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Abstract

Neutron stars are one of the possible products of the evolution of stars, consist-
ing of the most compact form of matter with dimensions. The concentration of
mass more than the solar one within about 20km, requires general relativistic
description, with the equation of state governing the physics still being largely
unknown. The observational analogue of neutron stars are believed to be pul-
sars, which are found to rotate with periods down to ∼ 1msec. Rapidly rotating
compact objects like these, are extremely interesting for physics, since they
provide conditions that could hardly be produced in a laboratory on earth.

Electromagnetic radiation is, so far, the only way to observe and study these
objects, with gravitational waves being the promising new window that general
theory of relativity has predicted to open in the future. The recent technological
achievements in laser interferometry are just enabling detection of such waves
from our galaxy. Apart from sudden violent events, such as collisions between
two compact obects, oscillations from single neutron stars are also a good source
for gravitational wave signals. Excited through various astrophysical scenaria,
some oscillations can become unstable and emit gravitational waves for a suffi-
cient amount of time to be received and detected from earth. The knowledge of
the properties of the oscillations (eg. frequency and damping time) is required
for tuning the detectors and has been the goal of various studies. A fully rela-
tivistic 3-dimensional numerical time evolution would resolve the problem, being
though hardly conceivable due to computational limitations. Various approxi-
mations have given contradictory results in the past, mainly due to the failure of
the applied spherical symmetry to describe rotating neutron stars. We therefor
attack this problem in a simplified but consistent way, and aim to reveal some
fundamental aspects of neutron star oscillations.

We use linearized perturbation theory to describe the oscillations of neutron
stars modeled by polytropic equations of state. In the limit of no rotation we
adopt a spherically symmetric background and are able to confirm results of
previous studies, finding an infinite spectrum of pressure driven modes at fre-
quencies above about 2kHz as well as oscillations of the spacetime at frequencies
of about 10kHz. The two groups of modes have in this case different character,
with the first having even parity (polar modes) and the latter odd parity (axial
modes).

For rotating stars we use an axisymmetric background, with the perturba-
tions having a eimφ-behavior and a series of associated Legendre polynomials,
Pm
` , describing their θ-dependence. The equations grow though now much more

lengthy, and the numerical implementation becomes more difficult. We therefore
adopt an approximation (so-called “Cowling”) that was found to give consistent
and quite accurate results in no rotation, by neglecting the perturbations of the
spacetime and concentrating on the fluid perturbations. By this, an eigenvalue
problem is formed, solved for all possible solutions.



Next to the infinite set of pressure modes, we also found the modes driven by
rotation (inertial modes). They also form an infinite set, but are confined in a
frequency range dependent from the rotational frequency and the compactness
of the star. The presence of a corresponding continuous spectrum could not
be excluded. For values of the azimuthal index m ≥ 2, all the inertial modes
are unstable and for increasingly high m they tend to move into the range of
frequencies of the pressure modes.

While pressure modes were easily identified both through their eigenfunc-
tions as well as via their frequencies, for inertial modes the same task was more
tedious. The dense frequency distribution of modes requires looking at the
eigenfunctions, but these have, in this case, a complicated behavior, owing to
the contribution from several ` that form the mode. Still, individual modes
have been identified and could be followed for increasing resolution. Based on
the characteristics of the θ-part of the velocity perturbation from other studies
on the fundamental r-mode, we found a mode resembling these criteria for a
slowly rotating model; its frequency –1.41 times the spin frequency of the star–
is in agreement with previous results in that regime. For a rapidly rotating
neutron star model, a similar mode can still be identified, with its eigenfunction
deviating though more from the expected form, and its frequency being higher
(rather than lower as expected by other studies) than in slow rotation.

Despite the discoveries of general properties of the inertial mode spectrum,
the identification of modes in there might still be problematic. Reason for that
is the presence of the infinite set of inertial modes – which might as well be
continuous –that could even not allow the existence of the r-mode. But even
if present, its behavior is probably numerically influenced by the neighboring
solutions, which could even lead to misidentifying it, especially for rapid rota-
tion. Larger memory power would allow increasing the resolution of the problem
and possibly the clarification of the above questions. Numerical 3D evolution
could also provide a definite answer, while a successful detection of such a mode
through gravitational waves would be the final confirmation of the existence of
unstable modes.

A search for a signature of a neutron star’s non-radial modes in the electro-
magnetic spectrum the low-mass X-ray binary Circinus X-1 could not support
the connection between quasi-periodic oscillations (QPOs) and quasi-normal
modes, but did extend the observed range of kHz QPO frequencies to a new
regime providing a unique test for QPO-models. The frequency-frequency cor-
relations confirmed the identification of the underlying compact object as a
neutron star.



Contents

I Neutron star oscillations as sources of gravitational
waves 1

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Spherical symmetric background 10

2.1 Problem set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Radial modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Non Radial modes . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Axial modes . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Polar modes . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Going from spherical symmetry to axisymmetry 22

3.1 The spherical background in two dimensions . . . . . . . . . . . . 22
3.2 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The QR-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Numerical procedure . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Testing the method . . . . . . . . . . . . . . . . . . . . . 28

4 Axisymmetric background 29

4.1 Problem set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1 Equilibrium background . . . . . . . . . . . . . . . . . . . 29
4.1.2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Numerical effect of background on perturbations . . . . . 33
4.1.5 Differentiation scheme . . . . . . . . . . . . . . . . . . . . 33

4.2 Axisymmetric perturbations . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 No rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Rapid rotation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Non-axisymmetric perturbations . . . . . . . . . . . . . . . . . . 47
4.3.1 Pressure modes . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Identification of inertial modes . . . . . . . . . . . . . . . 50

i



4.3.3 The fundamental r-mode . . . . . . . . . . . . . . . . . . 52

5 Conclusions 57

II Quasi-periodic oscillations in X-rays 59

6 kHz quasi-periodic oscillations from Circinus X-1 60

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Observations and Analysis . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 Twin kHz QPOs . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.2 kHz QPOs . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.3 Other QPOs . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Geometrical & RNS units 78

A.1 Geometrical units . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.2 RNS units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B Associated Legendre polynomials 79

C The determination of the Poisson Level 80

Acknowledgements 86

ii



Oscillations of rapidly rotating neutron stars

Stratos Boutloukos

October 16, 2006



Part I

Neutron star oscillations as

sources of gravitational

waves

1



Chapter 1

Introduction

1.1 Motivation

Neutron stars are the most compact form of matter that gravity allows to have
dimensions in astronomical scales. Due to this compactness, even small pertur-
bations in the equilibrium of such objects could be violent enough to produce a
strong signal (mainly through gravitational wave emission) detectable from the
earth. A wealth of information has been retrieved in the past through the study
of oscillations (in the electromagnetic spectrum) from much less compact objects
such as the sun or variable stars. A brief summary of the achievements of the
so-called asteroseismology will be given below, together with further motivation
for the search for gravitational waves from neutron star oscillations.

Radial oscillations have long been observed from variables stars such as
Cepheids, RR Lyrae and Mira variables. Non-radial oscillations were though
first considered as the reason for producing the variabilities in the spectrum
of a β Cephei (β Canis Majoris) in 1951 by Ledoux. The breakthrough was
achieved in 1962 by Leighton, Noyes and Simon who discovered the 5-minute-
oscillation of the sun. By now, hundreds of the sun’s pressure modes, as well as
some low-order gravity modes are seen in its spectrum (see below for the defini-
tion of these modes). The study of their frequencies and further characteristics
is a branch in astronomy by itself, called helioseismology, and contributed the
most towards our knowledge about the inner composition of the sun. In the
meanwhile, non-radial oscillations have been identified from many other stars,
such as Ap stars, early type O and B stars and even white dwarfs. Dependent
mainly on the compactness of the star, these frequencies can be as low as 0.1
mHz for pressure-modes and one order of magnitude smaller for gravity-modes,
while for white dwarfs they have been observed up to 10 mHz.

Just as every physical body, neutron stars also retain their own distinct set
of oscillation modes, at which they oscillate when excited. The character and
frequencies of these modes depend on the neutron star model. We concentrate
here on isentropic models, where a star’s equilibrium as well as its perturbations
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can be described with the same one-parameter equation of state p = p(ε) and
constant entropy (Lockitch and Friedman, 1999) (also called barotropic (Lock-
itch et al, 2004)). Deviations from an isentropic model become important only
if the radian spin frequency is comparable to or smaller than the Brunt-Väisälä
frequency, which for neutron stars is on the order of 100Hz (Lockitch et al,
2001). Otherwise, stars retain a set of pressure modes (p-modes) as well as one
of inertial modes. For models with composition gradient or finite temperature,
the star would allow also many gravity modes (g-modes) to be excited. A short
summary of the properties of these families of modes, as attained by previous
analyses is given below.

A rich oscillation spectrum exists for any neutron star model. Since, un-
der several circumstances, a family of modes can be degenerate in frequency,
we preferably define a mode from its eigenfunction. Assuming a spherically
symmetric background, the angular behavior of a mode can be expressed as
a spherical harmonic (Y`m) and specific values of the harmonic indices can be
assigned to it. If the perturbations behave like (−1)` under space iversion, they
are called even or polar ones; odd or axial ones have (−1)`+1 parity. Along the
surface of constant radius, a mode will have ` nodal lines: m azimuthal ones and
` −m in the θ-direction (see eg. Unno et al, 1989). Along the radial direction
a fundamental mode will not have any nodes, while, for example, the second
overtone will have two nodes. For the classification of the modes for various
models we need, however, to look at their eigenfrequencies as well.

The pressure modes were the first to be studied since they exist even for
constant density stars (“MacLaurin spheroids” or “incompressible fluids”) in
Newtonian gravity. The lowest-frequency mode (the fundamental (f -) mode)
has then a frequency that is given by

√

2`(`− 1)

2`+ 1

M

R3

while for several equations of state it gets values of about 2.3kHz ± ∼700Hz. Ro-
tation does not significantly affect the pressure mode frequencies up to rotation
rates of about half the break-up frequency (Font et al, 2001). For faster rota-
tion, the f -mode decreases in frequency for several 100 Hz. For some neutron
star models rotation close to the break-up frequency brings the f-mode to the
zero-frequency plane, marking its instability (see below). There are infinitely
many pressure modes with increasingly high frequencies.

Inertial modes are called the ones that are driven by rotation and have thus
zero frequency for non-rotating stars. In the spherical limit they have pure ax-
ial parity, in contrast to the g-modes that have polar one. In isentropic models
rotation causes a mixture of axial and polar parity, leading to what was occa-
sionally called ’hybrid modes’. In non-isentropic stars the inertial modes would
retain pure axial parity and were named r-modes due to their similarity with the
Rossby waves of terrestrial mechanics. In Newtonian physics the ` = m inertial
modes of isentropic stars have still pure axial nature, with the fundamental one
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having frequency

σ = mΩ

[

1− 2

`(`+ 1)

]

;

in general relativity all modes (apart from the dipole ones) have mixed parity.
There is an infinite number of inertial modes for relativistic isentropic stars
(Lockitch et al, 2004), with their frequencies being typically several 100 Hz.

For a review regarding fluid oscillations of neutron stars see Nollert (1999)
and Kokkotas and Schmidt (1999); equilibria and perturbations of rotating neu-
tron stars bare reviewed by Stergioulas (2003) while Andersson and Kokkotas
(2001) concentrate on r-modes.

Physical phenomena that can lead to excitation of various modes are the very
birth of a neutron star after a supernova explosion, where the proto-neutron star
is hot and rapidly rotating, as well as the infall of matter at accreting neutron
stars which form binary systems with a main-sequence companion. Compact
binaries are also expected to excite fluid oscillations at the latest stage of evo-
lution, when the separation becomes of the same order as the size of the stars.

In order to be able to observe oscillations, a mechanism is needed to bring
the oscillation amplitudes to high level and preferably keep them there for a
significant amount of time. Instabilities are shown to be doing that work, and
can play an important role in neutron star physics. Friedman and Schutz (1978)
(after Chandrasekhar (1970)) showed with the so-called CFS instability that
modes can become unstable, depending on their frequency with respect to the
rotational frequency of the star and the character of the mode.

Andersson (1998) discovered that the r-modes are unstable for any rotation
rate of a perfect fluid star. In presence of dissipation, the modes will grow in am-
plitude until saturation is reached, with the whole procedure being determined
by its growth time and the damping times of these anticipating mechanisms
(Andersson, 2003). Since the discovery of this new class of unstable modes,
much excitement was spread among the scientific community concerning the
detectability of such modes through gravitational waves, and consequently a lot
of studies were devoted on testing the growth of these modes. Most challenging
are the presence of strong magnetic fields (Rezzolla, Lamb & Shapiro, 2000) and
the non-linear coupling with other (higher order) modes (Brink et al, 2004a),
while the presence of a crust and hyperons in the core can also limit the insta-
bility. Since not only the saturation amplitude does determine the detectability
but also the duration of the instability, the r-modes1 are still considered an
important source for gravitational waves.

The same mechanism can also cause the f -mode of a neutron star to become
unstable. Still, this occurs only when the rotation frequency of the star is close
to the Kepler limit (Yoshida & Eriguchi, 1999); this is, however, expected to
be the case for a newly born neutron star. Many g-modes can become unstable
as well, although their growth is most likely suppressed by viscous dissipation

1We will be referring to r-modes also for relativistic stars even though they are defined in
Newtonian gravity, and their character in general relativity is different.
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(Lai, 1999). The latter are related to either composition gradient or finite tem-
perature, which are not considered in this work.

Gravitational waves The reason for all this excitement is the perspective
of opening a new window in astronomy through gravitational waves. Their
prediction in the framework of general relativity has initiated laborious attempts
to detect such from astrophysical sources. Due to the weak interaction with
matter, one needs quite a strong signal to be observable. Even our nearby
sun cannot produce any sufficient gravitational wave emission. Since a time-
varying quadruple moment is necessary for the emission of gravitational waves,
one needs a non-spherical-symmetric motion of compact matter for that. The
best sources therefor are black holes and neutron stars, with the mass of the
object determining how far away such a signal can be seen. More violent events,
like collisions of two compact objects, will of course produce a much stronger
signal, whose duration though will be shorter and the probability of occurrence
in an observable distance might eventually be smaller. Oscillation modes, on
the other hand, are present for an extended period of time and according to
the instability scenario above, can be excited to large amplitude to be observed
from the earth. Apart from the many more sources in our galaxy, the long
duration of such a signal can especially advance the search of such a signal
through continuous observations with matched filtering.

Especially exciting are the information that one can draw out of observing
one or more oscillations from a neutron star. Andersson & Kokkotas (1998)
computed the frequencies and damping times of the fundamental pressure mode
and a w(ave)-mode of non-rotating stars for several equations of state, and
found that there is a well-defined relation between the frequency of the mode
and the compactness of the star, as well as between the damping time and the
mean density (Fig. 1.1). In the case of observing an oscillation mode from a
neutron star one could estimate through these relations both M/R and M/R3,
ie. determine the mass and the radius of the neutron star, still a holy grail in
astronomy. Depending on the mode observed, this procedure can be direct or
iterative by excluding some equations of state and then rather restricting the
parameters in a narrow range. By including rotation into the analysis, also the
spin frequency can be determined, but also more observation would be needed.

Gravitational wave astronomy is just reaching the sensitivity required for
such observations after many years of technical development. The bar detectors
that paved the way and occasionally produced some excitement by coincidences
likely related to gravitational waves (Astone et al, 2002) are now being over-
taken by laser interferometers. GEO-600 in Hanover and LIGO in Stanford and
Livingston (followed by TAMA in Japan and VIRGO in Italy) are carrying the
hopes of this – still young – research area; common science runs and data anal-
ysis are already taken between the two groups, with the most recent one (S4
during 2005) marking the attainment of the planed sensitivity of the current
stage and spreading optimism for a doubtless detection within short time. The
first source seen can be a violent event, such as a compact binary merger in
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Figure 1.1: The real and (normalized) imaginary part of the f -mode frequency
for various equations of state (from Andersson & Kokkotas (1998)).

the Milky Way or a supernova explosion in the solar neighborhood, but can
also be a careful observation of a persistent emission, eg. through neutron star
oscillations. The number density of compact binaries is being corrected down,
bringing up again the attention to r-modes and other unstable neutron star os-
cillations. The planed update of GEO-600 is a unique opportunity of adopting
special techniques to advance observations in the frequency range needed for
the above, ie. in the few hundred up to kHz range. Narrow-banding in high
frequencies is indeed well considered as the next generation form of operation of
GEO-600, which should be ready by 2010 (Willke et al, 2006), see fig. 1.2. In the
meanwhile the suspense rises about when gravitational waves will be observed
and whether the first source ever seen might be from neutron star oscillations.

1.2 Previous work

The astrophysical importance of neutron stars oscillations and their relevance
to gravitational waves gave rise to numerous works towards calculating their
properties analytically as well as numerically. Perturbation theory provided a
first tool towards this direction and set the baseline of our current knowledge.
As a first step, the early studies had used simplified physics, such as Newtonian
gravity, no rotation and incompressible fluids. As a more realistic description,
the slow-rotation approximation and polytropic equations of state were used,
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Figure 1.2: The sensitivity curve of the planed high-frequency upgrade of GEO-
600 for three cases of fine-tuning (after Hough (2004).)

while the relativistic Cowling approximation (fixed spacetime, see later in this
section) proved to be more than 80% accurate compared to fully relativistic
results. Recently, full 3D relativistic time-evolutions became possible, and rapid
rotation combined with relativistic gravity are giving the first results, but still
a lot of questions are open. We review here the results attained so far with
several approaches and point out what is still missing.

In Newtonian gravity the perturbation equation describing the frequencies
of pressure modes is of Sturm-Liouville type (see eg. Cowling, 1941) and the
solution is an infinite set of modes with a frequency range unbound from above.
This analysis was extended in a relativistic framework (see eg. Thorne & Cam-
polattaro, 1967; Detweiler & Lindblom, 1985), but as Chandrasekhar & Ferrari
(1995) showed, the relativistic modes have a one-to-one analogy with the New-
tonian ones as the models get less and less relativistic.

The range of frequencies that the inertial modes cover has been studied in
the same framework (see Greenspan, 1968) and is found to be finite. Lindblom
and Ipser (1999) found for Newtonian incompressible stars the analytic solutions
to extend from (−2 −m)ν to (2 −m)ν where ν is the rotational frequency of
the star and m the azimuthal index. Later Brink et al (2004) computed a large
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set of such modes in the same framework and confirmed modes up to 30th order
to have frequencies confined within this range. Ruoff et al (2003) studied the
inertial mode spectrum for relativistic barotropic (as well as non-barotropic)
stars in the slow-rotation approximation by including coupling of modes up to
a maximum harmonic index `max. Next to distinct inertial modes they found a
continuous spectrum whose width depends on the compactness of the star and
on `max. They all lie roughly between −ν and ν for m = 0 and between −2ν
and 0 for m = 2. For `max →∞ the authors expect the continuous spectrum to
fully cover this range with individual modes still existing inside the continuous
spectrum. On the other hand, Lockitch et al (2004) argue in their appendix
that only individual modes should be present.

Most studies of neutron star oscillations use the so-called Cowling approx-
imation where one looks only at fluid displacements and neglects metric per-
turbations (Cowling, 1941 after Emden, 1907). Lockitch et al (2001) consider
the results of Ruoff et al (2003) unreliable due to its use. In the slow-rotation
regime, however, Yoshida et al (2005) found what they identify as the funda-
mental r-mode to deviate only a few percent of the rotational frequency of the
star from the modes calculated without the Cowling approximation, using the
scheme introduced by Lockitch et al (2001). This confirmed earlier results from
Provost et al (1981). Thus, although Finn (1988) showed that one should not
use the relativistic Cowling approximation for calculating g-modes (which have
low frequency and involve large fluid velocities), it appears that for r-modes,
which have similar properties, frequencies can be calculated fairly accurately
with this approach. Furthermore, the Cowling approximation has been shown
(Yoshida & Kojima, 1998) to give accurate results (up to about 20%) for rela-
tivistic non-radial p-modes.

On the other hand, using the slow-rotation approximation may be more
problematic than the Cowling approximation. It seems that when going beyond
the first order in the rotation rate of the star, results may differ considerably
from those obtained in first order (Beyer and Kokkotas, 1999). Therefor, it is
necessary to discard the slow-rotation limit, and take into account the flattening
of the star due to rotation. The presence of a continuous spectrum might well
be an artifact of the slow-rotation approximation.

1.3 Methodology

The full-nonlinear time evolution of a rapidly rotating relativistic neutron star
would be able to resolve most of the open questions regarding oscillations and
stability. This is though a very complicated system to solve and would require
too much computational time. We will therefor try to approach the problem
from a simplified point of view in order to reveal some of its aspects and pave
the way for forthcoming works. Perturbative methods are computationally much
less expensive and linear perturbation theory has proved to describe well oscilla-
tions of small amplitude. Time-evolution has the advantage of pointing out the
strongest modes excited, but mode calculation reveals also the weaker ones and
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thus also the general properties of the frequency distribution. General relativity
and rapid rotation are the main ingredients of this analysis, whose combination
is what makes it so special, since at the starting point of this work they were
never successfully applied together.

We will thus perform mode-calculation on a perturbative scheme of rapidly
rotating neutron stars in general relativity. They main focus of this work will be
the unstable modes, ie. the inertial modes and the fundamental pressure mode,
but we will also study the general characteristics of the mode spectrum. Given
the results discussed above, we expect to come against an infinite number of
pressure modes with frequencies on the order of kHz and higher, and possibly
an infinite number of mixed parity inertial modes, with frequencies dependent
on the rotation rate of the star.

In order to get a better insight into neutron star oscillations and experi-
ence in numerically solving such problems, we will first study non-rotating stars
in chapter 2. Because the problem for rapidly rotating ones is expected to
be somewhat different and may demand special care, we elaborate on the nu-
merical scheme that can be used for that case and establish an appropriate
procedure in chapter 3. Eventually we deal with the oscillation mode problem
for rapidly rotating neutron stars, both for axisymmetric and non-axisymmetric
perturbations, in chapter 4. We end with some general remarks and the overall
conclusion in chapter 5.
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Chapter 2

Spherical symmetric

background

In this part we initiate the mode calculation problem for neutron stars and
pave the way for the inclusion of rotation. Therefor we need to perform a
consistent analysis and watch for changes that may occur when switching to
rotating stars. For the sake of simplicity we will use polytropic equations of
state, and specifically one described by p = 100km2 × ρ2. Such an equation
of state is a good description of the background of neutron stars, regardless of
rotation.

2.1 Problem set-up

For non-rotating stars, the background is spherically symmetric and can be
described by the Schwarzschild metric:

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2),

where ν, and λ are functions only of the radial coordinate r; θ and φ are the
usual spherical coordinates.

For a zero-temperature perfect fluid the energy-momentum tensor has the
form

Tµν = pgµν + (p+ ρ)uµuν

where p(r), ρ(r) are the pressure and density of the star, while uµ = {−eν , 0, 0, 0}
is the 4-velocity of the fluid. The profile of the above variables throughout the
star and thus its structure can be found by solving the Einstein equations

Rµν = 8π(Tµν −
1

2
gµνT

α
α )
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and the conservation of energy-momentum

Tµν;µ = 0

Due to the tensor symmetries and the relation between p and ρ, eventually just
three equations suffice to describe the interior of the star which are known as
Tolman-Oppenheimer-Volkov (TOV) equations:

ν′ = 4πrpe2λ +
e2λ − 1

2r
(2.1)

λ′ = 4πrρe2λ − e2λ − 1

2r
(2.2)

p′ = −(p+ ρ)ν′ (2.3)

(′ ≡ d/dr)
On this background we assume now a perturbation of gαβ : hαβ . We have

then the perturbed Christoffel symbols

δΓκµν =
1

2
gακ(hαν;µ + hαµ;ν − hµν;α)

and the perturbed Ricci tensor

δRµν = δΓαµν;α − δΓαµα;ν .

The perturbed Einstein equations then read:

δRµν = 8π(δTµν −
1

2
(gµν(g

κλδTκλ − hκλTκλ) + hµνT
α
α )) (2.4)

while

δTµν = δpgµν + phµν + (p+ ρ)(uµδuν + uνδuµ) + (δp+ δρ)uµuν

is the perturbed form of the energy momentum tensor.
δρ and δp = C2s δρ are the density and pressure perturbations respectively

while Cs =
√

dp
dρ is the speed of sound in the fluid; δuµ stands for the perturbed

4-velocity, which describes the velocities of the fluid perturbations.
These three perturbed quantities of the fluid are related through the equa-

tions of motion which arise from the condition

δ
(

T νµ;ν
)

= gκν
[

(δTµκ),ν − δΓρνκTµρ − δTµρΓρνκ − ΓρµνδTρκ − TρκδΓρµν
]

− hκνTµκ;ν
= 0 (2.5)

All together gives us a system of equations for fluid and metric variables
in the four-dimensional spacetime describing the evolution of a perturbation.
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The problem can be simplified much more when the symmetry of the prob-
lem is recognized and a decomposition into spherical harmonics (Y`m(θ, φ)) is
applied. The pressure perturbation, for example, would then be expressed as
p(t, r, θ, φ) = p(t, r)Y`m(θ, φ). By using the equation that the Y`m’s satisfy,

sin2 θ
∂2Ylm
∂2θ

+
∂2Ylm
∂2φ

+ cos θ sin θ
∂Ylm
∂θ

+ sin2 θ`(`+ 1)Ylm = 0,

the angular dependencies are eventually removed and the index ` appears in the
equations. If we also assume an harmonic time dependence, p(t, r) = p(r)eiσt,
we are eventually left with a one-dimensional problem to solve. We will now
proceed in solving some explicit cases for non-rotating stars that have been
studied before and whose results we can compare with the literature.

2.2 Radial modes

Due to the spherical symmetry, all derivatives with respect to the angular co-
ordinates (θ, φ) vanish, and the general description for the metric perturbation
reduces to

hµν =









S1(t, r) 0 0 0
0 S3(t, r) 0 0
0 0 T (t, r) 0
0 0 0 T (t, r) sin2 θ









We have also made use here of the additional freedom of the Regge-Wheeler
gauge by eliminating the t-r component of hµν . The perturbed 4-velocity then
reads:

δuα =

(

1

2
S1(t, r), δur, 0, 0

)

The equations of motion of the fluid, with the help of the momentum constraint
and an additional condition, which used up the final gauge freedom in order to
eliminate the T(t,r) variable, led to a single wave-equation for one fluid variable,
the fluid displacement vector ζ(t, r) (ζ̇ ∼ δur):

W
∂2ζ

∂t2
=

∂

∂r
(P

∂ζ

∂r
) +Qζ (2.6)

with
W = (p+ ρ)e3λ+ν/r2

P = (p+ ρ)eλ+3νC2s/r
2

Q = (p+ ρ)eλ+3ν(ν′2 + 4 ν
′

r − 8πe2λp)/r2

This was turned into a set of two ordinary differential equations of first
order for the variables y1(r) = eiσtζ(t, r) and y2(r) = P × y′1. We integrate
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Table 2.1: The first three radial modes computed with our code for a polytropic
equation of state with (ρc = 3 × 1015gr/cm3) compared to the results of Ruoff
(2001b).

Our results Literature
2,137 2,141
6,865 6,871
10,308 10,319

them from the center of the star (initial values y1(∆x) ' y10∆x
3, y2(∆x) ' y20

with regularity condition y10 = y20/(3P0)) until its surface. The satisfaction of
the boundary condition there, y2(R) = 0, reveals us the eigenfrequencies. We
found a series of solutions, the first three of which are presented in table. 2.1
We notice that our results are in good agreement (within less then 1%) with the
same calculations by Ruoff (2001b).

The small discrepancy is possibly due to the use of just single numerical
precision; later in this work, when results get more demanding, we switch to
double precision. This gives us confidence that both the numerical procedure
and the integration routine have been performed properly. This was also the sole
scope of this analysis since the radial modes are the most trivial and well known
solutions of the eigenvalue problem. They are of no further interest, since for
non-rotating stars they do not produce any gravitational wave emission, which
is also the reason why the eigenvalues are purely real numbers. Only in the
case of rotation these modes will couple to non-radial ones and get a complex
frequency, the imaginary part of which describes the damping due to outgoing
radiation.

2.3 Non Radial modes

The decomposition of the non-radial perturbations into spherical harmonics
reveals two groups of variables that behave differently under rotation, the polar
(even parity) and the axial (odd parity) ones. In the non rotating case they are
completely decoupled and can be studied separately.

2.3.1 Axial modes

The perturbed metric in the Regge-Wheeler gauge reads:

hµν =









0 0 −eν−λV1∂φYlm/ sin θ eν−λV1 sin θ∂θYlm
0 0 −eλ−νV2∂φYlm/ sin θ eλ−νV2 sin θ∂θYlm
? ? 0 0
? ? 0 0
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(V1,2 = V1,2(t, r), ∂φYlm ≡ ∂Ylm
∂φ , ∂θYlm ≡ ∂Ylm

∂θ , ? ≡ symmetric part )
The corresponding velocity perturbations are

δuα = u3(r) (0, 0,−∂φYlm/ sin θ, sin θ∂θYlm)

The t-t component of the perturbed Einstein equations reveals that

H(t, r) ≡ δρ

p+ ρ
C2s = 0 (2.7)

From the equations of motion it then follows that

∂u3
∂t

= 0 (2.8)

That means that the axial perturbations (in the non-rotating case) do not
produce any oscillation of the fluid (σ 6= 0⇒ u3(r) = 0). Therefore the pertur-
bation itself would be fully described by a metric variable.

The two metric variables are related through the evolution equations

∂2V1
∂t2

= e2(ν−λ)
{

∂2V0
∂t∂r

+

[

4πr(p− ρ)e2λ +
e2λ − 3

r

]

∂V0
∂t

+ e2λ
2− `(`+ 1)

r2
V0

}

(2.9)

∂V0
∂t

=
∂V1
∂r

(2.10)

which can be combined to a single equation for V1:

∂2V1
∂t2

= e2(ν−λ)
{

∂2V1
∂r2

+ (ν′ − λ′ − 2

r
)
∂V1
∂r

+ e2λ
2− `(`+ 1)

r2
V1

}

(2.11)

(where we also made use of the TOV relations), or for Q = V1
r :

∂2Q

∂t2
= e2(ν−λ)

{

∂2Q

∂r2
+ (ν′ − λ′)∂Q

∂r
+

[

e2λ[2− `(`+ 1)]− 2

r2
+

(ν′ − λ′)
r

]

Q

}

(2.12)

By introducing the tortoise coordinate r? through d
dr∗

= eν−λ d
dr we can

additionally eliminate the first spatial derivative of Q:

∂2Q

∂t2
=
∂2Q

∂r2∗
+ e2ν [4π(p− ρ) + 6m− r`(`+ 1)

r3
]Q, (2.13)

where we returned to the more familiar variables (pressure, density, mass-
function).
We integrate from the center of the star – initial dataQ(∆x) = Q0∆x

`+1, dQdr |∆x =
Q′0(` + 1)∆x` – until infinity (set at 1000 × R) where we expect the wave to
be purely outgoing, ∼ e−iσr? . We do this by demanding the Wronskian of our
variable and the exponential factor to vanish. The complex frequencies that
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Table 2.2: The w-modes of a neutron star with a polytropic equation with
ρc = 5×1016gr/cm3. Presented are the real and imaginary part of the frequency
in kHz for the three numerical methods described in the text: (H-P) for the
method of Nollert (1990), (r?) for the one of Andersson (1998) and (r) for a
alternative version of the latter developed here.

(H-P) (r?) (r)
σR σI

13.772 0.441
15.912 0.990
18.128 1.578
20.287 2.135

σR σI
13.772 0.441
15.912 0.990
18.128 1.578
20.287 2.135

σR σI
13.771 0.441
15.912 0.990
18.128 1.578
20.288 2.132

satisfy this last condition are then the eigenmodes. The problem that occurs
is that, because the imaginary parts of the frequencies are positive, the wanted
solution diverges exponentially towards infinity, ie. too large numbers at our
boundary.

One method that avoids this problem was proposed by Nollert (1990). It
uses the analytic expression of the outgoing solution (instead of just the leading
order term)

φ(r →∞) = e−iσrr−iσ

(

N
∑

n=0

anr
−n +O(r−N−1)

)

and takes the sum over an optimum number of terms dependent from the inte-
gration distance N ≈ 2|σ|rN for which it is shown that the growth is suppressed.
One has to integrate until just outside the surface of the star and then calculate
the Wronskian at the preferred distance.

Another solution to this numerical problem was proposed by Andersson
(1998), who suggested integrating along a line at the complex r? plane for which
arg(r?) = −arg(σ). By excluding an in-going wave from infinity (e+iσr?) the
outgoing solution should go like e−iσr? . The exponent of that term has then a
zero imaginary part and therefor it does not grow. One has then to integrate
many wavelengths (2π/|σ|) outside the star, in order to get rid of the unwanted
solution (with the plus sign on the exponent). For an optimal accuracy even a
1000-wavelength distance is necessary.

We applied both methods to a dense – ρc = 5 × 1016gr/cm3, R = 4.99km,
M = 1.52km – polytropic model; we also used an alternative of the second
method, by integrating along a complex r coordinate (instead of r?) which runs
faster. The results are presented in table 2.3.1 and are in good agreement with
each other.

The same, though, procedure for a less dense model – ρc = 3× 1015gr/cm3,
R = 8.86 km,M = 1.87km– revealed the divergence of r? from r for less compact
models (table 2.3.1). These apparently do not favor the use of a complex r path
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Table 2.3: The same as in table 2.3.1 but for a less dense model with ρc =
3× 1015gr/cm3

(H-P) (r?) (r)
σR σI

5.601 14.692
10.501 5.390

17.993 8.521

26.840 10.225

σR σI
5.601 14.692
10.501 5.390

17.993 8.521

26.840 10.225

σR σI
5.408 9.000
10.501 5.391
10.897 10.003
14.849 9.917
17.867 8.384
19.796 9.814
23.706 10.031
26.697 9.411

for the integration method and one should then perform it along the complex r?
path. This may not surprise us since for a Schwarzschild geometry the tortoise
coordinate outside the star can be given as function of the r coordinate through

r? = r + 2M log
( r

2M
− 1
)

.

Thus r?
r gets closer to 1 for increasing M/r (in the range that we consider)

making then their difference less significant. Besides, for very dense (constant
density) models one could in principle also integrate along the real r axis and
find quite accurate results (Kokkotas, 1994).

The axial modes can thus be well solved with our code so that we can pro-
ceed in dealing with the polar modes. For non-rotating stars the axial modes
consist just of the w-modes which are highly damped and only weak sources of
gravitational waves since they do not couple to matter oscillations. For rotat-
ing stars the axial modes will include also fluid oscillations gaining again our
attention.

Apart from successfully applying these new numerical procedures and han-
dling the more demanding integration outside the star, we also experienced how
much a slight modification in the analysis can influence the results, by intro-
ducing additional (unphysical) modes.

2.3.2 Polar modes

The perturbed metric in the Regge-Wheeler gauge reads:

hµν =









e2ν(rS + F/r)Ylm e2λH1Ylm 0 0
e2λH1Ylm e2λ(rS + F/r)Ylm 0 0

0 0 rFYlm 0
0 0 0 r sin2 θFYlm
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With the perturbed 4-velocity

δuα = −e
ν

r

(

1

2
(r2S + F )Ylm, (u1 −

u2
r
)Ylm, u2∂θYlm, u2∂φYlm

)

(2.14)

and the fluid variable δp = H(p+ρ)
r Ylm, the perturbed field equations give two

coupled wave equations for S,F:

∂2S

∂t2
= e2(ν−λ)

{

∂2S

∂r2
+

[

4ν′2 +
5ν′ + 3λ′

r
− 2

e2λ − 1

r2
− e2λ `(`+ 1)

r2

]

S

+(5ν′ − λ′)∂S
∂r

+
4

r4
(

r2ν′2 + rλ′ + 1− e2λ
)

F

}

(2.15)

∂2F

∂t2
= e2(ν−λ)

{

∂2F

∂r2
+

1

r2
[

r(3λ′ + ν′) + 2
(

e2λ − 1
)

− e2λ`(`+ 1)
]

F

+(ν′ − λ′)∂F
∂r

+ 2[r(ν′ + λ′)− 1]S +
2

r
(ν′ + λ′)

(

1

C2s
− 1

)

H

}

(2.16)

as well as the Hamiltonian constraint:

2(ν′ + λ′)

rC2s
H = −∂

2F

∂r2
+ λ′

∂F

∂r
+ r

∂S

∂r
+

(

2− 2rλ′ +
1

2
e2λ`(`+ 1)

)

S

+
1

r2
(

e2λ[`(`+ 1)− 1] + 1− 3rλ′
)

F (2.17)

We additionally get the fluid equations of motion:

∂H

∂t
= e2(ν−λ)

{[

C2s (2ν
′ − λ′ + 1

r
)− ν′

]

u1 + C2s

(

∂u1
∂r
− 1

r

∂u2
∂r

)

+
1

r2
[

C2s (rλ
′ − 2rν′ − e2λ`(`+ 1)) + rν ′

]

u2

}

+[C2s (rλ
′ + 2)− rν′]H1 + rC2s

∂H1
∂r
− C2s

2

(

r2
∂S

∂t
+ 3

∂F

∂t

)

(2.18)

∂u1
∂t

=
∂H

∂r
− 1

2

(

r2
∂S

∂r
+ 2rS +

∂F

∂r

)

(2.19)

∂u2
∂t

= H − 1

2
(r2S + F ) (2.20)

The above equations1, with the help of the perturbed field equations, can
be combined to a single wave equation for H:

∂2H

∂t2
= e2(ν−λ)

{

C2s
∂2H

∂r2
+ [C2s (2ν

′ − λ′)− ν′]∂H
∂r

+ ν′
C2s − 1

2

(

r2
∂S

∂r
− ∂F

∂r

)

+
1

r2
[C2s (rν

′ + 4rλ′ − e2λ`(`+ 1)) + r(2ν ′ + λ′)]H

+

[

C2s
r2

(
7

2
rν′ + rλ′ − e2λ + 1)− ν′

r
(2rν′ +

1

2
)

]

(r2S + F )

}

(2.21)

1Ruoff (2001) dealt with the same problem with the corresponding equation of eq. 2.18
being their eq. 54a which is however not the same due a type-fault there.
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Cowling approximation This is a good point to make use of the so-called
Cowling approximation. We can try solving the above problem by neglecting
the metric variables and deal just with the fluid variable. So by setting S and
F to zero, the equations of motion become

∂H

∂t
= e2(ν−λ)

{[

C2s

(

2ν′ − λ′ + 1

r

)

− ν′
]

u1 + C2s

(

∂u1
∂r
− 1

r

∂u2
∂r

)

+

[

C2s

(

λ′ − 2ν′

r
− e2λ`(`+ 1)

r2

)

+
ν′

r

]

u2

}

(2.22)

∂u1
∂t

=
∂H

∂r
(2.23)

∂u2
∂t

= H (2.24)

which can than easily be reduced to a single equation for H:

∂2H

∂t2
= e2(ν−λ)

{

C2s
∂2H

∂r2
+ [C2s (2ν

′ − λ′)− ν′]∂H
∂r

+
1

r2
[C2s (rλ

′ − 2rν′ − e2λ`(`+ 1)) + rν ′]H

}

(2.25)

The odd thing is that this is somewhat different than what we get if we
neglect the metric variables at the final wave equation for H (Eq. 2.21):

∂2H

∂t2
= e2(ν−λ)

{

C2s
∂2H

∂r2
+ [C2s (2ν

′ − λ′)− ν′]∂H
∂r

+
1

r2
[C2s (rν

′ + 4rλ′ − e2λ`(`+ 1)) + r(2ν ′ + λ′)]H

}

(2.26)

If we try to derive modes from this last equation, with the standard procedure
of the time-independent analysis, we also get different numbers than from Eq.
2.25 directly (table 2.3.2).

The ones from eq. 2.25 appear actually to be more accurate ones, but
the question that arises is whether this is the right thing to do, since there
seems then to be an inconsistency in the field equations (fluid variables=metric
variables≡ 0). Still, no relativistic star can sustain oscillations of its fluid with-
out distortions of its background spacetime and the degree of approximation
depends on how strong the neglected and used variables are related to each
other. This is also possibly the reason why the f-mode appears more inaccu-
rate: since it describes motion larger towards the surface, it couples with the
spacetime more then the ’internal’ p-modes do.

Concentrating on the results of the standard Cowling approximation, we
notice that the accuracy of the results (compared with those of the full system)
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Table 2.4: The first 5 pressure modes for the model of table2.3.1 solved by
neglecting the metric perturbation in the beginning and the end of the analysis,
as well as for the full problem (from table 2.3.2).

Modes (KHz) Cowling approx. late Cowling ap. full case
f-mode 3.297 2.463 2.869

1st p-mode 7.257 6.497 6.548
2nd p-mode 10.613 9.973 9.982
3rd p-mode 13.803 13.265 13.266
4th p-mode 16.927 16.467 16.465

and thus also of the approximation itself, gets better as the order of the modes
increases. The reason for that is the same as the one stated above. It is thus save
to use this approximation for higher order modes but for f -modes, for example,
one has to accept an error of almost 15%. The big advantage though is that
it is much more easy to handle than the full case, while still giving the overall
picture and the distribution of the modes.

Still, for the case of non-rotating neutron stars that we are studying here,
the polar case can be fully solved in a similar way to the axial case, without the
use of the Cowling approximation; the difference is that the equations involve
now three variables inside the star (the fluid one and the two metric ones) and
two outside of it (the – dependent from each other – metric ones).

With Taylor expansion at the center one first finds the r-dependence of the
three variables there:

h = h0r
`, s = s0r

`+1, f = f0r
`+1

Their amplitudes (h0, s0, f0) represent the three degrees of freedom that the
problem has. One has then to make use of two of them in order to leave
the last one for the determination of the eigenfrequency. This happens with
a regularity condition at the center and a junction condition at the surface.
We are looking thus for the right combination of starting values (amplitudes)
that satisfy the junction condition at the surface (vanishing of the Lagrangian
pressure perturbation). We achieve this by integrating twice till the surface
for a linearly independent set of starting values (eg. 2,3,5) and find the linear
combination of them (and also the corresponding values at the surface) that
give ∆p = 0 (which in practise gives the same equation as 2.21 with C2s = 0).
One can do that for all three variables and defining the starting value of one as
function of the other two or integrate a (complete) set of equations for only two
variables).

The integration of the two metric variables outside of the star along a
complex r? path and demanding (any)one of them to resemble an outgoing
wave reveals the modes. We quantify this condition by looking for the zeroes
of the Wronskian between S and e−iσr? on the two-dimensional complex fre-
quency plane. In practise we calculate the absolute value of the above quantity
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Table 2.5: The two group of modes for polar perturbations for the polytropic
model with ρc = 3× 1015gr/cm3. Listed are the real and imaginary parts of the
frequencies for fluid and wave modes, as computed by Leins (1994), to which our
search agreed up to the limitations of our code. For transforming the frequencies
of the w-modes from geometrical units into Hz one needs to multiply with 3×105
(see appendix A).

Fluid modes (Hz)
σR σI

2869.4 1.4689
6548.6 0.2578
9982.1 0.0007

Wave modes (km−1)
σR σI

0.269 0.141
0.468 0.198
0.655 0.227

(S′+ iσS/(1− 2M/r∞), where r∞ is our outer boundary) and look for its min-
ima. Since by this we can only restrict the solutions to a narrow range rather
than calculate them, we perform our search by plotting the above quantity and
compare with results from the literature. We were interested in identifying the
modes and ceased increasing resolution after the accuracy approached the limi-
tations of our code (of the order of 1%). Some of the modes identified are shown
in table 2.3.2 and the contour plot of an initial resolution covering that modes
is given in figure 2.1. We note the w-modes have much higher frequencies (the
first w-mode has 12,843 Hz), but also a comparably high imaginary part (in
contrast to the pressure modes).

By these we are confident of reproducing the results of the literature even
when taking the metric perturbations into account and also developed a code
to perform this more complicated numerical work. Furthermore, we success-
fully dealt with a system of coupled equations and gained an inside of how
changes/errors in some terms can effect the results. The modes calculated are
by themselves a good reference, since they are not expected to change much
under rotation.
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Figure 2.1: The contour plot of the w-modes presented in table 2.3.2 The x and
y axis give the real and imaginary part of the frequency in geometrical units
while the z axis shows the absolute value of the Wronskian between a metric
perturbation and the expression for the outgoing wave (e−iσr?) in arbitrary
units. At the lower plot, the contour of the Wronskian together with the results
of Leins (1994) are shown.
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Chapter 3

Going from spherical

symmetry to axisymmetry

3.1 The spherical background in two dimensions

After solving the one-dimensional problem and before moving to rotating stars,
where flattening will break the spherical symmetry, we need to test whether
the methods applied sofar will work also on a two-dimensional grid. To do this
we will examine the same problem of a non-rotating star, by ignoring though
the spherical symmetry and assuming that the variables are functions of both
r and θ. If the analysis could be also applied straightforward in that case, then
the whole procedure has good chances of applying also on a non-spherically
symmetric background.

Let thus be

ds2 = −e2ν(r,θ)dt2 + e2λ(r,θ)dr2 + r2(dθ2 + sin2 θdφ2)

From the conservation of the energy-momentum tensor, T µν;µ = 0, we get
the Tolman-Oppenheimer-Volkoff equations (Oppenheimer & Volkoff, 1939; Tol-
man, 1939) for the background quantities:

0 =
∂2λ

∂θ2
+

(

∂λ

∂θ

)2

− 2re−2λ
∂λ

∂r
+

cos θ

sin θ

∂λ

∂θ
+ e−2λ − 1 + 8πr2ρ (3.1)

0 =
∂2ν

∂θ2
+

(

∂ν

∂θ

)2

+ 2re−2λ
∂ν

∂r
+

cos θ

sin θ

∂ν

∂θ
+ e−2λ − 1− 8πr2p (3.2)

0 = r

(

∂λ

∂r
− ∂ν

∂r

)

− r2
[

∂2ν

∂r2
+

(

∂ν

∂r

)2

− ∂ν

∂r

∂λ

∂r

]

− e2λ ∂ν
∂θ

∂λ

∂θ
−

e2λ
cos θ

sin θ

(

∂ν

∂θ
+
∂λ

∂θ

)

+ 8πr2e2λp (3.3)
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0 = r

(

∂λ

∂r
− ∂ν

∂r

)

− r2
[

∂2ν

∂r2
+

(

∂ν

∂r

)2

− ∂ν

∂r

∂λ

∂r

]

− e2λ ∂ν
∂θ

∂λ

∂θ
−

e2λ

[

∂2ν

∂θ2
+

(

∂ν

∂θ

)2

+
∂2λ

∂θ2
+

(

∂λ

∂θ

)2
]

+ 8πr2e2λp (3.4)

∂p

∂r
= −(p+ ρ)

∂ν

∂r
(3.5)

∂p

∂θ
= −(p+ ρ)

∂ν

∂θ
(3.6)

∂ρ

∂r
=
∂p

∂r
/C2s (3.7)

∂ρ

∂θ
=
∂p

∂θ
/C2s (3.8)

Instead of decomposing the perturbed variables into spherical harmonics, we
assume axisymmetry and let the angular dependence be absorbed by the per-
turbed quantities. By using, thus, the fluid variable

δp(t, r, θ, φ) = H(t, r, θ)(p+ ρ)eimφ

and the perturbed 4-velocity 1

δuα = {0,−e
2ν

r

u1 − u2
r

,−e
2ν

r

∂u2
∂θ
− i m u3

sin θ
,−e

2ν

r
i m u2 + sin θ

∂u3
∂θ
}ei mφ,

we get from the equations of motion the perturbation equations for a stationary
spacetime:

δTµφ;µ = 0 ⇒ ∂u2
∂t

= − I

eνm

(

∂2u3
∂t∂θ

r sin θ + ImeνH

)

(3.9)

δTµr;µ = 0 ⇒ ∂u1
∂t

= −H
r

+
∂H

∂r
+

1

r

∂u2
∂t

(3.10)

δTµθ;µ = 0 ⇒ ∂u3
∂t

= −e
ν sin θ

Imr

(

∂H

∂θ
− ∂2u2
∂θ∂t

)

(3.11)

δTµt;µ = 0 ⇒ ∂H

∂t
=
e2ν−2λ

r2
{

C2s
[

(λ′ − 2ν′)r2 − r
]

+ r2ν′
}

u1

+
e2ν−2λ

r2 sin θ

[

rC2s sin
2 θλ′ + r sin2 θν′(1− 2C2s )−m2e2λC2s

]

u2

+
eνIm

r
sin θ

[

∂ν

∂θ
(C2s − 1) + C2s

∂λ

∂θ

]

u3

− e2ν

r2 sin2 θ

[

− sin2 θC2s
∂λ

∂θ
+ sin2 θ

∂ν

∂θ
− 2C2s sin

2 θ
∂ν

∂θ
− cos θ sin θC2s

]

∂u2
∂θ

−e
2ν−2λ

r
C2s

∂u2
∂r

+
e2ν−2λ

r
C2s

∂u1
∂r

+
e2ν

r2
C2s

∂2u2
∂θ2

, (3.12)

1u1, u2 describe the polar perturbations of the 4-velocity, u3 the axial ones.
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and after assuming an harmonic time dependency, eiωt:

iωu2 = H +A
∂u3
∂θ

(3.13)

iωu1 = −H
r

+
∂H

∂r
+ iω

u2
r

=
∂H

∂r
+B

∂u3
∂θ

(3.14)

iωu3 = C(
∂H

∂θ
− iω ∂u2

∂θ
) = D

[(

cos θ − sin θ
∂ν

∂θ

)

∂u3
∂θ

+ sin θ
∂2u3
∂θ2

]

(3.15)

iωH = E u1 + F u2 +G
∂u1
∂r

+ J u3 +K
∂u2
∂θ

+ L
∂2u2
∂θ2

, (3.16)

where A-G,J-L are the corresponding functions of the background quantities
(ν, λ), the speed of sound (C2s ) (which are by themselves functions of r, θ), while
the indexm appears as a free parameter (instead of `). In the right hand sides of
eqs. 3.14 and 3.15, u2 is already eliminated by means of eq. 3.13. The fact that
u1 =

∂u2
∂r has been used in the derivation of eq. 3.16. One can also eliminate u1

and u2 in eq. 3.16 after taking the derivative over time and get schematically

−ω2H = a H + b
∂H

∂r
+ c

∂2H

∂r2
+ d

∂2H

∂θ2
+ e

∂H

∂θ

+f u3 + g
∂u3
∂θ

+ h
∂2u3
∂θ2

+ j
∂3u3
∂θ3

(3.17)

(a-j again functions of the background quantities) which together with eq. 3.15
form a set of two partial differential equations for two unknown functions H,u3.
Interestingly, eq.3.15 can be written as a set of two ordinary differential equa-
tions for two variables (u3,

∂u3
∂θ ) and can so be used to integrate u3 on a known

background grid and then one can use the computed values for the integration
of H through the elliptic 2 partial differential equation 3.17 through an iterative
method. In the general case though, H,u1 as well as u2, u3 or also the metric
perturbations, might not easily be separated. One would then have to integrate
a coupled system of partial differential equations (as is also necessary for the
background quantities).

3.2 Numerical solution

The standard procedure to numerically solve differential equations inside a re-
gion is to replace them by difference equations. For second order equations this
has the form:

f ′(xi) =
fi+1 − fi−1

2h
+O(h2) (3.18)

f ′′(xi) =
fi+1 − 2fi + fi− 1

h2
+O(h2) (3.19)

2Criterion c× d = e4ν−2λ C
2
s

r2
C2
s > 0.
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for central differences. If we apply this to the fluid variable H, for both its
dependencies (r, θ), and substitute in eq. 3.17 - with the u3 terms eliminated-,

∂2H

∂r2
+ d̃

∂2H

∂θ2
+ b̃

∂H

∂r
+ ẽ

∂H

∂θ
+ (ã− ω̃2) H = 0, (3.20)

where

d̃ ≡ d

c
=

e2λ

r2

b̃ ≡ b

c
= 2

∂ν

∂r
− ∂λ

∂r
− 1

C2s

∂ν

∂r

ẽ ≡ e

c
=

e2λ

r2

(

2
∂ν

∂θ
+
∂λ

∂θ
+

cos θ

sin θ
− 1

C2s

∂ν

∂θ

)

ã− ω̃2 ≡ a− ω2
c

= −2

r

∂ν

∂r
+

1

r

∂λ

∂r
− m2e2λ

r2 sin2 θ
+

1

C2s r

∂ν

∂r
− e2λ−2νω2

C2s
,

we get the relationship:

H(rj+1, θi) ≡ Hj+1
i =

2 + 2d̃∆r
2

∆θ2 + (ω̃2 − ã)∆r2

1 + b̃∆r
2

Hj
i −

1− b̃∆r/2
1 + b̃∆r/2

Hj−1
i

− ẽ
∆r2

2∆θ + d̃∆r
2

∆θ2

1 + b̃∆r/2

(

Hj
i+1 +Hj

i−1

)

≡ k Hj
i − ` H

j−1
i −m

(

Hj
i+1 +Hj

i−1

)

(3.21)

One can now attack the problem as a boundary value problem, by taking
the difference equations of all the grid-lines (including the boundary ones where
the appropriate conditions are imposed) and solve them simultaneously in a
(degenerate) matrix form, or integrate the first grid-line outwards through the
above relationship as an initial value problem. The last one (’shooting method’)
is though of questioned stability and convergence. Whether it is stable or not
can be checked if we assume an error at j = 0 of the form

e0i = eIβi∆θ

and expect it to grow at the j-th row as

eji = eαj∆reIβi∆θ

By inserting this into eq. 3.21, the relationship that results is the quadratic

(

eα∆r
)2

+ (2m cosβ∆θ − k)eα∆r + ` = 0 (3.22)

The product of the two solutions of this equation equals

eα∆r1,2 = ` > 1 (3.23)
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(b̃ < 0),which means that there exists at least one solution that grows outwards
(for increasing r), unless the discriminant of eq. 3.22 is non-positive. This
condition leads to

−2 ≤ 2m cosβ∆θ − k ≤ 2⇒

−2 ≤ [2d̃(cosβ∆θ−1)+2ẽ]∆r
2

∆θ2
−2+(ω̃2−ã)∆r2

1+b̃∆r/2
≤ 2 (3.24)

For 1 + b̃∆r/2 ' 1 (till close to the surface..) and ∆r2 ×∆θ2 ¿ 1 we get

0 ≤ 2
[

d̃(cosβ∆θ − 1) + ẽ
]

∆r2 ≤ 4∆θ2 (3.25)

which, since actually ẽ ∼ cos θ
sin θ , is not everywhere fulfilled.

In contrast to the previous method - the explicit one - on can also use an
implicit scheme. The θ-derivatives will not be given by central differences at
{i, j}, eqs. 3.18, 3.19, but through the average of two, one located at {j + 1, i}
and one at {j − 1, i}. So, our integration scheme, in analogy to eq. 3.21, will
look like

[

ẽ

4∆θ
+

d̃

2∆θ2

]

(

Hj+1
i+1 +Hj+1

i−1

)

+Hj+1
i

[

1

∆r2
+

b̃

2∆r
− d̃

∆θ2

]

=

Hj
i

[

2

∆r2
+ ω̃2 − ã

]

+Hj−1
i

[

b̃

2∆r
− 1

∆r2
+

d̃

∆θ2

]

−
[

ẽ

4∆θ2
+

d̃

2∆θ

]

(

Hj−1
i+1 +Hj−1

i−1

)

(3.26)

where now we have three unknowns ({j +1}-row elements) per equation, so we
have to solve a complete set of equations for the {j + 1}-row.

If we imply the same stability criterion as before we get, in analogy to
eq. 3.22, the following quadratic equation for the error at the j-th row

0 =

[(

ẽ

4∆θ
+

d̃

2∆θ2

)

(

eIβ∆θ + e−Iβ∆θ
)

+
1

∆r2
+

b̃

2∆r
− d̃

∆θ2

]

(

eα∆r
)2

−
[

2

∆r2
+ ω̃2 − ã

]

(

eα∆r
)

+

[(

ẽ

4∆θ
+

d̃

2∆θ2

)

(

eIβ∆θ + e−Iβ∆θ
)

+
1

∆r2
− b̃

2∆r
− d̃

∆θ2

]

(3.27)

The product of the two solutions of eq. 3.27 equals

eα∆r1,2 =

(

ẽ
2∆θ + d̃

∆θ2

)

cosβ∆θ − d̃
∆θ2 +

1
∆r2 − b̃

2∆r
(

ẽ
2∆θ + d̃

∆θ2

)

cosβ∆θ − d̃
∆θ2 +

1
∆r2 +

b̃
2∆r

= 1− b̃/∆r
(

ẽ
2∆θ + d̃

∆θ2

)

cosβ∆θ − d̃
∆θ2 +

1
∆θ2 +

b̃
2∆r

(3.28)
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and in order to have a stable integration this has to be smaller then 1; since
b̃ < 0, the wanted condition, under the same approximations as in the explicit
method, is

1 <
∆r2

∆θ2
d̃(1− cosβ∆θ) (3.29)

This condition, however, is very sensitive on the stepsizes and cannot guar-
antee the stability of the numerical scheme. Since we need to develop a method
that will work for arbitrary resolution, we consider some alternative ideas. The
nature of the (eigenvalue) problem suggests solving the whole system of equa-
tions simultaneously on a fixed grid. On of these methods is the so-called
QR-algorithm

3.3 The QR-algorithm

The Cowling approximation in stellar oscillations is a special case, not only
because it describes well the full case but also because it is a well defined Sturm-
Liouville problem. When the boundary conditions are implied the system of
equations to be solved form an eigenvalue problem. That is then much easier
solved as there are specific routines dealing with such cases. The QR-algorithm
is an alternative of the power method, for systems with degenerate eigenvalues
or where all the eigenvalues are required.

3.3.1 Numerical procedure

We briefly describe the numerical method used in this work. We discretize the
system of equations at every grid point, including the boundaries by making use
of the boundary conditions. This results in a system of linear equations of the
form

A ·X = 0 (3.30)

where the unknownsX are the discrete perturbation quantities at all grid points,
and the coefficient matrix A represents the equations resulting from the pertur-
bation equations at all grid points and from the boundary conditions. A is a
highly sparse matrix. The components of A depend on the frequency parame-
ter σ. It is now possible to examine the condition of A, searching for values of
σ which make A degenerate, since this is the only way that Eq. (3.30) allows
non-trivial solutions for the perturbation quantities.

In the cases we study here, we may rewrite eq. 3.30 as an eigenvalue problem
of the form

Ã ·X = iσX (3.31)

Note that this is a special case and not generally possible; it will probably
not work for the general perturbation equations which result if one does not use
the Cowling approximation.
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We may now use a standard routine for finding eigenvalues of eq. 3.31. We
use the routine cg.f from the EISPACK package of the NETLIB libraries which
handles general complex matrices by use of the QR-algorithm. The character-
istic frequencies of the star’s oscillation modes are obtained as eigenvalues of
eq. 3.31, the perturbation quantities X are the corresponding eigenvalues. The
output of the code is sorted by decreasing complex frequency amplitude.

3.3.2 Testing the method

In order to test the QR-algorithm we applied it to the problem of polar pertur-
bations of spherical symmetric stars with the use of the Cowling approximation
(solved in section 2.3.2). We find that the results converge to the expected
number (here we compare with the output of our integration routine with the
highest accuracy) in second order with respect to the radial resolution 3. We
will apply now this method to our eigenvalue problem for axisymmetric neutron
stars.

3We used here central differences.
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Chapter 4

Axisymmetric background

4.1 Problem set-up

4.1.1 Equilibrium background

Pulsars, believed to be the observational analogue of neutron stars, have been
observed to spin up to millisecond periods. This results in significant deviations
from spherical symmetry both for the fluid configuration of the star and for the
spacetime. Equilibrium solutions will thus not be spherically symmetric, but
axisymmetric at most. The general form of an axisymmetric metric describing
a rotating body can be written as:

ds2 = −eγ+ρdt2 + e2α
(

dr2 + r2dθ2
)

+ eγ−ρr2 sin2 θ (dφ− ωdt)2 . (4.1)

where r,θ,φ are quasi-isotropic coordinates, reducing to isentropic ones for no
rotation (see Stergioulas, 2003). Restricting ourselves to uniform rotation with
frequency Ω, the 4-velocity of the fluid is given by uα = U0{1, 0, 0,Ω}, with
an energy-moment tensor Tµν = p gµν + (p + ε)uµuν , assuming that the star
consists of an ideal fluid. For the equation of state we use a simple polytropic
model of the form p = k×ργ0 . The main difference with the polytropic equation
of state used in the previous chapter (2), is that ρ0 is not identical any more
with the total energy-density ε, but rather form it together with the internal
energy-density ρi =

p
γ−1 , ie ε = ρ0 + ρi. Using a realistic equation of state in

tabulated form would not affect our analysis or our numerical procedure. Again,
we restrict ourselves to a polytropic equation of state to facilitate comparison
of our results with previous studies by other authors.

For rapidly rotating stars, the background quantities cannot be solved any
more through equations as simple as eqs. 2.1. The dependency on both r and θ
coordinates of the (increased in number) variables, yield a complicated system
of equations that needs to be integrated carefully. We use the RNS code of
Stergioulas & Friedman (1995) for computing the background models, which is
based on the Komatsu-Eriguchi-Hachisu method (Komatsu et al, 1989). The
grid of the RNS code has fixed spacing on coordinates s = r

r+re
and µ = cos θ.

29



Table 4.1: The polytropic (p = k × ργ0) models produced with the RNS code
used here. The ones marked with an asterisk (?) were also used by Font et al
(2001) and all have k = 217.856km2 and εc = 0.894×1015g/cm3. A less massive
star described by the poly-2 model was initially used and has k = 100km2 and
εc = 3× 1015g/cm3.

Model Gravitational Mass Radius Ω Rotation rate (ν)
poly-2 1.05M¯ 8.78 km 0 0
BU0? 1.4M¯ 14.15 km 0 0
BU1? 1.432M¯ 14.51 km 2.185 kHz 348Hz
BU6? 1.627M¯ 17.25 km 4.984 kHz 793Hz

In order to avoid extrapolating the values of the background quantities to other
points, we will work on the same grid and will be evaluating the derivatives that
appear in our equations through ∂

∂r = re
(r+re)2

∂
∂s and ∂

∂θ = − sin θ ∂
∂µ . To avoid

confusion we will consistently refer to the dependency on r, θ in the equations,
keeping in mind the above.

The same code was also used by Font et al (2001); we will occasionally refer
to their results for comparison. Some of their models which we will be using here
are shown in Table 4.1. For those the parameters in the equation of state are
k = 217.856km2 and γ = 2 and the central density is εc = 0.894 × 1015g/cm3.
BU1 is a non-rotating model, while BU1 and BU6 describe a slowly and rapidly
rotating neutron star respectively. The radius presented is the circumferential
one at the equator, which is not equal to the coordinate radius, due to the use of
quasi-isotropic coordinates (see above). We will be using the coordinate radius
when showing eigenfunctions, but one has to keep in mind that this is not the
physical radius, which at the equator would be given by e(γ−ρ)/2r, together of
course with the transformation to SI units (see appendix A). So the BU1 model
has a coordinate radius of 8.32 (in RNS units), the BU1 8.12 and BU6 9.95.

4.1.2 Perturbations

Using the above stationary configurations, we assume small deviations for the
fluid variables and study their linearized perturbations. Since the background
is not spherically symmetric it is not helpful to decompose the perturbations
into spherical harmonics. Instead exploit the axisymmetry of the background
by writing the perturbation quantities as

δp = Heimφ (4.2)

δuα =
1

p+ ε
{−Ωf3, f1, f2, f3}eimφ, (4.3)
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where H, fi are functions of t, r, θ. The relation δut = −Ωδuφ used above, was
derived from the condition

−1 = uµu
ν = gµνu

µuν = (g̃µν + hµν) (u
µ + δuµ) ((uν + δuν)

with hµν ≈ 0, while the reason for the normalization with p + ε will become
clear in the paragraph with the boundary conditions. The perturbation of the
energy-density is related to the pressure perturbation through

δp =
dp

dε
δε ≡ C2s δε,

where Cs is the speed of sound.
Again we use the relativistic Cowling approximation, (Cowling (1941)) by

neglecting the metric perturbations. This will not allow us to calculate any
damping of the modes due to emission of gravitational waves, but we can esti-
mate the oscillation frequencies and study the overall structure of the spectrum
(see also section 1.2). The full set of perturbed equations including the metric
perturbations, apart from lengthy, would require accounting for the bound-
ary conditions at infinity, still an unresolved problem in general relativity. An
additional advantage of the Cowling approximation reflects on the numerical
procedure that gives a form to our problem that can be solved straightforward
(see section 3.3).

The equations that describe the behavior of the perturbed quantities arise
from the perturbed form of the conservation of energy-momentum for stationary
spacetime (equations of motion for the fluid):

δ
(

T νµ;ν
)

= gκν(δTµκ,ν − δTµρΓρνκ − ΓρµνδTρκ) = 0 (4.4)

In general, these yield four independent partial differential equations which are
of first order in time and space. We perform our mode calculations by assum-
ing a harmonic time-dependence eiσt for all four variables (e.g. H(t, r, θ) =
H̄(r, θ)eiσt), searching for frequencies which allow non-trivial solutions of the
perturbation equations.

4.1.3 Boundary conditions

We need to take into account boundary conditions at the center and at the
surface of the star, and a regularity condition in the angular direction. At the
center, all variables are required to vanish by the regularity condition there.
This results from Taylor expansion of the perturbed and unperturbed variables
close to the center which reveals their behavior there, δp ∼ r`, which is also the
behavior of fθ, fφ while fr goes somewhat slower to zero at the center: as r`−1.
For the m ≥ 2 case that we are mainly interested, we implement this condition
simply by setting all variables to zero at r = 0. For the axisymmetric modes
(m = 0), we need to let the perturbed variables be determined through eqs. 4.4,
where their the derivatives are then zero.
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Table 4.2: The symmetries with respect to the rotational axis of the perturbed
fluid variables for both parities of m > 0.

Pert. angular dependence Symmetry wrt axis
variable Even m Odd m
δp Pm

` e
imφ symmetric antisymmetric

δut Pm
` e

imφ symmetric antisymmetric
δur Pm

` e
imφ symmetric antisymmetric

δuθ ∂θ(P
m
` e

imφ)− 1
sin θ∂φ(P

m
` e

imφ) antisymmetric symmetric
δuφ

1
sin θ2

[

∂φ(P
m
` e

imφ) + sin θ∂θ(P
m
` e

imφ)
]

symmetric antisymmetric

At the surface, all perturbation variables must vanish: this follows from
the definition of the variables given in Eqs. (4.2), since p = ε = ∂rp = 0
(for polytropic equations of state) and δp ∼ ∂rp (to first order in a Taylor
expansion). This justifies our special choice of defining the perturbed variables,
since otherwise only the pressure perturbation would vanish on the surface for
the equations of state that we consider here.

For the boundaries in the θ-direction one may use the fact that the rotational
axis itself is special: Form > 0, all variables have to vanish on the rotational axis
due to regularity conditions 1. This can be used directly to set the discretized
variables to zero there by hand.

For m = 0 we may construct a grid in such a way that no grid points fall
on the rotational axis. In specific, the first point lies ∆µ/2 away from the axis,
where ∆µ is the fixed spacing in µ ≡ cos θ of the background model. In this
case, one must use the symmetry to construct a boundary condition in the θ-
direction. This technique is also applicable for m > 0, keeping in mind that the
symmetry is different for even and odd values of m. In particular, for even m
δp, δur and δuφ are symmetric with respect to the axis (θ = 0, π) and δuθ is
antisymmetric there. This is what one finds from the symmetries of the Legen-
dre Polynomials themselves (see appendix B) and their derivatives that define
the perturbed 4-velocity. For example, δuθ – having the same symmetry prop-
erties as fθ – can be expressed as the sum of polar contributions and axial ones,

whose θ-behavior are
∂Pm

`

∂θ and im
sin θP

m
` respectively; ’axial-led’ are then called

the modes with ` taking values m + 2k for the first term and m + 2k + 1 for
the second (k integer), while ’polar-led’ in the opposite case. For even m both
terms are antisymmetric with respect to the rotational axis. Table 4.2 shows
the symmetries for all perturbation variables and both cases of parity. For ax-
isymmetric perturbations the δuθ and δuφ have purely polar and axial behavior
respectively but should retain the symmetry indicate for m > 0. The other
perturbed variables behave as scalars under rotation and keep the symmetries

1The eimφ-dependency of the fluid perturbations requires that on the axis all possible
azimuthal angles give the same value, i.e. zero. This is rather a physical condition, since,
mathematically speaking, the definition of δuφ would eg. allow the φ part to be non-vanishing.
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indicated above. We implement these symmetries when needing to use a point
out of the discretization grid to express the θ-derivatives of a variable.

We have used both techniques for the boundary conditions for the m = 2
case and found no significant difference. In order to make the code applicable
both in the axisymmetric and the non-axisymmetric case, we implemented the
second possibility of leaving out the axis from the grid.

4.1.4 Numerical effect of background on perturbations

The RNS code itself has finite resolution and thus introduces some numerical
error into the results. We will always see a combination of numerical error
coming from the RNS code and from our own code. When we attempt to study
convergence properties we therefore use a high but fixed resolution of the RNS
code, varying only the resolution of our eigenvalue code. In order to avoid the use
of interpolation and the additional error associated with it, we run our code only
with grid spacings which are multiples of the fixed grid spacing we have chosen
for the RNS code. So, for a model with 101 radial points2 and 100 angular ones,
the background grid we use can have a combination of 11,21,26,51 or 101 radial
points and 10,20,25,50 or 100 angular points. No arbitrary combination of the
two is though allowed, since segmentation faults occur if the matrix dimension
of our code (number of variables times nr times nθ) is higher than ∼4000 points.

4.1.5 Differentiation scheme

Although central differences is the most common and trusted scheme for ex-
pressing derivatives on a numerical grid, we need to test this when solving a
system of equations instead of a higher order (single) equation. We solved for
the simple case of non-rotating star in two dimensions (see subsection 4.2.1 and
eqs.4.5) for m = 2. In table 4.3 we show the lowest resulting eigenfrequencies
for the model poly-2 (see table 4.1) for a fixed θ-resolution 3 and increasing
resolution in the radial direction. The computed frequencies show the expected
convergence (second order for central differences and first order for one-sided
differences) so one can extrapolate the computed values to get an eigenfrequency
of ’infinite’ resolution (see also figure 4.1). The relative mean deviation of the
fitted numbers are of the order or less than 1%. Note that there is an additional
systematic error, related to the finite accuracy of the background quantities, of
the same order. The two lowest-frequency modes of the second order scheme
–identified as the fundamental pressure modes for ` = 2 and ` = 3 (see also
subsection 4.2.1)– were also found with a one-sided differences scheme but close
to each of those frequencies, we find additional solutions with similar eigen-
functions. It becomes obvious from their non-appearance in the well resolved
equivalent analysis in one dimension (chapter 2) that these solutions are just
numerical artifacts. The reason for this is probably due to the different behavior

2The RNS code requires an odd number of radial points.
3More points in the θ direction do not seem to affect the results and are computationally

expensive.
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Table 4.3: The lowest frequency solutions of the system of equations 4.5 for the
poly-2 equation of state (see 4.1) with several resolutions in the radial direction
and a fixed number of θ-points. The third and last columns show the fundamen-
tal modes corresponding to ` = 2 and ` = 3, while the intermediate solutions
found are numerical artifacts from the central differencing scheme. In the next
to last row the extrapolated values for ’infinite’ r-resolution (see figure 4.1) are
listed, while the last one shows the corresponding solutions of the second order
system.

nθ nr f`=2 f ′`=2 f ′`=3 f`=3
10 5 3478 3788 4796 5096

10 3234 3413 3927 4072
20 3203 3362 3784 3894
25 3199 3358 3776 3883
∞ 3192 3349 3760 3858

2ndOS 3220 3868

of the four eigenfunctions, in contrast to the single eigenfunction of the second
order equation. After a numerical trial-and-error procedure we found that with
a one-sided differentiation scheme – in different direction for the two variables
with θ derivatives – these unphysical modes disappear and we obtain consistent
results. It is not clear why this specific numerical scheme resolved the inconsis-
tency, it might though be due to over-determination by use of more conditions
at the angular boundary than the system itself allows. We will, from now, on
only use one-sided differentiation to solve the system of equations needed.

4.2 Axisymmetric perturbations

We begin our analysis by using the corresponding equations in their general
form, including all terms with arbitrary m. Setting m = 0 we select pertur-
bations that are symmetric around the rotation axis, which include all ` ≥ 0
contributions. Axisymmetric perturbations have been studied by Font et al
(2001) using nonlinear time-evolution; we will turn to their results for compar-
ison. In order to gain a better understanding of the underlying physics and
numerics, we first solve Eqs. (4.4) for the non-rotating case, where expressions
can also take a considerably reduced form. We then proceed to include rotation
at arbitrary rotation rate.
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Table 4.4: The frequencies ( σ2π ) of the first three fundamental modes (f) and
the lowest pressure mode (p1) for axisymmetric oscillations of BU0, for several
resolutions in the radial direction and a fixed number of θ-points. In the next
to last row the extrapolated values for ’infinite’ r-resolution (see figure 4.1) are
listed, while the last row shows the results of Font et al (2001).

nθ nr f`=1 f`=2 f`=0 p1`=2
10 21 1377 1974 3076 4627

26 1367 1943 3032 4551
51 1344 1872 2917 4344
101 1328 1830 2840 4197
∞ 1317±2 1794±3 2787±11 4102±26

Font et al (2001) 1335 1846 2706 4100

4.2.1 No rotation

Setting Ω = 0 in Eqs. (4.4) and using harmonic time-dependence the system of
equations for the variables defined in Eqs. 4.2 takes the form:

iσH = − imC
2
s e
2ρU0

r2 sin2 θ
f3 −

C2s
e2αU0

{

1

r2

(

∂f2
∂θ

+
cos θ

sin θ
f2

)

+
∂f1
∂r

+

(

3

2

∂γ

∂r
+

1

2

∂ρ

∂r
+

2

r

)

f1

}

iσf3 = − im
U0

H, iσf1 = −
1

U0
∂H

∂r
, iσf2 = −

1

U0
∂H

∂θ
(4.5)

In this simple case, one variable (H) would be sufficient to describe the whole
oscillation problem since one can transform the system of Eqs. (4.5) into a
single second order equation. Solving the latter with the numerical procedure
described earlier (subsection 4.1.5) gave same results as solving Eqs. (4.4) for
Ω = 0, so we will keep presenting results from the full first-order system for
consistency 4.

Table 4.4 shows the lowest resulting eigenfrequencies for the model BU0 with
increasing resolution in the radial direction, starting from 21 points. Increasing
the resolution in the θ direction again does not seem to affect the results for
these models and we therefor keep it fixed.

Figure 4.1 shows a plot of the (l = 2,m = 0) f -mode frequencies from Table
4.4 as a function of the radial resolution. They follow an inverse power law
of the form f = f∞ + δf/nr + . . ., i.e. first order convergence, as one would
expect for one-sided differences. We may thus extrapolate the computed values
to obtain an eigenfrequency f∞ at nominally infinite resolution. In general, the
relative mean deviation of the fitted numbers is less than 1%. Note that there
is an additional systematic error of the same general magnitude, resulting from
the finite accuracy of the background quantities (see subsection 4.1.4).

Since the background is spherically symmetric, we can still assign a definite
value of ` to the oscillation modes. Comparing the extrapolated frequencies in

4For rapid rotation this transformation to a single equation will probably not be possible.
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Figure 4.1: The computed eigenfrequencies (here the ` = 2 f -mode for BU0)
follow an inverse power law. We may extrapolate to nr → ∞ to obtain the
frequencies for nominally infinite radial resolution.

Table 4.4 with results by Font et al (2001), we conclude that they correspond
to the fundamental modes that correspond to ` = 0, 1, 2 and the first pressure
mode for ` = 2, with an agreement up to a few percent. The small differences
are likely due to the finite resolution of the background calculation.

Eigenfunctions of p-modes The identification of the pressure modes was
based in this case just on looking at the frequencies of the resulting solutions
and comparing with the literature. The corresponding eigenfunctions, though,
were also examined, and in some cases, were the frequency separation of two
modes was small5, they revealed the order of the modes. This will become very
important for inertial modes, were the frequency separation between modes is
expected to be much smaller. In figures 4.2 and 4.3 we plot the eigenfunction
of the modes whose frequencies were followed and shown in Table 4.4. Shown
is the pressure perturbation, which is the main quantity for such modes.

The above method remains basically the same when we turn on rotation.
We thus expect to obtain the fluid modes with similar accuracy even for rapid
rotation. The picture may change, though, for the rotation-driven modes: These
are degenerate at zero frequency in the non-rotationg case. Therefor, there are
no results for the non-rotating case that can be used as an indication for the

5This can happen more easy for low resolution, since modes converge differently with nr
and in some cases one mode might appear with lower frequency than another which in ’infinite’
resolution appears first on the frequency axis.
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Figure 4.2: The r-dependence of the eigenfunctions of the ` = 1 and ` = 2
f -modes that are presented in table 4.4 (at an angle of ∼ π/4).

accuracy of our computational results.

4.2.2 Rapid rotation

With rotation being included the equations of motion for the fluid become quite
lengthy. They take the form:

Π
∂H

∂t
= − imC2s

r2 sin2 θeγ+ρU0

{

e2ρr2 sin2 θΩ2 +
[

e2ρ + ωr2 sin2 θ(Ω− ω)
]2
}

f3

−C2sU0
eγ−ρ

e2α

{

r2 sin2 θω(Ω− ω)
(U0)2eγ−ρ

(

3

2

∂γ

∂r
− 1

2

∂ρ

∂r
+
∂ ln (p+ ε)

∂r
+

3

r

)

−r4 sin4 θ (Ω− ω)3 ∂ω
∂r
− e2ρr2 sin2 θ

[

ω
∂ω

∂r
+Ω(Ω− ω)

(

∂ρ

∂r
− 1

r

)]

+
e2ρ

(U0)2eγ−ρ

(

3

2

∂γ

∂r
+

1

2

∂ρ

∂r
+
∂ ln (p+ ε)

∂r
+

2

r

)

}

f1

−C
2
s

r2
U0

eγ−ρ

e2α

{

r2 sin2 θω(Ω− ω)
(U0)2eγ−ρ

(

3

2

∂γ

∂θ
− 1

2

∂ρ

∂θ
+
∂ ln (p+ ε)

∂θ

)
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Figure 4.3: The θ-dependence of the eigenfunctions of the ` = 1 and ` = 2
f -modes that are presented in table 4.4.

−r4 sin4 θ (Ω− ω)3
(

∂ω

∂θ
+ 2ω

cos θ

sin θ

)

− e2ρr2 sin2 θ
[

ω
∂ω

∂θ
+Ω(Ω− ω)

(

cos θ

sin θ
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∂θ

)]

+
e2ρ

(U0)2eγ−ρ

(

3

2

∂γ

∂θ
+

1

2

∂ρ

∂θ
+
∂ ln (p+ ε)

∂θ
+

cos θ

sin θ

)

}

f2

−imΩ
(

1 + C2s
) [

e2ρ + r2 sin2 θω (Ω− ω)
]

H

−C
2
s

U0

{

e−2α
[

e2ρ + r2 sin2 θω (Ω− ω)
]

(

∂f1
∂r

+
1

r2
∂f2
∂θ

)

− ωZ − 2Ωe2ρ

eγ+ρ
∂f3
∂t

}

(4.6)

Z
∂f3
∂t

= im
(

ωZ − 2Ωe2ρ
)

f3 − imeγ+ρU0
[

e2ρ + r2 sin2 θ(Ω− ω)
(

Ω

C2s
+ ω

)]

H
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{

3

2

∂γ

∂r
− 1

2

∂ρ

∂r
+
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+
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−r2 sin2 θ(Ω− ω)eγ+ρ
{

e−2α
(

∂f1
∂r

+
1

r2
∂f2
∂θ

)

+ U0
(

1 +
1

C2s

)

∂H

∂t

}

(4.7)

∂f1
∂t

= −
{

2(Ω− ω)
(

∂ρ

∂r
− 1

r

)

+ e−2ρZ
∂ω

∂r

}

f3 − imΩf1 −
1

U0
∂H

∂r
(4.8)

∂f2
∂t

= −
{

2(Ω− ω)
(

∂ρ

∂θ
− cos θ

sin θ

)

+ e−2ρZ
∂ω

∂θ

}

f3 − imΩf2 −
1

U0
∂H

∂θ
, (4.9)

where

Π = e2ρ + r2 sin2 θ(Ω− ω)
(

C2sΩ+ ω
)

Z = e2ρ + r2 sin2 θ(Ω− ω)2
[

(U0)2eγ−ρ
]−1

= e2ρ − r2 sin2 θ(Ω− ω)2,

while U0 is the t-component of the unperturbed 4-velocity with upper indices,
uα = U0{1, 0, 0,Ω}.

This system could not be transformed into a higher order system with less
equations, so we have to deal with all 4 equations and variables. When using the
harmonic time-dependence, the frequency σ would appear also on the right hand
side. Therefore, this form is not suitable for performing an explicit eigenvalue
calculation as described in subsection 3.3.1. We thus define new variables:

F = ΠH +AC2sf3

V = ZC2sf3 +BH,

where

A =

(

2Ωe2ρ − ω

(U0)2eγ−ρ

)

1

eγ+ρU0

B = r2 sin2 θ(Ω− ω)eγ+ρU0(1 + C2s ),

which together with f1, f2 form the set of variables we will use from now on.
The eigenvector ~X for the code (see 3.3.1) consists of the values of these four

variables at each combination of radial and angular coordinate i, j, ie ~X =
{F 1,1, V 1,1, f1,11 , f1,12 , F 1,2, V 1,2, f1,21 , , f1,22 . . . , F i,j , V i,j , f i,j1 , , f i,j2 , . . . , Fnr,nθ , V nr,nθ , fnr,nθ1 , , fnr,nθ2 },
where nr, nθ are the number of points in the radial and angular direction re-
spectively. The full set of equations eventually becomes:

iσF =
imF

ZΠ−AB

{

B

[

e2ρ + r2 sin2 θω(Ω− ω)
]2

+ e2ρΩ2r2 sin2 θ

r2 sin2 θeγ+ρU0

−(1 + C2s )ΩZ
[

e2ρ + r2 sin2 θω(Ω− ω)
]

}

− imV

ZΠ−AB

{

Π

[

e2ρ + r2 sin2 θω(Ω− ω)
]2

+ e2ρΩ2r2 sin2 θ

r2 sin2 θeγ+ρU0
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(4.11)

iσf1 =

{

B
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2(Ω− ω)
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∂rρ− 1
r
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+ e−2ρZ∂rω
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− imΩf2 (4.13)

In Fig. 4.4 we show the solutions (up to 50kHz) returned by the eigenvalue
code for axisymmetric perturbations of model BU1, using a low radial resolution
of nr = 25. As far as results for pressure modes are available from the literature
we list them along with our results in Table 4.5. No previous results are available
for axisymmetric inertial modes of rapidly rotating relativistic stars; see Ruoff
et al (2003) for modes of slowly rotating stars. Very recently Dimmelmeier et al
(2006) published frequencies of the three strongest axisymmetric inertial modes

Table 4.5: Frequencies (in kHz) of two fundamental m = 0 pressure-driven os-
cillations for the polytropic models BU1 and BU6, compared with the results of
(Font et al, 2001). In the non-rotating limit these correspond to l = 0 and l = 2
modes. Again, our values have been extrapolated to nominally infinite radial
resolution. Convergence in this case was not as clean as shown in Fig. 4.1, espe-
cially for the rapidly rotating model BU6. This is reflected in larger uncertainty
estimates.

fl=0 (BU1) fl=2(BU1) fl=0(BU6) fl=2(BU6)
This work 2.720±20 1.834±25 2.292±193 1.718±85
Font et al (2001) 2.657 1.855 2.456 1.762
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Figure 4.4: A histogram of the number of all solutions returned by the eigen-
value code for the m = 0 eigenvalue problem of the model BU1 up to a specific
frequency. Both axis are scaled logarithmically; the frequency bins have a con-
stant width of 10 Hz for the inertial mode frequencies and 1 kHz for the pressure
mode frequencies.

in the conformally flat approximation. They all lie inside the corresponding
inertial mode spectrum (see below). We will first concentrate on some general
properties of the spectrum and then on individual modes.

The oscillation mode spectrum We notice from Fig. 4.4 that the eigen-
values are clustered into two groups, one above 1000Hz and one below. These
correspond to the expected frequency ranges for pressure modes and inertial
modes. The latter range is more densely populated; for example, we see more
solutions between, say, 500 and 520 Hz than between 2 and 5 kHz. This is not as
surprising as it may seem at first: according to theory (see eg. (Lockitch et al,
2004) for an overview table), there is an infinite number of pressure modes, with
frequencies extending to infinity. For the inertial modes though, one expects an
infinite number of modes as well, but confined to a well defined frequency range.
According to our computation this range appears to extend from 0 to about 600
Hz for the model BU1.

In Fig. 4.5 we show the p−mode and inertial mode ranges separately for
increasing radial resolution. In both ranges the number of frequency eigenvalues
increases with increasing resolution. There is an important distinction, however:
in the p-mode range, higher frequency ranges are increasingly populated as
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Figure 4.5: A histogram of the number of modes per frequency bin computed
for the m = 0 eigenvalue problem of the model BU1 and for several resolutions;
left for the p-modes with bins equally sized at 10kHz, and right for the inertial
modes with a bin size of 25Hz.

the resolution increases, while the population of low frequencies approaches a
limiting value. We observe that as the radial resolution nr increases, the number
of computed eigenvalues increases as 10 × nr. The lowest p-mode frequency,
which belongs to the m = 2 f -mode, is roughly the same for all resolutions. It
shifts in frequency by a few hundred Hz, which is just a few percent of the bin
size. Typically the number of solutions per frequency bin approaches a limit
value α like Nbin ≈ α+ β/nr with some constant β.

For each stellar model the maximum value of frequency eigenvalues tends to
infinity for increasing resolution. This is similar to the situation for quasi-normal
modes of black holes, with an infinite number of modes which is not confined to
a finite part of the complex frequency plane (see Nollert, 1993). In the case of
black holes, however, the imaginary part of the frequency is unbounded, while
it is the real (oscillatory) part of the frequency for pressure modes of relativistic
stars.

In the inertial mode range, on the other hand, the frequency range does not
change as the resolution increases; in fact, the upper limit (600Hz for model
BU1) is quite robust. Instead, the population increases fairly homogeneously
over the whole frequency range. The total number of solutions calculated de-
velops, just as for the p-modes, like 10 × nr. The number of points per bin
grows linearly; for the bin e.g. around 400Hz, as Nbin ' 2×nr. This is a strong
indication that an infinite number of solutions exists in this frequency range.
It would seem likely that there is an infinite number of physical modes in this
range as well.

While the upper limit for the frequency range does not depend on the res-
olution used in the numerical calculation, it actually depends linearly on the
rotational frequency of the star, as shown in Fig. 4.6. The linear fit reveals
σmax = 1.674× Ω with a negligible statistical error.

The picture in Fig. 4.5 is actually quite common for numerical studies of
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Figure 4.6: The highest inertial mode frequency as a function of the star’s
rotational frequency, starting at the model BU0 (no rotation) and moving up
to model BU1 (2185Hz).

oscillation spectra: as one increases the resolution, frequency ranges at increas-
ingly higher frequency become populated, while there is a finite limit for lower
frequency ranges. Usually one expects that at low resolution, only modes with
low frequencies can be computed reliably, since they are the only ones which can
be resolved sufficiently well. High frequencies solutions are too inaccurate and
cannot be trusted. With increasing resolution, the number of accurate solutions
increases and their range extends to higher frequencies.

On the other hand, if we are confronted with a finite frequency range which
shows an increasing number of solutions with increasing resolution, such a dis-
tinction cannot be made in a meaningful way. It is therefore not clear which of
the numerical solutions in the frequency range corresponding to inertial modes
should be considered physical solutions, and which should be discarded as nu-
merical artefacts.

Just as in the non-rotating case, one can establish convergence for any fi-
nite value of the frequency in the upper range (Fig. 4.5), since there is a finite
number of distinct modes in any finite frequency interval. The limit values very
likely correspond to physical modes of the star. In the lower frequency range
(left panel of fig. 4.5) it is not even clear how to establish a correspondence
between eigenvalues at increasing resolutions, let alone define convergence and
establish a correspondence to physical modes. However, given our numerical
results, we consider it likely that the frequency range from 0 to 600 Hz does
not contain only a finite number of inertial modes, in agreement with theo-
retical expectations. This leaves the following possibilities: There may be an
infinite number of discrete frequencies, there may be a continuous spectrum, or
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Figure 4.7: The number of solutions found in the inertial mode range for the
BU6 model up to a frequency against that frequency.

a combination of these two. Note that an infinite number of frequencies in a
finite frequency range implies the existence of at least one accumulation point.
Such an accumulation point must be part of a continuous spectrum. A common
example is the spectrum of a highly excited atom: it has an accumulation point
at zero energy, which marks the edge of the continuous spectrum. However, the
numerical limitations do not allow us to draw more specific conclusions, such
as to the extent of a continuous spectrum, whether there are discrete modes in
addition, where they may be, etc. The rather uneven distribution of solutions
across the frequency range in question is an indication, though, that the actual
spectrum may be far from having a simple structure.

An important indication for the existence of a continuous spectrum would
be the appearance of accumulation points inside the frequency distributions of
the inertial modes. We plot therefor an accumulative histogram in figure 4.7.
The derivative of the total number of modes found up to a frequency over the
frequency, is quite smooth without extremes, not supporting the existence of
discrete accumulation points in that range.

Eigenfunctions The axisymmetric pressure modes calculated for the BU1
model, are not expected to differ significantly from the ones calculated for no
rotation (BU0 model), as also seen from the frequencies. This becomes clear
when one looks at the profiles of these modes. In figure 4.8 we see the eigenfunc-
tions of the ` = 2 fundamental pressure modes for BU0, BU1 and BU6. The
pressure perturbation is plotted at an angle of 45 degrees for the radial eigen-
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Figure 4.8: The pressure perturbation of the axisymmetric f -mode correspond-
ing to ` = 1 for nr = 101 and for the models BU0, BU1 and BU6; on the right
along the angular direction, at about half the radius and on the left along the
radial direction at about 45 degrees.

function and around half the radius of the star for the angular one, (although
for these modes it hardly makes a difference).

The eigenfunction corresponding to the ` = 1 f -mode, does not change
much from BU0 to BU1; for BU6 it has, though, already a slightly different
form –the maximum of the pressure perturbation moves closer to the center
of the star 6 – still different though from other f -modes of different `. The
corresponding extrapolated eigenfrequencies are 1326.5Hz, 1335.5 Hz and 1445.0
Hz for BU0, BU1 and BU6 respectively, with the convergence however not
being always nice, possibly because a constant θ resolution is not any more a
good approximation. This high rate of rotation influences also slightly the θ-
eigenfunctions, which for this low order pressure mode still resembles very much
7 the Legendre polynomial for ` = 1 and m = 0 (P 10 = cos θ, see App. B).

This picture is expected to change for inertial modes, where contributions
might be less dominated by the first order term of the expansion. A typical
inertial mode has a profile as in figure 4.9; it is clear that it belongs to a mode
of higher order with complicated structure, both in r and θ. Unfortunately very
little is available in the literature about the axisymmetric inertial modes. In
order to be sure about these results we need to check with known eigenfunc-
tions, since the frequency itself cannot uniquely define a mode inside this dense
spectrum. The fundamental ` = m = 2 r-mode is a good point of reference,
since it has been the focus of many studies, both analytically and numerically.
For that we will have to turn to axisymmetric modes, and concentrate on the
m = 2 case.

6The sudden cut-off close to r = 0 is apparently due to the weakness of the code to describe
the steep eigenfunction and the regularity condition there for axisymmetric modes.

7The opposite sign and different scaling compared to fig.4.3 is due to the different normal-
ization.
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Figure 4.9: The pressure perturbation of a randomly chosen inertial mode of
the BU6 model for nr = 51, plotted in the same way as in figure 4.8. The mode
has σ = 0.77Ω.

4.3 Non-axisymmetric perturbations

For m > 0 the picture is more complicated but also more interesting than the
axisymmetric case since the m = 2 modes are the ones most unstable to gravi-
tational radiation. Solving this system for m = 2 and the BU1 model in the way
described in the previous section we find a set of eigenvalues, containing both
positive and negative frequencies. In the axisymmetric case negative eigenval-
ues are equivalent to the positive frequency solutions. Breaking axial symmetry
shifts frequencies (for an asymptotic observer) towards negative values, so that
much or even all of the frequency range corresponding to inertial modes becomes
negative.

In Newtonian gravity (see e.g. Unno et al (1989)), a polar mode of order
n, harmonic index ` and frequency σ0, splits under rotation to 2` + 1 modes
with frequencies shifted to σ = σ0 −mΩEn` (+O(Ω2)) where En` is a function
depending on the eigenfunction of each mode. For low order pressure modes
the value of this function is about 0.1, so one would need rotational frequencies
close to the Kepler limit for the frequency to change sign.

However, there are modes which have σ < 0 for any rotation rate, such as the

r-modes which in the Newtonian, slow-rotation limit have σ = −2mΩ (`−1)(`+2)`(`+1) .

This is the picture we find for m = 2, with all inertial modes having negative
frequencies. Such a change of sign is often used as an indication for the corre-
sponding mode to become unstable (see eg. Stergioulas, 2003).

In Fig. 4.6 we saw that the upper cutoff frequency for the inertial mode
range grows linearly with the rotational frequency of the star. In the non-
axisymmetric case, there is also a dependence on m. For the series of models
listed in Table 4.1 we obtain a least square fit of σmax/Ω = 1.64 − 1.06 × m.
The standard deviations in the above numbers are of the order of 0.01. For less
relativistic models with a central energy density 1/10 that of BU1, this changes
to σmax = Ω(1.93 − 1.03m) (with similar error-bars), close to what Lindblom
and Ipser (1999) calculated and Brink et al (2004) found for Newtonian stars,
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where σmax ≈ Ω(2−m).
In the axisymmetric case a zero-
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Figure 4.10: The histogram of both pos-
itive and negative solutions of the eigen-
value code for m = 0, 2, and 4. The
values for the inertial modes (middle)
are scaled differently for better presen-
tation.

frequency mode in the rotating frame
has 0 Hz also for an inertial observer,
it corresponds to the mid-point of the
inertial mode frequency range. For
non-axisymmetric perturbations the
center of the spectrum is expected to
shift to −mΩ, which indeed appears
to be the case in our results. The cor-
responding inertial mode spectrum for
a specific azimuthal index m > 0 is
however not completely symmetric since
modes with different order n or har-
monic indices ` have different frequency
shifts. This shift is rather small for
pressure modes. As the azimuthal in-
dex m can take arbitrarily large val-
ues, the inertial modes can, according
to the above, reach arbitrarily large
negative frequencies. Since these are
equivalent to positive frequencies with
a phase difference, the frequency range
of inertial modes will overlap with that
of pressure modes. An overview of
the spectra for three different values
of the azimuthal index m can be seen
in Fig. 4.10.

The oscillation frequencies are in-
fluenced not only by changes in the
equilibrium configuration of the star,
but also by other effects, such as the
frame dragging at the surface and the
center (Kojima & Hosonuma, 1999).
These also scale linearly with Ω. Know-
ing the range of inertial mode frequencies as a function of the star’s rotational
rate in advance may be quite helpful for actual observations of gravitational ra-
diation emitted by these oscillations. In the next section we search for individual
modes, such as the fundamental r-mode.

4.3.1 Pressure modes

In table 4.6 we show the first pressure modes for the rapidly rotating model
BU1 as in table 4.4; no ` = 0 and ` = 1 modes are present since we are looking
at m = 2 perturbations. In this case we have to be careful when comparing
results, since the work of Font et al (2001) considered axisymmetric perturba-
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Table 4.6: The first two pressure modes for BU1 for a fixed θ-resolution and
increasing r-resolution; the one to last row are the extrapolated values. The
results by Font et al (2001) are being subtracted by mν(1−Cn`) and are shown
in the last row; they include a standard deviation error of ∼ 15Hz due to
numerical integration.

nθ nr f`=2 p1`=2
10 10 1753 5086

20 1574 4042
25 1533 3947
50 1443 3740
∞ 1350 3520

Font et al (2001)∗ 1330 3400

tions 8. As known by theory (see eg (Unno et al, 1989)), rotation causes the
m-degeneracy to be broken. A (polar) mode with frequency f0 in a non-rotating
star, changes to fi = f0 −mν(1−Cn`) (+O(ν2)) when rotation is switched on,

where Cn` =

∫

ρr2[2ξrξh+ξ
2

h
]

∫

ρr2[ξ2
r
+`(`+1)ξ2

h
]
can be determined (also numerically) from the

mode’s eigenfunction (ξr, ξh represent the displacement vectors in the radial and
angular direction). The computed value for the f -mode is C12 = 0.24 which
results in a 525Hz reduction of the frequency, and C22 = 0.079 for the p1-mode,
with a resulting 640Hz decrease in frequency (typical errors 0.02, ie. 15 Hz).
The agreement is of the same order as before. The reason for the discrepancy is
believed to lie with the finite resolution having a larger impact on the high-order
modes.

In fig. 4.11 we show the eigenfunction of the fundamental pressure mode for
m=2. This cannot be compared directly with any of the eigenfunctions of the
previous section since there are different modes under consideration, namely
for m = 2 and m = 0. We see that the eigenfunction is already described
well with low resolution and the form does not change as more radial points
are considered in the background. The θ-eigenfunction (right) is practically
identical (after normalization) for all resolutions and very similar to the P 22
Legendre polynomial. In fig. 4.12 we show also δuθ for the same mode. While
the r-eigenfunction behaves like a power law throughout the star – like r2 up
to ∼ R/3 –, the θ-eigenfunction resembles now ∂θP

2
2 = 3 sin 2θ, which is the

leading order contribution of the expansion into spherical harmonic function for
this polar mode (the next one being P 32 / sin θ, see also the next subsection and
eq. 4.14).

8For Ω = 0 this does not make a difference.
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Figure 4.11: The r and θ parts of the eigenfunctions of the pressure perturba-
tion for the f`=2 mode of the BU1 model for several resolutions. The θ parts
(bottom) are not distinguishable from each other and very close to P 22 . The r
eigenfunction is plotted at an angle of ∼ 45 degrees, while the θ eigenfunction
at the first non-zero radial point.

4.3.2 Identification of inertial modes

The task of identifying inertial modes is much more tedious than the study of
the general properties of the frequency distribution. By definition (see section
1.1) the identification of a mode should be based on its eigenfunction. Since,
however, the number of modes found are proportional to the product of number
of points in both directions, an increasingly large number of eigenfunctions
are to be checked. We can ease this search by concentrating on a range of
frequencies where the modes of interest are expected to be. For p-modes this
is well restricted (see eg. susection 2.3.2), but for inertial modes, only the
fundamental r-mode has a well studied frequency (around 1.4ν). But even the
uncertainty in the value of the latter (of about 10%) combined with the dense
population of inertial modes, still leaves us several dozens up to a few hundred
(depending on the resolution) modes to examine.

One other important distinction between p-modes and inertial modes –
regarding their eigenfunctions and the mode identification – is the coupling
of polar and axial contributions, which does not appear to be really strong for
the p-modes, while for the inertial modes it can produce a rather complicated
eigenfunction, departing significantly from the form of the leading order term
and being rather a mixture of the first few (3-4) terms. Lockitch and Friedman
(1999) computed the leading order terms of several modes in a Newtonian frame-
work and expressed them as power series. Later Lockitch et al (2003) extended
this by the use of general relativity, but did not present the explicit terms in
their paper. What is important to note is that the resulting eigenfunction will
not be just a sum of the individual (polar and axial) terms of all orders, but
one has to calculate the contributions as they are scaled by the corresponding
θ-behavior. So, for example, the θ-part of the velocity perturbation, will be (in
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Figure 4.12: The r and θ part of the eigenfunctions of the θ component of the
perturbed 4-velocity for the same mode as in fig. 4.11. Also shown with the
θ-eigenfunction, the leading order term of the expected expansion in spherical
harmonics and their derivatives, 3 sin 2θ (see also text).

the notation of Lockitch and Friedman (1999))

δuθ ≈ Σnk=0
1

r

(

Vm+2k+1
∂Pm

m+2k+1

∂θ
+

m

sin θ
Um+2kP

m
m+2k

)

, (4.14)

9 where U`, V` are powers series of x = r/R for the axial and polar contributions
respectively. For δuφ the corresponding expansion is:

δuφ ≈ Σnk=0
i

r

(

mVm+2k+1
sin θ

Pm
m+2k+1 − Um+2k

∂Pm
m+2k

∂θ

)

, (4.15)

while for δur the series would include only polar terms:

δur ≈ Σnk=0
Wm+2k+1

r
Pm
m+2k+1 (4.16)

as also for δp with different functions W̃ .
In figure 4.13 we show how δuθ of Lockitch and Friedman (1999) looks like,

along some characteristic coordinate values of our grid, for the m = 2 axial-led
inertial mode with σ = −1.51ν (k = 0.4669). The terms that contribute to
forming that eigenfunction are the axial vectors for ` = 2 and ` = 4 as well as

the polar one for ` = 3, ie. 2
sin θU2P

2
2 ,

2
sin θU4P

2
4 and V3

∂P 2
3

∂θ respectively. We
see that although the function U2(x) is the leading order term, the r part of
the eigenfunction is not dominated by its contribution. Moreover, we note that
the r part of the eigenfunction can well cross the x axis along several angular
directions. In contrast to the pressure modes, the θ part of the eigenfunction
is different at different radial points; it also deviates significantly from sin θ
(= P 22 / sin θ), especially at the outer parts of the star. This means that the

9n is theoretically extending to infinity but in practice truncated at some `max; in Lockitch
and Friedman (1999) this is 4 for most modes considered
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Figure 4.13: The r and θ eigenfunctions of the σ/Ω = −1.51 axial-led inertial
mode of Lockitch and Friedman (1999) along some characteristic directions in
the star; for the r-eigenfunction (upper panel) along the angles on which our
grid points fall: 0.45 rad, 0.79 rad, 1 rad, 1.26 rad, 1.87 rad and 2.69 rad (two
more angles at each of the last two θ-spaces were left out since the corresponding
change in the eigenfunction is small and the figure would be overcrowded); for
the θ-eigenfunctions at r

R = 0.2, 0.79, 1, 1.26, 1.87, which is again a selected
subspace of the radial coordinate for our lowest resolution (nr = 11).

identification of such a mode, based on δuθ, should preferably take place at
points were the expansion of the eigenfunctions into power series of decreasing
order is a good approximation. That would thus be close to the center of the
star (for the θ part of the eigenfunction) and close to the rotational axis (for
the r part). Due to the low θ-resolution used throughout this work, the latter
would be at angles of about (π−)0.45 rad. Still, in the case of modes with similar
profiles, the identification would be very hard, even with a quantification of the
similarity to the individual contributions (eg. by fitting the resulting points of
the profile with a function like eq. 4.14). High rotation rates can cause even
more confusion, and a mode should be identified first for slower rotating models
of a sequence. The compactness of the corresponding model should not cause
additional complications, as it has minor effect on the contributing terms (and
thus the overall eigenfunction) (Lockitch et al, 2003).

In our results several modes seem to have profiles similar to what we see in
fig. 4.13. We can be confident that expected solutions appear in our results,
we do however not proceed in searching for other modes apart from the fun-
damental r-mode, since even the second order inertial modes hardly produces
any gravitational wave emission (Lockitch et al, 2003) and is therefor of minor
astrophysical interest.

4.3.3 The fundamental r-mode

The procedure followed above for predicting the eigenfunction, does not apply
in the same way for the fundamental r-mode, since in Newtonian description the
mode has just a single axial contribution, and thus does not mix with higher or-
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Table 4.7: The frequencies in Hz of our best candidate for the fundamental
r-mode for several resolutions of the BU1 (left) and BU6 (right) models.

nθ nr r-mode(?)
10 10 515.6

20 504.1
25 501.6
50 496.7
100 494.6
∞ 492.0

nθ nr r-mode(?)
10 10 1146.9

20 1167.9
25 1166.7
50 1170.2
100 1174.2
∞ 1175.7

der ones (Lockitch and Friedman, 1999). In this framework, the r-eigenfunction
would be a single power of r, while the θ-eigenfunction for δuθ would, at any
radial point, be proportional to P 22 / sin θ. Lockitch et al (2003) examined the
coupling with higher terms introduced by general relativity and found even the
first few order terms to be less than an order of magnitude smaller than the
first order one. Although the explicit terms are not available, we expect the
1
rU2P

2
2 / sin θ term to dominate the eigenfunction of δuθ both in radial and an-

gular direction; For δp the leading order term will be P 23 since the axial parts
are zero for scalar perturbations.

Based on this we performed a search among the inertial modes given from
our eigenvalue code. We concentrate on the θ part of the perturbed velocity,
since this is the variable that is expected to be excited the most and does also
appear to be larger in magnitude relative to δuφ, δur and δp. Depending on
the model’s compactness and its rotation rate the frequency of the r-mode is
expected to lie within ∼ 1.2ν and ∼ 1.5ν (Yoshida et al, 2005), which is also
the range at which we looked. The restrictions for the mode’s δuθ not to cross

the x-axis, to have a r-behavior like r2 and a θ-behavior like
P 2
2

sin θ ∼ sin θ were
checked manually for all modes lying in this range. We focused our search at
the θ part of the eigenfunctions as they appear close to the center and the r
parts along a preferred angle (see above, subsection 4.3.2) of ∼ 2.49 rad, but
extended that also to different coordinate values . We first looked at the model
for the (relatively) slowly rotating star, BU1 and then at the faster one, BU6.

The above criteria were not strictly met for any mode of BU1, but we did
find an inertial mode at every resolution that has a very similar behavior. We
show the r and θ parts of the eigenfunctions of δuθ and δp in figure 4.14 and the
frequencies of the mode for every resolution in table 4.7. The radial profile of
δuθ reasonably resembles r2 for all resolutions. Some large-scale deviations are
probably due to contributions from higher order terms, while the small-scale
deviations, that become more obvious for higher resolution, might be due to
numerical contamination from solutions with similar frequency and more com-
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Figure 4.14: The best candidate for the r-mode for the model BU1. The r parts
of the eigenfunction are seen at the last angular point (θ = 2.69rad) while the
θ ones are seen at the first non-zero radial point.

plicated profile. The angular profile of δuθ resembles well the leading order term
of the expected expansion in Legendre polynomials (P 22 / sin θ), with deviations
being stronger at the left part of the diagram10. For nr > 50 δuθ(θ) deviates
more from sin θ, still keeping however the rough form of the lower resolutions.
The eigenfunctions of δp were not used for the search of the mode, but are
illustrated here for consistency. The radial part has for all resolutions a form
that resembles the no-node r-eigenfunctions of the fundamental pressure modes
(see eg. fig. 4.11) apart from some small-scale deviations that –again– appear
at small r. The θ-eigenfunction on the other hand, has a more clear form,
which resembles well a P 23 Legendre Polynomial, the expected leading term of
the expansion of a axial-led scalar function (see subsection 4.3.2); the form is
disturbed only at points close to the left boundary.

For BU6, the search for the r-mode was even more tedious, apparently due to
the increased mixing of contributions (see above). We still find a mode behaving
similarly to the mode of BU1 that was identified as r-mode, but with even weaker
fulfilling of the preset criteria. Its eigenfunctions are plotted as before in fig. 4.15
and the corresponding eigenfrequencies in table 4.7. The main differences of the
eigenfunctions, compared to the ones of fig. 4.14 is the larger long-scale deviation

10The θ-derivatives appearing in the equation for f2 ∼ δuθ are discretized with left-hand-
sided differences, making it more sensitive to the boundary conditions at the left (θ ≈ 0).
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Figure 4.15: As in figure 4.14, but for the model BU6.

from r2 for δur(r); this could be the result of a stronger contribution from the
higher order terms due to increased rotation. This is, however, not seen in the
eigenfunctions that Yoshida et al (2005) publish for δuθ of the r-mode that they
computed, although in their analysis only that single mode was derived.

The frequency ’evolution’ with resolution, on the other hand, does not follow
a nice 1/r convergence any more (χ2/dof=31.1) as it did for the BU1 model.
Also the extrapolated frequency of σ/ν = 1.48 (as well as the individual ones)
are higher than the corresponding one for BU1, which is in contrast to what is
found by Yoshida et al (2005) for a series of models for the r-mode11.

The numerical limitations of our code might be able to explain the discrep-
ancy and offers three explanations for the differences with the results of Yoshida
et al (2005):
Both modes are indeed the r-mode of each model, and the differences in the fre-
quencies, as well as in the eigenfunctions with the results of Yoshida et al (2005)
are due to the low resolution, especially in the θ-direction. For rapidly rotating
models (and thus increased deviation from spherical symmetry) more angular
points (together with high radial resolution) are needed to sufficiently solve the
problem. Memory-limitations did not allow us to perform such calculations.

11The models used by Yoshida et al are different than the ones used here, so no direct
comparison between the mode frequencies can be made. Still, for their sequence of models
c and d (that resemble ours the most), the decrease of the r-mode frequency with rotation
energy T/|W | is found to be σ/Ω ≈ 1.41− 1.95 T

|W |
and σ/Ω ≈ 1.51− 1.36 T

|W |
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One other possibility is that, while the mode for the slower rotating model BU1
is closer to what we expected and can indeed be identified as the r-mode, the
mode identified for the BU6 model is not the mode we were looking for. Since
the eigenfunctions, on which the search was based, are in this case quite messy,
no unique characterization of a mode can be made, hindering us from following
such for several resolutions. This means that the r-mode for BU6 would be at
somewhat lower frequencies12.
The last possibility is that both the modes that we pointed out do not corre-
spond to the r-mode; since no other mode with better properties was found
among our solution, that would mean that the r-mode is not present in results.
This possibility cannot be excluded since the presence of a continuous spectrum
of inertial modes and the occasional elimination of the r-mode through that,
was suggested in some slow-rotation analyses (see sec. 1.1).

The latter two possibilities cannot be definitely answered through this ap-
proach. Not just because a mode calculation cannot resolve the question of
continuous spectrum; it is the complexity of the boundary value problem and
its sensibility on the conditions implied (especially on the angular directions)
that allows to consider minor changes revealing some additional physical con-
ditions and results (see also subsections 2.3.1, 2.3.2). Although the axis has
some particular problems (singularity of the variables there), its inclusion in
the numerical grid – possibly with a different choice of variables – may allow a
more complete description of the boundary conditions there.

12We indeed see a mode at σ ≈ 1.35Ω with similar properties, but for nr > 26 the picture
seems to brake.
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Chapter 5

Conclusions

We have presented the first numerical calculation of oscillation frequencies of
rapidly rotating relativistic stars for both axisymmetric and non-axisymmetric
perturbations, using the relativistic Cowling approximation.

For the polytropic equations of state that we have employed here, we found
an infinite set of pressure modes with a range of frequencies bounded only from
below at about 2kHz. In addition, there is a presumably infinite set of solu-
tions at lower frequencies in a well defined range which corresponds to inertial
modes. In the axisymmetric case (m = 0) this frequency range is symmetric
around zero. It extends to a maximum frequency which depends linearly on the
star’s rotation rate νstar and approaches 2νstar for less relativistic stars. For
non-axisymmetric perturbations, oscillation frequencies shift towards negative
numbers. This affects pressure modes only slightly, while the inertial modes
now all have frequencies below zero.

It is not clear whether this low-frequency part of the spectrum is discrete
or continuous, or a combination of both. The dense and somewhat uneven dis-
tribution of the eigenvalues is an indication that the actual structure of the
physical spectrum may be quite complicated. Further investigation is needed
into the question how a spectrum with a continuous part can be studied nu-
merically. Furthermore, explicit time evolution of perturbations of the same
configurations could provide an independent means of studying their spectrum
and checking the results we have presented here.

Inside the dense inertial mode spectrum, individual modes could still be
identified, with a mode resembling the expected properties of the fundamental
r-mode, being found at σ/Ω = 1.41 for a slowly rotating neutron star and at
1.48 at about half the break-up frequency. Some uncertainties, however remain,
due to the deviations from the expected form of the eigenfunction of δuθ and
the increase instead of decrease of the frequency with increasing rotation rate.

The numerical procedure definitely affects the accuracy of the results. One
can observe this in the eigenfunction, where deviations close to the boundary are
stronger (see subsection 4.3.3) as well as an overall shift of the eigenfunctions
along the θ axis. An increased resolution in both angular and radial direction
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could resolve this, but requires more computational memory than available.
Applying realistic equations of state requires only slight modification of the

code and will shift the frequencies to some extent, but the overall picture should
remain the same. The effect of a non-barotropic equation of state on the inertial
mode spectrum presents a very interesting question for further study.

Finally, for an accurate calculation of the oscillation frequencies, the disposal
of the Cowling approximation will be necessary. This is important not just to
avoid deviation of the calculated frequencies introduced by the Cowling approx-
imation, which we expect to be small, but also to ensure the consistency of the
problem (see Section 1.1). The major problem lies not in the perturbation equa-
tions becoming more complex, but in defining the boundary conditions in the
spacetime outside the star. Observation of potentially unstable modes with the
now-operational gravitational-wave detectors is possible only if precise knowl-
edge of these modes is available as a basis for the analysis of the gravitational
wave data.

The oscillation mode problem for rapidly rotating stars has just started
giving results, and is definitely not fully solved yet. This work, together with
some recent articles, fill some of the last pieces of a puzzle that has long been
started. A few more pieces are about to follow and the method presented here
can contribute to clarifying important issues, especially regarding the full set of
solutions and not just a few individual modes. The point where we will know
how real these results are, is not far away.
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Part II

Quasi-periodic oscillations

in X-rays
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Chapter 6

kHz quasi-periodic

oscillations from Circinus

X-1

As we saw in part I, inertial modes in the fluid of rotating neutron stars have
frequencies of the order of a few hundred Hertz and can become unstable. Next
to the fascinating perspective of detecting such through gravitational waves, it
is also possible that the astronomical analogue of neutron stars – pulsars– shows
similar non-radial oscillations at their outer layers through electromagnetic ra-
diation. Radio pulses have been considered to be carrying the signature of such
modes (Fender et al, 2005) but oscillations in the x-ray spectrum seem like a
better candidate (Bildsten et al, 1998).

6.1 Introduction

Low mass X-ray binaries (LMXBs) often exhibit quasi-periodic oscillations (QPOs)
in their X-ray flux. These QPOs show dramatic changes in their frequency and
coherence as a function of a system’s location in the X-ray color-color diagram.
If the LMXB is a Z source the QPOs generally increase in frequency and in
sharpness as the source moves from the horizontal branch to the normal branch
and eventually the flaring branch, which is also the path along which the mass
accretion rate is believed to be increasing, at least on short time scales. For
atoll sources the analog sequence of states is extreme island→ island→ banana
state. QPOs reaching up to about a kHz (kHz QPOs) are often found along
the horizontal branch and upper normal branch for Z sources and in the island
state as well as the lower left banana state the for atoll sources. In, so far, 19
cases of LMXBs containing NSs, two kHz QPOs have been seen simultaneously
(twin kHz QPOs) with a frequency separation ∆ν of several hundred Hz. If the
the spin frequency of the NS, νs is known, ∆ν is always found to be roughly
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equal to νs or half of it. The frequencies of the twin kHz QPOs are tightly
correlated to each other, following a relation that is nearly identical even when
switching to other sources (van Straaten et al, 2005; Psaltis, Belloni & van der
Klis, 1999). Both kHz QPO frequencies also correlate with the frequency of the
low-frequency QPO 1, the hump 2 frequency and the break frequency 3 (van
Straaten et al, 2005). Two high frequency QPOs have also been observed in
LMXBs containing a black hole (BH) candidate – although only in two cases
simultaneously. These have fixed frequencies different in each source and a
constant frequency ratio consistent with 2:3.

Numerous models attempt to explain the nature of the kHz QPOs and de-
scribe their correlations. Some refer to a blob formed and orbiting inside the ac-
cretion disc, either self-luminous or scattering light, or one producing a hot-spot
on the NS-surface by the in-fall of matter from the inner edge of the disc. These

models produce a beaming modulation. With νφ =
√

GM/(4π2r3)
(

1 + j (rg/r)
3/2
)−1

the orbital frequency of a particle in an equatorial circular orbit in Kerr space-
time around a point particle 4 with mass M and angular momentum J (rg ≡
GM/c2, j ≡ Jc/GM2), the radial and epicyclic frequencies in slightly tilted and

eccentric orbits will be νr ≈ νφ(1− 6rg/r)
1/2 and νθ ≈ νφ

(

1− 4j (rg/r)
3/2
)1/2

(see e.g. van der Klis, 2004). In the relativistic precession model (Stella & Vi-
etri, 1999) as well as in the sonic-point model (Lamb & Miller, 2003) the upper
kHz QPO is identified with νφ, while the lower kHz QPO is interpreted in the
first case as due to the periastron precession νφ − νr and in the second case the
beat between νφ at the sonic radius and the spin (approximately νφ − νspin or
νφ − νspin/2 depending on conditions at the spin resonance radius where the
beat emission is generated). Kluźniak & Abramowicz (2001, 2003) suggest a
fixed ratio of QPO frequencies in NSs such as is seen in BHs, resulting from
resonance frequencies in the disc. Models related to orbital motion, in general,
have difficulties explaining the modulation or the damping of the oscillations.
A maximum frequency according to such models would be the orbital frequency
at the inner-most stable circular orbit (ISCO) of the compact object, which
scales inversely with its mass M, e.g. νISCO ≈ (c3/2π62/3GM)(1 + 0.75j) for
Kerr spacetime. Neutron Star oscillations are also considered among the possi-
ble generators of the QPOs (Bildsten et al, 1998). There are several difficulties
in this scenario, mainly including the rapid change in frequency of the QPOs
(which could not correspond in a similar change in the frequency of a specific
mode – although possibly to different ones). For an extend review on timing
features of LMXBs and QPO models see van der Klis (2004).

Circinus X-1 Circinus X-1 is a galactic X-ray source positioned in the galactic
plane at a distance of ∼4 to 8 kpc (Iaria et al, 2005; Glass, 1994; Goss & Mebold,

1Sharp QPO peak in the 1-60Hz range, represented by LLF .
2Broad noise component or QPO with usually a somewhat higher characteristic frequency

than the LLF , represented by Lh.
3Broad noise component in the 0.01-20Hz range, represented by Lb.
4Which approximates the the metric around a NS
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1977). From optical and infrared observations, a subgiant star of 3− 5M¯ was
identified which is thought to be in an eccentric orbit (e ∼ 0.7 − 0.9) with the
compact object (Johnston et al, 1999). The strong radio emission of the source
(see e.g. Fender et al, 2005), relativistic jets (Fender et al, 2004) and the hard
X-ray emission and strong X-ray variability from the system (Samimi et al,
1979; Jones et al, 1974), resemble typical properties of black hole candidates.
However, Type-I X-ray bursts seen in 1986 (Tennant et al) from the field of
Circinus X-1 classified it as a probable NS, with later spectroscopic analysis
(Maisack et al, 1995; Done & Gierlinski, 2003) supporting this thesis. At lower
intensities the source was reported to exhibit atoll-source behavior (Oosterbroek
et al, 1995), while subsequent observations showed a Z-source-like track (Shirey
et al, 1999). On the horizontal branch of this track, Shirey et al (1996, 1998)
found a narrow QPO moving from 1.3 Hz to 32 Hz. The frequency of this QPO
was strongly correlated with the break frequency at lower frequencies and a
broad peak ranging from 20–100 Hz. No 6-Hz-QPOs were seen on the normal
branch and no (twin) kHz QPOs were reported so far.

In this work we concentrate on the high frequency part of the power spectra
of Circinus X-1 and perform an extensive survey for kHz QPOs. We find that
twin kHz QPOs occur in Circinus X-1. We describe our methodology in Section
6.2, present our results in Section 6.3 and comment on them and on theoretical
models in Section 6.4.

6.2 Observations and Analysis

We used the publicly available data 5 of Circinus X-1 obtained with the pro-
portional counter array (PCA) on board Rossy X-ray timing explorer (RXTE),
from March 1996 till January 2005. They correspond to 21 observation IDs
(listed in Table 6.1) and contain in total about 2 Msec of data.

The source was observed with 13 different combinations of instrumental
modes covering the full energy range (channels 0–249, effective energy range
3-60keV), and one more starting from channel 8 (3.68 keV) with which 21 ob-
servations were taken in 2003 (cycle 8), where the intensity, however, was very
low (below 1000c/s/PCU, between 0.22 and 0.42 Crab) and from which we even-
tually did not include any in our final analysis. Every observation was divided
into time segments of 16, 64, 128 or 256 sec, depending on the time resolu-
tion such that they contained 1048576 points. These were Fourier-transformed,
added together and averaged to give the power spectrum of each observation.

We then selected the observations that could be described by more than
one Lorentzian. Power spectra that showed broad plateau-like features at low
frequencies (∼ 10Hz) and those showing no appreciable power at all were not
of our interest and are not included in this analysis. In total we fitted 119
power spectra (PSa) from the, in total, 497 observations. The fits were made
without any reference to expected features, including all significant Lorentzians
that could be fitted.

5At the start- time of this project, February 2005.
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Table 6.1: The IDs of the RXTE-observations used in this analysis.

obs-id
10068-08
10122-01
10122-02
10122-03
20094-01
20095-01
20097-01
20415-01
30080-01
30081-01
40059-01
50136-01
60024-01
60025-01
70020-01
70020-02
70020-03
70021-01
80027-01
80114-01
90025-01
90426-01

Since this work concentrates on kHz QPOs, we need to be very careful
when subtracting the deadtime modified Poisson noise power. We used the
usual Zhang function (Zhang et al, 1995) to describe the Poisson spectrum, but
instead of the approximate deadtime value td = 10µs (Zhang et al, 1996; Jahoda
et al , 2005) or one the often used of 8.5µs (Klein-Wolt et al, 2004), and either
the nominal tV LE3 = 150µs (Zhang et al, 1996) or the calibrated tV LE3 = 170µs
(Jahoda et al , 2005) very large event (VLE) deadtime value of the satellite
6, we calculate these parameters directly from our observations, by fitting the
Zhang function to data where no source contribution is expected (see Appendix
C), td = 8.87µs, tV LE−3 = 162µs, and used those when estimating the Poisson
spectrum. This method does not alter the significances of the twin kHz QPOs.

After subtracting the noise, we renormalized the power spectra to rms squared
and plotted them in the power × frequency representation. For the fitting
we used a multi-Lorentzian model (plus a power law at low frequencies when
needed), in the νmax representation described in Belloni et al (2002). To obtain
the centroid frequency ν0 , we used the expression ν0 =

2Qνmax√
1+4Q2

, where Q is the

6For the VLE setting ‘2‘.
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quality factor defined as Q = ν0/FWHM . Since all Lorentzians for which we
applied this conversion are sharp-peaked (Q ≥ 1), the errors computed for νmax
are also a good representation for ν0. For the twin kHz QPOs, we recalculated
the ν0-errors by separately fitting with centroid frequencies, and typically found
5% (usually < 1Hz) difference. For sharper QPOs, as the LLF , this difference
is much smaller.

We use the 16-s time-resolution Standard 2 mode to calculate X-ray colors as
in Altamirano et al (2005). The hard color is defined as the ratio between count
rates in the 9.7–16 keV and 6–9.7 keV range, while the soft one for 3.5–6 keV/2–
3.5 keV. Dropouts were removed, background was subtracted and deadtime
corrections were made. In order to correct for the gain changes as well as the
differences in effective area between the PCUs themselves, we normalized the
colors by the corresponding Crab color values (see Kuulkers at al., 1994; van
Straaten et al, 2003) that are close in time but in the same RXTE gain epoch.
All active PCUs were used to calculate the colors.

6.3 Results

In 80 of the 119 fitted observations we found a QPO which we interpret as a
kHz QPO (see subsection 6.3.2) while in 8 of them we found a significant (> 3σ)
second one. A second kHz QPO, with a significance between 2.5σ and 3σ, could
be fitted at 5 more cases. We discuss whether the latter (as well as the former)
are real or not in subsection 6.3.1. All the significances quoted are single-trial.

A typical power spectrum exhibiting twin kHz QPOs is the one of 20094-01-
01-01, shown in plot E of Figure 6.1. The low-frequency QPO is the prominent
narrow feature seen in all 119 observations – sometimes as a double peak. The
break frequency was also seen in all but three cases while a hump component
was present in more than half (69) of the power spectra. Power laws were needed
only in nine cases, and always only produced appreciated power below ∼1Hz.

The soft and hard colors of all observations are displayed on the color-color
diagram (CCD, Figure. 6.2, left-hand panel). The large majority of the obser-
vations form a narrow track, with all the observations that we fitted (except of
a very late one, 90025-01-01-05) falling on there. This track corresponds to the
one that Shirey et al (1999) show in their color-color diagram (their Figure 2),
despite the slightly different definition of the colors. There is an indication for
two sub-branches emerging at the upper end of the main track, which appears
also if plotting the colors for every 16sec. A hardness-intensity diagram is pro-
vided in Figure 6.3 (left-hand panel). The vast majority of the PSa that showed
a low-frequency QPO (and which we fitted) had intensities about 1 Crab.

Suspecting that the frequencies of the several QPOs are related to each other
(see Section 6.1) we plot all features in a frequency-frequency diagram (Figure
6.4). Indeed the points can be easily separated into five groups of corresponding
frequencies. Slightly above the low frequency QPO (identified as such as the
most significant feature in our PSs) but clearly separated from it we see a group
of points associated with the hump frequency. Parallel to those and at somewhat
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Figure 6.1: Power spectra and fit functions in the power spectral density times
frequency representation for the 11 observations showing twin kHz QPOs. The
curves mark the individual Lorentzian components of the fit. The last row
shows the PS containing three kHz QPOs with a blow-up at high frequencies.
For simplicity each observation is marked with a letter, while the ones with an
asterisk will eventually be identified as showing a single kHz QPO rather than
two (subsection 6.3.1). The scaling of the frequency axis in the latter is linear.
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higher frequencies there is an almost continuous series of points extending up to
about 250 Hz. Another group of points above these has similar characteristics
although less dense and extends up to about 500 Hz. From the large frequencies
to which they extend and their, over a decade, variability, we identify these as
kHz QPOs. We conclude that the former points correspond to lower kHz QPOs
and the latter to upper kHz QPOs. The first ones coincide with the ’low kHz
QPOs’ reported by Psaltis, Belloni & van der Klis (1999), the rest extending
though up to several hundred Hz. Finally, there is a group of points below the
low-frequency QPO, less confined on a line, which according to their frequency
range we identify as the break frequency. This component does not form the
focus of our analysis and may well be a mix of more than one noise components.
We elaborate on each category of QPOs in the following.

6.3.1 Twin kHz QPOs

All the observations that showed twin kHz QPOs with significance of more than
3σ for one of the kHz QPOs, and at least 2.5 for the second are listed in Table
6.2; their PSa are shown in Figure 6.1. From the right-hand panels of Figures
6.2 and 6.3 we see that the latter group lies inside the range of colors and
intensities of the former group. Also the QPO frequencies (Figure 6.4) are in
the same range and the correlations seem to hold for both groups of points. It is
safe thus to include the 5 observations with significance of the second kHz QPO
between 2.5σ and 3σ among the observations with twin kHz QPOs, assuming
that the statistics were poor in these cases.

The two twin kHz QPOs seen in cycle 3 (PSa H and M of Figure 6.1) have
frequency separations small compared to their widths and although the fits are
better with two high frequency features, a single one also describes the PS at
high frequencies quite well. Since these frequencies would be by far the lowest
kHz QPO frequencies ever found, we need to test the existence of two features
rather than one. If we look at the frequency- frequency diagrams of Figures 6.6
and 6.4, the two pairs seem to diverge significantly from the picture and position
of the other twin kHz QPOs and do not seem to follow the correlation of the
others. Also from the position of these observations in the CCD (Figure 6.2,
right panel) the two cycle 3 observations seem to be separated from the rest;
although their intensities are similar (Figure 6.3). The rms amplitudes of the
kHz QPOs do not seem to follow the almost linear decrease of the lower kHz
QPOs of the other pairs (Figure 6.5). We conclude that the second kHz QPO
appearing in PSa H and M is probably not real, and the PSa should be fitted
with a single Lorentzian at high frequencies. Two intermediate observations
with similar PSa best fitted with a single kHz QPO support this thesis.

We remain thus with 11 twin kHz QPOs. We plot the centroid frequencies
of these QPOs versus each other in Figure 6.6 and their frequency separation
against the frequency of the upper one in Figure 6.7. The Circinus X-1 points
above could be described with a linear relation, but the match with twin kHz
QPO frequencies from other LMXBs containing a NS strongly suggests a power

law relation. The best fit is a power law of νu = 15.7(±6.3) × ν
0.67(±0.08)
`
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Table 6.2: All observations showing twin kHz QPOs with significances more
than 3σ for both kHz QPOs (upper 8), and more than 3σ for the one kHz
QPO and at least 2.5σ for the other (lower 5). Listed are, apart from the
observation-ID and centroid frequencies with their error-bars (in Hz), the rms
amplitudes with their error-bars (in percent), as well as the quality factors
with the corresponding errors. In one case a 3rd kHz QPO is also reported
with its error, with a significance of 2σ. The two observations marked with
∗ will eventually be considered to have a single kHz QPO instead of two (see
Subsection 6.3.1).

obs-id ν`(±) % rms(±) Q(±) νu(±) % rms(±) Q(±)
10068-08-01-00 122.3 (7.2) 2.61 (0.19) 0.9(0.2) 406.6 (32.8) 1.74(0.24) 1.8(0.7)
10122-01-15-01 83.1 (2.5) 2.94 (0.15) 1.3(0.2) 280.6 (32.0) 1.69(0.32) 1.6(0.9)
10122-01-18-00 106.5 (2.5) 2.93 (0.13) 1.2(0.1) 358.6 (42.1) 2.28(0.25) 0.9(0.4)
10122-03-08-00 56.1 (1.3) 3.88 (0.11) 0.8(0.1) 229.2 (17.5) 1.41(0.24) 2.1(1.2)
20094-01-01-01 136.5 (5.4) 2.65 (0.21) 1.1(0.2) 403.8 (17.1) 2.08(0.19) 1.9(0.5)

20094-01-01-030 127.6 (3.6) 2.53 (0.12) 1.0(0.1) 445.0 (20.2) 1.60(0.24) 1.8(0.5)
(↪→ ν3) 277.8 (7.1) 0.87 (0.23) 5.5 (5.3)

20095-01-08-00 97.5 (2.7) 3.13 (0.12) 1.0(0.1) 311.2 (19.8) 1.93(0.21) 1.8(0.5)
30081-06-03-00∗ 14.8 (0.2) 3.17 (0.35) 1.2(0.1) 18.4 ( 3.3) 3.95(0.33) 0.4(0.1)
20094-01-01-02 225.8 (17.5) 1.24 (0.28) 1.8(1.0) 505.2 (51.4) 1.65(0.22) 1.5(0.5)

20094-01-01-020 156.7 (21.6) 2.37 (0.26) 0.6(0.2) 496.8 (60.7) 1.47(0.33) 1.3(0.6)
20095-01-11-00 137.4 ( 5.4) 2.19 (0.39) 1.1(0.3) 438.1 (38.2) 1.47(0.31) 2.0(1.3)
20097-01-32-00 99.8 (25.7) 2.74 (0.40) 0.8(0.5) 418.7 (48.0) 2.03(0.43) 2.6(1.6)
30081-06-03-03∗ 14.6 ( 0.4) 2.46 (0.58) 1.6(0.5) 13.1 ( 3.1) 4.57(0.39) 0.3(0.1)

(χ2/dof = 2.04). A linear best fit νu = 115.31(±35.95)ν` + 2.25(±0.31) νu =
110.54(±33.45)ν`+2.30(±0.28) does not fit better than the power law (χ2/dof =
2.48) and diverges significantly from the points of other sources at higher fre-
quencies. A constant ratio of νu/ν` = 3.18(±0.11) is excluded at the (χ2/dof =
4.78) significance level. The range of twin kHz QPOs reaches the lowest fre-
quencies observed so far in LMXBs containing neutron stars.

One of the power spectra showing two kHz QPOs with significances higher
than 3σ also has a marginally significant (2σ) third kHz QPO, with its centroid
frequency being 9% larger than (and 3.4 σ different from) twice the first kHz
QPO frequency, and 14% smaller than (and 5.5 σ different from) the frequency
separation of the two. This PS (F of Figure 6.1) could be better (>99% con-
fidence level, F-test) fitted with two Lorentzians at frequencies below LLF . In
that case the 3rd kHz QPO exceeds 3σ (with the kHz QPO frequencies stay-
ing roughly unchanged). Since we restrict ourselves to a unified description for
all power spectra throughout this work, we adopt the results of the original fit
for our further analysis, but exceptionally take this low-significance QPO into
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account as a possible signature of the second harmonic of the lower kHz QPO
(see Section 6.4).

A remarkable fact is that all observations showing twin kHz QPOs had very
similar intensities, as seen at the hardness-intensity diagram (HID, Figure 6.3).
All but one (E) had intensities ranging in just between 2545 and 2770 c/s/PCU,
or 1.025–1.115 Crab. The one exceptional case (with 1991 c/s, 0.787 Crab) had
the highest hard and soft colors among the observations with twin kHz QPOs
and kHz QPO at all (0.693 and 1.496 respectively, the upper right point in the
CCD, Figure 6.2).

6.3.2 kHz QPOs

Apart from 11 twin kHz QPOs we observed 69 single ones, forming one of the
largest samples in LMXBs. All the single kHz QPO points show a remarkable
correlation with the LLF (Figure 6.4). Only the two points at the upper right
end of the diagram seem to diverge from the line more than one sigma. Since
these seem to fall, instead, on the line for the upper kHz QPO, and because a
less significant feature is in those power spectra present at frequencies consistent
with a lower kHz QPO, we classify these two QPOs as upper kHz ones, with
the lower kHz QPO remaining formally undetected due to statistics. This is
consistent with the decrease in rms seen for the lower kHz QPOs with increasing
frequency (Figure 6.5). The least squares power law fit for these points gives
ν` = 19.41(±0.61)× ν0.74±0.02LF (χ2/dof = 22.85).

The quality factors of the kHz QPOs were typically about 1. Due to the
relatively large uncertainties in these values as well as in the frequencies, no
conclusions could be drawn regarding the correlation among them.

6.3.3 Other QPOs

The frequency of the hump seems to correlate also very well with the peak
frequency on a line consistent with 2 × νLF (a least square fit gave νh =
1.79(±0.24)ν1.00±0.05p ) (χ2/dof = 68.2), which indicates it being a harmonic
of the low frequency QPO. For the break frequency on the other hand, there
does not seem to be a single correlation describing all the points well. Since
this work mainly concentrates on kHz QPOs, the PS-fits might have been less
accurate at low frequencies (see earlier in this section). The presence of two
parallel groups is considered as possible, indicating that in some case two break
frequencies could be fitted instead of one. This seems e.g. to be the case in PS
F (subsection 6.3.1). More work in that direction is needed to resolve this issue.
An increase of the break frequency for increasing LLF -frequency is in any case
evident.
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6.4 Discussion

We discovered for the first time twin kHz QPOs from Circinus X-1. In 8 ob-
servations both kHz QPOs were significant (> 3σ) while in 5 observations one
of the two had significance more than 2.5 and were accepted as real based on
their similarities in the colors and frequency correlations. Two more observa-
tions with very low kHz QPO frequencies, had their upper kHz QPO considered
unreal based on the colors and frequency correlations. For the final 11 twin kHz
QPOs, the frequency of the upper kHz QPO ranged from 229 to 503 Hz. In
one case also a third kHz QPO was marginally detected at a frequency about
twice the lower kHz QPO and close to the frequency separation of the twin kHz
QPOs.

In total 80 observations showed at least one kHz QPO, with their range
covering more than a decade, extending from about 500 Hz down to 20 Hz, the
lowest kHz frequency seen so far in LMXBs, testing the terminology of such
components. The frequency separation of the twin kHz QPOs is spanning a
range larger than the one covered by all previous twin kHz QPO detections
from other sources. The fact that we do not see kHz QPOs above 500Hz,
supports the thesis that Circinus X-1 is a Z source, since frequency ranges for
kHz QPOs not extending to very high frequencies are typical for this class. (see
Belloni et al, 2005). Interesting is also the fact that the upper kHz QPO seems
to disappear at lower frequencies, despite the appearance of lower kHz QPOs
there. An apparent decrease of rms amplitude of the higher kHz QPO seen in
Figure 6.5 might explain this, although the statistics are not good enough. All
these justify the peculiarity of Circinus X-1 and the difficulties in classifying it.

The new range of kHz QPO frequencies of Circinus X-1 allows unique tests of
theoretical models. The decrease, for example, of the frequency separation with
decreasing lower kHz QPO frequency was foreseen by the relativistic precession

model. The predicted relation ∆ν = νu

√

1− 6 (2πMνu)
2/3

/c2 describes well

our data points (figure 6.7), with the best fit giving a mass for the neutron
star of M = 2.0± 0.1M¯ χ2/dof = 0.416, which agrees with observations from
other sources and that Stella & Vietri (1999) also adopted. The fit for the
Alfen wave oscilaltion model of Zhang et al (1995) is even better (χ2/dof '
0.6) and gives for A (mean density) a value of 0.56±0.02 – which translates

to R = 14.7 ∓ 0.035km (M/M¯)
1/3

– but might be physically more difficult to
support. The points could also be represented by a straight line (although with
χ2/dof = 0.416). The least square fit gave ∆ν = 0.62(±0.05)νu+27.33(±19.54),
which is inconsistent with a 2:3 ratio for the two kHz QPO frequencies (∆ν =
0.33νu) predicted by relativistic resonance models also for NSs (Kluźniak &
Abramowicz, 2001); it does though agree well with a 1:3 ratio that could be
picked up by resonances 1:2:3:5 (Kluźniak & Abramowicz, 2003). Since that
would, however, be a combination frequency of the main 2:3 resonance, the
weakness of the latter remains to be explained. The frequency of the third
kHz QPO found in one observation could actually fit to this scenario as the
radial epicyclic frequency, but its low significance and non-detectability in other
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observations making it rather unlikely. Beat-frequency models in general, based
on a constant frequency separation related to the spin frequency, would have
difficulties explaining the up to 200Hz (factor 2) changing frequency separation
of the kHz QPOs of Circinus X-1. Modified models explaining the decrease of
the frequency separation with increasing accretion rate (Lamb & Miller, 2003)
would need further elaboration to explain also a corresponding increase.

The large variability of the twin kHz QPO frequencies is a strong indication
that the underlying source is not a black hole. The strong deviation from a
2:3 ratio and their simultaneous appearance supports this thesis. It is the first
such evidence since the discovery of bursts about 20 years ago (Tennant et al,
1986) from its field. The fact that the kHz QPOs of Circinus X-1 lie in the
frequency-frequency diagrams between the ones for NSs and black holes (Figure
2 of Psaltis, Belloni & van der Klis (1999)), justifies the debates on its nature.
The low frequencies on the other hand speak for a massive neutron star, if for
example the upper kHz QPO indeed associates with orbital motions, scaling like
1/M .

6.5 Conclusions

QPOs do carry the imprint of the compactness of the LMXB’s central object,
but most likely are related with features in the disc rather than the neutron star
itself. Burst oscillations on the other hand might be produced by oscillations
on the neutron star surface, making Type-I X-ray bursts more interesting ob-
servationally for the identification of eigenmodes. Finite-temperature equations
of state are needed for computing such oscillations numerically and data with
high time-resolution are required for the observational analysis. A successful
identification of non-radial oscillations from a neutron star, can also in X-rays
allow to study the composition of neutron stars, still a holy grail in astronomy.
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Figure 6.2: The color-color diagram of all public observations of Circinus X-1
that we used together with the 119 that we fitted (left panel), with a blow-up of
the region containing all but one fitted observations (dotted box) with pointed
out the ones showing kHz QPOs (right panel).
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Figure 6.3: The Hard color against the Intensity, both normalized to Crab. In
the left graph the Intensity is in logarithmic scaling. Symbols are as in Figure
6.2.
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Figure 6.4: The frequency in νmax representation of the upper and the lower kHz
QPO as well as the hump and the break frequency against the low-frequency
QPO in log-log scaling.
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Figure 6.5: The rms amplitude of the twin kHz QPOs expressed in % as a
function of the kHz QPO frequency. Single kHz QPOs are symbolized by small
gray circles. All of them appeared to be lower kHz QPOs except of two high
frequency (>400Hz) ones (see subsection. 6.3.2). Large black circles are the
lower kHz QPOs of the 11 twin ones while blue squares are the corresponding
upper kHz QPOs. The two most left pairs of points belong to the two lowest
twin kHz QPOs of the 3rd observation (see subsection 6.3.1). If a single QPO
is fitted, the two lower kHz QPOs in principle take the place in the diagram of
the upper kHz QPOs of the same observation.
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Figure 6.6: The centroid frequency of the upper kHz QPO and the lower fre-
quency QPO against the lower kHz QPO in double logarithmic scaling, for Circi-
nus X-1 (pink and blue points respectively) and other sources used by Psaltis,
Belloni & van der Klis (1999). The red inverse triangles stand for the two 3rd
cycle twin kHz QPOs, while the green triangles are for the same observations
with one kHz QPO. The green lines is the power law fit to the Circinus X-1
data points and the red one the corresponding constant-ratio fit.

 0.1

 1

 10

 100

 1000

 10  100  1000

ν 
(H

z)

νlow (Hz)

νLF — PBK99
νLF

νu — PBK99
νu

3.18νl
σ0.67

75



Figure 6.7: The frequency separation of the twin kHz QPOs against the upper
kHz QPO frequency. Also plotted are the best linear fit of the points and the
curve for the relativistic precession model for the best fitted value of M as well
as the Zhang model for the best fitted value of A.
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Figure 6.8: The histogram of all analyzed QPO-frequencies from Circinus X-1
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Appendix A

Geometrical & RNS units

A.1 Geometrical units

In this common convention, the speed of light c and the gravitational constant
G are set to 1, which relates the SI and CGI units with each other:

c = 1⇒1 sec =3× 1010cm ≡ 3× 105km
G = 1⇒ 1gr= 7.415× 10−29cm

A.2 RNS units

The last degree of freedom for fixing the length unit is imposed by using the
polytropic constant for that: kν/2 = 1

For the polytropic equations of state that we use in the paper (ν = 2), this
conditions translates in 1 = 14.76km.

The choice of using 1M¯ = 1 for fixing the additional unit, gives a factor 10
difference in the numbers, since then 1 = 1.476km.

One other possibility sometimes used is 1 = 1km. In this work we exclusively
used the RNS units when working dimensionless.
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Appendix B

Associated Legendre

polynomials

A list of some associated Legendre polynomials Pm
` for some values of m and `

that interest us in this work.

P 00 = 1

P 01 = cos θ

P 11 = sin θ

P 02 =
1

2
(3 cos2 θ − 1)

P 12 =
3

2
sin 2θ

P 22 =
3

2
(1− cos 2θ)

P 03 =
1

2
cos θ(5 cos2 θ − 3)

P 23 = 15 cos θ sin2 θ

P 24 =
15

2
sin2 θ(7 cos2 θ − 1)

...

P 2` =
sin2 θ

2``

d`+2

d cos`+2 θ

(

cos2 θ − 1
)`

All associated Legandre polynomials cross zero at 0 and π. Even-m ones are
symmetric, odd-m ones antisymmetric with respect to θ = 0, π. They have an
(−1)`+m parity.
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Appendix C

The determination of the

Poisson Level

For a high frequency analysis an accurate description of the Poisson noise power
is required. This is mainly determined by the values of the deadtime and VLE-
window 1. The technical description of RXTE gave only approximate values for
these and correspond to 10 and 150 respectively (Zhang et al, 1996). Conven-
tionally, values of 8.5µs were used for the first, while an additional shifting at
higher frequencies was introduces to compensate for deviation from the obser-
vations (Klein-Wolt et al, 2004). Recently, the VLE-window was estimated to
170µs via calibration (Jahoda et al , 2005). Since these values should, though, be
unique for the satellite and the ones used till now do not agree with observations
(see Figure C.1), we attempt to estimate them via the large sample of data that
is provided for Circinus X-1. Provided the consistency of the Zhang-function no
shifting should be applied to the computed PL.

We used of 84 representative RXTE observations of Circinus X-1; observa-
tions with high time-resolution were preferred but ones with lower resolution
did not show a different picture, neither did ones with extreme high resolution
(Nyquist frequency ∼33kHz). For avoiding power from the source we looked
only at power above 1.6 kHz (up to the Nyquist frequency). All observations
used for this analysis covered the whole energy range (channels 0–249). We used
the function describing the Poisson power spectrum according to Zhang et al
(1995):

Pν = 2− 4r0td

(

1− td
2tb

)

− 2
N − 1

N
r0td ×

{

td
tb

cos 2πνtb + 2rV LEt
2
V LE sin

sinπtV LEν

πtV LEν

2}

,

where, td is the deadtime, tV LE is the VLE deadtime, N is the number of
points in the time series, r0 is the source’s count rate per detector, rV LE is the
VLE count rate per detector, tb = 1/2νN and νN is the Nyquist frequency. By

1In our analysis only the 3rd setting appears and to that we refer.
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using the first two as free parameters and knowing the other precisely, we fitted
this function to the power spectra above 1.6 kHz, for each of the 84 observations.
All fits gave a good representation of the data without need for shifting, for a
td spanning a narrow range, while tV LE was also well determined. The average
values are

td = 8.87± 0.2× 10−6sec, tvle = 162+7−12 × 10−6sec

These numbers are between the values given by the RXTE team (Jahoda
et al , 2005) and those occasionally used by authors (Revnivstev et al, 2000;
Wei, 2006). Whether the above values describe accurately the actual satellite
properties needs to be tested among source with intensities at different range,
as well as for the other VLE settings. For Circinus X-1 they give, in any case, a
precise description of the noise and these values were used throughout the whole
analysis.

We fitted the PS also with the previously used deadtime values (8.5, 150µs)
for the observations showing twin kHz QPOs (subsection 6.3.1) and found no
systematic deviation compared to the suggested values. This was also the case
when shifting at high frequencies, where occasionally an extra component was
necessary at very high frequencies (above 1kHz) to account for the additional
power appearing. The significant twin kHz QPOs stay significant even with the
previously used deadtime values (with and without shifting).
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Figure C.1: Two examples of observations whose Poisson Level (PL) would
not have been estimated accurately enough with the common values for the
deadtimes. Left: The PL according to the Zhang model and the previously
suggested deadtime values (Zhang et al, 1995) would fail describing the power
at high frequencies (dotted line). With a parallel shift, on the other hand,
to fit data at high frequencies (dashed line) as introduced by Klein-Wolt et al
(2004), the power at lower frequencies would be well overestimated, and even
the third kHz QPO (see subsection 6.3.1) would exceed the 3σ significance level.
The PL computed with the deadtime values estimated here (continuous line)
does not need any shifting and follows more consistently the form of the data
at the range (> 1600Hz) where no contribution from the source is expected.
Right: The strong frequency dependence of the PL at very high frequencies
(observed for high time resolution) cannot be followed with the Zhang function
for the previously used deadtime values. It lies systematically above the data for
several kHz or partially above and partially below it when shifted, at frequencies
where the data should purely describe noise.
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Deutsche Zusammenfassung

Neutronensterne sind eines der möglichen Endstadien der Sternentwicklung.
Sie stellen die kompakteste Form von Materie dar, die noch Dimensionen be-
sitzt. Mehr als eine Sonnenmasse konzentriert sich auf ein Gebiet von ungefähr
20 km Durchmesser. Das macht eine relativistische Beschreibung der Grav-
itationswirkung erforderlich. Die Zustandgleichung der Materie unter diesen
Bedingungen ist bislang nur ansatzweise bekannt. Pulsare sind nach allge-
meiner Überzeugung das beobachtbare Gegenstück zum theoretischen Neutro-
nensternmodell; Pulsare sind kompakte Objekte, die mit Perioden hinunter bis
zu ∼ 1msec rotieren. Solch extreme Bedingungen sind auf der Erde nicht zu
reproduzieren. Das macht schnell rotierende kompakte Objekte zu einem inter-
essanten Forschungsgebiet mit einzigartiger Physik.

Elektromagnetische Strahlung ist bislang die einzige Möglichkeit, diese Ob-
jekte zu beobachten. Die von der allgemeinen Relativitätstheorie vorhergesagten
Gravitationswellen öffnen jedoch ein vielversprechendes, neues Fenster, um In-
formationen zu gewinnen. Aktuelle Entwicklungen in der Laser-Interferometrie
machen es wahrscheinlich, in naher Zukunft Gravitationswellen aus unserer
Milchstraße auf der Erde nachzuweisen. Neben kurzzeitigen, besonders hefti-
gen Phänomenen wie der Kollision zweier kompakter Objekte, stellen auch
Schwingungen einzelner Neutronensterne eine Quelle möglicher Gravitation-
swellensignale dar. Unterschiedlichste astrophysikalische Szenarien können einen
Neutronenstern zu Schwingungen anregen. Manche Schwingungsmoden wer-
den instabil und strahlen dann besonders starke Gravitationswellen ab. Der
Zeitraum ist lange genug, um das Signal auf der Erde nachzuweisen, vorausge-
setzt, es liegen genaue Informationen vor über die genauen Schwingungseigen-
schaften wie beispielsweise Frequenz und Zerfallszeit. Damit lässt sich die
Empfindlichkeit der Detektoren optimal auf das erwartete Signal abstimmen.
Zahlreiche Studien wurden dadurch bereits motiviert.

Mit Hilfe vollrelativistischer, dreidimensionaler Zeitentwicklungsrechnungen
ließe sich das Problem umfassend numerisch simulieren. Der nötige Aufwand
stößt jedoch an die Grenzen aktueller Computerhardware. Einfachere Simulatio-
nen in verschiedene Näherungen haben bisher zu widersprüchlichen Ergebnissen
geführt, vor allem deshalb, weil die häufig verwendete Annahme sphärischer
Symmetrie für rotierende Sterne nicht zutrifft. Die vorliegende Arbeit ver-
sucht daher, das Problem auf einfache, aber konsistente Art zu lösen, um
Einblicke in die grundlegenden Eigenschaften von Neutronensternschwingungen
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zu erhalten. Die Schwingungen werden hier mit Hilfe linearer Störungstheorie
beschrieben, das Verhalten der Neutronensternmaterie durch eine polytrope Zu-
standsgleichung modelliert. Die Ergebnisse im nichtrotierenden Grenzfall unter
sphärischer Symmetrie bestätigen frühere Studien: So fand sich eine unendliche
Reihe von Druckmoden über ∼2 kHz, Raumzeitmoden fallen in noch höhere
Frequenzen (∼10 kHz). Die zwei Gruppen von Moden sind in diesem Fall auf
Grund von unterschiedlicher Parität klar getrennt.

Rotierende Sterne wurden statt in sphärischer in Achsensymmetrie unter-
sucht, und durch kleine Auslenkungen der Form eimφ gestört. Die θ-Abhängigkeit
lässt sich durch zugeordnete Legendre-Polynome, Pm

` , beschreiben. Das führt
zu deutlich komplizierteren Gleichungen und Problemen im numerischen Ver-
fahren. Das machte es nötig, Störungen der Raumzeit für die Rechnungen zu
vernachlässigen und nur Änderungen in den hydrodynamischen Zustandsgrößen
zu berücksichtigen. Diese so genannte Cowling-Näherung hat sich in vorherigen
Studien bereits als konsistent und relativ genau erwiesen. Damit ließ sich letz-
tendlich ein Eigenwertproblem formen, für das alle möglichen Lösungen gesucht
wurden. Neben der unendliche Reihe von Druckmoden, tauchen nun auch
Trägheitsmoden auf. Ihr Anzahl ist ebenfalls unbegrenzt, ihre Frequenz ist
jedoch auf einen endlichen Bereich beschränkt, der sich je nach Rotationsfre-
quenz und Kompaktheit des Sterns verändert. Es konnte nicht ausgeschlossen
werden, dass es sich hierbei sogar um ein kontinuierliches Spektrum handelt.
Ist der Wert des azimuthalen Index m grös̈er als zwei, sind alle Trägheitsmoden
instabil. Für sehr große Werte von m überlappt deren Frequenzbereich mit dem
der Druckmoden.

Während Druckmoden sich sowohl über ihre Eigenfunktionen, als auch ihren
Frequenzbereich leicht identifizieren lassen, konnten einzelne Trägheitsmoden
nur deutlich schwerer extrahiert werden. Der geringe Abstand zwischen den
Moden im Frequenzraum macht es notwendig, jeweils die Eigenfunktionen zu
Hilfe zu ziehen. Die zeigen in diesem Fall jedoch ein kompliziertes Verhal-
ten, da sich die Beiträge verschiedener ` vermischen. Nichtsdestotrotz kon-
nten Moden identifiziert und über wachsende Auflösungen hinweg verfolgt wer-
den. Mit Blick auf bereits bekannte Charakteristika der θ-Komponente der
Geschwindigkeitsstörung konnte eine ähnliche Mode in einem langsam rotieren-
den Modell nachgewiesen werden. Deren Frequenz – die 1, 41-fache Rotation-
srate des Sterns– stimmt mit den Ergebnissen früherer Studien in diesem Bereich
überein. Für schnell rotierende Modelle eines Neutronensterns lässt sich eine
ähnliche Mode bestimmen, ihre Eigenfunktion weicht jedoch stärker vom er-
warteten Verlauf ab, und auch die Frequenz ist nicht etwa niedriger (wie von
andere Studien erwartet), sondern höher als bei langsamer Rotation.

Obwohl einige neue allgemeine Eigenschaften des Spektrums der Trägheits-
moden gefunden wurden, bleibt es nach wie vor problematisch, einzelne Moden
zu identifizieren. Grund dafür ist die Anwesenheit einer unendlichen Anzahl
von Trägheitsmoden – möglichweise sogar eines Kontinuums –, das die r-Mode
vollständig unterdrücken könnte. Doch selbst wenn sie auftritt, ist ihr Verlauf
vermutlich kontaminiert durch angrenzende Lösungen. Vor allem bei schneller
Rotation erschwert das die Identifikation oder macht sie vielleicht sogar unmög-
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lich. Mehr Speicher und Rechenleistung ist nötig, um diese Fragen durch höher
aufgelöste Simulationen zu klären. Vor allem dreidimensionale Zeitentwick-
lungsrechnungen könnten eine Antwort liefern. Endgültige Klärung brächte der
Nachweis einer solchen Mode in einem Gravitationswellendetektor.

In der Auswertung des elektromagnetischen Signals aus dem kompakten
Röntgenbinärsystem Circinus X-1 fanden sich keine Hinweise auf nichtradiale
Neutronensternmoden, die eine Verbindung hergestellt hätten zwischen quasi-
periodischen Oszillationen (QPOs) und Quasinormalmoden. Die beobachtete
Frequenzbreite der Kilohertz-QPOs konnte jedoch auf einen neuen Bereich aus-
gedehnt werden, der einzigartige Tests verschiedener QPO-Modelle erlaubt. Ko-
rrelationen zwischen Frequenzen von QPOs bestätigten, dass es sich bei dem
zugrundeliegenden Objekt um einen Neutronenstern handelt.
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