino acid 95 was incorporated into four macrolactams 129, 134, 135 and 136. The 

former two feature a 18-membered ring whereas the latter two have a 19-membered ring. 
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Figure 7.2: The structures of geodiamolide and jasplakinolide analogues. 

 

For the two larger ones, conformational analysis showed that the macrocyclic rings are more 

rigid than the jasplakinolide ring, but all in all their conformations are very well comparable to 

the natural product. Like stated for jasplakinolide in the literature, the 19-membered analogs 

exhibit neither intramolecular hydrogen bonds, nor is the cis-rotamer populated in case of N-

methylation (136). The conformational features of the 18-membered (geodiamolide) analogs 
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are quite different. The macrocyclic ring of compounds 129 and 134 is more flexible than the 

other investigated systems. Due to the increased flexibility and signal overlap a distinct 

solution structure for 129 and 134 could not be gained. Whether the ring size or the additional 

aromatic side chains in 135 and 136 cause a stabilizing effect on the macrocyclic system could 

not be determined. But both features are differing for 129 and 134 and might thus be an 

explanation for the higher flexibility of these smaller macrocycles. In addition both N-

methylated analogs (134 and 136) populate the trans-amide conformer to more than 99%. 

 

The novel hydroxy and amino acids 96 and 97 were obtained via a divergent synthesis starting 

from an Evans aldol reaction. Reduction, mono protection, acylation, and an Ireland-Claisen 

rearrangement provided the hydroxy acid 96 in good yields. Protection, hydrolysis, amidation, 

reduction, acylation and an Ireland-Claisen rearrangement gave rise to the amino acid 97 with 

excellent diastereoselectivity and good yields.  
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Scheme 74: Key components in the synthesis of hydroxy- and amino acids 96 and 97. 

 

The hydroxy- and amino acids were incorporated into a tripeptide to get a depsipeptide 159 

and a macrolactam 160. The structural differences of 159 and 160 are confined to the amino 

acid valine. The more folded structure of the lactone 159 brings the N-methyl and allylic 

methyl group in closer contact which is documented by a relatively short range NOE of 3.1 Å. 

The main difference between the ring-constrained analogues investigated here and the parent 

macrolide geodiamolide is an approximately 180o rotation of the propionate relative to the 
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tripeptide unit. As a consequence, the allylic methyl group is oriented to the opposite side of 

the macrocyclic rings which is documented by the intense transannular NMe and allylic 

methyl NOE. The distance between these two groups is 7.7 Å in geodiamolide where they are 

positioned on the opposite ring sides. Such a strong effect of a ring contraction from a 18-

membered ring in geodiamolide to a 17-membered ring in 159 and 160 is completely 

unexpected but well documented by the solution NMR data. It should be noted that both 

macrocycles populate the trans-amide conformer more than 99%. 
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Figure 7.3: Geodiamolide analogues containing the hydroxy- and amino acids 96 and 97. 

 

The replacement of allylic system with the meta substituted aromatic ring in the above amino- 

and hydroxy acids 96 and 97 led to the design of the novel amino acids 194 and 195. The 

amino acid 194 was prepared using the same starting materials as were used for the amino acid 

95. Different reaction conditions allowed for a divergent synthesis and produced the amino 

acid 195 in five steps with very good yields. The synthesis of hydroxy acid 195 was achieved 

in only three steps using the same starting materials. The construction of macrocycles using 

these acids is underway. 
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Scheme 75: Key intermediates in the synthesis of amino-and hydroxy acids 194 and 195.  

 

Nor methyl chondramide C 185 was efficiently synthesized by incorporating the hydoxy acid 

96 into the tripeptide 183 as shown in Scheme 76. Normethyl chondramide C did show an 

activity towards the L929-Mausfibroblast cells with an IC50 value of 0.25 μM (150 ng/mL). 

The synthesis of the macrocycles described in this thesis reveals the fact that it is more easy to 

form the amide bond rather the ester in order to close the ring.   
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Scheme 76: Key components in the synthesis of nor methyl chondramide C. 

 

The syntheses of amino- and hydroxy acids were achieved in a maximum five to six steps 

using similar starting materials but building upon divergent syntheses. The main reactions 

involved in the synthesis of these acids were the Evans asymmetric alkylation and aldol 

reactions with propionyl oxazolidinone to create the chiral centers carrying methyl groups. 

The novel amino and hydroxy acids could serve as novel workbenches for restricting the 
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conformation of small peptides. Furthermore, the aryl group might serve as a handle for 

attachment of derived macrocycles to a solid surface. The incorporation of the m-xylene 

subunit into the amino acid indicates that small structural modifications can have subtle effect 

on a macrocyclic structure. 

 

Chapter II describes efforts towards the synthesis of the stereotetrad 212 of cruentaren A 

(209). The key steps in this synthesis were an asymmetric Evans syn aldol reaction and a 

Sharpless dihydroxylation reaction. As the Sharpless dihydroxylation did not provide good 

diastereoselectivity, it is necessary to follow some other pathway to create the 

diastereomerically pure epoxide 212. But, it should be noted that this synthesis will become 

efficient if both isomers could be separated from each other after the Sharpless 

dihydroxylation step. 
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Scheme 76: Key intermediates in the synthesis of epoxide 212 
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8 Experimental Section 

 

8.1 General Remarks 

 

8.1.1 Chemicals and Working Techniques 
 

The chemicals were purchased from the firms Acros, Aldrich, Fluka, Lancaster, Avocado and 

Merck. All reagents were obtained from commercial suppliers, and were used without further 

purification unless otherwise stated. All solvents were distilled and/or dried prior to use by 

standard methodology except for those, which were reagent grades. The applied petroleum 

ether fraction had a boiling point of 40-60 oC. Anhydrous solvents were obtained as follows: 

THF, diethyl ether and toluene by distillation from sodium and benzophenone; 

dichloromethane and chloroform by distillation from calcium hydride; acetone by distillation 

from phosphorous pentoxide. Absolute triethylamine and pyridine and diisopropylethylamine 

were distilled over calcium hydride prior to use. Unless and otherwise mentioned, all the 

reactions were carried out under a nitrogen atmosphere and the reaction flasks were pre-dried 

by heat gun under high vacuum. All the chemicals, which were air or water sensitive, were 

stored under inert atmosphere. Compounds that are not described in the experimental part 

were synthesized according to the literature. 

 

8.1.2 NMR-spectroscopy 
 

Except for the final compounds (600 MHz), all the spectra were measured on a Bruker 

Advance 400 spectrometer, which operated at 400 MHz for 1H and 100 MHz for 13C nuclei, 

respectively. 1H and 13C NMR spectra were performed in deuterated solvent and chemical 

shifts were assigned by comparison with the residual proton and carbon resonance of the 

solvent and tetramethylsilane (TMS) as an internal reference (δ = 0). Data are reported as 

follows: chemical shift (multiplicity: s = singlet, d = doublet, t = triplet, ddd = doublet of 
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doublet of doublet, dt = doublet of triplet, td = triplet of doublet, m = multiplet, br = 

broadened, J = coupling constant (Hz), integration, peak assignment in italic form). 

 

8.1.3 Mass Spectrometry 
 

Mass spectra were recorded on a Finnigan Triple-Stage-Quadrupol Spectrometer (TSQ-70) 

from Finnigan-Mat. High-resolution mass spectra were measured on a modified AMD Intectra 

MAT 711 A from the same company. The used mass spectrometric ionization methods were 

electron-impact (EI), fast-atom bombardment (FAB) or field desorption (FD). FT-ICR-mass 

spectrometry and HR-FT-ICR mass spectra were measured on an APEX 2 spectrometer from 

Bruker Daltonic with electrospray ionization method (ESI). Some of the mass spectra were 

also measured on an Agilent 1100 series LC-MSD. Analytical HPLC-MS: HP 1100 Series 

connected with an ESI MS detector Agilent G1946C, positive mode with fragmentor voltage 

of 40 eV, column: Nucleosil 100–5, C-18 HD, 5 µm, 70 × 3 mm Machery Nagel, eluent: NaCl 

solution (5 mM)/acetonitrile, gradient: 0/10/15/17/20 min with 20/80/80/99/99% acetonitrile, 

flow: 0.6 mL min-1.  High resolution mass (HRMS) are reported as follows: (ESI): calcd mass 

for the related compound followed by found mass. 

 

8.1.4 Infrared Spectroscopy 
 

The FT-IR spectra were recorded on a Fourier Transform Infrared Spectrometer model Jasco 

FT/IR-430. Solid samples were pulverized with potassium bromide and percent reflection 

(R%) was measured. The percent transmittance (T%) of liquid substances were measured in 

film between potassium bromide plates. Absorption band frequencies are reported in cm-1. 

 

8.1.5 Polarimetry 
 

Optical rotations were measured on a JASCO Polarimeter P-1020. They are reported as 

follows: [α]temperatureD (concentration, solvent). The unit of c is g/100 mL. Anhydrous CH2Cl2 

or CHCl3 was used as a solvent. For the measurement the sodium D line = 589 nm was used. 
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8.1.6 Melting Points 
 

Melting points were determined with a Büchi Melting point B-540 apparatus and were not 

corrected. 

 

8.1.7 Chromatographic Methods 
 

Flash column chromatography was performed using flash silica gel (40-63 µm, 230-400 mesh 

ASTM) from Macherey-Nagel. 

Gas chromatography was performed on a CHROMPACK CP 9000 using a flame ionization 

detector, and carrier gas H2. For GC-MS coupled chromatography, a GC-system series 6890 

with an injector series 7683 and MS-detector series 5973 from Hewlett Packard was used, with 

EI method, and carrier gas He. Analytical HPLC was performed on a Hewlett Packard HP 

1100 system. 

Analytical thin layer chromatography (TLC) was performed on precoated with silica gel 60 

F254 plates (Merck) or Polygram Sil G/UV254 (Macherey Nagel). The compounds were 

visualized by UV254 light and the chromatography plates were developed with an aqueous 

solution of molybdophosphorous acid or an aqueous solution of potassium permanganate 

(heating with the hot gun). For preparation of the molybdate solution 20 g ammonium 

molybdate [(NH4)6Mo7O24.4H2O] and 0.4 g Ce(SO4)2.4H2O were dissolved in 400 mL of 10% 

H2SO4. The potassium permanganate solution was prepared from 2.5 g KMnO4 and 12.5 g 

Na2CO3 in 250 mL H2O. 

 

8.1.8 Experimental procedures  

  

All the experimental procedures are arranged in the ascending order of number of the 

compound. 
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(2S)-3-(3-{(2S)-2-[(tert-Butoxycarbonyl)amino]propyl}phenyl)-2-methylpropanoic acid 

(95) 

 

NHBoc
O

HO

 
 

NaOH (80 mg) in H2O (5 mL) was added to a stirred solution of methyl ester 103 (0.55 g, 1.64 

mmol) in THF (12 mL). The reaction mixture was stirred for 14 h at room temperature before 

being poured into water (25 mL) and extracted with diethyl ether (3 × 10 mL). The aqueous 

layer was acidified to pH 2-3 with 1N HCl and extracted with ethyl acetate (3 × 15 mL). The 

combined organic layers were dried (Na2SO4), filtered, and concentrated. The crude product 

was purified by flash chromatography (1:3 ethyl acetate/petroleum ether) resulting in acid 95 

as a white solid (0.44 g, 85%).  

 

Rf = 0.45 (1:3 ethyl acetate/petroleum ether);  

M.P. = 104-106 oC;  

[α]23
D = +6.01 (c 0.56, CH2Cl2);  

IR (film): νmax = 3326, 2974, 2930, 1706, 1653, 1507, 1248, 1169 cm-1;  
1H NMR (400 MHz, CD3OD): δ = 0.94 (d, J = 6.1 Hz, 3H, CH3NHR), 0.99 (d, J = 6.6 Hz, 

3H, CH3CO2H), 1.28 (s, 9H, C(CH3)3), 2.45-2.66 (m, 4H, benzylic H, CH), 2.86 (dd, J = 12.6, 

6.1 Hz, 1H, benzylic H), 3.19 (s, 1H, NH), 3.61-3.66 (m, 1H, CHNH), 6.91-6.92 (m, 3H, aryl 

H), 7.06 (t, J = 7.5 Hz, 1H, Hm, aryl H);  
13C NMR (100 MHz, CD3OD): δ = 17.2 (CH3CHNH), 20.5 (CH3CHCO2H), 28.8 (C(CH3)3), 

40.7 (CH2CHCO2H), 42.7 (CHCO2H), 43.8 (CH2CHNH), 49.5 (CHNH), 79.8 (Boc C), 127.9, 

128.3, 129.2, 131.2, 140.3, 140.7 (aryl), 157.7 (Boc C=O), 179.9 (CO2H);  

HRMS (ESI): calcd for C18H27NO4 [M+Na]+ 344.18323, found 344.18313. 
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(2S,4E,6S)-7-{[tert-Butyl(diphenyl)silyl]oxy}-2,4,6-trimethylhept-4-enoic acid (96) 

 
HO2C OTBDPS

  
 

To a solution of diisopropyl amine (0.20 mL, 1.40 mmol) in dry THF (2 mL) was added n-

BuLi (2.5 M solution in hexane) (0.56 mL, 1.40 mmol) at 0 oC. Stirring was continued for 30 

min at 0 oC. HMPA (0.5 mL) was added and the reaction mixture cooled to -78 oC. Ester 140 

(500 mg, 1.17 mmol) in dry THF (0.3 mL) was added dropwise to the above reaction mixture 

and after stirring for an hour at -78 oC, TBDMS-Cl (265 mg, 1.76 mmol) in THF (0.6 mL) was 

added dropwise. After 30 min stirring at -78 oC, the cooling bath was removed and reaction 

mixture brought to room temp and heated at 60 oC for 10 h. The reaction mixture was cooled 

to room temperature and treated with saturated NH4Cl (5 mL) and then diluted with 1N HCl (5 

mL), followed by stirring for 5 min. The mixture was extracted with ethyl acetate (3 x 10 mL). 

The combined ethyl acetate layers were washed with brine, dried (Na2SO4), filtered, and 

concentrated in vacuo to give the crude product which was purified by flash chromatography 

(1:3 ethyl acetate/petroleum ether) resulting in pure hydroxy acid 96 (360 mg, 72%) as a 

colorless gel.  

 

Rf = 0.45 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = +4.3 (c 1.13, CH2Cl2);  

IR (film): υmax = 3448, 2966, 2879, 1718, 1629, 1439, 1377, 1195, 1159, 1103, 1053 cm-1;  
1H-NMR (400 MHz, CDCl3): δ = 0.94 (d, J = 6.8 Hz, 3H, CH3CHCH2O), 1.04 (s, 9H, 

C(CH3)3), 1.09 (d, J = 7.1 Hz, 3H, CH3CHCO), 1.56 (s, 3H, CH3), 2.02 (dd, J = 13.4, 8.1 Hz, 

CH2CO2), 2.37 (dd, J = 13.3, 6.7 Hz, CH2CO2), 2.54-2.63 (m, 2H, CH, CH), 3.41-3.49 (m, 2H, 

CH2OH), 4.99 (d, J = 9.1 Hz, 1H, olefin H), 7.36-7.43 (m, 6H, aromatic), 7.82 (d, J = 6.8 Hz, 

4H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 15.8 (CH3), 16.2 (CH3CHCO), 17.3 (CH3CHCH2O), 19.2 

(quarternery), 26.8 (3C, tBu), 35.4 (CHCO2), 37.8 (CHCH2O), 43.8 (CH2CO), 68.5 (CH2O), 

127.6, 129.5 (aromatic), 130.8 (olefinic), 132.0 (aromatic), 134.0 (olefin quarternary), 135.6 

(aromatic), 182.8 (CO2H);  

HRMS (EI): calcd for C26H36O3Si [M+Na]+: 447.23259, found 447.23264. 
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(2S,4E,6S)-7-[(tert-Butoxycarbonyl)amino]-2,4,6-trimethylhept-4-enoic acid (97) 

 

NHBoc
HO2C

 
 

To solution of ester 147 (140 mg, 0.49 mmol) in THF / HMPA (1.0/0.3 mL) was added a 2 M 

solution of NaHDMS in THF (1.5 mL) at -78 oC. After stirring for 45 min at -78 oC, TMS-Cl 

(0.5 mL, 4.00 mmol) and Et3N (0.20 mL, 1.50 mmol) were added simultaneously. After 15 

min, the cooling bath was removed and the reaction mixture was allowed to come to room 

temperature in 1 h. The mixture was heated at 60 oC for 5 h. The reaction mixture was treated 

with saturated aq. NH4Cl (2 mL) and diluted with 1N HCl (2 mL), then extracted with ethyl 

acetatae (3 x 5 mL). The combined organic layers washed with brine (4 mL), dried (Na2SO4), 

filtered, and concentrated in vacuo to give the crude amino acid which was purified by flash 

chromatography (1:1 ethyl acetate/petroleum ether). This way the pure amino acid 97 (90 mg, 

65%) was obtained as a colorless oil.  

 

Rf = 0.45 (1:1 ethyl acetate/petroleum ether);  

[α]20
D

 = -34.6 (c 0.62, CH2Cl2);  

IR (film): υmax = 3361, 2974, 2930, 1735, 1712, 1511, 1172 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.89 (d, J = 6.6 Hz, 3H, CH3NHBoc), 1.12 (d, J = 6.8 Hz, 

3H, CH3CHCO), 1.42 (s, 9H, tBu), 1.62 (s, 3H, CH3C=C), 2.03-2.10 (m, 1H, CH2CHCO), 

2.34-2.39 (m, 1H, CH2CHCO), 2.56-2.67 (m, 2H, CHNH, CHCO), 2.76-2.78 (m, 1H, 

CH2NH), 3.11-3.14 (m, 1H, CH2NH), 4.55 (broad s, 1H, NH), 4.91 (d, J = 9.4 Hz, 1H, olefinic 

CH);  
13C NMR (100 MHz, CDCl3): δ = 16.1 (CH3C=C), 16.3 (CH3CHCO), 18.2 (CH3CHCH2NH), 

28.4 (3C, tBu), 33.0 (CHCH2NH), 37.9 (CHCO), 45.4 (CH2CHCO), 46.4 (CH2NH), 79.1 (Boc 

quarternary), 130.8 (CH olefinic), 133.4 (olefin quarternary), 156.00 (Boc C=O), 181.9 (acid 

C=O);  

HRMS (EI): calcd for C15H27NO4 [M+Na]+: 308.18323, found 308.18317. 
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(2S)-3-{3-[(2S)-2-Carboxypropyl]phenyl}-2-methylpropanoic acid (98) 

 
OO

OHHO

 
 

To a solution of the bisalkylated compound 108 (7.50 g, 13.2 mmol) in THF (250 mL), H2O2 

(11.7 mL of a 30 wt% solution, 102.7 mmol) was added at 0 °C through a syringe, followed by 

the addition of lithium hydroxide monohydrate (2.20 g, 51.4 mmol), dissolved in water (120 

mL). The solution was stirred at 0 °C for 5 h. Subsequently, saturated Na2SO3 solution (100 

mL) and saturated NaHCO3 solution (100 mL) were added at 0 °C. The whole mixture was 

partially concentrated in vacuo and diluted with water (100 mL). The aqueous layer was 

extracted with dichloromethane (3 × 75 mL) to recover the auxiliary. The aqueous layer was 

then acidified at 0 °C to pH 1.5 using 6M HCl and then extracted with ethyl acetate (4 × 100 

mL). The combined ethyl acetate layers were dried (MgSO4), filtered, and concentrated in 

vacuo yielding a colorless oily residue 98 (2.95 g, 90%). 

 

[α]25
D = +35.5 (c 0.42, CH2Cl2); 

IR (film): νmax = 3500-2500 (broad), 1702, 1589, 1463, 1292, 1199, 1044 cm-1; 
1H NMR (400 MHz, CDCl3): δ = 1.20 (d, J = 6.8 Hz, 6H, CH3), 2.62-2.72 (m, 2H, benzylic 

H), 2.75-2.83 (m, 2H, CH), 3.10 (dd, J = 13.1, 6.1 Hz, 2H, benzylic H), 7.07 (d, J = 7.1 Hz, 

aryl H), 7.10 (s, 1H, Ho, aryl H), 7.26 (t, J = 7.6 Hz, 1H, Hm, aryl H), 11.79 (broad, 2H, 

CO2H);  
13C NMR (400 MHz, CDCl3): δ = 16.3 (CH3), 39.1 (benzylic), 41.3 (CH), 127.1, 128.4, 129.7, 

139.0 (aryl), 182.7 (CO2H); 

HRMS (EI): calcd for C14H18O4 [M]+: 250.12049, found 250.118291. 
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(2S)-3-{3-[(2S)-3-Methoxy-2-methyl-3-oxopropyl]phenyl}-2-methylpropanoic acid (103) 

 
OO

OHMeO

 
 

A solution of diester 109 (2.50 g, 9.0 mmol) in MeOH (5 mL) was emulsified under vigorous 

stirring in NaCl solution (0.1 M, 646.75 mL) to which pH 7 phosphate buffer (3.25 mL) was 

added, making the solution 3 mM in phosphate. Then a suspension of PLE (25 mg, 1000 units, 

Sigma Aldrich, E-3019) in 3.2 M (NH4)2SO4 solution (1 mL) was added. During the 

hydrolysis the pH was kept between 7 and 7.5 by the controlled addition of NaOH solution 

(0.1 N). After observing the formation of diacid in HPLC-MS (maximum 12 h), the reaction 

mixture was washed with CH2Cl2 (2 × 500 mL). The aqueous phase was acidified to pH 2.5 

with 25% hydrochloric acid and extracted with ethyl acetate (3 × 500 mL). The combined 

organic layers (CH2Cl2 and EtOAc) were dried over Na2SO4, filtered, and concentrated in 

vacuo. The crude product was purified by flash chromatography (1:4 ethyl acetate/petroleum 

ether) to provide the mono acid mono ester 103 (1.52 g, 64%) as a colorless oily compound. 

 

Rf = 0.4 (1:4 ethylacetate/petroleum ether,) 

[α]25
D = +46.2 (c 1.07, CH2Cl2);  

IR (film): νmax = 3024, 2975, 1736, 1707 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.05 (d, J = 6.8 Hz, 3H, CH3CHCO2CH3), 1.08 (d, J = 7.1 

Hz, 3H, CH3CHCO2H), 2.53-2.58 (m, 2H, benzylic H), 2.62-2.68 (m, 2H, CH), 2.94 (ddd, J = 

19.4, 13.1, 6.4 Hz, 2H, benzylic H), 3.55 (s, 3H, OCH3), 6.90-6.96 (m, 3H, aryl H), 7.12 (t, J = 

7.5 Hz, 1H, Hm, aryl H), 10.49(broad, 1H, CO2H);  
13C NMR (100 MHz, CDCl3): δ = 16.4 (CH3CO2CH3), 16.6 (CH3CO2H), 39.1 

(CH2CHCO2CH3), 39.6 (CH2CHCO2H), 41.4 (CHCO2H), 51.5 (OCH3), 126.9, 127.0, 128.4, 

129.8, 139.0 (aryl), 176.4 (CO2Me), 182.3 (CO2H); 

HRMS (EI): calcd for C15H20O4 [M]+: 264.133877, found 264.136141. 
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(4R)-4-Benzyl-3-[(2S)-3-(3-{(2S)-3-[(4R)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]-2-methyl-3-

oxopropyl}phenyl)-2-methylpropanoyl]-1,3-oxazolidin-2-one (108)  

 

OO

N NO O

O O

Bn Bn  
 

To a solution of diisopropylamine (8.0 mL, 56.2 mmol) in THF (190 mL) was added n-

butyllithium (22.5 mL, 56.2 mmol, 2.5 M in hexane) at 0 °C. The reaction mixture was stirred 

at 0 °C for 30 min, before it was cooled to -78 °C. At this point propionyl oxazolidinone 100 

(12.0 g, 51.5 mmol), dissolved in THF (210 mL) was added. After being stirred for 1.5 h at –

78 °C, the solid 1,3-bis-(bromomethyl)-benzene (104) (6.17 g, 23.4 mmol) was added in one 

portion. Stirring was continued for 24 h with simultaneous warming of the reaction mixture to 

room temperature. The reaction was quenched with 60 mL of NH4Cl, and then most of the 

organic solvent was removed in vacuo. The remainder was extracted with ethyl acetate (3 × 50 

mL) and the combined organic layers were washed with brine, dried with Na2SO4, filtered and 

concentrated in vacuo. The residue was purified by flash chromatography (3:7 ethyl 

acetate/petroleum ether) to give 108 as a sticky compound (7.72 g, 58%). 

 

Rf = 0.45 (3:7 ethyl acetate/petroleum ether); 

[α]25
D = -21.9 (c 1.50, CH2Cl2);  

IR (film): νmax = 3028, 2976, 2932, 1770, 1694, 1604, 1588, 1487, 1455, 1393, 1288, 1210, 

1103, 1053 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.18 (d, J = 6.6 Hz, 6H, CH3), 2.54-2.69 (m, 4H, benzylic 

H), 3.11-3.18 (m, 4H, PhCH2), 4.10-4.20 (m, 6H, CHCH3, OCH2), 4.64-4.70 (m, 2H, NCH), 

7.09-7.32 (m, 14H, aryl H);  
13C NMR (100 MHz, CDCl3): δ = 16.2 (CH3), 37.3 (PhCH2), 39.1 (CHCH3), 39.9 (benzylic), 

54.7 (NCH), 65.5 (OCH2), 126.8, 127.9, 128.5, 129.0, 130.1, 134.9, 138.9 (aryl), 152.6 

(NCO2), 176.1 (CO);  

HRMS (EI): calcd for C34H36N2O6 [M]+: 568.257798, found 568.257289. 
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Methyl (2S)-3-{3-[(2S)-3-Methoxy-2-methyl-3-oxopropyl]phenyl}-2-methylpropanoate 

(109) 
 

OO

OMeMeO

 
 

To a solution of diacid 98 (3.20 g, 12.8 mmol), methanol (1.4 mL, 32.8 mmol) and DMAP (96 

mg) in dry CH2Cl2 (37 mL) was added at 0 °C a solution of DCC (8.12 g, 39.4 mmol) in 

CH2Cl2 (26 mL). The solution was stirred at 0 °C for 30 min and then at room temperature for 

6 h. The white precipitate was filtered off, the solvent was evaporated, and the residue was 

redissolved in diethyl ether. The ether solution was washed successively with cold 1 N HCl, 

NaHCO3 solution, and brine. The dried (Na2SO4) ether layer was filtered, and concentrated. 

The crude product was purified by flash chromatography (1:9 ethyl acetate/petroleum ether) to 

provide the diester 109 as an oily compound (2.52 g, 71%).  

 

Rf = 0.38 (1:9 ethyl acetate/petroleum ether); 

[α]25
D = +40.1 (c 0.61, CH2Cl2);  

IR (film): νmax = 2974, 2951, 1736, 1459, 1375, 1361, 1164 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.15 (d, J = 6.5 Hz, 6H, CH3), 2.61-2.67 (m, 2H, benzylic 

H), 2.69-2.77 (m, 2H, CH), 3.00 (dd, J = 13.1, 6.7 Hz, 2H, benzylic H), 3.64 (s, 6H, OCH3), 

6.97 (s, 1H, Ho, aryl H), 7.01 (d, J = 7.6 Hz, 2H, aryl H), 7.20 (t, J = 7.6 Hz, 1H, Hm, aryl H);  
13C NMR (100 MHz, CDCl3): δ = 16.6 (CH3), 39.6 (benzylic), 41.6 (CH), 51.5 (OCH3), 

126.9, 128.3, 129.6, 139.3 (aryl), 176.4 (CO2Me);  

HRMS (EI): calcd for C16H22O4 [M]+: 278.15179, found: 278.152648 
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Methyl (2S)-3-(3-{(2S)-2-[(tert-Butoxycarbonyl)amino]propyl}phenyl)-2-

methylpropanoate (115)  

  

NHBoc
O

MeO

 
 

A solution of the monoester 103 (0.80 g, 3.03 mmol) in toluene (23 mL) was treated with 

triethylamine (0.5 mL, 3.33 mmol) and DPPA (0.66 mL, 3.03 mmol). After stirring for 30 

min, the mixture was heated to reflux for 3.5 h. The isocyanate formation was monitered by IR 

for the appearance of a strong signal in the 2300-2200 cm-1 region and disappearance of the 

carboxylic acid carbonyl peak. The reaction mixture was cooled to 50 °C, tert-butanol (3 mL, 

10 eq) was added via syringe and the solution heated to reflux for 20 h. The reaction was 

cooled to room temperature and quenched with saturated NaHCO3 solution (25 mL). The 

mixture was extracted with diethyl ether (3 × 25 mL). The combined ether extracts were dried 

(Na2SO4), filtered, and concentrated in vacuo. The crude product was purified by flash 

chromatogrophy (1:5 ethyl acetate/petroleum ether), to provide compound 115 as an oil (0.73 

g, 72%). 

  

Rf = 0.55 (1:5 ethyl acetate/petroleum ether);  

[α]23
D = +12.3 (c 0.21, CH2Cl2);  

IR (film): νmax = 3361, 2973, 2930, 2359, 1735, 1710, 15516, 1364, 1166 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.99 (d, J = 6.6 Hz, 3H, CH3CHCO2Me), 1.06 (d, J = 6.6 

Hz, 3H, CH3CHNR), 1.36 (s, 9H, C(CH3)3) 2.51-2.58 (m, 2H, benzylic H), 2.63-2.68 (m, 1H, 

CHCO2Me), 2.75 (dd, J = 13.1, 5.3 Hz, 1H, benzylic H), 2.93 (dd, J = 13.1, 6.4 Hz, 1H, 

benzylic H), 3.57 (s, 3H, OCH3), 3.81 (br s, 1H, CHNHR), 4.31 (br s, 1H, NH), 6.90-7.32 (m, 

4H, aryl H);  
13C NMR (100 MHz, CDCl3): δ = 16.3 (CH3CHCO2Me), 19.7 (CH3CHNHR), 28.0 

(C(CH3)3)), 39.2 (CH2CHCO2Me), 41.0 (CHCO2Me), 42.5 (CH2CHNHR), 47.1 (CHNHR), 

51.2 (OCH3), 78.8 (Boc quaternary C), 126.6, 127.2, 127.9, 129.9, 137.9, 139.0 (aryl), 154.8 

(Boc CO), 176.2 (CO2Me);   

HRMS (EI): calcd for C19H29NO4 [M]+: 335.209636, found 335.207186. 
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(2S)-3-(3-Bromo-5-{(2S)-2-[(tert-butoxycarbonyl)amino]propyl}phenyl)-2-

methylpropanoic acid (116) 

 
Br

CO2HBocHN  
 

The procedure for amino acid 95 was used with methyl ester 123 (130 mg, 0.31 mmol) in THF 

(2.5 mL) and NaOH (20 mg) in H2O (1.0 mL) to yield 100 mg (80%) of the bromo amino acid 

116 after prurification by flash chromatography (1:3 ethyl acetate/petroleum ether) as a 

colorless gel. 

 

Rf = 0.41 (1:3 ethyl acetate/petroleum ether);  

[α]23
D = +11.0 (c 1.00, CH2Cl2);  

IR (film): νmax = 3326, 2974, 2930, 1706, 1653, 1507, 1248, 1169 cm-1;  
1H NMR (400 MHz, CD3OD): δ = 1.06 (d, J = 6.3 Hz, 3H, CH3NHR), 1.11 (d, J = 6.8 Hz, 

3H, CH3CO2H), 1.37 (s, 9H, C(CH3)3), 2.58-2.70 (m, 4H, benzylic H, CH), 2.93 (dd, J = 12.9, 

6.8 Hz, 1H, benzylic H), 3.72-3.78 (m, 1H, CHNH), 4.96 (br s, 1H, CHNH), 7.00 (s, 1H, aryl 

H), 7.19 (s, 1H, aryl H), 7.20 (s, 1H, aryl H);  
13C NMR (100 MHz, CD3OD): δ = 17.2 (CH3CHNH), 20.6 (CH3CHCO2H), 28.8 (C(CH3)3), 

40.1 (CH2CHCO2H), 42.3 (CHCO2H), 43.3 (CH2CHNH), 48.8 (CHNH), 79.8 (Boc C), 122.9, 

130.1, 130.7, 131.3, 142.6, 143.0 (aryl), 157.5 (Boc C=O), 179.4 (CO2H);  

HRMS (ESI): calcd for C18H26BrNO4 [M+Na]+ 422.09374, found 422.09422. 

 

 

 (4R)-4-Benzyl-3-[(2S)-3-(3-bromo-5-{(2S)-3-[(4R)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]-2-

methyl-3-oxopropyl}phenyl)-2-methylpropanoyl]-1,3-oxazolidin-2-one (119) 

 

Br

N

O

N

O

O O

O O

Bn Bn
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The alkylation procedure (for the compound 108) was used with propionyl oxazolidinone 100 

(4.35 g, 18.30 mmol) in THF (90 mL) and the tribromo derivative 118 (3.00 g, 8.75 mmol), 

diisopropylamine (3.00 mL, 21.00 mmol), and n-BuLi (8.40 mL, 2.5 M in hexane, 21.00 

mmol) to yield 3.00 g (53%) of double alkylation product 119 after flash chromatography (1:3 

ethyl acetate/petroleum ether) as a light yellow gel. 

 

Rf = 0.38 (1:3 ethyl acetate/petroleum ether); 

[α]20
D = -11.4 (c 2.11, CH2Cl2);  

IR (film): νmax = 3028, 2976, 2932, 1770, 1694, 1604, 1588, 1487, 1455, 1393, 1288, 1210, 

1103, 1053 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.09 (d, J = 6.8 Hz, 6H, CH3), 2.49-2.55 (m, 4H, benzylic 

H), 3.01-3.10 (m, 4H, PhCH2), 3.94-3.99 (m, 2H, CHCH3), 4.01-4.07 (m, 2H, OCH2), 4.10 (t, 

J = 8.5 Hz, 2H, OCH2), 4.56-4.62 (m, 2H, NCH), 7.02 (d, J = 6.6 Hz, 4H, aryl), 7.09 (s, 1H, 

aryl), 7.18-7.24 (m, 8H, aryl);  
13C NMR (100 MHz, CDCl3): δ = 16.6 (CH3), 37.7 (PhCH2), 39.2 (CHCH3), 39.5 (benzylic), 

55.1 (NCH), 65.9 (OCH2), 122.2, 127.3, 128.9, 129.3, 130.2, 135.2, 141.5 (aryl), 153.0 

(NCO2), 176.0 (CO);  

HRMS (EI): calcd for C34H35BrN2O6 [M+Na]+: 671.15707, found 671.15644. 

 

(2S)-3-{3-Bromo-5-[(2S)-2-carboxypropyl]phenyl}-2-methylpropanoic acid (120) 

 
Br

CO2HHO2C  
 

The procedure for diacid 98 was used with the double alkylated product 119 (2.50 g, 3.86 

mmol) in THF (80 mL), 30 wt% H2O2 (3.15 mL, 30.88 mmol) and lithium hydroxide 

monohydrate (650 mg, 15.44 mmol) in H2O (30 mL) to provide 1.13 g of diacid 120 (89%) 

after workup. The crude product was used without any purification. 

 

[α]20
D = +40.5 (c 1.00, CH2Cl2); 

IR (film): νmax = 3500-2500 (br), 1700, 1585, 1465, 1292, 1199, 1044 cm-1; 
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1H NMR (400 MHz, CDCl3): δ = 1.15 (d, J = 6.8 Hz, 6H, CH3), 2.64 (dd, J = 12.9, 7.1 Hz, 

2H, benzylic H), 2.68-2.75 (m, 2H, CH), 2.92 (dd, J = 12.9, 6.6 Hz, 2H, benzylic H), 6.92 (s, 

1H, aryl), 7.17 (s, 2H, aryl);  
13C NMR (400 MHz, CDCl3): δ = 16.5 (CH3), 38.9 (benzylic), 41.1 (CH), 122.3, 128.4, 130.2, 

141.1 (aryl), 181.4 (CO2H); 

HRMS (EI): calcd for C14H17BrO4 [M-H]-: 327.02375, found 327.02366. 

 

 

Methyl (2S)-3-{3-bromo-5-[(2S)-3-methoxy-2-methyl-3-oxopropyl]phenyl}-2-

methylpropanoate (121) 

 
Br

CO2MeMeO2C  
 

The procedure for diester 109 was used with diacid 120 (1.10 g, 3.34 mmol) in 

dichloromethane (10 mL) and DCC 1.73 g, 8.35 mmol) in dichloromethane (8.0 mL), DMAP 

(245 mg, 2.00 mmol) to yield the diester 121 (895 mg, 75%) after purification by flash 

chromatography (1:9 ethyl acetate/petroleum ether) as a colorless oil. 

 

Rf = 0.44 (1:9 ethyl acetate/petroleum ether); 

[α]20
D = +52.4 (c 1.05, CH2Cl2) ;  

IR (film): νmax = 2974, 2951, 1736, 1459, 1375, 1361, 1164 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.07 (d, J = 7.1 Hz, 6H, CH3), 2.53 (dd, J = 13.3, 7.5 Hz, 

2H, benzylic H), 2.59-2.7 (m, 2H, CH), 2.88 (dd, J = 13.3, 7.0 Hz, 2H, benzylic H), 3.57 (s, 

6H, OCH3), 6.82 (s, 1H, aryl), 7.09 (s, 2H, aryl);  
13C NMR (100 MHz, CDCl3): δ = 16.6 (CH3), 39.0 (benzylic), 41.1 (CH), 51.4 (OCH3), 

122.1, 128.3, 129.8, 141.4 (aryl), 175.8 (CO2Me);  

HRMS (EI): calcd for C16H21BrO4 [M]+: 379.05154, found, 379.05137. 
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(2S)-3-{3-Bromo-5-[(2S)-3-methoxy-2-methyl-3-oxopropyl]phenyl}-2-methylpropanoic 

acid (122) 

 

MeO2C CO2H

Br

 
 

A solution of diester 121 (820 mg, 2.23 mmol) in MeOH (1.25 mL) was emulsified under 

vigorous stirring in NaCl solution (0.1 M, 160.0 mL) to which pH 7 phosphate buffer (0.80 

mL) was added, making the solution 3 mM in phosphate. Then a suspension of PLE (12 mg, 

240 units, Sigma Aldrich, E-3019) in 3.2 M (NH4)2SO4 solution (0.25 mL) was added. During 

the hydrolysis the pH was kept between 7 and 7.5 by the controlled addition of NaOH solution 

(0.1 N). After observing the formation of diacid in LC-MS (7-8 h), the reaction mixture was 

washed with CH2Cl2 (2 x 200 mL). The aqueous phase was acidified to pH 2.5 with 25% 

hydrochloric acid and extracted with ethyl acetate (3 x 200 mL). The combined organic layers 

(CH2Cl2 and EtOAc) were dried over Na2SO4, filtered, and concentrated in vacuo. The crude 

product was purified by flash chromatography (1:4 ethyl acetate/petroleum ether) to provide 

the mono acid mono ester 122 (435 mg, 57%) as a colorless oily compound. 

 

Rf = 0.44 (1:4 ethyl acetate/petroleum ether); 

[α]20
D = +48.4 (c 0.98, CH2Cl2);  

IR (film): νmax = 3020, 2970, 1735, 1707 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.12 (d, J = 6.8 Hz, 3H, CH3CHCO2CH3), 1.15 (d, J = 7.1 

Hz, 3H, CH3CHCO2H), 2.58 (dd, J = 13.4, 7.8 Hz, 2H, benzylic H), 2.64-2.75 (m, 2H, CH), 

2.93 (dd, J = 12.4, 6.1 Hz, 1H, benzylic H), 2.98 (dd, J = 12.6, 5.8 Hz, 1H, benzylic H), 3.62 

(s, 3H, OCH3), 6.89 (s, 1H, aryl H), 7.15 (s, 1H, aryl H), 7.17 (s, 1H, aryl H), 9.62 (br, 1H, 

CO2H);  
13C NMR (100 MHz, CDCl3): δ = 16.5 (CH3CO2CH3), 16.7 (CH3CO2H), 38.7 

(CH2CHCO2CH3), 39.1 (CH2CHCO2H), 41.0 (CHCO2CH3), 41.2 (CHCO2H), 51.7 (OCH3), 

122.3, 128.5, 130.0, 130.1, 141.2, 141.6 (aryl), 176.2 (CO2Me), 181.7 (CO2H); 

HRMS (EI): calcd for C15H19BrO4 [M-H]-: 341.03940, found 341.03930. 

 



Experimental Section 143                        
 

 

Methyl (2S)-3-(3-bromo-5-{(2S)-2-[(tert-butoxycarbonyl)amino]propyl}phenyl)-2-

methylpropanoate (123) 

 

MeO2C NHBoc

Br

 
 

To a stirred solution of monoester mono acid 122 (320 mg, 0.93 mmol) in tBuOH (10 mL) 

were added triethylamine (0.15 mL, 1.02 mmol) and DPPA (0.20 mL, 0.93 mmol) 

successively at room temperature. After stirring for 0.5 h at room temperature the reaction 

mixture was heated to reflux for 10 h. The reaction mixture was treated with saturated aq. 

NaHCO3 (10 mL). The resulting mixture was extracted with diethyl ether (3 x 10 mL). The 

combined ether layers were dried (Na2SO4), filtered and concentrated in vacuo. The crude 

product was purified by flash chromatography (1:5 ethyl acetate/petroleum ether) to produce 

the corresponding Boc carbamate 123 (210 mg, 55%) as a colorless oil.  

 

Rf = 0.52 (1:5 ethyl acetate/petroleum ether);  

[α]20
D = +12.3 (c 1.05, CH2Cl2);  

IR (film): νmax = 3361, 2973, 2930, 2359, 1735, 1710, 15516, 1364, 1166 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.99 (d, J = 6.8 Hz, 3H, CH3CHCO2Me), 1.07 (d, J = 7.1 

Hz, 3H, CH3CHNR), 1.36 (s, 9H, C(CH3)3) 2.48-2.55 (m, 2H, benzylic H), 2.59-2.68 (m, 1H, 

CHCO2Me), 2.73 (dd, J = 13.0, 3.9 Hz, 1H, benzylic H), 2.90 (dd, J = 13.4, 6.8 Hz, 1H, 

benzylic H), 3.58 (s, 3H, OCH3), 3.78 (br s, 1H, CHNHR), 4.30 (br s, 1H, NH), 6.83 (s, 1H, 

aryl), 7.10 (s, 2H, aryl);  
13C NMR (100 MHz, CDCl3): δ = 16.7 (CH3CHCO2Me), 20.0 (CH3CHNHR), 28.3 

(C(CH3)3)), 39.1 (CH2CHCO2Me), 41.2 (CHCO2Me), 42.4 (CH2CHNHR), 47.4 (CHNHR), 

51.7 (OCH3), 79.2 (Boc quaternary C), 122.1, 126.1, 128.9, 129.9, 140.5, 141.6 (aryl), 155.1 

(Boc CO), 176.1 (CO2Me);   

HRMS (EI): calcd for C19H28BrNO4 [M+Na]+: 436.10939, found 436.10826. 
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Methyl N-(tert-butoxycarbonyl)-D-alanyl-L-phenylalaninate (126) 

 

CO2MeN

Ph

H

O
N

BocH  
 

To a stirred solution of N-Boc-D-alanine (125) (1.10 g, 5.6 mmol), L-phenylalanine 

methylester (124) (1.00 g, 5.6 mmol), hydroxybenzotriazole (0.75 g, 5.6 mmol) in dry THF 

(45 mL) was added a solution of DCC (1.5 g, 7.25 mmol) in THF (11 mL) at 0 °C. Stirring 

was continued for 12 h at room temperature. The dicyclohexylurea was filtered off, washed 

with cold diethyl ether and the filtrate was concentrated. Purification was done by flash 

chromatography (1:3 ethyl acetate/petroleum ether) yielding a colorless solid 126 (1.55 g, 

80%).  

 

Rf = 0.35 (1:3 ethyl acetate/petroleum ether);  

M.P. = 98-99 oC;  

[α]23
D = +59.8 (c 0.40, CH2Cl2);  

IR (KBr): νmax = 3304, 2987, 2930, 1732, 1664, 1517, 1317 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.21 (d, J = 7.1 Hz, 3H, CH3), 1.36 (s, 9H, C(CH3)3), 3.00 

(dd, J = 13.8, 6.2 Hz, 1H, benzylic H), 3.05-3.10 (m, 1H, benzylic H), 4.04-4.18 (m, 1H, 

CHNH), 4.77-4.81 (m, 1H, CHCO2Me), 4.95 (br s, 1H, NHBoc), 6.60 (br s, 1H, 

NHCHCO2Me), 7.03-7.22 (m, 5H, aryl H);  
13C NMR (100 MHz, CDCl3): δ = 18.4 (CH3), 28.2 (C(CH3)3), 37.8 (benzylic), 49.9 

(CHCO2Me), 52.3 (OCH3), 53.0 (CHNHBoc), 80.0 (Boc C), 127.1, 128.5, 129.2, 135.7 (aryl), 

155.3 (Boc C=O), 171.7 (CO2Me), 172.2 (CONH);  

HRMS (EI): calcd for C14H18N2O5 [M-C(CH3)3]+: 294.119319, found 294.121541. 
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Methyl N-(tert-Butoxycarbonyl)-L-alanyl-D-alanyl-L-phenylalaninate (127) 

 

CO2MeN

Ph

H

OMe

N
H

O

N
Boc

H  
 

A solution of peptide 126 (1.0 g, 2.8 mmol) in CH2Cl2 (22 mL) was treated with CF3CO2H 

(2.2 mL) and the mixture stirred at room temperature for 1 h. The solvent was removed in 

vacuo, and the residue dried by azeotropic removal of H2O with toluene. The crude material 

was subjected to the next reaction without further purification. To a cooled (0 °C) solution of 

the crude amine salt (240 mg, 0.96 mmol) and N-Boc-L-alanine (181 mg, 0.96 mmol) in THF 

(11 mL) and CH2Cl2 (2.5 mL) were added 1-hydroxybenzotriazole (130 mg, 0.96 mmol), Et3N 

(0.32 mL, 2.3 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 

(EDCI) (239 mg, 1.25 mmol). The mixture was then stirred at room temperature for 16 h. The 

solvent was removed in vacuo, and the residue purified by flash chromatography (2:3 ethyl 

acetate/petroleum ether) to provide the tripeptide 127 as a colorless solid (0.30 g, 75%).  

 

Rf = 0.33 (2:3 ethyl acetate/petroleum ether);  

M.P = 149-151 oC;  

[α]28
D = +19.1 (c 0.4796, CH2Cl2);  

IR (KBr): νmax = 3277, 2979, 2748, 1753, 1707, 1645, 1519, 1456, 1370, 1166 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.19 (d, J = 7.1 Hz, 3H, CH3CHNHBoc), 1.24 (d, J = 7.0 

Hz, 3H, CH3CONH), 1.36 (s, 9H, C(CH3)3), 2.96 (dd, J = 13.9, 7.1 Hz, 1H, benzylic H), 3.07-

3.12 (m, 1H, benzylic H), 3.62 (s, 3H, OCH3), 4.02-4.17 (m, 1H, CHNHBoc), 4.40-4.47 (m, 

1H, CHNHCO), 4.73-4.78 (m, 1H, CHCO2Me), 5.11 (d, J = 7.3 Hz, 1H, NHBoc), 6.84 (d, J = 

7.3 Hz, 1H, NHCO2Me), 6.95 (d, J = 6.6 Hz, 1H, NHCO), 7.05-7.22 (m, 5H, aryl H);  
13C NMR (100 MHz, CDCl3): δ = 18.1 (CH3CHNHBoc), 18.4 (CH3CHCONH), 28.3 

C(CH3)3), 37.8 (benzylic), 48.5 (CHCONH), 50.2 (CHNHBoc), 53.2 (CHCO2Me), 80.1 (Boc 
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C), 127.0, 128.5, 129.2, 135.8 (aryl), 155.3 (Boc C=O), 171.7 (CO2Me), 171.8 (NHCO), 172.6 

(CH2NHCO);  

HRMS (EI): calcd for C21H31N3O6 [M]+: 421.221247, found 421.225247. 

 

 

Methyl N-[(2S)-3-(3-{(2S)-2-[(tert-butoxycarbonyl)amino]propyl}phenyl)-2-

methylpropanoyl]-L-alanyl-D-alanyl-L-phenylalaninate (128)  

 

CO2MeN

Ph

H

OMe

N
H

O

N
H

O

NHBoc

123  
 

A solution of peptide 127 (100 mg, 0.24 mmol) in CH2Cl2 (2 mL) was treated with CF3CO2H 

(0.18 mL), and the mixture stirred at room temperature for 1 h. The solvent was removed in 

vacuo, and the residue was dried by azeotropic removal of H2O with toluene. The crude 

material was subjected to the next reaction without further purification. To a solution of crude 

amine salt and Boc-protected ω-amino acid 95 (77 mg, 0.24 mmol) in dimethyl formamide (2 

mL) were added TBTU (77 mg, 0.24 mmol), HOBt (34 mg, 0.24 mmol), DIEA (0.1mL, 0.576 

mmol) and the mixture was stirred for 3 h at room temperature. The reaction mixture was 

diluted with water (3 mL) and extracted with ethyl acetate (3 × 4 mL). The combined ethyl 

acetate layers were washed with water resulting in almost pure tetrapeptide 128 (133 mg, 

90%) as judged by HPLC-MS. This material was used for the macrolactam formation without 

any further purification. 
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(3S,6S,9R,12S,15S)-6-Benzyl-3,9,12,15-tetramethyl-4,7,10,13-tetraaza 

bicyclo[15.3.1]henicosa-1(21),17,19-triene-5,8,11,14-tetrone (129) 

 

NH

O
Me

N
H O

NMe
H

O

N

Ph
O

H

 
 

NaOH (7.7 mg), dissolved in H2O (0.5 mL) was added to a stirred solution of tetrapeptide 128 

(100 mg, 0.160 mmol) in THF (3 mL). The reaction mixture was stirred for 1 h at room 

temperature before being poured into water (5 mL) and extracted with diethyl ether (3 × 5 

mL). The aqueous layer was acidified to pH 2-3 with 1N HCl and extracted with ethyl acetate 

(3 × 5 mL). The combined organic layers were dried (Na2SO4), filtered, and evaporated 

providing the carboxylic acid in almost quantitative yield. This compound was used directly in 

the next step. A solution of above Boc-protected tetrapeptide acid (90 mg, 0.145 mmol) in 

CH2Cl2 (1.2 mL) was treated with CF3CO2H (0.11 mL, 1.45 mmol), and the mixture stirred at 

room temperature for 1 h. The solvent was removed in vacuo, and the residue was dried by 

azeotropic removal of H2O with toluene. The crude material was subjected to the 

macrolactamization without any further purification. Thus, the residue was dissolved in DMF 

(140 mL) and the stirred solution treated successively with TBTU (140 mg, 0.435 mmol), 

HOBt (59 mg, 0.435 mmol), and iPr2EtN (0.08 mL, 0.44 mmol) at room temperature. The 

resulting solution was stirred for 14 h at room temperature and then partitioned between ethyl 

acetate and water. After separation of the layers, the water layer was extracted with ethyl 

acetate (2 × 75 mL), and the combined organic layers were washed successively with water, 

5% aqueous KHSO4, water, half-saturated NaHCO3, and brine. After being dried (MgSO4), 

filtered, and concentrated in vacuo, the resulting residue was purified by flash chromatography 

(ethyl acetate) to give the macrocycle 129 as a colorless solid (40 mg, 50%, 3 steps).  

 

Rf = 0.5 (ethyl acetate);  
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M.P. = 258-260 oC;  

[α]28
D = -14.8 (c 0.1911, CH2Cl2);  

IR (film): νmax = 3297, 2931, 1888, 1640,1526, 1446 cm-1;  
1H NMR (600 MHz, DMSO-d6): δ = 1.01 (d, J = 7.3 Hz, 5-CH3), 1.06 (d, J = 6.6 Hz, 3H, 11-

CH3), 1.11 (d, J = 7.3 Hz, 3H, 5-CH3), 1.12 (d, J = 6.6 Hz, 3H, 14-CH3), 2.50 (m, 2H, 6-H, 11-

H), 2.59-2.67 (m, 2H, 10-H), 2.86-2.95 (m, 2H, 1-H, 6-H), 3.33 (dd, J = 13.9, 3.7 Hz, 1H, 1-

H), 3.74-3.79 (m, 1H, 17-H), 3.94-4.03 (m, 3H, 2-H, 14-H, 5-H), 6.75-6.79 (m, 2H, 4’’-H, 6’’-

H), 6.83 (d, J = 7.3 Hz, 2H, 4-NH, 13-NH), 6.94 (s, 1H, 2’’-H), 6.98 (dd, J = 7.3, 7.3 Hz, 1H, 

5’’-H), 7.15-7.19 (m, 3H, 4’-H, aryl H), 7.23-7.27 (m, 2H, aryl H), 8.17 (d, J = 8.1 Hz, 1H, 

19-NH), 8.34 (br s, 1H, 16-NH);  
13C NMR (150 MHz, DMSO-d6): δ = 15.8 (CH3-17), 17.9 (CH3-11), 18.3, 19.1 (CH3-5, CH3-

14), 34.6 (C-1), 39.1 (C-6), 39.5 (C-10), 42.0 (C-11), 45.0 (C-5), 47.6 (C-14), 49.6 (C-17), 

54.4 (C-2); 

HRMS (EI): calcd for C28H36N4O4 [M]+: 492.273621, found 492.271404. 

 

 

Methyl N-(tert-butoxycarbonyl)-N-methyl-D-alanyl-L-phenylalaninate (131) 

 

CO2MeN

Ph

H

O
N

BocMe  
 

To a stirred solution of N-Boc-N-methyl-D-alanine (130) (1.5 g, 7.4 mmol), L-phenylalanine 

methylester (124) (1.3 g, 7.4 mmol), and hydroxybenzotriazole (0.99 g, 7.4 mmol) in dry THF 

(60 mL) was added a solution of DCC (2.3 g, 11.1 mmol), dissolved in THF (11 mL) at 0 °C. 

Stirring was continued for 7 h at room temperature. The dicyclohexylurea was filtered off, 

washed with cold diethyl ether and the filtrate concentrated. Purification of the residue by 

flash chromatography (1:5 ethyl acetate/petroleum ether) gave a colorless gel-like compound 

131 (2.10 g, 75%). 
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Rf = 0.33 (1:5 ethyl acetate/petroleum ether);  

[α]25
D = +62.8 (c 0.89, CH2Cl2);  

IR (film): νmax = 3327, 2977, 2934, 2118, 1746, 1688, 1515, 1455, 1390, 1154 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.23 (d, J = 6.8 Hz, 3H, CH3), 1.37 (s, 9H, C(CH3)3), 2.64 

(s, 3H, NCH3), 2.99-3.07 (m, 2H, benzylic H), 3.63 (s, 3H, OCH3), 4.71-4.77 (m, 2H, 

CHCO2Me, CHMe), 6.50 (br s, 1H, NHCHCO2Me), 7.03 (d, J = 7.3 Hz, 2H, Ho, aryl H), 7.15-

7.23 (m, 3H, aryl H);  
13C NMR (100 MHz, CDCl3): δ = 13.2 (CH3), 28.3 (C(CH3)3), 29.7 (NCH3), 37.8 (benzylic), 

52.2 (OCH3, CHCO2Me), 52.9 (CHNHBoc), 80.5 (Boc C), 127.1, 128.6, 129.1, 135.7, 171.3 

(CO2Me), 171.7 (CONH);   

HRMS (EI): calcd for C19H28N2O5 [M]+: 364.199791, found 364.198514. 

 

 

Methyl N-(tert-Butoxycarbonyl)-L-alanyl-N-methyl-D-alanyl-L-phenylalaninate (132) 

 

CO2MeN

Ph

H

OMe

N
Me

O

N
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H  
 

A solution of peptide 131 (1.0 g, 2.8 mmol) in CH2Cl2 (22 mL) was treated with CF3CO2H 

(2.2 mL), and the mixture was stirred at room temperature for 1 h. The solvent was removed in 

vacuo, and the residue dried by azeotropic removal of H2O with toluene. The crude material 

was subjected to the next reaction without further purification. To a stirred solution of the 

crude amine salt, N-Boc-alanine (0.53 g, 2.8 mmol), and PyBroP (1.3 g, 2.8 mmol) in CH2Cl2 

(3 mL) was added DIPEA (1.4 mL, 8.4 mmol) at 0 °C and the mixture stirred at room 

temperature for 3 h. The solvent was removed in vacuo and the residue purified by flash 

chromatography (1:1 ethyl acetate/petroleum ether) to provide a gel-like compound 132 (0.69 

g, 58%).  
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Rf = 0.45 (1:1 ethyl acetate/petroleum ether);  

[α]25
D = +62.4 (c 1.79, CH2Cl2);  

IR (film): νmax = 3327, 2979, 1742, 1682, 1642, 1520, 1455, 1249, 1169 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.21 (d, J = 6.8 Hz, 3H, CH3CHNCH3), 1.23 (d, J = 7.8 Hz, 

3H, CH3CHNHBoc), 1.37 (s, 9H, C(CH3)3), 2.85 (s, 3H, NCH3), 2.97 (dd, J = 13.9, 7.1 Hz, 

1H, benzylic H), 3.04-3.09 (m, 1H, benzylic H), 3.60 (s, 3H, OCH3), 4.44-4.50 (m, 1H, 

CHNHBoc), 4.65-4.70 (m, 1H, CHCO2Me), 5.11 (q, J = 6.3 Hz, 1H, CHNCH3), 5.31 (d, J = 

6.8 Hz, 1H, NHBoc), 6.70 (d, J = 7.8 Hz, 1H, NHCHCO2Me), 7.05 (d, J =7.3 Hz, 2H, Ho, aryl 

H), 7.14-7.24 (m, 3H, aryl H);  
13C NMR (100 MHz, CDCl3): δ = 13.5 (CH3CHCO), 17.9 (CH3CHNHBoc), 28.2 (C(CH3)3), 

30.3 (NCH3), 37.4 (benzylic), 46.6 (CHNHBoc), 52.1 (OCH3, CHNMe), 53.0 (CHCO2Me), 

79.6 (Boc C), 127.0, 128.4, 129.0, 135.9 (aryl) 155.3 (Boc C=O), 170.4 (CO2Me), 171.7 

(CONMe), 173.7 (CONH); 

HRMS (EI): calcd for C22H33N3O6 [M]+: 435.236897, found 435.240391. 

 

 

Methyl N-[(2S)-3-(3-{(2S)-2-[(tert-butoxycarbonyl)amino]propyl}phenyl)-2-

methylpropanoyl]-L-alanyl N-methyl-D-alanyl-L-phenylalaninate (133) 

 

CO2MeN
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A solution of tripeptide 132 (180 mg, 0.413 mmol) in CH2Cl2 (3.5 mL) was treated with 

CF3CO2H (0.32 mL), and the mixture stirred at room temperature for 1 h. The solvent was 

removed in vacuo, and the residue dried by azeotropic removal of H2O with toluene. The 

crude material was subjected to the next reaction without further purification. To a cooled (0 

°C) solution of the crude amine salt and amino acid 95 (133 mg, 0.413 mmol) in THF (7 mL) 
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and CH2Cl2 (1.5 mL) were added 1-hydroxybenzotriazole (56.2 mg, 0.413 mmol), Et3N (0.15 

mL, 1.03 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (103 mg, 

0.54 mmol), followed by stirring of the mixture at room temperature for 16 h. The solvent was 

removed in vacuo, and the residue purified by flash chromatography (ethyl acetate/petroleum 

ether, 1:1) to provide a colorless gel-like compound 133 (0.14 g, 55%).  

 

Rf = 0.33 (1:1 ethylacetate/petroleum ether);  

[α]25
D = +61.5 (c 0.52, CH2Cl2);  

IR (film): νmax = 3315, 2975, 2932, 1742, 1644, 1526, 1455, 1391, 1247, 1172 cm-1;  
1H NMR (400 MHz, CD3OD): δ = 1.04 (d, J = 6.6 Hz, 6H, CH3CHNH, CH2CH(CH3)), 1.23 

(d, J = 7.3 Hz, 3H, CH3CHN(CH3)), 1.30 (d, J = 7.1 Hz, 3H, CH3CHNHBoc), 1.36 (s, 9H, 

C(CH3)3), 2.40-2.72 (m, 4H, benzylic H), 2.86 (s, 3H, NCH3), 3.09-3.16 (m, 2H, PhCH2), 3.58 

(s, 3H, OCH3), 3.68 (m, 1H, NHBoc), 4.50-4.60 (m, 2H, CH(CH3)NH, CH(CH3)NHBoc), 5.03 

(q, J = 7.1 Hz, 1H, CH(CH3)NCH3), 6.89-7.20 (m, 11H, aryl H, PhCH2CHNH), 7.90 (br s, 1H, 

COCHNH);  
13C NMR (100 MHz, CD3OD): δ = 14.0 (CH3CHN(CH3)), 16.7 (CH2CH(CH3)), 17.4 

(CH3CHNH), 20.6 (CH3CHNHBoc), 28.8 (C(CH3)3), 31.4 (NCH3), 38.1 (PhCH2), 38.9 

(CH(CH3)CO), 40.7 (CH2CH(CH3)CO), 43.0 (CH2CH(CH3)NH), 47.3 (CH(CH3)NH), 52.7 

(CH(CH3)NCH3), 53.8 (OCH3), 55.5 (CHCO2Me), 79.8 (Boc C), 127.8, 128.0, 128.3, 129.2, 

129.4, 130.2, 138.4, 140.4, 140.8 (aryl), 157.7 (Boc C=O), 173.1 (N(CH3)CO), 173.4 

(CO2Me), 175.2 (COCHN(CH3)), 178.7 (NHCOCH);  

HRMS (EI): calcd for C35H50N4O7 [M+Na]+: 661.35717, found 661.34712. 
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(3S,6S,9R,12S,15S)–6–Benzyl-3,9,10,12,1–pentamethyl-4,7,10,13-

tetraazabicyclo[15.3.1]henicosa-1,17,19–trien-5,8,11,14–tetrone (134) 

 

NH
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Me
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NaOH (7.5 mg) in H2O (0.5 mL) was added to a stirred solution of tetrapeptide 133 (100 mg, 

0.156 mmol) in THF (3 mL). The reaction mixture was stirred for 1 h at room temperature 

before being poured into saturated NaHCO3 solution (5 mL) and extracted with diethyl ether 

(3 × 5 mL). The aqueous layer was acidified to pH 2-3 with 1N HCl and extracted with ethyl 

acetate (3 × 5 mL). The combined organic layers were dried (Na2SO4), filtered, and 

concentrated in vacuo to give the free acid in almost quantitative yield. This acid was used for 

the next step without further purification. To a solution of above N-Boc protected tetrapeptide 

acid (90 mg, 0.144 mmol) in CH2Cl2 (1.2 mL) was added CF3CO2H (0.11 mL, 1.45 mmol), 

and the mixture was stirred at room temperature for 1 h. The solvent was removed in vacuo, 

and the residue was dried by azeotropic removal of H2O with toluene. The crude material was 

subjected to the macrolactamization without any further purification. The residue was 

dissolved in DMF (140 mL) and the stirred solution was treated successively with TBTU (140 

mg, 0.435 mmol), HOBt (59 mg, 0.435 mmol), and iPr2NEt(0.08 mL, 0.435 mmol) at room 

temperature. The solution was stirred at room temperature for 14 h and then partitioned 

between ethyl acetate and water. After separation of the layers, the water was layer extracted 

with ethyl acetate (2 × 75 mL). The combined organic layers were washed successively with 

water, 5% aqueous KHSO4, water, half-saturated NaHCO3 and brine, dried (MgSO4), filtered, 

and concentrated in vacuo. The residue was purified by flash chromatography (ethyl acetate) 

to provide a colorless sticky solid 134 (50 mg, 62%, 3 steps). 

  

Rf  = 0.55 (ethyl acetate);  
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[α]28
D = +18.0 (c 0.30, CH2Cl2);  

IR (film): νmax = 3302, 2933, 1633, 1520, 1455 cm-1;  
1H NMR (600 MHz, DMSO-d6): δ = 0.97 (d, J = 7.3 Hz, 17-CH3), 1.07 (d, J = 7.3 Hz, 3H, 

CH3), 1.09 (d, J = 5.9 Hz, 3H, 11-CH3), 1.10 (d, J = 5.9 Hz, 3H, CH3), 2.36-2.43 (m, 1H, 11-

H), 2.48 (m, 1H, 10-H), 2.49 (m, 1H, 6-H), 2.60-2.70 (m, 2H, 10-H, 1-H), 2.84 (s, 3H, NCH3), 

2.95 (dd, J = 13.2, 3.7 Hz, 1H, 6-H), 3.35 (dd, J = 13.6, 3.3 Hz, 1H, 1-H), 4.04-4.08 (m, 1H, 5-

H), 4.22-4.29 (m, 2H, 17-H, 2-H), 4.39-4.44 (m, 1H, 14-H), 6.46 (br s, 3H, 13-NH), 6.50 (d, J 

= 8.1 Hz, 4-NH), 6.65, 6.70 (2 d, J = 7.3 Hz, 2H, 4’’-H, 6’’-H), 6.90 (dd, J = 7.3, 7.3 Hz, 1H, 

5’’-H), 6.93 (s, 1H, 2’’-H), 7.15-7.19 (m, 1H, 4’-H), 7.21-7.27 (m, 4H, 2’-H, 4’-H), 8.31 (d, J 

= 8.8 Hz, 1H, 19-NH);  
13C NMR (150 MHz, DMSO-d6): δ = 14.3 (CH3-17), 17.5 (CH3-11), 18.4 (CH3-5, CH3-14), 

30.5 (NCH3), 35.4 (C-1), 38.6 (C-6), 40.5 (C-10), 43.6 (C-11), 44.3 (C-5), 44.7 (C-14), 53.3 

(C-17), 53.4 (C-2); 

HRMS (ESI): calcd for C29H38N4O4 [M+Na]+: 529.27853, found 529.27827. 

 

 

(1S)-1-((1R)-2-{[tert-Butyl(diphenyl)silyl]oxy}-1-methylethyl)-2-methylprop-2-enyl 

propionate (140) 

OTBDPS

O

O

 
 

To a solution of alcohol 144 (500 mg, 1.36 mmol) in dry CH2Cl2 (5 mL) were added pyridine 

(0.22 mL, 2.68 mmol) and n-propionyl chloride (0.18 mL, 2.00 mmol) at 0 oC. The reaction 

mixture was warmed to room temperature and stirred for 12 h at room temperature. The 

reaction mixture was diluted with CH2Cl2 (4 mL) and washed with brine, dried (Na2SO4), 

filtered and concentrated in vacuo to give the crude product which was purified by flash 

chromatography (5:95 ethyl acetate/petroleum ether) resulting in the acylated product 140 

(500 mg, 87%) as a colorless gel.  

 

Rf = 0.55 (5:95 ethyl acetate/petroleum ether);  
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[α]20
D 

 = -11.0 (c 1.02 CH2Cl2);  

IR (film): υmax = 3066, 2938, 2865, 1739, 1519, 1461, 1095 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.87 (d, J = 6.8 Hz, 3H, CH3CH), 1.05 (s, 9H, tBu), 1.12 (t, 

J = 7.6 Hz, 3H, CH2CH3), 1.67 (s, 3H, CH3C=CH), 1.96-2.02 (m, 1H, CHCH2O), 2.31 (q, J = 

7.6 Hz, 3H, CH2CH3), 3.48-3.51 (m, 2H, CH2O), 4.84 (s, 1H, olefinic), 4.87 (s, 1H, olefinic), 

5.34 (d, J = 5.1 Hz, 1H, CHO), 7.35-7.42 (m, 6H, aromatic), 7.64 (t, J = 5.1 Hz, 4H, 

aromatic);  
13C NMR (100 MHz, CDCl3): δ = 9.2 (CH2CH3), 11.2 (CH3CH), 19.0 (CH3C=C), 19.2 

(quarternary TBDPS), 26.8 (3C, tBu), 27.7 (CH2CH3), 37.7 (CHCH3), 65.4 (CH2OH), 76.5 

(CHOH), 112.0 (olefinic CH2), 127.6, 129.6, 133.6, 133.7, 135.6, 135.6 (aromatic), 142.3 

(olefinic quarternary);  

HRMS (EI): calcd for C26H36O3Si [M+Na]+: 447.23259, found 447.23264. 

 

 

(2R,3S)-2,4-Dimethylpent-4-ene-1,3-diol (143) 

 
OH

OH
 

 

To a solution of aldol product 142 (1.00 g, 3.30 mmol) in THF (90 mL) was added NaBH4 

(620 mg, 16.50 mmol) in H2O (20 mL) at 0 oC. The mixture was stirred for 7 h at room 

temperature. The reaction mixture was treated with saturated aq. NH4Cl (20 mL) and stirred 

for 1 h at room temperature. After separation of the layers, the aqueous layer was extracted 

with ethyl acetate (3 x 50 mL). The combined organic layers were washed with saturated aq. 

NaHCO3 (50 mL), brine (50 mL), dried (Na2SO4), filtered and concentrated in vacuo to give 

the crude product which was purified by flash chromatoghaphy (5:95 

ethylacetate/dichloromethane) to obtain the pure diol 143 (365 mg, 85%) as colorless oil. 

 

Rf = 0.23 (5:95 ethyl acetate/dichloromethane);  

[α]20
D

 = -14.2 (c 1.02, CH2Cl2);  

IR (film): υmax = 3370, 2965, 2931, 1446, 1095 cm-1;  
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1H-NMR (400 MHz, CDCl3): δ = 0.86 (d, J = 6.8 Hz, 3H, CH3CH), 1.69 (s, 3H, CH3C=C), 

1.84-1.89 (m, 1H, CHCH2O), 2.51 (br s, 1H, OH), 2.60 (br s, 1H, OH), 3.63-3.71 (m, 2H, 

CH2O), 4.22 (br s, 1H, CHO), 4.91 (s, 1H, olefinic), 4.93 (s, 1H, olefinic);  
13C-NMR (100 MHz, CDCl3): δ = 9.8 (CH3CH), 19.4 (CH3C=C), 37.2 (CHCH3), 66.8 

(CH2OH), 77.4 (CHOH), 110.6 (olefinic CH2), 146.3 (olefinic quarternary); 

 

 

(3S,4R)-5-{[tert-Butyl(diphenyl)silyl]oxy}-2,4-dimethylpent-1-en-3-ol (144) 

 
OH

OTBDPS
 

 

To a stirred solution of alcohol 143 (300 mg, 2.30 mmol) in dry DMF (10 mL), were added 

imidazole (392 mg, 5.75 mmol) and TBDPS-Cl (380 mg (0.65 mL), 2.53 mmol) successively 

at room temperature. Stirring was continued for 12 h. Then the reaction mixture was diluted 

with water (10 mL) and stirred for 0.5 h before the mixture was extracted with diethyl ether (3 

x 15 mL). The combined ether layers were washed with 1 N HCl (10 mL), saturated aq. 

NaHCO3 (10 mL), brine (15 mL), dried (MgSO4), filtered and concentrated in vacuo to furnish 

the crude product which was purified by flash chromatography (5:95 ethyl acetate/petroleum 

ether) giving the mono protected alcohol 144 (870 mg, 97%) as a colorless gel compound. 

  

Rf = 0.24 (5:95 ethyl acetate/petroleum ether);  

[α]20
D 

 = -6.5 (c 1.00, CH2Cl2);  

IR (film): υmax = 3370, 2965, 2931, 1446, 1095 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.87 (d, J = 6.8 Hz, 3H, CH3CH), 1.06 (s, 9H, tBu), 1.66 (s, 

3H, CH3C=CH), 1.83-1.90 (m, 1H, CHCH2O), 3.68 (dd, J = 10.1, 5.6 Hz, 1H, CH2O), 3.71-

3.75 (m, 1H, CH2O), 4.33 (br s, 1H, CHO), 4.90 (s, 1H, olefinic), 5.03 (s, 1H, olefinic), 7.37-

7.43 (m, 6H, aromatic), 7.66-7.72 (m, 4H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 9.7 (CH3CH), 19.2 (quarternary TBDPS), 19.4 (CH3C=C), 

26.9 (3C, tBu), 37.3 (CHCH3), 68.0 (CH2OH), 76.3 (CHOH), 110.5 (olefinic CH2), 127.7, 

129.7, 134.8, 135.6, 135.7 (aromatic), 145.7 (olefinic quarternary);  
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HRMS (EI): calcd for C23H22O2Si [M+Na]+: 391.20631, found 391.20627. 

 

 

(1S)-1-{(1R)-2[(tert-Butoxycarbonyl)amino]-1-methylethyl}-2-methylprop-2-enyl 

propionate (147) 

 

O

NHBoc

O

 
 

To a solution of alcohol 158 (130 mg, 0.57 mmol) in dry CH2Cl2 (5 mL) were added pyridine 

(0.09 mL, 1.14 mmol) and n-propionyl chloride (0.07 mL, 0.79 mmol) at 0 oC. The reaction 

mixture was warmed to room temperature and stirred for 12 h at room temperature. The 

reaction mixture was diluted with CH2Cl2 (4 mL) and washed with brine, dried (Na2SO4), 

filtered and concentrated in vacuo to give the crude product which was purified by flash 

chromatography (1:9 ethylacetate/petroleum ether) providing the acylated product 147 (145 

mg, 91%) as a colorless oil. 

  

Rf = 0.40 (1:9 ethyl acetate/petroleum ether);  

[α]20
D

 = -15.6 (c 0.95, CH2Cl2);  

IR (film): υmax = 3374, 2974, 2935, 1712, 1511, 1172 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.84 (d, J = 6.8 Hz, 3H, CH3CH), 1.15 (t, J = 7.6 Hz, 3H, 

CH2CH3), 1.42 (s, 9H, tBu), 1.69 (s, 3H, CH3C=C), 2.01-2.04 (m, 1H, CHCH3), 2.37 (q, J = 

7.6 Hz, 2H, CH2CH3), 2.78-2.85 (m, 1H, CH2NH), 3.08-3.15 (m, 1H, CH2NH), 4.90 (br s, 3H, 

NH, olefinic CH), 5.19 (br s, 1H, CHO);  
13C NMR (100 MHz, CDCl3): δ = 9.2 (CH2CH3), 11.8 (CH3CH), 19.3 (CH3C=C), 27.7 

(CH2CH3), 28.4 (3C, tBu), 35.1 (CHCH3), 43.2 (CH2NH), 76.4 (CHOH), 79.2 (Boc 

quarternary), 112.1 (CH2 olefinic), 141.9 (olefinic quarternary), 156.0 (Boc C=O), 174.0 (ester 

C=O);  

HRMS (EI): calcd for C15H27NO4 [M+Na]+: 308.18323, found 308.18339. 
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(2R,3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-2,4-dimethylpent-4-en-1-ol (150) 

 

R = TBS

OH

OR

 
 

To a solution of protected aldol product 151 (500 mg, 1.20 mmol) in THF (32 mL) was added 

NaBH4 (225 mg, 6.00 mmol) in H2O (12 mL) at 0 oC. The reaction stirred for 7 h at room 

temperature. The reaction mixture was treated with saturated aq. NH4Cl (10 mL) and stirred 

for 1 h at room temperature. After separation of the layers, the aqueous layer extracted with 

ethyl acetate (3 x 25 mL). The combined organic layers were washed with saturated aq. 

NaHCO3 (20 mL), brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo to give 

the crude product. The crude product was purified by flash chromatography (1:3 ethyl 

acetate/petroleum ether) to afford the pure diol 150 (220 mg, 76%) as colorless oil. 

  

Rf = 0.23 (1:3 ethyl acetate/petroleum ether);  
1H NMR (400 MHz, CDCl3): δ = 0.05, 0.01 (two s, 6H, Si(CH3)2), 0.85 (d, J = 7.1 Hz, 3H, 

CH3CH), 0.89 (s, 9H, tBu), 1.70 (s, 3H, CH3C=C), 1.81-1.87 (m, 1H, CHCH2O), 3.47 (dd, J = 

10.9, 5.3 Hz ,1H, CH2O), 3.56 (dd, J = 10.7, 7.0 Hz,1H, CH2O), 4.22 (d, J = 5.1 Hz, 1H, 

CHOTBS), 4.87 (s, 1H, olefinic), 4.91 (s, 1H, olefinic);  
13C-NMR (100 MHz, CDCl3): δ = -4.7, -5.3 (Si(CH3)2), 11.9 (CH3CH), 18.2 (quarternary 

TBS), 18.6 (CH3C=C), 25.8 (3C, tBu), 39.4 (CHCH3), 65.9 (CH2OH), 78.1 (CHOTBS), 112.0 

(olefinic CH2), 146.4 (olefinic quarternary). 

 

 

(2R,3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-2,4-dimethylpent-4-enyl 4-methoxybenzene 

sulfonate (152) 

 

OTs

OTBS
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To a solution of alcohol 150 (100 mg, 0.41 mmol) in pyridine (1 mL) was added tosyl chloride 

(260 mg, 1.34 mmol) at 0 oC and the solution stirred for 4 h at 0 oC. Pre cooled water (1 mL) 

was added and the reaction mixture stirred for 30 min at 0 oC. The reaction mixture was 

diluted with diethyl ether (5 mL) and the layers were separated. The aqueous layer was 

extracted with diethyl ether (2 x 3 mL) and the combined organic layers were washed with 

brine (5 mL), dried (Na2SO4), filtered and evaporated to give the crude product which was 

purified by flash chromatography (1:9 ethyl acetate/petroleum ether) providing the pure 

tosylated product 152 (150 mg, 92%) as a colorless gel. 

 

Rf = 0.40 (1:9 ethyl acetate/petroleum ether);  
1H NMR (400 MHz, CDCl3): δ = -0.06, -0.03 (two s, 6H, Si(CH3)2), 0.82 (d, J = 6.8 Hz, 3H, 

CH3CH), 0.84 (s, 9H, tBu), 1.91 (s, 3H, CH3C=C), 1.85-1.94 (m, 1H, CHCH2O), 2.44 (3H, 

methyl(toluene)), 3.78 (dd, J = 9.5, 6.4 Hz, 1H, CH2O), 3.91-3.95 (m, 2H, CH2O,CHOTBS), 

4.87 (s, 1H, olefinic), 4.91 (s, 1H, olefinic), 7.33 (d, J = 8.1 Hz, 2H, aromatic), 7.77 (d, J = 8.3 

Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -5.3, -4.6 (Si(CH3)2), 11.2 (CH3CH), 18.1 (CH3C=C), 21.6 

(methyl(toluene)), 25.8 (3C, tBu), 36.7 (CHCH3), 72.3 (CH2OH), 75.7 (CHOTBS), 112.5 

(olefinic CH2), 127.9, 129.8, 133.1, 144.7 (aromatic), 146.4 (olefinic quarternary); 

 

 

(2S,3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-2,4-dimethylpent-4-enamide (154)  

 

NH2

OOR

R = TBS  
 

To a solution of acid 155 (400 mg, 1.54 mmol) in dry CHCl3 (10 mL) were added NH4HCO3 

(360 mg, 4.50 mmol) and EEDQ (410 mg, 1.66 mg) at room temperature. The mixture was 

stirred for 48 h at room temperature, then diluted with dichoromethane (15 mL). The reaction 

mixture was washed with water (10 mL) and then with brine (10 mL). The dried (Na2SO4) 

organic layer was filtered and concentrated in vacuo to give the crude product which was 
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purified by flash chromatography (1:1 ethylacetate/petroleum ether) providing the pure amide 

154 (300 mg, 75%) as a colorless oil. 

 

Rf = 0.40 (1:1 ethylacetate/petroleum ether);  

[α]20
D

 = -4.5 (c 1.18 CH2Cl2);  

IR (film): υmax = 3340, 3193, 2935, 2892, 1662, 1461, 1072 cm-1;  
1H NMR (400 MHz, CDCl3): δ = -0.03 (s, 3H, CH3TBS), 0.02 (s, 3H, CH3TBS), 0.86 (s, 9H, 

tBu), 1.07 (d, J = 7.1 Hz, 3H, CH3CH), 1.66 (s, 3H, CH3C=C), 2.40-2.46 (m, 1H, CHCO), 

4.21 (d, J = 5.8 Hz, 1H, CHO), 4.84 (s, 1H, olefinic), 4.91 (s, 1H, olefinic), 5.91, 6.13 (br s, 

2H, amide);  
13C NMR (100 MHz, CDCl3): δ = -5.4, -4.8 (CH3TBS), 12.5 (CH3CH), 18.0 (CH3C=C), 18.1 

(quarternary TBS), 25.8 (3C, tBu), 45.4 (CHCO), 77.8 (CHOTBS), 113.2 (CH2 olefinic), 

144.7 (olefinic quarternary), 177.2 (CONH2);  

HRMS (EI): calcd for C13H27NO2Si [M+Na]+: 280.17033, found 280.17021.  

 

 

(2S,3S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-2,4-dimethylpent-4-enoic acid (155)  

 

OH

OOR

R = TBS  
 

To a solution of the protected aldol product 151 (1.00 g, 2.4 mmol) in THF (25 mL) was added 

H2O2 (1.2 mL of a 30 wt% solution, 9.6 mmol) at 0 oC through a syringe, followed by the 

addition of LiOH·H2O (200 mg, 4.80 mmol) in water (12 mL). The solution was stirred at 0 oC 

for 5 h. Subsequently, saturated Na2SO3 solution (10 mL) and saturated NaHCO3 solution (10 

mL) were added at 0 oC. The whole mixture was partially concentrated in vacuo and diluted 

with water (10 mL). The aqueous layer was extracted with dichloromethane (3 x 25 mL) to 

recover the auxiliary. The aqueous layer was then acidified at 0 oC to pH 3 by using 1N HCl 

and then extracted with ethyl acetate (4 x 25 mL). The combined ethyl acetate layers were 

dried (MgSO4), filtered, and concentrated to furnish an oily residue. Due to presence of some 

of the desired acid in the dichloromethane layer along with the chiral auxiliary, this mixture 
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was purified by using flash chromatography (1:3 ethyl acetate/petroleum ether) giving the pure 

acid 155 (480 mg, 77% from both dichloromethane and ethyl acetate layers) as a colorless oily 

residue. 

 

Rf = 0.35 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = -11.4 (c 1.10 CH2Cl2);  

IR (film): υmax = 3100, 2938, 2892, 2618, 1708, 1461, 1079 cm-1;  
1H NMR (400 MHz, CDCl3): δ = -0.01(s, 3H, CH3TBS), 0.02 (s, 3H, CH3TBS), 0.87 (s, 9H, 

tBu), 1.11 (d, J = 7.1 Hz, 3H, CH3CH), 1.69 (s, 3H, CH3C=C), 2.59-2.65 (m, 1H, CHCO), 

4.32 (d, J = 5.8 Hz, 1H, CHO), 4.86 (s, 1H, olefinic), 4.95 (s, 1H, olefinic), 11.42 (br s, 

CO2H);  
13C NMR (100 MHz, CDCl3): δ = -5.4, -4.7 (CH3TBS), 11.3 (CH3CH), 17.7 (CH3C=C), 18.1 

(quarternary TBS), 25.7 (3C, tBu), 44.3 (CHCO), 77.3 (CHOTBS), 113.2 (CH2 olefinic), 

144.7 (olefinic quarternary), 180.8 (CO2H);  

HRMS (EI): calcd for C13H26O3Si [M+Na]+: 281.15434, found 281.15424. 

 

 

tert-butyl (2R,3S)-3-hydroxy-2,4-dimethylpent-4-enylcarbamate (158) 

  
OH

NHBoc
 

 

To a solution of amide 154 (275 mg, 1.07 mmol) in dry THF (5 mL) was added LiAlH4 (1 M 

solution in ether, 4.0 mL, 4.00 mmol) at 0 oC. The mixture was stirred for 0.5 h at 0 oC, then 

gradually brought to room temperature by removing the ice bath. Thereafter, the mixture was 

heated to reflux for 2 h. The mixture was cooled to room temperature and carefully worked up 

by the dropwise and sequential addition of 0.2 mL of water, 0.2 mL of 15% aqueous NaOH 

and an additional 0.5 mL of water. The reaction mixture was filtered through a bed of celite 

and the celite bed washed thoroughly with ether (6 x 10 mL). The combined filtrates were 

dried (MgSO4), and concentrated in vacuo to produce the crude amino alcohol which was used 

for next step (Boc protection) without any further purification. 
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To the crude aminol in dry CH2Cl2 (5 mL) were added NEt3 (0.27 mL, 2.00 mmol) and 

Boc anhydride (270 mg, 1.25 mmol) at room temperature. After stirring for 12 h, the reaction 

mixture was acidified up to pH 3 by using 5% aqueous KHSO4. The reaction mixture was 

extracted with dichloromethane (3 x 5 mL). The combined organic layers were washed with 

saturated aq. NaHCO3 (5 mL), brine (5 mL), dried (Na2SO4), filtered and concentrated in 

vacuo to give the crude protected aminol which was purified by flash chromatography (1:3 

ethyl acetate/petroleum ether) to provide the product 158 (145 mg, 59% two steps) as a 

colorless oil.  

 

Rf = 0.35 (1:3 ethyl acetate/petroleum ether);  

[α]20
D 

 = -4.9 (c 1.00, CH2Cl2);  

IR (film): υmax = 3363, 2973, 2931, 1689, 1523, 1072 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.76 (d, J = 6.8 Hz, 3H, CH3CH), 1.42 (s, 9H, tBu), 1.67 (s, 

3H, CH3C=C), 1.75-1.80 (m, 1H, CHCH3), 2.91-2.98 (m, 2H, CH2NH, OH), 3.24-3.31 (m, 

1H, CH2NH), 4.02 (br s, 1H, CHOH), 4.90 (br s, 2H, NH, olefinic CH), 5.03 (s, 1H, olefinic 

CH);  
13C-NMR (100 MHz, CDCl3): δ = 10.6 (CHCH3), 19.5 (CH3C=C), 28.4 (3C, tBu), 36.3 

(CHCH3) 43.8 (CH2NH), 74.1 (CHOH), 79.1 (Boc quarternary), 110.5 (CH2 olefinic), 145.7 

(olefinic quarternary), 157.1 (Boc C=O);  

HRMS (EI): calcd for C12H23NO3 [M+Na]+: 252.15701, found 252.15697. 

 

 

(3S,6R,9S,12R,16R)-6-(4-Hydroxybenzyl)-3-isopropyl-7,9,12,14,16-pentamethyl-1-oxa-

4,7,10-triazacycloheptadec-14-ene-2,5,8,11-tetrone (159) 

 

HO N O

N
H

O

HN

O

O
O
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To a solution of linear depsipeptide 161 (40 mg, 0.05 mmol) in CH2Cl2 (0.5 mL) was added 

TFA (0.08 mL, 0.99 mmol) at 0 oC. Stirring was continued for 2 h, at this time TLC showed 

the complete consumption of reactant 161. The solvent was removed in vacuo and the residue 

dried by azeotropic removal of H2O with toluene. The crude material was used for the next 

step without further purification. To a solution of crude amine salt in dry DMF (50 mL) were 

added DIEA (0.04 mL, 0.20 mmol), HOBt (20 mg, 0.15 mmol) and TBTU (48 mg, 0.15 

mmol) successively at room temperature. The solution was stirred at room temperature for 18 

h and then partitioned between ethyl acetate and water. The aqueous layer was extracted with 

ethyl acetate (3 x 30 mL). The combined ethyl acetate layers were washed successively with 

5% aqueous KHSO4, water, half saturated aq. NaHCO3, brine, dried (MgSO4), filtered and 

concentrated in vacuo to give the crude product which was purified by flash chromatogaphy 

(1:1 ethyl acetate/petroleum ether) providing the pure cyclic depsipeptide (12 mg, 39%) as a 

colorless oil. 

 

To the above TBS protected cyclic depsipeptide (12 mg, 0.02 mmol) in THF (0.2 mL) 

was added TBAF containing 5% water (1 M solution in THF, 0.04 ml, 0.04 mmol) at 0 oC. 

The solution was stirred for 3 h at 0 oC. The mixture was concentrated in vacuo and the crude 

macrocycle purified by flash chromatography (7:3 ethyl acetate/petroleum ether) yielding the 

pure cyclic depsipeptide 159 (8 mg, 80%) as a colorless oil. 

 

Rf = 0.22 (7:3 ethyl acetate/petroleum ether);  

[α]20
D

 = +11.6 (c 0.70, CH2Cl2);  

IR (film): υmax = 3361, 2974, 2930, 1735, 1712, 1511, 1172 cm-1;  

1H NMR (600 MHz, DMSO-d6): δ = 0.86 (CH3CHCH2O), 0.87 (Val Me), 0.93 (d, J = 6.7 Hz, 

3H, Val Me), 0.95 (d, J = 6.6 Hz, 3H, Ala Me), 1.01 (d, J = 6.9 Hz, 3H, CH3CHCO), 1.56 (s, 

3H, CH3C=C), 1.83 (d, J = 14.9 Hz, 1H, CH2
hCHCO), 2.02 (p-sextett. J = 6.7 Hz, 1H, Val 

CH), 2.25 (dd, J = 15.1, 11.1 Hz, 1H, CH2
tCHCO), 2.36-2.43 (m, 1H, CHCO), 2.56-2.63 (m, 

1H, CHCH2O), 2.66 (dd, J = 14.3, 8.1 Hz, 1H, Tyr CH2
h), 2.79 (s, 3H, NMe), 3.00 (dd, J = 

14.3, 6.4 Hz, 1H, Tyr CH2
t), 3.70 (dd, J = 10.8, 2.5 Hz CH2

hO), 4.04 (pt, J = 7.7 Hz, Val CH), 

4.18 (dd J = 10.9, 5.4 Hz, 1H, CH2
tO), 4.52 (qn, J = 6.9 Hz, 1H, Ala CH), 5.05 (d, J = 8.0 Hz, 

olefinic), 5.24 (dd, J = 8.7, 6.5 Hz, 1H, Tyr CH), 6.61 (d, J = 8.5 Hz, 2H, TyrArHmeta), 6.98 (d, 
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J = 8.5 Hz, 2H, TyrArHortho), 7.43 (d, J = 7.7 Hz, 1H, Val NH), 8.05 (d, J = 7.8 Hz, 1H, Ala 

NH), 9.05 (s, Tyr-OH);  
13C NMR (600 MHz, DMSO-d6): δ = 16.9 (Ala CH3), 17.8 (CH3C=C), 18.8 (Val CH3), 19.5 

(CH3CHCO), 29.1 (Val CH), 29.8 (NCH3), 31.3 (CHCH2O), 32.4 (Tyr CH2), 38.5 (CHCO), 

40.6 (CH2CHCO), 44.0 (Ala CH), 56.3 (Tyr CH), 58.8 (Val CH), 68.1 (CH2O), 114.4 (TyrAr 

meta), 125.2 (CH olefinic), 127.7 (CipsoAr), 129.5 (TyrArortho), 133.8 (olefinic quarternary), 

155.3 (C-OH Ar), 169.8 (Tyr CO), 170.2 (Val CO), 171.5 (Ala CO), 174.1 (CH2CHCO); 

HRMS (EI): calcd for C28H41N3O6Si [M+Na]+: 538.28876, found 538.28906. 

 

 

(3S,6R,9S,12R,16R)-6-(4-Hydroxybenzyl)-3-isopropyl-7,9,12,14,16-pentamethyl-1,4,7,10-

tetraazacycloheptadec-14-ene-2,5,8,11-tetrone (160) 

 

HO N O

N
H

O

HN

O

O

H
N

 
 

0.4 N LiOH.H2O (0.08 mL, 0.03 mmol) was added dropwise to a stirring solution of linear 

tetrapeptide 181 (20 mg, 0027 mmol) in THF (0.5 mL). The reaction mixture was stirred for 2 

h at room temperature before it was acidified up to pH 3 using 1 N HCl and extracted using 

ethyl acetate (3 x 2 mL). The combined organic layers were dried (Na2SO4), filtered and 

concentrated in vacuo to furnish the TBS deprotected free acid in quantitative yield. This acid 

was used for the next step without further purification. To a solution of the above N-Boc 

protected free acid (17 mg, 0.027 mmol) in CH2Cl2 (0.3 mL) was added TFA (0.02 mL, 0.99 

mmol) at 0 oC. Stirring was continued for 2 h. The solvent was concentrated in vacuo and the 

residue dried by azeotropic removal of H2O with toluene. The crude material was used for the 

next reaction without any further purification. To a solution of crude amine salt in dry DMF 

(20 mL) were added DIEA (0.01 mL, 0.08 mmol), HOBt (8 mg, 0.06 mmol) and TBTU (19 

mg, 0.06 mmol) successively at room temperature. The solution was stirred at room 

temperature for 18 h and then partitioned between ethyl acetate and water. The aqueous layer 
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was extracted with ethyl acetate (3 x 30 mL). The combined ethyl acetate layers were washed 

successively with 5% aqueous KHSO4, water, half saturated aq. NaHCO3, brine, dried 

(MgSO4), filtered and concentrated in vacuo to give the crude product which was purified by 

flash chromatography (ethyl acetate) to deliver the macrolactam 160 (6 mg, 45%) as a 

colorless oil.  

 

Rf = 0.55 (ethyl acetate);  

[α]20
D

 = -72.0 (c 0.40, CH2Cl2);  

IR (film): υmax = 3361, 2974, 2930, 1735, 1712, 1511, 1172 cm-1;  
1H NMR (600 MHz, DMSO-d6): δ = 0.66 (dd, J = 3.7, 3.6 Hz, 6H, Val CH3), 0.84 (d, J = 7.0 

Hz, 3H, CH3CHCH2NH), 0.98 (d, J = 6.9 Hz, 3H, CH3CHCO), 1.04 (d, J = 7.0 Hz, 3H, Ala 

Me), 1.46 (s, 3H, CH3C=C), 1.76 (d, J = 15.9 Hz, 1H, CH2
hCHCO), 2.20 (m, 2H, Val CH, 

CH2
tCHCO), 2.53 (m, 1H, CHCO), 2.54 (m, 1H, CHCH2NH), 2.83 (ddd, J = 12.9, 5.6, 2.6 Hz, 

1H, CH2
tNH), 2.91 (d, J = 8.2 Hz, 2H, Tyr CH2), 3.06 (s, 3H, NMe), 3.14 (ddd, J = 13.1, 9.1, 

6.0 Hz, 1H, CH2
hNH), 4.06 (dd, J = 9.6, 4.9 Hz, Val CH), 4.59 (qn, J = 6.9 Hz, 1H, Ala CH), 

4.96 (d, J = 8.0 Hz, olefinic), 5.01 (t, J = 8.2 Hz, 1H, Tyr CH), 6.64 (d, J = 8.5 Hz, 2H, 

TyrArHmeta), 7.03 (d, J = 8.5 Hz, 2H, TyrArHortho), 7.43 (t, J = 5.8 Hz, 1H, CH2NH), 7.87 (d, J 

= 9.7 Hz, 1H, Val NH), 8.00 (d, J = 7.0 Hz, 1H, Ala NH), 9.10 (s, Tyr-OH);  
13C NMR (600 MHz, DMSO-d6): δ = 16.7 (Val CH3), 16.9 (Ala CH3), 17.8 (CH3C=C), 18.8 

(CH3CHCH2NH), 18.9 (Val CH3), 19.5 (CH3CHCO), 28.1 (Val CH), 30.7 (NCH3), 31.6 

(CHCH2NH), 32.9 (Tyr CH2), 36.7 (CHCO), 41.1 (CH2CHCO), 44.3 (Ala CH), 45.7 

(CH2NH), 56.7 (Val CH), 57.6 (Tyr CH), 114.6 (TyrArmeta), 126.7 (CH olefinic), 126.8 (C 

ipsoAr), 129.2 (TyrArortho), 133.6 (olefinic quarternary), 155.5 (C-OH Ar), 170.4 (Val CO), 

170.9 (Tyr CO), 174.4 (CH2CHCO), 174.8 (Ala CO);  

HRMS (EI): calcd for C28H42N4O5Si [M+Na]+: 537.30474, found 537.30438. 
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(2S,3E,6S)-7-tert-Butoxy-2,4,6-trimethyl-7-oxohept-3-enyl N-(tert-butoxycarbonyl)-L-

alanyl-O-[tert-butyl(dimethyl)silyl]-N-methyl-D-tyrosyl-L-valinate (161)  

 

TBSO
N O

NHBoc

O

HN

OtBu

O

O

O

 
 

To a solution of acid 162 (70 mg, 0.15 mmol), amine 163 (50 mg, 0.15 mmol) in dry DMF 

(1.5 mL) were added DIEA (0.07 mL, 0.44 mmol), HOBt (20 mg, 0.15 mmol) and TBTU (47 

mg, 0.15 mmol) at room temperature. The reaction mixture was stirred for 5 h at room 

temperature, before it was treated with water (2 mL) and stirred for further 5 min and extracted 

with ethyl acetate (3 x 4 mL). The combined ethyl acetate layers were washed with 1 N HCl (3 

mL), saturated aq. NaHCO3 (3 mL), brine, dried (Na2SO4), filtered and concentrated in vacuo 

to give the crude product which was purified by flash chromatography (15:85 ethyl 

acetate/petroleum ether) providing the pure linear depsipeptide 161 (60 mg, 51%) as a colorles 

oil.  

 

Rf = 0.37 (15:85 ethyl acetate/petroleum ether); 

[α]20
D

 = +28.0 (c 0.50, CH2Cl2); 

IR (film): υmax = 3361, 2974, 2930, 1735, 1712, 1511, 1172 cm-1; 
1H NMR (400 MHz, CDCl3): δ = 0.12 (s, 6H, CH3TBS), 0.85 (d, J = 6.1 Hz, 3H, Val CH3), 

0.87 (d, J = 6.1 Hz, 3H, Val CH3), 0.89 (d, J = 6.8 Hz, 3H, CH3CHCH2O), 0.93-0.95 (m, 12H, 

tBu(TBS), CH3CHCO), 1.02 (d, J = 6.8 Hz, 3H, Ala CH3), 1.38,1.40 (two s, 18H, tBu, Boc 

tBu), 1.60 (s, 3H, CH3C=C), 1.91-1.97 (m, 1H, Val CH), 2.10-2.18 (m, 1H, CH2CHCO), 2.28-

2.34 (m, 1H, CH2CHCO), 2.42-2.48 (m, 1H, CHCO), 2.70-2.75 (m, 1H, CHCH2O), 2.84-2.88 

(m, 1H, Tyr CH2), 2.91 (s, 3H, NCH3), 3.29 (dd, J = 14.9, 5.8 Hz, 1H, Tyr CH2), 3.84-3.92 (m, 

1H, CH2O), 4.39-4.45 (m, 1H, Ala CH), 4.92 (d, J = 8.8 Hz, CH olefinic), 5.25 (d, J = 7.1 Hz, 

Val CH), 5.28 (br s, 1H, Ala NH), 5.49 (dd, J = 10.4, 5.8 Hz, 1H, Tyr CH), 6.59 (d, J = 8.8 

Hz, 1H, Val NH), 6.69 (d, J = 8.1 Hz, 2H, aromatic), 7.01 (d, J = 8.3 Hz, 2H, aromatic);  
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13C NMR (100 MHz, CDCl3): δ = -4.5 ( 2C, CH3TBS), 16.0 (CH3C=C), 16.8 (CH3CHCO), 

17.6 (Val CH3), 17.7 (Val CH3, CH3CH2CHO), 18.2 (quarternary C, tBu (TBS)), 19.1 (Ala 

CH3), 25.6 (3C, tBu (TBS)), 28.1, 28.3 (6C, tBu, Boc tBu), 30.6 (CHCH2O), 30.8 (Val CH), 

31.8 (NCH3), 34.3 (Tyr CH2), 38.6 (CHCO), 43.9 (CH2CHO), 46.6 (Ala CH), 57.2 (Val CH), 

57.4 (Tyr CH), 69.5 (CH2O), 79.6, 79.9 (2C, quarternary C (Boc, tBu)), 120.0, 128.2, 129.4 

(aromatic), 129.7 (CH olefinic), 134.4 (olefinic quarternary), 154.4 (Boc C=O), 155.3 

(phenolic), 170.1 (Tyr CO), 171.7 (Val CO), 174.5 (Ala CO), 176.4 (CO2tBu);  

HRMS (EI): calcd for C43H73N3O9Si [M+Na]+: 826.50083, found 826.50078. 

 

 

N-(tert-Butoxycarbonyl)-L-alanyl-O-[tert-butyl(dimethyl)silyl]-N-methyl-D-tyrosine (162) 

 

TBSO N O

N
H

O

OH

Boc

160  
 

To a solution of dipeptide 175 (400 mg, 0.70 mmol) in ethanol (5 mL) was added 10% Pd/C 

(80 mg). The reaction mixture was connected to a hydrogenation machine (Parr apparatus) and 

shaked for 16 h in a hydrogen atmosphere at around 2 atm (30 psi) pressure at room 

temperature. The reaction mixture was filtered through a bed of celite and the celite bed was 

washed with ethyl acetate (2 x 5 mL). The filtrate was concentrated in vacuo to afford the 

crude acid 162 which was used for the further reaction without purification. 

 
1H NMR (400 MHz, CDCl3): δ = 0.13 (s, 6H, CH3TBS), 0.86 (d, J = 7.6 Hz, 3H, Ala CH3), 

0.94 (s, 9H, tBu(TBS)), 1.40, (s, 9H, Boc tBu), 2.85 (s, 3H, NCH3), 2.93-3.03 (m, 1H, Tyr 

CH2), 3.34 (dd, J = 14.7, 4.3 Hz, 1H, TyrCH2), 4.47- 4.53 (m, 1H, Ala CH), 5.28 (dd, J = 11.2, 

3.9 Hz, 1H, TyrCH), 5.56 (d, J = 8.1 Hz, 1H, Ala NH), 6.72 (d, J = 8.3 Hz, 2H, aromatic) 7.00 

(d, J = 8.3, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -4.6 ( 2C, CH3TBS), 18.2 (Ala CH3), 18.2 (quarternary C, 

tBu (TBS)), 25.6 (3C, tBu (TBS)), 28.3 (Boc tBu), 32.6 (NCH3), 33.7 (Tyr CH2), 46.5 (Ala 
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CH), 52.0 (OCH3), 58.4 (Tyr CH), 79.8 (quarternary C Boc), 120.2, 129.1, 129.7 (aromatic), 

154.5 (Boc C=O), 155.3 (phenolic), 173.6 (Ala CO), 174.2 (Tyr CO). 

 

 

tert-Butyl (2S,4E,6S)-2,4,6-trimethyl-7-(L-valyloxy)hept-4-enoate (163)  

 

H2N
O

O

OtBu

O

 
 

Et2NH (7 mL) was added to a pre-cooled solution (0 oC) of F-moc protected valine ester 171 

(150 mg, 0.27 mmol) in dry THF (7 mL). The reaction mixture was stirred for 15 min at 0 oC 

and then at room temperature for 3 h. The solution was concentrated in vacuo and the resulting 

oil was purified by flash chromatography (5:95 methanol/dichloromethane) to deliver the pure 

amine 163 (80 mg, 88%) as a pale yellow oil. 

  

Rf = 0.25 (5:95 methanol/dichloromethane);  

IR (film): υmax = 3351, 2969, 2904, 1724, 1677, 1454, 1369, 1153 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.88 (d, J = 6.8 Hz, 3H, Val CH3), 0.96 (d, J = 6.8 Hz, 6H, 

Val CH3, CH3CH2O), 1.03 (d, J = 7.1 Hz, 3H, CH3CHCO), 1.41 (s, 9H, tBu), 1.62 (s, 3H, 

CH3C=CH), 1.93-2.03 (m, 2H, CH2CHCO, Val CH),  2.13-2.20 (m, 1H, CHNH), 2.32 (dd, J = 

13.3, 8.2 Hz, 1H, CH2CHCO), 2.43-2.51 (m, 1H, CHCH2O), 2.71-2.79 (m, 1H, CHCO), 3.88-

3.98 (m, 2H, ValCH, CH2O), 4.11 (dd, J = 10.2, 8.2 Hz, 1H, CH2O), 4.22 (t, J = 7.0 Hz, 1H, 

CHFmoc), 4.30 (dd, J = 9.0, 4.7 Hz, 1H, CH2Fmoc), 4.34-4.43 (m, 1H, CH2Fmoc), 4.94 (d, J 

= 9.1 Hz, 1H, olefinic), 5.34 (d, J = 9.1 Hz, 1H, NH), 7.30 (t, J = 7.3 Hz, 2H, aromatic Fmoc), 

7.39 (t, J = 7.3 Hz, 2H, aromatic Fmoc), 7.60 (d, J = 5.6 Hz, 2H, aromatic Fmoc), 7.75 (d, J = 

7.7 Hz, 2H, aromatic Fmoc);  
13C NMR (100 MHz, CDCl3): δ = 16.0 (CH3C=CH), 16.8 (CH3CH2O), 17.5 (2C, Val CH3), 

18.9 (CH3CHCO), 28.0 (3C, tBu), 31.4 (CHCH2O), 32.0 (Val CH), 38.6 (CHCO), 43.8 

(CH2C=CH), 47.1 (Fmoc CH), 59.0 (CHNH), 67.0 (Fmoc CH2), 67.5 (CH2O), 79.8 (Boc 

quarternary), 119.9, 125.1, 127.0, 127.7 (Fmoc aromatic), 128.1 (CH olefinic), 134.5 (C 



168                                              Experimental Section 

olefinic), 141.3, 143.7, 143.9 (Fmoc aromatic), 156.2 (NHCO), 172.1 (Val CO), 175.7 

(CO2tBu); 

HRMS (EI): calcd for C19H35NO4 [M+H]+: 342.26389, found 342.26393. 

 

 

tert-Butyl (2S,4E,6S)-7-{[tert-Butyl(diphenyl)silyl]oxy}-2,4,6-trimethylhept-4-enoate (169) 

 
ButO2C

OTBDPS
 

   

To a stirring solution of hydroxy acid 96 (300 mg, 0.71 mmol), DMAP (1.23 g, 10.61 mmol), 

Et3N (1.00 mL, 7.10 mmol), and tBuOH (0.40 mL, 0.36 mmol) in dry toluene (70 mL) was 

added 2,4,6-trichlorobenzoyl chloride (1.1 mL, 7.10 mmol) at -78 oC. After stirring for 30 min 

at -78 oC, the reaction mixture was brought to room temperature by removing the cooling bath, 

and then stirred additionally for 12 h at room temperature. The reaction mixture was treated 

with saturated aqueous NaHCO3 (25 mL). After separation of the layers, the aqueous layer 

was extracted with ethy lacetate (3 x 15 mL). The combined organic layers were washed with 

brine (25 mL), dried (MgSO4), filtered, and concentrated in vacuo to afford the crude product 

which was purified by flash chromatography (5:95 ethyl acetate/petroleum ether) giving the 

pure product 169 (330 mg, 96%) as a colorless oil. 

  

Rf = 0.22 (5:95 ethyl acetate/petroleum ether);  

[α]20
D

 = + 7.7 (c 0.71, CH2Cl2);  

IR (film): υmax =3066, 2962, 2931, 2861, 1727, 1461, 1369, 1153, 1110 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.97 (d, J = 6.8 Hz, 3H, CH3CH2O), 1.03 (d, J = 8.1 Hz, 3H, 

CH3CO), 1.04 (s, 9H, tBuSi), 1.41 (s, 9H, tBu), 1.54 (s, 3H, CH3C=C), 1.95 (dd, J = 13.6, 7.3 

Hz, 1H, CH2CO), 2.30 (dd, J = 13.4, 7.3 Hz, 1H, CH2CO), 2.41-2.50 (m, 1H, CHCO), 2.54-

2.61 (m, 1H, CHCH2O), 3.39 (dd, J = 16.2, 6.8 Hz, 1H, CH2O), 3.45-3.49 (m, 1H, CH2O), 

4.95 (d, J = 9.1 Hz, 1H, olefinic), 7.35-7.41 (m, 6H, aromatic), 7.66 (d, J = 6.8, 4H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 15.9 (CH3C=CH), 16.9 (CH3CH2O), 17.4 (CH3 CHCO), 

19.2 (SiC(CH3)3), 26.8 (3C, SiC(CH3)3), 28.1 (3C, tBu), 35.4 (CHCH2O), 38.7 (CHCO), 44.1 
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(CH2C=CH), 68.6 (CH2O), 79.7 (Boc quarternary), 127.5, 129.5 (aromatic), 129.8 (CH 

olefinic), 132.8 (aromatic), 133.9 (olefinic), 135.6 (aromatic), 175.9 (CO2tBu);  

HRMS (EI): calcd for C30H44O3Si [M+Na]+: 503.29519, found 503.29502. 

 

 

tert-Butyl (2S,4E,6S)-7-hydroxy-2,4,6-trimethylhept-4-enoate (170) 

 
ButO2C

OH
 

 

To a solution of protected hydroxy acid 169 (300 mg, 0.63 mmol) in THF (5 mL) was added 

TBAF (1 M solution in THF containing 5% H2O, 0.75 mL, 0.75 mmol) at 0 oC. The reaction 

mixture was stirred until the TLC showed the complete consumption of reactant (4-5 h). The 

reaction mixture was concentrated in vacuo and purified by flash chromatography (1:3 ethyl 

acetate/petroleum ether) to give the pure alcohol 170 (135 mg, 90%) as a colorless oil. 

  

Rf = 0.35 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = -15.7 (c 0.77, CH2Cl2);  

IR (film) υmax = 3384, 2973, 2930, 2872, 1729, 1457, 1367, 1151 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.90 (d, J = 6.6 Hz, 3H, CH3CH2O), 1.06 (d, J = 7.1 Hz, 3H, 

CH3CHCO), 1.41 (s, 9H, tBu), 1.65 (s, 3H, CH3C=CH), 2.05-2.07 (m, 1H, CH2CHCO), 2.32 

(dd, J = 13.3, 8.2 Hz, 1H, CH2CHCO), 2.46-2.55 (m, 1H, CHCO), 2.56-2.65 (m, 1H, 

CHCH2O), 3.29 (dd, J = 10.2, 8.2 Hz, 1H, CH2O), 3.44 (dd, J = 10.4, 5.8 Hz, 1H, CH2O), 4.90 

(d, J = 9.4, 1H, olefinic);  
13C NMR (100 MHz, CDCl3): δ = 16.6 (CH3C=CH), 16.9 (CH3CH2O), 17.1 (CH3CHCO), 

28.1 (3C, tBu), 35.5 (CHCH2O), 39.0 (CHCO), 43.8 (CH2C=CH), 67.8 (CH2O), 80.0 (Boc 

quarternary), 129.1 (CH olefinic), 135.3 (C olefinic), 175.8 (CO2tBu);  

HRMS (EI): calcd for C34H45NO6 [M+Na]+: 265.17742, found 265.17750. 
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tert-Butyl (2S,4E,6S)-7-({N-[(9H-fluoren-9-ylmethoxy) carbonyl]–L-valyl}oxy)-2,4,6-

trimethylhept-4-enoate (171) 

 

tBuO2C
O

O
NHFmoc

 
 

To a solution of hydroxy acid derivative 170 (100 mg, 0.41 mmol), Fmoc-L-Valine (140 mg, 

0.41 mmol) and DMAP (25 mg, 0.20 mmol), in dry CH2Cl2 (4 mL) was added a solution of 

DCC (110 mg, 0.53 mmol) in dry CH2Cl2 (0.6 mL) dropwise at 0 oC. The reaction mixture 

was stirred for 0.5 h at 0 oC, then stirred for 10 h at room temperature. The reaction mixture 

was diluted with diethyl ether (10 mL) and filtered to remove the cyclohexyl urea and the 

precipitate washed twice with diethyl ether (5 mL). The filtrate was concentrated to give the 

crude product which was purified by flash chromatography (1:4 ethyl acetate/petroleum ether) 

providing the pure product 171 (205 mg, 88%) as a colorless gel. 

  

Rf = 0.30 (1:4 ethyl acetate/petroleum ether);  

[α]20
D

 = -5.9 (c 0.87, CH2Cl2);  

IR (film): υmax = 3351, 2969, 2904, 1724, 1677, 1454, 1369, 1153 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.90 (d, J = 6.8 Hz, 3H, CH3CH2O), 0.97 (d, J = 6.3 Hz, 6H, 

Val CH3), 1.03 (d, J = 6.8 Hz, 3H, CH3CHCO),1.41 (s, 9H, tBu), 1.62 (s, 3H, CH3C=CH), 

1.96 (dd, J = 13.6, 7.3 Hz, 1H, CH2CHCO), 2.13-2.20 (m, 1H, CHNH), 2.32 (dd, J = 13.3, 8.2 

Hz, 1H, CH2CHCO), 2.43-2.51 (m, 1H, CHCH2O), 2.71-2.79 (m, 1H, CHCO), 3.88-3.98 (m, 

2H, ValCH, CH2O), 4.11 (dd, J = 10.2, 8.2 Hz, 1H, CH2O), 4.22 (t, J = 7.0 Hz, 1H, CHFmoc), 

4.30 (dd, J = 9.0, 4.7 Hz, 1H, CH2Fmoc), 4.34-4.43 (m, 1H, CH2Fmoc), 4.94 (d, J = 9.1 Hz, 

1H, olefinic), 5.34 (d, J = 9.1 Hz, 1H, NH), 7.30 (t, J = 7.3 Hz, 2H, aromatic Fmoc), 7.39 (t, J 

= 7.3 Hz, 2H, aromatic Fmoc), 7.60 (d, J = 5.6 Hz, 2H, aromatic Fmoc), 7.75 (d, J = 7.7 Hz, 

2H, aromatic Fmoc);  
13C NMR (100 MHz, CDCl3): δ = 16.0 (CH3C=CH), 16.8 (CH3CH2O), 17.5 (2C, Val CH3), 

18.9 (CH3CHCO), 28.0 (3C, tBu), 31.4 (CHCH2O), 32.0 (Val CH), 38.6 (CHCO), 43.8 

(CH2C=CH), 47.1 (Fmoc CH), 59.0 (CHNH), 67.0 (Fmoc CH2), 67.5 (CH2O), 79.8 (Boc 

quarternary), 119.9, 125.1, 127.0, 127.7 (Fmoc aromatic), 128.1 (CH olefinic), 134.5 (C 
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olefinic), 141.3, 143.7, 143.9 (Fmoc aromatic), 156.2 (NHCO), 172.1 (Val CO), 175.7 

(CO2tBu); 

HRMS (EI): calcd for C34H45NO6 [M+Na]+: 586.31391, found 586.31401; 

 

 

Benzyl N-(tert-butoxycarbonyl)-L-alanyl-O-[tert-butyl(dimethyl)silyl]-N-methyl-D-

tyrosinate (175) 

 

TBSO
N

O

OBn

O

N
H

Boc

 
 

To a solution of D-tyrosine benzylester derivative 174 (650 mg, 1.30 mmol) in CH2Cl2 (10 

mL) was added CF3COOH (1.0 mL, 13.0 mmol), and the mixture was stirred at room 

temperature for 1 h. The solvent was removed in vacuo, and the residue was dried by 

azeotropic removal of H2O with toluene. The crude material was subjected to the next reaction 

without further purification. To a stirred solution of crude amine, N-Boc-L-alanine (240 mg, 

1.30 mmol), and PyBroP (635 mg, 1.30 mmol) in CH2Cl2 (5 mL) at 0 oC was added iPr2NEt 

(0.8 mL, 4.70 mmol) and then the mixture was allowed to stir for 3 h at room temperature. The 

solvent was removed in vacuo and the residue purified by flash chromatography (1:3 ethyl 

acetate/petroleum ether) to give the dipeptide 175 (403 mg, 55%) as a colorless gel. 

 

Rf = 0.45 (1:3 ethyl acetate/petroleum ether) 
1H NMR (400 MHz, CDCl3): δ = 0.13 (s, 6H, CH3TBS), 0.84 (d, J = 6.8 Hz, 3H, Ala CH3), 

0.94 (s, 9H, tBu(TBS)), 1.41 (s, 9H, Boc tBu), 2.80 (s, 3H, NCH3), 2.95 (dd, J = 14.5, 11.8 

Hz, 1H, TyrCH2), 3.33 (dd, J = 14.8, 4.9 Hz, 1H, TyrCH2), 4.43- 4.50 (m, 1H, Ala CH), 5.12-

5.20 (m, 2H, CH2Ph), 5.26-5.30 (m, 1H, TyrCH), 5.44 (d, J = 7.8 Hz, 1H, Ala NH), 6.71 (d, J 

= 8.6 Hz, 2H, aromatic), 6.99 (d, J = 8.6 Hz, 2H, aromatic), 7.31-7.34 (5H, aromatic CO2Bn);  
13C NMR (100 MHz, CDCl3): δ = -4.6 ( 2C, CH3TBS), 18.2 (Ala CH3), 18.2 (quarternary C, 

tBu (TBS)), 25.6 (3C, tBu (TBS)), 28.3 (Boc tBu), 32.6 (NCH3), 33.7 (Tyr CH2), 46.5 (Ala 
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CH), 52.0 (OCH3), 58.4 (Tyr CH), 79.8 (quarternary C Boc), 120.2, 129.1, 129.7 (aromatic), 

154.5 (Boc C=O), 155.3 (phenolic), 173.6 (Ala CO), 174.2 (Tyr CO). 

 

 

Methyl N-{(2S,4E,6S)-7-[(tert-butoxycarbonyl)amino]-2,4,6-trimethylhept-4-enoyl}-L-

alanyl-O-[tert-butyl(dimethyl)silyl]-N-methyl-D-tyrosyl-L-valinate (181) 

 

TBSO N O

NH

O

HN CO2Me
NHBoc

O  
 

To solution of tripeptide 182 (30 mg, 0.05 mmol) in CH2Cl2 (0.5 mL) was added TFA (0.03 

mL, 0.5 mmol) at 0 oC. The resulting mixture was stirred for 1 h at 0 oC. The solvent was 

removed in vacuo and the residue was dried by azeotropic removal of H2O with toluene. The 

crude material was used for the next reaction without further purification. To a solution of 

crude amine salt and amino acid 97 (15 mg, 0.05 mmol) in dry DMF (1 mL) were added DIEA 

(0.02 mL, 0.25 mmol), HOBt (7 mg, 0.05 mmol) and TBTU (16 mg, 0.05 mmol) successively. 

The reaction mixture was stirred for 2 h before it was diluted with water (2 mL), stirred for 5 

min, and extracted with ethyl acetate (3 x 4 mL). The combined organic layers were washed 

with 1 N HCl (2 mL), saturated aq. NaHCO3 (2 mL), brine (2 mL), dried (Na2SO4), filtered 

and concentrated in vacuo to give the crude product which was purified by flash 

chromatography (1:1 ethyl acetate/petroleum ether) producing the pure tetrapeptide (20 mg, 

53%) as a colorless gel. 

  

Rf = 0.52 (1:1 ethyl acetate/petroleum ether);  

[α]20
D

 = +16.6 (c 0.84, CH2Cl2);  

IR (film): υmax = 3361, 2974, 2930, 1735, 1712, 1511, 1172 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.13 (s, 6H, CH3TBS), 0.87 (d, J = 6.8 Hz, 3H, Val CH3), 

0.88 (d, J = 6.8 Hz, 3H, Val CH3), 0.89 (d, J = 7.6 Hz, 3H, CH3CHCH2O), 0.91-0.94 (m, 12H, 
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tBu (TBS), CH3CHCO), 1.04 (d, J = 6.8 Hz, 3H, Ala CH3), 1.41 (s, 9H, Boc tBu), 1.56 (s, 3H, 

CH3C=C), 1.97-2.03 (m, 1H, Val CH), 2.13-2.21 (m, 1H, CHCH2NH), 2.27 (dd, J = 13.8, 6.7 

Hz, 1H, CH2CHCO), 2.33-2.40 (m, 1H, CH2CHCO), 2.53-2.56 (m, 1H, CHCO), 2.75-2.81 (m, 

1H, CH2NH), 2.85-2.89 (m, 1H, CH2NH), 2.93 (s, 3H, NCH3), 3.08-3.12 (m, 1H, Tyr CH2), 

3.29 (dd, J = 14.9, 6.1 Hz, 1H, Tyr CH2), 3.69 (s, 3H, OCH3), 4.41 (dd, J = 8.5, 5.8 Hz, 1H, 

Val CH), 4.61-4.68 (m, 1H, Ala CH), 4.75 (br s, 1H, NHBoc), 4.89 (d, J = 9.1 Hz, CH 

olefinic), 5.48 (dd, J = 10.6, 6.1 Hz, 1H, Tyr CH), 6.37 (d, J = 5.8 Hz, 1H, Val NH), 6.70 (d, J 

= 8.3 Hz, 2H, aromatic), 7.02 (d, J = 8.3 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -4.5 (2C, CH3TBS), 16.4 (CH3C=C), 16.9 (CH3CHCO), 

17.4 (Ala CH3), 17.9 (Val CH3), 18.2 (quarternary C, tBu (TBS)), 18.2 (Val CH3), 19.0 

(CH3CHCH2NH), 25.6 (3C, tBu (TBS), 28.4 (3C, Boc tBu), 30.4 (NCH3), 30.8 (CHCH2NH), 

32.8 (Val CH), 33.0 (Tyr CH2), 39.2 (CHCO) 43.8 (CH2CHCO), 45.5 (CH2NH), 46.5 (Ala 

CH), 52.1 (OCH3), 57.1 (Tyr CH)), 57.7 (Val CH), 77.9 (quarternary C Boc), 120.1, 128.2, 

129.3 (aromatic), 129.7 (CH olefinic), 130.5 (olefinic quarternary), 154.1 (phenolic), 156.1 

(Boc C=O), 170.1 (Ala CO), 172.3 (Tyr CO), 174.3 (Val CO), 175.7 (CO2Me);  

HRMS (EI): calcd for C40H68N4O8Si [M+Na]+: 783.46986, found 783.47035. 

 

 

Methyl N-(tert-butoxycarbonyl)-L-alanyl-O-[tert-butyl(dimethyl)silyl]-N-methyl-D-

tyrosyl-L-valinate (182) 

 

TBSO
N O

NHBoc

O

HN CO2Me

 
 

To a solution of dipeptide acid 162 (200 mg, 0.42 mmol), and L-valine methyl ester 

hydrochloride (70 mg, 0.42 mmol) in dry DMF (4 mL) were added DIEA (0.18 mL, 1.05 

mmol), HOBt (58 mg, 0.42 mmol) and TBTU (135 mg, 0.42 mmol) at room temperature. The 

resulting reaction mixture was stirred for 3 h at room temperature. The reaction mixture was 

treated with water (5 mL), stirred for further 5 min, and extracted with ethyl acetate (3 x 10 
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mL). The combined ethyl acetate layers were washed with 1 N HCl (5 mL), saturated aq. 

NaHCO3 (5 mL), brine (5 mL), dried (Na2SO4), filtered, and concentrated in vacuo to furnish 

the crude product which was purified by flash chromatography (1:3 ethyl acetate/petroleum 

ether) yielding the pure tripeptide 182 (177 mg, 71%) as a colorless gel. 

  

Rf = 0.44 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = +45.4 (c 1.01, CH2Cl2);  

IR (film): υmax = 3336, 2962, 2930, 1739, 1685, 1511, 1172, 1052 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.11 (s, 6H, CH3TBS), 0.85 (d, J = 6.1 Hz, 3H, Val CH3), 

0.87 (d, J = 6.1 Hz, 3H, Val CH3), 0.89 (d, J = 7.6 Hz, 3H, Ala CH3), 0.92 (s, 9H, tBu(TBS)), 

1.37 (s, 9H, Boc tBu), 2.10-2.18 (m, 1H, Val CH), 2.84-2.87 (m, 1H, Tyr CH2), 2.91 (s, 3H, 

NCH3), 3.28 (dd, J = 14.8, 5.4 Hz, 1H, Tyr CH2), 3.68 (s, 3H, OCH3), 4.39-4.42 (m, 2H, Ala 

CH, Val CH), 5.26 (d, J = 6.3 Hz, 1H, Ala NH), 5.49 (dd, J = 9.9, 5.9 Hz, 1H, Tyr CH), 6.61 

(d, J = 8.3 Hz, 1H, Val NH), 6.69 (d, J = 7.8 Hz, 2H, aromatic), 7.00 (d, J = 7.6 Hz, 2H, 

aromatic);  
13C NMR (100 MHz, CDCl3): δ = -4.6 (2C, CH3TBS), 17.5 (Val CH3), 17.8 (Val CH3), 18.1 

(quarternary C, tBu (TBS)), 19.0 (Ala CH3), 25.6 (3C, tBu (TBS)), 28.2 (Boc tBu), 30.4 

(NCH3), 30.8 (Val CH), 32.7 (Tyr CH2), 46.6 (Ala CH), 52.0 (OCH3), 57.1 (Val CH), 57.5 

(Tyr CH), 79.6 (quarternary C Boc), 120.0, 129.3, 129.7 (aromatic), 154.4 (Boc C=O), 155.3 

(phenolic), 170.2 (Tyr CO), 172.0 (Ala CO), 174.8 (Val CO);  

HRMS (EI): calcd for C30H51N3O7Si [M+Na]+: 616.33885, found 616.33956. 

 

 

N-(tert-Butoxycarbonyl)-L-alanyl-N-{(1R)-3-methoxy-3-oxo-1-[4-(1,1,2,2- 

tetramethylpropoxy)phenyl]propyl}-N-methyl-D-tryptophanamide (184) 
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N

O
N O

OTBS

H

H
N

Me

NH

O

Boc

OMe

 
 

To solution of β-D tyrosine derivative 186 (90 mg, 0.23 mmol) in CH2Cl2 (2.0 mL) was added 

TFA (0.18 mL, 2.3 mmol) at 0 oC. The reaction mixture was stirred for 1 h at 0 oC. The 

solvent was removed in vacuo and residue dried by azeotropic removal of H2O with toluene. 

The crude material was used for the next reaction without further purification. To a solution of 

the crude amine salt, and dipeptide acid 192 (90 mg, 0.23 mmol) in dry DMF (2 mL) were 

added iPr2NEt (0.09 mL, 0.56 mmol), HOBt (32 mg, 0.23 mmol), and TBTU (74 mg, 0.23 

mmol) successively. The resulting mixture was stirred for 2 h. The reaction mixture was 

diluted with water (2 mL), stirred for 5 min and extracted with ethyl acetate (3 x 4 mL). The 

combined organic layers were washed with 1 N HCl (2 mL), saturated aq. NaHCO3 (2 mL), 

brine (2 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product was 

purified by flash chromatography (1:1 ethyl acetate/petroleum ether) to furnish the pure 

tripeptide 184 (100 mg, 70%) as a colorless gel. 

 

Rf = 0.44 (1:1 ethyl acetate/petroleum ether);  

[α]20
D

 = +22.0 (c 0.423, CH2Cl2);  

IR (film): υmax = 3335, 2935, 2850, 1730, 1680, 1515, 1260, 1170 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.16 (s, 6H, CH3TBS), 0.90 (d, J = 6.8 Hz, 3H, Ala CH3), 

0.95 (s, 9H, tBu(TBS)), 1.39 (s, 9H, Boc tBu), 2.75 (dd, J = 15.5, 5.4 Hz, 1H, β-Tyr CH2), 

2.82-2.88 (m, 1H, β-Tyr CH2), 2.91 (s, 3H, NCH3), 3.21 (dd, J = 15.6, 10.5 Hz, 1H, Trp CH2), 

3.42 (dd, J = 15.9, 5.3 Hz, 1H, Trp CH2), 3.59 (s, 3H, OCH3), 4.39 (qn, J = 6.8 Hz, 1H, Ala 

CH), 5.34-5.40 (m, 1H, β-Tyr CH), 5.61 (dd, J = 10.1, 5.6 Hz, Trp CH), 6.72 (d, J = 8.3 Hz, 

2H, β-Tyr aromatic), 6.93 (s, 1H, Trp aromatic), 7.00 (d, J = 8.3 Hz, 1H, β-Tyr NH), 7.07 (d, J 

= 7.8 Hz, 2H, Tyr aromatic), 7.10 (s, 1H, Trp aromatic), 7.15 (t, J = 7.2 Hz, 1H, Trp aromatic), 
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7.31 (d, J = 8.1 Hz, 1H, Trp aromatic), 7.58 (d, J = 7.8 Hz, 1H, Trp aromatic), 8.31 (s, 1H, 

Indole NH);  
13C NMR (100 MHz, CDCl3): δ = -4.5 (2C, CH3TBS), 17.1 (Ala CH3), 18.1 (quarternary C, 

tBu (TBS)), 23.1 (Trp CH2), 25.6 (3C, tBu (TBS)), 28.3 (Boc tBu), 30.7 (NCH3), 40.3 (β-Tyr 

CH2), 46.3 (Ala CH), 49.3 (β-Tyr CH), 51.7 (OCH3), 56.5 (Trp CH), 79.7 (quarternary C 

Boc), 110.9, 111.0, 118.5, 119.3 (Trp aromatic), 120.1 (β-Tyr aromatic), 121.9, 122.0 (Trp 

aromatic), 127.3 (β-Tyr aromatic), 133.3 (Tyr aromatic), 136.1 (aromatic), 154.9 (Boc CO), 

155.5 (phenolic), 169.2 (Trp CO), 171.1 (β-Tyr CO), 174.3 (Ala CO);  

HRMS (EI): calcd for C36H53N4O7Si [M+Na]+: 681.36780, found 681.36692. 

Normethyl chondramide C (185) 

 

N

O
N O

OH

H

H
N

O

Me

NH O

O

 
 

To a solution of linear depsipeptide 193 (45 mg, 0.05 mmol) in CH2Cl2 (0.5 mL) was added 

TFA (0.08 mL, 0.99 mmol) at 0 oC. The resulting mixture was stirred for 2 h at 0 oC; at this 

point TLC showed the complete consumption of reactant. The solvent was removed in vacuo 

and the residue dried by azeotropic removal of H2O with toluene. The crude material was used 

for the next reaction without further purification. To a solution of crude amine salt in dry DMF 

(50 mL) were added DIEA (0.04 mL, 0.20 mmol), HOBt (20 mg, 0.15 mmol) and TBTU (48 

mg, 0.15 mmol) successively at room temperature. The solution was stirred at room 

temperature for 18 h and then partitioned between ethyl acetate (50 mL) and water (50 mL). 

The aqueous layer extracted with ethyl acetate (3 x 30 mL). The combined ethyl acetate layers 

were washed successively with 5% aqueous KHSO4 solution, water, half saturated aqueous 

NaHCO3 solution, brine, dried (MgSO4), filtered and concentrated in vacuo to furnish the 

crude product. The crude product was purified by flash chromatogaphy (1:1 ethyl 
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acetate/petroleum ether) to yield the pure cyclic depsipeptide (16 mg, 44%) as a colorless 

solid. 

To the above TBS protected cyclic depsipeptide (16 mg, 0.02 mmol) in THF (0.2 mL) 

was added TBAF containing 5% water (1 M solution in THF, 0.04 mL, 0.04 mmol) at 0 oC. 

The solution was stirred for 3 h at 0 oC. The mixture was concentrated in vacuo and the crude 

material was purified by flash chromatography (7:3 ethyl acetate/petroleum ether) to provide 

pure normethyl chondramide C (10 mg, 73%) as a colorless powder.  

 

Rf = 0.35 (ethyl acetate);  

[α]20
D

 = +32.1 (c 0.137, CH2Cl2);  

IR (film): υmax = 3360, 2950, 2850, 1710, 1510, 1170 cm-1; 
1H NMR (400 MHz, CDCl3): δ = 0.91 (d, J = 6.8 Hz, 3H, CH3CHCH2O), 1.01 (d, J = 6.8 Hz, 

3H, Ala Me), 1.16 (d, J = 6.5 Hz, 3H, CH3CHCO), 1.63 (s, 3H, CH3C=C), 2.04-2.07 (m, 1H, 

CH2CHCO), 2.17-2.24 (m, 1H, CH2CHCO), 2.44-2.50 (m, 1H, CHCO), 2.58-2.62 (m, 1H, 

CHCH2O), 2.66-2.88 (m, 2H, β-Tyr CH2), 3.02 (s, 3H, NMe), 3.12 (dd, J = 15.0, 8.5 Hz, 1H, 

Trp CH2), 3.30 (dd, J = 15.0, 7.5 Hz Trp CH2), 3.83 (dd J = 10.1, 5.6 Hz, 1H, CH2O), 3.91 (dd 

J = 10.2, 4.7 Hz, 1H, CH2O), 4.65-4.70 (m, 1H, Ala CH), 4.93 (d, J = 8.0 Hz, olefinic), 5.20-

5.26 (m, 1H, β-Tyr CH), 5.46 (t, J = 8.0 Hz, 1H, Trp CH), 6.43 (d, J = 5.8 Hz, 1H, Ala NH), 

6.67 (d, J = 8.3 Hz, 2H, β-Tyr aromatic), 6.89 (d, J = 8.3 Hz, 2H, β-Tyr aromatic), 6.71 (s, 1H, 

Trp aromatic), 6.92 (s, 1H, β-Tyr NH), 7.08 (t, J = 7.3 Hz, 1H, Trp aromatic), 7.15 (t, J = 7.5 

Hz, 1H, Trp aromatic), 7.30 (d, J = 8.1 Hz, 1H, Trp aromatic), 7.54 (d, J = 7.8 Hz, 1H, Trp 

aromatic), 8.26 (s, IndoleNH);  
13C NMR (100 MHz, CDCl3): δ = 17.6 (CH3CHCO), 18.0 (CH3C=C), 18.1 (CH3CHCH2O), 

18.9 (Ala CH3), 23.9 (Trp CH2), 30.7 (NCH3), 31.8 (CHCH2O), 40.4 (CHCO), 41.1 

(CH2CHCO), 42.5 (CH2β-Tyr), 45.7 (Ala CH), 49.7 (CH β-Tyr), 56.3 (Trp CH), 69.6 (CH2O), 

110.2, 111.2 (Trp aromatic), 115.6 (β-TyrArmeta), 118.4, 119.5, 122.1, 122.5 (Trp aromatic), 

125.7 (CH olefinic), 127.0 (β-Tyr Cipso), 127.2 (β-TyrArortho), 132.2 (Trp aromatic), 136.2 

(olefinic quarternary), 155.6 (C-OH Ar), 169.5 (Trp CO), 170.9 (β-Tyr CO), 174.3 (Ala CO), 

175.3 (CH2CHCO); 

HRMS (EI): calcd for C34H42N4O6 [M+Na]+: 625.29966, found 625.29888. 
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(2S–[(tert–Butoxycarbonyl)amino](4–{[tert-butyl(dimethyl)silyl]oxy}-α-

diazoacetylbenzylamine (190) 

 
OTBS

BocHN
O

N2

 
 

To a solution of acid 189 (1.00 g, 2.62 mmol) in ether (20 mL) were added triethylamine (0.41 

mL, 2.91 mmol), and ethyl chlorocarbonate (0.28 mL, 2.62 mmol) successively at 0 oC. The 

resulting reaction mixture was stirred at the same temperature for 1 h. Thereafter, a solution of 

diazomethane in ether (20 mL, 0.127 M) was added and the mixture was stirred for 12 h at 

room temperature. The reaction mixture was washed with water and the layers were separated. 

The organic layer was then dried over anhydrous MgSO4, filtered, and concentrated in vacuo 

to give a yellow colored solid. The crude product was almost pure on TLC, so the crude 

diazoketone was used for next reaction without any purification. 

 

 

Methyl (3R)-3-[(tert-Butoxycarbonyl)amino]-3-(4-{[tert-butyl(dimethyl)silyl]oxy}phenyl) 

propanoate (186) 

 

N

OTBS

H
O

OMe
Boc  

 

To a solution of diazoketone 190 (400 mg, 0.98 mmol) in absolute methanol (10 mL) was 

added dropwise a solution of of silver benzoate (23 mg, 0.1 mmol) in triethylamine (0.3 mL, 

2.0 mmol) at -30 oC. The reaction mixture was slowly brought to room temperature in 3 h. The 

reaction mixture was stirred additionally 1 h at room temperature. The mixture was filtered 
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through a bed of celite and the filtrate concentrated in vacuo to get the crude product. The 

crude product was purified by flash chromatography (1:4 ethyl acetate/petroleum ether) to 

provide the pure ester 186 (340 mg, 80%) as a light yellow colored gel. 

 

Rf = 0.40 (1:4 ethyl acetate/petroleum ether);  

[α]20
D

 = +36.1 (c 0.21, CH2Cl2);  

IR (film): υmax = 3360, 2950, 2850, 1710, 1510, 1170 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.11 (s, 6H, CH3TBS), 0.95 (s, 9H, tBu(TBS)), 1.41 (s, 9H, 

Boc tBu), 2.76 (dd, J = 15.0, 5.9 Hz, 1H, CH2), 2.83-2.87 (m, 1H, CH2), 3.59 (s,3H, OCH3), 

5.03 (br s, 1H, CH), 5.34 (br s, 1H, NH), 6.77 (d, J = 8.3 Hz, 2H, aromatic), 6.77 (d, J = 8.3 

Hz, 2H, aromatic), 7.00 (d, J = 8.34 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -4.5 (2C, CH3TBS), 18.2 (quarternary C, tBu (TBS)), 25.6 

(3C, tBu (TBS)), 28.3 (Boc tBu), 40.9 (CH2), 51.7 (OCH3), 120.1, 127.2, 138.1 (aromatic), 

155.0 (Boc CO), 155.1 (phenolic);  

HRMS (EI): calcd for C21H35NO5Si [M+Na]+: 432.21767, found 432.21796. 

  

 

N-(tert-Butoxycarbonyl)-L-alanyl-N-{(1R)-3-{[(2S,6S)-7-tert-butoxy-2,4,6-trimethyl-7-

oxohept-3-enyl]oxy}-3-oxo-1-[4-(1,1,2,2-tetramethylpropoxy)phenyl]propyl}-N-methyl-

D-tryptophanamide (193) 

 

N

O
N O

OTBS

H

H
N

Me
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O

Boc

O

O OtBu  
 

To a solution of tripeptide 184 (50 mg, 0.08 mmol) in 1,2-dichloroethane (1 mL) was added 

trimethyltin hydroxide (68 mg, 0.38 mmol) at room temperature. The mixture was heated at 80 
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oC for 5 h. After cooling to room temperature, the reaction mixture was treated with 5% 

aqueous KHSO4 until pH ~3 and extracted with ethyl acetate (3 x 4 mL). The combined ethyl 

acetate layers were washed with brine (5 mL), dried (Na2SO4), filtered, and concentrated in 

vacuo to give the crude acid which was used without further purification. 

To a solution of crude acid, alcohol component 170 (20 mg, 0.08 mmol), and DMAP 

(5 mg) in dry CH2Cl2 (1 mL) was added a solution of DCC (21 mg, 0.1 mmol) in CH2Cl2 (0.2 

mL) at 0 oC. The resulting reaction mixture was stirred for 0.5 hour at 0 oC and then 12 h at 

room temperature. The dicyclohexyl urea was filtered off and the precipitate was washed with 

ether (3 x 4 mL). The filtrate was concentrated in vacuo to provide the crude product. The 

crude product was purified by flash chromatography (1:1 ethyl acetate/petroleum ether) to 

furnish the pure product 193 (50 mg, 72% over two steps) as a colorless gel. 

  

Rf = 0.44 (1:1 ethyl acetate/petroleum ether);  

[α]20
D

 = +10.2 (c 0.50, CH2Cl2);  

IR (film): υmax = 3336, 2930, 2850, 2300, 1730, 1685, 1515, 1260, 1160 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.15 (s, 6H, CH3TBS), 0.86 (d, J = 7.6 Hz, CH3CHCH2O), 

0.88 (d, J = 7.6 Hz, 3H, Ala CH3), 0.95 (s, 9H, tBu(TBS)), 1.02 (d, J = 6.8 Hz, 

CH3CHCO2tBu), 1.39, 1.41 (2s, 18H, Boc tBu, tBu), 1.57 (s, 3H, olefinic CH3), 1.94 (dd, J = 

13.6, 7.6 Hz, 1H, CH2CHCO2tBu), 2.28 (dd, J = 13.6, 7.6 Hz, 1H, CH2CHCO2tBu), 2.41-2.48 

(m, 1H, CHCO2tBu), 2.58-2.64 (m, 1H, CHCH2O), 2.74 (dd, J = 15.5, 5.9 Hz, 1H, β-Tyr 

CH2), 2.86 (dd, J = 16.6, 8.2 Hz, 1H, β-Tyr CH2), 2.90 (s, 3H, NCH3), 3.20 (dd, J = 15.7, 10.6 

Hz, 1H, Trp CH2), 3.43 (dd, J = 15.8, 5.2 Hz, 1H, Trp CH2), 3.69-3.74 (m, 1H, CH2O), 3.83 

(dd, J = 10.1, 6.6 Hz, 1H, CH2O), 4.36 (qn, J = 6.7 Hz, 1H, Ala CH), 4.88 (d, J = 9.4 Hz, 1H, 

CH olefinic), 5.35 (q, J = 6.9 Hz, 1H, β-Tyr CH), 5.59 (dd, J = 9.9, 5.6 Hz, Trp CH), 6.71 (d, J 

= 8.3 Hz, 2H, β-Tyr aromatic), 6.93 (s, 1H, Trp aromatic), 7.01 (d, J = 8.1 Hz, 1H, β-Tyr NH), 

7.07-7.09 (m, 2H, β-Tyr aromatic), 7.14 (t, J = 7.3 Hz, 1H, Trp aromatic), 7.30 (d, J = 8.1 Hz, 

1H, Trp aromatic), 7.36 (t, J = 8.1 Hz, 1H, Trp aromatic), 7.57 (d, J = 7.8 Hz, 1H, Trp 

aromatic), 8.29 (s, 1H, Indole NH);  
13C NMR (100 MHz, CDCl3): δ = -4.5 ( 2C, CH3TBS), 16.7 (CH3CHCO2tBu), 17.0 

(quarternary C, tBu (TBS)), 17.4 (CH3CHCH2O), 18.1 (Ala CH3), 23.2 (Trp CH2), 25.6 (3C, 

tBu (TBS)), 28.0, 28.3 (6C, tBu, Boc tBu), 30.8 (NCH3), 31.9 (CHCH2O), 38.6 (CHCO2tBu), 

40.5 (β-Tyr CH2), 43.8 (CH2CHCO2tBu), 46.6 (Ala CH), 49.4 (β-Tyr CH), 56.6 (Trp CH), 
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68.8 (CH2O), 79.7, 79.8 (quarternary C Boc, tBu), 111.0, 118.5, 119.3 (Trp aromatic), 120.0 

(β-Tyr aromatic), 121.9, 122.0 (Trp aromatic), 127.4 (β-Tyr aromatic), 128.2 (aromatic), 129.5 

(aromatic), 133.3 (Tyr aromatic), 134.2, 134.8, 136.1 (aromatic), 154.9 (Boc CO), 155.6 

(phenolic), 169.2 (Trp CO), 170.7 (β-Tyr CO), 174.3 (Ala CO), 175.7 (CO2tBu);  

HRMS (EI): calcd for C49H74N4O9Si [M+H]+: 891.52978, found 891.53001. 
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(2S)-3-(3-{[(tert-Butoxycarbonyl)amino]methyl}phenyl)-2-methylpropanoic acid (194) 

 

NHBocHO

O

 
 

To a solution of oxazolidinone 204 (300 mg, 0.66 mmol) in THF (10 mL) were added 30 wt% 

H2O2 (0.28 mL, 2.64 mmol) and 0.4 N lithium hydroxide monohydrate solution (3.3 mL, 1.32 

mmol) successively at 0 oC. The resulting reaction mixture was stirred for 3 h at 0 oC before it 

was treated with saturated aqueous Na2SO3 solution (6 mL) and saturated aqueous NaHCO3 

solution (6 mL) at 0 oC. The mixture was extracted with dichloromethane (2 x 10 mL) to 

remove the chiral auxiliary. The aqueous layer was acidified to pH~3 by the addition of 1 N 

HCl and extracted with ethyl acetate (3 x 15 mL). The combined ethyl acetate layers were 

dried over Na2SO4, filtered and concentrated in vacuo to furnish the almost pure amino acid 

194. But due to the presence of amino acid in the dichloromethane layer, both the products 

from the ethyl acetate and dichloromethane layers were combined and purified using flash 

chromatography (2:3 ethyl acetate/petroleum ether) to afford the pure acid 194 (155 mg, 80%) 

as a colorless gel. 

 

Rf = 0.44 (2:3 ethyl acetate/petroleum ether);  

[α]20
D

 = +18.3 (c 0.96, CH2Cl2);  

IR (film): υmax = 3410, 2965, 2935, 1780, 1700, 1515, 1380 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 1.19 (d, J = 7.1 Hz, 3H, CH3), 1.48 (s, 9H, tBu), 2.68 (dd, 

13.3, 8.0 Hz, 1H, CH2CH), 2.77 (td, J = 14.0, 6.8 Hz, 1H, CHCH3), 3.08 (dd, J = 13.4, 6.3 Hz, 

1H, CH2CH), 4.31 (d, J = 5.1 Hz, 2H, CH2N), 4.89 (br s, 1H, NH), 7.10-7.16 (m, 3H, 

aromatic), 7.28 (d, J = 6.8 Hz, 1H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 16.5 (CH3), 28.4 (3C, tBu), 39.2 (CH2CH), 41.1 (CHCH3), 

44.6 (CH2NH), 79.8 (Boc quarternary), 125.6, 128.0, 128.7, 139.0, 139.5 (aromatic), 155.3 

(Boc C=O), 181.3 (CO2H);  

HRMS (EI): calcd for C16H23NO4 [M+Na]+: 316.15193, found 316.15113. 
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(2S)-3-[3-({[tert-Butyl(dimethyl)silyl]oxy}methyl)phenyl]-2-methylpropanoic acid (195) 

 

OTBSHO

O

 
 

To a solution of crude unprotected hydroxy acid 205 (50 mg, 0.26 mmol) in DMF (3 mL) 

imidazole (50 mg, 0.78 mmol) and TBDMS-Cl (90 mg, 0.57 mmol) were added successively 

at room temperature. The reaction mixture was stirred for 12 h at room temperature. H2O (5 

mL) was added to reaction mixture and stirring was continued for 30 min. The resulting 

mixture was extracted with diethyl ether (3 x 5 mL). The combined ether layers were 

successively washed with 1 N HCl (5 mL), saturated aq. NaHCO3 solution (5 mL) and then 

with brine (5 mL). The dried (Na2SO4) layer was filtered and concentrated in vacuo to give the 

crude product. This adduct was dissolved in THF (1 mL) and 1 M K2CO3 (1 mL) was added to 

the solution at room temperarure and the mixture stirred for 45 min at room temperature. The 

resulting mixture was acidified to pH~3 by adding 1 N HCl. The mixture was extracted with 

ethyl acetate (3 x 3 mL). The combined ethyl acetate layers were dried on Na2SO4, filtered and 

evaporated to get the crude TBS protected hydroxy acid which was purified by flash 

chromatography (1:3 ethyl acetate/petroleum ether) providing the pure hydroxy acid 195 (55 

mg, 70%) as a colorless gel. 

 

Rf = 0.50 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = +22.9 (c 1.18, CH2Cl2);  

IR (film): υmax = 3740, 3180, 2930, 2850, 1700, 1520, 1170, 840 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.10 (s, 6H, CH3TBS), 0.95 (s, 9H, tBu(TBS)), 1.17 (d, J = 

7.1 Hz, 3H, CHCH3), 2.66 (dd, J = 13.3, 8.2 Hz, 1H, CH2CH), 2.71-2.81 (m, 1H, CHCO2H), 

3.10 (dd, J = 13.4, 6.3 Hz, 1H, CH2CH), 4.73 (s, 2H, CH2OTBS), 7.07 (d, J = 7.3 Hz, 1H, 

aromatic), 7.15 (s, 1H, aromatic), 7.19 (d, J = 7.8 Hz, 1H, aromatic), 7.26 (t, J = 7.5 Hz, 1H, 

aromatic);  
13C NMR (100 MHz, CDCl3): δ = -5.3 (2C, CH3TBS), 16.4 (CHCH3), 18.4 (quarternary C, 

tBu (TBS)), 25.9 (3C, tBu (TBS)), 39.2 (CH2CHCO2), 64.9 (CH2OTBS), 124.20, 126.7, 127.6, 

128.3, 138.9, 141.5 (aromatic), 182.5 (CO2H);  
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HRMS (EI): calcd for C17H28O3Si [M-H]-: 307.17349, found 307.17354. 

3-{(2S)-3-[(4R)-4-Benzyl-2-oxo-1,3-oxazolidin-3-yl]-2-methyl-3-oxopropyl}benzonitrile 

(196) 

 

CN
N

O

O

O

Bn  
 

To a solution of crude alkylation product 198 (400 mg, 0.99 mmol) in DMF (4 mL) was added 

copper(I) cyanide (100 mg, 1.10 mmol) at room temperature. The reaction mixture was heated 

at 100 oC for 12 h. The hot reaction mixture was poured in a solution of FeCl3 (100 mg) in 4 

mL of water. The resulting mixture was extracted with ethyl acetate (3 x 10 mL). The 

combined organic layers were washed with brine (10 mL), dried (Na2SO4), filtered and 

evaporated. The crude product was purified by flash chromatography (1:4 

ethylacetate/petroleum ether) to furnish the pure nitrile 196 (200 mg, 57%) as a colorless gel. 

 

Rf = 0.38 (1:4 ethyl acetate/petroleum ether); 
1H NMR (400 MHz, CDCl3): δ = 1.12 (d, J = 6.8 Hz, 3H, CH3), 2.55-2.58 (m, 1H, benzylic 

H), 2.60-2.63 (m, 1H, benzylic H), 3.04 (dd, J = 13.4, 3.3 Hz, 1H, CH2Ph), 3.14 (dd, J = 13.4, 

6.8 Hz, 1H, CH2Ph), 3.95-4.04 (m, 1H, CHCH3), 4.09 (dd, J = 9.1, 2.8 Hz, 1H, CH2O), 4.15 (t, 

J = 8.5 Hz, 1H, CH2O), 4.59-4.65 (m, 1H, NCH), 7.00-7.01 (m, 2H, aromatic), 7.17-7.25 (m, 

3H, aromatic), 7.34 (t, J = 7.7 Hz, 1H, aromatic), 7.45 (d, J = 7.6 Hz, 1H, aromatic), 7.50 (d, J 

= 7.6 Hz, 1H, aromatic), 7.53 (s, 1H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 16.5 (CH3), 37.7 (PhCH2), 39.1 (CHCH3), 39.5 (benzylic), 

55.1 (NCH), 66.0 (OCH2), 112.4 (aromatic), 118.8 (CN), 127.4, 128.9, 129.2, 129.3, 130.3, 

132.8, 140.7 (aromatic), 153.0 (NCO2), 175.6 (CO). 

 

 

(4R)-4-Benzyl-3-{(2S)-3-[3-(bromomethyl)phenyl]-2-methylpropanoyl}-1,3-oxazolidin-2-

one (198) 
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Br
N

O

O

O

Bn  
 

To a solution of propionyl oxazolidinone 100 (500 mg, 2.15 mmol) in dry THF (10 mL) was 

added a 2.0 M solution of NaHDMS in THF (1.60 mL, 3.21 mmol) at -78 oC. The reaction 

mixture was stirred for 2 h at -78 oC. A solution of 3-brombenzyl bromide (1.34 g, 5.36 mmol) 

in THF (4 mL) was added dropwise at -78 oC. The reaction mixture was stirred for 6 h at -78 
oC and brought to room temperature by removing the cooling bath. The reaction mixture was 

treated with saturated aqueous NH4Cl solution (10 mL) and partially concentrated in vacuo. 

The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined ethyl acetate 

layers were washed with brine (10 mL), dried (Na2SO4), filtered and concentrated in vacuo. 

The crude product was purified by flash chromatography (1:4 ethyl acetate/petroleum ether) to 

afford the desired alkylated product 198, which conatained about 15% of the chiral auxiliary 

100 (determined by NMR). 

 

Rf = 0.56 (1:3 ethyl acetate/petroleum ether); 
13C NMR (100 MHz, CDCl3): δ = 16.8 (CH3), 37.6 (PhCH2), 39.3 (CHCH3), 39.5 (benzylic), 

55.0 (NCH), 65.9 (OCH2), 122.3, 127.3, 128.0, 128.8, 129.3, 129.9, 132.2, 135.0, 141.5 

(aromatic), 152.9 (NCO2), 176.0 (CO). 

 

 

Methyl (2S)-3-(3-cyanophenyl)-2-methylpropanoate 199 

 

CN
MeO

O

 
 

Methylmagnesium bromide (3 M solution in THF, 0.20 mL, 0.55 mmol) was added to pre-

cooled (0 oC) absolute methanol (4.5 mL). After stirring for 20 minutes, this solution was 

added via cannula to a solution of oxazolidinone 196 in absolute methanol (4.5 mL) at 0 oC. 

The resulting reaction mixture was stirred for 6 h at 0 oC. The reaction mixture was acidified 
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with 1 N HCl until pH~3 and concentrated in vacuo to remove the methanol. The resulting 

aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic layers were 

washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to obtain the crude 

product which was purified using flash chromatography (1:3 ethyl acetate/petroleum ether) to 

give the pure methylester 199 (30 mg, 52%) as a colorless gel. 

 

Rf = 0.53 (1:3 ethyl acetate/petroleum ether); 
1H NMR (400 MHz, CDCl3): δ = 1.16 (d, J = 6.8 Hz, 3H, CH3), 2.68-2.75 (m, 2H, benzylic 

H), 2.99-3.06 (m, 1H, CHCH3), 3.62 (s, 3H, OCH3), 7.35-7.41 (m, 2H, aromatic), 7.45 (s, 1H, 

aromatic), 7.48-7.51 (m, 1H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 16.9 (CH3), 39.1 (benzylic), 41.1 (CHCH3), 55.7 (OCH3), 

112.4 (aromaric), 118.8 (CN), 129.2, 130.2, 132.4, 133.5, 140.8 (aromatic), 175.6 (CO2Me). 

 

 

Methyl(2S)-3-(3-{[(tert-butoxycarbonyl)amino]methyl}phenyl)-2-methylpropanoate (200) 

 

MeO

O

NHBoc

   
 

A solution of cyano compound 199 (25 mg, 0.11 mmol) in methanol (0.5 mL) was added to a 

suspension of 10% Pd/C (10 mg) and formic acid (0.06 mL) in ethanol (0.5 mL). The resulting 

mixture was shaken under hydrogen atmosphere at around 2 bar pressure for 14 h. The 

reaction mixture was filtered through a celite bed and the bed washed with ethyl acetate (3 x 1 

mL). The combined organic layers were evaporated to give the crude amine formate salt (28 

mg). The compound was used for the protection without further purification. 

 

To the crude amine salt in dioxane/H2O (2:1) (0.6 mL) was added 1 N NaOH (0.16 

mL, 0.16 mmol) followed by Boc anhydride (27 mg, 0.121 mmol) at room temperature. The 

reaction mixture was stirred for 5 h at room temperature. The reaction mixture was acidified 

with 5% aq. KHSO4 to pH~3. The resulting mixture was extracted with ethyl acetate (3 x 4 

mL). The combined ethyl acetate layers were washed with brine (4 mL), dried (Na2SO4), 
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filtered and concentrated in vacuo to give the crude product which was purified using flash 

chromatography (15:85 ethyl acetate/petroleum ether) to afford the pure amino acid 

methylester 200 (20 mg, 59% over two steps) as a colorless gel. 

 

Rf = 0.44 (15:85 ethyl acetate/petroleum ether); 
1H NMR (400 MHz, CDCl3): δ = 1.13 (d, J = 6.8 Hz, 3H, CH3), 1.45 (s, 9H, tBu), 2.63 (dd, J 

= 13.1, 7.8 Hz, 1H, benzylic H), 2.71 (td, J = 14.0, 6.7 Hz, 1H, CHCH3), 3.00 (dd, J = 13.1, 

6.6 Hz, 1H, benzylic H), 3.63 (s, 3H, OCH3), 4.27 (d, J = 5.6 Hz, 2H, CH2NH), 4.81 (br s, 1H, 

NH), 7.04 (d, J = 7.8 Hz, 1H, aromatic), 7.05 (s, 1H, aromatic), 7.23 (t, J = 7.7 Hz, 1H, 

aromatic);  
13C NMR (100 MHz, CDCl3): δ = 16.7 (CH3), 28.4 (3C, tBu), 39.6 (benzylic), 41.3 (CHCH3), 

44.6 (CH2NH), 51.6 (OCH3), 125.5, 127.9, 128.0, 128.6, 139.0, 139.8 (aromatic), 155.8 (Boc 

CO), 176.5 (CO2Me). 

 

 

(4R)-3-{(2S)-3-[3-(azidomethyl)phenyl]-2-methylpropanoyl}-4-benzyl-1,3-oxazolidin-2-

one (202) 

 

N

O

O

O

Bn

N3

 
 

To a solution of the mono alkylation product 202 (2.00 g, 4.80 mmol) in ethanol (30 mL) was 

added sodium azide (650 mg, 10.10 mmol) at room temperature. The reaction mixture was 

heated to reflux for 2 h. The reaction mixture was cooled to room temperature, treated slowly 

with water and concentrated in vacuo. The resulting mixture was dissolved in ethyl acetate (30 

mL) and washed with water (2 x 10 mL). The organic layer was dried over Na2SO4, filtered 

and concentrated in vacuo to obtain almost pure azide (1.55 g, 85%) as a pale yellow gel. 

 

Rf = 0.44 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = -19.0 (c 1.07, CH2Cl2);  

IR (film): υmax = 2975, 2930, 2850, 2098, 1780, 1697, 1100 cm-1; 
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1H NMR (400 MHz, CDCl3): δ = 1.11 (d, J = 6.6 Hz, 3H, CH3), 2.48 (dd, J = 13.4, 9.4 Hz, 

1H, benzylic H), 2.60 (dd, J = 13.1, 7.6 Hz, 1H, CHCH2Ph), 3.01 (dd, J = 13.4, 9.4 Hz, 1H, 

benzylic H), 3.09 (dd, J = 13.3, 7.2 Hz, 1H, CHCH2Ph), 4.01-4.10 (m, 3H, CHCH3, CH2O), 

4.22 (s, 2H, CH2N3), 4.55-4.61 (m, 1H, NCH), 6.99 (d, J = 7.6 Hz, 1H, aromatic), 7.00 (s, 1H, 

aromatic), 7.09 (d, J = 7.1 Hz, 1H, aromatic), 7.17-7.23 (m, 6H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 16.6 (CH3), 37.6 (PhCH2), 39.5 (CHCH3), 39.6 (benzylic), 

54.6 (CH2N3), 55.1 (NCH), 65.9 (OCH2), 126.3, 127.2, 128.8, 129.2, 129.3, 135.1, 135.3, 

139.9 (aromatic), 153.0 (NCO2), 176.2 (CO); 

HRMS (EI): calcd for C21H22N4O3Si [M+Na]+: 401.15841, found 401.15804. 

 

 

(4R)-4-Benzyl-3-{(2S)-3-[3-(bromomethyl)phenyl]-2-methylpropanoyl}-1,3-oxazolidin-2-

one (203) 

 

N

O

O

O

Bn

Br

 
 

To a solution of diisopropylamine (4.80 mL, 33.5 mmol) in absolute THF (60 mL) was added 

n-BuLi (2.5 M solution in hexane, 13.40 mL, 33.5 mmol) at 0 oC. The resulting mixture was 

stirred for 20 min at 0 oC and cooled to -78 oC. A solution of propionyl oxazolidinone 100 

(6.00 g, 25.75 mmol) in absolute THF (12 mL) was added dropwise to the above solution of 

LDA. The reaction mixture was stirred for 2 h at -78 oC. A solution of α,α’-dibromo m-xylene 

104 (17.0 g, 64.4 mmol) in absolute THF (20 mL) was added dropwise to the reaction mixture 

at -78 oC. The resulting reaction mixture was stirred for 4 h at -78 oC and slowly warmed to 

room temperature in 4 h. The reaction mixture was treated with saturated aqueous NH4Cl 

solution (30 mL) and then the mixture was partially concentrated in vacuo. The resulting 

aqueous layer was extracted with ethyl acetate (3 x 30 mL). The combined ethyl acetate layers 

were washed with saturated aqueous NaHCO3 (30 mL), brine (30 mL), dried (Na2SO4), 

filtered, and concentrated in vacuo to give the crude product. Most of the excess α,α’-dibromo 

m-xylene was removed by dissolving the crude product in hexane (50 mL). The remaining 
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crude product was purified using flash chromatography (1:3 ethyl acetate/petroleum ether) to 

give the pure mono alkylation product 203 (6.20 g, 58%) as a colorless gel. 

 

Rf = 0.50 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = -16.8 (c 1.23, CH2Cl2);  

IR (film): υmax = 2975, 2905, 2850, 1780, 1697, 1385, 1200 cm-1; 
1H NMR (400 MHz, CDCl3): δ = 1.12 (d, J = 6.8 Hz, 3H, CH3), 2.48 (dd, J = 13.7, 9.6 Hz, 

1H, benzylic H), 2.60 (dd, J = 13.3, 7.5 Hz, 1H, CH2Ph), 2.99 (dd, J = 13.4, 3.3 Hz, 1H, 

benzylic H), 3.06 (dd, J = 13.3, 7.5 Hz, 1H, CH2Ph), 4.02 (dd, J = 9.1, 3.0 Hz, 1H, CH2O), 

4.05-4.11 (m, 2H, CHCH3, CH2O), 4.39 (s, 2H, CH2Br), 4.55-4.61 (m, 1H, NCH), 6.99 (d, J = 

7.6 Hz, 1H, aromatic), 7.00 (s, 1H, aromatic), 7.14-7.20 (m, 6H, aromatic), 7.24 (s, 1H, 

aromatic);  
13C NMR (100 MHz, CDCl3): δ = 16.8 (CH3), 33.5 (CH2Br), 37.7 (PhCH2), 39.4 (CHCH3), 

39.6 (benzylic), 55.1 (NCH), 65.9 (OCH2), 127.2, 127.3, 128.6, 129.3, 129.5, 129.8, 129.9, 

135.1, 137.8, 139.8 (aromatic), 153.0 (NCO2), 176.3 (CO); 

HRMS (EI): calcd for C21H22BrNOSi [M+Na]+: 438.06753, found 438.06839. 

 

 

tert-Butyl 3-{(2S)-3-[(4R)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]-2–methyl–3-oxopropyl} 

benzylcarbamate (204) 

 

N

O

O

O

Bn

NHBoc

     
 

A solution of azide 202 (400 mg, 1.06 mmol) in ethanol (5 mL) was added to 10% Pd/C (40 

mg) in a hydrogenation vessel. The reaction mixture was shaken under hydrogen atmosphere 

at around 2 bar pressure for 20 h. The reaction mixture was filtered through a bed of celite and 

the celite bed was washed with ethyl acetate (5 mL). The filtrate was concentrated in vacuo to 

get the crude amine which was used for the protection reaction without further purification. To 

a solution of crude amine in dioxane/H2O (2:1) (6 mL) was added 1 N NaOH (2.2 mL, 2.2 

mmol) followed by the addition of Boc-anhydride (272 mg, 1.25 mmol) at room temperature. 
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The reaction mixture was stirred at room temperature for 2 h. The reaction mixture was 

acidified to pH~3 using 5% aq. KHSO4 and the mixture was extracted with ethyl acetate (3 x 

10 mL). The combined ethyl acetate layers were washed with brine (15 mL), dried (Na2SO4), 

filtered and concentrated in vacuo to give the crude product which was purified by flash 

chromatography (1:3 ethyl acetate/petroleum ether) providing the pure product 204 (330 mg, 

65%) as a colorless gel. 

 

Rf = 0.53 (1:3 ethyl acetate/petroleum ether);  

[α]20
D

 = -15.9 (c 0.97, CH2Cl2);  

IR (film): υmax = 3410, 2965, 2935, 2850, 1780, 1700, 1515, 1380, 1240 cm-1; 
1H NMR (400 MHz, CDCl3): δ = 1.14 (d, J = 6.8 Hz, 3H, CH3), 1.42 (s, 9H, tBu), 2.55 (dd, J 

= 13.5, 9.5 Hz, 1H, benzylic H), 2.62 (dd, J = 13.3, 8.0 Hz, 1H, CH2Ph), 3.04-3.08 (m, 1H,  

benzylic H), 3.08-3.14 (m, 1H, CH2Ph), 4.03-4.10 (m, 2H, CHCH3, CH2O), 4.15 (t, J = 8.5 Hz, 

1H, CH2O), 4.24 (d, J = 5.3 Hz, 2H, CH2NH), 4.61-4.67 (m, 1H, NCH), 4.76 (br s, 1H, NH), 

7.03 (d, J = 6.3 Hz, 1H, aromatic), 7.04 (s, 1H, aromatic), 7.11 (d, J = 7.3 Hz, 1H, aromatic), 

7.15-7.17 (m, 2H, aromatic), 7.21-7.29 (m, 4H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 16.6 (CH3), 28.4 (3C, tBu), 37.7 (PhCH2), 39.5 (benzylic), 

39.7 (CHCH3), 44.6 (CH2NH), 55.1 (NCH), 65.9 (OCH2), 79.4 (Boc quarternary), 125.6, 

127.3, 128.3, 128.5, 128.6, 128.9, 129.4, 135.1, 138.9, 139.6 (aromatic), 153.0 (NCO2), 155.8 

(Boc CO), 176.5 (CO); 

HRMS (EI): calcd for C26H32N2O5Si [M+Na]+: 475.22034, found 475.22056. 

 

 

(2S)-3-[3-(Hydroxymethyl)phenyl]-2-methylpropanoic acid (205) 

 

OH

O

HO

 
 

To a solution of monoalkylation product 203 (200mg, 0.48 mmol) in THF (10 mL) were added 

30 wt% H2O2 (0.33 mL, 2.88 mmol) and 0.4 N lithium hydroxide monohydrate solution (3.60 

mL, 1.44 mmol) successively at 0 oC. The resulting reaction mixture was stirred for 7 h at 0 
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oC. The reaction mixture was then treated with saturated aqueous Na2SO3 solution (8 mL) and 

saturated aqueous NaHCO3 solution (8 mL) at 0 oC. The mixture was extracted with 

dichloromethane (2 x 10 mL) to remove the chiral auxiliary. The aqueous layer acidified to 

pH~2 by the addition of 6 N HCl. The aqueous layer was carefully extracted with ethyl acetate 

(4 x 15 mL). The combined ethyl acetate layers were dried over Na2SO4, filtered and 

concentrated in vacuo to afford the crude hydroxy acid 205 (65 mg, 70%) as a colorless oil. 

The crude mixture was used further without any purification. 

 

 

tert-Butyl({(3R,4R,5R)-4-[(4-methoxybenzyl)oxy]-3,5-dimethylhept-6-

enyl}oxy)dimethylsilane (213) 

 
OPMB

OTBS

 
 

To a solution of methyltriphenylphosphonium iodide (1.23 g, 3.05 mmol) in THF (60 mL) was 

added a 2.5 M solution of n-BuLi (1.50 mL, 3.56 mmol) in hexane at 0 oC. The resulting 

mixture was stirred for 30 min at 0 oC and a solution of aldehyde 232 (800 mg, 2.03 mmol) in 

THF (6 mL) was added at 0 oC. The mixture was stirred for further 2 h at 0 oC. The reaction 

mixture was treated with pH 7 phosphate buffer (30 mL). The resulting aqueous layer was 

extracted with CH2Cl2 (3 x 30 mL). The combined organic layers were washed with brine, 

dried (Na2SO4), filtered and concentrated. The crude product was purified by flash 

chromatography (5:95 ethyl acetate/petroleumether) to obtain the pure alkene 213 (590 mg, 

74%) as a colorless gel. 

 

Rf = 0.55 (5:95 ethyl acetate/petroleum ether); 

[α]25
D = +5.24 (c 1.01, CH2Cl2);  

IR (film): νmax = 3070, 2950, 2860, 1620, 1515, 1460, 1250, 1170 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.03 (s, 6H, Si(CH3)3), 0.88 (s, 9H; tBu), 0.96 (d, J = 6.8 

Hz, 3H, CH3), 1.07 (d, J = 6.8 Hz, 3H, CH3CHCH=CH2), 1.32-1.41 (m, 1H, 

CHCH2CH2OTBS), 1.79-1.92 (m, 2H, CH2CH2OTBS), 2.43-2.51 (m, 1H, CHCH=CH2), 3.06 
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(dd, J = 6.6, 4.6 Hz, 1H, CHOPMB), 3.56-3.62 (m, 1H, CH2OTBS), 3.65-3.71 (m, 1H, 

CH2OTBS), 3.79 (s, 3H, OCH3), 4.49 (d, J = 10.9 Hz, 1H, CH2Ph), 4.52 (d, J = 10.9 Hz, 1H, 

CH2Ph), 4.96 (d, J = 10.4 Hz, 1H, olefinic CH2 cis), 5.04 (d, J = 17.2 Hz, 1H, olefinic CH2 

trans), 5.81 (ddd, J = 17.3, 10.2, 8.1 Hz, 1H, CH olefinic), 6.86 (d, J = 8.6 Hz, 2H, aromatic), 

7.27 (d, J = 8.8 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -5.31, -5.28 (2C, Si(CH3)3), 15.9 (CH3CHCH2), 17.2 

(CH3CHCH=CH2), 18.3 (TBS quarternary), 26.0 (3C, tBu), 32.5 (CHCH2OH), 34.5 

(CH2CH2OTBS), 40.9 (CHCH2CH2OTBS), 55.3 (OCH3), 61.6 (CH2CH2OTBS), 74.5 

(CH2Ph), 88.0 (CHOPMB), 113.6 (aromatic), 113.8 (olefin CH2), 129.1 (aromatic) 131.3 (Cipso 

aromatic), 142.5 (olefin CH), 159.0 ppm (phenolic);  

HRMS (EI): calcd for C23H40O3Si [M+Na]+: 415.26389, found 415.26386. 

 

 

(4S)-4-Isopropyl-3-[(2R)-2-methylpent-4-enoyl]-5,5-diphenyl-1,3-oxazolidin-2-one (217) 

 

O N

O O

Ph Ph
 

 

To a solution of auxiliary 216 (14.0 g, 41.54 mmol) in dry THF (90 mL) was added a 2.0 M 

solution of NaHDMS (25 mL, 50.0 mmol) at -78 oC. The reaction mixture was stirred for 2 h 

at -78 oC. Allylbromide (20.0 mL, 207.7 mmol) was added dropwise to the above mixture over 

20 min at -78 oC. The resulting reaction mixture was stirred for 2 h at -78 oC and slowly 

brought to room temperature by switching off the cooling machine and stirred overnight. The 

reaction mixture was treated with saturated aqueous NH4Cl solution (50 mL) and diluted with 

diethyl ether (100 mL). The layers were separated and the aqueous layer extracted with ether 

(3 x 50 mL). The combined ether layers were washed with saturated aqueous NaHCO3 

solution (50 mL), brine (50 mL), dried (Na2SO4), filtered and evaporated to obtain the almost 

pure alkylated product as a pale yellow solid which was used for the next step without 

purification. 
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(2R)-2-Methylpent-4-en-1-ol (218) 

 
OH

 
 

To a solution of the alkylation product 217 (41.54 mmol) in THF (800 mL) was added a 

solution of NaBH4 (9.40 g, 249.3 mmol) in H2O (200 mL) at 0 oC. The resulting reaction 

mixture was stirred for 12 h at room temperature. The reaction mixture was treated with 

saturated aqueous NH4Cl solution (100 mL) at 0 oC and stirred for 1 h at 0 oC. The layers were 

separated and the aqueous layer was extracted with ether (2 x 200 mL). The combined organic 

layers were washed with saturated aqueous NaHCO3 solution (200 mL), brine (200 mL), dried 

(Na2SO4), filtered and concentrated in vacuo to give the crude alcohol. As the chiral auxiliary 

is insoluble in ether, the chiral auxiliary was removed by filtration and the remaining crude 

product purified by flash chromatography (1:1 ether/petroleum ether) to deliver the pure 

alcohol 218 (3.5 g, 90% two steps) as a light yellow colored oil. 

 

Rf = 0.45 (1:1 ether/petroleum ether); 
1H NMR (400 MHz, CDCl3): δ = 0.90 (d, J = 6.6 Hz, 3H, CH3), 1.65-1.77 (m, 1H, CHCH3), 

1.91 (ddd, J = 14.1, 7.3, 7.1 Hz, 1H, CHCH2), 2.12-2.19 (m, 1H, CHCH2), 3.42 (dd, J = 10.5, 

5.4 Hz, 1H, CH2O), 3.49 (dd, J = 10.8, 5.4 Hz, 1H, CH2O), 4.99 (d, J = 9.1 Hz, 1H, cis H), 

5.02 (d, J = 15.4 Hz, 1H, trans H), 5.73 (CH olefinic);  
13C NMR (100 MHz, CDCl3): δ = 16.3 (CH3), 35.5 (CHCH2), 37.8 (CHCH3), 67.8 (OCH2), 

116.0 (olefinic CH2), 136.9 (olefinic CH).  

 

 

(2S,3S,4R)-6-{[tert-Butyl(dimethyl)silyl]oxy}-3-[(4-methoxybenzyl)oxy]-2,4-

dimethylhexan-1-ol (223) 

 
HO OPMB

OTBS
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To a solution of acetal 224 (1.20 g, 3.04 mmol) in CH2Cl2 (30 mL) was added a 1 M solution 

of DIBAL-H in hexane (9.10 mL, 9.10 mmol) at 0 oC. The reaction mixture was stirred for 4 h 

at 0 oC and then treated with saturated sodium potassium tartarate solution (20 mL) at 0 oC. 

The solution was stirred vigorously for 1 h at room temperature and the layers were separated. 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were 

washed with water (20 mL) and then with brine. The organic layer was dried on Na2SO4, 

filtered and concentrated in vacuo to give the crude product which on purification by flash 

chromatography (1:3 ethyl acetate/petroleum ether) led the pure alcohol 223 (940 mg, 78%) as 

a colorless oil. 

 

Rf = 0.40 (1:3 ethyl acetate/petroleum ether); 

[α]20
D = -4.7 (c 1.08, CH2Cl2);  

IR (film): νmax = 3430, 2935, 2850, 1620, 1515, 1460, 1250, 1090 cm-1;  
1H NMR (400 MHz, CDCl3): δ = -0.03 (s, 6H, Si(CH3)3), 0.82 (s, 9H; tBu), 0.86 (d, J = 6.8 

Hz, 6H, 2CH3), 1.22-1.33 (m, 1H, CHCH2CH2), 1.78-1.89 (m, 2H, CH2CH2OTBS), 2.13 (br s, 

1H, CHCH2OH), 3.25 (dd, J = 6.4, 3.7 Hz, 1H, CHOPMB), 3.45-3.51 (m, 2H, CH2OTBS), 

3.55-3.59 (m, 1H, CH2OH), 3.62-3.66 (m, 1H, CH2OH), 3.70 (s, 3H, OCH3), 4.40 (d, J = 10.9 

Hz, 1H, CH2Ph), 4.48 (d, J = 10.9 Hz, 1H, CH2Ph), 6.78 (d, J = 8.6 Hz, 2H, aromatic), 7.19 (d, 

J = 8.6 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -5.39, -5.34 (2C, Si(CH3)3), 11.5 (CH3(1)), 16.6 (CH3(2)), 

18.2 (TBS quarternary), 25.9 (3C, tBu), 32.1 (CHCH2OH), 35.5 (CH2CH2OTBS), 37.5 

(CHCH2CH2OTBS), 55.1 (OCH3), 61.5 (CH2CH2OTBS), 66.3 (CH2OH), 73.4 (CH2Ph), 84.2 

(CHOPMB), 113.6, 129.1 (aromatic) 131.0 (Cipso aromatic), 159.0 (phenolic);  

HRMS (EI): calcd for C22H40O4Si [M+Na]+: 419.25881, found 419.25891. 
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tert-Butyl({(3R)-3-[(4S,5S)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]butyl}oxy)  

dimethylsilane (224) 

 

O O
OTBS

OMe

12  
 

To a solution of compound 231 (1.10 g, 3.92 mmol) in DMF (40 mL) was added imidazole 

(670 mg, 9.80 mmol) at room temperature followed by the addition of TBDMS-Cl (770 mg, 

5.10 mmol). After being stirred overnight, the mixture was diluted with water (40 mL). The 

resultant mixture was stirred for 5 min. The mixture was extracted with diethylether (3 x 50 

mL). The combined ether layers washed with 1 N HCl (40 mL), sat.NaHCO3 (40 mL) and then 

with brine (40 mL). The organic layer dried over Na2SO4, filtered and concentrated in vacuo to 

get the crude product. The crude product was purified by flash chromatography (5:95 ethyl 

acetate/petroleum ether) to furnish the pure product 224 (1.30 g, 84%) as colorless oil. 

 

Rf = 0.45 (5:95 ethyl acetate/petroleum ether); 

[α]20
D = +20.5 (c 1.00, CH2Cl2);  

IR (film): νmax = 2950, 2850, 1620, 1515, 1250, 1100 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.01 (s, 6H, Si(CH3)3), 0.86 (d, J = 6.6 Hz, 3H, CH3(1)), 

0.87 (s, 9H, tBu), 1.13 (d, J = 7.1 Hz, 3H, CH3(2)), 1.32 (td, J = 14.0, 6.7 Hz,1H, 

CH2CH2OTBS), 1.66 (qd, J = 6.8, 1.8 Hz, 1H, CHCH2O), 1.71-1.80 (m, 1H, CHCH2CH2), 

1.97-2.05 (m, 1H, CH2CH2OTBS), 3.48 (dd, J = 10.0, 1.9 Hz, 1H, CHO), 3.68 (t, J = 7.2 Hz, 

2H, CH2OTBS), 3.79 (s, 3H, OCH3), 3.99-4.05 (m, 2H, CH2O), 5.41 (s, 1H, CHO2), 6.87 (d, J 

= 8.8 Hz, 2H, aromatic), 7.41 (d, J = 8.6 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -5.28 (2C, Si(CH3)3), 10.6 (CH3(2)), 14.7 (CH3(1)), 18.3 

(TBS quaternary), 26.0 (3C, tBu), 30.0 (CHCH2O), 31.6 (CHCH2CH2OH), 36.2 
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(CH2CH2OTBS), 55.3 (OCH3), 61.8 (CH2CH2OTBS), 74.0 (CH2O), 84.2 (CHO), 101.4 

(CHPh), 113.5, 127.3 (aromatic) 131.6 (Cipso aromatic), 159.7 (phenolic);  

HRMS (EI): calcd for C22H38O4Si [M+H]+: 395.26121, found 395.24154. 

 

(4S)-4-Benzyl-3-[(2S,3R,4R)-3-hydroxy-2,4-dimethylhept-6-enoyl]-1,3-oxazolidin-2-one 

(226) 

 

O N

O O

Bn

OH

12  
 

A solution of oxalyl chloride (2.50 mL, 28.75 mmol) in dry CH2Cl2 (55 mL) was cooled to -78 
oC and a solution of DMSO (4.10 mL, 57.5 mmol) in dry CH2Cl2 (8 mL) was added dropwise 

to the above cooled solution. After 5 min, a solution of alcohol 218 (2.60 g, 26.00 mmol) in 

dry CH2Cl2 was added dropwise to the above solution at -78 oC. Stirring was continued for 30 

min at -78 oC and Et3N (13.8 mL, 130 mmol) was added over 5 min, during which the solution 

became a colorless heterogeneous mixture. At this point the cooling machine was switched off 

and the reaction mixture slowly allowed to reach room temperature over 2.5 h. Water (50 mL) 

was added to the reaction mixture and the layers were separated. The dichloromethane layer 

was washed with 1 N HCl (4 x 20 mL), saturated NaHCO3 solution (20 mL), then with brine 

(30 mL), and finally dried (Na2SO4). After filtration, the solution was partially concentrated by 

keeping the water bath at 50 oC and pressure at 750 mbar until it became about 10 mL. This 

solution was used for the aldol reaction without purification by taking the yield as 100%. 

  

 To a solution of chiral reagent ent-100 (3.60 g, 15.5 mmol) in CH2Cl2 (40 mL) was 

added dropwise 1 M solution of n-butylboron triflate (18.6 mL, 18.6 mmol) at 0 oC, followed 

by NEt3 (2.8 mL, 28.1 mmol). The resulting solution was cooled to -78 oC in 20-25 min. After 

being stirred for 5 min at -78 oC, the crude solution of aldehyde was added to the reaction 

mixture. The resulting reaction mixture was stirred for 3 h at -78 oC and then gradually 

warmed to room temperature over a period of 2 h, and stirred at room temperature for 1.5 h. 

The reaction mixture was treated with pH 7 aqueous phosphate buffer (30 mL) followed by a 

2:1 mixture of MeOH and 30 wt% aqueous H2O2 (60 mL). The reaction mixture was stirred 
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for 1 h. The reaction mixture was partially concentrated in vacuo and the resultant was 

extracted with diethyl ether (3 x 50 mL). The combined ether layers were washed with 

saturated NaHCO3 solution (40 mL), brine, dried (Na2SO4), filtered and concentrated in vacuo 

to get the crude aldol product. The crude product was purified by flash chromatography (5:95 

ethyl acetate/dichloromethane) to afford the pure aldol product 226 (4.0 g, 78%) as a colorless 

gel. 

 

Rf = 0.33 (5:95 ethyl acetate/dichloromethane); 

[α]20
D = +50.3 (c 1.10, CH2Cl2);  

IR (film): νmax = 3510, 2970, 2850, 1780, 1690, 1385, 1210 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.89 (d, J = 6.8 Hz, 3H, CH3(1)), 1.26 (d, J = 7.1 Hz, 3H, 

CH3(2)), 1.65-1.75 (m, 1H, CHCH2CH2), 1.93-2.01 (m, 1H, CH2CH=CH2), 2.52-2.56 (m, 1H, 

CH2CH=CH2), 2.81 (dd, J = 13.4, 9.4 Hz, 1H, PhCH2), 3.09 (d, J = 3.0 Hz, 1H, OH), 3.27 (dd, 

J = 13.4, 3.0 Hz, 1H, PhCH2), 3.65 (d, J = 9.1 Hz, 1H, CHOH), 3.96 (qd, J = 7.0, 1.9 Hz, 

COCH), 4.20 (dd, J = 9.2, 2.9 Hz, 1H, CH2O), 4.24 (m, 1H, CH2O), 4.69 (m, 1H, CHN), 5.04 

(d, J = 9.9 Hz, CH2 olefinic cis), 5.07 (d, J = 16.9 Hz, CH2 olefinic trans), 5.78-5.88 (m, 1H, 

CH olefinic), 7.22 (d, J = 7.1 Hz, 2H, aromatic), 7.30 (d, J = 7.1 Hz, 1H, aromatic), 7.35 (t, J = 

7.2 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 9.5 (CH3(2)), 15.1 (CH3(1)), 35.4 (CHCH2), 37.3 

(CH2CH=CH2), 37.7 (PhCH2), 39.4 (COCH), 55.1 (CHN), 66.1 (CH2O), 74.6 (CHOH), 116.4 

(CH2 olefin), 127.4, 128.9, 129.4, 135.0 (aromatic), 136.9 (CH olefin), 152.8 (NCO2), 177.9 

(CO);  

HRMS (EI): calcd for C19H25NO4 [M+Na]+ : 354.16758, found 354.16775. 

 

 

(4S)-4-Benzyl-3-((2S,3R,4R)-3-{[tert-butyl(dimethyl)silyl]oxy}-6,7-dihydroxy-2,4-

dimethylheptanoyl)-1,3-oxazolidin-2-one 

 

O N

O O

Bn

OTBS

OH
OH
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To a solution of protected aldol product 228 (4.50 g, 10.00 mmol), NMO (2.70 g, 20.00 mmol) 

in a 8:1 mixture of THF and tert-BuOH (90 mL) was added a pre prepared catalytic solution of 

osmium tetroxide in water (20 mL, 0.8 mmol) (prepared by dissolving K2OsO4.2H2O (240 mg, 

0.8 mmol) in water (20 mL) to make the whole solution to 0.04 M). After being stirred for 12 

h, the reaction mixture was treated with 10% aqueous Na2S2O3 solution (20 mL). The resultant 

mixture was extracted with ethyl acetate (3 x 75 mL). The combined organic layers were dried 

over Na2SO4, filtered and concentrated in vacuo to give the crude diol which was used for the 

next step without further purification. 

 

 

(3R,4R,5S)-6-[(4S)-4-Benzyl-2-oxo-1,3-oxazolidin-3-yl]-4-{[tert-butyl(dimethyl)silyl]oxy}-

3,5-dimethyl-6-oxohexanal 

 

O N

O O

Bn

H
OTBS

O
 

 

To a solution of the above dihydroxylated product in a 9:1 mixture of THF and H2O (40 mL) 

was added NaIO4 (6.40 g, 30.00 mmol) at room temperature. After being stirred for 1 h, the 

reaction mixture was diluted with water (30 mL) and extracted with ether (3 x 40 mL). The 

combined ether layers were washed with water (40 mL) and then with brine (40 mL). The 

ether layer was dried over Na2SO4, filtered and concentrated in vacuo to furnish the crude 

aldehyde which was used for the reduction step without further purification. 

 

 

(2R,3R,4R)-3-{[tert-Butyl(dimethyl)silyl]oxy}-2,4-dimethylhexane-1,6-diol (229) 

 

HO

OTBS
OH

1 2  
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To a solution of the crude aldehyde in THF (200 mL) was added a solution of NaBH4 (2.62 g, 

70.0 mmol) in H2O (50 mL) at 0 oC. After being stirred over night at room temperature, the 

reaction was quenched by the addition of saturated NH4Cl solution (50 mL). The resulting 

layers were separated and the aqueous layer extracted with ethyl acetate (3 x 75 mL). The 

combined organic layers were washed with saturated NaHCO3 (50 mL) and brine (50 mL). 

The organic layer was dried over Na2SO4, filtered and concentrated in vacuo to obtain the 

crude diol which was purified using flash chromatography (1:4 ethyl acetate/dicloromethane) 

leading to the pure diol 229 (2.20 g, 80% yield) as colorless oil. 

 

Rf = 0.33 (1:4 ethyl acetate/dichloromethane); 

[α]20
D = -7.10 (c 1.06, CH2Cl2);  

IR (film): νmax = 3340, 2925, 2850, 1770, 1460, 835 cm-1;  
1H NMR (400 MHz, CDCl3): δ = 0.07 (s, 6H, Si(CH3)2), 0.88 (d, J = 7.1 Hz, 3H, CH3(1)),  

0.94 (d, J = 6.8 Hz, 3H, CH3(2)), 1.35-1.43 (m, 1H, CHCH2CH2), 1.73-1.92 (m, 3H, 

CHCH2CH2, CHCH2OH), 2.06 (br s, 1H, OH), 3.47-3.66 (m, 4H, CH2OH, CH2CH2OH), 3.71-

3.77 (m, 1H, CHOTBS);  
13C NMR (100 MHz, CDCl3): δ = -4.24, -3.95 (2C, Si(CH3)3), 12.6 (CH3(1)), 17.4 (CH3(2)), 

18.4 (TBS quaternary), 26.0 (3C, tBu), 34.1 (CHCH2CH2), 35.5 (CH2CH2OH), 38.9 

(CHCH2OH), 61.1 (CH2CH2OH), 66.2 (CH2OH), 78.1 (CHOTBS);  

HRMS (EI): calcd for C14H32O3Si [M+Na]+: 299.20129, found 299.20110. 

 

 

(2R,3R,4R)-2,4-Dimethylhexane-1,3,6-triol (230) 

 

HO

OH
OH

 
 

To a solution of diol 229 (2.10 g, 7.60 mmol) in THF (35 mL) was added a 1 M solution of 

TBAF in THF (19.0 mL, 19.0 mmol) at room temperature. The resulting reaction mixture was 

stirred for 7 h at room temperature. The reaction mixture was evaporated to give the crude 
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product. The crude product was purified by flash chromatography (7:93 

methanol/dichloromethane) to afford the pure triol 230 (1.01 g, 82%) as colorless oil. 

 

Rf  = 0.23 (7:93 methanol/dichloromethane); 
1H NMR (400 MHz, CDCl3): δ = 0.86 (d, J = 6.6 Hz, 3H, CH3(1)), 0.93 (d, J = 6.8 Hz, 3H, 

CH3(2)), 1.40-1.45 (m, 1H, CH2CH2OTBS), 1.57-1.65 (m, 1H, CH2CH2OTBS), 1.70-1.80 (m, 

2H, CHCH2CH2OH, CHCH2OH), 3.42-3.46 (m, 1H, CHOH), 3.54-3.76 (m, 4H, CH2OH, 

CH2CH2OH), 4.41 (br s, 1H, OH);  
13C NMR (100 MHz, CDCl3): δ = 8.7 (CH3(2)), 17.5 (CH3(1)), 35.0 (CHCH2CH2), 35.9 

(CHCH2OH), 37.6 (CH2CH2OH), 61.0 (CH2CH2OH), 67.8 (CH2OH), 78.3 (CHOH); 

 

 

(3R)-3-[(4S,5S)-2-(4-Methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]butan-1-ol (231) 

 

O O
OH

OMe

 
 

To a solution of triol 230 (1.00 g, 6.16 mmol) in CH2Cl2 (60 mL) was added p-

methoxybenzaldehyde dimethyl acetal (1.26 mL, 6.78 mmol) at room temperature followed by 

the addition of PPTS (154 mg, 0.62 mmol). The resulting mixture was stirred for 2 h at room 

temperature. The reaction mixture was concentrated in vacuo and purified by flash 

chromatography (1:3 ethyl acetate/petroleum ether) to get the pure product 231 (1.20 g, 72%) 

as a colorless oil. 

 

Rf = 0.45 (1:3 ethyl acetate/petroleum ether); 

[α]20
D = +21.6 (c 1.09, CH2Cl2);  

IR (film): νmax = 3420, 2960, 2850, 1620, 1515, 1450, 1030 cm-1;  
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1H NMR (400 MHz, CDCl3): δ = 0.87 (d, J = 6.8 Hz, 3H, CH3(1)), 1.16 (d, J = 7.1 Hz, 3H, 

CH3(2)), 1.46 (dt, J = 19.1, 6.1 Hz, 1H, CH2CH2OH), 1.64-1.70 (m, 1H, CHCH2CH2OH), 

1.75-1.80 (m, 1H, CHCH2O), 2.09 (br s, 1H, OH), 3.51 (dd, J = 10.0, 2.2 Hz, 1H, CHO), 3.55-

3.61 (m, 1H, CH2OH), 3.64-3.70 (m, 1H, CH2OH), 3.78 (s, 3H, OCH3), 4.02 (s, 2H, CH2O), 

5.43 (s, 1H, CHPh), 6.87 (d, J = 8.8 Hz, 2H, aromatic), 7.40 (d, J = 8.8 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = 10.8 (CH3(1)), 15.5 (CH3(2)), 30.1 (CHCH2O), 32.3 

(CHCH2CH2OH), 37.4 (CH2CH2OH), 55.2 (OCH3), 61.4 (CH2CH2OH), 73.9 (CH2OH), 84.2 

(CHO), 101.9 (CHPh), 113.6, 127.3 (aromatic) 131.1 (Cipso aromatic), 159.9 (phenolic);  

HRMS (EI): calcd for C16H24O4 [M+Na]+: 303.15668, found 303.15653. 

 

 

(2R,3S,4R)-6-{[tert-Butyl(dimethyl)silyl]oxy}-3-[(4-methoxybenzyl)oxy]-2,4-

dimethylhexanal (232) 

 
O OPMB

OTBS
H

 
 

A solution of oxalyl chloride (0.23 mL, 2.52 mmol) in CH2Cl2 (5 mL) was cooled to -78 oC. 

To this solution, a solution of DMSO (0.37 mL, 5.04 mmol) in CH2Cl2 (0.5 mL) was added 

dropwise. After stirring for 15 min, a solution of alcohol 222 (900 mg, 2.27 mmol) was added 

drop wise to the above mixture at -78 oC. After the reaction mixture was stirred for 1 h, 

triethylamine (1.3 mL, 9.43 mmol) was added dropwise at -78 oC and the mixture allowed to 

reach room temperature over the course of 4 h. Then the mixture was diluted with water (4 

mL) and CH2Cl2 (4 mL). The organic layer was washed with 1 N HCl (5 mL), saturated 

aqueous NaHCO3 solution (5 mL). The organic layer was dried over MgSO4, filtered, and 

concentrated in vacuo. The crude product was filtered through a short pad of silica gel (1:3 

ethyl acetate/petroleum ether) to afford aldehyde (800 mg, 89%) as colorless oil. 

 

Rf = 0.40 (1:3 ethyl acetate/petroleum ether); 
1H NMR (400 MHz, CDCl3): δ = 0.03 (s, 6H, Si(CH3)3), 0.86 (s, 9H, tBu), 0.88 (d, J = 6.8 

Hz, 3H, CH3), 1.16 (d, J = 6.8 Hz, CH3CHCHO), 1.78-1.97 (m, 3H, CHCH2CH2, 
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CH2CH2OTBS), 2.56-2.62 (m, 1H, CHCHO), 3.59-3.72 (m, 3H, CHOPMB, CH2OTBS), 3.79 

(s, 3H, OCH3), 4.37 (d, J = 10.9 Hz, 1H, CH2Ph), 4.41 (d, J = 10.9 Hz, 1H, CH2Ph), 6.85 (d, J 

= 8.6 Hz, 2H, aromatic), 7.20 (d, J = 8.6 Hz, 2H, aromatic), 9.76 (s, 1H, CHO);  
13C NMR (100 MHz, CDCl3): δ = -5.35, -5.30 (2C, Si(CH3)3), 8.4 (CH3CHCHO), 16.3 (CH3), 

18.3 (TBS quarternary), 25.9 (3C, tBu), 32.8 (CHCH2CH2), 35.5 (CH2CH2OTBS), 49.0 

(CHCHO), 55.3 (OCH3), 61.3 (CH2CH2OTBS), 73.1 (CH2Ph), 84.2 (CHOPMB), 113.7, 129.2 

(aromatic) 131.4 (Cipso aromatic), 159.2 (phenolic), 204.8 (CHO). 

 

 

7-O-[tert-Butyl(dimethyl)silyl]-3,5,6-trideoxy-4-O-(4-methoxybenzyl)-3,5-dimethyl-D-

gluco-heptitol (diastereomer-233) 

 
OPMB

OTBS
OH

HO

 
 

To a solution of olefin 212 (25 mg, 0.064 mmol) in a mixture of 1:1 H2O and tert-butanol (1.0 

mL) was added AD-mix-α (90 mg) at 0 oC. Stirring was continued for 3 d at 0 oC. The reaction 

was quenched with 10% Na2S2O3 solution (1 mL) at 0 oC. The mixture was extracted with 

ethyl acetate (3 x 5 mL). The combined organic layers were dried (Na2SO4), filtered and 

concentrated to give the crude diol in 4:1 diastereomeric mixture which was purified by flash 

chromatography (1:1 ethylacetate/petroleum ether) to get the pure diol diastreomer-233 (5 

mg, yield was not determined because of very small amounts) as an oil. 

 

Rf = 0.50 (1:1 ethyl acetate/petroleum ether); 
1H NMR (400 MHz, CDCl3): δ = 0.03 (s, 6H, Si(CH3)3), 0.88 (s, 12H, tBu, CH3CHCH2), 0.91 

(d, J = 7.1 Hz, 3H, CH3CHCH), 1.30-1.44 (m, 2H, CH2CH2OTBS), 1.90-1.77 (m, 2H, 

CHCHOH, CHCH2CH2), 2.56-2.62 (m, 1H, CHCH2O), 3.47-3.51 (m, 2H, CHOPMB, CHOH), 

3.60-3.73 (m, 4H, CH2OH, CH2OTBS), 3.79 (s, 3H, OCH3), 4.55 (s, 2H, CH2Ph), 6.86 (d, J = 

8.6 Hz, 2H, aromatic), 7.26 (d, J = 7.3 Hz, 2H, aromatic);  
13C NMR (100 MHz, CDCl3): δ = -5.34, -5.28 (2C, Si(CH3)3), 11.4 (CH3CHCH), 16.3 

(CH3CHCH2), 18.3 (TBS quarternary), 26.0 (3C, tBu), 31.6 (CHCH2CH2), 35.8 



Experimental Section 203                        
 

 

(CH2CH2OTBS), 36.9 (CHCHOH), 55.3 (OCH3), 61.5 (CH2CH2OTBS), 73.1 (CH2Ph), 84.1 

(CHOPMB), 113.8, 129.2 (aromatic) 131.4 (Cipso aromatic), 159.1 (phenolic). 
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HMQC spectrum of macrocycle 129 (320 K, 600 MHz, DMSO-d6). 
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HMQC spectrum of macrocycle 134 (300 K, 600 MHz, DMSO-d6). 
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