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Abstract

It is possible to define a formal semantics for configuration, elaboration, linking, and evaluation of
fully-parameterized first-class modules with hygienic macros, independent compilation, and code
sharing. This dissertation defines such a semantics making use of explicit substitution to formalize
hygienic expansion and linking. In the module system, interfaces define the static semantics of
modules and include the definitions of exported macros. This enables full parameterization and
independent compilation of modules even in the presence of macros. Thus modules are truly
exchangeable components of the program. The basis for the module system is an operational
semantics for hygienic macro expansion—computational macros as well as rewriting-based macros.
The macro semantics provides deep insight into the nature of hygienic macro expansion through
the use of explicit substitutions instead of conventional renaming techniques. The semantics
also includes the formal description of Macro Scheme, the meta-language used for evaluating
computational macros.

Zusammenfassung

Es ist moglich, eine formale Semantik anzugeben, welche die Phasen Konfiguration, syntak-
tische Analyse mit Makroexpansion, Linken und Auswertung fiir ein vollparametrisiertes Mo-
dulsystem mit Modulen als Werten erster Klasse, unabhingiger Ubersetzung und Code-Sharing
beschreibt. Diese Dissertation beschreibt eine solche Semantik. Dabei formalisieren explizite
Substitutionen die hygienische Makroexpansion und das Linken. Im Modulsystem beschreiben
Schnittstellen die statische Semantik von Modulen und enthalten die Definitionen der exportierten
Makros. Dies erméglicht volle Parametrisierung und unabhéngige Ubersetzung sogar in Kombi-
nation mit Makros. Module sind damit echte austauschbare Komponenten eines Programms. Die
Grundlage fiir das Modulsystem bildet eine operationelle Semantik fiir hygienische Makroexpan-
sion die berechnende Makros ebenso beschreibt wie regelbasierte Makros. Durch die Verwendung
expliziter Substitutionen anstelle konventioneller Umbenennung gibt die Semantik fiir Makro-
expansion tiefe Einblicke in das Wesen hygienischer Makroexpansion. Die Semantik beschreibt
auflerdem Makro Scheme, die Metasprache fiir die berechnenden Makros.






Contents

[1.1 Combining Modules and Macros| . . . . .. .. ... .. ... ... ...
1.2 Representation of Identifiers|. . . . . . . .. ... oo oo
[1.3  Explicit Substitutions| . . . . . . . ... Lo
.4 Structure of the Dissertation| . . . . . . .. ... .. o oL

|2 Fully-Parameterized Module Systems|

2.1  Fully-Parameterized Module Systems and Scheme|. . . . . . . ... ... ... ...
2.2 The Programmer’s Point of View| . . . . . . ... .. .. ... 0oL
2.3 Terminology|. . . . . . . . L
2.4 Phase Overviewl. . . . . . . . . . . e
2.5 The Missing Link Revisited| . . . . . . .. ... ... .. . o oo
2.6 Transformation with Code Sharing| . . . . . . . ... ... ... .. .. ... ...
2.7 Configuration Language| . . . . . . . . . ... oL
2.8 Semantics of the Configuration Languagel . . . . . . . .. .. ... ... ... ...

[3 A Semantics for Hygienic Macros|

8.1 Hygienic Macros| . . . . . . . . . . e
3.2 'The A\, Calculus| . . . . . . . . . .
3.3 The X»$D Calculus|. . . . . ... ... ... ...
[3.4 Parsing Scheme Without Macros] . . . . . v v v v v i i e
8.5 The Core Macro Expander|. . . . . . . . .. ... . L
13.5.1 Time Complexity of the Macro Expander| . . . . . . ... ... ... ....
3.6 Computational Macro Transtormers| . . . . ... .. ... .. ... ... ......
3.6.1 The Semantics of Macro Schemel . . . . . . . ... .. ... .. ... ...,
8.6.2 Additional Primitives] . . . . . . .. .. oo oL
3.6.3  Expanding Macro Applications Using es-transformer | . . . . . . . .. ..
3.7 Parsing Scheme with Macros| . . . . . ... ... .. ... ... o .
3.8 Parsing and Macro Expansion tor Macro Scheme| . . . . . . . . .. ... ... ...
13.8.1  Scoping Issues Between Object And Meta-Language| . . . . . ... ... ..
[3.9  Semantics of syntax-rules| . . . . . ... ...
|_5_>91 Macro Expansion for syntax-rules| . . . ... ... ... ... ... ..
3.9.2 imination for syntax-rules Forms|. . . . . . . . ... ...
.93 Elimination Rules for Patfernd . . . . . o o vvv v oo oo
[3.9.4 Parsing syntax-rules|. . . . . . . ... ... ... ...
B0 Future Work Towards Full Schemd . . . . . . o ot
3.11 Comparison with the Work of Bove and Arbillaj . . . . . ... ... ... ... ...
4_Semantics for Modules|
4.1 Identifier Representation and Linking for Modules| . . . . . ... ... .. ... ..
4.2 The AMe Caleulus| . . . . ... .
[A2T Abstract Syntax] . . . . . . ..

S U N =

13
15
17
20
20
21

25
25
29
31
39
44
93
53
o7
63
66
72
75
76
79
81
83
89
91
92
94



ii CONTENTS
4.2.2  Evaluation of Programs| . . . . . . . .. .. ... o oo 107

4.2.3  Evaluation of Module Expressions| . . . . . ... ... ... .. .. ..... 110

4.3 Parsing and Importing for Modules and Intertaces| . . . . .. ... ... ... ... 113
4.4 Macro Iixpansion for Interfaces and Modules| . . . ... ... ... ... ... ... 120
:4.5 ndependent Compilation and Code Sharing| . . . . . . . .. ... ... ... .... 125
E6Tuture Workl . . . o o oo 126
[F_Tmplementation] 129
5.1 onfiguration Phasel . . . . . . . . .. o 129
b.1.1  The Backend for Scheme 48 . . . . . .. ... .. .o oo 130

b.1.2 The PILT Backendl . . . . ... ... .. ... ... . ... ... 130

p.1.3  Configuration Language| . . . . . . . .. ... .. Lo, 131

5.2 Implementation of the Rewriting Systems| . . . . . . .. ... ... .. ....... 131
M Rewriting System for A °“"¢ and Macro Scheme| . . . . . . ... ... ... 135

[5.2.27 A Short Review of Using PLT redex] . . . . . . . . . . . .. ... 135

5.3 Direct Implementation of the Macro Expander| . . . . .. .. ... ... ... ... 136
9.3.1  Implementation of Macro Scheme|. . . . . . .. . ... ... 0. 138

5.4 Generation of KXIFX Output|. . . . . . . ... . . oo 139
6 Related Workl 143
6.1 First-Class Macrog| . . . . . . . . . o 143
[6.2 Fully-Parameterized Module Systems|. . . . .. ... ... ... ... ........ 144
6.3 Macro Expansion AIGOTIAMS « . « v v v v v v v e e 145

0. odule Systems wit ACTOS| « e e e e e 147
6.5  Meta-Languages for Macros| . . . . . ... . ... ... ... oL, 147
[r__Conclusions| 149
M1 Reviewl. . . . oo e 149
7.2 Insights Gained from the Macro Expansion Semantics| . . . . . .. ... ... ... 149
[(.3 Future Workl . . . . . . .. 150
[7.4 Closing Words| . . . . . . . . . . . . e 151
153



List of Figures

2.1 Overview of phases and entities| . . . . . . . . . ... ... ... .. ... .. ..., 16
2.2 The configuration language| . . . . . . . . . ... Lo 21
2.3 Semantics of the configuration language| . . . . . . .. ... ... 000 23
2.4 Partial order among definition clauses| . . . . . . .. ..o o000 24
B.1 The language A]. . . . . . . o 29
3.2 Abstract syntax of A™| . . . ... 32
8.3  Elimination of @f. . . . . . . . . . . 33
3.4 Concrete Syntax based on s-expressions| . . . . . .. ... ... ... ... ..., 39
8.5 Mixture of abstract and concrete syntax| . . . . . .. ... ..o 40
3.6 Parsing reduction without macros|. . . . . . . .. ... o oo 41
3.7 Reduction —( without macros[ . . . . .. ... .. ... o 00 o 42
3.8 Mixture syntax for expansion| . . . . . .. ... Lo 47
8.9 Reduction rules for the core macro expander| . . .. ... ... .. ... ... ... 48
3.10 Reduction for definitionsl . . . . . . . . . ... oo 50
8.11 Elimination of the T operator| . . . . . . . . .. ... ... L 0oL 51
13.12 Elimination of the & operator|. . . . . . . . ... .. ... o oo 51
.13 Elimination of the | operator| . . . . . . .. ... ..o oo 52
13.14 Abstract syntax for evaluating Macro Scheme| . . . . . . . .. ... 0oL 60
[3.15 Application of syntax-lambdal . . . . . . . .. ... ... Lo 61
13.16 Evaluation tor the explicit substitutions for parsing and expansion| . . . .. . . .. 62
.17 Ewvaluation for primitives|. . . . . . . . . .. Lo 63
13.18 Evaluation for additional primitives|. . . . . . .. .. ... ... oL, 65
13.19 Mixture syntax for expanding es-transformer macros/. . . . . . . . . . .. . ... 66
[3.20 Expansion for es—transformer forms| . . . . . . ... ... ... 67
3.21 Elimination of || and normalization of meta-substitutions| . . . . . . . ... .. .. 69

1mi i i itutions . ... ... 70
13.23 Elimination of T and & for terms containing meta-variables| . . . . . .. ... ... 71
13.24 Elimination and parsing for es-transformer| . . . . . . . . . ... ... ... ... 71
13.25 Extension of the mixture syntax for parsingl . . . . . . .. ... ... ... ..... 72

|3.78 Parsmg syntax and syntax—lambdal .......................... 75

13.29 Expanding Macro Scheme special forms| . . . . . .. ... ... ... .. ... 76
13.30 Elimination of the expansion substitutions and the | operator for syntax and |

syntax-lambda | . . . . . . ... e 76
[3.31 Mixture syntax for expanding syntax-rules| . . .. .. ... ... ... . ..... 81
[3.32 Expansion for syntax-rules macros| . . . . . . . . . . ... 82
[3.33 Helper functions for macro expansion|. . . . . . .. ... ... ... ... ... . 84
B31 Elimination of (] for SyBLax-TuIes] . . .« « -+« v v oo e e 86
[3.35 Reduction || for syntax-rules|. . . . . . . . . . oo i i 88

iii



iv LIST OF FIGURES

13.36 Elimination of the shift operator, the mark operator, and identifier substitutions |

[ for syntax-rules forms| . . . . . . . ... Lo 89
[3:37 Normalization of patterns within syntax-rules|. . . . . . ... ... ........ 89
[3:38 Reduction rules for patterns| . . . . ... ... ... L Lo 90
3.39 Parsing reduction for syntax-rules| . . . . . . .. .. ... .. oL 91
[3.40 Mixture syntax, parsing, expansion, elimination and stripping for quoted forms| . . 94
4.1 Abstract syntax for programs with modules| . . . . .. ... ... ... ... ... . 106
E2 Program reduction] . . . . . . . . ... 108
4.3 Module reduction| . . . . . . ... 108
4.4 Linking reduction|. . . . . . . ... oL 109
4.5  Ewvaluation of packages| . . . . . . . ... o o 110
4.6 Evaluation of store-related primitives[. . . . . ... .. ... ... ... ... .. 111
4. valuation of module-related primitives| . . . . . ... ... ... ... 0. 111
A8 imination of evaluation substitutions for packages| . . . . . . ... .. ... ... 112
4.9 Mixture syntax for parsing and expanding modules and interfaces|. . . . . . . . .. 116
4.10 Parsing for interfaces and modules| . . . . . . .. ... oo 117
.11 Importing for interfaces| . . . . . . ... ... ... Lo 120
[£12 Tmporting for modules| . . . . . . .. ... 121
[f13 Expansion for interfaces . . . . . . . . .. . 122
4.14 Expansion for modules| . . . . . .. .o o 122
4.15 Elimination of the interface variant of the shitt operatorf . . . . . . ... .. .. .. 123
4.16 Reduction shift-expr for modules|. . . . . . ... .. ... ... 0oL 123
4.17 Elimination of parsing substitutions for modules] . . . . .. .. ... ... ... .. 124
: Flimination of meta-substitutions for modulesl . . . . . . .. .. .. ... ... ... 124
4.19 Blimination of identifier substitutions for modulesf . . . ... ... ... ... ... 124
4.20 Elimination of the unshift operator for modules| . . . . . . .. ... .. ... .. .. 125

4.21 Elimination of the mark operator for modules| . . . . . .. .. ... ... ... ... 125




Acknowledgments

I’'m an apprentice of Dr. S2. T did it. T did it all, by myself. Well, almost.

First of all, I thank Prof. Herbert Klaeren, my advisor. He allowed me great latitude in my
choice of research activities, provided a pleasant environment, agreed with this dissertation project,
and urged me to finish it when it was about time.

I am also indebted to Prof. Peter Thiemann, my co-advisor, for providing profound comments
on the entire text. His remarks helped me to see many things from a broader point of view. The
dissertation really benefited a lot from him.

Mike Sperber introduced me to world of function programming and guided me on my initial
steps into research and teaching. Mike pointed me to Richard Kelsey’s work on module systems
from which this project started. Later, he read through various drafts of this dissertation, provided
numerous corrections and suggestions and marked the places where more illustration was necessary.
I am deeply grateful for the time and effort he spent sharing his extensive knowledge with me.

My colleague Holger Gast was always available for discussing various aspects of the semantics.
Holger also wrote TEX macros to split the generated rules automatically into several lines if they
exceed the page width. I am still trying to understand this code.

I really appreciate the time and work the authors of PLT redex put into developing this tool.
PLT redex has been a great help.

Finally, I thank my wife Christl for her love, encouragement, and comfort. “Moritz auch.”






Chapter 1

Introduction

It is possible to define a formal semantics for configuration, elaboration, linking, and evaluation of
fully-parameterized first-class modules with hygienic macros, independent compilation, and code
sharing.

Module systems are an essential part of modern programming languages. They serve vari-
ous purposes, among them name spaces and units of compilation. Perhaps most importantly,
module systems are means of abstraction: Interfaces specify abstractions and modules provide
implementations. To fulfill these roles, a module system must provide a number of features:

Full parameterization enables the programmer to choose and exchange the imports of a module
at any time during development without modifying the module definition or relying on
external programs to assemble the program. With full parameterization it is also possible
to link several instantiations of the same module against different providers within the same
program.

First-class modules extend the program at run time, define local name spaces, and enable
programmable linking. In addition, if first-class modules and top-level modules resemble
each other, the semantics for first-class modules can explain the run-time linking, evaluation,
and access of top-level modules.

Independent compilation permits the development of modules even if imported modules are
not available yet. Thus they ease the management of large software projects.

Code sharing reduces the size of object code by pooling the code of modules with identical static
semantics.

Syntactic abstractions are the realm of hygienic macros, a well-established and reliable vehicle for
extending the syntax of a language. Unfortunately, existing systems that combine modules and
macros break the abstractions procured by modules. In these systems, the export description of a
module contains the names of exported macros only, hence the compiler needs to access the bodies
of the imported modules to retrieve the macro definitions. Thus, to support macros, such systems
sacrifice independent compilation and the ability to parameterize over modules providing macros.
This dissertation shows how to regain these features by moving the declaration of exported macros
to the interfaces of modules. In the resulting module system, modules are again exchangeable
components of a program but with full support for hygienic macros.

Taken together, fully-parameterized modules, first-class modules and macro declarations within
interfaces are essential to make modules exchangeable components of a program. This dissertation
provides the semantics of a module system and a hygienic macro expander with these features.
For implementors and programmers alike, the semantics defines the behavior of expansion, linking,
and evaluation in a precise manner.
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1.1 Combining Modules and Macros

This section gives an example that demonstrates the combination of fully-parameterized modules
and macros. The example deals with the implementation of the control operators shift and
reset [DF90]. The operators define composable continuations, where reset limits the extend of
such a continuation, and shift reifies the current continuation up to the next enclosing reset
as a function. Originally, shift and reset were implemented using a CPS transformation and
hence within the compiler. In [Fil94] Filinski shows how to implement shift and reset using the
call-with-current-continuation operator and assignment. Danvy translated Filinski’s SML
implementation to Scheme and contributed it to the Scheme 48 distribution [KR95].
To ease the usage, Danvy implemented shift and reset as macros:

(define-syntax reset
(syntax-rules ()
((reset e) (*reset (lambda () e)))))

(define-syntax shift
(syntax-rules ()
((shift k e) (*shift (lambda (k) e)))))

The macros reset and shift exhibit two typical uses of macros: reset puts its argument un-
der a nullary A-abstraction (called a thunk) to defer evaluation, and shift establishes a new
binding form to bind the composable continuation to the variable k in the expression e. The
actual implementation of the control operators is left to *reset and *shift, which are ordinary
procedures.

To package the implementation of shift and reset into a module, it is necessary to define
the interface of such a module. Shift and reset are macros and, as mentioned above, in our
system interfaces contain the definitions of exported macros. Thus the following code defines the
interface shift-reset-interface that exports the two macros:

(define-interface shift-reset-interface
(export
(define-syntax shift
(syntax-rules ()
((shift k e) (*shift (lambda (k) e)))))

(define-syntax reset
(syntax-rules ()
((reset e) (*reset (lambda () e)))))))

A module implementing this interface must provide definitions of the shift* and reset* proce-
dures. The following define-module form defines such an implementation:

(define-module filinski-shift-reset shift-reset-interface
(open scheme-interface)

(begin
(define (*shift f)
(call-with-current-continuation
(lambda (k)
(*abort (lambda ()
(f (lambda (v)
(reset (k v))))))))))

(define (*reset thunk) ...)
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In the module definition, filinski-shift-reset is the name of the module, shift-reset-
interface the name of the export interface, the open clause describes the module’s imports
(here scheme-interface, a built-in interface with the definitions from R°RS), and the begin
clause contains the actual code by Danvy. This code is only sketched here and it is sufficient to
see that it contains definitions of *shift and *reset.

Modules are fully-parameterized and hence the imports of a module are interfaces. A module
using the implementation of shift and reset only lists the above interface in its open clause. A
hypothetical module definition for a partial evaluator using shift and reset could thus look like
this:

(define-module partial-evaluator partial-evaluator-interface
(open scheme-interface
shift-reset-interface)
(begin
. reset ... shift ...))

Here, the module name is partial-evaluator, its export interface is some partial-evaluator—
interface, the imports are scheme-interface and shift-reset-interface, and the code con-
tains applications of the shift and reset macros.

To evaluate such a module, it is necessary to link it against actual implementations of the
imported interface. The decision which modules to use is up to the linker, possibly guided by
annotations from in the configuration language.

Filinski’s implementation of shift and reset is faster than the implementation using a
CPS transformation. However, it is still not optimal because it relies on call-with-current-
continuation, which needs to reify the entire continuation of an expression. As an improvement,
Sperber together with the author present a direct implementation of the control operators [GS02].
The implementation relies on the representation of the continuation as linked stack frames and
uses slices of the stack to represent composable continuations. This approach yields significant
overall performance gains for typical applications of shift and reset such as partial evaluators.
The interface of the enhanced version is still shift-reset-interface:

(define-module direct-shift-reset shift-reset-interface
(open scheme-interface
vm-primitives-interface)

(begin
(define (*shift f)
(let* ((slice (create-stack-slice))
(c (lambda vs
(copy-slice-to-stack slice)
(apply values vs))))
(f ©)))

(define (*reset thunk)
o))

This implementation of *shift and *reset differs significantly from the one in filinski-shift-
reset as the procedures now manipulate stack frames. In the sketched example, vm-primitives-
interface describes the exports of the virtual machine that provides direct access to the stack
such as create-stack-slice.

As both modules, filinski-shift-reset and direct-shift-reset, implement the same
interface, it is possible to link partial-evaluator against both of them. However, it is not
necessary to re-compile partial-evaluator for it—even though the modules export macros—
because the interface contains the macro definitions. Even run-time linking is possible for such
modules. Further, the implementor of partial-evaluator module need not be aware of the
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various implementations of the shift-reset-interface. She can implement and compile the
module without knowledge of the implementations. As the module system is fully-parameterized,
it is not even necessary to take any precautions for making the import exchangeable: A fully-
parameterized module specifies all imports by their interfaces only and thus the corresponding
modules can be exchanged by the linker.

This dissertation defines the semantics for a module system as presented in this section and
explains all aspects of such a powerful system formally.

1.2 Representation of Identifiers

The semantics uses an advanced representation for identifiers based on de Bruijn indices. Like
de Bruijn indices, our representation describes the A-abstraction of a locally bound variable using
a natural number counting the binders that separate a variable occurrence and its binder. The
representation is an essential means for describing hygienic macro expansion. As an example for
the importance of a powerful representation of identifiers, consider this (simplified) version of the
or macro from R°RS:

(define-syntax or
(syntax-rules (O
((or a b)
(let ((temp a))
(if temp temp b)))))

The macro accepts two arguments, a and b, and expands into an expression that evaluates a, binds
the result to the variable temp and uses if to return the value of a if it is not false and evaluates
and returns b otherwise. Now consider this expression using or:

(lambda (temp)
(or (+ 34 8) temp))

Hygiene requires the variable temp in the second argument of or to refer to the surrounding A-
abstraction, independent of the bindings introduced in the output of or. Hence the following naive
expansion violates hygiene:

(lambda (temp)
(let ((temp (+ 34 8)))
(if temp temp temp)))

Here, the third operand of if does not refer to the A-abstraction but instead to the let—a
violation of hygiene. A common technique to avoid this problem, is to introduce new, uniquely
generated names for the bound identifiers. However, this also affects the list of bound names of a
A-abstraction and renaming is not purely functional as some kind of state is necessary to guarantee
generation of unique names. If we attach de Bruijn indices [Bru72| to variable occurrences and use
the indices to describe the binding place of a variables (thus neglecting the name of the variable),
the expansion of the above expression yields:

(lambda (temp)
(let ((temp (+ 34 8)))
(if temp’ temp’ temp')))

Now the third argument of or is bound by the A-abstraction as required by hygiene. No renaming
or name generation is necessary because the de Bruijn index uniquely determines the binding place
of an identifier.

To cover identifier occurrences in module bodies and support advanced hygienic macro systems,
this dissertation extends de Bruijn indices to other dimensions:
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e For identifiers imported by modules, an import path denotes a path to the exporting module.
The import path mentions only the interfaces that were imported to access the identifier,
hence it is compatible with independent compilation.

e A set of marks describes the macro expansion that introduced an identifier. The set of
marks is essential during macro expansion to maintain hygiene but it is irrelevant during
evaluation.

e A position distinguishes variables bound by the same A-abstraction. However, dealing with
positions is straightforward and hence omitted in the formal semantics for the sake of sim-
plicity.

e The name of the identifier helps to compare possibly unbound identifiers, which is important
to describe syntactic extensions with literal identifiers.

The resulting representation of identifiers is powerful enough to support hygienic macro expan-
sion and also to support modules exporting and importing macros from other modules through
interfaces.

1.3 Explicit Substitutions

The semantics in this dissertation strongly build on ezplicit substitutions [ACCLII] and this section
briefly summarizes the use of explicit substitutions within this dissertation.

An explicit substitution replaces a variable by a term but, unlike a meta-substitution, the
explicit substitution is itself part of a term. Then special reduction rules propagate the explicit
substitution from the top of a term to the base terms. If such a base term is a variable, the
rules reduce the substitution to the substituting term or discard the substitution if it is not
applicable. This process is called elimination and the special rules are called elimination rules.
The semantics in this dissertation uses explicit substitutions for two different purposes. First,
during the evaluation of expressions and during linking of modules explicit substitutions replace
identifiers by values. These explicit substitutions are called evaluation substitutions. Second,
for parsing and macro expansion, five different kinds of explicit substitutions replace source code
symbols, identifiers, and meta-variables by syntactic terms. The dissertation refers to these explicit
substitutions altogether as expansion substitutions.

The motivation for using evaluation substitutions is that they model evaluation on a real
machine more closely than meta-substitutions. In particular, a meta-substitution applied to a
term immediately creates a new term by replacing in the original term all occurrences of the
variable that the substitution replaces. If a meta-substitution models function application, this
means that the code of the function’s body will be replaced by a copy of the code in which the
bound variable has been replaced by the argument. This model bears no resemblance to real
implementations where some form of environment maps variables to values and the code itself
remains unchanged throughout evaluation. An explicit substitution models such an environment
by attaching the binding information to a term without modifying the term otherwise. Only
if the substitution arrives during evaluation and elimination at a variable, the term from the
substitution replaces the variable by another term. This corresponds to a lookup of the variable
in the environment.

In addition, explicit substitutions can also describe linking of modules in strong resemblance
to real implementations. The reason why explicit substitutions are more suitable than meta-
substitutions is analogous to function applications: Linking connects the imported variables in
the body of a module to values exported by other modules. If a meta-substitution models linking,
it replaces the code of the module body by a copy, where the imported variables have been
replaced by values. An explicit substitution modeling linking, however, will leave the module
body intact. Hence, this dissertation uses explicit substitution to model function application
and more importantly to model linking of modules. The semantics for linking incrementally
builds from the values of imported modules an explicit substitution as the environment for the



6 CHAPTER 1. INTRODUCTION

module body. Evaluation and elimination move the substitution to the imported variables which
can then evaluate to the respective values. The semantics can then form the foundation of an
implementation of a powerful module system.

The motivation for using expansion substitutions is the possibility to attach these explicit
substitutions to terms without eliminating them directly. This is important for hygienic macro
expansion because there expansion and parsing are interwoven and therefore the macro expander
cannot work on abstract syntax because the parser has not generated it yet. Instead, the macro
expander and the parser generate explicit substitutions to record their results and eliminate the
substitutions only gradually as parsing and expansion advance. With this technique, the sub-
stitutions work only on the abstract syntax and hence it is always possible to comprehend the
correctness of the expansion process. The “lazy” propagation of results and the representation
of the expanded terms as a mixture of abstract and concrete syntax are essential ingredients
to describe hygienic macro expansion and they make the descriptions in this dissertation a real
semantics for hygienic macro expansion, rather than a bare algorithm.

1.4 Structure of the Dissertation

This dissertation has the following structure: Chapter 2] introduces fully-parameterized module
systems and the concept of including macro declarations in interfaces. Chapter |§| first defines A7,
a variant of the A-calculus that builds on A™, a language with explicit substitutions and de Bruijn
indices. Afterwards, the chapter presents the semantics of a hygienic macro expander and two
macro transformer facilities. The first transformer implements computational macros and uses
the language Macro Scheme for evaluation of transformer procedures. The second transformer
is a slightly simplified variant of syntax-rules. Chapter 4| defines AMedule 5 Janguage with
fully-parameterized modules, again based on a formal semantics. It also shows the combination
of modules and macros that yields independent compilation. Chapter [5| describes the prototype
implementations of the macro expander and the module systems, including the way I have gener-
ated the formulas in this dissertation. Chapter [f] reviews related work and Chapter [7] summarizes
the results. Finally, Appendix [A] includes the mathematical notation of the dissertation.



Chapter 2

Fully-Parameterized Module
Systems

For modularity, interfaces and modules play central roles: An interface is a specification of an
abstraction, while a module is an implementation of a specification. Such an implementation may
require or import other modules to accomplish its task. Again, interfaces specify abstractions over
these required implementations [LB8§|. Consequently, modules are replaceable components of a
program and interfaces specify the junctions where replacement may take place. A separate reso-
lution phase, called linking, maps the required interfaces to imported modules. The programmer
may have to provide additional information to instruct the linker which module it should use to
implement a required interface.

Conventional module systems typically support only a weaker form of modularity where mod-
ules import other modules directly instead of abstracting over them by means of interfaces. Some
of the conventional module systems—most notably the systems of the languages from the ML
family—support as a variant modules that abstract over a single imported module. These mod-
ules are then said to be parameterized and are also called functors in the ML terminology. The
programmer usually performs linking explicitly by providing the implementation of the interface.

The units system from PLT Scheme [FF98] is a module system where every module is abstracts
over all the modules it imports. In analogy to the terminology above, units are fully-parameterized.
Again, the linker for a fully-parameterized module needs information about which module should
be used to satisfy the imported interface. However, in the setup of a fully-parameterized module
system, it is a tedious task for the programmer to provide this specification: as all imports are
given as interfaces, a declaration for every import relation is required.

As observed by Kelsey [Kel97], most of these link declarations can easily be inferred automat-
ically in realistic programs simply because there is often only one module implementing a specific
interface. Only when several modules implement the same interface does the linker need the
aid of the programmer. Wiesenmaier, for his Master’s thesis [Wie00], implemented a prototype
of Kelsey’s fully-parameterized module system where link declarations are inferred automatically
whenever possible.

Parameterization is important to support the concept of a module as a replaceable component
of a program: A module provides an interface to the outside world and has to be exchangeable
with any other module providing the same interface. A module system with full parameterization
and automatic linking permits the programmer to replace every module within a program at little
cost.

2.1 Fully-Parameterized Module Systems and Scheme

For a language with a powerful macro facility such as Scheme, it is desirable to export and import
macros as well as regular run-time bindings. However, listing the macro name in the interface

7
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is not enough to enable independent compilation: Macro expansion is usually interleaved with
parsing and therefore takes place in the first phase of a compiler. For compilation to succeed, the
compiler needs access to the definition of the imported macros. Scheme implementations usually
solve this by sacrificing independent compilation and falling back to separate compilation: During
macro expansion the compiler looks up the definitions of the imported macros in the source code
of the imported modules [Fla04, [KR02, [Dyb9g].

For a module system with fully-parameterized modules, the imports are only interfaces and
the source code of the corresponding imported modules is only known after linking. Wiesenmaier
therefore includes a static linking phase that resolves the parameterization. However, this renders
full parameterization an exclusively configuration-phase facility and hides much of the power and
expressiveness of a fully-parameterized module system: Independent compilation and programmer-
controlled linking of higher-order modules are no longer possible.

This dissertation chooses a different alternative that supports independent compilation in the
presence of macros: The interfaces do not only contain the name but also the definition of exported
macros. This makes it possible to macro expand the source code of a module by only looking at
the interfaces it imports. While this approach looks unfamiliar at first glance, it is necessary
to support independent compilation in the presence of macros. Note, that it also subsumes the
conventional approach: The macro definitions in the interfaces can be derived automatically from
the source code after a preprocessing phase.

The next section informally introduces fully-parameterized modules by a series of examples.
Section[2.3]presents the terminology used in this dissertation, Section[2.:4]gives an initial overview of
the various phases involved during evaluation of a program with modules. Section[2.5]recapitulates
Kelsey’s work and adds some features missing in his draft. Wiesenmaier’s work is the topic of
Section [2.6] Section presents the configuration language for our module system with fully-
parameterized modules and Section defines the semantics of this language by transforming it
into Kelsey’s abstract data-types.

2.2 The Programmer’s Point of View

A Scheme programmer writes the source of the modules and declarations of interfaces, modules,
and programs. The language of the source code is plain Scheme and the code may reference
identifiers defined outside the source code. Section[2.7]formally presents the syntax for the language
in which the programmer defines interfaces, modules, and programs—this section gives an informal
overview.

The task of an interface is to enumerate the identifiers exported by a module. The keyword
define-interface introduces such a definition by giving it a name and an interface declaration.
Usually, the declaration is an export form which in turn contains the actual list of identifiers to
be exported. For example, the following form defines an interface named foo, which exports the
variables a and b:

(define-interface foo-interface
(export a b))

A module contains a piece of source code, along with a module name, an export interface, and a
list of imports. All modules are fully-parameterized, therefore the programmer lists the names of
interfaces as imports of a module. The keyword define-module defines a module. For example, to
define a module foo with export interface foo-interface, imported interfaces scheme-interface
and bar-interface, and source file foo.scm, this declaration is necessary:

(define-module foo foo-interface
(open scheme-interface
bar-interface)
(files fo0o0))
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The definition starts with the module name and the name of the export interface. Afterwards,
various clauses may follow. Usually this is just an open clause which lists the name of the imported
interfaces and a file clause which references a file containing the source code is present. The
interface scheme-interface and a module scheme with this interface are built into the system.
This module scheme provides the definitions of the Scheme standard.

Here, the argument of files it name foo which stands for the file foo.scm in the same
directory.

To complete the example, the following forms add definitions for the interface bar-interface
with variables ¢ and d and for the module bar with export interface bar-interface, import
scheme-interface, and source file bar.scm:

(define-interface bar-interface
(export c d))

(define-module bar bar-interface
(open scheme-interface)
(files bar))

Finally, the programmer needs to define a program which links the imports of the modules
with other modules providing these imports. The form define-program declares such a definition.
Like the other forms, its first argument is the name to be defined. Afterwards, program clauses
may follow. For the example, a modules clause which lists the names of the modules that are part
of the program is sufficient:

(define-program pi
(modules foo bar scheme))

This defines a program pl with modules foo and bar. This program does not contain explicit
links between the imports and their implementation. Instead, the system uses an algorithm for
linking. That algorithm links the imports of the modules to another module if there is only one
module in the program that provides the imported interface. Otherwise, the algorithms does not
link the import. In the example above, each import can be linked by the linking algorithm. But
if the following module bar2 is added to the program, the algorithm fails:

(define-module bar2 bar-interface
(open scheme-interface)
(files bar2))

(define-program p2
(modules foo bar bar2 scheme))

The program p2 contains two modules which export or implement the bar-interface. Conse-
quently, the linking algorithm cannot link the import bar-interface of the module foo as it
is not uniquely determined.. To fully link p2, the programmer has to add a link clause to the
program that defines, which module should be linked to the bar-interface of foo:

(define-program p2
(modules foo bar bar2 scheme)
(link (foo bar-interface bar2)))

Here, p2 chooses bar?2 as the provider of bar-interface for module foo.

The define-program form also supports a programs clause that imports other programs into
the program. In this case, the input programs correspond to “libraries,” that is, related pieces of
software components. The new program includes the modules of the input programs and combines
their link environments with the link environment of the importing program. However, to enable
this combination, the link environments must be consistent: For each module contained in both
programs, the link environments must link each import to the same implementation, or at least
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one of the two must lack a link for the import. The arguments of programs is the list of programs
that serve as input. In the following example, the programs lexer-program and parser-program
add different links for the import hash-table-interface of the module symbol-table. Hence
their combination in the program compiler-program is an error, as the link environments are not
consistent:

(define-module hash-table hash-table-interface
(open scheme-interface)
(files hash-table))

(define-module vector-hash-table hash-table-interface
(open scheme-interface)
(files vector-hash-table))

(define-module symbol-table symbol-table-interface
(open scheme-interface
hash-table-interface)
(files symbol-table))

(define-module parser parser-interface
(open scheme-interface
symbol-table-interface)
(files parser))

(define-program parser-program
(modules parser symbol-table hash-table)
(link (symbol-table hash-table-interface hash-table)))

(define-module lexer lexer-interface
(open scheme-interface
symbol-table-interface))

(define-program lexer-program
(modules lexer symbol-table vector-hash-table)
(link (symbol-table hash-table-interface vector-hash-table)))

(define-module driver driver-interface
(open scheme-interface
parser-interface
lexer-interface)
(files driver))

(define-program compiler-program
(modules driver)
(programs parser-program lexer—-program)) ;; ERROR!

In such a case, the programmer can resolve the conflict in one of two ways: either she modifies
the link clause of one of the programs to use the same implementation in both programs or she
creates a new implementation from the existing module symbol-table. For the latter case, a
variant of define-module exists:

(define-module lexer-symbol-table (copy-module symbol-table))

This form creates a copy of a module and assigns a new name to the copy. Now the programmer
can use the copy within the lexer-program and the link environment for compiler-program will
be consistent:
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(define-program lexer-program
(modules lexer-symbol-table symbol-table vector-hash-table)
(link (lexer-symbol-table hash-table-interface vector-hash-table)))

The combination of copy-module and link is quite common for modules that are only used
internally.

So far, the modules only imported variables from other modules. However, it is also possible for
a module to import and export macro definitions. The definitions for these macros must be listed
explicitly in the interface. This unique feature of our system enables independent compilation in
the presence of macros. The macro definition appears as a define-syntax form in the interface;
it is also visible in the body of the exporting module. For example, the following interface defines
a macro delay which wraps its argument into a thunk (a procedure with no arguments) before
applying the procedure make-promise to it:

(define-interface promises-interface
(export
(open scheme-interface)
(define-syntax delay
(syntax-rules ()
((delay form) (make-promise (lambda () form)))))
force))

The open clause of the interface provides bindings for the free identifiers in the output of the
macro. If these imports do not bind an identifier, the identifier is assumed to be a variable (not
a keyword) and the module that provides the interface must supply a definition for this variable.
We call this strategy “defaults to provider.” In the example above, scheme-interface provides a
binding for lambda but not for make-promise. A module with promises-interface as its export
interface must provide a definition for make-promise and, of course, for force. Here is a simple
implementation of such a module:

(define-module simple-promises promises-interface
(open scheme-interface)
(begin
(define (make-promise thunk) thunk)
(define (force promise) (promise))))

The “defaults to provider” strategy sets the binding place of the free identifiers in the output of an
imported macro to the module that provides the corresponding interface. This is convenient and
powerful because the writer of the interface does not need to specify the actual set of identifiers
in the output of a macro. However, sometimes identifiers within macro definitions are assumed to
be unbound. In particular, the identifiers used as literal identifiers of syntax-rules transformers
are often unbound. But with the “defaults to provider” strategy, there are no unbound identifiers:
identifiers in the output of an exported macro, which are not imported via an open clause, are
assumed to be bound by the providing module. Consider the following exampleﬂ

(define-interface if-t-e-interface
(export
(open scheme-interface)
(define-syntax if-t-e
(syntax-rules (then else)
((if-t-e test then cons else alt)
(if test coms alt))))))

(define-module main main-interface

1The example uses begin, another module clause that permits the programmer to write the source code within
the module declaration. We use it here to keep the presentation compact.
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(open scheme-interface
if-t-e-interface)
(begin
(if-t-e 42 then 1 else 0))) ;; syntax error!

Here the macro call in the body of main would not match the macro definition of if-t-e because
the “defaults to provider” strategy binds then and else to the provider of if-t-e-interface
but in the body of main these identifiers are unbound. To remedy this problem, interfaces may
contain an additional free clause that lists identifiers that are unbound in the providing module.
Using this clause, the interface definition above can be written as:

(define-interface if-t-e-interface
(export

(open scheme-interface)

(free then else)

(define-syntax if-t-e

(syntax-rules (then else)

((if-t-e test then cons else alt)
(if test coms alt))))))

Now the macro call (if-t-e 42 then 1 else 0) matches the macro definition because then and
else are unbound in the macro definition and in the macro call.

So far, the modules in the examples have always been on the top-level. However, modules can
also occur as expressions. In this case, the primitive make-module creates a module. Its syntax is

e (make-module ezp-interface (open imp-interface ...) module-def ...) — module

In this prototype, ezp-interface is the name of the export interface, after open the list of imported
interfaces follows, and module-def ... is a series of local definitions that make up the body of the
module. It is important to note that interfaces are not first-class values. Instead, they are only
accessible during elaboration time, just like macro transformers. Furthermore, there is no form
to define an interface within a module. Instead, the special module clause import-from-config
imports an interface name from the configuration level:

(define-interface an-a-interface
(export a))

(define-interface dupper-interface
(export dup&upcase))

(define-module dupper dupper-interface
(open scheme-interface
higher-order-modules-interface)
(import-form-config bla-interface)
(begin
(define (dup&upcase str)
(let ((strstr (string-append str str)))
(make-module an-a-interface
(open string-morphisms-interface
unicode-tools-interface)
(define a (string-map char-upcase strstr)))))))

The code defines a procedure dup&upcase which accepts as its parameter a string, binds a local
variable strstr to the duplicated string and returns a module, which defines its exported variable
a as strstr with all letters upper-case. To access the char-upcase procedure, the local module
imports the interface unicode-tools-interface; to access the string-map procedure, it imports
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string-morphisms-interface. The module has access to the bindings of the surrounding scope,
hence it can access strstr.

The return value of dup&upcase is an unlinked module. To access a, it is first necessary to link
and evaluate the module. For linking, the module higher-order-modules provides the proce-
dures 1ink and link-all. Analogously to the program clauses with the same name, 1ink satisfies
imported interfaces with implementations. Like the program clause, this procedure operates on
an importing module, an interface, and an exporting module. The link-all procedure corre-
sponds to the automatic linker and tries to satisfy the imported interfaces of its first argument
with the remaining arguments. The procedure eval-package evaluates the moduleﬂ Like the
make-module primitive, the module higher-order-modules provides these procedures via the
interface higher-order-modules-interface.

(define-interface unicode-modules-interface
(export unicode-tools
string-morphisms

)

(define-module main main-interface
(open scheme-interface
higher-order-modules-interface
unicode-modules-interface
dupper-interface)
(begin
(define mod (dup&upcase "hom"))
(define structure (link-all mod unicode-tools string-morphisms))
(define package (eval-package structure))
(define homhom-upcase (package-binding package ’a))))

The procedure package-binding selects the top-level binding of a evaluated module by its name.
That is, the last definition binds fpmfpm-upcase to "HOMHOM".

The above example shows one possible usage scenario for higher-order modules: A module can
import definitions into a local scope without affecting the surrounding scope. Another important
application of first-class modules is the loading of a module at run-time, enabling “plug-ins”.
Examples of software products that load plug-ins to extend functionality include Gimp, Photoshop,
Morzilla, and Eclipse. There even exist standard interfaces for plug-ins that are used by multiple
applications, such as TWAIN [TWAQO] or LADSPA [LADO35].

As our system does not distinguish top-level modules and internal modules semantically, pro-
grammers can also turn a top-level module into a first-class value and use it as a plug-in. This
eases program development as the programmer can test a module as an ordinary top-level module
and use the same module later as a plug-in.

2.3 Terminology

There is no uniform terminology in the literature on module systems. Most notably, the definition
of the term “module” itself is not tied down. This section presents our definition of the most
important terms and relates them to other common taxonomies. The terminology used here is
inspired by but not identical to the terminology of the Scheme 48 module system by Jonathan
Rees [Ree94]. From Cardelli [Car97], we borrow the term “fragment”.

The notion of an identifier is usually defined by the core language. Here, we use the terminology
that for languages with macros, an identifier is either a variable or a keyword, and for languages
without macros, an identifier is always a variable. The identifier might contain information about
the place where it is defined (so-called qualified or long identifiers). We will not consider long
identifiers here as they fundamentally complicate macro expansion [BIu97].

2A package is a fully linked module with state.
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A language description usually contains a definition of the static semantics of the language. The
static semantics determines for each language construct a set of properties that can be derived
without evaluation. These properties typically include information about the binding place of
an identifier for languages with lexical binding, the type of an expression for statically typed
languages, and the macro transformer for a keyword in languages with macros.

The core component of any modular component of a program is a source code fragment or
fragment for short. Source code is what the programmer expects to be compiled and evaluated. A
fragment may be not self-contained. It may refer to identifiers not defined in the fragment itself:
these are the free identifiers of the fragment. In a language with macros, these identifiers might
even be keywords of the language. Consequently, in such a language it is not possible to construct
the syntax tree for a source-code fragment standing by itself, let alone to compile the fragment.

An interface is an enumeration of identifiers along with their static semantics. For a language
with macros, the static semantics of a keyword (a macro identifier) is the definition of the macro
along with the static semantics of the identifiers referenced by the macro. For a statically typed
language, the static semantics of a variable is its type. Otherwise, the static semantics is usually
just the description of its binding place.

A module definition relates a fragment to information about the free identifiers of the fragment
and to an interface that defines the export information.

A unit contains a source-code fragment and enough additional information to derive the static
semantics of the fragment. For the free identifiers of the fragment, a set of imported interfaces
provides this additional information. For most languages this specification permits some form of
compilation of the source code. The free identifiers of the fragment become imported identifiers
of the unit as their static semantics describes their binding place.

A module consists of a unit and an export interface. A module serves as a reference for import
statements of other modules within link environments. Several modules may share the same unit
and therefore compiled code. A module is a static unit, it does not have state.

A link environment defines for each module, which other modules provide the free identifiers
of the module. A link environment might be incomplete in the sense that for some modules, it
does not define all modules providing the free identifiers of these modules.

The process of deriving the link environment is called static linking because it resolves identi-
fiers and happens before program evaluation.

A structure is a module with a link environment that describes which other structures provide
the free identifiers of the module’s unit.

A package is a structure with a run-time environment called the template that contains values
of the identifiers imported from other packages and for the identifiers defined in the package
itself. These values might be set to some undefined value and evaluation can change these values.
Therefore, the values of the identifiers constitute the state of the package. Modules and structures
do not have state.

Target code is a representation of the source-code fragment suitable to be executed by a ma-
chine. It contains instructions to load values from the template.

Using a source-code fragment as the code component of several different modules makes it
possible to parameterize over the static semantics of the identifiers. This enables the programmer
to use the source code in different contexts. For example, the source code of the implementation of
the operational semantics of this dissertation has been used as the input for a rewriting system and
to derive the IATEX code of this dissertation. The definition of elemental keywords such as define
differs within these two modules: While the operational semantics uses the standard binding for
define, the definition of define during the generation of the IATEX evaluates the right-hand side
of the definition to a string and writes it into a file, which is later included into the hand-written
part of the dissertation.
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2.4 Phase Overview

With the introduction of modules, evaluation of a program is defined in terms of several phases
that turn the source code fragments into modules, structures, and packages and evaluate the
packages. This section describes these phases and lists their inputs and outputs.

Configuration This phase processes module and interface definitions and creates modules, units
and a link environment. Configuration creates modules that share a common unit if the
module definitions reference the same fragment and if the imported interfaces of the modules
are the same. The input of the configuration phase is a set of module and interface definitions
and a specification for linking. The output is a link environment, a set of modules, and a
set of units.

Elaboration This phase derives the static semantics of a source code fragment. For a language
with macros, elaboration performs macro expansion. For a language with a static type
system, it performs type checking. Input to elaboration is a unit, its output is the static
semantics of the fragment.

Static linking Static linking creates a link environment, which determines the other modules
that provide the free identifiers of the module. Its input are a set of modules, the module to
be linked, and a link environment. The output of the phase is the link environment.

Compilation This phase creates target code from the static semantics of a fragment. It also
provides the layout of the template.

Dynamic linking This phase turns a module into a package. It creates the template of the
package and fills the template with values for all imported identifiers. The values of the
identifiers of the package are set to an unspecific value. The input of the phase is the module
to be linked, the link environment, and a set of packages that provide the imports.

Evaluation This phase corresponds to the evaluation proper of the language. It defines the values
for the definitions of the package in the template.

Figure shows a graphical representation of the phases and the entities. The dashed lines clarify
the numerical relationships between the entitiesf]

e Several module definitions may reference the same source-code fragment.

e Several modules may share the same unit. In this case, configuration has detected that the
imports and the fragments of the modules are the same.

e Several units may refer to the same fragment. This case results from module whose definition
refer to the same fragment but whose imports differ.

e For each module, there is exactly one structure because static linking creates a structure for
each module.

e Multiple structures may reference the same unit because for each structure there is one
module but several modules may share a unit.

e As the template constitutes the state of the package, there is one template for each package.

e Multiple packages may share the same target code because of the many-to-one relationship
between structures and target code.

3The occurrences of N in the figure do not refer to some variable but simply mean “many” as opposed to “one.”
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2.5 The Missing Link Revisited

This section presents the core of Kelsey’s description of a fully-parameterized module system as
presented in the unpublished draft [Kel97] along with two extensions necessary for our system with
hygienic macros and independent compilation: interfaces may import other interfaces to provide
static information for identifiers inserted by macros, and modules contain units instead of the
code as in Kelsey’s system to allow a set of modules to share compiled code. We also omit some
features not necessary for our presentation: modules with multiple export interfaces, importing
several modules with the same interface, and some sanity checks that cannot be performed in the
presence of macros.

Interfaces are partial functions from names to static information and carry a unique identifier.
The static information of a variable is either the symbol variable or the symbol free depending on
the variable being bound or unbound. The static information of a keyword is a transformer. The
static information of an imported identifier is the static information of the identifier as defined by
the exporting interface paired with the name of the exporting interfaceﬁ

n € Name
N € "P(Names)
t € Interface-Uid
Z € P(Interface)
i1 € Interface = Interface-Uid x Static-Env
tf € Transformer
si € Static = {variable, free} U Transformer U (Static, Interface)
se € Static-Env = Name -2 Static

For a static environment se, dom(se) is the domain of se and defined(se) is the set of identifiers
in dom(se) that is not mapped to free. For an interface ¢, interfse(i) is the static environment of
the interface:

interfse({t, se)) = se

A unit consists of a code fragment and a static environment which must provide the static
semantics of all free variables of the fragment:

code € Code
u € Unit = Code x Static-Env

A module combines a unit with imported interfaces and an exported interface. A module also has
a unique identifier:

€ Module-Uid
M € P(Module)
m € Module = Module-Uid x P(Interface)imports X Interface x Unit

A program consists of a set of modules, an initialization sequence, and a link environment:

p € Program = P(Module) X Init-Order x Link-Env

le € Link-Env = (Moduleimpomng,Interface) fin, Module ezporting
io € Init-Order = P(Module x Module)

4The set of interfaces is assumed to be finite and the interface import graph is assumed to be acyclic.
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The constructors for interfaces and units are straightforward:

make-interface : Static-Env — Interface

make-interface(se) = (new-interface-uid(), se)

make-unit : Code x Static-Env — Unit

make-unit(code, se) = (code, se)

The domain of the static environment of a unit has to include all free identifiers of the code
fragmentﬂ

The constructor for modules combines a unit with imported and exported interfaces and at-
taches a unique identifier. The static environment of the unit must match the union of the static
environments of the imported interfaces:

make-module:P(Interface) x Interface x Code x Static-Env — Module
make-module(Zimports, T exports, {code, se)) =

(new-module-uid(), Limports, Lexport, (code, se)) if se=|J interfse(i)
iEizm,poTts

error otherwise
Two small functions on modules turn out to be useful:

imports : Module — P (Interface)
imports((,u, Iimporta iexport; U>) = Iimports
export : Module — Interface

export( <,U/7 Iimportsa iewport, u>) = iezport

Two constructors for programs exist. The first turns a module into a program with with an
empty link environment and initialization sequence:

make-program : Module — Program

make-program(m) = ({m}, 0, 0)

The second constructor combines two programs into a new program. The link environments and
the initial ordering of the two programs must be consistent. For the link environment, this means
that module-import pairs appearing in both environments, must be mapped to the same exporting
module. For the initial ordering, consistence means that the union of the two orderings must be
acyclic, i.e. its transitive closure has to be irreflexive.

make-program : Program x Program — Program

make-program({Moy, iog, leg), (M1, i01,le1)) =
(Mo U My, io,le) if Y(m, i) € dom(leg) N dom(ley) : leg((m, 1)) = le1({m, 7))

A 10 is acyclic
error otherwise
where
10 = 109 U101
le(tm. 1) {leo(<m, i) if (m, i) € dom(leg)

ley({(m, 1)) otherwise

5However, the set of free identifiers cannot be determined without macro expansion. Hence the constructor of
unit cannot check that the static environment is appropriate for the code fragment.
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The function link adds a single link to a program and returns a new program if the arguments are
consistent with the existing link environment of the program:

link : Program x Module x Interface x Module — Program
<M, 10, l€/> if Mezporting € M
AN Mymporting € M
. _ . A i € imports(Mimporting )
link((M,i0,le), Mezporting, & Mimporting) = . e
N1 = eazport(mempom'ng)

A <mimporting; Z> Q/ dom(le)

error otherwise
where
le/(<7n17 Z/>) _ mea:portz:ng it m’ :' Mimporting A i =i
le((m',i'))  otherwise

The function link-all implements the automatic linker that extends the link environment of a
program by all links for imported interfaces that have only one implementation in the program:

link-all : Program — Program

link-all((M,io0,le’)) if Im € M : 3i € imports(m) :
(m, i) & dom(()le) A Ame, € M : i = export(me)
where

link-all((M,io,le)) =
le'((m',i')) = {

Me fm' =mAi=17

le(m’,i")  otherwise

(M,io0,le)
The function init-order extends the initial ordering of a program by a new pair of modules:

init-order : Program x Module x Module — Program
(M,id,ley if io’ is acyclic

init-order((M,io,le), Mpefore, Mafter) = )
error otherwise

where 0" = i0 U {(Mpe fores Mafter) }
The function resolve looks up a name in the link environment:

qn € Qualified-Name = Module-Uid x Name
resolve : Program — Name — gn or error

A nice property of Kelsey’s module system is that its definition contains no formal propositions
about the language and hence a set of abstract data types suffices for the definition. This gives
the system a broad range of applications in the design of a language: The system can be used only
during configuration and return a list of fully linked modules as in a traditional module system,
or the system can be used during separate compilation to determine the imported modules, or—
if independent compilation is possible—the system only describes how to link a set of already
compiled modules into a library or a complete program. As already sketched in Section 2.2 we
take the latter approach and Sections and formally define the configuration language and
how it translates to the abstract data types. Our dynamic linker uses the link environment of
a program to combine compiled (actually macro-expanded) modules into a complete program.
The dynamic linker does not explicitly call the resolve function but instead perceives the link
environment as a ternary relation that describes for each importing modules, which modules
satisfy the imported interfaces. That is, it does not use resolve to find the binding place of a single
variable but instead resolves all variables listed in an interface at once. But this is of course just
a technical variation that does not change the binding place of imported variables.
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2.6 Transformation with Code Sharing

To compile the source code of a module, it is necessary to resolve the references to imported
identifiers. As a naive approach, this could be done by a source code transformation which
replaces the names defined at the top-level of the modules by generated, globally unique names.
However, such a transformation would have a severe drawback: it would emit code for every module
within the program. This is a waste of space as it means that modules built on the same unit do
not share code. In his master’s thesis Wiesenmaier developed a transformation which preserves
sharing of code among modules with the same unit. The transformation works by generating a
procedure for each unit. The procedure expects a vector of cells as its only argument. The vector
corresponds to the imports of the unit and the cells contain the values of the imported variables.
The transformation maintains a mapping from imported names to indices into the vector for each
unit. It uses this mapping to convert occurrences of global variables into references in the vector.
A module arises from a unit by applying the procedure to a vector filled with cells containing the
imports.

2.7 Configuration Language

For the configuration phase it is necessary to define a language that includes module definitions,
interface definitions, and linking specifications. The module definitions contain source code frag-
ments and imported interfaces. The interface definitions contain the identifiers along with their
static semantics. The linking specification describes how the configuration phase should determine
for each module the set of imported modules. This can be done explicitly, corresponding to the
link operation from Section [2.5] or implicitly by relying some algorithm with in the configuration
phase. The latter variant corresponds to the link-all operation from Section [2.5

In his diploma thesis, Wiesenmaier also defined a configuration language that builds on the
abstract data types from Section Wiesenmaier’s language is in turn inspired by the config-
uration language of Scheme 48. We use Wiesenmaier’s language here but extend it by macros
in interfaces. For the sake of simplicity, we omit tags and renaming on import as present in
Wiesenmaier’s and in Kelsey’s work. However, I am aware that both features are important in
realistic programs: importing with tags enables a module to require the same interface several
times and satisfy it with different implementations, and renaming helps to avoid name clashes
between imported (and internal) identifiers. Including these features later is straightforward for
the configuration language as shown by Wiesenmaier. The main additions to Kelsey’s original
specification are macro declarations, import clauses, and unbound declarations within interfaces.

Figure [2.2] contains the grammar of the language. A configuration is a series of definitions. A
definition may either concern an interface, a module, or a program. Interface definitions include
a name and a description of the interface. The description itself is either an export form or a
compound-interface form. The latter simply combines several interfaces referenced by name
into one interface description. A list of export declarations follows the export form. An export
declaration is either the name of an exported variable, or the macro definition of an exported
keyword, or an open form that lists the names of interfaces providing bindings for the identifiers
inserted by the macros, or a free form that declares the unbound identifiers in the output of the
exported macros.

A module definition first determines the name of the module and the name of the export
interface. Afterwards, a list of module clauses follows. Within these clauses, an open form defines
the imported interfaces of the module, possibly with a tag. The begin clause contains the source
code as a sequence of definitions whereas a files clause references source code contained in a file.

A program definition contains the name of the program followed by a series of program clauses.
The modules clause lists the names of the modules that make up the program. The program clause
includes other programs. The link clause adds user-defined link commands to the program.
Within a link command, the first name is the name of the importing module, the second name is
the interface, and the third name is the module to be imported. The init-order clause sets up a
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partial order among the modules by listing sequences of module names which should be initialized
in the given order.

(configuration) —  (definition)*

(definition) —  (interface-def) | (module-def) | (program-def)
(interface-def) — (define-interface (name) (interface))

(interface) —  (export (export-decl)*) | (compound-interface (name)*)
(export-decl) —  (name) | (macro-def) | (open (name)*) | (free (name)*)
(macro-def) — (define-syntax (name) (transformer))

(module-def) — (define-module (name) (name) (module-clause)*)

)
| (define-module (name)
(module-clause) ~ —  (open (name)*)

| (begin (scheme-definition)*)

| (files (pathname))
(pathname) —  (name) | (string)
(program-def) —  (define-program (name) (program-clause)™*)
(program-clause) — (modules (name)*)

| (programs (name)*)

|  (link (link)*)

| (init-order {({name)*)}*)
(link) —  ((name) (name) (name))
(name) — Name

(copy-module (name)))

Figure 2.2: The configuration language

2.8 Semantics of the Configuration Language

This section defines the semantics of the configuration language from the previous section by
transforming programs written in the configuration language into the data types from Section 2.5
The semantics is then an environment function mapping the names of the configuration language
to the data types.

Usually, a semantics of a language describes the meaning of abstract syntax terms rather than
concrete syntax. This simplifies the description of the semantics because abstract syntax is less
verbose than concrete syntax. The configuration language however is so simple that defining an
abstract syntax would not pay off. Instead, we simply define for each kind of definition a subset as
normal forms for the definitions and use these normal forms in the description of the semantics.

There are two normal forms for interface definitions. The first specifies an order among the
declarations and permits only one open and one free clause. The second form limits the arguments
of the compound-interface form to two:

(define-interface (name)
(export (open (name)*)
(free (name)*)
(macro-def )*
(name)*))

(define-interface (name) (compound-interface (name) (name)))

A general define-interface form can be transformed into the first normal form by merging the
arguments of all open clauses and sorting the macro definitions and exports as required. The
second form results from the general form with compound-interface by introducing a series of
interface definitions with fresh names and letting each of the new interfaces combine two interfaces.

The normal forms for module definitions requires either exactly one open and one begin clause
or a copy-module clause:



22 CHAPTER 2. FULLY-PARAMETERIZED MODULE SYSTEMS

(define-module (name) (name) (open (name)*) (begin (scheme-definition)*))
(define-module (name) (copy-module (name)))

A file clause in the general form is transformed into a begin clause by inserting the code from
the file into the begin clause. Again, several open clauses can be merged into one clause.

For programs, the normal form permits exactly one clause of each kind and prescribes a certain
order among the clauses. Furthermore, each clause contains only a single argument:

(define-program (name)
(programs (name))
(1ink (link))
(init-order ((name) (name) (name)))
(modules (name)))

Figure[2.3]contains the semantics of the normal forms. The semantics is a function that takes as
its argument a definition and a configuration environment and returns an augmented configuration
environment. A configuration maps names to data types:

CEnv : Name — {Interface, Module, Program}

The semantics of a configuration uses the semantics of definitions to construct from an initially
empty configuration environment a configuration environment mapping all the defined names to
data types. As the semantics of a definition depends on the value of the configuration environment
for the names referenced in the definition, the definitions within a configuration must be ordered
such that each definition appears before its first reference. Figure defines a strict partial order
C that fulfills this requirement.

The semantics of a well-formed configuration (configuration) sorted by C is then defined as

[{configuration)]oempty

where Tempty is an empty configuration environment and the semantics function [] for configura-
tions is defined as:

[l : {configuration) x CEnv — CEnv
[e]lo =0
[{definition)(definition)™]o = [(definition) "] ([{definition)]qeto)

Extending the semantics to the general cases prescribed by the grammar is straightforward.
For the define-module and define-interface definitions, this has already been sketched above.
For the define-program clauses the contents of clauses that appear several times can be merged.
Then the semantics of the resulting form can be explained by extending the current semantics as
follows:

e If the 1ink clause of a program forms contains a series of links, this can be explained by
adding calls to the link function at the place of the current single call to link.

e If an argument of an init-order clause contains more than two modules, for every pair
of modules a call to init-order needs to be added. A init-order clause with multiple
arguments simply adds calls to init-order for one argument after the other.
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[aet : {definition) x CEnv — CEnv
[(define-interface N; (export (open N, .. .N;) (free ny...np)
(define-syntax ki tfy)...(define-syntax k¢ tf,) vi...v;))]deto =

o[N1 — make-interface(se)]  if (\,_, defined(interfse(i,)) =0

and({J,_, defined(interfse(i,)))N
N1y s, U1, 0 k1, k=0
error otherwise
where
0(Na) = ig,...,0(N;) =i

variable if n € {vy,..., v}
B ifn=k,1<i<t
se(n) = free ifne{ny,...,nm}
(se/(n),i) if3ie{ir,...,i;}:se =interfse(i),n € dom(se’)

[(define-interface N; (compound-interface Ny N3))]o =

o[N1 — make-interface(se)] if Vn € dom(sez) Ndom(ses) : sea(n) = ses(n)
error otherwise

where

sea(n)  if sex = interfse(iz), n € dom(sez)
se(n) = {se;;(n) if seg = interfse(is), n € dom(ses) \ dom(sez)
[(define-module N,, Ni_exp (open Ni_inpt ...Ni—impj) (begin code))]o =
0[Ny, — make-module({i1...1;}, lexp, make-unit(code, se))]
where
0(Nicimp1) = %1, - - -, 0 (Nicimpj) = 4
0 (Nicexp) = texp
se(n) = (se’(n), i) if Ji € {i1,...,i;} : se’ = interfse(i),n € dom(se)
[(define-module N; (copy-module N3))]o = o[Ny — make-module(is, i, u))
where
o(Ng) = (idy,is,1,u)
[(define-program N,; (program Npz) (1link (N1 N;Ny2))
(init-order (Niio1Nmio2)) (modules N,,))]o =
0[Np1 — init-order (link-all( link(make-program(pa, make-program(m)), my1, i, m2)), Mio1, Mio2)]
where
0(Np2) = p2, 0(Npin) = myz, o(N;) = 4,

U(le2) = my2, U(Nmiol) = Mjo1, U(NmiOQ) = Myo2, U(Nm) =m

Figure 2.3: Semantics of the configuration language
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n (interface)) T
(define-interface (name) (export ...(open ...n ...) ...))
n (interface)) C

(define-interface (name) (compound-interface n (name)))

(namey) (interface)) T

(define-interface (name) (compound-interface (names) n))

n {(interface)) C

(define-module (name) n ...)

n (interface)) C

(define-module (name) (name) ...(open ...n...) (begin ..
JC

2))

(define-module (name) (copy-module n))

(interface)) T

(define-program (name) ...(link ({(name) n (name)))

D C
(define-program (name) ...(link (n (name) (name)))

JC
(define-program (name) ...(link ({name) (name) n))

D C
(define-program (name) ...(init-order n (name) (name))

DC
(define-program (name) ...(init-order (name) n (name))

D C
(define-program (name) ...(init-order (name) (name) n)

DC
(define-program (name) ... (modules n)

D C

(define-program (name) (programs n)

Figure 2.4: Partial order among definition clauses



Chapter 3

A Semantics for Hygienic Macros

This chapter defines a formal semantics for hygienic macros in a language with s-expression based
syntax. The semantics includes a parser and a core macro expander plus two transformers. The
first transformer features computational macros and is close but not identical to the syntax-case
system [DHB92| [Dyb96], [Dyb92]. The second transformer is very close to Scheme’s rewriting-like
syntax-rules facility, omitting only ellipsis patterns. The definition of both systems builds on
explicit substitutions [ACCL91] as pioneered by Bove and Arbilla [BA92].

Usually, reduction systems for programming languages are defined on a set of terms corre-
sponding to a representation of the abstract syntax. The concrete syntax of the language does
not matter. In addition, authors often assume Barendregt’s variable convention [Bar84]. The
convention implies that bound variables are always distinct from free variables. These two simpli-
fications cannot be used if the language supports macros because macro expansion interleaves with
parsing while creating the abstract syntax tree and (hygienic) macro expansion needs to preserve
the correct binding relations, especially for variables whose names are not unique.

To specify a semantics for macro expansion, this work starts from the concrete syntax of the
language. The first step of the semantics specifies the relation between concrete and abstract
syntax by a set of reductions. These reductions parse the concrete syntax, accumulate macro
definitions, expand macro applications, and finally produce abstract syntax. The representation
of a variable in the abstract syntax is not simply the name of the variable but contains additional
information, called a level, that is reminiscent of de Bruijn indices and records the binding place
of the variable. This representation is the key ingredient for the description of hygienic macro
expansion. The semantics of evaluation of the language differs from an ordinary call-by-value
semantics in exactly this point, that is, it relates abstract syntax terms defined over identifiers
with levels.

The rest of this chapter is organized as follows: Section [3.1] reviews the basic properties of
hygienic macro expansion, Section [3.2] presents the ordinary call-by-value lambda calculus, Sec-
tion [3.3| presents the abstract syntax over identifiers with levels and its call-by-value evaluation,
Sections and describe the transformation from concrete to abstract syntax by reductions
for parsing and macro expansion. Section defines a macro expander for computational macros
4 la syntax-case. Sections [3.7] and [3.8] define parser and macro expander for the extended lan-
guage. Section [3.9|gives a semantics for Scheme’s syntax-rules facility, Section [3.10] describe the
features missing from full Scheme. Section [3.11|compares the macro expander with previous work.

3.1 Hygienic Macros

A macro is a user-defined source-to-source transformation performed by the compiler. A hygienic
macro system prevents the user from writing macros that inadvertently capture variables from the
input or that insert variables that are inadvertently being captured by surrounding code. In macro
systems with local binding constructs for keywords, hygiene also prevents these syntactic binding

25
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constructs from inadvertent capturing of keywords. Hygiene is important for macros because it
gives the macro writer complete freedom over the choice of variable names and ensures that none
of the macros can interfere with the bindings in a program. Hygiene is therefore essential for using
macros in large programs because it hides the use of names internal to the macro.

The literature characterizes hygienic macros by stating requirements the macros must fulfill.
The first definition goes back to Kohlbecker et. al. [KEFDS(]:

Hygiene Condition for Macro Expansion Generated identifiers that become bind-
ing instances in the completely expanded program must only bind identifiers that are
generated at the same transcription step.

Here the term “transcription step” is defined as the one-step expansion of a macro.

Kohlbecker’s definition does not cover the relationship between identifiers inserted by the macro
and binding instances in the original input. Clinger and Rees [CR90] improve this by formulating
the following;:

Hygiene Condition

1. Tt is impossible to write a high-level macro that inserts a binding that can capture
references other than those inserted by the macro.

2. It is impossible to write a high-level macro that inserts a reference that can be
captured by bindings other than those inserted by the macro.

We refer to two conditions by Clinger and Rees as the First and Second Hygiene Condition re-
spectively in the subsequent text.
Clinger and Rees also define a condition for local macros that is summarized in [DHB92] as:

Local macros are referentially transparent in the sense that free identifiers appearing
in the output of a local macro are scoped where the macro definition appears.

The following examples illustrate the hygienic macro facility in Scheme. The define-syntax
construct defines a new, global binding for a macro:

e (define-syntax keyword transformer) syntax

In R°RS, the only transformer form is a syntax-rules expression, which enables the programmer
to write macros with a high-level, rewriting-system-like language. Existing Scheme implementa-
tions often provide additional facilities that can be used in place of the transformer form.

A syntax-rules expression consists of a list of literals and a list of rules:

e (syntax-rules (literal ...) ((pattern template) ...))

Here, pattern is an s-expression that is matched against the macro call. For the first pattern that
matches the call, the corresponding template form replaces the call with all variables in the pattern
replaced by the corresponding input forms. A pattern is a variable if it is an identifier and if it is
not one of the literal identifiers. If a pattern is not a variable, it has to match the input exactly.
As an example, consider the following slightly simplified implementation of the cond macro from
RSRS:
(define-syntax cond
(syntax-rules (else)

((cond ((else expr))) expr)

((cond ((test rhs))) (if test rhs))

((cond ((test rhs) clause ...)) (if test rhs (cond (clause ...))))))

This macro lists else as a literal identifier. Therefore, in the pattern of the first rule, the identifier
else has to appear in the input as well, whereas expr is a pattern variable. In the second rule,
test and rhs are both variables and if the pattern matches, the macro expander replaces them by
the corresponding input forms in the template (if test rhs). This final rule contains an ellipsis
pattern: clause ... matches arbitrary many input forms.

For the demonstration of hygiene, consider the implementation of the or syntax from R®RS:
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(define-syntax or
(syntax-rules ()
((or) #£)
((or el e2 ...) (let ((temp el))
(if temp temp (or e2 ...))))))

The macro consists of two rules: The first rule explains or with no arguments and rewrites to #£.
The template of the second rule binds the value of the first argument to a temporary variable,
tests its boolean value, returns if it was not false, and rewrites or with the remaining arguments
otherwise. The use of a temporary variable is necessary to prevent duplicate evaluation of the
expression el. Hygiene ensures that the variable the macro binds cannot capture free occurrences
of the same identifier within the input forms, in this case €2 .... That is, in the program

(define temp 23)
(or (= 1 2) temp)

the identifier temp always refers to the global variable and the program evaluates to 23. Without
hygiene, the second argument of or would be substituted literally into the template, yielding

(define temp 23)
(let ((temp (= 1 2)))
(let ((temp temp))
(if temp
temp
#£)))

which evaluates to #£.

Besides preventing macros from capturing free variables, hygiene also ensures that the variables
used by the macros are not captured. As an example, the receive macro provides a nicer interface
to Scheme’s multiple return values facility [St099]:

(define-syntax receive
(syntax-rules QO
((receive formals expression body ...)
(call-with-values (lambda () expression)
(lambda formals body ...)))))

In the expression

(let ((call-with-values 23))
(receive (a b c) (values 1 2 3)
(+ aboa))

the macro receive inserts a reference to the variable call-with-values within the body of a
let that binds this variable. However, hygiene ensures that the inserted reference to call-with-
values still refers to the top-level binding from R®RS.

To demonstrate hygiene for keywords, we need Scheme’s local binding constructs for macros:

e (let-syntax ((keyword transformer) ...) body) syntax
e (letrec-syntax ((keyword transformer) ...) body) syntax

Both special forms bind the keywords to the respective transformers within body. In addition,
letrec-syntax also binds the keywords recursively within the transformers, just as define-
syntax does.

Now we can demonstrate how hygiene prevents macros from capturing free keywords:

(define-syntax foo
(syntax-rules QO
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((foo x)
(let-syntax
((bar (syntax-rules ()
((bar) 12))))
(1ist x (bar))))))
(define bar 23)
(foo bar)

The macro foo expands into the definition of another macro bar. Within the body of the
let-syntax binder, the template contains the pattern variable x. The macro application (foo
bar) binds this pattern variable to bar. Hygiene ensures that the let-syntax does not capture
the global variable bar.

Finally, consider the macro thunkify that wraps an expression into a thunk (a lambda expres-
sion with no arguments) to prevent immediate evaluation:

(define-syntax thunkify
(syntax-rules Q)
((thunkify expr) (lambda () expr))))

Here hygiene ensures that the keyword lambda in the template always refers to the lambda special
form, independent of the bindings that surround the macro call. That is the expression

(let ((lambda 42))
((thunkify 17)))

evaluates to 17. Without hygiene this program would expand to

(let ((lambda 42))
(42 O 17N

which is a syntax error.

Macro expansion needs to treat the quote form specially. The operand of quote is an s-
expression and quote transforms the s-expression into a value whose external representation is the
input s-expression. For example

(quote 52)

evaluates to 52 (the number fifty-two) since the s-expression 52 (the digit “5” followed by the digit
“2”) is the external representation of the number fifty-two. Quote comes in handy for writing literal
expressions for lists. For example the expression

(quote (1 a))

evaluates to the list of the number one and the symbol with name a. The form ’datum is an
abbreviation for (quote datum):

(1. 2)

is therefore an expression that evaluates to the pair of one and two.
If quote appears in the template of a macro, forms that look like code suddenly becomes data:

(define-syntax foo
(syntax-rules ()
((foo (a (b) c¢)) (quote b))))
(foo (lambda (x) (+ x x)))

evaluates to the symbol x. Even more strange things can happen if quote is passed as an argument
to a macro:
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(define-syntax swap
(syntax-rules ()
((swap a b) (b a))))
(swap a quote)

which evaluates to the symbol b even though the template of swap looks as if it would produce
a procedure application. This example demonstrates that there are macro definitions where it is
impossible to derive any kind of information about the output of the macro by analyzing only the
macro definition. Consequently, macro expansion is strictly necessary to derive the syntax tree of
a program.

3.2 The )\, Calculus

Before we formally describe expansion for hygienic macros as presented in the previous section,
we first define the semantics of the core language. For this semantics do not start from scratch
but show that it is equal to the well-known call-by-value A calculus. This section recapitulates the
basic properties of the call-by-value A calculus, called \,-calculus, and introduces the basic formal
tools. The presentation is heavily based on [FH92] but the notation deviates in one important
aspect: we use “lhs —p rhs (RuleName)” to introduce a notion of reduction (called rule) and
implicitly union all rules containing — g into one notions of reduction, which we refer to as —p.
Furthermore, in our notation — g denotes the reduction, that is, the compatible closure of —g
with respect to the expression grammar.

Figure contains the language A of the A, calculus. It comprises values, variables Vars,

and function applications. Values (Values) in turn comprise constants Consts and A-abstractions
The sets of free variables, FV (M), and bound variables, BV (N) of an expression Mare defined

Syntactic domains:

a € Const

z € Vars

M, N €A
Abstract syntax:

M w=Vi]z| (MM)
%4 s=al| Xz M

Figure 3.1: The language A

as usual, with A being the only binding construct:

FV(a)=10 BV(a)=10
FV(z) = {z} BV(z)=10
FV(Ax.M)=FV(M)\ {z} BV(Az.M)= BV (M)U{z}
FV(MN) = FV(M)UFV(N) BV(MN) = FV(M)UFV(N)

We do not adopt Barendregt’s variable convention|[Bar84] that ensures that the bound variables
of a term are always disjoint from the free variables. This complicates the subsequent definition
of substitution but makes it easier to relate meta-level substitution and explicit substitution. We
do however regard terms that differ only in the names of bound variables as equal.

Substitution on A terms, written M [N /x], replaces all free occurrences of the variable z in the
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term M by the term N:

a[N/z]=a

z[N/z] =N

yIN/a] =yiff o #y
(Ay.M)[N/z] = (Az.M[z/y]|[N/z]) where z is fresh
(L M)[N/z] = (L[N /z] M[N/z])

Another syntactic operation performed on the meta-level is the concept of a term context, an
expression with a hole (“[ ]”) at the place of a subexpression. If C is a term context, then filling
the hole of C, written C[M], stands for the result of putting the expression Minto the hole of the
context C. Unlike substitution, filling the hole of a context may capture free variables. For A, the
set of contexts is defined as:

¢ p= (] C)[(C M) (Az.C)

The set ClosedValues is the set of values that have no free variables:
ClosedValues = {V € Values | FV(V) =0}

The precise set of constants is left unspecified; we only assume a partial function ¢ defined as:

b € BaseConst C Const
f € FPunConst C Const
0 : FunConst x BaseConst — Closed Values

that assigns meaning to application of functional constants to closed values.
A calculus is an equational theory over a term language. The A, calculus is an equational
theory over A. The two basic relations, called notions of reductions, of the calculus are:

fa—s6(f a) (8)
(Az.M)V —p5, M[V /z] (Bv)

Definition 3.1 ()\,). Taken together, they form the notion of reduction —,:
—p =5 U g,
The one-step reduction —, is the compatible closure of —,:
M —, M if M= C[M], M = C[My], My —, My

The reduction —, is the reflexive, transitive closure of —,. =, is the smallest equivalence
relation generated by —,. If M =, N, we write \, - M = N.
O

Besides the equational theory, another important aspect of the A,-calculus concerns the algo-
rithmic evaluation of expressions. Using evaluation contexts we can define a canonical sequence
of reduction steps that reduce an expression to its value.

Definition 3.2 (Evaluation contexts). The following grammar defines the set of evaluation
contexts:

Co w=[]1(VC) | (Co M)
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A reduction sequence that takes only place within evaluation contexts standard-reduces an
expression. The evaluation context thereby uniquely splits the expression into a context and the
leftmost-innermost redex outside the body of a A-expression. We can therefore define a standard
reduction function:

Definition 3.3 (Standard reduction function). The standard reduction function reduces M to
M, written M, M, if for some evaluation context C,, M= C,[M;], M = C,[Ms], My —, M.
Let —7 denote the transitive closure of .

O

The semantics of a program (a closed expression) P can now be defined using the standard
reduction function:

Definition 3.4. FEwvaluation function

cvaly(P) 2 Vi Pt v

3.3 The AZ’@ ) Calculus

This section presents a variant of the classical call-by-value A-calculus based on the language
A" that uses indexed variables and explicit substitutions. A™ is our starting point and the
subsequent sections and chapters extend it to incorporate two hygienic macro facilities and a
fully-parameterized module system. Indexed variables are the key ingredient to preserve hygiene
without relying on renaming. Explicit substitutions makes it possible to make the linking phase
explicit.

The abstract syntax uses identifiers with labels to represent variables. The label of an identifier
is a natural number and indicates the number of binders between the occurrence of the variable
and the abstraction that binds the variable. This representation of identifiers is reminiscent of
the de-Bruijn notation [Bru72]. Unlike the de Bruijn notation, identifiers in A™ still carry a name
along with the level. Keeping this name both improves readability and, more importantly, enables
hygienic macro expansion. Keeping the name is important because the final syntactic role of an
identifier is only known after macro expansion. Until then it is unknown whether the identifier
will become a variable (with the name being “superfluous” in the sense of de Bruijn), or whether
the identifier will be used as symbolic data because it appears in the argument of a quote form.
In the latter case the binding information is irrelevant, only the name matters.

Figure [3.2] contains the abstract syntax for A™. Expressions encompass identifiers with lev-
els, written as z”, values, which are constants and A-abstractions, and applications, written (@
ee)ﬂ Furthermore, explicit substitutions extend the set of expressions—we call them “evaluation
substitutions” to distinguish them from other explicit substitutions that will be introduced later.
They are written as e(t) where t is a pair (2™, v). Such a pair corresponds to the substitution of
a variable ™ by the value v, where the value v must be closed.

Remark: To simplify matters, evaluation substitutions are restricted to substitute
closed values only: If we would allow values to contain free variables, the substitution
would need to adjust the levels of these variables whenever the substitution enters
the scope of a A-abstraction. However, in programming languages the evaluation of a
free (unbound) variable is an error. Certainly, the calculus would be stronger if the
substitutions were more powerful but such a calculus is not the main objective of this
dissertation.

Names are superfluous in A™ because the level of a variable already represents the binding
information. Hence we identify terms that are equal modulo the names of the bound variables.

1To draw the distinction between abstract and concrete syntax, the abstract syntax uses @ to mark procedure
applications.
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Syntactic Domains:
a € Const

eN
€ Vars
n e Ids
e A"
€ Values™

€ Ids x Values
Abstract syntax:

e 0o 8 8 3

€ L=
= a

|
t = (2"

Figure 3.2: Abstract syntax of A"

However, we want to rule out terms where the names and the levels do not correspond, for example,
Az.y0 or Az \y.2%. To that end, we define a predicate WellFormed that determines whether a
term is well-formed or not:

WellFormed : A™ — Boolean

WellFormed(e) & WellFormed’(e, ()

WellFormed’ : A™ x Vars® — Boolean

WellFormed’((Qeyes), s) < WellFormed’(e1,s) A WellFormed’(es, s)
WellFormed’((Ax.e), s) < WellFormed’(e,x : s)

Wellformed’(z*, s) & si=zx

Wellformed’(e@{v,2™)D, s) < WellFormed’(e, s) A WellFormed(v)

The predicate WellFormed(e) uses the helper predicate WellFormed’ to ensure that the names
of the bound variables in e match the names in the corresponding A. To that end, WellFormed’
receives as additional argument a sequence of names that corresponds to the variables bound by
the A-abstractions in the context of the expression. The sequence is ordered from the inside to
the outside and is initially empty. For each A-abstraction, WellFormed’ adds the bound name to
the sequence and for an occurrence of a variable with level 7, the rule verifies that the name of the
variable matches the ith element of the sequence, that is, the name bound by the A-abstraction
binders away. The values within an evaluation substitutions must be closed, hence the predicate
WellFormed is applicable.

From now on, we will only consider WellFormed expressions.

The elimination of the evaluation substitution is the subject of the —¢3 notion of reduction
defined in Figure Rule (SEvalSubstlId) applies an evaluation substitution to an identifier that
matches the identifier of the substitution. The result is the value from the substitution. If the
identifier does not match the identifier from the substitution, rule (SEvalSubstIdOther) drops the
substitution. The same happens in rule (SEvalSubstConst), which describes the elimination of an
evaluation substitution applied to a constant. For applications, rule (SEvalSubstApp) propagates
the substitution to the operator and the operand. For A-abstractions, rule (SEvalSubstLam)
pushes the evaluation substitution to the body but increments the level of the identifier by one as
it moves one binder further away from its own binder.

The contexts for — ¢y are defined as:

Coy 5= Oyl (@ Cgye) [(@eCgy) | (A z. Coy)
! P !/
CG)) a=1] C@)(t))
They give rise to a one-step reduction — ¢y for the elimination of evaluation substitutions: e—¢y

e’, iff for some context Cqy, e = Cqyler], ¢ = Cgylea], e1 —¢y e2. From this, we can derive
an equational theory: e; =¢y e if e; —D’C‘(D es.
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ESEzpr o egys ::= et)
—qy € ESExpr x Ezpressions

"z, v)d =y v (SEvalSubstId)
Yy, )Y =gy y" iffy™ F# 2 (SEvalSubstIdOther)
adt) —qy a (SEvalSubstConst)

(@ ey e2)t) —¢y (@ e1CtD ea(D) (SEvalSubstApp)
(A\y.e)T (@™, v)D —¢y (Ay.eC ", v)D) (SEvalSubstLam)

Figure 3.3: Elimination of ¢D

Proposition 3.5 (terminating). — ¢y is terminating.

Proof. From [Ros96] we borrow a function s : A™ — N, s.t. s(e1) > s(e2) if e; — ¢y ea:

s(z™) =1
s(n)=1
s(Qe; e3) = s(e1) + s(e2) + 1

s(Az.e) = s(e) + 1
s(ed(z",v)2) = s(e) x (s(v) +1)

O
Proposition 3.6 (local confluence). —y is locally confluent
Proof. There are no critical pairs. O
Lemma 3.7 (Confluence of —¢y). The reduction — ¢y is confluent.
Proof. Follows from Proposition and [3.6| by Newman’s lemma [BN9S8| New42]. O
Proposition 3.8 (unique normal form). — ¢y has unique normal forms
Proof. Follows from confluence (Lemma [3.7)). O

Proposition 3.9 (Normal forms of —¢y). The normal forms e of —¢y are the terms without

evaluation substitutions:
e €A CA"

v € Values” C Values”

n=a"|v| (@ee)
s=al (Aze)

(ISHNTeY

Proof. —y is applicable to any term that contains an evaluation substitution and moves the
substitution into the subterms or eliminates it for the base cases. O

For the normal forms, we can define a set of contexts C™ analogous to C:

an m= ]l (@M e) [(@e )| (Ae.LT)

A second set of contexts C™ will be used later to specify evaluation. These contexts do not
place the hole under A-abstractions or under evaluation substitutions:

o =[]l (@0 e) | (@e CM)
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Both restrictions are necessary to ensure well-formedness of reduced terms. Like the limitation of
evaluation substitutions to substitute only closed values, this is a profound deviation from other
calculi with explicit substitutions [ACCLII]. Additional operators to manipulate the levels of
identifiers are required to permit such restrictions. The reason for the deviation is that we are
mainly interested in a semantics that describes actual implementations, not in a powerful calculus.
The function to determine the free variables of an expression e, FV"(e), returns the names of
the variables, not the variables themselves. The function F'V" relies on a helper function FV"'
that takes an additional level argument indicating the minimum level of unbound identifiers:

FV™: A" — P(Vars)
FV"™(e) = FV™(e,0)
FV™ A" x N — P(Vars)

FV™(a,m) =0
FV™(z™ m) = {z}if n >m
FV™(z",m)=0ifn<m

FV™((\z.e),m)
FV™((Qe; e3),m)
FV™(ed{z",v)D,m)

FV™(e,m+1)
FV™ (e, m)UFV™ (eq,m)
= FV™(e’,m) where e({z",v)> —¢y €

For the bound variables, the function BV™(e) likewise returns a set of variable names:

BV"™ : A" — P(Vars)

BV™(a,m)=10
BV™(z™) =0
BV™((Azx).e) = BV"™(e) U {x}

)
BV”((@el 62)) BV”(el)UBV"(eg)

The basic notion of reduction introduces an expression with an evaluation substitution:
(@ (Az.€) v) =gy eC(a®,0)D iff FV"(v) = 0 (62)

Unlike the classical \,-calculus, we assume the argument to be closed as our evaluation substitu-
tions may only substitute closed values.
Together with §, 3 forms the notion of reduction —7:

—p=0U0]
The one-step reduction —7' is the compatible closure of —7:
el e if e= C"e], e/ = C"ea], e1 — €2

Definition 3.10 (\»2), Let (D = _n —qy and —m D its reflexive, transitive closure.
=D s the smallest equivalence relation generated by —™CP. If e =D ¢y we write XD
€1 = €q.

O

We now establish the fact that the )\Z}’@D calculus is a conservative extension of (a variant of)
the A, calculus. The proof follows the strategy of [ACCLIT] [Ros96], which in turn use Hardin’s
interpretation method. It is simplified by the fact that reduction does not take place within explicit
substitutions.

To relate the A2 calculus with levels with the ordinary A, calculus, we first need a translation
that produces A™ terms from ordinary A terms. Curien [Cur96] defines a translation for de Bruijn’s
indices, which we can easily adapt to our notation with names. We first define the functions QuterV
and QuterV that derive for a context the sequence of bound variables from the hole to the root:
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Definition 3.11 (OuterV).

OuterV: C — Vars" QuterV: C" — Vars"
OuterV([]) =€ OuterV([]) =
OuterV(A\x.C) = OuterV(C) : x OuterV(Ax.C") = OuterV(C") : x
OuterV(C M) = OuterV(M) OuterV(C" M) = QuterV(M)
OuterV(M C) = OuterV(M) OuterV(M C") = QuterV(M)

O
Now the translation of every subterm of a A term can be defined by dividing the term into a
context and the subterm:

Definition 3.12 (De Bruijn’s translation). For N= C[M] € A s.t. FV(N) =0, we define the
de Bruijn translation of M as ¢(M, OuterV(C)) where ¢ is defined as:

¢:Ax Vars® — A"

y=a"ifi € {l,...,n} is minimum s.t. * = x;
)= (Az.o(M, (z,21,...,25)))
)= (@ ¢(M, (z1,...,2,)) &N, (x1,...,22)))

A translation in the opposite direction must introduce fresh names for every variable because
the names in A™ do not account for shadowing. For example, the translation of the A™-term
Az.Az.z! to the A term Az.\z.x is obviously flawed. Hence, the translation function 7 chooses a
fresh variable name for every bound variable. Consequently, it needs to remember the new names
using a sequence of names that reflects the bound variables of the surrounding terms. Translation
can only happen for terms not containing explicit substitutions.

Definition 3.13 (Reverse de Bruijn translation). For ¢ = C"[e] € A" s.t. FV'() =0, we
define the reverse de Bruijn translation of e as 7(e, OuterV(C")), where T is defined as:

7: A" x Vars® — A

T(a,s) =
(2t (21, .., 2,)) =
T((A\z.€), 8) = )\ 7(e, 2 s) where z fresh
7((Qer &), 8) = (7(ev, 8) 7(e2,5))

and no name occurs twice in OuterV(C").

Lemma 3.14. ¢ is a bijection from A to A"
1. For ¢ = (C"[¢] € A" s.t. FV'(€) = 0: ¢(7(e, QuterV(C")), OQuterV(C")) = e.
2. For N= C[M] € A s.t. FV(N) = 0: 7(¢(M, OuterV(C)), OuterV(C)) = M.

Proof.

1. Induction on the structure of e:
o c=a':¢(r(at,s),s) = d(x;) = 2, where i € s ={1,...,n} is minimum s.t. z = z;

e ¢ = (Qe; ey): Obvious from the induction hypothesis.

2Note that we identify terms that are equal modulo the names of the bound variables.
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e ¢ = (Az.8) : #(T((A1.€),5),5) = ¢((N\2.7(&,2 : 5)),8) = (\2.¢(7(&,2 : 5),2 : 5). Now
using ¢/ = C[é],C = C[Az.[ ]], we can apply the induction hypothesis and obtain
(Az.€).

2. Analogous to the first case.

Corollary 3.15. 7 is a bijection from A™ to A.

The next lemma shows that the result of applying ¢ or 7 to a value is independent of the
context:

Lemma 3.16 (¢ for closed values). 1. Vs,s' : ¢p(V,s)=o(V,s) if FV(V) =10
2. Vs,8" : p(v,8) = p(v,8") if FV(v) =0

Proof. The only interesting case is V = Ax.M, FV (M) = {x}. Without loss of generality, M = x.
But then ¢p(\z.z,8) = A\x.¢p(z, 2 : 8) = Ax.2® = \v.gp(x, 7 : 8') = p(A\v.1, 8'). O

Now we show that ¢ translates a term subject to a meta-substitution into a term subject to
an evaluation substitution.

Lemma 3.17 (Equivalence of substitutions for ¢). For N= C[M[V/z]] € A s.t. FV(N) = {:

MV /x], (xo,...,2n)) =¢p ¢(M, (x0, ... ,9cn))@<:ri7 oV, (zoy ..., 20)))D
where FV(V) =0, OuterV(C) = (xg, ..., &n), t = minimum s.t. x; = x.
Proof. Induction on the structure of M:

o M =u:
Left-hand side:
qb(x[V/x}, s) = ¢(V’ S)
Right-hand side:

EvalSubstld

oz, s)z", p(V,5))D = 2'z’, p(V, 5))D o(V,s)

o M=y,y#u:
Left-hand side:

o(y[V/al, s) = ¢y, s) =y’
Right-hand side:

EvalSubstIdOther j
= Y

¢(y7 S)((<:I,‘Z, ¢(‘/a 8)> )= yj@<mi7 ¢(V7 8)>D

o M = (Ml MQ)I
Left-hand side:

¢((My M2)[V/x], s)

(p(M1[V/x],s) ¢(Ma[V/x],s))
(&(My, )z, ¢(V,8))D ¢(My, s)U(z’, ¢(V, 5))D)

I

Right-hand side:

S((M1 Mz), s)C(z’, (V. 5))D = (¢(Mi, 5) ¢(Mz, 8))C{z", ¢(V,s))D
EvangbstApp (¢(M1, S)@<.’£i, ¢(‘/’ 8)>D
¢(Mz, 5)(*, §(V. 5))D)
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o M =(\y.K):
Without loss of generality,  # y (otherwise rename y).
Left-hand side:

SO K)V/als) DT s K[V/a)), )

— Ay p(K[V/x],y : s)
L oK,y o)™, 6V, 0 5))D

Right-hand side:

OOGK, U oV = (K 9) U’ o(Vs)D
PR ARy st 6(Vis))D

By Lemma o(V,s) =o(V,x : s).
O

A similar result as in the previous lemma holds for the translation of a A™ term subject to an
evaluation substitution into a A term via p:

Lemma 3.18 (Equivalence of substitutions for 7). For ¢ = C"[e{x?, v)D] € A" s.t. FV(e) =
0:

T(e{z’, 1)), (xg,. .., 1)) = 7(e (0, - .., 2n))[T(1, (z0, ..., T0)) /1]

where FV(v) =0, OuterV(C") = (o, . ..,%yn), i = minimum s.t. ; = T.
Proof. Analogous to the proof of Lemma [3.17] O

As —pn accepts only closed values as operands, we can only state equivalence of A\ with a A,
calculus where the — g reduction has the same limitation. We call this reduction —g, ...

Lemma 3.19 (Simulation for —g, ___.,). For N= ((Az.M)V) € A s.t. FV(N) =0, V€ Values,
FV(V) = 0: If (Az.M) V) =3, .0 L, then ¢((Az.M) V), €) —pn e, s.t. e=qy ¢(L,x : €)

Proof.

d(L,x : € = d(M[V /z],x : €)

Lot B0 (M, 2+ )2, $(V,€))D

S(Me.M) V)e) = (d(\z.M,e) $(V,e))
= (Omd(M,x:e) $(V,0))
—gan ¢(M,x:e)(<x07¢(V :
Lemm2BI80f 2 s €)@, (V7))
O

As the contexts of A,, do not include holes under A-abstractions, we further need to limit the
contexts of the A, calculus accordingly to C',. We call the resulting one-step reduction —,_cjosed-

Lemma 3.20 (Simulation for —g3, __,__..). For M,N e A, FV(M) =0, V € Values, FV(V) = 0:
If M—g, ... N, then ¢(M,e) —yn e, s.t. e=gy ¢(N,x :¢€).

Proof. The translated term does not contain evaluation substitutions, hence we can choose to
reduce the same redex and use Lemma [3.19] The lemma applies since C', does not include A-
abstractions and hence — is never applied under a A (and thus ¢’s second argument is always
€). O
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Next, we prove that reductions in A} yield the same results as A, reductions.

Lemma 3.21 (Simulation for —g.). For ¢ = (Q(A
s.t.

e) v) € A" and v € Values" : if
(@(Am.e) v) —pgn € then T((Q(Az.€) v),€) =4, -closed N T

z.
N=r1(,z:€).

Proof.
Left-hand side:

(Q@(Az.e) v) —pn e{z% v)) = ¢’
Right-hand side:

7((Q(A\z.e) v),¢€) = T((Q(A\z.e) v),€)

( ) T(v,€))
= (t(A\z.e),€) T(v,€))
( )

—By-closed T\E, % : 6)[7—(23 6)/2
Lemma

Lemma BI3
O

Lemma 3.22 (Simulation for —g.). For e,¢ € A" and FV*(e) = 0 : if e —gn € then
T(ﬁ) _Dﬁv-closedN s.t. N = T(@l,€>.

Proof. As reductions do not take place under explicit substitutions, we can chose to reduce the
same redex and use Lemma B.211 O

Theorem 3.23 (Equivalence). For M,N€ A, FV(M) = (:
1. If ¢(M,€) —19D% ¢ then M —% N, s.t. ¢(N,€) =¢y e.

2. If M—7 N, then ¢(M,e) 5 € 8.1 e=qy d(N,x : ¢€).

v-close

Proof. 1. Induction on the length of the -4 . reduction, use Lemma in each step.

2. Induction on the length of the reduction. In each step, either —sn or — ¢y reduces the term.
In the first case, Lemma |3.21| relates the two terms, in the second case, the confluence of

—qy does.
O
Corollary 3.24. The reduction —™% is confluent.
Proof. Follows from Hardin’s interpretation method using —¢y as projection. O

Proposition 3.25. The reduction —>Z}’GD preserves strong normalization.

Proof. Reductions do not take place within explicit substitutions, hence no additional S-redexes
emerge. O
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3.4 Parsing Scheme Without Macros

The previous section added identifiers with levels to the classical lambda calculus to include a
tool for tracking the binding place of a variable without using renaming techniques. However, the
identifiers in usual programming languages are merely symbols. It is the job of the compiler to
relate the variables to their binding places using the rules of lexical scoping. To mimic this in A™,
we define an s-expression-based source language with ordinary symbol-based variables and define
a parsing reduction to translate it to A™. The next section adds macro expansion to the source
language.

As for most s-expression-based languages, the parser is straightforward: either the s-expression
is an atom or the first element of a parenthesized expression determines the syntactic role of the
expression. The parser then recursively descends into the sub-expressions. To map identifiers from
the source code to identifiers with levels, the parser generates explicit substitutions that replace
symbols by identifiers with levels. The parser pushes these substitutions inwards and maintains the
level of the identifier. Whenever the explicit substitution enters a A-abstraction, the parser must
increment the level of the identifier. This usage of explicit substitutions differs completely from
the technique in the previous section where the semantics uses explicit substitutions to relate the
evaluation in the calculus to actual implementations. The primary motivation for using explicit
substitutions in the parser is the possibility to obtain a concise description of hygienic macro
expansion. The macro expander will use its own set of explicit substitutions. Because parsing and
macro expansion must be interleaved the parser uses explicit substitutions as well.

The source language terms are s-expressions, which consist of constants, symbols, and paren-
thesized forms. Figure [3.4] contains the definition of this language.

Syntactic Domains:
n € Const
x € Symbols

se € S-Expressions
Concrete Syntax:

se s=n x| (e ...)

Figure 3.4: Concrete Syntax based on s-expressions

The parser transforms an s-expression into a term of A™ by descending into sub-expressions.
Just before such a descent, the input of the parser is a mixture of concrete and abstract syntax:
the parser has already parsed the context and generated the abstract syntax for it but the sub-
expressions are still concrete syntax. For example, for the s-expression (lambda x (x x)), the
parser creates in its first step the term (Az.(x x)), which is an abstract-syntax A-abstraction with
a concrete syntax body. In the next step, the parser will descend into the body and turn it into an
abstract-syntax procedure application. Figure describes the set Mixture Terms that describes
this mixture of abstract and concrete syntax called mizture syntax. The mixture syntax uses the
term ®z™ to represent an identifier. The macro expander uses the additional index ks to track the
occurrences of identifiers. This index will be explained below in Section for now this index
can be safely ignored and we will often omit it. Translating the result of the parser to A™ works
by dropping the index ks from all identifiers.

As a minor extension of A", applications in the mixture syntax are not limited to one argument
expressions but allow an arbitrary number of arguments. Section uses these multi-argument
applications to describe evaluation of a new binding construct with multiple parameters. However,
A-abstractions itself remain unary in the mixture syntax and in A™.

To keep track of the binding place of identifiers, the parser also adds parsing substitutions to
the mixture. Parsing substitutions are written as (r) and they extend the set of terms. That is,
parsing substitutions are the explicit substitutions that replace symbols by identifiers with labels
as sketched in the introduction of this section. A parsing substitution replaces a source-code



40 CHAPTER 3. A SEMANTICS FOR HYGIENIC MACROS

identifier (a symbol) by a labeled identifier, and is written as *z™/x. S-expressions with parsing
substitutions are called lexical s-expressions and receive an extra domain Lez-S-FEzxpressions to
make the evolving presentation more precise (Without Lez-S-FExpressions, every s-expressions
with a parsing substitution is a member of set MiztureTerms). The variable ses ranges over
lexical s-expressions. The parser uses the set Specials containing two identifiers A and x. These
identifiers are members of Vars but cannot be present in the source code, i.e.

Specials N Symbols = ()

The parser uses the special identifier A to keep track of uses of the lambda keyword. The x identifier
assigns unbound variables the correct level for global identifiers as it matches any symbol. The
parser achieves this tracking by initially applying the two parsing substitutions (A’ /1lambda) (x/%°)
to its input term.

Syntactic Domains:
c € MixtureTerms

ks € P(N)

ses € Lex-S-Ezpressions
Specials = {\, *}

x € Vars = Symbols U Specials

n eN
ksyn € Ids
r € ParsingSubsts
Mixture syntax for parsing:
T = ks /x
ses = se | ses(r)
¢ s=se|al| 2" | (Az.c) | (Qce...) | c(r)

Figure 3.5: Mixture of abstract and concrete syntax

With the concrete syntax and the mixture syntax in place, the definition of the parser is
possible. There are two tasks to perform. First, the parser turns concrete syntax into mixture
syntax until it reaches the base expressions and the generated mixture syntax consists of abstract-
syntax forms only. For every M-abstraction, the parser generates a parsing substitution that
replaces the symbol—representing the bound variable—by an identifier whose level refers to the
A-abstraction. For a parsing substitution to take effect, it needs to be eliminated, which means that
the parser pushes the substitutions inwards the generated mixture syntax until the substitution
meets a symbol and turns it into an identifier. This elimination of parsing substitutions is the
second task to perform during parsing. There is one reduction for each task:

e The parsing reduction —p,¢e turns concrete syntax into mixture syntax.
e The reduction —) eliminates parsing substitutions.

The macro expander and the macro transformer introduce other explicit substitutions that
serve similar purposes as the parsing substitutions and the parser and the macro expander need
to eliminate these substitutions analogously to the parsing substitution. To avoid redefining the
parser and the expander during the introduction of the other substitutions, the parser and the
expander use the reduction —g; for the elimination of all explicit substitutions. The reduction
—1 is defined as the union of the individual elimination reductions. For now, it eliminates only
parsing substitutions:

—EI=()

Later we will redefine —g; to contain the other substitutions as well.
Next, it is also necessary to specify where and when the elimination takes place. Elimination
should not happen if the term subject to the substitution is a compound s-expression as this
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—parse © Lex-S-Expressions X MiztureTerms

¢ —parse ¢ iff ¢ # ¢ where ¢ == ¢ (EISubstSym)
P[((se1, se1, ...)se2 ...)] —parse (@ P[(sey, se1,...)] Plses]...) (Nested AppSimple)
P[(xy se)] —parse P[(Ay.se("y%y))] iff P[x] —3 A" (LambdaldSimple)

P[(x sea ...)] —parse P[(Q x sey...)] iff = ¢ Specials where P[x] = 2"
(IdAppSimple)

Figure 3.6: Parsing reduction without macros

s-expression has not been parsed and its syntactic role is therefore not known. As an example,
consider the term (lambda x x)(A°/lambda))(x?/x). If elimination would push the inner sub-
stitution to the s-expression, the result would be (A’ x x)(22/x): the substitution replaces the
symbol lambda by the special identifier \° but does not affect the two symbols x. If we ignore for
a moment that this term is not a member of MiztureTerms, we may continue with elimination.
That is, we will again eliminate a parsing substitution applied to a compound s-expression. This
yields the term (A° z2 z2). However the level of the identifier 22 in the body is wrong, as x
is a local variable with level 0 in the body of a A-abstraction. However, the fact that (A% 22
x2) is a A-abstraction is only known after parsing. We could let the parser fix the level of the
identifiers in the body as it turns the s-expression into an abstract-syntax term but it is also
possible to avoid the generation of the spurious identifiers in the first place by not eliminating
parsing substitutions applied to compound s-expressions. Instead, the parsing substitutions stick
at compound s-expressions until the parser turns the s-expression into abstract syntax. Then,
however, all accumulated substitutions have to be eliminated. The innermost substitution arrived
first at the term and hence it is natural to eliminate it first. The context EL selects this innermost
substitution from a cascade of parsing substitutions:

EL m= EL(t) | []
Using this context, we define the standard elimination reduction
c g ¢ iff ¢ = EL[c1], ¢’ = EL|c3] for some context EL A ¢1 —g c2

and let —}, denote the reflexive, transitive closure of —;. As we add new elimination reductions
to — g1, we will also extend EL accordingly to ensure that it still selects the innermost substitution.
Next, we define the parsing reduction —parse and afterwards — ) for the elimination of parsing
substitutions.
The parsing reduction from Figure translates from concrete syntax to the abstract syntax
from Section The description of the parsing reduction uses parsing contexts defined asﬂ

P w=P) (]

Parsing contexts enable the parser to “peek” under the outer parsing substitutions. This is nec-
essary as we do not eliminate parsing substitutions applied to compound s-expressions. For ex-
ample the term ((x 3)(z°/x))(y°/y) can be written as P[(x 3)] where P is the parsing context
[1(z°/x)(v°/y). The encoding P[(x 3)] makes it obvious that the term is a compound expression.
The parsing context contains information on the meaning of the symbol x.

The parsing reduction works as follows: The rule (ElSubstSym) eliminates a parsing substitu-
tion, if possible. To that end, it uses the 7}, reduction. The parser does not contain a rule for
symbols as the elimination of parsing substitutions turns them into identifiers. (Remember that
the parsing substitution (/%") matches any symbol.) Also, the concrete syntax and the abstract

3The context P is identical to the context EL but the two serve different purposes and hence receive separate
definitions.
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syntax use the same representation for constants so the parser does not have to handle them and
the remaining rules cover compound s-expressions surrounded by parentheses.

The first element of a compound s-expression determines its syntactic role. If it is another
compound s-expression, the outer s-expression must be an procedure application. The rule
(Nested AppSimple) covers this case. Otherwise, the first element has to be an identifier, which is
represented by a symbol in the concrete syntax. The rules (LambdaldSimple) and (IdAppSimple)
use the elimination for explicit substitutions —g to turn the symbol into an identifier and rec-
ognize the correct syntax of the compound expression. In the rule (IdAppSimple) this identifier
is a variable, hence the whole expression is a procedure application. Note that this rule turns a
symbol, written x, into an identifier, written *z™, where x is the name of the identifier. If the
identifier at the head is the special identifier \™ it corresponds to the syntactic keyword lambda.
The rule (LambdaldSimple) treats this caseﬁ Here, the parser needs to generate a fresh parsing
substitution to replace the symbol from the parameter position by an identifier with level 0.

To perform the second task of the parser—the elimination of parsing substitutions— a definition
of the reduction — () is necessary. The elimination reduction —g is based on —() and we have just
seen that the rule (ElSubstSym) uses this reduction to eliminate parsing substitutions applied to
terms, and the rules (LambdaldSimple) and (IdAppSimple) use it to turn the symbol in the head
of a compound s-expression into an identifier. Figure contains the rules of the — ) reduction.

ParseSubstTerms > cpg == c(r)

— € ParseSubstTerms x MiztureTerms

x(Pa) — ) Fxn (ParseSubstStar)

x(id/x) —) id (ParseSubstSym)

a(r) —¢ a (ParseSubstConst)

RS () ) Fsgn (ParseSubstId)

x(idfy) —qg xiff x #y ANy #x (ParseSubstSymOther)
(Az.ses)(Fw™y) =0 (Az.ses(Fw" V) (ParseSubstLamlId)
(@ sesy sesy...)(r) —¢ (Q sesi(r) sesafr)...) (ParseSubstApp)

Figure 3.7: Reduction —) without macros

The elimination reduction works on the mixture syntax: The parsing reduction generates terms
for A-abstractions and applications but the representation of variables is turned from symbols
to identifiers as the elimination of parsing substitutions proceeds. The rules of the elimination
reduction behave as follows:

e Rule (ParseSubstStar) applies the substitution for unbound variables. It uses the level
associated with the special identifier x to create an identifier from the symbol.

e Rule (ParseSubstSym) applies the parsing substitution to turn a symbol into an identifier.
e Rule (ParseSubstConst) drops the substitution applied to a constant.
e Dropping the substitution also happens in rule (ParseSubstld) if the substitution is applied

to an identifier and in rule (ParseSubstSymOther) if the substitution is applied to a non-
matching symbol.

4Unlike Scheme, our concrete syntax supports only unary lambda forms and the parameter is not parenthesized.
Procedure application nevertheless allows an arbitrary number of arguments to support primitives with more than
one argument.
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e Rule (ParseSubstLamld) moves an explicit substitution into the body of an abstraction. This
means that the identifier of the substitution is one level further away from its binding place;
consequently the rule increments the level index of the identifier. Note that this preserves
lexical scoping because the parser already generated a substitution binding the parameter
of the abstraction when it generated the abstract syntax term for the abstraction in rule
(LambdaldSimple).

e For applications, rule (ParseSubstApp) simply needs to propagate the substitution to the
operator and the operands.

For the parsing reduction, we define expansion/parsing contexts EP to uniquely identify the
left most outer most source term that the parser needs to replace by abstract syntax next:

EP n= (Qe...EPc...) | (A x.EP) | []

The expansion/parsing contexts give rise to a standard parsing reduction: c¢; —parse €2, if for
some expansion/parsing context EP, ¢; = EP][ses|, coc = EP|c], s€s —parse C-
We define —,,.. as the reflexive, transitive closure of —paree and derive a function parse:

parse :S-Expressions — A"
parse(se) =e iff se(A\°/Lambda)(x° /) —h. e €
The parse function maps an input s-expression M to a parsed expression e. The function annotates
the input s-expression by two initial explicit substitutions for parsing:
e (A/lambda) binds the keyword lambda to the special symbol A\. The parser later uses this

binding to recognize uses of the keyword.

e (x/x%) creates an explicit substitution that is used by the parser to assign the correct level
to free identifiers.

Proposition 3.26. The parse relation is a function.

Proof. Follows immediately from the fact that the expansion/parsing contexts uniquely divide
each source term into a context and a redex. O

From now on, we assume for all standard reductions that they reduce to a single term. The
contexts will always be defined accordingly and the left-hand sides of the rules never overlap.

We conclude this section with an example of the parsing reduction. Assume parse is applied
to the term (lambda x (x y)). Then the reduction proceeds as follows, where the tags on the
right indicate the rule that applies and lists multiple rules if the parsing reduction invokes the
elimination of parsing substitutions:

(lambda x (x y))(\°/1lambdal)) (/") — ((LambdaldSimple))

(Az.(x ) (2°/%))(\°/1ambdal) (x/*°) —
((ElSubstSym),(ParseSubstLamlId),(ParseSubstLamlId))
(Az.(x y) (2°/x)(\!/1ambda) (x/x")) — ((IdAppSimple))

(Az.((@x y)(2°/x)(A' /Lambda) (/")) —
((ElSubstSym),(ParseSubst App),(ParseSubstApp))

(Az.(@(x(a”/x) (A /Lambda) (x/%'))(y (=" /x) (X' /Lambda) (x/*')))) —
((ElSubstSym),(ParseSubstSym),(ParseSubstld))

(Az.(@z°(y(z° /x)(\' /Lambda) (x/x')))) —
((ElSubstSym),(ParseSubstSymOther),(ParseSubstStar))

(. (@)
In the result, z° is a local variable bound by the surrounding A\ whereas y' is unbound. The level

of the initial parsing substitution (x/x°) has been incremented as the substitution enters the scope
of the A, hence y receives the correct level 1.



44 CHAPTER 3. A SEMANTICS FOR HYGIENIC MACROS

3.5 The Core Macro Expander

Having a basic parser for A™ we can now turn to the central point of this chapter: a formal
description of hygienic macro expansion. We introduce the language A/, an extension of A™ that
encompasses macro expansion. The presentation splits macro expansion into two parts:

e The core macro expander collects macro definitions and moves them into the scope of A-
abstractions while maintaining hygiene.

e For the macro expansion proper, specifications for each kind of macro transformer extend
the core macro expander. Such a specification must provide rules to parse the definition of
the transformer, elimination rules for the abstract-syntax representation of the transformer,
and, of course, an extension of the core macro expander that handles macro applications
where the keyword is bound to a transformer of the respective kind.

This section only defines the core macro expander. Section [3.6] contains the specification for a
computational macro transformer and Section [3.9] contains the specification for the syntax-rules
transformer from R°RS.

Adding macros to the language first requires a binding construct for macros and a syntactic
form for macro applications. An identifier that is bound to a macro is commonly called a keyword.
In the language Scheme three different binding constructs for keywords exist: define-syntax
introduces a global, recursive definition for a keyword, let-syntax binds a keyword within a
local scope and letrec-syntax binds a keyword locally and recursively. As the latter construct
can be used to simulate the others, we choose to focus on it. However, to keep the presentation
reasonably compact, we do not handle (mutually recursive) binding of several keywords. Instead
we only outline how this feature would be handled.

In our restricted version of letrec-syntax the first argument is the identifier that is bound
as the keyword, followed by a transformer and the body. The transformer may be a syntax-
rules clause from R°RS or some other form. The actual specification of the transformer form
will be given in a later section. The binding of keywords follows the rules of lexical binding
and variable bindings and keyword bindings may shadow each other. The abstract syntax does
not distinguish between variables and keywords, but uses the same representation as before. In
the new mixture syntax the level of an identifier represents the number of A-abstractions and
letrec-syntax binders between the occurrence of the identifier and the corresponding binding
place. The parser needs to respect several small restrictions not explained so far, hence the parsing
rules for letrec-syntax need to be delayed until Section|3.7] For now it suffices to know that the
parser first records the source code of the transformer, then propagates the parsing substitutions—
and other kinds of substitutions to be introduced shortly—to it, and finally parses the transformer.
Consequently, the mixture syntax contains two variants to represent letrec-syntax forms, one
where the transformer is a lexical s-expression and one where the transformer has been parsed:

c i=...| (letrec-syn z ses ses) | (letrec-syn x tf ses)

Following Scheme and Lisp tradition, we do not introduce a special concrete syntax for macro
applications but let parenthesized expressions with the first form being a keyword represent a
macro application. The mixture syntax represents macro applications through the term (¥z"ses).
Section [3.7] describes how the parser recognizes a macro application and constructs the mixture
syntax for it.

The macro expander needs to collect the keyword bound by letrec-syntax and remember this
information during the expansion of the letrec-syntax body. In addition, the expander ensures
that the identifiers the macro inserts refer to the same binding place as in the macro definition.
This is vital to maintain hygiene. To that end, the expander attaches a mapping from keywords
to transformers, called the set of transformer bindings, to the terms to be expanded. Whenever
expansion enters the scope of a lexical or syntactic binding construct, it applies a shift operator to
the set of transformer bindings. The shift operator increments the level of all free identifiers within
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the definitions by one to reflect the fact that there is now one more binding operator between the
occurrence of the identifier and its binding place.

Macro expansion also removes letrec-syntax forms as it records its definition in the set of
transformer bindings. Removing letrec-syntax means removing a binding construct. Therefore
the levels of the variables in the body of the removed letrec-syntax need to be decremented by
one. An unshift operator performs this task. Both the shift and the unshift operator receive a
level argument to protect local variables. The level of the operators describes the minimum level
of identifiers that are affected by the operators. This protects identifiers that are bound locally
relative to the introduction of the operator. Whenever the operator enters the scope of a binding
construct, the level of the operator is incremented by one to protect the variables bound by the
binding construct. The shift operator extends the set of terms: the term ¢]™ increments within
the term c¢ the levels of all identifiers whose level is greater or equal to n by one. For example,
in the term (@Qz%(\y.(@Qy°z'))) the variable 4" is bound locally but the variables 2° and 2! are
free. If the macro expander wants to increase the levels of all free variables by one, it applies
the shift operator to the term: (@z%(\y.(@y°z")))1%. The expander initially sets the level of the
operator to zero as then the operator affects all free variables according to the definition of the
shift operator. As the shift operator moves into the outer application, it increases the level of
the variable 2°: (@z'(\y.(@y°2'))1%). The level of the operator in turn increases by one as it
moves into the X abstraction: (@z'(\y.(@y°z')1!)). Now the operator does not affect the (local)
variable 30 as its level is lower than the level of the operator. It does however increase the level of
2 (Qzt(\y.(@y022))).

In the expanded expression, the level of an identifier uniquely determines the binder of the
identifier. However, the level is not powerful enough to distinguish during expansion identifier
occurrences within different macro applications. As an example, consider the following code
snippet:

(define x 42)

(define-syntax cmp
(syntax-rules ()
((cmp a b) (lambda (a) b))))

(define-syntax insxl
(syntax-rules ()
((insx1 u) (cmp u x))))

(define-syntax insx2
(syntax-rules QO
((insx2) (insx1 x))))

(insx2)

The macro application (insx2) should expand to the term (Ax.x!), that is, the identifier x from
insx2 should not capture the identifier x from insxl. We now take a closer look on how the
expander may obtain this result. The macro application (insx2) leads to an application of the
macro cmp with the arguments x and x. To perform the latter macro application, the syntax-
rules transformer needs to decide whether the arguments are allowed to capture each other
because the template (the right-hand side of the rule) is a A-abstraction where the bound variable
is the first argument and the body is the second argument of the macro. As we will see later,
macro expansion records the level of the identifiers at the macro definition and manipulates it to
ensure that the level refers to the original binding place as the transformer inserts the identifiers.
In the example, there is no manipulation to perform as there are no bindings interleaving the
macro definitions and the macro application. Hence the x identifiers both have a level of zero as
the transformer for cmp processes the macro application in question. This means both identifiers
still refer to the top-level definition (define x 42). To the transformer for cmp these identifiers
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are now indistinguishable because they both have the same level and there is no other information
attached to them. Hence the transformer decides that they may capture each other and expands
the macro application into Az.z°. However, this is a violation of the Hygiene Condition for Macro
Expansion. Recall its definition:

Hygiene Condition for Macro Expansion Generated identifiers that become bind-
ing instances in the completely expanded program must only bind identifiers that are
generated at the same transcription step.

In the example above, in the terminology of the Hygiene Condition, the (insx1 x) form “gener-
ates” an identifier x and so does (cmp u x) in the next step. The Hygiene Condition specifies that
these two generated identifiers must not bind each other as they are generated in different tran-
scription steps. However the expansion of (cmp u x) uses the first generated identifier as a binding
variable and—as the transformer cannot distinguish it from the second generated identifier—binds
the second generated identifier with this binding variable. The transformer cannot learn from the
level of the two identifiers that they were introduced during different transcription steps: the first
while expanding (insx2) to (insx1 x) and the second while expanding this term to (cmp u x).
The information the transformer needs to know to satisfy the Hygiene Condition is that the two
identifiers have been generated by different transcription steps. The example above suggests that
it is possible to derive this information from the macro definition because the x identifiers appear
in different macro definitions and hence at different places in the source code. Alas, this is gener-
ally not the case because the same macro can be invoked multiple times. As an example, consider
the following macro:

(define-syntax gen-ys
(syntax-rules (O
((gen-as (idl id2 id3 ...) Q)
(cmp id1 id2))
((gen-as (id ...) (restl rest2 ...))
(gen-as (y id ...) (rest2 ...)))))

The macro maintains two list of identifiers. In the first, it accumulates “generated” identifiers
and the second list contains an arbitrary form for each identifier to be generated. Once the
second list is empty, gen-ys expands to a macro application of cmp with the first two generated
identifiers as arguments. Hygiene requires the macro application (gen-ys () (1 2)) to expand
to (A\y.y') even though both occurrences of y have been introduced by the very same line of code
because different transcription steps introduced the identifiers. Consequently, it is necessary to
annotate the generated identifiers with information about the transcription step during macro
expansion. To that end, we adapt the technique of marking from syntax-case [DHB92]. For each
macro application, the expander provides the transformer with a fresh mark. The transformer
propagates the mark to the inserted identifiers where it sticks. The mark then describes the
macro application that introduced (or generated) the identifier. Subsequent transformers, which
receive the marked identifiers in their argument, use the mark in addition to the level to distinguish
identifiers. If a macro expands into the definition of another macro, the generated identifiers of
the generated macro are marked twice: once as the output of the macro that expands into the
macro definition and then again at every macro application of the generated macro. Of course,
the process of macros generating other macro definitions can be continued ad infinitum. Hence, to
support repeated marking of identifiers, we record not a single mark but a set of marks with every
identifier. Each mark in the set refers to a macro application that generated the identifier. As
marks, we use natural numbersﬂ With this representation, the expander only needs to maintain
a counter, the current mark, that it initializes with 0 and that it increments at every transcription
step to acquire a fresh mark. A mark k attached to an identifier means that the identifier has been
introduced at the kth transcription step during the macro expansion process. If the current mark

5Instead of natural numbers, any infinite set could be used to represent marks. In this case, the expander would
need to remember the marks used for the previous macro applications.
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is k’, it also means that the introducing transcription step happened before k’-k transcription
steps. We extend the representation of identifiers to include a set of marks. An identifier with
name z, level n that has been marked by the marks ki, ..., k,, is written as tF1-kmlgn  The
core macro expander also provides a means for the transformer to perform the marking. A mark
operation extends the set of terms just like the parsing substitutions and the shift operator. The
mark operation receives as its arguments the term to be marked and the mark to use. We write
ca® for marking a term ¢ with mark k.

In the initial example insx2 on page[d5] the first macro application is (insx2) and in its output
the identifiers insx and x are marked with the first mark, say 1. The second macro application is
(insx1 x) and in its output the transformer marks the generated x with 2, the next mark. Then
the transformer for cmp realizes that its two arguments are generated identifiers and that they
have been generated by different transcription steps because they have different mark sets. Hence
the transformer must ensure that the A-abstraction the transformer produces does not capture the
second argument. To that end, it increments the level of the second argument by one thus letting
the identifier refer to the global binding instead of the generated A-abstraction. The result is then
the term Az.t1}z!'. Once terms have been completely parsed, the marks no longer matter. They
are only a means for the transformer to distinguish generated identifiers while it decides whether
one identifier may capture another. The transformer still uses the level of the identifier to indicate
the binder. Hence the identifier representation within A, does not change: we can simply drop
the marks after macro expansion.

Parsing substitutions, the shift operator, and the mark operator serve similar tasks: they
record binding information of identifiers. The subsequent text refers to them in similar contexts.
Hence, we introduce the term expansion substitution to denote the union of the three. However,
the unshift operator is not an expansion substitution as it only performs post-processing on the
output of the macro expander.

Syntactic Domains:
c € MixtureTerms

e € Ezpressions

k eN

d € Definitions

d € NormalizedDefinitions C Definitions
ses € Lex-S-FExpressions

tf € Transformers

if € TransformersNorm C Transformers
Mixture syntax:

|
|

n=e | (Fzm e tf 2 d)
d =€ | Mz = tfzd) | d 1
= se | ses(r) | ses1™ | sesq®
alz™| (Az.e)| (Qee...)
c n=se | Ba? | N zc) | (Qce...) | (#52™ ses) | (letrec-syn = sesses) |
(letrec-syn x tfses) | d, k't c | c(r) | e1™ | ca® | el™

® ®
a
&
([

Figure 3.8: Mixture syntax for expansion

Figure [3.8| contains the mixture syntax used during expansion. It is an extension of the mixture
syntax used by the parser as defined in Figure [3.5] During expansion of a term ¢, the expander
associates a definition set d and a current mark & with the term. This is written as d,k F c.
A definition set, d, is either empty (¢) or a mapping from keywords to transformers (if), or a
definition set subject to a shift operator. A normalized definition set, d, lacks the shift operator
and contains only normalized transformers (if). The set of terms now includes macro applications,

written ( ¥z™ ses), and the two variants of letrec-syn as explained above. In addition, it includes
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DefSetTerms 3 cpg i=d, k F ¢

—Expand C DefSetTerms x MiztureTerms

d,kF ¢ —gxpand 4, k F ¢ iff d ¢ NormalizedDefinitions

(ExpandNormDef)
where d —pep gy e d
d, k't ¢ >Expand &,k F " Iff ¢/ # ¢ where ¢ —p= ¢ (ExpandElim)
d, k- Fsgn —Expand ks g (Expandld)
d,kF ¢ —Expand @ (ExpandConst)
d,kF (Ax.c) = Expand (Az.(d 1),k F ¢) (ExpandLam)
d,kF(Qc...) —Expana (@ (d,kFc)...) (ExpandApp)
d, k F (letrec-syn © sesiy ses) —Expand 4, k = (letrec-syn x tf ses) (ExpandParseTransformer)

where ses;s —pp tf
d, k= (letrec-syn  tf ses) —Expand ("% = tf) = (d 1)),k + ses|h) (ExpandLetSyn)

—pr C Lex-S-Ezpressions — Transformers
Figure 3.9: Reduction rules for the core macro expander

the shift operator, written 1", the mark operator, written &*, and the unshift operator, written
as |", where n indicates the level of the operator that protects local variables from unshifting.
Lexical s-expressions now also contain the shift operator and the mark operator, hence there is a
new definition for ses. Below we will introduce the reduction —per to normalize definitions, the
reduction —4 to eliminate shift operators, the reduction — , to eliminate mark operators, and
the reduction — to eliminate the unshift operator. The elimination reductions are responsible
to move the expansion substitutions from the top of the terms to the identifiers where they affect
the level and the set of marks. Hence the elimination reduction —g; from Section [3.4] receives its
first redefinition and so do the elimination contexts EL:

EL == EL(t) | EL1™ | ELg" | []

The parser from the previous section needs extensions to handle the terms generated by the
macro expander and to produce letrec-syn forms and macro applications. Section [3.7] contains the
augmented parser.

Figure [3.9] contains the rules for the expander. The expander collects macro definitions and
propagates them through the terms. However, the figure does not include a rule that describes
macro application as the treatment of macro applications depends on the transformer used to
define the macro. Consequently, also none of the rules increments the current mark or introduces
a macro operator as this happens after a macro application only. Sections [3.6.3] and [3:9.1] will
augment the expander with rules for macro applications.

These rules take place within expansion/parsing contexts EPfrom the previous section extended
by a rule for the | operator:

EP z=[]] (@e...EPc...) | (A\x.EP) | EP|"

e Rule (ExpandNormDef) uses —pergirs which normalizes definitions. This reduction is
the union of the reduction —pet from Figure [3.10] and the normalization of transformers,
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—g1.1¢ which is part of the specification of a transformer. All other rules require normalized
definitions.

e In rule (ExpandElim) the reduction — g, as defined above removes the expansion substitu-
tions from the top of the term. This enables the other rules to see the top-most syntactic
form. This rule generalizes the rule (EISubstSym) from the parser (Figure from parsing
substitutions to all expansion substitutions.

e Rules (Expandld) and (ExpandConst) constitute the base cases of the reduction. They
simply drop the definitions if the term is a number or an identifier.

e Rule (ExpandLam) performs expansion of a A-abstraction. This works by pushing the defini-
tions inside to the body of the abstraction and applying the shift operator to the definitions.
The latter is necessary as the set of transformer bindings is then in the scope of the A-
abstraction and hence its identifiers are one level further away from their binders.

e For a function application, rule (ExpandApp) spreads the definitions to the operator and
the operands. It can use the same mark for all subforms of the applications as the subforms
cannot interact with each other; macro expansion of the subforms happens independently.

e The rule (ExpandParseTransformer) parses the transformer argument of a letrec-syntax
once all expansion substitutions have been moved to the transformer. The rule uses the
reduction —p to perform the actual parsing. This reduction is part of the specification of
a transformer, the end of the figure only lists the domain of the reduction.

e Rule (ExpandLetSyn) describes expansion of a letrec-syntax form. It incorporates the new
binding of the keyword z in the definitions and shifts the identifiers in the old definitions.
Then the rule associates the resulting definitions with the body ses and applies the unshift
operator to the result. The unshift operator is necessary as the rule removes also removes
the letrec-syn form and thereby a binder. Consequently, the identifiers in the body move
one level closer to their binders. The level of the operator is initialized with 1 because this
is the minimum level of free variables after the binding construct disappears.

Each specification of a transformer contains rules of the form

d,kF (*2"ses) —pxpand d, k + 1 ses’

will handle macro applications by transforming a macro application (¥z"ses) into a lexical s-

expression, where d contains the definition of the accordant transformer. These rules use the
mark k£ to mark the generated identifiers of the transformer and increment %k by one afterwards.

Figure shows the reduction of definitions required for rule (ExpandNormDef). The first
rule (DefShiftEpsilon) trivially explains shifting of an empty set of transformer bindings. The
next rule (DefShiftDefs) promotes the shift operator to the transformer of the first definition and
to the rest of the definitions. The initial level of the shift operator for the transformer is 0 as the
level of all (free) variables needs to be incremented. In addition to shifting the transformer, the
level of the keyword has to be incremented, too: the keywords present in the transformer and also
the keywords that have already been bound move one level further away from their binding place
with every letrec-syntax.

The reduction —pes is the extension of —per to contexts D, which are defined as

D n=[]| (%2" — tf = D) | D1
—Der denotes the reflexive, transitive closure of —pef, defined as:
d —Def d/ iff d = D[dl], d/ = D[dg], d1 —Def dg

Furthermore, normalization of transformers within the set of transformer bindings is necessary
for two reasons:
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ShiftedDefinitions 3 dgnitteq = d7
—petf C ShiftedDefinitions x Definitions

(€1) —Der € (DefShiftEpsilon)
((Fz™ = tf) 2 d) 1) —per (Fz" T = (t£1°) = (d 1)) (DefShiftDefs)

Figure 3.10: Reduction for definitions

1. Rule (ExpandLetSyn) stores a non-normalized transformer in the set of transformer bind-
ings

2. Rule (DefShiftDefs) propagates the shift operator to transformers,

We assume a reduction —g.1¢C Transformers x Transformers to perform this normalization. The
specification of the transformers in the next sections will include its definition. Here, we place this
reduction in contexts DTF', defined as:

DTF == (*2" s EL:d) | (d&:DTF) | DTF1

The context DTF uses the context elimination context FL to place the reduction at the innermost
expansion substitution. Using DTF we can now define the standard reduction —g.1¢ of the
reduction —gL1s:

d —EL-Tf d/ lﬁ d - DTF[tfl], d/ - DTF[th], tfl —EL-Tf tf2

The context D places the hole only after normalized definitions while the context DTF places
the hole in the first non-normalized transformer. Hence even their combination divides the set
of transformer bindings uniquely into a context and a redex and we can combine the reduction
relations 1) and 1} ¢ to define —perprs:

> Def-EL-Tt= >Def U M ELTf

In addition to the reduction —pet.grLT¢, the macro expander in Figure also depends on the
reduction —g;. This reduction eliminates expansion substitutions. So far, expansion substitutions
encompass parsing substitutions, the shift and the mark operator. Figure [3.7] already presented
the elimination of parsing substitutions. To complete the definition of —p, Figure [3.11] contains
the elimination rules for the shift operator and Figure [3.12] contains the elimination rules for the
mark operator.

In Figure the rule (ShiftConst) simply drops the operator with constants. The rules
(ShiftId) and (ShiftLocalld) explain shifting for identifiers. Both rules first compare the level
associated with the identifier with the level of the shift operator. If the level of the identifier is
smaller than the level of the operator, the variable is a local identifier from the point of view
of the shift operator. In this case, the rule (ShiftLocalld) matches and does not alter the level,
otherwise (Shiftld) increments the level. Accordingly, rule (ShiftLam) increments the level of the
shift operator as it applies it to the body of the A-abstraction. For the letrec-syn form, the
rule (ShiftLetSyn) increments the level of the shift operator both for the transformer and for the
body as letrec-syn is a recursive binding construct. Finally, the rule (ShiftApp) simply needs
to distribute the operator to the operand and the operands of the function application. There is
no rule for macro applications because the parser in Section [3.7 will take care of this case.

Figure [3.12] contains the elimination rules for the mark operator. The operator propagates
unchanged to the components of the various forms. The only interesting case is rule (MarkId)
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that describes the elimination of the mark operator for identifiers. The rule adds the mark to the
set of marks of the identifier.

The unshift operator is the final operator left. Unlike expansion substitutions, it is not applied
to unexpanded terms but merely serves as a post-processor on expressions to decrement the level of
variables after the removal of a letrec-syn form. Figure [3.13| contains the rules for its elimination.
The rule (UnshiftConst) drop the operator for constants. For identifiers, rule (UnshiftId) compares
the level of the identifier with the level of the operator. The identifier’s level is left unchanged
if it is smaller than or equal to the level of the operator because in this case the identifier is
bound local relative to the point where the operator has been inserted to reflect the removal of a
letrec-syntax. Therefore no modification is necessary as the letrec-syntax was not a binder
between the occurrence and the binding place of the identifier. Otherwise the rule decrements
the level of the identifier. The rule (UnshiftLam) moves the unshift operator to the body of a
A-abstraction. It increments the level of the operator because the operator enters the scope of a
binding construct and the minimum level of identifiers that are free with respect to the operator
is higher by one. Finally, rule (UnshiftApp) simply propagates the unshift operator unchanged to
operator and operand positions of an application.

UnshiftedExprs S eynshifted = €|”
—| C UnshiftedExprs x MixtureTerms

(al™) =, a (UnshiftConst)

(B |™) —) Bt iff p > m (UnshiftId)

(b |™) — | B iff p < m (UnshiftIdLocal)
((Az.e)l™) — | Az.(el™h)) (UnshiftLam)
(@ejez...)™) = (Q (e1]™) (e21™)..") (UnshiftApp)

Figure 3.13: Elimination of the | operator

We can now define the standard expansion reduction, written ¢ —gxpana ¢’, iff for some
parsing context EP, ¢ = EP[c1], ¢/ = EP[ca], ¢1 —Expand C2). We let HExpand denote its reflexive,
transitive closure. Likewise we define the standard unshift reduction, written ¢ — | ¢, if for some
parsing context EP, ¢ = EP[e1], ¢’ = EPles],e1 —| ez) and let again 7 denote the reflexive,
transitive closure.

At this point the description of the core macro expander is complete but for a full macro
expansion facility we still need a parser that handles letrec-syntax and also the description of

the actual transformers. A definition of a transformer needs to provide three definitions:

1. Reduction rules for macro applications, which extend —gxpand-

2. A definition of the parsing reduction for transformers, —pr, which is used by the rule
(ExpandParseTransformer).

3. A definition of the —gL1f reduction to eliminate expansion substitutions for transformers.

Macro expansion is then defined as the union of parsing, expansion, unshifting:

expand :S-Exrpressions — Expressions
— o 0,0 0,0
expand(se) = e iff 86(] A /lambdaDq * /*D HigarscExpandUnshift e

where

— ParseExpand Unshift =" Parse U — Expand U =

6 Alternatively, we could normalize the transformers before storing them in the set of transformer bindings.
However, this means mingling the unrelated reductions for expansion and normalization of transformers.



3.6. COMPUTATIONAL MACRO TRANSFORMERS 93

3.5.1 Time Complexity of the Macro Expander

The time complexity of a macro expansion algorithm is an important issue for a language like
Scheme where all but a few syntactic forms are implemented as macros, adding new macro defi-
nitions is very common, and programs contain many macro applications. The original algorithm
for hygienic macro expansion by Kohlbecker et. al. [KEFDS86] runs in time quadratic in the size of
the macro arguments: after each macro expansion step, it first traverses the complete output and
adds time stamps to the symbols, and afterwards proceeds by expanding the output. For macros
expanding into applications of other macros, the algorithm thus traverses macro arguments re-
peatedly on each transcription step. Clinger and Rees [CRI1] and later Dybvig et. al. [DHB92]
show that lazy processing of the output brings the complexity of the original algorithm down to
linear time. Our macro expander also uses linear time because the expansion substitutions move
inwards only as expansion proceeds. The specification formally describes how this happens and
at which places it is necessary to resolve the substitutions to access the identifiers.

3.6 Computational Macro Transformers

This section introduces macros where the transformer is a Scheme procedure that computes the
output of the macro. These computational macros are popular in languages of the Lisp family:
the syntax of expressions and the external representation of data in Lisp are both based on s-
expressions, and therefore a macro can construct code by assembling an s-expression whose external
representation equals the syntax of the code. The fundamental problem with computational
macros in Lisp is their lack of hygiene. In the output of the macro, ordinary symbols represent
variables and therefore symbols with equal names become the same variables regardless of their
origin.

A number of proposals aim to add hygiene to computational macros. They either provide
the macro programmer with tools to create unique symbols [Cli91] or introduce a new data type
that represents the code during the evaluation of the transformer procedure and records lexical
information [DHB92]. The latter approach can work automatically without annotations by the
programmer and is hence less error-prone. We therefore use it for our computational macros as
well. Unlike existing systems such as syntax-case, we do not use renaming to preserve hygiene
but keep track of the variable’s binding places via explicit substitutions as pioneered by Bove and
Arbilla [BA92). This also enables a true native representation of a code data type that does not
interact with variable bindings of the language computing the code.

The keyword es-transformer (for “explicit substitutions transformer”) introduces a trans-
former for computational macros. The single argument of the transformer is a transformer proce-
dure, a Scheme expression that should evaluate to a procedure, which accepts the macro expression
as its single argument:

e (es-transformer expression)

The evaluation of the transformer procedure takes place in a default environment similar to R°RS
augmented by several special constructs and procedures that will be introduced next. We refer to
the resulting language as Macro Scheme. As this language computes code of another language, it
is really a meta-language.

The transformer procedure must return a syntactic object . It can construct this object using
the special form syntax:

e (syntax s-expression) — syntactic object

The argument of syntax is an s-expression that corresponds to the code the macro generates.
Unlike the s-expressions in Lisp macros, syntactic objects support hygiene by recording the lexical
context of the macro definition. If the macro expander transforms a syntactic object to code, it
resolves free variables in the lexical context of the macro definition just as required by the second
Hygiene Condition. The macro expression that the macro application passes to the transformer
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procedure is also a syntactic object. It records the lexical context of the macro application thus
satisfying the first Hygiene Condition.

As an example for the use of syntax, consider the following macro inc!, which expands into
an expression that increases the value of the global variable counter by one:

(define counter 0)
(define-syntax inc!
(es-transformer
(lambda (mcall)
(syntax (set! counter (+ counter 1))))))

The evaluation of the expression

(let ((counter 12))
(inc!))

increments the value of the global variable counter despite the local let-binding: The syntactic
object generated by syntax recorded the global binding of the variable counter during the macro
definition and therefore the 1let-binding did not capture the inserted variable.

As the syntactic objects encapsulate s-expressions, it is also possible to de-construct them
according to the underlying s-expression form. Syntactic objects represent code hence the s-
expressions in questions are mostly either atoms or pairs. Atoms cannot be deconstructed but for
pairs the two accessors syntax-car and syntax-cdr exist:

e (syntax-car syntactic-object) — syntactic-object
e (syntax-cdr syntactic-object) — syntactic-object

Analogous to their counterparts on ordinary pairs, they select the first and second component of a
syntactic object that encapsulates a pair. For example, the identity macro—a macro that simply
returns its single argument—can be written as:

(define-syntax identity
(es-transformer
(lambda (mcall)
(syntax-car (syntax-cdr mcall)))))

Macros often de-construct their arguments and combine the resulting objects with code templates
to produce the output. To that end, es-transformer supports meta-variables. Meta-variables can
only occur within syntactic objects and the evaluation of the transformer procedure replaces them
by other syntactic objects while maintaining hygiene. The binding construct for meta-variables is
the ;ﬁecial form syntax-lambda. It evaluates to a procedure that binds meta-variables within its
bod

e (syntax-lambda z ...ezxpression) — procedure

The arguments of the procedure must be syntactic objects and the syntax-lambda will bind the
meta-variables to these syntactic objects within the syntactic objects of expression.
As an example, consider the es-transformer version of the thunkify macro from Section

(define-syntax thunkify
(es-transformer
(lambda (mcall)
((syntax-lambda arg (syntax (lambda () arg)))
(syntax-cadr mcall)))))f]

"We do not group the arguments of syntax-lambda by a pair of parentheses to simplify parsing of syntax-lambda
forms
8 (syntax-cadr x) is defined as (syntax-car (syntax-cdr x)).
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The application of the syntax-lambda form binds the argument of the macro call to the meta-
variable arg within the body, which is a syntax expression that references the meta-variable. The
substitution of meta-variables happens hygienically: Bindings in the host syntactic object cannot
capture variables that are bound to the syntactic objects replacing the meta-variables. Therefore,
in the following example the let binding of the variable temp does not bind the argument of the
macro and the final expression evaluates to 34:

(define-syntax foo
(es-transformer
(lambda (mcall)
((syntax-lambda arg
(syntax (let ((temp 12)) arg)))
(syntax-cadr mcall)))))
(define temp 34)
(foo temp)

It is important to note that the namespace of syntax-lambda is disjoint from the namespace of a
lambda abstraction in Macro Scheme. While the latter binds variables that appear in expression
position within its body, syntax-lambda binds variables that appear within syntactic objects
within its body. Hence, the following code expands into 42:

(define-syntax foo
(es-transformer
(lambda (mcall)
((syntax-lambda arg
(let ((arg 4711))
(syntax arg)))
(syntax-cadr mcall)))))
(foo 42)

The let binding within the transformer procedure does not interfere with the binding of the
meta-variable arg. Likewise, variables in Macro Scheme are not affected by syntax-lambda:

(define-syntax constant42
(es-transformer
(lambda (mcall)
(let ((arg (syntax 42)))
((syntax-lambda arg
arg)
(syntax-cadr mcall))))))

Every macro application of constant42 expands to 42, because the arg is bound by the let
within the transformer procedure.

Using syntax-lambda, it is however possible, to insert meta-variables into Macro Scheme. This
may happen if a macro expands into the definition of another macro:

(define-syntax genm
(es-transformer
(lambda (mcall)
((syntax-lambda proc
(syntax (letrec-syntax
((m (es-transformer
(lambda (mcall2)
(proc (syntax 12))))))
(m))))
(syntax-cadr mcall)))))
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Here, the macro genm generates a local definition of the macro m. The transformer procedure of m
contains the meta-variable proc. A macro application of genm will return a syntactic object that
the expander turns into a local macro definition and contains a binding for the meta-variable proc.
Next, as the expander processes the definition of m, it needs to expand the transformer procedure
with the lexical context recorded in the syntactic object returned from genm. The definition of m’s
transformer procedure depends on the argument of genm. For example the macro application

(genm (lambda (x) x))

will expand to 12 as proc is the identity procedure. The procedure could also discard its argument
and return a different syntactic object. Accordingly,

(genm (lambda (x) (syntax 34)))
will expand to 34. If however the argument of genm contains free identifiers as in

(define foo 12)
(genm foo)

expanding the macro application yields an out of context error, as there is no binding for the
identifier during the evaluation of the transformer procedure: The binding for foo introduced by
the define form will come to exist only after macro expansion and hence after the evaluation of
the transformer procedure.

Following the principles of hygiene, using a meta-variable as a binding variable updates—in
the scope of the binder—occurrences of this variable in the code substituting other meta-variables
to refer to the new binder. Consider the following example:

(define-syntax simple-let
(es-transformer
(lambda (mcall)
((syntax-lambda var arg body
(syntax ((lambda (var) body) arg)))
(syntax-cadr mcall)
(syntax-caddr mcall)
(syntax-cadddr mcall)))))

(simple-let x (x 2 2) (+ x 23))

The meta-variable var is used as a binding variable and the macro expander updates occurrences
of the corresponding variable (x in the sample macro application) to refer to the inserted lambda
within the code substituting body, i.e. (+ x 23) in the sample macro application. Therefore the
sample macro application expands to (@(Az.(@ +! 2923))(@ %° 22)).

This mechanism also affects meta-variables bound by different syntax-lambda forms. That is,
the macro definition above can also be written as:

(define-syntax simple-let
(es-transformer
(lambda (mcall)
((syntax-lambda var arg
((syntax-lambda body
(syntax ((lambda (var) body) arg)))
(syntax-cadddr mcall)))
(syntax-cadr mcall)
(syntax-caddr mcall)))))

Here, the meta-variable body is introduced by a different syntax-lambda than the meta-variable
var but using var as a binding meta-variable affects the code substituting body.
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3.6.1 The Semantics of Macro Scheme

The previous section introduced Macro Scheme as the extension of Scheme by the special forms
syntax, syntax-lambda and the primitives syntax-car and syntax-cdr. This section presents
the semantics for these constructs, first informally by deriving the semantics from the examples
above, then formally by embedding the constructs into a semantics for the evaluation of Macro
Scheme. This evaluation builds on the A 2_calculus from Section Section uses this
semantics to describe the expansion of a macro application where the keyword is bound to an
es—transformer.

The task of the syntax expression is to capture the lexical context of the macro definition as
part of a syntactic object. Section[3.4]already introduced a vehicle to record syntactic information,
namely parsing substitutions. The extension of the parser to letrec-syntax forms in Section [3.7]
propagates these parsing substitutions to the transformer. It is the task of the transformer to use
this parsing substitution. For the case of the es-transformer, the key idea for the explanation
of syntax is to pass the parsing substitution collected by the expander through the evaluation
of Macro Scheme until a syntax form is encountered. Then, syntax can build a syntactic object
from the s-expression and the parsing substitution. That is, the parsing substitution captures the
lexical context of the macro definition, and a syntactic object contains the s-expression wrapped
into parsing substitutions.

A second vehicle for recording lexical information is the shift operator from Section 3.5 It
prevents free identifiers from transformers from being captured by local bindings, thus ensuring
hygiene for macro applications in local environments. The expander propagates the shift operator
to transformers as well. In addition, and analogous to the parsing substitution, passing the shift
operator to syntax forms during the evaluation of Macro Scheme, and letting the syntax form
attach the shift operator to its argument, yields hygienic macro expansion for the syntax form
of the es-transformer. That is, a syntactic object also needs to record applications of the shift
operator and therefore—in extension of the definition above—contains an s-expression wrapped
into parsing substitutions and applied to shift operators. Once the transformer procedure returns
a syntactic object, the parsing and expansion algorithms can turn it into abstract syntax just like
they do with the plain source code.

The argument of the transformer procedure, the syntactic object representing the macro form,
is just the representation of the macro application form during expansion, an s-expression subject
to parsing substitutions and shift operators. In addition, the expander applies the mark operator
to this lexical s-expression. Consequently the contents of a syntactic object may also contain
lexical s-expressions subject to the mark operator.

Before we turn to the formal definition of the evaluation of Macro Scheme and show how
the expansion substitutions propagate through the evaluation to the syntax forms, we sketch
the definition of syntax-lambda. Syntax-lambda introduces bindings for meta-variables within
syntactic objects and its application replaces meta-variables by syntactic objects. A new kind of
explicit substitutions, called meta-substitutions, represent this replacement. During the evaluation
of a transformer procedure there is one meta-substitution, called the current meta-substitution,
and an application of a syntax-lambda form extends the current meta-substitution to map the
meta-variables to the arguments. Meta-variables only occur within syntactic objects. Therefore,
evaluation of the body of the syntax-lambda needs to pass the meta-substitution unchanged
“inwards” until it meets the syntactic objects. There, evaluation must not resolve the meta-
substitution directly, because this might break hygiene. If, for example, the s-expression of some
syntactic object A is (lambda (x) e), where e is a meta-variable, and a meta-substitution wants
to replace e by x, hygiene requires that the inserted x must not be captured by the A-abstraction.
However, whether (lambda (x) e) represents a A-abstraction or not depends on the parsing
substitutions, and the shift and mark operators recorded by A. Only parsing can answer this
question. Hence, the meta-substitution cannot be resolved immediately. Instead, the evaluation
of Macro Scheme records meta-substitutions in the syntactic object—a further extension of the
definition of syntactic objects—, and the parser and the macro expander eliminate them as they
construct abstract syntax from the output of the transformer.
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The idea to use explicit substitutions to represent the replacement of meta-variables by input
forms is due to Arbilla and Bove [BA92]. We will highlight two of their considerations that show
how the elimination of meta-substitutions preserves hygieneﬂ

First, the expander must not pass meta-substitution unchanged to the body of A-abstractions
as the X\ can capture identifiers that the meta-substitution will insert. As an example, consider
the following code:

(let ((x 23))
(letrec-syntax ((insert (es-transformer
(lambda (mcall)
((syntax-lambda e
(syntax (lambda (x) e)))
(syntax-cadr mcall))))))
(insert x)))

For the macro application (insert x), the expander creates a meta-substitution that replaces the
meta-variable e by the identifier 2. However, if the expander would pass this meta-substitution
unchanged to the body of the term (lambda (x) e), the resulting A would capture the identifier,
which would break hygiene. To prevent this, all (free) identifiers in the right-hand sides of the
meta-substitution need to have their level incremented. To that end, the expander shifts the
meta-substitution before applying it to the body of the abstraction. Then the result of expanding
the example above becomes:

(let ((x 23))
(lambda (x) x%))

as required by hygiene.

The second consideration concerns the case where a meta-variable occurs as the binding variable
of a A-abstraction. Then, the meta-substitution needs to be modified because the variable that
replaces the meta-variable receives a level of zero in the body of the abstraction and this new level
must be reflected in the entire meta-substitution when it is passed to the body. As an example,
consider the let-simple macro:

(define-syntax let-simple
(es-transformer
(lambda (mcall)

((syntax-lambda var arg body (syntax ((lambda (var) body) arg)))
(syntax-cadr mcall)
(syntax-caddr mcall)
(syntax-cadddr mcall)))))

(lambda (x) (lambda (y) (let-simple x 1 (+ x 1))))

The substitution generated for the macro application initially replaces the meta-variable var by
x and the meta-variable body by (+ x 1). In both cases, the meta-substitution also contains a
parsing substitution that replaces x by 2!'. During the elimination of this substitution, the macro
expander realizes that the meta-variable var is used as the binding variable of the abstraction
(lambda (var) body). For the body body it therefore has to modify the substitution to replace
var and body by terms that map x to z¥ instead of 2. While modifying the substitution to replace
var by 20 is easy, modifying the term that replaces body is harder: as this term has not been
parsed, we do not know whether it contains a new binder for 2'. The macro expander therefore
uses a new kind of explicit substitution, called identifier substitution. An identifier substitution
replaces one identifier by another (in our case z! by xo)lﬂ If a meta-variable occurs as a binding
variable, the expander adds an identifier substitution to the meta-substitution from where it

9However, Section shows that the calculus of Arbilla and Bove does not implement all aspects of hygiene
correctly.
10 As we will see in Section it is even necessary to replace an identifier by a meta-variable.
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propagates to the terms that replace meta-variables within the meta-substitution. The expander
eliminates the identifier substitutions as it expands the corresponding term. The elimination of
identifier substitutions will require parsed terms and respect binding forms, that is, it will shift
identifiers as it moves into the scope of binding constructs.

We extend the term expansion substitution to encompass meta-substitutions and identifier
substitutions in addition to parsing substitutions and the shift and mark operators.

It remains to be shown how the parser recognizes meta-variables. The parameters of a
syntax-lambda are visible within the syntactic objects of its scope. Hence a parsing substitu-
tion that replaces the names of the formal parameters by meta-variables is all that is required.
The evaluation of syntax-lambda creates such a parsing substitution for the body.

We now turn to the evaluation of Macro Scheme, which we specify as an extension of the
calculus from Section In Section we also define macro expansion and parsing for Macro
Scheme.

The abstract syntax from Figure [3:2] needs several extensions to represent the terms of Macro
Scheme:

e Terms to represent syntax and syntax-lambda expressions. The abstract syntax uses the
term | ses| to represent the former and the term A(x...).e for the latter.

e Parsing substitutions, the shift operator, the mark operator, meta-substitutions, and iden-
tifier substitutions further augment the set of expressions.

From the mixture syntax in Figure the abstract syntax can inherit the representation of parsing
substitutions and the shift and mark operators. Meta-substitutions and identifier substitutions
require new representations. However, not only the abstract syntax of Macro Scheme but also
the mixture syntax needs to represent them as these terms occur as the result of Macro Scheme
evaluation and the parser and expander need to eliminate them.

Figure contains the extended abstract syntax for Macro Scheme and the extensions of
the mixture syntax shared by the abstract syntax. The latter consists of a re-definition of the
domain Lex-S-Ezxpressions, which describes s-expressions subject to expansion substitutions. The
re-definition adds meta-substitutions ]{ and identifier substitutions [ ]. A meta-substitution re-
places meta-variables that range over the set MetaVars, which is assumed to be disjoint from
Vars. Meta-variables are written in a sans-serif font (a). A meta-substitution s is then a sequence
of pairs, ¢/a, where the term ¢ substitutes the meta-variable a. e denotes the empty sequence.
A meta-substitution subject to the shift operator is written as s7, a meta-substitution subject to
an identifier substitution is written as s[u], where u either denotes an identifier replacing another
identifier, *sz™/ ks'ym, or a meta-variable replacing an identifier, written as a/*¥z™. The latter is
introduced here but not needed until the description of syntax-rules in Section [3.9

The set of expressions Ezpressions in the abstract syntax includes identifiers z™, values v,
applications (@ ee...) , and evaluation substitutions (D as before. In addition, the term (A (z
...).e) represents a syntax-lambda term with variables (z ...) and body e. Finally, an expression
subject to one of the five expansion substitutions—the parsing substitution (), the shift operator
7, the mark operator &, the meta-substitution {{, and the identifier substitution [|—is also an
expression.

In addition to constants and A-abstractions, the set of values now includes syntactic closures)]
and syntactic objects. A syntactic closure, written EvS[EzS[A(x...).e]ls[], is the value of a
syntax-lambda expression. Its rather complex form results from the fact that evaluation cannot
propagate the expansion substitutions, the current meta-substitution, and the evaluation sub-
stitution to the body of the A-form. Instead the substitutions accumulate at the A-form. The
description of evaluation will detail this process, here we only present the structure of the syn-
tactic closure: Innermost, there is a series of expansion substitutions, represented by the context
EzS B On top of this, there is one meta-substitution, surrounded by a series of evaluation sub-
stitutions, represented by the context EvS. Besides syntactic closures, syntactic objects, written

' There is no direct relation between our syntactic closures and the ones invented by Bawden and Rees [BRSS]
12The contexts EL and P will turn out to be identical to EzS.
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e € Ezpressions

v € Values

se € S-Ezpressions

a,b € MetaVars

s € MetaSubsts

s € NormalizedMetaSubsts
u € IdentifierSubsts
id € Vars U MetaVars
syn-clos € SyntacticClosures
| ses] € SyntacticObjects
ses € Lex-S-Ezpressions

Abstract syntax:

e =2 v | (@ee...) | (A(z...).e) | eatd | e(r) | el™ | e | elsf | e[u]
v m=a| (A z.e) ]| syn-clos | |ses|
syn-clos ::= EvS[ExS[A(x...).e]]s(]

Extensions for the Mixture syntax:

ses = se | ses(r) | ses1™ | sesq® | ses]s| | ses[u]

s n= ¢l c/as

s = ¢| ¢/a,s| sT | s[u]

u = id ke

Contexts:

EvS =[]| BvSat

EzS m=[]| ExS(r) | EzS1" | EzSc* | ExS]sS | ExS[u]

Figure 3.14: Abstract syntax for evaluating Macro Scheme
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| ses], enlarge the set of values. The s-expression inside a syntactic object is subject to expansion
substitutions, i.e. a lexical s-expression ses.

We now turn to the reduction rules for the evaluation of Macro Scheme. We need to define
the reduction of ordinary applications, the reduction of applications of syntax-lambda forms,
the elimination of evaluation substitution expressions, the elimination of expansion substitution
expressions, and the applications of primitives.

As for the normal A calculus, evaluation takes place in evaluation contexts. The definition of
evaluation contexts does not change, which means evaluation does not take place under evaluation
or expansion substitutions:

cr s=[]] (@u...C%e...)

The rule for applications does not change either, that is we can re-use the rule 8’ from Section (3.3

Figure contains the rule (SyntaxBeta) to reduce syntax-lambda applications. As de-
scribed before, the operands have to be syntactic objects. The rule uses the contexts EvSand
EzSto split the syntactic closure into evaluation substitution, the current meta-substitution, ex-
pansion substitutions, and the syntax-lambda expression. (SyntaxBeta) reduces the A expression
to its body, generates parsing substitutions to bind the meta-variables in the body, extends the
current meta-substitution by entries for the arguments, and applies it to the body. Afterwards,
the rule propagates the context EvSto the augmented body.

— SyntazBeta & Fxpressions X Ezpressions

(@ (EvS[EzS[(A(x...).e)]]s]]) [ses]...) 7 (SyntazBeta) (SyntaxBeta)
EvS[EzS[e(x/x) ...]lses/x,...,s]]

Figure 3.15: Application of syntax-lambda

Next, evaluation needs to eliminate the explicit substitutions. We distinguish between the
elimination of evaluation substitutions and the elimination of the expansion substitutions.

For the evaluation substitutions, Section [3.3]already contains the rules for ordinary expressions
(see Figure . An evaluation reduction applied to a syntactic closure cannot be reduced but
sticks to the syntactic closure. Elimination of evaluation substitutions applied to syntactic objects
is also easy: As a syntactic objects contains no Macro Scheme variables, the evaluation substitution
has no effect and the rule (EvalSubstSyn) drops it:

ESExpr 3 eqys ::= edt)
—qyp € ESEzpr x Expressions

lses]Ctd —qy |ses] (EvalSubstSyn)

The elimination of evaluation substitutions takes place in elimination contexts Cljim, which
are defined like evaluation contexts but select the innermost evaluation substitution via the helper
context AS:

Cclim a= (@ v...C’Chme...) | AS
AS n=[]] ASat) | AS(r) | AST™ | ASg* | AS]s] | AS[u]

Using the elimination contexts Cepim, we can define the standard elimination reduction for evalua-
tion substitutions as er— ¢y €’, iff for some elimination context Celim, € = Celim[€1], € = Celim[€2],
€1 QY €9.

Evaluation of expansion substitutions is next. Evaluation needs to propagate the expansion
substitutions to the syntactic objects. There, the substitution applies to the lexical s-expression
of the syntactic object. Again, evaluation cannot reduce explicit substitutions applied to syntactic
closures. As these two considerations apply to all expansion substitutions, we abstract over them
using a context and use one set of rules for all of them. The abstracting context is ES:
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ES = [0 [ 11" 1 (o™ 11T | [l

Figure contains the respective rules. For constants, rule (EvalESConst) drops the substi-
tution. The substitutions do not affect identifiers, hence rule (EvalESId) likewise drops them.
For applications, rule (EvalESApp) distributes the substitution to operator and operands. For A-
abstractions, rule (EvalESLam) pushes substitution inside to the body. No shifting is necessary as
the substitutions do not contain variables. Finally, if a substitution encounters a syntactic object,
rule (EvalESSyn) records the substitution by applying it to the lexical s-expression of the syntactic
object. As said above, there is no rule for syntax-lambda which means that substitutions applied
to such terms will simply stay and thereby build up syntactic closures.

ExpandSEzpr 3 eoxs := € | exs(r) | €exsT" | Coxs T | eoxs!S) | €oxs|u]
—gs C ExpandSEzpr x Ezxpressions

ES[a] —Es a (EvalESConst)

ES[Fsan] —pg Foan (EvalESId)
ES[(@el )l —Es (@ ESled]....) (EvalESApp)
ES[(Azx.e)] —gs (Az.ES[e]) (EvalESLam)
ES[|ses|] —gs | ES[ses]] (EvalESSyn)

Figure 3.16: Evaluation for the explicit substitutions for parsing and expansion

Again a standard reduction, e—gg €’, is defined: iff for some elimination context Ceim, € =
Celimle1], € = Ceiim|ez], then e; —gg ea.

A description of the primitives syntax-car and syntax-cdr will now complete the description
of Macro Scheme. We take these two primitives as examples for functions related to syntac-
tic objects that encapsulate s-expressions. The definition of other selectors and predicates for
s-expression objects such as syntax-cadr, syntax-null? and syntax-equal? is completely
analogous.

The two primitives accept a syntactic object as their single argument and require that this
syntactic object encapsulates a pair or a meta-variable that is bound to a syntactic object rep-
resenting a pair. To support the second possibility, it is necessary that the primitives resolve
meta-substitutions. However, this process stops once the outermost pair has been revealed. This
means that the contents may become code and hence the parser is required to determine the
syntactic roles of the components. The following definition uses the helper reduction —patoutto
resolve the lexical s-expression within the syntactic object into a form where the outermost pair
becomes visible. The reduction pushes the substitutions that surround this pair inside to the
two elements of the pair thus enabling the normal selectors for pairs to access the first or second
element. The actual definition of —p,¢outWill be given later in Section @ for now it suffices to
know that it fulfills the requirements just sketched.

Figure contains the definitions of the primitives syntax-car and syntax-cdr. The rule
(EvalSyntaxCar) reduces the lexical s-expression of the syntactic object using — pagoutto reveal the
pair and uses the primitive car to select the first element. It returns this element as a syntactic
object. The rule (EvalSyntaxCdr) works analogously but returns the second element using cdr.

To shorten the presentation, these rules do not check that the variables syntax-car and
syntax-cdr are indeed the top-level identifiers we intend to define but simply assume that no
intermediate bindings for these names exist. Section already demonstrated what a hygienic
check using special identifiers would look like and the chapter about module systems will add a
more convenient way to formulate references to identifiers from certain name-spaces.

Now all rules are in place to define the evaluation of Macro Scheme expressions.



3.6. COMPUTATIONAL MACRO TRANSFORMERS 63

—patout & Lex-S-Expressions x Lex-S-Expressions

—s C Ezpressions X Ezxpressions

(@ syntax-car” |ses|) —; |car(ses’)] where ses —7 . ses’ (EvalSyntaxCar)
(@ syntax-cdr" [ses|) —; [cdr(ses’)] where ses —7 o s€8’ (EvalSyntaxCdr)

Figure 3.17: Evaluation for primitives

Together 6, 37 and (SyntaxBeta) form the notion of reduction —m-SyntezBeta,
—m.SyntazBeta_ 5 g1 | (SyntaxBeta)
The standard reduction function »—»’J’Sy”t‘”Bem places HgvsyntarBeta within an evaluation context:
e Hz,Syntua:Beta e ifpg):)l,syntazBeta q, e = C’Z[p], o = C’Z[q], pqc A"M

Next, we combine expression evaluation with elimination of evaluation substitutions and expansion
substitutions:
MS

__ . n,SyntaxBeta
I—),U —P—>v U l—)ES U HGD

This yields the definition of the evaluation function for Macro Scheme:

D
eval™® (p) Al iff p M5

v
The next section adds some more primitives to the reduction —s. Then, finally, Section [3.6.3
defines macro applications for es-transformer. It will use evalvM 9 to evaluate the argument of
es-transformer to a closure, generate, for a macro application, an application of this closure
on the arguments of the macro application, and use evalf,w S o evaluate this application. The
core macro expander then processes the resulting syntactic object and produces the expanded
expression.

3.6.2 Additional Primitives

In addition to the s-expression related primitives, a few other primitives are necessary to write
powerful macros. Most notably, primitives to inspect the lexical context of syntactic objects are
missing. Syntax-case [DHB92] defines two primitives for comparing identifiers with regard to
their binding places:

e free-identifier=? determines whether two identifiers are equal if they appear in the
output of a macro and the output does not bind them.

e bound-identifier=7 determines whether two identifiers are equal if they appear in the
output of a macro and the output binds them.

The first primitive is often used to simulate the matching against literal identifiers with a syntax-
rules transformer. For example the following macro definition expands to the number one if its
argument is one and to the number two otherwise:

(define-syntax onetwo
(es-transformer
(lambda (mcall)
(if (free-identifier=7 (syntax-cadr mcall)
(syntax one))
(syntax 1)
(syntax 2)))))
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For macro applications (onetwo one) where one is unbound, this macro expands to 1 as one is also
unbound at the macro definition. If however one is a local variable, the same macro application
expands to 2 as then the argument is a local variable whereas the one from (syntax one) is still
unbound and hence the two identifiers are not equal if they appear in the output of a macro. That
is, (lambda (one) (onetwo one)) expands to (lambda (one) 2).

The bound-identifier=7 primitive can be used to detect duplicate entries within a list of
bound variables. For example the macro 1et23-42 binds two variables to 23 and 42:

(define-syntax let23-42
(es-transformer
(lambda (mcall)
(if (bound-identifier=7 (syntax-cadr mcall)
(syntax-caddr mcall))
(error "duplicate bound identifier")
((syntax-lambda v1 v2 body
(syntax ((lambda (vl v2) body) 23 42)))

(syntax-cadr mcall)

(syntax-caddr mcall))))))

The macro application (let23-42 a a 65) yields an error but if one of the identifiers has been
generated by a macro, the identifiers are no longer bound-identifier="7:

(define-syntax call-let23-42
(es-transformer
(lambda (mcall)
((syntax-lambda v
(syntax (let23-42 v a (+ v a))))
(syntax-cadr mcall)))))
(call-1et23-42 a)

If in this example 1let23-42 had applied the free-identifier=7 to the arguments, the primitive
would have returned #t because both identifiers refer to the same enclosing binding. In this case,
they are unbound.

Using the explicit substitutions attached to syntactic object, it is possible to specify the identi-
fier equality checks in the implementation of the primitives. Free-identifier=7 needs to resolve
all pending substitutions as shown in Figure rules (EvalFreeldEqTrue) and (EvalFreeldEq-
False), and then ignore the marks when comparing the results. The function free-id=% defined in
the same figure performs this comparison. To support comparison of unbound identifiers as well,
the function compares the name as well as the level. For bound identifiers, comparing the name is
superfluous but within a macro application all unbound identifiers have the same level and there
it is necessary to account the name to decide equality.

Checking whether two identifiers A and B are equal if they appear as bound variables in the
output boils down to the question whether it is possible to capture A if B is used as a bound
variable. (The vice versa question will always return the same answer, so regarding one case
suffices). As required by the Hygiene Condition for Macro Expansion, this is only the case if both
identifiers are either introduced by a macro application in the same transcription step or if both
identifiers appear in the input to the macro application. This means that the level and the marks
must be equal after the expansion substitutions have been resolved. The Rules (EvalBoundIdTrue)
and (EvalBoundIdFalse) can therefore directly compare the result of substitution elimination.

Sometimes it is desirable to write non-hygienic macros. To that end, the primitive datum-
>syntax-object turns a lexical s-expression into a syntactic object. The lexical context of the
syntactic object is not simply empty. Instead, the primitive accepts another syntactic object and
uses its lexical context as the context for the new object. Rule (EvalDatumToSyntaxObject)
reduces applications of this primitive.
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—s C Fxpressions X Expressions (3.1)
(@ free-identifier=?" |ses;| |sesa|) —s 1 iff free-id=2(*z", kslym)
(EvalFreeldEqTrue)
where ses1 5 tout kspn and sesy F Datout hs'yym
(@ free-identifier=?" |ses| |sess|) —s 0 iff —free-id=2(*z™ *'y™)
(EvalFreeldEqFalse)
where ses1 5 out ksyn and sesy = batout hs'ym
(@ bound-identifier=?" |sesi| |sesy|) —g 1 iff Fogm = k'ym (EvalBoundIdTrue)
where ses1 —Faout kspn and sesy F Datout hs'ym
(@ bound-identifier=?" |sesi| |sesy|) —¢ 0 iff Fz™ £ Fym (EvalBoundIdFalse)
where ses1 5 out ksyn and sesy F Datout hs'yym

(@ datum->syntax-object” | EzS[se1]] (’seq2)) —s | ExS[sea]] (EvalDatumToSyntaxObject)

true if t =y An=m
false otherwise

free-id=2(Fz™ ¥'ym)

Figure 3.18: Evaluation for additional primitives

While the paper on syntax-case [DHB92] proposes datum->syntax-object as a general tool
for importing arbitrary code into a certain lexical context, the PLT manual [Fla04] also shows the
limits of the primitive:

“

[...] Another reason to use syntax-case is to implement “non-hygienic” macros that

introduce capturing identifiers:

(define-syntax (if-it stx)
(syntax-case stx O
[(src-if-it test then else)
(syntax-case (datum->syntax-object (syntax src-if-it) ’it) ()
[it (syntax (let ([it test]) (if it then else)))]1)1)))
(if-it (memq ’b ’(a b ¢)) it ’nope) ; => (b c)

]

Macros that expand to non-hygienic macros rarely work as intended. For example:

(define-syntax (cond-it stx)
(syntax-case stx ()
[(_ (test body) . rest)
(syntax (if-it test body (cond-it .
[(L) (syntax (void))1))
(cond-it [(memq ’b ’(a b c¢)) it] [#t ’nopel) ; => undefined variable it

rest)))]

The problem is that cond-it introduces if-it (hygienically), so cond-it effectively
introduces it (hygienically), which doesn’t bind it in the source use of cond-it. In
general, the solution is to avoid macros that expand to uses of non-hygienic macrosE

13In this particular case, Shriram Krishnamurthi points out changing if-it to use (datum->syntax-object
(syntax test) ’it) solves the problem in a sensible way.
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3.6.3 Expanding Macro Applications Using es-transformer

The last two sections defined the evaluation semantics of Macro Scheme. There are two places
where the evaluation of Macro Scheme expressions is necessary. First, the transformer proce-
dure argument of es-transformer must be evaluated to a closure before storing it in the set of
transformer bindings. This happens while parsing the transformer using the reduction —pr in
rule (ExpandParseTransformer). The reduction —p7 for es-transformer will be described at
the end of this section. Second and most important, for macro applications where the keyword
is defined using es-transformer, evaly 9 evaluates the application of this closure to the macro
application form. More specifically, a macro application extracts the transformer closure from the
set of transformer bindings, constructs a syntactic object holding the macro application form and
an application of the closure to this syntactic object. It uses the function evalf}w S to perform this
application. The result is a syntactic object representing the output of the macro application.
Parser and expander need to turn this object into abstract syntax as described in Sections [3.4]
and In this process, the reduction —g—used in the rule (ExpandElim) of the expander
(Figure [3.9)—mnow needs to eliminate meta-substitutions and identifier substitutions as well. This
section presents the respective rules and the accordant extension of —g;.

To formulate macro application using es-transformer, it is first necessary to augment the
terms of the mixture syntax by transformers for es-transformer, meta-substitutions, meta-
variables, and identifier substitutions as introduced during the presentation of Macro Scheme
(see Figure . Figure contains the new mixture syntax. It is an extension of Figure

Mixture syntax:

tf = (es-transf ) [ tf(r) [ 41" [ tf* [ ¢f1s5 | f[u]

tf (es-transf e)

¢ se|Fanal(Nz.e)| (Nae) | (@ce...) | {Fam ses) |
(letrec-syn idsesses) | (letrec-syn idtf ses)]
dykbFc|elr) | et™ | ea® | clsS | clu] | el™

Figure 3.19: Mixture syntax for expanding es-transformer macros

There, the sets of transformers and normalized transformers have been left unspecified. Here, we
introduce them based on the term (es-transf e), which represents an es-transformer. The argu-
ment e represents the evaluated transformer closure possibly subject to expansion substitutions
that the expander adds during expansion. Furthermore, a non-normalized transformer may be
subject to expansion substitutions. The set of terms also includes A-abstractions where the bound
variable is a meta-variable. Such terms occur during the expansion of terms where the macro uses
a meta-variable as a binding variable. The parser must not resolve this variable at the time it
creates the A\ expression because the corresponding meta-substitution must be modified to reflect
the fact that a meta-variable is used as a binding variable and an identifier substitution needs to
be created. (See the sample macro simple-let from Section Instead the parser creates a A
expression with a meta-variable as its binding variable and only the elimination of the correspond-
ing meta-substitution resolves the meta-variable and modifies the meta-substitution accordingly.
This will be shown below in the elimination rules for the meta-substitution; an extended version
of the parser which creates A-abstractions with meta-variables is included in Section For the
same reasons, letrec-syn terms with meta-variables need to be includedlEI

With the extended mixture syntax in place we can now turn to macro applications using
es-transformer macros. Figure contains the rule (ExpandESTapp), which describes the
application of es-transformer macros. The rule extends the core macro expander from Figure[3.9]
The rule searches for such a transformer using the helper function D also defined in Figure [3:20]

141f a macro generates another macro, it is possible for the generated macro to contain meta-variables of the
generating macro as binding meta-variables of syntax-lambda. We do not cover this case here but will explain it
in the context of syntax-rules transformers.
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DefSetTerms > cpg i=d F ¢

—Expand C DefSetTerms x MixtureTerms

d, k+ (ksa:"ses> —Expand 4, k + 1+ ses iff D(ksz™, d) = (es-transf e) (ExpandESTapp)
where |ses| = eval™*((@ (eq*1¢]) |ses]))

D : (Ids x NormalizedDefinitions) — Transformers
D(*sx™, (Fa™ — tf = d)) = tf
D(*sz™, (ks/ym > tfzd)) =D d)ifx £AyVvn#m

Figure 3.20: Expansion for es-transformer forms

The function D simply walks along the set of transformer bindings and compares the keyword from
the macro application with the bound keywords. If the name of the keyword and the level matches,
it returns the associated transformer. It is undefined on empty sets and does not consult the mark
sets of the identifiers because it only needs to know if the keywords are bound by the same binder.
(ExpandESTapp) now turns the macro application form into a syntactic object by applying the
|| constructor, marks the transformer closure with the current mark, builds an application of
the marked closure to this syntactic object, and uses the function evalf}w S to evaluate the call.
The rule requires the value to be a syntactic object and the rule reduces to the content of the
syntactic object. Next, the parser and macro expander process this term but the rule increments
the current mark by one. This entails that the terms generated by the next macro application
receive a different mark.

This completes the description of the expansion of macro applications using es-transformer.
The only loose end is the redefinition of the —g), which eliminates the expansion substitutions.
This function now—in addition to the parsing substitution, the shift operator, and the mark
operator—needs to handle meta-substitutions and identifiers substitutions as produced by Macro
Scheme. The description of these elimination reductions comes next by first describing the elim-
ination rules for meta-substitutions and then the elimination rules for identifier substitutions.
Afterwards, we add elimination rules for the shift operator and the mark operator that handle
terms involving meta-variables (meta-variables themselves, A-abstractions and letrec-syn-terms
with meta-variables as binding variables). This is necessary because we introduced meta-variables
after the initial definitions of the elimination for these operators in Section[3.5] Finally, we re-define
— to include these rules as well.

Figure [3:21] contains the elimination rules for meta-substitutions. These rules capture the spirit
of hygienic macro expansion with meta-variables: They apply the shift operator to the substitu-
tions before moving the substitutions into the scope of a binding construct to avoid capturing of
identifiers in the substituting terms, and if a binding construct binds a meta-variable, the rules
update the entire meta-substitution to reflect the new binding.

(NormalizedMetaSubsts) This rule immediately normalizes meta-substitutions; all other rules
assume normalized meta-substitutions. This makes the elimination process deterministic.
The corresponding elimination reduction —gys is defined in the lower part of the figure and
will be explained after this listing.

(MetaSubstConst) and (MetaSubstId) These two rules drop the meta-substitutions as the
operands are not within the domain of the substitution.

(MetaSubstMV) For a meta-variable that is part of the substitution, the variable needs to be
replaced by the term c.
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(MetaSubstMVEmpty) An empty meta-substitution has no effect.

(MetaSubstMVOther) If the first pair does not match the meta variable, the search continues
in the rest of the sequence.

(MetaSubstLam) Hygiene requires us to increment the levels of all free variables when prop-
agating the substitution to the body of the A-abstraction to avoid unintended capturing.
Therefore, the shift operator is applied to the substitution as it is moved inside to the body.

(MetaSubstLamMVId) Here the bound variable of a A abstraction is a meta-variable and the
substitution contains a replacement for this meta-variable, hence the binding variable of the
A form is established. Hygiene requires that the whole substitution is modified to reflect this
introduction of a binding. Otherwise the context of the macro application could capture the
free identifiers of the substitution. To obtain the binding variable, the rule applies the meta-
substitution on the meta-variable x and resolves this and all pending substitutions—including
parsing substitutions, and shift and mark operators—using the reduction —g;, which yields
the variable **y™. The reduction —g; will be defined at the end of this section as the union of
the corresponding elimination reductions. The variable 4™ must be replaced by the variable
ksy0 within the substitution as the A-abstraction now binds this variable. Apart from that,
our rule needs to increment the levels of all other identifiers in the meta-substitution as
in the previous case. Taken together, the substitution for the body is extended by a new
pair, receives a shift operator and afterwards an identifier substitution mapping the then-
incremented version of the bound variable to a variable with index zero.

(MetaSubstLamMVMYV) If the meta-variable is not in the domain of the substitution, no
replacement takes place and the rule applies the shifted substitution to the body.

(MetaSubstLetSyn) This case is similar to the rule (MetaSubstLam): the rule shifts the sub-
stitution before applying it to the body and to the transformer.

(MetaSubstLetSynMVId) Analogously to rule (MetaSubstLamMVId), the bound identifier of
a letrec-syntax may be a meta-variable that the substitution maps to a variable. There-
fore, the rule needs to update the substitution to reflect the new binding.

(MetaSubstLetSynMVMYV) This rule covers the case where the substitution does not affect
the bound meta-variable. Only shifting the substitution is required.

(MetaSubstApp) For applications, the elimination works by spreading the substitution un-
changed to operator and operand.

The lower part of Figure[3.21|contains the reduction —gyg for normalization of meta-substitutions.
The rules (SMSShiftEmpty) and (SMSSubstEmpty) cover the trivial cases in which the substi-
tution is empty (¢). The rule (SMSShiftSubst) explains the shift operator for substitutions. It
simply propagates the operator to the lexical s-expression and to the rest of the substitution. The
elimination of identifier substitutions for meta-substitutions is covered by the rule (SMSSubstSub-
stld). Again, all that needs to be done is the propagation to the lexical s-expression and to the
rest.
The reduction takes place in contexts SM.S:

SMS == []| a/c,SMS| SMS[id/*z"] | SMST

That is, the standard reduction used in rule (NormalizedMetaSubsts) is defined as SMS[s] —sms
SMS[s'] if s —gms 8 for some context SMS.

The identifier substitution needs elimination rules, too. Figure [3.22] contains them. The rule
(IdSubstId) replaces a variable by some other identifier. If the level or marks do not match,
rule (IdSubstOther) drops the substitution. The rules (IdSubstMV) and (IdSubstConst) drop
substitutions for the other base cases. For A-abstractions two rules are necessary according to
the two different types of identifiers that replace the identifiers. If the identifier is a normal
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MetaSTerms 5 cus == clsf
-5 € MetaSTerms x MixtureTerms

ses|s] —15 ses|s'] where s —gyg s iff s ¢ NormalizedMetaSubsts

(MetaSubstNorm)
als1f =5 a (MetaSubstConst)
Fspmsif —qp M (MetaSubstId)
alses/a, s § —q ses (MetaSubstMV)
algf —qp a (MetaSubstMVEmpty)
alses/b,sif —q5alsififfa#b (MetaSubstMVOther)
(Az.ses)]si] —q5 (Az.ses](s1 1)) (MetaSubstLam)

(heses)onf =15 Osesl (o DIy 1)) i ] oy S
(MetaSubstLamMVId)
(Ax.ses)s1§ =15 (Ax.ses(sy 1)S) iff x]s§ =5y x (MetaSubstLamMVMYV)
(letrec-syn x sesiy ses)|si] —q5 (letrec-syn x sesyp{(s1 1)] ses{(s1 1)J) (MetaSubstLetSyn)
(letrec-syn x sesys ses)|s1§ —q; (letrec-syn y ses;ps'| ses]s'S) (MetaSubstLetSynMVId)

i x]s1§ oy Ry where s/ = (st DY)

(letrec-syn x ses;y ses)|si§ —; (MetaSubstLetSynMVMV)

(letrec-syn x ses¢p](s1 1)§ sesl(s11)f) iff x]si§ —f x
(@ sesy sesy...)[s1] =15 (@ sesy|s1f sesalsif...) (MetaSubstApp)

ShiftedMetaSubst 3 Sgpifted = $7
—gms C ShiftedMetaSubst x MetaSubsts

(1) —sms ¢ (SMSShiftEmpty)
(ses/a,s1 1) —sms (ses1?)/a, (s1 1) (SMSShiftSubst)
(¢lid/*x")) —sms ¢ (SMSSubstEmpty)
(ses/a, si[id /*z"]) —gmg ses[id /"x™]/a, (si[id /F5z"™]) (SMSSubstSubstId)

Figure 3.21: Elimination of {{ and normalization of meta-substitutions
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identifier, the rule (IdSubstIdLam) increments the levels of both variables in the substitution to
avoid capturing. For meta-variables, the rule (IdSubstMVLam) only needs to increment the levels
of the replaced identifiers. For applications, the rule (IdSubstApp) propagates the substitution to
operator and operands. Two variants are also necessary for letrec-syntax. If the substitution
replaces the identifier by another identifier, the rule (IdSubstVarLetSyn) increments the level of
both identifiers before applying the substitution to transformer and body. For substitutions that
replace identifiers by meta-variables, rule (IdSubstMVLetSyn) increments the level of the replaced
identifiers in the substitution propagated to the transformer and the body.

IdSubstTerms > cip = c[u]
—p € IdSubstTerms x Mixture Terms

Fsnlid /Fa™) —q (IdSubstId)

Bsgid /F5'y™] —pp Fan iff Kspn £ sy (IdSubstOther)

afu] —p a (IdSubstMV)

alu] =y a (IdSubstConst)

(Az.ses)[F2w™ /Py —p (Az.ses[Fs2w™ T /hoayntl]) (IdSubstIdLam)

(Az.ses)[a/Fz"] = (Az.ses[a/Fz™ 1)) (IdSubstMVLam)

(@ sesy sesa...)[u] —p (Q sesi[u] sesafu]...) (IdSubstApp)

(letrec-syn z sesyy ses)[F2y™ /¥12™] — (letrec-syn z ses;p[u] ses[u]) (IdSubstVarLetSyn)
Where u = FszgymAl Jksigpntl

(letrec-syn z ses;; ses)[a/*z"] — (letrec-syn z sesyf[u'] ses[u']) (IdSubstMVLetSyn)

where u/ = a/Fspnt!

Figure 3.22: Elimination of identifier substitutions

Next, we present the elimination rules for the shift operator and the mark operator applied to
terms involving meta-variables. These rules extend the reductions from Figure[3.11and Figure[3.12
respectively. Figure contains the new rules for both operators. Rules (ShiftLamMV) and
(ShiftLetSynMV) are identical to the variants with ordinary variables. The rule (ShiftMV) drops
a shift operator applied to a meta-variable. Likewise unchanged (MarkLamMV) and (MarkLet-
SynMV) propagate the marks to the transformer and the body and (MarkMV) drops the mark
operator.

Now the definitions of all expansion substitutions are in place and the re-definition of the
elimination reduction —p) is possible. The reduction —g; now reduces meta-substitutions and
identifier substitutions in addition to parsing substitutions, and the shift and mark operators:

—E=—1 U =g U= U U=y
Its contexts needs to be extended accordingly:
EL n= EL(t) | EL1" | ELe™ | EL]s{ | EL[u] | []

At this point the expansion reduction —gxpand contains a rule to expand macro applications
using es-transformer, namely (ExpandESTapp). Its rule (ExpandNormDef) can rely on the
reduction —g) to eliminate all expansion substitutions resulting from this macro application.

As required by the core macro expander at the end of Section a transformer specification
also has to provide a reduction to eliminate expansion substitutions for transformers (—g.Tf) and
a reduction for parsing transformers (—pr). These reductions come next.

Figure contains the definition of —g.1¢ for es-transformer that is needed to extend
—Def.ELTf from page The rules simply pass the expansion substitutions to the transformer
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ShiftedTerms S cghiteqa ::= ¢
—1 C ShiftedTerms x MixtureTerms

((\a.ses)T™) —1 (Aa.(sesT™™)) (ShiftLamMV)
((letrec-syn a ses;p ses)1™) —1 (letrec-syn a (ses;r7" ) (sesT™ 1)) (ShiftLetSynMV)
(") —1 a (ShiftMV)

MarkedTerms 3 Cmarked ::= cq®

— g C MarkedTerms x MiztureTerms

(Ma.ses)d™ — 5 (Ma.sesg™) (MarkLamMV)
(letrec-syn a sesiy ses)d™ — oy (letrec-syn a ses;pd™ sesg™) (MarkLetSynMV)
ag" —4 a (MarkMV)

Figure 3.23: Elimination of T and & for terms containing meta-variables

procedure where they accumulate until the evaluation of the procedure. This implements the
propagation of the lexical information surrounding the macro definition to the syntactic objects
appearing in the macro output.

—grrt C Transformers x Transformers

(es-transf e)(r) —rrTe (es-transf e(r)) (ParseSubstEST)
(es-transf e)[u] —gL1s (es-transf e[u]) (IdSubstEST)
(es-transf €)|s§ —grTr (es-transf elsf) (MetaSubstEST)
((es-transf €)1™) —gi1s (es-transf (eT™)) (ShiftEST)
(es-transf €)™ —giL1¢ (es-transf ex™) (MarkEST)

P[(es-transformer se)] —pr (es-transf eval™®(P[ezpand’(P|se])])) (ESTransformer)

expand’ :S-Expressions — Ezrpressions

expand’(se) = e iff se —hy andpxpandunshits € A F'V (e) = 0 A WellFormed(e)

Figure 3.24: Elimination and parsing for es-transformer

Extending the reduction for parsing transformer is next. We first give a brief review of
the requirements: A macro definition using es-transformer needs to expand and evaluate the
transformer procedure. Expanding the procedure is necessary because Macro Scheme supports
macros just like ordinary Scheme. As Macro Scheme contains a few constructs (syntax and
syntax-lambda) not part of ordinary Scheme, it is necessary to extend the macro expander to
cover these constructs as well. This is the subject of Section[3.8] The evaluation of the transformer
procedure yields a closure, which the expander stores in the set of macro definitions.

The (ESTransformer) rule, also shown in Figure satisfies these requirements. It extends
the reduction —p for parsing transformers. The rule splits the transformer into a parsing context
and the source code. The parsing context contains the lexical context of the macro definition.
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The expansion function expand’ creates the abstract syntax for the transformer procedure. It is a
variant of the function expand from the end of Section that does not bind the special identifiers
and the identifier x. In addition, ezpand’ checks, whether the resulting expression is closed and
well-formed. If this is not the case but identifiers refer to an outer scope, this corresponds to an
“out of context” error. In the rule (ESTransformer), the a argument of ezpand’ is the source code
of the transformer procedure wrapped into the parsing context of the macro definition. Applying
the parsing context to the source code propagates the lexical information of the macro definition
to the Macro Scheme source code. This propagation of object level bindings to the meta-level
enables macros that expand into macro definitions to use meta-variables in the source code of the
transformer procedure. After expansion, the evaluation function evalﬂ/[ S from Section mmrns
the code into a closure. Before, the rule again applies the parsing context to the code, this time
to provide the bindings for the special identifiers. The rule (ExpandLetSyn) subsequently adds
this transformer in the set of macro definitions and continues with the expansion of the body.

Rule (ExpandParseTransformer) from Figure can now use the transitive closure of the
standard reduction, —pr, to parse the transformer argument of a letrec-syn form.

3.7 Parsing Scheme with Macros

Section added macros to the mixture syntax from Section [3:4 The additions comprise the
letrec-syn binding construct for macros and macro applications. This section extends the parser
from Section to generate these terms from the concrete syntax. In the concrete syntax, macros
are written as parenthesized s-expressions just as procedure applications. The parser distinguishes
the two by consulting the set of transformer bindings: If the first element of a parenthesized s-
expression is a symbol and the set of definitions contains a binding for the identifier corresponding
to that symbol through the parsing context, the s-expression is a macro application. Otherwise it
is a procedure application (unless the identifier is one of the special identifiers). The binding con-
struct for macros is also a parenthesized s-expression where the first element is the special identifier
£. Initially the parser binds the symbol letrec-syntax to this special identifier. It is followed
by a transformer expression that we leave unspecified in the parser. Section already contains
the rule (ExpandParseTransformer) which uses the reduction —pr to parse the transformer. The
final form of letrec-syntax is the body where the macro is visible.

Figure [3.26| shows the parser as a reduction system. It builds on the same ideas as the parser
in Section but the introduction of meta-variables requires a significant extension: The variable
bound by a A-abstraction may be an ordinary identifier or to a meta-variable. In the first case,
the A-abstraction introduces a fresh binding as before. However, if the bound variable is a meta-
variable, the parser defers the binding of the variable until the corresponding meta-substitution
arrives at the A-abstraction. The rule (MetaSubstLamMVMV) will then update the substitu-
tion to reflect the binding occurrence. The same considerations apply to keywords bound by
letrec-syntax.

The parser works on the mixture syntax as defined in Figure[3.19] The only extension concerns
parsing substitutions: In addition to identifiers, a parsing substitution now may also replace a
symbol by a meta-variable. Figure contains the new definition of the parsing substitutions.
The new parser also needs to keep track of the letrec-syntax keyword. As for lambda, a parsing

Extension to Mixture syntax:

T n=kspn /x| a/x

Figure 3.25: Extension of the mixture syntax for parsing

substitution with a special symbol aids the parser: initially the substitution (]Q)£0 /letrec-syntax)
is applied to the source term. Apart from the inclusion of the set of transformer bindings, rule
(NestedApp) is the same as (NestedAppSimple). However, (NestedApp) receives a sibling, rule
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DefLezicalS-Expressions S CpefLexSE := d - ses
—parse C DefLexicalS-Expressions X MiztureTerms
d,k+F P[((sey, se1, ...)sea ...)] —parse 4,k F (@ P[(sey, se1,...)] Plses]...)

(NestedApp)
d,kF P[(x seq ...)] =parse d, k F P[(Q x sey...)] where P[x] —,= ses
(MVApp)
d, k't P[(x sea ...)] —pase d, k F P[(Q x seq...)] iff ~D(*z™, d) A x ¢ Specials
(IdApp)

where P[x] 3= F2"

d,k+ P[(x ses ...)] —parse d, k F (Fx"P[(x sey ...)]) iff D(*z", d)
(MacApp)
where P[x] 3= *a2"
d, k' P[(x y s€)] —pamse d, k F P[(Ay.se(y/y))] (Lambdald)
iff Ply] —&ymres "y™ A Plx] =5 A
d,kF P[(xy se)] =pause d, k F P[(Ab.se)] iff P[y] »—>§ymReS b A Plx] —p A"
(LambdaMV)
d,kF P[(xy seiy Sehody)]| —Parse (LetSynld)
d, k & Pl(letrec-syn y sew(*y%y) sevoay (*y°/y))]
iff Ply] =3 mpes "y" A Plx] =5y £"
d,kF P[(xy sei Sepody)]| —Parse 4, k F P[(letrec-syn b seys sepody)] (LetSynMV)
iff Ply] > SymRes bA Plx] —g £

Fepn s — Ssymtes ks pn (SymResSubstMetald)
als) — a SymResSubstMetaMV
lSSyn)Res

—7SymRes =7() U—q U - g U 1 U " UsymReos

Figure 3.26: Parsing reduction —parse and symbol resolution reduction —gymRes
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(MVApp), which covers the cases where the first element of a parenthesized expression is a meta-
variable that reduces to a compound expression. If the first form within a parenthesized expression
is an identifier, the rules (IdApp) and (MacApp) call the function D to search in the set of
transformer bindings whether the identifier is a keyword or not. If it is a keyword, (MacApp)
produces a macro application, otherwise (IdApp) generates a procedure application. The abstract
syntax form of macro applications contains the syntactic variable followed by arguments of the
macro wrapped in the surrounding parsing context P.

For the binding constructs A and letrec-syntax, the parser must not use directly the symbol
found at the variable/keyword position as the bound identifier: The symbol may stand for a meta-
variable and thus for a different identifier. Therefore, the parser uses the —gymRres reduction also
defined in Figure to resolve the symbol. This reduction works like the normal elimination
reduction — gy, but does not eliminate meta-substitutions. Instead rule (SymResSubstMetaMV)
drops a meta-substitution applied to a meta-variable. Depending on whether the identifier re-
sulting from the elimination using —symges is @ meta-variable or not, the rules generate parsing
substitutions for body of the A-abstraction. The (Lambdald) and (LambdaMV) rules cover the
two outcomes of the —gymres reduction for A-abstractions. (Lambdald) is applicable, if the sym-
bol reduces to an ordinary identifier and generates a parsing substitution for the body just as its
predecessor (LambdaldSimple). Note, that (Lambdald) uses the original symbol from the input
to generate the new identifier. Using the outcome of the —gymres reduction would be incorrect as
it can contain special identifiers like A™. If the symbol at the binding position resolves to a meta-
variable, rule (LambdaMV) places the meta-variable at the binding position of the A but generates
no parsing substitution. Later, the rule (MetaSubstLamMVId) will modify a meta-substitution
that replaces the meta-variable of the A-abstraction.

The new rules (LetSynld) and (LetSynMV) parse the definition of a local macro. Both rules
use the —gymRes reduction as just described and accordingly only the rule (LetSynld) generates
a parsing substitution. Again the rule uses the verbatim symbol in the input to build the bound
identifier. As letrec-syntax is a recursive binding facility, the rule binds the keyword not only in
the body but in the transformer as well. For both cases, it generates the same parsing substitution
that replaces the symbol by a keyword.

To complete the definition of the parser, the set of parsing contexts needs to be augmented to
allow the parser to peek into all expansion substitutions:

P w= P(r) [ PT" [ Po™ | Pls] | Plul

The new parser applies parsing substitutions to the complete set of mixture terms. Conse-
quently, the reduction — ), which eliminates parsing substitutions, needs to be extended, too.
Figure contains the new definition of —), which deals with all terms of the mixture syntax.
The rules (ParseSubstStar), (ParseSubstSym), (ParseSubstConst), (ParseSubstId), (ParseSubst-
SymOther), (ParseSubstLamld) and (ParseSubstApp) remain unchanged. For letrec-syntax,
(ParseSubstVarLetSyn) increments the level of the replacing identifier by one in the substitu-
tion passed to transformer and body. (ParseSubstMV) drops parsing substitutions applied to
meta-variables. Finally, rules (ParseSubstMVLam) and (ParseSubstMVLetSyn) pass the substi-
tutions unchanged to the bodies and the transformer if the substitution replaces a symbol by
a meta-variable. In this case, there are no levels to be incremented and the rules to eliminate
meta-substitutions will take care of the proper scoping. The new definition of — ) is assumed to
be part of —g;, the elimination reduction for expansion substitutions.

Again, the parsing reduction defines a function parse. This time, parse also needs to keep
track of the letrec-syntax keyword. To that end, it replaces the symbol letrec-syntax by the
special symbol £:

parse(se) = e iff se(’A\°/1ambdal))(’£?/1etrec-syntax) (™" /4) —p.e €



3.8. PARSING AND MACRO EXPANSION FOR MACRO SCHEME 75

ParseSubstTerms > cpg ::= c¢(r)

=0 € ParseSubstTerms x MixtureTerms

x(F5x"/x) — (ParseSubstStar)

x(id/x) — (ParseSubstSym)

a(r) — (ParseSubstConst)

kspm(r) — (ParseSubstId)

x(id/y) HGD xiff x ZyANy#* (ParseSubstSymOther)

(Az.ses)(Pw™/y) — 0 (Az. ses(Fwm ) (ParseSubstLamlId)

(@ sesy sesy...)(r) — ¢ (Q sesy(r]) sesa(r)...) (ParseSubstApp)

(letrec-syn z ses;y ses)(*z"/y) =0 (ParseSubstVarLetSyn)
(letrec-syn z sesyy(Fz"HYy) ses(Fz"Yy))

a(r) —¢ a (ParseSubstMV)

(Az.ses)(afy) —¢) (Az.ses(a/y)) (ParseSubstMVLam)

(letrec-syn z sesyy ses)(aly) — ) (letrec-syn z ses;p(afy) ses(a/y)) (ParseSubstMVLetSyn)

Figure 3.27: Elimination of () substitutions

3.8 Parsing and Macro Expansion for Macro Scheme

Expressions written in Macro Scheme may contain macro definitions and macro applications. The
macros facility for Macro Scheme is the same as for ordinary Scheme. This builds up a tower of
macro expansion languages. However, Macro Scheme contains some constructs, namely syntax
and syntax-lambda, that are not part of ordinary Scheme. Consequently, parsing and macro
expansion for Macro Scheme needs to cover these constructs, too. This is the topic of this section.

Extending the parser is straightforward. For the sake of simplicity, we leave out a check to
ensure that the keywords are bound to the predefined denotations. Figure [3:28] contains the two
rules.

d,k F P[(x s€)] —parse d, k - P[|se]] iff P[x] —3% "syntax” (ParseSyntax)
d,kFP[(xy...Sehody)| —parse 4,k F P[(A(y...).se)] (ParseSyntaxLambda)
iff P[x] —}, ¥syntax-lambda™

Figure 3.28: Parsing syntax and syntax-lambda

Figure [3.29] extends the core macro expander from Figure with the rules for syntax and
syntax-lambda. Expansion does not affect a syntax expression because with regard to macro
expansion the syntactic object is just data where no macro expansion takes place. Hence rule
(ExpandSyntax) only drops the set of transformer bindings and reduces to the unchanged syntax
form. Likewise, for syntax-lambda, rule (ExpandSynLam) only has to propagate the set of
transformer bindings to the body. This rule does not shift the definitions because syntax-lambda
does not affect identifiers of Macro Scheme.

Expansion must now also take place in the body of a syntax-lambda form, hence we extend
the set of expansion contexts from Section by a new rule:

EP s=...|(A(z...). EP)
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d, kF |se] —Expand |S€] (ExpandSyntax)
d,kF (A(x...).ses) =Expand (A(x...).d, kI ses) (ExpandSynLam)

Figure 3.29: Expanding Macro Scheme special forms

Next, we need to extend the elimination of expansion substitutions and the unshift operator
to syntax and syntax-lambda forms. For the parsing substitution, we need to extend the rules
from Figure for the shift, mark and unshift operators, it is the rules from Figures
and [3.13] and for the meta- and identifier substitutions, the rules from Figures and [3:22
Figure [3:30] contains the new rules, which all follow the same pattern: The substitutions do not
affect syntax forms and propagate unchanged to the body of syntax-lambda forms. The reason
why the expansion substitutions do not affect the forms even though both are related to macro
expansion is that ezpansion for Macro Scheme (our current topic) affects the source terms of
Macro Scheme but the syntax and syntax-lambda forms describe macro expansion during the
evaluation of Macro Scheme. That is, the expansion substitutions of Macro Scheme take place
one phase before the macro expansion of ordinary Scheme and just like variable bindings in Macro
Scheme do not affect syntax forms, meta-variable bindings during the expansion of Macro Scheme
do not affect these forms.

|ses|(r) —¢ |ses] (ParseSubstSyn)
(A(x...).ses)(r) —¢q (A(x...).ses(r)) (ParseSubstSynLam)
(|ses]T™) —1 |ses] (ShiftSyn)
((A(x...).ses)1™) =1 (A(x...).(sesT™)) (ShiftSynLam)
|ses|o™ — 5 |ses] (MarkSyn)
(A(x...).ses)d" — 5 (A(x...).sesd") (MarkSynLam)
|ses|{sf —5 |ses] (MetaSubstSyn)
(A(x...).ses)]sf =15 (A(x...).ses]sf) (MetaSubstSynLam)
|ses|[u] — [ses] (IdSubstSyn)
(A(x...).ses)[u] —p (A(x...).ses[u]) (IdSubstSynLam)
(|ses]|™) — Lses] (UnshiftSyn)
(A(x...).e)l™) = (A(x...).(el™) (UnshiftSynLam)

Figure 3.30: Elimination of the expansion substitutions and the | operator for syntax and
syntax-lambda

3.8.1 Scoping Issues Between Object And Meta-Language

Using explicit substitutions for macro expansion raises a number of questions about the relationship
between the scoping in the meta and the object language. The big advantage of using explicit
substitutions instead of renaming is that we can chose what to do. The following enumeration
lists the cases we have identified, explains how the semantics from the previous section resolve the
issue, and shows how the well-established syntax-case facility operates in each case.

Three guidelines have directed the design of our semantics:

e The syntactic objects represent data during the evaluation of the meta-language, hence there
should be no interaction between bindings in the meta language and the variables within
the syntactic objects.
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e The evaluation of meta-language and object language is temporally separate, hence there
should be no interaction between bindings in the object language and variables in the meta-
language.

e Macros expanding to definitions of other macros should be fully supported.

The syntax-case implementations do not provide an equivalent to our syntax-lambda form
but only the full syntax-case form which also performs pattern-matching. However, the for-
mal model of syntax-case provides a plambda expression that serves the same purposes as our
syntax-lambda[DHB92]. Our remarks about syntax-case refer to this construct.

1. Should a local variable binding in the meta language affect the argument of syntax? For
example in

(lambda (a)
(let-syntax ((baz (es-transformer
(lambda (mcall)
(let ((a 12))
(syntax a))))))
(baz)))

should the a in (syntax a) refer to the binding of lambda or to the binding of the let and
yield an “out-of-context” error?

Syntax-case yields an “out-of-context” error[DHB92].

In our model, a is bound by the object-level lambda because the meta-level binding does not
affect variables within syntactic objects.

Emulating the behavior of syntax-case is also possible: the elimination rules for the ex-
pansion substitutions and the unshift operator would need to be adapted for the | | cases.
More specifically, the rules (ParseSubstSyn), (ShiftSyn), (MetaSubstSyn), (IdSubstSyn), and
(UnshiftSyn) from Figure would pass the substitutions to the lexical s-expression of the
syntactic object instead of dropping them.

2. Should syntax-lambda affect normal bindings in the meta-language? E.g. in

(let-syntax ((m (es-transformer
(lambda (mcall)

(syntax-lambda syntax-car
(syntax-car (syntax (1 2))))
M)

should the syntax-car in (syntax-car (syntax (1 2))) refer to the syntax-lambda and
yield an “illegal use of syntax” error or should it refer to the default primitive?

In our model, the variable syntax-car is bound to the primitive because the scope of
syntax-lambda covers only (meta-)variables within syntactic objects. Syntax-lambda gen-
erates the meta substitution during the evaluation of the transformer but the expression in
question is parsed during the definition of the transformer.

Syntax-case signals an “illegal use of syntax” error.

Emulating syntax-case is also possible: the rule for parsing syntax-lambda, (ParseSyn-
taxLambda) in Figure would need to generate the parsing substitution for the meta-
variables that is now part of (SyntaxBeta).



78

CHAPTER 3. A SEMANTICS FOR HYGIENIC MACROS

3. Should a local variable binding in the object language affect normal bindings in the meta-

language? E.g. in

(let ((syntax-car 1))
(let-syntax ((m (es-transformer
(lambda (mcall) (syntax-car
(syntax-cdr mcall))))))
(m)))

should the syntax-car in (syntax-car (syntax-cdr stx)) refer to the let and yield an
“out-of-context” error or should syntax-car be bound to the default primitive?

Our model and syntax-case yield an “out-of-context” error. In our model, the reason is that
rule (ESTransformer) applies the expansion context of the macro definition to the source s-
expression of the transformer procedure before applying ezxpand’ to it (see Figure. The
expansion context contains the lexical information surrounding the macro definition. The
motivation for propagating this information is that if a macro expands into the definition on
another macro, it is necessary to propagate the expansion substitutions to the transformer
procedure in case its source contains meta-variables.

If the bindings of the object language should not affect bindings in the meta-language, the
parsing context could be removed. Then the full expansion function expand should be used
as it also contains the parsing substitutions to bind the special identifiers and unbound
identifiers.

. Should syntax-lambda bind meta-variables that occur within generated transformer proce-

dures? E.g. in

(let ((a 23))
(let-syntax ((m (es-transformer
(lambda (mcall)
((syntax-lambda x
(syntax
(let-syntax ((n (es-transformer
(lambda (mcall2)

(if x
(syntax 1)
(syntax 2))))))
m)))
(syntax-cadr mcall))))))
(m a)))
should the x in (if x ...) be replaced by the argument of m or should x be unbound?

Our model replaces x, because the meta-variable occurs within a syntactic object. Syntax-
case also replaces x.

As can be seen in the example, replacing might introduce object language variable occur-
rences into the meta-language. Binding these occurrences requires pushing parsing and meta
substitutions to the procedure of es-transformer during parsing/expansion. The rule (ES-
Transformer) accomplishes this by applying the parsing context to code of the transformer
procedure before calling expand’.

. Should the identifiers inserted by a macro all be bound-identifier=7? E.g. should

(letrec-syntax
((m (es-transformer
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(lambda (mcall)
((syntax-lambda x
(syntax
(let ((temp 23)) x)))
(syntax temp))))))
(m))

expand into (let ((temp 23)) temp) or should the temp in the body of the let be un-
bound?

In our model, the lexical information is propagated to the syntax-terms from where macro
expansion continues. Syntax-lambda inserts the meta-variables hygienically into the syntax
objects, hence temp would be unbound.

Syntax-case uses the same renaming function for the macro definition, hence identical
names become equal identifiers and the example expands into (let ((temp 23)) temp).

6. Should the use of meta-variables as binding variables affect identifier occurrences within
code that substitutes meta-variables bound by different syntax-lambda? That is, should
syntax-lambda extend the same (current) meta-substitution or should each syntax-lambda
form introduce its own meta-substitution?

In our model there is a special current meta-substitution and each syntax-lambda extends
it. This is compatible with syntax-case where the renaming is global.

If the syntax-lambda forms should not affect each other, we would abandon the current
meta-substitution and let each syntax-lambda introduce its own meta-substitution, valid
within its body.

3.9 Semantics of syntax-rules

This section defines a formal semantics for the syntax-rules transformer from R°RS. Unlike
the es-transformer facility from Section [3.6] syntax-rules macros are not based on a full
programming language but use pattern matching and rewriting to transform the macro application.
Consequently, it is less powerful but also easier to understand. To reflect this simplicity in the
semantics, we do not translate syntax-rules macros into es-transformer macros but define
the semantics directly using a small pattern matcher and the expansion substitutions introduced
above. The resulting system is easy to understand and very precise. To estimate the mental
overhead involved in a semantics based on translating syntax-rules to a computational macro
facility, consider the scoping issues from the previous section: none of these issues arise in the
simple model of syntax-rules. This semantics is the first formal semantics of syntax-rules.

A syntax-rules form consists of a list of identifiers called literals and a list of rules. Each
rule has a pattern as its left-hand side and a template as its right-hand side. If the macro
expander detects a macro application and the corresponding keyword is bound to a syntax-—
rules transformer, the expander tries to match the arguments of the macro application against
the patterns of the rules in the order the rules appeared in the syntax-rules form. During
matching, a pattern identifier that is listed as a literal of the syntax-rules form matches the
input only if the input is also an identifier and if both identifiers refer to the same lexical binding.
In addition, two literal identifiers match if they are both unbound. A pattern identifier that is
not a literal counts as a pattern variable and matches any input. For the first matching rule, the
macro expander outputs the rule’s template with the pattern variables in the matching pattern
replaced by the corresponding input forms of the macro application. If no rule matches, the macro
expander signals a syntax error.

As for the letrec-syntax form, we again simplify the syntax for syntax-rules to shorten the
presentation. Our variant of syntax-rules contains only one rule whose pattern and template
follow the list of literals. The expander matches the macro application form against the pattern



80 CHAPTER 3. A SEMANTICS FOR HYGIENIC MACROS

and returns the template in case of a match. If the macro application does not match the pattern,
the expander signals a syntax error. To support more rules—as in the standard syntax-rules
form—the expander would try to match the other rules before signaling an error. In addition our
variant of syntax-rules contains no ellipsis patterns. Section [3.10] sketches how the semantics
would incorporate them.

The macro expander uses meta-substitutions to represent the replacement of pattern variables
by input forms. To expand the application of a macro, the expander first constructs a meta-
substitution that maps the meta-variables to the corresponding parts of the arguments of the
macro application. Then the expander replaces the macro application by the template and applies
the generated meta-substitution to the template. During the subsequent expansion process, the
parser will resolve the meta-variables and thereby replace the meta-variables by the input of the
former macro application.

If a macro expands into the definition of a macro and the expansion uses a meta-variable to
construct a binding form for meta-variables, it is necessary to modify the meta-substitution to
reflect this new binding. Consider the following example:

(define-syntax gensr
(syntax-rules (O
((gensr pat v)
(letrec-syntax ((m (syntax-rules ()
((m pat) v))))
(m (12 34))))))
(gensr (x y) x)

Here, gensr generates a syntax binding and uses the meta-variable pat to specify the pattern of
the generated macro. This means that the identifiers that replace pat become meta-variables.
In the example above, this concerns the identifiers x and y. This change must be propagated
to the code that replaces the meta-variable v. Hence, during expansion of the pattern (m pat),
the meta-substitution must be updated by an identifier substitution that replaces identifiers by
meta-variables.

A minor peculiarity concerns the treatment of the keyword during pattern matching. R°RS
contains this statement:

The keyword at the beginning of the pattern in a syntax rule is not involved in the
matching and is not considered a pattern variable or literal identifier.

Rationale: The scope of the keyword is determined by the expression or syntax def-
inition that binds it to the associated macro transformer. If the keyword were a
pattern variable or literal identifier, then the template that follows the pattern would
be within its scope regardless of whether the keyword were bound by let-syntax or
by letrec-syntax.

We meet this specification by removing the keyword from the pattern during parsing and involving
only the macro’s arguments in the matching phase. Unfortunately, removing the keyword from
the pattern is slightly tricky for macros that are generated by other macros. In this case, the
pattern of the generated macro may be a pattern variable of the generating macro:

(let-syntax ((foo (syntax-rules ()
((foo m pat)
(let-syntax m (syntax-rules ()
(pat 23))
(m (1 2))))))
(foo bar (bar (x y))))

During the parsing of the inner let-syntax definition, the pattern of the macro is just pat and
removing the keyword is not possible until the elimination of the corresponding meta-substitution.
Therefore, the parser removes the keyword only if the pattern is a list of identifiers. If it is a meta-
variable, the elimination of the meta-substitution is responsible for removing the keyword.
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a,b € BindingMVars

pat, € Patterns

pat € NormalizedPatterns

pato € OutsideNormalizedPatterns

litl € LiteralList C Patterns

litl € NormalizedLiteralList C NormalizedPatterns

T n=ksgn/x |a/x | a /x

tf = (es-transf e) | (syn-rules pat litl ses) | tf(r) | tf1" | tfa® | tf1s] | tf[u]
pat =n|"z"ala| (pat . pat) | pat(r) | pat]™ | patc”* | pat]s§ | pat[u]
pat s=a|*2" |alal (pat . pat)

pato s=a|*am |ala| (pat . pad

l n=x]a

litl s= (L) Ja | ltl(r) | L™ | litla® | ]S | litl[u)]

litl n= (R L))

Figure 3.31: Mixture syntax for expanding syntax-rules

3.9.1 Macro Expansion for syntax-rules

We now turn to the formal definition of macro expansion for syntax-rules transformers. This
section presents the reduction rules that extend the mixture syntax and the core macro expander
from Section to cover macro applications with syntax-rules transformers. The next two
sections describe the elimination of the expansion substitutions for syntax-rules transformers
and patterns.

The mixture syntax needs two extensions to cover syntax-rules:

e a representation for syntax-rules transformers
e a grammar for representing patterns and literals.

Figure [3.31] contains the new definitions. It extends the definitions from Figure [3.19] which in
turn extends Figure A syntax-rules transformer is written as (syn-rules pat litl ses), where
pat is the pattern, lit] the list of literals, and ses the template.

A pattern pat is either a constant, written n, or an identifier, written as usual *3z™, or a
pair of two patterns, written (pat. pat). The set of constants is assumed to contain the empty
list (()). Furthermore, patterns contain meta-variables that can play two different roles: Either
the meta-variable represents a bound variable of the pattern, or the meta-variable occurs in the
pattern because the pattern was itself generated by a macro application and the meta-variable will
be replaced by some other term later. As an example for the second case, consider this example:

(let-syntax
((gen-bar (syntax-rules ()
((gen-bar a)
(let-syntax ((bar (syntax-rules ()
((bar a) 23))))
(bar 1))))))
(gen-bar 1))

The variable a is a bound variable in the pattern (gen-bar a). However, in the macro application
(gen-bar 1), a in the pattern (bar a), is not a bound variable but a meta-variable. The corre-
sponding meta-substitution will replace it by 1. To distinguish these two kinds of meta-variable
occurrences within patterns, we refer to meta-variables that are bound variables of the pattern as
binding meta-variables and write them as a. Meta-variables that occur within patterns because
the pattern is the output of an outer macro application remain unchanged, i.e. are still written as
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a. In the example above, the a within the pattern (gen-bar a) is a binding meta-variable, while
its occurrence within (bar a) is an ordinary meta-variable. Of course, a meta-variable may be
substituted by a binding meta-variable. In the example above, a macro application (gen-bar c)
would produce this case and during macro expansion ¢ would become a binding meta-variable.
Binding meta-variables emerge from symbols within the pattern of a syntax-rules form through
extended parsing substitutions that replace symbols by binding meta-variables. The new definition
of parsing substitutions is also shown in Figure [3.31

To continue with the definitions of patterns in the abstract syntax, expansion substitutions
can also be applied to patterns. Patterns without expansion substitutions are called normal-
ized and are written as pat. Section contains the definition of the reduction —patnormthat
turns patterns into normalized patterns. Sometimes it is necessary to access the first or second
component of a pair pattern. This is only possible if no expansion substitutions wrap the pair.
The domain OutsideNormalizedPatterns describes the patterns without expansion substitutions
at the outermost level. Section W presents a reduction —patout, Which resolves outer expansion
substitutions and thus produces elements of OutsideNormalizedPatterns.

The list of literals of a syntax-rules transformer is either a sequence of identifiers or a meta-
variable that is to be replaced by a sequence of identifiers later during parsing. We do not introduce
a new domain for literals but perceive them as a subset of patterns. This simplifies the forthcoming
presentation.

Section [3.9.4] introduces the accompanying concrete syntax and the extensions for the parser.
The parser is responsible for generating meta-variables both within the expression terms and
within patterns. The latter requires it to consult the list of literals.

Figure [3.32] contains two rules to handle macro applications with syntax-rules transformers.
The rules use the helper function D from Figure to retrieve the macro definition from the
set of transformer bindings. Next, the rules need to check whether the arguments of the macro
application matches the pattern from the definition. To that end, both rules call the function
match from Figure [3.33] which takes as its input a normalized pattern and a lexical s-expression
and checks whether the s-expression matches the pattern. It does not need to take the list of literals
into account: the parser resolves literals as it parses the pattern and inserts the corresponding
identifiers into the pattern.

d, k+ (Pz"ses) —Expand 4,k + 1+ sesrhsdegen—subst(LM, ses, @) (ExpandMappSR)
iff D(*z™, d) = (syn-rules pat () sesyns) A match(pat, ses)

d, k+ (ksx"ses) —Expand Syntax error (ExpandMappSRFail)
iff D(*z", d) = (syn-rules pat () ses,ns) A "match(pat, ses)

Figure 3.32: Expansion for syntax-rules macros

In case of a mismatch, rule (ExpandMappSRFail) reduces to a syntax error. Otherwise, rule
(ExpandMappSR) calls the function gen-subst to generate the meta-substitution that maps meta-
variables to arguments of the macro application. The right-hand side of the rule (the template)
may generate identifiers, hence the rule applies the mark operator with the current mark to
it. Finally, the rule augments the marked template with the meta-substitution and returns the
resulting form. The rule increments the current mark by one to provide a fresh mark for subsequent
macro applications.

Figure [3.33] contains the definitions of match and gen-subst and their helper functions. As
pattern matching for syntax-rules should not take the keyword into account, match first removes
it from the lexical s-expression that represents the macro application. To that end, it uses the
reduction Fpatoutto resolve expansion substitutions on the top of the lexical s-expression and calls
its helper function match’ with the cdr of the resulting pair. Section m presents the definition
of —patout- match’ performs the pattern matching proper. It dispatches according to the type of
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the pattern. For constant patterns, it resolves all pending substitutions on the input form and
compares the result with the pattern. For resolving the substitutions, match’ uses the reduction
— patnorm that eliminates expansion substitutions for patterns. Its definition is also in Section

If the pattern is an identifier, match’ also resolves the expansion substitutions within the input
using —patnorm- Lhe pattern matches the input if both are equal according to free-id=?, that is,
if name and level match. The marks do not need to match because R5RS says (Section 4.3.2):

A subform in the input matches a literal identifier if and only if it is an identifier and
either both its occurrence in the macro expression and its occurrence in the macro
definition have the same lexical binding, or the two identifiers are equal and both have
no lexical binding.

Hence, only the binding place is crucial, not the identifier occurrence. Indeed, the marks of the
pattern and the input usually differ as the pattern is part of the transformer and is therefore
marked at macro application. In the next case of match’, binding meta-variables match anything.
If the pattern is a pair, match’ uses the reduction —patoutto push the substitutions inwards the
input form and thus to reveal whether the input is a pair or not. The generation of the meta-
substitution with the function gen-subst can assume that the input matches the pattern. Just
like match, it first strips the keyword. Then it calls its helper function gen-subst’ to generate the
substitution. gen-subst’ just needs to traverse the pattern and the s-expression and append a new
pair to the substitution whenever it comes across a binding meta-variable.

3.9.2 Elimination for syntax-rules Forms

Analogously to the elimination for the es-transformer in Figure this section presents the
elimination rules for the parsing substitution, the meta-substitution, the shift operator, the mark
operator and the identifier substitution applied to syntax-rules transformers. The elimination
is necessary because the elimination rules for letrec-syn—(ParseSubstVarLetSyn) and (ParseSub-
stMVLetSyn) in Figure (ShiftLetSyn) in Figure (MarkLetSyn) in Figure (Meta-
SubstLetSyn) and friends in Figure and (IdSubstVarLetSyn) and (IdSubstMVLetSyn) in
Figure propagate the expansion substitutions to the transformer and rule (ExpandNor-
mDef) from Figure eliminates them using the reduction —pergLTs, Which in turn relies on
the reduction —gL1¢ to eliminate the expansion reductions for transformers. Therefore, the spec-
ification of a transformer needs to include a definition of —g.1f for the introduced transformer
terms.

The elimination of the parsing substitution for syntax-rules forms inserts the binding meta-
variables into the pattern and generates the corresponding parsing substitution that replaces
symbols by meta-variables in the template. Two circumstances heavily complicate the specification
of these rules:

1. The list of literals determines which symbols in the source pattern are binding meta-variables
and which are literal identifiers. This feature is specific to the syntax-rules facility and
requires several special cases during parsing.

2. Meta-variables from surrounding macro applications can occur within the pattern and within
or as the list of literals as shown in the example macro gen-bar from Section [3.9.1] Analo-
gously to A-abstractions with meta-variables as bound variables, the parser needs to resolve
these meta-variables to see the names of the actual meta-variables being bound.

Figure contains the rules for elimination of the the parsing substitution as reduction — ).
The rules consult the list of literals to decide whether the symbol which the substitution is replacing
must become a literal identifier or a binding pattern variable within the pattern. Also, whenever
a parsing substitution recognizes a symbol as a literal, it removes the symbol from the list of
literals: in this case the corresponding identifier has been identified and the substitution will
replace the symbol by this identifier within the pattern. Subsequent parsing substitutions may
also replace this symbol but the one that comes first has been generated by the innermost binder
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—patout & Patterns x OutsideNormalizedPatterns

—patnorm © Patterns x NormalizedPatterns

match : (NormalizedPatterns x Mizture Terms) — Boolean

match(pat, ses) = match'(pat, ses, )

match’(a, ses

)
)=

match’ : (NormalizedPatterns x Mizture Terms) — Boolean
) = true iff ses =] tnorm @
)=

hksn

matc ses true

s’ m : ks,.n ks, m
iff ses Hpamorm Sy™ A free-id=2 ("™ Py
match’(a, ses) = true
match’((ses; . ses;), ses) = match’(ses;, sesy) A match’(ses;, ses)
iff ses = apour (€51 - S€82)

match’(pat, ses) = false otherwise

gen-subst :(NormalizedPatterns x MixtureTerms x MetaSubsts) —
MetaSubsts
gen-subst(pat, ses, s) = gen-subst’(;&t, 5€Scdr; 5) Where ses 7o (8€Scar - 5€5cdr)

gen-subst’ :(NormalizedPatterns x MiztureTerms x MetaSubsts) —

MetaSubsts
gen-subst’(a, ses, s) =
gen-subst’ (Fsx™ ses, s) =
gen-subst’(a, ses, s) = ses/a s
gen-subst’ ((ses; . ses,.), ses,s) = gen-subst’(ses;, sesy, gen-subst'(ses,., sesa, s))

where ses =500, (ses1 . sesa)

Figure 3.33: Helper functions for macro expansion
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and is therefore the correct one according to the rules of lexical scoping. If the *-substitution
arrives at the syntax-rules form, all remaining symbols in the list of literals denote unbound
identifiers and occurrences of these symbols in the pattern must be replaced by identifiers that
receive the level of the x-substitution whereas symbols that do not appear in the list of literals
become (binding) meta-variables. Here is a description of the rules that implement these ideas:

ParseSubstSRSymLit If the symbol of the substitution is a literal, the substitution is passed
to the pattern unchanged. There, the substitution will turn the symbol into an identifier to
be matched with the input literally. The rule also passes the substitution unchanged to the
template. The symbol is removed from the list of literals to prevent the x-substitution from
recognizing the symbol as a literal once more.

ParseSubstSRSymNoOccur If the symbol does not occur in the pattern and in the literal list,
the rule passes the substitution unchanged to the template because then the syntax-rules
form does not bind the symbol. The helper function in-pat? tests whether a symbol occurs
within a normalized pattern. It is defined at the end of the figure.

ParseSubstSRMVLitNoStar Here, the literal list is a meta-variable which means that no
literals are specified verbatim and the rule may push the substitution unchanged to the
pattern and the template. The elimination of meta-substitutions will later resolve the meta-
variable and adapt the pattern according to the list that replaces the meta-variable.

ParseSubstSRIAMVB A symbol x that occurs in the pattern but does not occur in the literal
list becomes a binding meta-variable x in the pattern and a meta-variable x in the template.
That is, the names x and x emerge from the name of the symbol.

ParseSubstSRMYV A substitution that replaces a symbol by a meta-variable can be passed
unchanged to pattern, literals and template. The corresponding meta-substitution will take
care of building the pattern and binding meta-variables.

ParseSubstSRStarLitList If the parsing substitution for unbound identifiers reaches a syntax-
rules term, all remaining symbols in the pattern become (binding) meta-variables provided
they do not occur in the list of literals. This is analogous to rule (ParseSubstSRIAMVB).
Symbols that are members of the list of literals, become literal identifiers as demonstrated
by rule (ParseSubstSRSymLit). The function GenPatStar generates a new pattern and a
sequence of parsing substitutions for the template. The definition of this function is shown
in the same figure. It takes as argument the normalized pattern and the literal list, the term
to be augmented by the meta-substitution and the level of the x-identifier. It then walks
along the pattern and if it encounters a symbol that is a member of the literal list, it returns
as pattern an identifier generated from the level of the x-symbol and binds the symbol to
the identifier in the s-expression. If it encounters a symbol that is not in the literal list
or the list of literals is a meta-variable, it returns as pattern a binding meta-variable and
binds the symbol to a meta-variable in the s-expression to a meta-variable. The function
remove-symbols afterwards deletes all symbols from the list of literals as the x-substitution
has also removed them from the pattern.

ParseSubstSRStarMVLit This rule also covers the case that the x-substitution arrives at a
syntax-rules term, but this time the list of literals is a meta-variable. Just as (Pars-
eSubstSRStarLitList), the rule calls GenPatStar to generate the pattern and the parsing
substitutions for the template. The only difference is that the rule does not need to remove
symbols from the literal list.

The rules above take over most of the work for parsing syntax-rules forms, the elimination of
parsing substitutions within patterns requires only a couple of trivial rules that will be shown later
in Section 3.9.3]

As we have seen above, meta-variables can occur as and within patterns and literal lists.
Therefore, the elimination of meta-substitutions needs to be extended, too. However, the syntax-
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ParseSubstSR > tf pg ::= (syn-rules pat litl ses)(r)
— sk S ParseSubstSR x Transformers

syn-rules pat (1 ...X Iy, ...) S€Spps kspm/x) — ParseSubstSRSymLit
pat sk
(syn-rules pat(*z™/x) (I1 ...l ...) sespns("z"/x))

(syn-rules pat litl ses,ps)(*2"/x) = (en (ParseSubstSRSymNoOccur)

(syn-rules pat litl ses,ps("z"/x))
iff ~in-pat?(x, litl) A\ —in-pat?(x, pat) A x # x

(syn-rules pat a sespns) (Fx"/x) —sr (ParseSubstSRMVLitNoStar)
(syn-rules pat(*z"/x) a sesyps("z"/x)) iff x # *
(syn-rules pat litl sesrns) (M) — sk (ParseSubstSRIAMVB)

(syn-rules pat(x/x|) litl ses,ns(x/x))
iff ~in-pat?(x, litl) A in-pat?(x, pat)
(syn-rules pat litl ses,ns)(d/x) — (sr (ParseSubstSRMYV)
(syn-rules pat(a/x) litl(a/x)) ses,ns(a/x))

(syn-rules pat (I ...) ses,ps)(™z"/x) — (ParseSubstSRStarLitList)

)sr
(syn-rules pat remove-symbols((l...)) sewms(*z™/*))

where (pat, serns) = GenPatStar(pat, (1...), sespps,n)
(syn-rules pat a sesrns) (P54 —sr (ParseSubstSRStarMVLit)
(syn-rules pat a se.ns(*2™/%))

where (pat, serns) = GenPatStar(pat,a, sesyps,n)

GenPatStar : NormalizedPatterns x NormalizedLiteralList x MixtureTerms x N — Patterns x
Mizture Terms

GenPatStar(pat, litl, ses,n) = (pat, ses) if pat € {a,a, a, *z"}
GenPatStar(x, (I ...x... 1), ses,n) = (wx", sesqwx"/x[))
GenPatStar(x, (I1 ... 1), ses,n) = (x, ses(x/x) iff x & {l1,...,ln})
GenPatStar(x, a, ses,n) = (x, ses(x/x))
GenPatStar((pat, . pat,),litl, ses,n) = ((pat; . pat)),ses;) where
(pat], ses;) = GenPatStar(pat;, litl, ses,, n)
(pat!, ses,) = GenPatStar(pat,., litl, ses, n)

in-pat? : Symbol x NormalizedPatterns — Boolean
in-pat?(x, pat) = false if pat € {a,a,a,*z"}
in-pat?(x,x) = true
in-pat? (x,y) = false if x #y
in-pat?(x, (pat; . pat,) = in-pat?(x, pat;) V in-pat?(x, pat,.)

Figure 3.34: Elimination of () for syntax-rules
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rules form is a binding construct for meta-variables and therefore the rules for hygienic macro
expansion have to be obeyed. The same ideas for maintaining hygiene as for A-abstractions apply:
Whenever the meta-substitution replaces a meta-variable by an identifier in a binding position,
the whole meta-substitution has to be updated to reflect the new binding. As Figure shows,
rule (MetaSubstSR) defers this task to the function SMP. This function in turn uses a helper
function SMP’ to walk along the pattern and search for meta-variables that are affected by the
meta-substitution s. If it finds such a meta-variable, it first resolves the meta-substitution and
normalizes the pattern using the reduction —patnorm. Then SMP' uses the function VarToMVB
to turn identifiers within the result into binding meta-variables and the function VarToMV to
turn identifiers within the meta-substitution into meta-variables. However, these two functions
VarToMV and VarToMVB must only turn those identifiers into meta-variables that are not lit-
erals. As they operate on the result of a meta-substitution, hygiene requires that only the literals
created by the same meta-substitution count. As an example for a meta-variable appearing within
a pattern, consider this R°RS code:

(define-syntax ml
(syntax-rules Q)
((m1 p)
(let-syntax ((m2 (syntax-rules (x)
((m2 p) 13))))
(m2 42)))))
(m1 x)

The macro m1 is called with argument x, which is bound to the pattern variable p. The definition
of macro m2 lists x as a literal. Now the question is: Is the x in the pattern (m2 p) a pattern
variable or a literal identifier? If it were a literal identifier, the x in the literal list would have
“captured” the identifier x inserted by the macro application (m1 x)—a violation of hygiene.
Hence, the argument of m2 is a pattern variable and the above code expands to 13.

On the other hand, in the following code capturing is intended:

(define-syntax ml
(syntax-rules QO
((m1 p q)
(let-syntax ((m2 (syntax-rules q
((m2 p) 13)))N
(m2 42)))))
(m1 x (%))

Here the macro application (m2 42) no longer matches the pattern (m2 p) because p is replaced
by x and the same macro application also replaces q by (x) and therefore the argument to m2 has
to be the unbound identifier x.

Figure [3.35] defines the list of literals that are changed by the meta-substitution s as litl,.
The functions VarToMVB and VarToMV consult this list to decide whether an identifier is a
meta-variable or a literal identifier. The literals that are not affected by s is defined as litl,,. SMP
returns litl, as the new list of literals.

Having extended the parsing substitutions and the meta-substitutions to letrec-syn forms,
Figure [3:36] completes the elimination of expansion substitutions for these forms by presenting the
elimination of the shift and mark operators and the identifier substitution. The (ShiftSR) rule
propagates the shift operator to the pattern, literals and template, the rules (IdSubstSR) and
(MarkSR) do the same for the identifier substitution and the mark operator.

The elimination rules from Figures [3.34] and have moved the various expansion
substitutions to the arguments of the syntax-rules transformer and thereby parsed this form.
Propagation of the expansion substitutions to the transformer means that we have recorded the
lexical information of the macro definition to the transformer. The rules in Figure did
not propagate meta-substitutions to the pattern and the list of literals but the rules for parsing
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MetaSubstSR > tf g ::= (syn-rules pat litl ses)]sS
“Usn C MetaSubstSR x Transformers

(syn-rules pat litl sesqns)|s1§ =15, (syn-rules pat’ litl" ses,ns]s'f) (MetaSubstSR)
where (pat’, litl’, s') = SMP (pat, Litl, s)

SMP :NormalizedPatterns x LiteralList X MetaSubsts
— Patterns x LiteralList x MetaSubsts
SMP(a,litl, s) = (VarToMVB'(pat,.), litl,,, VarToMV'(pat,., s))
iff alsf —fatnorm (pat, - pat )
SMP (pat, litl, s) = (pat’, litl,,, s")
where
(pat’,s')y = SMP'(pat, s)
{ksgn € litl} U {a € litl]a]s| =7 a)}yiff litl = (1,...)
litl, = § a iff litl = a, als] —75a
0 iff litl = a,asf —%ainorm (2", ..0)
{Fam[alsf =% inorm "™ a € Litl)} iff Litl = (1,...)
litl. = < 0 iff litl = a,a]sf —q5 a
CBsgn o) Aff it = a,as] —hamorm (F2™,..0)

SMP' : NormalizedPatterns x MetaSubsts — Patterns x MetaSubsts

SMP'(a,s') = (a,s")
SMP' (Fz", 5"y = (Fz", s')
SMP'(a,s’) = (a ,s)
SMP'(a,s") = (a,s') iff a]sf —qs a
SMP'(a, s;) = (VarToMVB(pat), VarToMV (pat, s))

iff alsf ’_’patnorm pat, pat # a
SMP'((pat, . pat,), s") = ((pat]. pat,), s;)
iff (pat}, s;) = SMP'(pat,, s), (pat.,s.) = SMP'(pat,., s;)
VarToMV :NormalizedPatterns x MetaSubsts — MetaSubsts
VarToMV (pat,s') = s if pat € {a,a,a}
VarToMV (Mz",s') = s iff "™ € litl..
VarToMV (Mz",s") = s'[x/*5x™] iff *z™ & litl,.
VarToMV ((pat, . pat,), s’ VarToMV (pat,.,s;) iff s, = VarToMV (pat;, s")
VarToMV :NormalizedPatterns x MetaSubsts — NormalizedPatterns
VarToMVB(pat) = pat if pat € {a,a,a}
VarToMVB(Fx™) = Fg™ iff ¥z € litl,
VarToMVB(*2™) = x iff ¥z" & litl,.
VarToMVB((pat;.pat,.)) = (VarToMVB(pat;) . VarToMVB(pat,.))

—_ — — —

Figure 3.35: Reduction [f for syntax-rules



3.9. SEMANTICS OF SYNTAX-RULES 89

((syn-rules pat litl ses;ns)1") —1g, (syn-rules (pat1™) (Litl1") (sesrns1™)) (ShiftSR)
(syn-rules pat litl sespps )™ — G (syn-rules Mdn Ltlg™ sesppsd™) (MarkSR)
(syn-rules patlu] litl[u] ses ps[u]) (IdSubstSR)

(syn-rules pat Litl ses,pns)[u] —[gx

Figure 3.36: Elimination of the shift operator, the mark operator, and identifier substitutions for
syntax-rules forms

substitutions in Figure [3:34] and the rules for the shift and mark operators and the identifier
substitutions did attach the substitutions to the patterns and the list of literals. For the rule
for macro application of syntax-rules (ExpandMappSR) in Figure to work, we need to
normalize this pattern. The follow rule (SRNorm) from Figure performs this normalization. It
again relies on the reduction —painormthat eliminates all substitutions within patterns and literals.

(syn-rules pat litl ses pns) —SRNorm (Syn-rules pat’ litl' ses,ps) (SRNorm)

iff pat ¢ NormalizedPatterns V litl ¢ NormalizedPatterns where pat’ — patnorm pat and litl’ F patnorm

Figure 3.37: Normalization of patterns within syntax-rules

This finishes the elimination for syntax-rules forms which we can now define as:

“ELSRT 7 ()sr U 71gq Y 2@ Y 2 Use Y sk U —SRNorm

This reduction is the extension of —g.1¢ for syntax-rules transformers.

3.9.3 Elimination Rules for Patterns

This section defines the reductions —patoutand —patnormused several times in the previous sections.
These reductions eliminate expansion substitutions within patterns. As we regard the list of literals
of a syntax-rules form as a pattern as well, these functions also work on literals. Furthermore,
lexical s-expressions as found within syntactic objects are also very similar to patterns—they only
lack binding meta-variables. We therefore apply —patoutand — patnormto lexical s-expressions as
well.

Two strategies exist for eliminating substitution operators within patterns:

e Complete elimination of the operators. The normal forms of this strategy are terms of
NormalizedPatterns.

e Elimination of the outermost operators. The normal forms of this strategy are terms of
OutsideNormalizedPatterns. Patterns of this form are either basic pattern terms or pairs of
patterns with expansions substitutions (Patterns).

The elimination for patterns is necessary in the following situations:
e match and gen-subst use —patous ON the input to remove the keyword from the call.
e match’ uses —patnorm O the input if pat;;,, is an identifier or a constant.
e match’ and gen-subst’ use —patous ON the input if pat;,, is a pair.

o gen-subst uses —patout ON the input if pat;, is a pair.

litl
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e The function SMP uses —patnorm to eliminate the meta-substitution applied to literals and
patterns.

e (SRNorm) uses —patnorm t0 normalize pattern and literals in definitions.

e The definition of syntax-car and syntax-cdr use —patout to reveal the pair structure of a
syntactic object.

Patterns contain two sorts of terms not present in the mixture syntax from Figure binding
meta-variables and pairs of patterns. In addition, the rule (ParseSubstSRIAMVB) generates pars-
ing substitutions that replace symbols by binding meta-variables. We will now define elimination
rules for these terms and combine them with rules for elimination rules for the mixture syntax to
define the elimination of expansion substitutions for patterns.

Figure [3.38] contains, for all expansion substitutions the elimination rules for binding meta-
variables and listsE For the elimination of the new parsing substitutions of the form pat(a/x]), rule
(ParseSubstSymMVb) replaces a symbol by a binding meta-variable and rule (ParseSubstSymOth-
erMVb) drops the substitution for a non-matching symbol. The remaining rules (ParseSubstMVb)
and (ParseSubstList) just drop their substitution for binding meta-variables and propagate them
to the elements of a list (or pair) pattern.

x(@/x) = (e 2 (ParseSubstSymMVb)
x(y) = ()p., xiff x# y (ParseSubstSymOtherMVb)

alr) = (e, 2 (ParseSubstMVb)

(pat .. () = @p.. (pat(r])...) (ParseSubstList)
afu] = e, 2 (IdSubstMVB)

(pat .. ) [u] —=qp.. Cpatfu]...) (IdSubstList)
alsif =5, 2 (MetaSubstMVB)
(pat...) 11§ =5, (pat]s§...) (MetaSubstPat)
@1") =1p.0 2 (Shift MVB)

(- D1") =10 (T2 (ShiftList)
ag" —gp 2 (MarkMVB)

)

p..)3" =g, @3"...) (MarkList

Figure 3.38: Reduction rules for patterns

The elimination of patterns is the union of the elimination reductions presented above plus
all the rules for the syntactic base forms (constants, symbols, identifiers, and meta-variables) as
presented in previous sections. We hence omit the rules that deal with other abstract data terms
like A-abstractions or procedure applications and include only the rules for the base forms:

TELPat = (Jpac Y o Y 7 n, Y T e Y T pae Y

(ParseSubstStar) U (ParseSubstSym) U (ParseSubstConst) U (ParseSubstId)J
(ParseSubstSymOther) U (ShiftConst) U (Shiftld) U (Shift MV )J
(MarkConst) U (MarkId) U (MarkMV)U

(NormalizedMetaSubsts) U (M etaSubstConst) U (M etaSubstId)U
(MetaSubstMV) U (MetaSubst MV Empty) U (MetaSubst MV Other)U

(IdSubstId) U (IdSubstOther) U (IdSubstMV') U (IdSubstConst)

15The rules operate on lists instead of pairs for technical reasons beyond the scope of the current discussion. The
rules for pairs can be defined analogously.
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The inclusion of the rules to meta-substitutions might come as a surprise as the rule (MetaSub-
stSR), which handles meta-substitutions for syntax-rules forms, does not pass these substitutions
to the patterns. However, the very same rule uses the —patnormto eliminate meta-substitutions
while the rule builds the pattern if a meta-substitution replaces a meta-variable within a pattern
or list of literals.

The two elimination functions for patterns build on the —g)_pa reduction to eliminate expan-
sion substitutions within patterns. Two contexts, PAT and PATO, stipulate where the reduction
may take place:

PATO == []| PATO(r) | PATO[u] | PATO]s] | PATO1™ | PATOG"
PAT  :=[]| (pat...PATpat...) | PAT(r) | PAT[u] | PAT]s§ | PAT1" | PATG™

The context PATO places the reduction within the substitution operators only. PATO places
no reduction within composed patterns. In contrast, the first rule for the context PAT places the
hole within the left-most non-normalized pattern of a pattern list.

The reductions —patnorm and —patous are the extensions of the —gipar reduction to the two
contexts:

pat —patnorm Pat/ iff pat = PAT[patl]v pat' = PAT[pat2]v patl —El-Pat pat2

pat —patout pat’ iff pat = PATOlpat,], pat’ = PATO|pat,], paty —ELpat pats
We let —*

Patnorm denote the reflexive, transitive closures.

*
and Hpatout

3.9.4 Parsing syntax-rules

So far, the specification for syntax-rules transformers includes the new expansion rules (Ex-
pandMappSR) and (ExpandMappSRFail) and the reduction —g.sgr as an extension of — g1y
As required by the enumeration at the end of Section [3.5] a transformer specification also needs
to provide parsing rules that extend the reduction —pr, on which the rule (ExpandParseTrans-
former) from the core macro expander in Figure builds. Figure contains these rules for
syntax-rules forms. First, the rule (SyntaxRulesNorm) normalizes the substitutions applied to
the syntax-rules form using the —g; reduction. This allows the other two rules to use parsing
contexts that are defined based on the normalized versions of the substitution operators[f] The
rules (SyntaxRulesListPat) and (SyntaxRulesSymPat) generate the abstract syntax for syntax-
rules clauses. Rule (SyntaxRulesListPat) strips the keyword from the pattern whereas in the rule
(SyntaxRulesSymPat) the pattern is a single identifier that must correspond to a meta-variable.
Later, the (MetaSubstSR) will replace the meta-variable by a pattern and strip the keyword.

—p1C Lex-S-Ezpressions — Transformers

ses —pr ses’ iff ses’ # ses where ses —7 ses’
(SyntaxRulesNorm)

P[(syntax-rules (pat, pat, ...) litl sexms)| —pT (SyntaxRulesListPat)
P[(syn-rules (paty ...) litl seypns)]

P[(syntax-rules xys litl semns)] —p1 Pl(syn-rules xps litl seyns)]
(SyntaxRulesSymPat)

Figure 3.39: Parsing reduction for syntax-rules

This completes the semantics of syntax-rules transformers. Note that this semantics is inde-
pendent from the semantics of the computational macros from Section [3.6} The elimination rules

16 Actually, only meta-substitutions come in normalized and non-normalized variants.
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for meta-substitutions and identifier substitutions are the only rules needed from the description
of the computational macros, which are also required by the syntax-rules forms. On the other
hand, as both transformers produce the same kind of expansion substitutions, the transformers
are compatible.

3.10 Future Work Towards Full Scheme

The semantics in the previous sections already cover a wide range of the features present in
current macro-expander facilities. Unlike existing descriptions, our presentation leaves no room
for ambiguity but instead pins down the semantics precisely.

However, a few features are still missing in our description. This section sketches how extensions
implementing features would work.

A and letrec-syntax with Multiple Parameters So far, A-abstractions and letrec-syntax
forms accept only one parameter. Unfortunately, extending these forms to multiple parameters
is not compatible with our current representation of identifiers. While the level of an identifier
uniquely determines the binding form, it cannot identify a single parameter out of a list of param-
eters. At first glance, it looks as if the name of the variable could provide this information as the
names of the bound variables of a binding form must be disjoint. However, this is not compatible
with hygienic macro expansion. Consider this example, adapted from the paper by Dybvig et
al. [DHB92|:

(let-syntax ((dolet (syntax-rules ()
((dolet b)
((lambda (a b) (+ a b))
34
(dolet a))

The macro application (dolet a) substitutes a for the pattern variable b in the parameter of the
lamdba-form. However, hygiene requires the inserted a to be different from the a already present
in the template. Consequently the name of a variable by itself is not sufficient to determine which
parameter binds the variable. One solution is to use the marks of an identifier in combination
with the name. In the example above, the two occurrences of a have different marks, and this is
no coincidence: if they had the same marks, this would correspond to a duplicate variable within
a parameter list, which is an error. The drawback of using the marks and the name is that the
evaluation of expressions would need to take name and marks into account as well. As before, the
level selects the binder but then the name identifies the possible parameter positions. If there are
several possible parameter positions, the marks determine the correct position. Another solution
is to extend the identifier representation by another index that indicates the position within the
parameter list. The parser needs to generate this index once; after that the position only matters
for the equality checks on identifiers. The position index approach seems preferable as its semantics
is straightforward: the position is another index that describes the binding place of an identifier.

let-syntax and define-syntax In the definitions so far letrec-syntax is the only available
binding construct for macros. The Scheme standard defines two other forms: let-syntax and
define-syntax. Let-syntax is the non-recursive variant of letrec-syntax; define-syntax is
a top-level definition. Adding rules for let-syntax to the semantics is easy: basically the rules
for letrec-syntax can be adapted to reflect the fact that the keyword is not bound within
the transformer. For a semantics of define-syntax, top-level definitions need to be included
in the language. However, the semantics of top-level definitions in Scheme is not well-defined.
The problem is that such top-level definitions include define-syntax forms as well as global
definition via define and ordinary expressions that include macro applications. Such a top-level
macro application can expand into a global definition. This definition then extends the set of
defined identifiers. However, the Scheme standard prescribes no order for processing the top-level
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definitions during macro expansion. This is problematic, as macro expansion is sensitive to the set
of defined identifiers, the result depends on the order in which a Scheme implementation chooses
to expand the top-level definitions. Consider the following example provided by Richard Kelseyﬂ

(define-syntax foo
(syntax-rules (bar)
((foo bar baz) (baz))
((foo x baz) (define x baz))))))

(foo bar (lambda () (display ’first)))

(define bar ’second)))

Here, if the macro expander completely expands the macro application (foo bar ...), the pro-
gram prints first during evaluation. If, however, the macro expander expands the macro ap-
plication first to obtain the set of global definitions, then processes the definition (define bar
’second), and then processes the macro application a second time, this time to perform the
expansion proper, it will choose the first rule of the macro application and the program prints
second during evaluation. Consequently, to define a semantics for define-syntax, the way the
macro expander processes top-level definitions needs to be defined more precisely than currently
done in R°RS.

Multiple Rules for syntax-rules Our variant of syntax-rules allows only a single rule while
the original version from R°RS admits an arbitrary number of rules. To extend our semantics to
multiple rules, the representation of a syntax-rules transformer would contain a list of pat-
tern/template pairs in addition to the list of literals. The rule (ExpandMappSR) would then try
to match the patterns from top to bottom against the input from. If the first pattern matches,
it would call gen-subst with the corresponding template. If no pattern matches, it would fail like
our (ExpandMappSRFail) rule.

Patterns with Ellipsis Patterns with ellipsis are an important concept of the syntax-rules
facility as they enable the programmer to describe the required shape of the input form without
commiting to a fixed size. Adding patterns with ellipsis to the semantics of syntax-rules from
Section[3.9)would require an extended pattern language, extensions of the matching match function
and the function for generating the meta-substitutions, gen-subst, and elimination rules of the
expansion substitutions applied to patterns with ellipsis. For pattern with ellipsis, match would
need to repeatedly match the pattern before the ellipsis against elements of the corresponding
input form. The function gen-subst would need to bind the meta-variables from the pattern to
lists containing the corresponding elements from the input form. New rules of the reduction for
eliminating meta-substitutions —; would then ensure that these meta-variables are used only
followed by an ellipsis in the template and then construct the output according to the template
form before the ellipsis.

quote So far our language does not contain quote forms. Figure[3.40]contains the rules to extend
the parser, the expander and Macro Scheme. The rules propagate the expansion substitutions to
the argument of quote in case there are occurrences of meta-variables inside. At the end of
expansion, the strip function removes any lexical information by turning identifiers back into
symbols. It is defined as the standard reduction function of the —,ip reduction, which contains
only a single rule (StripId):

ksxn N

strip X (StrlpId)

and take place in strip contexts STRIP:

17Personal communication.
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STRIP :=[]| (se...STRIP pat...)

Besides the comparison of unbound identifiers in free-id=?¢, the rule (Stripld) is the only rule that
makes use of the name of an identifier: the name of the identifier denotes the name of the symbol.

Mixture syntax:

e n= ... (7 ses)
d, kb P[(x se)] —parse d, k = P[(?se)] iff P[x] —F quote™ (ParseQuote)
d, k& (?ses) —Expand (*strip(ses’)) where ses =% . o €5’ (ExpandQuote)
(?ses)(r) —¢ (>ses(r)) (ParseSubstQuote)
(7 ses)[u] —>[] (?ses[u]) (IdSubstQuote)
(>ses)]s§ —q5 (7 ses]sS) (MetaSubstQuote)
((?ses)T™) —1 (P (sesT™)) (ShiftQuote)
(Pses)d™ — 4 (Psesd™) (MarkQuote)
((?ses)|™) — (*ses) (UnshiftQuote)
ES[(’ses)] —gs (7 ses) (EvalESQuote)

Figure 3.40: Mixture syntax, parsing, expansion, elimination and stripping for quoted forms

Macro Scheme and State The definition of Macro Scheme does not include state. This
ensures that the input of a macro application can only be used within the expansion of the macro
application. If a macro could access code from other macro applications from a foreign scope and
would include this code in its output, hygiene would break because the foreign identifiers would
no longer refer to their original binding places. Consequently, for a version of Macro Scheme that
includes state, accessing code from foreign scopes needs to be prohibited. I do not think this would
limit the expressiveness of the macro system but I have not yet found a good solution to enforce
this restriction.

Full Macro Expansion for Macro Scheme So far, the syntax-lambda construct does not
support meta-variables as binding variables. This means that macros that expand into macro def-
initions using es-transformer must not use their meta-variables as binding variables of syntax-
lambda forms. Two extensions are necessary to enable such macros:

e The mixture syntax representation of syntax-lambda needs to distinguish binding meta-
variable and occurrences of meta-variables. This has already been demonstrated in the
syntax-rules transformer from Section

e As these macro-generating macros may insert references to meta-variables within the scope
of a syntax-lambda, it is necessary to add levels to meta-variables as well. The techniques
demonstrated for ordinary identifiers can be adapted mutatis mutandis.

3.11 Comparison with the Work of Bove and Arbilla

The idea of using explicit substitutions to explain hygienic macro expansion is due to Bove and
Arbilla [BA92]. Programs in their calculus consist of a set of macro definitions and an expression,
which contains macro applications. There is no construct for local macro definitions. A macro
definition contains a list of variables and meta-variables as its right-hand side and an expression
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with meta-variables as its template. The macro writer has to provide the template as abstract
syntax. Likewise the body of a program has to be specified as abstract syntax. Bove and Arbilla
use identifiers with levels to represent variables. However, in their calculus the level specifies
the distance to the binding place of the variable as the number of A\-abstractions that bind the
same name. Consequently, identifiers in the source program always have a zero index and can be
omitted. This fact and the circumstance that the source language of macro expansion is already
abstract syntax makes the use of a parser superfluous. The operators of the calculus are the same
as ours but their shift operator also performs the task of our identifier substitution and therefore
needs three indices instead of one.
Our work makes the following improvements over the work by Bove and Arbilla:

1. Inclusion of a computational macro transformer, namely es-transformer. The Bove and
Arbilla only define a rewriting based transformer, which is much simpler as no meta-language
(for us this is Macro Scheme) needs to be defined.

2. We have support for local macro definitions. By applying the shift operator to the definition
set, we can move the set into local scopes and there extend it by new macro definitions.

3. Conformance to the second condition for hygienic macros [CRII]: References inserted by
macros can only be captured by bindings inserted by the macro.

4. True support for literal identifiers. The original work claimed to support literal identifiers
(called keywords there) but did not consider intermediate bindings for these keywords.

5. Redefinition of special forms (for example lambda) and the ability to specify concrete syntax
instead of abstract syntax as input terms through an explicit parsing phase.

6. Our pattern language permits arbitrarily nested patterns instead of a flat list of arguments.
Thereby, our pattern matcher lazily matches the macro arguments with the pattern to ensure
that only the necessary part of the arguments is touched.

7. Levels of identifiers increase with every binder, independent of the name. This corresponds
to real-life implementations of static scoping.

8. The use of contexts significantly simplifies the presentation.

9. Support for recursive macros. Recursive macro definitions are commonly used for syntax-
rules transformers to process inductively defined syntactic extensions.

10. Exact evaluation strategy.

For the forth improvement, an example program that fails to preserve hygiene in the Bove and
Arbilla calculus is{¥]

(define-syntax curryf
(syntax-rules ()
((curryf a b) ((f a) b))))

(lambda (£f) (curryf 1 2))
The original calculus expands this example to:
(AF((F°1)2))

That is, the identifier f, inserted by the macro, gets captured in the expanded program. The
technical cause of the problem in the Bove/Arbilla calculus is that it does not modify the level of

18To improve readability, the example is written in concrete syntax , even though the Bove/Arbilla calculus can
work on abstract syntax only.
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identifiers present in the macro definitions as expansion moves into the scope of A-abstractions.
This means that the calculus does not record the lexical information at the macro definition. On
the other hand, our semantics correctly expands the example to:

(Af((f'1)2)

That is, the inserted identifier is not captured but refers to the top-level binding as it did when the
macro was defined. Our semantics achieves hygiene by propagating the lexical information into
the macro definition. More specifically, during the expansion of the body of an abstraction, the
expansion relation applies the shift operator to the macro definition as well. The shift operator
applied to a macro definition will shift the right-hand side of the macro definition.

An example program for the third improvement is@

(define-syntax mylet
(syntax-rules (be in)
((mylet var be expr in body)
((lambda (var) body) expr))))

(lambda (be) (mylet x be 1 in x))

Here, the Bove/Arbilla calculus erroneously detects a correct application of the mylet macro,
even though the identifier be does not have the same binding at macro definition as at macro
application and must therefore not match the be keyword.

In our system the macro application correctly does not match the definition of the mylet
macro. Again, our semantics improves over the Bove/Arbilla calculus by propagation of lexical
information to the macro definition. This time, the shift operator preserves hygiene by shifting
the left-hand side of the macro definition: The literals are identifiers within the pattern and the
shift operator increments their levels as it processes the pattern.

The only downside of our semantics compared to the original work is that the equational
theory in our semantics is weaker: Unlike the Bove/Arbilla calculus, expansion cannot happen
under explicit substitutions. This is a consequence of adding a parsing phase, which of cause
makes our work substantially more realistic than the calculus of Bove/Arbilla. In addition, our
semantics prescribes an exact order for the reductions which is not desirable of a calculus. This
can be remedied by altering the contexts so that they no longer uniquely divide terms into context
and redex. Of course, then confluence of the rules needs to be proved, which is an important
aspect of the work of Bove and Arbilla.

9The Bove/Arbilla calculus would specify that be and in are literals using the abstract syntax.



Chapter 4

Semantics for Modules

Modules appear in all phases of program evaluation: During parsing and macro expansion modules
define name spaces. Modules represent the units of compilation. Linking combines modules to
form a program. Evaluation manipulates higher-order modules as values. Each of these roles also
influences aspects of the whole language. Name spaces are closely related to the representation of
identifiers. While the algorithm for hygienic macro expansion from Chapter [3| build on identifiers
with labels to track the binding places of variables and keywords through macro expansion, labels
are not sufficient to represent binding places located in other modules. Instead, the represen-
tation of identifiers needs to be extended to denote the module exporting the identifier as well.
Independent compilation and linking require the language to limit the compile-time extent of its
constructs to the body of a module or to make it possible to derive the needed information from
the interfaces. Finally, the evaluation rules need to handle first-class modules as values with their
own scoping and reduction rules.

This chapter describes a language with a higher-order module system, independent compilation,
and hygienic macros. The resulting new language is called AM°d"¢. The extension builds on a
new representation of identifiers that supports modules as binding places. A module body may
contain identifiers that are not bound by the module or a A-abstraction. Instead the module
may have imported the identifier from some other module by importing an interface that lists the
identifier as exported. Within the abstract syntax, there needs to be a way to describe the binding
place for such imported identifiers. AMedule therefore adds an import path to the representation
of identifiers. An import path describes the series of interfaces that the current module used to
import an identifier. Using these new identifiers, we can define parsing and macro expansion for
module bodies and module definitions. The linking phase for AMedule jg then a set of reductions
that use explicit substitutions to replace these identifiers by values defined in imported modules.
In the present semantics, the linking phase assumes the imported module to be fully evaluated,
which precludes mutually recursive modules. However, alternative formulations that remedy this
restriction are conceivable. The evaluation of higher-order modules also uses explicit substitutions
to propagate the values bound variables to the bodies of modules that appear within expressions.

4.1 Identifier Representation and Linking for Modules

A module is a new binding construct that contains a set of macro definitions and a set of variable
definitions. As argued in Section [3.10} we omit top-level macro applications as their semantics is
not well-defined in Scheme. Each definition within the module consists of a name and a right-hand
side. For a macro definition, the right-hand side is a transformer, for a variable definition, the
right-hand side is an expression. The names of all definitions are bound mutually recursively in
all right-hand sides. The macro definitions from the module’s export interface extend the set of
definitions. In addition, a module imports evaluated definitions and macros from other modules.
Importing another module binds the names of the imported definitions in the right-hand sides of

97
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the definitions to the values and transformers from the imported definitions. The export interface
of the imported module restricts the set of definitions that other modules can import.

With the addition of modules, variable occurrences in the right-hand side of a definition can
now be bound either by a A-abstraction, or by a definition, or by an imported module. The
identifier representation with levels from Chapter |3] is not sufficient in this setting: While the
level can select a module as a binding place, it is not enough to describe for an imported variable
the module that provides the binding for the variable because the imported modules are all “on
the same level”E| Because of macros, the name of the variable also does not provide sufficient
information: While the module system requires the names exported by the imported modules to
be disjoint, an exported macro could insert a variable occurrence whose name is also imported
from a different module. Hygiene requires that the two names do not interfere. For example,
consider this program written in the language from Chapter [2}

(define-interface foo-interface
(export x))

(define-interface bar-interface
(export (define-syntax insert-x
(syntax-rules ()
((insert-x) x)))))

(define-module foo foo-interface
(open scheme-interface)
(begin

(define x 23)))

(define-module bar bar-interface
(open scheme-interface)
(begin

(define x 42)))

(define-module baz (export)
(open scheme-interface
foo-interface
bar-inteface)
(begin
(define y x)
(define z (insert-x))))

(define-program p
(modules foo bar baz))

The variable occurrence x in module baz is supposed to refer to the binding in module foo; its
value will be 23. The right-hand side of the definition of z is also a variable occurrence with
name x, but it has to refer to the binding in module bar as the macro insert-x from module
bar inserted this occurrence. Its value will be 42. Therefore, to support modules with macros, we
extend the identifier description to contain an additional import path that describes the module
that contains the binding for the identifier. The import path comprises a sequence of interfaces that
corresponds to the path the identifier took while being inserted. The import path of an identifier
contains more than one interface if the identifier has been inserted by an imported macro and
the interface providing the macro has in turn imported the identifier from another interface. This
interface might in turn have imported the identifier through another macro and so on.

1Defining some order among the imported modules would remedy this problem but fails in the case of higher-
order modules.
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The final ingredient necessary to complete the representation of identifiers in the presence of
modules is the treatment of unbound identifiers. Unbound identifiers play an important role as
literal identifiers in pattern-based macros where macro writers use them to structure syntactic
extensions. The else literal from the cond macro is one such example from R’RS. The parser in
Chapter [3| uses the x-substitution to assign a level pointing to the global scope (the scope out-
side any local binder) to such unbound identifiers. The function free-id=?¢, used by the primitive
free-identifier=7 and the syntax-rules pattern matcher, is able to recognize unbound iden-
tifiers as equal by comparing their name and the level. As an example for unbound identifiers in
the presence of modules, Section defined the if-t-e macro with the literals then and else
and introduced the free clause within an interface:

(define-interface if-t-e-interface
(export

(open scheme-interface)

(free then else)

(define-syntax if-t-e

(syntax-rules (then else)

((if-t-e test then cons else alt)
(if then else))))))

The free clause lists identifiers that the exported macros of the interface assume to be unbound.
However, within the macros defined in an interface the level is no longer sufficient to select a global
scope where unbound identifiers are “bound”: The purpose of an interface is to provide the static
information of all modules that implement this interface. However, as these modules may appear
within the scope of other binders, the level—that is, the number of binders between the identifier
occurrence and its binder—differs for modules that appear at different lexical depths. Hence we
use the import path of an identifier instead of the level to denote that an imported interface
assumes an identifier to be unbound. We initialize the import path of the identifiers from the
interface’s free clause with a special interface, the free-interface. In addition, the top-level
*-substitution initializes the import path of the identifiers it creates with free-interface. Hence
the top-level *x-substitution of the parser is se(]w*(}ﬁ_ee (/*) and whenever this parsing substitution
applies to a symbol, it generates an identifier with the free-interface as its import path. As
the parser applies the x-substitution as outermost substitution, it only applies to symbols without
binders—the unbound identifiers. Two identifiers are equal according to free-id=? if they have
the same level and the same import path, or if they have the same name and both contain free-
interface in their import path. The first case covers bound identifiers and the second case
corresponds to the comparison of unbound identifiers.

Sections [4.3] and contain the parser and the macro expander that expand macros within
modules and construct identifiers with levels and import paths on the way. During this process,
interfaces play an important role as they contain the macro declarations of the imported macros.
However, during linking and evaluation, the actual contents of the interfaces can be (mostly)
neglected as will be explained below.

Having a representation for identifiers, the remainder of this section introduces some other
concepts necessary for linking and evaluation: evaluation of programs, using explicit substitutions
to formalize linking, semantics of definitions, and linking in the presence of macros.

For the evaluation, we start from an expanded program that already contains identifiers with
levels and import paths. Evaluation of a program is the evaluation of all modules in the program
in the evaluation order derived during configuration. Evaluation of a module is the evaluation of
the right-hand sides of the definitions from the module’s set of variable definitions. During the
evaluation of the definitions the imported identifiers need to be bound—evaluation of the imported
modules produces the corresponding values. Therefore, it is either necessary that evaluation
processes all imported modules of a module before the module itself or that the imports are
placeholders that can be assigned as soon as the corresponding definition has been evaluated. As
the latter approach supports mutually recursive definitions, we use placeholders. The details of
using placeholders will be explained below when we turn to the semantics of definitions.
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Section [2.3] calls the process of binding the imported variables to values from the imported
modules dynamic linking. Dynamic linking of a module happens before evaluation of the module
but after evaluating the imported modules. Thus the dynamic linking of modules is interleaved
with the evaluation of a program. To formalize the linking step, the AMedule calculus uses explicit
substitutions that replace variables by values. This kind of substitution is not new: the —gn
reduction from Section [3.3] also relies on these substitutions to describe function application. The
—pgn reduction replaces the bound variable of a A-abstraction by the values of the operands using
evaluation substitutions (written (D). Hence, AMedule extends evaluation substitutions to work on
import paths and uses them to describe linking. However, linking does not directly generate the
evaluation substitutions when importing a module. Instead, it first records the imported names
along with their values in a special data structure called the template (See Section . As defined
in Section [2.3] a module with a template is called a package. After linking has resolved all imports,
evaluation of the definitions of the package generates evaluation substitutions from the template.

Definitions are a new concept in A%Odule—/\n only encompasses expressions. Hence, a closer
look at the semantics of definitions is necessary. We model them like top-level definitions in
Scheme: the definitions are mutually recursive and support mutation. The denotational semantics
for Scheme achieves both features by adding an additional layer of locations to the mapping from
identifiers to values. A location is a mutable place in the store. Scheme binds identifiers to
locations and dereferences the locations for variable occurrences. The set! expression mutates
the binding of an identifier by mutating the location the identifier is bound to. Locations also
help expressing recursive bindings such as global definitions. The evaluation of the right-hand
side of a definition proceeds with an environment where the name of the definition is bound to an
uninitialized location. After the evaluation of the right-hand side, evaluation sets the location to
the value of the right-hand side.

To support locations with state, we adopt the representation of the denotational semantics
of R°RS [KCRO8| and add a store and locations to the abstract syntax. Furthermore, set-loc!
expressions set the contents of a location and ref expressions dereference locations.

In the presence of state, it is also necessary to specify whether a module imports the bindings
or the values of the variables from another module. The reason is that if a module mutates a
variable that has been exported to other modules, the two cases yield different effects: If the
binding of a variable is exported, all modules importing such a mutated variable see the new
value of the variable after mutation; if the value is exported, mutation has no effect on the other
modules. The description of templates earlier in this section described that importing extends the
template by a pair of name and value. Hence, our modules export values. However, the value of a
top-level variable is always a location and mutation modifies the value at the location in the store.
Consequently, modules perceive the mutation of imported variables.

The presence of macros obscures which variables linking needs to replace by values in order to
import a module. This set of variables is not equal to the variables listed in the interface nor to
the variables contained in the set of definitions of the exporting module:

1. An imported macro can expand into code containing variables bound by the exporting
module but not listed in the interface. We call these variables “hidden exports.”

2. A module can export variables it imported from another module. Such an export is called a
“re-export;” it is not contained in the set of definitions.

3. Finally, a combination of the two cases above is possible: An imported macro can expand
into code with free variables not listed in the interface, and the exporting module imports
these variables from another module. We call them “hidden re-exports.”

We will now show how linking binds variables of these three classes to values.

Hidden Exports Unfortunately, it is impossible to derive the list of hidden exports from the
macro definition. Finding this list amounts to determining the identifiers inserted by the macro:
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e For syntax-rules-based macros the identifiers used are the identifiers in the right-hand side
of the transformation rules that are used outside of a quotation. However, distinguishing
quoted from unquoted code needs to track calls to other macros and observe bindings of the
quote syntax. The latter is impossible to analyze statically. Assume, the following macro is
exported:

(define-syntax foo
(syntax-rules ()

((foo a) (a b))))

For the macro call (foo quote), the foo macro has no hidden exports. For macro calls
(foo z), where z is bound to a variable, foo exports the identifier b.

e For computational macros as presented in Section |3.6|another difficulty arises: These macros
may compute the output and, via datum->syntax-object, also introduce identifiers whose
names have been computed (e.g. from a string). In this case, the set of inserted identifiers
for these macros is clearly undecidable and may include any identifier.

To conclude, the list of identifiers inserted by a macro is not computable.

There seem to be two ways to accomplish linking of hidden exports despite the impossibility
to predict the free variables in the output of macros: By explicitly stating the list of indirectly
exported identifiers as in Blume’s proposal [Blu97] or by simply trying to link all identifiers defined
in the exporting module. As our identifiers have an associated import path, the latter technique is
feasible. The linker learns from the import path when a variable refers to the module the linker is
just about to import. Unlike Blume’s approach this technique also supports computational macros
that introduce arbitrary identifiers: such identifiers still have an import path that guides the linker
but as argued above it is, in the general case, not practical to list all possible identifiers in advance
as required by Blume. A drawback of our approach is that a compiler does not know which
variables of a module are exported and must hence be careful with certain optimizations such as
inlining these definitions. In addition, it is not statically decidable whether a module implements
its export interface because the module might fail to define some of the hidden exports of the
interface. On the other hand, for Blume’s proposal it is impossible to decide statically whether
the list of indirect exports contains all identifiers inserted by the exported macros and hence to
check for an interface whether the declarations of indirect exports and the macro definitions are
consistent which each other.

Re-Exports Dealing with re-exports is next. Consider the following example:

(define-interface a-interface
(export a))

(define-module mod-a a-interface
(open scheme-interface)
(begin

(define a 23)))

(define-interface b-interface
(export a))

(define-module mod-b b-interface
(open scheme-interface a-interface))

(define-module mod-c (export)
(open scheme-interface b-interface)
(begin
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(define in-c a)))

(define-program p
(modules mod-a mod-b mod-c))

Here, module mod-a exports identifier a via interface a-interface, module mod-b imports a-
interface and exports identifier a via b-interface, and module mod-c imports interface b-
Rinterface, an occurrence of identifier a in module mod-c will be parsed as a reference to b-
interface. The reason is that during the (independent) compilation of module mod-c, the parser
does not know which module will satisfy the import b-interface. However, module mod-b does
not contain a definition of a. Consequently, parsing and macro expansion leads toﬂ

(define-module mod-a a-interface
(open scheme-interface)
(begin
(define a 23)))

(define-module mod-b b-interface
(open scheme-interface a-interface))

(define-module mod-c (export)
(open scheme-interface b-interface)
(begin
(define in-c ag—interface)))

That is, the variable a in module mod-c refers to the interface b-interface. During linking,
module mod-b will satisfy this import but does not provide a definition for a as it re-exports a.

One approach to support re-exports is to add definitions for all imported variables to each
module. The right-hand side of these definitions are a reference to the imported variable. Thus,
the expansion of mod-b becomes:

(define-module mod-b b-interface
(open scheme-interface
a-interace)
(begin
(define a ag—interface) ))

and the linker can replace the reference in module mod-c by the value from module mod-b. Adding
these definitions is always possible as the imports must be disjoint from the set of definitions. A
consequence of this approach is that it introduces a new binding for the variable, which might be
undesirable. Alternatively, the linker could add an entry to the template for every variable in the
interface. The identifier of the entry would have an empty import path. The value of the entry
would correspond to the imported value. As the imported values are the locations of the variables,
this approach would preserve the binding of the exported variable. We chose the first approach
because it seems easier to implement.

Hidden Re-Exports Hidden re-exports require less work than non-hidden re-exports: a hidden
re-export still references the defining module. However a non-hidden re-export is a reference to the
re-exporting module, not to the defining module. In the example above, if module mod-b would
define and export a macro m that inserts a reference to identifier a, the reference to identifier a in
the expansion of m within mod-b would point to module mod-a as imported identifiers are bound in
the right-hand sides of the macros. If module mod-b exports m, the reference to a in the expansion
of m within mod-c would get as its import path b-interface,a-interface:

2We always use the names of the interfaces in the configuration language instead of the actual interfaces to
represent import paths.
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(define-interface a-interface
(export a))

(define-module mod-a a-interface
(open scheme-interface)
(begin
(define a 23)))

(define-interface b-interface
(export
(define-syntax m
(syntax-rules ()

((m) a)))))

(define-module mod-b b-interface
(open scheme-interface
a-interface)
(begin
(define b (m))))

(define-module mod-c (export)
(open scheme-interface
b-interface)
(begin
(define hurz (m))))

(define-program p
(modules mod-a mod-b mod-c))

Parsing and macro expansion leads to:

(define-module mod-a a-interface
(open scheme-interface)
(begin
(define a 23)))

(define-module mod-b b-interface
(open scheme-interface
a-interface)
(begin
(define b aaol—interface)))
(define-module mod-c (export)
(open scheme-interface b-interface)
(begin
; 0
(deflne hurz ab—interface,a—interface) )>

For linking of hidden re-exports, it is neither necessary nor would it be correct to extend the set
of definitions of the re-exporting module: The import path of a hidden re-export already contains
a reference of the defining module and, as the export is hidden, there is no guarantee that the
re-exporting module does not itself have a definition for this name. Instead, an extension of the
“link all” mechanism the linker uses to resolve hidden exports is required: Rather than adding
the defined variables of the imported package to the template, the linker simply adds the contents
of the template of the imported package to the template—with the import path extended by the
interface the linker is about to satisfy. This way, the linker also adds entries for the variables
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that the imported module has imported itself. In the example above, the linker adds an entry
for the identifier ad_; ;o tace t0 the template of mod-b while importing mod-a and during linking
mod-c, the linker adds entries for the identifiers al_; ;orface A1d Py-intorface a-interface: OFf COUTSE,
the template can get quite large this way and a realistic linker would add only the identifiers
referenced in the module body and remember the identifiers it has omitted (along with the export
interface) for future linking steps where this template is imported.

The concept of hidden exports and re-exports extends to keywords. Keywords need to be
treated by the macro expander only; the linker does not see keywords. Consequently, the template
does not map keywords to macro transformers.

At this point, it is also clear why the contents of interfaces do not matter for linking: The
linker may import all variables from the template of the exporting package because it adjusts the
import path of the variables in the template of the importing package. It is the task of the parser
and the macro expander to introduce only references to imported identifiers which are either listed
in imported interfaces or inserted as hidden exports by imported macros.

4.2 The AMedule Calculus

This section defines the syntax and an operational semantics for AMedule 3 Janguage with modules
based on the call-by-value lambda calculus. As motivated above, the mutually recursive definitions
require the introduction of a store. The value of a variable bound by a definition is a location in
the store, and the store maps the location to the value proper. However, the programmer does not
deal with locations directly. Instead, we assume that a pre-processing phase has augmented all
references to variables bound by definitions with the new primitive ref, which fetches the value of
the location from the store. Analogously, mutations of these variables are assumed to be replaced
by calls to the primitive set-loc, which stores the value in the store at the place denoted by the
location bound to the variables. For the sake of simplicity, A-abstractions still bind variables
directly to values, and these variables do not support mutation.

In our calculus with modules, evaluation is not to limited to expressions but must cover the
evaluation of a program and its modules as well. Thereby, it needs to incorporate the generation
of packages from modules and the dynamic linking of packages. To perform these tasks, the
semantics defines the following reductions:

e The reduction —poqule reduces a module to a package. As introduced in Section [2.3] a
package is a module with state, represented by the template that maps identifiers to values.
The values in the template are locations in the store that point to the actual values. The
reduction —poqule initializes the template with a mapping from the names of the module’s
definitions to fresh locations, which point to a default value in the store.

e The reduction —j,x performs the dynamic linking of packages. Each reduction step satisfies
one import of a package: It extends the template of the importing package with the con-
tents of the template of the exporting package, extending the import path of the imported
identifiers by the interface of the exporting module.

e The reduction —cval-package accepts a fully-linked package and evaluates the definitions of
the packages. It first uses the reduction —ya1 to evaluate the expression on the right-hand
side of the definition. Afterwards, reduction —eval-package records the resulting value in the
store where it replaces the default value.

e The reduction —cy, is the ordinary expression evaluation reduction for A,, from Section [3:2]
augmented by reduction rules that deal with locations and hence access the store.

e The reduction — g drives the overall evaluation of programs. It uses the reduction —odule
to turn modules into packages, the reduction —y, to link packages, and the reduction
—eval-package 10 evaluate fully-linked packages. At the beginning, a program is a set of
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modules, at the end, — 0z has turned each of these modules into a fully-linked, evaluated
package.

This section contains the definitions of these reductions and the accordant abstract syntax. It
also extends the — .y, reduction to cover higher-order modules. This evaluation of higher-order
modules works by augmenting the —eya reduction with the —,0qule reduction to evaluate mod-
ule expressions to packages and including rules for primitive operations that use the —nx and
the —eval-package Treductions to link and evaluate packages. Hence the semantics employs the
three reductions —module; —1link, ad —eval-package i two different contexts: once during program
evaluation for top-level modules and once during expression evaluation for higher-order modules.
Finally, to finish support for higher-order modules, the elimination of evaluation substitutions
needs to be extended to cover packages as well.

4.2.1 Abstract Syntax

We first define in Figure the abstract syntax for the evaluation of AMed%e Tts starting basis is
the abstract syntax for A,, from Figure[3.2] As already mentioned in the examples from Section [£.1]
identifiers now contain an import path in addition to the label and are written as z} where
n is the level and i... is a sequence of interfaces. An interface, written I,(x...), consists of
a unique identifier ¢ and a list of exported variables, (x...). This representation is sufficient
during program evaluation: Linking uses the unique identifier to compare interfaces; the list of
exported variables limits access to the contents of a module at run time. During parsing and macro
expansion, different representations of interfaces are required as shown in Section[£.3] Applications
remain unchanged and evaluation substitutions still have the form ect). However, in AMedule apn
evaluation substitution carries a sequence of pairs of identifiers and values, which is reflected
in the new definition of ¢. As we will see later, evaluation of a package body generates such an
extended evaluation substitution from the contents of the package’s template. We extend the set of
expressions by applications of primitives, written as (QQ z e ...) and assume that the compiler has
inserted the @@ after macro expansion. In addition, modules, written as ‘M pen - defs, extend
the set of expressions. For a module, p is the unique identifier of the module, i is the export
interface of the module, i ... is the set of interfaces that the module imports, and defs are the top-
level definitions of the module. A single definition def, written (A z e), is a pair that comprises
the name x and the associated expression e. A package starts out with the imported interfaces
and the definitions inherited from the corresponding module. As linking proceeds, it resolves the
interfaces and replaces them by references in the template. The final result of linking is a package
without imports. For each definition, evaluation reduces the right-hand side to a value, mutates
the corresponding location in the store to record the value, and removes the definition from the
package. At the end, evaluation has removed all definitions and the package is fully evaluated.
To represent this process in the abstract syntax, two sorts of packages extend the set of values:
Packages are packages which have not yet been fully linked and evaluated, and FvaluatedPackages
are evaluated packages. FEwvaluatingPackages is a subset of Packages and contains the packages
which have been linked but not yet fully evaluated. The abstract syntax represents members of
Packages as inZPen - defs(t), where p is unique identity of the module the package represents
at run-time, ¢ and ... are the export and the imported interfaces of the package respectively,
and t is the contents of the package’s template. For these contents, the abstract syntax uses
the same representation as for evaluation substitutions: a sequence of pairs (z7 ,v), where zI"
is an identifier and v a value. We will use this similarity later when we use the bindings from
the template for the evaluation of expressions within the package. Linking proceeds by removing
interfaces from the list of imported interfaces (and augmenting the template). Hence, for a fully-
linked but not evaluated package, the list of imported interfaces is empty. The meta-variable evp
ranges over these evaluating packages. An evaluated package is written as ?Pg ,(t) and contains
only the unique identity of the corresponding module, the export interface, and the template.

The set of values contains constants and A-abstractions as before. The new values are packages
in all stages, locations loc, and quoted s-expressions as presented in Section [3.10)
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Syntactic Domains:

a € Const

x e Vars

e c ATI\l/Iodule

m € ImportPaths = RunTimelnterfaces”
se € S-Ezpressions

t € (Ids x Values)*

def € TopDefinition

defs € TopDefinition™

loc € Locations

store € Stores

€ P(Locations x Values)

€ RunTimelnterfaces

€ Interfaceldentifiers

€ Modules

€ Moduleldentifiers

€ Packages

evp € FwvaluatingPackages C Packages
ep € EvaluatedPackages

l € Modules x RunTimelnterfaces x Modules
le e P()

prog € Programs
Abstract Syntax:

@tg@s.%

e n=al | (Qee...) | ettd | (@Qze...) | m|v
m H= g

v :=al(Nz.e)|pl|evp|ep]|loc|(’se)

t = (2, v) ...

def = (Aze)

defs = def...

i n=Tg(x. )

m n=CMEER o defs

P = (PGP T defs(t)

evp BES ngpren defs(t)

ep n="Pg,(t)

! n= (i)

le n={l...}

prog = Proglep...m...| Progleep...evpp...
store = OllFprog | OllFm | Ollkp | Gii-e

0 = {(loc v), ...}

Figure 4.1: Abstract syntax for programs with modules
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The abstract syntax represents programs as Prog le p...m...or as Progle ep...evp p.... In
the first case, program evaluation is about to turn all modules into packages. Once this is finished,
the second case applies: a program contains a linking environment le and a sequence of evaluated
packages, ep. .., a package that is currently subject to evaluation (evp), followed by non-evaluated
packages (p...). The link environment is a set of links (u1, 7, o), which means that the module
with the unique module identifier uo satisfies the interface import i of the module with the unique
module identifier ;.

Finally, programs, modules, packages, and expressions can be paired up with a store. The
configuration of a store, written as 6, is a set of pairs consisting of a location and a value. We
write - to separate the store configuration from the entity that contains the references into the
store.

4.2.2 Evaluation of Programs

With the abstract syntax for programs and modules in place, we can turn to the description of
the evaluation. Figure shows the evaluation of programs as a reduction —p;0s. The purpose
of program evaluation is to control the initialization, linking, and evaluation of packages. There
are three rules. The first, (ProgramEvalModule), evaluates the top-level modules of the program
into packages. The rule uses the —gyaiModule reduction to create the template for the package.
Figure[4.3| contains the rules for this reduction, it will be described next. The remaining rules work
on programs consisting of packages only, hence (ProgramEvalModule) first turns all modules into
packages. Initializing all packages before evaluation is necessary for mutually recursive modules,
even though we do not cover them here. The second rule, (ProgramLink), selects the first non-
evaluated package from the program’s package. In the rule, the module identifier of this package
iS fimp- FOr flexp, the first interface this package imports, the link (fimp, fexp, fexp) in the link
environment determines the package with module identifier pcy, that satisfies this import. We
assume this package to be fully linked, hence modules cannot be mutually recursive. Section
sketches the necessary extensions to support mutually recursive modules. The reduction —jipni
performs the actual linking. It takes as redex the triple consisting of the importing package, the
interface, and the exporting package and reduces to the importing package with the template
extended by the pairs from the exporting package. Figure [£.4] contains the —jin reduction, it
will be described below. The third rule of the — .o reduction, (ProgramEval) evaluates the first
linked but not evaluated package evp. To that end, it reduces the package using the standard
reduction of —¢valpackage fOr evaluating packages from Figure Package evaluation affects the
store, hence (ProgramEval) evaluates the package with the current store configuration and returns
a new store.

The three reductions used by program reduction are presented next. Figure [£.3] contains the
reduction for modules. It contains only one rule, (EvalModule), that evaluates a module to a
package. The difference between a module and a package is the presence of state in the package.
The template represents this state by providing a mapping from identifiers to mutable locations.
The rule initializes the template with bindings for the definitions of the module. The value is
initially set to 0, but in real life some special value that indicates an non-initialized location
would be used. As this rule acts as a reduction rule for higher-order modules as well, it uses
the context Ey , to select the module to be reduced within an expression. The description of
expression evaluation in Section contains the definition of this context. For now, we can
assume it to be defined as the hole [ ], because during reduction of top-level modules in rule
(ProgramEvalModule), this context is indeed always empty. Section integrates this rule into
the evaluation of expressions. The rule uses a function gen-loc to generate fresh locations in the
store.

Next, the linking reduction —yx performs the dynamic linking of a package. It extends the
template of a package by bindings for the variables from an imported module and also adds
bindings for (possibly) re-exported variables to the template. Figure contains the rules for
dynamic linking. The reduction —j,i consists of three reductions each containing just one rule.
Using this split, the types of the rules can be defined more precisely.
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Ol Prog le p... my ma... —prog 0" - Prog le p... py ma... (ProgramEvalModule)
iff 6 IF m1 —module 8 IF py

0l Prog {Iy ... (i, i, pte)la -} epy .. (P, (te)) eps... (*PgF™ "' defs(t)) Py ... —prog
(ProgramLink)

Ol Prog {l1...1a...} epy ... (iePgMe<te>) €Pg... Py Pg---

v

where <(%ng}i’e“ iei“'defs(ti>), o, (% Pg,. (te>)> = Dy

6 lI- Prog le epy... evp p... —prog 0 - Prog le epy ... epp... (ProgramEval)
i 0 1IF evp =3 al package 0" II- ep

Figure 4.2: Program reduction

(loc v)... I Eqp[*MP™ * (A z e1)...] —module (EvalModule)
(loc v) ... (l0Ctesn 0) ... IF Eqy[(* PgP® YA ze)... ()]

where locfresh - - - fresh and ¢ = (29, locgresh) - - -

Figure 4.3: Module reduction

First, rule (Link) reduces a triple consisting of the importing package, the name of the interface
to be linked, and the exporting package to a new triple consisting of the importing package with
the template extended by the imports, the names from the interface, and the exporting package.
The figure defines the type of this triple as LinkingMap. The linker uses the identifiers from the
template of the exporting package and extends their import path by the interface to be linked.
That way, the linker builds up the import paths for the variables in the template. Sections [4-3]
and explain how the parser and the macro expander build the corresponding import paths
for variable references. Next, the two remaining rules process the resulting triple. For the first
exported variable, rule (LinkReExport) adds a new variable/value pair to the template. The
variable receives zero as its level and an empty import path, just like a variable defined within the
package. Adding such a variable to the template is always possible as imports must be disjoint
from the variables defined in a module. The rule takes the value for the new template entry from
the exporting package. As this value is always a location, a mutation of the re-exported variable
will affect the original binding as well. The last rule (FinishLinkReExport) matches when the
list of exported identifiers is empty and reduces to the importing package whose template now
contains all exports of the exporting package.

Evaluation of packages comes next. Evaluation of a package can only proceed after linking has
resolved all imports of the package. Then evaluation of a package evaluates the set of definitions
of the packages and moves the values of the evaluated definitions to the template.

Figure contains the single rule (EvalPacDef) for the evaluation of packages. The rule
evaluates the right-hand side of the first top-level definition using the evaluation reduction for
expressions. The template of the package provides the variable bindings for the evaluation of the
expression. To that end, the rule binds the contents of the template to the meta-variable ¢ and
applies the evaluation substitution (¢) to the expression e. The evaluation starts with store 6
and produces a new store and a value v,4. To record this value as the value of the definition,
the rule (EvalPacDef) modifies the store just obtained. It gets the accordant location loc from
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LinkingMap = FvaluatingPackages x Vars™ x EvaluatedPackages
—link; C (EvaluatingPackages x RunTimelnterfaces x EvaluatedPackages) x LinkingMap
—link, © LinkingMap x LinkingMap
—links © LinkingMap x FEvaluatingPackages

(= Pyggen -0t efs (v} . ), (L. ), (0D Py, (w6} . ) =t
(Link)

<(¢6sz;:en et defs((x v) .. (Te(T (o) )iunr Ve) o)) (T5 ), ((Jb(x...))pgue«xe?:m’Ue> . _>)>

(= Pg®™ ¥ defs (a0} .- ), (- ), (“ Py (1))~ (LinkReExport)

(= Pgze™ defs((@?_,v) . (1,020, (w,..), (4 Py, (1))

where (y°,v3) € ¢
<(ie Py U defs(t)), (), (e Py, (te>)> —tinks (P9 “defs(t;))  (FinishLinkReExport)

—link =link; Y —link, U —links

Figure 4.4: Linking reduction
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the template of the package (where z° maps to loc) and replaces the old value v by the new

value. Finally, the rule discards the definition because it has now been evaluated and its value is
accessible to the other definitions and to other packages through the location loc.

Al (ie szpen (A T 6) def v <t>) —eval-package (EvalPacDef)

(locy v11) ... (loc Vnew)(locavaa) . .. lIF (* PgPe™ def ... (t))
where (2%loc) € t

iff 0l ectd —7 ., (loci vi1) ... (loc vola)(locavas) . . . IIF Vnew

Figure 4.5: Evaluation of packages

4.2.3 Evaluation of Module Expressions

The evaluation of expressions in the package body follows the rules from the call-by-value calculus
with explicit substitution and levels from Section with the following extensions:

e Evaluation uses a store to record the values of variables bound by definitions. +¢y, needs
to be re-defined to reduce (-redexes contained in terms with a store.

e Locations extend the set of values. The semantics includes the reduction —; to describe the
primitives ref and set-loc, which dereference and mutate locations.

e Higher-order modules extend the set of expressions. The reduction —,qule turns them into
packages, which in turn extend the set of values.

e The reduction —; also describes the primitives 1ink, eval-package, and package-binding
from Section [2.2] These primitives manipulate packages and are part of the higher-order
modules facility.

As a consequence of these extensions, the elimination reduction for evaluation substitutions — ¢y,
needs to cover locations and packages. Hence we extend the rules from Figure [3.3] accordingly.
The evaluation reduction +¢ya can then be defined as

—eval = '_)BZ]%MOdUIQ U —s U —module U (@)

To lift the (-reduction into expressions under a store, we use a modified version of evaluation
contexts that place the hole under the store:

B’ = 0lFE

Using £’ as evaluation context, the standard reduction function of the reduction — g» from Section
[33lis now defined as:

e = gnvoaute € iff e = E'le1], ¢’ = E'[es], e1 —py e for some B’
v v

Next, we add the primitives ref and set-loc to the calculus. The argument of ref must be
a location. The application of the ref primitive evaluates to the value that the location maps
to in the store. The set-loc primitive accepts two arguments: a location and an arbitrary value.
set-loc replaces the value of the location in the store by its second argument. Figure contains
the rules for primitives. They are part of the reduction —s that describes the evaluation of
primitives. The rule (EvalPrimRef) dereferences the location locg and reduces to the value vq
from the store. The application of the primitive takes place in the evaluation context E under the
store. Rule (EvalPrimSetLoc) changes the value of the location locg from the old value vg to its
second argument v,4. It also reduces to this new value. Figure already contains the reduction
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(locy v1) ... (locg vg)(locg va) ... |Ik E[(QQ ref locg)] —s (EvalPrimRef)
(locy v1) ... (locg vg)(loca va) ... Ik Elvg]
(loc1 v1) ... (loc vo1a)(loca v2) ... IF E[(@QQ set-loc! loc Vpew)] —s (EvalPrimSetLoc)
(locy v1) ... (loc Vpew)(locy v3) ... Ik Elvnew)

Figure 4.6: Evaluation of store-related primitives

—module for evaluating modules. Its single rule (EvalModule) turns the module into a package
and uses the context E¢y , to select the module to be reduced. We now define this context to
place its hole in an evaluation context and there under all evaluation substitutions:

E@Dﬂ/ L= El@))' ‘ (@ U"'E@D,ve"') | (@@ .Z'U...E((D,Ue...)
/ e /
By u=[]] Byt

This definition still contains the empty context as needed for rule (ProgramEvalModule).

For the final item from the list of extensions, the definition of module-related primitives,
Figure extends the reduction —4. Three further primitives deal with higher-order modules.
The first, called link!, performs one linking step on a package. It returns the package with one
import replaced by its third argument. To that end, the corresponding rule (EvalPrimLink) uses
the reduction —yiny from Figure [£:4] The rule expects the interface to be specified as a quoted
s-expression.

The rule (EvalPrimEvalPac) describes the evaluation of the eval-pac primitive. This primitive
triggers the evaluation of the definitions of a package. Again, the rule resorts to a reduction
from the previous section, this time —cval-package from Figure for evaluation the definitions of
packages.

The third module-related primitive, called package-binding, references one binding from the
package template. The first argument of the primitive is the package and the second argument
is a symbol denoting the name of the definition to be referenced. The rule (EvalPrimPacBind)
describes the reduction of the primitive. It maps the symbol with name w to an identifier with level
0 and empty import path and looks up the corresponding value in the template of the package.
The rule also ensures that the identifier is listed in the export interface of the package. This check
is the only place where access to the export interface of the package is necessary. Note that there
is no program evaluation rule corresponding to this primitive as the bindings of top-level modules
are only accessed by other modules. The program itself is not interested in these bindings.

0 IF E[(QQ 1link! p (’ (interface ¢ (free) (open) ) (z...))) ep)] —s (EvalPrimLink)
01k E[p'] iff (p,(I.(x...)),ep) — D

0 I E[(QQ eval-pac evp)] —s 0 lI- Elep] (EvalPrimEvalPac)
iff 0 II- evp —* 0" lI- ep

eval-package
0 IF E[(QQ package-binding ((I"e(“”'w 15"'))Pgu<<$?.47711> .- <wO7U3><y?.L._7U2> ) Cw))] =5
(EvalPrimPacBind)
0 lIF E[vs)

Figure 4.7: Evaluation of module-related primitives
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Finally, the elimination of evaluation substitutions needs to cover locations and packages as new
values to which an evaluation substitution might have been applied. Also, as the representation of
identifiers has changed, the rules for identifiers needs to be adapted as well. In addition, elimination
needs to reflect the fact that evaluation substitutions now contain sequences of identifier/value
pairs instead of a single pair. Fortunately, the rules from Figure [3.3| can be adapted mutatis
mutandis as shown in Figure [4.8)in the rules from (EvalSubstld) to (EvalSubstLam). Moreover,
rule (EvalSubstQuote) covers elimination for quoted s-expressions and rule (EvalSubstPrimApp)
primitive applications. Rule (EvalSubstLoc) explains the elimination for locations and drops the
substitution. Rule (EvalSubstPac) covers higher-order modules. As an evaluation substitution
binds variables and the bindings for the variables of a package are stored in the template of the
package, the rule propagates the bindings from the substitution to the template by extending the
template of the package with the bindings of the evaluation substitution. Thus it increments the
level of the identifiers by one because modules are binding operator and hence the identifiers of
the substitution move one level further away from their binding place.

yi (x Jv1)... <y;7?._, v2><w§€m, v3)...D —qy V2 (EvalSubstId)
wh @t vr) . D =gy wh iffwl ¢ {2 ...} (EvalSubstIdOther)

adt) —qy a (EvalSubstConst)

(?se)At) —¢y (7 se) (EvalSubstQuote)

(@Q@ep...)AtY —¢y (@ e Cty...) (EvalSubstApp)

(QQ@ z e...)(tY —¢y (QQ z et)...) (EvalSubstPrimApp)

Ay.e)(zh,,v) ... D —¢y OyeC(@lit vy ... D) (EvalSubstLam)

locQt) —¢y loc (EvalSubstLoc)

(iePgZPe“ Cdefs (L vm) . NUET v LD —q) (EvalSubstPac)

(e Py " defs((a} . vm) - (@it vs) )

im
Figure 4.8: Elimination of evaluation substitutions for packages

Section [3.3] placed the elimination of evaluation substitution in elimination contexts E¢y. Now
elimination must take place under the store. Therefore we use extended elimination contexts £y’
defined as:

Eqy n= 9|H—E((D

Now all reductions have been defined and we can proceed to define r¢y,), the reduction for
evaluation of expressions:

eval=F>pgn U —s U —module U Ie(@))
Based on this reduction, we can define the equational theory:

Definition 4.1 (\7-Medule)  _n,Module g the smallest equivalence relation generated by +— cpar. If
_n,Module ; ,Modul —
ep = MO ey we write A MOMMC = e = eg.
O

This completes the description of evaluation for programs containing higher-order modules.
The following sections add parsing and macro expansion for modules, hence generating identifiers
with non-trivial import paths and levels.
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4.3 Parsing and Importing for Modules and Interfaces

Program evaluation, as described in the previous section, must be preceded by elaboration, which
parses and macro-expands programs. However, program declarations are part of the configuration
language, therefore elaboration does not affect them. Instead the semantics of the configuration
language in Section 2.8 already demonstrated the translation of program declarations into Program
data types consisting of a link environment and a set of modules. In this chapter, we assume that
the translation has instead generated the prog terms in the abstract syntax from Figure[{.I] which
resemble the Program terms. Elaboration must still parse and macro-expand modules, and, as
modules depend on interfaces, also process interfaces. This section presents the rules that extend
the parser and process interfaces. Macro expansion for modules is the subject of the next section.

In our system, interface declaration can only occur as define-interface definitions within
the configuration language. However, they contain macro declarations required for the expansion
of module bodies. Hence the semantics contains rules to parse interface declarations and describes
the generation of a set of transformer bindings containing the macro definitions within the in-
terface. This process also binds the identifiers from interfaces imported by the interface (via the
open clause) and incorporates the declarations of free identifiers from the interface’s free clause.
Finally, module declarations occur as define-module definitions in the configuration language
and as module expressions that create higher-order modules during evaluation. Both forms re-
fer to interfaces using the interface name. In the first case, the configuration phase resolves the
interface names to interfaces as shown in the semantics of the configuration phase in Figure [2.3]
For higher-order modules, the elaboration phase should resolve the interface references. For this
to work, interfaces must be elaboration-time values just like transformers, and the parser or the
macro expander must contain an interface environment that maps from interface names to actual
interfaces just like the set of transformer bindings maps keywords to transformers. At the begin-
ning of elaboration, the mapping can either contain all interfaces declared in the configuration
phase, or a new clause (import-interfaces interface-name ...) for top-level modules could
import only a subset of the interfaces from the configuration phase. In our semantics, however, we
omit this additional environment to simplify matters. Instead, we assume that the open clauses
of interfaces and modules do not contain names of interfaces—which would then need to be re-
solved by the interface environment—but the interface declarations proper. This simplification is
possible because the open clause and the export interface clause of a module must not contain
meta-variables but only names of interfaces declared in the configuration phase. Hence, macro
expansion does not affect these places and it does not matter, whether they contain names of
interfaces or the interface declarations themselves.

We now present the concrete syntax for declaring interfaces and modules and explain briefly,
how to translate the configuration phase definitions into this syntax. The syntax has the following
two forms:

interface ::= (interface z (free z ...) (open interface ...)
((define-syntax z t) ...) (z ...))
module ::= (module z interface (open interface ...)

((define-syntax z t) ...) ((define z e) ...))
For the explanation of the interface form, consider the following example template:

(interface wid
(free namegpree .. .)

(open interfaceopent ---)

((define-syntax keywordy transformer;) ...)

(vary ...))
In this declaration, uid is the unique identifier of the interface, followed by namege. ..., the list
of free identifiers. The list interfaceopent ... contains the imported interfaces, which are again

interface forms. The define-syntax definitions declare the macros exported by the interface.
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Each macro definition consists of a keyword and a transformer. Finally var; ... lists the exported
variables of the interface. The define-interface form Section [2.7] directly translates into this
form if we use the name of the interface as its unique identifier. As explained above, we assume
that each interface name within an open clause has been replaced by an accordant interface
form.

For the explanation of the module form, consider the following example template:

(module wuid interfaceesport

(open interfaceopent -- )
((define-syntax keywordy transformer;) ...)
((define wariable; expressioni) ...))

In this declaration, wid is the unique identifier of the module, and interfaceczpors is the export
interface of the module. The list interfaceopen1 ... contains the imported interfaces, and the
define-syntax definitions declare the macros of the module. The last form contains the variable
definitions of the module, where each definition consists of a variable and an expression. Again the
define-module form directly translates into this form using the name as the unique identifier. As
for the interfaces, we assume that the name of the export interface and the names of the imported
interfaces have been replaced by corresponding interface declarations. In addition, we use the
module form as the concrete syntax for the expression that creates a higher-order module. Macro
expansion for these forms is limited: Meta-variables can only occur within transformers and the
right-hand sides of variable definitions but not at the place of the exported module or within
open clauses. This restriction makes it possible for a human reader to see at one glance imported
and exported interfaces of a module. Some more experience will show whether this restriction is
reasonable or whether meta-variables at arbitrary positions of a module declaration are required.
Furthermore the above form precludes macro applications at the top-level for the reasons stated
in the paragraphs “let-syntax and define-syntax” from Section [3.10

We will now present a parser that translates the interface and module declarations in the
concrete syntax defined above into mixture syntax. The next section defines a macro expander to
turn the mixture syntax into the abstract syntax from Figure [I.I] This expander works on the
right-hand side of the module definitions and covers module declarations as expressions. For this
task, the expander depends on the information provided by the imported interfaces of the modules.
We include an additional elaboration phase, called importing, which propagates the information
from the imported interfaces to the module. Importing binds the names of the imported variables
in the right-hand sides of the definitions and adds the imported macro definitions and the macro
definitions from the export interface to the module. It uses the import path of the identifiers
to record the interface that provided the variables and the macros. As interfaces also include
open clauses to import other interfaces, importing also operates on interfaces and incorporates the
information of imported interfaces for them.

Figure presents the mixture syntax that represents interfaces and modules. It is tailored
to the multi-phase nature of parsing, importing and expanding for interfaces and modules. This
is necessary because interfaces nest to an arbitrary depth through the open clause and hence a
single elaboration rule cannot encompass all necessary steps. Instead the rules first recognize the
top-level structure and corresponding contexts place the rules inside the list of imported interfaces
and also iterate through this list.

For interfaces, the parser first generates the term Tgoon j;(;hee___)i sdefs (Topen - -.), & member
of the domain UnparsedInterfaces, where the forms for the imported interfaces are still plain s-
expressions. In this form, ¢ is the run-time interface already known from Figure the list
(ZTfree - - -) contains the free identifiers of the interface, sdefs comprises the macro definitions and the
(Topen - - -) list denotes the exported variables. Next, the parser turns the first imported interface
into an unparsed interface 7 and afterwards into a member of the domain UnezpandedInterfaces.
Then it continues analogously with the next imported interface and so on. This way, the parser
generates the list of import interfaces from the figure: first i..., the interfaces that have been
expanded but not yet imported, then 4, the interface that has just been parsed, and finally se. ..,

the unparsed interfaces. Parsed interfaces have the form Ibes » i d sdefs (z...). Here i is again
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the corresponding run-time interface, and x ... is the list of free identifiers. This interface form
includes a set of transformer bindings, d, as introduced for the core macro expander in Figure [3.8]
In this set of transformer bindings, importing stores the syntax definitions of the interface and also
the contents of the sets of definitions of all imported interfaces. The list of imported interfaces now
represents which interfaces have already been imported into the set of transformer bindings (i .. .)
and which have not yet been processed (z ...). The list of transformers sdefs and the list of exported
variables (z...) are still included. Analogously, for modules an unparsed and an unexpanded
version exist. Both come in two variants because for modules elaboration also needs to take the

——open se...

export interface into account. Hence the first variant of the first form, {seli} 7 B sdefs defs,

describes modules where the export interface is subject to parsing, whereas the second variant
iFFopen g’...f?s

o sdefs defs, describes modules where parsing proceeds within the list of imported
interfaces. The second form includes a set of transformer bindings where importing stores the
syntactic definitions of the module, the contents of the sets of definitions of all imported modules,
and the set of transformer bindings of the export interface. Once the set of transformer bindings
is complete, the macro expander uses it to expand the right-hand sides of the module’s definitions
defs. The definition for modules m is the same as in the abstract syntax from Figure This
form is the normal form of parsing and macro expansion for modules. Finally the expansion
terms receive a new representation for identifiers, ¥z where im denotes the import path of the
identifier, and a variant of the shift operator, written ¢17, that contains an interface. Like the
normal shift operator, this variant reflects the fact that the identifiers in the term ¢ have been
moved one step away from their binding place. However, this time the additional binder that
separates the identifier and its binding place is not a A-abstraction or a letrec-syntax binder
as in Chapter [3| but instead a module. The i parameter denotes the interface from where the
identifier has been imported into the module. Consequently, if the variant of the shift operator
arrives at an identifier, it extends the import path of the identifier by the interface ¢ because the
import path is the mechanism to represent the binding place of an identifier in the presence of
modules. The level argument n of the shift operator still serves the same purpose as in the original
shift operator: it protects local variables and must be incremented as the operator moves into the
scope of a binder. Section [£:4] contains elimination rules for the shift operator that deal with the
new variant.

Figure [£.10] contains the rules for parsing of interface and module declarations. The rules
extend the —pasc parsing reduction from Section To support module declarations within
expressions (that is higher-order modules), the expansion contexts from Section receives a new
rule:

EP n= | MR “(Aze)... Az EP)Azxc)...

The rule places the redex in the right-hand side of the first non-expanded definition.

The single rule for parsing an interface, (Parselnterface), generates parsing substitutions to bind
the exported variables and keywords in the transformers of the exported macros. The rule also
binds the free identifier from the free clause within the transformers using a parsing substitution
that replaces the name of the identifier x by @x(}&ee 0 That is, the import path of the identifier
contains the special interface free-interface as outlined in Section The rule generates the
normal interface from the unique identifier provided as first argument and from the list of exported
variables provided as last argument. After parsing, rule (FinishParseInterface) turns an unparsed
interface into an interface. The rule also ensures the well-formedness of the interface using the
predicate WellFormedInterfdefined in the same figure. The predicate verifies that the names of
the free identifiers, the keywords, and the variables are disjoint and that no interface provides one
of these names. To collect the names of the imported interfaces, a helper function export returns
for an interface the names of the exported macros and variables. The rules (Parselnterface) and
(FinishParselnterface) use the interface parsing context IP to select the next interface declaration
to be parsed. The context IP is defined as:

IP ::= P[IP’]
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Syntactic Domains:

%7;3‘3 g‘@b—‘\s.s
LY

58
Vo)
&

C

€ UnparsedInterfaces
€ UnezpandedInterfaces
€ RunTimelnterfaces
€ Interfaceldentifiers
€ UnparsedModules

€ UnexpandedModules
€ Modules

€ Moduleldentifiers

€ TopDefinition

€ SyntazxDefinition

€ Lex-S-Expressions
€ MixtureTerms

Expansion Syntax:

. =7
—open %...1" se...

= Ifree Rx... i Sd@fs (LIZ‘)
n= Iea iy i d sdefs (x...)
s=1(x...)

L SC; S ropen Se...

o= {sel }Mu sdefs defs |

[

M,

. =7
——-open i...i Se...

sdefs defs

= MO b sdefs defs | TMOP b d sdefs defs

= TMOPR e def

t=(Axc)
= def...
= (Asyn = ses)
= sdef. ..
= ..., Bl | el

Figure 4.9: Mixture syntax for parsing and expanding modules and interfaces
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d,k - IP[(interface x (free x¢...) (open S€imp...) ((define-syntax zx se)...) (Ty ...))] —Parse
(Parselnterface)

open seimp---

d? k- IP[Tfree Ruxg... (IZ(CL‘U . )) Sdefs ('TU . )]

where sdefs = (Asyn Tk se(]@xko/xk[) .. (]Q).TUO/XUD .. (]mxf?]free())/xfree[) ce) e

d, k' IP[Isoe %:'{'Q;fmi sdefs (x...)] —parse d, k = IP[IE2L e sdefs (x...)] (FinishParselnterface)

—free xyg..

—open %

iff WellFormedInterf(Isree ray...% sdefs (x...))

WellFormedInterf : i — Boolean
WellFormedInterf (Ioes %xfz (Asyn =i ses)...) (Txy...)) =

YV, y in (Te, ..., Thy ooy Thoye ey Tuyeen) iTFEY
and U exports(i) N ({zk, ... U {Zw,... FU{zs,...}) =0
i€q{i;...}

exports : 1 — Vars

exports(Igre i‘mz (Asyn =i ses)...) (@o...)) ={xk, .., Tvy... }

d, k- P[(x pu Seexp(open se€imp...) ((define-syntax zx sex)...) ((define z, sey)...))] —Parse
(ParseModule)
d, k= P[eexe M 7™ " sdefs defs] iff Plx] 7 "nodulel  cpeme
where sdefs = (Aeyn 1 ser(zr%%k) ... (*2.%%,)...)... and defs = (A z, sey(Pxrxi) ... (P2,%x0)...) ...

da k- P[icﬁzpen g sdefs defs] —Parse d

kE P[ECMZPW L e sdefs defs) (FinishParseModule)

——-open i...

iff WellFormedModule(* M, sdefs defs)

WellFormedModule : m — Boolean

—open ;... ]
pen i —Fopen i...

WellFormedModule(If“e Rag...t (Boyn The se0)-.) (I”‘””)M“ ((Asyn xk ses)...) (A zy ses)...)) =
Va,y in {Te, ..., Thyeo oy Thoye ey Toyee p T FY

and U exports(i) N ({zk, ... }U{zw,... JU{zs,...}) =0
i€{i;...}

and {Zv.,...} C{x0v,...}

and {i;,...} C{z,...}

Figure 4.10: Parsing for interfaces and modules



118 CHAPTER 4. SEMANTICS FOR MODULES

j77open (i...IP" se...

P =[] (PR ) sdefs defs) | (I ) sdefs defs) |
).
i sdefs (z...)

—open (i...IP" se...
free Rzx...

It uses the parsing context from Section to place the hole under the expansion substitutions.
For parsing within modules, the context IP’ first selects the export interface and afterwards select
the left-most unparsed interface within the imported interfaces of the module. For interfaces, it
selects the left-most unparsed interface within the list of imported interfaces.

Figure also contains rule (ParseModule), which describes parsing for module declarations.
The rule uses the parsing context to resolve the first element of the s-expression to an identifier
and requires that the name of the identifier is module and that its import path ends with the
interface scheme-interface. This ensures that the identifier is indeed the module keyword. The
rule then binds the keywords of the macro definitions and the variables of the definitions in the
transformers and the right-hand sides of the definitions using parsing substitutions. After parsing,
rule (FinishParseModule) turns an unparsed module into an unexpanded module. It applies
the predicate WellFormedModule to the module to ensure that the module is well-formed. For
modules, well-formedness says that the variables and keywords must not contain duplicates and
that the module must not define an identifier listed as free in the export interface of the module.
Furthermore, all exported variables must be defined in the module, and module must import all
the imported interfaces of the export interface.

After parsing of the concrete syntax, the importing phase handles the open clauses, which
contain the imported interfaces of interfaces and modules. An interface il imports another
interface i2 to bind identifiers occurring in the output of macros defined within il to the in-
terface i2. As an example for an interface importing another interface, consider the interface
insert-insert-x-interface in the following program written in the language from Chapter

(define-interface just-x-interface
(export x))

(define-module just-x-module just-x-interface
(open scheme-interface)
(begin
(define x 23)))

(define-interface insert-x-interface
(export
(define-syntax insert-x
(syntax-rules ()
((insert-x) x)))))

(define-module insert-x insert-x-interface
(open scheme-interface)
(begin
(define x 5)))

(define-interface insert-insert-x-interface
(export
(open insert-x-interface)
(define-syntax insert-insert-x
(syntax-rules ()
((insert-insert-x) (insert-x))))))

(define-module insert-insert-x insert-insert-x-interface
(open scheme-interface
insert-x-interface)
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(begin
(define-syntax insert-insert-x
(syntax-rules ()
((insert-insert-x) (insert-x))))
(define x 67)
(define w (insert-x))))

(define-module main no-exports-interface
(open scheme-interface
just-x-interface
insert-insert-x-inteface)
(begin
(define y x)
(define z (insert-insert-x))))

(define-program p
(modules insert-x just-x-module insert-insert-x main))

Here, the right-hand side of the definition of w in module insert-insert-x will refer to the
definition of x in module insert-x. The import path is insert-x-interface. However, the
right-hand side of the definition of z in module main also refers to the binding of x in the module
insert-x. The way to reach this binding starting at module insert-insert-x, is first the interface
insert-insert-x-interface, then the interface insert-x-interface. Importing must therefore
propagate the binding informations of the imported interface to the transformer expressions of the
importing interface. In addition, the macro definitions from the imported interface extend the set
of transformer bindings of the importing interface. Figure [I.11] contains the rules that make up
the reduction —1mport for describing the importing of interfaces into interfaces. Like parsing and
expansion, importing takes place within expansion contexts. But as it does not rely on the set of
transformer bindings, its standard reduction —import Wraps the context EP in d, k - terms:

C M Import Cl iff c = d) k= EP[CI]7 C/ = dy k= EP[CQ]a C1 —Import €2

The rule (InterflmportVariable) binds an exported variable within the transformer. It also gener-
ates a parsing substitution and uses the interface as the import path of the identifier. The next
rule, (InterflmportMacro), imports a macro definition. The rule (InterfBindDefSyn) (described
below in Section has already parsed the macro definitions of the imported interface and stored
them in the set of transformer bindings. Rule (InterflmportMacro) generates a parsing substitu-
tion that binds the keyword in the transformer and propagates one macro definition from the set of
transformer bindings of the imported interface to the set of transformer bindings of the importing
interface. Analogously to the previous rule, the import path of the imported identifier is extended
by the imported interface both in the parsing substitution and in the set of transformer bindings.
In addition, the rule applies the new variant of the shift operator to the imported transformer
because the identifiers referenced by the transformer move “one interface” further away from their
binding place as importing propagates the transformer. The interface argument of the shift oper-
ator is the imported interface. The next section explains the elimination of the new variant of the
shift operator. Once the three rules above have imported all information, the rule (FinishInterfIm-
port) turns the importing interface into a normal interface. At the end of importing, an interface

has the form I35 E;))z d sdefs (x...), that is all imported interfaces are run-time interfaces.

For modules, Figure contains the rules for importing interfaces. Rule (ModuleImport-
Export) imports one macro definition contained in the export interface of the module into the
module’s set of transformer bindings and binds the keyword in the transformers and the right-
hand sides of the definitions. No shifting or modification of the keyword’s import path is necessary
because macro definitions in the export interface extend the macro definitions within the module.
Next, rule (FinishModulelmportExport) replaces the export interface by a run-time interface if
its set of transformer bindings is empty (e). The remaining rules propagate information from



120 CHAPTER 4. SEMANTICS FOR MODULES

open i1 Lves nil i d () (w0 i

I[ffree Ty .. ¢ d2 ((Asyn Tm 868) . ) (x62 .. )} _>Imp0rt

(InterfImportVariable)

) open iy, ... )
open 41...04 00 Itl i d () (e.. )iy
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Figure 4.11: Importing for interfaces

imported interfaces to the module. They are very similar to the rules that handle importing for
interfaces from Figure The only difference is that modules contain definitions and the rules
bind the imported identifiers within the right-hand sides of these definitions, too. At the end of
importing, a module has the form * M pen 4 sdefs defs , that is, all imported interfaces have been
replaced by run-time interfaces.

4.4 Macro Expansion for Interfaces and Modules

This section extends the macro expander and the elimination reductions for the expansion substi-
tutions by rules that handle modules. The importing phase from the previous section has already
propagated the information from the imported interfaces to the module’s set of transformer bind-
ings and bound the imported identifiers within the transformers and the definitions. In this sec-
tion, rules that extend the core macro expander from Figure [3.9|use a module’s set of transformer
bindings to expand the right-hand sides of the definitions and turn them into expressions.

Before the expansion of the module body, the core macro expander needs to record the macro
definitions in the module’s set of transformer bindings. For interfaces, it is analogously necessary
to record the macro definitions in the interface’s set of transformer bindings. Figure [4.13]|contains
the rule (InterfBindDefSyn) that adds a macro in the interface to the set of transformer bindings.
This rule is analogous to the expansion of letrec-syntax in rule (ExpandLetSyn) from Figure
The reduction —pr parses the lexical s-expression representing the transformer, and afterwards
(ExpandLetSyn) adds a mapping from the keyword to the transformer to the set of definition.
However, there is a major difference between the rules (InterfBindDefSyn) and (ExpandLetSyn)
concerning the propagation of the lexical information at the macro definition into the transformer.
The recording of lexical information at the macro definition is one of the main characteristics
of hygienic macro expansion. For letrec-syntax, the elimination rules propagate the expansion
substitutions surrounding the macro definition to the transformer. For example, rule (ShiftLetSyn)
from Figure[3.11] moves the shift operator to the transformer of a letrec-syn form. Such expansion
substitutions do not exist for transformers defined within interfaces because an interface is only a
specification of a module implementation occurring within a certain lexical context. Instead, the
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Figure 4.12: Importing for modules



122 CHAPTER 4. SEMANTICS FOR MODULES

imported interfaces and the free identifiers of an interface provide lexical information for some of
the identifiers referenced by the macro. All other identifiers are assumed to be variables bound by
the module. Section [2.2]calls this assumption “defaults to provider.” The importing phase already
has propagated the lexical information from the imported interfaces to the transformers. Now the
rule (InterfBindDefSyn) also records the identifiers of the free clause as unbound by generating
parsing substitutions that map the symbols from the free clause to unbound identifiers. As
outlined in Section it places the special free-interface, here written as (), in the import
path of the identifiers. All symbols that have been bound neither by the imported interfaces nor
by the parsing substitutions for the unbound identifiers have to be replaced by identifiers that refer
to the module that implements the interface. The rule achieves this using a x-substitution that
maps all symbols to identifiers with level 0. The left-hand side of the rule requires the imported
interfaces to be normal interfaces. This ensures that the —iyport reduction from Figure has
already processed all imported interfaces. In addition to the well-known parsing context P, the
rule uses the context I to place the redex within the import clauses of interfaces and modules and
within the export interface of modules:

1 c= [ (PP C) d sdefs defs) | (iMZPen (D) g sdefs defs)
| 12" bl d)y g sdefs (z...)

free (z...)

d,kF PIIEED5 d (Asyn x ses)sdefs...) (e ...)]] —Bxpand (InterfBindDefSyn)
Ak PIIEE D5 (920 — tf) = d) (sdefy...) (ze...)]]

free x¢...

where sesqwxf?“ree()/xfreeD . (]0*?) Jx) —h tf

Figure 4.13: Expansion for interfaces

Expansion for modules is next. Figure contains the respective rules. First, rule (Mod-

d k=M dyy (Asyn @ ses)sdefy...) (def ...) —Expand (ModuleBindDefSyn)
d ke M e (P20 v tf) s dy,) (sdefy..) (def ...)

where ses —pp tf

((ks.%‘?m = ﬁ) ot d), k+ ieMZpen e dm () (d@f o ) —Expand (ModuleExpand)
dy kbt MR e (Bt s (4 19)) 5 din) () (def <)
ek i”MZpen o d () (A ses)...) —Expand (ModuleExpandDefinitions)

e MPE (A dyy, k- oses)

Figure 4.14: Expansion for modules

uleBindDefSyn) adds a macro definition to the module’s set of transformer bindings. Like the
corresponding rule for interfaces, (InterfBindDefSyn), it uses the reduction —pr to parse the
transformer. However, for a module there is no need to add the x-substitution to bind unbound
identifiers because the parser already adds this substitution to the program at the beginning of
parsing. For a module, there is also no need to implement the “defaults to provider” strategy
or propagate information about unbound identifiers because, unlike an interface, a module is an
expression that occurs within a certain lexical context. The task of the “defaults to provider”
strategy and of the free clause is to provide this information explicitly for an interface, which
represents a set of unknown modules. Next, once the module’s set of macro definitions is empty,
rule (ModuleExpand) adds one definition of the expander’s set of transformer bindings into the
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module. Thus the definition enters the scope of the module and hence the rule increments the
level of the keyword by one and applies the shift operator to the transformer. Once the expander’s
set of transformer bindings is empty (¢€), rule (ModuleExpandDefinitions) propagates the mod-
ule’s set of transformer bindings to the right-hand side of the definitions and turns the expanding
module into a module. Parsing and expanding these right-hand sides happens through the —parsc
and —expand Teductions because the expansion context will place these reductions within the first
non-expanded right-hand side.

To fully support higher-order modules, the elimination of the expansion substitutions must
cover modules as well. In addition, the elimination of the 77, variant of the shift operator, which
adds an interface to the import path of an identifier instead of incrementing the level, needs to be
explained. The rules (InterflmportMacro) and (ModuleImportMacro) of the —pmport reduction
from Figure apply this shift operator to an imported transformer to reflect the fact that
the transformer just entered the scope of the module via the interface given as argument to the
operator. The operator must then add this interface to the import path of an identifier. The
two rules (ShiftIdInterf) and (ShiftLocalldInterf) from Figure show the elimination of variant
of the shift operator applied to an identifier. As in the case of the normal shift operator (rules
(Shiftld) and (ShiftLocalld) from Figure[3.11), the level argument of the shift operator determines
whether the operator applies to the identifier or whether the identifier is local with respect to the
place where the operator has been introduced. Hence rule (ShiftIdInterf) adds the interface iz to
the import path of the identifier if the level of the operator (n) is equal or bigger than the level
of the identifier (m), and rule (ShiftLocalldInterf) drops the operator otherwise. The elimination

(b ™ — Fsgn . iffn>m (ShiftIdInterf)

G1y e |in Tpato ini1, .-

(b ™ — Fsgn iffp < m (ShiftLocalldInterf)

i1q... i Tpato i1y .

Figure 4.15: Elimination of the interface variant of the shift operator

of the variant of the shift operator for terms other than identifiers is identical to the normal
shift operator. This is because elimination either increments the level of the operator whenever
it enters the scope of a binding construct or the operator does not apply to the term at all and
can be dropped. Therefore, we do not add another reduction for the elimination of the variant
of the shift operator but consider the import path as an optional argument of the operator and
specify separate rules for the elimination of the operator applied to identifiers only. These rules are
then (Shiftld) and (ShiftLocalld) from Figure and (ShiftIdInterf) and (ShiftLocalldInterf)
from For modules, a new elimination rule (ShiftModule) defined in Figure explains the
shift operator applied to modules. As usual, if the shift operator enters the scope of a binding
construct, the level of the operator needs to be incremented to prevent the bound variables from
being affected by the operator. The rule then applies the operator to the transformers and the
variable definition of the module. In the rule we use the notation 17> to display that the rule
concerns both variants of the shift operator.

(ierLpen B d (Asyn s, sess,)--.) (A x ses)...) %) —¢ (ShiftModule)
te MRS B d (Agyn Ts, (sess, TH™) .. (A z (ses T}f”)) e

?

Figure 4.16: Reduction shift-expr for modules

We now turn to the elimination rules for the remaining expansion operators applied to mod-
ules. For the parsing substitution, Figure contains the two rules (ParseSubstIdModule) and
(ParseSubstMVModule). The difference between the two rules is that the first rule covers the case
where an identifier replaces a symbol while in the second rule a meta-variable replaces a symbol.
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Accordingly, the first rule increments the level of the replacing identifier while the second rule
leaves the substitution intact. Both rules pass the parsing substitution to the transformer of the
module’s macro definitions and to the right-hand sides of the variable definitions.

ieMZPen B d (Asyn Tty ses1)...) (A z ses) .. )(Pwl/y) —q (ParseSubstIdModule)
M 5 (A 1y ses1 (FULEHD) o (A ses(Pwli)
iCMZPen B d (Agyn o, ses1)...) (A x ses)...)(afy) =0 (ParseSubstMVModule)

i« MO 5 d (B 71, ses1(3f3) ) (A @ ses(ay)) ...)
Figure 4.17: Elimination of parsing substitutions for modules

Recognizing a module as a binding construct is also the key idea for the elimination of meta-
substitution applied to modules: as Figure shows, rule (MetaSubstModule) shifts the the
meta-substitution before passing it to transformers and variable definitions.

ieMZPen B d (Asyn Tsy S€8s,)...) (A z ses)...)]si] =1 (MetaSubstModule)
M d (B @y sess, (st 1)) ) (A @ ses](si 1)])-)

Figure 4.18: Elimination of meta-substitutions for modules

For identifier substitutions, the rules in Figure [£.19]distinguish whether an identifier or a meta-
variable replaces the identifier. In the first case, rule (IdSubstIdModule) increments the levels of
both identifiers, the replacing and the replaced, to protect variables introduced by the module.
For the meta-variable case, rule (IdSubstMVModule) increments only the level of the replaced
identifier. As for A\ or letrec-syntax, the elimination of the meta-substitution replacing the
meta-variable will later shift the levels of the replacing code to prevent free variables from being
captured by the module form.

ieMZPen B d (Asyn Ts, S€8s,) .. (A x ses)...)[Fswps /F2ym T (IdSubstIdModule)

ms3

‘e MR B d (Agyn Ts, SeSs, [ksSw?n‘;jl/k”y%tl]) oA ses[k“w?;:’gl/k”y%tl]) .

ieMZpen e d (Agyn s, 8€55,)---) (A z ses).. .)[a/k”y:fw] —p  (IdSubstMVModule)

CMPPR e d (Asyn @, sess, [a/"2ytt) (A @ oses[a/PrynEl) L

Figure 4.19: Elimination of identifier substitutions for modules

The unshifting operator | applies to expanded modules only. Figure [£.20] contains the sin-
gle rule (UnshiftMod) that increments the level of the unshift operator before passing it to the
syntactic definitions and the right-hand sides of the variable definitions.

Finally, Figure contains the rule (MarkModule) to eliminate the mark operator applied
to a module. As a new scope does not affect the mark operator, the rule passes the operator
unchanged to the syntax definitions and the variable definitions.

The above rules, which extend the expansion operators of the parser and macro expander, are
sufficient to add first-class modules to our hygienic macro expansion system.

Macro expansion is then defined as the union of parsing, importing, expansion, and unshifting:
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(e MOP™ 5 (A @ e).. .| ") = MO (A (o)) (UnshiftMod)

Figure 4.20: Elimination of the unshift operator for modules

o MR B d (Asyn Ts, S€8s,)...) (A z ses)...)@" — 4 (MarkModule)
ieMZPen b (Asyn Ts, s€55,8™) ... (A x sesa™)...

Figure 4.21: Elimination of the mark operator for modules

expand :S-Fxpressions — FExpressions
3 0,0 *
e:l;pand(se) =eiff 56(] *Ifree()/*[) HParsehnportExpandUnshift €

where

— ParseImportExpandUnshift = Parse U —Import U — Expand U =

This definition initializes the x-substitution with the identifier *(1) L0 which has the free-
interface as its import path. This way, all unbound identifiers receive this mterface in its import
path. The free-id=? function for comparing free identifiers (defined in Figure needs to
be re-defined to recognize to identifiers as equal if both identifiers contain the free—interface
in their import path. Otherwise, the identifiers are equal if they have been bound by the same
binder, that is, the name, the level, and the import path must be identical:

true if £ =y A Itree() € tm1 A Ipee() € Mo
free—z’d:?(ksx?ml, ks Yim,) = § true if =y An =m A imy = imy

false otherwise

Now the rules (EvalFreeldEqTrue) and (EvalFreeldEqFalse) from Figure and the function
match from Figure [3.33] can use this new definition of free-id=? to compare identifiers.

4.5 Independent Compilation and Code Sharing

With the module system presented in this section, independent compilation for a dynamically
typed language with macros is feasible. Interfaces contain the full static information about im-
ported identifiers: for macros they contain the transformers, for variables they provide the binding
place, and they reveal identifiers assumed unbound. The semantics does not include compilation
as a separate phase because compilation is hard to capture formally: compilation is mostly an
exchange of the code representation that does not change the semantics. Therefore the semantics
only includes a description of elaboration, which produces the abstract syntax, skips compilation,
and continues with the dynamic linking and the evaluation. However, as elaboration of a mod-
ule takes place independent from any other module, and as elaboration produces the abstract
syntax—including the static semantics of all identifiers—of the module, independent compilation
of the module is possible as well. Two (or more) modules can also share the abstract syntax if
they import the same identiﬁersEI Consequently, they can also share the compiled code. The
copy-module clause from the configuration language in Section generates such identical mod-
ules. Section uses the term wunit for the code and the associated static semantics that can be
shared by modules with identical imports. In terms of the abstract syntax, the set of transformer

3In addition to the imports, the macro definitions in the export interface have to be identical as well.
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bindings and the unexpanded right-hand sides of the definitions comprise the uncompiled unit of
the module and the expanded right-hand sides of the definitions correspond to the compiled unit.
I have omitted units from the formal presentation because they would complicate matters without
adding much insight. The semantics could include units by adding them as an additional layer. A
module would then consist of its unique identifier and the unique identifier of the unit, and units
would replace the current modules within the semantics. Modules can then share a common unit
by referring to it using the unit’s identifier. A package would result from a module by generating
a fresh template as before and inheriting the code from the unit referred to in the module.

4.6 Future Work

Several extension to the system are conceivable: tags and renaming on import have already been
included in Kelsey’s original proposal [Kel97], mutually recursive modules and interfaces as elabo-
ration time values were briefly sketched in Section |4.2.2] a new definition of hygiene could build on
interfaces, and finally languages with a static type system can be supported. This section explains
for each extension the required changes to the semantics.

Renaming on Import One of the purposes of a module system is to manage namespaces.
Nevertheless, name collisions occur if a module imports interfaces that provide the same name.
Renaming identifiers on import addresses the problem: The import clause receives an extension
that allows the programmer to specify new names for the variables and keywords provided by the
imported interface. Within the body of the module, only the new names are visible as imports of
the respective interface. If chosen properly, the new names do not collide with any other of the
imported names.

Including renaming into our semantics is quite simple: The rules (ModuleImportVariable) and
(ModuleImportMacro), which import identifiers into the module’s body, only need to generate
parsing substitutions that replace the symbol by the new name instead of the one provided by the
interface. The replacing identifier would remain unchanged. The same change is also necessary
for the importing rules of interfaces, (InterflmportVariable) and (InterflmportMacro), which bind
names in the transformer of an interface.

Tags on Import As interfaces are only placeholders for modules, importing the same interface
several times into the same module makes sense in a parameterized module system: During linking
different modules can be used to satisfy the imports. To support this scenario, renaming is of
course essential as the imports will all provide the same names. However, it is also necessary to
distinguish the interfaces during linking and the current mechanism of using the unique identifier
of the module is not sufficient if the same module occurs several times within the same import
list. Kelsey [Kel97] proposes to add an optional tag to the name of the interface within the open
clause. The tag provides an additional identity that distinguishes identical interface names.

For the semantics to support tags, it would use the tag in addition to the normal interface
within the imported interfaces of a module as well as within the import path of an identifiers. A
link within the link environment must then also include the tag of the interface to identify the
import to be satisfied.

Mutually Recursive Modules Two modules are mutually recursive if both import each other.
The semantics does not support mutually recursive modules as the dynamic linking phase can only
link in a package that has already been fully linked, which is not possible if the package depends on
the package that linking is currently working on. If linking would link in a package that has not yet
been fully linked, the template of the importing package would lack identifiers that macros of the
imported package may reference. The linking could be repeated after the imported package has
been fully linked, but then also all packages that import this package would require re-linking. This
process continues ad infinitum. There is no way to stop the process because macros of mutually
recursive modules can be defined mutually recursive as they appear in the interface. In this case
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however, the macros can generate identifiers with an arbitrarily long import path. Consequently,
the way the semantics represents dynamic linking—by extending the template of the importing
package with all identifiers of the imported package—is fundamentally incompatible with mutually
recursive modules. On the other hand, a real-life implementation could easily work around this
problem: the compiler just needs to determine the identifiers referenced in the module body or
needed by other packages and add placeholders for these identifiers to the template. Dynamic
linking would then merely fill these placeholders instead of augmenting the template with all
identifiers from imported packages. In the case of mutually recursive modules dynamic linking is
still required to link a package repeatedly but the process finishes once all templates have been
fully linked.

Interfaces as Elaboration-Time Values In the configuration language from Section [2.7] in-
terfaces can only be declared at the top level of a program. This precludes macros that expand
into interface definitions. I consider this restriction an important feature because a human reader
can always see at one glance the exported variables and macros of an interface. Furthermore the
semantics for the macro expander in this chapter also precludes meta-variable occurrences within
the open clause and the export declaration of modules. This restriction enables the human reader
to see easily the imported and exported variables and macros for higher-order modules even if
the module declaration is generated by a macro. More experience with real life applications will
clarify if this restriction is useful or if meta-variables within module declarations are necessary.
The semantics would implement the latter case by having interfaces as elaboration-time values
just like transformers.

New Definition of Hygiene Using Interfaces Once we allow meta-variables at arbitrary
positions within module definitions, it becomes possible to define derived syntax forms for module
definitions that abstract over common patterns. For example, a variant of modules that imports
other modules instead of interfaces and directly evaluates its body definitions is useful whenever a
higher-order module should be evaluated immediately. The following package macro defines such
a variant. It expects the imported packages along with their export interfaces within an open
clause:

(define-syntax package
(syntax-rules QO
((package exp (open (imp-i imp-p) ...) body-expr)
(let ((m (module exp (open imp-i ...) (begin body-expr))))
(begin
(1ink! m imp-i imp-p)
(evaluate-package m))))))

Unfortunately, hygiene inhibits the bindings of the imported packages to be visible within the
body of the module: The module form is a binding construct and the First Hygiene Condition
prohibits that it captures references from the input. The problem is that the bound identifiers do
not appear within the input of the macro. However, the input of the macro includes the interfaces
which in turn contain the names of these variables. As interfaces can only be defined at the top
level, it makes sense to perceive them as isomorphic to the set of identifiers they export. Hence
the following amendment to the Hygiene Condition could be defined:

Amendment of Hygiene Condition
With regard to hygiene, a binding interface is interchangeable with the set of identifiers
the interface exports.

To implement the amendment, the semantics would need to treat meta-variables that are
replaced by interfaces as equal to any identifier exported by this interface. The elimination of
meta-substitutions would implement in the case of a meta-substitution applied to a module that
lists a meta-variable as an imported interface.
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Types So far, the static semantics of a variable has only been its binding place. Macro ex-
pansion makes it difficult to derive this information. However, the semantics describes how to
obtain the binding place for all identifiers within a module. For statically typed languages, the
type of an identifier is also part of the identifier’s static semantics. Hence the interface is re-
sponsible for providing this information and indeed this topic has been treated extensively in the
literature [Org96l Ler94, [DCHO3|]. Kelsey [Kel97] already sketched the basic ideas for a fully-
parameterized variant of Standard ML, using parameterized signatures [Jon96]. In addition, even
a dynamically typed language like Scheme could benefit from types in the interface [GGO1].



Chapter 5

Implementation

Semantics is only useful if it is also possible to implement a programming language that matches
this semantics. This chapter describes implementations of the module system and the macro
expander. The implementations are not yet integrated with an existing Scheme implementation,
but rather serve as prototypes and testing platforms.

e Section presents a complete implementation of the configuration phase including an
implementation of the configuration language from Section 2.7} and an implementation of
the automatic linker. In addition, two backends exist that translate the program resulting
from the configuration phase into the module languages of Scheme 48 and PLT Scheme.
However, as these systems do not handle macro definitions within interfaces, the backends
to not support this aspect of the semantics.

e Section [5.2] presents the macro expander and the module system as implementations within
PLT redex, a language for writing rewriting systems. This implementation completely im-
plements the semantics of this dissertation.

e Section [5.3| covers a realistic implementation of the macro expander from Chapter The
expander produces abstract syntax for Scheme 48 and also contains an implementation of
Macro Scheme.

In addition to these implementations of the semantics, Section [5.4] shows how I generated the
TEX code for the semantics in Chapters |3 and [4f from the implementation within PLT redex.

5.1 Configuration Phase

Kelsey’s description of fully-parameterized modules as a set of abstract data types maps directly
into a Scheme implementation. The data types become records [Kel99]. The constructors make-
interface, make-unit, make-module, and make-program expect the unique identifier as an argument
instead of generating it themselves as the constructors in Section [2.5]

Our implementation also supports some extensions not described in Section[2.5] Most notably,
modules can add a tag to an imported interface and use this tag instead of the interface name to
refer to the interface. This extension described by Kelsey [Kel97] makes it possible for a module
to import the same interface several times and link it later to different imports. Furthermore,
the interface can declare the type of exported identifiers in a syntax similarly to the Scheme 48
module system.

To determine the initial order of a program, we first generate a directed graph with the modules
of the program as nodes. There is an edge from node A to node B if the module corresponding to
node A imports the module corresponding to node B. Topological sorting determines the initial
order of the program. Scheme 48 comes with an implementation for topological sorting which
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assumes that it can write intermediate data into the data structure representing the node. There-
fore, the record type for modules receives an additional field, which is mutable and initialized to
#f.

Two prototype backends for the configuration phase exist. These backends take a fully-linked
program and translate it into code that an existing Scheme implementation can process. Thus the
backends cover elaboration, compilation, and evaluation. So far, the backends do not cover the full
power of our fully-parameterized module system with hygienic macros but they serve as a basis
for the design and implementation of the system. The next sections present the two backends and
along with their limitations.

5.1.1 The Backend for Scheme 48

The Scheme 48 backend generates a set of module declarations for the Scheme 48 module lan-
guage [Ree94]. Scheme 48 has a small configuration language separate from the Scheme code
proper. As in our system, interfaces are separate entities in Scheme 48. An interface consists of
a list of names, possibly decorated with type information. Scheme 48 calls modules “structures”
because they are fully linkedﬂ A structure consists of an export interface, a list of other struc-
tures it imports, and a piece of Scheme code. The define-structure form defines a structure
and assigns a name to it. A structure definition can rename and hide identifiers during import.
Structures can also export macros. In this case, the interface must assign type :syntax to the
corresponding keyword. During compilation of the structure, the macro expander looks up the
definition of imported macros in the exporting structures. This means that Scheme 48 does not
support independent compilation. Furthermore, its support for parameterized modules is weak:
While there exists a configuration language form to declare parameterized modules, the implemen-
tation simply expands parameterized modules into structure definitions as soon as the modules
have been linked. Consequently, no out code sharing occurs between different instantiations of the
same parameterized module.

As parameterized modules in Scheme 48 do not offer code sharing between the instances, the
backend cannot translate modules that share the same unit into Scheme 48 module. Instead, it
generates for each module a separate define-structure definition. In addition, macro definitions
within interfaces are not supported because Scheme 48 does not support this feature. Instead, the
macro definitions of the exporting module are used.

Apart form that, the Scheme 48 backend is rather powerful: the complete module definitions
of the implementation of the fully-parameterized module system are formulated using the con-
figuration language of Section and translated with the Scheme 48 backend into the module
language.

5.1.2 The PLT Backend

PLT ships with two module systems: The PLT unit system [FEF9§] is a fully-parameterized mod-
ule system with first-class modules but without support for macros, whereas the other module
system is a conventional static module system with macros and separate compilation [Fla02].
The PLT backend uses a combination of both systems to implement as much of the required
semantics as possible. A plain PLT unit imports and exports variables directly but the unit
system comes with an extension called signed units that covers interfaces (called signatures).
The declaration of a signed unit imports a set of signatures and exports a signature. Using the
provide-signature-elements form makes it even possible to use these interfaces to describe the
exports of a static module. Consequently, the PLT backend translates interfaces into signatures.
The PLT backend generates static PLT modules for each module from the input program and uses
the PLT unit system to express parameterization when necessary. To that end, the backend deter-
mines for each unit (in the sense of Section of the input program whether several modules use
it. If not, the backend translates the corresponding module into a static PLT module. Otherwise

1See Section for an explanation of this difference.



5.2. IMPLEMENTATION OF THE REWRITING SYSTEMS 131

it generates a static PLT module containing in turn a PLT unit for the unit. The PLT unit is
parameterized over all interfaces for which program links the modules using the unit to different
providers. For all other imports, the backend generates require statements in the surrounding
module. Next, the backend generates static PLT modules for all modules using the unit. Each
such module imports the module containing the PLT unit and the remaining imported modules as
specified by the link environment. The body of the module is then the definition of a compound
unit which performs the linking. As a compound unit can only link together units, the backend
generates a PLT unit for every imported module as well.

The generated code preserves code sharing as it generates only one PLT unit if a set of modules
share the same unit. However, the PLT backend does not handle macros for parameterized modules
because a unit cannot export or import a macro. Furthermore, it does not provide independent
compilation because PLT does not.

5.1.3 Configuration Language

I have implemented the configuration language from Section [2.7] using a set of syntax-rules
macros. These macros translate the language into applications of the record constructors from
Section which model the abstract data types.

The names of the definitions are the names from the definitions in the configuration language.
This requires the programmer to sort the definitions for interfaces, modules, and programs accord-
ing to the order the Scheme implementation evaluates top-level definitions as otherwise identifiers
may be referenced before their definition. It would be better to wrap the right-hand sides of the
definitions into nullary A-abstractions and evaluate them on demand. In practice, however, its
easy to live with this restriction as most Scheme implementation evaluate the top-level definitions
from left to right; one simply has to list interfaces before modules and modules before programs.

5.2 Implementation of the Rewriting Systems

The operational semantics for hygienic macro expansion from Chapter [3] is based on context-
sensitive term rewriting: A term reduces to its normal form using a set of binary relations and the
context of the term determines which relations apply. PLT redex [MEFE04] is a domain-specific
language for context sensitive rewriting systems embedded in Scheme. It enables the designer
of a term rewriting system to experiment and test with the rules and also visualizes reduction
sequences.

The reduction systems for the parser and the macro expander have been implemented with
PLT redex. Section shows how a separate program generates the INTEX source code for this
dissertation from the same set of rules. The rest of this section describes PLT redex and the
implementation of the rewriting systems from this dissertation using PLT redex.

For the definition of a rewriting system in PLT redex, it is first necessary to define the term
language using the macro language. A language consists of a list of rules for each non-terminal.
Each rule is a list containing the non-terminal as the first element followed by the right-hand
sides of the production rules for the non-terminal. Contexts are also non-terminals but should
include the terminal hole once. There is no way to specify the set of terminals for the language
in PLT redex. Instead, any s-expression that is not a non-terminal, becomes a terminal. The
following code is a shortened and simplified declaration that roughly corresponds to the definition
in Figure 3.8 The language definition is stored in a global variable lang:

(define lang
(language

The non-terminal a corresponds to a constant (a) and is defined as a synonym for number, a
PLT redex built in non-terminal that covers all numbers:

(a number)
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Se specifies s-expressions (sein Figure [3.8):

(se a
X

(se ...))
C is an expansion term equal to c:

(c se xn
(1lam (x) ©)
(@cc ...)
(mapp xn ses)
(letrec-syn x tf ses)
(subst-sym ¢ r)
(shift-expr c¢ number)
(mark c number)
(unshift c number)
(with-d ¢ d number))

The expansion terms include s-expressions and identifiers with levels (xn), A-abstractions, ap-
plications, macro applications, letrec-syntax forms, three expansion substitutions, the unshift
operator and with-d, which corresponds to a d,n F ¢ term.

The expressions are the normal forms of expansion, hence the language includes them with a
separate non-terminal e:

(e a
xn
(@ee ...)
(lam (x) e))

Next, def is a definition, defn is a normalized definition. Both combine a keyword with a trans-
former but the definition of transformers and normalized transformers is omitted here. The non-
terminal d describes a set of transformer bindings (d), which is either empty, or a definition in
front of another set, or a definition subject to the shift operator. Normalized set of bindings (d)
do not contain the shift operator and only normalized definitions:

(def (mk-def xn tf))
(defn (mk-def xn tfn))

(d epsilon
(d-cons def 4d)
(shift-def d))

(dn epsilon
(d-cons defn dn))

Ses is a lexical s-expression and r is the argument of the parsing substitution:

(ses se
(subst-sym ses r)
(shift-expr ses number)
(mark ses number))

(r (mk-subst-sym x xn))

Xn denotes an identifier with level and a list of marks:
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(xn (mk-xn x number (number ...)))

The non-terminal x covers the set of variables. The special form variable-expect defines this
set to be any symbol not listed in the arguments of the special form. In our case, these arguments
cover all symbols we use to construct the terms:

(x (variable-except subst-sym shift-expr mark unshift mk-subst-sym
mk-xn @ mapp lam letrec-syn with-d))

Finally, the definitions of two contexts el-ctxt and e-ctxt finish the declaration of the language:

(el-ctxt hole
(subst-sym el-ctxt r)
(shift-expr el-ctxt n)
(mark el-ctxt n))

(e-ctxt hole
(unshift e-ctxt n)
(@e ... ectxt ¢ ...)
(lam (x) e-ctxt))))

El-ctxt corresponds to the elimination context EL, e-ctxt is the expansion/parsing context EP
as defined on page [43] Within the definition of the contexts, the terminal hole corresponds to the
hole of the context (“[]”).

Reductions in PLT redex are lists of rules. A rule defines a single step of the reduction by
describing the left-hand and the right-hand side of the rule. PLT redex applies all the rules for
which the left-hand side matches the input term and returns a list of results. A following code is
a simple example for a rule declaration. In PLT redex, the following declaration defines the rule
(ShiftConst) from Figure which explains the elimination of the shift operator applied to a
constant:

(reduction/context "ShiftConst"
lang
el-ctxt
(shift-expr a_ number_)
(term a_))

The macro reduction/context defines a reduction rule that takes place within a context. The
first operand "ShiftConst" names the ruleE| The second operand specifies the language on which
the rule operates. Next comes el-ctxt, the context for the rule, which must be part of the
language. The fourth argument, (shift-expr a_ number_), is an s-expression that describes the
left-hand side of the reduction as a pattern. Symbols that end with an underscore (here a_ and
number_) refer to non-terminals of the language and match the input term if the input matches
the non-terminal derived from the symbol name by stripping the underscore. All other symbols
and the parentheses match literally. In the example above, the outer pair of parentheses and
shift-expr matches literally whereas a_ matches any constant and number_ any number. The
final argument is a Scheme expression that constructs the right-hand side of the reduction. The
value of this expression has to be a term of the language. The macro term generates such terms
from s-expressions. Within the s-expression, symbols that end with an underscore refer to input
terms that matched the same symbol in the left-hand side of the rule. All other parts of the s-
expression become part of the term. In the example above, the right-hand side is just the symbol
a_. It contains an underscore and appears in the left-hand side of the rule, hence PLT redex

replaces it by the constant in the input term that matched a_.

2Naming rules is an extension that I have added for the generation of the IATEX code, PLT redex does not use
it but the latest version of PLT redex contains named rules as an extension.
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In the following definition of rule (UnshiftApp) from Figure the left-hand side matches
unshift and @ literally, whereas e_1, e_2 and number_ refer to non-terminals in the language
definitions.

(reduction/context "UnshiftApp"
lang
e-ctxt
(unshift (@ e_1 e_2 ...) number_)
(term (@ (unshift e_1 number_)
(unshift e_2 number_) ...))))

PLT redex distinguishes multiple occurrences of the same non-terminal by additional characters
following the underscore. If a left-hand side contains two identical occurrences of the same non-
terminal, the corresponding input terms must be identical. The rule also uses another feature
of PLT redex: The identifier e_2 is followed by an ellipsis that has the same meaning as in
syntax-rules: it matches any number of input terms that match: eE| As in syntax-rules, the
ellipsis needs to reappear with the identifier but it is possible to add additional terms that will be
repeated as well. Here unshift and the number that matched number_ are copied as many times
in the output as the input matched e_2 ....

For an even more involved example, consider the definition of rule (ExpandNormDef) for PLT
redex:

(reduction/context "ExpandNormDef"

lang

e-ctxt

(side-condition
(with-d c_ d_ number_mrk)
(not (dn? (term d_))))

(let ((dn_ (reduce-star-unique def-reduction (term d_))))
(term (with-d c_ ,dn_ number_mrk))))

Here, the left-hand side is not simply a pattern for matching the input term, but the special form
side-condition. This form receives as first argument a pattern and as second argument a Scheme
expression. A left-hand side with side-condition only matches the input if the pattern matches
and if the Scheme expression returns #t. The Scheme expression can access the bindings of the
pattern. In this case, the function dn? checks whether the term bound to d_ is a normalized
definition. The definition of dn? uses the function language->predicate from PLT redex to
derive a predicate that matches only terms described by the non-terminal dn:

(define dn?
(language->predicate lang ’dn))

The right-hand side of the above rule is also special because of the comma within the argument
of term. This form corresponds to unquote from R°RS and embeds a Scheme value within a
term. The Scheme value itself must also be a term. Here, the rule first normalizes the set
of transformer bindings using the reduction —pes. The variable def-reduction contains the
rules of this reduction and the procedure reduce-star-unique applies it repeatedly to its second
argument until no more reductions are possible. That is, it corresponds to the transitive closure of
the reduction. In addition, the procedure checks that in each step only one reduction is applicable,
that is, that the reduction is deterministic.

For the evaluation of es-transformer procedures, it is necessary to reduce Macro Scheme
terms. As the operational semantics for the module calculus contains these terms as a sub-
language, and I have translated this semantics to PLT redex as well (see Section 7 the

3This is of course not a coincidence: PLT redex is based on syntax-rules/syntax-case and the identifiers with
underscores become pattern variables of the macro.
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expansion of es-transformer macros can hand out macro applications to the Macro Scheme
evaluator.

About 200 test cases building on the implementation for PLT redex exist. Many of these
tests use macros generating other macros as this is the most difficult part of the system. For
the automated testing procedures, the graphical front-end would be inappropriate as they require
visual interpretation. Instead, I have written a small set of procedures that calls the reduction
functions of PLT scheme directly and checks that every step returns just one contractum. This
ensures that the reduction is indeed deterministic.

5.2.1 Rewriting System for AMed4e and Macro Scheme

For the evaluation of expressions, I have implemented the operational semantics for Macro Scheme
within PLT redex and added the rules for the evaluation of modules from Chapter @] On top of
these rules, the rules for program evaluation link and evaluate modules.

The rules for the evaluation of the primitives operating on syntactic objects access the reduction
—patous and the function free-id=? from the implementation of the macro expander. The macro
expander uses the evaluation reduction for Macro Scheme expressions for macros defined using
es—-transformer.

The implementation of the function gen-loc for the generation of locations uses a counter stored
in a global variable to produce fresh locations, which are generated symbols. Before comparing
the result of a test case with the expected result, an additional reduction replaces locations within
the results by the values from the store. This makes it easier to specify the expected result as it
is not necessary to track the location counter during evaluation.

5.2.2 A Short Review of Using PLT redex

This dissertation would not have been possible without PLT redex. The sheer number of rules
and the broad coverage of the semantics made it necessary to experiment with the semantics using
other means than writing down reductions manually. PLT redex turned out to be an excellent
tool for this task. This section briefly summarizes the lessons I learned from using PLT redex.

I developed the semantics incrementally, adding new features only after I was satisfied with
the results so far. For every feature, I wrote test cases that cover the feature alone (if possible)
and in conjunction with other features. Two major kinds of errors usually occurred: either the
test cases did not produce the expected results, or the reduction got stuck. The latter happened
far more often than the first because as soon as a rule produces a small flaw, such as a forgotten
underscore or an extra pair of parentheses, the pattern on the left-hand side of the next rule
no longer matches and reduction stops. For finding such errors, I defined predicates for all non-
terminals of the language (analogous to dn? above) and used them in the read-eval-print-loop to
find out, which of the subterms of the last contractum did not conform to the non-terminal of the
next rule.

The reductions in this dissertation are deterministic without exception. The reason is that the
semantics is aimed to form the basis of a realistic implementation rather then to serve as a powerful
equational theory. The semantics achieves determinism using contexts to uniquely determine the
redex of a reduction. Formally, it is necessary to prove for each context a unique-decomposition
lemma. Such a proof is tedious and error prone, especially in such a large setting. Algorithms exist
to automate this proof [XSAQI] and it would be very helpful if PLT redex would include them. I
have instead relied on the test cases to identify violations of the lemma. For the test cases, I check
after each reduction step that only one contractum exists. To locate the source of the error, the
visual frontend of PLT redex is quite useful. The visual frontend displays the reduction sequence
as a directed graph where the nodes are the terms that appear during reduction and an edge from
one node to another corresponds to a reduction step between the corresponding terms. Alas, the
frontend does not annotate the edges of the graph with a hint about the rules that led to the
reduction.
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PLT redex is a programming language with full access to Scheme and before I started to
generate the rules automatically (see Section and write descriptions of the rules, I made much
more use of Scheme than it is now the case. The problem was that with the access to Scheme,
it has been quite tempting to perceive the PLT redex terms as Scheme data and employ Scheme
procedures to solve problems instead of trying to formulate appropriate rewriting rules. However,
generating ITEX code and especially describing the rules, and arguing about their correctness is
almost impossible for rules that rely on Scheme procedures. A good example for this scenario
is the —import reduction from Figure @ At the beginning, I had written a Scheme procedure
bind-ids that generated the parsing substitutions for all identifiers imported by a module. The
procedure used three nested fold-right functions to process an imported module. The rule
for parsing modules called bind-ids before creating the abstract syntax of the module. While
writing the description of this rule, I realized that importing is a separate phase after parsing but
before expansion. Consequently, I introduced the —import reduction and added for each aspect of
importing a separate rule that describes this aspect. I consider the resulting reduction much more
descriptive than the original Scheme procedure.

5.3 Direct Implementation of the Macro Expander

In addition to the implementation as a rewriting system, I have also implemented the macro
expander directly in Scheme. The implementation is based on the concepts of the operational
semantics but uses a recursive functions instead of repeatedly partitioning the term into a context
and a redex. This technique is inspired by Felleisen’s technique for deriving efficient abstract
machines from standard-reduction functions [FE04]. The central idea is to avoid the repeated
search for a redex by splitting the machine state into two parts: the control string and the contexzt.
The control string denotes the “current subterm of interest,” while the context is the “current
evaluation context”. Putting the control string into the context yields the state of the original
machine. The machine, called CC machine, performs actions of three kinds:

e If the control string is a redex, it applies the original reduction rule and builds a new state
from the resulting term and the unchanged context.

e Otherwise, it splits the control string into a context and a new control string according to
the context grammar and composes the resulting new context with the current evaluation
context.

e If the control string is a normal form, it splits the context into the innermost (non-hole)
context and the new current evaluation context. The machine obtains the new control string
of its resulting state by putting the normal form into the hole of the innermost context. In
the next step, the control string is either a redex or the machine splits it again.

For the \,-calculus, the resulting machine can be proved to produce the same results as the
original machine. While Felleisen proceeds further to produce machines that represent the context
in a stack-like fashion, an implementation in a real programming language can be derived directly
from the CC machine as a recursive function:

e The redex corresponds to the base cases of the recursive definition. Here the function
performs the work proper as described in the reduction rules and returns the result.

e The search for a redex translates into a recursive call on one of the sub-terms guided by the
definition of the context. The function repeats this call until a normal form is returned. This
is again repeated for all sub-terms specified by the context definition. Finally the function
returns the term.

e If the term is in normal form, the function returns it.
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Thus a translation of the resulting machine into a real programming language uses continua-
tions to represent the context.

The above technique assumes that a standard-reduction function exists, that is, that it is
possible to uniquely decompose each context into a redex and a context with a hole. All contexts
in this dissertation have this property as can be easily veriﬁedﬁ

Consequently, while it is less obvious than with the PLT-redex implementation that the direct
implementation matches the semantics, proving the direct implementation correct would be possi-
ble using the techniques described by Felleisen and Flatt [FE04] for the A,-calculus. However, such
a proof is outside the scope of this dissertation, which deals with the definition of the semantics.
The remainder of this section describes the direct implementation that rests upon the ideas just
sketched to implement the semantics.

The abstract syntax produced by the expander is implemented as a set of records. The imple-
mentation also uses separate record types for the parsing substitution, the identifier substitution,
the meta-substitution, and the shift operator. However, the expander constructs these records
only when it builds the arguments of a macro application, otherwise it directly calls the according
elimination functions. For the unshift operator, no record type exists as this operator always oc-
curs with a letrec-syntax form and can be eliminated directly as it operates on expanded terms
only. For the abstract syntax of expanded terms—the core expressions of Scheme—a translation to
the abstract syntax of the Scheme 48 byte-code compiler exists. This makes it possible to use the
expander as a front-end for Scheme 48. This is actually necessary to implement es-transformer:
The code of the transformer procedure is generated by the macro expander but must be evaluated
by Scheme 48, and therefore the Scheme 48 compiler must understand the output of the macro
expander.

There are two main procedures; expand represents the core of the macro expander, and
parse-form implements the parser. Expand takes as arguments the form to be expanded and
the set of definitions. The form is either an s-expression, possibly subject to an expansion sub-
stitution, or an abstract syntax term which has not yet been fully expanded. In the first case,
the expander calls the parser to produce abstract syntax. Otherwise it dispatches on the type of
the abstract syntax and calls itself recursively on the sub-terms. The parser implements the rules
from Figure [3.26| and also eliminates expansion substitutions.

The treatment of the parsing context (P in the reduction rules) is worth mentioning. On
the left-hand sides of the parsing reduction rules, the parser uses the context to “peek” into the
s-expression under the expansion substitutions. On the right-hand sides of the rules the parser
applies the context to the parsed terms, and also uses it to resolve symbols to identifiers using the
reductions —g; and —gymRes, and to build the syntactic object of a macro application (see rule
(MacApp) in Figure .

For the parse-form procedure, it would be inefficient to repeatedly decompose its input into a
parsing context and the s-expression. Still it needs the context to resolve symbols in two different
ways and to build syntactic objects. The solution to represent the context as a procedure that
immediately performs the task required by the parser and to add this context procedure as an
argument to parse-form. The procedure receives two arguments: the form to be plugged into
the hole and a message (a symbol) that specifies the task. The message either tells the context to
reduce the term using the reduction —;, or to reduce the term using the reduction —gymges, or to
construct a syntactic object. The context procedure then eliminates the expansion substitutions
accordingly or generates records to represent the substitutions applied to the term. At the start
of the parser, the context procedure represents a parsing context containing the special parsing
substitutions for A, letrec-syn, and . If the parser encounters a expansion substitution, it generates
a fresh context procedure that passes the form and the message to the current context procedure
and performs the task specified by the message on the result. Note, that representing a context
by a procedure that accepts as its argument the term to be substituted into the hole and returns
the plugged term establishes a direct analogy with the definition of contexts.

4But see the remark about automatically proving this property in Section
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For macro applications of syntax-rules transformers, the expander calls the same helper
procedures as in the operational semantics. The implementation of es-transformer is more
involved and will be described separately below in Section [5.3.1]

5.3.1 Implementation of Macro Scheme

For the evaluation of the es-transformer procedure and for applications of es-transformer
macros, an implementation of Macro Scheme is required. Macro Scheme is an extension of Scheme
with new expressions and primitives. The new expressions are expansion substitutions, syntax,
and syntax-lambda, and the new primitives are syntax-car, syntax-cdr, free-identifier=7,
bound-identifier=7, and datum->syntax-object. The new primitives all deal with syntactic
objects as data and hence are straightforward to implement. For the new expressions it is not
necessary to modify an existing implementation or even to write a new implementation from
scratch. Instead, a set of macros translates these expressions into ordinary Scheme. The remainder
of this section presents my implementation of the Macro-Scheme-specific expressions. It is then
possible to evaluate the transformer procedure and the application of the resulting transformer
closure within the macro expander using the Scheme procedure eval.

Figure describes the evaluation of expansion substitutions in Macro Scheme. There, the
reduction —gg pushes the explicit substitutions inwards until they meet a syntax form, where
the substitutions extend the syntactic object, or until they meet a A-abstraction or a syntactic
closure, where the substitutions stick. This propagation proceeds exactly in the same order as
evaluation. The reason is that it takes place in the context Cepm and this context matches the
normal evaluation context C™ with the sole addition that it also reduces the innermost explicit
substitution. Hence, it is possible to model the propagation by maintaining a current erpansion
substitution during evaluation. The current expansion substitution represents all expansion sub-
stitutions that evaluation has generated so far. It is implemented as a procedure that accepts
an s-expression as its single argument and augments it by the generated expansion substitutions.
The evaluation of the transformer procedure creates the initial current expansion substitution from
the expansion substitutions attached to the code of the transformer procedure (see rule (ESTrans-
former) in Figure [3.24). Syntax-lambda extends the current expansion substitution with a new
meta-substitution and the evaluation of syntax uses the value of the current explicit substitution
to turn its s-expression argument into a syntactic object. To model the propagation of the current
expansion substitution to happen in parallel to evaluation, the implementation stores the current
explicit substitution as a fluid binding [GKSK03|]. However, for the evaluation of A-abstractions,
rule (EvalESLam) in Figure prescribes that an explicit substitution should propagate to the
body of a A-abstraction. However, the evaluation of a lambda expression does not record the
fluid bindings in the closure. Instead a procedure application propagates its fluid bindings to the
body of the called procedure. I have circumvented this by modifying the binding of the lambda
keyword to let it record the current substitution while creating the closure and let it reinstall this
substitution for the evaluation of the body. This can be achieved easily by a macro that replaces
lambda:

(define-syntax lambda
(syntax-rules Q)
((lambda vars body ...)
(let ((subst (fluid $subst)))
(rbrs-lambda vars
(let-fluid $subst subst (rbSrs-lambda () body ...)))))))

Here, $subst is the variable that contains the fluid binding for the current expansion substitution,
fluid dereferences the fluid binding, and r5rs-lambda refers to the original binding for lambda.
For the evaluation of the syntax expression it is also possible to define a small macro, which
applies the current expansion substitution to the argument of syntax:

(define-syntax syntax
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(syntax-rules ()
((syntax form)
((fluid $subst) ’form))))

Syntax-lambda is also a macro. It expands into a procedure that accepts the pattern variables
as its arguments and uses them to extend the current expansion substitution by a new meta-
substitution, which it binds during the evaluation of the body.

5.4 Generation of BTEX Output

The ETEX source code of all rewriting rules in this dissertation has been generated from the
implementation of the rewriting system for PLT redex. This way, the dissertation is guaranteed
to be consistent with the tested implementation of the rewriting system.

For the generation of the IATEX source code, I have implemented a separate module texify
for PLT Scheme. Then a separate module uses texify as its default language and includes the
source code for the rewriting system. This construction is necessary because PLT Scheme does
not support renaming of names from the the default language but I needed to redefine most of
the standard procedures and special forms. The generation happens during the evaluation of the
included code. In the source code, the form define-reduction defines a new reduction by listing
a set of rules. Define-reduction is a macro that expands into code that generates the IMTEX
code; I have redefined define into a macro that expands into #t to prevent any other top-level
definitions from being processed.

The first argument to define-reduction is the name of the reduction and this name is also
the name of a new file define-reduction opens (after prepending .tex). The define-reduction
form emits for each rule an \input command into this file and puts the actual code into a file
with the name of the rule. This makes it possible to choose between including single rules and
complete reductions. The PLT redex forms reduction and reduction/context, which define
the actual rules, perform the basic layout of the IXTEX code for single rules. They first emit the
code for the left-hand side, then a \rightarrow, indexed by the name of the reduction, then the
right-hand side of the rule, and finally a \tag command to define a name for the rule within a
align environment of the amsmath package.

As a simple example of a generator for the actual terms, consider the representation of the
unshift operator. As shown in Section[5.2.1] the form (unshift e number) represents the unshift
operator within PLT redex. During the generation of the X TEX code, texify binds unshift to

(define (unshift expr n)
(format "(\\unshift{"a}{"a})" expr n))

unshift is in turn a M TEX commando defined as
\newcommand{\unshift} [2]{\ensuremath{{#1}{\downarrow} " {#2}}}

Most of the generators are not this simple but complex macros that dispatch on the layout of
the terms. This is necessary to prevent parenthesized forms from corresponding to procedure
applications, or to produce context-sensitive output. An example that covers both cases is the @
macro which procedure applications

(define-syntax @
(syntax-rules (... with-d)

((@ (with-d ¢ dnn) (... ...))
(format "(@\\ (Ta) \\dots)" (with-d c dn n)))
(@ (s11 822 (..o v.)) 82 (ove oo ))

5The double slash is necessary because a single slash creates an escape character within strings. The format
procedure is the PLT-Scheme equivalent to printf, ~a within the format string inserts the printed representation
of the corresponding argument.
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(format "(@\\ \\texttt{(}"a ~“a \\ldots\\texttt{)} ~a \\ldots)"
s11 s22 s2))

(@e (... ...0)
(format "(@\\ ~a \\dots)" e))
((@c ...)
(string-append "(@\\ " (string-join (list c ...) "\\ ") ")"))))
This macro definition contains two literal identifiers, ... and with-d, to detect special cases.
The first rule adds an additional pair of parentheses around the F form to make the output of the
rule (ExpandApp) in Figure more readable. The second rule uses the pattern (... ...) to
detect uses of ellipsis within the definition of the rule. The pattern (... ...) matches ellipsis,
if ... 1is a literal of the macro. The rule matches the case where the first form after the @ is

again a parenthesized form and prevents this form from normal parsing where it would count
as a procedure application. The third rule also covers a special case involving ellipsis whereas
the ellipsis in the last case are the plain syntax-rules tool to match an arbitrary number of
arguments, which the template of the rule makes into a list and before applying string-join to
generate a single string separated by spaces.

For the generation of a complete reduction, consider the following excerpt from the definition
of the — | reduction:

(define-reduction unshift-reduction
(reduction/context "UnshiftConst"

lang

e-ctxt

(unshift a_ number_)
(term a_))

(reduction/context "UnshiftLam"
lang
e-ctxt
(unshift (lam (x_) e_) number_)
(term
(lam (x_) (unshift e_ ,(+ (term number_) 1)))))

(reduction/context "UnshiftApp"
lang
e-ctxt
(unshift (@ e_1 e_2 ...) number_)
(term (@ (unshift e_1 number_)
(unshift e_2 number_) ...))))

Evaluation of this form generates a file unshift-reduction.tex. The evaluation of each
reduction/context form emits an include command into this file:

\input{latex/UnshiftConst}\\
\input{latex/UnshiftLam}\\
\input{latex/UnshiftApp}

In addition, each reduction/context form generates a file containing the corresponding code.
For this to happen, it was also necessary to define the non-terminal patterns because they become
variables during evaluation:

(define number_ "n")
(define a_ "a")
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(define x_ "x")
(define e_ "e")
(define e_1 "e_1
(define e_2 "e_2"

ll)
)
That is, the characters after the underscore become subscripts in the ATEX code. The file
latex/UnshiftConst.tex then contains the following code:

(\unshift{a}{n}) \rightarrow_{\unshift{}{}}
a\tag{UnshiftConst}\index{UnshiftConst}

The left-hand side of the rule directly results from evaluating (unshift a_ number_). Each rule
generates the arrow but receives the subscript from the current define-reduction form via a
global variable. The right-hand side of the rule is the result of evaluating (term a_). Term is
defined as a macro that expands to its sole argument, hence a remains. Each rule also emits a
\tag command from the amsmath package to display the name of the rule and a \index command
to add an entry to the index file of the dissertation. Both commands use the rule name as the
argument.
The code for (UnshiftLam) uses the following definition for lam:

(define-syntax lam

(syntax-rules ()

((lam (var) c)
(format "(\\lambda ~a.~a)" var c))))

and re-defines unquote as the identity function. The following IATEX code results:

(\unshift{(\lambda x.e)}{n}) \rightarrow{\unshift{}{}}
(\lambda x.(\unshift{e}{n + 1}))\tag{UnshiftLam}\index{UnshiftLam}

Finally, for the generation of (UnshiftApp), the third rule of the macro definition of @ transforms
the ellipsis into an \1dots command. The ETEX code is then:

(\unshift{(@\ e_1\ e_2\ \ldots )}{n}) \rightarrow{\unshift{}{}}
(6\ (\unshift{e_1}{n})\ (\unshift{e_2}{n})\ \ldots )
\tag{UnshiftApp}\index{UnshiftApp}

The macro expansion system implemented within PLT redex covers modules as well. In par-
ticular, this means that the identifier representation contains an import path. To save the reader
of Chapter [3| from this alien concept, each rule is actually output twice into two different directo-
ries, once for inclusion in Chapter [3| where modules are not discussed, and once with modules for
Chapter [ The generation of the code for Chapter [3] omits any output related to modules.
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Chapter 6

Related Work

Several research areas form the basis of this dissertation. This chapter reviews previous work
on the research that this dissertation combines: hygienic macro expansion, fully-parameterized
module systems, the combination of modules and macros, and meta-languages for macro systems.
The chapter starts out with a description of the relationship between this work and first-class
macros. Then it presents existing fully-parameterized module systems, hygienic macro expansion
algorithms, and module systems that support macros. Finally, it discusses the relationship between
Macro Scheme and the meta-languages used in other macro systems.

6.1 First-Class Macros

Bawden describes a macro system where macros are parameterized over the bindings of the vari-
ables the macro introduces [Baw00]. In this system, macro transformers are the types of the
corresponding keywords and macros are defined along with the variables they introduce within
so-called templates, which can be seen as lexical environments. From the template, the type-of
expression derives the type of a macro. The type enables the programmer to bind keywords with
declare: For each keyword appearing in the list of bound identifiers, the declare form assigns a
type (that is, a transformer) to the keyword. Thus macros become first-class entities. The macro
expander uses the type to expand macro applications in the body of the lambda but the expanded
code contains references into the template instead of names for the variables of the template.
The instantiate form creates a run-time representation of the template which the programmer
fills with the values of the template’s variable and which she passes to the functions that accept
keywords of the corresponding type. By passing different instantiations of the template to the
function, different bindings are in effect in the macro-expanded code. As applications of these
first-class macros, Bawden shows the definition of data structure definitions and a small module
system.

The module system from Chapter [d] provides the same power as Bawden does without any
additionally machinery. As modules are fully-parameterized, for any module that imports an
interface containing macros, linking determines the bindings of the variables inserted by the im-
ported macros. The following code shows the translation of Bawden’s example where the delay
macro from RPRS is parameterized over the implementation of make-promise and force:

(define-interface promises-interface
(open scheme-interface)
(define-syntax delay
(syntax-rules ()
((delay form) (make-promise (lambda () form)))))
force)

(define-module simple-promises promises-interface

143



144 CHAPTER 6. RELATED WORK

(open scheme-interface)

(begin
(define (make-promise thunk) thunk)
(define (force promise) (promise))))

(define-module memo-promises promises-interface
(open scheme-interface)
(begin
(define (make-promise thunk) (cons #f thunk))
(define (force promise)
(if (car promise)
(cdr promise)
(let ((val ((cdr promise))))
(if (car promise)
(cdr promise)
(begin (set-car! promise #t)
(set-cdr! promise val)

val)))))))

(define-module lazy-lists (export lazy-map)
(open scheme-interface
promises-interface)
(define (lazy-map f 1)
(if (null? 1)
&0
(cons (f (car 1))
(delay (lazy-map f (cdr 1)))))))

The interface promises-interface defines the macro delay and the force procedure. Two
modules implement this interface: simple-promises just uses a thunk to represent the delayed
computation while memo-promises also implements memoization as required by R°RS. The mod-
ule lazy-lists imports promises-interface and uses the delay macro to implement lazy lists.
As the example uses top-level modules, the configuration phase selects the actual implementation
of promises used within the program. Relying on the configuration phase is probably sufficient
in most situations. However, as first-class modules can export and import macros as well, the
equivalent of a function using a first-class macro (which in Bawden’s system would use declare
to reference the macro transformer) is a module importing that macro, and the equivalent of
Bawden’s template instances are modules exporting the macro. Instead of procedure application,
run-time linking resolves the variable references in the macro output.

Even though Bawden’s macros can describe a module system, the requirements for a module
system are manifold enough to warrant a separate facility for a programming language. As the
emulation of Bawden’s system shows, first-class modules with macros yield first-class macros.

6.2 Fully-Parameterized Module Systems

Kelsey’s unpublished paper “Fully-parameterized Modules or The Missing Link” has been the
starting point of my work. In the paper, Kelsey combines 1d’s automatic inference of the de-
pendency graph with explicit interfaces known from modern languages. Unlike in conventional
systems, Kelsey’s modules import interfaces only, thus yielding a fully-parameterized module sys-
tem. His semantics is a set of abstract data types for the module system and he focuses on the
automatic linker and the derivation of the resolve function, which maps qualified names within a
module to the providing module and the name within that module. Section [2.5] revisits the core of
Kelsey’s description. In the paper, Kelsey also describes additions like renaming and tags on im-
port (covered in Section7 circular dependencies, and copying of modules. Kelsey covers macros
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only with a few remarks that are tailored to a module system without independent compilation.
In contrast, Chapter [4] defines the semantics of a programming language with fully-parameterized
modules and macro definitions within interfaces that enable independent compilation in the pres-
ence of macros.

In his Master’s thesis [Wie00], Wiesenmaier uses Kelsey’s idea to develop an implementation
of a fully-parameterized module system. The implementation is essentially a source-to-source
transformation that resolves the references to imported identifiers. The transformation has the
important property of preserving the sharing of code among modules with the same unit. The
transformation works by generating a procedure for each unit, which expects a vector of cells as
its only argument. The vector corresponds to the imports of the unit and the cells contain the
values of the imported variables. The transformation maintains a mapping from imported names
to indices into the vector for each unit. It uses this mapping to convert occurrences of global
variables into references in the vector. Applying the unit procedure to a vector filled with cells
containing imports creates a module. The transformation covers macros as well but keeps the
macro definitions in the module body and does hence not provide independent compilation. The
configuration language of Wiesenmaier (which is in turn based on the configuration language of
Scheme 48 [Ree94]) has also influenced the configuration language as presented in Section

Flatt’s Unit system [FF9§| is a fully-parameterized module system. In Flatt’s system, a unit
imports and exports variables, contains a set of definitions and an initialization expression. Units
can be invoked, which means that the imported variables are replaced by values, and the value of
the initialization expression is evaluated in the scope of the unit’s set of definitions. Furthermore,
two units can be assembled to a compound unit, where the imports of each of the two units can be
satisfied by the other unit respectively. Assembling units roughly corresponds to linking modules.
Units are run-time values and linking happens at run-time as well. The semantics of units is
specified in terms of meta-substitutions. Due to their run-time nature, units cannot import or
export macros. Furthermore, the programmer needs to write down the linking steps manually
which gets tedious for large programs and makes it hard to define a compound unit which is not
parameterized over an imported unit of one of its sub-units.

Mixin Modules [HLWO04] are very similar to units but take place within the typed setting of
the ML language. Mixin modules place emphasis on the order the evaluation of module definitions
by ordering the definitions automatically, assisted by user-defined annotations. Such annotations
also exist in our configuration language but they have no effect on the evaluation as the semantics
does not support recursive modules yet. In addition, with mixin modules it is possible to replace
bindings of a module which is then called late binding. Unlike our system, mixin modules do not
contain interfaces and hence linking must happen manually.

For the language Scala, Odersky and Zenger [OZ05] use classes with abstract types to obtain
a system for component based programming. In Scala, abstract classes may contain abstract
type and value declarations and inheritance using mixins implements these abstract types and
provides concrete values. The resulting system is very similar to a fully-parameterized module
system because the abstract entities correspond to imported modules and defining an inherited
class corresponds to the implementation of an imported module.

6.3 Macro Expansion Algorithms

The work by Bove and Arbilla [BA92] is closest to the semantics for hygienic macros in Chapter
and it has also been of great influence for my semantics. Section[3.I1]includes a detailed discussion
that shows how my semantics improves hygiene and feature coverage upon the calculus of Bove
and Arbilla.

“Syntactic Closures” [BR8§| are another concept for implementing hygienic macros. There,
transformers are procedures in a meta-language (which is ordinary Scheme) that accept, in ad-
dition to the s-expression representing the macro application, the syntactic environment of the
macro application. A syntactic environment maps names to identifiers with binding information.
A syntactic closure consists of a syntactic environment, a list of names to be left free, and an
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expression. The syntactic closure represents a piece of code (the value of the expression) where
all free identifiers (besides the ones to be left free) have been bound according to the closure’s
syntactic environment. The identifiers to be left free can be captured at the invocation site, thus
the system can support non-hygienic macros as well. A typical transformer returns a new syn-
tactic closure that contains the syntactic environment from the macro definition, no free names,
and an expression representing the output. Within the expression, the programmer may insert
sub-expressions that stem from the input but, to ensure hygiene, the programmer must wrap these
sub-expressions into syntactic closures whose syntactic environment is the syntactic environment
passed to the transformer. While syntactic closures look rather powerful and straightforward
to implement, they rely completely on mechanisms of the meta-language to implement hygiene.
That is, to understand the semantics of a macro application it is necessary to reconstruct the com-
plete evaluation within the meta-language and trace the values that represent input and output
forms, and the syntactic closures themselves. In contrast, the semantics in Chapter [3] contains
special means to explain hygiene (mainly the expansion substitutions). To explain the semantics
of syntax-rules, only a few additional functions that perform matching and generation of sub-
stitutions at the meta-level are required. For computational macros, the semantics adds means
that deal with hygienic macro expansion to the semantics of the meta-language: syntactic objects,
syntax-lambda, and the evaluation of expansion substitutions.

Based on the ideas of syntactic closures, Kolbly defines an algorithm for hygienic macro ex-
pansion that is interleaved with compilation [Kol02]. The algorithm uses the compile-time envi-
ronments to preserve the lexical information of identifier occurrences and does not generate the
expanded source code but compiles it directly.

The original “Hygienic Macro Expansion” paper [KEFD86] presents the first algorithm for
hygienic macros. The algorithm avoids capturing by renaming new identifiers. It consists of four
phases: The first phase replaces all identifiers by time-stamped identifiers with time stamp 0. The
second phase applies the macro expansion functions. After each transformation, the result is again
time-stamped and the current time is increased. After expansion, a stripping phase « renames all
bound identifiers to fresh, unstamped identifiers. The final phase renames the remaining stamped
identifiers (which are the free identifiers) back to their original name. As an extension, the user
can mark identifiers that should be captured by macro expansion by simply applying the initial
time-stamping function to them. In the paper, macros are always declared at the top level, but
local macro definitions are sketched.

“Macro-by-Example: Deriving Syntactic Transformations from their Specifications” [KW87]
introduces the pattern language present in syntax-rules but without a list of literals. The paper
contains a formal semantics for the language along with the derivation of a practical compiler.
However, the semantics directly operates on the pattern language. This rules out macro definitions
generated by other macros, which has been an important aspect of the semantics for syntax-rules
in Section [3.91

A pattern-based macro system is also the subject of “Macros That Work” [CR91], which com-
bines the algorithm by Kohlbecker et. al. with syntactic closures. The system does not feature a
meta-language and administers syntactic environments directly. The expansion algorithm renames
bound variables and records the fresh names in the syntactic environment. Dealing with literal
identifiers within patterns is simplified in the paper by using a special lexical syntax for pattern
variables. However, as noted by the authors, this simplification does not extend to macros defining
other macros and indeed much complexity of our semantics for syntax-rules in Section [3.9stems
from the proper handling of this case. The paper advocates against the direct usage of syntactic
closures from [BR&8] for the reason that syntactic closures are too low-level and are not suitable
for implementing pattern-based macro systems. Later Hanson showed how to overcome the latter
limitation rather easily [Han91].

“Syntactic Abstraction in Scheme” [DHB92] describes the syntax-case system. The macro
expansion algorithm is an improved version of [KFEFDS86] with linear complexity. The central
contribution of the syntax-case system is the representation of identifiers. To support hygiene and
the more elaborated operations on syntactic objects, identifiers in the formal system are abstract
objects with the following operations: mark adds a mark to an identifier and subst replaces the
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binding name of an identifier by a different symbol. The binding name is used to determine the
binding place of an identifier. The symbolic name of an identifier remains unchanged throughout
the macro expansion process and is used to maintain the source-object mapping. Before application
of a macro transformer, the macro expander applies the mark operation with a fresh mark to the
input. The same happens to the output of the transformer, but with the same mark. As identical
marks cancel, exactly the identifiers introduced by the macro remain marked. The expander
uses the subst operation to rename identifiers to fresh names if it encounters a binding construct.
At the same time, the expander records the “type” of the bound variable in an expansion time
environment along with the transformers. A transformer is an expression of the meta-language
which is again full Scheme. The transformer receives the macro application form as a syntax object,
an s-expression subject to subst and mark operations, and must also return a syntax object. In
the formal model, there is a plambda special form, which binds a single pattern variable within its
body. The syntax-case form itself is a pattern matching facility in the spirit of syntax-rules,
with the change that the right-hand sides of the rules are meta-language expressions which must
evaluate to syntax objects. However, the paper contains no formal semantics of syntax-case itself.
Many aspects of syntax-case have inspired the computational macros as presented in Section [3.6]
including syntax, free-identifier=7, bound-identifier=7. However the two systems differ
heavily in the scoping interaction between the meta-language and the object language as detailed
in Section 3-8} Our semantics has been designed to perceive syntactic objects as data with
syntax-lambda as an operation for hygienic insertion into it. In the syntax-case model on the
other hand the behavior results from the usage of renaming to implement hygiene: for each A-
abstraction, syntax-case renames the names of the bound variables within the body to fresh
names, regardless of whether the names will later become variables of the same phase or not.
The same also applies to A-abstractions of the meta-language for which the system also renames
names appearing within syntax expressions. Section [3.8.1| contains a number of examples where
the ruthless renaming of syntax-case violates the principle of least astonishment.

6.4 Module Systems with Macros

The module systems of most major Scheme implementations allow users to define modules that
import and export macros. Among these systems are Chez Scheme [Dyb98|, PLT Scheme [Fla04],
and Scheme 48 [KR02]. However none of them offers independent compilation and hence they do
not meet our definition of a module as an exchangeable component.

Blume’s draft paper [Blu97] mentions the idea of adding macros to interface declarations to
achieve independent compilation but provides no formal semantics whatsoever. Blume suggests
to declare all identifiers inserted by exported macro in the interface. The interface declaration
contains an additional form to declare the exported identifiers, hence hidden exports are still
possible. As already mentioned in Section[£.1} Blume’s proposal does not extend to computational
macros that generate identifier names but makes it possible to check whether a module satisfies
its exported interface. Checking the internal consistency of an interface is still not possible.

Recently, Culpepper, Owens and Flatt combined Flatt’s Unit system (described in Section
with macros [COF05]. Just as in our system, they put the exported macro definitions into the
interface declarations. The main difference to our systems seems to be that Culpepper et. al.
use the existing macro expander and the top-level module system of PLT Scheme to implement
signatures to embed units with macros whereas our system starts from scratch, based on a formal
semantics.

6.5 Meta-Languages for Macros
For computational macros such as our es-transformer from Section[3.7] it is necessary to specify

a meta-language that computes the result of a macro application. In our case, this language is
Macro Scheme. A significant body of research exists that describes the semantics of such staged
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evaluation languages. We focus on the discussion of macro systems here, as opposed to more
general languages that have programs in their domain.

In “Macroexpansion Reflective Tower” [Que96], Queinnec provides a model for understanding
macro expansion using a reflective tower. In the model, the meaning of a program is the result of
first evaluating a call to a macro expansion function applied to the source code and then obtaining
the meaning in the core language. The evaluation of the call to the macro expansion function
obtains the meaning of the call one level up in the tower and executes the returned denotation.
As the meaning in the upper level also includes macro expansion, this definition builds an infinite
tower of language levels. Our systems does not provide direct access to the expansion function,
but for es-transformer a recursive definition very similar to Queinnec’s description emerges:
the rule (ESTransformer) in Figure first applies the function expand’ to expand the code of
the transformation procedure before passing the result to evalf,w S, Hence, the macro expander
recursively calls itself and evalf}” S is a special evaluation function in the upper level. Unlike
Queinnec’s system, our system does not use s-expressions to represent the expanded code, but
instead uses the mixture syntax to convey lexical information between the levels and thus to
implement hygiene, which Queinnec’s model can only do using renaming.

In [Fla02], Flatt deals with separation of evaluation phases that arise in the presence of a full-
fledged programming language at the macro level. He introduces a require-for-syntax module
clauses to import identifiers into the macro phase only and describes the management of the state
of the macro language. Flatt’s ideas could be applied to our system as well if Macro Scheme were
extended to include state.

MacroML [GSTO01] is an extension of Standard ML that translates into MetaML [Tah99], a
language for staged evaluation. MetaML provides constructs for defining and executing code
expressions and, within these code expressions, an escape facility that embeds the result of eval-
uating expressions into the code. Thus, the escape facility allows the programmer to combine
computed code with static code. For the code expressions, MetaML can derive a type that in-
dicates the type of the expression itself. MetaML uses renaming to prevent inadvertent capture
of variables while combining code, and MacroML builds on this feature to implement hygiene.
Macros in MacroML also inherit the typing properties from MetaML, which makes it possible to
write type-safe macros. The translation from MacroML to MetaML translates ordinary expres-
sions into code and macro definitions into escaped MetaML function definitions. The syntax of
macro definitions in MacroML is restricted in such a way that the system can recognize macros
that introduce bindings forms with meta-variables as binding variables the bound meta-variable
and the body. For such a body, the translation generates a MetaML function that returns the
body abstracted over the bound variable and translates references of the body into applications of
the body function with code representing the actual macro argument. For occurrences of macro
parameters within the body, the translation generates an escaped occurrence of the parameter.
Thus macros binding variables are translated into MetaML functions and MetaML’s renaming
prevents variables within expression bound to the parameter from being captured by surrounding
binders and ensures that the parameter of the body function does not bind variables within the
body code. Compared a fully-fledged macro system like syntax-case or the system presented
in this dissertation, MacroML lacks a lot of features: for example it cannot handle macros that
expand into macro definitions or macro applications, macros that inspect their arguments, and
macros that take other macros as arguments. It is an open question whether it is possible to
extend MacroML to cover these features.

Taha and Johann [T.J03] have extended MacroML with an equational theory that also supports
alpha-conversion for bound variables in macro definitions that introduce binding forms. While this
revised version is still very restrictive, it indicates a direction of future research on macro systems
in Scheme.



Chapter 7

Conclusions

This dissertation shows that it is possible to define a formal semantics for fully-parameterized first-
class modules with hygienic macros, independent compilation, and code sharing. The semantics
in this dissertation formalize configuration, elaboration, linking, and evaluation of modules. It
makes use of explicit substitution to define hygienic expansion, expressive interfaces to provide
independent compilation, and explicit substitutions to enable code sharing.

7.1 Review

Chapter[2defines a configuration language for a fully-parameterized module system with automatic
linking. The module system supports macros while providing independent compilation because
interfaces contain the definitions of exported macros and the free and open clauses of interfaces
establish the lexical environment for these macros. The semantics of the language translates into
abstract data types from which it is possible to derive a link environment using Kelsey’s ideas.

For elaboration, the semantics defines a parser and a hygienic macro expander. The se-
mantics for the expander covers almost all features of the popular syntax-rules transformer
and gives a detailed description for computational macros, including a semantics for the meta-
language Macro Scheme. Explicit substitutions are the main means capturing hygiene without
relying on non-pure renaming techniques. The semantics for parsing and expansion supports
fully-parameterized modules, retrieving macro definitions from interfaces. It supports first-class
modules through the identifier representation, which covers module expressions as binding places.

Guided by a link environment, the linking semantics combines fully-parameterized modules into
linked packages. The result is a template for each package that serves as an explicit substitution
during evaluation. Thus the semantics preserves code sharing as it does not alter the module body
for linking. The linker is aware of macros through the identifier representation and collects all
identifiers of the imported macros in the template to support hidden exports.

For evaluation AMedule an extension of the A" calculus with explicit substitutions, describes
evaluation of modules where module-bound identifiers receive their values from templates. Higher-
order modules extend the set of expressions; the semantics fully incorporates them by defining
their evaluation to packages, linking, evaluation, and access to bindings for the package.

Finally, the prototype implementations of the semantics show that the semantics supports a
realistic implementation. Thus, the semantics precisely defines a formal framework for the imple-
mentation of a powerful module system that should scale to the definition of large applications.

7.2 Insights Gained from the Macro Expansion Semantics

The semantics in Chapter [3| reveals several facts about hygienic macro expansion that are not
obvious from previous research. This section summarizes these facts.

149
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For the well-known syntax-rules facility, our semantics describes pattern matching with a
list of literals. The semantics reveals that the list of literals in a syntax-rules declaration is a
binder for literals in the pattern. Of course existing implementations are treating the list of literals
like this, but no formal semantics covered this aspect so far.

In the semantics, it also becomes apparent, why the name is not enough to distinguish variables
bound by the same A-abstraction: If meta-variables occur as bound variables it may happen that
in the expanded code the same variable occurs several times in the list of bound variables (see
the macro dolet in Section for an example). In a semantics based on renaming, this is
not observable because renaming puts fresh, unique names into the list of bound variables. Our
semantics however uses the bound variables as present in the source term or resolved from meta-
variables and the identifier representation selects the proper binding place.

The comparison of our semantics with the semantics of Bove and Arbilla in Section [3.11| makes
it obvious that with de Bruijn indices the set of transformer bindings must be adjusted as expansion
moves into the scope of local binders. It also shows that including a description of the parser is
vital for a realistic semantics.

Section stresses the main differences between our semantics and the syntax-case model.
While syntax-case uses renaming of meta-language terms to transport lexical information se-
mantics generates explicit substitutions as meta-language expressions and thus meta-language
evaluation propagates the lexical information. For most of the differences, the section also de-
scribes how to emulate syntax-case, which yields a better understanding of the syntax-case
model. The section also recapitulates our treatment of meta-variables in the source code of the
meta-language, another aspect that has not been addressed formally before.

Perceiving marking as a meta-language operation also allows us to use an approach to marking
different from syntax-case. With syntax-case, the expander marks the input of a transformer
and applies the same mark to the output; and marks have the property that identical marks
cancel. As syntax-case does not make marking and renaming meta-level operations, it uses this
indirect technique to identify the terms inserted by the transformer. We achieve the same effect
directly—without duplicate marking—by applying a mark operator to the transformer closure or
the syntax-rules template before applying the transformer. Our scheme is reminiscent of the
time-stamping algorithm of the original macro expansion paper [KFEDS&G] (which did however not
cover computational macros) but avoids the “very undisciplined” [BR88|] marking that the original
algorithm performs on source code terms.

7.3 Future Work

Sections and [4.6] already summarize possible extensions of the semantics for the macro system
and the module system. The most critical items on these lists are probably the addition of top-
level macro applications and the treatment of interfaces as elaboration-time values. The first item
requires two steps: A definition of the behavior of top-level macro definitions and applications
that is not ambiguous and a corresponding extension of the identifier representation for describing
the position of a top-level binding. Treating interfaces as elaboration-time values requires that
the parser for module definitions recognizes meta-variables within module definitions and that the
macro expander implements the Amendment of Hygiene Condition defined in Section [4.6]

The full integration of the implementations of the macro expander and the module system
within an existing Scheme implementation is another pending issue. I plan to carry out this
implementation within Scheme 48 as this system has a tractable implementation. For the macro
expander, a prototype is already available. For a direct implementation, it is necessary that the
parser and the macro expander operate directly on the abstract syntax tree of Scheme 48. The
main difficulty with this effort is that it requires an exchange of the identifier representation, and
thus affects the whole system. The same hold for the module system, which is also used to describe
the implementation of the system itself.

A correctness proof for the direct implementation of the macro expander with regard to the
semantics is also desirable. Given the semantics defined in this paper, it is possible to formulate
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and prove properties about macro expanders; Section [5.3] already discusses how to relate the direct
implementation to a control machine. The concrete proof needs to be worked out, though.

Aside from direct extensions of the work presented in this dissertation, other research topics can
also benefit from it. Most notably, the literature so far defines the term “hygienic macro expansion”
as a set of informal requirements on the macro expansion process. While this definition has so
far served its purpose well, a formal definition of hygienic macro expansion is highly desirable. It
would, for example, allow the hygiene properties of formal definitions of macro expansion, such as
the one in this dissertation, to be validated. I believe that my representation of identifiers using
de Bruijn levels could be useful for a formal definition of hygienic macro expansion as it enables
reasoning about the binding places of identifiers occurring in the macro input and output in an
abstract manner.

The semantics for the syntax-rules facility form R°RS in Section suggests that this tool
is surprisingly complex and hard to grasp. Designing a different, rewriting-based transformer
may therefore be worthwhile. The formal description points to two sources of the complexity in
syntax-rules: First, as macros may expand into the definition of other macros, the parser must
work hard to identify literal identifiers, binding meta-variables and meta-variables within patterns
and the literal list. If macro definitions expanding into syntax-rules (or a variant thereof) would
be prohibited, the semantics would become much simpler. A second complication is the fact
that the pattern definition and the template contain no indication about the meta-variables that
occur as binding variables in the output and hence require special treatment to maintain hygiene.
MacroML [GSTO01] has worked around this issue by restricting the layout of macros that introduce
binding forms to variants of let where the bound variables and the body are apparent. Such a
form could be defined for Scheme as well and I expect the resulting semantics to be straightforward.

7.4 Closing Words

Explicit substitutions and de Bruijn indices are essential ingredients of the semantics and I would
like to close this work with a few remarks about the relationship between these devices and
conventional techniques.

De Bruijn Indices vs. Renaming Ever since the invention of hygienic macro expansion, the
algorithms have been based on renaming. The explanation by renaming became so popular that
nowadays hygienic macros are often perceived as equal to consistent renaming. However, this is
not the case. Hygienic macro expansion is about tracking the binding place of identifiers during
source code manipulation. Renaming is one technique to achieve this tracking but, as it needs
state to generate fresh identifiers, it is not purely functional, requires a careful implementation
and is still not very descriptive for advanced features such as syntax-rules and computational
macros. On the other hand, tools for tracking the binding place of identifiers that do not depend
on unique names exist since the 1960’s , namely the de Bruijn notation. This dissertation has
shown that through an extension of this notation into other dimensions such as marks, position,
or import path, it is possible to give a precise, purely functional semantics of macro expansion.
In the end, renaming is not necessary because each variable occurrence has a unique binder. You
just need to know how to find it.

Explicit Substitutions vs. Meta-Substitutions At the start of my dissertation project,
I was looking for a means to formalize code sharing for modules with identical units. Denota-
tional semantics is rather inappropriate for this task, as mathematics has no notion of “sharing.”
Rewriting semantics on the other hand deals with pieces of text, hence copying or sharing of terms
is expressible. Hence I decided to choose a rewriting-based semantics. Cardelli mentioned the
idea of using explicit substitutions for linking of modules to prevent the code expansion and loss
of module identity caused by meta-substitutions [Car97]. My construction of accumulating the
linking steps outside the unit in the template of a package and propagating for evaluation the
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identifier /value pairs into the unit by an explicit substitution implements this idea and makes the
relationship between the semantics and a realistic implementations apparent.

Another important aspect of explicit substitutions is the possibility to intermingle the elim-
ination of substitutions with other reductions. Meta-substitutions do not offer such freedom as
they are meta-level operations, which are performed immediately. For macro expansion, however,
laziness is important because the expander needs to propagate information about identifiers to
source code terms that have not yet been parsed. Without laziness, macro expansion operates on
unparsed source code because parsing must happen interwoven with macro expansion and thus
cannot have generated the complete abstract syntax yet. This makes it harder to understand
the correctness because for renaming it breaks the analogy to a-conversion which is defined on
A-terms only. It is also interesting to note that immediate renaming as performed by the origi-
nal macro expansion paper [KFFD86] leads to quadratic complexity which has been reduced to
linear complexity by the syntax-case model by describing a lazy version of renaming—without,
however, abandoning the operation on source code terms. In our semantics the usage of explicit
substitutions also lead to optimal run-time complexity for hygienic macro expansion.



Appendix A

Notation

Reduction R

A —pg B (Name)

Rule (Name) of reduction R, i.e. (A,B)is € —g

*

Reflexive transitive closure of reduction R

—R Standard reduction function of reduction R

P(M) Powerset of the set M

M* Sequences over the set M

€ The empty sequence

T:s Sequence concatenation: prepend the element z on the sequence s
i Select ith element of sequence s

= Syntactic equality

t Normal form of ¢ (w.r.t. some reduction)
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