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Abstract

This thesis presents the results of numerical simulations on planets embed-

ded in a protoplanetary disk with the hydrodynamics code NIRVANA. We treat

the disk as a viscous fluid satisfying the Navier-Stokes equations and integrate

these using a finite difference scheme.

We present three sets of calculations. First our participation to the EU code

comparison project is described. In this project we compare the results of a test

problem relevant to planet formation as calculated by many different codes.

In the second part we investigate a similar problem where we put a 5-Jupiter

mass planet into the protoplanetary disk. After several hundred orbits the disk

and the gap opened by the planet become eccentric. This periodic state is very

robust and can be sustained indefinitely.
Finally we look what happens to the eccentricity of the planetary orbit when

the planet is allowed to change its orbit. For small planetary masses for which
linear theory may be applied we find a rapid damping of both the eccentric-
ity and inclination. We compare these results to linear theory and find good
agreement. For the very massive planets that caused the eccentric disk we find
a substantial increase of the eccentricity.
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1 OUTLINE

1 Outline

In this thesis we will discuss the research we have done in the subject of ex-

trasolar planet formation, a subject that has undergone a large expansion in the

last few years. The question whether there are planets around other stars has

been asked for thousands of years, and in 1995 the first planet orbiting a main

sequence star has been found. Since then, over 170 planets around other stars

have been found and new discoveries are now made regularly. More and more

techniques for finding extrasolar planets are having success and when some

planets are observed with different techniques we get more and more informa-

tion on the system. In Chapter 2 we discuss the history of extrasolar planets

and the different methods for detecting an extrasolar planet and their successes.

A planetary system however is only the final product of a formation pro-

cess, unfortunately the stage where planets are forming from planetesimals

cannot be observed directly. It is known that this stage must exist and by

carefully studying the known planetary systems and observations of the pro-

toplanetary disks in which planets may be forming we can get a grip on the

conditions under which forming planets interact with the protoplanetary disk.

From both analytic studies and numerical simulations much has already been

learned on the subject of planet-disk interaction. The goal of these studies is

to find out how the planets in our Solar System and planets around other stars

have formed, what the differences are between our Solar System and extrasolar

planetary systems and why these differences exist. In Chapter 3 we summarize

the current knowledge of planet-disk interaction.

In this thesis we approach the problem of planet-disk interaction using nu-

merical simulations. We use a finite difference code based on NIRVANA and

treat the protoplanetary disk as a viscous fluid. Chapter 4 discusses in detail

the numerical methods we use in our code.

To get consistent results from numerical simulations and to be able to trust

these results it is important to benchmark one’s code. However the standard

test problems for numerical codes deal with problems that usually have very

different conditions than those of the problem of a protoplanetary disk and an

embedded planet. We have participated in a European code comparison project
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1 OUTLINE

in which the problem of a massive planet in a protoplanetary disk was studied

with many different numerical codes. We discuss our findings for specifically

our code in Chapter 5.

Although the planets in the simulations discussed in Chapter 5 move on

circular orbits as in our own Solar System, many extrasolar planets move on

eccentric orbits. In the next two chapters we look into several mechanisms that

could cause an eccentric planetary orbit.

In Chapter 6 we discuss similar simulations as those in Chapter 5 but for

planets with masses of 3 to 6 Jupiter masses. We find that for very high mass

planets the disk reaches a clearly different equilibrium state than for planets

with lower mass. The disk becomes eccentric and this may cause a back reac-

tion on the planet.

To study the effect of the disk on the orbit of the planet in Chapter 7 we al-

low the planet to change its orbit during the simulation. First in Section 7.1 we

study the orbital evolution of a low mass planet embedded in a protoplanetary

disk. Since a low mass planet on a circular coplanar orbit will stay on such an

orbit we set the eccentricity e and the inclination i nonzero at the start of these

simulations and study the evolution of the orbital elements. Then in Section

7.2 we look at the planets studied before in Chapter 6. For the normal equi-

librium state we find that a circular orbit remains circular, but for the eccentric

equilibrium state eccentricity growth is observed.

Finally in Chapter 8 we list our conclusions and make suggestions on what

could have been improved, and what simulations may be done in the future.

12



2 EXTRASOLAR PLANETS

2 Extrasolar planets

There are 1011 stars in the galaxy. That used to be a huge number. But it’s

only a hundred billion. It’s less than the national deficit! We used to call them

astronomical numbers. Now we should call them economical numbers.

- Richard Feynman

This first chapter is intended as a summary of our present knowledge of ex-

trasolar planets at the moment of writing.

2.1 Introduction

All through the history of mankind people have speculated about the possible

existence of other worlds. The central theme in this has been whether we are in

some way or another unique. In the past many thought that the whole universe

revolved around the Earth, but then it turned out that actually the Sun, or more

accurately the center of mass of our Solar System, is the center around which

the Earth and the other planets revolve. Later it was discovered that the Sun

was only one among billions upon billions of stars, and among those a quite

ordinary one. It is therefore no surprise that people are wondering whether

somewhere out there, there exists a planet similar to Earth.

In 300 BCE the Greek philosopher Epicurus already suggested that there are

many other worlds around other suns, perhaps with people on them, asking the

same question. However in later times these ideas were out of consideration,

at least in Europe, due to the dominance of the Church. However, some still

supported this old idea. The Italian scientist Giordano Bruno literally took his

life into his hands when he suggested that the stars actually were other suns.

In 1600 he was burnt at the stake by the Church for the same suggestion that

Epicurus had made almost 2000 years earlier.

The first serious attempts to find planets around other stars were performed

in the early 20th century. The motion of Barnard’s star, which happens to be

the star with the largest proper motion, had been carefully observed for many

13



2.2 Detection techniques 2 EXTRASOLAR PLANETS

years and the conclusion was that there is a planet with a mass of about 1.5

Jupiter masses orbiting this nearby Red Dwarf star (van de Kamp 1963). It is

still not clear if this star really has a planet or not. Since to reproduce the data

one would have to observe the star over at least one full period of the planet,

which allegedly is 25 years. This is naturally very hard to do.

In the late 20th century people recognized that the means to discover planets

around other stars were actually there and the first evidence of planets around

other stars was found in 1991, when two planets around a pulsar were discov-

ered (Wolszczan 1991). Finally in 1995 the first discovery of a planet around

a main sequence star other than our Sun, 51 Pegasi, was made (Mayor et al.

1995).

Little over ten years have past since this discovery at the moment of writing,

and now over 170 extrasolar planets are known, the lightest having a mass less

than that of Neptune. It will not be long until we can expect the discovery of

the first Earth-mass extrasolar planet.

2.2 Detection techniques

There are several possible detection techniques to find planets around other

stars, and usually the most simple ideas are not the most successful ones. A tree

diagram of the different planet detection methods can be found in Fig. 1. As

can be seen some methods are more successful in different mass regimes. We

will discuss the most important methods briefly in the following paragraphs.

2.2.1 Direct imaging

This would of course be the first possibility to think of however it turns out to

be extremely difficult. To observe Jupiter from the viewpoint of another star is

nearly impossible as it would appear to be very close to the Sun with a relative

brightness difference of 108 between the star and the planet. The problem is

two-fold: Since planets are illuminated by their central star, the further they

are away from the star the dimmer they are. On the other hand, if they are too

close to the star, the light cannot be identified as coming from a different object

other than the central star. Presently there have been several reports of a direct

image of a planet-sized object around another star, of which GQ Lupi is the

14



2 EXTRASOLAR PLANETS 2.2 Detection techniques

Figure 1: An overview of the different planet detection methods from Perryman (2000). On the vertical

axis the current and expected precision of the different methods is shown.

most promising (Neuhäuser et al. 2005), however since one needs to resort to

models of young Brown Dwarfs the mass of the object is still subject to debate

at the time of writing. As such it is not clear if the companion is a planet or a

Brown Dwarf.

2.2.2 Radial velocity

The by far most successful method to detect planets has been the so called

radial velocity method. As the planet and the star revolve on their combined

center of mass, the host star is moved by the planet and it will show a velocity

variation. This velocity variation can be measured in the Doppler shift of the

spectral lines of the star. With the combined information from thousands of

spectral lines an accuracy of a few m/s can be achieved (Konacki 2005).

As a comparison, the velocity variation of the Sun caused by Jupiter is 12

m/s. However for Jupiter the shift in the spectral lines will be spread out over

one orbital period, which in case of Jupiter is about 12 years. Since observa-

tions in this area have been taken for about 20 years, people are just finding

planets at these distances. On the other hand many planets on shorter period

orbits have been found with this method already and this is so far the most

15



2.2 Detection techniques 2 EXTRASOLAR PLANETS

Figure 2: A typical radial velocity curve for the discovery of an extrasolar planet. Plotted is the radial

velocity of the star HD 212027 as a function of time with respect to the long-time average and the best-fit

Keplerian curve (Marcy et al. 1999).

successful method. As an example observations of the radial velocity of the

star HD 212027 are shown in Figure 2.

2.2.3 Photometry

Some planets move in front of their host star to form tiny eclipses. The depth

of such an eclipse is about 1% of the total flux from the star for a Jupiter size

planet. Because of the geometry, this method favors large planets that are very

close to the star. 9 examples of this are known already, the first and most well

known of these is HD 209458 (Charbonneau et al. 2000). A typical transit light

curve for this planet is shown in Fig. 3.

The great advantage of these transits is most of all a direct measurement

of the planet radius as a fraction of the stellar radius. If at the same time a

radial velocity is measured one can determine the exact mass of the planet and

rule out alternative scenarios, something which is not possible with only radial

velocity methods.

16
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Figure 3: Transit light curve of HD 209458 observed with the STIS spectrograph on the Hubble Space

Telescope (Brown et al. 2001).

2.2.4 Gravitational lensing

When two stars align exactly along our line of sight, the light of the background

star will be enhanced by gravitational lensing from the foreground star. For a

background star near the galactic center and a foreground star somewhere in

between, the alignment has to be in the order of a few micro-arc-seconds. This

kind of gravitational lensing is called micro-lensing. In the microlensing light

curve it is possible to find extra peaks caused by massive companions as these

lead to a change of the gravitational lens (Lewis 2001). A planetary compan-

ion of the (unseen) foreground star will cause a so-called caustic or curve of

infinite magnification, and if the background star moves near this caustic it will

cause a temporary extra magnification on top of the magnification of the stellar

gravitational lens, and then the planet may be detected. Unfortunately this is a

one-time event and can not be repeated on the same star. However if enough

observatories register the event it will nevertheless be a well-established ob-

servation, and if many of such observations are made one can put constraints

on the population of planets orbiting other stars. Additional information on the

unseen lens system may be obtained if one waits long enough: The star will

move away from the line of sight from the background star to us and may later

be detected when the separation is large enough.

17
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This method has the advantage that quite low mass planets can be found,

and it is especially sensitive in the semi-major axis range around 1 AU, which

makes it a good method to look for Earth-like planets in Earth-like orbits. The

first detection of a low mass planet using this method was published in 2005

(Bennett et al. 2005).

2.3 Observations of extrasolar planets

The first success with extrasolar planets around solar type stars was with the

radial velocity method. Over 170 planets have been found with this method.

An up to date list of the exoplanets discovered with this method is available

on the web site of the California & Carnegie Planet Search team a. With this

method one can determine the orbital period, the eccentricity of the orbit and

a minimum estimate of the mass. Not the exact mass can be determined but

only the variable m sin i, where i is the inclination of the orbit with respect to

the direction of observation. A planetary system that would be seen head-on

can not be observed with this method.

HD 209458b was the first planet known to cause a transit of its host star

as seen from the Earth (Charbonneau et al. 2000). The combined data from

the light curve and the radial velocity measurement give a complete picture

of the orbit of the planet. Since the inclination is known to be almost exactly

90◦, the mass of the planet is known exactly if we have radial velocity data

of the same system. From the depth of the eclipse and stellar models for the

physical size of the star one can then determine the diameter of the planet and

the exact geometry of the system. A sample high-precision light curve for

the star HD209458 is shown in Fig. 3. For the planet HD209458b even a

planetary spectrum was measured by comparing the stellar spectra in and out

of the eclipse (Fortney et al. 2003).

2.4 Statistics of extrasolar planets

Now that over 170 planets are known, their properties may be analyzed statis-

tically. However because of the observational bias for massive, close in planets

we need to always check if the statistic we are studying is not biased.
ahttp://www.exoplanets.org/almanacframe.html

18



2 EXTRASOLAR PLANETS 2.4 Statistics of extrasolar planets

2.4.1 Mass function

Since for planets discovered with the radial velocity method only m sin i is

known, the planetary mass function is not exactly known. Instead a minimum

theoretical mass is observed which is achieved when sin i = 1. The expected

actual mass of the planet is on average 20% higher than the observed minimum

mass but may exceed this value by a large margin for a face on system. Ne-

vertheless we can make an estimate of the mass function. As can be seen from

Figure 6, more planets are found with lower masses. This is not an observa-

tional bias. On the contrary, larger mass planets are easier to find. However,

since the observations have only been done for about 20 years, we can only say

that specific stars have no planets above a specific mass within several AU.

Figure 4: Eccentricity versus semi-major axis for the orbits of the known extrasolar planets (Marcy et al.

2005). The planet responsible for most of the velocity variation of our Sun, Jupiter, would be in the bottom

right corner of this plot. The group of points at the bottom left of the diagram are the so-called hot Jupiters:

giant planets with an orbital period of less than a week.

If one looks at the complete range of possible companions of a star it is

seen that there are two different peaks in mass. One peak for the planetary

companions and one peak for the stellar companions. Companions of masses

between 10 and 80 Jupiter masses (Brown Dwarfs) are rare; this is called the

Brown Dwarf desert. It is not completely empty, but if they were there it

19
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would have been expected that more would have been discovered already with

the methods in use.

Figure 5: Percentage of stars that were found to have planets as a function of the relative amount of iron

with respect to the Sun (Santos et al. 2005).

Not much information is available at the moment of writing of this thesis

on the diameters of extrasolar planets. 9 planets have so far been discovered

in transiting orbits, and all these planets are quite similar. They have a slightly

larger diameter than Jupiter even though their masses are lower than that of

Jupiter. There are several models of such planets, see for example Barman

et al. (2001).

2.4.2 Orbital parameters

As can be expected from the success of the radial velocity method, more pla-

nets have been found on very tight orbits around the host star and only recently

planets on wider and wider orbits were found. However it became clear from

the beginning that the orbits of extrasolar planets are very different from those

in our Solar System: Most planets do not move on nearly circular orbits as

in our Solar System, but on moderately up to extremely eccentric orbits. The

distribution of orbital eccentricity as a function of semi-major axis is shown in

Fig. 4. The group of planets in the bottom left of the graph are Jupiter-type

planets in a short-period, tidally circularized orbit. These planets are called hot

20



2 EXTRASOLAR PLANETS 2.4 Statistics of extrasolar planets

Figure 6: A histogram of the minimum masses of the observed extrasolar planets. There is a trend for more

planets at lower masses, which is exactly the opposite of the observational bias as planets with a larger

mass are easier to detect (Marcy et al. 2005).

Jupiters.

2.4.3 Host stars

Most host stars to the discovered extrasolar planets are Solar type stars, i.e.

low mass Main Sequence stars. Although this is partially caused by the urge to

find planetary systems like our own, this also has practical reasons. The radial

velocity method, responsible for the vast majority of planet discoveries, is eas-

ier to perform on very stable stars that have many spectral lines, which means

Solar type stars (Udry et al. 1999). Although a lower precision is reached for

more massive stars, the first planets around such stars have been discovered

(Setiawan et al. 2005).

One important fact is known however: The abundance of planets as a func-

tion of the metallicity of the host star. As can be seen in Fig. 5, with increasing

stellar metallicity the chance of finding at least one Jupiter mass planet within

3 AU increases dramatically. This observational fact will need to be present in

any theory of planet formation.

21
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2.4.4 Evidence of migration

As will be explained in Chapter 3, when planets are still embedded in a proto-

planetary disk they may migrate or in other words change their orbital param-

eters. Although planetary migration is not observed directly as planets have

only been found in systems without a disk, the final results of migration are

readily observed. First there is the existence of the hot Jupiters. These heavy

planets could not have formed at this location so some mechanism must have

brought them where they are now. The most likely explanation is interaction

with a protoplanetary disk. Another sign of migration is the existence of mul-

tiple planet systems where the planets are in orbital resonance, that is their

orbital periods compare to each other with small integers. An example is the

system Gliese 876, where two large planets orbit their central star in orbits of

30 and 60 days, i.e. a 2:1 resonance (Marcy et al. 2001). To infer the correct

orbital elements for the two strongly interacting planets, a 3-body problem has

to be solved. If one would not do this, the resulting effect may well be mistaken

for a third massive planet in the system.

2.5 Observations of planets in protoplanetary disks

There have been many observations of protoplanetary disks, that is of disks that

are assumed to have formed or that are presently forming planets. However the

inner region, closer than 20 AU from the star, where the planets actually form

cannot be observed directly. Since this region is relevant for our calculations it

is important to know the conditions there. Unfortunately not much is known.

The inner region can be explored indirectly by taking a spectrum of the

nebula in the infra-red regime. Especially with the Spitzer satellite (Muzerolle

et al. 2004) that was especially designed for this purpose there have been some

important results. In many young systems there was evidence for grain growth,

essential to at least start the process of planet formation (Kessler-Silacci and

C2d Irs Team 2005). In some systems there is evidence for an inner gap in the

disk (Malbet et al. 2000) which suggests there may be a large planet in the gap,

forcing the disk material to stay outside a certain radius from the star. Direct

evidence of a planet embedded in a planetary disk is still not found.
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2 EXTRASOLAR PLANETS 2.6 Conclusion

2.6 Conclusion

In the past decade, the field of extrasolar planets has become a very rich one,

with many successful techniques to find new planets. It is now up to the the-

orists to make models that will both explain our own Solar System as well as

the many new found systems around other stars. On the observing side there

is still much promise for the future: People are actively thinking of ways and

building instruments that will lead to the discovery of a second Earth. Some of

the most promising projects in this respect are the GAIA (Crifo and The Gaia

Team 2004) and DARWIN (Fridlund and Capaccioni 2002) missions.
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3 Planet-Disk interaction

We are just an advanced breed of monkeys on a minor planet of a very average

star. But we can understand the Universe. That makes us something very

special.

- Stephen Hawking

3.1 Theories of planet formation

Although we have known for a long time that planets form from protoplanetary

disks, see for example Berlage (1934), before 1995 there was only one system

to base our theories on. Since then the old formation scenario has come under

discussion and in the least needs some fixes to account for the wide range of

systems discussed in the previous Chapter. At the moment there are basically

two main scenarios for giant planet formation in these disks. The first possi-

bility is that planets form by a gravitational instability in the protoplanetary

disk (Boss 1999). The disk will fragment and these fragments will form plan-

ets. The problems with this theory are that it is hard to form planets with a

mass below 1 MJup, and that the conditions for gravitational instability require

efficient cooling of the protoplanetary disk.

The second theory is that planets form by core accretion, see for example

Mizuno (1980). The core of giant planets grow from micron size particles

up to several Earth masses (Hartmann 1968), and then they attract the gas

gravitationally to grow to Jupiter size (Lissauer and Stewart 1991). There are

also several problems with this theory. One is that it takes about the same time

to form large planets this way compared to the life time of the disk, which is

estimated to be of the order of 107 years based on observations of gas or lack

of gas in protoplanetary disks of different ages (Bally et al. 1998). Another

problem is that planets of several Earth masses migrate so quickly into the

central star that we might not have any left. More on this in section 3.5.1.
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3.2 Interaction with the disk

As we have seen in section 2.4.4, an embedded planet interacts with the pro-

toplanetary disk it is forming in. The planet accretes matter from the disk to

increase its mass. To form our Solar System a minimum amount of gas and

dust was needed, and the lightest possible protoplanetary disk around the Sun

defines the Minimum Mass Solar Nebula, MMSN for short (Kargel 1987). On

the other hand the planet also interacts gravitationally with the disk. The plan-

etary potential will change the mass distribution of the disk and in return the

mass fluctuations will cause a net torque on the planet. This net torque will

cause the planet to migrate. The study of the interaction between the planet

and the protoplanetary disk has become a rapidly expanding field in the last

decade and much work is done in this subject.

Figure 7: The migration rate as a function of planetary mass for a disk mass of the Minimum Mass Solar

Nebula. The lines are theoretical models from Ward (1997) (solid line) and Tanaka et al. (2002) (dashed

line). The different symbols are different models as discussed in D’Angelo et al. (2002).
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Figure 8: The regimes for the different types of migration as a function of planet and disk mass (Masset

and Papaloizou 2003). Low mass planets undergo Type I migration, high mass planets undergo Type II

migration, but in the intermediate mass range and high disk masses the Type III migration or runaway

migration may be at work. The planet orbit can change very rapidly in this regime.

3.3 Planetary migration

The net torque from the disk onto the planet from the protoplanet is different

in different planetary mass regimes. For sufficiently small planets one can

make an analytical estimate of the torque and from that calculate the migration

rate by treating the planet (Ward 1981) as a perturbation and then applying

linear theory. This is called type I migration. Numerical simulations have

been performed to verify the validity of the approximation, for example by

D’Angelo et al. (2002).

Sufficiently large protoplanets will create a ring-shaped mass-depleted re-

gion along its orbit called the gap (Kley 1999). Gap-opening planets have

a migration rate which is very different from the linear approximation given

above. Because of the gap, the disk is divided up into two physically discon-

nected parts, and the planet is forced to move with the viscous accretion of the

disk. This is called Type II migration, see for example Masset and Papaloizou

(2003). To see the migration rate as a function of time as calculated theoret-

ically and by numerical integrations, see Fig. 7. In this figure the migration

rate ȧ/a is plotted as function of the mass ratio between the planet and the star

q. As can been seen in the figure, for planets up to a mass ratio of q = 10−5

good agreement to the linear theory is found. Also the constant migration rate
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Figure 9: The accretion rate as a function of planetary mass for a MMSN disk. Up to about Jupiter masses

the accretion rate increases, but as soon as a gap is opened in the disk the accretion rate starts to decrease

for higher planet masses. The different symbols are different models as discussed in D’Angelo et al. (2002)

and correspond to the symbols used in 7.

for large planet is reproduced. However the mass regime between these two

extremes is not well understood and subject to debate.

There is also a third type of migration, aptly called Type III migration, which

is valid for a massive disk and a planet that is approximately between the mass

ranges of Type I and Type II migration. At this stage the planet is very mobile

and may migrate very quickly through the disk. It is caused by an imbalance

in the torques of material that is in corotation of the planet, the so-called coro-

tational torques (Masset 2001). In Figure 8 the different migration regimes are

shown as a function of planet mass and disk mass.

3.4 Accretion

The accretion rate onto a planet is essential for the time scale on which large

planets may form. First of all the planet needs to be formed completely during

the lifetime of the disk, which is approximately 107 years, see for example

Takeuchi et al. (2005). Once the disk is gone, the planet can no longer grow.
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Especially for very massive planets this is a problem. As soon as the planet

opens a gap in the disk, accretion slows down. For planets that are larger than

several Jupiter masses, time is really short to form them in time.

Also at any point during its growth the accretion timescale must be shorter

than the migration time scale, otherwise the planet will not grow and migrate

into the central star. D’Angelo et al. (2002) have performed numerical simu-

lations in which they measured the migration rate for different planet masses.

The migration rate as a function of planet mass is shown in Fig. 9.

3.5 Problems

There are many unsolved problems in the area of planet-disk interaction and

this thesis is intended as a small piece in the quite large puzzle. Here are some

of the problems with both Type I and Type II migration.

3.5.1 Problems with Type I migration

Type I migration can be very fast, indeed faster than the mass accretion rate

onto the planet. This means that for a planet to survive it must be saved from

falling into the central star. This is a serious problem and some ideas to solve

this have been suggested in Nelson and Papaloizou (2004). If there is a mag-

netic field in the disk this will be a source of turbulence. This turbulence will

then change the fast inward migration into a random walk, and in this way

some planets will be able to survive up to the point where they open a gap in

the disk.

3.5.2 Problems with Type II migration

Also for Type II migration there are some problems. There are a lot of planets

that are orbiting on very close orbits, with periods of only a few days. It is

not clear how these planets stopped migrating into the central star, and if all

massive planets migrated, why is our Jupiter so far away from the Sun?

Also for the largest planets there is a problem with the accretion rate. As

can be seen in Fig. 9 the accretion rate starts to decrease when Jupiter mass is

reached, however this is where it is needed most, as planets have been observed
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with masses to over 10 Jupiter masses. At this point the total time to form a

giant planet starts to exceed the life time of a protoplanetary disk.

3.6 Final remarks

Also since most of the extrasolar planets are on eccentric orbits, is it possible

to excite eccentricity in the accretion phase or do other effects have to account

for this? And again the question is, why were these forces not at work in our

own Solar System?

Some of the above problems will be addressed by numerical simulations of

embedded planets in disks in this thesis.
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4 Numerical method

It would appear that we have reached the limits of what it is possible to achieve

with computer technology, although one should be careful with such state-

ments, as they tend to sound pretty silly in 5 years.

- John von Neumann, 1949

To approach the problem of a planet in a disk we use a computer code based

on NIRVANA (Ziegler 1998). The methods used are similar to the ZEUS code

(Stone and Norman 1992). It is a finite difference code which means that

physical variables are stored at a pre-defined set of fixed points. Then using

the evolution equations these variables are than evolved in time. This way the

initial conditions of the studied physical system are evolved and the state of

the system at a later point in time is calculated.

In this code the protoplanetary disk is treated as a viscous fluid with the

Navier-Stokes equations as the equations of motion. The planet moves on a

Keplerian orbit, which in some simulations may be perturbed by the gravita-

tional force of the disk onto the planet.

4.1 Hydrodynamics

A protoplanetary disk consists mostly of gas and dust. However in the phase of

evolution of the system that we are looking at, where a large planet has already

formed, the gas and dust have decoupled and most of the dust has already

formed larger bodies that do not interfere or collide with the planet. Hence,

only the gas is considered and this is treated as a viscous fluid, satisfying the

equations of hydrodynamics. These equations deal with 6 variables: Three

scalar variables (density ρ, pressure P and temperature T ) and the velocity

vector v. To close the system we need 6 equations. Five of these are given by

conservation laws.

Conservation of mass:
∂ρ

∂t
+∇ · (ρu) = 0 (4.1)

ρ is the local density of the gas and u is the local velocity vector of the gas.
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Conservation of momentum:

∂ρu
∂t
+∇ · (ρu ⊗ u) = −∇p + ρk +∇ ·σ (4.2)

k are the specific external forces, i.e. force per unit mass, in our case the

gravitational forces of the planet and the central star. In the code these forces

are treated as an external potential Φ. σ is the viscous stress tensor and will

be discussed in section 4.1.1. p is the local gas pressure. ⊗ denotes the tensor

product of two vectors: (a ⊗ b)i j = aib j

Conservation of energy:

∂ρεtot

∂t
+∇ · (ρεtotu) = −∇ · pu +∇ · (u ·σ) −∇ · F + ρu · k (4.3)

where εtot is the specific total energy of the system and F the external energy

flow. Disk self-gravity is neglected in these simulations.

To close the system of equations we need also an equation of state for the

gas:

p = p(ρ, ε) (4.4)

In our model we use the equation of state of an ideal gas:

p = RρT/µ (4.5)

where µ is the mean molecular weight of the gas and R the universal gas

constant. In a disk column in thermodynamic equilibrium this defines a local

disk scale height H. In our model we specify the temperature T = T0r0/r,

which has the effect that the effective scale height H/r is constant over the

whole disk and no energy equation needs to be solved.

4.1.1 Viscosity

In a protoplanetary disk we need a non-vanishing effective viscosity. This can

readily be seen when we look at our own solar system. In our Solar System,

over 99% of the mass is concentrated in the Sun and over 99% of the angular

momentum is concentrated in the planets. To reach this state there must have

been a transfer mechanism that transported mass inward and angular momen-

tum outward. This process is called turbulent accretion.
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However, the molecular viscosity of the gas and dust in the disk is insuffi-

cient to explain the short life time of a protoplanetary disk, which is approxi-

mately 107 years. There must be a different cause of the viscous accretion.

For the moment we will just assume that such a viscosity exists and define

the viscous stress tensor σ:

σi j = η

[(

∂ui

∂x j
+
∂u j

∂xi

)

− 2
3
∇ · uδi j

]

(4.6)

The term responsible for viscous accretion in protoplanetary disks is σrϕ.

In many calculations the simple ansatz is made to assume the viscosity is of

the form

η = αρc2
s (4.7)

where α is a constant smaller than one, and cs the local sound speed, given by

c2
s = p/ρ =

H
r

vKepler (4.8)

Such a model is called an α-disk model and is described in more detail in

Balbus and Hawley (1991). In our calculations the full stress tensor is used.

To define the amount of viscosity in the system we set the kinematic viscosity

ν = η/ρ as a constant.

The main model to explain effective mass and angular momentum transport

in the disk is the Magneto-Rotational-Instability, MRI for short (Balbus and

Hawley 1991). It is present if there is a magnetic field in a disk where material

further out is rotating slower than material further in, which is the case in a

protoplanetary disk, which velocity profile is close to Keplerian. A possible

cause of the magnetic field may be ionization of the gas in the disk, however it

is not clear if this is present.

The MRI causes turbulence which can be seen as an active viscous term

(Papaloizou and Nelson 2003). However it is too time-consuming to model

this effect for our calculations, so a shortcut is to assume that the viscosity is

of a certain form as given by Equation 4.7.

In our dimensionless units we set the kinematic viscosity to ν = 10−5. For a

Minimum Mass Solar Nebula (MMSN) and the embedded planet with a semi-
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major axis of a = 5 AU this corresponds to ν = 1010m2/s, consistent with the

measured accretion rates in protoplanetary disks (Henning and Ilgner 2003).

To compare our simulations to the α-disk models we find from the different

definitions that

ν = 2/3αcsH (4.9)

which means that the viscosity in our simulations corresponds to an α-value of

several times 10−3.

4.1.2 Finite difference method

These equations are now evaluated in a domain that is divided into grid cells.

In spherical coordinates the scalar physical parameters ρ, p,T are defined at the

centers of each cell at coordinates (xi, y j, zk, i = 1..Nx, j = 1..Ny, k = 1..Nz).

The velocity and first derivatives of the scalar physical parameters are defined

on the cell interfaces: in 3 dimensions this is at the center of the faces a cube

(see Figure 4.1.2). Now the system is evolved for one time step in all (two

or three) directions separately and new values for the physical parameters are

found.

ρi jk

vi jk
z

vi jk+1
z

vi jk
x vi+1 jk

x

vi jk
y

vi j+1k
y

Figure 10: The location of the different variables in a grid cell. The scalar variables are defined at the cell

center, vector variables at the cell faces.
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4.1.3 Determination of the time step

To determine how large a time step can be taken the Courant-Friedrich-Levy

(CFL) criterion is used:

∆t < CFL ·min
(

∆ri

ui + cs

)

(4.10)

where the minimum is over all grid cells and directions and CFL is a constant

parameter which is chosen in relation to the numerical scheme used. This

parameter has been chosen as 1
2 in most calculations. The CFL criterion for

the time step makes sure that no information moves more than the distance of

a cell during one time step so that the local approach is justified.

4.2 Orbital motion

The planet and the central star are on Keplerian orbits, possibly perturbed by

the gravitational force of the disk onto the planet and the star. To solve New-

ton’s equations for an N-body system a fourth order Runge-Kutta scheme is

used for the forces of the disk and the planet, and if the planet orbit is allowed

to change, the disk is added in first order as a small perturbation. The method

as we use it in more detail is as follows:

First consider the actual state of the system of N bodies at time t: ri(t), vi(t), i =

1 . . .N. The new state of a body is given as a function of the acceleration by

the other massive bodies:

r̈i,grav = −
N

∑

j,i

GM jri j

|ri j|3
(4.11)

where ri j = ri − r j is the vector pointing from body i to body j.

This whole system can be written as a set of first order differential equations:

ṙi = vi, v̇i = −
N

∑

j,i

GM jri j

|ri j|3
(4.12)

In 3 dimensions, this gives a 6N-dimensional system of the general form:

ẏ = f (t, y) (4.13)
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This formula is then discretized using the following 4th order Runge Kutta

scheme:

yn+1 = yn +
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4 +O(∆t5) (4.14)

where the subscript n denotes the number of the current time step and the four

k’s are defined as:

k1 = δt f (tn, yn)

k2 = δt f (tn +
1
2
δt, yn +

1
2

k1)

k3 = δt f (tn +
1
2
δt, yn +

1
2

k2)

k4 = δt f (tn + δt, yn + k3)

One implementation of this method, as used in the code, is known as RK4

(Press et al. 1992,see). A test with a standard 2-body system has shown that

the relative energy loss of this method with the actual time step used (as we

will see later this is about 0.001 times the orbital period) over the length of a

typical simulation is of the order 10−6 and can be neglected.

4.3 Disk planet interaction

The motion of the star and the planet in their orbit are given by the gravitational

force on the ith body from the other bodies and the disk:

u̇i = −
∑

j,i

GM jri j

r3
i j

−
∫

V

Gρr
r3 dV (4.15)

Since the motion is heavily dominated by the 2-body motion between the

star and the planet, we can speak of orbital elements of the planet:
a Semi-major axis

e Eccentricity

i Inclination

ψ Longitude of ascending node

$ Longitude of perihelion

M Mean longitude
These will change slowly in time as the 2-body system is perturbed by

the disk, more precisely if we write the force by the disk onto the planet as

Fr, Fz, Fϕ in a local (Hill) approximation we will get:
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da/dt =
1

MpΩpa
2Fϕ (4.16)

de/dt =
1

MpΩpa
[Fr sin(Ωpt −$) + 2Fϕ cos(Ωpt −$)] (4.17)

di/dt =
1

MpΩpa
Fz cos(Ωpt − ψ) (4.18)

dψ/dt =
1

MpΩpa
Fz sin(Ωpt − ψ) (4.19)

d$/dt =
1

MpΩpa
[−Fr cos(Ωpt −$) + 2Fϕ sin(Ωpt −$)] (4.20)

See for example Nakazawa and Ida (1988).

In the code this force is considered small relative to the gravitational forces

from the different massive bodies and is considered only once per time step. It

is added as a term k5 = δt fdisk(tn, yn)

in the Runge-Kutta scheme described in the previous paragraph.

For the opposite force from the massive bodies onto the disk the gravita-

tional potential is directly inserted into the hydrodynamical equations. Since

this is not completely straightforward, check the section on numerical issues

(Section 4.7) for more detail.

4.4 Coordinate system

In our calculations we use a cylindrical coordinate system (r, ϕ) for two-dimen-

sional calculations and a spherical coordinate system (r, θ, ϕ) for three-dimen-

sional calculations, where the origin of the coordinate system is the center of

mass of the planet and the star. In this coordinate system the computational

domain is defined as a box where each coordinate x runs from xmin to xmax.

The coordinate system is rotating with a constant rate Ω which corresponds

to the orbital period of the planet. These coordinates are very suitable for the

problem since the central star can be left outside of the grid and the planet is

on a fixed location on the grid (or moves around only slightly if it revolves

on an eccentric or inclined orbit). The grid covers the full domain [0, 2π] in
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the ϕ-direction and has fixed boundaries in the other one or two directions. To

keep the planet away from the grid boundary at ϕ = 0 it is kept at r = 1, ϕ = π

if it is not allowed to move, or near to this point if it is.

In the code the computational domain is divided into cells, and in each direc-

tion the interval [xmin, xmax] is divided into Nx smaller intervals of step size ∆x.

Since there are distinct staggered grids where the different variables are defined

we distinguish between physical variables defined in the center of the cells at

coordinate point xi, and physical variables defined at the cell interfaces at coor-

dinate point xi+ 1
2
. The effective physical borders of the computational domain

in a given coordinate direction are xmin = x 1
2
= x1 − 1

2∆x and xmax = xN+ 1
2
.

4.5 Boundary conditions

To ensure the correct physical evolution of the system at the boundaries, two

rows of ghost cells are included on each border of the computational domain.

In these ghost cells the physical variables are defined but not numerically

evolved. After each routine in the code that may have changed the values

of the physical variables near the boundary, the values in the ghost cells will

be redefined accordingly, depending on the chosen boundary conditions.

4.5.1 Boundaries in the angular directions

In the ϕ-direction the computational domain should be periodic. To ensure this,

the values of the physical variables are simply copied from the actual values

from the other side of the grid (XN+1 = X1, XN+2 = X2, X0 = XN , X−1 = XN−1).

These boundary conditions are called ”periodic” boundary conditions.

In the θ-direction in three-dimensional calculations normally ”reflecting”

boundary conditions are used: material is not allowed to escape. As the den-

sity is very low in this region there is not much trouble with wave reflections.

In three-dimensional calculations that would lead to a vertically symmetric

system, half of the computational time is spared and the boundary of the com-

putational domain is at the mid plane. At this point, the values of the physi-

cal variables in the first ghost region will be the same as in the first real cell

(X0 = X1), and the physical variables in the second ghost region will be the
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same as in the second real cell (X−1 = X2). These boundary conditions are

known as ”symmetric” boundary conditions.

4.5.2 Inner and outer radial boundaries

In principle two options stand out here. Either outflow of material is allowed or

it is not. If it is, the gas in the inner disk will disappear into the inner boundary

too quickly due to both viscosity and the spiral waves caused by the planet.

If outflow is not allowed (reflecting boundary conditions), waves will collide

with the boundary and get reflected.

To ensure a most uniform environment for all models and minimize distur-

bances (wave reflections) from the inner and outer boundary we impose at rmin

and rmax damping boundary conditions where the density and both velocity

components are relaxed towards their initial values as

dX
dt
= −X − X(t = 0)

τdamp
R(r)2 (4.21)

where X ∈ {Σ, ur, uϕ}, τdamp = 1/ΩK(rboundary) and R(r) is a dimensionless lin-

ear ramp-function which is one at the domain boundary and zero at the interior

boundary of the wave killing zone. The wave killing zone at the inner bound-

ary is the radial range [0.4, 0.5], the wave killing zone at the outer boundary

is of the form [0.84rmax, rmax]. This damping setup has been defined in the

international comparison test projectb.

The initial radial velocity vanishes, and the boundary conditions ensure that

no mass flows through the radial boundaries at rmin and rmax. However, the

total mass in the system may nevertheless vary due to the applied damping.

These specific boundary conditions allow upon a long term evolution and,

if the planet is on a fixed orbit, will lead to a well defined stationary or, as we

will see, periodic state.

4.6 Model parameters

The computational domain is covered by 128 × 384 (Nr ×Nϕ) grid cells for the

smaller models [0.4, 2.5] and 200 × 384 for the larger [0.4, 4.0] runs. Three-

dimensional runs have 16 cells in the vertical direction and make use of mirror
bhttp://www.astro.su.se/˜pawel/planets/test.hydro.html

39



4.7 Some numerical issues 4 NUMERICAL METHOD

symmetry in the orbital plane and cover 4 scale heights. The grid is spaced

equidistantly in all directions. The inner radius beyond which the damping

procedure defined above gradually sets in is given by rdamp = 0.5, the outer

damping radius is given by Rdamp = 0.84rmax. The star has a mass of 1 M¯,

and the mass of the planet in the different models ranges from one to five

Jupiter masses. The planet is held on a fixed circular orbit.

For the viscosity a value of ν = 1.0 · 10−5 (in units of Ωpr2
p) is used for our

standard models, which is equivalent to a value of α = 0.004 for the standard

H/r = 0.05. This is a typical value for the effective viscosity in a protoplane-

tary disk.

To achieve a more detailed calculation of the observed phenomena we re-

fined some calculations to the higher resolution of 256 x 768 (Nr × Nϕ) by

interpolating the data from coarser calculations. As the relaxation time for the

system is very long (> 1000 orbits) it would be too time-consuming to com-

plete the whole calculation on the high-resolution grid. To study the influence

of physical parameters such as viscosity and pressure, we vary ν and H/r in

some models. In addition, we analyze the influence of several numerical pa-

rameters on the results.

4.7 Some numerical issues

4.7.1 Coriolis force

The use of a rotating coordinate system requires special treatment of the Cori-

olis terms to ensure angular momentum conservation (Kley 1998). Especially

for the long-term calculations presented here, this is an important issue.

4.7.2 Smoothing of the planetary potential

In calculating the gravitational potential of the planet we use a smoothed po-

tential of the form

ΦP = −
GMp√
R2 + ε2

(4.22)

where R is the 2-dimensional distance from the planet. For the smoothing

length of the potential we choose ε = 0.6H for 2-dimensional calculations and

the diagonal size of a grid cell in 3-dimensional calculations. The increased
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Figure 11: The vertically integrated theoretical potential of a planet on a 3-dimensional disk in a 2-

dimensional simulation (solid line) and 3 potentials with a fixed smoothing length. As can be seen in

the outer regions the potential with a smoothing length of 0.6H is the best fit. In the inner region this

potential is continued as the theoretical potential is too step and may lead to numerical artifacts..

smoothing length is to simulate a three-dimensional disk in a two-dimensional

calculation. The gravitational force from the disk onto the planet (and vice

versa) is overestimated for distances that are not large compared to the scale

height of the disk. The horizontal component of the gravitational force from

disk elements outside of the orbital plane only contribute to the horizontal

component with a factor cos(α), where α is the angle between the line from

the planet and the disk element and the orbital plane.

The vertically integrated force of the disk onto the planet gives this formula:

Fth(R) =

∞
∫

−∞

Re
−z2

2H2

(R2 + z2)3/2 dz (4.23)

Since the force from the planet onto the disk will be the exact opposite, this

defines a planet potential that can be found by integrating this force. As there

is no analytic formula for this potential and many use a smoothed potential

of the form ΦP, we chose the value of ε that gave the potential most similar

to the theoretically correct model. In Figure 11 the theoretical 2-dimensional
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potential Φth defined by

Φth(R) =

∞
∫

R

Fth(R′)dR′ (4.24)

is compared to the potential ΦP for different values of the smoothing length.

As can be seen from the Figure the value ε = 0.6H gives the best fit to the

theoretical potential for regions far away from the planet.

For 3D calculations we use the same formula for smoothing the plane-

tary potential but with a different value of ε and for a completely different

reason. If no smoothing is used at all the large potential gradient near the

planet will cause a-physical results. To counter this we use a potential smooth-

ing of one diagonal grid cell measured at the location of the planet (ε =
√

∆r2 + ∆θ2 + ∆ϕ2).

4.8 Density floor

As the planet can be very large and as such cause a very deep gap, we have

found it preferable to work with a density floor so that the density cannot fall

below a specified minimum value Σmin. For our purpose we use a value of

Σmin = 10−6 in dimensionless values, where the initial density is of O(1).
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5 Global disk simulations

Science is wonderfully equipped to answer the question ”How?” but it gets

terribly confused when you ask the question ”Why?”

- Erwin Chargaff

This chapter discusses general simulations of a protoplanetary disk with an

embedded planet and especially the EU test project.

5.1 The Standard Model

Numerical simulations are an important tool to tackle the problems in the the-

ory of planet-disk interaction described in Chapter 3. Since the interaction

between a forming planet and a protoplanetary disk can not be observed di-

rectly we have to resort to models and then compare the final state reached in

these models with the observed planetary systems. In doing so we have to take

into account the limits on the initial conditions of planet formation put on us

from observations of protoplanetary disks.

The models presented here are calculated basically in the same manner as

those described previously in Kley (1998, 1999) and in Chapter 4.

Other similar models, following explicitly the motion of single planets in

disks, have been presented by Nelson et al. (2000), Bryden et al. (2000).

We use cylindrical coordinates (r, ϕ, z) and consider a vertically averaged,

infinitesimally thin disk located at z = 0. The origin of the coordinate system,

which is co-rotating with the planet, is at the combined center of mass of star

and planet. The basic hydrodynamic equations (mass and momentum conser-

vation) describing the time evolution of such a viscous two-dimensional disk

with embedded planets have been stated frequently and are not repeated here

(see Kley 1999).

In the present study we restrict ourselves to the situation where the embed-

ded planet is on a fixed orbit, i.e. the gravitational back reaction of the disk on

the planet is not taken into account.

43



5.1 The Standard Model 5 GLOBAL DISK SIMULATIONS

5.1.1 Initial Setup: 2D

The two-dimensional (r−ϕ) computational domain consists of a complete ring

of the protoplanetary disk. The radial extent of the computational domain

(ranging from rmin to rmax) is taken such that there is enough space on both

sides of the planet, although, as we shall see later, the effect we are analyzing

appears to occur only in the outer disk. Typically, we assume rmin = 0.40 and

for rmax we take two different values: 2.5 and 4.0, in units where the planet is

located at r = 1. In the azimuthal direction for a complete annulus we have

ϕmin = 0 and ϕmax = 2π.

The initial hydrodynamic structure of the disk (density, temperature, ve-

locity) is axisymmetric with respect to the location of the star. The surface

density is constant (Σ = 1 in dimensionless units) over the entire domain with

no initial gap. To make sure that only little disturbances or numerical arti-

facts arise upon immersion of the planet, its mass will be slowly turned on

from zero to the final required mass (e.g.. 5 Jupiter masses) over a time span

of typically 50 orbital periods. The initial velocity is pure Keplerian rotation

(ur = 0, uϕ = ΩKr = (GM∗/r)1/2), and the temperature stratification is always

given by T (r) ∝ r−1 which follows from an assumed constant vertical height

H/r. For these isothermal models the temperature profile is left unchanged at

its initial state throughout the computations.

For our standard model we use a constant kinematic viscosity coefficient ν.

5.1.2 Initial Setup: 3D

For the 3-dimensional model we use the same setup as described in the pre-

vious section. The grid in the θ direction is either one of two possibilities:

First for vertically symmetric initial conditions we use only the lower half of

the disk: θmin = 90◦, θmax = 105◦, so we save half the computational time

making use of the symmetry of the system. For vertically asymmetric ini-

tial conditions, when the initial inclination of the planet is non-zero, we use

θmin = 75◦, θmax = 105◦. For the usual disk geometry factor H/r = 0.05 this

means we have 5 scale heights of the disk in our computational domain.

The density profile in the θ-direction is Gaussian with a scale height given
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by H. Although this model is not exactly in equilibrium with the Keplerian

velocity profile, it is close enough for our purposes.

5.2 EU Comparison project - a test case

There are many standard tests to check a hydrodynamical code but none of

them come close to the type of problems we would like to solve. To make

sure the code works correctly for the problem of a protoplanetary disk with an

embedded planet, we participated in the EU Code Comparison project set up

by Pawel Artymowicz and Miguel de Val Borro (Stockholm Observatory)c. 17

different codes were compared on the problem of Jupiter and/or Neptune em-

bedded in a protoplanetary disk, which resulted in a joint paper (de Val Borro

subm). We will list the results and conclusions for our contribution here in

more detail than in the paper.

Figure 12: r − ϕ plot of the surface density after 100 orbits of the planet for the model with a planet mass

of q = 10−3 and no viscosity (Model JI).

We have calculated the standard models Jupiter Inviscid (JI), Jupiter Vis-

cous (JV), Neptune Inviscid (NI) and Neptune Viscous (NV) with different

resolutions, the standard resolution of 128 x 384 cells, and higher resolutions
chttp://www.astro.su.se/groups/planets/comparison/
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Figure 13: The azimuthally averaged radial surface density profile at several times (in orbits of the planet)

for the model with a planet mass of q = 10−3 and no viscosity (Model JI). The dotted lines in the plot show

the theoretical location of the spiral waves for a low-mass planet. The deviation from this is clear for this

high-mass planet.

for the viscous Jupiter case (models JVa, JVb). The suffix ’a’ denotes a two

times higher resolution (256 x 768), and the suffix ’b’ for a four times higher

resolution (512 x 1536). We found that our results compare very well to those

of the other grid-based methods, although we have the impression that some

participants have used a different prescription for the damping radial bound-

ary conditions described in 4.5.2 as the amount of wave reflection at the outer

boundary was higher in our code. We also investigated if the initial resolution

was sufficient for the set problem to get accurate results: would higher resolu-

tion calculations look the same as the lower resolution ones? This question is

discussed in section 5.2.4.

5.2.1 Initial conditions

The initial conditions were used as described above, except for the time scale

on which the mass of the planet is turned on. This was taken as 5 orbital periods

for both the q = 10−3 model (Jupiter) and the q = 10−4 model (Neptune).
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5.2.2 Jupiter inviscid

Figure 14: The azimuthally averaged radial surface density profile at several times (in orbits of the planet)

for the model with a planet mass of q = 10−3 and a dimensionless physical viscosity of ν = 10−5 (Model

JV).

In NIRVANAwe turned off the viscosity routine completely for this run so we

are left with only the numerical viscosity caused internally by the algorithm.

The planet quickly opens a gap that becomes very clean and very deep, how-

ever at the Lagrangian points L4 and L5 there is a large amount of matter left.

This will travel on librating and horseshoe orbits and will stay there for a long

time in these calculations.

One can clearly see the spiral shocks caused by the planet in Figure 12.

These spiral arms are not exactly where they should be according to the linear

approximation but this is caused by the already quite large planet mass.

We also observe the formation of vortices on both sides of the gap. The

large density gradients at the edge of the gap cause instabilities, and these will

not be damped by the viscosity. The vortices move with local Keplerian speed

and will therefore move around quickly in the co-rotating frame. In long term

evolution, the influence on the torque on the planet will be averaged out.

The gap in this case is very deep and clean as can be observed in the a-
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Figure 15: r − ϕ plot of the surface density after 100 orbits of the planet for the model with a planet mass

of q = 10−3 and a numerical dimensionless viscosity of ν = 10−5 (Model JV). As can be seen from the

relative position of the spiral waves with respect to the theoretical location for a low-mass planet, viscosity

does not change the position of the spiral waves.

zimuthally averaged surface density plot in Fig. 13. The dotted lines in the

plot show the theoretical location of the spiral waves in linear theory, i.e. when

the planet mass considered a small number. For Neptune (q = 10−4) this

assumption is reasonable as can be seen in Fig. 13, for Jupiter this assumption

is no longer valid: we are in the non-linear regime.

5.2.3 Jupiter viscous

With the physical viscosity set at ν = 10−5 the flow is much smoother than in

the inviscid case. The gap opened by the planet is narrower than in the inviscid

case as can be seen in the azimuthally averaged surface density plot in Figure

14. As the widening of the gap by the planet is counteracted by the closing of

the gap by the viscosity.

If we look at the surface density plot after 100 orbits (see Figure 15) we

notice that the material at the Lagrangian points disappears much more quickly.

Finally we do not see vortices at the gap edges that were present in the inviscid

case. Any instabilities that would form are sufficiently damped away by the
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viscosity.
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Figure 16: A resolution study of model JV. left) The azimuthally averaged radial surface density profile at

several times (in orbits of the planet) for the model as in Fig. 14 but with a four times higher resolution of

Nr = 512, Nϕ = 1536 (Model JVb). right) The azimuthally averaged surface density after 100 orbits The

low resolution is the standard resolution where Nr = 128 and Nϕ = 384 (Model JV). The middle resolution

is 256 × 768 cells (Model JVa), the high resolution is 512 × 1536 cells (Model JVb).

5.2.4 High resolution

In this standard case we have also performed a resolution study to see if the

resolution of the standard model is sufficient to solve the problem at hand.

For this we ran the model at a two times higher resolution (Model JVa) and a

four times higher resolution (Model JVb). The latter model took 10 days on a

single processor machine, as could be expected since the computational time

will scale with the resolution to the third power (In a 2-dimensional calculation,

the number of grid cells will scale with the square of the resolution, and the

time step will scale with the inverse of the resolution, so to complete one orbit

the required CPU time scales with the cube of the resolution).

In the left graph of Fig. 16 the azimuthally averaged density profile at dif-

ferent times is shown for the highest resolution calculation (Model JVb). It can

clearly be seen that the evolution is similar to that of the low-resolution case

(Model JV). To compare the final result of both calculations, in the right graph

of Fig. 16 the azimuthally averaged density profile after 100 orbits is shown for

the three different resolutions. There is a slight difference in the gap depth: For

the lowest resolution the gap is slightly deeper. More significantly different is
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Figure 17: The azimuthally averaged radial surface density profile at several times (in orbits of the planet)

for the model with a planet mass of q = 10−4 and no viscosity (Model NI).

the density bulge in the inner disk: this is different and has still not converged

for the highest resolution. This can be explained by the use of the uniform grid

in r: The relative resolution near the inner boundary and the high density gra-

dients by the tightly wound spirals in this region make the required resolution

very high and the effective resolution relatively low. However, this part of the

disk is not essential for calculating the migration and accretion properties of

the planet. As such we can say that it is reasonable to take the lowest resolution

model.

5.2.5 Neptune inviscid

For a ten times lower planet mass of q = 10−4 the gap will not be completely

cleared out. The depth of the gap as a function of time is shown in Figure

17. Also the spiral arms are significantly weaker than in the Jupiter case and

follow the theoretical path predicted by linear analysis much more closely, see

Figure 18. de Val Borro (subm) report vortices in this case around the gap

edges, although much smaller and less prominent than in the Jupiter case. In

our simulations we find no evidence of vortices for this planetary mass.
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Figure 18: r −ϕ plot of the surface density after 100 orbits of the planet for the model with a planet mass of

q = 10−4 and no viscosity (Model NI). Here the dotted lines denoting the theoretical position of the spiral

waves for a low-mass planet are followed much closer than for the Jupiter case.

5.2.6 Neptune viscous

In comparison with the inviscid case the flow is much smoother here, and there

are no vortices. The surface density after 100 orbits is shown in the bottom

graph of Fig. 19. Although there is a gap, the planet is still partially embedded

in the disk. The depth of the gap as a function of time can be readily viewed in

the radial surface density plot in the top graph of Fig. 19.

5.2.7 Conclusions

From the calculations performed in this test case it is apparent that for the

actual problem the initial resolution is sufficient, however for local effects like

accretion onto the planet a higher resolution may be preferable. Our version

of NIRVANA agrees well with other similar methods, and although we cannot

be sure of the definitive answer, the resolution study shows that we have come

close enough to set a bench mark for future programmers to test their methods

on this problem.

Also, as there is a slight difference between the radial surface density pro-
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file for the low resolution study JV and the two higher resolution models JVa

and JVb, we suggest performing the test on the middle resolution. With the

currently available computing power this should be no problem for anyone

wanting to benchmark his program with the comparison project. The complete

data of the comparison project can be found on Miguel de Val Borro’s websited

and the comparison paper (de Val Borro subm).

dhttp://www.astro.su.se/m̃iguel/comparison/
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Figure 19: top) Radial surface density profile at several times (in orbits of the planet) for the model with

a planet mass of q = 10−4 and a numerical dimensionless viscosity of ν = 10−5, bottom) r − ϕ plot of the

surface density profile after 100 orbits of the planet for the model with a planet mass of q = 10−4 and a

numerical dimensionless viscosity of ν = 10−5 (Model NV).
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6 Eccentricity excitation in disks

The most exciting phrase to hear in science, the one that heralds new discover-

ies, is not ’Eureka!’ (I found it!) but ’That’s funny ...’

- Isaac Asimov

As discussed in section 3.5 there are still several problems to be solved in

the area of disk-planet interaction, one of which is the problem that very mas-

sive planets need to form on a timescale that is shorter than the life time of the

disk. This chapter discusses a state in which the accretion rate onto a planet

with a much higher mass relative to the host star than Jupiter can be enhanced.

Jupiter has a mass ratio to the Sun of almost exactly 10−3. However, some

planets have been found with over 5 Jupiter masses around solar type stars.

Similarly some red dwarf stars have Jupiter-like companions. In our dimen-

sionless calculations these planets are treated in the same way. The results in

this chapter have also been published in Kley and Dirksen (2006).

In the core accretion theory described in section 3.1 there are several prob-

lems for making these very massive planets. As soon as the planet opens a gap

in the disk (when it reaches a mass of several tenths of a Jupiter mass) accre-

tion slows down but is not stopped, but after the planet mass reaches several

Jupiter masses, an order of magnitude more, the gap is much larger already and

accretion slows down to a rate where building planets of 5 – 10 Jupiter masses

is no longer feasible in the life time of a disk, which is about 107 years.

6.1 Large planet simulations

One of the most well-known multiple-planet systems is Gliese 876, where two

gas giants orbit in a 2:1 resonance with orbital periods of 60 and 30 days

(Marcy et al. 2001). The planets in the system also have a very high planet

mass to star mass ratio, the heaviest planet having a mass ratio of 0.0059 to the

star. Only the low total mass of the system (the central star is an M dwarf) and

the resonant orbital periods of both planets make the system gravitationally

stable. When a model of the system was run for several thousand orbits (Kley

et al. 2005) a new periodic state for the disk was found and here we investigate
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this periodic state in more detail.

6.2 The dual-state disk

We first consider our standard model as described in chapter 4 using a planetary

mass ranging from 1 to 5 MJup, i.e. a mass ratio of q = 10−3 to 5 · 10−3. The

other physical parameters are identical to the models described in section 5.1.1.

Due to the nature of the damped boundary conditions and a non-zero physical

viscosity of ν = 10−5 we might expect, after a sufficiently long evolution time,

a convergence towards an equilibrium state where the density structure and

the total amount of mass inside the computational domain remain constant

in time, at least in the co-rotating frame as in the 1 MJup case described in

chapter 5.2. Indeed, for smaller planetary masses of Mp < 3MJup we find

such a circular stationary state which displays the typical features of embedded

planets in disks: a deep, circular depression of density at the location of the

planet (the gap), spiral arms in the inner and outer disk. This state is shown

in the left graph of Fig. 20, which shows the surface density of the obtained

equilibrium state at an evolutionary time of t = 2000 orbits.

However, if the planetary mass is larger, Mp ≥ 3MJup the system surpri-

singly does not reach a stationary equilibrium state anymore. Instead we find

after a very long time (> 1000 orbits) a new periodic state which has approxi-

mately the same period as the orbital period of the planet. In this state the disk

is clearly eccentric with an extremely slow precession rate such that the eccen-

tric pattern appears to be nearly stationary in the inertial frame. This eccentric

quasi-equilibrium state for Mp = 5MJup is shown in the right graph of Fig. 20.

6.3 The eccentric disk

To look at this second equilibrium state in more detail, we define a measure

of the eccentricity of the disk that is calculated as follows: For a ring at radius

ri we calculate the eccentricity for every cell in the ring from the velocity

and position vector of that cell by assuming the fluid element is a particle

moving freely in the central potential of the star, feeling no pressure forces, i.e.

the eccentricity a test particle on a Keplerian orbit at the location of the fluid
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Figure 20: Logarithmic plots of the surface density Σ for the relaxed state after 2000 orbits for two different

masses of the planet which is located at r = 1.0 in dimensionless units. Left) q = 3.0 10−3 and Right)

q = 5.0 10−3 calculated with NIRVANA. The inner disk stays circular in both cases but the outer disk only

in the lower mass case. For q = 5.0 10−3 it becomes clearly eccentric with some visible fine structure in

the gap. For illustration, the drawn ellipse (solid line in the lower plot) has one focus at the stellar location

and an eccentricity of 0.20.

element. The average eccentricity over all cells in the ring is then defined as

the eccentricity of the disk at that radius ri. This value is plotted for different

masses in Fig. 21 at the evolutionary time of t = 2500, only for Mp = 3MJup

at t = 3850 orbits.

For planetary masses below around Mp ≈ 3MJup, the maximum eccentric-

ity of the disk is about 0.10, and is strongly peaked at r ≈ 1.2. For the larger

planetary masses the eccentricity of the disk nearly doubles and reaches 0.22

for Mp = 5MJup. In addition, a much larger region of the disk has become ec-

centric, which has been seen clearly already in the surface density distribution

in the right graph of Fig. 20, where an ellipse is drawn with an eccentricity of

0.20 and one focus at the position of the central star. This ellipse follows the

outer edge of the gap with a high degree of accuracy. Although the gap edge is

almost stationary in the rotating frame, we find a small and typically prograde

precession rate $̇ for the eccentric disk. From our longest runs (over several

thousand orbits) we estimate $̇ ≈ 10◦/1000 orbits. In Fig. 21 the curves for

the lower planet masses end at r = 2.5 because this is the outer boundary for
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Figure 21: Disk eccentricity as a function of radius for the several models with q = 0.001 up to q = 0.005

at t = 2500 orbits, for the q = 0.003 model at t = 3850. For the two lower curves q = 0.001 and q = 0.002,

the outer edge of the computational domain lies at rmax = 2.5.

those low mass models.

In Fig. 22 the azimuthally averaged density profile is plotted for different

planetary masses for the same models as in Fig. 21. Clearly the gap width in-

creases for the larger planet mass, as expected due to the stronger gravitational

torques. For the lowest mass (q = 0.001) model (solid line) the gap is not com-

pletely cleared. Observe that the slope of the outer gap edge for the models

with 4 and 5 Jupiter masses in the range 1.1 < r < 1.3 is shallower than for the

other models. This is evidence of the eccentric disk.

6.4 Dependencies on numerical parameters

As will become clear in section 6.6 there is a threshold mass above which the

disk will become eccentric. It is intimately connected to the shape, depth and

width of the gap, and parameters that will change the gap structure will also

change this threshold mass. Before we analyze physical influences we display

in Fig. 23 the surface density profile and the disk eccentricity for models using

different numerical parameters but all with same physical setup for q = 0.004,

and at the same evolutionary time of 2500 orbits (the high resolution model at
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Figure 22: Azimuthally averaged radial profiles of the surface density for different planet masses, for the

same models and times as in Fig. 21. The width of the gap increases with planetary mass.

t = 1750 orbits).

The solid line refers to the basic reference model (as in Fig. 22, 4MJup

model). We first find that the mass value where the transition occurs may

depend on the location of the outer boundary rmax. If the stand-off distance of

the planet to the outer boundary is too small the damping boundary conditions,

which tend to circularize the disk, prevent the disk from becoming eccentric.

The simulations using a 4MJup planet and a smaller rmax clearly shows this

effect. For this mass of the planet the disk will not anymore become eccentric

for rmax = 2.5 (dotted curve). Hence, to properly study this effect a sufficiently

large rmax has to be chosen. An extended domain with rmax = 10 instead of

rmax = 4 (short-dashed-dotted line) does not alter the eccentricity behavior of

the disk. From this we conclude that rmax = 4 is sufficient for our calculations.

The inner disk remains circular for all planet masses because of the strong

damping introduced by the boundary condition.

A higher resolution (200 × 500, short-dashed line), and running the model

in the inertial frame (long-dashed) have no significant influence on the density

distribution and the occurrence and magnitude of the disk eccentricity. A lower

resolution model (long-dashed-dotted) using 128 × 128 grid cells, results in a
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Figure 23: Surface density and eccentricity profile for models using q = 0.004 at a time of 2500 orbits, the

high resolution (model short dashed line) at 1750 orbits. Plotted are results for different models varying

the numerical setup.

slightly lower eccentricity due to a larger (numerical) damping. In addition, we

have compared the NIRVANA results with those for a different numerical code,

RH2D (Kley 1989,see) and again found good agreement. Hence, we conclude

that the eccentric disk state is a robust, reproducible physical phenomenon.

6.5 Dependencies on physical parameters

In Fig. 24 we display the surface density profile and the disk eccentricity for

models with q = 0.004 using different physical parameters. If the dimension-

less viscosity ν is enlarged to 3 × 10−5 (dotted line) the gap width and depth

is reduced and the disk will no longer become eccentric for the planet mass of

q = 0.004 (and also not for q = 0.005). Similarly, an increased H/r (long-

dashed line) leads also to a narrower gap and a smaller disk eccentricity. If,

on the other hand, the viscosity is lowered by a factor of three (short-dashed),

or H/r is reduced we find that the disk reaches about the same eccentricity as

before.

The last model (dashed-dotted line) refers to a planet on an eccentric orbit

with ep = 0.05 and a 3 times higher viscosity than the basis model. As can be

seen, the disk remains circular for these parameters. This model demonstrates
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Figure 24: Surface density and eccentricity profile for models using q = 0.004 at a time of 2500 orbits.

Plotted are results for different models varying the physical setup.

that it is not the planetary eccentricity which is responsible for producing the

disk eccentricity but that it is rather a genuine instability. This conclusion is

confirmed by a model with Mp = 2MJup and ep = 0.05 which (for the standard

viscosity) does not produce an eccentric disk.

6.6 The two equilibrium states

To illustrate the effect under different physical conditions we present additional

simulations using a slightly different setup. Here, we consider a planet moving

inside a disk at a radius of 0.35 AU, assuming that the inner disk has been

cleared already. The outer radius of the computational domain lies at 1.2 AU,

and the inner one at 0.25 AU. The scale height of the disk is H/r = 0.05, and for

the viscosity we use here as an alternative an α-prescription, with a constant

value of α = 0.01. In these models we have used a planetary eccentricity

of ep = 0.01 which is typically found in models of embedded planets that

follow the orbital evolution. As shown above this value of ep has no influence

on the transition to the eccentric disk state. The remaining setup is similar

to the models described above. The viscosity may be on the large side of

protoplanetary disks but has (in combination with the lack of the inner disk) the

clear advantage of speeding up the simulations considerably which allows us
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to reach the quasi-equilibrium states in which global quantities such as mass,

energy do not vary in time anymore, with reasonable computational effort.

This alternative setup has been used recently in a paper modeling the resonant

system GJ 876 and it is described in more detail in Kley et al. (2005). Here we

describe additional results concerning details of the eccentric disk state.

For these α-models we vary the planet-star mass ratio q from 1 · 10−3 to

about 7 · 10−3. In all cases the models are evolved until a quasi-stationary state

has been reached. As already seen above for the constant viscosity case, also in

this case the disk changes its structure from circular for small planetary masses

to eccentric for large planetary masses. Here the transition occurs at a larger

planetary mass because of the higher effective viscosity.

In Fig. 25 we display the mass accretion rate onto the planet as a function of

the planet mass. There is a strong jump in the magnitude of the accretion rate

at a critical planetary mass qcrit ≈ 5.25 · 10−3, exactly at the point where the

disk switches from circular to eccentric. For small planetary masses q < qcrit

the mass accretion rate falls off with increasing planetary mass, because upon

increasing Mp the stronger gravitational torques will deepen the gap and reduce

the accretion rate (Bryden et al. 1999; Lubow et al. 1999). However, when the

disk turns eccentric the gap edge periodically approaches the planet and it may

even become engulfed in the disk material for sufficiently large eccentricity

(see Fig. 26). Consequently, the mass accretion rate onto the planet is strongly

increased allowing for more massive planets.

This sudden change in the accretion rate is reminiscent of a phase transition

where the ordering parameter is given here by the planetary mass. Test si-

mulations have shown that the obtained equilibrium structure does not depend

on the initial configuration (e.g.. density profile, initial mass in the disk) but is

solely given by the chosen physical parameters. As shown above the transition

from the non-eccentric state to the eccentric state, which is here a function of

only the planetary mass, depends also on the viscosity and temperature on the

disk which we have held fixed in this model sequence.

Similarly to accretion rate the total disk mass contained in the system also

changes abruptly at the qcrit as a consequence of the applied the boundary

conditions at rmax. These are chosen such that the disk relaxes towards its

62



6 ECCENTRICITY EXCITATION IN DISKS 6.7 Eccentricity growth rates

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008

A
cc

re
tio

n 
R

at
e

Planet Mass [Mstar]

Figure 25: The dependence of the accretions rate onto the planet (in dimensionless units) on the planetary

mass for relaxed quasi-equilibrium configurations. Results are displayed for models using an α = 0.01

viscosity.

initial conditions at the outer boundary, e.g. the value of the surface density

is fixed at that point. Upon increasing the planet mass the gap becomes more

pronounced and disk mass is pushed towards the outer boundary increasing the

density there. At the onset of the eccentric state this relation changes abruptly.

The existence of the two equilibrium states of the disk is further illustrated

in Fig. 26 where we display gray scale plots of the surface density Σ for the

relaxed state. for two different mass ratios (q = 4.5 and 5.9 · 10−3) in a r −
ϕ representation. While for the lower mass case (q = 4.5 · 10−3) the disk

structure remains quite regular (left panel), the second high mass case (q = 5.9 ·
10−3) shows a strongly disturbed disk which has gained significant eccentricity

(e = 0.2) where also the gap edge becomes highly deformed (right panel, also

compare to Fig. 20).

6.7 Eccentricity growth rates

The growth of the eccentricity of the disk depends primarily on the mass of the

planet. To measure the speed of the increase we analyze the time dependence

of the total radial kinetic energy Ekin,rad in the models, because this is a quan-

tity most readily available. In the top panel of Fig. 27 we display the Ekin,rad(t)
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for four different planet masses. For a low mass of Mp = 2MJup no growth

is visible but for larger planets the growth time shortens upon increasing Mp.

From the growth of Ekin,rad(t) we estimate visually the growth-times τ as a

function of planetary mass (lower panel of Fig. 27). Clearly, for more massive

planets the disk will turn eccentric much faster. From the plot we may estimate

a growth rate γ = 1/τ ∝ Mp
2.4, a relation which is indicated by the additional

straight line in the graph. This dependence on planetary mass is somewhat

stronger than that estimated on theoretical grounds (Papaloizou et al. 2001).

6.8 Analysis of one orbit of the eccentric disk

After several thousand orbits in the eccentric state, the disk settles down to a

situation where the elliptic shape of the gap is exactly preserved at the same

position in space. Since we are in the co-rotating frame, this means that the

complete picture with planet and disk is periodic with a period of one orbital

period of the planet.

In the slides shown in Fig. 28 the eccentric disk at different phases of the

planet orbit are shown. The shape of the gap is very stable, but every time the

planet passes near the material that represents the periastron of the outer edge

of the gap there is a wave going down the outer Lindblad spiral into the planet

Roche lobe as can be seen in the top left panel. At the same time much of

the outer Roche lobe spiral will get embedded into the outer disk. The density

enhancement of approximately a factor two is then accreted onto the planet.

In the top right panel it the density around the planet is enhanced, and in the

bottom left panel the matter around the planet is being accreted. Here the planet

is near the widest part of the gap. Finally in the bottom right panel one can see

the planet in the normal state for a non-eccentric disk. All the material around

it has been accreted or dispersed, however the planet is already approaching

the narrow part of the gap again. This mechanism is the main source of the

increased accretion rate.

Before a stable periodic state with a period of exactly 1 orbital period of

the planet is reached after several thousand orbits, first an intermediate stage

is present where the disk precesses. This precession rate then decreases with

time until no more precession is present. At this point, the pure periodic state
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is reached and this can be kept running in the simulation for an arbitrary long

time (the longest simulation was 5000 orbits, of which 2000 orbits without

precession).

Figure 26: Gray scale plots of the surface density Σ for the relaxed state for two different planetary masses:

a) q = 4.5 · 10−3 and b) q = 5.9 · 10−3 calculated with RH2D. Due to the higher planetary mass much

stronger wave-like disturbances are created in the density.
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Figure 28: Snap shots of a planet in an eccentric disk. As can be seen the planet moves from the wide part

of the gap into the narrow part and back. When it gets to the narrowest part the accretion rate will increase

dramatically.

6.9 Theoretical analysis

The observed growth of the disk eccentricity in our simulations resembles that

found by Papaloizou et al. (2001) for very massive planets with Mp>∼10MJup.

The effect can be explained by a tidally driven eccentricity through resonant

interaction of the disk with particular components of the planet’s gravitational

potential (Lubow 1991a).

Using cylindrical coordinates (r, ϕ) we decompose the planetary potential

Φp into its different Fourier components and write

Φp(r, ϕ) =
m=∞
∑

m=0

Φm(r) cos[m(ϕ −Ωpt)] (6.1)

whereΩp is the angular frequency of the planet. Here the planet is on a circular
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orbit. The response of the disk has the form

∝ exp[i(kϕ − lΩpt)]

with k and l integer values.

The planetary potential produces tides in the disk which interact with an

initially small eccentric disk. The m-th Fourier component of the potential

(Φm(r) in Eq. 6.1) excites an eccentric Lindblad resonance in the outer disk

where the rotation period of the disk is Ω = m
m+2ΩP which corresponds to the

mode (k, l) = (m + 1,m) (Lubow 1991a). Hence, for an eccentric (m = 1) per-

turbation the radial location lies at the outer 1:3 resonance at r ≈ 2.08. As the

mass of the planetary companion increases, the gap it opens in the disk will be

deeper and wider. Already in Artymowicz (1992) it was suggested that for suf-

ficiently wide gaps, eccentricity growth can be induced by interaction at the 1:3

resonance in the outer disk, However, for smaller planet masses this is damped

by other resonances which are listed in Goldreich and Sari (2003); Sari and

Goldreich (2004). The main contributing eccentricity-damping resonances are

the co-orbital resonances and the resonances located at the outer 1:2 resonance.

Only if the gap is deep and wide enough these two resonances can no longer

cancel the eccentricity-exciting effect of the interaction at the 1:3 resonance.

The radial surface density profiles for simulations with different planet masses

at 2500 orbits have been displayed in Fig. 22. As can be seen, only for planet

masses larger than approximately 3 MJup the gap is sufficiently cleared at the

1:2 resonance (r ≈ 1.58) to allow for an eccentricity increase of the disk. In

the next section we derive the existence and properties of these resonances.

6.10 Disk modes

Assume a flat disk subject to a point mass potential Φ0(r) and a component of

the planet’s potential of the form Φm(r, θ, t) = Φm(r) cos[m(θ−Ωpt)]. The disk

consists of isothermal gas and has surface density σ and sound speed cs, so the

specific enthalpy is h(σ) = c2
s log(σ).

The fluid equations in cylindrical coordinates (r, ϕ) for such a disk are (Lubow

1991a):
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Here (u, v) are the velocities in radial and azimuthal direction, respectively.

The equilibrium state for such a disk, including full tidal effects of the ex-

ternal potential Φ, will be denoted by capital letters, so it is given by density Σ,

radial velocity U, azimuthal velocity V + Ω(r)r and specific enthalpy H. We

then write the external potential Φ as a Fourier series:

Φ(r, ϕ, t) = Φ0(r) +
m=∞
∑

m=0

Φm(r) cos[m(ϕ −Ωpt)] (6.2)

and expand all variables to the different components of the Fourier series.

We write the equilibrium state for the different components of the potential for

any quantity X as X = X0 + X1 + ....

Now we consider a linear perturbation of the disk from its equilibrium so-

lution which is caused by some initial eccentricity in the disk. Primes denote

the linearly perturbed variables. We want to know if the eccentricity grows in

the case of a finite perturbing potential in the limit of small eccentricity. For

assuming linearity we require that e is small compared to Φm/(Ω2r2).

To solve the above equations we follow the notation in Lubow (1991a) and

expand the perturbed variables in Fourier components of the perturbing poten-

tialΦm. Therefore we write any perturbation X′ as X′ = X′
0+X′

1+ ..., where the

subscript denotes the component of the perturbing potential in the expansion.

6.10.1 Initial eccentric perturbation

To start with a seed for eccentricity growth we impose a small initial perturba-

tion in the form of an eccentric disk, i.e. of the following form:

U′
0 = 2a(r) sin(ϕ −$) (6.3)

V′
0 = a(r) cos(ϕ −$) (6.4)
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where $ is the angle of pericenter. We ignore precessional effects and re-

gard $ as an arbitrary constant. a(r) is an arbitrary but smooth function of r

that is proportional to the local fluid eccentricity e(r) as

a(r) =
1
2
Ωre(r). (6.5)

As such a(r) represents a small velocity perturbation that represents a small

and azimuthally independent eccentricity field.

To zeroth order in Φm, the equilibrium state flow is axisymmetric:

Σ0 = Σ0(r),U0 = V0 = 0

and

H0 = c2 log(Σ0).

Substituting this equilibrium state into the linearized fluid equations, Lubow

finds that to orderΦ0
m in the perturbing potential the evolution equations for the

eccentric perturbation are:

∂U′
0

∂t
= +2ΩV ′

0 −Ω
∂U′

0

∂ϕ
(6.6)

∂V′
0

∂t
= −1

2
ΩU′

0 −Ω
∂V′

0

∂ϕ
(6.7)

As these evolution equations also satisfy equations 6.3 and 6.4, we find no

time-dependence of the eccentricity at this order.

6.10.2 To first order of the external potential

The next step is to include the next term of the planetary potential Φp. To

first order of the external potential we find a new equilibrium flow that also

gives rise to the Lindblad resonances. The equilibrium flow to first order in the

external potential Φm of the unperturbed disk is well known, see for example

Goldreich and Tremaine (1979):

U1 = unw(r) sin[m(ϕ −Ωpt)]

V1 = vnw(r) cos[m(ϕ −Ωpt)]

where
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unw(r) =
1

Dnw

[

m(Ω −Ωp)
dΦm(r)

dr
+

2mΩ
r
Φm(r)

]

vnw(r) =
1

Dnw

[

1
2
Ω(r)

dΦm(r)
dr

+
m2

r
(Ω −Ωp)Φm(r)

]

and

Dnw = Ω
2 −m2(Ω −Ωp)2 (6.8)

for m > 0. The subscript nw stands for non-wave as this equilibrium solution

is time-independent in the frame co-rotating with the planet. As we will see,

these first order terms will give rise to changes in the disk eccentricity.

To do so, we consider the linearly perturbed solution with the perturbation

defined by equation 6.3, 6.4 to first order in the external potential and find two

sets of equations for the velocities:

∂U′
1

∂t
+Ω

∂U′
1

∂ϕ
− 2ΩV ′

1 +
∂H′

1

∂r
= a(r) f (r) cos[(m ± 1)ϕ −mΩpt +$]

∂V′
1

∂t
+

1
2
ΩU′

1 +Ω
∂V′

1

∂ϕ
+
∂H′

1

r∂ϕ
= a(r)g(r) sin[(m ± 1)ϕ −mΩpt +$]

where

f (r) = −1
a

daunw

dr
− m

2r
unw (6.9)

g(r) =
dvnw

dr
+

m + 1
2r

vnw −
1

2ar
unw

dar
dr

(6.10)

Propagating wave solutions to these equations are emitted from radii that

satisfy the following resonance conditions. In case of a −-sign:

Ω =
m

m − 2
Ωp,Ω = Ωp (6.11)

The former occurs for radii inside co-rotation with the planet, the latter co-

incides with co-rotation. This is called an eccentric inner Lindblad resonance.

In case of a +-sign:

Ω =
m

m + 2
Ωp,Ω = Ωp (6.12)

The former occurs for radii outside co-rotation with the planet, the latter co-

incides with co-rotation. This is called an eccentric outer Lindblad resonance.
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For the rest of the analysis, we consider only the eccentric outer Lindblad res-

onances at Ω = mΩp/(m + 2).

For eccentric outer Lindblad resonances, the resonantly driven wave veloc-

ity response is of the form

U′
1(r, ϕ, t) = uw,s(r) sin[(m + 1)ϕ −mΩpt +$] + uw,c(r) cos[(m + 1)ϕ −mΩpt +$]

V′
1(r, ϕ, t) = vw,s(r) sin[(m + 1)ϕ −mΩpt +$] + vw,c(r) cos[(m + 1)ϕ −mΩpt +$]

The subscript w stands for wave, and subscripts s and c stand for sine and

cosine components, respectively.

Eccentric corotational resonances can also be found in the above wave equa-

tions when combining the velocity equations with the mass conservation equa-

tion. Such resonances occur where

Ω = mΩp/(m ± 1) (6.13)

Goldreich and Tremaine (1981) demonstrated that these resonances can act

to damp eccentricity. As can be seen easily, in the outer disk (+ sign in equation

6.13) there is an overlapping eccentric corotational resonance at the location

of each eccentric Lindblad resonance except for the outer eccentric Lindblad

resonance at m = 1, i.e. Ω = 1
3Ωp. To achieve global eccentricity growth the

density profile in the disk must therefore be such that the m = 1 outer eccentric

Lindblad resonance dominates. If it does, one still needs to show that this

resonance can increase the global eccentricity. This is discussed in the next

section.

6.10.3 Growth rate of the eccentric mode

To see if the instability would grow, consider the m = 1 equations. Now,

driving via the products of the X1 variables with X′
1 variables produces the

desired m = 1 solution without time oscillations. Such driving leads to secular

changes in the eccentricity terms X′
0. Secular evolution to Order of eΦ2

m is

considered and studied by adding exponential eccentric perturbing velocities

of the form
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U′
2(r, t) = 2a(r)[eλt − 1]sin(ϕ −$) + b(r)eλtcos(ϕ −$)

V′
2(r, t) = a(r)[eλt − 1]cos(ϕ −$) + d(r)eλtsin(ϕ −$)

Similar to Lubow we calculate the growth rate λ for a narrow ring [ri, ro] in

the outer disk and find:

λ =
1

4a(ro − ri)
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(6.14)

Evaluating the two integrals over a narrow ring around the resonance we

find:

ro
∫

ri

uw,c =
πa(rres)

D
×

(

[(m + 1)Ω −mΩp] f (rres) − 2Ωg(rres)
)

ro
∫

ri

vw,s =
πa(rres)

D
×

(

Ω f (rres) − 2[(m + 1)Ω −mΩp]g(rres)
)

where

D =
d
dr

(Ω2 − [(m + 1)Ω −mΩp]2)r=rres (6.15)

At the resonance location we can now write the growth rate as

λ =
πmΩp

8(m + 2)D(ro − ri)
[ f (rres − 2g(rres)]2 (6.16)

because we can write the difference f − 2g of the functions defined by Equa-

tions 6.9 and 6.10 as

f (r) − 2g(r) = −dunw

dr
− 2

dvnw

dr
− m − 1

r
vnw −

m + 2
2r

unw (6.17)

Evaluating D at (m + 2)Ω = mΩp for a Keplerian profile Ω(r) ∝ r−3/2 we

find that

D = 3mΩΩp/r > 0 (6.18)

This means we finally find a growth rate of:

λ =
πmΩp

24(m)D(ro − ri)
[ f (rres) − 2g(rres)]2 > 0 (6.19)
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, so we see that the resonance acts to increase the disk eccentricity.

The conclusion is that our calculations show that if these modes are trig-

gered, the disk eccentricity will grow exponentially. However, one has to con-

sider the whole set of disk modes to see when global disk eccentricity growth

is possible. As mentioned in section 6.9, this is only the case for a large and

deep enough gap where the surface density at the 2:1 resonance is sufficiently

low. This suggests there is a threshold planetary mass above which the eccen-

tricity growth is efficient enough to avoid being cancelled by the eccentricity

damping effects present in the disk.

Previous work in Papaloizou et al. (2001) suggest this threshold mass is

approximately achieved for a mass ratio of q = 0.01, however our simulations

discussed above suggest a much lower threshold mass. In the next section we

test if the phenomena we observed is indeed caused by this eccentric Lindblad

resonance.

6.11 Test of the theoretical model

To analyze the growth of an eccentric instability, we define the total mode

strength S k,l of an eccentric mode (k, l) similar to Lubow (1991b) as

S k,l = (S 2
cos,cos,k,l + S 2

cos,sin,k,l + S 2
sin,cos,k,l + S 2

sin,sin,k,l)
1/2

with S f ,g,k,l, defined in the inertial frame, given by

S f ,g,k,l =
2

πM(1 + δi,0)(1 + δ j,0)

t+2π
∫

t

dt′
∫

dr

2π
∫

0

rdθ

×Σ(r, θ, t) f (iθ)g( jt′)

This is a measure for the current magnitude of the(k, l)-component of the

eccentric perturbation. In particular, S 1,0 is a measure of the global disk ec-

centricity.

In the appendix of Lubow (1991b) the time derivative of the total mode

strength S 1,0 is calculated and is shown to be directly related to the relevant

growth mode in the inner disk, S 2,3. Similarly in the outer disk the time deriva-

tive of the k = 1, l = 0 mode S 1,0 is directly related to the k = 2, l = 1 compo-

nent:
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S 1,0

dt
∝ S 2,1 · S 1,1 (6.20)

It is assumed in these models that S 1,1 will change much more slowly com-

pared to the other modes and can be treated as a constant.
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Figure 29: The strength of several modes in the disk as a function of time. The solid line refers to the global

disk eccentricity S 1,0. In the exponential growth regime the time derivative of the eccentricity (dotted line)

is proportional to the (2,1) wave mode (short-dashed line).

The evolution of the relevant mode strengths for a model with q = 0.005 is

displayed in Fig. 29. The amplitude of the global eccentric mode (k = 1, l = 0)

shows exponential growth (see Fig. 29, solid line). Furthermore, Eq. (6.20)

is confirmed directly by comparing the S 2,1-mode (short-dashed line) and the

numerically obtained derivative of the eccentricity, i.e. S 1,0 (dotted curve). As

it can be seen from the plot, S 1,1 is constant as suggested by the theoretical

analysis of Lubow (1991a).

The good agreement of our results with theoretical expectations supports

our conclusion that the mechanism for eccentricity growth is that described

by Lubow (1991a) and Papaloizou et al. (2001). In our simulations growth

will start after the disk has settled sufficiently and the gap has been cleared,

a process which occurs on viscous time scales. Our numerical growth rates

during the eccentricity increase have been estimated from the time evolution

of total radial kinetic energy. In the left graph of Fig. 27 the total radial kinetic
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energy of the disk is plotted as a function of time. After an initial decrease

caused by the settling of the disk, the total radial kinetic energy will increase

again for an eccentric disk before reaching an equilibrium. For a non-eccentric

disk as for the q = 0.002 case (dotted line) the total radial kinetic energy will

steadily decrease to an equilibrium.

By measuring the slope of the linear rising part of the curve one can mea-

sure the global eccentricity growth rate as caused by the eccentric instability

discussed in this chapter. In the right graph of Fig. 27 the growth rate as a

function of companion mass is plotted. A power law is a good fit to the data

points and we find that the best fit is τ ∝ M−2.4. Nevertheless for the masses

considered this time scale is much shorter than the life time of the disk, and

therefore this effect could be important in the evolution of massive planets.

6.12 Conclusions

We have performed numerical time dependent hydrodynamical calculations of

embedded planets in viscous accretion disks. During the evolution the planet

is held fixed on a circular orbit, and the whole system is evolved in time until

a quasi-equilibrium state has been reached. In contrast to previous existing

simulations on this problem we have extended the evolutionary time to several

thousand orbits of the embedded planet for a whole range of different planetary

masses.

We find that beyond a certain critical mass of the planet the structure of the

disk changes from a circular to an eccentric state. For typical viscosities in

protoplanetary disks ν = 10−5 (or α ≈ 0.004) the transition to the eccentric

case occurs already for critical masses of Mp = 3MJup. Through a modal

analysis we demonstrate that the eccentric (k = 1, l = 0) mode in the disk is

indeed driven by the (k = 2, l = 1) wave mode which is excited at the outer

1:3 Lindblad resonance. The numerically inferred growth rate of the unstable

eccentric disk mode is roughly proportional to Mp
n with n = 2.4, which is

slightly larger that the predicted value of n = 2.0 (Lubow 1991a; Papaloizou

et al. 2001). The discrepancy is most likely due to a change in the density

structure of the gap for different planetary masses. For small masses Mp =

2MJup no eccentricity growth has been found. Here the damping effects of
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disk viscosity and pressure keep the disk in the circular state. Upon increasing

the planetary mass the eccentricity eventually saturates at a value of e ≈ 0.25.

The excitation of eccentric disk modes by massive companions has been

studied within the framework of Cataclysmic Variable stars as an instability

of the inner disk (Lubow 1991a,b). In those cases the change in viscous dis-

sipation induced by the slow precession of the disk is presently the preferred

mechanism to explain the observed Superhumps in the light curve of some

systems. That the same process is also applicable to (outer) disks around an

embedded protoplanet has been confirmed by Papaloizou et al. (2001) in their

study of very massive planets. In their simulations a much larger threshold

mass (≈ 10 − 20MJup) has been found. However, their simulations were run

only for 800 planetary orbits or less, which is not sufficient to see growth for

small mass planets considering the long growth time of the eccentric mode.

The change in the state of the disk has significant consequences for the

mass accretion rate onto the planet. For circular disks the width of the gap

widens upon an increase in the planetary mass which shuts off eventually fur-

ther accretion of disk material. The maximum mass a planet may reach by this

process is around 5MJup (Bryden et al. 1999; Lubow et al. 1999). We suggest

that through the excitation of the eccentric mode in the disk the planet can

reach larger masses more readily, as there are quite a few systems with (min-

imum) planetary masses larger than 5MJup. The influence an eccentric disk

might have on the evolution of a pair of planets engaged in a 2:1 resonance has

been analyzed recently by Kley et al. (2005). Here, changes in the libration

amplitude of the resonant angles are to be expected.

It has been suggested that the gravitational back reaction of an embedded

planet with the surrounding disk can lead to an increase in the orbital eccentric-

ity of the planet (Goldreich and Sari 2003; Ogilvie and Lubow 2003), and may

serve as a possible mechanism to explain the observed high eccentricities in

extrasolar planetary systems. In the present work the gravitational back reac-

tion of such an eccentric disk on the planetary orbit has not been analyzed, and

remains to be studied in the future. The magnitude of the reachable eccentricity

depends on the absolute physical mass of the ambient disk. Through numerical

simulations Papaloizou et al. (2001) find that a significant increase in planetary
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eccentricity is only seen for a planet mass above 10 MJup. However, even in

this case the maximum eccentricities do not increase beyond e = 0.25. Addi-

tionally, the evolution time of the models was very short and did not allow to

study the long term evolution of the eccentricity.

As the effect of disk eccentricity scales with planet mass at least as ∝ Mp
2.4

the effect is most pronounced for very massive planets. However, in that case

it is also more difficult to induce high planetary eccentricities. Hence, it is very

questionable if the back reaction of the disk can produce the observed high

eccentricities found in the surveys.

The present study is only two dimensional and has not included any ther-

mal effects such as radiative cooling or transport. Since in two dimensional

calculations the gravitational effect between planet and disk tends to be over-

estimated (as the disk is confined to the equatorial plane) one might expect a

reduced effect in full three-dimensional simulations. But the very low value

of the critical transition mass leaves sufficient room for an importance of this

effect in the growth of extrasolar planets.
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7 Simulations with a moving planet

Part of the inhumanity of the computer is that, once it is competently pro-

grammed and working smoothly, it is completely honest.

- Isaac Asimov

Although up to this point we have looked at planets in fixed orbits around the

central star, a planet embedded in a disk will interact with the disk as described

in chapter 3 and thus change its orbit. This chapter discusses numerical simu-

lations where the planet is allowed to change its orbit. In particular, the initial

condition need not be a circular coplanar orbit. The details of how the planet

orbit is calculated can be found in section 4.3. The chapter will be divided into

two parts. First we look at the linear regime as defined in 3.3: planets with a

very low mass that can be treated as a small perturbation of the potential and

experience Type I migration. Then we look at the other extreme: The orbital

evolution of planets that cause an eccentric disk as described in chapter 6.

7.1 Low mass

For these simulations we have looked at planets with a very low mass compared

to the other calculations we present here: 20 Earth masses, or a mass ratio of

q = 6 × 10−5. Planets of this mass are in the regime of Type-I migration and

show fast orbital evolution and are therefore especially well suited to see quick

effects. Also, planets of this mass are approximately the lowest mass planets

found outside our Solar System at the time of writing, some at orbits of only

several days.

This work has been done in collaboration with Paul Cresswell and Richard

Nelson, both at Queen Mary University of London, Astronomy Unit.

7.1.1 Initial setup

We use the initial setup as described in section 5.1.2, but with an initial surface

density profile that falls off as Σ(r) ∝ r−1/2. As the planet is now interacting
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with the protoplanetary disk, the disk mass is relevant. The total disk mass

inside the computational domain [rmin = 0.4a, rmax = 2.5a] is mtot = 0.007

Solar masses. The unit of distance and initial semimajor axis of the planet is

similar that of Jupiter: a0 = 5.0AU

7.1.2 Eccentricity and Inclination damping

As for orbital migration, one can deduce formulae for the eccentricity evolu-

tion of a planet embedded in a gaseous disk. As shown in Tanaka and Ward

(2004) and Tanaka and Ida (1996), the instantaneous eccentricity and inclina-

tion change due to forces from the disk on the planet under the local approxi-

mation (or so-called Hill approximation), see section 4.3, is given by

ė =
1

MpΩpa

[

Fr sin(Ωpt −$) + 2Fθ cos(Ωpt −$)
]

where $ is the longitude of periastron. Similarly, the instantaneous inclination

change is given by

di/dt =
1

MpΩpA
Fz cos(Ωpt − ψ)

where ψ is longitude of the ascending node. Using this one can calculate the

theoretical eccentricity damping time te = e/|de/dt| for an embedded planet.

Papaloizou and Larwood (2000) find that ė < 0 and show that one can dis-

tinguish two extreme cases: Low eccentricity (e < H/r) and high eccentricity

(e > H/r). In the first case, for small eccentricities, te is constant, in other

words the orbital eccentricity of the planet will decay exponentially.

In the high eccentricity case te ∝ e3. For our calculations this means if

e(0) = e0 À H/r then e(t) is of the form C1 −C2t1/3. In general they find a

formula that is valid over the whole regime:

te ∝ 1 +
1
4

(

e
H/r0

)3

The behavior of the inclination is similar to that of the eccentricity: It is

shown in Tanaka and Ward (2004) that the damping time ti is constant for

small inclinations, i.e. inclinations at which the planet does not leave the disk

(i < H/r). If the planet leaves the disk (i > H/r), damping slows down. A

behavior similar to that of the eccentricity damping results can be observed:
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Although not proven theoretically the inclination damping curve fits well to

di/dt/i ∝ i3 for i > H/r.

7.1.3 Numerical setup

We consider our standard model as described above with a planet mass of

q = 6 × 10−5 and an initial eccentricity ranging from e = 0 to 0.3. We allow

the planet to migrate due to the torques exerted on it by the disk. We run the

models until we find no more significant evolution in the eccentricity of the

planet.
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Figure 30: Eccentricity as a function of time for difference initial eccentricities. We find exponential growth

in the low-eccentricity regime and slower damping for higher eccentricities.

7.1.4 Low initial eccentricity

If we start with a sufficiently low eccentricity (e0 < 0.1) we observe a decay of

the orbital eccentricity of the planet. e(t) for several different initial eccentri-

cities is shown in Fig. 30. In Fig. 31 we study the migration rate of a planet on

a low-eccentricity orbit. Notice that for the circular orbit (e0 = 0) we maintain

a near-circular orbit.

The decay of the planet eccentricity in these case can be fitted to a theore-

tical model with ė/e = constant, or exponential decay. We find that for these

particular models, the damping time is approximately 30 orbits. As this is
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Figure 31: Semi-major axis of the planet as a function of time for different initial eccentricities. For small

non-zero eccentricities the migration rate increases, for large eccentricities the migration rate approaches

zero.

much smaller than the migration time scale, we can assume that such damping

is instantaneous, i.e. a small perturbation from external forces will be com-

pensated very quickly without changing the orbit or the growth of the planet

significantly.

As shown analytically in Tanaka and Ward (2004) the eccentricity and in-

clination damping of the planet orbit is caused by eccentric bending waves in

the disk. The damping time scale is given by

¯̇e/e = −0.780
twave

(7.1)

with characteristic time

twave = q−1












σpa2

M∗













−1 (

cs

aΩp

)4

Ω−1
p (7.2)

with q the mass ratio between the planet and the star, and σp the local surface

density at the planet radius. For a planet of 20 Earth masses at 5 AU in a

MMSN nebula (σ = 1280 kg m−2), as in our model, the characteristic time

twave = 425 yr = 46 orbits. This gives an eccentricity damping time scale

of 59 orbits. The best estimate of the eccentricity damping time scale for the

simulations shown in Fig. 30 is 35 orbits. Although this is a bit lower it is of

the same order of magnitude as the theoretical prediction.
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An interesting effect can be seen when one looks at the migration time scale

of the planet. For these low eccentricities we find a slightly faster migration

rate for the planet than in the circular case. However, if the eccentricity is

larger than a certain value (the high eccentricity case), this effect is reversed.

It is not clear what is the cause of this increase in migration rate. On the

other hand, the decrease of the migration rate for high eccentricities can be

understood: because of the large velocity difference between the planet and

the surrounding disk material, the strength of the spiral waves will decrease

as their location changes constantly, and this perturbance will cause a smaller

back reaction on the planet.
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Figure 32: The model with e0 = 0.3 is fitted to a theoretical model which predicts ė ∝ e−2. As can be seen

this model works extremely well as long as the eccentricity is larger than H/r.

7.1.5 High initial eccentricity

If we start with a high initial eccentricity (e0 > 0.1) we also observe a decay of

the orbital eccentricity of the planet, but it is slower and not exponential. It fits

well to the theoretical model, which predicts ė ∝ e−2. In Fig. 32 the numerical

calculation with e0 = 0.3 is fitted with such a model. The fit is extremely

good. Also notice that up to the point where exponential decay sets in, the

different curves are time-shifted copies of each other, which means that any

previous evolution can not be recognized in the current eccentricity evolution
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curve. After exponential decay is reached there is a residual eccentricity that

does not go away. This most likely has to do with material that is very near to

the planet.

For these high eccentricities we find a decreased migration rate, which can

be explained by the large velocity difference between the planet and the sur-

rounding material. This velocity difference diminishes the strength of the spi-

ral waves that are causing the migration. We also find a sharp increase of the

migration rate as soon as the eccentricity becomes smaller than 0.1 for these

models. In Figure 33 the relative migration rate compared to the e = 0 model

is plotted. For small eccentricities the migration rate may increase by as much

as 60% before dropping off as expected for larger eccentricities. For a very

large eccentricity of e = 0.3 the migration rate is 5 times smaller than for the

same planet on a circular orbit.
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Figure 33: The relative migration rate as a function of eccentricity for a planet with q = 6 × 10−5. For

low eccentricities the migration rate may increase by up to 60%, for high eccentricities we find very slow

orbital migration.

In the long term evolution of the migration rate we see in Figure 34 that all

models converge to the circular migration rate when approaching e = 0, as ex-

pected. For the e = 0.3 model the eccentricity has not dropped enough to reach

the changeover from the slow migration regime (large e) to the slow migration

regime (small nonzero e), but will eventually reach the same migration rate as

the other models (see also the two-dimensional model in section 7.1.6.
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Figure 34: The long term evolution of the semimajor axis for different initial eccentricities. All models

except the one with the largest initial eccentricity converge to the same migration rate.

7.1.6 Comparison to two-dimensional models

To investigate the effect of the lack of a third dimension, we have performed

all the models with a low mass eccentric planet in a two-dimensional setup as

well. Our initial conditions are exactly as in the models for three dimensions,

vertically averaged. The grid structure is the one used in section 5.1.1. The

evolution of the orbital elements of a 20 Earth-mass planet starting on an ec-

centric orbit with initial eccentricity between 0 and 0.3 for the two-dimensional

models is shown in Figure 35. In the top panel the semimajor axis is shown.

With the correct treatment of the potential smoothing as described in section

4.7.2, the migration rate in the two-dimensional case is equal to the migra-

tion rate in three dimensions. Also, as can be seen from the semimajor axis

at t = 250 orbits, the models with e0 = 0.05 and e0 = 0.10 have migrated

the most as in the three-dimensional case. Another feature that is preserved

from the three-dimensional calculations is the sharp change in migration rate

when the eccentricity drops below 0.15. For the e0 = 0.30 model this happens

after approximately 220 orbits, for the e0 = 0.20 model after approximately 60

orbits.

There are also some distinct differences. The most important difference is
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Figure 35: top) Semi-major axis as a function of time for q = 6 × 10−5 in two-dimensional calculations.

For very high eccentricities the direction of migration is reversed. bottom) Eccentricity as a function of

time for q = 6 × 10−5 in two-dimensional calculations. The models show exactly the same features as the

corresponding models in three dimensions.

the sign of the migration rate. In the two-dimensional case we get outward

migration for high eccentricities, whereas in the three-dimensional case even

for the high eccentricities (e > 0.15) migration was still inward. In the bot-

tom panel of Figure 35 the eccentricity is plotted as a function of time. Both

the damping time scale and the dependency of the damping rate on the actual

eccentricity are the same as in three dimensions.
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Figure 36: Inclination as a function of time for different initial values of i. We find exponential decay as

long as i < H/r. For higher eccentricities the damping time scale increases dramatically. A good fit is

found with a model with di/dt ∝ i−2

7.1.7 Inclination damping

If we start with a planet on a circular but inclined orbit the inclination will be

damped. The time scale for inclination damping is significantly longer than the

eccentricity damping time scale. Again we find two different regimes. For i <

H/r the planet will stay inside the disk and the damping is exponential: di/dt ∝
i. The damping time scale for a small planet mass and small inclinations is

given in Tanaka and Ward (2004) as:

¯̇i/i = −0.544
twave

(7.3)

with twave defined as in 7.2. For our simulations this would give a dam-

ping time scale of 85 orbits. The two lower curves in Fig. 36 shows the in-

clination damping for small initial inclinations (2◦ and 5◦ respectively) and a

measurement of the damping rate suggests an inclination damping time scale

of approximately 70 orbits, so just as for the eccentricity we find very good

agreement with analytical results.

For higher inclinations we find a slower inclination damping rate as can be

seen in Fig. 36. The best fit to the model with the highest initial inclination of
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10◦ is one with di/dt ∝ i−2. This is equal to the behavior of the eccentricity

damping rate for large eccentricities.
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Figure 37: top) Semi-major axis as a function of time for q = 0.005 in an eccentric disk. At some point

migration is reversed and goes outward instead of inward. bottom) Eccentricity as a function of time for

q = 0.005 in an eccentric disk. The eccentric disk causes rise in the orbital eccentricity of the planet. As

a comparison, models without an eccentric disk and a planet on a circular orbit will keep the planet on a

circular orbit.

In case of a nonzero inclination we find that the migration rate is unaffected

by the inclination for i < 10◦, in other words the migration rate is the same

as for the models without inclination, regardless of the initial eccentricity (for

e0 = 0, 0.05 or 0.10).
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7.2 Eccentric disks and orbital elements

With a planet mass of 5 Jupiter masses, enough to create an eccentric disk on

a computationally feasible time scale, one can of course hope for eccentricity

growth for the planetary orbit once the disk has become eccentric. However the

disk mass will now be of the same order as the planet mass, so quick changes in

the orbital parameters of the planet are not expected. One must also be careful

not to create numerical artifacts by moving around a very massive planet too

quickly.

For these calculations we started with an eccentric disk model from the

previous chapter and ran it until it reached an eccentric disk state. At this

point the back reaction of the disk onto the planet is activated. The planet

will migrate and, since the disk is eccentric, the expectation is that the orbital

eccentricity of the planet will become systematically nonzero. This would then

be significantly different than for the normal equilibrium mode of the disk. For

example for q = 0.001 we find no eccentricity growth if we start with a planet

on a circular orbit, only a residual eccentricity caused by small variations in

the force on the planet of the order of 10−3.

The orbital evolution of such a system for a planetary mass of q = 0.005 is

shown in Fig. 37. In the top panel the semimajor axis is plotted, in the bottom

panel the eccentricity. Since the mass of the planet is of the same order as that

of the part of the disk inside of the computational domain, evolution is slow as

expected.

The first 200 orbits we can observe a steady inward migration and a steady

rise in eccentricity. This is in contrast to calculations where there is no ec-

centric disk regardless of the planet mass, as for such calculation we find only

small short-term variations of the eccentricity that are quickly damped out. Af-

ter about 300 orbits of evolution the direction of migration changes due to the

interaction between the planet and the disk, and after this the interaction be-

comes more intimate. During this evolution the eccentric state of the disk is

preserved, leading to the conclusion that the situation where a massive planet

is embedded in an eccentric disk leads to a non-circular orbit for the planet.

Finally at about t = 1100 orbits a second reversal of the migration rate takes

place, at this point the eccentricity is about e = 0.035. The planet now moves
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into a fast-migrating mode. At this point the accuracy of the simulation de-

creases because of the quick changes of the semimajor axis. At this point the

various simulations we have performed show varying behavior of the orbital

eccentricity: In some simulations the eccentricity quickly increases to e = 0.2,

in some others it will remain around e = 0.05. As the results depend so heavily

on small changes in the initial conditions we will not give rigid conclusions on

the final orbital eccentricity of the planet.

The observed non-circularity of the planetary orbit in these simulations is

not of the size of the large eccentricities observed for extra-solar planets (the

average observed eccentricity for extrasolar planets is e = 0.3, see chapter 2)

but a massive planet on a non-circular orbit can be the starting point of planet

- planet interaction, which may lead to larger eccentricities in itself. Another

possibility is that the eccentric disk caused by the massive planet may increase

the orbital eccentricity of other planets in the system.

7.3 Conclusions

We have performed 3-dimensional numerical simulations of a planet in a pro-

toplanetary disk. The planet was allowed to change its orbit. We investigated

the orbital evolution of the planet in two mass regimes. In the low mass regime

we are in the linear regime in which detailed analytical results are known.

For small eccentricities and inclinations good agreement is found between our

results and linear theory. Also in the case of large eccentricities the slower

decrease of e is well understood.

For the migration rates as a function of eccentricity we find some surprising

results: For low eccentricities we find faster migration than in the case of zero

eccentricity - an increase of up to 60% is observed - before migration slows

down as expected for higher eccentricities.

We have also performed a comparative study of these models in two dimen-

sions and find good agreement in the migration and eccentricity damping rate.

Also the increased migration for small non-zero eccentricities is reproduced.

However, in two dimensions the migration rate for high-eccentricity planets is

reversed unlike in the three-dimensional case.

Additionally we studied the inclination damping for low-mass embedded
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planets. If the initial inclination of the planet is small enough we find a rapid

exponential decay, however if the initial inclination is larger than the scale

height of the disk, the damping rate decreases dramatically.

For higher mass planets we enter the non-linear regime. As shown in Chap-

ter 6, very high mass planets cause eccentricity growth in the disk. In this

Chapter we couple this to eccentricity growth of the planet orbit. For an initial

eccentricity e0 = 0 we find eccentricity growth for those planets that create an

eccentric disk, something not found in any other mass range. We think that

this is an important mechanism to introduce eccentricity into the system, and

it may not only affect the planet causing the perturbations in the disk but also

other planets.
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8 Conclusions

There is a theory which states that if ever anybody discovers exactly what the

Universe is for and why it is here, it will instantly disappear and be replaced by

something even more bizarre and inexplicable. There is another theory which

states that this has already happened.

- Douglas Adams

This chapter summarizes the research findings of this thesis on planet-disk

interaction with planets on a fixed orbit, first for Neptune and Jupiter mass

planets and then beyond, and planets on a dynamic orbit, also here for low-

and high-mass planets.

8.1 Fixed planet orbits

We have performed a comparison between many different numerical codes as

described in Chapter 5, and our contribution agrees well with the other contri-

butions with similar codes. In addition we have performed a resolution study

and found that although the results look promising at the lowest resolution,

slight differences can be detected for higher resolutions. This is a hint that al-

though most conclusions from the low-resolution studies will be correct, one

should treat them with care.

We feel that this comparison project has provided a good benchmark for

others writing a code that intends to deal with this particular problem.

Extending the parameter space set by the comparison problem we have

found a special disk state for high-mass embedded planets that may help ex-

plain the existence of such planets by virtue of the increased accretion rate in

our models, which is urgently needed to allow such planets to form before the

protoplanetary disk dissipates. This eccentric state is robust and theoretically

sound but since the evolution to such a state takes a long time, it is no surprise

that it has not been observed before for such low planet masses.
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8.2 Moving planet

We have looked at the eccentricity and inclination evolution for low-mass mo-

ving planets in Chapter 7 and found good agreement with theoretical analysis.

This is useful for others planning to do research in this area since we can con-

clude that planets subject to type I migration can be assumed to move on a

coplanar, circular orbit, as long as no other effects like a second planet or a

close encounter with a star are relevant.

The picture is much different for planets with very high masses as can been

seen in Chapter 7.2. These cause an eccentric outer protoplanetary disk and in

turn the eccentric disk forces the planet from its circular orbit into an eccentric

one. This non-zero eccentricity 0 < e < 0.1 is not of the same order of mag-

nitude as the observed eccentricities of many extrasolar planets but once this

state has been reached both the planet and the disk may influence other planets

in the system as well.

8.3 Future work

It is still a long way to fully understanding the interactions between a proto-

planetary disk and the embedded protoplanet. There are many aspects which

have not been touched in this thesis, for example using high-resolution meth-

ods to zoom in in the region of the planet and the inclusion of more physics:

The addition of radiative transfer and magnetic fields.

First the addition of radiative transfer may have a large impact on the area

near to the planet. When the surroundings of the planet are heated up by the

hot accreting planet, this will change the local density distribution and as such

may influence the planet migration. There has already been some work in

this area, mostly about the observability of embedded planets, see for example

Wolf et al. (2002).

Second, the inclusion of magnetic fields as discussed in section 3.5.1 will

also change the migrational behavior of a planet.

Another interesting problem arises when one looks at planets of interme-

diate masses: those that open a gap but are not massive enough to excite ec-

centricity in the disk (for example Jupiter). It is very hard to make analytic
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prediction on the behavior of the orbital eccentricity and inclination of such a

planet, and unfortunately also very hard to get consistent results in numerical

simulations of this problem.

Another possible problem that has become solvable with the current in-

creased computer power is to try to reproduce the final state of a forming

planetary system: What happens to the planets in the disk dispersal phase?

Especially for this aspect also multiple planet systems need to be considered.

Since the disk dispersal needs to last for many thousands of orbits, this problem

is computationally challenging. But at some point one needs to solve this prob-

lem to be able to say something about the space of possible planetary systems

and the possible scenarios to form them.
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