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ABSTRACT

In this work we develop and apply variants of a perturbative chiral quark model
(PCQM) to the study of baryonic properties dominantly in the low-energy region.
In the PCQM baryons are considered in leading order as bound states of valence
quarks with a nontrivial structure, while the sea-quark excitations are contained in
a cloud of pseudoscalar mesons as imposed by chiral symmetry requirements. Since
the valence quark structure dominates, pseudoscalar or chiral effects are treated
perturbatively. In a first step we consider a noncovariant form of the PCQM,
where confinement is modelled by a static, effective potential and chiral correc-
tions are treated to second order, in line with similar chiral quark models. We
apply the PCQM to the study of the electromagnetic form factors of the baryon
octet. We focus in particular on the low-energy observables such as the magnetic
moments, the charge and magnetic radii. In addition, the electromagnetic N − ∆
transition is also studied in the framework of the PCQM, where meson cloud con-
tributions play a decisive role. In the chiral loop calculations we consider a quark
propagator, which is restricted to the quark ground state, or in hadronic language
to nucleon and delta intermediate states, for simplicity. At this stage reasonable
results can be achieved, where the role of the meson cloud, in particular for the
N − ∆ transition, is clearly elaborated. We furthermore include the low-lying
excited states to the quark propagator, which influences the result at the level of
15%. In particular, the charge radius of the neutron and the transverse helicity
amplitudes of the N − ∆ transition are considerably improved by this additional
effect. In a next step we develop a manifestly Lorentz covariant version of the
PCQM, where in addition higher order chiral corrections are included. The full
chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Per-
turbation Theory (ChPT). This Lagrangian contains a set of low energy constants
(LECs), which are parameters encoding short distance effects and heavy degrees
of freedom. We evaluate the chiral Lagrangian to order O(p4) and to one loop
to generate the dressing of the bare quark operators by pseudoscalar mesons. In
addition we include the vector meson degrees of freedom in our study. Projection
of the dressed quark operators on the baryonic level serves to calculate the relevant
matrix elements. The main result of this technique is that the effects of the meson
cloud and of the bare valence quarks factorize in the baryon matrix elements. In
a first application of this scheme, we resort to a parameterization of the valence
quark form factors in the electromagnetic sector. Constraints on these quark form
factors are set by symmetries and by matching to model-independent predictions
of ChPT. Physical applications are worked out for the masses and the magnetic
moments of the baryon octet, the meson-nucleon sigma terms and the electromag-
netic form factors of the nucleon. We demonstrate in particular that the meson
cloud plays a vital role to explain the detailed structure of the electromagnetic
form factors for momenta transfers up to 0.5 GeV2.



ZUSAMMENFASSUNG

In dieser Arbeit entwickeln und untersuchen wir verschiedene Formen eines per-
turbativen, chiralen Quarkmodells (PCQM) zur Beschreibung baryonischer Eigen-
schaften im Niederenergiebereich. Im PCQM werden die Baryonen in führender
Ordnung als gebundene Zustände von Valenzquarks mit nichttrivialer Struktur
beschrieben. Zusätzliche Seequarkanregungen werden durch energetisch niedriglie-
gende, pseudoskalare Mesonen erzeugt, wobei die Ankopplung an die Quarks durch
die chirale Symmetrie festgelegt ist. Da die Valenzquarks die Struktur der Bary-
onen dominieren, werden pseudoskalare oder chirale Effekte störungstheoretisch
behandelt. Im ersten Schritt betrachten wir eine nicht-kovariante Form des PCQM,
in welcher der Farbeinschluss (Confinement) durch ein statisches, effektives Poten-
zial modelliert und chirale Korrekturen bis zur zweiten Ordnung behandelt werden.
In einer ersten Anwendung berechnen wir die elektromagnetischen Formfaktoren
der Oktett-Baryonen, wobei Niederenergieobservable wie die magnetischen Mo-
mente, die Ladungs- und Magnetisierungsradien am zuverlässigsten beschrieben
werden. Zusätzlich studieren wir die elektromagnetischen N−∆ Übergänge, wo die
pseudoskalaren Mesonbeiträge eine entscheidende Rolle zur Erklärung der exper-
imentellen Daten spielen. In den auftretenden Schleifendiagrammen der chiralen
Korrekturen betrachten wir zunächst einen Quarkpropagator, welcher nur den
Grundzustand, d.h. in hadronischer Sprache den N und ∆ Zwischenzustand, bein-
haltet. Mit dieser Vereinfachung können die Daten vernünftig beschrieben werden,
wobei die Rolle der mesonischen Beiträge, insbesondere für den N −∆ Übergang,
wesentlich ist. Der Einbezug niedrigliegender, angeregter Zustände im Quarkprop-
agator führt zu Beiträgen der Grössenordnung von bis zu 15%. Insbesondere der
Ladungsradius des Neutrons und die transversalen Helizitätsamplituden der N−∆
hängen entscheidend von diesen zusätzlichen Beiträgen ab. Im nächsten Schritt
entwickeln wir eine manifest Lorentz kovariante Version des PCQM, wobei chirale
Korrekturen höherer Ordnung berücksichtigt werden können. Die vollständige,
dynamische Beschreibung, welche in einer chiralen Lagrange-Funktion der Valen-
zquarks formuliert wird, steht in Analogie zur chiralen Störungstheorie (ChPT).
Die Lagrange-Funktion enthält einen Satz von Niederenergiekonstanten (LECs),
welche die kurzreichweitigen Effekte und die Beiträge schwerer Freiheitsgrade para-
metrisieren. Die chirale Lagrange-Funktion wird zur Ordnung O(p4) und in der
Einschleifen-Näherung ausgewertet, um die durch die chiralen Effekte angezogenen
Quarkoperatoren auszuwerten. Zusätzlich werden die Vektormesonen einbezogen.
Durch Projektion der effektiven Quarkoperatoren auf baryonische Zustände wer-
den die relevanten Matrixelemente der hadronischen Übergänge berechnet. Das
Hauptergebnis dieser Technik ist, dass die Beiträge der Mesonen und der nack-
ten Valenzquarks in den Amplituden faktorisieren. In einer ersten Anwendung
dieses Modells greifen wir auf eine Parametrisierung der Formfaktoren der Valen-
zquarks zurück, welche im elektromagnetischen Sektor relevant sind. Diese Form-
faktoren werden durch zusätzliche Symmetrien und durch Anpassung an model-
lunabhängige Vorhersagen der ChPT eingeschränkt. Anwendungen dieses chiralen



Quarkmodells werden für die Massen und magnetischen Momente des Baryonenok-
tetts, für die Meson-Nukleon Sigmaterme und die elektromagnetischen Formfak-
toren des Nukleons ausgearbeitet. Insbesondere wird gezeigt, dass die chiralen
Korrekturen eine entscheidende Rolle spielen, um die detaillierte Struktur der elek-
tromagnetischen Formfaktoren für Impulstransfers bis zu 0.5 GeV2 zu erklären.
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Chapter 1

Introduction

Proton and neutron, as the basic building blocks of the atomic nuclei, play an
important role in physics. The understanding of their properties and structure
will probably lead us to a deeper understanding of the mechanism of the strong
interaction in nature. Since the masses of the proton (Mp = 938.27 MeV) and the
neutron (Mn = 939.57 MeV) are nearly identical, one considers both of them as
two different states of the same particle, namely, the nucleon. Experiments point
out that the nucleon is not a point-like particle but contains a subtle structure.
First evidence came from the measurement of the magnetic moment of the proton
in which a strong deviation from the value of the point-like particle, hence an
anomalous magnetic moment, was observed. A detailed knowledge of the spatial
distribution of the electromagnetic current in the nucleon was achieved by elastic
electron scattering on the nucleon which started in the fifties. Deep inelastic scat-
terings of electrons on the nucleon, originally performed in the late sixties, lead
to the evidence for point-like scattering centers in the nucleon and consequently
to the knowledge of quark and gluon degrees of freedom. Other evidence for the
structure of the nucleon comes from the rich excitation spectrum of the nucleon.
Compton scattering is a further tool to determine the electromagnetic response
or polarizabilities of the nucleon. The searching for and the determination of the
structure of the nucleon is one vital task in nuclear and particle physics. Among
all the fundamental interactions, the electromagnetic interaction of the nucleon
gives an utmost information. This leads to the knowledge of the electromagnetic
structure of the nucleon which tells us how the charge and the current are dis-
tributed within the nucleon. The subject is actively studied both on theoretical
and experimental sides. Recently [1, 2, 3], experiments utilizing polarized beams
and targets significantly improved the previous data based on the Rosenbluth sep-
aration technique. The ongoing programs for the complete measurement of the
electromagnetic form factors of the nucleon at laboratories around the world will
lead to more precise data, which is important for the theoretical study.

Besides the nucleon many other strongly interacting particles, hadrons, are
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1 Introduction

observed both in scattering and in cosmic ray experiments. Amount to these
numerous number of particles, one originally faced a difficulty in order to classify
them. Group theory plays an important role in such a classification, especially
the SU(3)-flavor group which can fit the observed low-lying baryons into the octet
and decuplet. The original idea proposed by Gell-Mann [4] and, independently, by
Zweig [5] suggests that there could be particles having quantum numbers associated
with the fundamental representation of SU(3). By assigning u, d and s quarks
and their antiparticles ū, d̄ and s̄ as the fundamental representations 3 and 3̄ of
SU(3), respectively, hadrons can be constructed from these representations. The
quark hypothesis was at first a purely mathematical tool for classifying the zoo
of subatomic particles. However, evidences, for example in deep inelastic electron
scattering, point to the existence of quarks as real particles. Therefore, the strongly
interacting hadrons are believed to be built up from the combinations of quarks
and antiquarks. In a minimal configuration, baryons are composed of three valence
quarks whereas mesons are composed of a quark-antiquark pair. These quark-
antiquark combinations are constructed such that the correct quantum numbers
associated with the corresponding hadrons are achieved. For the nucleon, the
quark flavor contents of the proton and the neutron are uud and udd, respectively.
In addition, experiments reveal the existence of heavier quarks, i.e. the c, b and
t quarks so that at the present time we have six quark flavors along with their
antiquarks.

Despite many attempts, the quark, which is considered as a particle with
a fractional electric charge, was never observed in an asymptotically free state
in nature. From this fact it is deduced that there exists a mechanism, named
confinement, preventing that free quarks exist. This point is directly connected to
a new degree of freedom called “color”, originally introduced to restore the Pauli
exclusion principle in the ∆++ system with the quark content uuu. Traditionally,
we label the color degrees of freedom as “red”, “blue” and “green” for each quark
flavor. The non-observation of free quarks is therefore consistent with the proposal
that hadrons contain no net color i.e they are color singlets.

The color degrees of freedom play a crucial role in the strong interaction, which
goes beyond the usual labelling of quarks in hadrons to obtain a color singlet. The
color charges are considered as the fundamental representation of the gauge group
SU(3), raising them to dynamical degrees of freedom. Local gauge invariance
under the color SU(3) leads to the fundamental theory of strong interaction called
Quantum Chromodynamics (QCD). QCD is believed to be the correct theory
for describing the physics of the strong interaction. The basic particles in QCD
are quarks and their interactions are mediated by exchange of gluons which are
the gauge quanta of the color fields. Two important properties of QCD are the
asymptotic freedom and the color confinement. The asymptotic freedom is related
to the experimental result that in the high energy regime or at small distances
the interaction between the quarks is small. In this regime the coupling constant
between quarks and gluons is therefore small and a perturbative method can be
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1 Introduction

applied to evaluate QCD. However, in the low energy regime where the strong
running coupling constant is large, at the order of one, the perturbative method
cannot be applied and one has to deal with a non-perturbative approach.

In QCD the quark masses are scale dependent, they are also called running
quark masses. At the scale of 1 GeV, the masses of the light quarks (u, d and s
quarks) are rather small compared to the nucleon mass [6, 7]. When we neglect the
small quark masses and consider light quarks as massless particles, another global
symmetry arises in the strong interaction which is rather important in the low
energy regime. This is the so-called chiral symmetry. Since the spectrum of the
hadrons, at least in the known sector, does not display parity doublets, we believe
that the chiral symmetry is spontaneously broken and as a consequence there must
exist massless particles called the Goldstone bosons. Pions, although massive, are
interpreted as the Goldstone bosons of the spontaneously broken chiral symmetry
because their masses are small compared to the nucleon mass. The finite value for
the pion mass is due to the explicit breaking of chiral symmetry when the quarks
acquire their small, but physical mass values.

Since the non-perturbative aspect of the nucleon structure cannot be solved
analytically from QCD, one has to use alternative ways in order to study the
nucleon structure. Different approaches were proposed, for example, QCD sum
rule, lattice QCD, 1/Nc expansion, etc. However, the most convenient language
for the treatment of light hadrons at small energies is Chiral Perturbation Theory
(ChPT) [8, 9, 10], which is considered as an effective field theory of the strong
interaction. ChPT is based on a chiral expansion of the QCD Green functions,
i.e. an expansion in powers of the external hadron momenta and quark masses.
ChPT works perfectly in the meson sector, as was proved in Ref. [9, 10], especially
in the description of pion-pion interactions. In Ref. [11] a manifestly Lorentz
invariant form of baryon ChPT was suggested. However, in the baryonic sector
of ChPT a new scale parameter associated with the nucleon mass shows up and
the formulation of a consistent chiral expansion of matrix elements is lost. In
particular, the chiral expansion of the loop diagrams starts at the same order as the
tree-level diagrams. This leads to an inconsistency in the perturbation theory, i.e.
the higher order graphs contribute to the low-order ones and the physical quantities
require renormalization at every order of the expansion. The method called Heavy
Baryon Chiral Perturbation Theory (HBChPT) [12] overcomes the problems of
chiral power counting by keeping track of power counting at every step of the
calculation. The drawback of HBChPT is that it is based on the nonrelativistic
expansion of the nucleon propagator which results in the lack of manifest Lorentz
covariance. Another problem for HBChPT is that the nonrelativistic expansion
of the pion-nucleon scattering amplitude generates a convergence problem of the
perturbative series in part of the low-energy region.

A new method for the study of baryons in ChPT was suggested in Refs. [13,
14, 15, 16]. It is based on the infrared dimensional regularization of loop di-
agrams [13], which exploits the advantages of the two frameworks formulated in
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Refs. [11] and [12], while avoiding their disadvantages. Alternatively, an equivalent
formulation of baryon ChPT based on the method called extended on-mass-shell
renormalization was suggested in Refs. [17, 18, 19]. A successful application of the
improved versions of baryon ChPT to nucleon properties has been performed, for
example, in Refs [13, 18, 19, 20, 21]. The multi-nucleon sector in baryon ChPT was
studied in Ref. [22]. The consistent inclusion of vector mesons in baryon ChPT
has been done in Ref. [18], which helped to successfully improve the momentum
behavior of the nucleon form factors up to approximately 0.4 GeV2 as shown in
Ref. [19]. Note, that ChPT is formulated on the hadronic level, therefore the im-
portant features of low-energy QCD, such as confinement and hadronization are
not addressed in ChPT.

Alternatively, physical insights into the structure and interactions of hadrons
can be gained by model building, that is phenomenology. By taking into account
assumed properties of QCD, like chiral symmetry and confinement, many mod-
els of the nucleon were proposed. Chiral quark models describe the elementary
baryon, the nucleon, as a bound state of valence quarks supplied by the sea-quark
excitation in form of the pions. If the valence quark content dominates the nu-
cleon, pion contributions can be treated perturbatively. The origin of this kind of
models is the MIT bag model [23]. In the MIT bag model the three valence quarks
are confined in a spherical region called a bag. However, chiral symmetry is vio-
lated in the MIT bag model due to the confinement mechanism. The cloudy bag
model [24] restores chiral symmetry to the MIT bag model by allowing the confined
quarks to interact with the pion fields at the surface of the bag. The contributions
arising from the pion cloud contribute significantly to the physical observables.
Similar to the cloudy bag model, chiral quark models were developed [25, 26]
where the unphysical sharp boundary of the bag is replaced by a finite surface
thickness of the quark core. Confinement is introduced through a static quark
potential of general form with adjustable parameters. The perturbative technique
allows a fully quantized treatment of the pion field up to a given order in accuracy.
Although formulated on the quark level, with confinement put in phenomenologi-
cally, perturbative chiral quark models are formally close to ChPT formulated on
the hadron level. Alternatively, when the pion cloud is assumed to dominate the
nucleon structure this effect has to be treated non-perturbatively. Refs. [27] are
examples of the non-perturbative approach, where the chiral quark soliton model
was derived. This model is based on the concept that the QCD instanton vacuum
is responsible for the spontaneous breaking of chiral symmetry which in turn leads
to an effective chiral Lagrangian at low energy. On the phenomenological level
the chiral quark soliton model tends to be advantageous in the description of the
nucleon spin structure, that is for large momentum transfers, but is comparable
to the original perturbative chiral quark models in the description of low-energy
nucleon properties.

As a further development of chiral quark models with a perturbative treat-
ment of the pion cloud, we recently developed the so-called Perturbative Chiral
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Quark Model (PCQM) for the description of low-energy properties of baryons.
This approach is based on the work by Gutsche and Robson [26, 28]. In the
PCQM baryons are considered as bound states of valence quarks surrounded by a
cloud of pseudoscalar mesons, as imposed by chiral symmetry requirements. The
confinement of the quarks in the PCQM arises from a static potential implying
noncovariance. Starting with the SU(3)-flavor version of the quark fields means
that by chiral symmetry we have already taken into account the pseudoscalar
octet mesons (π, K, η) as the Goldstone bosons. This is an extension of other
chiral quark models which usually considered only the pion cloud. By treating
these pseudoscalar meson as small fluctuations around the three-quark core, the
perturbative method can be applied in terms of an expansion of the small cur-
rent quark masses (m̂, ms) and the expansion parameter 1/F , where F is the
pion decay constant in the chiral limit. To simplify the calculation in the PCQM
the quark propagator in loop diagrams is restricted to the ground state, which in
hadronic language refers to intermediate N and ∆ states. Following this truncation
of the quark propagator, several successful applications within the framework of
the PCQM have been performed. Examples of previous applications based on this
truncation are σ-term physics [29], the electromagnetic structure of the nucleon
[30], π − N scattering [31] and the strange nucleon form factors [32].

A further improvement of the PCQM was achieved by including the low-lying
quark excitations in the quark propagator relevant in loop calculations. This
was done in the study of the electromagnetic N − ∆ transitions [33]. Excited
state quark propagators contribute at the level of 15% to the electromagnetic
N − ∆ helicity amplitudes, A1/2(Q

2 = 0) and A3/2(Q
2 = 0). Other applications

by including the excited quark states contributions were done in the PCQM as
well. Examples are the electromagnetic form factors of the octet baryons [34], an
updated analysis of the meson-nucleon σ-terms [35], the nucleon axial charge [36]
and the nucleon polarizabilities [37]. All of these applications point to the same
conclusion that the quark excited state contributions to the loop diagrams are
crucial.

In a next step we performed a further formulation of the PCQM in a manifestly
Lorentz covariant approach [38, 39]. The main idea is to dress the quark operators
by using the chiral Lagrangian taken from baryon ChPT. The physical observables
are obtained from these dressed quark operators by calculating the matrix elements
projected on the baryonic level. Constraints of the model can be fixed by using
the symmetries of the system and the matching to the original ChPT. Other Low
Energy Constants (LECs) which cannot be fixed emerge as parameters of the
model which in turn are adjusted by considering various physical observables. We
emphasize here the study of the electromagnetic properties of the nucleon and
the baryon octet. Physical applications of this approach are the baryon octet
masses, the meson-nucleon σ-terms, the magnetic moments of the octet baryon,
the electromagnetic form factors of the nucleon and the coupling of vector mesons
to the nucleon.

5



1 Introduction

In the course of this thesis we will proceed as follows. In Chapter 2 we will give
a brief introduction to the concept of chiral symmetry in the strong interaction.
The electromagnetic structure of the nucleon and its corresponding form factors
will be presented in Chapter 3. In Chapter 4 we outline the construction of the
PCQM based on the non-covariant approach and discuss the physical applications.
These are the magnetic moments and the electromagnetic form factors of the octet
baryons and the electromagnetic N − ∆ transitions. Chapter 5 will contain the
fully covariant treatment of the PCQM which is the improved version of our model.
Physical applications concern properties like the meson-nucleon σ-terms, the mass
of the nucleon, the octet baryon magnetic moments, the electromagnetic form
factors of the nucleon and the strong coupling of vector mesons to the nucleon.
Finally, we will give the summary of this work in Chapter 6.
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Chapter 2

Basics of the strong interaction

The elementary theory of the strong interaction is Quantum Chromodynamics
(QCD). QCD is a local gauge theory which describes the interaction of quarks and
gluons. The quarks and gluons possess color which is the basic quantum number
associated with QCD. Actually, conservation of color means that QCD is invariant
under SU(3)c color transformations. Another important symmetry of the QCD
Lagrangian is chiral symmetry. This symmetry is approximate and is fulfilled in
the limit of massless quarks. Approximate chiral symmetry is widely manifest in
low-energy hadron phenomenology and is therefore an important constraint in the
derivation of phenomenological approaches motivated by QCD. In this chapter we
briefly discuss the basic notions of the QCD Lagrangian and the aspects of chiral
symmetry, including its explicit and spontaneous breaking. Finally, the effective
field theory for the strong interaction at low energies– Chiral Perturbation Theory
(ChPT)– will be briefly reviewed.

2.1 The QCD Lagrangian

In QCD, the matter fields are the quark fields qc
f (x) which are Dirac particles with

two specific quantum numbers, color (c) and flavor (f). Their free Lagrangian is
written as

L = q̄i
f (x) (i 6∂ − mf ) qi

f (x) . (2.1)

Here we employ the slash notation: ∂6 ≡ ∂µγ
µ. For each quark flavor f =

u, d, s, c, b and t, it contains three additional quantum numbers, the color charge,
i = r, g, b.

7



2 Basics of the strong interaction

Originally, the need for the color degrees of freedom arose due to the fact that
the Pauli exclusion principle is not valid in the construction of the quark model.
As an explicit example, let us consider the spin-flavor wave function of the ∆++

baryon which is

∣
∣
∣
∣
∆++, Jz =

3

2

〉

= |u ↑〉|u ↑〉|u ↑〉. (2.2)

This spin-flavor wave function is composed of three u-quarks with spin-projection
sz = 1/2 which are identical to each other. However, assumes that the spatial part
of the wave function is symmetric for a ground state configuration, this certainly
violates the Pauli exclusion principle. To remedy this, other quantum numbers
as color must be introduced to each quark to make them differ from each other.
Nevertheless, the color degree of freedom plays a more rigorous role in the strong
interaction, since the color group SU(3)c acts as the gauge group of the strong
interaction.

The color charges of the quarks form a fundamental representation related to
the generators of SU(3)c i.e. the Gell-Mann matrices λc

a. The explicit forms of λc
a

are shown in Appendix A. The free Lagrangian of Eq. (2.1) is invariant under the
“global” transformation of the color degrees of freedom,

qi
f (x) 7→ U [θ]qi

f (x),

U [θ] = exp

(

−i
8∑

a=1

λa

2
θa

)

≡ exp

(

−i
λa

2
θa.

)

, (2.3)

where θ = (θ1, . . . , θ8) are arbitrary constants (for aspects of the SU(3)c group see
Appendix A). Note, that the summation over the same indices is implied.

The requirement of the local gauge invariance principle can be applied to the
free Lagrangian of the matter fields to generate the interaction of the matter fields
with the gauge fields which are the mediators of the interaction. In Quantum Elec-
trodynamics (QED) it is the photon which is the gauge field of the electromagnetic
interaction. Considering QED as a prototype, interactions in QCD can be con-
structed by extension of the global transformations to the “local” transformations

qi
f (x) 7→ U [θ(x)]qi

f (x), (2.4)

where θ(x) is now space-time dependent. In order to maintain the invariance of the
Lagrangian of Eq. (2.1) under this local gauge transformation one has to introduce
the gauge fields which interact with the quark fields. The usual way is to replace
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2.1 The QCD Lagrangian

the normal space-time derivative, ∂µq
i
f (x), of the free quark Lagrangian by the

so-called “covariant derivative”, Dµq
i
f (x),

∂µq
i
f (x) → Dµq

i
f (x). (2.5)

This covariant derivative is constructed such that it has the same transformation
property as the quark fields, i.e.

Dµq
i
f (x) 7→ U [θ(x)]Dµq

i
f (x)

= exp

(

−i
λa

2
θa(x)

)

Dµq
i
f (x). (2.6)

Eq. (2.6) can be fulfilled by the introduction of the gauge fields Aa
µ(x) in the

covariant derivative

Dµq
i
f (x) = (∂µ − igAµ(x)) qi

f (x), (2.7)

where Aµ(x) = λaAa
µ(x)/2 and g is a coupling constant. These Aa

µ(x) are the gluon
fields which serve as the gauge fields of the strong interaction. The transformation
of the gluon fields under the gauge group SU(3)c is

Aµ(x) 7→ U [θ(x)]Aµ(x)U †[θ(x)] − i

g
∂µU [θ(x)]U †[θ(x)]. (2.8)

As in QED, the field strength tensor Gµν,a(x) can be defined in QCD as well. The
explicit form for Gµν,a(x) is

Gµν,a(x) = ∂µAν,a(x) − ∂νAµ,a(x) + gfabcAµ,b(x)Aν,c(x), (2.9)

where fabc are the structure constants of SU(3) as shown in Eq. (A.7). The differ-
ence with respect to QED is the presence of the last term in Eq. (2.9) originating
from the non-Abelian properties of SU(3). The transformation of the field strength
tensor is simpler if one defines the tensor Gµν(x) such that

Gµν(x) ≡ λa

2
Gµν,a(x) 7→ U [θ(x)]Gµν(x)U †[θ(x)]. (2.10)

The free gluonic Lagrangian can be written as

L = −1

4
Gµν,a(x)Gµν

a (x) = −1

2
Tr(Gµν(x)Gµν(x)). (2.11)

9



2 Basics of the strong interaction

The full QCD Lagrangian is therefore

LQCD =
∑

f=u,d,s,c,b,t

q̄i
f (x) (iD6 −mf ) qi

f (x) − 1

4
Gµν,a(x)Gµν

a (x). (2.12)

Finally we note that in addition to the coupling between the quarks and
gluons, gluon fields also interact with themselves. This is a consequence of the
non-Abelian nature of the group SU(3). Due to Eq. (2.9) and Eq. (2.11) there
exist the three- and four-gluonic self-coupling terms which are proportional to g
and g2, respectively. This is not the case for the electromagnetic fields in QED,
but in QCD the gluon fields are “charged” i.e. they carry “color”, whereas the
photon carries no (electric) charge.

2.2 Chiral symmetry

In the limit where the light quark masses vanish, the QCD Lagrangian of Eq. (2.12)
has another important symmetry. This is the so-called “chiral symmetry”. This
symmetry is only approximate since in reality quarks possess a small but finite
mass. Let us first consider the quark masses related to the light and the heavy
quarks. The sector of light quarks is composed of the u, d and s quarks with the
estimated masses [43]

mu = 1.5 − 4 MeV, md = 4 − 8 MeV and ms = 80 − 130 MeV. (2.13)

The c, b and t quarks are considered as heavy quarks with masses ≥ 1 GeV.
In the low-energy regime the heavy quarks do not play a role due to their large
masses. Since the u, d and s quarks are much lighter than the hadronic mass scale
of 1 GeV this suggests that one can treat the current quark masses as a small
perturbation. Therefore, for the low-energy regime and in the chiral limit, where
mu, md, ms → 0, the appropriate QCD Lagrangian becomes

L0
QCD =

∑

f=u,d,s

q̄i
f (x)iD6 qi

f (x) − 1

4
Gµν,a(x)Gµν

a (x). (2.14)

The symmetry of the Lagrangian (2.14) can be made explicit if one decom-
poses the quark fields in terms of left- and right-handed components. This can be
achieved through the projection operators PR and PL defined by

PR =
1

2
(1 + γ5), PL =

1

2
(1 − γ5). (2.15)

10



2.2 Chiral symmetry

With these operators the right- and left-handed components of the quark fields
can be written as

qi
R,f (x) = PRqi

f (x), qi
L,f (x) = PLqi

f (x). (2.16)

Consequently, Eq. (2.14) can be rewritten as

L0
QCD = q̄R(x)iD6 qR(x) + q̄L(x)iD6 qL(x) − 1

4
Gµν,a(x)Gµν

a (x), (2.17)

where we represent the right- and left-handed quark fields in terms of the column
vectors

qR =

(
qR,u

qR,d

qR,s

)

, qL =

(
qL,u

qL,d

qL,s

)

, (2.18)

and we simplify the notation by dropping the color index. The respective space on
which the operators of (2.17) act should be clear from the context. We consider
the “global” unitary transformation of the quark fields of Eq. (2.18) with

qL 7→ ULqL, qR 7→ URqR, (2.19)

and

UL = exp

(

−i
λa

2
θL

a

)

, UR = exp

(

−i
λa

2
θR

a

)

, (2.20)

where θ
L(R)
a are independent, real parameters. The group of this transformation

is denoted by SU(3)L× SU(3)R. Obviously, Eq. (2.17) is invariant under such
transformations and hence is referred to as the “chiral symmetry” of QCD. Since
UL and UR contain altogether 16 real parameters, the symmetry, due to Noether’s
theorem, results in 16 conserved currents associated with the transformation of
Eq. (2.19). These conserved currents are

Rµ
a = q̄Rγµ λa

2
qR, Lµ

a = q̄Lγµ λa

2
qL, (2.21)

with

∂µR
µ
a = 0, ∂µL

µ
a = 0. (2.22)

11



2 Basics of the strong interaction

Instead of working with the left- and right-handed currents, one conventionally
considers the linear combinations

V µ
a = Rµ

a + Lµ
a = q̄γµ λa

2
q,

Aµ
a = Rµ

a − Lµ
a = q̄γµγ5

λa

2
q, (2.23)

together with

∂µV
µ
a = 0, ∂µA

µ
a = 0. (2.24)

These are the vector and axial currents. Note, that a simple phase transformations
of qL and qR also results in an invariance of L0

QCD. The corresponding group of
transformations are referred to as U(1)V and U(1)A, if qR and qL transform with
the same and the opposite phases, respectively. Consequently, there exist two
additional conserved currents

V µ = q̄γµq, Aµ = q̄γµγ5q, (2.25)

with ∂µV
µ = ∂µA

µ = 0.

Up to now all considerations relate to classical fields, where all the vector
and axial currents are conserved. When extending the symmetry considerations
to quantum fields, special care must be taken for the singlet axial-vector Aµ, since
it is no longer conserved. Instead, extra terms arise, referred to as “anomalies”,
which presented as

∂µA
µ =

3g2

32π2
εµνρσGµν

a Gρσ
a , (2.26)

where εµνρσ is the totally antisymmetric tensor with ε0123 = 1. Furthermore, non-
vanishing current quark masses will contribute to Eq. (2.26) as well, which we
will see later. Moving from the level of classical to quantum fields the global
U(3)R×U(3)L symmetry of L0

QCD is reduced to a global SU(3)R×SU(3)L×U(1)V
symmetry.

Finally, after quantization, we note that corresponding to the conserved cur-
rents V µ

a , Aµ
a and V µ we have the conserved charge operators Qa

V , Qa
A and QV .

These operators form the algebra

[Qa
V , Qb

V ] = ifabcQ
c
V ,

[Qa
V , Qb

A] = ifabcQ
c
A,

[Qa
A, Qb

A] = ifabcQ
c
V ,

[Qa
V , QV ] = [Qa

A, QV ] = 0. (2.27)
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2.3 Chiral symmetry breaking

The algebra which is constructed from the currents themselves is known as “current
algebra”. In the predawn of QCD, where the elementary origin of chiral symmetry
was not understood yet, current algebra was already applied to the study of low-
energy hadronic processes.

2.3 Chiral symmetry breaking

Previously, we have shown that in the chiral limit the Lagrangian L0
QCD has a

SU(3)R×SU(3)L×U(1)V symmetry which results in the conserved charge operators
Qa

V , Qa
A and QV . If H0

QCD is the Hamiltonian corresponding to L0
QCD, this means

that

[H0
QCD, Qa

V ] = [H0
QCD, Qa

A] = [H0
QCD, QV ] = 0. (2.28)

By considering the symmetry of the vacuum state |0〉, above symmetry of the
Lagrangian can be realized in two modes. The first realization relies on the as-
sumption that the vacuum has exactly the same symmetry as the Lagrangian. As
a consequence the vacuum state is annihilated by the conserved charge operators

Qa
V |0〉 = Qa

A|0〉 = 0. (2.29)

This realization in which the Lagrangian and the vacuum share the same symmetry
is called the “Wigner-Weyl” mode of chiral symmetry. As a consequence the
hadronic spectrum of positive and negative parity states built upon the vacuum
is degenerate resulting in parity doublets. However, this is not the case in the
observed spectrum of hadrons, e.g. the light pseudoscalar (Jπ = 0−) mesons have
masses much lower than those of the lightest scalar (Jπ = 0+) mesons.

Another realization of chiral symmetry is achieved when the vacuum state
of the system does not share the symmetry of the Lagrangian. This realization is
called the Nambu-Goldstone mode of chiral symmetry and the symmetry is said to
be “hidden” or “spontaneously broken”. Since the approximate validity of SU(3)
flavor symmetry suggests that Qa

V |0〉 = 0, in the Nambu-Golstone realization we
are left with

Qa
A|0〉 6= 0. (2.30)

As a result of the spontaneously broken symmetry there exist massless particles the
so-called “Goldstone bosons”, as evident from Goldstone’s theorem. In nature, chi-
ral symmetry is realized in the Nambu-Goldstone mode, since the observed hadron
spectrum contains the rather light pseudoscalar mesons (π, K, η) in comparison to

13



2 Basics of the strong interaction

the scale set by the nucleon mass of ∼ 1 GeV. Hence the low-lying pseudoscalar
mesons are interpreted as Goldstone bosons. The finite but small masses of the π,
K and η mesons arise from the fact that the quarks have a nonvanishing current
mass. Then, “explicit” symmetry breaking due to the quark masses is responsible
for the finite masses of the π, K and η mesons. Therefore, the SU(3)R× SU(3)L×
U(1)V symmetry is spontaneously broken down to the SU(3)V × U(1)V symmetry.

The spontaneous breaking of chiral symmetry is closely related to the non-
vanishing of the order parameter, the “quark condensate”, which is defined as

〈0|q̄q|0〉 ≡ 〈q̄q〉 = 〈ūu〉 + 〈d̄d〉 + 〈s̄s〉. (2.31)

The condition Qa
V |0〉 = 0 suggests that 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = 0, whereas Qa

A|0〉 6= 0
results in

〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 6= 0. (2.32)

The spontaneous breaking of chiral symmetry induces a rearrangement of the
ground state such that it is populated by scalar quark-antiquark pairs with non-
zero expectation values.

Up to now we have considered the Lagrangian L0
QCD for massless quarks and

also discussed the scenario of the spontaneously broken chiral symmetry. Never-
theless, the current quark masses, although, they are small, do not vanish. The
finite values of the quark masses give rise to explicit breaking of chiral symmetry
due to the presence of a quark mass term in the QCD Lagrangian

LM = −q̄(x)Mq(x), (2.33)

where M = diag(mu,md,ms) is the quark mass matrix. Including the explicit
quark mass terms the divergence of the various currents becomes

∂µV
µ
a = iq̄

[

M,
λa

2

]

q,

∂µA
µ
a = iq̄

{

M,
λa

2

}

γ5q,

∂µV
µ = 0,

∂µA
µ = 2iq̄Mγ5q +

3g2

32π2
εµνρσGµν

a Gρσ
a , (2.34)

where the anomaly of Eq. (2.26) is taken into account for completeness. Note, that
V µ is always conserved, whereas V µ

a is only conserved when all the quark masses
are equal. However, Aµ

a is not conserved and this is the microscopic origin of the
so-called Partially Conserved Axial-vector Current (PCAC).
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2.4 Chiral perturbation theory

2.4 Chiral perturbation theory

Unfortunately, perturbative methods in QCD cannot be applied directly to hadro-
nic systems in the low-energy regime due to the large coupling constant. However,
phenomena in the low-energy region can be studied in terms of Effective Field
Theory (EFT). The idea of the EFT was originally proposed by Weinberg [8] in
1979 stating that “. . . if one writes down the most general possible Lagrangian,
including all terms consistent with assumed symmetry principles, and then cal-
culates matrix elements with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general possible S-matrix consistent with
analyticity, perturbative unitarity, cluster decomposition and the assumed symme-
try principles.” The link between QCD and the EFT can be employed through
the generating functional. In the presence of external fields the QCD Lagrangian
in Eq. (2.14) reads

Lext = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5p)q, (2.35)

where, vµ, aµ, s and p are the external fields concerning vector, axial vector, scalar
and pseudoscalar currents, respectively. The generating functional Z is related to
Lext and can be considered as the vacuum to vacuum transition amplitude in the
presence of external fields i.e.

exp(iZ[v, a, s, p]) = 〈0|T exp

[

i

∫

d4xLext(x)

]

|0〉

= 〈0out|0in〉v,a,s,p. (2.36)

In terms of EFT with some asymptotic hadron fields as the relevant degrees of
freedom rather than the quark and gluon fields, the low-energy representation of
the generating functional Z can be obtained by the use of an effective Lagrangian
Leff . In the path-integral formalism this can be written as

exp(iZ[v, a, s, p]) = N

∫

[dU ] exp

(

i

∫

d4xLeff (U, v, a, s, p)

)

, (2.37)

where U is a matrix containing the asymptotic fields. This leads to the development
of Chiral Perturabation Theory (ChPT) [8, 9, 10, 11], which is the EFT of strong
interactions at low energies.

ChPT was first applied to the study of the system of Goldstone bosons which
originate from the spontaneous breaking of chiral symmetry of the QCD La-
grangian. As mention earlier, instead of considering the quark and gluon fields
as the elementary degrees of freedom of the theory, the active degrees of freedom
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2 Basics of the strong interaction

in ChPT are the asymptotically observed states, the hadrons. In the mesonic
sector, the effective Lagrangian is composed of the string of terms as

Leff = L2 + L4 + L6 + · · · , (2.38)

where the subscripts refer to the order in the momentum and quark mass expan-
sion. The lowest-order effective Lagrangian L2 which contains two derivatives and
one quark mass term is

L2 =
F 2

4
Tr

[
DµU(DµU)† + χU † + Uχ†] . (2.39)

The matrix U contains the Goldstone boson fields. The covariant derivative Dµ

is composed of the usual derivative and terms concerning the coupling of the
Goldstone boson fields to external fields. The current quark mass is hidden in the
definition of χ, i.e. χ = 2B(s + ip), where B is related to the quark condensate
parameter and F , in the SU(2) sector, is the pion decay constant in the chiral limit.
Higher-order terms in the Lagrangian can be constructed and each term contains
coefficients, the so-called Low Energy Constants (LEC). In case one could solve
the fundamental theory from first principles, one can map the LECs of the EFT
to the fundamental parameters of the underlying theory. However, since QCD
cannot be solved analytically in the low-energy region, we consider the LECs as
free parameters, which at this point can be extracted from physical observables.

After the most general effective Lagrangian is constructed one also needs a
method to classify the order of the diagram built from the effective Lagrangian.
Weinberg’s power counting scheme offers such a method for labelling the specific
order D, the chiral dimension, of the diagram of interest and it can be obtained
from

D = 2 + 2NL +
∞∑

k=1

2(k − 1)N2k, (2.40)

where NL is the number of independent loop momenta and N2k is the number of
vertices originating from the Lagrangian L2k. In ChPT loop diagrams also contain
a divergent part, which has to be renormalized. However, ChPT is not a renormal-
izable theory in the traditional sense since the infinities cannot be reabsorbed into
parameters of the lowest-order Lagrangian, e.g. B and F . A consistent removal of
infinities can be done by redefinition of the fields and the LECs.

The extension to include the nucleon in ChPT is also possible and was done in
Ref. [11]. In the SU(2) sector, the effective Lagrangian describing the interaction
of π and N can be written as

LπN = L(1)
πN + L(2)

πN + · · · . (2.41)
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2.4 Chiral perturbation theory

The lowest order Lagrangian L(1)
πN is of the form

L(1)
πN = ψ̄0

(

iγµ∂µ − m0 −
1

2

◦
gA0

F0

γµγ5τ
a∂µπ

a
0

)

ψ0, (2.42)

where ψ0 and ~π0 denote a doublet and a triplet of bare nucleon and pion fields,

respectively. The constants m,
◦
gA and F denote the nucleon mass, the axial-

vector coupling and the pion decay constant in the chiral limit, which arise after
renormalization. The new scale associated with the mass of the nucleon, which
does not vanish in the chiral limit as opposed to the case of the Goldstone bosons,
brings a new difficulty when demanding consistency in the power counting of the
specific diagram. Namely, loop diagrams involving the nucleon contribute also to
lower order diagrams and therefore a consistent perturbative picture collapses.

The first attempt to remedy this deficiency was formulated in terms of the
Heavy Baryon Chiral Perturbation Theory (HBChPT). The basic idea of HBChPT
is the separation of the nucleon momenta into a part which is close to the on-shell
kinematics and a soft residual part, i.e. p = mv + kp where v2 = 1, v0 ≤ 1. The
nucleon field is then expressed in terms of

ψ(x) = e−imv·x(Nv + Hv), (2.43)

where Nv = eimv·x 1
2
(1 + v6 )ψ and Hv = eimv·x 1

2
(1 − v6 )ψ. As a consequence in

HBChPT the power counting as in the mesonic sector is restored. The disad-
vantages of HBChPT are that higher order terms in the Lagrangian due to the
1/m expansion become increasingly complicated and not all the scattering ampli-
tudes resulting from such a Lagrangian show the correct analytic behavior in the
low-energy region.

Recently, the formulation of the manifestly Lorentz-invariant baryon ChPT
was developed in Refs. [13, 14, 15, 16]. It is constructed to utilize the advantages
of the mesonic ChPT and HBChPT while at the same time avoiding their disad-
vantages. The technique associated with this formulation is the so-called “infrared
regularization” as presented in Appendix B. The basic idea of this technique is
to separate the loop integral containing the nucleon into two parts, an infrared
singular and regular part. The infrared singular part contains fractional powers
of the meson masses, whereas the infrared regular part involves fractional pow-
ers of the nucleon mass. The power counting is valid for the infrared singular
part, but not for the infrared regular part. One therefore surmounts the prob-
lem of power counting by absorbing the infrared regular part into a redefinition
of the LECs. Another renormalization technique is also available as proposed in
Refs. [17, 18, 19], namely, the “Extended On-Mass-Shell” (EOMS) formalism.
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2 Basics of the strong interaction

The mesonic ChPT, especially in the ππ interaction, has achieved impressive
success as the EFT of the strong interaction at low energies. In baryonic ChPT,
the recent development of the manifestly Lorentz-invariant technique has tremen-
dously improved the previous analysis of ChPT. The electromagnetic form factors
of baryons as well as other baryonic properties have been studied in Refs. [13,
18, 19, 20, 21]. Extension to multi-nucleon processes is also possible as shown
in Ref. [22]. The further inclusion of vector mesons in baryon ChPT successfully
improved the description of the electromagnetic nucleon form factors up to ap-
proximately Q2 ∼ 0.4 GeV2 as shown in Ref. [19]. Open questions concerning
the inclusion of other additional degrees of freedom like the ∆(1232) resonance
are currently studied with the hope to further extend the kinematic region, where
ChPT is applicable.
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Chapter 3

Electromagnetic structure of the
nucleon

In this chapter we will review some facts concerning the electromagnetic structure
of the nucleon. The important tool to investigate the charge and current distri-
butions within the nucleon and the properties of its resonances is electron-nucleon
scattering. Both elastic and inelastic electron-nucleon scattering is used as a probe
to study the subtle structure of the nucleon. The elastic channel is important for
the global properties of the charge and the current distributions in the nucleon. On
the other hand, the inelastic channel reveals information concerning nucleon reso-
nances. Here we restrict ourselves to the case of elastic electron-nucleon scattering
since in recent years the new polarization measurements significantly improved the
quality of the data which previously were extracted by the Rosenbluth separation
technique. First, we briefly review evidences for the nucleon structure. Next, we
will discuss elastic electron-nucleon scattering and the definitions of various nu-
cleon form factors. Finally, the electromagnetic form factors of the nucleon will be
presented.

3.1 Evidences of the nucleon structure

Evidences for the existence of an inner structure of the nucleon with strong devi-
ations from the point-like Dirac particle are revealed from essentially two aspects.
The first aspect comes from the experiments in 1933 by Frisch and Stern [40] and
Estermann and Stern [41] in measuring the magnetic moments of deuteron and
proton. Their first result for the magnetic moment of the proton was between 2
to 3 times the nuclear magneton. This strong deviation from the value of one nu-
clear magneton for a point-like, spin-1

2
particle suggested that the proton is not a
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3 Electromagnetic structure of the nucleon

point-like particle but has some finite structure. The results for the magnetic mo-
ment of the deuteron also indicated that the neutron has a structure as well. More
accurate values of the proton and deuteron magnetic moments were measured by
Kellogg et al. [42] which resulted in µp = 2.785 ± 0.02 and µD = 0.855 ± 0.006 in
units of nuclear magnetons. Nowadays, the very precise values for the magnetic
moments of the nucleon are [43]

µp = 2.792847351 ± 0.000000028µN ,

µn = −1.9130427 ± 0.0000005µN .

The second evidence of the nucleon structure is the existence of the excited
nucleon states or the nucleon resonances. They are well observed especially in
the mass region around 1-2 GeV. Their properties can be studied through the
use of electromagnetic and strong probes, e.g. electrons, photons and pions. The
results of the measurement of the differential cross section obtain from the inelastic
electron nucleon scattering with energy transfer below 2 GeV reveal the existence
of three pronounced maxima. The first maximum corresponds to the ∆(1232), the
second peak involves the N∗(1520) and N∗(1535) and the third resonance region
contains the N∗(1680). Many other resonances are identified and their properties
are listed by the Particle Data Group (PDG) [43]. The transition of the nucleon to
such resonances, with important information contained in the detailed electric and
magnetic multipole decomposition with associated transition form factors, delivers
additional crucial constraints for tests of models of the nucleon.

3.2 Elastic electron-nucleon scattering

The lowest-order elastic electron-nucleon scattering process is shown in Fig. 3.1.
The four-momenta of the incident and scattered electron are p = (ε, ~p) and p′ =

(ε′, ~p ′), respectively. P = (E, ~P ) and P ′ = (E ′, ~P ′) are the four-momenta of the
nucleon in the initial and final state. The four-momentum transfer carried by a
photon is q = p−p′ = P ′−P . The characteristics of this scattering process is such
that the square of the four-momentum transfer is space-like, i.e. q2 < 0. Usually
one defines a quantity Q2, which is positive, i.e. Q2 = −q2 > 0.

The invariant amplitude of this process is of the form

M ∼ ūe(p
′)γµue(p)

e2

q2
〈N(P ′)|Jµ

em(0)|N(P )〉, (3.1)

where ue(p), ūe(p
′) refers to the electron Dirac spinors and 〈N(P ′)|Jµ

em(0)|N(P )〉
is the nucleon current matrix element. From considerations of Lorentz covari-
ance, charge and parity conservation, the most general form of the nucleon current
matrix element is
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Figure 3.1: Lowest-order electron-nucleon scattering

〈N(P ′)|Jµ
em(0)|N(P )〉 = ūN(P ′)

[

γµFN
1 (Q2) +

i

2MN

σµνqνF
N
2 (Q2)

]

uN(P ), (3.2)

where FN
1 (Q2) and FN

2 (Q2) are the Dirac and Pauli form factors, respectively.
Their normalizations are such that at zero recoil (Q2 = 0) FN

1 (0) is the charge of
the nucleon (in units of the elementary charge), whereas FN

2 (0) is the anomalous
magnetic moment (κN) of the nucleon

F p
1 (0) = 1, F p

2 (0) = κp = 1.793,

F n
1 (0) = 0, F n

2 (0) = κn = −1.913, (3.3)

where κN is given in units of the nuclear magneton.

In the laboratory frame, where the target nucleon is at rest, and neglecting
the small mass of the electron, the energy ε′ of the outgoing electron scattered by
an angle θ off the target of mass M is

ε′ =
ε

1 + 2ε
M

sin2 θ
2

, (3.4)

with the momentum transfer squared as, Q2 = 4εε′ sin2 θ
2
. For the simplest case

of a spinless, point-like target the differential cross section reduced to the “Mott”
differential cross section with the inclusion of the recoil factor ε′/ε as

(
dσ

dΩ

)

Mott

=
α2

4ε2 sin4 θ
2

ε′

ε
cos2 θ

2
. (3.5)
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Extension to the case of spin-1
2

target particle, but still point-like, leads to the
well-known modification of the Mott formula

dσ

dΩ
=

(
dσ

dΩ

)

Mott

[

1 +
Q2

4M2
2 tan2 θ

2

]

. (3.6)

The term proportional to tan2 θ
2

results in an increase of the differential cross
section at backward angles. It is due to the magnetic scattering of the spin of
both projectile and target. For a spin-1

2
target with an extended structure and an

anomalous magnetic moment, as is the case for the nucleon, the differential cross
section is referred to as “Rosenbluth cross section” [44]

dσ

dΩ
=

(
dσ

dΩ

)

Mott

[

(FN
1 (Q2))2

+
Q2

4M2
N

{

(FN
2 (Q2))2 + 2(FN

1 (Q2) + FN
2 (Q2))2 tan2 θ

2

}]

, (3.7)

where FN
1 (Q2) and FN

2 (Q2) are the Dirac and Pauli form factors as in Eq. (3.2).

Instead of working with FN
1 (Q2) and FN

2 (Q2), it is convenient to consider
linear combinations constructed as

GN
E (Q2) = FN

1 (Q2) − Q2

4M2
N

FN
2 (Q2),

GN
M(Q2) = FN

1 (Q2) + FN
2 (Q2), (3.8)

which are the “Sachs form factors”. With Eq. (3.3) the normalizations for the
Sachs form factors of the nucleon are

Gp
E(0) = 1, Gp

M(0) = µp = 2.793,

Gn
E(0) = 0, Gn

M(0) = µn = −1.913, (3.9)

where µN are the nucleon magnetic moments. As for FN
1 (Q2) and FN

2 (Q2), the
Sachs form factors can be related to the current matrix elements of Eq. (3.2).
The interpretation of the Sachs form factors become simple when we restrict to
a specific frame of reference, namely, the “Breit frame”. For the elastic electron-
nucleon scattering process the Breit frame coincides with the center-of-mass frame.
In this particular frame the energy transfer vanishes and thus the photon carries
the four-momentum qµ = (0, ~q ) and therefore Q2 = ~q 2. The incoming electron
has momentum ~p = +~q/2 and the incoming nucleon has opposite momentum
~P = −~q/2, while in the final state the outgoing electron and nucleon have momenta
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3.3 Electromagnetic nucleon form factors

~p ′ = −~q/2 and ~P ′ = +~q/2, respectively. In the Breit frame, the corresponding
matrix elements of Eq. (3.2) are

〈N(~q/2, s′)|J0
em(0)|N(−~q/2, s)〉 = GN

E (Q2)δs′s,

〈N(~q/2, s′)| ~Jem(0)|N(−~q/2, s)〉 = GN
M(Q2)χ†

s′
i~σ × ~q

2MN

χs, (3.10)

where s and s′ are the spin orientations of the incoming and outgoing nucleon,
respectively, while χs and χs′ refer to the two-component Pauli spinors. In terms of
the Sachs form factors the Rosenbluth formula for elastic scattering of an electron
on the nucleon target becomes

dσ

dΩ
=

(
dσ

dΩ

)

Mott

[(GN
E (Q2))2 + Q2

4M2
N

(GN
M(Q2))2

1 + Q2

4M2
N

+
Q2

2M2
N

(GN
M(Q2))2 tan2 θ

2

]

(3.11)

in the one-photon exchange approximation.

3.3 Electromagnetic nucleon form factors

Elastic electron-nucleon scattering is the basic tool in order to extract the elec-
tromagnetic form factors of the nucleon. Due to the finite lifetime of the neutron,
one faces the difficulty in constructing free neutron targets. Instead, deuteron or
3He targets have been used in which an additional subtraction of the effect due
to the presence of the protons is needed in the analysis. As known from early ex-
periments, the electromagnetic form factors of the nucleon, except for the neutron
charge form factor Gn

E(Q2), are well described by the dipole parameterization

Gp
E(Q2) ≈ Gp

M(Q2)

µp

≈ Gn
M(Q2)

µn

≈ GD(Q2), (3.12)

where the dipole form factor is

GD(Q2) =
1

[1 + Q2/(0.71 GeV2)]2
. (3.13)

The electromagnetic proton form factors can be directly obtained by measur-
ing the differential cross section of the elastic electron-proton scattering process.
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3 Electromagnetic structure of the nucleon

Based on Eq. (3.7) Hofstadter, Bumiller and Croissiaux [45] extracted the Dirac
and Pauli form factors of the proton by measuring the differential cross section at
different angles but at the same Q2. They found that F p

1 (Q2) and F p
2 (Q2) are less

than unity, indicating a finite structure of proton, and are approximately equal to
each other up to Q2 = 9.3 fm−2 = 0.36 GeV2. Alternatively, Hand, Miller and
Wilson [46] suggested the extraction of Gp

E(Q2) and Gp
M(Q2) rather than the Dirac

and Pauli form factors from the differential cross section by rewritten Eq. (3.11)
as

σR ≡ dσ/dΩ

(dσ/dΩ)Mott

ε(1 + τ) = τ(Gp
M(Q2))2 + ε(Gp

E(Q2))2, (3.14)

where σR is the reduced cross section, τ = Q2/(4M2
p ) and the linear polarization

of the virtual photon is

ε = [1 + 2(1 + τ) tan2(θ/2)]−1. (3.15)

By fixing Q2, the plots of the measured quantities σR and ε for different combina-
tions of (θ, ε) can be fitted by a linear polynomial in which the slope is (GE(Q2))2

and the intercept on the σR-axis is τ(G2
M(Q2))2. This method is referred to as

“Rosenbluth separation technique”.

However, at large Q2 the Rosenbluth separation for Gp
E(Q2) suffers from the

increasing systematic uncertainties with increasing values of Q2. Fig. 3.2 shows the
available data for the ratios Gp

E/GD and Gp
M/(µpGD) obtained by the Rosenbluth

separation. Gp
M/(µpGD) can be well measured up to Q2 ∼ 30 GeV2, whereas

the data for Gp
E/GD scatter and have large uncertainties for values above Q2 ∼

1 GeV2. Later we will see that improved data on the electromagnetic proton form
factors can alternatively be obtained by polarization experiments.

Akhiezer, Rozentsweig and Shumshkevich [53] already showed in 1958 that a
considerable increase in accuracy of the nucleon charge form factor measurement
can be achieved by scattering polarized electrons off a polarized nucleon target.
Twenty years later Arnold, Carlson and Gross [54] also arrived at the same con-
clusion. However, it took several decades before such experiments were technically
feasible. In the polarization transfer experiment, e.g. ~ep → e~p, the polarization of
the final proton is measured in addition. The longitudinal part Pl parallel to the
proton momentum and the transverse part Pt of the proton polarization are given
by [54]
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3.3 Electromagnetic nucleon form factors
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Figure 3.2: Gp
E/GD and Gp

M/(µpGD) obtained by the Rosenbluth
method. Data are taken from [47, 48, 49, 50, 51]. The figures are taken
from Ref. [52].

Pl =
ε + ε′

MpI0

√

τ(1 + τ)(Gp
M)2 tan2 θ

2
,

Pt = − 2

I0

√

τ(1 + τ)Gp
EGp

M tan
θ

2
, (3.16)

with

I0 = (Gp
E)2 + τ

[

1 + 2(1 + τ) tan2 θ

2

]

(Gp
M)2. (3.17)

Both Pl and Pt can be measured by the polarimeter and their ratio gives rise to

Gp
E

Gp
M

= −ε + ε′

2Mp

(
Pt

Pl

)

tan
θ

2
. (3.18)
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3 Electromagnetic structure of the nucleon

In this way the systematic uncertainties in extracting the ratio of Gp
E/Gp

M are
minimized. Figs. 3.3 and 3.4 show the results for the ratio µpG

p
E/Gp

M as measured
by the Rosenbluth separation and the polarization experiments, respectively. Ob-
viously, the polarization measurements lead to a significant improvement of the
experimental data. An important feature detected by the polarization transfer
experiments is the observed linear decline of µpG

p
E/Gp

M as Q2 increases, shown in
Fig. 3.4. From Ref. [59] this observed behavior satisfies the relation

µp
Gp

E(Q2)

Gp
M(Q2)

= 1 − 0.13(Q2 − 0.29 Gev2). (3.19)

Since the empirical values for Gp
M(Q2)/µp closely follow the dipole parameteriza-

tion GD(Q2), the linear decrease of µpG
p
E/Gp

M suggests that Gp
E(Q2) falls off more

rapidly with Q2 than GD(Q2). This is in clear contradiction to the results obtained
by the Rosenbluth separation technique as seen in Fig. 3.4. Due to occurence of
large systematic errors of Gp

E(Q2) at large Q2 with the Rosenbluth extraction, at-
tempts have been made in order to improve the data. A careful reanalysis of the
old Rosenbluth data was done by Arrington [63]. Christy et al. [64] analyzed the
data on elastic electron-proton scattering as part of experiment E99-119 performed
in Hall C at Jefferson Lab. Results from a high-precision Rosenbluth extraction
especially designed for the measurement in Hall A at Jefferson Lab were reported
by Qattan et al. [65]. Note that the results of these reanalyses and remeasure-
ments are also shown in Fig. 3.4. All of these recent analyses of the Rosenbluth
data showed agreement with the previous Rosenbluth results. Therefore, the ori-
gin for the discrepancy of results between Rosenbluth separation and polarization
technique must be due to other mechanisms.

Figure 3.3: The ratio µpG
p
E/Gp

M obtained from the Rosenbluth separa-
tion. Data are taken from Refs. [47, 48, 55, 56, 57, 58]. This figure is
taken from Ref. [59].
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3.3 Electromagnetic nucleon form factors

Figure 3.4: The ratio µpG
p
E/Gp

M obtained from polarization transfer mea-
surements. Data are taken from Refs. [2, 3, 60, 61, 62]. A reanalysis of
the Rosenbluth separation in Refs. [63, 64, 65] is also shown here for
comparison. This figure is taken from Ref. [59].

The two-photon exchange (TPE) diagrams are believed to be the source for the
disagreement of the measured ratios µpG

p
E/Gp

M originating from the two methods.
The TPE diagrams, also called the box diagrams, are shown in Fig. 3.5. After
the exchange of the first photon, the intermediate state proton can also be in an
excited state, which after the second photon exchange, makes a transition to the
ground state. In the previous Rosenbluth separation analysis, these box diagrams
were included by using the method of Mo and Tsai [66] with the assumption
that one of the photons is a soft photon, while excluding the diagram where both
photons are hard. The work by Blunden et al. [67] and by Chen et al. [68] showed
that inclusion of the hard scattering process of TPE significantly improves the
Rosenbluth separation with the resulting data moving in the direction of the ones
obtained from the polarization measurement.

Figure 3.5: Feynman diagrams for the two-photon exchange.
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3 Electromagnetic structure of the nucleon

Figure 3.6: The ratio Gn
M/(µnGD): data are taken from Refs. [69, 70, 71,

72, 73, 74, 75, 77, 78, 79, 80]. This figure is taken from Ref. [59].

Figure 3.7: The charge form factor of the neutron: data are taken from
Refs. [81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. The Q2-behavior
of Gp

E and the Galster parameterization are also shown here. This figure
is taken from Ref. [59].

Finally, the database of the electromagnetic form factors of the neutron are
shown in Figs. 3.6 and 3.7. For Gn

M , early data were obtained from inclusive quasi-
elastic scattering off the deuteron which result in sizable systematic uncertainties.
A new technique in measuring the ratio of quasi-elastic neutron and proton knock-
out from a deuterium target which has little sensitivity to nuclear binding effects,
has been pioneered and applied to the region of Q2 < 1 GeV2 at Mainz [69, 70, 71]
and Bonn [72]. Another method for extracting Gn

M is the measurement of a beam
asymmetry in the polarization measurement for the 3He target as was done in
Refs. [73, 74, 75]. As in the case of Gn

M , the early data for Gn
E were extracted
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3.3 Electromagnetic nucleon form factors

from the (quasi-) elastic scattering off the deuteron. The more accurate data are
obtained from the double-polarization measurements of neutron knock-out from a
polarized 2H or 3He target. For values larger than Q2 ∼ 1 GeV2, Gn

E appears to
exhibit a Q2-behavior similar to that of Gp

E. The Q2-behavior of Gp
E is also shown

in Fig. 3.7 together with the Galster parameterization [76].
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Chapter 4

Perturbative chiral quark model

For the study of the low-energy properties of baryons we recently developed the
so-called Perturbative Chiral Quark Model (PCQM). The idea of the PCQM is
that a baryon is viewed as a system of three valence quarks, which are confined
in space and are surrounded by a cloud of mesons (quark-antiquark pairs), which
in turn are treated perturbatively. The meson cloud is interpreted as the addi-
tional correction arising from the Goldstone bosons, which naturally arise by the
spontaneously broken chiral symmetry. Therefore, physical observables are com-
posed of two contributions, the valence quarks (or the quark core) and the meson
cloud. In many observables, as in other quark models, the quark core contribu-
tions are supposed to dominate the observables, while the meson cloud gives some
corrections. However, there exists also some observables, such as meson-nucleon
sigma-terms and the strangeness content of the nucleon, where the meson cloud
gives the major contribution. The importance of the meson cloud which signifi-
cantly contributes to these observables is also observed in the earlier concept of the
cloudy bag model [24]. To explore the role of the meson cloud in the low-energy
regime is one of the goals we are interested in.

In this chapter we outline the PCQM and give selected physical applications.
First, as a starting point of the PCQM, the effective Lagrangian describing the
baryonic system which fulfills the appropriate symmetries of the theory will be
constructed. Next, the calculational technique and the renormalization of the
PCQM will be discussed. Finally, we present the application of the PCQM to the
study of the electromagnetic baryon form factors, their magnetic moments and, in
addition, the electromagnetic N − ∆ transition.

30



4.1 Effective Lagrangian

4.1 Effective Lagrangian

The perturbative chiral quark model is based on an effective chiral Lagrangian
describing the valence quarks of baryons as relativistic fermions moving in a self-
consistent field (static potential), Veff(r) = S(r) + γ0V (r), with r = |~x|, which
are supplemented by a cloud of Goldstone bosons (π, K, η). The Lagrangian
describing relativistic quarks in this static potential is

L(0)(x) = ψ̄(x)
[
i∂6 −M− S(r) − γ0V (r)

]
ψ(x), (4.1)

where M = diag{m̂, m̂,ms} is the mass matrix of current quarks. Note, that
we restrict to the isospin symmetry limit, mu = md = m̂. This Lagrangian is
not chirally invariant due to the presence of M and S(r). By introducing the
interaction of the octet of Goldstone pseudoscalar mesons (π, K, η) with quarks,
the chiral invariance of the Lagrangian in the limit M → 0 can be restored. The
chiral fields can be represented by the exponential parameterization

U = exp

[

i
Φ̂

F

]

, (4.2)

where F is the pion decay in the chiral limit. The octet matrix Φ̂ of pseudoscalar
mesons is defined as

Φ̂√
2

=
8∑

i=1

Φiλi√
2

=





π0/
√

2 + η/
√

6 π+ K+

π− −π0/
√

2 + η/
√

6 K0

K− K̄0 −2η/
√

6



 . (4.3)

Therefore, the chirally invariant interaction Lagrangian is introduced as

Lint = −ψ̄(x)S(r)

[
U + U †

2
+ γ5U − U †

2

]

ψ(x)

= −ψ̄(x)S(r) exp

[

iγ5 Φ̂

F

]

ψ(x). (4.4)

Together with the kinetic term of the meson fields

LΦ =
F 2

4
Tr

[
∂µU∂µU †] , (4.5)
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4 Perturbative chiral quark model

we obtained the chirally invariant Lagrangian

Linv(x) = ψ̄(x)[i∂6 −γ0V (r)]ψ(x) + LΦ + Lint. (4.6)

Explicitly breaking of chiral symmetry arises from the nonvanishing of the quark
mass matrix M. Taking into account explicit chiral symmetry breaking we include
in the Lagrangian the term

LχSB(x) = −ψ̄(x)Mψ(x) − B

2
Tr

[

Φ̂2(x)M
]

, (4.7)

which represents the mass term of quarks and of the octet of Goldstone boson,
respectively. B = −〈0|ūu|0〉/F 2 is the quark condensate constant. The masses of
the octet of Goldstone bosons are in the leading order (i.e. linear in the current
quark mass)

M2
π = 2m̂B, M2

K = (m̂ + m̂s)B, M2
η =

2

3
(m̂ + 2m̂s)B. (4.8)

Note that Eq. (4.8) corresponds to the “Gell–Mann-Oakes-Renner” relation. In
addition, Eq. (4.8) satisfies also the “Gell–Mann-Okubo” relation,

4M2
K = 3M2

η + M2
π . (4.9)

From Eq. (4.6) and Eq. (4.7), the chirally invariant Lagrangian together with
the explicit chiral symmetry breaking terms is of the form

Lfull(x) = Linv(x) + LχSB(x). (4.10)

In the calculations, the mesonic degrees of freedom are treated perturbatively,
hence we consider the expansion of U with

U = exp

[

i
Φ̂

F

]

= 1 + i
Φ̂

F
+

1

2

(

i
Φ̂

F

)2

+ . . . . (4.11)

The approximate Lagrangian can be obtained from Eq. (4.10) and Eq. (4.11) by
this perturbative expansion, i.e. expansion in terms of the coupling 1/F up to a
specific order in 1/F . In the physical applications, we will restrict our consideration
to the one-loop approximation, i.e. we will perform our calculations to order of
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4.2 Quark wave functions

accuracy o(1/F 2). This means that we keep the expansion of U up to terms linear

in Φ̂.

Finally, the effective linearized Lagrangian can be summarized as

Leff(x) = Llin(x) + LχSB(x)

= ψ̄(x)[i∂6 −S(r) − γ0V (r)]ψ(x)

+
1

2
[∂µΦi(x)]2 − ψ̄(x)S(r)iγ5 Φ̂(x)

F
φ(x)

−ψ̄(x)Mψ(x) − B

2
Tr

[

Φ̂2(x)M
]

. (4.12)

4.2 Quark wave functions

In the basis of potential eigenstates the quark field ψ can be expanded as

ψ(x) =
∑

α

bαuα(~x) exp (−iEαt) +
∑

β

d†
βvβ(~x) exp (iEβt) , (4.13)

where the sets of quark {uα} wave functions with the corresponding single quark
energies {Eα} and antiquark {vβ} wave functions with the single antiquark energies
{Eβ} in orbits α and β are solutions of the Dirac equation with the static potential
Veff(r). The single quark annihilation and antiquark creation operators are denoted

by the expansion coefficients bα and d†
β, respectively. The Dirac equation for the

quark wave functions uα(~x) is

[

−iγ0~γ · ~∇ + γ0S(r) + V (r) − Eα

]

uα(~x) = 0. (4.14)

For a specific form of Veff(r), Eq. (4.14) can be solved numerically . However, to
simplify the problem, a specific form for Veff(r) will be used with the purpose that
the problem can be solved analytically. Therefore, the choice of Veff(r) that we are
going to work with has a quadratic radial dependence of the form

S(r) = M1 + c1r
2, V (r) = M2 + c2r

2, (4.15)

with the particular choice

M1 =
1 − 3ρ2

2ρR
, M2 = E0 −

1 + 3ρ2

2ρR
, c1 ≡ c2 =

ρ

2R3
, (4.16)
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4 Perturbative chiral quark model

where E0 is the energy of the single quark ground state. This particular choice
leads to quark wave functions of the Gaussian type. The analytic forms of uα

are shown explicitly in Appendix B. The parameters ρ and R are related to the
ground-state wave function

u0(~x) = N exp

[

− ~x2

2R2

] (
1

i ρ
R
~σ · ~x

)

χsχfχc, (4.17)

where N =
[
π3/2R3(1 + 3ρ2/2)

]−1/2
is a normalization constant. χs, χf and χc

are the spin, flavor and color quark wave functions, respectively. The parameter ρ
is responsible for the relativistic aspect of the wave function, since it is connected
with the amplitude of the lower component of the Dirac spinor. The parameter
R can be considered as a parameter related to the size of the charge radius of the
proton.

In zeroth-order (or 3q-core) approximation, one can relate ρ to the axial charge
of the nucleon gA by

gA =
5

3

(

1 − 2ρ2

1 + 3
2
ρ2

)

, (4.18)

and relate R to the charge radius of the proton at the leading order (LO) as

〈r2
E〉pLO =

∫

d3xu†
0(~x)~x2u0(~x)

=
3R2

2

1 + 5
2
ρ2

1 + 3
2
ρ2

. (4.19)

The physical interpretation and role of ρ in the relativistic quark wave function
is clearly seen from Eq. (4.18). If we take the nonrelativistic limit by putting
ρ = 0, the nonrelativistic quark model result for the axial coupling gA = 5/3 is
reproduced. In our calculations we use the value of gA = 1.25 and allow a variation
of 〈r2

E〉pLO from 0.5 fm2 to 0.7 fm2 as done in Ref. [30]. This corresponds to a fixed

value of the parameter ρ =
√

2/13. Thus the only free quantity left in the PCQM
is the size parameter R with a range of variation given by 0.55 fm < R < 0.65 fm.

4.3 Calculational technique

We will apply perturbation theory in calculating the contributions of the meson
cloud to the physical observables. The matrix element of an operator Â can be
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4.3 Calculational technique

calculated from

〈B′|Â|B〉 = 〈B′

φ0|
∞∑

n=1

in

n!

∫

d4x1 . . .

∫

d4xnT
[

LI(x1) . . .LI(xn)Â
]

|φ0〉Bc , (4.20)

where the state vector |φ0〉 corresponds to the unperturbed three-quark state (3q-
core). In order to calculate the matrix element, we project the state vectors onto
the respective baryon states as indicated by the superscripts “B′” and “B”. Sub-
script “c” refers that only connected graphs contribute to the matrix element.
The perturbation, contained in the interaction Lagrangian LI(x), arises from the
effective Lagrangian of Eq. (4.12) and is given by

LI(x) = −ψ̄(x)iγ5 Φ̂(x)

F
S(r)ψ(x). (4.21)

By applying Wick’s theorem with the appropriate propagators for quarks and
mesons, Eq. (4.20) can be evaluated in a straightforward manner.

The quark propagator in a binding potential can be written as

iGψ(x, y) = 〈φ0|T
[
ψ(x)ψ̄(y)

]
|φ0〉

= θ(x0 − y0)
∑

α

uα(~x)ūα(~y)e−iEα(x0−y0)

−θ(y0 − x0)
∑

β

vβ(~x)v̄β(~y)eiEβ(x0−y0). (4.22)

Both quark and antiquark wave functions contribute to the quark propagator. In
Refs. [29, 30, 31, 32] the quark propagator of Eq. (4.22) is truncated by considering
the contribution from the ground state quark wave function u0 only, that is

iGψ(x, y) → iG0ψ(x, y) = θ(x0 − y0)u0(~x)ū0(~y)e−iE0(x0−y0). (4.23)

In the following, we extend our considerations by including in the quark propagator
the contributions due to the excited quark states and neglect the part due to the
antiquark states, i.e.

iGψ(x, y) = θ(x0 − y0)
∑

α

uα(~x)ūα(~y)e−iEα(x0−y0). (4.24)

35



4 Perturbative chiral quark model

Energetically, two low-lying excited quark states will be included into Eq. (4.24).
The first excitation concerns the p-states, which in the nonrelativistic notation are
the 1p1/2 and the 1p3/2. The second excited states contain the 1d3/2, 1d5/2 and
2s1/2, which are degenerate in energy. The general form of the wave functions is
shown in Appendix B.

For the meson fields, we adopt the free Feynman propagator

i∆ij(x − y) = 〈0|T [Φi(x)Φj(y)] |0〉

= δij

∫
d4k

(2π)4i

exp[−ik(x − y)]

M2
Φ − k2 − iε

. (4.25)

To evaluate the matrix element between baryon states, we have to project
the quark operators onto the baryonic level. The baryonic wave function |B〉 is
constructed by the product of the SU(6) spin-flavor and the SU(3)c color wave
function. For one-body operators the projection is

χ†
f ′χ

†
s′I

f ′fJs′sχfχs
Projection−→ 〈B′|

3∑

i=1

(IJ)(i)|B〉, (4.26)

where I and J are operators which act in flavor and spin spaces, respectively.
Analogously, for two-body operators, we have

χ†
f ′χ

†
s′I

f ′f
1 Js′s

1 χfχs⊗χ†
k′χ

†
σ′I

k′k
2 Jσ′σχkχσ

Projection−→ 〈B′|
3∑

i6=j

(I1J1)
(i) ⊗ (I2J2)

(j)|B〉. (4.27)

4.4 Renormalization

For the first application, we apply our technique to calculate the mass shift of the
nucleon due to the presence of the quark-meson interaction. Applying the Gell–
Mann and Low theorem [94] and the technique developed in [95, 96], the mass
shift of the nucleon can be calculated from

∆mN = 〈N φ0|
∞∑

n=1

in

n!

∫

iδ(t1)d
4x1 . . . d4xnT [LI(x1) . . .LI(xn)] |φ0〉Nc . (4.28)
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4.4 Renormalization

At one-loop, with an order of accuracy o(1/F 2), the diagrams that contribute to
this mass shift are shown in Fig. 4.1. The so-called “meson cloud” (MC) diagram
of Fig. 4.1(a) describes the emission and reabsorption of the meson on the same
quark, whereas the “meson exchange” (EX) diagram of Fig. 4.1(b) connects two
quark lines. As discussed above, the MC and EX diagrams are examples of one-
and two-body operators, respectively.

��� ���

Figure 4.1: Diagrams contributing to the mass shift of the nucleon: meson
cloud (a) and meson exchange diagram (b).

For simplicity, we will first discuss the case where the quark propagator is
truncated to the contribution from the ground state quark wave function u0 as
in Eq. (4.23). By using LI(x) from Eq. (4.21), applying Wick’s theorem and the
projection technique to Eq. (4.28), the MC diagram contribution can be written
as

∆mMC
N =

∑

Φ=π,K,η

dΦ;MC
N Π(M2

Φ), (4.29)

where

dπ;MC
N =

81

400
, dK;MC

N =
54

400
, dη;MC

N =
9

400
. (4.30)

The self-energy operators Π(M2
Φ), which depend on the meson mass M2

Φ are defined
by

Π(M2
Φ) = −

( gA

πF

)2
∞∫

0

dp p4

w2
Φ(p2)

F 2
πNN(p2), (4.31)

for a meson with a three-momentum ~p and an energy wΦ(p2) =
√

M2
Φ + p2, where

p = |~p|. In Eq. (4.31), FπNN(p2) is the πNN form factor normalized to unity at
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zero recoil

FπNN(p2) = exp

(

−p2R2

4

){

1 +
p2R2

8

(

1 − 5

3gA

)}

. (4.32)

The EX diagram contribution to the nucleon mass shift is

∆mEX
N =

∑

Φ=π,K,η

dΦ;EX
N Π(M2

Φ), (4.33)

with

dπ;EX
N =

90

400
, dK;EX

N = 0, dη;EX
N = − 6

400
. (4.34)

Therefore, the nucleon mass shift due to the presence of the Goldstone bosons is

∆mstr
N = ∆MMC

N + ∆MEx
N

=
∑

Φ=π,K,η

dΦ
NΠ(M2

Φ), (4.35)

where dΦ
N = dΦ;MC

N + dΦ;EX
N and

dπ
N =

171

400
, dK

N =
6

19
dπ

N , dη;MC
N =

1

57
dπ

N . (4.36)

There is another source for the nucleon mass shift due to the finite current
mass of the u and d quarks. Originally, in the Dirac equation of Eq. (4.14), we
exclude the presence of the finite mass of the quark. Including now the mass term
for i = u, d, s quarks the Dirac equation becomes

[

−iγ0~γ · ~∇ + γ0mi + γ0S(r) + V (r) − Eα(mi)
]

uα(~x; mi) = 0. (4.37)

The eigen energies Eα(mi) and the quark wave functions uα(~x; mi) now depend on
mi. As a consequence of this modification and when we treat mi perturbatively
we can write the single quark energy as

Eα(mi) = Eα + δEα(mi), (4.38)
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and the wave function is changed to

uα(~x; mi) = uα(~x) + δuα(~x; mi). (4.39)

As will become clear later, the one-loop calculation as of Fig. 4.1(a) is of the order
o(1/F 2), which is the order of accuracy we are working in, including the excited
quark states in the quark propagator with the term δuα(~x; mi) of Eq. (4.39) will
lead to higher order contributions. Therefore, in the one-loop diagrams and in
the diagrams which are of the order o(1/F 2), it is enough to only use uα(~x) in
the calculation of the matrix element. However, the redefinition of Eq. (4.39)
is important for the tree-level diagram with no meson fields present. In such a
diagram only the ground state quark wave function u0 contributes and both terms
on the right-hand-side of Eq. (4.39) with α = 0 will give rise to the leading-order
(LO) and next-to-leading-order (NLO) contributions, respectively.

For the ground state energy E0(m̂) of Eq. (4.38) one can explicitly write

E0(m̂) = E0 + γm̂ + o(m̂), (4.40)

where the relativistic reduction factor γ is

γ =
1 − 3

2
ρ2

1 + 3
2
ρ2

=
9

10
gA − 1

2
. (4.41)

Therefore, for the renormalized nucleon mass, one obtains

mr
N = mcore

N + ∆mstr
N

= 3 (E0 + γm̂) +
∑

Φ=π,K,η

dΦ
NΠ(M2

Φ). (4.42)

On the other hand, in terms of the renormalized quark mass m̂r, one obtains

mr
N = 3 (E0 + γm̂r) +

∑

Φ=π,K,η

dΦ;EX
N Π(M2

Φ), (4.43)

where the effect due to the MC diagram is included in the renormalization of the
quark mass

m̂r = m̂ +
1

3γ

∑

Φ=π,K,η

dΦ;MC
N Π(M2

Φ). (4.44)

As mentioned earlier, in the perturbative picture, the renormalized quark energy
up to a linear term in m̂r is

Er
0 (m̂r) = E0 + δEr

0 (m̂r)

= E0 + γm̂r. (4.45)
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Renormalization of the quark wave function

The renormalized quark masses at order of accuracy o(1/F 2, m̂) are shown in
Eq. (4.44). We can use this renormalized quark masses to obtain the renormalized
quark field ψr of Eq. (4.13). Restricting to positive energy states in the expansion
of the renormalized quark fields we have

ψr
i (x; mr

i ) =
∑

α

bαur
α(~x; mr

i ) exp (−iEr
α(mr

i )t) . (4.46)

The renormalized quark wave function ur
α(~x; mr

i ) and energy of the quark field are
obtained from the Dirac equation of Eq. (4.37) with the modification mi → mr

i

[

−iγ0~γ · ~∇ + γ0mr
i + γ0S(r) + V (r) − Eα(mr

i )
]

uα(~x; mr
i ) = 0. (4.47)

The solutions are

ur
0(~x; mr

i ) = N(mr
i ) exp

[

−c(mr
i )

~x2

2R2

] (
1

i
ρ(mr

i )

R
~σ · ~x

)

χsχfχc, (4.48)

with the normalization

∫

d3u†r
0 (x; mr

i )u
r
0(x; mr

i ) ≡ 1. (4.49)

Note, that N(mr
i ), c(mr

i ) and ρ(mr
i ) are normalized as

N(0) = N, c(0) = 1, ρ(0) = ρ (4.50)

as indicated in Eq. (4.17) for the case mr
i = 0. As stated in Ref. [30], the product

ρ(mr
i )c(m

r
i ) is independent of mr

i and we have the constraint

ρ(mr
i )c(m

r
i ) = ρ(0)c(0) = ρ. (4.51)

The renormalized quark energy after treating mr
i as a small perturbation is written

in general form as

Er
0 (mr

i ) = E0 + γmr
i , (4.52)
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where Eq. (4.45) is the special case for m̂r = mr
u = mr

d. For the ground state wave
function ur

0(~x; mr
i ), we have

ur
0(~x; mr

i ) = u0(~x) + δu0(~x; mr
i ), (4.53)

where

δur
0(~x; mr

i ) =
mr

i

2

ρR

1 + 3
2
ρ2

( 1
2

+ 21
4
ρ2

1 + 3
2
ρ2

− ~x2

R2
+ γ0

)

u0(~x). (4.54)

Renormalization of the effective Lagrangian

To set the stage for the renormalization of the effective Lagrangian, we first in-
troduce the electromagnetic interaction to the effective Lagrangian. This will be
used for renormalizing the charge of the nucleon. In a standard procedure, the
electromagnetic interaction of the quark and the meson with an electromagnetic
field Aµ is introduced through the minimal substitution,

∂µψ → Dµψ = ∂µψ + ieQAµ, (4.55)

∂µΦi → DµΦi = ∂µΦi + e

[

f3ij +
f8ij√

3

]

AµΦj, (4.56)

where Q = diag{2/3,−1/3,−1/3} is the quark charge matrix and fijk are the
totally antisymmetric structure constants of the group SU(3). The resulting elec-
tromagnetic interaction Lagrangian is

LI,em = −eψ̄(x)γµQψ(x)Aµ(x) − e

8∑

i,j=1

[

f3ij +
f8ij√

3

]

Φi(x)∂µΦj(x)Aµ(x)

+
e2

2

∑

i=1,2,4,5

Φ2
i (x)A2

µ(x). (4.57)

In order to renormalize the effective Lagrangian we replace the quark field ψ(x)
by the renormalized quark field ψr(x). We also add a set of appropriate countert-
erms with the purpose that the renormalized mass and charge of the nucleon can
be directly calculated from the part of the Lagrangian which only contains the
effective potential. In other words, we construct the free dynamical nucleon La-
grangian from the renormalized quark field that is already taken into account by
the diagram of Fig. 4.1. Applying this to the effective Lagrangian of Eq. (4.12) and
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including the electromagnetic interaction of Eq. (4.57), the renormalized effective
Lagrangian is

Lr
eff(x) = Lr

ψ + LΦ + Lph + Lr
int, (4.58)

where Lr
ψ, LΦ, Lph and Lint are the terms corresponding to the quark fields confined

by the effective potential, the free meson, the free photon and the interaction parts,
respectively. The Lagrangian Lr

ψ is

Lr
ψ = Lr

ψ̄ψ + Lr
(ψ̄ψ)2 , (4.59)

where

Lr
ψ̄ψ = ψ̄r(x)

[
i∂6 −Mr − S(r) − γ0V (r)

]
ψr(x), (4.60)

Lr
(ψ̄ψ)2 = cπ

3∑

i=1

[
ψ̄r(x)iγ5λiψ

r(x)
]2

+ cK

7∑

i=4

[
ψ̄r(x)iγ5λiψ

r(x)
]2

+cη

[
ψ̄r(x)iγ5λ8ψ

r(x)
]2

. (4.61)

Lr
ψ̄ψ

contains the meson cloud contribution of Fig. 4.1(a) through the renormalized

quark mass Mr = M − δM. The meson exchange diagram of Fig. 4.1(b) is
described by Lr

(ψ̄ψ)2
. The parameters cπ, cK and cη can be deduced from Eq. (4.34)

and Eq. (4.43) to be

cΦ = − 9

200

(2πR2)3/2

1 − γ2
Π(M2

Φ). (4.62)

The free meson Lagrangian LΦ is

LΦ =
1

2
[∂µΦi(x)]2 − B

2
Tr

[

Φ̂2(x)M
]

, (4.63)

which can be written in the standard form as

LΦ =
1

2
[∂µΦi(x)]2 − 1

2
δijM

2
ijΦi(x)Φj(x). (4.64)

The diagonal meson mass matrix M2
ij has the components

M2
11 = M2

22 = M2
33 = M2

π ,

M2
44 = M2

55 = M2
66 = M2

77 = M2
K ,

M2
88 = M2

η . (4.65)
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For the free photon Lagrangian Lph one has the usual familiar term

Lph = −1

4
Fµν(x)F µν(x), (4.66)

with the field tensor

Fµν(x) = ∂µAν(x) − ∂νAµ(x). (4.67)

The interaction Lagrangian is composed of both the strong and electromagnetic
interaction parts as

Lr
int = Lr

int,str + Lr
int,em, (4.68)

where

Lr
int,str = Lr

I,str + δLstr, (4.69)

Lr
int,em = Lr

I,em + δLem. (4.70)

The Lagrangian Lr
I,str is the one of Eq. (4.21) but now with the renormalized quark

field ψr(x)

Lr
I,str(x) = −ψ̄r(x)iγ5 Φ̂(x)

F
S(r)ψr(x), (4.71)

and the same for Lr
I,em of Eq. (4.57)

Lr
I,em = −eψ̄r(x)γµQψr(x)Aµ(x) − e

8∑

i,j=1

[

f3ij +
f8ij√

3

]

Φi(x)∂µΦj(x)Aµ(x)

+
e2

2

∑

i=1,2,4,5

Φ2
i (x)A2

µ(x). (4.72)

The set of counterterms δLstr and δLem is

δLstr = δL1,str + δL2,str + δL3,str (4.73)
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with

δL1,str = ψ̄r(x)(Z − 1)
[
i∂6 −Mr − S(r) − γ0V (r)

]
ψr(x), (4.74)

δL2,str = −ψ̄r(x)δMψr(x), (4.75)

δL3,str = −cπ

3∑

i=1

[
ψ̄r(x)iγ5λiψ

r(x)
]2 − cK

7∑

i=4

[
ψ̄r(x)iγ5λiψ

r(x)
]2

−cη

[
ψ̄r(x)iγ5λ8ψ

r(x)
]2

, (4.76)

and

δLem = −eAµ(x)ψ̄r(x)(Z − 1)γµQψr(x). (4.77)

Renormalization of the nucleon mass

We will reconsider the renormalization of the nucleon mass by using the renor-
malized effective Lagrangian. By constructing of the renormalized effective La-
grangian, the renormalized mass of the nucleon is defined by the expectation value
of the Hamiltonian, Hr

ψ(x), which can be obtained from Lr
ψ(x) of Eq. (4.59). Aver-

aging over the unperturbed state |φ0〉 which is projected on the respective nucleon
states we have

mr
N ≡ 〈N φ0|

∫

δ(t)d4xHr
ψ(x)|φ0〉N . (4.78)

Following this definition, the shift of the nucleon mass due to the inclusion of the
strong interaction Lagrangian Lr

int,str of Eq. (4.69) evaluated at one loop vanish,
i.e.

∆mr
N = 〈N φ0|

2∑

n=1

in

n!

∫

iδ(t1)d
4x1 . . . d4xnT

[
Lr

int,str(x1) . . .Lr
int,str(xn)

]
|φ0〉Nc

= 〈N φ0| −
i

2

∫

δ(t1)d
4x1d

4x2T
[
Lr

I,str(x1)Lr
I,str(x2)

]
|φ0〉Nc

− 〈N φ0|
∫

δ(t)d4x

3∑

i=1

δLi,str(x)|φ0〉N

≡ 0. (4.79)
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Note, that due to the equation of motion Eq. (4.47) which results in

〈N φ0|
∫

δ(t)d4x δL1,str(x)|φ0〉N ≡ 0, (4.80)

and because of the role of δL2,str(x) and δL3,str(x) which compensate the contri-
butions of Fig. 4.1, which is

0 ≡ 〈N φ0| −
i

2

∫

δ(t1)d
4x1d

4x2T
[
Lr

I,str(x1)Lr
I,str(x2)

]
|φ0〉Nc

− 〈N φ0|
∫

δ(t)d4x [δL2,str(x) + δL3,str(x)] |φ0〉N , (4.81)

Eq. (4.79) is justified. The resulting mass renormalization of the nucleon is the
same as in Eq. (4.42).

Renormalization of the nucleon charge

In order to properly renormalize the nucleon charge we first explicitly express
the electromagnetic currents involved. The electromagnetic field can couple to
both quarks and charged pseudoscalar mesons with the corresponding currents. In
addition, there exists a current arising from the counterterms. The total electro-
magnetic current is, therefore,

jµ
r = jµ

ψr + jµ
Φ + δjµ

ψr . (4.82)

The renormalized electromagnetic quark current is

jµ
ψr = ψ̄rγµQψr =

2

3
ūrγµur − 1

3
d̄rγµdr − 1

3
s̄rγµsr, (4.83)

whereas the part concerning the charged pseudoscalar mesons is

jµ
Φ =

[

f3ij +
f8ij√

3

]

Φi∂
µΦj

=
[
π−i∂µπ+ − π+i∂µπ− + K−i∂µK+ − K+i∂µK−]

. (4.84)

The counterterms contribute to the current as

δjµ
ψr = ψ̄r (Z − 1) γµQψr

=
(

Ẑ − 1
) [

2

3
ūrγµur − 1

3
d̄rγµdr

]

− 1

3
(Zs − 1) s̄rγµsr. (4.85)

45



4 Perturbative chiral quark model

The renormalized nucleon charge at one loop is then defined as

Qr
N = 〈N φ0|

2∑

n=0

in

n!

∫

δ(t)d4xd4x1 . . . d4xn

×T
[
Lr

int,str(x1) . . .Lr
int,str(xn)j0

r (x)
]
|φ0〉N . (4.86)

The resulting renormalized charge

Qr
N ≡ QN =

{
1 for N = p (proton)
0 for N = n (neutron)

(4.87)

takes, due to charge conservation, the expected values, where QN , by construction
of our renormalized Lagrangian, is the part which arises solely from the 3q-core,
i.e.

QN = 〈N φ0|
∫

δ(t)d4xj0
ψr(x)|φ0〉N . (4.88)

In other words, the contributions of the currents jµ
Φ and δjµ

ψr cancel each other,
when renormalizing the nucleon charge. Hence by introducing appropriate coun-
terterms the number of diagrams to be calculated is reduced. The corresponding
Feynman diagrams resulting from Eq. (4.86) are shown in Fig. 4.2. In Appendix C,
we also indicate the explicit expressions of the set of diagrams of Fig. 4.2. As a

consequence the renormalization constant Z = diag
(

Ẑ, Ẑ, Zs

)

, set up in flavor

space, can be obtained from charge conservation with the result

Ẑ = 1 − 27

400

( gA

πF

)2
∞∫

0

dpp4F 2
πNN(p2)

[
1

w3
π(p2)

+
2

3w3
K(p2)

+
1

9w3
η(p

2)

]

,

Zs = 1 − 27

400

( gA

πF

)2
∞∫

0

dpp4F 2
πNN(p2)

[
4

3w3
K(p2)

+
4

9w3
η(p

2)

]

. (4.89)
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(j)

N N

(g)

N N

δL2,str

(d)

N N

(a)

N N

(k)

N N

δL3,str

(h)

N N

δL2,str

(e)

N N

(b)

N N

Ẑ − 1

(l)

N N

δL3,str

(i)

N N

(f)

N N

(c)

N N

Figure 4.2: Diagrams contributing to the nucleon charge: triangle dia-
gram (a), triangle counterterm diagram (b), meson cloud diagram (c),
vertex correction diagram (d), self-energy diagrams (e) and (f), self-
energy counterterm diagrams (g) and (h), exchange current diagrams
(i) and (j), and exchange current counterterm diagrams (k) and (l).

4.5 Physical applications

The PCQM has been applied to a variety of observables related to the nucleon.
Here, we present two selected applications concerning the electromagnetic prop-
erties of the nucleon and of the full baryon octet. The first application are the
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electromagnetic form factors of the baryon octet. The second application refers to
the electromagnetic N − ∆ transition.

4.5.1 Electromagnetic form factors of the baryon octet

In Ref. [34] the PCQM has been applied to the calculation of the electromagnetic
form factors of the baryon octet. The diagrams that contribute to the matrix el-
ement of the electromagnetic transition between the baryon states “B” and “B′”
are shown in Fig. 4.3. For the charge form factors these coincide with the diagrams
(a)-(d) of Fig. 4.2, where in addition diagrams (e)-(l) cancel each other as men-
tioned previously. The so-called “meson-in-flight” diagram of Fig. 4.3(e), which
characterizes the two-body quark interaction, has to be included for the case of
the magnetic form factors. This diagram does not contribute to the charge form
factors.

(c)

B B′

(d)

B B′

(e)

B B′

(a)

B B′

(b)

B B′

Z-1

Figure 4.3: Diagrams contributing to the charge and magnetic form fac-
tors of the baryon octet: three-quark diagram (a), three-quark countert-
erm diagram (b), meson cloud diagram (c), vertex correction diagram (d)
and meson-in-flight diagram (e).

In the framework of the PCQM and in the Breit frame, the Sachs form factors
of the baryon octet evaluated at one loop are defined by
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χ†
s′χsG

B
E(Q2) = 〈φ0|

2∑

n=0

in

n!

∫

δ(t)d4xd4x1 . . . d4xne−iq·x

×T
[
Lr

int,str(x1) . . .Lr
int,str(xn)j0

r (x)
]
|φ0〉Bc , (4.90)

χ†
s′

i~σB × ~q

mB + mB′

χsG
B
M(Q2) = 〈φ0|

2∑

n=0

in

n!

∫

δ(t)d4xd4x1 . . . d4xne−iq·x

×T
[

Lr
int,str(x1) . . .Lr

int,str(xn)~jr(x)
]

|φ0〉Bc , (4.91)

where jµ
r (x) is the electromagnetic current of Eq. (4.82), Lr

int,str(x) denotes the
strong interaction Lagrangian between quarks and mesons of Eq. (4.69). χs and

χ†
s′ are the baryon spin wave functions in the initial and final states, ~σB is the

baryon spin operator. In the Breit frame, the photon carries the four-momentum
qµ = (0, ~q). The masses of the initial and final baryon states involved in the
transitions are denoted by mB and mB′ . The normalization of the Sachs form
factors at zero recoil (Q2 = 0) is such that

GB
E(0) = QB, GB

M(0) = µB, (4.92)

where QB and µB are charge and magnetic moment of a state in the baryon octet,
respectively. The charge and magnetic radii of the respective baryons follow from
the definitions

〈r2
E,M〉B = − 6

GB
E,M(0)

d

dQ2
GB

E,M(Q2)

∣
∣
∣
∣
Q2=0

. (4.93)

For a neutral baryon, the charge radius is just defined as

〈r2
E〉B = −6

d

dQ2
GB

E(Q2)

∣
∣
∣
∣
Q2=0

. (4.94)

The numerical results for the magnetic moments, charge and magnetic radii of the
baryon octet are presented in Table 4.1, Table 4.2 and Table 4.3, respectively. The
contributions from the leading-order (LO) three-quark core, the next-to-leading
order (NLO) three-quark core, the counterterm (CT) of the three-quark core and
from the meson loops corresponding to the diagrams of Fig. 4.3 are presented sep-
arately. Here, the NLO contribution is resulting from the use of the renormalized
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quark field of Eq. (4.54). The range of the results is due to the variation of the
size parameter R in the region 0.55 - 0.65 fm.

As evident from Table 4.1, the main contribution to the magnetic moments of
the baryon octet can be traced to the LO three-quark core diagram. Meson cloud
corrections are significant for the magnetic moments up to 20−40% except for the
Ξ−, where the contribution is only 3%. Hence, meson-cloud corrections generate
a significant shift of the baryon magnetic moments compared to the valence quark
results. Our results for the magnetic moments are in good agreement with the
experimental data.

For the squared charge radii, listed in Table 4.2, the mesonic contributions
are of the order of 20 − 40%, except for Ξ− where they contribute less than 1%.
For neutral baryons the LO three-quark contribution to the charge radii vanishes
in the isospin limit, whereas the NLO three-quark and the CT results might con-
tribute. A special case is the neutron in which a contribution to the charge radius
only arises from the mesonic cloud. The truncation of the quark propagator to the
ground state (GS) results in a small contribution to the charge radius compared
to the experimental value as can be seen from Table 4.2. At this point we also
consider the case, where excited states (ES) are included in the quark propagator.
In Table 4.2 the results for the neutron charge radius for the case of the GS quark
propagator and after including the low-lying excited states are denoted by 〈r2

E〉nGS

and 〈r2
E〉nES, respectively. The total result is simply the sum of both contributions–

see Table 4.2. The inclusion of the low-lying excited states in the quark propaga-
tor leads to an increase of the value of the neutron charge radius in accord with
the experimental data. Therefore, for quantities where the three-quark contribu-
tion vanishes, a proper treatment of the quark propagator including the excited
states becomes rather important. A similar feature will be encountered in the
next section, where in the case of electromagnetic N −∆ transitions excited state
contributions in the quark propagator are relevant to reach the empirical values.
Similarly, meson cloud contributions play an important role to understand the
measured values of the magnetic radii of the nucleon. For completeness we indi-
cate our results for this observable for the full baryon octet in Table 4.3, although
experimental results are only available partially, that is for the nucleon.
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3q 3q Meson loops Total Exp [98]

[LO] [NLO+CT] [MC+VC+MF]

µp 1.80 ± 0.15 0.01 ± 0.03 0.79 ±0.12 2.60 ± 0.03 2.793

µn -1.20 ± 0.10 -0.01 ± 0.02 -0.77 ± 0.12 -1.98 ± 0.02 -1.913

µΣ+ 2.28 ± 0.19 -0.04 ± 0.04 0.51 ± 0.11 2.75 ± 0.09 2.458 ± 0.010

µΣ0 0.76 ± 0.06 -0.05 ± 0.02 0.34 ± 0.07 1.05 ± 0.01 —

µΣ− -0.76 ± 0.06 -0.06 ± 0.01 -0.26 ± 0.02 -1.08 ± 0.05 -1.160 ± 0.025

µΛ -0.71 ± 0.06 0.15 ± 0.04 -0.33 ± 0.09 -0.89 ± 0.03 -0.613 ± 0.004

µΞ0 -1.69 ± 0.14 0.23 ± 0.09 -0.28 ± 0.11 -1.74 ± 0.03 -1.250 ± 0.014

µΞ− -0.85 ± 0.07 0.23 ± 0.06 -0.05 ± 0.07 -0.68 ± 0.01 -0.651± 0.003

|µΣ0Λ| 1.28 ± 0.11 0.01 ± 0.02 0.61 ± 0.09 1.89 ± 0.01 1.61 ± 0.08

Table 4.1: Results for the magnetic moments µB of the baryon octet (in
units of the nucleon magneton µN).

3q 3q Meson loops Total Exp

[LO] [NLO+CT] [MC+VC]
〈
r2
E

〉p
0.60 ± 0.10 0.004±0.004 0.12±0.01 0.72 ± 0.09 0.76±0.02 [98]

〈
r2
E

〉n

GS
0 0 -0.043 ± 0.004 -0.043 ± 0.004

〈
r2
E

〉n

ES
0 0 -0.068 ± 0.013 -0.068 ± 0.013

〈
r2
E

〉n

Full
0 0 -0.111± 0.014 -0.111 ± 0.014 -0.116±0.002 [98]

〈
r2
E

〉Σ
+

0.60 ± 0.10 0.07±0.004 0.14 ± 0.004 0.81 ± 0.10 —
〈
r2
E

〉Σ
0

0 0.038±0.010 0.012 ± 0.010 0.050 ± 0.010 —
〈
r2
E

〉Σ
−

0.60 ± 0.10 -0.04±0.01 0.15 ± 0.03 0.71± 0.07 0.61 ± 0.21 [100]
〈
r2
E

〉Λ
0 0.038±0.010 0.012 ± 0.010 0.050 ± 0.010 —

〈
r2
E

〉Ξ
0

0 0.07±0.02 0.07±0.02 0.14 ± 0.02 —
〈
r2
E

〉Ξ
−

0.60 ± 0.10 -0.08 ± 0.03 0.10 ± 0.03 0.62 ± 0.07 —
〈
r2
E

〉Σ
0
Λ

0 0 0 0 —

Table 4.2: Results for the charge radii squared 〈r2
E〉

B
of the baryon octet

(in units of fm2).
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3q 3q Meson loops Total Exp
[LO] [NLO+CT] [MC+VC+MF]

〈
r2
M

〉p
0.37±0.09 0.03±0.001 0.34±0.02 0.74± 0.07 0.74±0.10 [101]

〈
r2
M

〉n
0.33±0.08 0.03±0.002 0.43±0.01 0.79± 0.07 0.76±0.02 [71]

〈
r2
M

〉Σ+

0.45±0.10 0.02±0.006 0.17±0.02 0.64± 0.08 —
〈
r2
M

〉Σ0

0.39±0.10 -0.02±0.01 0.32±0.03 0.69± 0.07 —
〈
r2
M

〉Σ−

0.38±0.08 0.09±0.01 0.31±0.01 0.78± 0.07 —
〈
r2
M

〉Λ
0.44±0.12 -0.14±0.06 0.35±0.07 0.65± 0.05 —

〈
r2
M

〉Ξ0

0.52±0.12 -0.01±0.04 0.03±0.05 0.54± 0.06 —
〈
r2
M

〉Ξ−

0.67±0.17 -0.31±0.12 -0.04±0.13 0.32± 0.04 —
〈
r2
M

〉Σ0Λ
0.36±0.09 0.03±0.001 0.36±0.02 0.75± 0.07 —

Table 4.3: Results for the magnetic radii squared 〈r2
M〉B of the baryon

octet (in units of fm2).

Finally, the Q2-dependence of the charge and magnetic Sachs form factors of
the baryon octet are shown in Figs. 4.4 to 4.8. Due to the lack of full covariance
in the model, the form factors can be expected to be reasonable up to Q2 < ~p2 =
0.4 GeV2 where ~p is the typical three-momentum transfer, which defines the region
where relativistic effects ≤ 10% or where the following inequality ~p2/(4m2

N) < 0.1
is fulfilled. We choose to present the results separately for charged and neutral
baryons. In Fig. 4.4 the charge form factors for the charged baryons B = p, Σ+, Σ−

and Ξ− are presented for the size parameter R = 0.6 fm in comparison to the dipole
fit GD(Q2) = [1 + (Q2/0.71 GeV2)]−2. The charge form factor of the neutron with
the quark propagator restricted to the GS contribution is separately shown in
Fig. 4.5. Comparison of Gn

E(Q2) to the charge form factors of the other neutral
baryons are presented in Fig. 4.6. The magnetic form factors of the charged and
the neutral baryons (normalized to one at zero-recoil) in comparison to the dipole
fit GD(Q2) are given in Fig. 4.7 and Fig. 4.8.
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Figure 4.4: The charge form factors GB
E(Q2) for B = p, Σ+, Σ− and Ξ−

for a size parameter R = 0.6 fm compared to the dipole fit GD(Q2). For
Σ− and Ξ−, the absolute value of GB

E(Q2) is shown.
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Figure 4.5: Results for the neutron charge form factor Gn
E(Q2) for dif-

ferent values of R = 0.55, 0.6, and 0.65 fm. Here the theoretical result
is based on the quark propagator truncated to the ground state (GS).
Experimental data are taken from [84] (MAMI-1), [90] (MAMI-2), [102]
(MAMI-3), [83] (MAMI-4), and [81] (MIT).
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Figure 4.6: The charge form factors GB
E(Q2) for B = n, Σ0, Λ and Ξ0 for

R = 0.6 fm.
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Figure 4.7: The normalized magnetic form factors GB
M(Q2)/µB for B =

p, Σ+, Σ− and Ξ− at R = 0.6 fm in comparison to the dipole fit GD(Q2).
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Figure 4.8: The normalized magnetic form factors GB
M(Q2)/µB for B =

n, Σ0, Λ and Ξ0 at R = 0.6 fm in comparison to the dipole fit GD(Q2).

4.5.2 Electromagnetic N − ∆ transition

The electromagnetic N−∆ transition has been studied in Ref. [33] in the framework
of the PCQM. The relevant observables which characterize this process are the
transverse helicity amplitudes, which are defined as

AM = − e
√

2ωγ

〈

∆, s′z = M |~j · ~ε|N, sz = M − 1
〉

, (4.95)

where M = 1/2, 3/2. In the ∆ rest-frame the photon with polarization vector
~ε has an energy ωγ ≡ P ∗ = (M2

∆ − M2
N) /2M∆. The electromagnetic current

operator is denoted by ~j. The masses M∆ and MN are the physical masses of the
∆(1232) resonance and the nucleon, respectively. With these helicity amplitudes
other observables, such as the decay rate can be obtained by

Γ(∆+ → pγ) =
(P ∗)2

2π

(
Mp

M∆

)

{|A1/2|2 + |A3/2|2}. (4.96)

The experimental values for the helicity amplitudes A1/2 and A3/2 at the real-
photon point and for the branching ratio BR(∆+ → pγ) = Γ(∆+ → pγ)/Γtotal(∆

+)
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are reported as [43]

A1/2(Q
2 = 0) = −135 ± 6 × 10−3 GeV−1/2,

A3/2(Q
2 = 0) = −250 ± 8 × 10−3 GeV−1/2,

BR(∆+ → pγ) = (0.52 − 0.60)%. (4.97)

Alternatively, the transverse helicity amplitudes A1/2 and A3/2 can be ex-
pressed in terms of electromagnetic production multipoles, that is, the magnetic
dipole M1 and the electric quadrupole E2 moments. The two sets of amplitudes
are related by

A1/2 = −1

2
(M1 + 3E2), A3/2 = −

√
3

2
(M1 − E2). (4.98)

A nonvanishing ratio E2/M1 indicates the possibility of an intrinsic deformation
of the nucleon [112, 113, 114] or, alternatively, a sizable contribution from meson
exchange currents [106, 107] with the latest experimental value [43] of

E2

M1
= −0.025 ± 0.005. (4.99)

Previously, the transverse helicity amplitudes for the electromagnetic N − ∆
transition have been studied in various approaches, such as in the constituent quark
model [103, 104, 105] and in extensions where two-body currents based on gluon
exchange are included [106, 107]. A long-standing problem in the description of
these helicity amplitudes is that the valence quark contributions alone can explain
only about two thirds of the experimental values. Relativistic corrections seemingly
do not contribute too much in order to reach agreement with data. In the context
of the cloudy bag model [108, 109, 110] the situation is improved, where the pion
cloud gives a significant increase in the values for the helicity amplitudes. The
important role of the meson cloud in the context of the N −∆ helicity amplitudes
was also indicated in other models, e.g. the relativistic potential quark model of
Ref. [111].

In the PCQM the N −∆ transverse helicity amplitudes evaluated at one loop
can be obtained from
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A1/2(Q
2) = − e

√
2 ωγ

〈∆+, 1/2| − 1

2

∫

δ(t) d4x d4x1 d4x2

×e−iq·x T
[

Lr
int,str(x1)Lr

int,str(x2)~jr(x) · ~ε
]

|p,−1/2〉c ,

A3/2(Q
2) = − e

√
2 ωγ

〈∆+, 3/2| − 1

2

∫

δ(t) d4x d4x1 d4x2

×e−iq·x T
[

Lr
int,str(x1)Lr

int,str(x2)~jr(x) · ~ε
]

|p, 1/2〉c , (4.100)

where ~ε is the polarization vector of the photon. The diagrams that contribute to
A1/2(Q

2) and A3/2(Q
2) are the same as in Fig. 4.3 where B = p and B′ = ∆+.

The explicit expressions for A1/2(Q
2) and A3/2(Q

2) resulting from each diagram are
reported in Appendix D. Our results for A1/2(Q

2) and A3/2(Q
2) at the real photon

point with Q2 = 0 are given in Table 4.4. As can be seen from Table 4.4, meson
corrections are essential to reach the empirical value for both amplitudes. Pion
contributions play the dominant role in the meson corrections, as evident from
Table 4.5. There we list the individual contributions of the octet mesons to the
sizable terms generated by the meson-cloud and vertex-correction diagrams. The
suppression of K and η loops can be traced to the large meson masses occurring
in the denominators, that is meson propagators. The relative contribution of K
and η mesons, with respect to π, is between 8% and 10% in the amplitude, as
can be naively expected from the ratio of meson masses (mπ/mK,η)

2, which is also
about 8%. Again, in Table 4.4 we indicate our results for the two variables of the
quark propagator (GS and ES) occurring in the loop diagrams. For the GS version,
although sizable corrections are generated, the theoretical results fall short to fully
explain the experimental data. Only when including the low-lying excited states
in the quark propagator (ES quark propagator) the results are improved at the
level of 15%, nearly in full accord with data.

Comparison of our results to other model calculations are presented in Ta-
ble 4.6. Note, that our results for A1/2(Q

2 = 0) and A3/2(Q
2 = 0) follow the rela-

tion A3/2 =
√

3A1/2 as in the naive SU6 quark model. Recently, in the framework
of large-Nc QCD [115] it was shown that the ratio A3/2/A1/2 is mostly saturated by
the naive SU6 value. Deviations from this standard result are due to higher order
corrections with A3/2/A1/2 =

√
3+O(1/N2

c ). In the PCQM we evaluate the helicity
amplitudes at one loop or, equivalently, to the order of accuracy o(1/F 2, m̂,ms),
where F ∼ √

Nc. Therefore, to get a non-trivial deviation from the SU6 result the
formalism has to be extended up to two loops or up to order O(1/F 4) ∼ O(1/N2

c ).
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A1/2(Q
2 = 0) A3/2(Q

2 = 0)

GS quark propagator
3q-core
-LO -69.7 ± 5.9 -120.7 ± 10.2
-NLO -8.6 ± 1.2 -14.9 ± 2.1
Counter-term 8.2 ± 1.1 14.2 ± 1.9
Meson-cloud -16.7 ± 2.6 -28.9 ± 4.5
Vertex-correction -0.7 ± 0.1 -1.2 ± 0.1
Meson-in-flight -23.0 ± 3.4 -39.8 ± 5.9
Total(GS) -110.5 ± 0.3 -191.3 ± 0.5
ES quark propagator
NLO -10.3 ± 1.1 -17.8 ± 1.9
Counter-term 4.9 ± 0.6 8.5 ± 1.0
Meson-cloud -13.5 ± 2.5 -23.4 ± 4.3
Vertex-correction -0.7 ± 0.1 -1.2 ± 0.1
Total(ES) -19.6 ± 3.1 -33.9 ± 5.3

Total=Total(GS)+Total(ES) -130.1 ± 3.4 -225.2 ± 5.8
Experiment [43] -135 ± 6 -250 ± 8

Table 4.4: Contributions of the individual diagrams to the transverse
helicity amplitudes for Q2 = 0 (in units of 10−3 GeV−1/2). Results for
inclusion of ground state (GS) and excited states (ES) in the quark prop-
agator are indicated separately.

A1/2(π) A1/2(K) A1/2(η) Total
GS quark propagators
MC -15.3 -1.4 - -16.7
VC -0.73 - 0.06 -0.67
ES quark propagators
MC -12.4 -1.1 - -13.5
VC -0.80 - 0.08 -0.72

Table 4.5: Absolute contributions of π, K and η to A1/2(Q
2 = 0) for

the meson-cloud (MC) and vertex-correction (VC) diagrams in units of

10−3 GeV−1/2.

The result for the Q2 dependence of helicity amplitude A1/2(Q
2), when trun-

cating the quark propagator to the ground state, is indicated in Fig. 4.9. We
also list the individual contributions of the different diagrams which add up coher-
ently. The leading order three-quark diagram dominates the prediction for A1/2,
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A1/2(Q
2 = 0) A3/2(Q

2 = 0)

NRQM [106] -90.9 -181.9
Cloudy bag model [110] -128 -222
Relativistic quark potential model [111] -147 -277
PCQM -130.1 ± 3.4 -225.2 ± 5.8
Experiment [43] -135 ± 6 -250 ± 8

Table 4.6: Total result for the helicity amplitudes A1/2(Q
2 = 0) and

A3/2(Q
2 = 0) in comparison to other theoretical models (in units of

10−3 GeV−1/2). The cloudy bag model results are taken for the values
of a typical bag radius of R = 0.8 fm.

whereas meson cloud corrections add about 30% to the total result. Here, both the
meson-in-flight and the meson-cloud diagrams give the largest contribution. The
effect on A1/2 by including the intermediate excited quark states with quantum
numbers 1p1/2, 1p3/2, 1d3/2, 1d5/2 and 2s1/2, that is, excitations up to 2~ω, in the
propagator is given in Fig. 4.10. Although higher lying state contributions are
suppressed relative to the ground-state one, they still have a noticeable effect on
A1/2 for Q2 < 0.5 GeV2 at the order of 15%. The results for both A1/2(Q

2) and

A3/2(Q
2) =

√
3A1/2(Q

2) are shown in Fig. 4.11.
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Figure 4.9: Q2 dependence of the transverse helicity amplitude A1/2(Q
2)

for the case where the quark propagator is truncated to the ground state
(GS) contribution. Legend: [3q-LO], 3q-diagram (leading order); [3q-
NLO], 3q-diagram (next-to-leading order); [CT (GS)], counterterm; [MC
(GS)], meson-cloud diagram; [VC (GS)], vertex-correction diagram; [MF],
meson-in-flight diagram; and [Total (GS)], total result.
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Figure 4.10: Same as Fig. 4.9 but now for the case where excited quark
states (ES) are included in the loop diagrams. The total GS result is also
shown here for comparison.
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Figure 4.11: Total results for the transverse helicity amplitudes A1/2(Q
2)

and A3/2(Q
2) =

√
3 A1/2(Q

2).

To complete our set of predictions we also indicate the results for the radiative
transition ∆+ → pγ. For the decay width, as based on Eq. (4.96), we obtain
Γ(∆+ → pγ) = 0.55 ± 0.03 MeV. Using the experimental value Γtotal(∆

+) =
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111.2 MeV for the total decay width, we deduce the branching ratio

BR(∆+ → pγ) = (0.47 − 0.52)% . (4.101)

In similar fashion we set for the partial decay branching ratios of helicity 1/2 and
3/2

BR1/2 = (0.12 − 0.13)% and BR3/2 = (0.35 − 0.39)% . (4.102)

These results are in good agreement with the experimental data [43] : BR(∆+ →
pγ) = (0.52 − 0.60)%, BR1/2 = (0.11 − 0.13)% and BR3/2 = (0.41 − 0.47)%.

4.6 Summary

In this chapter we presented the perturbative chiral quark model (PCQM) and
its applications to the electromagnetic form factors of the baryon octet and the
electromagnetic N − ∆ transitions. The PCQM is developed from the relativistic
quark model suggested in [26, 28] which can be considered as a further development
of chiral quark models with a perturbative treatment of the pion cloud [24, 25, 26,
28]. Compared to the previous similar models of Refs. [24, 25] our current approach
contains several new features: i) generalization of the phenomenological confining
potential; ii) SU(3) extension of chiral symmetry to include the K and η-meson
cloud contributions; iii) consistent formulation of perturbation theory both on the
quark and baryon level by use of renormalization techniques and by allowing to
account for excited quark states in the meson loop diagrams; iv) fulfillment of
the constraints imposed by chiral symmetry (low-energy theorems), including the
current quark mass expansion of the matrix elements; v) possible consistency with
chiral perturbation theory as for example in the chiral expansion of the nucleon
mass.

The PCQM is based on an effective chiral Lagrangian describing quarks as
relativistic fermions moving in a self-consistent field (static potential). The model
potential defines unperturbed wave functions of quarks which are subsequently
used in the calculation of baryon properties. Baryons in the PCQM are described
as bound states of valence quarks surrounded by a cloud of Goldstone bosons
(π,K, η) as required by chiral symmetry. Interaction of quarks with Goldstone
bosons is introduced on the basis of the nonlinear σ-model [99]. When considering
mesons fields as small fluctuations we restrict ourselves to the linear form of the
meson-quark interaction. With the derived interaction Lagrangian we do our per-
turbation theory in the expansion parameter 1/F (where F is the pion leptonic
decay constant in the chiral limit). We also treat the mass term of the current
quarks as a small perturbation. Dressing the baryon three-quark core by a cloud

61



4 Perturbative chiral quark model

of Goldstone mesons corresponds to the inclusion of the sea-quark contribution.
All calculations are performed at one loop or at order of accuracy o(1/F 2, m̂,ms).
The chiral limit with m̂,ms → 0 is well defined. The PCQM has been applied
to the study of the neutron electric dipole form factor [116], the nucleon polar-
izabilities [37], the mass spectrum of the J(P) = 1/2- and 3/2- pentaquark an-
tidecuplets [117], the ground-state baryon masses [118], the axial form factor of
the nucleon [36], the meson nucleon sigma terms [29, 35], the electromagnetic nu-
cleon Delta transition [33], the electromagnetic form factors of the baryon [30, 34],
the strange nucleon form factors [32], the electromagnetic couplings of the ChPT
Lagrangian [119] and π N scattering including electromagnetic corrections [31].
Meson effects contribute significantly to the physical observables and improve the
values arising from the three-quark core alone. The simplification of the calcula-
tional technique by restricting to the ground state quark propagator in the loop
calculations was shown to result in a satisfactory phenomenology of a variety of
baryon observables. However, the importance of including the low-lying excited
quark states in the propagator is also reflected in the improvement of observables,
where the meson cloud dominates. This concerns the neutron charge radius and
the transverse helicity amplitudes of the electromagnetic N − ∆ transition. The
model, as it stands right now, has several simplifications: confinement is modelled
by a non-covariant, local potential and meson corrections are evaluated up to one
loop. Despite these restrictions, the PCQM works phenomenologically rather well
in working out the role of valence quark degrees of freedom and the meson cloud.
In the following we consider a further development of this approach, both in for-
mulating a manifestly covariant description of valence quarks bound in the baryon
and in a consistent inclusion of higher order chiral corrections.
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Chapter 5

Lorentz covariant chiral quark
model

In this chapter we present a further development of the perturbative chiral quark
model (PCQM) as was discussed in Chapter 4. This involves a manifest Lorentz
covariant formulation as opposed to the original non-covariant PCQM. Further-
more, we intend to include higher order chiral corrections in a consistent fashion.
The corresponding chiral quark Lagrangian thereby stays in close analogy to the
one of Chiral Perturbation Theory (ChPT). The basic idea is still the same, that
is, the quark operators will be dressed by the Goldstone bosons as dictated by the
chiral symmetry and these quark operators are projected on the baryonic level for
calculating baryon matrix elements. In the following we will present the relevant
Lagrangians for the dressing of the quark operators and the technique for calcu-
lating the electromagnetic nucleon matrix elements. The extension to study the
properties of the baryon octet is straightforward. Finally, the physical applications
of our approach will be presented.

5.1 Effective Lagrangian

5.1.1 Chiral Lagrangian

In order to dress the constituent quarks by mesonic degrees of freedom, we employ
the chiral quark Lagrangian LqU motivated from the chiral Lagrangians of ChPT.
This Lagrangian consists of the two main pieces Lq and LU

LqU = Lq + LU , (5.1)
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where

Lq = L(1)
q + L(2)

q + L(3)
q + L(4)

q + . . . ,

LU = L(2)
U + . . . . (5.2)

LU is the Lagrangian composed of the mesonic degrees of freedom, whereas Lq

refers to the quark degrees of freedom also containing the interaction with the
mesonic degrees of freedom. Note that LqU in general contains an infinite string of
terms. In the practical calculation, we restrict to some specific order of accuracy.

The superscript (i) attached to L(i)
q(U) denotes the low energy dimension of the

Lagrangian. For a fourth-order O(p4) calculation the explicit form of these terms
relevant for the calculation of the baryonic properties are

L(2)
U =

F 2

4
〈uµu

µ + χ+〉, (5.3)

L(1)
q = q̄

[

i /D − m +
1

2
g /u γ5

]

q, (5.4)

L(2)
q = c1 〈χ+〉 q̄q − c2

4m2
〈uµuν〉 (q̄ Dµ Dν q + h.c. )

+
c3

2
〈uµ uµ〉q̄q +

c4

4
q̄ i σµν [uµ, uν ] q +

c6

8m
q̄ σµν F+

µν q

−q̄Mq + c5q̄χ̂+q + . . . , (5.5)

L(3)
q =

id10

2m
q̄ [Dµ, F+

µν ] D
ν q + h.c. + . . . , (5.6)

L(4)
q = − e1

16
〈χ+〉2 q̄ q +

e2

4
〈χ+〉¤(q̄ q) − e3

16
〈χ̂2

+〉q̄q −
e4

16
〈χ+〉q̄χ̂+q

− e5

16
q̄χ̂2

+q +
e6

2
〈χ+〉 q̄ σµν F+

µν q +
e7

4
q̄ σµν {F+

µνχ̂+} q

+
e8

2
q̄ σµν 〈F+

µνχ̂+〉 q − e10

2
q̄ [Dα, [Dα, F+

µν ]]σ
µν q + . . . , (5.7)

where χ̂+ = χ+ − 1
3
〈χ+〉 . The symbols 〈 〉, [ ] and { } denote the trace over

flavor matrices, commutator and anticommutator, respectively. The quark field is
denoted by q.

The couplings m and g denote the quark mass and axial charge in the chiral
limit. The low-energy coupling constants (LECs) ci, di and ei relate to the second-
, third- and fourth-order and encode the contributions of heavy states. Note,
that the inclusion of higher-dimensional terms in the chiral quark Lagrangian
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5.1 Effective Lagrangian

was originally suggested in Ref. [120]. In particular, as a dimensional param-
eter in the higher-dimensional terms one can use the scale parameter of spon-
taneously broken chiral symmetry Λχ ' 4πF ∼ 1 GeV (F is the octet de-
cay constant [21, 121]) instead of the constituent quark mass. This replace-
ment is equivalent to a redefinition of the values of the low-energy constants,
e.g. c2 → c2 (m/Λχ)2 , d10 → d10 (m/Λχ), etc.

The mesonic degrees of freedom are represented in the nonlinear realization
by the SU(3) matrix U ,

U = u2 = exp

(

i
φ

F

)

, (5.8)

containing the octet of pseudoscalar fields

φ =
8∑

i=1

φiλi =
√

2





π0/
√

2 + η/
√

6 π+ K+

π− −π0/
√

2 + η/
√

6 K0

K− K̄0 −2η/
√

6



 , (5.9)

where F is the octet decay constant [21, 121].

In the above expressions the following standard notations [11, 13, 122] are intro-
duced

Dµ = ∂µ + Γµ, uµ = iu†∇µUu†, χ± = u†χu† ± uχ†u, (5.10)

(5.11)

where the interaction terms of the external fields with the quarks and mesons are
contained in

Γµ =
1

2
[u†, ∂µu] − i

2
u†Rµu − i

2
uLµu

†,

∇µU = ∂µU − iRµU + iULµ,

χ = 2B(s + ip), s = M + . . . (5.12)

Note, that s, p, vµ and aµ denote the external scalar, pseudoscalar, vector and axial
fields with the definitions for Rµ and Lµ as

Rµ = vµ + aµ, Lµ = vµ − aµ. (5.13)
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For an electroweak interaction Rµ and Lµ are

Rµ = eQAµ − Q tan θW Z0
µ + . . . , (5.14)

Lµ = eQAµ +

(
e

sin2 θW

λ3 − Q

)

tan θW Z0
µ

+
e

sin θW

√
2
(W+

µ T+ + h.c.) + . . . , (5.15)

where Aµ, W±
µ and Z0

µ are the electromagnetic field, the weak charged and neutral
boson fields. The quark charge matrix is denoted by Q = diag{2/3,−1/3,−1/3}
and

T+ =

(
0 Vud Vus

0 0 0
0 0 0

)

(5.16)

is the weak matrix containing the Cabibbo-Kobayashi-Maskawa quark-mixing ma-
trix elements Vij. The tensor F+

µν is defined as F+
µν = u†FµνQu + uFµνQu†,

where Fµν = ∂µAν − ∂νAµ is the conventional photon field strength tensor. Here
M = diag{m̂, m̂, m̂s} is the mass matrix of current quarks. The quark vacuum
condensate parameter is denoted by

B = − 1

F 2
〈0|ūu|0〉 = − 1

F 2
〈0|d̄d|0〉 . (5.17)

To distinguish between constituent and current quark masses we attach the symbol
ˆ (“hat”) when referring to the current quark masses. We rely on the standard
picture of chiral symmetry breaking (B À F ). In the leading order of the chiral
expansion the masses of pseudoscalar mesons are given by

M2
π = 2m̂B, M2

K = (m̂ + m̂s)B, M2
η =

2

3
(m̂ + 2m̂s)B. (5.18)

In the numerical analysis we will use: Mπ = 139.57 MeV, MK = 493.677 MeV
(the charged pion and kaon masses), Mη = 574.75 MeV and the canonical set
of differentiated decay constants: Fπ = 92.4 MeV, FK/Fπ = 1.22 and Fη/Fπ =
1.3 [10].

The use of the physical masses and decay constants of the pseudoscalar mesons
incorporates only part of the corrections due to the breaking of unitary flavor
symmetry. To generate another part of SU(3) symmetry-breaking corrections we
add a string of terms to the Lagrangian (5.1): the current quark mass term q̄Mq,
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5.1 Effective Lagrangian

terms containing the LECs c5, e4, e5, e7 and e8. The flavor-symmetry breaking
terms containing the term q̄Mq and the LECS c5, e4 and e5 allow to decouple the
mass of the strange quark from the isospin-averaged mass m. The fourth-order
couplings e7 and e8 incorporate explicit SU(3) symmetry-breaking corrections in
the magnetic moments of the constituent quarks and baryons. As was shown in
Ref. [21] the inclusion of the SU(3) symmetry-breaking terms is sufficient to obtain
agreement with the experimental data for the magnetic moments of the baryon
octet.

5.1.2 Inclusion of vector mesons

Following Refs. [9, 10, 20, 123], the vector mesons can be included in the chiral
quark Lagrangian. The construction of the chirally invariant couplings of vector
mesons to pseudoscalar mesons, photons and quarks is conveniently done in the
tensor field representation of the spin-1 fields Wµν , which is an antisymmetric
tensor Wµν = −Wνµ. The explicit form is such that

Wµν =





(ρ0 + ω)/
√

2 ρ+ K∗+

ρ− (−ρ0 + ω)/
√

2 K∗0

K∗− K̄∗0 −φ





µν

. (5.19)

The chirally invariant Lagrangian concerning the vector mesons is

LV = L0
V + Lint

V , (5.20)

where L0
V is the free vector meson Lagrangian

L0
V = −1

2
∂µW a

µν∂ρW
ρν,a +

M2
V

4
W a

µνW
µν,a, (5.21)

and the interaction Lagrangian is decomposed into the terms Lint
V = Lint,1

V +Lint,2
V .

The coupling of vector mesons to the external vector and axial-vector sources is
encoded in Lint,1

V , whereas the vector mesons coupling to the quarks is described

by Lint,2
V . We have

Lint,1
V =

FV

2
√

2
〈W µνF+

µν〉 +
iGV

2
√

2
〈W µν [uµ, uν ]〉,

Lint,2
V = q̄σµνRµνq + q̄γµSµq + q̄σαβUµβ[Dα, [Dµ, q]], (5.22)
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5 Lorentz covariant chiral quark model

where the definitions for Rµν , Sµ and Uµβ are

Rµν = RT Wµν + RS〈Wµν〉,
Sµ = ST [Dν ,Wµν ] + SS〈[Dν ,Wµν ]〉,

Uµβ = UT Wµβ + US〈Wµβ〉. (5.23)

The effective couplings Ri, Si and Ui can be related to the ones (gV qq and kV ) used
in the canonical interaction Lagrangian of vector mesons with quarks

LV qq =
gV qq√

2
q̄

(

γµVµ − kV

2m
σµν∂νVµ

)

q, (5.24)

where the standard nonet of vector mesons is Vµ. The matching conditions for
these effective couplings are

RS = 0,

RT = −kV gV qq
MV

4m
√

2
,

US =
2

m
SS,

UT =
2

m

(
gV qq

MV

√
2

+ ST

)

. (5.25)

The couplings FV and GV can be determined by the decay widths of ρ → e+e−

and ρ → ππ. Following the technique used in Refs. [20] one can write FV and GV

in terms of the coupling gV qq and the mass of the vector meson MV as

FV =
MV

gV qq

, GV =
FV

2
. (5.26)

Hence, in the vector meson sector we only deal with a single free parameter kV .

5.2 Dressing of quark operators

With the previous considerations on the Lagrangian the total effective Lagrangian
Leff is

Leff = LqU + LV . (5.27)
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5.2 Dressing of quark operators

The Lagrangian LqU is responsible for the dressing of quarks by a cloud of pseu-
doscalar mesons and heavy states, while LV generates the coupling to vector
mesons. To illustrate the idea of dressing quark operators by this effective La-
grangian, we consider the Fourier transform of the electromagnetic quark operator,

Jbare
µ,em(q) =

∫

d4xe−iqxjbare
µ,em(x), jbare

µ,em(x) = q̄(x)γµQq(x). (5.28)

In Fig. 5.1 the Feynman diagrams generating the dressing of the quarks by LqU

up to fourth order are presented. By also taking into account the vector meson
Lagrangian LV additional diagrams with the coupling of vector mesons to both
quarks and psedoscalar mesons occur, which are shown in Fig. 5.2.

The Fourier transform of the dressed quark operator is

Jdress
µ,em (q) =

∫

d4xe−iqx
∑

q=u,d,s

q̄(x)

[

γµf
q
D(q2) +

i

2mq

σµνq
νf q

P (q2)

]

q(x), (5.29)

where mq is the dressed constituent quark mass. The Dirac and Pauli form factors
of the quark with flavor q = u, d, s are f q

D and f q
P , respectively. The normalization

of f q
D is such that at zero recoil f q

D(0) ≡ eq, where eq is the charge of the quark
with flavor q.

Evaluation of the diagrams in Figs. 5.1 and 5.2 is based on the “infrared
dimensional regularization” suggested in Ref. [13] to guarantee a straightforward
connection between loop and chiral expansion in terms of quark masses and small
external momenta. The discussion of the calculational technique is relegated to
Appendix E. In Appendix F the explicit forms of the loop integrals are presented.

To calculate the electromagnetic form factors of the nucleon (or any baryon)
we project the dressed quark operator between the nucleon (baryon) states. In the
following we restrict to the case of the nucleon. The master formula is

〈N(p′)|Jdress
µ, em(q)|N(p)〉

= (2π)4δ4(p′ − p − q)ūN(p′)

{

γµF
N
1 (q2) +

i

2mN

σµνq
νFN

2 (q2)

}

uN(p)

= (2π)4δ4(p′ − p − q)
∑

q=u,d

{

f q
D(q2)〈N(p′)|jbare

µ,q (0)|N(p)〉

+i
qν

2m̄
f q

P (q2)〈N(p′)|jbare
µν,q (0)|N(p)〉

}

, (5.30)
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Figure 5.1: Diagrams including pseudoscalar meson contributions to the
EM quark transition operator up to fourth order. Solid, dashed and
wiggly lines refer to quarks, pseudoscalar mesons and the electromagnetic
field, respectively. Vertices denoted by a black filled circle, box and
diamond correspond to insertions from the second, third and fourth order
chiral Lagrangian.
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T

(2∗)

V

(3∗)

T

(10∗)

T

(11∗)

T

(12∗)

Figure 5.2: Diagrams including vector-meson contributions to the EM
quark transition operator. Double-dashed lines correspond to vector
mesons. The symbols V and T refer to the vectorial and tensorial cou-
plings of vector mesons to quarks.

where N(p) and uN(p) are the nucleon state and spinor, respectively, normalized
as

〈N(p′)|N(p)〉 = 2EN(2π)3δ3(~p − ~p ′) (5.31)

and

ū(p)u(p) = 2mN (5.32)

with EN being the nucleon energy EN =
√

m2
N + ~p 2. Here, FN

1 (q2) and FN
2 (q2)

are the Dirac and Pauli nucleon form factors. In Eq. (5.30) we express the matrix
elements of the dressed quark operator by the matrix elements of the bare opera-
tors. In our case we deal with the bare quark operators of the vector jbare

µ,q (0) and

tensor jbare
µν,q (0) structures defined as

jbare
µ,q (0) = q̄(0)γµq(0),

jbare
µν,q (0) = q̄(0)σµνq(0). (5.33)
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Eq. (5.30) contains our main result: we perform a model-independent factorization
of the effects of hadronization and confinement contained in the matrix elements
of the bare quark operators jbare

µ,q (0) and jbare
µν,q (0) and the effects dictated by chiral

symmetry (or chiral dynamics) which are encoded in the relativistic form factors
f q

D(q2) and f q
P (q2). Due to this factorization the calculation of f q

D(q2) and f q
P (q2),

on one side, and the matrix elements of jbare
µ,q (0) and jbare

µν,q (0), on the other side,
can be done independently. In particular, in a first step we derived a model-
independent formalism based on the ChPT Lagrangian, which is formulated in
terms of constituent quark degrees of freedom, for the calculation of f q

D(q2) and
f q

P (q2). The calculation of the matrix elements of the bare quark operators can then
be relegated to quark models based on specific assumptions about hadronization
and confinement. The explicit forms of f q

D(q2) and f q
P (q2) are given in Appendix G.

5.3 Matching to ChPT

In order to calculate the matrix elements of the bare quark operators one should use
a specific model with certain assumptions concerning hadronization and confine-
ment. However, we show that additional constraints due to approximate symme-
tries of the system and model-independent predictions of some specific quantities
can be used to relate the nucleon form factors and the quark form factors at zero
recoil. Instead of using a specific quark model, we proceed with the general form
deduced from Lorentz and gauge invariance of the bare matrix elements as

〈N(p′)|jbare
µ,q (0)|N(p)〉

= ūN(p′)

{

γµF
Nq
1 (q2) +

i

2mN

σµνq
νFNq

2 (q2)

}

uN(p), (5.34)

i
qν

2mq

〈N(p′)|jbare
µν,q (0)|N(p)〉

= ūN(p′)

{

γµG
Nq
1 (q2) +

i

2mN

σµνq
νGNq

2 (q2)

}

uN(p). (5.35)

The Pauli and Dirac form factors FNq
1(2)(q

2) and GNq
1(2)(q

2) describe the distribution

of quarks of flavor q = u, d in the nucleon.

At zero recoil, we obtain from charge conservation and isospin invariance the
relations
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F pu
1 (0) = F nd

1 (0) = 2, F pd
1 (0) = F nu

1 (0) = 1,

GNq
1 (0) = 0,

F pu
2 (0) = F nd

2 (0), F pd
2 (0) = F nu

2 (0),

Gpu
2 (0) = Gnd

2 (0), Gpd
2 (0) = Gnu

2 (0).

One can relate GNq
2 (0) to the so-called bare nucleon tensor charges δbare

Nq defined in
Ref. [124] as

〈N(p)|jbare
µν,q (0)|N(p)〉 = δbare

Nq ūN(p)σµνuN(p). (5.36)

In terms of δbare
Nq the relations for GNq

2 (0) are

Gpu
2 (0) = Gnd

2 (0) =
mN

m̄
δbare
pu =

mN

m̄
δbare
nd ,

Gpd
2 (0) = Gnu

2 (0) =
mN

m̄
δbare
pd =

mN

m̄
δbare
nu .

Additional constraints are the so-called “chiral symmetry constraints”. They
are dictated by the infrared-singular structure of QCD in order to reproduce the
leading nonanalytic (LNA) contributions to the magnetic moments and the charge
and magnetic radii of nucleons [20, 125]

µp = −g2
A

8π

Mπ

F 2
π

◦
mN + . . . ,

〈r2〉Ep = −1 + 5g2
A

16π2F 2
π

ln
Mπ
◦
mN

+ . . . , (5.37)

〈r2〉Mp =
g2

A

16πF 2
πµp

◦
mN

Mπ

+ . . . ,

where gA and
◦
mN are the axial charge and mass of the nucleon in the chiral limit.

By matching our LEC d10 on the quark level together with the FNq
2 (0) and GNq

2 (0)
form factors to the calculation of ChPT involving the LEC dChPT

6 we obtain

1 + F pu
2 (0) − F pd

2 (0) = Gpu
2 (0) − Gpd

2 (0) =

(
gA

g

)2
mN

m̄
,

1 + F nd
2 (0) − F nu

2 (0) = Gnd
2 (0) − Gnu

2 (0) =

(
gA

g

)2
mN

m̄
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and

d̄ChPT
6 +

1 + 5g2
A

96π2F 2
π

ln
Mπ
◦
mN

≡ d̄10 +
1 + 5g2

96π2F 2
π

ln
Mπ
◦
mN

. (5.38)

The renormalized LECs d̄ChPT
6 and d̄10 at the renormalization scale µ =

◦
mN are

d̄ChPT
6 = dChPT

6 +
1 + 5g2

A

6F 2
π

λ̄,

d̄10 = d10 +
1 + 5g2

6F 2
π

λ̄, (5.39)

where λ̄ = λ(
◦
mN) and

λ(µ) =
µd−4

(4π)2

{
1

d − 4
− 1

2
(ln4π + Γ′(1) + 1)

}

, (5.40)

with the Euler constant γE = −Γ′(1).

Furthermore, we apply the SU(6)-symmetry relation for the ratio of the nu-
cleon magnetic moment and the nucleon tensor charge in the naive nonrelativistic
quark model to give a further constraint on FNq

2 (0) and GNq
2 (0). The results are

2 + F pu
2 (0)

1 + F pd
2 (0)

=
2 + F nd

2 (0)

1 + F nu
2 (0)

=
Gpu

2 (0)

Gpd
2 (0)

=
Gnd

2 (0)

Gnu
2 (0)

= −4. (5.41)

Finally, by using Eq. (5.38) and Eq. (5.41) the values of FNq
2 (0) and GNq

2 (0) are

F pu
2 (0) = F nd

2 (0) =
4

5

(
gA

g

)2
mN

m̄
− 2,

F pd
2 (0) = F nu

2 (0) = −1

5

(
gA

g

)2
mN

m̄
− 1,

Gpu
2 (0) = Gnd

2 (0) =
4

5

(
gA

g

)2
mN

m̄
,

Gpd
2 (0) = Gnu

2 (0) = −1

5

(
gA

g

)2
mN

m̄
. (5.42)
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Note that from all the constraints discussed above we automatically obtain pre-
dictions for the bare values of the nucleon magnetic moments and tensor charges

µbare
p ≡ −3

2
µbare

n =
∑

q=u,d

eq[F
pq
1 (0) + F pq

2 (0)] =
3

5

(
gA

g

)2
mN

m̄
(5.43)

and

δbare
pu ≡ −4δbare

pd =
m̄

mN

Gpu
2 (0) =

4

5

(
gA

g

)2

, (5.44)

where eu = 2/3 and ed = −1/3 are the electric charges of u and d quarks, respec-
tively.

5.4 Nucleon mass and meson-nucleon σ-terms

Two other important quantities of low-energy nucleon physics that we are going
to consider are the nucleon mass and the meson-nucleon σ-terms which are con-
strained by the Feynman-Hellmann theorem (FHT) [126]. The FHT relates the
derivative of the nucleon mass with respect to the current quark masses to the
pion-nucleon sigma-term σπN and to the strange quark condensate in the nucleon
ys by

σπN ūN(p)uN(p)
.
= m̂〈N(p)|ū(0)u(0) + d̄(0)d(0)|N(p)〉

= m̂
∂mN

∂m̂
ūN(p)uN(p), (5.45)

ysūN(p)uN(p)
.
= 〈N(p)|s̄(0)s(0)|N(p)〉 =

∂mN

∂m̂s

ūN(p)uN(p). (5.46)

5.4.1 Nucleon mass

In quantum field theory the nucleon mass mN is defined as the matrix element of
the trace of the energy-momentum tensor Θµν(x)

mN ūN(p)uN(p)
.
= 〈N(p)|Θµ

µ(0)|N(p)〉 . (5.47)
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When we restrict to one-body interactions between the quarks and neglect the
contribution of the heavy quarks in the constituent quark (CQ) approach, the
master formula (5.30) spells as

mN ūN(p)uN(p)
.
= 〈N(p)|Hmass(0)|N(p)〉 . (5.48)

Hmass(x) = q̄(x)mqq(x) is the part of the Hamiltonian referred to as the quark
mass term where mq = diag{mu,md,ms} is the matrix of constituent quark masses
with mu = md = m̄ due to isospin invariance. Note, Eq.(5.48) is valid in the one-
body approximation. In general, one should include in the trace of the energy-
momentum tensor also two- and three-body quark operators which encode quark-
quark interaction contributions to the nucleon mass. In some CQ models the
nontrivial dependence of mq (or mN) on the current quark masses is missing. This
leads to a contradiction with the low-energy behavior of the nucleon mass as a
function of m̂(m̂s) and with the Feynman-Hellmann theorem. The use of the
effective Lagrangian (5.1) constrained by Baryon ChPT enables one to perform
an accurate and consistent calculation of the nucleon mass and the corresponding
sigma-terms. As in the case of the electromagnetic form factors, the extension to
other baryons is straightforward.

In analogy with the electromagnetic form factors we define the nucleon mass
and later on the sigma-terms as expectation values of the dressed operators. First,
we write down the bare quark mass term as

Hbare
mass(x) = mq̄(x)q(x) (5.49)

i.e. the quark mass term at leading order of the chiral expansion (in the chiral
limit). Here m is the value of the constituent quark mass in the chiral limit
introduced before in the Lagrangian (5.1). The nucleon mass in the chiral limit
◦
mN is defined by

◦
mN ūN(p)uN(p) = 〈N(p)|Hbare

mass(0)|N(p)〉
= m〈N(p)|q̄(0)q(0)|N(p)〉 . (5.50)

The dressed quark mass term and the physical nucleon mass are given by

Hdress
mass(x) = q̄(x)mqq(x),

mN ūN(p)uN(p) = 〈N(p)|Hdress
mass(0)|N(p)〉

= 〈N(p)|q̄(0)mqq(0)|N(p)〉, (5.51)

where mq = diag{mu,md,ms} is the matrix of the dressed (physical) constituent
quark masses (in our case the constituent quark mass at one loop with inclusion
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of chiral corrections) with mu = md due to isospin invariance. The constituent
quark masses mq

.
= mq(m̂, m̂s) have a nontrivial dependence on the current quark

masses m̂ and m̂s which can be accurately calculated with the use of the chi-
ral Lagrangian (5.1). For illustration we discuss the explicit expressions for the
nonstrange and strange constituent quark masses at one loop and at O(p4) with

mq = m + Σq(m). (5.52)

The quark mass operator Σq = diag{Σu, Σd, Σs}, with Σu = Σd = Σ̄ due to isospin
invariance, is evaluated on the mass-shell 6 p = m, which is ultraviolet-finite by
construction. All ultraviolet divergences are removed via the renormalization of
the fourth-order LECs e1, e3, e4 and e5 contributing to the Σq operator. Here and
in the following we identify the quark mass occurring in the loop integrals with
its leading order value mq → m. The operator Σq is described by the diagrams in
Fig. 5.3 and after expansion in powers of meson masses is given by

Σ̄ = m̂ − 3g2

32π

{
M3

π

F 2
π

+
2

3

M3
K

F 2
K

+
M3

η

9 F 2
η
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− 3g2

64π2m
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π

F 2
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+
2
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K

F 2
K

+
M4

η

9 F 2
η

}

−4c1M
2 +

3c2

128π2

{
M4

π

F 2
π

+
4

3

M4
K

F 2
K

+
M4

η

3 F 2
η

}

+
4

3
c5(M

2
K − M2

π)

+ē1M
4 +

ē3

6
(M2

K − M2
π)2 − ē4

3
M2(M2

K − M2
π) +

ē5

36
(M2

K − M2
π)2

and

Σs = m̂s −
3g2

32π

{
4

3

M3
K

F 2
K

+
4

9

M3
η

F 2
η

}

− 3g2

64π2m

{
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F 2
K

+
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η
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η
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−4c1M
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3c2

128π2

{
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π

F 2
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+
4
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M4
K

F 2
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+
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η

3 F 2
η

}

− 8

3
c5(M

2
K − M2

π)

+ē1M
4 +

ē3

6
(M2

K − M2
π)2 +

2ē4

3
M2(M2

K − M2
π) +

ē5

9
(M2

K − M2
π)2

where

M2 = M2
π − M2

K +
3

2
M2

η =
1

2
M2

π + M2
K . (5.53)
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(1)

�
(2)

(3) (4) (5)

Figure 5.3: Diagrams contributing to the mass operator of the quark at
one loop. Vertices denoted by a black filled circle and diamond correspond
to insertions from the second and fourth order chiral Lagrangian.

Note, that Σ̄ and Σs are degenerate for m̂ = m̂s and M2 coincides with M2
π at

m̂s = 0. For simplicity the chiral logarithms are hidden in the renormalized LECs
ēi with i = 1, 3, 4, 5:

ēi = er
i (µ) − βei

32π2F 2
π

ln
M2

π

µ2
= ei −

βei

F 2
π

λπ, (5.54)

where

λπ =
Md−4

π

(4π)2

{
1

d − 4
− 1

2
(ln 4π + Γ ′(1) + 1)

}

. (5.55)

The LECs ei contain the poles at d = 4 which are cancelled by the divergences
proportional to λπ in the r.h.s. of Eq. (5.54). Therefore, the renormalized couplings
er

i (µ) (or ēi) are finite. The set of the βei
coefficients is given by

βe1
=

32g2

27m
− 8

9
(8c1 − c2 − 4c3),

βe3
=

52g2

9m
− 10

3
(8c1 − c2 − 4c3) +

16

9
c5,

βe4
=

20g2

9m
− 32

3
c5,

βe5
= −4g2

m
− 16

3
c5. (5.56)

Note, that the ms − m̄ splitting is mainly generated by the difference in the values
of the strange and the nonstrange current quark masses. The chiral symmetry
constraints and the matching of the nucleon mass calculated within our approach
to the model-independent derivation of [13] allow to deduce certain relations be-
tween the set of our parameters and the ones in Baryon ChPT. In particular, the
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coefficient connected with M3
π/F 2

π , referred to in the literature as the “leading non-
analytic coefficient” (LNAC) [9, 10, 13], is model-independent and constant due to
dimensional arguments. Precisely, this coefficient is equal to −3g2

A/(32πF 2
π ). The

cubic term in powers of the meson mass shows up due to the infrared singularity of
the diagram in Fig. 5.3(3). Using this requirement, we can relate the value of axial
charge of the constituent quark in the chiral limit to the corresponding nucleon
quantity

g2
AūN(p)uN(p) = g2〈N(p)|q̄(0)q(0)|N(p)〉. (5.57)

The matching condition gives a constraint for the matrix element of the bare scalar-
density operator in the nucleon. A rough estimate with gA = 1.25 [11], g ∼ 1
and by taking into account the normalization of the nucleon spinors gives quite
a reasonable value for the scalar condensate, 〈N(p)|q̄(0) q(0)|N(p)〉 ∼ (25/8) mN .
Using the matching condition (5.57) we derive a final expression for the nucleon
mass at one loop

mN =
◦
mN +ΣN , (5.58)

where

mN =

(
gA

g

)2

m̄,
◦
mN=

(
gA

g

)2

m (5.59)

and

ΣN = −3g2
A
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η
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π
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+
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η
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+
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ē5

36
(M2
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π)2

]

.

The constituent quark mass can be removed from the expressions for nucleon
observables using the matching conditions (5.59). The same is also true for other
baryonic observables and where the constituent quark mass can be removed from
the corresponding expressions. In the SU(2) picture (when neglecting the kaon
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and η-meson loops and putting c5 and e5 to be equal to zero) we reproduce the
result of ChPT for the nucleon mass at one loop and at order O(p4) [13]

mN =
◦
mN −4cChPT

1 − 3g2
A

32π

M3
π

F 2
π

+ k1M
4
π ln

Mπ
◦
mN

+ k2M
4
π + O(M5

π),

k1 = − 3

32π2F 2
π

(
g2

A
◦
mN

− 8cChPT
1 + cChPT

2 + 4cChPT
3

)

,

k2 = ēChPT
1 − 3

128π2F 2
π

(
2g2

A
◦
mN

− cChPT
2

)

,

ēChPT
1 = eChPT

1 − 3λ̄

2F 2
π

(
g2

A
◦
mN

− 8cChPT
1 + cChPT

2 + 4cChPT
3

)

, (5.60)

if we fulfill the following matching conditions between the LECs of the ChPT
Lagrangian and our quark-level Lagrangian

−4cChPT
1 M2

π =

[

m̂ − 4c1M
2
π

](
gA

g

)2

,

8cChPT
1 − cChPT

2 − 4cChPT
3 − g2

A
◦
mN

≡
[

8c1 − c2 − 4c3 −
g2

A
◦
mN

](
gA

g

)2

,

ēChPT
1 − 3

64π2F 2
π

(
2g2

A
◦
mN

− cChPT
2

)

≡
[

ē∗1 −
3

64π2F 2
π

(
2g2

A
◦
mN

− c2

)](
gA

g

)2

, (5.61)

where ē∗1 is a SU(2) analogue of ē1 derived in Eqs. (5.54) and (5.56) in the three-
flavor picture

ē∗1 = e∗1 −
βe∗1

F 2
π

λπ,

βe∗1
=

3

2

(
g2

m
− 8c1 + c2 + 4c3

)

. (5.62)

Note, that there is an additional condition on g and gA which shows up in the
calculation of the axial nucleon charge

gAūN(p)γµγ5τ3uN(p) = g〈N(p)|q̄(0)γµγ5τ3q(0)|N(p)〉. (5.63)

Eq. (5.63) gives a constraint on the matrix element of the isovector axial current.
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5.4.2 Pion-nucleon σ-terms

As an example for the sigma-terms we consider the pion-nucleon sigma-term σπN .
In QCD (see Eq. (5.45)) this quantity is related to the expectation value of the
scalar density operator. It is connected to the derivative of the part of the QCD
Hamiltonian, explicitly breaking chiral symmetry, with respect to the current quark
mass. This definition is consistent with the FH theorem [126]. In the context of CQ
models, we should proceed with the dressed Hamiltonian Hdress

mass(x) which already
showed up in the calculation of the physical nucleon mass. In particular, the
dressed scalar density operators jdress

i (x) (where i = u, d, s is the flavor index),
relevant for the calculation of the meson-baryon sigma-terms within our approach,
are defined as the partial derivatives of Hdress

mass(x) with respect to the current quark
mass m̂i of i-th flavor

jdress
i (x)

.
=

∂Hdress
mass(x)

∂m̂i

= q̄(x)
∂mq

∂m̂i

q(x) = q̄(x)
∂Σq

∂m̂i

q(x). (5.64)

In the case of σπN we have

σπN ūN(p)uN(p)
.
= m̂〈N(p)|jdress

u (0) + jdress
d (0)|N(p)〉. (5.65)

It should be clear that Eq. (5.65) is consistent with the FH theorem

σπN ūN(p)uN(p) = m̂
∂

∂m̂
〈N(p)|Hdress

mass(0)|N(p)〉
︸ ︷︷ ︸

=mN ūN (p)uN (p)

= m̂
∂mN

∂m̂
ūN(p)uN(p). (5.66)

Below we give the definitions of the strangeness content of the nucleon yN , the
kaon-nucleon σKN and the eta-nucleon σηN sigma-terms

yN = 2
∂mN/∂m̂s

∂mN/∂m̂
,

ūN(p)uN(p)σ
u(d)
KN =

m̂ + m̂s

2
〈N(p)|jdress

u(d)s;+(0)|N(p)〉,

ūN(p)uN(p)σI=0
KN =

m̂ + m̂s

4
〈N(p)|jdress

us;+ (0) + jdress
ds;+ (0)|N(p)〉,

ūN(p)uN(p)σI=1
KN =

m̂ + m̂s

2
〈N(p)|jdress

ud;− (0)|N(p)〉,

ūN(p)uN(p)σηN =
1

3
〈N(p)|m̂jdress

ud;+ (0) + 4m̂sj
dress
s (0)|N(p)〉, (5.67)

where jdress
qq′;± = jdress

q ± jdress
q′ and |N(p)〉 denotes a proton state. All further details

can be found in our previous papers [29, 35] and in Appendix H.
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5.5 Physical applications

We will apply the covariant approach of the PCQM to some properties of nucleon.
We start from the masses of the baryon octet and the meson-nucleon sigma-terms.
Next, the magnetic moments of the baryon octet will be considered. We will also
discuss the electromagnetic form factors of the nucleon. Finally, the coupling of
vector mesons to the nucleon will be studied. Our main interest is to study nucleon
properties in the small momentum transfer region where the contributions of the
meson cloud is supposed to be largest.

5.5.1 Baryon masses and meson-nucleon sigma-terms

The nucleon mass and the meson-nucleon sigma-terms at one loop depend on the
set of parameters: g, m, c1, c2, c5, ē1, ē3, ē4 and ē5. First, we discuss a choice
for g and m. Note, that these parameteres are constrained in our approach by

the matching condition (5.59),
◦
mN= (gA/g)2m. In literature the value of the axial

charge of the constituent quark varies approximately from 0.9 to 1 (see detailed
discussion in Refs. [127]). The nucleon mass in the chiral limit was estimated in

Heavy Baryon ChPT as
◦
mN= 770±110 MeV [128] and

◦
mN= 890±180 MeV [129].

Inserting this range of values for g and
◦
mN and also the experimental value for

gA = 1.267 [43] into Eq. (5.59) gives the following limits for the constituent quark
mass in the chiral limit

m ' 500 ± 167 MeV. (5.68)

Finally, we choose

m = 420 MeV and g = 0.9. (5.69)

Using the experimental value for the nucleon axial charge gA = 1.267 [43] and

Eq. (5.59) we get
◦
mN= 832.4 MeV which is rather close to our previous estimate

done in the framework of the noncovariant PCQM,
◦
mN= 828.5 MeV [29, 35]. Here

we do not pretend to a more accurate determination of m and g. However, we stress
that we need a rather small value for g in the interval 0.9−1 to justify perturbation
theory. In particular, the use of g = 0.9 gives the shift of the nonstrange constituent
quark mass equal to ∆m = 53 MeV. For g = 0.95 and g = 1 we get ∆m = 107
MeV and ∆m = 164 MeV, respectively. On the other hand, the choice of g is
constrained by the bare magnetic moments of the nucleon (see Eq. (5.83)). The
use of g = 0.9 gives a reasonable contribution of the valence quark to the nucleon
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magnetic moments (see discussion in the next section). Finally, the couplings c1,
c2, c5 and ē1 are fixed by four conditions

mN = 938.27 MeV, σπN = 45 MeV,

yN = 0.1, ms − m̄ ' 170 MeV. (5.70)

The result of the fit is:

c1 = (−0.317 − 0.004 ẽ3 + 0.020 ẽ4 + 0.001 ẽ5) GeV−1 ,

c2 = (1.093 − 1.354 ẽ3 + 0.474 ẽ4 − 0.338 ẽ5) GeV−1 ,

c5 = (−0.316 + 0.063 ẽ3 + 0.005 ẽ5) GeV−1 ,

ē1 = (1.157 + 0.298 ẽ3 + 0.162 ẽ4 + 0.088 ẽ5) GeV−3 , (5.71)

where for convenience we introduce the dimensionless parameters ẽi = ēi×1 GeV3.
Note, the mass difference ms − mu(d) is a crucial quantity to roughly describe the
splittings between the octet baryon masses. Latter quantities are proportional to
ms − m̄. Neglecting isospin-breaking and hyperfine-splitting effects we have in our
approach

mΛ − mN = ms − m̄ ' 170 MeV (data : 177 MeV),

mΣ − mN = ms − m̄ ' 170 MeV (data : 251 MeV),

mΞ − mN = 2[ms − m̄] ' 340 MeV (data : 383 MeV). (5.72)

The meson cloud corrections are important to reproduce the full empirical value
of σπN , contributing about 2/3 to the total value (for a detailed discussion see
Ref. [29, 35]). In particular, our result for σπN is compiled as; the total value is
σπN = 45 MeV, the contribution of the valence quarks is σval

πN = 13.87 MeV (30%
of the total value), the contribution of the pion cloud is dominant

σπ
πN = 26.69 MeV + 0.45 MeV ẽ3 − 2.58 MeV ẽ4 − 0.11 MeV ẽ5 , (5.73)

the kaon and η-meson cloud generates

σK+η
πN = 4.44 MeV − 0.45 MeV ẽ3 + 2.58 MeV ẽ4 + 0.11 MeV ẽ5 . (5.74)

The separate contributions σπ
πN and σK+η

πN depend on the parameters ẽ3, ẽ4 and ẽ5,
while the total contribution is independent on ẽi with i = 3, 4, 5. Our predictions
for the kaon-nucleon σKN and eta-nucleon σηN sigma-terms are; σu

KN = 381.9 MeV,
σd

KN = 351.8 MeV, σI=0
KN = 366.8 MeV, σI=1

KN = 15 MeV, and σηN = 90 MeV.
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5.5.2 Magnetic moments of the baryon octet

The magnetic moments of the nucleon can be written in terms of the Dirac and
Pauli form factors as

µN = FN
1 (0) + FN

2 (0), (5.75)

where in our formalism FN
1 (0) and FN

2 (0) are of the form

FN
1 (0) =

∑

q=u,d

f q
D(0)FNq

1 (0) ,

FN
2 (0) =

∑

q=u,d

[f q
D(0)FNq

2 (0) + f q
P (0)GNq

2 (0)] , (5.76)

where f q
D(0) ≡ eq is the quark charge due to charge conservation. It is conve-

nient to separate the expressions for FN
1 (0) and FN

2 (0) into two contributions: the
bare (valence-quark) and the meson cloud (sea-quark) contributions. The bare
contribution is

FN bare
1 (0) =

∑

q=u,d

eq FNq
1 (0) ,

FN bare
2 (0) =

∑

q=u,d

eq FNq
2 (0) . (5.77)

The meson cloud gives rise to

FN cloud
1 (0) ≡ 0 ,

FN cloud
2 (0) =

∑

q=u,d

f i
P (0)GNi

2 (0) . (5.78)

Note, that the contribution of the meson cloud to the Dirac form factor FN
1 (0)

is zero due to the charge conservation of the nucleon. Therefore, the nucleon
magnetic moments are given in additive form with

µN = µbare
N + µcloud

N , (5.79)

where

µbare
N = FN bare

1 (0) + FN bare
2 (0) (5.80)
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and

µcloud
N = FN cloud

1 (0) + FN cloud
2 (0) . (5.81)

With the constraints laid out in Sec. 5.3, we derive a relation for the bare contri-
butions to the nucleon magnetic moments [see Eq. (5.43)]

µbare
p ≡ − 3

2
µbare

n =
3

5

(
gA

g

)2
mN

m̄
. (5.82)

Note that Eq. (5.82) can be further simplified using the constraints of (5.59):

µbare
p ≡ − 3

2
µbare

n =
3

5

(
gA

g

)4

. (5.83)

As already mentioned in the previous section, the choice of g is constrained by
the bare magnetic moments of the nucleon (see Eq. (5.83)). The value of g = 0.9
results in a reasonable contribution of the valence quarks to the nucleon magnetic
moments with

µbare
p ≡ − 3

2
µbare

n =
3

5

(
gA

g

)4

' 2.357 (5.84)

which is about 84% (for the proton) and about 82% (for the neutron) of the
experimental (total) values, where the remainder comes from the meson cloud.

The main parameters contained in the meson cloud piece that play an impor-
tant role in fitting the magnetic moments are the second-order coupling c6 and
the fourth-order flavor-breaking LECs e7, and e8. The coupling e6 is absorbed
in c6 after a certain redefinition. To constrain these values we need besides the
experimental values for the nucleon (p and n) an additional value from the baryon
octet. Therefore, we will proceed with an extension of our formalism to calculate
the magnetic moments of the whole baryon octet.

In the following, for convenience, we introduce the bare Dirac (F q
1 , Gq

1) and
Pauli (F q

2 , Gq
2) form factors of the quark of flavor q

〈q(p′)| jbare
µ,q (0) |q(p)〉

= ūq(p
′)

{

γµ F q
1 (q2) +

i

2 mq

σµν qν F q
2 (q2)

}

uq(p) ,

i
qν

2 mq

〈q(p′)| jbare
µν,q (0) |q(p)〉

= ūq(p
′)

{

γµ Gq
1(q

2) +
i

2 mq

σµν qν Gq
2(q

2)

}

uq(p) . (5.85)
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Note that the valence quark form factors (or valence quark contributions) are
constrained by certain symmetries including the infrared singularities. Introducing
the valence quark form factors we fulfill matching conditions between our approach
and ChPT and, therefore, the structures due to chiral symmetry are not violated.

The Sachs form factors of the quark of flavor q are

FE
q (t) = FE

q (t) + GE
q (t) , FM

q (t) = FM
q (t) + GM

q (t) , (5.86)

where

F{G}E
q (t) = F{G}q

1(t) −
t

4m2
F{G}q

2(t),

F{G}M
q (t) = F{G}q

1(t) + F{G}q
2(t) , t = −q2, (5.87)

are the contributions to the Sachs form factors associated with the expectation
values of the vector and tensor currents, respectively.

By using SU(6)-symmetry relations one can relate the Dirac and Pauli form
factors describing the distribution of quarks of flavor q = u, d, s in the baryon “B”,

that is FBq
1(2)(t) and GBq

1(2)(t), to F
E(M)
q (t) and G

E(M)
q (t) by

FBq
1 (t) =

1

1 + τB

{

αBq
E FE

q (t) + αBq
M χBq FM

q (t)τB

}

,

FBq
2 (t) =

1

1 + τB

{

−αBq
E FE

q (t) + αBq
M χBq FM

q (t)

}

,

GBq
1 (t) =

1

1 + τB

{

αBq
E GE

q (t) + αBq
M χBq GM

q (t)τB

}

,

GBq
2 (t) =

1

1 + τB

{

−αBq
E GE

q (t) + αBq
M χBq GM

q (t)

}

, (5.88)

where τB = t/(4m2
B) and mB is the baryon mass. In addition to the strict eval-

uation of SU(6) we have introduced the additional parameter χBq for each quark
of flavor q. The interpretation for adding these factors is such that to allow the
quark distributions for hyperons to be different from that for the nucleons. In the
case of the nucleons we set χBq = 1. The values for αBq

E and αBq
M for the baryon

octet as derived from SU(6)-symmetry relations are given in Table 5.1.
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αBu
E αBd

E αBd
E αBu

M αBd
M αBs

M

p 2 1 0 4
3 -1

3 0

n 1 2 0 -1
3

4
3 0

Λ0 1 1 1 0 0 1

Σ+ 2 0 1 4
3 0 -1

3

Σ− 0 2 1 0 4
3 -1

3

Ξ− 0 1 2 0 -1
3

4
3

Ξ0 1 0 2 -1
3 0 4

3

Σ0Λ0 0 0 0 1√
3

- 1√
3

0

Table 5.1: SU(6) couplings αBi
E and αBi

M .

The quark Sachs form factors are modeled by the dipole characteristics with
damping functions of an exponential form. This phenomenological form is required
to reproduce in particular the deviation of the electromagnetic form factors of the
nucleon from the dipole fit as evident from recent experimental measurements. We
use the parameterization

FE
q (t) =

ρE
q (t)

[1 + t/Λ2
qE]2

, FM
q (t) = µF

q

ρM
q (t)

[1 + t/Λ2
qM ]2

,

GE
q (t) = γq ρE

q (t)
t/Λ2

qE

[1 + t/Λ2
qE]3

, GM
q (t) = µG

q

ρM
q (t)

[1 + t/Λ2
qM ]2

, (5.89)

where ρE
q (t) = exp(−t/λ2

qE) and ρM
q (t) = exp(−t/λ2

qM). The parameters µF
q and

µG
q are fixed by the symmetry constraints [see Eqs. (5.42) and (5.82)]

µF
q = µG

q = µbare
p . (5.90)

The remaining parameters γq, ΛqE(M) and λqE(M) are to be fixed later when we con-
sider the full momentum dependence of the nucleon electromagnetic form factors.
Note, that in Ref. [130] a similar parameterization of the nucleon form factors has
been considered. In Ref. [131] the damping functions ρ(t) have been parameterized
with constant values.

The magnetic moment of the octet baryon “B” can be written in complete
analogy to the nucleon case as

µB = µbare
B + µcloud

B (5.91)
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where

µbare
B =

∑

q=u,d,s

eq

(

FBq
1 (0) + FBq

2 (0)
)

,

µcloud
B =

∑

q=u,d,s

f q
P (0)GBq

2 (0) . (5.92)

At t = 0, the parameters c6, ē6, ē7, ē8, c2, and kV contained in f q
P (0) will contribute,

where the renormalized LECs ē6, ē7, ē8 are given in Appendix G. The parameter
ē6 can be absorbed in the coupling c6 via

c6 → c̃6 = c6 − 16mM2ē6 . (5.93)

Finally, the form factor f q
P (0) depends on the parameters c̃6, ē7, ē8, c2 and kV .

Three of them (c̃6, ē7, ē8) can now be fixed using the experimental values for the
magnetic moments of the nucleons and of a hyperon in the baryon octet. We choose
the Λ0-hyperon with µΛ0 = −0.613± 0.004 (in units of the nuclear magneton). In
our analysis of the magnetic moments of the octet baryons we present two cases.
First, we restrict to the SU(6) case by setting all values χBi = 1. Secondly, we
allow the χBi to be additional parameters. From now on we will name these two
cases shortly as “Set I” and “Set II”, respectively.

A variation in the value of the axial charge g of the constituent quark will
also give rise to different contributions of the bare and the meson cloud parts to
the total values of the magnetic moments. However, the total magnetic moments
are the same in any case. As was discussed in the previous section, for the axial
charge we choose g = 0.9. In case of Set I we then obtain for c6, ē7, and ē8

c̃6 = 0.859 − 0.106 c̃2 − 1.254 kV ,

ē7 = (−0.656 + 0.073 c̃2 + 0.607 kV ) GeV−3 , (5.94)

ē8 = (0.033 − 0.008 c̃2 − 0.141 kV ) GeV−3 ,

where c̃2 = c2(1+kV ). The resulting values for the magnetic moments of the baryon
octet for this case (Set I) are shown in Table 5.2, where reasonable agreement with
data is obtained. Meson cloud contributions to the total values of the magnetic
moments are about 5 − 30% depending on the baryon.
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Set I Set II Exp.

3q Meson Cloud Total 3q Meson Cloud Total

µp 2.357 0.436 2.793 2.357 0.436 2.793 2.793

µn -1.571 -0.342 -1.913 -1.571 -0.342 -1.913 -1.913

µΛ0 -0.786 0.173 -0.613 -0.518 -0.095 -0.613 -0.613 ± 0.004

µΣ+ 2.357 0.317 2.674 2.085 0.373 2.458 2.458 ± 0.010

µΣ0 0.786 0.005 0.791 0.570 0.073 0.643 -

µΣ− -0.786 -0.306 -1.092 -0.935 -0.225 -1.160 -1.160 ± 0.025

µΞ0 -1.571 0.136 -1.435 -1.058 -0.192 -1.250 -1.250 ± 0.014

µΞ− -0.7855 0.2921 -0.4934 -0.5580 -0.0927 -0.6507 -0.6507 ± 0.003

|µΣ0Λ0 | 1.36 0.27 1.63 1.34 0.27 1.61 1.61 ± 0.08

Table 5.2: Magnetic moments of the baryon octet (in units of the nucleon
magneton µN).

For the case of Set II we start from the SU(6) result with the additional
breaking parameter χΛs for µbare

Λ0 which can be written in terms of µbare
p as µbare

Λ0 =

−µbare
p χΛs/3. Then we have

χΛs = −3
µbare

Λ0

µbare
p

≈ −3
µΛ0

µp

, (5.95)

where we further assume that the contributions from the meson cloud part to the
total magnetic moments both of Λ0 and of p are of the same order. With the
experimental values for µΛ0 and µp we get χΛs = 0.66. By fitting µp, µn, and µΛ0 ,
with χΛs = 0.66 as an additional input, we obtain

c̃6 = 0.834 − 0.106 c̃2 − 1.254 kV ,

ē7 = (−0.832 + 0.073 c̃2 + 0.607 kV ) GeV−3 , (5.96)

ē8 = (0.051 − 0.008 c̃2 − 0.141 kV ) GeV−3 ,

where the constants contained in these parameters are slightly different from Set
I. With appropriate values for the remaining χBq, the central values of the exper-
imental results of the other magnetic moments in the baryon octet can be fully
reproduced. For the set of χBq we get

χΣu = χΣd = 0.963, χΣs = 0.259,

χΞu = χΞd = 0.633, χΞs = 0.694,

χΣΛu = χΣΛd = 0.988. (5.97)

relying on isospin symmetry. The isotriplet Σ+, Σ0, and Σ− shares the same set of
χΣq for the quark of flavor q, while Ξ0 and Ξ− contains the same set of χΞq. The

89



5 Lorentz covariant chiral quark model

parameters χΣΛu and χΣΛd are directly related to the Σ − Λ magnetic transition
moment. For completeness, our corresponding results for the magnetic moments
are also listed in Table 5.2. In the following we will use the last set of values for
c̃6, ē7, and ē8, when considering the electromagnetic nucleon form factors.

5.5.3 Nucleon electromagnetic form factors

Using the parameters from the analysis of the magnetic moments and the masses
of the baryon octet, further supplied by the ones from the meson-nucleon sigma-
terms, we now can consider the full electromagnetic form factors of the nucleon.
We recall that the Dirac and Pauli form factors for the nucleons are

FN
1 (t) =

∑

q=u,d

[f q
D(t)FNq

1 (t) + f q
P (t)GNq

1 (t)] ,

FN
2 (t) =

∑

q=u,d

[f q
D(t)FNq

2 (t) + f q
P (t)GNq

2 (t)] , (5.98)

where FNq
1(2)(t) and GNq

1(2)(t) refer to the bare constituent quark structure, while f q
D(t)

and f q
P (t) contain the chiral dynamics due to the dressing of the quark operators.

For clarity we recall the forms of FNq
1(2)(t) and GNq

1(2)(t) of Eq. (5.88) with

FNq
1 (t) =

1

1 + τN

{

αNq
E FE

q + αNq
M FM

i τN

}

,

FNq
2 (t) =

1

1 + τN

{

−αNq
E FE

q + αNq
M FM

q

}

,

GNq
1 (t) =

1

1 + τN

{

αNq
E GE

q + αNq
M GM

q τN

}

,

GNq
2 (t) =

1

1 + τN

{

−αNq
E GE

q + αNq
M GM

q

}

, (5.99)

where αNq
E and αNq

M are the SU(6) spin-flavor couplings (αpu
E = αnd

E = 2, αpd
E =

αnu
E = 1, αpu

M = αnd
M = 4/3, αpd

M = αnu
M = −1/3); t = −q2 is the Euclidean

momentum squared and τN = t/(4m2
N). The Dirac and Pauli form factors f q

D(P )(t)

of the quark of flavor i are shown explicitly in Appendix G. Again, Eq. (5.99) can
be separated into a bare part and a meson cloud part as

FN bare
1 (t) =

∑

q=u,d

eq FNq
1 (t) ,

FN bare
2 (t) =

∑

q=u,d

eq FNq
2 (t) , (5.100)
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and the meson cloud contribution is

FN cloud
1 (t) =

∑

q=u,d

[(f q
D(t) − eq)F

Nq
1 (t) + f q

P (t)GNq
1 (t)],

FN cloud
2 (t) =

∑

q=u,d

[(f q
D(t) − eq)F

Nq
2 (t) + f q

P (t)GNq
2 (t)]. (5.101)

where eq are the electric quark charges.

In the following we try to achieve a reasonable description of the electromag-
netic form factors of the nucleon by an appropriate set of parameters contained
in FN

1 (t) and FN
2 (t). In general both the bare and the meson cloud parts will

contribute to the form factors. The bare part should well describe the form factors
up to high Q2 whereas the meson cloud part should play a role only for small Q2.
Our strategy is that we first fit the bare part of all the form factors to the exper-
imental data from Q2 ∼ 0.5 GeV2 to high Q2. After that we reconsider the low
Q2 region by taking into account the meson cloud effect. At this point we do not
pretend to an accurate analysis (or prediction) of the nucleon form factors at large
Q2. This is a task more appropriate for perturbative QCD (pQCD) which is the
most convenient theoretical tool in this momentum region (for recent progress see
e.g. Refs. [132, 133]). In particular, in Ref. [133] the following large Q2-behavior
for the ratio of the nucleon Pauli F2 and Dirac F1 form factors has been derived
using pQCD:

F2

F1

∝ ln2(Q2/Λ2)

Q2
, (5.102)

where Λ is a soft scale related to the size of the nucleon. Our main idea is to
use a physically reasonable parameterization of the nucleon form factors (valence
quark contribution) which fits the data at intermediate and high Q2 scale, while
the derived constraints at zero recoil [see Sec. II] are also satisfied. Then on
top of the valence (or bare) form factors we place the meson cloud contribution
which is relevant only at small Q2 and calculated consistently using effective chiral
Lagrangian (5.1). Finally we might conclude on the role of the meson cloud in the
infrared domain.

Due to the finite size of the source of the meson fields, meson loops are ex-
pected to be strongly suppressed for large Q2. To mimic the effect of additional
regularisation of the integral, which leads to a restriction of the meson cloud con-
tribution in the low Q2 region, we introduce the cutoff function fcut(t). The mod-
ification is such that

FN cloud
1(2) (t) → fcut(t) FN cloud

1(2) (t) . (5.103)
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The specific form of fcut(t) should not modify FN cloud
1(2) (t) in the low Q2 region,

but should diminish its contribution beyond a certain Q2. This function fcut(t)
should have zero (or almost zero) slope at the point Q2 = 0 GeV2 to ensure that
it will not artificially contribute to the slope of the form factors. First the step
function seems to be an appropriate choice for fcut(t) but its sharp boundary affects
the continuity of the form factors, and hence one must be careful. To avoid the
problems associated with a sharp boundary we choose a smeared-out version for
fcut(t) with

fcut(t) =
1 + exp(−A/B)

1 + exp[(t − A)/B]
, (5.104)

where the parameter A characterizes the cut-off and B the smearing of the function.

In our fitting procedure we use the experimental data (Refs. [1, 2, 3, 47, 48,
49, 50, 51, 55, 57, 58, 60, 62, 69, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 83, 84, 85, 88,
91, 93, 135, 136, 137, 138, 139]) on the ratios of the electromagnetic Sachs form
factors of nucleons to the corresponding dipole form factors and on the neutron
charge form factors. For the axial charge of the constituent quark g = 0.9 we first
fit the contribution of the bare part, where the parameters are contained in the
ansatz of Eq. (5.89). Our parameter results for the fit of the bare part are (in units
of GeV)

λuE = 2.0043, λdE = 0.9996, λuM = 7.3367, λdM = 2.2954,

ΛuE = 0.8616, ΛdE = 0.9234, ΛuM = 0.9278, ΛdM = 1.0722. (5.105)

Note that the parameters γu and γd entering in Eq. (5.89) cannot be fixed by
considering only the bare part since they also occur in FN cloud

1 (t) and FN cloud
2 (t).

The complete fit to the full data on the electromagnetic form factors of the nucleon
fixes the remaining low-energy constants in the effective Lagrangian as

γu = 1.081, γd = 2.596,

c2 = 2.502 GeV−1, c4 = 1.693 GeV−1, d̄10 = 1.110 GeV−2,

ē7 = −0.650 GeV−3, ē8 = 0.030 GeV−3, ē10 = 0.039 GeV−3, (5.106)

where in the current manuscript we put kV = 0 for simplicity. The couplings
d̄10, ē7, ē8 and ē10 are defined in Appendix G. With the choice A = (0.4 −
0.5) GeV2 and B = 0.025 GeV2 in fcut(t) the meson cloud contributions are
suitably suppressed for values larger than t ∼ 0.5 GeV2. Note, that from the
analysis of the nucleon mass and meson-nucleon sigma-terms we get the following
constraint on the parameter c2 = (1.093 − 1.354 ẽ3 + 0.474 ẽ4 − 0.338 ẽ5) GeV−1.
The best description of the electromagnetic properties of the nucleon is obtained
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at the value of c2 = 2.502 GeV−1 fixed from the data on the electromagnetic form
factors. It means that we obtain the following constraint on the LECs ẽ3, ẽ4 and
ẽ5 : 1.354 ẽ3 − 0.474 ẽ4 + 0.338 ẽ5 = −1.409 .

Results for the measured ratio of the electromagnetic form factors of the nu-
cleon to the dipole form factor GD(t) = (1 + t/0.71 GeV2)−2 are presented in
Figs. 5.4, 5.5 and 5.6. In Fig. 5.7 we present our result for the ratio of charge to
magnetic form factor of the proton. For completeness, the electromagnetic form
factors of the nucleon are also shown in Fig. 5.8, where the meson cloud contri-
butions are shown explicitly in comparison to the dipole form factor. The role
of fcut(t), which restricts the meson cloud contribution to the low Q2 region, is
indicated in Fig. 5.9. Although the bare constituent quark contribution is fully
parameterized, a consistent explanation of the form factors can only be achieved,
when meson cloud corrections are included. We stress that the bare constituent
quark Sachs form factors and hence the magnetic form factors at zero recoil (t = 0)
are determined by the general constraints discussed in Sec. 5.3. At this point the
specific form of the quark form factors of Eq. (5.89), leading to a satisfactory de-
scription in particular beyond t ∼ 0.5 GeV2, is not required. The results concerning
the charge and magnetic radii of nucleons are

rp
E = 0.881 fm, 〈r2〉nE = −0.1177 fm2,

rp
M = 0.869 fm, rn

M = 0.847 fm. (5.107)

The experimental values reported in Ref. [43] for the charge radii of nucleons are
rp
E = 0.875± 0.007 fm and 〈r2〉nE = −0.1161± 0.0022 fm2. For the magnetic radii,

the analysis of Refs. [71, 134] gives rp
M = 0.855 ± 0.035 fm and rn

M = 0.873 ±
0.011 fm, respectively.

For further illustration we follow Ref. [130] to deduce the radial dependence of
the charge and magnetization densities of nucleons. The charge and magnetization
densities of nucleons in the rest frame are

ρN
E (r) =

2

π

∞∫

0

dk k2 j0(k r)ρ̃N
E (k) , ρN

M(r) =
2

π

∞∫

0

dk k2 j0(k r)ρ̃N
M(k),(5.108)

where k2 = t/(1+ τN) and j0(kr) is the Bessel function. The intrinsic form factors
ρ̃N

E (k) and ρ̃N
M(k) are

ρ̃N
E (k) = GN

E (Q2)(1 + τN)λE

, ρ̃N
M(k) =

GN
M(Q2)

µN

(1 + τN)λM

. (5.109)

Restricting to the discrete values λE = 0, 1, 2, where the full range is discussed in
Ref. [130], the results for the charge and magnetization densities of the nucleon
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are shown in Figs. 5.10 and 5.11. The separated meson cloud contributions to
the charge and magnetization densities of the nucleon are presented in Figs. 5.12
and 5.13, respectively.

In Ref. [131] the electromagnetic form factors of the nucleons are represented
by the phenomenological ansatz

GN(Q2) = Gs(Q
2) + ab · Q2 Gb(Q

2), (5.110)

where the “smooth” part Gs(Q
2) and the structured or “bump” part Gb(Q

2) are
parameterized as

Gs(Q
2) =

a10

(1 + Q2/a11)2
+

a20

(1 + Q2/a21)2
,

Gb(Q
2) = e

− 1

2

“

Q−Qb
σb

”2

+ e
− 1

2

“

Q+Qb
σb

”2

. (5.111)

The parameters a10, a11, a20, a21, ab, Qb, and σb are obtained by a fit to exper-
imental data and the values are reported in Table 2 of Ref. [131]. The meson
cloud part of our evaluation cannot be directly compared or matched to Gb(Q

2),
since meson corrections contribute to the magnetic form factors even at Q2 = 0,
which is not the case in the treatment of Ref. [131]. However, charge conserva-
tion restricts the meson cloud not to contribute to the charge form factors at zero
recoil. Therefore, we can compare our results for the charge form factors to the
phenomenological ones of Ref. [131]. Fig. 5.4 shows such a comparison for the case
of the charge form factor of the proton. Based on the phenomenological ansatz
of Ref. [131] our result can be reproduced by readjusting the parameters of Eq.
(5.111) as compiled in Table 5.3, which are not so much different from the original
analysis of Ref. [131].

Ref. [131] Present result

a10 1.041 1.053

a11 0.765 0.768

a20 -0.041 -0.053

a21 6.2 4.7

ab -0.23 -0.38

Qb 0.07 0.14

σb 0.21 0.20

Table 5.3: Comparison of the parameters of the original phenomenologi-
cal ansatz in Ref. [131] to an equivalent set, which is obtained by fitting
to our results for the charge form factor of the proton.
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5.5.4 Strong vector meson-nucleon form factors

Finally, we calculate the strong vector meson-nucleon form factors ρNN and ωNN
at one loop. We follow the strategy already developed for the electromagnetic
nucleon form factors. The corresponding bare operator is derived from the tree-
level Lagrangian (5.24):

Jbare
µ,V (q) =

∫

d4x e−iqx jbare
µ,V (x) ,

jbare
µ,V (x) = gV qq q̄

(

γµ +
kV

2mq

σµν

↔
∂ν

)
λV

2
q , (5.112)

where q̄
↔
∂ν q = q̄ (

←
∂ν +

→
∂ν) q and λV is the corresponding flavor matrix: λρ =

diag{1,−1, 0} for the ρ0 and λω = diag{1, 1, 0} for the ω meson. The diagrams
contributing to these quantities are displayed in Fig. 5.14: tree-level diagrams
(Figs. 5.14(1) and 5.14(2)) and one-loop diagrams due to the dressing by a cloud
of pseudoscalar mesons (Figs. 5.14(3) and 5.14(4)).

T

(1)

V

(2)

T

(3)

V

(4)

Figure 5.14: Diagrams contributing to the quark operator describing the
stong interaction of vector mesons with quarks. The symbols V and T
refer to the vectorial and tensorial couplings of vector mesons to quarks.

The Fourier transform of the dressed vector-meson-quark transition operator
has the following form

Jdress
µ,V (q) =

1

2

∫

d4xe−iqxq̄(x)

[

γµfVD
(q2) +

i

2mq

σµνq
νfVP

(q2)

]

q(x) (5.113)

where fVD
and fVP

are the matrices of the Dirac and Pauli form factors describing
the coupling of u, d and s quarks to the ρ and ω vector mesons. These form factors
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are given in terms of the Euclidean values of momentum squared t = −q2 with:

fVD
(t) =

∑

i=u,d,s

f i
VD

(t) , fVP
(t) =

∑

i=u,d,s

f i
VP

(t) ,

fu
ρD

(t) = −fd
ρD

(t) = gV qq

{

1 − επ
5 (t) +

1

3
εη
5(t)

}

,

fu
ωD

(t) = fd
ωD

(t) = gV qq

{

1 + 3επ
5 (t) +

1

3
εη
5(t)

}

,

f s
ρD

(t) = 0 , f s
ωD

(t) = gV qq

{

−4 εK
5 (t)

}

,

fu
ρP

(t) = −fd
ρP

(t) = kV gV qq

{

1 − mπ
10(t) +

1

3
mη

10(t)

}

,

fu
ωP

(t) = fd
ωP

(t) = kV gV qq

{

1 + 3mπ
10(t) +

1

3
mη

10(t)

}

,

f s
ρP

(t) = 0 , f s
ωP

(t) = kV gV qq

{

−4 mK
10(t)

}

, (5.114)

where λφ = diag{0, 0, 1}. Here εP
5 (t) and mP

5 (t) are the meson-cloud contributions
given in Appendix G.

To project the dressed quark operator (5.113) onto the nucleon we proceed in
analogy to the electromagnetic operator

〈 N(p′)| Jdress
µ,V (q) |N(p)〉

= (2π)4 δ4(p′ − p − q) ūN(p′)
1

2

{

γµ GV NN(q2) +
i

2 mN

σµνq
ν FV NN(q2)

}

uN(p)

= (2π)4 δ4(p′ − p − q)
1

2

{

f ij
VD

(q2) 〈N(p′)| jbare
µ,ij (0) |N(p)〉

+i
qν

2 mq

f ij
VP

(q2) 〈N(p′)| jbare
µν,ij(0) |N(p)〉

}

, (5.115)

where the bare matrix elements 〈N(p′)| jbare
µν,ij(0) |N(p)〉 are defined in Eq. (5.33).

Here GV NN(q2) and FV NN(q2) are the vectorial and tensorial couplings of vector
mesons to nucleons. We can express the strong ρNN and ωNN form factors
through the bare electromagnetic nucleon form factors. After a simple algebra we
arrive at:
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GρNN(t) = gV qq [ F p−
1 (t) fu

ρD
(t) + Gp−

1 (t) fu
ρP

(t) ] ,

GωNN(t) = gV qq [ F p+
1 (t) fu

ωD
(t) + Gp+

1 (t) fu
ωP

(t) ] ,

FρNN(t) = gV qq [ F p−
2 (t) fu

ρD
(t) + Gp−

2 (t) fu
ρP

(t) ] ,

FωNN(t) = gV qq [ F p+
2 (t) fu

ωD
(t) + Gp+

2 (t) fu
ωP

(t) ] , (5.116)

where t = −q2 and Hp±
I = Hpu

I ± Hpd
I with H = F or G and I = 1 or 2.

Finally, we present the expressions for the values of the vector-meson nucleon
form factors at zero recoil or the coupling constants GV NN and FV NN which origi-
nate from the nucleon-level Lagrangian (for details on the nucleon-level Lagrangian
see Ref. [20]):

LV NN =
1

2
N̄

{(

γµ GρNN − FρNN

2 mN

σµν ∂ν

)

~ρµ ~τ

+

(

γµ GωNN − FωNN

2 mN

σµν ∂ν

)

ωµ

}

N . (5.117)

After a simple algebra we arrive at:

GρNN = gV qq ,

FρNN

GρNN

= µbare
p − µbare

n − 1 + kV
mN

mq

( δbare
pu − δbare

pd ) [1 + δρ] ,

GωNN = 3 gV qq ,

FωNN

GωNN

= µbare
p + µbare

n − 1 + kV
mN

mq

( δbare
pu + δbare

pd ) [1 + δω] , (5.118)

where

δρ = −mπ
10(0) +

1

3
mη

10(0) , δω = 3mπ
10(0) +

1

3
mη

10(0) (5.119)

are the corresponding one-loop corrections. For kV ≡ 0 these equations reduce
to the well-known SU(3) relations, relating the matrix elements of the vector cur-
rent with different flavor content [141]. Using the actual expressions for the bare
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magnetic moments and the tensor charges of the nucleons we finally obtain for the
ratios of the tensor and vector couplings:

FρNN

GρNN

=

(
gA

g

)4 (

1 + kV [1 + δρ]

)

− 1 ,

FωNN

GωNN

=
1

5

(
gA

g

)4 (

1 + 3 kV [1 + δω]

)

− 1 . (5.120)

Note, that numerically the one-loop corrections to the tree-level results for the
strong vector-meson nucleon form factors FρNN and FωNN are rather small: δρ =
0.005 and δω = 0.011.

5.6 Summary

We developed a manifestly Lorentz covariant chiral quark model for the study
of baryons as bound states of constituent quarks. The approach is based on the
effective chiral Lagrangian motivated from the Baryon ChPT involving constituent
quarks and the chiral fields as effective degrees of freedom. This Lagrangian is
used in the calculation of the dressed transition operators which are relevant for
the interaction of quarks with external fields in the presence of a virtual meson
cloud. Then the dressed operators are used in the calculation of baryon matrix
elements.

Our main result is as follows: we perform a model-independent factorization
of the effects of hadronization and confinement contained in the matrix elements
of the bare quark operators and the effects dictated by chiral symmetry which are
encoded in the corresponding relativistic form factors [see e.g. Eq. (5.30)]. Due to
this factorization the calculation of chiral effects and the effects of hadronization
and confinement can be done independently. All low-energy theorems are re-
produced in our approach due to the chiral invariance of the effective Lagrangian.
The evaluated meson-cloud corrections are in agreement with the infrared-singular
structure of the corresponding nucleon matrix elements [20, 125]. In particular,
we reproduce the leading nonanalytic (LNA) contributions to the nucleon mass, to
the pion-nucleon sigma-term, to the magnetic moments and to the charge radii of
the nucleons. The LNA contributions to the nucleon mass and magnetic moment
are proportional to the M3

P and MP , respectively, where MP is the pseudoscalar
meson mass. The nucleon radii are divergent in the chiral limit. Using model-
independent constraints on the bare constituent quark distributions in the octet
baryons, we work out model predictions for the magnetic moments. Based on a
full parameterization of the bare constituent quark distributions in the nucleon, we
give results for the full momentum dependence of the electromagnetic form factors
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of the nucleon and indicate the role of the meson cloud contributions. Presently,
the calculation of the matrix elements of the bare quark operators is, besides the
model independent constraints, based on parameterizations. The direct calculation
of these matrix elements should be performed in quark models based on specific
assumptions about hadronization and confinement.

As the further applications of this approach we intend to study other interest-
ing aspects such as magnetic moments of heavy baryons, N → ∆ + γ transitions,
strangeness and electric dipole form factors of nucleons.
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Summary

In this work we have studied low-energy properties of baryons based on the so-
called perturbative chiral quark model (PCQM). In this model baryons are viewed
as a composite system of three valence quarks and in addition are surrounded by a
cloud of Goldstone bosons (π, K, η) as imposed by chiral symmetry requirements.
The confinement of valence quarks is in a first step simply modelled by a static
potential leading to a violation of covariance, thereby restricting the model to
the description of low-energy quantities. The meson cloud and the quark masses
are treated perturbatively and all the calculations are done up to one loop or at
the order of accuracy o(1/F 2, m̂,ms) where F is the pion decay constant in the
chiral limit, m̂ = mu = md and ms are the u, d and s current quark masses.
The model contains only one parameter, that is R, which can be related to the
size of the charge distribution of the proton in the leading order (LO) calculation.
We first further simplify the loop calculation technique by restricting the quark
propagator to its ground state configuration. This amounts in a hadronic language
to a restriction to N and ∆ intermediate states in the loop diagrams. In a next
step we also include the low-lying intermediate excited quark states in the quark
propagator. Up to excitations of 2~ω, these states contain the quantum numbers,
1p1/2, 1p3/2, 1d3/2, 1d5/2 and 2s1/2.

In a first application of the PCQM we study the electromagnetic form factors
of the baryon octet. When restricting to the ground state quark propagator alone,
reasonable results for the magnetic moments, the charge and magnetic radii of
the baryon octet compared to the experimental data are obtained. A special case
is the charge radius of the neutron which has zero contribution from the three-
quark core and purely arises from meson loops. Without the intermediate excited
quark states, the charge radius of the neutron is rather small when compared to
the experimental result. However, when excited quark states are included, the
value increases and is close to the experimental point. Although the ground state
contribution dominates the observables, excited quark states are shown to have
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considerable influence, when the leading contribution is suppressed.

In a second application of the PCQM we study the electromagnetic N − ∆
transitions. The transversal helicity amplitudes, A1/2 and A3/2, for these transi-
tions are the convenient and relevant quantities to be compared to the experiment.
A long- standing problem for the case of the helicity amplitudes in quark model
descriptions is that the valence-quark contribution gives rise to only about two
thirds of the experimental results. As was already pointed out in the context of
the cloudy bag model a significant contribution is generated by the pion cloud
possibly resulting in agreement with data. In the PCQM we found the same role
of the meson cloud contribution as in the cloudy bag model. The meson cloud
contributes up to 30% of the total values, where the pions are dominant. In ad-
dition, the excited quark states are also important and contribute at the level of
15%. Another interesting quantity which indicates a possible intrinsic deformation
of the nucleon is the E2/M1 ratio. The experimental result for E2/M1 is rather
small, roughly 2.5%. In the PCQM we cannot reproduce this E2/M1 ratio in the
one-loop calculation. As for example shown in large Nc considerations, the ratio
is generated by higher-order effects which show up when two-loop calculations are
considered.

Although the PCQM works with specific assumptions introduced for simplic-
ity, such as noncovariant treatment of confinement and restriction to a one-loop
evaluation, the model gives overall reasonable results for the study of low-energy
baryonic properties. As for the improvement of the model, we considered a further
step, both to formulate a manifestly Lorentz covariant approach and to consistently
include higher order chiral corrections.

Starting point for the Lorentz covariant approach is first the concept of dress-
ing the quark operators by the chiral fields. The underlying Lagrangian is mo-
tivated by the one of Chiral Perturbation Theory (ChPT), where here the fun-
damental fermionic degrees of freedom are the bare valence quarks. The chiral
Lagrangian contains a set of low energy constants (LECs) which are parameters
encoding short-distance effects and contributions due to heavy particle states. The
vector mesons as additional degrees of freedom are included in our study as well.
In a next step, the dressed quark operators are projected on the baryonic level
in order to obtain hadronic matrix elements. For the case of the electromagnetic
current operator we obtain the important result, that the parts concerning the
meson cloud and the bare three-quark core factorize in the matrix element. Both
parts can be separately calculated. The meson cloud part involves the chiral dy-
namics which arises from the chiral Lagrangian and can be calculated to the order
of accuracy desired. The bare three-quark core part in turn can be relegated to a
quark model with specific assumptions concerning confinement and hadronization,
hence modelling the bare valence quark structure. At this stage the factorization
scheme can be viewed as a well-defined method to include chiral dynamics in a
valence quark model.
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In a first attempt, instead of working in a specific scheme for the bare valence
quark structure, we resort to a parameterization of the quark form factors in the
electromagnetic sector. The symmetries of the system such as charge conservation,
isospin invariance, SU(6)-symmetry relations can be utilized together with chiral
symmetry constraints to restrict the bare quark form factors at zero recoil. This
automatically leads to a prediction for the values for the bare magnetic moments of
the nucleon. Further studies involving the baryon masses, their chiral expansion
and their relation to the pion-nucleon σ-terms can be used as another tool to
pin down the relations among the LECs. Using these relations of the LECs the
magnetic moments of the baryon octet can be well explained with meson cloud
contributions up to 30% of the total values. With part of the LECs constrained by
observables in the low-energy sector, we can further study the full Q2-dependence
of the electromagnetic nucleon form factors.

Recent polarization transfer measurements reveal a remarkable feature of the
electromagnetic form factors of the nucleon. In particular, the linear decline of the
ratio of charge to magnetic proton form factor with increasing Q2 indicates that the
proton charge form factor falls off relative to the conventional dipole form factor.
In addition, at low Q2 up to about 0.5 GeV2 all nucleon form factors show subtle
structures relative to the corresponding dipole parameterization. These structures
are possibly interpreted to arise from meson cloud effects.

In our framework we investigate the electromagnetic form factors of the nu-
cleon starting from the bare valence quark contribution. The values for all the bare
quark form factors at zero recoil are fixed by the previous considerations involving
the symmetries of the system, the matching to the chiral expansions of baryon
masses, sigma-terms and the magnetic moments. Due to the finite meson sizes the
meson cloud contribution should be significant for small Q2 only. We therefore use
the data on the form factors beyond Q2 ∼ 0.5 GeV2 to model the bare contribu-
tion, which in addition is fixed at Q2 = 0. On top of the bare form factors at low
Q2, we therefore adjust the remaining LECs to reproduce the experimental data.
Our results for the electromagnetic form factors display a significant role of the
meson cloud at low Q2, which is necessary to reproduce the detailed structure of
these observables.

In a final application concerning the explicit vector meson degrees of freedom,
we site expressions for the values of the vector-meson nucleon coupling constants
GV NN and FV NN which originate from the chiral Lagrangian formulated on the
quark level.

At this point it should mentioned that the current work can be extended and
improved in several directions. Up to now the dressed quark operators are re-
stricted to the one-body approximation, that is in a straight forward extension of
the present formalism two-body operator can and will be included. Furthermore,
the bare valence quark form factors should be calculated in a specific quark model
with rigorous assumptions concerning confinement and hadronization. Recently
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we have calculated particular baryonic properties, such as the helicity amplitudes
for the N − ∆ transitions and the electromagnetic form factors of the nucleon,
in a relativistic three-quark model with a non-local quark-hadron interaction La-
grangian. Due to the complexity of the loop calculations, all the observables based
on this model were first evaluated in the valence quark approximation, but with
reasonable results. A further inclusion of the dressed quark operators, as presented
in this work, is currently studied. To finally summarize, we presented a novel ap-
proach in the field of chiral quark models, which allows both to work in a covariant
framework and to include chiral corrections even of higher orders. At the same
time the model is consistent with the low-energy chiral structure set by ChPT. As
at least partially, phenomenologically demonstrated, the Q2-range of applicability
goes far beyond the one set by ChPT. Thus the covariant chiral quark model pre-
sented here sets the stage for a wide range of applications which should be studied
in future.
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Appendix A

Basic notions of the SU(3) group

The group SU(3) is the set of all unitary, unimodular and 3 × 3 matrices U i.e.

U †U = 1, det(U) = 1. (A.1)

Elements of SU(3) can be obtained from the exponential representation with the
eight real parameters θ = (θ1, . . . , θ8)

U [θ] = exp

(

−i
8∑

a=1

θa
λa

2

)

, (A.2)

where λa are the Gell-Mann matrices with the explicit forms

λ1 =

(
0 1 0
1 0 0
0 0 0

)

, λ2 =

(
0 −i 0
i 0 0
0 0 0

)

, λ3 =

(
1 0 0
0 −1 0
0 0 0

)

,

λ4 =

(
0 0 1
0 0 0
1 0 0

)

, λ5 =

(
0 0 −i
0 0 0
i 0 0

)

, λ6 =

(
0 0 0
0 0 1
0 1 0

)

,

λ7 =

(
0 0 0
0 0 −i
0 i 0

)

, λ8 =

√

1

3

(
1 0 0
0 1 0
0 0 −2

)

. (A.3)

Note that λa can be obtained from Eq. (A.2) by

λa = 2i
∂U [θ]

∂θa

∣
∣
∣
∣
θ=(0,...,0)

. (A.4)
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These Gell-Mann matrices also satisfy

λa = λ†
a, Tr(λaλb) = 2δab, Tr(λa) = 0. (A.5)

The commutation relations of the Gell-Mann matrices indicate the structure of
the Lie group of SU(3) with

[
λa

2
,
λb

2

]

= ifabc
λc

2
, (A.6)

where fabc are the totally antisymmetric structure constants. The non-vanishing
values of fabc are

f123 = 1,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
,

f458 = f678 =

√
3

2
. (A.7)

Other important relations of the Gell-Mann matrices are their anti-commutation
relations

{λa, λb, } =
4

3
δab + 2dabcλc, (A.8)

where the totally symmetric real constants dabc are

d118 = d228 = d338 = −d888 =
1√
3
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
,

d448 = d558 = d668 = d778 = − 1

2
√

3
. (A.9)
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Appendix B

Solutions of the Dirac equation
for the effective potential

In this section we indicate the solutions to the Dirac equation with the effective
potential Veff(r) = S(r)+ γ0V (r). The scalar S(r) and time-like vector V (r) parts
are given by

S(r) = M1 + c1r
2,

V (r) = M2 + c2r
2, (B.1)

with the particular choice

M1 =
1 − 3ρ2

2 ρR
, M2 = E0 −

1 + 3ρ2

2 ρR
, c1 ≡ c2 =

ρ

2R3
. (B.2)

The quark wave function uα(~r) in state α with eigenenergy Eα satisfies the Dirac
equation

[−i~α~∇ + βS(r) + V (r) − Eα]uα(~r) = 0. (B.3)

Solutions of the Dirac spinor uα(~r) to Eq. (B.3) can be written in the form [97]

uα(~r) = Nα

(
gα(r)

i~σ · r̂fα(r)

)

Yα(r̂)χfχc. (B.4)

For the particular choice of the potential, the radial functions g and f satisfy the
form

gα(r) =

(
r

Rα

)l

L
l+1/2
n−1

(
r2

R2
α

)

e
− r2

2R2
α , (B.5)
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where for j = l + 1
2

fα(r) = ρα

(
r

Rα

)l+1[

L
l+3/2
n−1 (

r2

R2
α

) + L
l+3/2
n−2 (

r2

R2
α

)

]

e
− r2

2R2
α , (B.6)

and for j = l − 1
2

fα(r) = −ρα

(
r

Rα

)l−1[

(n + l − 1

2
)L

l−1/2
n−1 (

r2

R2
α

) + nLl−1/2
n (

r2

R2
α

)

]

e
− r2

2R2
α . (B.7)

The label α = (nljm) characterizes the state with principle quantum number
n = 1, 2, 3, ..., orbital angular momentum l, total angular momentum j = l ± 1

2
and projection m. Due to the quadratic nature of the potential the radial wave
functions contain the associated Laguerre polynomials Lk

n(x) with

Lk
n(x) =

n∑

m=0

(−1)m (n + k)!

(n − m)!(k + m)!m!
xm. (B.8)

The angular dependence (Yα(r̂) ≡ Ylmj(r̂)) is defined by

Ylmj(r̂) =
∑

ml,ms

(lml
1

2
ms|jm)Ylml

(r̂)χ 1

2
ms

(B.9)

where Ylml
(r̂) is the usual spherical harmonic. Flavor and color part of the Dirac

spinor are represented by χf and χc, respectively.

The normalization constant is obtained from the condition

∞∫

0

d3~ru†
α(~r)uα(~r) = 1 (B.10)

which results in

Nα =

[

2−2(n+l+1/2)π1/2R3
α

(2n + 2l)!

(n + l)!(n − 1)!
{1 + ρ2

α(2n + l − 1

2
)}

]−1/2

. (B.11)
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B Solutions of the Dirac equation for the effective potential

The two coefficients Rα and ρα are of the form

Rα = R(1 + ∆EαρR)−1/4, (B.12)

ρα = ρ

(
Rα

R

)3

(B.13)

and are related to the Gaussian parameters ρ, R of Eq. (4.17). The quantity
∆Eα = Eα−E0 is the difference between the energy of state α and the ground state.
∆Eα depends on the quantum numbers n and l and is related to the parameters ρ
and R by

(∆Eα +
3ρ

R
)2(∆Eα +

1

ρR
) =

ρ

R3
(4n + 2l − 1)2. (B.14)
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Appendix C

Renormalization of the nucleon
charge in the PCQM

The renormalization constant Ẑ and Zs can be obtained from considerations con-
cerning the conserved nucleon charge. As discussed earlier, the role of the countert-
erms consequently results in a cancellation of the terms related to the diagrams (e)
to (l) in Fig. 4.2. Therefore only the diagrams (a) to (d) contribute to the nucleon
charges. Diagram (a) is just the 3q-core contribution and, due to our formalism,
is normalized to reproduce exactly the charge of the nucleon, i.e.

QN = 〈N φ0|
∫

δ(t)d4xj0
ψr(x)|φ0〉N . (C.1)

The three-quark counterterm diagram in Fig. 4.2(b) gives rise to

Qr;b
N = (Ẑ − 1)Qr;a

N

= (Ẑ − 1)QN . (C.2)

The contribution to the nucleon charges due to the meson cloud diagram in
Fig. 4.2(c) is

Qr;c
N =

27

400

( gA

πF

)2
∞∫

0

dpp4F 2
πNN(p2)

∑

Φ=π,K

qΦ;c
N

w3
Φ(p2)

, (C.3)

where

qπ;c
N =

{ 2
3

for N = p

−2
3

for N = n
, qK;c

N =

{ 4
3

for N = p
2
3

for N = n
. (C.4)
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C Renormalization of the nucleon charge in the PCQM

FπNN(p2) is the πNN form factor normalized to unity at zero recoil,

FπNN(p2) = exp

(

−p2R2

4

){

1 +
p2R2

8

(

1 − 5

3gA

)}

(C.5)

and the meson energy is wΦ(p2) =
√

M2
Φ + p2.

Finally, the contribution of the vertex correction diagram in Fig. 4.2(d) is given
by

Qr;d
N =

27

400

( gA

πF

)2
∞∫

0

dpp4F 2
πNN(p2)

∑

Φ=π,K

qΦ;d
N

w3
Φ(p2)

, (C.6)

where

qπ;d
N =

{ 1
3

for N = p

−2
3

for N = n
, qK;d

N =

{ −2
3

for N = p

−2
3

for N = n
,

qη;d
N =

{ 1
9

for N = p

0 for N = n
. (C.7)

Charge conservation gives the constraint

Qr;b
N + Qr;c

N + Qr;d
N ≡ 0. (C.8)

This results in the renormalization constants

Ẑ = 1 − 27

400

( gA

πF

)2
∞∫

0

dpp4F 2
πNN(p2)

[
1

w3
π(p2)

+
2

3w3
K(p2)

+
1

9w3
η(p

2)

]

,

Zs = 1 − 27

400

( gA

πF

)2
∞∫

0

dpp4F 2
πNN(p2)

[
4

3w3
K(p2)

+
4

9w3
η(p

2)

]

. (C.9)
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Appendix D

Electromagnetic N − ∆ transition
in the PCQM

Here we present the analytical expressions for the Nγ → ∆ helicity amplitudes
A1/2(Q

2) and A3/2(Q
2). The Feynman diagrams contributing to these amplitudes

are shown in Figs. 4.3.

Ground state contributions

We first restrict to the ground state quark propagator. The three-quark diagram
in Fig. 4.3(a) results in

A1/2(Q
2)|3q = A1/2(Q

2)|LO
3q + A1/2(Q

2)|NLO
3q , (D.1)

where

A1/2(Q
2)|LO

3q = −2

3

eP ∗(Q2)
√

2ωγ

ρR
exp

(

−Q2R2

4

)

1 + 3ρ2

2

,

A1/2(Q
2)|NLO

3q = A1/2(Q
2)|LO

3q m̂r
0

(

ρR

1 + 3ρ2

2

) (

Q2R2

4
− 2 − 3ρ2

2

1 + 3ρ2

2

)

. (D.2)

P ∗(Q2) =
√

(M2
∆ − M2

N − Q2)2 + 4M2
∆Q2/2M∆ is the absolute value of the three-

momentum of the virtual photon in the ∆-rest frame and ωγ = P ∗(0). m̂r
0 is the

renormalized quark mass as presented in Eq. (4.44). The three-quark counterterm
(CT) diagram in Figs. 4.3(b) is

A1/2(Q
2)|CT = (Ẑ0 − 1)A1/2(Q

2)|LO
3q , (D.3)
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D Electromagnetic N − ∆ transition in the PCQM

where Ẑ0 is the same as Ẑ which is shown in Eq. (C.9).

The meson-cloud (MC) diagram in Figs. 4.3(c) yields

A1/2(Q
2)|MC = − 3

200

eP ∗(Q2)
√

2ωγ

( gA

πF

)2
∞∫

0

dpp4

1∫

−1

dx(1 − x2)

×FπNN(p2, Q2, x)tMC
N (p2, Q2, x), (D.4)

where

FπNN(p2, Q2, x) = FπNN(p2)FπNN(p2
+),

FπNN(p2) = exp

(

−p2R2

4

){

1 +
p2R2

8

(

1 − 5

3gA

)}

,

tMC
N (p2, Q2, x) = 2Dπ(p2, Q2, x) + DK(p2, Q2, x),

DΦ(p2, Q2, x) =
1

w2
Φ(p2)w2

Φ(p2
+)

,

p2
± = p2 + Q2 ± 2p

√

Q2x, (D.5)

with meson energy wΦ(p2) =
√

M2
Φ + p2.

The vertex-correction (VC) diagram in Figs. 4.3(d) is

A1/2(Q
2)|V C = − 1

200

eP ∗(Q2)
√

2ωγ

( gA

πF

)2

exp

(

−Q2R2

4

)
ρR

1 + 3ρ2

2

×
∞∫

0

dpp4F 2
πNN(p2)tV C

N (p2), (D.6)

where

tV C
N (p2) = Wπ(p2) − 1

3
Wη(p

2),

WΦ =
1

w3
Φ(p2)

. (D.7)

The meson-in-flight (MF) diagram in Figs. 4.3(e) is

A1/2(Q
2)|MF = − 9

200

eP ∗(Q2)
√

2ωγ

( gA

πF

)2
∞∫

0

dpp4

1∫

−1

dx(1 − x2)

×FπNN(p2, Q2, x)Dπ(p2, Q2, x). (D.8)
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D Electromagnetic N − ∆ transition in the PCQM

Inclusion of the excited quark state propagators

By taking into account the excited quark state propagators in the loop calculations
the renormalized quark mass and the renormalization constant are modified such
that m̂r

0 → m̂r
F and Ẑr

0 → ẐF , where

m̂r
F = m̂ −

∑

α

1

3γ

(
1

πF

)2
∞∫

0

dpp2Fα(p2)F †
α(p2)

×
{

9

4
Cπ

α(p2) +
3

2
CK

α (p2) +
1

4
Cη

α(p2)

}

,

ẐF = 1 −
∑

α

(
1

πF

)2
∞∫

0

dpp2Fα(p2)F †
α(p2)

×
{

3

4
Wπ

α(p2) +
1

2
WK

α (p2) +
1

12
Wη

α(p2)

}

, (D.9)

where γ = (1 − 3ρ2/2)/(1 + 3ρ2/2) is the relativistic reduction factor and the
defined quantities are (see also Appendix B),

Fα(p2) = NNα
∂

∂p

∞∫

0

dr r S(r)[g0(r)fα(r) + gα(r)f0(r)]

×
∫

Ω

d cos θ dφ eipr cos θCαYl0(θ, φ),

CΦ
α =

1

wΦ(p2)(wΦ(p2) + ∆Eα)
,

WΦ
α =

1

wΦ(p2)(wΦ(p2) + ∆Eα)2
. (D.10)

Therefore, the three-quark NLO and the three-quark CT are

A1/2(Q
2)|NLO

3q = A1/2(Q
2)|LO

3q m̂r
F

(

ρR

1 + 3ρ2

2

) (

Q2R2

4
− 2 − 3ρ2

2

1 + 3ρ2

2

)

, (D.11)

A1/2(Q
2)|CT = (ẐF − 1)A1/2(Q

2)|LO
3q . (D.12)
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D Electromagnetic N − ∆ transition in the PCQM

For the MC diagram we have

A1/2(Q
2)|MC = −1

6

eP ∗(Q2)
√

2ωγ

(
1

πF

)2
∞∫

0

dpp3

1∫

−1

dx
(1 − x2)

√

p2
+

×
∑

α

Fα;MC(p2, Q2, x)tα;MC(p2, Q2, x), (D.13)

where

tα;MC(p2, Q2, x) = 2Dπ
α(p2, Q2, x) + DK

α (p2, Q2, x),

DΦ
α (p2, Q2, x) =

1 + ∆Eα/[wΦ(p2
+) + wΦ(p2)]

wΦ(p2)wΦ(p2
+)[wΦ(p2) + ∆Eα][wΦ(p2

+) + ∆Eα]
,

Fα;MC(p2, Q2, x) = Fα(p2
+)F †

α(p2). (D.14)

The VC diagram is

A1/2(Q
2)|V C =

∑

β,α

Iβα(Q2)

18

eP ∗(Q2)
√

2ωγ

(
1

πF

)2

×
∞∫

0

dpp2Fβα;V C(p2)tβα;V C(p2), (D.15)

where

tβα;V C(p2) = Wπ
βα(p2) − 1

3
Wη

βα(p2),

WΦ
βα(p2) =

1

wΦ(p2)[wΦ(p2) + ∆Eβ][wΦ(p2) + ∆Eα]
,

Fβα;V C(p2) = Fβ(p2)F †
α(p2). (D.16)

We also define

Iβα(Q2) = 2NβNα
∂

∂Q2

∞∫

0

drr[gβ(r)fα(r) + gα(r)fβ(r)]

×
∫

Ω

d cos θdφei
√

Q2r cos θCβYlβ 0(θ, φ)CαYlα 0(θ, φ). (D.17)

122



Appendix E

Calculational technique of
quark-meson loop diagrams

In order to calculate the loop diagrams in Figs. 5.1, 5.2, 5.3 and 5.14 we refer to
the technique called “the infrared dimensional regularization” (IDR) which has
been discussed in detail in Refs. [13, 20]. Here the difference is that instead of
working with nucleon degrees of freedom we work with the constituent quark. We
briefly recall the basic ideas of this technique. In Baryon ChPT the loop integrals
are non-homogeneous functions of the mesonic momenta and the quark masses
due to the presence of a new scale parameter, the nucleon mass. As a result, the
loop integrals contain an infrared singular part involving the fractional powers of
the meson masses and an infrared regular part involving the fractional powers of
the nucleon mass. The presence of the regular part in the loop integrals spoils
the power counting rules since their chiral expansion starts at the same order as
the tree graphs. The basic idea of the IDR method is to remove the infrared
regular parts of the loop integrals from the consideration and to absorb them in
the low-energy couplings of the underlying chiral Lagrangian. The IDR method
is consistent with Lorentz and gauge invariance. Also, chiral power counting is
preserved and the Ward identities of chiral symmetry are fulfilled.

The self-energy diagram shown in Fig. 5.3(3) can be used to demonstrate the
IDR method contributing to the quark mass operator. We consider the scalar loop
integral in d dimensions

H(p2) =

∫
ddk

(2π)di

1

[M2 − k2 − iε][m2 − (p − k)2 − iε]
, (E.1)

where M and m are the meson and constituent quark masses, respectively. With
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E Calculational technique of quark-meson loop diagrams

dimensional regularization the master formula in d-dimensions is

∫
ddk

(2π)d

k2n

[M2 − k2]m
=

i2n+1

(4π)d/2

Γ(n + d/2)Γ(m − n − d/2)

Γ(d/2)Γ(m)
M2(n−m)+d. (E.2)

At threshold p2 = (m + M)2, we obtain

H(p2) = cd
Md−3

m + M
︸ ︷︷ ︸

=I(p2)

+ cd
md−3

m + M
︸ ︷︷ ︸

=R(p2)

, (E.3)

where

cd =
Γ(2 − d/2)

(4π)d/2(d − 3)
. (E.4)

Here I(p2) is the infrared singular piece which is characterized by fractional powers
of M and generated by the loop momenta of order of the meson mass. For I(p2) the
usual power counting applies. Another piece in the decomposition of H(p2) defined
by R(p2) is the infrared regular part which is generated by the loop momenta of the
order of the constituent quark mass m (in our counting m is of the order of ΛχSB ∼
1 GeV). As discussed before, we remove the regular part R(p2) by redefining the
low-energy coupling constants in the chiral Lagrangian. In Ref. [13] a recipe was
suggested how to split the integral H(p2) into the singular and regular parts. We
use the Feynman parameterization to combine two multipliers a = M2 − k2 − iε
and b = m2 − (p − k)2 − iε in the denominator of H(p2):

∫
ddk

(2π)d

1

ab
=

∫
ddk

(2π)d

1∫

0

dx

[a(1 − x) + bx]2
, (E.5)

and then to write down the integral from 0 to 1 as the difference of two integrals:

1∫

0

dx . . . =

[ ∞∫

0

−
∞∫

1

]

dx . . . . (E.6)

Then the integral from 0 to ∞ is exactly the infrared singular part and the integral
from 1 to ∞ is the infrared regular one. This method can be applied to any
general one-loop integral with adjustable number of meson and quark propagators.
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E Calculational technique of quark-meson loop diagrams

The calculational technique suggests that: one should separate numerator and
denominator; simplify the numerator using the standard (invariant integration)
methods. Finally, the result can be reduced to the master integral I(p2) and its
derivatives (like in the conventional dimensional regularization). The integrals
containing only the quark propagators do not contribute to the infrared singular
parts, and therefore, vanish in the IDR.

The ultraviolet divergences contained in the one-loop integrals are removed
via the renormalization of the low-energy constants in the chiral Lagrangian. To
perform the renormalization of the constituent quark at one loop and to guarantee
charge conservation we need the Z-factor (the wave-function renormalization con-
stant), which is determined by the derivative of the quark mass operator (generated
by the diagrams in Fig.4) with respect to its momentum:

Z−1
q = 1 − ∂Σq(6p)

∂ 6p

∣
∣
∣
∣
6p=mq

, q = u, d, s. (E.7)

The matrix Zq = diag{Zu, Zd, Zs} with Zu = Zd = Z is given up to fourth order
by

Zq = I +
∑

P=π,K,η

1

F 2
P

[

−g2αP ∆P + QP

]

, (E.8)

where

∆P = 2M2
P

[

λ(µ) +
1

16π2
ln

(
MP

µ

)]

,

λ(µ) =
µd−4

(4π)2

[
1

d − 4
− 1

2
(ln4π + Γ′(1) + 1)

]

,

QP =
g2M2

P

24π2
αP

[

−1 +
3π

2

MP

m
+

3

2

M2
P

m2

]

+
3c2M

4
P

64π2m
βP I,

(E.9)

and the corresponding coefficients for the pseudoscalar mesons are

απ =
9

2
Q +

3

2
I − 9

4
λ3, αK = −3Q + 2I +

3

2
λ3, αη = −3

2
Q +

I

2
+

3

4
λ3,

βπ = 1, βK =
4

3
, βη =

1

3
,
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where Q, I and λ3 are the charge, identity and Gell-Mann matrices, respectively.
For the evaluation of the form factor f q

D(q2), the quark charge Q [diagram (1) in
Fig 5.1] has to be multiplied by Zq. For f q

P (q2), a second-order contribution to the
quark anomalous magnetic moment proportional to the c6 [diagram (2) in Fig. 5.1
and diagram (2∗) in Fig. 5.2] has to be renormalized by the Zq-factor. The term
proportional to c2 must be dropped, because the product c6c2 is of higher-order
when compared to the accuracy we are working in.
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Appendix F

Loop Integrals

We present the loop integrals contributing to the electromagnetic transition op-
erator between constituent quarks in the infrared regularization scheme Ref. [13].
These integrals have been introduced in ChPT in Refs. [13, 20]. The initial and
final quark field momenta are denoted by p and p′, respectively. The momentum
of the photon field is q = p′ − p. We also define P = p′ + p. Since the exter-
nal quarks are on the mass shell p2 = p′2 = m2, the structure integrals can be
expanded through a set of scalar functions which depend on the transverse mo-
mentum squared t = Q2 = −q2, the mass of meson M and the constituent quark
mass m. Following Refs. [13, 20] the masses of particles occurring in the loop inte-

grals are their leading order values i.e. MP →
◦

MP and mq → m. For universality,
the integrals are calculated in terms of the adjustable values of the constituent
quark mass inside the loop (m∗) and for the external one with mass m. In the
final state of the numerical calculations we will neglect the different between m∗

and m, i.e. we will set m∗ = m.

Infrared parts of loop integrals

We deal with the following loop integrals:

∫

I

ddk

(2π)di

1

M2 − k2
= ∆M , (F.1)

∫

I

ddk

(2π)di

1

[M2 − k2][M2 − (k + q)2]
= J (0)(t,M2), (F.2)
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∫

I

ddk

(2π)di

kµ

[M2 − k2][M2 − (k + q)2]
= −1

2
qµJ

(0)(t,M2), (F.3)

∫

I

ddk

(2π)di

kµkν

[M2 − k2][M2 − (k + q)2]

= (qµqν − gµνt)J
(1)(t,M2) + qµqµJ

(2)(t,M2), (F.4)
∫

I

ddk

(2π)di

1

[M2 − k2][m∗ 2 − (p − k)2]
= I(0)(M2,m2,m∗ 2), (F.5)

∫

I

ddk

(2π)di

kµ

[M2 − k2][m∗ 2 − (p − k)2]
= pµI

(1)(M2,m2,m∗ 2), (F.6)

∫

I

ddk

(2π)di

1

[M2 − k2][m∗ 2 − (p − k)2][m∗ 2 − (p ′ − k)2]

= I
(0)
12 (t,M2,m2,m∗ 2), (F.7)

∫

I

ddk

(2π)di

kµ

[M2 − k2][m∗ 2 − (p − k)2][m∗ 2 − (p ′ − k)2]

= PµI
(1)
12 (t,M2,m2,m∗ 2), (F.8)

∫

I

ddk

(2π)di

kµ kν

[M2 − k2][m∗ 2 − (p − k)2][m∗ 2 − (p ′ − k)2]

= gµνI
(2)
12 (t,M2,m2,m∗ 2) + PµPνI

(3)
12 (t,M2,m2,m∗ 2)

+qµqνI
(4)
12 (t,M2,m2,m∗ 2), (F.9)

∫

I

ddk

(2π)di

1

[M2 − k2][M2 − (k + q)2][m∗ 2 − (p − k)2]

= I
(0)
21 (t,M2,m2,m∗ 2), (F.10)

∫

I

ddk

(2π)di

kµ

[M2 − k2][M2 − (k + q)2][m∗ 2 − (p − k)2]

= PµI
(1)
21 (t,M2,m2,m∗ 2) − 1

2
qµI

(0)
21 (t,M2,m2,m∗ 2), (F.11)
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∫

I

ddk

(2π)di

kµkν

[M2 − k2][M2 − (k + q)2][m∗ 2 − (p − k)2]

= gµνI
(2)
21 (t,M2,m2,m∗ 2) + PµPνI

(3)
21 (t,M2,m2,m∗ 2)

+qµqνI
(4)
21 (t,M2,m2,m∗ 2)

−1

2
(Pµqν + Pνqµ)I

(1)
21 (t,M2,m2,m∗ 2), (F.12)

where the symbol
∫

I

represents the loop integration according to the infrared di-

mensional regularization scheme [13, 20].

Reduction formulas for loop integrals

Higher-order tensorial integrals can be reduced to the basic scalar integrals using
the invariant integration [13, 20]:

J (1)(t,M2) =
1

4(d − 1)t

[

(t + 4M2)J (0)(t,M2) − 2∆M

]

, (F.13)

J (2)(t,M2) =
1

4
J (0)(t,M2) +

1

2t
∆M , (F.14)

I(1)(M2,m2,m∗ 2) =
1

2m2

[

M∗ 2I(0)(M2,m2,m∗ 2) + ∆M

]

, (F.15)

I
(1)
12 (t,M2,m2,m∗ 2) =

1

4m2 + t

[

I(0)(M2,m2,m∗ 2)

+M∗ 2I
(0)
12 (t,M2,m2,m∗ 2)

]

, (F.16)

I
(2)
12 (t,M2,m2,m∗ 2) =

1

d − 2

[

M2I
(0)
12 (t,M2,m2,m∗ 2)

−M∗ 2I
(1)
12 (t,M2,m2,m∗ 2)

]

, (F.17)

I
(3)
12 (t,M2,m2,m∗ 2) =

1

(d − 2)(4m2 + t)

[

M∗ 2(d − 1)I
(1)
12 (t,M2,m2,m∗ 2)

−M2I
(0)
12 (t,M2,m2,m∗ 2)

+
d − 2

2
I(1)(M2,m2,m∗ 2)

]

, (F.18)
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I
(4)
12 (t,M2,m2,m∗ 2) =

1

(d − 2) t

[

−M∗ 2I
(1)
12 (t,M2,m2,m∗ 2)

+M2I
(0)
12 (t,M2,m2,m∗ 2)

+
d − 2

2
I(1)(M2,m2,m∗ 2)

]

, (F.19)

I
(1)
21 (t,M2,m2,m∗ 2) =

1

2(4m2 + t)

[

(2M∗ 2 + t)I
(0)
21 (t,M2,m2,m∗ 2)

−2I(0)(M2,m2,m∗ 2) + 2J (0)(t,M2)

]

, (F.20)

I
(2)
21 (t,M2,m2,m∗ 2) =

1

4(d − 2)

[

(4M2 + t)I
(0)
21 (t,M2,m2,m∗ 2)

−2(2M∗ 2 + t)I
(1)
21 (t,M2,m2,m∗ 2)

−2I(0)(M2,m2,m∗ 2)

]

, (F.21)

I
(3)
21 (t,M2,m2,m∗ 2) =

1

4(d − 2)(4m2 + t)

[

−(4M2 + t)I
(0)
21 (t,M2,m2,m∗ 2)

+2(d − 1)(2M∗ 2 + t)I
(1)
21 (t,M2,m2,m∗ 2)

+2I(0)(M2,m2,m∗ 2)

−2(d − 2)I(1)(M2,m2,m∗ 2)

]

, (F.22)

I
(4)
21 (t,M2,m2,m∗ 2) =

1

4(d − 2)

[

−(4M2 + (d − 1)t)I
(0)
21 (t,M2,m2,m∗ 2)

+2(2M∗ 2 + t)I
(1)
21 (t,M2,m2,m∗ 2)

−2(d − 3)I(0)(M2,m2,m∗ 2)

+2(d − 2)I(1)(M2,m2,m∗ 2)

]

, (F.23)

where M∗ 2 = M2 + m2 − m∗ 2.
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Scalar loop integrals

The scalar loop integrals are given as [13, 20]

∆M = 2M2λM , (F.24)

J (0)(t,M2) = −2λM − 1

16π2

[

1 + k

(
t

M2

)]

, (F.25)

I(0)(M2,m2,m∗ 2) = −M∗ 2

m2

[

λM − 1

32π2

]

− µ∗

8π2
g(0,M,m,m∗)[1 − Ω2]r∗ 3, (F.26)

I
(1)
12 (t,M2,m2,m∗ 2) = −

f

(
t

m2

)

m2

[

λM +
1

32π2

]

+
M∗ 2

32π2Mm3
g

(
t

m2
,M,m,m∗

)

, (F.27)

I
(1)
21 (t,M2,m2,m∗ 2) =

f

(
t

m2

)

m2

[

λM +
1

32π2

]

+
1

32π2m2

[

h1

(
t

M2
,M,m,m∗

)

+2

(
1

µ∗ + Ω

)

h2

(
t

M2
,M,m,m∗

)]

, (F.28)

where

λM =
Md−4

(4π)2

{
1

d − 4
− 1

2
(ln 4π + Γ ′(1) + 1)

}

,

Ω =
m2 − m∗ 2 − M2

2m∗M
, µ =

M

m
, µ∗ =

M

m∗ , r∗ =
m∗

m
.

The dimensionless functions k, f , g, h1 and h2 are given by the expressions

k(s) =

1∫

0

dx ln(1 + x(1 − x)s) =

√

4 + s

s
ln

√
4 + s +

√
s√

4 + s −√
s
− 2, (F.29)

f(s) =

1∫

0

dx
1

1 + x(1 − x)s
=

2
√

s(4 + s)
ln

√
4 + s +

√
s√

4 + s −√
s
, (F.30)
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g(s,M,m,m∗) =

1∫

0

dx

arccos

[

−r∗(Ω + µ∗)

√

r∗ 2 + x(1 − x)s

1 + x(1 − x)s

]

[1 + x(1 − x)s)]
√

(1 − Ω2)r∗ 2 + x(1 − x)s
, (F.31)

h1(s,M,m,m∗) =

1∫

0

dx
ln[1 + x(1 − x)s]

1 + µ2x(1 − x)s
, (F.32)

h2(s,M,m,m∗) =

1∫

0

dxarccos

[

− [µ∗(1 + x(1 − x)s) + Ω]r∗
√

1 + µ2x(1 − x)s
√

1 + sx(1 − x)

]

× 1

[1 + µ2x(1 − x)s]
√

1 + Ω2 + x(1 − x)s
. (F.33)
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Appendix G

Electromagnetic meson-cloud
form factors

We explicitly show the contributions of the diagrams in Fig. 5.1 and Fig. 5.2 to

the Dirac and Pauli quark form factors. We use the notations f
(i)
D (t) and f

(i)
P (t)

where the superscript i refers to the numbering of the diagrams. We expand the

diagonal 3 × 3 matrices f
(i)
D (t) and f

(i)
P (t) in the basis of the 3 × 3 matrices Q, I,

and λ3

Q =

(
2/3 0 0
0 −1/3 0
0 0 −1/3

)

, I =

(
1 0 0
0 1 0
0 0 1

)

, λ3 =

(
1 0 0
0 −1 0
0 0 0

)

,

and in terms of the convergent parts of the structure integrals

J̄ (1)(t,M2) = − 1

576π2t

[
t + 3k(t)

(
t + 4M2

)]
,

Ī(1)(M2,m2,m2) =
µ3

64π2
[µ − g(0,M,m,m)(4 − µ2)],

Ī12(t,M
2,m2,m2) =

1

32π2m2
[g(t,M,m,m)µ − f(t)],

Ī
(2)
12 (t,M2,m2,m2) =

µ3

256π2

[

−2µDτ + g(t,M,m,m)(4 − µ2Dτ )

+g(0,M,m,m)(4 − µ2)Dτ

]

,

133



G Electromagnetic meson-cloud form factors

Ī
(3)
12 (t,M2,m2,m2) =

µ3Dτ

1024π2m2

[

2µ (1 + 2Dτ ) − µf(t)

−g(t,M,m,m)(4 − 3µ2Dτ )

+g(0,M,m,m)(4 − µ2)(2 + 3Dτ )

]

,

Ī
(4)
12 (t,M2,m2,m2) =

µ3

512π2m2τ

[

µτDτ − 2g(t,M,m,m)(1 − µ2Dτ )

−g(0,M,m,m)(8 − 4µ2 + (µ2 − 4)Dτ )

]

,

Ī
(2)
21 (t,M2,m2,m2) =

1

512π2

[

2Dτµ(µ2 − 2)(2µ − g(0,M,m,m)(4 − µ2))

+k(t)(2 + (µ2 − 2)Dτ )

+2H12(t,M,m,m)(4 − (2 − µ2)2Dτ )

]

,

Ī
(3)
21 (t,M2

P ,m2,m2) =
Dτ

1024π2m2

[

2(4 + 6µ2 − µ4 + 2(µ2 − 2)(µ2 + 1)Dτ )

−6k(t)(2 + (µ2 − 2)Dτ ) + 2f(t)(2 + (µ2 − 2)Dτ )
2

+g(0,M,m,m)µ(4 − µ2)[2(µ2 + 2) + 3(µ2 − 2)Dτ ]

−H12(t,M,m,m)(12 − 8µ2 + 2τ − 3(µ2 − 2)2Dτ )

]

,

where

H12(t,M,m,m) = h1(t,M,m,m) + h2(t,M,m,m)

(
2 − µ2

µ

)

,

Dτ =
1

1 + τ/4
.
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Pseudoscalar mesons contribution

The contributions of the diagrams in Fig. 5.1 to the Dirac form factors of the u,
d, and s quark are

f
(1)
D (t) = QZ̄q,

f
(2)
D (t) = f

(4)
D (t) = f

(8)
D (t) = f

(12)
D (t) = 0,

f
(3)
D (t) = 2td̄10Q ,

f
(i)
D (t) =

∑

P=π,K,η

λP
i εP

i , i = 5, 6, 7, 9, 10, 11 , (G.1)

where Z̄q is the finite part of the renomalization matrix Zq defined in Eq. (E.8)
and

λπ
5 = Q +

1

3
I − λ3, λK

5 = −8

3
Q − 2

9
I +

4

3
λ3, λη

5 = Q − 1

9
I − 1

3
λ3,

λπ
6 = λπ

7 = λπ
9 = λ3, λK

6 = λK
7 = λK

9 = 3Q − λ3, λη
6 = λη

7 = λη
9 = 0,

λπ
10 = c6

(

Q +
1

3
I − λ3

)

, λK
10 = c6

(

−8

3
Q − 2

9
I +

4

3
λ3

)

,

λη
10 = c6

(

Q − 1

9
I − 1

3
λ3

)

,

λπ
11 = Q, λK

11 =
4

3
Q, λη

11 =
1

3
Q, (G.2)

and

εP
5 = −g2m2

F 2
P

{

Ī(1)(M2
P ,m2,m2) + M2

P Ī
(0)
12 (t,M2

P ,m2,m2) − 2Ī
(2)
12 (t,M2

P ,m2,m2)

−8m2Ī
(3)
12 (t,M2

P ,m2,m2)

}

,

εP
6 =

g2

F 2
P

{

tJ̄ (1)(t,M2
P ) − 4m2Ī

(2)
21 (t,M2

P ,m2,m2) − 16m4Ī
(3)
21 (t,M2

P ,m2,m2)

}

,

εP
7 = −2g2m2

F 2
P

Ī(1)(M2
P ,m2,m2),

εP
9 = − t

F 2
P

J̄ (1)(t,M2
P ,m2,m2),
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εP
10 = −2tg2m2

F 2
P

Ī
(3)
12 (t,M2

P ,m2,m2),

εP
11 = − 3c2

64π2mF 2
P

M4
P . (G.3)

For the Pauli form factors of the u, d and s quarks we have

f
(1)
P (t) = f

(7)
P (t) = f

(8)
P (t) = f

(9)
P (t) = 0,

f
(2)
P (t) = Z̄qc6Q,

f
(3)
P (t) = −2td̄10Q,

f
(4)
P (t) = −4mtē10Q − 16m

[

M2ē6Q +
1

3
(M2

K − M2
π)(ē7[Q − λ3 − I/3] − ē8I)

]

,

f
(i)
P (t) =

∑

P=π,K,η

λP
i mP

i , i = 5, 6, 10, 11, 12, (G.4)

where

λπ
12 = λ3, λK

12 = 3Q − λ3, λη
12 = 0,

and

mP
5 = −8g2m4

F 2
P

Ī
(3)
12 (t,M2

P ,m2,m2),

mP
6 =

16g2m4

F 2
P

Ī
(3)
21 (t,M2

P ,m2,m2),

mP
10 =

g2m2

F 2
P

{

Ī(1)(M2
P ,m2,m2) − M2

P Ī12(t,M
2
P ,m2,m2) + 4Ī

(2)
12 (t,M2

P ,m2,m2)

+2t
(

Ī
(3)
12 (t,M2

P ,m2,m2) − Ī
(4)
12 (t,M2

P ,m2,m2)
)}

,

mP
11 =

3c2

64π2mF 2
P

M4
P ,

mP
12 =

4mtc4

F 2
P

J̄ (1)(t,M2
P ,m2,m2). (G.5)

Vector mesons contribution

The contributions of the diagrams in Fig. 5.2 (vector mesons contributions) to the
Dirac and Pauli form factors of the u, d and s quark are
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f
(2∗)
D (t) = f

(11∗)
D (t) = f

(12∗)
D (t) = 0,

f
(3∗)
D (t) = − t

2

{

λρDρ(t) +
1

3
λωDω(t) +

2

3
λφDφ(t)

}

,

f
(10∗)
D (t) =

kV

2

{

[λωDω(t) − λρDρ(t)]ε
π
10 −

4

3
[λφDω(t) + λωDφ(t)]ε

K
10

+
1

9
[3λρDρ(t) + λωDω(t) + 8λφDφ(t)]ε

η
10

}

,

f
(2∗)
P (t) =

kV

2

{

Z̄λρDρ(t) +
1

3
Z̄λωDω(t) +

2

3
Z̄sλφDφ(t)

}

,

f
(3∗)
P (t) = f 11∗

P (t) = 0,

f
(10∗)
P (t) =

kV

2

{

[λωDω(t) − λρDρ(t)]m
π
10 −

4

3
[λφDω(t) + λωDφ(t)]m

K
10

+
1

9
[3λρDρ(t) + λωDω(t) + 8λφDφ(t)]m

η
10

}

,

f
(12∗)
P (t) = − t

2
kV

{

λρDρ(t)

[
2

F 2
π

J̄ (1)(t,M2
π) +

1

F 2
K

J̄ (1)(t,M2
K)

]

+
λω

F 2
K

Dω(t)J̄ (1)(t,M2
K) +

2λφ

F 2
K

Dφ(t)J̄
(1)(t,M2

K)

}

, (G.6)

where

λρ = λ3, λω = 2Q + 2I/3 − λ3, λφ = 2Q − I/3 − λ3,

and

DV (t) = 1/(M2
V + t). (G.7)

Expansion for the practical calculation

In the practical calculation, we keep the exact form of the function f(t), while
we expand the functions k(t), g(t,M,m,m), h1(t,M,m,m) and h2(t,M,m,m) in
powers of θ and µ with θ = t/M2 and µ = M/m.
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Finally, we keep our expressions for εP
i , and mP

i up to O(θP , µ4
P ) which are explicitly

given as

εP
5 =

g2m2µ2
P

32π2F 2
P

[

f(t)

(

1 − 3

4
µ2

P D2
τ

)

+ πµP

(

1 − Dτ

2
− 2D2

τ

)

+
µ2

P

2
(1 − Dτ −

3

2
D2

τ )

]

,

εP
6 =

g2m2

16π2F 2
P

[

µ2
P

(

1 − 5π

2
µP − 2µ2

P

)

+τ

(
7

2
− 35π

24
µP − 13

6
µ2

P +
105π

64
µ3

P +
107

72
µ4

P

)]

,

εP
7 =

g2m2µ3
P

16π2F 2
P

(

π +
µp

2

)

,

εP
9 =

t

192π2F 2
P

,

εP
10 =

g2m2µ3
P

32π2F 2
P

(1 − Dτ )

[

π(1 + 2Dτ ) +
µP

2

(

1 +
3

2
Dτ

)

+
3

4
µP Dτf(t)

]

,

εP
11 = −3c2m

3µ4
P

64π2F 2
P

,

mP
5 =

g2m2µ3
P

16π2F 2
P

{
3

8
µP f(t)D2

τ + Dτ

[

π

(
1

2
+ Dτ

)

+
3

8

(
2

3
+ Dτ

)]}

,

mP
6 = −g2m2

πF 2
P

[
µP

8

(

π + µP − 15

8
πµ2

P − 4

3
µ3

P

)

+
τ

96µP

(

π + 8µP − 105π

8
µ2

P − 52

3
µ3

P +
1575π

128
µ4

P +
107

10
µ5

P

)]

,

mP
10 =

g2m2µ2
P

32π2F 2
P

{

f(t)

[

1 − 3

4
Dτµ

2
P (1 − Dτ )

]

− πµP

(

1 +
1

2
Dτ − 2D2

τ

)

−1

2
µ2

P

(

1 +
1

2
Dτ −

3

2
D2

τ

)}

,

mP
11 =

3c2m
3µ4

P

64π2F 2
P

,

mP
12 =

c4mt

48π2F 2
P

.
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Renormalization of LECs

After absorbing the divergences coming from the vector meson-exchange diagrams
the renormalized LECs are written as

d̄10 = dr
10(µ) − βd10

32π2F 2
K

ln
M2

K

µ2
,

ē10 = er
10(µ) − βe10

32π2F 2
K

ln
M2

K

µ2
,

ē6 = er
6(µ) − βe6

32π2F 2
π

ln
M2

π

µ2
,

ē7 = er
7(µ) − βe7

32π2F 2
π

ln
M2

π

µ2
,

ē8 = er
8(µ) − βe8

32π2F 2
π

ln
M2

π

µ2
(G.8)

where the β-coefficients with taking into account the vector mesons are given by

βd10
= −1 + 5g2

4
,

βe10
=

1

8m

(
1 − 7g2 + kV + 4mc4

)
,

βe6
= − 35

144m
(c6g

2 + kV ) − 1

16m
(c6 − 4c4m) − 5g2

9m
,

βe7
= − 11

48m
(c6 + kV )g2 − 3

16m
(c6 − 4c4m) − 7g2

6m
,

βe8
= − 1

16m
(c6 + kV )g2 +

1

16m
(c6 − 4c4m) +

g2

4m
, (G.9)

and

M2 = M2
π − M2

K +
3

2
M2

η . (G.10)
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Meson-nucleon sigma-terms

Two important identities are involved in the evaluation of the meson-nucleon
sigma-terms. In particular, the derivatives with respect to the current quark
masses are equivalent to the ones with respect to the meson masses [140]

m̂
∂

∂m̂
Σq = M2

π

(
∂

∂M2
π

+
1

2

∂

∂M2
K

+
1

3

∂

∂M2
η

)

Σq , (H.1)

m̂s
∂

∂m̂
Σq = M2

Kη

(
∂

∂M2
π

+
1

2

∂

∂M2
K

+
1

3

∂

∂M2
η

)

Σq , (H.2)

m̂
∂

∂m̂s

Σq = M2
π

(
1

2

∂

∂M2
K

+
2

3

∂

∂M2
η

)

Σq , (H.3)

m̂s
∂

∂m̂s

Σq = M2
Kη

(
∂

∂M2
K

+
4

3

∂

∂M2
η

)

Σq , (H.4)

with M2
Kη = −M2

K + 3M2
η /2 .

Below we give the exact expression for the typical type of derivatives

m̂
∂

∂m̂
Σ̄ = m̂ − 9g2M2

π

64π

{
Mπ

F 2
π

+
MK

3F 2
K

+
Mη

27F 2
η

}

− 3g2M2
π

32π2m

{
M2

π

F 2
π

+
M2

K

3F 2
K

+
M2

η

27F 2
η

}

−4c1M
2
π +

3c2

64π2

{
M4

π

F 2
π

+
2

3

M4
K

F 2
K

+
M4

η

9 F 2
η

}

− 2

3
c5M

2
π + 2ē1M

2
πM2

− ē3

6
M2

π(M2
K − M2

π) +
5

12
ē4M

4
π − ē5

36
M2

π(M2
K − M2

π) . (H.5)

One should note that there are additional useful relations between different sigma-
terms [29, 35]. In particular, with the definitions of yN and σI=1

KN we can relate
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KN and ηN sigma-terms to the πN sigma-term as

σu
KN = σπN(1 + yN)

m̂ + ms

4m̂
+ σI=1

KN , (H.6)

σd
KN = σu

KN − 2σI=1
KN , (H.7)

σηN = σπN
m̂ + 2yNms

3m̂
. (H.8)
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and A. W. Thomas, Nucl. Phys. A 393 252 (1983); A. W. Thomas, Adv.
Nucl. Phys. 13 1 (1984).

[25] E. Oset, R. Tegen and W. Weise, Nucl. Phys. A 426 456 (1984) [Erratum-
ibid. A 453 751 (1986)]; R. Tegen, Annals Phys. 197 439 (1990); S. A. Chin,
Nucl. Phys. A 382 355 (1982).

[26] T. Gutsche and D. Robson, Phys. Lett. B 229, 333 (1989);

[27] D. Diakonov and V. Y. Petrov, Nucl. Phys. B 245 259 (1984); Nucl. Phys. B
272 457 (1986); D. Diakonov, V. Y. Petrov and M. Praszalowicz, Nucl. Phys.
B 323 53 (1989).

[28] T. Gutsche, Ph.D. thesis, Florida State University, 1987.

[29] V. E. Lyubovitskij, T. Gutsche, A. Faessler and E. G. Drukarev, Phys. Rev.
D 63, 054026 (2001) [arXiv:hep-ph/0009341].

[30] V. E. Lyubovitskij, T. Gutsche and A. Faessler, Phys. Rev. C 64 065203
(2001) [arXiv: hep-ph/0105043].

146



BIBLIOGRAPHY

[31] V. E. Lyubovitskij, T. Gutsche, A. Faessler and R. Vinh Mau, Phys. Lett. B
520 204 (2001) [arXiv:hep-ph/0108134];

[32] V. E. Lyubovitskij, P. Wang, T. Gutsche and A. Faessler, Phys. Rev. C 66
055204 (2002) [arXiv:hep-ph/0207225];

[33] K. Pumsa-ard, V. E. Lyubovitskij, T. Gutsche, A. Faessler and S. Cheedket,
Phys. Rev. C 68, 015205 (2003) [arXiv:hep-ph/0304033].

[34] S. Cheedket, V. E. Lyubovitskij, T. Gutsche, A. Faessler, K. Pumsa-ard and
Y. Yan, Eur. Phys. J. A 20, 317 (2004) [arXiv:hep-ph/0212347].

[35] T. Inoue, V. E. Lyubovitskij, T. Gutsche and A. Faessler, Phys. Rev. C 69,
035207 (2004) [arXiv:hep-ph/0311275].

[36] K. Khosonthongkee, V. E. Lyubovitskij, T. Gutsche, A. Faessler, K. Pumsa-
ard, S. Cheedket and Y. Yan, J. Phys. G 30, 793 (2004) [arXiv:hep-
ph/0403119].

[37] Y. B. Dong, A. Faessler, T. Gutsche, J. Kuckei, V. E. Lyubovitskij, K. Pumsa-
ard and P. Shen, J. Phys. G 32, 203 (2006) [arXiv:hep-ph/0507277].

[38] A. Faessler, T. Gutsche, V. E. Lyubovitskij and K. Pumsa-Ard, Prog. Part.
Nucl. Phys. 55, 12 (2005).

[39] A. Faessler, T. Gutsche, V. E. Lyubovitskij and K. Pumsa-ard, Phys. Rev. D
73, 114021 (2006) [arXiv:hep-ph/0511319].

[40] R. Frisch and O. Stern, Z. Phys. 85, 4 (1933).

[41] I. Estermann and O. Stern, Z. Phys. 85, 17 (1933).

[42] J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey and J. R. Zacharias, Phys. Rev.
56 728 (1939).

[43] S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592 1
(2004).

[44] M. N. Rosenbluth, Phys. Rev. 79 615 (1950).

[45] R. Hofstadter, F. Bumiller and M. Croissiaux, Phys. Rev. Lett. 5 263 (1960).

[46] L. N. Hand, D. G. Miller and R. Wilson, Rev. Mod. Phys. 35, 335 (1963).

[47] L. Andivahis et al., Phys. Rev. D 50, 5491 (1994).

[48] R. C. Walker et al., Phys. Rev. D 49 5671 (1994).

147



BIBLIOGRAPHY

[49] G. Hohler, E. Pietarinen, I. Sabba Stefanescu, F. Borkowski, G. G. Simon,
V. H. Walther and R. D. Wendling, Nucl. Phys. B 114, 505 (1976).

[50] L. E. Price, J. R. Dunning, M. Goitein, K. Hanson, T. Kirk and R. Wilson,
Phys. Rev. D 4, 45 (1971).

[51] A. F. Sill et al., Phys. Rev. D 48, 29 (1993).

[52] D. Day, Nucl. Phys. A 755, 151 (2005) [arXiv:nucl-ex/0502003].

[53] A. I. Akhiezer, L. N. Rozentsweig and I. M. Shmushkevich, Sov. Phys. JETP
6, 588 (1958).

[54] R. G. Arnold, C. E. Carlson and F. Gross, Phys. Rev. C 23, 363 (1981).

[55] T. Janssens, R. Hofstadter, E. B. Hughes and M. R. Yearian, Phys. Rev. 142,
922 (1966).

[56] W. Bartel et al., Phys. Rev. Lett. 17, 608 (1966).

[57] J. Litt et al., Phys. Lett. B 31, 40 (1970).

[58] C. Berger, V. Burkert, G. Knop, B. Langenbeck and K. Rith, Phys. Lett. B
35, 87 (1971).

[59] C. E. Hyde-Wright and K. de Jager, Ann. Rev. Nucl. Part. Sci. 54, 217 (2004)
[arXiv:nucl-ex/0507001].

[60] B. D. Milbrath et al. [Bates FPP collaboration], Phys. Rev. Lett. 80, 452
(1998) [Erratum-ibid. 82, 2221 (1999)] [arXiv:nucl-ex/9712006].

[61] T. Pospischil et al. [A1 Collaboration], Eur. Phys. J. A 12, 125 (2001).

[62] S. Dieterich et al., Phys. Lett. B 500, 47 (2001) [arXiv:nucl-ex/0011008].

[63] J. Arrington, Phys. Rev. C 68, 034325 (2003) [arXiv:nucl-ex/0305009].

[64] M. E. Christy et al. [E94110 Collaboration], Phys. Rev. C 70, 015206 (2004)
[arXiv:nucl-ex/0401030].

[65] I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005) [arXiv:nucl-
ex/0410010].

[66] L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

[67] P. G. Blunden, W. Melnitchouk and J. A. Tjon, Phys. Rev. Lett. 91, 142304
(2003) [arXiv:nucl-th/0306076].

148



BIBLIOGRAPHY

[68] Y. C. Chen, A. Afanasev, S. J. Brodsky, C. E. Carlson, and M. Vander-
haeghen, Phys. Rev. Lett. 93, 122301 (2004).

[69] H. Anklin et al., Phys. Lett. B 336, 313 (1994).

[70] H. Anklin et al., Phys. Lett. B 428, 248 (1998).

[71] G. Kubon et al., Phys. Lett. B 524, 26 (2002) [arXiv:nucl-ex/0107016].

[72] E. E. W. Bruins et al., Phys. Rev. Lett. 75, 21 (1995).

[73] H. Gao et al., Phys. Rev. C 50, 546 (1994);

[74] W. Xu et al., Phys. Rev. Lett. 85, 2900 (2000) [arXiv:nucl-ex/0008003].

[75] W. Xu et al. [Jefferson Lab E95-001 Collaboration], Phys. Rev. C 67, 012201
(2003) [arXiv:nucl-ex/0208007].

[76] S. Galster, H. Klein, J. Moritz, K. H. Schmidt, D. Wegener and J. Bleckwenn,
Nucl. Phys. B 32, 221 (1971).

[77] R. G. Arnold et al., Phys. Rev. Lett. 61, 806 (1988).

[78] S. Rock et al., Phys. Rev. D 46, 24 (1992).

[79] A. Lung et al., Phys. Rev. Lett. 70, 718 (1993).

[80] P. Markowitz et al., Phys. Rev. C 48, 5 (1993).

[81] T. Eden et al., Phys. Rev. C 50, 1749 (1994).

[82] I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999) [arXiv:nucl-ex/9907012].

[83] C. Herberg et al., Eur. Phys. J. A 5, 131 (1999).

[84] M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999).

[85] R. Madey et al. [E93-038 Collaboration], Phys. Rev. Lett. 91, 122002 (2003)
[arXiv:nucl-ex/0308007].

[86] D. I. Glazier et al., Eur. Phys. J. A 24, 101 (2005) [arXiv:nucl-ex/0410026].

[87] G. Warren et al. [Jefferson Lab E93-026 Collaboration], Phys. Rev. Lett. 92,
042301 (2004) [arXiv:nucl-ex/0308021].

[88] H. Zhu et al. [E93026 Collaboration], Phys. Rev. Lett. 87, 081801 (2001)
[arXiv:nucl-ex/0105001].

[89] C. E. Jones-Woodward et al., Phys. Rev. C 44, 571 (1991).

149



BIBLIOGRAPHY

[90] J. Becker et al., Eur. Phys. J. A 6, 329 (1999).

[91] J. Golak, G. Ziemer, H. Kamada, H. Witala and W. Gloeckle, Phys. Rev. C
63, 034006 (2001) [arXiv:nucl-th/0008008].

[92] J. Bermuth et al., Phys. Lett. B 564, 199 (2003) [arXiv:nucl-ex/0303015].

[93] D. Rohe et al., Phys. Rev. Lett. 83, 4257 (1999).

[94] M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

[95] J. Goldstone, Proceed. Roy. Soc. A 239, 267 (1957).

[96] J. Hubbard, Proceed. Roy. Soc. A 240, 539 (1957).

[97] R. Tegen, R. Brockmann and W. Weise, Z. Phys. A 307, 339 (1982).

[98] K. Hagiwara et al. [Particle Data Group], Phys. Rev. D 66, 010001 (2002).

[99] M. Gell-Mann and M. Levy, Nuovo Cim. 16, 1729 (1960).

[100] I. Eschrich et al. [SELEX Collaboration], Phys. Lett. B 522, 233 (2001)
[arXiv:hep-ex/0106053].

[101] G. G. Simon, F. Borkowski, C. Schmitt and V. H. Walther, Z. Naturforsch.
35A, 1 (1980).

[102] M. Meyerhoff et al., Phys. Lett. B 327, 201 (1994).

[103] L. A. Copley, G. Karl and E. Obryk, Nucl. Phys. B 13, 303 (1969).

[104] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980) [Erratum-ibid. D 23,
818 (1981)].

[105] M. M. Giannini, Rept. Prog. Phys. 54, 453 (1990).

[106] A. J. Buchmann, E. Hernandez and A. Faessler, Phys. Rev. C 55, 448 (1997)
[arXiv:nucl-th/9610040].

[107] A. J. Buchmann, Z. Naturforsch. A 52, 877 (1997).

[108] G. Kaelbermann and J. M. Eisenberg, Phys. Rev. D 28 (1983) 71.

[109] K. Bermuth, D. Drechsel, L. Tiator and J. B. Seaborn, Phys. Rev. D 37, 89
(1988).

[110] D. H. Lu, A. W. Thomas and A. G. Williams, Phys. Rev. C 55, 3108 (1997)
[arXiv:nucl-th/9612017].

150



BIBLIOGRAPHY

[111] Y. B. Dong, K. Shimizu and A. Faessler, Nucl. Phys. A 689, 889 (2001).

[112] N. Isgur, G. Karl and R. Koniuk, Phys. Rev. D 25, 2394 (1982).

[113] S. S. Gershtein and G. V. Jikia, Sov. J. Nucl. Phys. 34, 870 (1981) [Yad.
Fiz. 34, 1566 (1981)].

[114] D. Drechsel and M. M. Giannini, Phys. Lett. B 143, 329 (1984).

[115] E. Jenkins, X. d. Ji and A. V. Manohar, Phys. Rev. Lett. 89, 242001 (2002)
[arXiv:hep-ph/0207092].

[116] C. Dib, A. Faessler, T. Gutsche, S. Kovalenko, J. Kuckei, V. E. Lyubovitskij
and K. Pumsa-ard, J. Phys. G 32, 547 (2006) [arXiv:hep-ph/0601144].

[117] T. Inoue, V. E. Lyubovitskij, T. Gutsche and A. Faessler, Int. J. Mod. Phys.
E 14, 995 (2005) [arXiv:hep-ph/0407305].

[118] T. Inoue, V. E. Lyubovitskij, T. Gutsche and A. Faessler, Int. J. Mod. Phys.
E 15, 121 (2006) [arXiv:hep-ph/0404051].

[119] V. E. Lyubovitskij, T. Gutsche, A. Faessler and R. Vinh Mau, Phys. Rev. C
65, 025202 (2002) [arXiv:hep-ph/0109213].

[120] A. Manohar and H. Georgi, Nucl. Phys. B 234 189 (1984).

[121] B. Kubis, T. R. Hemmert and U. G. Meissner, Phys. Lett. B 456, 240 (1999)
[arXiv:hep-ph/9903285].

[122] N. Fettes, U. G. Meissner and S. Steininger, Nucl. Phys. A 640 199 (1998)
[arXiv:hep-ph/9803266].

[123] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B 321 311 (1989);
G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Phys. Lett. B
223 425 (1989).

[124] R. L. Jaffe and X. D. Ji, Phys. Rev. Lett. 67, 552 (1991);

[125] M. A. B. Bég and A. Zepeda, Phys. Rev. D 6 2912 (1972).
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my special thanks to Asien-Haus Tübingen shop and all the staff there for always
providing good Thai food and for all their support. Finally, I would like to deeply
thank my family for all the support and cheerfulness.



Curriculum Vitae

KEM PUMSA-ARD

Institut für Theoretische Physik

Universität Tübingen
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