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1 INTRODUCTION 

 
1.1 PET 

  

1.1.1 Basics of PET 

Positron Emission Tomography (PET) is one of the most important techniques for in-vivo 

studies by the radiotracer method. During the last two decades it has been under development 

as a biochemical research tool for studies in medicine. Now it attracts the interest of many 

scientists in the broad area of life sciences, particularly in the fields of diagnostic applications 

and therapy control as an excellent and very sensitive method for examination of 

physiological functions. 

In the year 2000 PET had its international breakthrough as a method. This can clearly be 

illustrated by the broad applications of PET/CT, both in clinical research and healthcare. 

Moreover, during the last two years animal PET became available allowing to determine 

biochemical processes and biokinetics within small animals. In this particular international 

situation the radiopharmaceutical methods play the key role in PET applications since the 

spectrum of applications directly and, thus, strongly depends on the availability of compounds 

labelled with radionuclides appropriate for PET studies. 

In radiopharmacy it is the aim to develop and supply compounds of metabolic relevance for 

PET applications. Those compounds are labelled with short-lived radionuclides of the 

biologically important elements. 15O, 13N, 11C and 18F are the PET radionuclides of choice. 

Their main properties are the emission of positrons and the short half lives. In combination 

with the coincidence measuring technique and the modus of tomographic imaging, the 

directly localized registration of such compounds ("tracers") is possible. Moreover, the PET 

technique allows both the qualitative imaging and quantification of the particular metabolic 
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process under study. The radioactive decay of the PET radionuclides gives rise to emission of 

a positron, a positively charged particle with the mass of an electron[1]. A positron is the 

anti-particle of an electron so that after loss of its kinetic energy it forms a positronium 

together with an electron. After a few microseconds the two electron masses end up in form 

of annihilation radiation as two gamma photons with an energy of 511 keV each. Those 

gamma photons are emitted in an angle of almost 180° (Fig. 1). 

 

 
 

The production of two ϒ-quanta shortly after the positron emission allows the recording of 

this process by annihilation coincidence detection. Two detectors, oriented opposite to each 

other, are used to detect the two photons. The measuring system finally counts only those 

photons which are registered in coincidence within a pair of opposite detectors. The 

coincidence detector system also defines a volume between the two detectors as measured by 

two coincidence events[2].(Fig. 2). Events of this type are labelled as (A). Coincidence events 

outside this volume are not registered (B). However, coincidence events outside this volume 

involving scattering can also occur and are erroneously attached to the detection volume (C). 

The PET system is composed of a large number of coincidence detector pairs arranged in 

a ring. Each single detector is not only switched to coincidence with the diametrically 

Fig. 1. Radioactive decay by positron emission[1]. 
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opposite detector but also with a greater number of detectors on the other side of the ring, 

forming a fan-shaped area of coincidence (Fig. 2). The visual field of the tomographic system 

is defined by the central area covered by all fan-shaped areas of coincidence. The body of the 

patient is placed in this visual field. 

 

If compounds labelled with positron emitting isotopes are accumulated in certain regions of 

the body, from the detected annihilation events an imaging of this region can be reconstructed 

to tomographic slices. Thus, the use of the PET technique is always combined with 

compounds labelled with PET radioisotopes (PET tracers). The most famous and most 

applied compound is 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). This molecule is 

transported and phosphorylated like glucose, however, it does not take part in the succeeding 

metabolic processes. Therefore, [18F]FDG accumulates in glucose demanding tissues. Active 

cancer tissue can thus be detected because of its elevated glucose metabolism. On the other 

hand, success of cancer chemotherapy results in the death of the cancer cells and, 

consequently, in low or no accumulation of [18F]FDG. Another application is the investigation 

of the biodistribution of drugs in the body or the detection of receptors for certain 

biomolecules. 

 

 

Fig. 2.  Annihilation coincidence detection in PET[2]. 
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1.1.2 Radionuclides in PET 

To perform any type of PET investigations, compounds labelled with positrons are essential. 

The short-lived positron emitting radionuclides that have the greatest importance in PET are 

carbon-11, nitrogen-13, oxygen-15 and fluorine-18. This is to be understood in view of the 

fact that the first three of these isotopes belong to the elements of life and can be substituted 

for their stable counterparts without influencing the bioactivity of the molecule. While 

fluorine-18 is not a significant element in living system, its half-life and properties make its 

use in labelling of considerable value. Most importantly, it is applied in the concept of 

“blocked metabolism” as explained in case of [18F]FDG. Tab. 1 lists the physical properties of 

these radionuclides[3]. 

 

Tab. 1. Physical properties of some positron emitter radionuclides[3]. 

Isotope Half-life 
(min) 

Specific Activitya 
(GBq/mmol) 

Maximum 
Energy (MeV)

Range (mm) 
in Waterb 

Decay 
Product 

Fluorine-18 110 63.3 x 106 0.635 2.4 Oxygen-18 

Carbon-11 20.4 341.1 x 106 0.96 4.1 Boron-11 

Nitrogen-13 10 69.9 x 107 1.19 5.4 Carbon-13 

Oxygen-15 2.1 336.0 x 107 1.72 8.2 Nitrogen-15 
 
a) Theoretical maximal specific activity; in practice, specific activities are typically 5000 
times lower because of unavoidable dilution with the non radioactive isotope. 
b) Maximal linear range. 
 
 
 
The development of any radiotracer begins with the selection of an appropriate radionuclide. 

This depends on several factors. The first is whether the physical half-life of the radioisotope 

matches the biological half-life of the process under investigation. The precursor’s achievable 
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specific activity (sec. 1.2.2) is also very important. In addition, the time necessary to prepare 

the precursor, and manipulate it through the subsequent synthetic pathways, and/or 

purifications are important for the decision. Finally, the kind of information needed from the 

PET measurement is also important in the selection of the radioisotope. Finally, the spatial 

distribution and regional concentrations of a target substance or neurotransmitter binding or 

uptake site are also very important. Tab. 2 gives a list of some  radiotracers and their 

applications[3]. 
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Tab. 2. Some important radiotracers and their applications[3,4]. 

Tracer Chemical name Use 

[15O] Tracers 

[15O]H2O [15O]water Blood flow 
[15O]CO [15O]carbon monoxide Blood volume 
[15O]O2 [15O]oxygen Oxygen consumption 

[11C] Tracers 

[11C]Carfentanil [methyl-11C]-4-[(1-oxypropyl)phenyl-amino]-1-(2-
phenylethyl)-4-piperidinecarboxylic acid methyl ester 

Opiate receptors in brain 

[11C]CFT [N-methyl-11C]-2-β-carbomethoxy-3-β-(4-
fluorophenyl)-tropane 

Dopamine re-uptake sites in brain 

[11C]Choline [N-methyl-11C](2-hydroxyethyl) trimethylammonium Choline metabolism, tumours 
[11C]CIT [N-methyl-11C]-2-β-carbomethoxy-3-β-(4-

iodophenyl)-tropane 
Dopamine re-uptake sites in brain 

[11C]FLB 457 [2-O-methyl-11C]-(S)-N-(1-ethyl-2-pyrrolidinyl)-5-
bromo-2,3-dimethoxybenzamide 

Extrastriatal dopamine D2 receptors in  
Brain 

[11C]Flumazenil 8-Fluoro-5,6-dihydro-5-methyl-6-oxo-4H-
imidazo[1,5-a][1,4]benzodiazipine-3-carboxylic acid 
ester 

Benzodiazepine receptors in brain 

[11C]MeAIB α-[11C]methylamino-isobutyric acid System A amino acid transport  
[11C]Methionine (S)-2-amino-4-([11C]methylsulfanyl)- 

butanoic acid 
Amino acid transport, tumours 

[11C]Metomidate O-[methyl-11C]-(R)-1-(1-phenethyl)-1H-imidazole-5-
carboxylic acid methyl ester 

11β-hydroxylase activity in adrernal  
cortical tissue 

[11C]MP4A N-[11C]-methylpiperidine-4-yl acetate Acetylcholine esterase activity in brain 

[11C]NMSP N-[11C]-methylspiperone Dopamine D2 and serotonin  
5HT2 receptors in brain 

[11C]NNC 756 [methyl-11C]-(S)-(+)-8-chloro-5-(2,3-dihydro-
benzofuran-7-yl)-7-hydroxy-3-methyl-2,3,4,5-
tetrahydro-1H-3-benzazepine 

Dopamine D1 receptors in brain 

[11C]Raclopride [6-O-methyl-11C]-(S)-N-(1-ethyl-2-pyrrolidinyl)-3,5-
dichloro-2-hydroxybenzamide 

striatal dopamine D2 receptors in brain 

[11C]SCH 23390 [methyl-11C]-(R)-(+)-8-chloro-5-2,3,4,5-tetrahydro-3-
methyl-5-phenyl-1H-3-benzazepin-7-ol 

Dopamine D1 receptors in brain 

[11C]SCH 39166 [11C]Ecopipam Dopamine D1 receptors in brain 

[18F] Tracers 
[18F]CFT 2β-carbomethoxy-3β-(4-[18F]fluorophenyl)tropane Dopamine re-uptake sites in brain 
[18F]FBPA 4-dihydroxyboryl-2-[18F]fluoro-L-phenylalanine Amino acid transport, boron carrier for 

BNCT 
[18F]FDG 2-[18F]fluoro-2-deoxy-D-glucose Glucose metabolism 
[18F]FDOPA 4,5-dihydroxy-2-[18F]fluoro-L-phenylalanine Pre-synaptic dopaminergic function in 

brain 
[18F]FETNIM 4-[18F]fluoro-2,3-dihydroxy-1-(2-nitroimidazole-1-yl)-

butanol 
Tissue hypoxia 

[18F]Fluorodop 
amine 

2-(4,5-dihydroxy-2-[18F]fluorophenyl)ethylamine Adrenergic innervation and tone in  
Heart 

[18F]Fluorometar 
aminol 

(1R,2S)-2-amino-1-(4-[18F]fluoro-3-hydroxyphenyl)-
1-propanol 

Adrenergic innervation in heart 
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1.1.3 Applications of PET 

The PET method is a highly sensitive method for the investigation of biochemical reactions in 

the body with sensitivity reaching below 10-12 g. This enables scanning of the body without 

affecting at all biochemical reactions or introducing toxicity. Thus distribution and 

metabolism of drugs and necessary life compounds can be monitored. In many cases PET 

added valuable information to the existing methods of investigation and the whole case of 

study and therapy were changed. An example is the following case[5]. 

 

Fig. 3. [18F]FDG PET scan of a patient with metastatic melanoma[5] 
 

As Fig. 3 shows, a PET image of a 71 year old male with metastatic melanoma. The CT scan 

of the patient demonstrated a tumour of the distal femur and adjacent soft tissue with negative 

findings in the abdomen. A bone scan showed an abnormal femur and four spine lesions. 

Using the PET method, a whole-body [18F]FDG PET scan demonstrated numerous lesions 



INTRODUCTION 

 

8 

throughout the body (Fig. 3). The patient was originally scheduled for an amputation based on 

CT and bone scan results.  After the PET scan found multiple lesions, treatment was changed. 

The surgery was cancelled, avoiding both the cost and the trauma of an operation that would 

not have been effective.  

 
 
1.2 Fluorine-18 

 
1.2.1 Production of Fluorine-18 

 
Fluorine-18 can be produced in a nucleophilic as well as an electrophilic form using various 

types of nuclear reactions. Tab. 3 shows the most important ones. Many labelling 

methods, based on both chemical forms of fluorine-18 (see 1.3), have been published in the 

last decade. 

Tab. 3. Important production methods for fluorine-18[3]. 

Reaction Target Beam energy (MeV) Product Production 
Rate (MBq/µAh) 

18O(p,n) H2
18O 11 

15 
[18F-] 
[18F-] 

1500 
2200 

16O(3H,p) H2O 22 [18F-] 200-400 
16O(α, d) H2O 30 [18F-] 40 

20Ne(d, α) F2/Ne 11 [18F]F2 400 
20Ne(d, α) H2/Ne 11 H[18F] 400 

 

Nowadays, mainly two target-systems are used to produce fluorine-18, the neon-20 target 

(Tab. 3, line 5 and 6) and the 18O enriched water target (line 1). The use of an [18O]water 

target is widely applied due to its reliability and the high yield of the nuclear reaction. In 

a neon target, fluorine-18 can be produced as an electrophilic 18F reagent directly as [18F]F2 or 

in a chemically different form such as [18F]acetylhypofluorite. 
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The use of a 1 % fluorine/neon gas mixture in the target leads to the formation of [18F]F2. The 

[18F]F2 that is formed in the target is highly reactive and interacts strongly with the target 

wall. The target has to be treated in advance with F2 in order to coat the target wall with F2: 

the target is “passivated”. The fluorine acts as a kind of “carrier gas” by facilitating the 

transport of the radioactivity from the target to the laboratory. The addition of non-radioactive 

fluorine to the target results in a lower specific activity of the produced fluorine-18, so this 

production method is not applicable for the synthesis of receptor binding ligands which 

require a high specific activity. [18F]F2 can not be prepared as a no-carrier-added (nca) 

reagent. 

The addition of hydrogen gas to the neon target leads to the in-situ formation of H[18F]. The 

[18F]fluoride can be isolated from the target as anhydrous H[18F] by a stream of hydrogen gas 

or as aqueous [18F]fluoride by rinsing the target with a small volume of water. 

In an [18O]water target, [18F]fluoride is produced efficiently in high yields and in short time 

and so it is used widely nowadays in most PET centres. 

 

1.2.2 Specific Activity 

The extent to which a compound labelled with a radionuclide is diluted with the non 

radioactive isotopic compound is referred as the specific activity. The specific activity is 

calculated from the ratio of the amount of radioactivity (Becquerel, Bq or Curie, Ci) and the 

molar concentration of the compound (mol) and is usually expressed in GBq/µmol or 

Ci/mmol[6]. The maximum theoretical specific activity of fluorine-18, with a half-life of 110 

min, is 63,000 GBq/µmol (1.7 x 106 Ci/mmol). In practice much lower specific activities are 

obtained due to the unavoidable dilution with the non-radioactive stable element. The specific 

activity of a product is of importance, because many applications of PET (such as studying 

receptors in brain) require the administration of only a very small molar concentration of the 
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labelled biomolecule to the patient, hence a high specific activity is required which means 

also the no-carrier-added (nca) form. 

 

1.2.3 Properties of Fluorine-18 

Fluorine, as an element, is in many ways unique, both in chemical characteristics and 

usefulness in the pharmaceutical and chemical industries. Fluorine has a very small steric size 

and its bond with carbon exhibits very high bond energy. As fluorine is extremely 

electronegative, it can often produce significant and useful changes in physiochemical and 

biological properties of organic compounds[7]. In some cases, substitution with fluorine 

produces a derivative with improved pharmacological properties. Although sometimes 

considered as an isosteric replacement for hydrogen, the differences in electronegativity and 

hydrogen binding capability of fluorine make it more alike substituent for a hydroxyl group. 

Fluorine-18 (discovered as early as 1937) decays for 96.9 % by the emission of a positron (β+) 

and a neutrino. This emission is the result of a transformation of a proton into a neutron in the 

nucleus. The nuclide which is formed in this process is oxygen-18. The remaining 3.1 % of 

fluorine-18 decays by electron capture. 

 

18F  →   18O  +   β+  +  v 
 
 
 

The moderate length half-life of 110 minutes allows enough time in the synthesis of 

radiopharmaceuticals. Usually, a synthesis time of no more than three half lives of 

a radionuclide is applied. In case of 18F this means about 5.5 h. In practice lengthy procedures 

are rarely used. The relatively long half-life of fluorine-18 (in comparison, for example to 

carbon-11, oxygen-15 and nitrogen-13) permits large scale production of [18F]fluorine 

labelled radiopharmaceuticals and distribution to distant locations (the satellite concept)[3]. In 
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case of carbon-11, and because of the short half-life, the distribution is mainly limited 

applications on site (in-house production). 

 

1.2.4 Reactivity and Recovery of Fluorine-18 

Fluorine is the most electronegative element of the periodic table and it is one of the three 

elements (N, O and F) which can act as a H-bond acceptor. The fluoride ion is therefore 

strongly solvated in protic solvents such as water or methanol. The use of protic solvents or 

even the presence of water in the reaction mixture leads to a serious decrease in the reactivity 

of [18F]fluoride. Therefore, it is necessary to manipulate [18F]fluoride in such a way that it is 

obtained in an unsolvated form and reactions must be performed in aprotic solvents, such as 

DMSO or DMF. Methods for the recovery of [18O]water and the isolation of [18F]fluoride 

include simple distillation techniques or other methods such as electrolysis and the use of 

ion-exchange resins[3]. However, one of the main problems in the recovery of fluorine-18, like 

any other radioactivity, is the adherence to vessels used. In this case, a percentage of fluorine-

18 radioactivity is lost, depending on the type of material used for making a particular vessel. 

For [18F]fluoride, washing with water as a solvent can recover most of radioactivity. 

 

1.3 Electrophilic and Nucleophilic Aromatic Fluorination Reactions 

1.3.1 Fluorination Reactions 

Fluorine can be introduced into organic compounds using a variety of methods, such as the 

direct addition of fluorine, fluorine containing reagents to multiple bonds, or the substitution 

of a leaving group by electrophilic or nucleophilic fluorine or fluorine-containing reagents[7]. 

However, the number of fluorination methods is relatively limited when compared to other 

halogenations. This is because most fluorinating reagents are either very toxic, corrosive to 

glass and metals or very reactive. In most cases this limits the work of fluorination to solid or 

liquid non-volatile reagents[7]. The work with fluorine-18 (with good protection from 
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radiation) is safer because it is mostly performed automatically using commercially available 

modules. The number of reagents available for 19F fluorinations is larger than that for 18F 

reactions. The reason is related to the decay in case of the radioactive 18F and the need to 

establish all of the work, including the synthesis of reagents in-situ and the fluorination 

reaction within limited time. Whereas in 19F fluorination reactions it is easy to follow up the 

reaction by the usual spectroscopic techniques (1H NMR, 13C NMR, 19F NMR, .. etc), it is 

difficult to follow up the [18F]fluorination reactions unless the standard is available for quick 

comparison in TLC and HPLC[3,4]. Normally special radiochemical methods are needed. The 

large excess of the precursor relative to the 18F label gives the nonstochiometric labelling 

process special characteristics. Many 18F labelling reactions, therefore, are successful 

although they are difficult in the cold way, i.e. with 19F. In electrophilic fluorination reactions, 

where most reagents are very highly reactive, usually several sites are susceptible for attack, 

and in this case several products are obtained. However, the regioselectivity in these reactions 

can be optimised by introducing a very good leaving group in the right place. This usually 

increases the number of steps in any synthesis. In nucleophilic fluorinations, the reagents are 

less reactive and the presence of leaving groups other than hydrogen is assumed previously, 

so the regioselectivity is very high (unless there are several different leaving groups or in case 

of the fluoride ion acting as a base instead of a nucleophile). Tab. 4 gives a summary of the 

main methods used in fluorinationreactions.
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Tab. 4. General methods used for fluorination in lab or industrial scales[8]. 

Method of fluorination Types of compounds or reactions Common reagent 

1. Polychloroalkanes 
AHF/SbCl5 (liquid phase) 
AHF/Cr-based catalysts (vapour. Phase) 
SbF3/SbCl5 (lab. scale) 

2. Gem-dihalogeno-alkanes (or-cycloalkanes) HgO/AHF or HgO2; SbF3; AgBF4 
3. Monohalogenoalkanes KF; AgF; CuF; TBAF 
4. Allylic or benzylic “activated“ positions AHF; SbF3; AHF/SbCl5;  SbF3/SbCl5;  
5. Carbonyl compounds KF; AgF; AHF/Cr-based catalysts 

A. Halogen exchange: 
 

C-X → C-F 

6. “Activated“ nuclear halogeno-aromatics KF; [18F]KF ; HF; NaF 

1. Fluorodehydroxylation AHF/pyridine/NaF; SF4; SF4/AHF 
(C2H5)2NSF3 (DAST); (C2H5)2NCF2CHFX 

2. Ester fluorolysis (Ts = 4-CH3C6H4SO2; Tf = CF3SO2) KF; CsF; TBAF; TMAF 

3. Thermal fluorodecarboxylation of halogenoformates CaF2; COFCl; KF; AHF/pyridine 
BF3O(C2H5)2; AHF/AlF3 

4. Ring-opening of epoxides AHF/pyridine; AHF/ BF3O(C2H5)2 
(i-C3H7)2NH.

3HF 

B. Oxygen replacement: 
 

C-OX       → C-F [OX= OH, OSO2R, OC(O)F,  
                                  OC (epoxide components)] 
C=O         → CF2 
C(=O)OH → CF3 5. Replacement of oxygen in aldehydes, ketones and  

     carboxylic acids SF4(+HF or BF3); DAST 

1. Deaminative fluorination of α–amino acids AHF/pyridine/NaNO2 
2. Fluorodediazonisation of aromatic diazonium salts AHF/NaNO2; HBF4 aq or  NaBF4 

C. Nitrogen replacement: 
 

C-NH2  →  C-N2
+  → C-F;    C-N-C  → CF-N-C 3. Ring-opening of azirine and aziridines AHF/pyridine 

1.Electrophilic fluorination with fluorine 
   a. Directly in aliphatic systems 
   b. Directly in aromatic systems 

F2/N2 
[18F]F2/Ne 

2. Electrophilic fluorination with “fluorine  
    carriers (prepared from F2) 

CF3OF; XeF2/HF, (C6H5SO2)2NF 
FClO3; (CF3SO2)2NF; (C6H5SO2)2NF 

D. Replacement of hydrogen: 
 

C-H → C-F 
3.Anodic fluorination of aromatic hydrocarbons  
   (Knunyants-Rozkhov ECF) TEAF; (C2H5)3N.HF 

E. Addition to C=C or C=C bonds  

AHF/pyridine; AHF/pyridine/NBA or NBS 
AHF/pyridine/ NBS then AgF/AHF/ pyridine 
HF/SbCl5; KF/H2NCONH2; IF5/I2 
BrF3/Br2; XeF2 
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Tab. 4 shows that substitution methods are more important than addition methods in 

fluorination reactions. Moreover, methods for aliphatic fluorination are more numerous and 

variant than those for aromatic fluorination. Owing to the importance of this field of research, 

there has been extensive research and developments in the last decades, and numerous 

reviews and books were edited[7-10,15-17]. Since the development of PET and the need for new 

radiopharmaceuticals with new structures and new applications, fluorination reactions have 

been widely studied with the hope to find more suitable reagents and methods to facilitate the 

introduction of the fluorine atom into organic compounds. The introduction of a fluorine atom 

into an aromatic ring is still limited to a small number of reactions and remains always an 

active area of research. In this work the focus is limited only to the nucleophilic aromatic 

substitution by [18F]fluoride. 

 

1.3.2 Electrophilic Aromatic [18F]Fluorination Reactions  

These methods rely on fluorine [18F]F2 or reagents that can supply electrophilic fluorine[9]. 

These reagents create a chemical environment in which the fluorine atom is highly polarized 

with a partial positive charge[3]. Hence, it is possible to fluorinate a variety of electron-rich 

substrates like the aromatic compounds. Although electrophilic fluorination reactions are fast 

and efficient, labelling reactions with fluorine-18 can only provide low specific activity of 

fluorine-18 radiopharmaceuticals because they rely mostly on [18F]F2 (or reagents derived 

from it) which is always produced in the carrier-added mode. Thus, all electrophilic 

18F-fluorinations are necessarily carrier-added and result finally in radiotracers with low to 

at-best moderate specific activities. Unless there is a good leaving group in place of the 

incoming fluorine-18, most of these reactions are also non-regioselective, producing a mixture 

of [18F]fluorinated products. This has limited the usefulness of electrophilic fluorinations to 

the synthesis of radiopharmaceuticals for which there is no need of high specific activity, and 
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where the chemical species in question are not toxic. The following is a brief list of some 

electrophilic fluorination reagents[3]: 

1- Elemental fluorine, [18F]F2: This is the simplest reagent in this class. It is produced 

through the deuteron bombardment of a high-pressure neon gas target containing 

0.1 % to 2 % of carrier added F2 according to the following reaction: 

20Ne(d, α)18F 

The reagent is actually 18F–19F diluted in normal fluorine gas, i.e. 19F–19F. Several 

modifications were introduced into this method to improve the final specific activity.  

 

2- [18F]Trifluoromethyl hypofluorite, [18F]F-CF2O[18F]F: This reagent is produced by 

caesium fluoride mediated reaction between [18F]F2 and carbonylfluoride.  

[18F]F2  +   F2C=O      →      [18F]F-CF2O[18F]F 

Optimal conditions are obtained within 15 minutes of reaction at 110 °C producing 

yields up to 33 % of CF3O[18F]. 

 

3- [18F]Acetyl hypofluorite, [18F]CH3COOF: This reagent is produced by a well-known 

method according to the following reaction: 

[18F]F2  +   CH3COONH4      →      CH3COO18F (40 %)   +    NH4
18F 

this method was later improved by the following gas-solid reaction: 

[18F]F2  +   AcOH.AcOK      →      CH3COO18F    +    [18F]HF.AcOK 

 

4- [18F]Perchloryl fluoride, [18F]FClO3: The method for producing this reagent 

involves passing [18F]F2 through a column containing KClO3 maintained at 90 °C. 

[18F]F2  + KClO3    →     18FClO3     +   K18F 
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1.3.3 Nucleophilic [18F]Fluorination Reactions  

[18F]Fluoride is mainly obtained as an aqueous solution, most often as a product of direct 

irradiation of [18O]H2O target. In aqueous form [18F]fluoride is unreactive, and requires some 

simple but very important manipulations to provide a reactive nucleophilic reagent. The steps 

in preparing reactive [18F]fluoride are the following[3]: 

Addition of a cation: After irradiation of [18O]H2O target, the [18F]fluoride must be 

accompanied by a positively charged counterion. This is mainly solved by the addition of 

a cationic counterion (mostly potassium complexed by a cryptand such as Kryptofix 222®, or 

tetraalkylammonium salts) prior to the evaporation of the water. Many syntheses now utilize 

the potassium/Kryptofix® system, although examples of the use of tetraalkylammonium salts 

are frequently encountered in the literature. The carbonate ion CO3
-2 is mostly used as the 

counterion because it has low nucleophilicity and moderate basicity. 

Water evaporation: Aqueous [18F]fluoride is quite unreactive. Hence, water is evaporated 

first by application of heat (130-160 °C) and second the use of a relatively volatile solvent 

such as acetonitrile (azeotropic distillation) under a mild stream of an inert gas like argon. 

This method provides practically anhydrous and reactive [18F]fluoride.  

Addition of the precursor solution: The residue from the last step contains [18F]fluoride in 

an excellent dry and “naked” form, suitable for the substitution reaction. The precursor is 

usually added to this residue as a solution. In general, dipolar aprotic solvents are used, 

because many organic compounds used as precursors dissolve only in them and they readily 

solubilize [18F]fluoride (particularly the K+/Kryptofix® pair). In addition, nucleophilic 

substitution reactions are favourable in dipolar aprotic solvents. Solvents such as DMSO and 

DMF are inert towards [18F]fluoride. In addition to being a strong nucleophile, [18F]fluoride is 

also a strong base, therefore all reactions performed in polar protic solvents (such as methanol 

and ethanol) fail. The majority of [18F]fluorination reactions using fluoride ion are done in 

solvents such as DMSO, DMF, DMAc or acetonitrile. 
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In these dipolar aprotic solvents, the nucleophilicities of halide ions in SNAr reactions follow 

the order[10]: F- >> Cl- > Br- > I-. However, nucleophilic [18F]fluorination reactions can be less 

frequently performed in other solvents such as THF and dichloromethane. The choice of 

solvent is predicted on the solubility of other reagents, the type of chemical reaction being 

performed, or simplification of the subsequent work-up and product isolation procedure. In 

the last few years, ionic liquids were applied successfully[11] as a media to carry out 

nucleophilic fluorination. These solvents can be recycled (they have practically no vapour 

pressure, hence they are safe for the environment). Another very important advantage is the 

fact that they tolerate the presence of water up to 20 % in solution. This is very important in 

fluorination reactions where traces of water can reduce the yield drastically. The use of ionic 

liquids as a media for [18F]fluorinations[12-14] is being extended now to other important tracers 

like [18F]FDG and [18F]FLT. 

 

1.3.4 Nucleophilic Aromatic [18F]Fluorination Reactions 

Aromatic nucleophilic substitution is an important reaction for introducing fluorine to a ring. 

This reaction is activated by electron withdrawing groups ortho and/or para to the leaving 

group. The mechanism is generally the SNAr. The leaving groups are usually NO2
−, F−, Cl−, 

Br−, OTs−, NR3
+ and others. The nucleophilic ways for putting a fluorine atom into the 

aromatic ring are generally less than for the other halogens, and normally involve one of the 

following:  

1- Fluorodenitration reactions (Ar-NO2  + F− →  Ar-F)[15-16]. 

2- Fluorodehalogenation reactions (Ar-X + F−  →   Ar-F),   X= Cl, Br, I and F (fluorine 

isotopic exchange)[15-16]. 

3- Fluorodediazonation reactions (ArN2
+ + BF4

-   →    Ar-F + N2 + BF3 )[17]. 

4- Fluorination via substitution of trimethyammonium group (Ar-NMe3
+  + F−  →   Ar-F)[18]. 

5- Dialkyltriazine substrates (Ar-N=N-NR2  +  F−   →     Ar-F  +  N2 + R2N-) [19]. 
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6- Diaryliodonium substrates (Ar-I+-Ar' +  F−   →    Ar-F  +  Ar'-F) [20]. 

7- Fluorination via substitution of dimethylsulfonium group (Ar-SMe2
+ + F−  →   Ar-F)[21]. 

Fluorination of aryl rings by nucleophilic displacement forms one example of significant 

differences between organic chemistry and radiochemistry. Nucleophilic aromatic substitution 

performed in the organic/medicinal laboratory often requires high temperatures and long 

reaction times with low-moderate yields. However, the reaction proceeds very rapidly, at 

moderate temperatures and in high yields when done at the nca level using [18F]fluoride. 

Nucleophilic aromatic substitution has thus become a method used widely in fluorine-18 

chemistry, and there are some common characteristics of all applications, noted in the 

following sections. 

 

(a) A good leaving group on the aromatic ring is needed. The nitro (-NO2) and the 

trimethylammoniumtriflate [-NMe3OTf] groups are the most widely utilized leaving groups in 

aromatic substitutions with [18F]fluoride. Less frequently halogens are used. The recent 

groups, such as diphenyliodonium (Ar-I+-Ar'), have the advantage of not needing activating 

groups on the ring but they have problems associated with specific activity limitations. Simple 

isotopic substitution, 18F for 19F, is also a very good method for the synthesis of radiotracers. 

However, the low specific activity from these isotopic substitutions make this process 

unsuitable and limits its use only to low-specific activity applications. 

 (b) The aromatic ring needs to be activated, for the aromatic nucleophilic substitution to 

proceed efficiently, by the presence of one or more electron-withdrawing groups (EWG), 

preferably ortho or para to the leaving group (sometimes with the meta position, good results 

are obtained). A wide variety of substituents can function as electron-withdrawing groups, 

including nitro, ketone, aldehyde, nitrile, ester, amide, halogens and groups derived from 

them (CX3). Studies[38,44] utilizing 13C NMR have shown a direct correlation between 

withdrawing power of a substituent and yields in nucleophilic aromatic substitutions by 
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[18F]fluoride. The choice of activating group often depends on the structure of the desired 

final product, or the sequence of synthetic steps to be followed after the introduction of 

[18F]fluoride. For example, the activating group may form a part of the desired product, and 

this is a very good case because it does not need further steps for removal. The activating 

group can also be conveniently transformed into the needed structural component. For 

example: 

CN             →           CH2NH2  

CN             →           CONH2  

                                                    CN             →           COOH  

                                                   CHO          →            CH2OH  

                                               CONH2          →            CH2NH2 

In some cases, activating groups can be temporarily placed on the aryl ring and subsequently 

completely removed. This process is necessary for the placement of [18F]fluoride at positions 

of a ring that cannot be activated towards substitution. An example here is the aldehyde group 

which can be removed by catalytic deformylation[22] (using Rh[PPh3]3Cl) or the carboxyl 

group which can also be removed by decarboxylation. 

 

1.4 Dopamine and Related Compounds 

 

1.4.1 Catecholamines 

Dopa (3,4-dihydroxyphenylalanine) is  a precursor of a family of biological compounds called 

catecholamines. The principal catecholamines are norepinephrine, epinephrine and dopamine. 

These compounds are formed initially from phenylalanine and tyrosine. Tyrosine is produced 

in the liver from phenylalanine through the action of phenylalanine hydroxylase. Tyrosine is 

then transported to catecholamine-secreting neurons where a series of reactions convert it to 
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Dopa, dopamine, norepinephrine and finally to epinephrine. These transformations are 

explained in Fig. 4. 

 

Fig. 4. Scheme for the synthesis of catecholamines from tyrosine. 

 

1.4.2 The Dopaminergic System and Dopamine 

 In brain several bodies of nerves containing dopamine are concentrated in the substantia 

nigra and project to the caudate nucleus (neostriatum): this is the nigrostriatal pathway. 

Dopamine systems with cell bodies dorsal to the interpeduncular nucleus (midbrain area) and 

with terminals in the nucleus accumbens and olfactory tubercle (forebrain areas) have also 

been  identified: this is the mesolimbic system. This dopaminergic system is shown in the 

Fig. 5. 
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Fig 5. The dopaminergic system[23]. 

 

Communication between neurons takes place through the release of several compounds such 

as dopamine, a neurotransmitter stored in presynaptic vesicles, which binds postsynaptic 

receptors. Dopamine, present in a free state or outside the presynaptic terminal, can be 

metabolized via distinct pathways. In the noradrenaline containing neurons, benzylic 

hydroxylation of dopamine, catalyzed by the enzyme dopamine-β-hydroxylase (DBH), 

produces the neurotransmitter norepinephrine. In dopaminergic neurons, dopamine can be 

degraded to homovanillic acid (HVA) and conjugates. The oxidative deamination to HVA 

proceeds via two steps. Most of the dopamine is converted to 3,4-dihydroxyphenylacetic acid 

(DOPAC) via the enzymes monoamine oxidase (MAO) and aldehyde reductase. There are 

two types of MAO: MAO-A and MAO-B. Most MAO is present outside the dopaminergic 

neuron. DOPAC is converted to HVA, catalyzed by the enzyme catechol-O-methyltransferase 
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(COMT). As the third pathway, dopamine can also be directly inactivated by the enzyme 

COMT, giving 3-methoxytyramine (3-MT) which is subsequently deaminated by MAO to 

give HVA. COMT is an enzyme, which is predominantly localized outside the catecholamine 

neurons. Fig. 6 illustrates these transformations[23]. 

 

OH
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NH2MeO
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MeO COOH
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OH COOH
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3-Methoxytyramine
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Fig. 6. Scheme for the metabolic pathways of dopamine[23]. 

 

1.4.3 Biological Role of Dopamine and Dopa: Applications in Medicine and 
Pharmacy  

 

Parkinson's disease, which  is caused by a shortage of dopamine production in the nerve cells, 

is normally treated by giving patients L-dopa to supply the dopamine that is missing. The 

predominant neuropathologic feature in Parkinson's disease is a degeneration of the 

dopaminergic cells in the substantia nigra. This results in a marked loss of cerebral, especially 

striatal dopamine. The severity of neuronal loss correlates with the clinical severity of 

Parkinson's disease. Therefore, the most common therapeutic strategy has been directed along 

the metabolic pathways of dopamine, therefore L-dopa is currently the most effective therapy 

for Parkinson's disease. However, L-dopa only helps with symptoms and does not prevent the 

disease from progressing.  
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1.4.4 Dopa and Dopamine: Applications in PET  

For PET studies several 18F and 11C tracers, related to the structure of dopa and dopamine, 

were developed and were found to be very useful for studying dopamine production, transport 

and metabolism. Examples of such tracers include [18F]FDOPA and [18F]FTYR (meta and 

para). These internationally well-established tracers are used mostly for clinical investigations 

of cerebral disorders such as the Parkinson's disease. Therefore, research is directed towards 

developing commercial production methods which can be applied for large scale production 

suitable for multi analyses.    

 

 

 



THE PROBLEM 

 

24 

 

 
 
2 THE PROBLEM 

Among the several known neurotransmitter systems, special interest has been directed 

towards the study of the dopamine receptor system which is linked to a number of disorders 

such as Parkinson’s disease, Huntington’s Chorea, Tardive dyskinea and schizophrenia. 

Effects of variability in dopamine receptor density and information on the status of those 

receptors are of great interest for the study of pathogenesis as well as therapeutic 

interventions. Positron emission tomography (PET) provides direct access to the in-vivo 

biochemistry of those disorders and, consequently, to brain receptors. This scanning technique 

is a method for direct in-vivo quantification of the regional receptor distribution in the brain 

and other organs. For instance, PET imaging with a radiolabelled D2 receptor ligand allows 

in-vivo visualisation of the postsynaptic receptors.  

Since 1985, [18F]FDOPA (1) is an internationally well accepted and applied radiotracer for 

the evaluation of the presynaptic dopaminergic functions by means of PET. It is converted to 

6-[18F]fluorodopamine and subsequently metabolized similarly to the nonfluoro analogue. 

Thus, [18F]FDOPA is applied in patients with hemiparkinsonian symptoms and in Parkinson’s 

disease.  

 

OH

OH F18

COOH

NH2
 

[18F]FDOPA, (1) 
 

The production of [18F]FDOPA is still limited to a low scale. The labelling is mainly 

performed in the electrophilic way and that gives rise to serious problem of general 

importance: the specific activity is low because the product is obtained in the carrier added 
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form. In the nucleophilic way of labelling, however, the problem is how to optimize the 

structure and the conditions of the reaction in order to obtain both a high yield and a high 

specific activity. Tab. 5 gives a summary of some results obtained in the last twenty years. 

Syntheses reported in literature are not satisfactory (3-11 %), however, in the last few years 

the yields were improved (15-25 %) together with a high chemical, radiochemical and 

enantiomeric purity. Yet, data available until now are insufficient for applying the route of 

nucleophilic substitution in case of  [18F]FDOPA. 
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Tab. 5. Reported synthetic routes of [18F]FDOPA 

Type of 
reaction No Labelling 

reagents 
Labelling 

precursors
Leaving 
groups 

RCY 
(%) 

Synthesis 
time (min)  Ref. 

1 [18F]F2 (a) H 3 120 24 
2 (b) H 4 100 25 
3 (c) HgOCOCF3 8 50 26 
4 

[18F]AcOF 
(d) H 10-14 60 27 

5 (e) SiMe3 8 60 28 

Electrophilic 
Aromatic 

substitution 

6 [18F]F2 (f) SnMe3 26 45-50 29 
7 (j) NMe3OTf 25-30 100 30 
8 (g) NO2 16 ± 5 110-120 31 
9 (g) NO2 5 100 32 
10 (h) NO2 5 100-110 33 
11 (g)/(h) NO2 5 110 34 
12 (j) NMe3OTf 11-15 90 35 
13 (g) NO2 6-13 85 33 
14 (g) NO2 1 125 36 
15 (j) NMe3OTf 4-9 80-85 37 
16 (h), (i) NO2 12 110 38 

Nucleophilic 
Aromatic 

substitution 

17 

[18F]F- 

(g)/(h) NO2 3-5 120 39 
Comp. R1 R2 R3 R4 R5 X 

(a) H H H H H H 
(b) Me MeCO Me H MeO H 
(c) Me Me Et H COCF3 HgOCOCF3

(d) H/Me3CCO Me3CCO H H H H 
(e) Me Me Et CArH SiMe3 
(f) BOC BOC ET H BOC/CHO SnMe3 

R1O

R2O X

COOR3

NR4R5
 

(a)- (f)  

MeO

MeO

CHO

G  
(g) G= NO2 

(j) G= NMe3OTf  

CHO

NO2

O

O

R

R
 

(h) R= H 
(i) R= CH3 
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For the electrophilic production commercial modules are available. The precursors can also be 

obtained commercially. However, for the nucleophilic production of [18F]FDOPA there are no 

such commercial modules and the process still needs a considerable effort for development. 

Although yields up to 30 % were reported in the last few years, the commercial application 

and the large scale production suitable for PET centers is still a challenge. To solve this 

problem, a systematic study for choosing the appropriate precursor including a better 

understanding of the theoretical background this is highly demanding. Therefore, the 

nucleophilic aromatic substitution is to be studied systematically with the focus on developing 

and/or finding new structures, new protection groups and new reaction conditions. In this 

work the development has to follow one of two parallel ways:   

1- Path A: improvement of the old, existing method (Fig. 7) which builds the tracer step by 

step starting from 6-substituted derivatives of veratraldehyde or piperonal (Tab. 5) by 

labelling in the first reaction, then building the side chain with the amino acid function 

and finally hydrolysing of all protected groups. These steps are to be optimized.  

 
RO

RO

CHO

NO2

RO

RO

CHO

F18

RO

RO

CH2I

F18

RO

RO F18

G OH

OH F18
NH2

COOH

 

Fig. 7. Scheme for reported synthetic pathway of [18F]FDOPA (path A) starting from 
6-nitroveratraldehyde (R= CH3). 

 
 
2- Path B: developing completely new precursors with different structures (Fig. 8). In this 

way, the precursor already contains the amino acid function and, thus, is ready for 

labelling by nucleophilic substitution (18F → 19F) followed by removal of the assisting 

electron withdrawing group (EWG) and hydrolysing of the protecting groups.  
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Fig. 8. Scheme for the suggested new synthetic pathway of [18F]FDOPA (path B). 

 

In order to get basically important information for solving the problem, in this work model 

precursors for the two pathways are to be examined and evaluated with respect to nucleophilic 

aromatic substitution by [18F]fluoride. For this approach aromatic substrates in which up to 

three different groups are present at the benzene ring. Most importantly, the substituents can 

be both electron donating such as the methoxy group or electron withdrawing such as the 

nitro group and it is to be found out if and how much the electron donating effect of even two 

groups can be compensated that labelling by nucleophilic substitution can be realised in good 

radiochemical yields. The data are important for the development in path A and B and for 

theoretical and mechanistic studies of these types of reactions.  
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3 RESULTS AND DISCUSSION 

3.1 Introduction 

 

In this study the radiochemical yields (RCY) are determined on the basis of the measurement 

by means of a gamma counter or bio imager and the data are calculated as the amount of 

radioactivity of the product related to the total activity present in solution. If necessary, the 

measurements are always corrected in a way to compensate the decay of the radionuclide. The 

dependencies of the RCY on temperature, concentration of precursor and on solvent were 

studied in detail at time periods of 5, 10, 20, 30 and 60 minutes for precursors of path A. For 

precursors of path B (see Chpt 3.6) and the aryl systems, usually one value for the RCY is 

determined at a fixed temperature and in one solvent within a reaction time of 10, 20 or 30 

minutes.  

The two main types of reactions studied here are: 

1- Fluorodenitration reactions:  Ar-NO2   →   Ar-18F 

2- Fluorodehalogenation reactions:  Ar-X   →   Ar-18F            (X= F, Br, Cl) 

The mechanism is generally the SNAr (Fig. 9) which involves two intermediate steps for the 

labelling with [18F]fluoride[40]. 

LG
F18 LG

F18
LG
F18

LG

F18

LG
F18

F18

LG

-

- -slow

fast
- + -

Step 1

Step 2

 

Fig. 9. Scheme for SNAr the mechanism of the nucleophilic aromatic substitution by 
[18F]fluoride. LG is a leaving group. 
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The protection of the hydroxyl groups is necessary in order to avoid the solvation of the 

fluoride-ion and to retain the activity of [18F]fluoride for the labelling reactions. For this 

purpose, methyl ethers (-OCH3), carboxylic esters (-OCOCH3, -OCOPh) and sulfonic esters 

(-OSO2Ph) were used. The results of the 18F labelling of aryl systems are presented, followed 

by the results of  [18F]FDOPA precursors (path A) and finally the results of  [18F]FDOPA 

precursors (path B). A general discussion following the results will summarise all data for 

comparison.   

  

3.2 Aromatic Nucleophilic Substitution by [18F]Fluoride on Aryl 
Systems 

  

3.2.1 Aryl Halides 

 

In general the labelling of mono substituted aryl halides gave very low yields because there 

are no SNAr enhancing groups and because the ability to act as a leaving group is less 

pronounced than in case of other groups. Bromobenzene gave yields in the range between 

0.4 % and 1.8 %. In case of disubstituted arylhalides the yields were improved to 5.6-15.7 % 

for the three dibromobenzenes but to a smaller extent for the three dichlorobenzenes 

(0.8-7.3 %). With trisubstituted arylhalides the activation is good enough and the yields were 

higher. Hence, two tribromobenzenes, i.e. the 1,2,4- and the 1,3,5- isomers gave RCYs in the 

range of 33.3-64.3 % within 20 min. These results are shown in Fig. 10 and 11. 
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Fig. 10. [18F] Labelling of bromobenzene derivatives (10 mg/mL) in DMF at 150 °C in 
dependence on time (Tab. 33 , App. 1). 
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Fig. 11. [18F] Labelling of three dichlorobenzene derivatives (10 mg/mL) in DMF at 
150 °C in dependence on time (Tab. 34 , App. 1). 
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3.2.2 Nitroaryl Derivatives  

 

Dinitrobenzenes (o-, m-, and p-) are particularly well activated for SNAr and the 18F labelling 

yields were expected to be high. In the case of the ortho isomer, this was observed previously. 

The labelling in DMF gave yields in the range of 78 % to 84 % within 20 min at temperatures 

between 80 °C and 120 °C. At higher temperatures the yields were smaller, so at 140 °C it 

started at 60 % within 5 min but decreased to only 15.2 % within 1 h. In acetonitrile, yields 

between 77 % and 84 % could be obtained within 20 min at temperatures between 60 °C and 

80 °C. Fig. 12 and Fig. 13 illustrate the results. 
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Fig. 12. [18F] Labelling of o-dinitrobenzene (10 mg/mL) in DMF. Dependence of the 
RCY on temperature (Tab. 35, App. 1). 
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Fig. 13. [18F] Labelling of o-dinitrobenzene (10 mg/mL) in acetonitrile. Dependence of 
the RCY on temperature (Tab. 35, App. 1). 

 

Halonitrobenzene derivatives are less activated than dinitrobenzene and they are expected to 

give lower yields. Moreover, the leaving group is also thought to be the most activated one, 

i.e. the halogen. In case of the three bromonitrobenzenes, the RCYs of the 

[18F]fluoronitrobenzene (conditions: DMF, 10 mg/ml, 150 °C, 10 min) followed the order:  

NO2

Br  

 

> 

NO2

Br

 

 

> 

NO2

Br  

(65.6 %) 
 

(46.5 %)  (30.0 %) 

 

The results are shown in Fig. 14. 
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Fig. 14. [18F] Labelling of three bromonitrobenzene isomers (10 mg/mL) in DMF at 

150 °C in dependence on time (Tab. 36, App. 1). 
 

3.2.3 Benzaldehyde Systems  

 

The aldehyde is a good electron withdrawing group, hence with a good leaving group the 

labelling yields are expected to be high. In fact, at high temperatures (> 100 °C) the labelling 

yields using o-nitrobenzaldehyde were in the range of 60-70 % within 20 min and increased 

slightly to 79 % within 1 h  (Fig. 15). 
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Fig. 15. [18F] Labelling of o-nitrobenzaldehyde (10 mg/mL) in DMF. Dependence of 

the RCY on temperature. (Tab. 37, App. 1). 
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For the other derivatives of benzaldehyde, Tab. 6 gives a summary of the labelling results 

together with those reported in literature. It can be seen that all the RCYs are between 65 % 

and 82 %. Moreover, the highest yields obtained are those compounds with the best leaving 

groups, i.e. with the nitro and the fluoro substituents. The yields using the para isomers are 

always higher than those of the ortho isomer. Compared to the literature, where only DMSO 

was used for labelling of all benzaldehyde precursors, it can be noticed that the yields are 

almost the same with respect to the 2-nitro derivative, and only improved a little bit in case of 

the 4-nitro isomer. The labelling yields of the halogeno precursors were highly improved 

when using DMF as a solvent. Hence, RCYs in the range 65-83 % could be obtained using 

DMF instead of 3-7 % using DMSO. Among halogens the ability to act as a leaving group 

was the following: 

F ≈ Br > Cl 
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Tab. 6. [18F] Labelling yields of ortho and para derivatives of benzaldehyde. 
(Conditions of this study: DMF(1 /mL), 10 mg/mL, 140-150 °C, 20 min). 

This work 

RCY (%) 
Literature 

Precursor 

TLC HPLC RCY (%) Conditions Ref. 

55.0 ± 10 DMSO (0.5 ml), 120-130 °C, 15 min 41 
78.0 DMSO (0.3 ml), 120 °C, 10 min 38 
65.0 DMSO (1 ml), 130-140 °C, 20 min 42 
53.0 DMSO (1 ml), 114 °C, 25 min 44 

50-60 DMSO (0.3 ml), MW, 4 min 45 
65.0 DMSO (1 ml), MW, 2 min 22 

2-Nitro 73.2 ± 0.2 
(n=3) 74.4 

76.0 DMSO (0.2 ml), MW, 0,25 min 46 

2-Fluoro 75.0 ±  1.6 
(n=1) 73.0 ±  2.5 - - - 

2-Bromo 73.0 ±  0.2 
(n=3) 75.0 ±  3.2 - - - 

2-Chloro 65.0 ± 1.1 
(n=3) 62.7 ±  4.6 - - - 

55 ± 10 DMSO (0.5 ml), 120-130 °C, 5 min 41 
70.0 DMSO (1.5 ml), 85-110 °C, 20 min 43 
65.0 DMSO (1 ml), 130-140 °C, 20 min 42 
53.0 DMSO (1 ml), 114 °C, 25 min 44 
65.0 DMSO (1 ml), 145 °C, 20 min 22 

50-60 DMSO (0.3 ml), MW, 4 min 45 
65.0 DMSO (1 ml), MW, 2 min 22 

4-Nitro 81.5 ±  5.9 
(n=3) 82.8 ±   5.0 

75.0 DMSO (0.2 ml), MW, 0,5 min 46 

4-Fluoro 78.3 ±  0.5 
(n=3) 80.0 ±  3.7 - - - 

3.0 DMSO (1.5 ml), 85-110 °C, 20 min 43 
4-Bromo 75.7 ±  0.5 

(n=3) 82.0 ±  1.2 7.0 DMSO (0.2 ml), MW, 0,5 min 46 

1.0 DMSO (1.5 ml), 85-110 °C, 20 min 43 
4-Chloro 65.7 ±  3.3 

(n=3) 69.7 ±  2.0 
6.0 DMSO (0.2 ml), MW, 0,5 min 46 
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3.2.4 Acetophenone and Benzophenone Systems  

A different good electron withdrawing substituent is the ketone group (COR, COAr). With 

a nitro group as a good leaving substituent the labelling yields are expected to be high. So the 

labelling of 4-nitroacetophenone was studied in detail using DMF and DMSO, respectively 

(Fig. 16 and 17). A clear dependence on temperature was observed in both cases. In both 

solvents the yields within 30 min were comparable to those at temperatures 50-140 °C and 

increased at 160 °C to be 60-73 % in DMF and 50-60 % in DMSO.  
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Fig. 16. [18F] Labelling of p-nitroacetophenone (10 mg/mL) in DMF. Dependence of 

the RCY on temperature (Tab. 39, App. 1). 
 



RESULTS AND DISCUSSION 

 

38 

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

50 °C

80 °C

100 °C

120 °C
160 °C
140 °C

RC
Y 

(%
)

Time (min)

 
 
Fig 17. [18F] Labelling of p-nitroacetophenone (10 mg/mL) in DMSO. Dependence of 

the RCY on temperature. (Tab. 39, App. 1). 
 
 

Tab. 7 shows the results of [18F]labelling of ortho and para acetophenones. 

2-Nitroacetophenone gave unexpectedly very low yield in accordance with the values 

reported  in the literature. A possible explanation is the existence of o-nitroacetophenone 

mainly in the form of an enol. In the enol form, the hydroxy group can easily form hydrogen 

bonding with the nitro group only if it is in the ortho position. This is a general structural 

feature observed with acetophenones having an ortho group that can form hydrogen bonding 

with the enol form of acetophenone. Examples of such groups include -OH, -NH2 and -NO2. 

For example o-hydroxyacetophenone exists predominantly in the enol form[105] (Fig. 18). 
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Fig. 18. Scheme for the keto-enol tautomerism in 2-hydroxy and 2-nitro 
acetophenone (data from X-ray studies)[105]. 

 

The existence of the enol form with its free hydroxyl group (even up to 10 %) diminishes the 

reactivity of [18F]fluoride hence low yields are expected to be obtained with 

o-nitroacetophenone. This reasoning is also supported by the fact that other structures, which 

can not form stable enol forms, gave high yields in the nucleophilic aromatic substitution by 

[18F]fluoride. Examples include p-nitroacetophenone, o- and p-nitrobenzophenone. The 

highest labelling yields were obtained from the fluoro derivative (75 %). The labelling yields 

of the 2-bromo, 2-chloro and 4-bromo derivatives were comparable and they were in the 

range 35-40 %. The labelling yields of the 4-nitro and the 4-chloro derivatives were very 

close to each other (59-61 %) but smaller than those of the fluoro analogue. 

 
 
 
 
 
 
 
 



RESULTS AND DISCUSSION 

 

40 

 
 

Tab. 7. [18F] Labelling yields of ortho and para derivatives of acetophenone. 
(Conditions in this study: DMF, 10 mg/mL, 150 °C, 20 min). 

This study 

RCY (%) 
Literature 

Precursor 

TLC HPLC RCY (%) Conditions Ref.

15.0 ± 5 DMSO (0.5 ml), 120-130 °C, 15 min 41 

10-22 DMSO (1 ml), MW, 2.5-5 min 46 2-Nitro 13.3 ± 0.9 
(n=3) 

13.3 ± 1.7 
(n=3) 

11.0 DMSO (0.2 ml), MW, 0,4 min 47 

2-Fluoro 70.1 ± 1.3 
(n=3) 

75.0 ± 0.8 
(n=3) - - - 

2-Bromo 39.3 ±  2.9 
(n=4) 

34.3 ±  2.6 
(n=4) - - - 

2-Chloro 37.7 ± 5.4  
(n=34 

37.0 ±  5.9 
(n=4) - - - 

61 ± 10 DMSO (0.5 ml), 120-130 °C, 20 min 41 

34.0 DMSO (0.5 ml), 160 °C, 20 min 48 
40-50 DMSO (1 ml), MW, 5 min 45 
63.5 DMSO (1 ml), MW, 2.5 min 49 

4-Nitro 61.7 ± 3.9  
(n=4) 

60.8 ± 2.5 
(n=4) 

71.0 DMSO , MW, 0,5 min 48 

4-Fluoro 74.7 ± 1.2 
(n=2) 75.0 (n=1) 75 DMSO (0.5 ml), 160 °C, 20 min 48 

4-Bromo 35.3 ±  1.7  
(n=4 

31.5 ±  3.2 
(n=4) 6.0 DMSO (0.5 ml), 160 °C, 20 min 48 

4-Chloro 59.0 ±  3.6 
(n=4) 

58.7 ±  3.8 
(n=4) 28.0 DMSO (0.5 ml), 160 °C, 20 min 48 
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Tab. 8. [18F] Labelling yields of ortho and para derivatives of benzophenone. 
(Conditions in this study: DMF(1 mL), 10 mg/ mL, 140-150 °C, 20 min). 

This study 

RCY (%) 
Literature 

Precursor 

TLC HPLC RCY (%) Conditions Ref. 

2-Nitro 78.7 ± 1.9 
(n=5) 

78.4 ± 4.3 
(n=5) - - - 

2-Fluoro 91.2 ± 1.0 
(n=4) 

92.3 ± 0.6 
(n=4) - - - 

2-Chloro 6.6 ± 2.2  
(n=7) 

6.2 ± 0.9 
(n=7) - - - 

93 ± 2 DMSO, 130 °C, 5 min 41 
4-Nitro 86.8 ± 4.8  

(n=4) 
88.6 ± 3.3 

(n=4) 
52 DMSO, 160 °C, 20 min 50 

4-Fluoro 83.3 ± 3.0 
(n=4) 

83.0 ± 1.9 
(n=4) - - - 

4-Bromo 76.0 ± 2.6  
(n=4) 

76.5 ± 3.7 
(n=4) - - - 

4-Chloro 70.7 ±  3.6 
(n=4) 

71.7 ±  4.5 
(n=4) - - - 

 
 
With regard to the benzophenone derivatives the results are illustrated in Tab. 8. With 

benzophenones the labelling yields were higher than those with acetophenones. That means 

that the -COPh group is better than the corresponding -COCH3 group for enhancing SNAr. 

Furthermore, the highest labelling yields (83-92 %) were obtained with the fluoro and the 

nitro derivatives. With the exception of the fluoro derivative, the para isomers gave higher 

yields than the ortho isomers. This can be explained by the steric hindrance provided by the 

second ring in the ortho position (because the fluorine atom is small, the steric hindrance in 

case of the 2-fluoro derivative is small, hence the yield still is high).  



RESULTS AND DISCUSSION 

 

42 

 

An order of the leaving group ability can be written here as:  

F> NO2 > Br > Cl             (ortho derivatives of benzophenone) 

NO2 > F > Br > Cl             (para derivatives of benzophenone) 

Unfortunately no literature data exist for most of these precursors for the purposes of 

comparison.  

3.3 The Calculation of Activation Energy by Means of the Arrhenius 
Equation 

 

From the curves showing the dependency of the RCY on temperature it is possible to 

determine the rate constants and the activation energy of these reactions. A labelling reaction 

is assumed to follow pseudo-first-order kinetics[44] since the organic substrates were present in 

extremely large excess over the nca [18F]fluoride. The equation for the speed of such 

a reaction is equivalent to the following differential equation: 

-d [18F-] / dt = k′[18F-]  

where k′ is the rate constant. Separating the variables gives: 

-d [18F-] / [18F-] = k′dt 

integrating this equation (boundary conditions Co → C and 0 → t) gives: 

-ln ([18F-]t / [18F-]o)  = k′t 

– (ln ([18F-]t – ln [18F-]o) = k′t 

ln [18F-]o – ln [18F-]t = k′t 

ln  ([18F-]o / [18F-]t)  = k′t  

introducing [18F-]t = [18F-]o – RCY      we get the following: 

ln  ([18F-]o / [18F-] o – RCY) = k′t        or         ln  (1 – RCY/ [18F-] o)  = k′t 

which is equivalent to:              ln  (1 – RCY)  = k′t 

hence a graph of ln (1-RCY) versus reaction time gives a linear function with the slope of –k′.  
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The temperature dependency of the labelling reactions is given by the temperature 

dependency of the rate constant[51]. The rate constant increases exponentially with increasing 

temperature. This is expressed usually by the following equation: 

k = A e-b/T 

where A and b are empirically determined constants. 

According to Arrhenius, the constant b can be replaced by –Eact/R, where Eact is the activation 

energy and R is the gas constant (R = 8.314 J/K mol). Therefore we can write this equation as: 

K = A e-Eact / (RT) 

which may be written in natural logarithmic way as: 

 

ln k = ln A – Eact / (RT) 

 

Hence, a plot of ln k against 1/T (K) gives a linear function with the slope of –Eact/R. The 

activation energy can be determined graphically in this way. With at least two rate constants 

for one reaction, measured at different temperatures, the activation energy can be determined 

also mathematically by the following formulae: 

for T1: ln k1 = ln A – Eact/(RT1) 

for T2: ln k2 = ln A – Eact/(RT2) 

subtraction of T2 from T1 leads to: 

ln (k1/k2) = EA/R (1/T2 – 1/T1) 

from this the activation energy is equivalent to: 

 

Eact = R[T1T2/(T1 – T2)] ln (k1/k2) 
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In dealing with the labelling reactions, and for purposes of calculating the Arrhenius 

constants, part of the graph of RCY versus time is chosen where the RCY is increasing. This 

gives reliable values and avoid the problems of meaningless negative values. The labelling 

process was noticed to be mainly in the first 5-10 min. After this, decomposition started 

which competes with the labelling reaction. Therefore, for purposes of simplifying the 

calculations, the first stage of the labelling reaction, i. e. 0-10 min is applied in calculating the 

rate constant and the activation energy graphically. The linearity of all graphs is evaluated by 

the correlation coefficient r. A reliable linear graph would be assumed to have r in the range 

0.85-1.00 or the same values in the negative region.          

 
3.4 Applications of the Arrhenius Calculations 

  
Applying the Arrhenius calculations, the following results were obtained for 

o-nitrobenzaldehyde and p-nitroacetophenone. 

 

3.4.1 o-Nitrobenzaldehyde 

 

This system is highly activated in nucleophilic aromatic substitution. The best linear range for 

Arrhenius calculations was found to be 0-10 min at temperatures 80-140 °C. By drawing the 

graph of ln (1-RCY) versus time, the rate constants as shown in Tab. 9 were obtained and an 

activation energy of 24 kJ/mol was calculated (Fig. 19). 
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Tab. 9. Rate constants (min-1) for the labelling of o-nitrobenzaldehyde at 
temperatures 80-140 °C. 

Temp. (°C) k’ (min-1) 

80 0.0919 
100 0.1058 
120 0.1076 
140 0.1181 

 

0,0024 0,0026 0,0028

-3,6

-3,2

-2,8

-2,4

-2,0

-1,6

r= -0.85
Y= 4.89 - 2821.96 X

ln
 k

1 / T (K)

 

Fig. 19. Plot of ln k versus 1/ T (K) for o-nitrobenzaldehyde. (Conditions: 0-10 min, 
80-140 °C) (Tab. 38, App. 1). 

 
 
 
3.4.2 p-Nitroacetophenone 

 

This system is also highly activated in nucleophilic aromatic substitution. The best linear 

range for Arrhenius calculations was found to be 0-10 min at temperatures 80-140 °C. By 

drawing the graph of ln (1-RCY) vs time, the rate constants as shown in Tab. 10 were 

obtained and an activation energy of  32 kJ/mol was calculated (Fig. 20) 
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Tab. 10. Rate constants (min-1) for the labelling of p-nitroacetophenone at 
temperatures 80-140 °C. 

Temp (°C) k’ (min-1) 

80 0.0136 
100 0.0298 
120 0.0420 
140 0.0683 

 

0,0024 0,0026 0,0028

-4,4
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ln
 k
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Fig. 20. Plot of ln k versus 1/ T (K) for p-nitroacetophenone. (Conditions: 0-10 min, 
80-140 °C) (Tab. 40, App. 1). 
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3.5 Aromatic Nucleophilic Substitution by [18F]Fluoride on Precursors 
for Path A of [18F]FDOPA 

  

3.5.1 Introduction 

 

The total synthesis of [18F]FDOPA via path A (see Chpt. 2) is well known in the literature and 

until now more than ten different approaches have been applied, depending on the type of 

starting precursor, type of protection of the hydroxyl groups and the amino acid function and 

on the reagents used to achieve the intermediate transformations. Tab. 5 shows the results. 

However, except for the latest syntheses (RCY 16-30 %), yields always were low (3-11 %). 

There principally are two main types of compounds used frequently for the labelling step 

(first step) in the total synthesis of [18F]FDOPA. Those are the 6-substituted veratraldehydes 

(2) and the 6-substituted piperonals (9). Two leaving groups used frequently are the nitro 

group and the trimethylammonium triflate. The nitro precursors are commercially available 

while the trimethylammonium triflates are not, and they generally have to be prepared 

relatively short before use. Therefore, a choice was made to investigate the commercially 

available precursors since one needs high quantities in high purity. Tab. 11 summarises the 

results for the labelling of [18F]FDOPA precursors for path A depending on 6-substituted 

veratraldehyde (i.e. synthesis of 6-[18F]fluoroveratraldehyde, 3) 

MeO

MeO

CHO

G

MeO

MeO

CHO

F18
 

                          (2)                                              (3) 

 
(2a)     G= NO2 
(2b)     G= NMe3OTf 
(2c)     G= F 
(2d)     G= Br 
(2e)     G= Cl 
 

Fig. 21. Scheme for the synthesis of 6-[18F]fluoroveratraldehyde by nucleophilic 
aromatic substitution. 
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Tab. 11. Literature syntheses of 6-[18F]fluoroveratraldehyde (3). 

Precursor Leaving group Conditions a RCY (%) Ref. 

120 °C, 10 min 23 38 
20 min, 130 °C  

Microwave (300 W), 2 min 50 46 

25 min, 114 °C 52 44 
130 °C 50 52 

20 min, 130 °C 50-55 32 
20 min, 135 °C 25-35 39 
20 min, 130 °C 55 36 
20 min, 145 °C 27 53 
20 min, 145 °C   

Microwave (300 W), 2 min 50 22 

Microwave (300 W), 2 min 45-50 34 

2a NO2 

20 min, 130-140 °C 50 42 
110 °C 45-50 54 

20 min, 160 °C 30-35 37 2b NMe3OTf 
140 °C, 10 min 

Microwave (300 W), 1 min 45 ± 5 36 

2c F 

2d Br 

2e Cl 

New precursors (this work)  

 
a) Other reagents: K(18)F, DMSO, K2CO3, kryptofix [2.2.2]. 
 

3.5.2 6-Nitroveratraldehyde: Reaction Parameters and Activation Energy 
Calculation for the 18F labelling  

 
 

MeO

MeO

CHO

NO2  

 (2a) 

 

This compound is the most important precursor for [18F]FDOPA and it is used widely since it 

is commercially available, inexpensive and stable for long time. The literature yields 

(Tab. 11) for the 18F labelling were between 20 % and 55 % in DMSO within 10-20 min at 
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temperatures between 110 °C and 140 °C. A more investigation of the kinetics of 18F labelling 

of this precursor shows the results reported below. 

The reaction of nca [18F]fluoride with 6-nitroveratraldehyde was performed in DMF, DMAc, 

DMSO, sulfolane and 1,2-dimethoxyethane at 140 ºC with 20.0 mg/mL of precursor (Fig. 22).  
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Fig. 22. [18F] Labelling of 6-nitroveratraldehyde (20 mg/mL) at 140 °C. Dependence 

of the RCY on the type of solvent (Tab. 41, App. 2) 
 

DMF proved to be the best solvent for the labelling process. The labelling yield was 89 ± 2 % 

(n=15) after a reaction time of 10 min. Relatively fast kinetics were observed, i.e. within the 

first period of 10 min yields reached highest values or were already close to the maximum. 

While in DMSO and DMAc the labelling yields were slightly above 70 %, in sulfolane and 

1,2-dimethoxyethane the amount of labelled product was clearly lower. In the literature (see 

Tab. 11), where  DMSO was used as the solvent of choice, the radiochemical yields were not 

higher than 55 % at reaction temperatures of 120-150 ºC. Although at 140 ºC higher yields  

(70 %) were also observed in DMSO, the labelling process appears to be clearly improved 

when performed in DMF. 
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Sulfolane is a solvent less frequently used for nucleophilic fluorinations, yet it was chosen for 

this work because it has the advantage of allowing the applications of high reaction 

temperatures up to 300 ºC. However, the lowest yields in this series of experiments (40 % 

after 20 min) were observed.  

As expected because of the lower polarity, 1,2-dimethoxyethane did also not give high yields 

which were in the range of 55 % to 60 % within 10 min at 120 ºC and dropped afterwards to 

42 % at 60 min. 

Other aprotic solvents were tested without success. In acetonitrile (at 100 ºC) and benzonitrile 

the labelling reactions failed. Nitromethane and nitroethane could also be applied principally 

but these solvents appeared to react fast with the aldehyde group (Knoevenagel 

condensation),  resulting in labelled products of other than desired structure.  

All labelling experiments were repeated at least 4 to 10 times and the standard deviations 

calculated were in the range from 3 to 15 % of the reported values.  

Furthermore, nine reactions were performed under the best labelling conditions (140 °C, 

DMF, 20 mg) for 10 min in order to analyse the product by HPLC. The labelling yields were 

89 ± 3 %. Thus , it was clearly proven that the product was analysed without any impurities 

and the TLC data reported above are reliable. 

Since best labelling results were obtained in DMF, the effect of precursor concentration was 

studied in this solvent. The concentrations were varied from 0.5 mg/mL up to 50 mg/mL, the 

results are shown in Fig. 23.  
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Fig. 23. [18F] Labelling of 6-nitroveratraldehyde in 1 mL DMF at 140 °C. Dependence 

of the RCY on the concentration of the precursor (Tab. 41, App. 2). 
 
 

At 0.5 mg/mL the yields remained below 35 %, but at 1 mg/mL and higher concentrations 

yields were above 60 %  within 10 min.  The amount of labelled product was between 80 % 

and 90 % when using a concentration of 20 mg/mL also within 10 min. Interestingly, higher 

concentrations did not end up in a really quantitative reaction. Therefore, 20 mg/mL was the 

concentration to perform the fluorination with best yields. 

The dependencies of the labelling yields on temperature are shown in Fig. 24 at 

concentrations of 20 mg/mL using DMF as the solvent.  
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Fig. 24. [18F] Labelling of 6-nitroveratraldehyde (20 mg/mL) in DMF. Dependence of 

the RCY on temperature (Tab. 41, App. 2). 
 

For purposes of improving visibility of the graph the 150 °C data are not shown because they 

were close to those at 140 °C exhibiting similar standard deviations. It was found that the best 

temperature for the [18F]labelling in different solvents was 140 °C. The RCY increased 

rapidly when going from 80 °C to 150 °C. At high temperatures (120-150 °C) very fast 

kinetics were observed. In this case it was necessary to study the reaction yields at very short 

time intervals (3, 5, 7 and 10 min).  

Like in case of many other precursors, the best linear range for Arrhenius calculations was 

found to be 0-10 min at temperatures of 80-140 °C. By drawing the graph of ln (1-RCY) vs 

time, the rate constants as shown in Tab. 12 were obtained and an activation energy of 

33 kJ/mol was calculated (Fig. 25). 
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Tab. 12. Rate constants (min-1) for the labelling of 6-nitroveratraldehyde at 
temperatures 80-140 °C. 

Temp. (°C) k’ (min-1) 

80 0.0432 
100 0.1114 
120 0.1621 
140 0.2271 
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Fig. 25. Plot of ln k versus 1/ T (K) for 6-nitroveratraldehyde. (Conditions: 0-10 min, 

80-140 °C) (Tab. 42, App. 2). 
 

3.5.3 6-Fluoroveratraldehyde: Reaction Parameters and Activation Energy 
Calculation for the 18F Labelling 

 

MeO

MeO

CHO

F  

 (2c) 

 

Until now this precursor was not described in literature. In general, the aromatic  

fluorodenitration reactions are much more common than the fluorodehalogenation, because 

the nitro as a leaving group is better than the halogens (Br, Cl, I). However, in case of the 

fluorine atom as a leaving group the situation is different since the substitution proceeds as an 
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isotope exchange reaction as the results showed. So the ability to act as a leaving group is 

more or less the same as the nitro group. More investigation of the kinetics of labelling this 

precursor shows the following results. 

The reaction of [18F]fluoride with 6-fluoroveratraldehyde (18F for 19F exchange) was 

performed in four solvents: DMF, DMSO, DMAc and sulfolane (Fig 26). 
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Fig. 26. [18F] Labelling of 6-fluoroveratraldehyde (20 mg/mL) at 140 °C. Dependence 

of the RCY on the type of solvent (Tab. 43, App: 3). 
 

In DMF, which was the best solvent for carrying the labelling reaction, a maximum RCY of 

87.7 ± 1.2 % (n= 4) could be obtained within 5 min at 140 °C using 20 mg/mL of the 19F 

precursor. This was almost double the yield obtained in other solvents. Within 60 min the 

yield was always higher than 80 % in DMF but dropped to 27 % to 38 % for the other 

solvents with the lowest yield being in DMSO. 

For the 18F for 19F exchange in 6-fluoroveratraldehyde, the labelling highly depended on the 

precursor concentration at low concentrations, i. e. 0.5 -1.0 mg/mL, with yields ranging 

between 65 to 75 % in 5 min at 140 °C. At higher concentrations the yields were high and 



RESULTS AND DISCUSSION 

 

55

almost very near in the range between 85 % and 87.7 % at the same conditions. The yields 

remained always high even after 30 min with 60.4 % for the concentration of 0.5 mg/mL and 

almost high as 87.4 % for the 50 mg/mL. This is shown in Fig 27. 
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Fig. 27. [18F] Labelling of 6-fluoroveratraldehyde in DMF (1 mL) at 140 °C. 

Dependence of the RCY on the concentration of the precursor (Tab. 43, 
App. 3). 
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Fig. 28. [18F] Labelling of 6-fluoroveratraldehyde (20 mg/mL) in DMF. Dependence of 

the RCY on temperature (Tab. 43, App. 3). 
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The 18F labelling of 6-fluoroveratraldehyde showed strong dependence on temperature 

(Fig 28). Within 10 min using a concentration of 20 mg/mL precursor in DMF, the minimum 

yield was 34.5 ± 5.5 % at 60 °C while at 140 °C it was as high as 85.0 ± 5.3 %. Surprisingly, 

the yields tended to be close to each other (78.4-82.6 %) for the three temperatures 120, 140 

and 160 °C but dropped for the 180 °C to 73 %.  

Using the best linear range for Arrhenius calculations (0-10 min at temperatures 80-140 °C), 

and by drawing the graph of ln (1-RCY) vs time, the rate constants (see Tab. 13) were 

obtained and an activation energy of 17 kJ/mol was calculated (Fig. 29). 

Tab. 13. Rate constants (min-1) for the 18F labelling of 6-fluoroveratraldehyde 
at temperatures 80-140 °C. 

Temp. (°C) k’ (min-1) 
80 0.0860 
100 0.1238 
120 0.1720 
140 0.1897 
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Fig. 29. Plot of ln k versus 1/ T (K) for 6-fluoroveratraldehyde. (Conditions: 0-10 min, 

80-140 °C) (Tab. 44, App. 3). 
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3.5.4 6-Bromoveratraldehyde: Reaction Parameters and Activation Energy 
Calculation for the 18F Labelling 

 

MeO

MeO

CHO

Br  

 (2d) 

 

Until now this precursor was not described in literature. The detailed investigation of the 

kinetics of 18F labelling of this precursor shows the following results. 

The reaction of nca [18F]fluoride with 6-bromoveratraldehyde was performed in different 

solvents i.e. DMF, DMAc, DMSO and sulfolane at 160 ºC with 20 mg/mL of precursor 

(Fig. 30).  
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Fig. 30. [18F] Labelling of 6-bromoveratraldehyde (20 mg/mL) at 160 °C. Dependence 

of the RCY on the type of solvent (Tab. 45, App. 4). 
 

Again DMF proved to be the best solvent for the labelling process. The labelling yields were  

44.5 ±  4.2 % (n=5) within 20 min. Fast kinetics were observed, i.e. within the first period of 

10 min yields reached highest values or were close to the maximum. While the yields were 

between 39 % and 45 % after 10 min in DMF, they were lower (22-27 %) in DMAc. In 
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sulfolane, the yields were very low in the first 5 min, but almost doubled (13.0 %) at 20 min. 

DMSO gave the lowest yields among all the solvents used (less than 4 %). The yields even 

did not improve with time in DMSO and they were in all cases by a factor of ten or more 

lower than the yields in DMF. The labelling started in DMSO only at temperatures higher 

than 140 °C whereas in other solvents it started at temperatures after 100 °C. The labelling in 

an equal mixture of DMF (0.5 mL) and DMSO (0.5 mL) did not improve at all and yields 

remained in the range 1-5 % indicating the great suppressing effect of DMSO as a solvent on 

the labelling of these halogenated precursors. Other aprotic solvents were tried without 

success either because of low boiling points (acetonitrile and 1,2-dimethoxyethane) or 

because solvents such as nitromethane and nitroethane give unwanted by-products by reacting 

fast with the aldehyde group (Knoevenagel condensation). 

Since best labelling results were obtained in DMF the effect of precursor concentration was 

studied in this solvent. The concentrations were varied from 0.5 up to 50 mg/mL at 160 °C. 

The results are shown in Fig. 31.  
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Fig. 31. [18F] Labelling of 6-bromoveratraldehyde in DMF at 160 °C. Dependence of 
the RCY on the concentration of the precursor (Tab. 45, App. 4). 
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At 0.5 mg/mL the yields remained below 7 % but almost doubled in going from 0.5 to 

1 mg/mL and from 1 up to 5 mg/mL. The increase was then not uniform at 10 mg/mL and it 

was very close to the 5 mg/mL. At high concentrations (20, 30 and 50 mg/mL) yields were 

between 40 % and 55 % and increased always with increasing the precursor concentration, to 

reach maximum of 58.1 % with 50 mg/mL within 30 min 

The study of the dependence of RCY on temperature was performed in DMF using 

a concentration of 20 mg/ mL. This is shown in Fig. 32. The RCY increased slowly at short 

times (5-20 min) when going from 80 to 120 °C but more rapidly after that (140 to 180 °C). 

At high temperatures (140-180 °C) very fast kinetics were observed and a RCY of 

45.7 ± 5.5 % could be obtained in 5 min at 180 °C. After 1 h the highest yield was 49.9 % at 

180 °C. 
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Fig. 32. [18F] Labelling of 6-bromoveratraldehyde (20 mg/mL) in DMF. Dependence 
of the RCY on temperature (Tab. 45, App. 4). 
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As with the fluoro analogue, and using the best linear range for Arrhenius calculations 

(0-10 min at temperatures 80-140 °C), the graph of ln (1-RCY) vs time gave the rate constants 

shown in Tab. 14. Hence, an activation energy of 60 kJ/mol was calculated (Fig. 33). 

 

Tab. 14. Rate constants (min-1) for the labelling of 6-bromoveratraldehyde at 
temperatures 80-140 °C. 

Temp. (°C) k’ (min-1) 
80 0.0024 
100 0.0089 
120 0.0206 
140 0.0493 
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Fig. 33. Plot of ln k versus 1/ T (K) for 6-bromoveratraldehyde. (Conditions: 0-10 min, 

80-140 °C) (Tab. 46, App. 4). 
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3.5.5 6-Chloroveratraldehyde: Reaction Parameters and Activation Energy 
Calculation for the 18F Labelling 

 

MeO

MeO

CHO

Cl  

 (2e) 

 

Until now this precursor was not described in literature. The detailed investigation of the 

kinetics of  18F labelling of this precursor showed the results as presented below. 

The reaction of [18F]fluoride with 6-chloroveratraldehyde was performed in the following 

solvents: DMF, DMAc, DMSO and sulfolane at 160 ºC with 20.0 mg/mL of precursor 

(Fig. 34). DMF proved to be the best solvent for the labelling process. The labelling yields 

were 57 % ± 5.1 % (n=5) which means it is slightly higher than in the case of the bromo 

precursor. Fast kinetics were observed also here, and in the period of the first 10 min yields 

reached highest values or were close to the maximum. Very strange here is the wide gab 

between the yields after 10 min in DMF (52-58 %) and in other solvents (3-12 %), which was 

not observed in case of the precursor. Hence in sulfolane the yields were very low and in the 

range between 7-9 % but were slightly higher in DMAc (9-12 %). 
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Fig. 34. [18F] Labelling of 6-chloroveratraldehyde (20 mg/mL) at 160 °C. Dependence 

of the RCY on the type of solvent (Tab. 47, App. 5). 
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Again DMSO gave the lowest yields among all the solvents used (1-4 %). The yields even did 

not improve with time in DMSO and they were in all times less then the yields in DMF by 

a factor of tenth or more. 

Since best labelling results were obtained in DMF the effect of precursor concentration was 

studied in this solvent. The concentrations were varied from 0.5 mg/mL up to 50 mg/mL and 

the results are shown in Fig. 35. 
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Fig. 35. [18F] Labelling of 6-chloroveratraldehyde (20 mg/mL) in DMF at 160 °C. 
Dependence of the RCY on the concentration of the precursor (Tab. 47, 
App. 5). 

 

At 0.5 mg/mL the yields remained below 14 % but almost doubled in going from 0.5 to 

1 mg/mL and from 1 to 5 mg/mL. The increase was then not uniform at 10, 20, 30 and 

50 mg/mL (high concentrations). At these concentrations the amount of labelled product was 

between 45 % and 66 %. The highest concentrations gave the highest yields in all times 

(63-66 %).  
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The study of the dependence of RCY on temperature was carried out in DMF using 

a concentration of 20 mg/mL. This is shown in Fig 36.  
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Fig. 36. [18F] Labelling of 6-chloroveratraldehyde (20 mg/mL) in DMF. Dependence of 
the RCY on temperature (Tab. 47, App. 5). 

 

The RCY slowly increased at short times (5 min up to 20 min) when going from 80 °C to 

120 °C but rapidly after that (120 °C to 180 °C) for the chloro precursor. At high temperatures 

(120-180 °C) very fast kinetics were observed and a RCY of 51.5 ± 4.4 % can be obtained in 

5 min at 180 °C. Unlike the behaviour of the bromo precursor, the highest yield for the chloro 

precursor after 1 h was obtained at 160 °C instead of 180 °C.  

The graph of ln (1-RCY) vs time gave the rate constants shown in Tab. 15. Hence, an 

activation energy of 63 kJ/mol was calculated (Fig. 37). 
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Tab. 15. Rate constants (min-1) for the labelling of 6-chloroveratraldehyde at 
temperatures 80-140 °C. 

Temp. (°C) k’ (min-1) 
80 0.0031 
100 0.0134 
120 0.0206 
140 0.0842 
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Fig. 37. Plot of ln k versus 1/ T (K) for 6-chloroveratraldehyde. (Conditions: 0-10 min, 

80-140 °C) (Tab. 48, App. 5). 
 

3.5.6 6-Nitropiperonal: Reaction Parameters and Activation Energy Calculation for 
the 18F Labelling 

 

CHO

O

O

NO2  

(9a) 

 

The derivatives of piperonal are the second of the most important precursors for the total 

synthesis of [18F]FDOPA. Tab. 16 gives a summary of the results for the labelling of 
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[18F]FDOPA precursors for path A (see Chpt. 2) depending on 6-substituted piperonal (9). 

The reason for using these compounds is the desired smooth and milder deprotection at the 

end of synthesis of [18F]FDOPA as suggested in literature [36].   

 
CHO

GO

O CHO

F18O

O

 
                        (9)                                               (10) 

(9a)      G= NO2 
(9b)      G= Br 
(9c)       G= Cl 

Fig. 38. Scheme for the synthesis of 6-[18F]fluoropiperonal by nucleophilic 
aromatic substitution. 

 
 

Tab. 16. Literature syntheses of 6-[18F]fluoropiperonal (10). 

Precursor Leaving group Conditions a RCY (%) Ref. 

5 min, 180 °C 53 31 
10 min, 120 °C 68 54 
20 min, 135 °C 50 39 
25 min, 114 °C 44 44 
10 min, 120 °C 51 38 
20 min, 130 °C 55 36 
20 min, 130 °C 50-55 32 

9a NO2 

MW (300 W), 0.5 min 53 46 

9b Br 
9c Cl 

New precursors (this work)  

  
a) Other conditions: K(18)F, DMSO, K2CO3, Kryptofix 222. 
 

The detailed investigation of the kinetics of 18F labelling of this precursor showed the 

following results . 

The reaction of [18F]fluoride with 6-nitropiperonal was performed in the following solvents: 

DMF, DMAc, DMSO, sulfolane and 1,2-DME at 140 ºC with 20 mg/mL of precursor. The 

results are illustrated in Fig. 39. Unlike other [18F]FDOPA precursors, the labelling of this 

precursor showed the highest yields not in DMF but in DMAc. These two solvents are closely 

structurally related. The labelling yield was 75.3 ± 1.6 % after 10 min in DMAc, while in 
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DMF it was 67 ± 4.6 %. Surprisingly, in the other two solvents the yields were also very 

good. After 10 min in DMSO the yield was 56.4 3 ± 2.6 % and in sulfolane slightly higher 

(59 ± 3.1%). The lowest yields (14.4 ± 4.4 %) were obtained in the least polar solvent, i. e. in 

1,2-DME. Very fast kinetics were observed within 5 min. Except for 1,2-DME, the yields 

reached highest values in 5-10 min but in all cases a plateau is reached with slightly lower 

yields at 60 min. 
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Fig. 39. [18F] Labelling of 6-nitropiperonal (20 mg/mL) at 140 °C. Dependence of the 

RCY on the type of solvent (Tab. 49, App. 6). 
 

The effect of precursor concentration was studied in DMF at 140 °C. The concentrations were 

varied from 0.5 up to 50 mg/mL. The results are shown in Fig. 40. In all cases fast kinetics 

and thus highest yields were observed within 5 min. In the case 0.5 mg/mL the yield in 5 min 

was 36.3 ± 7  % but dropped within 1 h to 9.0 ± 0.9 %. The yields with the concentration of 

1 mg/mL and above were all in the range between 58.9 and 67.6 %. The decrease of yield 

within 1 h was also observed with the low concentrations of 1 mg/mL (from 58.9 ± 7.7 % to 

13.5 ± 1.3 %) and with the 5 mg/mL (from 62.0 ± 4.3 % to 35.3 ± 1.1 %). At high 
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concentrations (10-50 mg/mL) the yields did not drop sharply within 1 h. The dependence of 

the RCY on the concentration was not strong hence with 10 and 20 mg/mL almost the same 

highest yields were observed. In addition, with 30 and 50 mg/mL almost the same yields were 

also observed, but they were generally less than with the 10 or the 20 mg/mL. Hence the 

20 mg/mL was the optimum concentration to do the labelling.   
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Fig. 40. [18F] Labelling of 6-nitropiperonal in 1 mL DMF at 140 °C. Dependence of the 

RCY on the concentration of the precursor (Tab. 49, App. 6). 
 
The investigation of the effect of temperature (DMF, 20 mg/mL) also showed discrepancies 

among the results shown here in Fig. 41. At the temperatures between 80 and 180 °C the 

yields were in the range between 60 % and 70 % within 10 min and between 56 % and 64 % 

within 1h. For the labelling process the best temperature seemed to be at 120 °C. For better 

illustration of the effect of temperature, Fig. 42 showed the RCY dependence on temperature 

at all times. By changing temperatures between 80 °C and 100 °C the yield was almost 

constant, but when changing from 100 °C to 120 °C a maximum RCY is reached at all times, 

followed by descending to a valley at 140-160 °C and climbing again to reach another 

maximum at 180 °C. It is noticed also that the yields are directly proportional to the time 
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before 110 °C but inversely proportional after this temperature. Hence, at 110°C the yield is 

independent of the reaction time. 
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Fig. 41. [18F] Labelling of 6-nitropiperonal (20 mg/mL) in DMF. Dependence of the 
RCY on temperature (Tab. 49, App. 6). 
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Fig. 42. [18F] Labelling of 6-nitropiperonal (20 mg/mL) in DMF. Dependence of the 
RCY on temperature (Tab. 49, App. 6). 
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The graph of ln (1-RCY) versus time gave the following rate constants (see Tab. 17) from 

which the graph of ln k versus 1/T (K) gave an activation energy of 5 kJ/mol (Fig. 43). 

Tab. 17. Rate constants (min-1) for the labelling of 6-nitropiperonal at temperatures 
80-140 °C. 

Temp. (°C) k’ (min-1) 
80 0.0924 
100 0.0911 
120 0.1191 
140 0.1109 
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Fig. 43. Plot of ln k versus 1/ T (K) for 6-nitropiperonal. (Conditions: 0-10 min, 

80-140 °C). (Tab. 50, App. 6). 
 
3.5.7 6-Bromopiperonal: Reaction Parameters for the 18F Labelling 

 

CHO

O

O

Br  

(9b) 

 
Until now this precursor was not described in literature. In general, labelling of this precursor 

gave by-product which decreased the yields significantly. The yield of the by-product was 



RESULTS AND DISCUSSION 

 

70 

twice that of the labelled precursor. This by-product could have the ring-opened structure. 

The investigation of 18F labelling of this precursor in DMF (the best solvent) at temperatures 

80-180 °C is shown in Fig 44. The labelling yields were generally in the range between 6 % 

and 12 %. A general increase of yield was noticed with increasing temperatures up to 140 °C. 

After that the yields did not improve. In most cases the yields reached a maximum within 

30 min after which we got a plateau.  
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Fig. 44. [18F] Labelling of 6-Bromopiperonal (20 mg/mL) in DMF. Dependence of the RCY 
on temperature (Tab. 51, App. 7) 

 
 
 
3.5.8 6-Chloropiperonal: Reaction Parameters for the 18F Labelling 

 

CHO

O

O

Cl  

(9c) 

 
Until now this precursor was not described in literature. In general, labelling of this precursor 

gave in all cases a by-product which decreased the yield. The yield of the by-product was in 

most cases double that of the labelled precursor. The investigation of 18F labelling of this 
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precursor in DMF (in this work usually a very good solvent for labelling) at different 

temperatures is shown in Fig. 45. The labelling yields were low, generally between 4 % and 

12 % and they increased with increasing temperature. In most cases the yields reached 

a maximum within 10 min and did not change significantly thereafter.    
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Fig. 45. [18F] Labelling of 6-chloropiperonal (20 mg/mL) in DMF. Dependence of the 
RCY on temperature (Tab. 52, App. 8). 
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3.6     Aromatic Nucleophilic Substitution by [18F]Fluoride on Precursors 

for Path B of [18F]FDOPA  
 
 

3.6.1 Synthesis of Precursors and Standards  

To overcome some disadvantages encountered in path (A) (see Chpt. 2), like many steps 

involved (4-5) and the high enantiomeric purity required, a second path (B) is proposed, 

which utilizes a ready-to-label and protected [18F]FDOPA precursor (Chpt. 2, Fig. 8). In order 

to study this path systematically and to evaluate it, simple model precursors were chosen. 

These were mainly derivatives of the following four structures or their different isomers, as 

shown in Fig. 46. 

Fig. 46. General structure of model compounds used to study and evaluate the 
production of [18F]FDOPA via path (B). 
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X, Y, Z: NO2, Br, Cl, F, H 
R', R'': protection of the hydroxyl group [ethers (open or cyclic), carbonic esters 
(open), sulfonic esters (open)] 

 

Most of these precursors were synthesised directly from substituted benzaldehydes by 

halogenation or nitration. They however, can be prepared by the appropriate protection of 

substituted bromo or nitro phenols. The most important commercially available starting 

compounds are vanillin, o-vanillin, 2,3-dimethoxybenzaldehyde, 2,4-dimethoxybenzaldehyde, 

2,5-dimethoxybenzaldehyde, 3,5-dimethoxybenzaldehyde and 4-fluoroveratrole. The 

following figures show general schemes used for the synthesis of precursors. For details of 

experimental procedures see chapter 4.  
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The three compounds 4-acetoxy-2-bromo-5-methoxybenzaldehyde (6), 4-benzoyloxy-2-

bromo-5-methoxybenzaldehyde (8a) and 2-bromo-5-methoxybenzaldehyde-4-benzene 

sulfonate (8b) were prepared by acetylation of vanillin (4), bromination (5) then subsequent 

hydrolysis of the acetoxy group (6). This is followed by protection with the desired group. On 

the other hand, bromination of vanillin gave the 5-bromo derivative (7b) from which two 

precursors were prepared (8c, 8d) (Fig. 47). 
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(8)(7a)

(6)(4) (5)

(8a) G= COPh
(8b) G= SO2Ph

(4) (7b)

(8c) G= CH3
(8d) G= COPh

(8)  

Fig. 47. Scheme for the synthesis of derivatives of 2- and 
3-bromo-4,5-dihydroxybenzaldehyde as precursors for path A of 
[18F]FDOPA. 

 
Fig. 48 shows the scheme for the preparation of the derivatives of 6-bromo-2-hydroxy-3-

methoxybenzaldehyde (compounds 13, 15a and 15b) [55]. 
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Fig. 48. Scheme for the synthesis of derivatives of 6-bromo-2-hydroxy-3-methoxy 
benzaldehyde as precursors for path B of  [18F]FDOPA 
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Fig. 49 shows the scheme for the preparation of the derivatives of 4 and 6-nitro-2-hydroxy-3-

methoxybenzaldehyde  (17a), (17b), (19a), (19b) and (19c)[56]. 
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Fig. 49. Scheme for the synthesis of  derivatives of 4- and 6-nitro-2-hydroxy-3-
methoxybenzaldehyde as precursors for path B of [18F]FDOPA 

 
The reaction of 2,3-dimethoxybenzaldehyde (22) with NBS and NCS afforded the 6-bromo 

(23a) and 6-chloro (23b) derivatives, respectively, while the direct bromination or nitration 

gave the 5-bromo (24a) and the 5-nitro (24b)derivatives, respectively (Fig. 50). 
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Fig. 50. Scheme for the synthesis of 5- and 6-substituted derivatives of 
2,3-dimethoxybenzaldehyde as precursors for path B of [18F]FDOPA. 
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Direct bromination of 2,4-dimethoxybenzaldehyde (25) gave the 5-bromo derivative (26) 

while for 2,5-dimethoxybenzaldehyde (27) it gave the 4-bromo derivative (28) (Fig. 51) 
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CHO
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MeO
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Br
MeO

(27) (28)  

Fig. 51. Scheme for the synthesis of 5-bromo-2,4-dimethoxybenzaldehyde and 
4-bromo-2,5-dimethoxybenzaldehyde as precursors for path B of 
[18F]FDOPA. 

 

For derivatives with substituents at positions 5 and 6 the starting is either 2-acetoxy-3-

methoxy benzaldehyde (12) or 2,3-dimethoxybenzaldehyde (22). Harsh bromination of (12) 

gave directly 2,3-dibromo-6-hydroxy-5-methoxybenzaldehyde (29) from which a number of 

OH-protected derivatives (30) were prepared (Fig. 52). 
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Fig. 52. Scheme for the synthesis of derivatives of 2,3-dibromo-6-hydroxy 

-5-methoxybenzaldehyde as precursors for path B of [18F]FDOPA. 
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Bromination (bromine in acetic acid) of 2,3-dimethoxybenzaldehyde afforded the 5-bromo 

derivative (24a), which upon nitration gave 3-bromo-5,6-dimethoxy-2-nitrobenzaldehyde (31) 

(Fig. 53). 

CHO

OMeBr

OMe
CHO

OMeBr

OMeO2N

(24a) (31)  

 
Fig. 53. Scheme for the synthesis of 3-bromo-5,6-dimethoxy-2-nitrobenzaldehyde as 

precursor for path B of [18F]FDOPA. 
 
The reaction of (14) with BBr3 gave the dihydroxy compound (32) which upon protection 

with dibromomethane gave the 2,3-methylenedioxybenzaldehyde precursor (33) (the isomer 

of 6-bromopiepronal) (Fig. 54): 
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Fig. 54. Scheme for the synthesis of 6-bromo-2,3-methylenedioxybenzaldehyde as 
precursor for path B of [18F]FDOPA. 
 

Nitration of 3,5-dimethoxybenzaldehyde (34) gave the corresponding 2-nitro derivative (35) 

(Fig. 55) 

CHO

OMeMeO
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MeO OMe
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(34) (35)  

Fig. 55. Scheme for the  synthesis of 3,5-dimethoxy-2-nitrobenzaldehyde as 
precursor for path B of [18F]FDOPA. 
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Nitration or bromination (NBS) of 3,4-ethylenedioxybenzaldehyde (36) gave the 2-nitro (37a) 

and the 2-bromo (37b)derivatives (Fig. 56). 
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Fig. 56. Scheme for the synthesis of 2-nitro- and 2-bromo-4,5-ethylenedioxy 

benzaldehyde as precursors for path B of [18F]FDOPA. 
 

Because of the difficulty in obtaining all the fluorine standards for this path, some of these 

standards are only prepared.  The main pathway for the synthesis of these standards (Fig. 57) 

starts from 4-fluoroveratraole (38) [57]. After lithiation and formylation, the standard (39) is 

obtained. Other standards (41a-c) are obtained following deprotection of the methoxy ortho to 

the aldehyde and then the proper protection of the hydroxyl is introduced.   
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Fig. 57. Scheme for the synthesis of 6-fluoro-2-hydroxy-3-methoxybenzaldehyde and 

derivatives as standards for path B of [18F]FDOPA. 
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3.6.2 2,3-Dimethoxy-6-nitrobenzaldehyde as an Important Model Precursor for Path 
B of [18F]FDOPA: Reaction Parameters and Activation Energy Calculation for 
the 18F Labelling 

 

This precursor was chosen for full investigation of the kinetics of labelling with 18F because 

of the stability of the protection of the hydroxyl groups as ethers and also because the nitro 

group is much better than halogens as a leaving group in fluorination reactions. The detailed 

investigation of the kinetics of  18F labelling of this precursor showed the following results. 

The 18F labelling was performed in DMF, DMAc, DMSO, benzonitrile and sulfolane 

(Fig. 58). In general the labelling of most precursors here was best achieved in DMF. 

A maximum RCY of  28-30 % can be obtained using 20 mg/ml within 30 min at 140-150 °C. 

The labelling yields in  DMAc, DMSO, and benzonitrile were in the range 15-20 % and in 

sulfolane less than 10 %. The results are shown in Fig. 38. A second by-product was always 

observed which had an Rf value close to that of the product. Thus, the activity was always 

distributed between the standard [18F]fluoro product and the second compound. The yield of 

the second unknown compound was between 10 % and 20 %, hence the total incorporation of 

the activity was 30 % to 50 %.  

 

 

 

 

 

 

 

 

 



RESULTS AND DISCUSSION 

 

79

 

 

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

benzonitrile

Sulfolane

DMSO
DMAc

DMF
R

C
Y 

(%
)

Time (min)

 
 

 
Fig. 58. [18F] Labelling of 2,3-dimethoxy-6-nitrobenzaldehyde (20 mg/mL) at 140 °C. 

Dependence of the RCY on the type of solvent (Tab. 53, App. 9). 
 

 

The temperature dependence for the [18F] labelling of this precursor was studied in DMF at 

temperatures 80-150 °C. The results are shown in Fig. 59. A strong dependence on 

temperature was observed. Thus with higher temperatures higher yields were obtained. It was 

observed that the by-product was dominating in low temperatures but at higher temperatures 

it was relatively unstable and gave lower yields.  
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Fig. 59. [18F] Labelling of 2,3-dimethoxy-6-nitrobenzaldehyde (20 mg/mL) in DMF. 

Dependence of the RCY on temperature (Tab. 53, App. 9). 
 
 
 
By drawing the graph of ln (1-RCY) vs time, the rate constants as shown in Tab. 18 were 

obtained and an activation energy of  34 kJ/mol was calculated (Fig. 60). 

Tab. 18. Rate constants (min-1) for the labelling of 2,3-dimethoxy-6-nitro 
benzaldehyde at temperatures 80-150 °C. 

Temp. (°C) k’ (min-1) 

80 0.0051 
100 0.0118 
120 0.0185 
130 0.0226 
140 0.0331 
150 0.0336 
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Fig. 60. Plot of ln k versus 1/T (K) for 2,3-dimethoxy-6-nitrobenzaldehyde 
(Conditions: 0-10 min, 80-150 °C) (Tab. 54, App. 9). 

 
3.6.3 Precursors with Halogens as Leaving  Groups 

Tab. 19 shows the results of [18F] labelling of haloaryl precursors and their isomers for path B 

of [18F]FDOPA. These precursors were prepared by reactions illustrated in schemes shown in 

Fig. 5, 7, 8, 9, 11 and 12. Bromine was used mainly because it is easily introduced into the 

aromatic ring by a variety of ways. Experimental procedures described in details are found in 

chapter 4.  

The labelling reactions were performed at the usual optimum conditions found for other 

precursors of [18F]FDOPA. In general, the labelling yields ranged from 1 % up to 56 %. The 

reason is that the halogens (except for F) have less ability as leaving groups than others like 

NO2 or NMe3OTf. The stability of the protection group of the hydroxyl plays also important 

role. In case of protection as ethers such as the methoxy groups, the protection is very stable 

against the labelling conditions, hence the highest yields were found between 11 % and 56 %. 

The stability is lower for other types of protection like the esters and the yields tend to be 

lower (2.5-12 %). Bromine was better as a leaving group than chlorine which is the reverse 

case in the 6-haloveratraldehydes.     
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Tab. 19. [18F] Labelling of haloaryl systems for path (B) of [18F]FDOPA. (Unless 
otherwise stated, the conditions are: DMF, 150 °C, 10 mg/mL, 30 min). 

No Structure Comp. R1 R2 R3 RCY (%) Notes 

1 (39) CH3 F H 71.6 with standard 
2 (23a) CH3 Br H 18.9 with standard 
3 (30a) CH3 Br Br 13.0 assigned product 
4 (23b) CH3 Cl H 11.0 10 min, with standard 

5 (13) COCH3 Br H 2.5  120 °C, assigned 
product 

6 (15a) COPh Br H 4.6 assigned product 
7 (30b) COCH3 Br Br 10.6 assigned product 
8 (30c) COPh Br Br 13.7 assigned product 
9 

R2

R3

O
CHO

R1

OMe  

(24a) CH3 H Br 1.9 assigned product 

10 (2d) CH3 Br - 42.3 with standard 

11 (6) COCH3 Br - 2.5 assigned product 

12 

R2
CHO

OMe
O R1  (8a) COPh Br - 0 assigned product 

13 (8c) CH3 Br  2.2 assigned product 

14 

CHO

OMe
O R1

R2

 
(8d) COPh Br  7.9 assigned product 

15 

CHO

Br

OMe

MeO

 

(28) - 22.2 assigned product 

16 

CHO
OMe

Br
OMe  

(26) - 1.0 assigned product 

17 
O

O

CHO

Br  
(37b) - 9.4 ± 0.7 assigned product 

18 
Br

O

O

CHO

 

(33) - 33.5 ± 2.8 assigned product 
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3.6.4 Precursors with Nitro as A leaving  Group 

Using the nitro derivatives, the yields were better as shown in Tab. 20 . In general, the yields 

were in the range 25-90 % when the aldehyde is the only group ortho to the nitro. When two 

groups are both ortho to the aldehyde group, the yields are not high. Also when the aldehyde 

group is  meta to the nitro, the yields were very low (< 5 %).  

Tab. 20. [18F] Labelling of nitro-aryl systems for path B of [18F]FDOPA. (Unless
otherwise stated, the conditions are: DMF, 150 °C, 10 mg/mL, 30 min) 

No Structure Comp. R1 R2 R3 R4 RCY (%) Notes 

1 (19a) OCH3 NO2 H H 30.5 with standard 
2 (31) OCH3 NO2 Br H 18.4 assigned product 

3 (19b) OCOCH3 NO2 H H 24.5 30 min, 150 °C,  
assigned product 

4 (19c) OCOPh NO2 H H 28.0 5 min 
5 (24b) OCH3 H NO2 H 4.5 with standard 
6 

R3

R1
CHO

OMe

R2

R4  
(21) OCH3 H H NO2 60.4 assigned product 

7 

CH O

O Me
O Me

N O2

 

(42h) - 89.8 
prepared by 
nitration of  

(42d) 

8 
NO2

O

O

CHO  
(9a) - 67.0 results in section 

3.5.7 

9 
NO2

CHO

O

O  
(37a) - 66.4 

[lit.[38] 0] 

prepared by 
nitration of  

(36) 
 
 

3.6.5 Benzenesulfonate Systems 

The common protections of phenols include carbonic ethers (ROR), carboxylic esters 

(ROCOR’, ROCOAr) and sulfonic asters (ROSO2R, ROSO2Ar). An attempt to carry out [18F] 

labelling of phenolic precursors protected with the benzenesulfonate group, i. e. OSO2Ph 
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resulted in an attack on the sulphur atom instead of the carbon holding the leaving group. The 

result was most likely always [18F]benzenesulfonylfluoride which is reported for the first time 

in this study. The fast attack of the strong 18F- nucleophile on the protection group (which is 

unstable in basic conditions) cleaves it readily. Within 5 min the RCY is 81-89 %. In the 

following, Tab. 21 gives the results of 18F labelling of some benzenesulfonates. 

 

Tab. 21. [18F] Labelling of benzenesulfonate systems for path B of [18F]FDOPA. 
(conditions: DMF, 150 °C, 10 mg/mL, 5 min). 

OSO2Ph

R1R2

R5R4

R3 PhSO2 F18 ArO

(42)

(43)

+ -

 

No code R1 R2 R3 R4 R5 RCY (%) 
PhSO2

18F Notes 

1 (42a) H H H H H 81.0 
2 (42b) CHO H H H H 84.7 
3 (42c) H H CHO H H 85.2 
4 (16) CHO H H H OCH3 82.1 
5 (42d) OCH3 H CHO H H 83.2 
6 (8b) OCH3 H CHO Br H 87.3 
7 (42e) OCH3 NO2 CHO H H 88.6 
8 (15b) CHO Br H H OCH3 86.2 
9 (30d) CHO Br Br H OCH3 84.6 
10 (17a) CHO NO2 H H OCH3 85.0 
11 (17b) CHO H H NO2 OCH3 82.0 
12 (42f) OSO2Ph H NO2 H H 87.0 
13 (42g) OSO2Ph H NO2 CH3 H 81.0 

Standard product is 
detected by 

comparison in TLC 
and HPLC with 

authentic 19F sample. 
No detection of 
halogen or nitro 
substitution  by 

[18F]fluoride 
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3.6.6 Miscellaneous (Other Systems) 

 
In the following, Tab. 22 gives the results of the [18F] labelling of other aryl systems. (see 

chapter 4 for experimental details). Most of these are classified as electron rich aromatic 

compounds. As the results show, the RCY are high for those systems with a very good 

leaving group (like the nitro) and with very stable protection of the hydroxy groups (like the 

methyl ethers). Systems with no activation at all (toward SNAr) and with methyl group on the 

ring or protection of the hydroxyl groups as esters gave very bad yields and sometimes gave 

no yield at all.  

Tab. 22. [18F] Labelling of other aryl systems. (Assigned product. Unless otherwise 
stated, the conditions are: DMF, 150 °C, 10 mg/mL, 20 min, TLC results) 

No Structure Comp. RCY (%) Notes on preparation 

1 

CHO

OMe
OMe

NO2

MeO

 

(45) 68.6 ± 4.5 prepared by direct nitration of 3,4,5-
trimethoxybenzaldehyde (44) 

2 

CHO

OMe
OMe

Br

MeO

 

(46) 8.6 ± 0.8 prepared by direct bromination of 
3,4,5-trimethoxybenzaldehyde (44) 

3 

CHO

OMe
OMe

OMeO2N

 

(48) 66.2 ± 4.2 prepared by nitration of 2,3,4-
trimethoxybenzaldehyde (47) 

4 

OMe

OO

OMeO2N

Br  

(49) 22.1 ± 0.2 prepared by the protection of the 
aldehyde group in compound (31) 
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Tab. 22. Continued 

5 

OMe

OO

OMeO2N

 

(50) 3.0  prepared by the protection of the 
aldehyde group in compound (19a) 

6 
OCOPh

OCOPh

O2N

 
(52) 1.0  

prepared by protection of the two OH’s 
in of 4-nitrocatechol (51) as benzoate 

esters 

7 
CH3

O2N

OMe

OMe  

(55a) 0 

8 
CH3 OCOPh

OCOPhO2N  
(55b) 0 

9 
CH3 OCOCH3

OCOCH3O2N  
(55c) 0 

prepared by nitration of 4-
methylcatechol (53) . The product (54) 

is then protected (the two OH’s) as 
arylmethyl ether (55a), benzoate (55b) 

or acetate (55c) esters 
 

10 
O2N O

O  
(57) 0 prepared by nitration of 1,3-

benzodioxole (56) 

11 
O2N O

OCH3  

(59) 0 prepared by nitration of 3,4-
methylenedioxytoluene (59) 
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3.7 General Discussion 

3.7.1 Structural Effects 

The discussion of the structural effects in the labelling by [18F]fluoride can be divided into 

four main categories according to the types and positions of the groups on the aromatic ring 

(whether these are electron donating, electron withdrawing, leaving or protecting groups). In 

the following sections, these types of structural effects are discussed in detail depending on 

the experimental results. It is assumed that the factor under investigation is the only one 

operating in every case and that all other factors or variables are constant (whether controlled 

such as temperature and concentration or uncontrolled such as quality of fluoride or 

impurities up to 5 % in the precursor sample). To overcome the problem of uncertainty, each 

value reported here is assumed to be repeated at least 4 times (n > 3). 

 
3.7.1.1 Positions of Different Groups on the Aromatic Ring 

One can get a better idea about this factor if we consider different isomers of the same 

compound labelled with [18F]fluoride under the same conditions. In the following, Tab. 23 

gives an idea of how the different positions of the same groups on the ring can affect the 

RCY. As it is expected, the labelling yields will be high if a good electron withdrawing group 

(EWG) is ortho or para to a good leaving group (LG) (in some cases where only two meta 

EWGs existed on the ring, the RCY also was good)[40]. The intermediate Meisenheimer 

complex is highly stabilised in this case by several resonance structures in which the 

particular EWG present can stabilise the negative charge.  

In case of the existence of one or two more EDGs on the ring the RCYs can still be very good 

if again a good EWG is ortho or para to a good LG. The ortho effect here is much more 

effective than the para. For entry 1 in Tab. 23 we see the lowest yield (4.5 %) in case of 

compound (1-a). The activation towards nucleophilic aromatic substitution (SNAr) is very 
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week here because the aldehyde is meta to the nitro, while two methoxy groups are present, 

one of them is para to the nitro.  

In compound (1-b) the yield is improved up to 16.6 % although the methoxy groups are now 

both ortho and para to the nitro. The reason for this is that the aldehyde is ortho to the nitro 

which means strong activation.  

A much better situation is present in case of compound (1-c) where we also have strong 

activation by an ortho aldehyde group. Only one methoxy group is para to the nitro (weak 

deactivation). A possible explanation is that the aldehyde group adopt a conformation in 

which it is perpendicular to the plane of the aromatic ring, i.e. the dihedral angle = 90°[96]. 

This was confirmed by X-ray structure analysis (Fig. 61, App. 9). This means the aldehyde 

group is less effective in stabilising the negative charge of the Meisenheimer complex, hence 

the yield would be low[93].  

 

Fig. 61. X-ray structure of 2,3-dimethoxy-6-nitrobenzaldehyde. 
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In case of compound (1-d) no sterical hindrance exists as in (1-c) and yields are higher. Yet, 

the activation by a para aldehyde group towards the nitro is less effective than in case of the 

ortho isomer. Therefore, the yield is higher than (1-c) but not as high as in (1-e) and (1-f). 

Consequently, the highest yields were obtained with compounds (1-e) and (1-f). In these 

precursors, which gave almost the same RCY, the activation is strong (an aldehyde is ortho to 

the nitro group). In addition, one methoxy is either ortho or para to the leaving group and 

another one is meta which render it inactive. A very important note here is that the aldehyde 

activates very well as the case in the last two compounds if it is not ortho to two other groups 

simultaneously (this means no sterical hindrance).  

A similar discussion also holds for the bromo precursors (Tab. 23, entry 2). Compounds (2-g), 

(2-h) and (2-i) are not activated at all (they gave the lowest yields between 1.0 % and 2.2 %) 

because  the aldehyde here is meta to the bromine while strong EDGs (two methoxy groups) 

are either ortho or para. In compound (2-j) the activation is better (an aldehyde is ortho to the 

bromine) and the yields (19 %) are better (although still low because the two methoxy groups 

are ortho and para to the bromine) . In compound (2-k) the yields (22.2 %) were still better 

(but still not very high because the aldehyde is ortho to two other groups (the same case as in 

the nitro analogue). Again the highest yields were obtained with structure (2-l) where the 

aldehyde is ortho to the leaving group (high activation) and  only one methoxy is para (low 

deactivation) to the leaving group. 
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Tab. 23. Structural effects in the labelling by [18F]fluoride. (A) Effect of different 
positions of the same groups (isomeric precursors) on the aromatic ring 
listed in order of increasing RCY. (Conditions: DMF, 20 mg/mL, 
140-150 °C, 20 min, results of TLC analyses). 

No Isomers / RCY (%) ± Sdv 

MeO

MeO

CHO

NO2  
 (a)  4.5 ± 0.8 

OMe

MeO

NO2

CHO  
(b) 16.6 ± 1.3 

MeO

MeO

CHO
NO2

 
(c) 30.5 ± 3.4 

1 
 

OMe

OMe

CHO

NO2  
(d) 60.4 ± 2.0 

OMe
OMe

CHO
NO2

 
(e) 89.8 ± 0.7 

MeO

MeO

CHO

NO2  
 

(f) 89.7 ± 2.0 

MeO
CHO

Br
OMe  

(g) 1.0 ± 0.3 

MeO

MeO

CHO

Br  
(h) 1.9 ± 0.5 

MeO

CHO

OMe
Br

 
(i) 2.2 ± 0.4  

2 
 

MeO

MeO

CHO
Br

 
(j) 19 ± 2.6 

MeO

Br

CHO

OMe  
(k) 22.2 ± 3.4 

MeO

MeO

CHO

Br  
(l)  42.3 ± 4.0 

 
 
 
 
 
 
 
 
 



RESULTS AND DISCUSSION 

 

91

3.7.1.2 Type of Leaving Group 

In this work four types of leaving groups were used to investigate the labelling by 

[18F]fluoride. Those are NO2
–, F–, Br– and Cl–. Except for some cases the order of leaving 

group ability followed the expected order[40] , i.e.  

NO2  ≈  F  >  Br  >  Cl  

[18F]fluorodenitration reactions and the fluorine isotopic exchange  (18F for 19F) gave the 

highest yields (all other variables are the same) indicating that the two groups NO2
– and  F– 

are among the best leaving groups for the nucleophilic aromatic substitution by [18F]fluoride. 

To a smaller extent, the other halogens were used as leaving groups. The yields of Cl– or Br– 

substitution were lower than in case of NO2 or F. The relative order of the leaving group 

ability of  the bromine or the chlorine was not always the same. In most cases bromine was 

better leaving group. Tab. 24 illustrates the effect of the leaving group on the RCY by 

[18F]fluoride.  
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Tab. 24. Structural effects in the labelling by [18F]fluoride.  
(B) Type of leaving group (LG) 
(conditions: DMF, 150 °C, 20 mg/mL, 30 min, results of TLC analyses) 

LG / RCY (%) ± Sdv 

No Structure 
NO2 F Br Cl 

1 

MeO

CHO
LGMeO

 

30.5 ± 2.3 73.6 ± 4.6 19.3 ± 3.1 12.1 ± 2.0 

2 
MeO LG

CHOMeO

 
89.6 ± 1.4 87.7 ± 1.2 42.3 ± 3.9 56.4 ± 7.1 

3 
LG

CHO

 

73.2 ± 0.2 75.0 ± 1.6 73.0 ± 0.2 65.0 ± 1.1 

4 OHC LG
 

81.5 ± 5.9 78.3 ± 0.5 75.7 ± 0.5 65.7 ± 3.3 

5 
LG

COCH3

 

13.3 ± 0.9 70.1 ± 1.3 39.3 ± 2.9 37.7 ± 5.4  

6 LG
O

CH3  
61.7 ± 3.9 74.7 ± 4.5 35.3 ± 1.7 59.0 ± 3.6 

7 LG
O

Ph  
86.8 ± 4.8 83.3 ± 3.0 76.0 ± 2.6 70.7 ± 4.5 

 



RESULTS AND DISCUSSION 

 

93

 
3.7.1.3 Type of Activation (Type of Electron Withdrawing Group EWG) 

 
The type of the EWG has a great effect on the RCY in the labelling by [18F]fluoride as in 

other types of nucleophilic substitutions. This effect can be studied systematically by 

changing the EWG in a defined aromatic system. This group should not contain free OH 

groups (as the case in COOH) in order to avoid solvation effects on the [18F]fluoride ion. 

Tab. 25 compares the results. The compounds are nitro or bromo derivatives of benzene, 

benzaldehyde, acetophenone and benzophenone (ortho or para). The RCYs indicated that the 

approximate order of electron withdrawing ability of different groups in the nucleophilic 

aromatic substitution by [18F]fluoride is the following: 

 

COPh ≈ NO2 > CHO > COCH3        (solvent: DMF, leaving group: NO2) 

 

The results showed that the groups COPh and  NO2 are powerful in the electron withdrawal 

effect (RCY were in the range 76-87 % in case of NO2 also as a leaving group). Smaller effect 

was found for the aldehyde group (RCY= 73-81 %), and it was smaller for the COCH3 group 

(RCY= 13-61 %). Using fluorine or bromine as leaving groups the situation is changed, and 

the order is: 

 

COPh ≈ CHO > NO2 > COCH3 > Br        (solvent: DMF, leaving groups: F, Br) 

 

In both cases the para effect of the EWG was more powerful than the ortho effect, and this 

was the reverse case with the electron-rich [18F]DOPA precursors. One group, which has the 

ability to act as a temporary EWG on the ring then can be removed afterwards, is the 

aldehyde. Hence, it is used in some applications to enhance the nucleophilic aromatic 

substitution by [18F]fluoride. It is removed afterwards catalytically [using the complex 

Rh(PPh3)3Cl]. 
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Tab. 25. Structural effects in the labelling by [18F]fluoride.  
(C) Type of activation by EWGs (EWG and not a leaving group). (Unless 
otherwise stated, the conditions are: DMF, 150 °C, 20 mg/mL, 20 min. 
Results of TLC analyses).  

EWG / RCY (%) ± Sdv 

Structure 

Br NO2 CHO COCH3 COPh 

EWG

NO2  

- 81.6 ±  5.4 73.2 ± 0.2 13.3 ± 1.0 78.7 ± 1.9 

EWG

O2N  

- 87.0 ± 2.1 81.5 ± 5.9 61.7 ± 3.9 86.8 ± 4.8 

EWG

Br  

10.9 ± 0.5 58.4 ±  9.1 73.0 ± 0.2 39.3 ± 2.9 - 

EWG

Br  

6.1 ±  2.9 66.7 ±  5.7 75.7 ± 0.5 35.3 ± 1.7 76.0 ± 2.6 

EWG

F  

- - 75 ± 1.6 70.1 ± 1.3 91.2 ± 1.0 

EWG

F  

- - 78.3 ± 0.5 74.7 ± 1.2 83.3 ± 3.0 
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3.7.1.4 Type of Protection of the Hydroxyl Group[58]. 

Protection of the hydroxyl group is necessary in the labelling by [18F]fluoride. If strong 

hydrogen bonding is formed between free OH or NH2 groups (present in the precursor, in 

traces of water in the solvent, in the solvent itself or even impurities present in the solution) 

and the fluoride ion, the nucleophilicity of the fluoride is reduced very much. In this case it 

becomes inactive in the nucleophilic fluorination reactions. This effect is a serious problem in 

case of 18F relative to 19F because in case of 18F this radiotracer is present in very small 

concentration in the solution.   

The protection of the hydroxyl group must be very stable against the labelling conditions 

(temperature:100-180 °C, pH: 8-10). In addition it should be stable against the conditions and 

reagents used in others steps if it is to be employed in the total synthesis of [18F]FDOPA. 

However, very few OH-protecting groups exist which sustain the labelling conditions. In 

choosing the specific protecting group there is a compromise. The protection should sustain 

the labelling and the subsequent conditions but it should be relatively easy to deprotect at the 

last step. Protection as ethers is very practical because it is relatively stable in all steps 

however, the deprotection needs drastic conditions (HI conc., 150 °C). On the other hand the 

protection as esters (carbonic, sulfonic, ...etc) is relatively easy and the deprotection is also 

easy, but they are relatively unstable towards the labelling and most of the subsequent steps. 

This is variable among different groups. Table 26 shows the effect of the labelling conditions 

on some common protection groups of the phenolic OH groups. We notice that the methyl 

ethers, aryl methanesulfonates and methylenedioxy derivatives are stable against all 

conditions. The acetates were unstable in most cases except in neutral conditions and high 

temperatures. The benzoates are stable in most cases but shows marginal stability against high 

pH and the use of K2CO3 / X−.  
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In this study the acetates were the least stable groups, providing several spots after labelling. 

The benzoates were more stable. The benzene sulfonates were the least stable and the 

sulfonate group is rapidly attacked by the strong nucleophile 18F− to provide the unwanted 

product PhSO2
18F. This finding is surprising because Tab. 26 shows the methanesulfonates to 

be stable under most conditions. However, in case of the benzene sulfonates the presence of 

the aromatic ring on both sides of the protecting group provides stability of the intermediates 

by conjugation with the ring, hence the attack of the fluoride on the protecting group is 

favoured (unlike in case of the methanesulfonates). 

Tab. 26. Stability of some phenolic OH groups against common labelling conditions 
by [18F]fluoride[58]. 

Type of OH protection pH 
8.5-10 

pH 
10-12 

Nucleophilic *
X− 

Temp. ** 
100-250 °C 

K2CO3 
MeI 

Methyl ethers S S S S S 

Acetates US US S S US 

Benzoates S MS S S MS 

Aryl methanesulfonates S S S S S 

Methylenedioxy derivatives S S S S S 

 
Notes: 
1- S: protective group is stable under the reaction conditions. 
2- US: protective group is unstable under the reaction conditions and it is removed to yield 

the original OH group. 
3- MS: marginal stability. Depends on the exact other conditions of the reaction. 
4- *) Nature of X− is not specified. 
5- **) Neutral conditions: pH ≈ 7 
 
 

Tab 27 shows the structural effect played by protection of the OH group on the RCY by 

[18F]fluoride. In most the results cases fit generally with the expectations. The highest yields 

were obtained with the methyl ethers since they are the most stable. With respect to the esters, 

the benzoates gave higher yields than the acetates (in most cases the benzoates gave one or 

two spots, unlike the acetates which gave always several spots). In case of two ortho OH 
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groups the protection can be open or cyclic (Tab. 26, entry 5). It was found that best results 

were obtained with the open protection. The difference in the RCY from 89 % in the open 

structure to 66-68 % in the cyclic structures (five and six membered rings) suggests possibly 

that side reactions involving opening of the protection ring occurred with the labelling 

reaction which lowered the yields finally. The stability of open ethers is higher than cyclic 

ethers and this is supported by the fact that the deprotection occurs much faster and smoother 

in cyclic ethers than in open ethers. Finally, the protection of the catechols as five or six 

membered rings (cyclic ethers) seems not to affect the fluorodenitration or the 

fluorodehalogenation reactions on the aromatic ring.  This can be seen in table 27, entries 6 

and 7. The RCYs are very close (67.6 and 66.4 %) in case of fluorodenitration reactions on 

five and the six membered rings, respectively. The same holds for the fluorodehalogenation 

reactions where we got a RCY of 10.7 % and 9.4 % in case of the five and six membered 

rings, respectively. An exception was the results obtained from 6-bromo-2,3-dimethoxy 

benzaldehyde (entry 2, open protection) and 6-bromo-2,3-methylenedioxybenzaldehyde 

(entry 6, cyclic 5 membered ring protection) where we have better results from the cyclic 

structure. From this we can conclude that catecholic (2 o-OHs) precursors protected as cyclic 

ethers (five or six membered rings) will mostly give lower RCYs in the labelling by 

[18F]fluoride than open ethers. Moreover, the size of the protection ring has practically no 

effect on the RCY. Only five or six membered rings were tested because they are the easiest 

to prepare and deprotect back to the OH function.  
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Tab. 27. Structural effects in the labelling by [18F]fluoride.  
(D) Protection of two ortho OH groups (G is a protective group). 
 (conditions: DMF, 150 °C, 20 mg/mL, 20 min, results of TLC analyses) 

Open similar or different protection of two OH groups  

Type of protective group G / RCY (%) ± Sdv 
No. Precursor  

structure CH3 
(methyl ethers) 

COCH3 
(acetates) 

COPh 
(benzoates) 

1 

MeO

CHO
NO2OG

 

30.5 ± 3.4 24.5 ± 2.4 28.0 ± 2.9 

2 

MeO

O
CHO

BrG

 

18.9 ± 2.6 2.5 ± 0.8 4.6 ± 1.2 

3 

MeO

O
CHO

Br

Br

G

 

13.0 ± 3.2 10.6 ± 2.8 13.7 ± 4.6 

4 
MeO

O Br

CHO

G

 
42.3 ±  4.0 2.5 ± 0.6  0  

5 
NO2

CHOO

O

G

G  

89.7 ± 2.0 - - 

Cyclic (5 or 6 membered ring) protection of the two OH groups 

Precursor 
structure NO2

CHO

O

O

 Br

CHO

O

O

 

Br

O

O

CHO

 
6 

RCY (%) 67.6 ± 5.2  10.9 ± 1.1  33.5 ± 2.7  

Precursor 
structure 

Cl

CHO

O

O

 NO2

CHOO

O  Br

CHOO

O  
7 

RCY (%) 7.1 ± 0.2  66.4 ± 4.7 9.4 ± 0.7 

 
 



RESULTS AND DISCUSSION 

 

99

 
3.7.1.5 Other Structural Effects 

One structural effect that can be discussed but carefully is the total number of groups on the 

ring and whether these groups are EDGs or EWGs. Because the total net effect of the 

presence of many groups can not be estimated easily, the results can not always be 

generalised. Tab 28 shows the results. In case of successive increase of EWGs 

(bromobenzene derivatives, entry 2) the effect is high activation towards the nucleophilic 

aromatic substitution as it is expected. In case, however, of successive increase of EDGs 

(mono-, di- and trimethoxylated 2-nitrobenzaldehyde, entry 1) the total effect is surprising 

and it seems that the presence of the methoxy groups has no affect at all or has positive effect. 

Unlike methoxy, the presence of methyl groups on the ring has a negative effect on the 

labelling by [18F]fluoride. This was explained in methyl substituted nitrobenzaldehyde by 

formation of unreactive complex with the [18F]fluoride (perhaps relatively stable 

Meisenheimer complex)[44]. This would transform most of the [18F]fluoride into an unwanted 

product or intermediate. The high RCYs obtained with methoxylated nitrobenzaldehyde is  

one difference between the chemistry of 19F and that of 18F. Beside being very fast and giving 

high yields within few minutes, labelling by [18F]fluoride shows tolerance for the presence of 

even strong EDGs that would otherwise reduce the yields dramatically in 19F nucleophilic 

fluorinations or stop the reaction completely. It should be emphasised that the previous 

discussion holds for precursors with excellent leaving groups such as -NO2. For other 

precursors involving groups with a weaker ability to act as leaving groups, the predicted 

RCYs match with the experimental values (Tab. 28, entry 3). The highest yield (73 %) was 

obtained from o-bromobenzaldehyde. The successive addition of methoxy groups to the ring 

lowers the yields, and this also depends on the number of these groups. 
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Tab. 28. Structural effects in the labelling by [18F]fluoride.  
(E) Total number of groups on the ring. (Unless otherwise stated, the 
conditions are: DMF, 150 °C, 20 mg/mL, 20 min. Results of TLC analyses) 

No. Structure / RCY (%) ± Sdv 

1 

CHO
NO2

 
 

73.2 ± 0.2 

CHO
NO2

OMe  
 

66.7 ± 2.3 

CHO
NO2

OMe
 
 

87.0 ± 1.0 

CHO
NO2

OMe
OMe  

 
89.8 ± 0.7 

CHO
NO2

OMe
OMe

MeO

69.1 ± 4.5 

2 

Br

 
 

0.5 ± 0.1 

Br
Br

  
 

10.9 ± 0.5   

Br

Br  
 

13.3 ± 6.7 

Br

Br  
  

4.3 ± 2.8 

Br

Br

Br

 
 

48.6 ± 10   

Br

BrBr  
 

64.3 ± 6.9 

3 

CHO
Br

 
 

73.0 ± 0.2 

CHO
Br

MeO  
 

31.7 ± 2.5  

CHO
Br

MeO

MeO

 
 

19.0 ± 0.1 

CHO
Br

OMe
OMe

MeO

 
 

8.6 ± 0.7 
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3.7.2 Solvent Effects 

Solvents have generally great effects on most reactions and effects on the aromatic 

fluorination reactions are to be expected[59, 60] . In this study several solvents were used. Those 

mostly are dipolar aprotic solvents in which the fluoride is very soluble and free (not bonded 

to the solvent, which means increased nucleophilicity and basicity). In addition, those 

solvents stabilise the reaction intermediates. Examples are DMF, DMSO, DMAc, sulfolane, 

1,2-DME, NFP, NFM, pyridine, benzonitrile, acetonitrile, dioxane and nitromethane. Tab. 29 

shows the labelling of 6-nitroveratraldehyde (2a) in different solvents: 

Tab. 29. [18F] labelling of 6-nitroveratraldehyde in different solvents. (conditions: 
140 °C, 20 mg/mL, highest yields within10-20 min, results of TLC analyses)

Solvent DMF DMSO DMAc 1,2-DME Sulfolane Pyridine NFP Dioxane

RCY 
(%) 

89.7  
± 2.0 

71.4  
± 3.8 

75.6  
± 2.0 

59.9  
± 5.0 

40.1  
± 1.8 

56.1 
± 7.5 

59.2  
± 5.5 

18.7 
± 3.1 

 

 Most of those solvents have high boiling points and good thermal stabilities. DMF was 

mainly used in this study and it showed to be an excellent solvent for carrying out the 

labelling reactions. In all cases the less polar solvents such as 1,2-DME, dioxane or 

acetonitrile gave very poor results (note: maximum achievable temperature from these 

solvents is ≈110 °C, which appear to be low for the nucleophilic aromatic substitution). The 

choice of solvent depends also on the boiling point. However, for most nucleophilic aromatic 

labelling reactions by [18F]fluoride the range of 120-160 °C was found to be the best. Higher 

temperatures can be used but a general note is that solvent decomposition starts significantly 

around 200 °C (except for sulfolane which has a boiling point of 285 °C). The use of solvents 

with the amide function proved to be the best in this study, especially in two cases: the first is 

the fluorodehalogenation reactions which gave very good yields in DMF but poor results in 

other solvents. The other case is the electron-rich aromatic rings which again gave high yields 
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of labelling in DMF or DMAc but instead much lower yields in the case of DMSO or 

sulfolane. The reaction with the solvent molecules was noticed in the case of nitro methane 

and nitro ethane (Knoevenagel condensation). It should be mentioned that in nucleophilic 

labelling with [18F]fluoride, in literature two solvents used mostly are acetonitrile (for low 

temperatures up to 90 °C) and DMSO (for high temperatures up to 180 °C). 

 

3.7.3 Concentration Effects 

Generally in this work, where the concentration effects are studied in detail, the following 

concentrations were used: 0.5, 1, 5, 10, 20, 30 and 50 mg/mL (a concentration of 20 mg/mL 

was used in case of non-detailed studies). The dependence of the RCY on the precursor-

concentration was strong and investigation of the results showed that the concentration range 

20-30 mg/mL was the optimum range for the optimum RCY[32]. Another note is that at lower 

concentrations, i.e. 0.5-1 mg/mL the RCY tends to decrease rapidly after 20 min but at higher 

concentrations ( > 5 mg/mL) the RCY reaches a plateau which is not much different than the 

maximum yield obtained. In case of fluorodehalogenation reactions were the leaving groups 

are weaker (when related to NO2) the increase of precursor concentration was accompanied 

by increase in the RCY even up to 50 mg/mL. In fluorodenitration and fluorine isotopic 

exchange reactions, where high RCY can be obtained in short time and with low 

concentrations, the effect of increasing the concentrations on the RCY is not high, especially 

after 10 mg/mL. 

 
3.7.4 Temperature Effects 

The dependency of all types of reactions on temperature is well known and expected from the 

Arrhenius equations. In this study the temperature range used mainly is 80-180 °C for most 

compounds but also lower temperatures were used for very activated systems like 
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o-dinitrobenzene. At higher temperatures high amount of decomposition was observed either 

from the precursors and even from the solvent. In general, the optimum temperature range 

found to be the best for the labelling with [18F]fluoride was 140-150 °C although as in 

fluorodehalogenation reactions higher temperatures resulted also in an increase in the RCY. 

For very activated systems like o-dinitrobenzene, higher temperatures (> 120 °C) were found 

to have negatively lowering effect on the RCY.  

 

3.7.5 Energy of Activation  and Mechanistic Implications 

Calculations of the energy of activation [Eact(kJ/mol)] for selected aryl systems revealed the 

following sequence in general: 

fluorine isotopic exchange  <  fluorodenitration reactions  <  fluorodehalogenation reactions 

This is in agreement with the order of leaving group ability. The fluorine isotopic exchange 

should have the least Eact since the exchange here is for isotopes of the same element. 

Fluorodenitration reactions proceed with a lower Eact than fluorodehalogenation reactions 

because the nitro group is much more better than the halogens as a leaving group. The results 

are shown in Tab. 30. 

 

 

 

 

 

 

 

 

 



RESULTS AND DISCUSSION 

 

104 

Tab. 30. Eact values (kJ/mol) of selected aryl systems used in this work. 

Precursor Eact (kJ/mol) Reaction type 

CHO

F

MeO

MeO  

17 Fluorine isotopic 
exchange 

CHO

NO2  

24 

O2N COMe
 

32 

CHO

NO2

MeO

MeO
 

33 

MeO

MeO

CHO
NO2

 

36 

Fluorodenitration 

CHO

Br

MeO

MeO  

60 

CHO

Cl

MeO

MeO  

63 

Fluorodehalogenation 
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Tab. 31. Eact (kJ/mol) of selected nucleophilic aromatic substitution reactions. (X is 
substituted by the nucleophile. For details of reactions, see literature). 

No Substrate X Nucleophile Eact 
(kJ/mol) Lit. 

1 F 50.6 
2 Cl 53.1 
3 Br 56.4 
4 

1-(X)anthraquinones 

I 53.5 
5 F 58.9 
6 Cl 55.6 
7 Br 63.5 
8 

2-(X)anthraquinones 

I 78.2 

97 

9 PhSO 45.1 
10 Br 49.3 
11 Cl 48.5 
12 PhSO2 50.2 
13 p-NO2-C6H4O 43.9 
14 

1-(X)-2,4-dintrobenzene 

I 

Piperidine 
 

N

 

50.2 

98 

 6-(G)-2,4-di-NO2-chlorobenzene 

15 71.9 
16 76.9 
17 75.2 
18 84.0 
19 

        G= Cl 
              Ph 
              H  
              Me 
              MeO 

Cl OMe- 

94.9 

99 

 4-(G)-2-NO2-chlorobenzene 

20 70.2 
21 77.8 
22 84.9 
23 79.8 
24 85.3 
25 

           G= NO2 
                 MeSO2 
                 Me3N+ 
                 CH3CO 
                 CF3 
                 PhN=N 

Cl OMe- 

79.8 

99 

26 
1-Chloro-2,4-dintrobenzene 

(catalysed, under solid-solid-liquid 
phase transfer conditions )  

Cl F- 40.0 100 

27 Fluorobenzene 152.2 
28 2-Nitrofluorobenzene 120.8 
29 3-Nitrofluorobenzene 83.2 
30 4-Nitrofluorobenzene 84.0 
31 2,4-Dinitrofluorobenzene 51.4 
32 3,5-Dinitrofluorobenzene 

F OMe- 

90.7 

101 

 4-(G)-2-NO2-chlorobenzene 

33 96.2 
34 24.0 
35 74.0 
36 

          G= H 
                SMe2 . SO4 
                Sme 
                NMe3

+ 
Cl OMe- 

92.8 

102 

37 Bromobenzene Br EtO- 237.0 103 
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Tab. 31 gives selected literature values for the activation energies (nucleophilic aromatic 

substitution reactions) using different substrates and nucleophiles. The activation energies are 

in the range between 40 kJ/mol and 240 kJ/mol with an average value of 75 kJ/mol. In this 

work, all Eact values (which are in the range of 16-62 kJ/mol) are in the low range or partly 

even lower than reported in literature for the nucleophilic aromatic substitution. The reason is 

that those reactions are very fast reactions[95]. The maximum yields are often obtained within 

10 min. Very activated systems like o-dinitrobenzene gave very low Eact (2 kJ/mol), which is 

expected since in these systems the reaction is very fast even at low temperatures. Other 

systems that gave very low Eact was 6-nitropiperonal (9a). For this compound, calculation of 

Eact revealed a value of exactly 5 kJ/mol, which is too low for fluorodenitration reactions. 

The low values of Eact obtained here for the nucleophilic reaction of [18F]fluoride can well be 

understood when compared to literature. An example is the investigation of the gas phase 

reaction between the fluoride ion and nitro benzene[95]. That was studied by FTICR mass 

spectrometry and DFT calculation. The displacement of the nitro group proceeds as an 

unusually fast reaction with a bimolecular rate constant of  k = 3x10-9 cm3molecule-1sec-1, the 

reaction was the following: 

F–    +     C6H5NO2     →     NO2
–     +   C6H5F               

According to the DFT calculations the most stable complex between the fluoride ion and the 

nitrobenzene (structure 1) results from a fluoride ion bound loosely to the aromatic hydrogens 

in the para position. 

O2N H F O2N H F+
(1)  

Similar complexes were also formed as local minima for fluoride ions loosely bound to the 

meta and ortho aromatic hydrogens. Furthermore, two different stable complexes could be 
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identified by out-of-plane attack of the fluoride ion to the para and ipso carbon atoms 

(structures 2, 3). 

NO2

HF

F NO2F NO2 O

N

F
H

H O
 

     (2)           (3)  (4)                        (5) 
 

The stable ion molecule adduct (3) with a C-F bond length of 2.24 Å and an outside covalent 

bond proceeds then through a local transition state (4). Finally before the products, an ion 

molecule complex between fluorobenzene and the nitrite ion (5) is obtained. According to 

these calculations the prototype Meisenheimer complex (5) is a transition state and not a local 

minimum (in the gas phase). The energy of this transition state is 52.7 kJ/mol below the 

energy of the reactants (Fig. 62).  

(4)

(3)

(2)

(1)

Progress of reaction

∆ H
(kJ/mol)

(5)

-99.9

-70.6

-52.7

-116.2
-117.9

-159.3

NO2 + C6H5F-

F  + C6H5NO2
-

Fig. 62. Energy profile for the gas phase reaction of fluoride ion with nitrobenzene[95]. 
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The gas phase investigation clearly demonstrates that reaction of fluoride ion with 

nitrobenzene is intrinsically very fast. The fraction of collisions that yields products has been 

estimated to be 69 % which is far more than in most known reactions. 

In contrast to nitrobenzene the Meisenheimer complex between fluorobenzene and fluoride 

ion (4') is found to be a local minimum by theoretical calculations[104]. Again an ion molecule 

complex (1') was found to be lowest in energy. In this case the ion molecule complex (3') 

(where fluoride ion is loosely bound to the ipso carbon) is a transition state. The energy 

profile for the reaction between fluorobenzene and fluoride ion is illustrated in Fig. 63. 

F H F

F FF F

 
(1') (3') (4') 

 

(3')

0

-71.1

Progress of reaction

(1'*)

-9.2

(1')

0

C6H5F* + F'C6H5F +F*-

∆ H
(kJ/mol)

(4')
-15.5

(3'*)

Fig. 63. Energy profile for the reaction of fluoride ion with fluorobenzene[104]. 
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The minimum energy barrier between the ion molecule complex F–......C6H5F and the transition 

state is 61.9 kJ/mol. For the substitution reaction of nitrobenzene and fluoride ion this value is 

63.5 kJ/mol. With respect to the starting compounds C6H5NO2 and C6H5F negative barriers 

for the overall reaction result (i.e. for C6H5NO2: –52.7 kJ/mol and for C6H5F: –9.2 kJ/mol). 

A negative overall barrier seems to be a paradox at first glance. The solution of this paradox is 

that an ion molecule complex is formed from C6H5X and the fluoride ion which is 

71.1 kJ/mol (X= F) and 116.2 kJ/mol (X= NO2), respectively more stable than the isolated 

reactants C6H5X + F–. The replacement of X– by F– starts from this ion molecule complex. 

Overall, the transition state of the substitution process is placed below the sum of the energies 

for C6H5X and F–., With respect to C6H5X and F– apparently "negative" energies of activation 

results. However, this term should be avoided because the negative barrier for the overall 

process is the result of the exothermic formation of stable ion molecule complex in the gas 

phase prior to the substitution process. 

In solution the PES profile may be modified to some extent. The major changes to be 

expected are strong ion-dipole interactions between the small F– ion and the dipolar solvents 

such as DMF. It seems possible that this stabilises the starting material more than the 

formation of the ion molecule complexes (1, 1'). Thus, it seems unlikely that in aprotic 

dipolar solvents the overall barrier for substitution will be negative (see Fig 64). 
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Progress of reaction

(5)

C6H5X +F (gas)
-

∆ H

(1,1')

(3,3')

(4,4')

C6H5X +F (solv)
- C6H5F +X (solv)

-

 

Fig. 64. Hypothetically PES for the reaction C6H5X + F– in aprotic dipolar solvents. 
(Continuos line: X= F, dotted line: X= NO2. For structures of intermediates, 
see the text). 

 

The high efficiency of the overall process and, thus, the discussed gas-phase mechanism may 

still be valid. The labelling reactions with [18F]fluoride are performed using potassium as 

a counter ion and phase transfer catalysts thus assuming to deal with “naked” [18F]fluoride 

ions. That hypothesis could explain the small Eact values experimentally determined in this 

work when  DMF was used as a solvent. 
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4 EXPERIMENTAL SECTION 

 
4.1 Chemicals 

 

Chemicals for synthesis and labelling of precursors were obtained from the following 

companies: Aldrich (Germany), Sigma (Germany), Riedel-de Haёn (Germany), Fluka 

(Germany), Merck (Germany), Lancaster (England), ABCR (England). Tab. 32 gives the 

commercial source and the purity of these chemicals. 

Tab. 32. Chemicals used in this study and their commercial sources. (CS: 
Commercial Source,  A: Aldrich, B: ABCR, F: Fluka, L: Lancaster, M: 
Merck, R: Riedel-de Haёn) 

Substance CS Purity
(%) Substance CS Purity 

(%) 

o-Vanillin F > 99 6-Nitropiperonal A 97 
Potassium bromide F > 99 6-Nitroveratraldehyde B 96 

Dimethylsulfate F > 99 6-Choroveratraldehyde L 98 
Benzoylchloride F > 98 6-Bromoveratraldehyde B 98 

Benzenesulfonyl chloride F > 97 Potassium carbonate M 99 
Acetic acid F >  99 Kryptofix [2.2.2]® M 99 

Acetic acid anhydride F 100 N-Formyl piperidine A 99 
2,3-Dimethoxy 
benzaldehyde F > 97 2,4-Dimethoxy 

benzaldehyde F > 97 

2,5-Dimethoxy 
benzaldehyde F 98 3,5-Dimethoxy 

benzaldehyde F 97 

Bromine F > 99 4-Fluoroveratrole L 97 

Ethyleneglycol R > 99 Butyllithium (2.5 M 
solution in hexane) F 97 

Toluene-4-sulfonic acid 
monohydrate F ∼99 Lithium chloride F > 99 

DMF (dry) F 100 THF (dry) F 100 
DMSO (dry) F 100 Methanol (dry) F 100 
DMAc (dry) F 100 Sulfolane (dry) A 100 

6-Bromopiperonal B 98 6-Chloropiperonal L 98 
NBS F > 97 Potassium hydroxide M 98 
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4.2 Analyses 

 
Mass spectra were obtained by using the following devices: EI-MS: Finnigan TSQ 70 e.V. 

(200 °C), FAB-MS: Finnigan 711A 8( kV), modified by AMD.  Unless otherwise stated, the 

method is always EI. Unless it is the molecular ion peak, important peaks (more than 10 %) 

are only reported. 

IR spectra were carried out on Perkin-Elmer spectrum-one FT-IR spectrometer. Important 

peaks are only reported in cm-1.  

1H NMR, 13C NMR and 19F NMR were carried out on Bruker DRX-250 spectrometer 

operating at 250 MHz. 1H NMR and 13C NMR chemical shifts (δ) were calibrated against the 

deuterated solvent (CDCl3 unless otherwise stated) multiplet and referenced to TMS. 19F 

NMR were measured also in CDCl3 and the data (δ) are reported relative to the standard 

CFCl3. 

Melting points (°C) were measured using Gallenkamp device and were uncorrected.  

Chromatography i.e. TLC was performed on silica gel plates (Polygram Silica G/UV254, 8 

X 4 cm, Macherey Nagel, Germany) and eluted with  1:1 or 1:2, ethylacetate / petroleum ether 

(v/v). HPLC was carried out by use of a Hewlet Packard Model 1050 equipped with a 

NaI(Tl)-scintillation detector and a UV detector (254 nm) (see p. 112). 

4.3 Production of [18F]Fluoride 

No-carrier-added (nca) [18F]Fluoride was produced at the cyclotron (PETtrace, GE Medical 

Systems, Uppsala) in the PET-Center, Tübingen, via the 18O(p,n)18F reaction by irradiating 

1.60 ml of  >95 % enriched [18O]water with 16.5 MeV protons. Activities were in the range 

between 10 and 20 GBq out of which 10  to 100 MBq were used for each labelling process. 

No kind of quality control was made for the resulting [18F]fluoride solution. 
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4.4 Labelling with [18F]Fluoride 

The activity was transferred into a 5.0 mL sealed vial containing 50 µL of 0.50 M K2CO3 and 

15 mg Kryptofix 222®. The 18F-fluoride solution was dried for 20 min under a mild stream of 

argon (ca. 2 mL/min) at 140 oC by azeotropic distillation with acetonitrile (2 x 1mL) and 

finally a dry residue of the complex [K/222]+18F-  remained as a white solid.  

The required quantity of the precursor in 1.0 mL (< 0.05 % H2O) solvent was added as 

a solution into the vial with the [K/222]+18F- complex. Then the vial, equipped with a screw 

cap and a silicone septum, was tightly closed and kept heated at the required temperature. 

TLC samples were withdrawn (1-5 µL) for the determination of the RCY at the required time 

(5, 10, 20, 30 and 60 min for some precursors and only at fixed time for others). 

4.5 Analytical Assay 

Product solutions were analyzed by thin layer chromatography (TLC) using  the silica gel 

plates described above. The non-radioactive fluoro-compound was used as a standard on the 

same TLC plate, and the spot was marked within light of 254 nm UV lamp. The radioactive 

spots were assessed quantitatively by means of an InstantImager (Canberra Packard, 

electronic autoradiography). Size of the TLC plate was made visible by radioactivity spotes, 

thus correlation between radioactive and nonradioactive spots was assured. 

High performance liquid chromatography (HPLC) was used for additional identification of 

the labelled product (in case of availability of standards). HPLC was carried out by means of 

a Hewlet Packard Model 1050 equipped with a NaI(Tl)-scintillation detector and a UV 

detector (254 nm) for identification and purity control. A Phenomenex, Luna (5µ C 18, 250 

mm x 10 mm) column with a flow rate of 2 mL/min was used. The eluent mixture was 

acetonitrile/water (30/70, v/v). In some cases a gradient was used starting from 97 % water up 

to 3 %. 
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4.6 Synthesis of Phenols and Catechols 

4.6.1 6-Bromo-2-hydroxy-3-methoxybenzaldehyde (14) 

 

2-Acetoxy-3-methoxybenzaldehyde (12) 

Prepared according to literature[55]. A solution of 50.0 g (0.33 mol) of o-vanillin (11) in 

50 mL pyridine and 35 mL (0.34 mmol) of acetic anhydride was stirred at room temperature 

for 24 h to give a white precipitate. The mixture was transferred to a flask containing 300 mL 

of 6 N HCl solution. The solid product was collected by filtration and washed with additional 

(500 mL) 6 N HCl solution followed by distilled water. Recrystallization from methanol gave 

white crystals : 63 g (98 %), mp 73-75 °C [lit[65] 75 °C].  

1H NMR: 10.12 (s, 1 H), 7.28-7.55 (m, 3 H), 3.89 (s, 3 H), 2.39 (s, 3 H).  
13C NMR: 19.2, 55.2, 117.0, 120.3, 125.9, 128.4, 140.7, 167.8, 187.8.  
Ms (m/z): 152 (M+, 100 %), 136, 122, 106, 81, 52, 43 .  
IR: 1763, 1694, 1680, 1580, 1484, 1441, 1404, 1372, 1319, 1275, 1253, 1211, 1201, 1149, 
1082, 1064, 1046, 1013, 901, 826, 780, 767, 669.  
 

2-Acetoxy-6-bromo-3-methoxybenzaldehyde (13) 

Prepared according to literature[55]. Compound (12) (50.0 g, 0.26 mol) was added in small 

portions to a solution of  100 g of KBr and 15 mL of bromine in 1.0 L of distilled water. The 

mixture was stirred for 3 h and the resulting precipitate collected by filtration. The crude 

product (pinkish solid) was recrystallized from diisopropyl ether to give white crystals.  

Yield: 57.5 g (96%),  mp 121 °C [lit.[66] 119-120 °C].  

1H NMR: 10.23 (s, 1 H), 7.00 (d, 1 H), 7.45 (d, 1 H), 3.82 (s, 3 H), 2.34 (s, 3 H).  
13C NMR: 190.3, 168.7, 151.9, 141.0, 131.5, 126.6, 117.8, 116.4, 55.5, 20.5.  
Ms (m/z): 272/274 (M+, 4 %), 230/232 (100 %), 201/203, 184/186, 105, 107, 94, 79, 51, 43. 
IR: 1760, 1693, 1570, 1465, 1439, 1399, 1371, 1296, 1266, 1175, 1077, 1013, 942, 915, 814, 
755, 718, 663. 
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6-Bromo-2-hydroxy-3-methoxybenzaldehyde (14) 

Prepared according to literature[55]. Compound (13) (50.0 g, 0.18 mol) was suspended in 1.5 L 

of 6 N HCl and stirred for 6 h at 50 °C. The yellow precipitate obtained was collected by 

filtration and recrystallized from isopropyl ether to give yellow crystals.  

Yield: 34 g (80 %), mp 104-106 °C [lit.[66] 105-106 °C].  

1H NMR: 12.19 (s, 1 H), 10.19 (1 H), 6.99 (d, 1 H), 6.84 (d, 1 H), 3.81 (s, 3 H).  
13C NMR: 198.8, 154.8, 148.8, 123.8, 118.5, 117.6, 116.8, 56.7. 
Ms (m/z): 230/232 ([M]+/[M+2]+, 100 %), 201, 184/186, 152, 133, 107, 94, 79, 51, 43.  
IR: 1634, 1579, 1460, 1423, 1299, 1246, 1080, 948, 886, 809. 
 

4.6.2 2,3-Dibromo-6-hydroxy-5-methoxybenzaldehyde (29) 

Prepared according to literature[75]. To a stirred solution of compound (12) (5 g, 25.7 mmol) 

in glacial acetic acid (30 mL) containing a small amount of iron powder (0.25 g) was added 

bromine (3.0 mL) in glacial acetic acid (30 mL) dropwise. It was stirred further for 5 h at 

room temperature, allowed to stand overnight, diluted with water (150 mL), and extracted 

with CH2Cl2. The CH2Cl2 layer was washed with 5% sodium thiosulfate, dried (MgSO4) and 

evaporated to yield a yellow solid which was recrystallized from isopropyl ether to give 

yellow crystals.  

Yield: 7.1 g (89 %), mp 144-146 °C [lit.[75] Reported without mp]. 

1H NMR: 12.47 (s, 1 H), 10.32 (m, 1 H), 7.16 (s, 1 H), 3.89 (s, 3 H). 
13C NMR: 199.2, 154.0, 148.8, 121.5, 118.6, 118.4, 115.1, 56.6 
Ms (m/z): 308/310/312 ([M]+/([M+2]+/([M+4]+, 100 %), 279, 262/264/266, 230/232, 214/216, 
185/187, 157/159, 129/131, 107, 77, 79. 
IR: 1643, 1570, 1453, 1433, 1399, 1294, 1270, 1245, 955, 873, 766. 
 

4.6.3 6-Bromo-2,3-dihydroxybenzaldehyde (32) 

Prepared according to literature[77]. To a stirred solution of BBr3 (1.87 g, 7.5 mmol) in CH2Cl2 

(15 mL) under nitrogen there was added a solution of compound (14) (1.22 gm, 5 mmol) in 

CH2Cl2 (5 mL) dropwise at 25 °C over 30 min. The mixture was stirred for 5 h and left to 

stand in open air for 24 h. Water (25 mL) was then added and the organic layer then 
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separated, washed with water, dried (MgSO4) and evaporated to yield a yellow solid which 

was recrystallized from toluene to give yellow needles (1 g, 87 %), mp 143-145 °C [lit [77] 

142-145 °C]. 

1H NMR (DMSO, d6): 11.76 (s, 1 H), 10.29 (s, 1 H), 10.0 (s, 1H), 7.11, 7.09 (dd, dd, 2 H). 
13C NMR (DMSO, d6): 197.1, 152.2, 146.1, 123.8, 122.5, 117.7, 113.6. 
Ms (m/z): 216/218 ([M]+/([M+2]+, 100 %), 198/200, 184/186170/172, 159/161, 107, 91, 79. 
IR: 3382, 1632, 1432, 1379, 1267, 1192, 1012, 891, 814, 715. 
 

4.6.4 2-Hydroxy-3-methoxy-6-nitrobenzaldehyde (18) 

3-Methoxybenzaldehyde-2-benzenesulfonate (16) 

Prepared according to literature[56]. A solution of o-vanillin (5.0 g, 32.9 mmol) in distilled 

water (33.5 mL) containing potassium hydroxide (2.0 g, 33.3 mmol) was treated with 

benzenesulfonyl chloride (5 mL, 39.3 mmol)  dropwise over a period of 30 min. CH2Cl2 

(1 mL) was then added and the mixture was stirred overnight. The resultant solid was 

extracted with CH2Cl2 (3 x 50 mL) and the organic layer washed with water (200 mL) and 

with 5 % KOH (100 mL). The solvent was dried in vacuo to give a brown solid which needed 

no further purification and was suitable for the next step.  

Yield: 11.5 g (94 %). Mp 117-119 °C [lit.[67] 119-120 °C].  

1H NMR: 10.12 (s, 1 H), 7.07-7.91 (m, 8 H), 3.53 (s, 3 H). 
13C NMR: 187.9, 152.5, 140.6, 135.9, 134.4, 131.3, 129.1, 128.6, 128.0, 119.6, 118.0, 55.9. 
Ms (m/z): 292 (M+, 15 %), 167, 151 (100%), 141, 123, 108, 93, 77. 
IR: 1697, 1578, 1479, 1446, 1371, 1277, 1246, 1197, 1190, 1151, 1064, 905, 853, 162, 753. 
 

3-Methoxy-6-nitrobenzaldehyde-2-benzenesulfonate (17a) 

Prepared according to literature[56]. Aldehyde (16) (20 g, 68.5 mole) was added to 90 % nitric 

acid (44 mL) with temperature maintained between –10 and 0° over a period of 30 min. The 

reaction mixture was stirred an additional hour, poured cautiously on ice-water mixture (250 

mL) and stirred for further 2 h. The white solid was collected by filtration and washed with 

water (200 mL). It was refluxed in acetone (150 mL) for 30 min, concentrated to 20 mL and 
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cooled to 0 °C. The resultant solid was collected by filtration and washed with cold acetone 

(10 mL) to give pure product as white crystals.  

Yield: 16.2 g (70 %), mp 144-146 °C [lit.[68] 145 °C]. 

1H NMR (acetone d6): 10.12 (s, 1 H), 8.17 (d, 1 H), 8.13 (d, 1 H), 7.55-7.94 (m, 5 H), 3.72 (s, 
3 H).  
13C NMR (acetone d6): 188.8, 158.3, 147.5, 136.3, 135.8, 134.7, 132.3,  129.3, 128.5, 118.8, 
114.0, 57.2.  
Ms (FAB, m/z): 338 ([M+1]+, 42 %), 80, 179, 141, 123, 106, 77.  
IR: 1697, 1578, 1516, 1479, 1448, 1431, 1375, 1346, 1322, 1289, 1193, 1169, 1088, 1067, 
993, 952, 914, 834, 822, 775, 757, 737, 691. 
 

3-Methoxy-4-nitrobenzaldehyde-2-benzenesulfonate (17b) 

Prepared as a by-product with compound (17a) in not more than 25 %. Colorless crystals.  

Mp 93-95 °C.  

1H NMR: 10.13 (s, 1 H), 7.78 (d, 1 H), 7.66 (d, 1 H), 7.56-7.75 (m, 7 H), 3.72 (s, 3 H). 
13C NMR: 192.9, 148.0, 147.7, 146.0, 135.4, 134.9, 134.3, 129.6, 128.5, 123.2, 122.9, 62.7. 
Ms (m/z): 337 (M+, 5 %), 320, 196, 141 (100 %), 125, 107, 77. 
IR: 1703, 1583, 1532, 1446, 1418, 1388, 1364, 1266, 1201, 1184, 1169, 1090, 1024, 997, 906, 
820, 769, 745, 732, 702, 686. 
 

2-Hydroxy-3-methoxy-6-nitrobenzaldehyde (18) 

Prepared according to literature[56]. Compound (17a) (12.1 g, 30.6 mmol) was added to 

methanol (160 mL) and the mixture was heated with vigorous stirring. NaOH (6 g) in distilled 

water (6 mL) was added dropwise maintaining reflux temperature. An orange precipitate 

formed which interfered with stirring. The reaction was heated to reflux for an additional 1 h. 

The solid was collected by filtration, washed with methanol and acetone and air dried. The 

solid was dissolved in distilled water and treated with concentrated hydrochloric acid 

dropwise until a yellow solid is formed (pH 3-5). Mp 104-106 °C [lit.[68] 104 °C]. 

1H NMR: 12.55 (s, 1 H), 10.47 (s, 1 H), 7.70 (dd, 1 H), 7.04 (dd, 1 H), 3.99 (s, 3 H).  
13C NMR: 194.9, 153.6, 142.5, 117.9, 113.6, 113.1, 112.9, 56.7 
Ms (m/z): 197 (M+, 56 %), 167, 152, 135, 123, 121, 106, 96, 81, 65, 51. 
IR: 1646, 1573, 1509, 1473, 1429, 1393, 1321, 1250, 1199, 1182, 1071, 972, 935, 840, 813, 
765, 727, 676. 
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4.6.5 6-Fluoro-2-hydroxy-3-methoxybenzaldehyde (40) 

 

6-Fluoro-2,3-dimethoxybenzaldehyde (39) 

Prepared according to literature[57]. Butyl lithium (2.5 M) in hexane (27.2 ml, 68.1 mmol) was 

added slowly (20 min) to a solution of 4-fluorovertratole (38) (10.8 g, 61.9 mmol) in 220 mL 

of dry THF at –65 °C under nitrogen. The solution was stirred at –65 °C for 30 min. DMF 

(5.3 mL, 68.1 mmol) was added dropwise to the solution . The mixture was allowed to warm 

up to room temperature, poured onto ice (500 mL) and extracted with ether. It was washed 

with saturated NaCl solution, dried (MgSO4) and evaporated to give a colorless oil which 

solidify on standing in the refrigerator for several days.  

Yield: 74 %. Mp 48-50 °C [lit.[57] reported without mp].  

1H NMR: 10.26 (s, 1 H), 6.42-7.01 (m, 2 H), 3.85 (s, 3 H), 3.70 (s, 3 H). 
13C NMR: 187.3, 157.9, 153.8, 149.3, 118.2, 110.5, 61.9, 56.2. 
19F NMR (400 MHz, CDCl3):  -126.3 (s, 1 F). 
Ms (m/z): 184 ([M]+, 100 %), 169, 166, 154, 141, 138, 126, 123, 113, 95, 83, 77, 65. 
IR: 1687, 1604, 1582, 1488, 1450, 1392, 1273, 1255, 1236, 1195, 1081, 1046, 961, 870, 817. 
 

6-Fluoro-2-hydroxy-3-methoxybenzaldehyde (40) 

Compound (39) (1 g, 5.4 mmol) and LiCl (0.76g, 18 mmol) were heated in boiling DMF (10 

mL) and the reaction was continued for 24 h. After this, 10 % NaOH (30 mL) was added. The 

mixture is washed with ether (2 x 25 mL) and then acidified with 10 % HCl (50 mL) and 

extracted with ether (2 x 25 mL). The solvent was evaporated and the residue purified through 

a silica column  with the mobile phase as 10 % ethyl acetate in petroleum ether.  

Yield: 74 %. Yellow solid. Mp 143-145 °C. 

1H NMR: 11.67 (s, 1 H), 10.20 (s, 1 H), 7.00 (d, 1 H), 6.55 (d, 1 H), 3.84 (s, 3 H). 
13C NMR: 192.6, 160.0., 156.0, 152.7, 144.8, 119.3, 110.7, 104.4, 56.8. 
Ms (m/z): 170 (M+, 100 %). 
IR: 1644, 1586, 1466, 1409, 1326, 1275, 1226, 1187, 1114, 1001, 955, 843, 632. 
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4.6.6 2-Bromo-4-hydroxy-5-methoxybenzaldehyde (7a) 

4-Acetoxy-3-methoxybenzaldehyde (5) 

Prepared similarly to (12) starting from vanillin (4). Recrystallization from diisopropylether 

gave white crystals: 63 g (98 %), mp 77-78 °C [lit.[61] 77-78 °C]. 

1H NMR: 9.91 (s, 1 H), 7.46 (dd, 1 H), 7.21 (dd, 1 H), 3.88 (s, 3 H), 2.31 (s, 3 H). 
13C NMR: 191.0, 168.3, 152.0, 145.0, 135.3, 124.7, 123.5, 111.0, 56.1, 20.6. 
M (m/z): 152 ([M]+, 100 %), 151, 137, 123, 109, 95, 81, 65, 51, 43. 
IR: 1747, 1687, 1677, 1597, 1505, 1470, 1425, 1393, 1374, 1331, 1277, 1204, 1153, 1123, 
1032, 1013, 905, 1013, 905, 861, 829, 796, 737, 680. 
 

4-Acetoxy-2-bromo-3-methoxybenzaldehyde (6) 

Prepared similarly to (13) starting from vanillin acetate (5). Recrystallization from 

diisopropylether gave white crystals. Yield: 90 %, mp 109-110 °C [lit.[62] 109-110 °C]. 

1H NMR: 10.25 (s, 1 H), 7.50 (s, 1 H), 7.34 (s, 1 H), 3.87 (s, 3 H), 2.31 (s, 3H). 
13C NMR: 190.8, 167.9, 151.4, 145.1, 131.7, 128.0, 117.9, 112.2, 56.3, 20.5.  
Ms (m/z): 272/274 ([M]+/[ M +2]+,  8 %), 230/232 (100 %), 201/203, 187/189, 159/161, 152, 
151, 123, 122, 107, 79, 63, 51. 
IR: 1755, 1686, 1593, 1482, 1383, 1364, 1311, 1271, 1212, 1200, 1152, 1040, 1009, 979, 916, 
878, 862, 827, 742, 716. 
 

2-Bromo-4-hydroxy-5-methoxybenzaldehyde (7a) 

Prepared similarly to (14) starting from compound (6). Recrystallization from 

diisopropylether gave white crystals: yield: 77 %. Mp 104-106 °C [lit.[62] 104-104.5 °C]. 

1H NMR: 10.05 (s, 1 H), 7.34 (s, 1H), 7.08 (s, 1H), 3.86 (s, 3H). 
13C NMR: 189.3, 153.0, 147.3, 125.0, 119.2, 119.0, 110.5, 55.2. 
Ms (m/z): 230/232 ([M]+/[M+2]+, 100 %), 215/217, 201/203, 187/189, 159/161, 152, 151, 
123, 122, 107, 94, 79, 63, 51. 
IR: 3149, 1655, 1595, 1566, 1507, 1401, 1266, 1202, 1149, 1042, 981, 866, 733, 691. 
 

4.6.7 3-Bromo-4-hydroxy-5-methoxybenzaldehyde (7b) 

Prepared similar to (29) starting from vanillin (4). White solid, yield: 75 %, mp 166-168 °C 

[lit.[63] 166-169 °C]. 
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1H NMR: 9.82 (s, 1 H), 7.55 (s, 1 H), 7.33 (s, 1 H), 3.88 (s, 3 H). 
13C NMR: 189.4, 154.2, 148.3, 132.0, 128.6, 115.1, 109.3, 56.0 
M (m/z): 230/232 ([M]+/[M+2]+, 100 %), 215/217, 201/203, 187/189, 159/161, 15, 122, 79. 
IR: 32701672, 1579, 1499, 1462, 1447, 1422, 1404, 1352, 1288, 1145, 1044, 970, 853, 830. 
 

4.6.8 4-Methyl-5-nitrocatechol (54) 

Prepared according to literature[89]. 4-Methylcatechol (53) (2.0 g) and NaNO2 (3.0 g) were 

dissolved in water (100 mL). The solution was cooled down to - 10 °C. H2SO4 (25 mL, 20 %) 

was then added very slowly to the mixture with good stirring. The solution was stirred for 4 h 

at 0 °C. The resulting solid was then collected by filtration and washed thoroughly with water. 

Recrystallization from methanol gave brown crystals.  

Yield: 65 %, mp 180-183 °C [lit[89] 180-182 °C].  

1H NMR (acetone d6): 7.61 (s, 1 H), 6.91 (s, 1 H), 2.44 (s, 3 H). 
13C NMR (acetone d6): 151.3, 144.0, 144.9, 128.2, 119.0, 112.7, 20.5. 
Ms (m/z): 169 ([M]+, 48 %), 152 (100 %), 138, 124, 106, 96, 83, 77, 68, 51, 39. 
IR: 3435, 3186, 1638, 1587, 1523, 1493, 1429, 1361, 1318, 1277, 1227, 1184, 1144, 1045. 
 

 

4.7 Synthesis of Haloaryl Precursors 

4.7.1 General Method for Halogenation with NBS or NCS 

Halogenations with NXS (X= Br, Cl) are successful only for electron-rich (activated) 

aromatic rings. A general procedure for bromination with NBS involves the following. To a 

solution of the proper compound (15 mmol) in DMF (73 mL) is added dropwise NBS (3.92 g, 

22 mmol) in DMF (100 mL) within 30 min. After 48 h, the solution is poured onto ice and 

water (500 mL). The resulting precipitate is collected by filtration and washed thoroughly 

with water. The same procedure is used for chlorination with NCS using 2.94 g (22 mmol). 
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4.7.2 Haloaryl Precursors by Halogenation with NBS or NCS 

 

4.7.2.1 6-Bromo-2,3-dimethoxybenzaldehyde (23a) 

Prepared from 2,3-dimethoxybenzaldehyxde (22) and recrystallized from diisopropylether. 

White crystals. Yield: 78 %, mp 77-78 °C [lit.[71] 77-78 °C]. 

1H NMR: 10.24 (s, 1 H), 7.23 (d, 1 H), 7.9 (d, 1 H), 3.80 (s, 3 H), 3.78 (s, 3 H). 
13C NMR: 190.4, 152.7, 152.0, 129.2, 128.4, 117.5, 112.5,. 62.2, 56.1. 
Ms (m/z): 244/246 ([M]+/([M+2]+, 100 %), 229/231, 214/216, 198/200, 166, 148, 122. 
IR: 1685, 1570, 1468, 1432, 1388, 1296, 1264, 1234, 1056, 990, 922, 813, 770, 665. 
 

4.7.2.2 6-Chloro-2,3-dimethoxybenzaldehyde (23b) 

Prepared from 2,3-dimethoxybenzaldehyxde (22) and recrystallized from diisopropylether. 

White crystals,  yield: 69 %, mp  72-74 °C. 

1H NMR: 10.43 (s, 1 H), 7.12 (d, 1 H), 7.04 (d, 1 H), 3.93 (s, 3 H), 3.84 (s, 3 H). 
13C NMR: 189.5, 152.2, 127.5, 126,1, 125.8, 117.8, 117.3, 62.3, 56.5. 

Ms (m/z): 200/202 ([M]+/([M+2]+, 100 %). 

IR: 1689, 1574, 1470, 1434, 1393, 1298, 1267, 1236, 1177, 1060, 995, 931, 816, 772, 666. 

 

4.7.2.3 2-Bromo-4,5-ethylenedioxybenzaldehyde (37b) 

Prepared from 3,4-ethylenedioxybenzaldehyxde (36) and purified by MPLC. White solid,  

yield: 78 %, mp 146-149 °C [lit.[79] 149-150 °C].  

1H NMR: 10.43 (s, 1 H), 7.42 (s, 1 H), 7.06 (s, 1 H), 4.20 (t, 2 H), 4.08 (t, 2 H).  
13C NMR: 191.0, 153.1, 144.6, 128.4, 121.1, 119.3, 114.4, 63.6, 62. 
Ms (m/z): 242/244 ([M]+/([M+2]+, 100 %). 
IR: 1686, 1580, 1550, 1483, 1455, 1437, 1415, 1367, 1353, 1290, 1242, 1174, 1065, 935, 912, 
892, 852, 826, 700. 
 

4.7.2.4 2-Bromo-3,4,5-trimethoxybenzaldehyde (46) 

Prepared from 3,4,5-trimethoxybenzaldehyde (44) and purified by MPLC. White-pinkish 

crystals, yield: 83 %, mp 68- 71°C [lit [85] 67-69].  
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1H NMR: 10.38 (s, 1 H), 7.21 (s, 1 H), 4.05 (s, 3 H), 3.84 (s, 3 H), 3.80 (s, 3 H). 
13C NMR: 189.5, 153.2, 150.1, 147, 9, 130.8, 111.5, 110.1, 61.4, 60.6, 56.9. 
Ms (m/z): 274/276 ([M]+, 100 %), 259/261, 231/233, 203/205, 188/190, 180, 165, 152, 147, 
124, 109, 103, 77, 50, 40. 
IR: 1683, 1577, 1563, 1470, 1449, 1383, 1314, 1197, 1164, 1103, 1044, 1000, 980, 920, 859. 
 

4.7.3 General Method for Bromination with Br2/CH3COOH 

A general procedure for bromination with this reagent involves the following. The proper 

compound (18 mmol) is dissolved in glacial acetic acid (20 mL). To this solution there is 

slowly added a solution of bromine (3 g) in glacial acetic acid (4 mL) with good stirring. The 

temperature is maintained at 20 °C for 2 d. The solution is then poured onto water (100 mL) 

and the precipitate collected by filtration and washed thoroughly with water and with 5 % 

Na2S2O3 solution.  

4.7.4 Haloaryl Precursors by Bromination with Br2/CH3COOH 

 

4.7.4.1 5-Bromo-2,3-dimethoxybenzaldehyde (24a) 

Prepared from 2,3-dimethoxybenzaldehyxde (22) and recrystallized from methanol. White 

crystals. Yield: 80 %, mp 80-82 °C [lit.[72] 81 °C]. 

1H NMR: 10.22 (s, 1 H), 7.23 (s, 1 H), 7.43 (s, 1 H), 3.91 (s, 3 H), 3.89 (s, 3 H). 
13C NMR: 190.1, 152.2, 149.8, 126.4, 128.6, 119.2, 117.5, 60.6, 56.3. 
Ms (m/z): 244/246 ([M]+/([M+2]+, 100 %), 226/228, 215/217, 198/200, 185, 170, 148, 135, 
121, 107, 94, 79, 77, 51. 
IR: 1677, 1576, 1479, 1444, 1394, 1316, 1264, 1239, 1218, 1191, 1073, 987, 929, 852, 775. 
 

4.7.4.2 5-Bromo-2,4-dimethoxybenzaldehyde (26) 

Prepared from 2,5-dimethoxybenzaldehyxde (25). White solid. Yield: 73 %, mp 135-136 °C 

[lit.[73] 134-138 °C]. 

1H NMR: 10.00 (s, 1 H), 7.80 (s, 1 H), 6.49 (s, 1 H), 3.95 (s, 3 H), 3.80 (s, 3H). 
13C NMR: 189.4, 154.8, 150.0, 133.2, 122.3, 104.6, 99.1, 57.2, 55.6. 

Ms (m/z): 244/246 ([M]+/([M+2]+, 100 %), 229/231, 214/216, 198/200, 166. 

IR: 1663, 1593, 1487, 1463, 1434, 1397, 1369, 1320, 1275, 1209, 1165, 1149, 1051, 1018, 

912, 878, 850, 813, 714, 685. 
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4.7.4.3 4-Bromo-2,5-dimethoxybenzaldehyde (28) 

Prepared from 2,5-dimethoxybenzaldehyxde (27) and recrystallized from methanol. White 

crystals. Yield: 80 %, mp 121-122 °C [lit.[74] 122-124 °C]. 

1H NMR: 10.41 (s, 1 H), 7.30 (s, 1 H), 7.01 (s, 1 H), 3.83 (s, 3 H), 3.79 (s, 3 H). 
13C NMR: 190.3, 152.44, 154.0, 1247.1, 117.2, 116, 57.7, 56.3. 
Ms (m/z): 244/246 ([M]+/([M+2]+, 100 %), 229/231, 198/200, 186, 174, 157, 148, 135, 107. 
IR: 1676, 1598, 1483, 1448, 1392, 1272, 1250, 1211, 1183, 1018, 968, 880, 717. 
 

4.8 Synthesis of Nitroaryl Precursors 

 

4.8.1 General method for nitration with HNO3 

Direct nitration with HNO3 (50-60 %) was successful for most activated (SNAr) precursors in 

cold (0 °C) within short time (30-60 min). A general procedure for nitration with this reagent 

involves the following. One part of the compound is dissolved slowly in 20 parts of nitric acid 

(50-60 %) at 0 °C under good stirring. The temperature is kept at 0 °C for 30 min then at RT 

for another 30 min. The solution is poured then cautiously onto ice and water. The resulting 

precipitate is collected by filtration and thoroughly washed with water and 5 % K2CO3 to 

remove traces of the acid. 

4.8.2  Nitroaryl Precursors by Nitration with HNO3 

 

4.8.2.1  2,3-Dimethoxy-5-nitrobenzaldehyde (24b) 

Prepared from 2,3-dimethoxybenzaldehyxde (22) and recrystallized from diisopropylether. 

White crystals, yield: 76 %, mp 115-117 °C [lit.[72] 115 °C]. 

1H NMR: 10.09 (s, 1 H), 8.21 (s, 1 H), 8.10 (s, 1 H), 4.00 (s, 3 H), 3.71 (s, 3 H). 
13C NMR: 187.9, 155.7, 151.8, 146.4, 125.3, 120.4, 113.3, 60.6, 56.2. 
Ms (m/z): 211 ([M]+, 100 %), 193 (95 %), 182, 165 (50 %), 150, 135, 121, 107, 99, 79, 77. 
IR: 1685, 1583, 1515, 1481, 1433, 1352, 1334, 1276, 1243, 1183, 1089, 1066, 978, 950, 927, 
895, 797, 776, 758, 742, 704. 
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4.8.2.2  3-Bromo-5,6-dimethoxy-2-nitrobenzaldehyde (31) 

Prepared from 5-bromo-2,3-dimethoxybenzaldehyxde (24a) and recrystallized from aqueous 

ethanol. White crystals, yield: 69 %, mp 141 °C [lit.[75] 141 °C]. 

1H NMR: 10.25 (s, 1 H), 7.29 (s, 1 H), 4.02 (s, 3 H), 3.97 (s, 3 H). 
13C NMR: 189.5, 154.4, 147.8, 144.6, 131.6, 121.9, 120.2, 62.8, 56.4. 
Ms (m/z): 289/291 ([M]+/[M+2]+, 40 %), 272/274 (100 %), 259/261, 244/246, 218, 216, 203, 
179, 165, 157, 137, 121, 93, 77. 
IR: 1695, 1574, 1541, 1478, 1429, 1387, 1361, 1317, 1266, 1238, 1182, 1077, 1018, 957, 893, 
854, 808, 765, 729, 670. 
 

4.8.2.3  3,5-Dimethoxy-2-nitrobenzaldehyde (35) 

Prepared from 3,5-dimethoxybenzaldehyxde (34) and recrystallized from methanol. Yellow  

crystals: (yield: 69 %), mp 108-110 °C [lit.[78] 109-110 °C]. 

1H NMR: 10.49 (s, 1 H), 7.06 (s, 1 H), 6.92 (s, 1 H), 4.06 (s, 1 H), 3.83 (s, 1 H). 
13C NMR: 188.8, 157.9, 147.2, 132.4, 121.4, 114.1, 106.9, 56.6, 55.5. 
Ms (m/z): 211 ([M]+, 50 %), 194, 179, 164, 151, 136, 123, 105, 95, 77, 69. 
IR: 1700, 1590, 1529, 1492, 1430, 1386, 1369, 1334, 1311, 1231, 1198, 1185, 1166, 1118, 
1112, 852, 831, 775, 735, 695. 
 

4.8.2.4  4,5-Ethylenedioxy-2-nitrobenzaldehyde (37a) 

Prepared from 3,4-ethylenedioxybenzaldehyde (36) and purified by MPLC. Yellow crystals, 

yield: 91 %, mp 164-166 °C (dec.) [lit.[38] reported without mp]. 

1H NMR: 10.41 (s, 1 H), 7.63 (s, 1 H), 7.32 (s, 1 H), 4.45 (t, 2 H), 4.41 (t, 2 H). 
13C NMR: 188.8, 150.0, 148.3, 145.0, 126.5, 111.1, 108.5, 64.1, 63.7. 
Ms (m/z): 209 ([M]+, 9 %), 181, (100 %), 179, 151, 135, 107, 105, 79, 51. 
IR: 1679, 1612, 1577, 1512, 1456, 1416, 1237, 1287, 1194, 1153, 1053, 1004, 918, 900, 848. 
 

4.8.2.5  3-Methoxy-2-nitrobenzaldehyde-4-benzenesulfonate (42e) 

Prepared from vanillinbenzenesulfonate (42d) and recrystallized from diisopropylether. 

Colorless crystals. Yield: 84 %, mp 133 °C. 

1H NMR: 10.12 (s, 1 H), 7.55-7.75 (m, 5 H), 7.84 (d, 1 H), 7.44 (d, 1 H), 3.86 (s, 3 H). 
13C NMR: 189.1, 144.1, 141.2, 143.3, 125.7, 128.8, 122.6, 129.6, 129.2-135.0 (5 C), 61.4 
Ms( m/z): 337 ([M]+, 4 %), 196, 141 (84 %), 125, 107, 77 (100 %). 
IR: 1705, 1623, 1566, 1510, 1469, 1433, 1401, 1355, 1316, 1279, 1182, 1099, 994, 933, 845, 
822, 776, 747, 666. 
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4.8.2.6  3,4,5-Trimethoxy-2-nitrobenzaldehyde (45) 

Prepared from 3,4,5-trimethoxybenzaldehyde (45) and purified by MPLC. Yellow solid. 

Yield: 45 %, mp  78-80 °C [lit.[84] 80-82 °C]. 

1H NMR: 9.88 (s, 1 H), 7.02 (s, 1 H), 3.98 (m, 3 H), 3.81 (s, 3 H), 3.79 (s, 3 H). 
13C NMR: 188.9, 153.2, 151.6 150.6, 131.0, 127.5, 121.6, 120.0, 116.6, 106.5, 103.5, 90.1, 
63.0, 62.7, 56.6. 
Ms (m/z): 241 ([M+], 100 %), 211, 196, 181, 153, 137, 125, 109. 
IR: 1702, 1583, 1539, 1489, 1458, 1366, 1325, 1307, 1253, 1197, 1114, 1018, 961, 933, 920, 
879, 751, 681. 
 

4.8.2.7 2,3,4-Trimethoxy-6-nitrobenzaldehyde (48) 

Prepared from 2,3,4-trimethoxybenzaldehyde (47) and purified by MPLC. Yellow crystals, 

yield: 74 %, mp 80-82 °C [lit.[86] 80-82 °C]. 

1H NMR: 10.24 (s, 1 H), 7.30 (s, 1 H), 3.98 (s, 3 H), 3.97 (s, 3 H), 3.92 (s, 3 H). 
13C NMR: 187.0, 103.7, 62.9, 61.3, 56.7. 
Ms (m/z): 241 ([M+], 40 %), 211 (98 %), 196 (100 %), 181, 168 (70 %), 153 (73 %), 137, 
125, 109, 93, 77, 66, 53.  
IR: 1703, 1607, 1560, 1520, 1485, 1389, 1301, 1253, 1207, 1119, 1048, 1030, 963, 919, 885, 
799, 767, 731, 675. 
 

4.8.2.8 5-Nitro-1,3-benzodioxole (57) 

Prepared from 1,3-benzodioxole (57) and recrystallized from diisopropylether. Dark brown 

crystals, yield: 81 %, mp 147-148 °C [lit.[91] 146-149 °C] 

1H NMR: 8.22 (s, 1 H), 8.01 (d, 1 H), 7.23 (d, 1 H), 6.14 (s, 2 H). 
3C NMR:  150.2, 145.5, 142.0, 118.7, 108.3, 104.1, 101.6. 
Ms (m/z): 167 ([M]+, 100 %), 151, 137, 121, 107, 91, 79, 65, 63, 45. 
IR: 1500, 1485, 1434, 1379, 1333, 1266, 1236, 1171, 1113, 1030, 917, 869, 823, 808, 741, 
718. 
 

4.8.2.9 4,5-Methylenedioxy-2-nitrotoluene (59) 

Prepared from 3,4-methylenedioxytoluene (59) and recrystallized from diisopropylether. Dark 

yellow crystals, yield: 71 %, mp 80-82 °C [lit.[92] 82 °C] 

1H NMR: 7.55 (s, 1 H), 6.81 (s, 1 H), 6.11 (s, 2 H), 2.69 (s, 3 H). 
13C NMR: 150.1, 144.9, 142.2, 125.6, 112.9, 104.2, 102.3, 20.9. 
Ms (m/z):  181([M]+, 100 %), 166, 152, 136, 121, 107, 93, 77, 65, 39. 
IR: 1616, 1520, 1498, 1466, 1452, 1350, 1324, 1264, 1223, 1188, 1170, 1059, 1033, 1015, 
981, 869, 795, 755. 
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4.9 Synthesis of Ester-Protected Phenolic or Catecholic Precursors 

 

4.9.1 General Procedure 

A general procedure for protection of phenols as esters (acetates or benzoates) involves the 

following procedure. The proper phenol (10 mmol) in pyridine (50 mL) is treated slowly 

under good stirring with a solution of acetic acid anhydride (13 mmol) in pyridine (10 mL). 

After addition is completed, the solution is stirred further for 2 h. The solution is then poured 

onto ice and water (200 mL) and the precipitate is collected by filtration and washed 

thoroughly with water. The same procedure is used for the benzoates using 13 mmol of 

benzoylchloride. 

 

4.9.2 Ester-Protected Phenolic or Catecholic Precursors  

 

4.9.2.1 4-Benzoyloxy-2-bromo-5-methoxybenzaldehyde (8a) 

Prepared from 2-bromo-4-hydroxy-5-methoxybenzaldehyde (7a) and recrystallized from 

diisopropylether. White crystals, yield: 71 %, mp 119-121 °C. 

1H NMR: 10.22, 7.47 (s, 1 H), 7.28 (s, 1 H), 7.44-7.81 (m, 5 H), 3.96 (s, 3 H) 
13C NMR: 190.6, 165.5, 149.0, 145.1, 134.4, 131.3, 128.1-133.6 (5 C), 117.2, 114.1, 56.0 

Ms (m/z): 334/336 ([M]+/[M+2]+, < 1 %), 

IR: 1737, 1682, 1594, 1488, 1466, 1449, 1381, 1312, 1263, 1248, 1194, 1166, 1150, 1052, 

1020, 980, 914, 859, 798, 736, 706, 677. 
 

4.9.2.2 2-Benzoyloxy-6-bromo-3-methoxybenzaldehyde (15a) 

Prepared from 6-bromo-2-hydroxy-3-methoxybenzaldehyde (14) and recrystallized from 

diisopropylether. Colorless crystals, yield: 79 %, mp 158-160 °C. 

1H NMR: 10.27 (s, 1 H), 8.17 (d, 1 H), 7.08 (d, 1 H), 7.47-7.66 (m, 5 H), 3.82 (s, 3 H), 2.34. 
13C NMR: 190.6, 164.0, 152.4, 141.0, 134.2, 132.0, 130.9, 129.1, 129.0, 118.1, 116.3, 56.9. 
Ms (m/z): 334/336 ([M]+/[M+2]+, < 1 %), 230/232 (100 %), 201/203, 189,184/186, 159/161, 
132, 105/107, 79, 63, 51. 
IR: 1732, 1690, 1585, 1570, 1491, 1470, 1438, 1404, 1301, 1273, 1207, 1173, 1161, 1148, 
1075, 1058, 1022, 1161, 1075, 1058, 1022, 943, 825, 796, 744, 696. 
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4.9.2.3 2-Acetoxy-3-methoxy-6-nitrobenzaldehyde (19b) 

Prepared from 2-hydroxy-3-methoxy-6-nitrobenzaldehyde (18) and recrystallized from 

diisopropylether. Brown crystals, yield: 85 %, mp 131-132 °C [lit.[69] 134 °C]. 

1H NMR: 10.22 (s, 1 H), 7.83 (d, 1 H), 7.60 (d, 1 H), 3.96 (s, 3 H), 2.34 (s, 3 H). 
13C NMR: 189.0, 167.1, 153.1, 145.6, 141.3, 121.6, 120.9, 120.3, 56.3, 20.7. 
Ms (m/z): 239 ([M]+, 5 %).  
IR: 1774, 1700, 1578, 1515, 1479, 1433, 1370, 1341, 1277, 1177, 1070, 1015, 925, 875, 834, 
818, 758, 725, 671. 
 
4.9.2.4 2-Benzoyloxy-3-methoxy-6-nitrobenzaldehyde (19c) 

Prepared from 2-hydroxy-3-methoxy-6-nitrobenzaldehyde (18) and recrystallized from 

diisopropylether. Brown crystals, yield: 66 %, mp  125-127 °C.  

1H NMR: 10.26 (s, 1 H), 7.80 (d, 1 H), 7.33 (d, 1 H), 7.51-7.89 (m, 5 H), 3.99 (s, 3 H).  
13C NMR: 190.1, 163.3, 153.0, 146.6, 141.2, 129.5, 134.2, 131.9, 128.6, 122.0, 56.2. 
Ms (m/z): 301([M]+, < 1 %), 243, 271, 196, 105 (100 %), 77, 58, 43. 
IR: 1743, 1703, 1579, 1509, 1480, 1387, 1334, 1287, 1251, 1201, 1188, 1075, 1056, 1025, 
989, 955, 911, 818, 709, 663. 
 

4.9.2.5 2-Acetoxy-5,6-dibromo-3-methoxybenzaldehyde (30b) 

Prepared from 5,6-dibromo-2-hydroxy-3-methoxybenzaldehyde (29) and recrystallized from 

diisopropylether. White crystals, yield: 70 %, mp 138 °C (dec.).  

1H NMR: 10.12 (s, 1 H), 7.28 (m, 1 H), 3.86 (s, 3 H), 2.39 (s, 3 H).  
13C NMR: 189.1, 167.8, 151.9, 147.2, 134.6, 128.5, 121.1, 117.7, 56.6, 20.6 
Ms (m/z): 350/352/354 ([M]+/[M+2]+/[M+4]+, < 1 %), 308/310/312 (100 %), 262/264/266 
(60 %), 230/232, 214, 185, 159, 157, 129/131, 105/107, 79, 50, 43. 
IR: 1768, 1693, 1642, 1570, 1453, 1433, 1398, 1372, 1336, 1294, 1271, 1245, 1171, 1088, 
1011, 952, 873, 765, 725. 
 

4.9.2.6 2-Benzoyloxy-5,6-dibromo-3-methoxybenzaldehyde (30c) 

Prepared from 5,6-dibromo-2-hydroxy-3-methoxybenzaldehyde (29). White solid, yield: 

68 %, mp 147-149 °C. 

1H NMR: 10.12 (s, 1 H), 7.36 (s, 1 H), 7.42-7.63 (m, 5 H), 3.86 (s, 3 H). 
13C NMR: 189.4, 162.9, 151.0, 146.4, 132.9, 131.9, 131.0, 128.8, 128.1, 126.6, 120.4, 56.6. 
Ms (m/z): 412/414/416 ([M]+/[M+2]+/[M+4]+, < 1 %), 333/335, 307/309/311, 266, 228, 185, 
181, 157, 143, 122, 130, 105 (100 %), 77. 
IR: 1739, 1692, 1600, 1577, 1463, 1434, 1392, 1362, 1301, 1258, 1204, 1176, 1088, 1076, 
1058, 1021, 996, 947, 879, 779, 705. 
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4.9.2.7 2-Acetoxy-6-fluoro-3-methoxybenzaldehyde (41a) 

Prepared from 6-fluoro-2-hydroxy-3-methoxybenzaldehyde (40). White solid, yield: 66 %, 

mp 102 °C. 

1H NMR: 10.12 (s, 1 H), 7.24 (d, 1 H), 7.08 (d, 1 H), 3.99 (s, 3 H), 2.42 (s, 3 H). 
13C NMR: 188.1, 167.7, 158.5, 145.5, 144.0, 118.3, 117.7, 116.6, 56.4, 20.4. 
IR: 1757, 1681, 1600, 1571, 1477, 1436, 1371, 1277, 1234, 1155, 1019, 945, 830. 
 

4.9.2.8 2-Benzoyloxy-6-fluoro-3-methoxybenzaldehyde (41b) 

Prepared from 6-fluoro-2-hydroxy-3-methoxybenzaldehyde (40). Colorless crystals, yield: 73 

%, mp 117 °C. 

1H NMR: 10.22 (s, 1 H), 7.44-7.86 (m, 5 H), 7.33 (d, 1 H), 7.02 (d, 1 H), 3.98 (s, 3 H).  
13C NMR: 186.9, 163.0, 157.7, 146.6, 145.2, 134.1, 131.9, 130.0, 118.6, 117.0, 116.1, 56.5. 
Ms (m/z): 274 ([M]+, 1 %). 
IR: 1738, 1688, 1571, 1480, 1433, 1306, 1267, 1211, 1136, 1076, 964, 904, 855. 
 

4.9.2.9 4-Benzoyloxy-3-bromo-5-methoxybenzaldehyde (8d) 

Prepared from 3-bromo-4-hydroxy-5-methoxybenzaldehyde (7b).  

White solid, yield: 68 %, mp 131-132 °C. 

1H NMR: 10.36 (s, 1 H), 7.40-7.80 (m, 5 H), 7.38 (s, 1 H), 7.12 (s, 1 H), 3.86 (s, 3 H). 
13C NMR: 189.6, 164.0, 151.0, 145.7, 134.4, 132.1, 129.6, 128.6, 127.4, 113.6, 109.1, 56.0. 

Ms (m/z): 334/336 ([M]+/[M+2]+, < 1 %). 

IR: 1736, 1691, 1580, 1473, 1462, 1450, 1420, 1389, 1317, 1280, 1259, 1215, 1193, 1132, 

1051,. 1037, 1021, 967, 870, 852, 833, 799, 722, 702, 689. 

 

4.9.2.10 4-Nitrocatechol dibenzoate (52) 

Prepared from 4-Nitrocatechol (51) and recrystallized from diisopropylether. White crystals:, 

yield: 66 %, mp 150 °C. 

1H NMR: 7.37-8.33 (m, 13 H). 
13C NMR: 163.7, 163.4, 148.1, 145.6, 142.9, 134.3, 130.3, 128.7, 128.0, 124.1, 122.0, 119.8 
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4.9.2.11 4-Methyl-5-nitrocatechol dibenzoate (55b) 

Prepared from 4-methyl-5-nitrocatechol (54). Brown solid, yield: 47 %, mp 133-136 °C. 

1H NMR: 7.39-7.96 (m, 12 H), 2.79 (s, 3 H). 
13C NMR: 164.1, 163.4, 150.0, 146.9, 139.9, 126-134 (10 C), 124.4, 20.8. 

Ms (m/z): 377 ([M]+, < 1 %), 181 , 136, 105 (100 %), 77, 51. 

IR: 1741, 1597, 1482, 1524, 1495, 1448, 1386, 1347, 1301, 1240, 1171, 1146, 1050, 901, 843, 

810, 757, 740, 703, 690, 669. 
 

 

4.9.2.12 4-Methyl-5-nitrocatechol diacetate (55c) 

Prepared from 4-methyl-5-nitrocatechol (54). Brown solid, yield: 54 %, mp 100 °C [lit.[88] 

103-105 °C]. 

1H NMR: 7.92 (s, 1 H), 7.19 (s, 1 H), 2.60 (s, 3 H), 2.56 (s, 3 H), 20.3 (s, 3 H). 
13C NMR: 167.7, 167.4, 145.9, 145.6, 140.3, 133.0, 127.2, 120.7, 20.6, 20.5. 
Ms (m/z): 253 ([M]+, < 1 %).  
 
 
 

4.10 Synthesis of Ether-Protected Phenolic or Catecholic Precursors 

 

4.10.1 Open Ethers: General Procedures 

 

A general procedure for protection of phenols as arylmethyl ethers involves the following: 

anhydrous K2CO3 (3.2 g) is cautiously added to a stirred solution of the proper phenol 

(13.4 mmol) in DMF (50 mL) at 60 °C. The mixture is kept at 110-120 °C during the 

portionwise addition of dimethyl sulfate (2.7 mL, 21.4 mmol). The mixture is stirred at 

110-120 ° for 5 h, cooled down to room temperature and poured onto ice-water (400 mL). The 

precipitate is collected by filtration and washed thoroughly with water. For two OH groups 

(protection of catechols as open ethers) the quantities are simply doubled. 
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4.10.2 Ether-Protected Phenolic or Catecholic Precursors  

 

4.10.2.1 3-Bromo-4,5-dimethoxybenzaldehyde (8c) 

Prepared from 3-bromo-4-hydroxy-5-methoxybenzaldehyde (7b). Recrystallization from 

diisopropyl ether gave white crystals. Yield: 86 %, mp 65-66 °C [lit.[64] 64-66 °C].  

1H NMR: 9.96 (s, 1 H), 7.58 (s, 1 H), 7.50 (s, 1 H),  3.86 (s, 3 H), 3.82 (s, 3 H). 
13C NMR: 190.0, 153.0, 149.2, 133.3, 128.4, 112.0, 110.0, 61.2, 56.0. 
Ms (m/z): 244/246 ([M]+/[M+2]+, 100 %). 
IR: 1686, 1586, 1563, 1484, 1449, 1419, 1392, 1379, 1310, 1278, 1238, 1128, 1044, 986, 855, 
837, 817, 786, 750, 742, 696, 665. 
 

4.10.2.2 2,3-Dimethoxy-6-nitrobenzaldehyde (19a) 

Prepared from 2-hydroxy-3-methoxy-6-nitrobenzaldehyde (18). Recrystallization from  

acetone gave white crystals. Yield: 70 %, mp 108-110 °C [lit.[68] 108-110 °C]. 

1H NMR: 10.35 (s, 1 H), 7.96 (d, 1 H), 7.05, (d, 1 H), 4.00 (s, 3 H), 3.96 (s, 3 H). 
13C NMR: 188.3, 158.6, 148.0, 130.4, 121.5, 112.6, 62.7, 56.6. 
Ms (m/z): 211 ([M]+, 20 %), 194, 181, 166 (100 %), 152, 138, 123, 107, 95, 77, 65, 51.  
IR: 1694, 1572, 1511, 1477, 1405, 1325, 1275, 1240, 1195, 1072, 1027, 988, 947, 897, 824. 
 

4.10.2.3 3,4-Dimethoxy-2-nitrobenzaldehyde (42h) 

Prepared from 3-methoxy-2-nitrobenzaldehyde-4-benzenesulfonate (42e). White powder. 

Yield: 58 %, mp 63-65 °C [lit.[80] 63.5-64 °C]. 

1H NMR:  10.0 (s, 1 H), 7.66 (d, 1 H), 7.12, (d, 1 H), 3.84 (s, 3 H), 3.80 (s, 3 H). 
13C NMR: 187.0, 144.2, 141.4, 156.6, 128.6, 122.1, 62.0, 56.7. 
Ms (m/z): 211 ([M]+, 40 %), 194, 181, 166, 152, 138, 123.  
IR: 1685, 1566, 1501, 1434, 1409, 1336, 1270, 1249, 1179, 1070, 1033, 984, 941, 900, 813. 
  

4.10.2.4 2,3-Dibromo-5,6-dimethoxybenzaldehyde (30a) 

Prepared from 2,3-dibromo-6-hydroxy-5-methoxybenzaldehyde (29). Light yellow solid. 

Yield: 70 %, mp 144 °C.  

1H NMR: 10.32 (s, 1 H), 7.25 (s, 1 H), 3.89 (s, 3 H), 3.86 (s, 3 H).  
13C NMR: 190.2, 152.9, 150.3, 131.4, 121.3, 120.6, 119.6, 114.7, 62.6, 60.5. 
Ms (m/z): 322/324/326  ([M]+/[M+2]+/[M+4]+,  100 %), . 
IR: 1694, 1569, 1556, 1456, 1429, 1397, 1298, 1258, 1232, 1202, 1179, 1069, 996, 975, 937, 
866, 813, 749, 699. 
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4.10.2.5 1,2-Dimethoxy-4-methyl-5-nitrobenzene (55a) 

Prepared from 4-methyl-5-nitrocatechol (54) and recrystallized from diisopropylether. Yellow 

solid. Yield: 69 %, mp 116-120 °C [lit.[90] 119-120 °C]. 

1H NMR: 7.65 (s, 1 H), 6.72 (s, 1 H), 3.96 (s, 3 H), 3.93 (s, 3 H), 2.62 (s, 3H). 
13C NMR: 153.0, 147.1, 129.0, 114.0, 108.2, 56.3, 21.3. 
Ms (m/z): 197 ([M]+, 100 %). 
IR: 1616, 1581, 1520, 1466, 1452, 1350, 1324, 1264, 1223, 1188, 1170, 1059, 981, 869, 795. 
 

 

4.10.3 Cyclic Ethers: General Procedure for five Membered Rings 

A general procedure for protection of catechols as cyclic five membered rings involves the 

following. A solution of the proper catechol (25 mmol) and freshly distilled acetone 

(30 mmol) in dry toluene (50 mL) is treated with good stirring under nitrogen over a period of 

30 min with PCl3 (40 mmol). Stirring is continued for another 30 until TLC shows the 

disappearance of the starting catechol. The solution is then treated with NaOH before being 

extracted with CH2Cl2. 

  

4.10.4 Five Membered Ring  Ether-Protected Catecholic Precursors 

 

4.10.4.1 6-Bromo-2,3-methylenedioxybenzaldehyde (33) 

 

Prepared from 6-Bromo-2,3-dihydroxybenzaldehyde (32). Colorless solid. Yield: 55 %, 

mp 156-159 °C [lit.[77] 158-160 °C]. 

1H NMR: 10.28 (s, 1 H), 7.12 (d, 1 H), 6.87 (d, 1 H), 6.16 (s, 2 H). 
13C NMR: 190.4, 149.5, 148.8, 126.2, 117.2, 115.6, 113.6, 103.4. 
Ms (m/z): 228/230 ([M]+/[M+2]+, 100 %), 199/201, 185/187, 171, 157/159, 143/145, 121. 
IR: 1677, 1617, 1586, 1505, 1450, 1396, 1348, 1240, 1210, 1115, 1048, 1017, 920, 876, 806, 
758, 701. 
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4.11 Synthesis of Phenolic or Catecholic Precursors Protected as Open 
Sulfonate Esters 

 

4.11.1 General Procedure 

A general procedure for the preparation of these precursors from the phenols (or catechols) 

involves the following. The proper phenol (10 mmol) in water (50 mL) is treated with KOH 

(12 mmol, 0.72 g). To this mixture there is added dropwise benzenesulfonyl chloride 

(10 mmol, 1.77 g, 1.3 mL) within 20-30 min. Stirring is continued over 24 h. The resulting 

solid is filtered, washed thoroughly with water (500 mL) and with 5 % KOH solution  (100 

mL). If the product is still oily, it is extracted first with CH2Cl2 (3 X 50 mL). The organic 

phase is washed with water and 5 % KOH and dried (MgSO4). The solvent is removed under 

vacuum at a rotational evaporator. 

4.11.2 Phenolic or Catecholic Precursors Protected as Open Sulfonate Esters 

 

4.11.2.1 2-Bromo-5-methoxybenzaldehyde-4-benzenesulfonate (8b) 

Prepared from 2-Bromo-4-hydroxy-5-methoxybenzaldehyde (7) and recrystallized from 

diisopropylether. White crystals: (yield: 85 %), mp  135-137 °C. 

1H NMR: 10.18 (s, 1 H), 7.28 (d, 1 H), 7.55 (d, 1 H), 3.86 (s, 3 H). 
13C NMR: 189.0, 152.9, 144.3,136.3, 134.4, 133.1, 129.0, 128.5, 117.5, 113.0, 56.2. 
Ms (m/z): 370/372 ([M]+/[M+2]+,80 %) 229/231 (85 %), 201/2032, 173/175, 141 (100 %).  
IR: 1691, 1589, 1481, 1448, 1370, 1304, 1267, 1190, 1140, 1089, 1037, 978, 882, 856, 764, 
750, 720, 700. 
 

4.11.2.2 6-Bromo-3-methoxybenzaldehyde-2-benzenesulfonate (15b) 

Prepared from 6-Bromo-2-hydroxy-3-methoxybenzaldehyde (14) and recrystallized from 

diisopropylether. White crystals: (yield: 93 %), mp 122-124 °C. 

1H NMR: 10.11 (s, 1 H), 7.92 (d, 1 H), 6.88 (d, 1 H), 7.27-7.70 (m, 5 H), 3.53 (s, 3 H). 
13C NMR: 188.3, 152.4, 136.3, 134.4, 133.1, 129.0, 128.5, 117.5, 113.0, 56.2. 
Ms (m/z): 370/372 ([M]+/[M+2]+, 30 %), 245/247, 229/231 (100 %), 214/216, 200/202, 
186/188, 173/175, 141, 121, 107, 94, 77. 
IR (cm-1): 1698, 1584, 1566, 1465, 1399, 1372, 1300, 1273, 1195, 1183, 1168, 1090, 1077, 
938, 896, 822, 775, 748, 682. 
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4.11.2.3 2,3-Dibromo-5-methoxybenzaldehyde-6-benzenesulfonate (30d) 

Prepared from 2,3-dibromo-6-hydroxy-5-methoxybenzaldehyde (29).  

White solid. yield: 81 %, mp 155 °C. 

1H NMR: 10.23 (s, 1 H), 7.49 (s, 3 H), 7.51-7.82 (m, 5 H), 3.91 (s, 3 H). 
13C NMR: 191.0, 147.4, 140.1, 139.7, 135.5, 127.5-133.0 (7 C), 122.9, 120.4, 56.0 
Ms (m/z): 448/450/452 ([M]+/[M+2]+[M+4]+, 10 %), 369/371, 323/325/327, 307/309/311 
(100 %), 292/294/296, 291, 266, 253, 185/187, 157/159, 141, 77, 51. 
IR: 1708, 1581, 1553, 1451, 1427, 1378, 1292, 1259, 1174, 1165, 1086, 998, 942, 904, 843, 
788, 768, 753, 730, 677. 
 

4.11.2.4 6-Fluoro-3-methoxybenzaldehyde-2-benzenesulfonate (41c) 

Prepared from 6-fluoro-2-hydroxy-3-methoxybenzaldehyde (40).  

White solid. Yield 76 %, mp  133 °C. 

1H NMR: 10.66 (s, 1 H), 7.28 (d, 1 H), 7.02 (d, 1 H), 7.39-7.73 (m, 5 H), 4.02 (s, 3 H). 
Ms (m/z): 310 ([M]+, 15 %), 203, 185, 169 (100 %), 154,. 141, 125, 98, 77, 70, 51.  
 

4.11.2.5 Phenylbenzenesulfonate (42a) 

Prepared from phenol. Identified by comparison of its melting point with the reported value. 

Oily material which solidify on standing in refrigerator for several days. Yield 87 %, mp 

35-39 °C [lit.[81] 36-37 °C]. 

4.11.2.6 Benzaldehyde-2-benzenesulfonate (42b) 

Prepared from 2-hydroxybenzaldehyde. Identified by comparison of its melting point with the 

reported value. Pink solid. Yield 76 %, mp  57-59 °C [lit.[81] 56-58.5 °C]. 

4.11.2.7 Benzaldehyde-4-benzenesulfonate (42c) 

Prepared from 4-hydroxybenzaldehyde. Identified by comparison of its melting point with the 

reported value. Pink solid. Yield 80 %, mp 80-82 °C [lit. [82] 81-82]. 

4.11.2.8 3-Methoxybenzaldehyde-4-benzenesulfonate (42d) 

Prepared from 3-methoxy-4-hydroxybenzaldehyde (4).  

White solid. Yield 76 %, mp 69-70 °C [lit.[67] 69-70 °C]. 

1H NMR: 10.12 (s, 1 H), 7.10-7.85 (m,  8 H), 3.55 (s, 3 H). 
13C NMR: 191.3, 154.5, 142.3, 135.9, 133.6, 131.3, 129.4, 128.9, 127.5, 112.6, 118.0, 55.9. 
Ms (m/z):  292 ([M]+, 15 %), 176, 152, 151 (100 %), 141, 123, 109, 95, 81, 77.  
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IR: 1683, 1597, 1497, 1463, 1450, 1398, 1382, 1321, 1274, 1192, 1202, 1175, 1143, 1118, 
1086, 1025, 960, 857, 844, 833, 754, 726, 691. 
 

4.11.2.9  4-Nitrocatechol dibenzenesulfonate (42f) 

Prepared from 4-nitrocatechol (51). White solid. Yield 76 %, mp 135-139 °C [lit.[83] 

136-137 °C].  

1H NMR: 8.42 (s, 1 H), 8.05 (d, 1 H), 7.76 (d, 1 H), 7.61-7.85 (m, 10 H).  
13C NMR: 144.47, 142.9, 139.8, 122.6, 118.9, 115.4, 129-134 (12 C). 
Ms (FAB, m/z): 371 ([M+1]+, 33 %).  
IR: 1591, 1529, 1489, 1376, 1361, 1300, 1255, 1244, 1129, 1055, 970, 854, 780, 722, 671. 
 

4.11.2.10  4-Methyl-5-nitrocatechol dibenzenesulfonate (42g) 

Prepared from 4-methyl-5-nitrocatechol (54). White solid. Yield 76 %, mp 155 °C. 

1H NMR: 8.26 (s, 1 H), 7.28 (s, 1 H), 7.55-7.84 (m, 10 H), 2.69 (s, 3 H). 
13C NMR: 147.5, 141.3, 138.0, 129.3-135.2 (12 C), 128.0, 122.0, 114.2, 20.9. 
Ms (FAB, m/z): 386 ([M+1]+, 20 %).  
IR: 1585, 1535, 1498, 1360, 1348, 1279, 1213, 1172, 1155, 1129, 1034, 967, 883, 831, 799, 
761, 701, 677. 
 

 

4.12 Miscellaneous 

 

4.12.1 Aldehydic Precursors Protected as Cyclic Acetals: General Procedure 

The protection of the aldehyde group as cyclic acetals can be achieved by the following 

general procedure. The proper aldehyde (7.5 mmol), ethylene glycol (6.4 g, 10.3 mmol) and 

p-toluenesulfonic acid monohydrate (200 mg) are dissolved in toluene (75 mL) and the 

mixture is refluxed in the Dean-Stark apparatus for 2.5 d. The solution is then poured on 

water (100 mL). The organic phase is separated, washed with water and saturated NaHCO3 

and dried (MgSO4). It is then removed in vacuo. 
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4.12.2  Aldehydic Precursors Protected as Cyclic Acetals 

 

4.12.2.1  3-Bromo-5,6-dimethoxy-2-nitrobenzaldehyde ethyleneacetal (49) 

Prepared from 3-Bromo-5,6-dimethoxy-2-nitrobenzaldehyde (31) and purified by MPLC. 

White solid. Yield 68 %, mp  79.5-80.5 °C.  

1H NMR: 7.14 (s, 1 H), 6.17 (s, 1 H), 3.91 (s, 3 H), 3.89 (s, 3 H), 4.02 (t, 2 H), 4.00 (t, 2 H). 
Ms (FD, m/z): 3357336 ([M]+/[M+2]+). 
IR: 1577, 1534, 1477, 1430, 1382, 1357, 1310, 1268, 1229, 1172, 1128, 1060, 1018, 956, 939, 
835, 800, 771, 745, 660. 
 

4.12.2.2  2,3-Dimethoxy-6-nitrobenzaldehyde ethyleneacetal (50) 

Prepared from 2,3-dimethoxy-6-nitrobenzaldehyde (19a) and purified by MPLC. White solid. 

Yield 75 %, mp 74-76°C [lit.[87] 74-76 °C]. 

1H NMR: 7.26 (d, 1 H), 7.13 (d, 1 H), 6.18 (s, 1 H), 3.91 (s, 3 H), 3.89 (s, 3 H), 4.10 (t, 2 H), 
3.99 (t, 2 H). 
Ms (m/z): 256 ([M+1]+, 25 %), 255 ([M]+, 8 %), 205, 180, 163, 150, 136, 122, 107, 93, 73. 
IR: 1583, 1538, 1483, 1440, 1374, 1363, 1309, 1275, 1238, 1178, 1112, 1016, 971, 938, 860, 
821, 810, 773, 735, 655. 
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5 SUMMARY 
 

The objective of this work was to investigate the nucleophilic aromatic substitution using 

[18F]fluoride as nucleophile. Therefore, structures ranging from simple monosubstituted 

aromatic systems to complicated multi-substituted aromatic systems were tested, and several 

effects were studied in detail, including the following: 

1- Structural effects (positions and number of groups on the ring, type of activation or 

deactivation, type of possible leaving groups and type of protection of OH groups). 

2- Solvent effects (was studied using a variety of dipolar aprotic solvents) 

3-  Concentration effects (was studied using concentrations 1-50 mg/mL). 

4- Temperature effects (was studied using temperatures 60-180 °C). 

 

Two types of reactions were studied. Those are: 

1- Fluorodenitration reactions:  Ar-NO2   →   Ar-18F 

2- Fluorodehalogenation reactions:  Ar-X   →   Ar-18F            (X= F, Br, Cl) 

 

The study was divided into 3 parts. In the first part, aryl systems (including haloaryls, 

nitroaryls, benzaldehydes, acetophenones and benzophenones) were tested. In the second part, 

the focus was on optimising the conditions for the production of [18F]FDOPA precursors for 

path A (chapter 2). In the last part, model systems for producing [18F]FDOPA via path B 

(chapter 2) were tested in the nucleophilic aromatic substitution by [18F]fluoride. The 

radiochemical yields (RCYs) obtained from some precursors were used further to calculate 

the rate constants and the energy of activation for this process.  

 

 

The main results can be summarised in the following points: 
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1- Fluorodenitration reactions can be used efficiently to produce nca [18F]arylfluorides. DMF 

is the best solvent but DMSO and DMAc can be used also. For very activated systems, 

acetonitrile can be used at lower temperatures. The optimum temperature range is 120-150 

°C, although lower temperatures can be used for very activated systems. The optimum 

concentration range is  15-30 mg/mL and optimum time is 10-20 min.  

2- Fluorodehalogenation (X= F) reactions can also be a good alternative for the synthesis of  

[18F]arylfluorides. DMF is the best solvent and most other solvents proved to be less 

efficient for carrying out this process. Optimum conditions being nearly the same as in 

fluorodenitration reactions.  

3- Fluorodehalogenation (X= Br, Cl) reactions can also be used for the synthesis of  nca 

[18F]arylfluorides when the conditions are well optimised. For this, DMF is the best 

solvent and most other solvents proved to be not useful. Aromatic systems with electron 

withdrawing groups only on the ring gave yields which were almost comparable to those 

from fluorodenitration reactions. However, with the increasing introduction of electron 

donating groups on the aromatic ring, the yield tend to be much lower compared to similar 

nitro systems. The RCYs were always directly proportional both to concentrations up to 

50 mg/mL and temperatures as high as 180 °C. 

 
Calculations of the activation energy for the previous processes reveals low values in the 

range 16-63 kJ/mole for most compounds but even lower values were obtained for very 

highly activated compounds towards SNAr. These values indicate very fast reactions between 

the fluoride ion and the substituted nitro or halo benzene derivatives. In all cases the yields 

from the nitro derivatives were better than the halo derivatives. Within the halogens, the 

fluoro precursors gave always the highest yields.  
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7 APPENDICIES 
 
 
6.1 Appendix 1: Data for Aryl Systems 

 

Tab. 33. [18F] Labelling data for  mono, di and tribromobenzenes. 

RCY (%) 

5 min 10 min 20 min 30 min 60 min Precursor n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv

Mono 2 1.4 0.4 1.1 0.2 1.4 0.2 1.8 0.4 0.5 0.2
o-dibromo 3 5.6 2.2 8.2 2.7 10.0 1.9 10.9 0.5 10.7 3.9
m-dibromo 4 6.7 2.6 9.1 3.5 12.2 2.2 15.7 4.0 12.9 4.1
p-dibromo 4 2.3 0.9 3.7 1.6 4.9 1.1 6.1 2.9 5.7 1.6

1,2,4-tribromo 5 33.3 11.0 45.1 11.7 46.9 11.4 48.6 3.3 50.8 5.7
1,3,5-tribromo 4 56.9 10.8 62.6 9.3 63.3 7.4 64.3 8.0 57.9 6.1

 

Tab. 34. [18F] Labelling data for dichlorobenzenes. 

RCY (%) 

5 min 10 min 20 min 30 min 60 min Precursor n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv 

o-dichloro 3 2.9 1.6 3.5 1.5 3.5 0.8 3.8 0.2 3.4 0.5 
m-dichloro 3 2.6 0.3 3.5 0.4 4.1 0.6 4.3 0.4 7.3 0.8 
p-dichloro 3 0.8 0.4 1.3 0.6 1.3 0.3 1.4 0.5 1.6 0.2 

 

Tab. 35. [18F] Labelling data for o-dinitrobenzene in DMF and CH3CN 

RCY (%) 

5 min 10 min 20 min 30 min 60 min Solvent Temp.
(°C) n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv

80 4 79.1 7.8 80.3 7.8 82.0 6.1 81.6 5.4 83.6 5.4
100 4 82.0 2.6 81.3 2.0 82.5 1.4 80.6 3.4 75.2 6.4
120 4 81.4 4.7 77.8 6.8 74.2 9.6 69.8 10.2 63.6 12.6

DMF 

140 4 58.4 9.1 46.5 9.1 35.5 5.6 27.7 6.5 15.2 2.3
40  3 51.4 8.0 57.1 2.3 64.5 0.6 66.7 3.0 69.6 5.4
60 3 77.8 5.6 79.9 5.1 81.4 1.0 83.4 4.4 73.4 3.9CH3CN 
80 5 77.5 2.5 78.8 4.0 84.7 3.8 82.4 5.5 80.4 3.0
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Tab. 36. [18F] Labelling data for the three bromonitrobenzene isomers  

RCY (%) 

5 min 10 min 20 min 30 min 60 min Precursor n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv

o-isomer 4 58.4 9.1 46.5 9.0 35.5 5.6 27.7 6.5 15.2 2.3
m-isomer- 4 25.7 3.3 30.1 2.7 30.0 3.1 28.6 2.1 23.9 3.2
p-isomer 3 65.6 8.8 66.7 5.7 60.3 5. 56.6 8.8 43.7 9.9

 
 

Tab. 37. [18F] Labelling data for o-nitrobenzaldehyde in DMF. 

RCY (%) 

5 min 10 min 20 min 30 min 60 min Temp. 
(°C) n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv 

50  3 12.2 5.8 21.0 7.7 31.0 8.9 43.8 12.6 54.3 11.8 
80 4 51.7 0.8 60.1 2.3 65.2 5.8 72.7 2.1 77.5 1.4 
100 3 61.6 7.1 65.3 7.1 64.3 2.4 65.5 4.8 70.0 5.5 
120 4 63.0 4.9 65.9 6.7 68.4 1.2 70.5 4.8 74.0 5.2 
140 4 64.8 4.9 69.3 4.4 69.3 4.0 73.2 0.2 78.1 0.9 
160 1 70.0 3.1 74.0 2.6 75.5 2.1 76.5 3.6 78.6 1.7 

 

Tab. 38. Calculations of activation energy and rate constants for 
o-nitrobenzaldehyde in DMF. 

ln (1-RCY) Temp. 
(°C) 5 min 10 min 20 min 30 min 60 min 
80 -0.7277 -0.9188 -1.0556 -1.2983 -1.4917 
100 -0.9571 -1.0584 -1.0300 -1.0642 -1.2040 
120 -0.9943 -1.0759 -1.1520 -1.2208 -1.3471 
140 -1.0441 -1.1809 -1.1809 -1.3168 -1.5187 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 0.0894 – 0.0919 X -0.95 0.0919 -3.3871 
100 Y= - 0.1426 – 0.1058 X -0.91 0.1058 -2.2462 
120 Y= - 0.1521 – 0.1076 X -0.90 0.1076 -2.2293 
140 Y= - 0.1521 – 0.1181X -0.91 0.1181 -2.1362 
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Tab. 39. [18F] Labelling data for p-nitroacetophenone in DMF and DMSO 

RCY (%) 

5 min 10 min 20 min 30 min 60 min Solvent Temp. 
(°C) n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv

50 2 0 0 0.4 0.1 0.7 0.1 1.2 0.4 1.7 0.5
80 2 7.9 2,3 12.7 2,6 17.7 3,3 21.1 1,6 25.3 4.0
100 2 19.7 1.7 25.8 2.0 32.8 0.3 38.0 5.6 41.8 7.0
120 2 26.4 6.5 34.3 7.7 42.0 8.2 47.3 9.5 49.2 9.8
140 2 43.1 13.2 49.5 8.4 50.7 3.3 50.5 4.5 50.8 5.6

DMF 

160 2 59.5 1.4 63.3 1.7 67.0 11.7 72.5 13.7 61.0 8.1
50 3 0 0 0.3 0 0.4 0 0.4 0 0.6 0 
80 3 5.9 1.2 11.0 2.3 17.0 4.1 19.8 3.8 20.7 4.5
100 3 13.5 1.9 20.7 3.9 27.0 4.4 31.6 4.1 40.4 6.6
120 4 25.0 5.0 37.0 4.1 41.2 3.9 49.6 7.9 53.6 11.1
140 4 40.6 6.6 50.2 8.9 57.8 8.1 60.7 6.4 60.3 10.3

DMSO 

160 4 52.3 7.7 59.6 6.5 60.4 8.6 60 8.3 48.8 10.1
 
 

Tab. 40. Calculations of activation energy and rate constants for 
p-nitroacetophenone in DMF. 

ln (1-RCY) Temp. 
(°C) 

5 min 10 min 20 min 30 min 60 min 

80 -0.0823 -0.1358 -0.1948 -0.2370 -0.2917 
100 -0.2194 -0.2984 -0.3975 -0.4780 -0.5413 
120 -0.3065 -0.4201 -0.5447 -0.6401 -0.6773 
140 -0.5639 -0.6832 -0.7072 -0.7032 -0.7093 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 0.0048 – 0.0136 X - 0.99 0.0136 -4.2977 
100 Y= - 0.0234 –  0.0298X -0.97 0.0298 -3.5132 
120 Y= - 0.0322 –  0.0420X -0.97 0.0420 -3.1701 
140 Y= - 0.0741 – 0.0683 X -0.93 0.0683 -2.6838 
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6.2 Appendix 2: Data for 6-Nitroveratraldehyde 

 
 
 
 

Tab. 41. [18F] Labelling data for 6-nitroveratraldehyde. Conditions: 
a) 20 mg/mL,140 °C. b) DMF (1 mL), 140 °C. c) 20 mg/mL, DMF (1 mL). 

RCY (%) ± Sdv 
Variable 

5 min 10 min 20 min 30 min 60 min 

DMF 83.2 ± 6.3 89.7 ± 2.0 88.7 ± 1.8 85.9 ± 2.7 82.3 ± 3.6 
DMAc 68.1 ± 0.1 75.6 ± 2.0 75.1 ± 3.0 74.4 ± 4.3 71.9 ± 1.5 
DMSO 69.0 ± 1.9 70.5 ± 1.9 71.4 ± 3.8 69.6 ± 3.9 65.8 ± 3.4 

Sulfolane 33.3 ± 0.1 37.5 ± 3.8 40.1 ± 1.8 39.7 ± 3.0 37.7 ± 0.7 So
lv

en
t a  

1,2-DME 56.9 ± 7.0 59.9 ± 5.0 49.7 ± 7.8 45.5 ± 3.9 42.0 ± 0.1 
0.5 29.0 ± 0.7 31.4 ± 1.6 27.4 ± 4.9 26.2 ± 5.6 21.6 ± 2.6 
1 62.4 ± 8.0 63.3 ± 6.4 59.9 ± 6.1 53.6 ± 4.8 41.9 ± 2.9 
3 60.5 ± 1.3 63.9 ± 0.7 66.8 ± 3.5 64.8 ± 1.1 56.2 ± 7.0 
6 68.7 ± 4.3 68.7 ± 3.7 68.5 ± 4.4 66.2 ± 4.2 66.0 ± 0.1 
10 75.5 ± 6.0 75.5 ± 5.3 76.9 ± 6.0 77.8 ± 6.3 73.2 ± 9.8 
20 83.2 ± 6.3 89.7 ± 2.0 88.7 ± 1.8 85.9 ± 2.7 82.3 ± 3.6 
30 85.9 ± 2.3 85.5 ± 2.1 82.6 ± 0.1 81.6 ± 0.8 80.9 ± 0.1 C

on
ce

nt
ra

tio
n b

 
(m

g/
m

L
) 

50 85.5 ± 1.6 84.7 ± 1.1 81.9 ± 0.8 82.6 ± 0.2 81.0 ± 0.1 
80 36.0 ± 0.1 35.1 ± 6.0 45.1 ± 6.2 48.8 ± 4.4 63.5 ± 4.4 
100 60.6 ± 7.6 67.2 ± 9.9 70.1 ± 10.1 72.3 ± 5.9 78.6 ± 10.9 
120 64.4 ± 0.1 80.2 ± 12.7 80.9 ± 9.4 82.4 ± 8.8 77.2 ± 9.6 
140 83.2 ± 6.3 89.7 ± 2.0 88.7 ± 1.8 85.9 ± 2.7 82.3 ± 3.6 

T
em

pe
ra

tu
r 

c  
(°

C
) 

150 85.4 ± 5.3 87.0 ± 3.2 89.6 ± 1.4 87.2 ± 3.7 85.4 ± 3.3 
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Tab. 42. Calculations of activation energy and rate constants for 
6-nitroveratraldehyde. 

ln (1-RCY) 
Time  
(min) 

80 °C 100 °C 120 °C 140 °C 150 °C 

5 -0.4463 -0.9314 -1.0328 -1.7838 -1.9241 
10 -0.4323 -1.1147 -1.6210 -2.2711 -2.0379 
20 -0.5997 -1.2073 -1.6570 -2.1813 -2.2672 
30 -0.6694 -1.2837 -1.7390 -1.9618 -2.0557 
60 -1.0079 -1.5418 -1.4784 -1.7293 -1.9262 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 0.0768 – 0.0432 X -0.85 0.0432 -3.1419 
100 Y= - 0.1247 – 0.1114 X -0.93 0.1114 -2.1946 
120 Y= - 0.0741 – 0.1621 X -0.99 0.1621 -1.8195 
140 Y= - 0.2161 – 0.2271 X -0.95 0.2271 -1.4824 
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6.3 Appendix 3: Data for 6-Fluoroveratraldehyde 

 
 
 
 

Tab. 43. [18F] Labelling data for 6-fluoroveratraldehyde. Conditions: 
a) 20 mg/mL,140 °C. b) DMF (1 mL), 140 °C. c) 20 mg/mL, DMF (1 mL). 

RCY (%) ± Sdv 

Variable 

5 min 10 min 20 min 30 min 60 min 

DMF 87.7 ± 1.2 85.0 ± 5.3 85.0 ± 1.7 82.7 ± 0.3 80.4 ± 1.8 
DMAc 53.4 ± 4.9 45.1 ± 5.3 41.5 ± 5.0 37.3 ± 2.7 37.5 ± 2.1 
DMSO 44.4 ± 0.8 35.6 ± 3.9 31.6 ± 3.5 28.6 ± 5.3 26.9 ± 1.8 

So
lv

en
t a  

Sulfolane 42.7 ± 5.2 41.8 ± 3.8 42.0 ± 0.6 41.3 ± 2.9 38.7 ± 1.1 
0.5 64.5 ± 0.5 67.1 ± 2.5 66.7 ± 4.7 60.4 ± 6.2 59.4 ± 0.9 
1 75.2 ± 3.9 71.2 ± 3.9 69.1 ± 4.4 64.5 ± 7.7 64.5 ± 2.3 
5 85.0 ± 0.8 84.1 ± 2.4 81.5 ± 1.6 79.9 ± 4.7 78.5 ± 3.3 
10 85.5 ± 2.2 86.3 ± 4.0 83.6 ± 3.8 80.4 ± 6.2 79.9 ± 0.6 
20 87.7 ± 1.2 85.0 ± 5.3 85.0 ± 1.7 82.6 ± 0.3 80.4 ± 1.8 
30 87.4 ± 1.3 86.1 ± 1.7 86.9 ± 1.0 83.6 ± 1.3 81.4 ± 0.7 C

on
ce

nt
ra

tio
n b

 
(m

g/
m

L
) 

50 87.7 ± 1.4 87.1 ± 0.8 87.5 ± 1.3 87.4 ± 1.4 85.6 ± 1.0 
60 32.5 ± 8.8 34.5 ± 8.5 37.9 ± 7.4 40.4 ± 7.7 44.2 ± 2.9 
80 51.4 ± 7.6 57.7 ± 1.7 61.6 ± 1.7 63.2 ± 2.0 63.3 ± 2.3 
100 66.7 ± 9.3 71.0 ± 5.5 72.2 ± 6.0 71.7 ± 3.1 68.1 ± 2.0 
120 81.0 ± 4.3 82.1 ± 4.5 80.9 ± 2.8 80.4 ± 5.3 77.7 ± 3.7 
140 87.7 ± 1.2 85.0 ± 5.3 85.0 ± 1.7 82.7 ± 0.3 80.4 ± 1.8 
160 86.8 ± 2.3 82.1 ± 1.7 79.8 ± 3.0 78.4 ± 4.0 78.4 ± 2.5 T

em
pe

ra
tu

r 
c  

(°
C

) 

180 85.9 ± 3.6 82.0 ± 5.0 78.6 ± 3.8 73.8 ± 3.3 73.1 ± 1.2 
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Tab. 44. Calculations of activation energy and rate constants for 
6-fluoroveratraldehyde. 

Time  
(min) ln (1-RCY) 

 60 °C 80 °C 100 °C 120 °C 140 °C 160 °C 180 °C 

5 -0.3930 -0.7215 -1.0996 -1.6607 -2.0956 -2.0249 -1.9590 
10 -0.4231 -0.8604 -1.2379 -1.7204 -1.8971 -1.7204 -1.7148 
20 -0.4764 -0.9571 -1.2801 -1.6555 -1.8971 -1.5995 -1.5418 
30 -0.5175 -0.9996 -1.2623 -1.6296 -1.7545 -1.5325 -1.3394 
60 -0.5834 -1.0024 -1.1426 -1.5006 -1.6296 -1.5325 -1.3130 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 0.0971 – 0.0860 X -0.93 0.0860 -2.4534 
100 Y= - 0.1602 – 0.1238 X -0.91 0.1238 -2.0891 
120 Y= - 0.2668 – 0.1720 X -0.88 0.1720 -1.7603 
140 Y= - 0.3824 – 0.1897 X -0.82 0.1897 -1.6623 
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6.4 Appendix 4: Data for 6-Bromoveratraldehyde 

 
 
 

Tab. 45. [18F] Labelling data for 6-bromoveratraldehyde. Conditions: 
a) 20 mg/mL,160 °C. b) DMF (1 mL), 160 °C. c) 20 mg/mL, DMF (1 mL).

RCY (%) ± Sdv 

Variable 

5 min 10 min 20 min 30 min 60 min 

DMF 30.8 ± 6.6 38.9 ± 5.6 44.5 ± 5.0 44.7 ± 4.0 45.5 ± 5.4 
DMAc 19.8 ± 5.3 22.1 ± 3.3 23.4 ± 2.3 25.6 ± 2.1 27.2 ± 0.2 
DMSO 3.2 ± 0.7 3.2 ± 1.2 3.5 ± 0.9 2.7 ± 1.0 2.4 ± 1.0 

So
lv

en
t a  

Sulfolane 6.8 ± 2.5 10.2 ± 2.6 13.0 ± 3.1 11.4 ± 2.3 11.4 ± 0.3 
0.5 4.4 ± 0.9 6.6 ± 1.7 6.1 ± 3.1 5.1 ± 3.5 5.6 ± 1.7 
1 15.9 ± 4.5 17.6 ± 5.1 17.2 ± 4.3 15.9 ± 2.2 16.5 ± 1.1 
5 23.4 ± 3.4 27.4 ± 3.8 30.1 ± 2.8 31.1 ± 4.2 32.8 ± 0.9 
10 24.8 ± 1.9 28.9 ± 0.7 31.1 ± 1.7 32.2 ± 0.7 35.3 ± 0.7 
20 30.8 ± 6.6 38.9 ± 5.6 44.5 ± 5.0 44.7 ± 4.0 45.5 ± 5.4 
30 41.4 ± 6.8 44.5 ± 4.4 45.5 ± 1.8 50.3 ± 4.6 51.3 ± 4.2 C

on
ce

nt
ra

tio
n b

 
(m

g/
m

L
) 

50 50.4 ± 1.7 54.2 ± 2.2 56.9 ± 0.9 58.1 ± 0.4 58.1 ± 0.8 
80 1.3 ± 0.7 2.4 ± 0.7 2.7 ± 1.0 3.5 ± 1.0 5.1 ± 0.3 
100 5.1 ± 1.1 8.5 ± 1.6 12.8 ± 3.1 14.3 ± 2.9 16.2 ± 0.8 
120 15.3 ± 3.4 18.6 ± 5.1 23.9 ± 5.9 27.2 ± 4.7 29.1 ± 2.4 
140 36.7 ± 2.9 38.9 ± 2.6 42.3 ± 4.0 4.3 ± 3.9 40.5 ± 1.8 
160 30.8 ± 6.6 38.9 ± 5.6 44.5 ± 5.0 44.7 ± 4.0 45.5 ± 5.4 T

em
pe

ra
tu

r 
c  

(°
C

) 

180 45.7 ± 9.0 49.8 ± 9.3 50.2 ± 9.6 49.2 ± 8.5 49.9 ± 11.1 
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Tab. 46. Calculations of activation energy and rate constants for 
6-bromoveratraldehyde. 

ln (1-RCY) 
Time  
(min) 

80 °C 100 °C 120 °C 140 °C 160 °C 180 °C 

5 -0.0131 -0.0523 -0.1661 -0.4573 -0.3682 -0.6106 
10 -0.0243 -0.0888 -0.2058 -0.4927 -0.4927 -0.6892 
20 -0.0274 -0.1370 -0.2731 -0.5499 -0.5888 -0.6972 
30 -0.0356 -0.1543 -0.3175 -0.5499 -0.5924 -0.6773 
60 -0.0523 -0.1767 -0.3439 -0.5192 -0.6070 -0.6911 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 3.1667E-4 – 0.0024 X -1.00 0.0024 -6.0323 
100 Y= - 0.0026 – 0.0089 X -0.99 0.0089 -4.7217 
120 Y= - 0.0211 – 0.0206 X -094 0.0206 -3.8825 
140 Y= - 0.0703 – 0.0493 X -0.90 0.0493 -3.0098 
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6.5 Appendix 5: Data for 6-Chloroveratraldehyde 

 
 
 
 

Tab. 47. [18F] Labelling data for 6-chloroveratraldehyde. Conditions: 
a) 20 mg/mL,160 °C. b) DMF (1 mL), 160 °C. c) 20 mg/mL, DMF (1 mL). 

RCY (%) ± Sdv 

Variable 

5 min 10 min 20 min 30 min 60 min 

DMF 45.8 ± 8.9 52.0 ± 9.7 56.5 ± 6.7 56.4 ± 7.1 57.4 ± 5.6 
DMAc 9.3 ± 3.2 10.9 ± 3.1 11.3 ± 4.6 11.5 ± 4.4 11.8 ± 1.6 
DMSO 1.6 ± 0.8 3.3 ± 0.9 3.7 ± 1.1 3.6 ± 0.7 3.3 ± 0.4 

So
lv

en
t a  

Sulfolane 6.9 ± 1.6 6.1 ± 1.6 7.5 ± 1.3 7.7 ± 1.6 9.1 ± 0.3 
0.5 8.1 ± 2.7 11.7 ± 2.3 12.0 ± 1.3 12.9 ± 1.6 13.8 ± 0.4 
1 19.1 ± 4.2 22.7 ± 5.5 22.1 ± 4.4 22.2 ± 4.2 24.5 ± 1.4 
5 39.5 ± 4.4 43.2 ± 4.5 46.0 ± 5.1 44.7 ± 9.1 46.5 ± 2.5 
10 44.6 ± 3.1 46.5 ± 4.7 50.1 ± 3.8 52.4 ± 3.0 56.5 ± 1.2 
20 45.8 ± 8.9 52.0 ± 9.7 56.5 ± 6.7 56.4 ± 7.1 57.4 ± 5.6 
30 56.9 ± 6.9 59.3 ± 4.5 60.4 ± 6.1 60.0 ± 2.1 60.1 ± 1.2 C

on
ce

nt
ra

tio
n b

 
(m

g/
m

L
) 

50 63.5 ± 5.2 64.0 ± 1.4 65.6 ± 3.6 63.4 ± 5.5 52.8 ± 5.4 
80 1.9 ± 0.9 3.0 ± 0.6 3.9 ± 0.7 4.4 ± 1.2 4.8 ± 0.2 
100 8.0 ± 3.5 12.5 ± 3.4 17.1 ± 3.9 17.7 ± 3.8 19.9 ± 1.6 
120 12.4 ± 5.6 18.6 ± 5.4 26.9 ± 8.6 30.8 ± 8.6 34.3 ± 8.1 
140 53.1 ± 1.3 56.9 ± 6.6 54.8 ± 5.5 52.3 ± 4.1 51.5 ± 1.0 
160 45.8 ± 8.9 52.0 ± 9.7 56.5 ± 6.7 56.4 ± 7.1 57.4 ± 5.6 T

em
pe

ra
tu

r 
c  

(°
C

) 

180 51.5 ± 10.9 54.1 ± 9.5 57.3 ± 7.8 52.5 ± 10.2 53.0 ± 4.8 
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Tab. 48. Calculations of activation energy and rate constants for 
6-chloroveratraldehyde. 

ln (1-RCY) 

Time  
(min) 

80 °C 100 °C 120 °C 140 °C 160 °C 180 °C 

5 -0.0192 -0.0834 -0.1324 -0.7572 -0.6125 -0.7236 
10 -0.0305 -0.1335 -0.2058 -0.8416 -0.7340 -0.7787 
20 -0.0398 -0.1875 -0.3133 -0.7941 -0.8324 -0.8510 
30 -0.0450 -0.1948 -0.3682 -0.7402 -0.8301 -0.7444 
60 -0.0492 -0.2219 -0.4201 -0.7236 -0.7444 -0.7550 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 0.0013 – 0.0031 X -0.99 0.0031 -5.7764 
100 Y= - 0.0056 – 0.0134 X -0.99 0.0134 -4.3125 
120 Y= - 0.0098 – 0.0206 X .0.99 0.0206 -3.8825 
140 Y= - 0.1121 – 0.0842 X -0.91 0.0842 -2.4746 
160 Y= - 0.0818 – 0.0734 X -0.93 0.0734 -2.6118 
180 Y= - 0.1114 – 0.0779 X -0.90 0.0779 -2.5523 
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6.6 Appendix 6: Data for 6-Nitropiperonal 

 
 
 

Tab. 49. [18F] Labelling data for 6-nitropiperonal. Conditions: a) 20 mg/mL,140 °C. 
b) DMF (1 mL), 140 °C. c) 20 mg/mL, DMF (1 mL). 

RCY (%) ± Sdv 

Variable 

5 min 10 min 20 min 30 min 60 min 

DMF 67.6 ± 5.2 67.0 ± 6.6 61.3 ± 5.1 59.4 ± 4.6 58.1 ± 4.8 
DMAc 70.8 ± 0.4 75.3 ± 1.6 73.6 ± 2.3 72.1 ± 2.2 67.8 ± 1.2 
DMSO 57.2 ± 4.2 56.4 ± 2.6 53.6 ± 2.7 52.4 ± 2.3 51.5 ± 1.4 

Sulfolane 59.3 ± 2.6 59.1 ± 3.1 54.7 ± 2.1 53.5 ± 2.2 51.1 ± 1.3 So
lv

en
t a  

1,2-DME 10.7 ± 5.7 14.4 ± 4.4 21.3 ± 2.5 29.2 ± 2.8 31.8 ± 2.6 
0.5 36.3 ± 7.7 26.5 ± 6.8 15.5 ± 4.7 9.7 ± 1.9 9.0 ± 0.9 
1 58.9 ± 7.7 47.5 ± 3.5 30.7 ± 5.3 16.0 ± 1.4 13.5 ± 1.3 
5 62.0 ± 4.3 55.8 ± 6.1 43.5 ± 5.9 35.0 ± 5.1 35.3 ± 1.1 
10 60.9 ± 5.7 62.9 ± 5.1 61.7 ± 7.6 59.8 ± 8.9 57.4 ± 3.0 
20 67.6 ± 5.2 67.0 ± 6.6 61.3 ± 5.1 59.4 ± 4.6 58.1 ± 4.8 
30 56.6 ± 7.0 54.0 ± 6.6 54.9 ± 8.0 53.8 ± 4.2 51.58 ± 1.5 C

on
ce

nt
ra

tio
n b

 
(m

g/
m

L
) 

50 57.0 ± 7.4 54.2 ± 8.0 51.3 ± 6.3 51.1 ± 5.7 52.0 ± 6.6 
80 57.7 ± 3.8 60.3 ± 2.7 61.7 ± 2.4 62.1 ± 1.6 59.9 ± 1.1 
100 57.7 ± 4.7 59.8 ± 5.7 61.4 ± 6.0 61.2 ± 5.4 63.2 ± 7.7 
120 72.0 ± 3.6 69.6 ± 6.1 69.8 ± 1.4 67.3 ± 3.2 63.8 ± 3.2 
140 67.6 ± 5.2 67.0 ± 6.6 61.3 ± 5.1 59.4 ± 4.6 58.1 ± 4.8 
160 66.7 ± 2.4 64.7 ± 3.2 60.3 ± 3.3 57.7 ± 5.0 56.7 ± 2.1 T

em
pe

ra
tu

r 
c  

(°
C

) 

180 72.8 ± 1.9 70.1 ± 0.7 65.1 ± 2.6 61.7 ± 1.4 59.4 ± 0.9 
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Tab. 50. Calculations of activation energy and rate constants for 6-nitropiperonal.

ln (1-RCY) 
Time  
(min) 

80 °C 100 °C 120 °C 140 °C 160 °C 180 °C 

5 -0.8604 -0.8604 -1.2730 -1.1270 -1.0996 -1.3020 
10 -0.9238 -0.9113 -1.1907 -1.1087 -1.0413 -1.2073 
20 -0.9597 -0.9519 -1.1973 -0.9493 -0.9238 -1.0527 
30 -0.9702 -0.9467 -1.1178 -0.9014 -0.8604 -0.9597 
60 -0.9138 -0,9997 -1.0161 -0.8700 -0.8370 -0.9014 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 0.1328 – 0.0924 X -0.90 0.0924 -2.3816 
100 Y= - 0.1349 – 0.0911 X -0.89 0.0911 -2.3958 
120 Y= - 0.2256 – 0.1191 X -0.84 0.1191 -2.1278 
140 Y= - 0.1909 – 0.1109 X -0.86 0.1109 -2.1991 
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6.7 Appendix 7: Data for 6-Bromopiperonal 

 
 
 

Tab. 51. [18F] Labelling data for 6-bromopiperonal 

RCY (%) 

5 min 10 min 20 min 30 min 60 min Temp. 
(°C) n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv 

80 4 5.7 0.3 7.3 0.6 9.4 0.9 10.0 0.8 9.1 0.5 
100 5 7.3 0.9 8.9 0.7 9.6 0.9 10.5 0.5 10.2 0.5 
120 4 7.7 0.6 9.1 1.0 10.1 0.8 10.3 0.6 10.6 0.4 
140 5 9.7 0.5 11.4 1.1 11.1 1.0 11.8 1.1 11.7 1.0 
160 5 10.4 0.3 11.0 1.3 10.9 1.1 10.0 0.7 9.9 1.1 
180 4 6.2 0.2 6.7 1.3 10.2 0.6 10.6 0.8 11.0 1.2 

 
 
 
6.8 Appendix 8: Data for 6-Chloropiperonal 

 
 

Tab. 52. [18F] Labelling data for 6-chloropiperonal 

RCY (%) 

5 min 10 min 20 min 30 min 60 min 
Temp. 
(°C) n 

Mean Sdv Mean Sdv Mean Sdv Mean Sdv Mean Sdv 

80 4 3.8 0.4 4.3 0.5 4.9 0.6 4.4 0.4 4.5 0.2 
100 5 5.3 1.1 6.6 0.5 5.4 0.5 5.2 0.3 5.0 0.2 
120 4 8.5 0.5 7.9 0.2 7.5 0.9 6.6 0.1 6.6 0.1 
140 10 9.7 0.6 11.3 1.4 10.2 0.9 9.3 1.2 9.4 0.4 
160 5 8.6 0.1 7.8 1.0 7.1 0.2 7.4 0.1 7.3 0.3 
180 3 9.2 0.3 9.8 1.4 10.9 0.5 11.5 1.8 10.7 05 
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6.9 Appendix 9: Data for 2,3-Dimethoxy-6-nitrobenzaldehyde 

 
 
 
 
 

Tab. 53. [18F] Labelling data for 2,3-dimethoxy-6-nitrobenzaldehyde. 
Conditions: a) 20 mg/mL,140 °C . b) DMF (1 mL), 140 °C. 
c) 20 mg/mL, DMF (1 mL). 

RCY (%) ± Sdv 

Variable 
5 min 10 min 20 min 30 min 60 min 

DMF 21.6 ± 0.6 28.2 ± 3.8 30.5 ± 3.4 27.5 ± 2.1 28.1 ± 1.8 
DMAc 12.3 ± 4.6 16.6 ± 3.6 17.7 ± 3.0 17.8 ± 2.1 8.5 ± 0.2 
DMSO 16.4 ± 3.2 18.8 ± 5.0 19.5 ± 3.3 20.2 ± 0.4 19.4 ± 2.1 

Sulfolane 6.9 ± 2.2 8.6 ± 2.4 9.1 ± 1.3 8.6 ± 2.2 8.3 ± 2.3 So
lv

en
t a  

benzonitrile 11.9 ± 3.5 16.3 ± 4.2 15.0 ± 2.0 14.9 ± 1.8 16.1 ± 1.5 

10 19.8 ± 2.1 23.9 ± 3.1 28.3 ± 3.6 25.7 ± 1.8  26.2 ± 2.2 

C
on

ce
nt

ra
tio

n b
 

(m
g/

m
L

) 

20 21.6 ± 0.6 28.2 ± 3.8 30.5 ± 3.4 27.5 ± 2.1 28.1 ± 1.8 

80 2.8 ± 0.6 5.0 ± 1.0 9.3 ± 1.6 11.5 ± 1.9 12.9 ± 2.7 
100 7.3 ± 1.4 16.9 ± 3.1 16.3 ± 2.7 15.4 ± 1.9 13.9 ± 3.3 
120 8.0 ± 0.8 11.1 ± 0.6 14.1 ± 2.5 15.0 ± 2.6 14.8 ± 0.6 
130 16.3 ± 4.6 20.2 ± 4.7 21.4 ± 4.4 21.5 ± 4.9 22.5 ± 4.3 
140 21.6 ± 0.6 28.2 ± 3.8 30.5 ± 3.4 27.5 ± 2.1 28.1 ± 1.8 T

em
pe

ra
tu

r 
c  

(°
C

) 

150 20.3 ± 2.7 28.5 ± 1.8 29.8 ± 4.9 29.1 ± 3.8 30.4 ± 3.9 
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Tab. 54. Calculations of activation energy and rate constants for 
2,3-dimethoxy-6-nitrobenzaldehyde. 

ln (1-RCY) 
Time  
(min) 

80 °C 100 °C 120 °C 130 °C 140 °C 150 °C 

5 -0.0284 -0.0834 -0.0758 -0.1779 -0.2433 -0.2269 
10 -0.0513 -0.1177 -0.1851 -0.2256 -0.3313 -0.3355 
20 -0.0976 -0.1520 -0.1779 -0.2408 -0.3638 -0.3538 
30 -0.1222 -0.1625 -0.1912 -0.2421 -0.3216 -0.3439 
60 -0.1347 -0.1497 -0.1803 -0.2549 -0.3300 -0.3624 

Temp. 
(°C) 

Best linear graph for  
ln (1-RCY) vs time  

Correlation 
coefficient k’ (min-1) ln k’ 

80 Y= - 9.1667E-4 – 0.0051 X -1.00 0.0051 -5.2785 
100 Y= 0.0082 – 0.0118 X -0.97 0.0118 -4.4396 
120 Y= - 0.0056 – 0.0185 X -0.995 0.0185 -4.000 
130 Y= - 0.0217 – 0.0226 X -0.95 0.0226 -3.7898 
140 Y= - 0.0259 – 0.0331X -0.97 0.0331 -3.4082 
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Tab. 55. Crystal data, data collection and structure refinement for 
2,3-dimethoxy-6-nitrobenzaldehyde 

Empirical formula C9H9NO5 
Formula weight 211.17 

Temperature 213 (2) K 
Wavelength/radiation 1.54184 A / CuK/a 

Crystal system/space group Monoclinic / P21 /c 

Unit cell dimensions 

a= 4.0807 (4) Å 
b= 14.6077 (17) Å 
c= 15.7792 (15) Å 

alpha = 90 deg. 
beta = 97.230 deg. 
gamma = 90 deg.  

Volume 933.11 (16) Å3 
Z 4 

Density 1.503 mg/m3 
F(000) 440 

Crystal size 0.50 x 0.20 x 0.50 mm 
Reflections collected 2473 
Reflections (lattice) 13.194 to 26.3045 deg. 

Independent reflections 1578 [R(int)= 0.0424] 
Reflections observed 1225 

Criterion for observation > 2 sigma (I) 
Absorption correction DIFABS 

Max. and min transmission 0.682 and 0.216 
Measurement method Omega 
Standard reflections 3 
Structure solution SHELXS-97 (Sheldrick, 1990) 

Structure refinement SHELXS-97 (Sheldrick, 1997) 
Molecular graphics PLATON 
Refinement method Full-matrix least-squares on F2 

Data/restraints/parameters 1578 / 0 / 172 
Final R indices [i>2sigma[I]] R1= 0.0526 

wR2= 0.1380 
Goodness of fit on F2 1.027 

Final R indices (all) R1/Wr2 0.0715 / 0.1527 
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