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Zusammenfassung

Trotz des großen Fortschritts in der Medizin, der zu der Entdeckung von sicheren und
wirkungsvollen Medikamenten und Impfstoffen führte, sind ansteckende Krankheiten noch eine
Hauptursache für Tod, Behinderung, soziale und ökonomische Belastung für Millionen von
Menschen auf der Welt. Jährlich werden ca. 20% aller Todesfälle weltweit durch ansteck-
ende Krankheiten verursacht. Folglich müssen die Auswirkungen dieser Infektionen auf die
Demographie sowie der (minimale) Aufwand, der notwendig sind, um die jeweilige Infektio-
nen auszurotten, untersucht werden. Da es nicht möglich ist, randomisierte Studien mit ganzen
Bevölkerungen durchzuführen, benötigen wir mathematische Modelle, um unterschiedliche Kon-
trollstrategien zu evaluieren.

In dieser Arbeit konzentrieren wir uns auf Prävalenzmodelle (d.h. Modelle, in denen wir
die Gesamtbevölkerung in Klassen unterteilen, wie etwa suzeptibel, latent, ansteckend und
geheilt). Wir untersuchen zwei Hauptprobleme. Das erste ist Auswirkungen einer potenziell
tödlichen Infektion auf die Demographie. Das zweite Problem bezieht sich auf Situationen,
die durch Modelle mit rückwärtsgerichteter Bifurkation beschrieben werden. Hier interessierte
die Reduktion der Kntaktrate, die mindestens notwendig ist, um die Infektion auszurotten. In
den ersten zwei Kapiteln verallgemeinern wir das klassische epidemiologische SIR-Modell von
Daniel Bernoulli für eine potentiell tödliche Infektion im Falle einer wachsenden Bevölkerung
mit Altersstruktur. Die Gesamtbevölkerung wird in drei Klassen unterteilt, nämlich suzepti-
bel, ansteckend und immun. Anstatt der Standardannahme der differentiellen Sterblichkeit zu
folgen, beschreiben wir die epidemiologischen und demographischen Prozesse hinsichtlich der
Letalität (dem Anteil von angesteckten Individuen, die aufgrund der Infektion sterben). Der
Fall altersunabhängiger Modellparameter wird in Kapitel 1 betrachtet, während die Analyse
für den allgemeinen Fall in Kapitel 2 durchgeführt wird.

Ein zentrales Konzept in der mathematischen Epidemiologie ist die Basisreproduktionszahl,
die durchschnittliche Zahl von Sekundärfällen, die durch einen infizierten Fall während der
ansteckenden Periode in einer völlig suszeptiblen Bevölkerung erzeugt wird. Normalerweise,
wenn R0 > 1, dann persistiert die Infektion in einem endemischen Gleichgewicht. Wenn R0 ≤ 1,
dann verschwindet die Infektion. Bei vielen Klassischen Modellen liegt dieser Normalfall vor.
In Modellen mit unterschiedlichen Bewölkerungsgruppen (geimft/ nicht geimpft) tritt oft eine
rueckwärtsgerichtete Bifurkation auf. Dann persistiert die Infektion auch bei werten R0 < 1
bis hin zu einem minimalen positiven Wert für die Kontaktrate. Folglich ist die grösse R0 als
ein Kriterium für die Ausrottung nicht mehr sinnvoll und wir benötigen ein anderes Kriterium
für die Ausrottung einer Infektion. In den Kapiteln 3, 4 und 5 untersuchen wir, nach unserer
Kenntnis erstmalig, eine Methode zur Bestimmung der Extinktionsbedingungen für Modelle
mit rückwärtsgerichteter Bifurkation.

In der vorliegenden Dissertation kommen wir zu den folgenden Schlussfolgerungen:
In dem Modell mit Letalität wird die Basisreproduktionszahl nicht durch die Letalität

der Infektion beeinflusst, während in den Modellen mit differentieller Sterblichkeit sie umso
kleiner wird, je mehr die differentille Sterblichkeit durch die Infektion zunimmt. Die Rate des
Bevölkerungswachstums sinkt monoton mit der Zunahme der Letalität, während sie sich im
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Falle des Modelles mit differentieller Sterblichkeit wieder erhöhen kann, nachdem sie ein Mini-
mum erreicht hat. Die einfache Formel, wonach die Basisreproduktionszahl R0 dem Kehrwert
der endemischen Prävalenz von Suszeptiblen x̄ entspricht, ist im Allgemeinen nicht mehr zutr-
effend. Im Grenzfall einer hohen Kontaktrate und einer kurzen Infektionsdauer existiert immer
eine Letalität, bei der die betreffende Population stationär ist. Wenn jedoch die ansteckende
Periode eine positive Dauer hat, existiert eine kritische Letalität, die notwendig ist, um das Pop-
ulationswachstum zu stoppen, nur dann wenn R0 ≥ 1 + b

γ
R0(µ), wobei b die Geburtenrate, γ

die Heilungsrate und R0(µ) die Basisreproduktionszahl im Falle einer stationären Bevölkerung
ist. Das vorhandene Modell erlaubt es, die demographischen Auswirkungen einer potentiell
tödlichen Infektion in Bezug auf die Verringerung der Lebenserwartung und der verringerten
Wachstumsrate zu bestimmen. Die Analyse zeigt, dass die historischen Pocken-Epidemien das
Bevölkerungswachstum kaum reduziert haben. Das Modell ist auf jede potentiell tödliche In-
fektion (z.B. Masern) in wachsenden Populationen anwendbar, bei welchen die Altersverteilung
ungefähr gleich der stationären Verteilung ist.
In Modellen mit rückwärtsgerichteter Bifurkation ist die bisherige Basisreproduktionszahl nicht
mehr sinnvoll. Das Verhältnis zwischen der tatsächlichen Kontaktrate und der kritischen
Kontaktrate, bei der positive stationäre Zustände auftreten, kann als Reproduktionszahl in-
terpretiert werden. In Modellen, in denen die Immunität wieder verloren geht, besteht die
Möglichkeit, dass mehrfache stationäre Zustände auftreten. In dem verallgemeinerten SIS-
Modell mit Impfung finden wir: je früher wir einen teilweise schützenden Impfstoff geben,
desto geringer wird der Aufwand, die Infektion auszurotten.
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Preface

Despite the great progress in medicine which lead to the discovery of safe and effective drugs
and vaccines, infectious diseases are still a major cause of death, disability and social and eco-
nomic burden for millions of people around the world. Every year, about 20% of all deaths
worldwide are caused by infectious diseases. As examples we mention malaria, HIV/AIDS,
measles, tuberculosis, and influenza. Therefore, we need to know about the impact of these
infections on demography and about the minimum efforts required to eliminate them. The
World Health Organization pays much attention to control such infections. However, to control
an infection we need to know the factors that affect the dynamics of the infection and how
much effort is necessary to achieve a given reduction in incidence. Since it is not possible to
perform randomized trials with whole populations, we need mathematical models to explore
different control strategies.

Modeling infectious diseases has a long history in mathematical biology. However, recently
it has had an increasing influence on the theory and practice of disease management and control
[49]. Readers who are interested in the history of the mathematical theory of infectious diseases
are referred to the book by Bailey [6].
The models differ from one infection to another. For instance, if we are speaking about
macroparasitic infections we have to consider density models in which we take into account
the number of parasites existing within the host. However, if we speak about microparasitic
infections we consider prevalence models. For the latter, the total population is subdivided into
categories (according to their epidemiological states) like susceptible, latent, infectious, recov-
ered, etc. In this work we are interested in modeling viral and bacterial infections. Therefore,
we consider prevalence models.

In this thesis we address two main problems. We study the impact of an immunizing poten-
tially lethal infection on the demography and the effort required to get rid of the infection. In
chapter 1 we generalize Daniel Bernoulli’s epidemiological model for a potentially fatal infection
to a growing population. It is an SIR epidemic model in which we consider the case fatality
of the infection. We consider the model from two points of view: the differential mortality
approach and the case fatality approach. To the knowledge of the author, the extensive studies
of mathematical epidemiology focus on the differential mortality approach. By case fatality we
mean the proportion of infected individuals who die due to the infection. We consider the case
where model parameters are age-independent. However, in chapter 2 we consider the general
case when model parameters are age-dependent and we apply our mathematical analysis to real
data collected from The Hague and representing the case of smallpox spread in the eighteenth
century. We come to the conclusion that smallpox was nowhere close to eliminate or even to
stop the growth of the host population. Chapters 3, 4, and 5 are devoted to estimating the effort
required to eradicate the infections in models with multiple stationary states. We introduce
three different models and we found out for the first time an estimate of the minimum effort
required to eradicate the infections represented by such models. The method we introduce to
estimate this minimum effort is relevant to the whole class of models with backward bifurcation.
The important thing is that if the immunity wanes, there is a possibility for multiple stationary
states to occur.
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The thesis is written in a way such that the reader who likes to start reading at the begin-
ning of any chapter does not need to come back to the preceding one(s). Therefore, there will
be some repetition at the beginning of some chapters. Every chapter has an introduction and
a discussion. The thesis is concluded by a summary and the references.
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1 Effects of case fatality on demography

The classical epidemiological SIR model of Daniel Bernoulli for a potentially fatal infection
is generalized for a growing population. The important feature is case fatality as opposed to
differential mortality. The exponent of growth for the endemic state is determined and discussed
in terms of case fatality, as well as the stable distribution with respect to age and susceptibility
status. The question is discussed whether a growing population can be driven to a stationary
state or even to extinction. Explicit expressions for survival functions and the distribution of
infection states within an age cohort are given, and formulae for the life expectancy within an
infected population. The formulae are discussed in terms of the model parameters as well as in
terms of basic reproduction numbers. Particular attention is paid to the limiting case of high
contact rate and quick recovery.

1.1 Introduction

We consider models for the spread of an infectious disease in a homogeneous population with
age structure, here in the case of constant (with respect to age) parameters. We assume a
homogeneous infection law (as opposed to mass action kinetics) and hence our models are
homogeneous dynamical systems. Rather than following the by now standard approach of
differential mortality ([9], [10], [34], [57] and [60]), we describe the epidemic and demographic
phenomena in terms of case fatality. The parameter of case fatality gives the proportion of
fatal (lethal) cases upon exit from the infected compartment.

Differential mortality and case fatality models are mathematically equivalent in the sense
that there is a one-to-one correspondence between the two types of models. But the param-
eterization and the biological interpretation are different and hence the two types of models
describe different types of diseases.

In the differential mortality view the effective recovery rate increases with increasing differ-
ential mortality. If the mortality of infected individuals increases then the basic reproduction
number decreases since infected individuals are removed at a higher rate. In the case fatality
view the exit rate from the infected compartment is constant, the basic reproduction number
depends only on the exit rate and not on case fatality. The a posteriori differential mortality
is the product of the exit rate and case fatality.

Case fatality models seem particularly suited for diseases like smallpox (as in Bernoulli’s
work) where infectivity is restricted to a few days and death will usually occur after the highly
infectious period. Differential mortality models are suited for diseases with an infectious period
lasting for many years like AIDS. A reduction of differential mortality by modern antiviral
therapies may be associated with an increase of the reproduction number (Anderson et al.[3]).

In particular we are interested in the question whether a high case fatality or differential
mortality can drive an exponentially growing population to a stationary situation. This problem
is somewhat delicate since in the case of differential mortality very low and very high differential
mortalities may not lead to a considerable decrease of the rate of growth. On the contrary, the
rate of growth decreases monotonically with increasing case fatality.

Most research in modeling infectious diseases has been applied to stationary populations or
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to the fictitious situation where the number of births is constant in spite of differential mortality
(e.g. [1], [2], [4], [6], [48], [50], [59], [76]). May and Anderson [64] have studied an SIR epidemic
model in a homogeneously mixing growing population in case of a non-lethal infection where
the force of infection depends on age but not on time. Another study of epidemics in growing
populations has been performed by Thieme [73]. He considered a potentially fatal infectious
disease in a host population that would increase exponentially in the absence of the disease.
Other examples of studies on populations with varying size are in Busenberg and van den
Driessche [12], Diekmann and Kretzschmar [21], Martcheva and Castillo-Chavez [63], McLean
[65], McLean and Anderson ([66], [67]), and Derrick and van den Driessche [17].

Daniel Bernoulli (1700-1782) was the first to apply mathematics in epidemiology. In the
year 1760 he evaluated the potential effect of successful variolation against smallpox on life
expectancy. For more details about his life and the origin of this work and its impact we refer to
the paper by Dietz and Heesterbeek [22]. Bernoulli dealt with a static situation where the force
of infection is constant throughout time and age. Dietz and Heesterbeek [22] generalized his
approach by allowing both the force of infection and the case fatality (which is the proportion of
infected individuals who die as a result of the infection) to depend on age. They considered the
case of a stationary population taking into account an immunizing potentially lethal infection
with very short infectious period and quick recovery. Here we extend their work to the case
of a growing population with age structure (but constant parameters) and a potentially lethal
immunizing infection with positive length of the infectious period. The case of age-dependent
parameters is deferred to the next chapter.

The chapter is organized as follows. We first derive the general age-dependent case fatality
model and then specialize to the case of constant coefficients (section 1.2). In section 1.3 we
derive the corresponding system for proportions. In section 1.4 we present the differential mor-
tality model, in section 1.5 we define reproduction numbers, and in section 1.6 we exhibit the
parameter transformation which connects both models. In section 1.7 we investigate the demo-
graphic impact of differential mortality. In section 1.8 we discuss qualitative and quantitative
features of the exponential solutions of the case fatality model, and section 1.9 we investigate
the demographic impact of case fatality. We return to the age structure model in section 1.10
and compute age distributions, infected cohorts and life expectancy in 1.11.

1.2 The case fatality model

Consider a population structured by chronological age a which is subdivided into three classes:
susceptible X, infected Y , and recovered Z. Let N = X + Y + Z denote the total population.
The time variable is denoted by t. The model for disease transmission is based on the following
assumptions:

(1) The natural death rate (independent of the disease) is µ(a)
and the birth rate is b(a).

(2) The force of infection is λ(a, t).

2



(3) The susceptibility is s(a).

(4) The contact rate between susceptible and infected is κ.

(5) The exit rate from the infected state is γ.

(6) The case fatality is c(a): Upon exit a fraction c(a) will die due to the disease and the
remainder (1 − c(a)) will become immune.

With these assumptions we have the following age-structured epidemic model:

∂X(a, t)

∂t
+
∂X(a, t)

∂a
= −(µ(a) + λ(a, t))X(a, t),

∂Y (a, t)

∂t
+
∂Y (a, t)

∂a
= λ(a, t)X(a, t) − (γ + µ(a))Y (a, t),

∂Z(a, t)

∂t
+
∂Z(a, t)

∂a
= (1 − c(a))γY (a, t) − µ(a)Z(a, t), (1.1)

where the force of infection is

λ(a, t) =
κs(a)

∫∞
0
Y (a, t)da

N(t)
, (1.2)

and the total population size is

N(t) =

∫ ∞

0

(X(a, t) + Y (a, t) + Z(a, t))da.

The boundary condition (birth law) is

X(0, t) =

∫ ∞

0

b(a)(X(a, t) + Y (a, t) + Z(a, t))da,

Y (0, t) = 0, Z(0, t) = 0.

If all rates are constant then we can integrate over age, use the boundary conditions and obtain
a system of ordinary differential equations for the variables X̄(t) =

∫∞
0
X(a, t)da, Ȳ (t) =

∫∞
0
Y (a, t)da, Z̄(t) =

∫∞
0
Z(a, t)da. We can also introduce the transmission rate β = κs. We

denote these variables by x, y, z. Then we obtain the system

ẋ = bN − µx− β

N
xy

ẏ =
β

N
xy − µy − γy

ż = (1 − c)γy − µz, (1.3)

where N = x + y + z. This is a homogeneous dynamical system. The typical “stationary”
solution is not a stationary point but an exponential or “persistent” solution, i.e., a solution of
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the form (x, y, z)T eρt where ρ is the rate of growth (or decay) and (x, y, z)T is the stationary
distribution of types. The rates of growth or “nonlinear eigenvalues” ρ can be found from a
non-linear eigenvalue problem. We underline that these rates of growth do not say anything
about the stability of the exponential solution considered. Stability is determined by associated
linear eigenvalue problems, one for each persistent solution.

We shall see that (1.3) has a unique stable exponential solution with some rate of growth.
We are interested in the question how this rate depends on the parameters of the system, in
particular on case fatality.

The theory of finite-dimensional homogeneous systems has been worked out in detail in
Hadeler [39], its applications to SIR and SIRS models have been studied in Busenberg and
Hadeler [10]. Indeed, there is a close mathematical connection of our system (1.3) to the
system studied in Busenberg and Hadeler [10] which we can exploit while the interpretation of
the parameters is quite different.

1.3 Scaling

Homogeneous systems can be reduced to standard systems in various ways, e.g. by projection
to the triangle {(x, y, z) ≥ 0, x+ y + z = 1}, or to the triangle S = {(u, v) ≥ 0, u+ v ≤ 1} by
putting u = x/N , v = y/N which leads to

u̇ = b(1 − u) − (β − cγ)uv

v̇ = βuv − (b+ γ)v + cγv2. (1.4)

In this setting an exponential solution of system (1.3) corresponds to a stationary point of the
system (1.4). The system (1.4) is particularly suited for the stability discussion, see Busenberg
and Hadeler [10], but not for the present goal of discussing rates of growth.
The triangle S is positively invariant. The edge v = 0 is an invariant set. Along u = 0 we have
u̇ = b, and for w = 1 − u− v we find

ẇ = −(b− γv)w + γv(1 − c)(1 − w).

Hence along the edge w = 0 the vector field is pointing inward, except in the case c = 1 when
w = 0 is an invariant set.

1.4 Epidemics and demography

The following system has been proposed and studied in Busenberg and Hadeler [10]. Using the
notation of that paper (to make comparison easy):

ẋ = b1x+ b2y + b3z − µ1x− βxy/N + γz

ẏ = b4y − µ2y + βxy/N − αy

ż = αy − µ3z − γz (1.5)

N = x+ y + z.
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The parameters bi are birth rates, in particular b4 is the rate of vertical transmission, the
parameters µi are mortalities, α is the recovery rate, and γ is the rate of loss of immunity. For
the birth and death rates it has been assumed that the inequalities

b1 ≥ b3 ≥ b2 + b4, µ1 ≤ µ3 ≤ µ2

hold. These inequalities agree with the biological interpretation and, as it happens, also fit
nicely into the analytical results. Since µ2 ≥ µ1, the difference δ = µ2 − µ1 can be interpreted
as a differential mortality.

For this model it has been shown in Busenberg and Hadeler [10] that there are exactly two
situations characterized by the quantity

σ = (β + b4) − (b1 − µ1) − (µ2 + α). (1.6)

The meaning of σ is that of a spectral bound. It is the difference between the infection rates
and the washout rate and the exit rate from the infected compartment. It is an additive version
of the basic reproduction number

Rhomog
0 =

β + b4
(b1 − µ1) + (µ2 + α)

=
β + b4

b1 + δ + α
(1.7)

for an exponentially growing (or decaying) population. The term b1 − µ1 in the denominator
takes care of the washout effect caused by production of susceptible juveniles. The second
expression on the right of (1.7) shows that the denominator is positive even in the case of a
decaying population, b1 − µ1 < 0.
i) If σ ≤ 0 then there is a unique (up to positive factors) “uninfected” exponential solution with
rate ρ0 = b1 − µ1 with an eigenvector (1, 0, 0)T of susceptible individuals only. This solution is
globally exponentially stable.
ii) If σ > 0 then the uninfected solution is unstable. There is a unique (up to positive factors)
“infected” exponential solution with rate ρ1 ≤ ρ0. The eigenvector has all components positive.
This solution is exponentially globally stable in the set of positive solutions.

For further reference we provide the characteristic polynomial of the non-linear eigenvalue
problem for ρ1. This polynomial has degree two (and not three, as one might expect),

p(ρ) = (ρ+ µ2 + α− b4)[α(b̄1 − b̄3) + (ρ+ µ3 + γ)(b̄1 − b̄2))

−β[α(ρ− b̄3) + (ρ+ µ3 + γ)(ρ− b̄2)] (1.8)

where
b̄1 = b1 − µ1, b̄2 = b2 + b4 − µ2, b̄3 = b3 − µ3.

In order to compare case fatality to differential mortality we consider a simplified version of
(1.5),

b1 = b2 = b3 = b, b4 = 0,

µ1 = µ3 = µ, µ2 = µ+ δ,
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γ = 0.

Here δ ≥ 0 is the differential mortality. Hence the model reads

ẋ = bN − µx− βxy/N

ẏ = βxy/N − (α + µ+ δ)y

ż = αy − µz. (1.9)

1.5 Reproduction numbers

The spectral bound σ is the decisive quantity for the existence of an infected exponential
solution. One may wish to rephrase the conditions in terms of reproduction numbers instead.
The reproduction number for (1.9) is, see (1.7),

Rhomog
0 =

β

(b− µ) + α + µ+ δ
=

β

b+ α + δ
, (1.10)

and for the case fatality model this expression becomes

Rhomog
0 =

β

ρ0 + µ+ γ
=

β

(b− µ) + µ+ γ
=

β

b+ γ
. (1.11)

In the static case b = µ this expression becomes

R0(µ) =
β

µ+ γ
(1.12)

which we henceforth call the epidemic reproduction number in a static population. We define
the demographic reproduction number as

RD =
b

µ
. (1.13)

In the case fatality model (1.3) one can let β and γ tend to infinity such that β/γ = R∞
0 is

fixed without affecting the case fatality. In the differential mortality model, letting β and α
tend to infinity and keeping the ratio constant at R∞

0 will imply zero differential mortality.

1.6 Equivalence in parameter space

We observe that the systems (1.9) and (1.3) have essentially the same structure except for the
parameters which have different ranges and different biological interpretations. However, there
is a one-to-one correspondence

(c, γ) ↔ (δ, α)

[0, 1] × (0,∞) ↔
(

[0,∞) × [0,∞)
)

\ {(0, 0)} (1.14)
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Figure 1.1: Transformation from the (c, γ)-plane to the (δ, α)-plane and vice versa. The co-
ordinate axes δ = 0 and α = 0 in the (δ, α)-plane correspond to the lines c = 0 and c = 1
in the (c, γ)-plane, respectively. The vertical line δ = δ0 in the (δ, α)-plane corresponds to
the hyperbola γ = δ0

c
, denoted by δ = δ0 in the (c, γ)-plane. Finally, the line c = c0 in the

(c, γ)-plane corresponds to a straight line through the origin α = δ( 1
c0
− 1), denoted by c = c0

in the (δ, α)-plane.

between the parameters which is explicitly given by the equations

δ = cγ, α = (1 − c)γ, (1.15)

γ = α + δ, c = δ/(α+ δ). (1.16)

In geometric terms, the mapping from (c, γ) to (δ, α) can be understood as follows (see Fig.
1.1). The feasible set for (c, γ) is the strip [0, 1] × (0,∞). This strip is mapped onto the first
orthant [0,∞)× [0,∞) without the origin whereby the boundary c = 0 becomes the axis δ = 0
and c = 1 becomes α = 0. The boundary 0 ≤ c ≤ 1, γ = 0 is contracted to the single point
(0, 0). Hence we have the following observation.

Proposition 1.1. There is a one-to-one correspondence between case fatality and differential
mortality models.

In the case fatality setting the constant γ is the recovery rate from the infected compartment
and c is the case fatality while 1 − c is the proportion of recovering individuals who survive.
Thus, we have formally written the differential mortality δ = cγ as a product of exit rate and
case fatality, and we have written the recovery rate α = (1 − c)γ as a product of exit rate and
the complement 1− c of case fatality. Although this substitution seems a mere way of different
bookkeeping, it has far-reaching consequences in epidemiological terms.

Of course the interpretation of differential mortality and case fatality are different. With
respect to differential mortality one takes the view that during the infected phase some individ-
uals die because of the disease which would not have died due to natural causes. In case fatality
one takes the view that individuals exit from the infected compartment at a rate γ (which has
nothing to do with mortality) and at the moment of exiting it is decided whether the individual
dies or enters the recovered compartment. Hence δ is a rate and c is a probability.

7



The equivalence between the two models can be exploited insofar as the results of Busenberg
and Hadeler [10] carry over to the case fatality model. But the exceptional situation c = 1,
which would correspond to α = 0, must be treated separately.

1.7 Demographic effect of differential mortality

Now we consider the effect of differential mortality δ on the rate ρ1 of the stable infected solution
which we assume to exist for δ = 0. The polynomial for ρ1 is, see (1.8),

p(ρ) = (ρ+ µ+ δ + α)(ρ+ µ)δ

−β[α(ρ+ µ− b) + (ρ+ µ)(ρ+ µ− b+ δ)], (1.17)

and the parameter σ is now

σ(δ) = β − (b− µ) − (µ+ δ + α) = β − (b+ δ + α).

By assumption σ(0) > 0. Of course we expect that large mortalities δ drive the epidemic to
extinction.

Proposition 1.2. Suppose b − µ > 0 and β > b + α > µ + α. For δ = 0 there is an unstable
uninfected solution with positive rate ρ0 = b − µ > 0 and a stable infected solution with rate
ρ1 = ρ0. If δ is slightly increased then ρ1 decreases (simply because more infected individuals
die). However, if δ is further increased up to the value δmax = β − b− α > 0 then the infected
solution ceases to exist, i.e., it coalesces with the uninfected solution and again ρ1 = ρ0. Thus,
if δ increases from 0 to δmax then ρ1 decreases from ρ0 to lower values and then increases to
ρ0 (Figure 1.2).

Proof: For each value ρ the equation p(ρ) = 0, see (1.17), as an equation for δ, is a quadratic
equation, hence there are at most two roots δ. Hence ρ1 as a function of δ has a unique mini-
mum. 2

Proposition 1.3. In the endemic situation the force of infection λ can be expressed in terms
of ρ1 and the given parameters

λ =
βy

N
=
bβ − (µ+ ρ1)(ρ1 + µ+ γ)

ρ1 + µ+ γ
=

(ρ1 + µ)
(

β − (ρ1 + µ+ γ)
)

ρ1 + µ+ α
. (1.18)

Proof: In (1.9) put ẋ = ρx etc. and solve the linear system. Since the determinant vanishes by
assumption, there are many equivalent expressions. 2

We check whether ρ1(δ) = 0 can be achieved for some δ.
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Figure 1.2: The growth rate ρ1 as a function of the differential mortality δ with parameter
values: b = 0.025 per year, µ = 0.0125 per year, α = 365 per year, and κ = 3650 per year, for
several values of s (s = 0.15, s = 0.20, s = 0.40, s = 0.70, and s = 1.00), β = κs. For δ = 0
per year, we have ρ1 = ρ0 = b − µ. With increasing δ, the rate ρ1 decreases until reaching a
minimum and then it increases again till reaching ρ0 again when δ = δmax = β − α− b.

Proposition 1.4. Very small and very large values of differential mortality do not noticeably
reduce the rate of population growth. Zero growth, i.e., ρ1 = 0, can be achieved by an appropriate
choice of δ if and only if

R0(0) =
β

α + µ
> RD

(

1 +

√

1 − 1

RD

)2

' 4RD − 2, (1.19)

i.e., when the reproduction number in the absence of differential mortality is considerably higher
than the demographic reproduction number.

Proof: We put p(0) = 0 and find that δ must satisfy

δ2 + (µ+ α− β)δ + β(α + µ)(b/µ− 1) = 0. (1.20)

The necessary and sufficient condition for positive roots is

(β − α− µ)2 ≥ 4β(α+ µ)(
b

µ
− 1)

which is equivalent with (1.19).
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If (1.19) is satisfied then the minimal ρ1 is negative (or zero in the case of equality), there
are two values of δ (which coalesce in the case of equality), both in the interval (0, δmax), such
that ρ1 = 0. 2

The condition (1.19) can be easily interpreted in terms of R0. It says that reducing ρ1 to 0
is possible if R0(0) is sufficiently large for given RD.

1.8 Exponential solutions in the case fatality model

As shown in section 1.6, every case fatality model is equivalent to a differential mortality model
for an appropriate choice of the parameters. Since the relation between the two models is
non-trivial, it pays to reconsider the conditions for exponential solutions, even more so, as the
limiting case c = 1 is not covered by the results of Busenberg and Hadeler [10], and that limiting
case plays an important role in the present context.

The proportions of a normalized exponential solution of (1.3) with rate ρ satisfy

ρx = b− µx− βxy

ρy = βxy − µy − γy

ρz = (1 − c)γy − µz

1 = x+ y + z. (1.21)

Proposition 1.5. Suppose Rhomog
0 > 1 and 0 < c < 1. Then the following equations between

the proportions x, y, z and the rate ρ = ρ1 hold.

x =
1

β
(µ+ γ + ρ) (1.22)

y =
1

cγ
(b− µ− ρ) (1.23)

y =
b− (µ+ ρ)x

βx
(1.24)

(ρ+ µ)z = (1 − c)γy (1.25)

Proof: Add the first three equations and solve for y

ρ = b− µ− cγy. (1.26)

Divide the second equation by y and get (1.22). In (1.26) solve for y and get (1.23). In the first
equation solve for y and get (1.24). In the third equation solve for z. 2

Assume 0 < c < 1. Introduce the expressions (1.22), (1.23), (1.25) into the fourth equation
x+ y + z = 1, rearrange terms, and get a quadratic equation for the rate ρ,

p(ρ) = (ρ+ µ+ γ)(ρ+ µ)cγ

−β[(1 − c)γ(ρ+ µ− b) + (ρ+ µ)(ρ+ µ− b+ cγ)]. (1.27)
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The solutions are always real and are given explicitly as

ρ± = −µ +
1

2

(

βb

β − cγ
− γ

)

± 1

2

√

(

βb

β − cγ
− γ

)2

+ 4
βγb

β − cγ
(1 − c). (1.28)

Notice that the expression βb/(β − cγ) − γ may be positive or negative. From (1.22), (1.23),
(1.25) we see that any feasible exponential solution with z > 0 must satisfy

−µ < ρ ≤ b− µ. (1.29)

An explicit check tells that it is always the larger solution ρ+ which satisfies these inequalities.
Henceforth we call this solution ρ1.

Now consider the limiting case c = 0. Then ρ1 = ρ+ = b − µ is the rate of the infected
solution, the proportions x, y, z can be obtained from (1.22), (1.24), (1.25) as

x =
b+ γ

β
=

1

R0

, y =
b

b+ γ

(

1 − 1

R0

)

, z =
γ

b
y.

1.8.1 The limiting case c = 1

The case c = 1 is somewhat delicate. The formulas (1.22) through (1.25) are still valid, the
equation (1.25) can be satisfied in two ways, with ρ = −µ and also with z = 0, and both choices
lead to feasible solutions. The formulas for the rates (1.28) simplify to

ρ+ = −µ + max(
βb

β − γ
− γ, 0)

ρ− = −µ + min(
βb

β − γ
− γ, 0). (1.30)

By simple algebra, applied to the system (1.21) with c = 1, we see that there are two infected
exponential solutions (which need not be feasible, though) (xi, yi, zi) exp(νit), i = 1, 2., where

(x1, y1, z1) =

(

b

β − γ
,
β − γ − b

β − γ
, 0

)

, ν1 =
βb

β − γ
− γ − µ, (1.31)

(x2, y2, z2) =

(

γ

β
,
b

γ
,
βγ − βb− γ2

βγ

)

, ν2 = −µ. (1.32)

The corresponding stationary points of the scaled system (1.4) with c = 1 are (ui, vi) = (xi, yi),
i = 1, 2. The Jacobian of (1.4), with c = 1, at an arbitrary point is

J =

(

−b− (β − γ)v −(β − γ)u
βv βu− (b+ γ) − 2γv

)

.

Hence the Jacobian J1 at (u1, v1) is

J1 =

(−(β − γ) −b
β β−γ−b

β−γ β b
β−γ − (b+ γ) + 2γ β−γ−b

β−γ

)

.
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The determinant is

det J1 = (β − γ − b)

(

βb

β − γ
− γ

)

(1.33)

We have β − γ − µ > 0 and

βb

β − γ
− γ < 0 ⇐⇒ b < γ(1 − γ

β
). (1.34)

There are two scenarios.

Scenario 1: (b small)

b < γ(1 − γ

β
) < β(1 − γ

β
).

Then βb/(β − γ) − γ < 0 and hence

ρ+ = −µ = ν2. (1.35)

The point (u2, v2) is feasible, i.e., it is in the interior of the triangle S. It is a local attractor,
and it attracts all solutions with v(0) > 0, u(0) + v(0) < 1. The corresponding exponential
solution (x2, y2, z2) exp{−µt} is feasible and it attracts all solutions with y(0) > 0, z(0) > 0.

The point (u1, v1) is sitting on the edge u+ v = 1. It is a saddle point. Its stable manifold
is the edge u+ v = 1. The exponential solution to (u1, v1) has the rate ρ− = ρ1 < −µ.

All populations which start with some immune individuals initially (no matter where these
come from) approach the interior equilibrium. On the other hand, a population with no initial
immune, z(0) = 0, arrives (u1, v1) and follows the exponential solution with rate ρ−.

Scenario 2: (b large)

γ(1 − γ

β
) < b < β(1 − γ

β
).

Then βb/(β − γ) − γ < 0 and hence

ρ+ =
βb

β − γ
− γ − µ = ν1 > −µ. (1.36)

Again the point (u1, v1) is sitting on the edge u+v = 1 and it attracts the unstable manifold of
(1, 0). Furthermore it is a local attractor which attracts all trajectories in S except the point
(1, 0) itself. The point (u2, v2) is a saddle point which is not feasible. In terms of exponential
solutions there is exactly one exponential solution with exponent −µ and proportions (x1, y1, 0).

If we let b run from small to large values (still less than β − γ) then we move from scenario
1 to scenario 2. The point (u2, v2) moves through the edge u+ v = 1 at (u1, v1) and there is a
transcritical bifurcation with exchange of stability.
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1.8.2 The general case c ≤ 1

Proposition 1.6. In the case fatality model there is always the uninfected exponential solution
with rate ρ0 = b− µ. If the basic reproduction number Rhomog

0 = β/(b+ γ) > 1 then there is an
uninfected exponential solution with rate ρ1 ∈ [−µ, ρ0] which is given by ρ1 = ρ+ in (1.28) and
in the limiting case c = 1 also by (1.30). If c = 1 and ρ1 > −µ then also ρ− corresponds to a
feasible uninfected solution.

Finally we discuss the role of the second uninfected exponential solution which appears for
c = 1. To understand the dynamic behaviour we return to the system (1.4) for Rhomog

0 > 1 and
c ∈ [0, 1]. There is always the uninfected stationary point u = 1, v = 0. If Rhomog

0 > 1 then
(1, 0) is unstable and there is the infected stationary state where u, v are given by (1.22). This
point is stable. There is another stationary point corresponding to the rate ρ− which for c < 1
lies in the (u, v)-plane outside the triangle S. This point is a saddle point with an unstable
manifold entering the triangle through the edge u + v = 1. For c = 1 and ρ1 > −µ this point
moves onto the boundary of the triangle, (1 − v, v) with v = (β − b − γ)/(β − γ). Hence in
this case we have three stationary points, an attractor and two saddle points. The unstable
manifold of the saddle point (1, 0) will leave (1, 0) in the direction of the other saddle point,
and, after having approached that saddle point, it follows close to its unstable manifold towards
the attractor. The important thing is that, while the second saddle point is not feasible for
c < 1, the behaviour will be much the same if c is close to 1.

1.9 Demographic effect of case fatality

We ask whether for sufficiently large case fatality c the population can be driven to extinction,
i.e., whether the rate ρ1(c) of the infected solution can become negative.

We observe that ρ1(c) is a decreasing function of c. The explicit expression (1.28) for ρ1(c)
may be defined for c > 1 and give negative values for ρ1(c), but c is restricted to the interval
[0, 1] and hence ρ1(c) = 0 may not be achieved. The exact conditions are given in the next
proposition.

Proposition 1.7. There are three cases:
i) If βb ≤ (β − γ)γ, then ρ1(1) = −µ, ρ1(1) < −µ, and ρ1(c

?) = 0 where

c? =
1

γ

β(b− µ)(µ+ γ)

βb− µ(µ+ γ)
=
R0(0)(RD − 1)

RDR0(µ) − 1
< 1. (1.37)

ii) If (β − γ)γ ≤ βb < (β − γ)(γ + µ), then

ρ1(1) =
βb

β − γ
− γ − µ > −µ, (1.38)

ρ−(1) = −µ, and ρ1(c
?) = 0 where c? is given by (1.37).

iii) If (β − γ)(γ + µ) < βb, then ρ1(1) is given by (1.38), ρ−(1) = −µ and there is no c ∈ [0, 1]
such that ρ1(c) = 0.
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See figure 1.3 to understand more.

Proof: Use Proposition 1.6 and compute ρ1(1). 2

The critical condition βb ≤ (β − γ)(γ + µ) can be written as

1 +
b

γ
R0(µ) ≤ R0. (1.39)

Proposition 1.7 tells that there are rather different scenarios. These can be most easily explained
in the case of high infectivity β and high case fatality c.

In scenario i) we have b < γ, the exit rate is larger than the renewal rate of the population.
Then ρ1(1) = −µ and of course c? < 1. This scenario would apply to human populations
and fatal diseases. At the onset of the epidemic most individuals get infected, the population
decays with the rate b − µ − γ. Although the mean duration in the infectious state is small,
disease-related mortality compensates any population growth. After this transition period there
are essentially no births and the remaining susceptible decay with the natural mortality µ. In
this case unconditional asymptotic analysis is somewhat misleading. The asymptotic rate −µ
describes only the aftermath of the epidemic event. The phase plane analysis exhibiting a
saddle-saddle connection shows that the main course of the epidemic event is characterized by
the rate b− µ− γ.

In scenario ii) γ < b < γ + µ, we have ρ1(1) = b− µ− γ > −µ and c? < 1. If the birth rate
is high, the population shows all the time the epidemic rate b− µ− γ but this rate is negative
due to high case fatality. This scenario would apply to a pest, i.e. an unwanted species that
one tries to control by a fatal or nearly fatal disease.

In scenario iii) b > µ+ γ. The birth rate is so high that c? does not exist (formally c? > 1),
the population cannot be controlled by the disease, but its growth is slowed down to b−µ− γ.

In the limit of high infectivity and short infectious period, (1.39) tells that ρ1 = 0 can be
always achieved.

Proposition 1.8. In the limiting case of high infectivity and short infectious period the critical
case fatality is

c? =
(β/γ)(b− µ)

(β/γ)b− µ
=
R0(0)(RD − 1)

RDR0(0) − 1
=

1 − 1
RD

1 − 1
R0RD

< 1. (1.40)

Proof: In this case the inequalities c? < 1 and R0 > 1 are equivalent. 2

We discuss the expression (1.40). If R0 < 1, there is no infection and in consequence, c? is
not defined. If R0 = 1, c? = 1 irrespective of the value of RD. For fixed RD, c? decreases in R0

very quickly and reaches an equilibrium. With the increase of the demographic reproduction
number RD, the stationary level of the critical case fatality as a function of R0 gets higher.
This is shown in Figure 1.4.
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Figure 1.3: The growth rate ρ1 as a function of the case fatality c with parameter values:
µ = 0.0125 per year, γ = 365 per year, κ = 3650 per year, and b = 0.025 per year and for
several values of s as shown in the graph. Here we set β = κs where κ is the contact rate and
s is the susceptibility. For c = 0 we have ρ1 = ρ0 = b − µ. With increasing c, ρ1 decreases
until reaching zero for c = c?, the critical case fatality which is well defined if and only if
bβ > (β−γ)(µ+γ). For large susceptibility, s = 1, the dependence is almost linear, for smaller
s it becomes markedly non-linear (see the left part of the figure which is true for 0 ≤ c < 1.
For c = 1, we produce the right part in which we draw ρ = −(µ+ γ) + βb

β−γ as a function of the
basic reproduction number for the same µ and γ values but for different values of b as shown
on the figure. In the case 1 ≤ R0 <

1
(1+b/γ)(1−b/(µ+γ))

, the growth rate can not be driven to

zero. This last condition can be written as Ip
L0

RD

(1− 1

R∞

0

)
≤ 1 where Ip = 1

γ+µ
is the length of the

infectious period, L0 = 1
µ

is the life expectancy at birth in the absence of infection, RD = b
µ

is the demographic reproduction number, and R∞
0 = β

γ
is the basic reproduction number for

a stationary population with ignored mortality. However, If 1 ≤ R0 <
1

1−(b/γ)2
the feasible

solution is ρ+. If R0 = 1
1−(b/γ)2

, both solutions ρ+ and ρ− coincide. In the case R0 >
1

1−(b/γ)2
,

ρ− leads to the feasible solution, whereas ρ+ does not. This means that the growth rate drawn
in the right part is equal to ρ− if R0 ≥ 1

1−(b/γ)2
, and equals ρ+ if 1 ≤ R0 ≤ 1

1−(b/γ)2
.

Proposition 1.9. In terms of basic reproduction numbers the rate of the infected solution is
given explicitly by

ρ1 = −µ +
(γ

2

)





√

(

1 − RD

(γ/µ)(1 − c/R0)

)2

+
4RD(1 − c)

(γ/µ)(1 − c/R0)
−
(

1 − RD

(γ/µ)(1 − c/R0)

)





(1.41)
whereby R0 = R0(0) = β/γ.

Proof: Explicit computation from (1.27). 2

Of special interest is the case of high infectivity and short infectious period where β and γ
are large.
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Proposition 1.10. Let the case fatality c be fixed. Consider the limiting case of high infectivity
and short infectious period, with β/γ = R0 and large γ. Then the growth rate ρ1 is given by

ρ1 = b
1 − c

1 − c
R0

− µ+ o(
µ

γ
). (1.42)

Proof: In (1.41) use
√

1 + 1/γ = 1+ 1
2γ

+o(1/γ) to expand the square root expressions, omitting

1/γ2 terms, then cancel γ and collect terms. 2

Proposition 1.11. The force of infection λ can be expressed in terms of the rate of growth as

λ = (ρ1 + µ)
β − (ρ1 + µ+ γ)

ρ1 + µ+ γ − cγ
. (1.43)

In the limit of high infectivity and fast recovery, β → ∞, γ → ∞, β/γ = R0, this expression
becomes

λ = b
R0 − 1

1 − c
R0

. (1.44)

Proof: (1.43) follows from (1.18) using (1.16), and then (1.44) follows immediately using (1.42)
and the definition of R0. 2

Hence in this limiting case, the force of infection can be expressed in terms of the original
parameters, independently of ρ1. If the case fatality c runs from 0 to 1 then the force of infection
increases from b(R0 − 1) to bR0.

Figure 1.4 shows the critical case fatality as a function of the basic reproduction number
R0 for several values of the demographic reproduction number RD, in the limiting case of high
infectivity and quick recovery. We notice that when R0 is small, the critical case fatality is
large and when R0 is large, the critical case fatality is small. If we let the basic reproduction
number tend to infinity, the critical case fatality tends to 1 − 1/RD. We notice also that c?

increases as a function of RD.

Proposition 1.12. For small c the following expansion holds,

ρ1 = ρ0 −
b

R0
(Rhomog

0 − 1) + o(c). (1.45)

Proof: By expansion of the square root and the denominators in (1.28). 2

16



0 1 5 10 15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
0

c*

R
D

 = 1.5

R
D

 = 2.0

R
D

 = 2.5

R
D

 = 3.0

Figure 1.4: The limiting case of high infectivity and short infectious period: The critical
case fatality c? as a function of the basic reproduction number R0 for several values of the
demographic reproduction number RD.

1.10 Age distributions

We now derive the stationary age distribution of the infected exponential solution. Suppose
that the age distributions can be written as the product of separated independent functions.
i.e. let: X(a, t) = U(a)N(t), Y (a, t) = V (a)N(t), Z(a, t) = W (a)N(t) where N(t) = N0e

ρt.
Hence we have to solve the equations

dU(a)

da
= −(ρ+ µ+ λ)U(a) (1.46)

dV (a)

da
= −(ρ+ µ+ γ)V (a) + λU(a) (1.47)

dW (a)

da
= −(ρ+ µ)W (a) + (1 − c)γV (a) (1.48)

where λ is given by (1.18) and U(0) = 1, V (0) = W (0) = 0.

Proposition 1.13. The solution of the system of differential equations can be given as

U(a) = e−(ρ+µ+λ)a

V (a) =
λ

γ − λ

(

e−(ρ+µ+λ)a − e−(ρ+µ+γ)a

)

W (a) =
1 − c

γ − λ
e−(ρ+µ)a

(

γ
(

1 − e−λa
)

− λ
(

1 − e−γa
)

)

(1.49)
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where λ is given by (1.18).

Proof: The proof is straightforward by successively integrating the equations for U , V and
finally for W . 2

1.11 Infected cohorts and life expectancy

The survival function for an uninfected population is

p0(a) = N(a)|λ=0 = e−µa. (1.50)

Now we are interested in survival in a population which follows the infected exponential solution.
Let u(a), v(a), w(a) denote the probability that an individual survives age a and is susceptible,
infected, recovered, respectively,

u(a) = U(a) |ρ=0,U(0)=1= e−(µ+λ)a

v(a) = V (a)|ρ=0,U(0)=1 =
λ

γ − λ

(

e−(µ+λ)a − e−(µ+γ)a

)

w(a) = W (a)|ρ=0,U(0)=1 =
1 − c

γ − λ
e−µa

(

γ
(

1 − e−λa
)

− λ
(

1 − e−γa
)

)

. (1.51)

Then the survival function in the presence of infection is:

l(a) = u(a) + v(a) + w(a). (1.52)

By adding the expressions on the right hand side of (1.51) and simplifying we find the following
formula.

Proposition 1.14. The survival function in the presence of infection l(a) can be written as
the product of two factors, one of them is the survival function in the absence of infection:

l(a) = l0(a)

[

1 − c+
c

γ − λ

(

γe−λa − λe−γa
)

]

. (1.53)

Of particular interest are the proportions of susceptible, infected and recovered in a cohort
at a given age a, i.e., the numbers ξ(a) = u(a)/l(a), η(a) = v(a)/l(a), ζ(a) = w(a)/l(a).

Proposition 1.15. Let λ be the force of infection as given in Proposition 1.11. The proportion
of infected in a cohort of age a is given by

η(a) =
λ(e−λa − e−γa)

(1 − c)(γ − λ) + c(γe−λa − λe−γa)
. (1.54)

The life expectancy at birth in the absence of infection is

L0 =

∫ ∞

0

l0(a)da =

∫ ∞

0

e−µada =
1

µ
. (1.55)
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Proposition 1.16. The life expectancy at birth in the presence of infection is

L =
1

µ

(

1 − cλγ

(µ+ γ)(µ+ λ)

)

. (1.56)

In the limiting case of high infectivity and short infectious period

L =
1

µ

(

1 − cλ

µ+ λ

)

=
1

µ

(

1 − cRD(R0 − 1)

RD(R0 − 1) + 1 − c
R0

)

. (1.57)

Proof:

L =

∫ ∞

0

l(a)da

=

∫ ∞

0

e−µa
[

1 − c+
c

γ − λ

(

γe−λa − λe−γa
)

]

da

=
1 − c

µ
+

c

γ − λ

(

γ

µ+ λ
− λ

µ+ γ

)

which is (1.56) after some algebra. Then take γ → ∞ and use (1.44) for λ. 2

It is clear that, in the presence of infection, the life expectancy L decreases with increasing
case fatality c. The following formula is not surprising in demographic terms but indicates the
consistency of the model.

Proposition 1.17. Suppose the critical case fatality c? (at which the population becomes sta-
tionary) satisfies c? < 1. Then the life expectancy at zero population growth is L = 1/b.

Proof: Direct substitution of c = c? from (1.43) in (1.57) and simplification gives the result. 2

Proposition 1.18. Assume Rhomog
0 > 1 and the infected exponential solution. Then the pro-

portion of susceptible x̄ satisfies

x̄ =
1

Rhomog
0

D0

D1

(1.58)

where Di = 1/(ρi + µ+ γ), i = 0, 1.

Proof: Follows from (1.22). 2

This formula generalizes the standard formula xR0 = 1 for the stationary case to exponen-
tially growing or decaying populations.
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Proposition 1.19. Suppose the critical case fatality c? (at which the population becomes sta-
tionary) satisfies c? < 1. Then the gain in life expectancy is given by

L0

L
=
x̄(R0 − c?)

R0x̄− c?
. (1.59)

In the limit of large β and γ this expression becomes

L0

L
=

1 − c?x̄

1 − c?
. (1.60)

The importance of this formula is that it contains parameters which can be estimated from real
data.

Proof: With c = c? and ρ1 = 0 we have from (1.56)

L = L0(1 −
c?γλ

(µ+ γ)(µ+ λ
),

from (1.43)

λ = µ
β − (µ+ γ)

µ+ γ − c?γ

and from (1.3), second equation, for the exponential solution, x̄ = (µ+ γ)/β, and hence

L = L0

(

1 −
c?γµ β−(µ+γ)

µ+γ−c?γ

(µ+ γ)(µ+ µ β−(µ+γ)
µ+γ−c?γ )

)

and after simplification

L = L0
βx̄− c?γ

x̄(β − c?γ)
.

In the limit of large β, γ we have approximately x̄R0 = 1. 2

1.12 Summary

We introduced an epidemiological model for a potentially lethal immunizing infection in a grow-
ing population. We treated the problem of infection induced mortality from two different points
of view, the differential mortality and the case fatality approach.
The basic reproduction number in the case fatality model is R0 = β/(γ + b) which is con-
stant with respect to the case fatality, whereas in the differential mortality it is given by
R0 = β/(α+ δ+ b). The latter decreases with the increase of the differential mortality. There-
fore, the basic reproduction number R0 remains constant, with respect to the case fatality, in
the case fatality model while it is affected by the differential mortality of the infection in the
differential mortality model.
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In the differential mortality model, the growth rate of the population decreases, with respect
to the differential mortality, till reaching its minimum and then it increases again to reach its
maximum when δ = δmax = β − α − b. However, in the case fatality model the situation is
different. If c ∈ [0, 1), then the growth rate decreases monotonically from its maximum at
c = 0.
In the limiting case of high infectivity and short infectious period, formula c? = 1−(1/RD)

1−(1/R0RD)
< 1

says that the critical case fatality c? required to drive the host population to its demograph-
ically stationary state exists for all R0 ≥ 1. If R0 = 1, then c? = 1 irrespective of the values
of other model parameters. However, for fixed demographic reproduction number, RD, the
critical c? decreases quickly to reach an equilibrium with the increase of the basic reproduction
number R0. In the normal situation of finite contact and removal rates, the situation is a bit
different. This situation is discussed in the context of proposition 1.7. The critical case fatality
c? exists under a certain constraint. If R0 ≥ 1 + b

γ
R0(µ), then c? ∈ [0, 1] exists and is given by

c? = R0(0)(RD−1)
RDR0(µ)−1

< 1 where R0(µ) = β/(γ + µ) and R0(0) = β/γ.

The formula x̄ = (1/Rhomog
0 )(D0/D1) says that the basic reproduction number R0 is no longer

being the inverse of the proportion of susceptible in the endemic equilibrium x̄. The product
R0x̄ equals the ratio between two times D0 = 1/(ρ0+µ+γ) = 1/(b+γ) and D1 = 1/(ρ1+µ+γ).
These two times we interpret as the discounted duration of the infectious period for a growing
population with growth rate ρi, where i = 0, 1.
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2 An immunizing potentially lethal infection in a growing population with age
structure

2.1 Introduction

Epidemics in age-structured populations have been studied mathematically by many authors
(e.g. [7], [8], [11], [25], [27], [30], and [47]), also including vertical transmission of infections
(e.g. [26], [28], [29], [31], [32], [33], and [52]). For such models the analytic theory, i.e., existence
and uniqueness of solutions, existence of stationary states and their stability, have been studied
(e.g. [51], [77]). The main interest has been to determine the conditions for an outbreak or
for the existence of an endemic equilibrium in a demographically stable population, (e.g., [13],
[15], [16], and [58]). On the other hand, the impact of infections on population has usually not
been the goal of mathematical investigations. Here we are mainly interested in the interrelation
between population growth and endemic disease prevalence. We consider a homogeneous model
for an age-structured population which allows exponentially growing populations. The infection
is assumed to be potentially fatal. We assume that recovered individuals acquire immunity for
the rest of their life. The growth rate, denoted by ρ, represents the rate at which the population
grows (if ρ > 0), decays (if ρ < 0), or stays stationary (if ρ = 0). If there is no infection, then
the growth rate ρ has its largest possible value which we call the Malthusian parameter ρ0. In
the case where the infection is potentially fatal (positive case fatality), the growth rate stays
below ρ0 and decreases with increasing case fatality. It can well be that the infection drives
the growth rate ρ to zero or negative values. In the latter case the host population will go to
extinction.

The traditional way to consider a fatal infection is to assume that infection victims die
during the infectious periods. This concept is known as the differential mortality approach. It
makes sense for infections with long infectious period. The differential mortality approach has
been considered in age-structured epidemiological models (e.g. [42], [43], [70], [71]). In the case
fatality approach, however, we assume that all infected individuals pass the infectious period
and the victims die immediately after that period. By definition, case fatality is the proportion
of infected individuals who die due to the infection.

An important and widely used concept in the theory of epidemics is the basic reproduction
number, denoted by R0. In words, it is the average number of secondary cases produced
by a typical infected case, during its entire infectious period, when it is introduced into a
totally susceptible population. In simple models, a way to evaluate R0 is to find the inverse
of the proportion of susceptible individuals in the endemic equilibrium. However, in more
complicated models such a simple relation does not hold. We will show that, for a growing
population with age structure, this inverse has to be multiplied by some factor depending on
average susceptibility and average discounted duration of the infectious period.

We remark that all models studied here are so-called separable models, i.e., it is assumed
that the transmission rate is a product of an individual susceptibility of a susceptible individual
and an infectivity which is a functional of the infected part of the population. The separability
assumption is well established in epidemic modeling. In fact, there are few data that would
justify more general transmission laws.
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This chapter is organized as follows. We first introduce the model in section 2.2. We
consider stable age distributions in the uninfected population in section 2.3. In sections 2.4 we
present the endemic solutions and the equation from which we determine the rate of growth.
The characteristic equations from which we determine the rate of growth corresponding to
the positive infected solution are shown in section 2.5. The basic reproduction number as
well as the demographic reproduction number are defined in section 2.6. To study the impact
on demography we follow a cohort in section 2.7 and we study the relationship between the
basic reproduction number, denoted by R0, and the proportion of susceptible individuals in
the endemic equilibrium, denoted by x̄, in section 2.8. The impact of the infection on the life
expectancy is presented in section 2.9. Since the infection is potentially lethal, we are interested
in the minimal case fatality required to reduce the growth rate of the population to zero (section
2.10). In section 2.11 we present formulae for the average ages at infection for individuals who
get infected as well as for those who die without getting infected. In section 2.12 we specify
our analysis to the case of high infectivity (large number of contacts) and quick recovery (short
infectious period). In section 2.13 we evaluate the life expectancy for individuals at any age.
A numerical example with real data from The Hague representing the case of smallpox in the
Eighteenth Century is introduced in section 2.14. Finally, we study the stability of the infection
free equilibrium in section 2.15.

2.2 The model

In the previous chapter, we constructed our model which is a generalization of Daniel Bernoulli’s
epidemiological model to the case of growing populations. We studied the case where the model
parameters are age-independent. In this chapter we generalize this study to the case of age-
dependent model parameters. The model reads:

∂X(a, t)

∂t
+
∂X(a, t)

∂a
= −(µ(a) + λ(a, t))X(a, t)

∂Y (a, t)

∂t
+
∂Y (a, t)

∂a
= λ(a, t)X(a, t) − (γ + µ(a))Y (a, t)

∂Z(a, t)

∂t
+
∂Z(a, t)

∂a
= (1 − c(a))γY (a, t) − µ(a)Z(a, t) (2.1)

where the force of infection is

λ(a, t) =
κs(a)

∫∞
0
Y (a, t)da

N(t)
, (2.2)

and total population size is

N(t) =

∫ ∞

0

(X(a, t) + Y (a, t) + Z(a, t))da.

The boundary condition (birth law) is
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X(0, t) =

∫ ∞

0

β(a)

(

X(a, t) + Y (a, t) + Z(a, t)

)

da,

Y (0, t) = 0, Z(0, t) = 0.

2.3 Stable age distribution (persistent solutions)

Persistent solutions are solutions that can be expressed as the product of two functions, one of
them is an exponentially growing function of time and the other depends on the age. The latter
is called the stable age distribution (a distribution in which the fraction of individuals in each
class remains constant with respect to time). Assume that the age-specific per capita birth and
death rates β(a) and µ(a) are continuous on [0,∞) and that

∫∞
0
µ(a)da = ∞. Assume also

that:

X(a, t) = X(a)P (t), Y (a, t) = Y (a)P (t),

Z(a, t) = Z(a)P (t), N(a, t) = N(a)P (t), (2.3)

where
N(a) = X(a) + Y (a) + Z(a).

X(a), Y (a), and Z(a) are respectively called the numbers of susceptible individuals, infected
individuals, and recovered individuals of age a. Substituting from (2.3) into (2.2) gives:

λ(a, t) = κs(a)

∫∞
0
Y (a)da

∫∞
0
N(a)da

= λ(a) (2.4)

Substituting from (2.3) and (2.4) into (2.1) gives:

dX(a)

da
= −



ρ+ µ(a) + λ(a)


X(a)

dY (a)

da
= λ(a)X(a) −



ρ+ γ + µ(a)


Y (a) (2.5)

dZ(a)

da
= (1 − c(a))γY (a) −



ρ+ µ(a)


Z(a)

dP (t)

dt
= ρP (t),

where ρ is the demographic growth rate and

X(0) =

∫ ∞

0

β(a)


X(a) + Y (a) + Z(a)


 da (2.6)

Y (0) = Z(0) = 0
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2.4 Endemic solutions

2.4.1 Infection free equilibrium (IFE)

The uninfected solution corresponds to λ(a) = 0. Thus the infection free equilibrium is given by
(X(a), 0, 0)

′

exp(ρ0t) where
′

represents vector transpose and ρ0 is the Malthusian parameter.
It is the largest value of the rate of growth and is the unique real positive solution of the
demographic characteristic equation:

1 =

∫ ∞

0

β(a) exp(−(ρ0a+M(a)))da, (2.7)

where

M(a) =

∫ a

0

µ(τ)dτ (2.8)

is the cumulative mortality.

2.4.2 Endemic equilibrium

The solution of system (2.5) is given by

X(a) = X(0) exp

(

−(ρa +M(a) + Λ(a))

)

,

Y (a) = X(0) exp

(

−(ρa +M(a))

)
∫ a

0

λ(τ) exp

(

−(γ(a− τ) + Λ(τ))

)

dτ, (2.9)

Z(a) = X(0) exp

(

−(ρa +M(a))

)
∫ a

0

(1 − c(τ))

∫ τ

0

γλ(ξ) exp

(

−(γ(τ − ξ) + Λ(ξ))

)

dξdτ .

where

Λ(a) =

∫ a

0

λ(τ)dτ. (2.10)

is the cumulate force of infection.
It is clear from relation (2.4) that the force of infection λ(a) can be written as

λ(a) = λ̄s(a);

λ̄ = κ

∫∞
0
Y (a)da

∫∞
0
N(a)da

= κȳ (2.11)

where ȳ is the endemic prevalence of infected population. In other words, it is the proportion
of infected individuals in the population at equilibrium.
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2.5 Characteristic equations

Demographic equation

If we substitute from (2.9) into (2.6) and do some calculations, we get the demographic char-
acteristic equation as

1 =

∫ ∞

0

β(a)exp (−(ρa +M(a)))





1 − γλ̄

∫ a

0

c(τ)

∫ τ

0

s(ξ)exp (−(γ(τ − ξ) + λ̄S(ξ)))dξdτ





da

(2.12)
where

S(a) =

∫ a

0

s(τ)dτ (2.13)

is the cumulate susceptibility.

Epidemiologic equation

Substituting from (2.9) into (2.11) and performing some simple calculations we obtain the
following epidemiologic characteristic equation

1 =
κ
∫∞
0

exp−(ρa +M(a))
∫ a

0
s(τ)exp



−


γ(a− τ) + λ̄S(τ)






dτda

∫∞
0

exp (−(ρa +M(a)))


1 − γλ̄
∫ a

0
c(τ)

∫ τ

0
s(ξ)exp (−(γ(τ − ξ) + λ̄S(ξ)))dξdτ



da
.

(2.14)
Equations (2.12) and (2.14) form a nonlinear system for two unknowns ρ and λ̄. An infected

exponential solution exists if and only if the system (2.12), (2.14) has a real solution (ρ1, λ̄)
with positive λ̄.

2.6 Reproduction numbers

Demographic reproduction number RD

The demographic reproduction number is the average number of children that a newborn is
expected to beget in its entire life. It is given by:

RD =

∫ ∞

0

β(a) exp (−M(a))da. (2.15)

Basic reproduction number R0

One of the basic and fundamental questions in mathematical epidemiology is to know a thresh-
old quantity from which we can predict whether an infection fades out or persists. This threshold
quantity is known as the basic reproduction number/ratio. It is the average number of sec-
ondary cases produced by one infected case, during its infectious period, when it is introduced
into a totally susceptible population. If R0 ≤ 1 then the infection dies out, while if R0 > 1
then the infection persists. In the literature, there have been intensive studies to evaluate R0

(e.g. [18], [20], [23], [35], [38], [42], [45], [46]). For our model it is
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R0 =
κ
∫∞
0
s(a) exp (−(ρ0a+M(a)))





∫∞
a

exp


−


(ρ0 + γ)(a− τ) + (M(τ) −M(a))






dτ


da
∫∞
0

exp (−(ρ0a+M(a)))da
.

(2.16)
Proof: Define a function

F (λ̄) =
κ
∫∞
0

exp (−(ρa +M(a)))
∫ a

0
s(τ) exp

(

−γ(a− τ) − λ̄S(τ)
)

dτda
∫∞
0

exp (−ρa−M(a))
(

1 − γλ̄
∫ a

0
c(τ)

∫ τ

0
s(ξ) exp

(

−γ(τ − ξ) − λ̄S(ξ)
)

dξdτ
)

da
− 1.

In a totally susceptible population λ̄ = 0 and ρ = ρ0; therefore

F (0) =
κ
∫∞

0
exp (−(ρ0a+M(a)))

∫ a

0
s(τ) exp (−γ(a− τ))dτda

∫∞
0

exp (−ρ0a−M(a))da
− 1 = 0.

If λ̄ increases to infinity, then F (λ̄) decreases to −1 < 0, whereas F (λ̄) increases to +∞ if
λ̄ decreases to −∞. Hence λ̄ = 0 is a threshold condition. This threshold condition yields
the basic reproduction number. Therefore, R0 = 1 and ρ = ρ0 at λ̄ = 0. This coincides with
the definition of the basic reproduction number R0 which is the expected number of secondary
cases produced by a typical infected individual during its entire infectious period, in a totally
susceptible population. Thus

R0 =
κ
∫∞
0

exp (−(ρ0a+M(a)))
∫ a

0
s(τ) exp (−γ(a− τ))dτda

∫∞
0

exp (−ρ0a−M(a))da
.

Interchanging the integration order in the numerator defines exactly relation (2.16).
Since we defined the basic reproduction number R0 from the epidemiologic characteristic equa-
tion, we define the demographic reproduction number from the demographic charateristic equa-
tion by setting RD = 1 when λ̄ = 0 and ρ = 0.

2

2.7 Demography

Let u(a) denote the probability that an individual survives age a and is susceptible, v(a) denote
the probability that an individual survives age a and is infected, and w(a) denote the probability
that an individual survives age a and is immune. Then

u(a) = X(a)|ρ=0,X(0)=1 = exp (−(M(a) + Λ(a))),

v(a) = Y (a)|ρ=0,X(0)=1 = exp (−M(a))

∫ a

0

λ(τ) exp (−(γ(a− τ) + Λ(τ)))dτ , (2.17)

w(a) = Z(a)|ρ=0,X(0)=1 = exp (−M(a))

∫ a

0

γ(1 − c(τ))

∫ τ

0

λ(ξ) exp(−(γ(τ − ξ) + Λ(ξ)))dξdτ.
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Let l(a) denote the probability to survive age a. Then the survival function in the presence
of infection is

l(a) = u(a) + v(a) + w(a). (2.18)

The survival function in the absence of infection is

l0(a) = l(a)|λ(a)=0 = exp (−M(a)). (2.19)

Equations (2.17 - 2.19) can be combined to give

l(a) = l0(a)





1 − γ

∫ a

0

c(τ)

∫ τ

0

λ(ξ) exp (−(γ(τ − ξ) + Λ(ξ)))dξdτ





. (2.20)

Prevalence

Assume that:

x(a) denotes the probability to be susceptible at age a in a cohort (in other words, it is the
proportion of susceptible individuals at age a),

y(a) denotes the probability to be infected at age a in a cohort,

z(a) denotes the probability to be immune at age a in a cohort.

Hence
x(a) = u(a)

l(a)
, y(a) = v(a)

l(a)
, and z(a) = w(a)

l(a)
.

The proportion of susceptible, infected and recovered individuals, in the endemic equilibrium,
in the total population are given by

x̄ =

∫∞
0
X(a)da

∫∞
0
N(a)da

,

ȳ =

∫∞
0
Y (a)da

∫∞
0
N(a)da

, (2.21)

z̄ =

∫∞
0
Z(a)da

∫∞
0
N(a)da

2.8 The relationship between the basic reproduction number R0 and the propor-
tion of susceptible individuals in the endemic equilibrium x̄

The infectius period is the time period during which infected individuals are able to transmit
an infection to any susceptible host or vector they contact. For a demographically stationary
population, the duration of the infectious period is constant. However, for a growing population
the number of individuals change during the infectious period and hence the duration of the
infectious period has to be discounted.
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Definition 2.1. The discounted duration of the infectious period for an individual of age a in
a growing population with growth rate ρ0 is

D0(a) =

∫ ∞

a

exp


−


(ρ0 + γ)(τ − a) + (M(τ) −M(a))






dτ. (2.22)

Definition 2.2. The discounted duration of the infectious period for an individual of age a in
a growing population with growth rate ρ1 is

Dc(a) =

∫ ∞

a

exp


−


(ρ1 + γ)(τ − a) + (M(τ) −M(a))






dτ. (2.23)

Definition 2.3. The average discounted duration of the infectious period for an individual of
age a in a growing population with growth rate ρ0 is

D̄0 =

∫∞
0
D0(a) exp (−(ρ0a+M(a)))da
∫∞
0

exp (−(ρ0a+M(a)))da
. (2.24)

Definition 2.4. The average discounted duration of the infectious period for an individual of
age a in a totally susceptible growing population with growth rate ρ1 is

D̄λ =

∫∞
0
Dc(a) exp (−(ρ1a+M(a) + Λ(a)))da
∫∞
0

exp (−(ρ1a +M(a) + Λ(a)))da
. (2.25)

Definition 2.5. The average susceptibility for individuals in a growing population with growth
rate ρ0 is

s̄0 =

∫∞
0
s(a) exp (−(ρ0a +M(a)))D0(a)da
∫∞
0

exp (−(ρ0a+M(a)))D0(a)da
. (2.26)

Definition 2.6. The average susceptibility for individuals in a totally susceptible growing pop-
ulation with growth rate ρ1 is

s̄λ =

∫∞
0
s(a) exp (−(ρ1a +M(a) + Λ(a)))Dc(a)da
∫∞
0

exp (−(ρ1a +M(a) + Λ(a)))Dc(a)da
. (2.27)

Proposition 2.1. In case of potentially fatal infection and of age-dependent susceptibility and
death rate, the basic reproduction number R0 does not equal the inverse of the proportion of
susceptible individuals in the endemic equilibrium x̄, whereas for constant susceptibility and
death rate and for nonfatal infection x̄R0 = 1, i.e.,

R0x̄ =
s̄0

s̄λ

D̄0

D̄λ

(2.28)

If the susceptibility s(a) is constant, then s̄0 = s̄λ. Also if µ(a) is constant, then both D0(a) and
Dc(a) are constants. They are equal only in case of the absence of case fatality (since ρ1 = ρ0).
Thus R0x̄ = 1 only if the case fatality vanishes and both the susceptibility and the death rate
are age-independent.
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Proof: The proportion of susceptible in the endemic equilibrium, x̄, is given by

x̄ =

∫∞
0

exp (−(ρ1a +M(a) + Λ(a)))da
∫∞
0

exp (−(ρ1a +M(a)))
(

1 − γ
∫ a

0
c(τ)

∫ τ

0
λ(ξ) exp (−(γ(τ − ξ) + Λ(ξ)))dξdτ

)

da

and by (2.14)

x̄ =

∫∞
0

exp (−(ρ1a+M(a) + Λ(a)))da

κ
∫∞
0

exp (−(ρ1a+M(a)))
∫ a

0
s(τ) exp (−(γ(a− τ) + Λ(τ)))dτda

.

On the other hand and since

R0 =
κ
∫∞
0

exp (−(ρ0a+M(a)))
∫ a

0
s(τ) exp (−γ(a− τ))dτda

∫∞
0

exp (−ρ0a−M(a))da
,

then

R0x̄

=

(∫∞
0

exp (−(ρ0a +M(a)))
∫ a

0
s(τ) exp (−γ(a− τ))dτda

)(∫∞
0

exp (−(ρ1a+M(a) + Λ(a)))da
)

(∫∞
0

exp (−ρ0a−M(a))da
)(∫∞

0
exp (−(ρ1a+M(a)))

∫ a

0
s(τ) exp (−(γ(a− τ) + Λ(τ)))dτda

)

=

∫∞
0
s(a) exp (−(ρ0a +M(a)))





∫∞
a

exp (−((ρ0 + γ)(τ − a) + (M(τ) −M(a))))dτ


da
∫∞
0

exp (−(ρ0a +M(a)))da

·
∫∞
0

exp (−(ρ1a+M(a) + Λ(a)))da
∫∞
0
s(a) exp (−(ρ1a+M(a) + Λ(a)))





∫∞
a

exp (−((ρ1 + γ)(τ − a) + (M(τ) −M(a))))dτ


da

(2.29)

=

∫∞
0
s(a) exp (−(ρ0a+M(a)))D0(a)da
∫∞
0

exp (−(ρ0a+M(a)))da
·

∫∞
0

exp (−(ρ1a+M(a) + Λ(a)))da
∫∞
0
s(a) exp (−(ρ1a +M(a) + Λ(a)))Dc(a)da

=

∫∞
0
s(a) exp (−(ρ0a+M(a)))D0(a)da
∫∞
0

exp (−(ρ0a+M(a)))D0(a)da
·
∫∞
0
D0(a) exp (−(ρ0a+M(a)))da
∫∞
0

exp (−(ρ0a+M(a)))da

·
∫∞
0

exp (−(ρ1a+M(a) + Λ(a)))da
∫∞
0
Dc(a) exp (−(ρ1a +M(a) + Λ(a)))da

·
∫∞
0

exp (−(ρ1a +M(a) + Λ(a)))Dc(a)da
∫∞
0
s(a) exp (−(ρ1a +M(a) + Λ(a)))Dc(a)da

= s̄0 · D̄0 ·
1

D̄λ

· 1

s̄λ

=
s̄0

s̄λ

D̄0

D̄λ

6= 1

in general.

2
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Definition 2.7. The discounted duration of the infectious period for an individual of age a in
a population with zero growth rate is

D(a) =

∫ ∞

a

exp (−(γ(τ − a) + (M(τ) −M(a))))dτ. (2.30)

Definition 2.8. The average discounted duration of the infectious period for an individual of
age a in a population with zero growth rate is

D̄0
0 =

∫∞
0
D(a) exp (−M(a))da
∫∞
0

exp (−M(a))da
. (2.31)

Definition 2.9. The average discounted duration of the infectious period for an individual of
age a in a totally susceptible population with zero growth rate is

D̄0
λ =

∫∞
0
D(a) exp (−(M(a) + Λ(a)))da
∫∞
0

exp (−(M(a) + Λ(a)))da
. (2.32)

Definition 2.10. The average susceptibility for individuals in a population with zero growth
rate is

s̄0
0 =

∫∞
0
s(a) exp (−M(a))D(a)da
∫∞
0

exp (−M(a))D(a)da
. (2.33)

Definition 2.11. The average susceptibility for individuals in a totally susceptible population
with zero growth rate is

s̄0
λ =

∫∞
0
s(a) exp (−(M(a) + Λ(a)))D(a)da
∫∞
0

exp (−(M(a) + Λ(a)))D(a)da
. (2.34)

Corollary: In case of a demographically stationary population, the basic reproduction number
R0 is not the inverse of the proportion of susceptible individuals in the endemic equilibrium x̄
in general.
proof: For a population with zero growth rate we have

R0x̄ =

∫∞
0
s(a) exp (−M(a))D(a)da
∫∞
0

exp (−M(a))da
·

∫∞
0

exp (−(M(a) + Λ(a)))da
∫∞
0
s(a) exp (−(M(a) + Λ(a)))D(a)da

=

∫∞
0
s(a) exp (−M(a))D(a)da
∫∞
0

exp (−M(a))D(a)da
·
∫∞
0
D(a) exp (−M(a))da
∫∞
0

exp (−M(a))da

·
∫∞
0

exp (−(M(a) + Λ(a)))da
∫∞
0
D(a) exp (−(M(a) + Λ(a)))da

·
∫∞

0
exp (−(M(a) + Λ(a)))D(a)da

∫∞
0
s(a) exp (−(M(a) + Λ(a)))D(a)da

= s̄0
0 · D̄0

0 ·
1

D̄0
λ

· 1

s̄0
λ

=
s̄0
0

s̄0
λ

· D̄
0
0

D̄0
λ

6= 1

in general.
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2.9 The impact on the life expectancy

Definition 2.12. The life expectancy at birth in the absence of infection is

L0 =

∫ ∞

0

l0(a)da =

∫ ∞

0

exp(−M(a))da. (2.35)

Definition 2.13. The expected time spent in the susceptible state (i.e., the duration of the
lifetime in the susceptible state) is

Lu =

∫ ∞

0

exp(−(M(a) + Λ(a)))da. (2.36)

Definition 2.14. The expected time of life spent in the infected state is

Lv =

∫ ∞

0

λ(a) exp(−(M(a) + Λ(a)))

∫ ∞

a

exp(−(γ(τ − a) + (M(τ) −M(a))))dτda. (2.37)

Definition 2.15. The expected time of life at birth in the presence of infection in a population
with zero growth rate is

L =

∫ ∞

0

l(a)da (2.38)

=

∫ ∞

0

exp (−M(a))

(

1 − γ

∫ a

0

c(τ)

∫ τ

0

λ(ξ)exp

(

−
(

γ(τ − ξ) + Λ(ξ)

))

dξdτ

)

da.

Definition 2.16. The expected time of life at birth in the presence of infection in a growing
population with growth rate ρ1 is

L1 =

∫ ∞

0

exp

(

−
(

ρ1a+M(a)

))(

1 − γ

∫ a

0

c(τ)

∫ τ

0

λ(ξ)exp

(

−
(

γ(τ − ξ) + Λ(ξ)

))

dξdτ

)

da.

(2.39)

Proposition 2.2. The gain in life expectancy of eradicating the infection is given by

L0

L
=

1

1 − c̄

(

1 −
(

Lu
L

+
Lv
L

)

c̄

)

(2.40)

where

c̄ =

∫∞
0
c(a)



exp(−γa)
∫ a

0
λ(ξ) exp(γξ − Λ(ξ))dξ









∫∞
a

exp(−M(τ))dτ


da

∫∞
0



exp(−γa)
∫ a

0
λ(ξ) exp(γξ − Λ(ξ))dξ









∫∞
a

exp(−M(τ))dτ


da

is an average case fatality.
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Proof: The survival function in the absence of infection is

l0(a) = exp(−M(a)),

whereas the survival function in the presence of infection is

l(a) = exp(−M(a))





1 − γ

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

λ(ξ) exp(γξ − Λ(ξ))dξdτ







= l0(a)





1 − γ

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

λ(ξ) exp(γξ − Λ(ξ))dξdτ







= l0(a) − γ exp(−M(a))

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

λ(ξ) exp(γξ − Λ(ξ))dξdτ.

Hence the life expectancy at birth in the presence of infection is

L(a) =

∫ ∞

0

l(a)da

=

∫ ∞

0

l0(a)da−
∫ ∞

0

γ exp(−M(a))

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

λ(ξ) exp(γξ − Λ(ξ))dξdτda

= L0 − term1,

where

term1 =

∫ ∞

0

γ exp(−M(a))

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

λ(ξ) exp(γξ − Λ(ξ))dξdτda

= γ

∫ ∞

0

c(τ) exp(−γτ)






∫ τ

0

λ(ξ) exp(γξ − Λ(ξ))dξ













∫ ∞

τ

exp(−M(a))da





dτ

= γc̄

∫ ∞

0





exp(−γa)
∫ a

0

λ(ξ) exp(γξ − Λ(ξ))dξ













∫ ∞

a

exp(−M(τ))dτ





da,

where

c̄ =

∫∞
0
c(a)



exp(−γa)
∫ a

0
λ(ξ) exp(γξ − Λ(ξ))dξ









∫∞
a

exp(−M(τ))dτ


da

∫∞
0



exp(−γa)
∫ a

0
λ(ξ) exp(γξ − Λ(ξ))dξ









∫∞
a

exp(−M(τ))dτ


da
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is an average case fatality. Therefore,

term1 = γc̄

∫ ∞

0

exp(−M(a))







∫ a

0

exp(−γτ)
∫ τ

0

λ(ξ) exp(γξ − Λ(ξ))dξdτ





da

= γc̄

∫ ∞

0

exp(−M(a))









∫ a

0

λ(ξ) exp(γξ − Λ(ξ))

∫ a

ξ

exp(−γτ)dτdξ







da

= c̄

∫ ∞

0

exp(−M(a))







∫ a

0

λ(τ)


exp(−Λ(τ)) − exp(−(γ(a− τ) + Λ(τ)))


dτ





da

= c̄

∫ ∞

0

exp(−M(a))





1 − exp(−Λ(a)) −
∫ a

0

λ(τ) exp(−(γ(a− τ) + Λ(τ)))dτ





da

= c̄(L0 − Lu)

−c̄
∫ ∞

0

λ(a) exp(−(M(a) + Λ(a)))

∫ ∞

a

exp(−(γ(τ − a) + (M(τ) −M(a))))dτda

= c̄(L0 − Lu) − c̄Lv

= c̄L0 − c̄(Lu + Lv).

Hence
L = L0 − term1 = (1 − c̄)L0 + c̄(Lu + Lv).

I.e.,
L0

L
=

1

1 − c̄

(

1 −
(

Lu
L

+
Lv
L

)

c̄

)

2

Formula (2.40) shows that the life expectancy at birth in the absence of infection depends
on quantities that can be estimated. If we know c̄, Lu, Lv, and L we can predict the gain in
the expected time of life at birth if the infection is eradicated. This is the question that Daniel
Bernoulli tried to answer.

Proposition 2.3. The proportion of susceptible in the endemic equilibrium x̄ can be written as

x̄ =
PD

ĉλ̂L1

(2.41)

where

ĉ =

∫∞
0
c(a)λ(a) exp (−(ρ1a+M(a) + Λ(a)))da
∫∞
0
λ(a) exp (−(ρ1a+M(a) + Λ(a)))da

is an average case fatality,

λ̂ =

∫∞
0
λ(a) exp (−(ρ1a +M(a) + Λ(a)))da
∫∞
0

exp (−(ρ1a +M(a) + Λ(a)))da
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is an average force of infection, and

PD =

∫ ∞

0

c(a)λ(a) exp (−(ρ1a+M(a) + Λ(a)))da

is the lifetime risk of the infection.

2.10 Stationary population

In this section we discuss the effect of the case fatality on the growth of the population. We look
for the existence of sufficiently large case fatality such that the rate of growth of the population
is driven to zero. First we discuss the situation when the case fatality does not depend on age.
This means that all infected individuals have the same risk to die due the infection. Thereon,
we consider the case of age-dependent case fatality. In other words, infected individuals have
different risks to die due to the infection.

Constant case fatality c(a) = c1:

In this case the characteristic equations read

1 =

∫ ∞

0

β(a)exp (−M(a))





1 − γλ̄1c1

∫ a

0

∫ τ

0

s(ξ)exp (−(γ(τ − ξ) + λ̄1S(ξ)))dξdτ





da

1 =
κ
∫∞

0
exp (−M(a))

∫ a

0
s(τ)exp



−


γ(a− τ) + λ̄1S(τ)






dτda

∫∞
0

exp (−M(a))


1 − γλ̄1c1
∫ a

0

∫ τ

0
s(ξ)exp (−(γ(τ − ξ) + λ̄1S(ξ)))dξdτ



da
, (2.42)

The system (2.42) can be written as

RD − 1 = c1(RD − (psusc + pinf )) = c1(RD − 1 + prec)

L0 =
κ

λ̄1

Lv0 + c1(L0 − Lu0
− Lv0), (2.43)

where

psusc =

∫ ∞

0

β(a) exp (−(M(a) + Λ(a)))da

is the number of newborns from susceptible parents,

pinf =

∫ ∞

0

β(a) exp (−(M(a) + Λ(a)))

∫ a

0

λ(τ) exp (−γ(a− τ) + (Λ(a) − Λ(τ)))dτda
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is the number of newborns from infected parents, and

prec = 1 − (psusc + pinf)

is the number of newborns from recovered parents, and

Lu0
=

∫ ∞

0

exp(−(M(a) + Λ1(a)))da,

Lv0 =

∫ ∞

0

λ(a) exp(−(M(a) + Λ1(a)))

∫ ∞

a

exp(−(γ(τ − a) + (M(τ) −M(a))))dτda,

Λ1(a) = λ̄1

∫ a

0

s(τ)dτ.

Hence the critical case fatality required to reduce the growth rate of the population to zero is

c?1 =
RD − 1

RD − 1 + prec

=
L0 − (κ/λ̄1)Lv0
L0 − (Lu0

+ Lv0)
, (2.44)

where λ̄1 is the real positive solution of the nonlinear equation

L0prec = (RD − 1)

(

κ

λ̄1

Lv0 − (Lu0
+ Lv0)

)

. (2.45)

Notice that if the nonlinear equation (2.45) does not have a real positive solution, then there is
no case fatality sufficient to stop the growth of the population. However, if there is a positive
real solution to (2.45) but c?1 6∈ (0, 1], then the growth of the population cannot be reduced to
zero.

Age-dependent case fatality c(a):

To study the effect of age-dependent case fatality we assume that c(a) = qc0(a) where c0(a) is
a non-negative continuous function not identically zero. The task now is to try to evaluate how
much we can raise this parameter q such that the population goes to extinction or even to its
demographic stationary. Whence the characteristic equations read:

1 =

∫ ∞

0

β(a)exp (−M(a))





1 − qγλ̄0

∫ a

0

c0(τ)

∫ τ

0

s(ξ)exp (−(γ(τ − ξ) + λ̄0S(ξ)))dξdτ





da

1 =
κ
∫∞

0
exp (−M(a))

∫ a

0
s(τ)exp



−


γ(a− τ) + λ̄0S(τ)






dτda

∫∞
0

exp (−M(a))


1 − qγλ̄0

∫ a

0
c0(τ)

∫ τ

0
s(ξ)exp (−(γ(τ − ξ) + λ̄0S(ξ)))dξdτ



da
, (2.46)
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System (2.46) consists of two nonlinear equations in two unknowns, one of them is the parameter
scaling of the case fatality, q, and the other is the critical value of λ̄ which we call here λ̄0 and
the null refers to a zero growth rate. This system can be written as

RD − 1 = qB̄(λ̄0)c̄0(λ̄0)(L0 − (Lu(λ̄0) + Lv(λ̄0))),

L0 −
κ

λ̄0

Lv(λ̄0) = qc̄0(λ̄0)


L0 − (Lu(λ̄0) + Lv(λ̄0))


, (2.47)

where

B̄(λ̄0) =

∫∞
0
β(a) exp(−M(a))

∫ a

0
c0(τ)

∫ τ

0
λ0(ξ) exp (−(γ(τ − ξ) + Λ0(ξ)))dξdτda

∫∞
0

exp(−M(a))
∫ a

0
c0(τ)

∫ τ

0
λ0(ξ) exp (−(γ(τ − ξ) + Λ0(ξ)))dξdτda

is an average birth rate. It depends on the force of infection and the case fatality. However,
since the case fatality appears in both the numerator and denominator, the parameter q cancels
and hence the average birth rate depends only on one unknown that is λ̄0 which appears in the
form of the force of infection. The notation

λ0(ξ) = λ̄0s(ξ)

denotes the force of infection corresponding to the case of stationary population. Also

Λ0(ξ) = λ̄0S(ξ)

denotes the cumulative force of infection corresponding to a stationary population, and

c̄0(λ̄0) =

∫∞
0
c0(a)



exp(−γa)
∫ a

0
λ0(ξ) exp(γξ − Λ0(ξ))dξ









∫∞
a

exp(−M(τ))dτ


da

∫∞
0



exp(−γa)
∫ a

0
λ0(ξ) exp(γξ − Λ0(ξ))dξ









∫∞
a

exp(−M(τ))dτ


da

is an average of the rescaled case fatality c0(a). Hence the extension in the rescaled parameter
q required to get a stationary population is given by

q =
RD − 1

B̄(λ̄0)c̄(λ̄0)(L0 − (Lu(λ̄0) + Lv(λ̄0)))

=
L0 − (κ/λ̄0)Lv(λ̄0)

c̄(λ̄0)(L0 − (Lu(λ̄0) + Lv(λ̄0)))
(2.48)

and therefore the average case fatality required to drive the population to its stationary is given
by

c̄?(λ̄0) =
RD − 1

B̄(λ̄0)(L0 − (Lu(λ̄0) + Lv(λ̄0)))

=
L0 − (κ/λ̄0)Lv(λ̄0)

(L0 − (Lu(λ̄0) + Lv(λ̄0)))
(2.49)
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where λ̄0 is the real positive solution of the nonlinear equation

RD − 1 = B̄(λ̄0)

(

L0 −
κ

λ̄0

Lv(λ̄0)

)

. (2.50)

The left hand side of (2.50) depends neither on the rescaling parameter q nor on λ̄0. However,
the right hand side contains only λ̄0 but not q. Therefore, the equation has only one unknown.
This equation can be rewritten as

RD − 1 = B̄(λ̄0)
(

L0 − L(q, λ̄0)
)

. (2.51)

This is because λ̄ = κȳ in general. And for a demographically stationary population, the pro-
portion of susceptible individuals in the endemic equilibrium is the ratio between the expected
time of life spent in the infected state Lv and the life expectancy at birth in the presence of
infection L.
Therefore, to find out the required rise in the case fatality to drive the population to its sta-
tionary we have first to solve equation (2.50) with respect to λ̄0 and then substitute in (2.48) to
get q. Thereon, we evaluate the new case fatality c?(a) = qc0(a). There may be two nonfeasible
cases in addition to a feasible one. Either equation (2.50) has no real positive solution or it may
have but qc0(a) is not in the interval (0, 1]. If this happens, then there is no feasible extension
in the case fatality to stop the growth of the population. In other words, the population can
not be contained. Whence a suitable extension means a real positive solution of (2.50) such
that c?(a) = qc0(a) ∈ (0, 1] for all age classes.

2.11 Average ages

The average age at infection for individuals who get infected in a growing population is

Āλ =

∫∞
0
aλ(a) exp (−(ρ1a+M(a) + Λ(a)))da

∫∞
0
λ(a) exp (−(ρ1a +M(a) + Λ(a)))da

(2.52)

The average age at which susceptible individuals die is

Āµ =

∫∞
0
aµ(a) exp (−(ρ1a +M(a) + Λ(a)))da

∫∞
0
µ(a) exp (−(ρ1a+M(a) + Λ(a)))da

(2.53)

2.12 The limiting case of high infectivity and quick recovery

In the case of high infectivity (large κ) and quick recovery (large γ), the ratio κ
γ

is kept constant.

This constant we denote by R. Hence the system (2.5) reads

dX(a)

da
= −



ρ+ µ(a) + λ(a)


X(a),

dZ(a)

da
= −(ρ+ µ(a))Z(a) + (1 − c(a))λ(a)X(a), (2.54)

dP (t)

dt
= ρP (t),
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where

X(0) =

∫ ∞

0

β(a)


X(a) + Z(a)


da

Z(0) = 0.

Endemic equilibrium

The solution of the system (2.54) reads

X(a) = X(0) exp
(

−(ρ̃a+M(a) + Λ̃(a))
)

,

Z(a) = X(0) exp(−(ρ̃a+M(a)))

∫ a

0

(1 − c(τ))λ̃(τ) exp(−Λ̃(τ))da, (2.55)

where

λ̃(a) = λ̃1s(a),

Λ̃(a) =

∫ a

0

λ̃(τ)dτ = λ̃1S(a), (2.56)

S(a) =

∫ a

0

s(τ)dτ,

and (ρ̃, λ̃1) is the solution of the nonlinear system of characteristic equations

1 =

∫ ∞

0

β(a) exp(−(ρ̃a +M(a)))

(

1 − λ̃1

∫ a

0

c(τ)s(τ) exp(−λ̃1S(τ))dτ

)

da,

1 = R

∫∞
0

s(a) exp
(

−(ρ̃a + M(a) + λ̃1S(a))
)

da

∫∞
0

exp (−(ρ̃a + M(a)))
(

1 − λ̃1

∫ a

0
c(τ)s(τ) exp(−λ̃1S(τ))dτ

)

da
. (2.57)

The basic reproduction number in the limiting case is

R0 = R

∫∞
0
s(a) exp (−(ρ0a+M(a)))da
∫∞
0

exp (−(ρ0a +M(a)))da
= Rs̃0. (2.58)

The remaining proportion of susceptible in the limiting case is

x̃ =

∫∞
0

exp
(

−(ρ̃a+M(a) + λ̃1S(a))
)

da

∫∞
0

exp (−(ρ̃a +M(a)))
(

1 − λ̃1

∫ a

0
c(τ)s(τ) exp(−λ̃1S(τ))dτ

)

da
. (2.59)

The relationship between the basic reproduction number and the proportion of susceptible
individuals, in the endemic equilibrium, in the limiting case is

R0x̃ =
s̃0

s̃λ
, (2.60)
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where

s̃0 =

∫∞
0
s(a) exp (−(ρ0a+M(a)))da
∫∞
0

exp (−(ρ0a+M(a)))da
(2.61)

s̃λ =

∫∞
0
s(a) exp

(

−(ρ̃a +M(a) + λ̃1S(a))
)

da

∫∞
0

exp
(

−(ρ̃a +M(a) + λ̃1S(a))
)

da
(2.62)

is an average susceptibility for individuals in a growing population, in the limiting case of high
infectivity and quick recovery, in the presence of infection. A relation similar to that in (2.40)
can be derived and written in the form

L`0
L`

=
1

1 − c̃

(

1 − r̃

r̄1
c̃x̃

)

, (2.63)

where

c̃ =

∫∞
0
c(a)λ̃(a) exp

(

−(M(a) + Λ̃(a))
)

(∫∞
a

exp (−(M(τ) −M(a)))dτ
)

da

∫∞
0
λ̃(a) exp

(

−(M(a) + Λ̃(a))
)

(∫∞
a

exp (−(M(τ) −M(a)))dτ
)

da
,

r̃ =

∫∞
0

exp (−(ρ̃a +M(a)))
(

1 − λ̃1

∫ a

0
c(τ)s(τ) exp(−λ̃1S(τ))dτ

)

da

∫∞
0

exp (−M(a))
(

1 − λ̃1

∫ a

0
c(τ)s(τ) exp(−λ̃1S(τ))dτ

)

da
.

Relation (2.63) is the gain in life expectancy in the limiting case of large contact rate and quick
recovery.
If we assume a constant case fatality, we find that the minimal case fatality required to drive
the growth rate of the population to zero is given by

c̃?1 =
RD − 1

RD − 1 + p̃rec

=
L0 − RP̃I/λ̃0

L0 − Lu
(2.64)

where

p̃rec = 1 −
∫ ∞

0

β(a) exp(−(M(a) + Λ̃(a)))da

is the number of newborns from recovered parents in the limiting case,

P̃I =

∫ ∞

0

λ̃(a) exp(−(M(a) + Λ̃(a)))da

is the proportion of a cohort which gets infected in the limiting case, and
λ̃0 is the positive real solution of the nonlinear equation

0 = (RD − 1)(λ̃0Lu − RP̃I) + p̃rec(λ̃0L0 − RP̃I).
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However, if we assume that case fatality depends on age, c(a) = qc0(a), then the extension in
the case fatality required to stop the growth of the population is

q̃? =
RD − 1

B̃c̃0(L0 − Lu)

=
L0 − P̃IR/λ̃

?
0

c̃0(L0 − Lu)
(2.65)

and the average case fatality required to drive the population growth rate to zero, in the limiting
case, is

c̃? = q̃?c̃0 =
RD − 1

B̃(L0 − Lu)
=
L0 − P̃IR/λ̃

?
0

(L0 − Lu)
,

where

B̃ =

∫∞
0
β(a) exp(−M(a))

∫ a

0
c0(τ)λ̃(τ) exp(−Λ̃(τ))dτda

∫∞
0

exp(−M(a))
∫ a

0
c0(τ)λ̃(τ) exp(−Λ̃(τ))dτda

,

c̃0 =

∫∞
0
c0(a)λ̃(a) exp

(

−(M(a) + Λ̃(a))
)

∫∞
a

exp (−(M(τ) −M(a)))dτda

∫∞
0
λ̃(a) exp

(

−(M(a) + Λ̃(a))
)

∫∞
a

exp (−(M(τ) −M(a)))dτda
,

and λ̃?0 is the real positive solution of the nonlinear equation

RD − 1 = B̃(L0 − P̃IR/λ̃
?
0). (2.66)

2.13 The life expectancy of individuals at any age a

To predict the average lifetime of an individual aged a, we follow a cohort. Assume that x(a),
and y(a) are the proportions of susceptible and infected of age a at the initial time. Assume
also that Ua(τ), Va(τ), and Wa(τ) are the probabilities that an individual of age a survives up
to age τ and is susceptible, infected, and immune respectively. Therefore,

Ua(τ) = x(a) exp


−((M(τ) −M(a)) + (Λ(τ) − Λ(a)))


,

Va(τ) = exp


−γ(τ − a) − (M(τ) −M(a))




(

y(a)

+x(a)

∫ τ

a

λ(ξ) exp (γ(ξ − a) − (Λ(ξ) − Λ(a)))dξ

)

(2.67)

Wa(τ) = 1 − Ua(τ) − Va(τ)

= exp


−(M(τ) −M(a))




(

1 − x(a) − y(a) + γ

∫ τ

a

(1 − c(ξ)) exp(−γ(ξ − a))

(

y(a)

+ x(a)

∫ ξ

a

λ(η) exp


γ(η − a) − (Λ(η) − Λ(a))


dη

)

dξ

)

.
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The survival function of a cohort aged a which will survive up to age τ in the presence of
infection is

la(τ) = exp


−(M(τ) −M(a))




(

1 − γ

∫ τ

a

c(ξ) exp(−γ(ξ − a))

(

y(a)

+ x(a)

∫ ξ

a

λ(η) exp


γ(η − a) − (Λ(η) − Λ(a))


dη

)

dξ

)

. (2.68)

The survival function for a cohort of age a which will survive up to age τ in the absence of
infection is

l0a(τ) = exp

(

−(M(τ) −M(a))

)

. (2.69)

The life expectancy of an individual at age a in the absence of infection is

L0(a) =

∫ ∞

a

exp

(

−(M(τ) −M(a))

)

dτ. (2.70)

The life expectancy of an individual at age a in the presence of infection is

L(a) = L0(a) − γy(a)

∫ ∞

a

exp

(

−(M(τ) −M(a))

)
∫ τ

a

c(ξ) exp(−γ(ξ − a))dξdτ

− γx(a)

∫ ∞

a

exp

(

−(M(τ) −M(a))

)∫ τ

a

c(ξ) exp(−γ(ξ − a))

(
∫ ξ

a

λ(η) exp


γ(η − a) − (Λ(η) − Λ(a))


 dη

)

dξdτ. (2.71)

The proportions of susceptible and infected individuals of age a are given by

x(a) =
u(a)

l(a)
=

exp(−Λ(a))

1 − γ
∫ a

0
λ(ξ) exp(−Λ(ξ))

∫ a

ξ
c(τ) exp(−γ(τ − ξ))dτdξ

,

y(a) =
v(a)

l(a)
=

∫ a

0
λ(τ) exp(−γ(a− τ) − Λ(τ))dτ

1 − γ
∫ a

0
λ(ξ) exp(−Λ(ξ))

∫ a

ξ
c(τ) exp(−γ(τ − ξ))dτdξ

. (2.72)

2.14 A numerical example

In the following we apply our model to the case of smallpox spread in the Eighteenth Century.
The data are obtained from The Hague. We estimated the parameters µ(a), c(a), and λ(a) from
the data and we will publish the curve fitting problem somewhere else. The fitted parameters
are

µ(a) = µ0 exp(α0a) + µ1δa
δ−1 exp

(

−
(

δ0 + µ1a
δ

))

+
µ2

σ
√

2π
exp

(

−1

2
(
1

σ
ln

a

A1

)2

)

,

c(a) = d0 exp(−α2a) + d1

(

1 − exp(−α3a)

)2

,

λ(a) =

{

λ0a if a ≤ A,

λ0A(A
a
) if a ≥ A.
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Figure 2.1: Age specific model parameters.

where
µ0 = 0.0012, α0 = 0.0552, µ1 = 1.0963, δ = 0.4146, δ0 = 0.3223, µ2 = 0.0049,
σ = 0.3373, A1 = 32.5314, d0 = 0.5083, α2 = 0.3097, d1 = 0.6262, α3 = 0.0244,
λ0 = 0.0324, and A = 9.
We consider the per capita age specific birth rate

β(a) =
β0

aσ
√

2π
exp

(

−
(

ln a− µ̄

σ
√

2

)2)

where β0 = 4, µ̄ = 3.26, and σ = 0.13. The graphs of the previous four age specific
functions are shown in figure 2.1. We assume the recovery rate γ = 52 per year which means
that the length of the infectious period is of about one week. We assume also that the number
of contacts an infected individual can perform with susceptible individuals is κ = 500 per year.
Using the previous functions we got the following results

1) The growth rate of the population is ρ1 = 0.0177 per year.

2) The paremeter λ̄ = 0.3199 per year. Therefore the age specific susceptibility is s(a) = 1
λ̄
λ(a)

and is shown in figure 2.2.

3) The largest possible growth rate (Malthusian) is ρ0 = 0.0220 per year.

4) The basic reproduction number isR0 = 8.63, whereas the demographic reproduction number
is RD = 1.77.

43



0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a

s(
a)

Figure 2.2: The age specific susceptibility s(a).

5) The proportions of susceptible and infected individuals in the endemic equilibrium are
x̄ = 0.2295 and ȳ = 0.0006. The age distribution of the population classes (susceptible
X(a), infected Y (a), and recovered Z(a)) as well as the total population N(a) is shown
in figure 2.3

6) The life expectancy at birth in the absence of infection L0 and in the presence of infection
L are respectively L0 = 28.483 years and L = 25.89 years.

7) A graph explaining the life expectancies at any age in the absence L0(a) as well as in the
presence L(a) of infection is shown in figure 2.4.

8) Now we evaluate the quantities in relation (2.28). The average susceptibility for individuals
in a totally susceptible growing population is s̄0 = 0.904, whereas that in the presence of
infection is s̄λ = 0.402. The average discounted duration of the infectious period for an
individual of age a in a growing population with growth rate ρ0 = 0.0220 (ρ1 = 0.0177)
per year is D̄0 = 0.0192 (D̄λ = 0.0218) years. I.e., D̄0 = 7.008 (D̄λ = 7.957) days.

9) The duration of the lifetime in the susceptible state is Lu = 3.881 years, whereas the
expected time of life spent in the infected state is Lv = 0.0114 years (i.e., about 4.161
days).

10) If we assume a constant case fatality, then the case fatality required to drive the population
to stationary is c?1 = 0.5040.

11) If we consider an age-specific case fatality and we parameterize the existent case fatality
in to write it in the form c?(a) = qc0(a) where q is the parameter to be determined and

c0(a) = exp(−α2a) + d1
d0

(

1 − exp(−α3a)

)2

. Then q = 2.1222. Figure (2.5) shows the

critical age specific case fatality required to stop the growth of the population. It is clear
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Figure 2.3: The age distribution.

that c?(a) > 1 which is nonfeasible because c(a) ∈ [0, 1] for all ages a ∈ [0,∞). Therefore,
the smallpox was not able to eradicate or even to stop the growth of the population.

12) The average age at infection for individuals who get infected in a growing population is
Āλ = 6.003 years, whereas the average age of individuals who die without getting infected
is Āµ = 4.4703 years.

13) The proportion of immunes at any age for different values of case fatality is shown in figure
2.6.

2.15 Stability

Let us now turn to study the problem of stability of the equilibria. Since the variable Z(a, t)
does not appear in the first two equations of (2.1), we consider instead the model

∂X(a, t)

∂t
+
∂X(a, t)

∂a
= −(µ(a) + λ(a, t))X(a, t),

∂Y (a, t)

∂t
+
∂Y (a, t)

∂a
= −(γ + µ(a))Y (a, t) + λ(a, t), (2.73)

∂N(a, t)

∂t
+
∂N(a, t)

∂a
= −µ(a)N(a, t) − c(a)γY (a, t),
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Figure 2.4: The life expectancies at any age. The solid line represents the life expectancy at
any age in the absence of smallpox L0(a), whereas the dotted curve represents the expected
time of life at any age a in the presence of smallpox L(a).

with boundary conditions

X(0, t) = N(0, t) =

∫ ∞

0

β(a)N(a, t)da,

Y (0, t) = 0, (2.74)

where

λ(a, t) = κs(a)

∫∞
0
Y (a, t)da

∫∞
0
N(a, t)da

. (2.75)

This model has the endemic equilibria: The infection free equilibrium (IFE)

(X(a, t), Y (a, t), Z(a, t))
′

= (N0(a), 0, N0(a))
′

exp(ρ0t)

where ρ0 is the largest value of the growth rate (the Malthus parameter) and is the solution of
equation (2.7) and

N0(a) = N(0) exp

(

−(ρ0a+M(a))

)

.

The endemic equilibrium
(X(a), Y (a), N(a))

′

exp(ρ1t)

where ρ1 as well as the parameter λ̄ is determined from the system (2.12 - 2.14) and X(a), Y (a),
and N(a) are determined from (2.9). The variable N(a) does not, however, appear in (2.9) but
it is the summation of all three components. I.e., N(a) = X(a) + Y (a) + Z(a).

Linearization:
To study the stability of the equilibria, we introduce small perturbations about the endemic
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Figure 2.5: This figure shows the age-specific case fatality required to drive the population
to its demographic stationary. We parameterize the actual case fatality (the fitted one from
the data) and try to write it as the product of an age-independent parameter called q and an
age-dependent function called c0(a). The parameter q is the unknown, whereas c0(a) is given.
Then we solve to get q and the required case fatality would be c?(a) = qc0(a). We notice that
c?(a) 6< 1 for all a ∈ [0,∞). Therefore there is no feasible age-dependent case fatality to stop
the growth of the population. In other words, smallpox was not able to eliminate or even to
stop the growth of the population.

states. First we consider a general equilibrium solution and somewhere later in the text we will
specify the equations to each equilibrium solution. Let

X(a, t) = X(a) exp(ρt) + ε1(a, t),

Y (a, t) = Y (a) exp(ρt) + ε2(a, t), (2.76)

N(a, t) = N(a) exp(ρt) + ε(a, t).

Substituting from (2.76) into (2.75), and performing some calculations give

λ(a, t) = κs(a)
1

N̄

(

Ȳ + exp(−ρt)
∫ ∞

0

ε2(a, t)da−
Ȳ exp(−ρt)

N̄

∫ ∞

0

ε(a, t)da+O(ε2)

)

, (2.77)
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Figure 2.6: The proportion of immunes at any age for three different levels of the case fatality.
The solid line represents the case if we consider the case fatality as defined before. The dashed-
dotted line corresponds to the case of 1.7 times the case fatality and this line is below the solid
one. The line above the solid one and is dotted represents the case if we consider only 1/(1.7)
times the case fatality. With the increase of the level of the case fatality, the proportion of
immunes at any age decreases.

where

X̄ =

∫ ∞

0

X(a)da,

Ȳ =

∫ ∞

0

Y (a)da, (2.78)

N̄ =

∫ ∞

0

N(a)da.

The perturbation ε is small such that quantities O(ε2) can be neglected. Therefore,

λ(a, t)X(a, t) (2.79)

=
κs(a)

N̄

(

Ȳ X(a) exp(ρt) +X(a)

∫ ∞

0

ε2(a, t)da−
Ȳ

N̄
X(a)

∫ ∞

0

ε(a, t)da+ Ȳ ε1(a, t)

)

.
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Now we use (2.76 - 2.79) in (2.73) and (2.74) and the assumption that (X(a), Y (a), N(a))
′

exp(ρt)
is an equilibrium solution to get

∂ε1(a, t)

∂a
+
∂ε1(a, t)

∂t
= −µ(a)ε1(a, t)

−κs(a)
N̄

(

X(a)

∫ ∞

0

ε2(a, t)da−
Ȳ

N̄
X(a)

∫ ∞

0

ε(a, t)da+ Ȳ ε1(a, t)

)

,

∂ε2(a, t)

∂a
+
∂ε2(a, t)

∂t
= −(γ + µ(a))ε2(a, t) (2.80)

+
κs(a)

N̄

(

X(a)

∫ ∞

0

ε2(a, t)da−
Ȳ

N̄
X(a)

∫ ∞

0

ε(a, t)da+ Ȳ ε1(a, t)

)

,

∂ε(a, t)

∂a
+
∂ε(a, t)

∂t
= −µ(a)ε(a, t) − c(a)γε2(a, t).

with boundary conditions

ε1(0, t) = ε(0, t) =

∫ ∞

0

β(a)ε(a, t)da,

ε2(0, t) = 0. (2.81)

We are looking for solutions of the form

ε1(a, t) = ε1(a) exp(σt),

ε2(0, t) = ε2(a) exp(σt), (2.82)

ε(a, t) = ε(a) exp(σt).

Therefore by using (2.82) in (2.80) and (2.81), we get

σε1(a) +
dε1(a)

da
= −µ(a)ε1(a) −

κs(a)

N̄

(

X(a)ε̄2 −
Ȳ

N̄
X(a)ε̄+ Ȳ ε1(a)

)

,

σε2(a) +
dε2(a)

da
= −(γ + µ(a))ε2(a) +

κs(a)

N̄

(

X(a)ε̄2 −
Ȳ

N̄
X(a)ε̄+ Ȳ ε1(a)

)

, (2.83)

σε(a) +
dε(a)

da
= −µ(a)ε(a) − c(a)γε2(a),

with boundary conditions

ε1(0) = ε(0) =

∫ ∞

0

β(a)ε(a)da,

ε2(0) = 0, (2.84)

where

ε̄1 =

∫ ∞

0

ε1(a)da,

ε̄2 =

∫ ∞

0

ε2(a)da, (2.85)

ε̄ =

∫ ∞

0

ε(a)da.
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Model (2.83 - 2.84) is general. In other words, it applies to any equilibrium solution of the
main model (2.1 - 2.2).

Stability of the IFE (N0(a), 0, N0(a))
′

exp(ρ0t):

For the infection free equilibrium, model (2.83) reads

dε1(a)

da
= −(σ + µ(a))ε1(a) −

κs(a)

N̄0

N0(a)ε̄2,

dε2(a)

da
= −(σ + γ + µ(a))ε2(a) +

κs(a)

N̄0

N0(a)ε̄2, (2.86)

dε(a)

da
= −(σ + µ(a))ε(a) − c(a)γε2(a),

with boundary conditions in (2.84) and where

N̄0 =

∫ ∞

0

N0(a)da = N(0)

∫ ∞

0

exp

(

−(ρ0a +M(a))

)

da. (2.87)

The solution of the system (2.86) is

ε1(a) =

(

ε1(0) − ε̄2
κN(0)

N̄0

∫ a

0

s(τ) exp((σ − ρ0)τ)dτ

)

exp

(

−(σa+M(a))

)

,

ε2(a) =

(

ε̄2
κN(0)

N̄0

∫ a

0

s(τ) exp((σ − ρ0 + γ)τ)dτ

)

exp

(

−((σ + γ)a+M(a))

)

, (2.88)

ε(a) =

(

−ε̄2γ
κN(0)

N̄0

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

s(ξ) exp((σ − ρ0 + γ)ξ)dξdτ

+ε1(0)

)

exp

(

−(σa+M(a))

)

,

where

ε1(0) =

∫ ∞

0

β(a) exp

(

−(σa+M(a))

)(

ε1(0)

−ε̄2γ
κN(0)

N̄0

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

s(ξ) exp((σ − ρ0 + γ)ξ)dξdτ

)

da. (2.89)
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Integrating all sides in (2.88) over all ages from 0 to ∞ and taking into account relation (2.89)
give

0 = ε1(0)

∫ ∞

0

exp(−(σa+M(a)))da− ε̄1 −

ε̄2
κN(0)

N̄0

∫ ∞

0

exp(−(σa+M(a)))

∫ a

0

s(τ) exp((σ − ρ0)τ)dτda,

0 = ε̄2

(

−1 +
κN(0)

N̄0

∫ ∞

0

exp(−((σ + γ)a+M(a)))

∫ a

0

s(τ) exp((σ − ρ0 + γ)τ)dτda

)

,

0 = ε1(0)

∫ ∞

0

exp(−(σa+M(a)))da− ε̄− (2.90)

ε̄2γ
κN(0)

N̄0

∫ ∞

0

exp(−(σa+M(a)))

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

s(ξ) exp((σ − ρ0 + γ)ξ)dξdτda,

0 = ε1(0)

(

−1 +

∫ ∞

0

β(a) exp(−(σa+M(a)))da

)

−

ε̄2γ
κN(0)

N̄0

∫ ∞

0

β(a) exp(−(σa+M(a)))

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

s(ξ) exp((σ − ρ0 + γ)ξ)dξdτda.

This is a homogeneous algebraic system of the fourth degree. It can be written in matrix form
as









A11(σ) −1 −A13(σ) 0
0 0 A23(σ) 0

A31(σ) 0 −A33(σ) −1
A41(σ) 0 −A43(σ) 0

















ε1(0)
ε̄1
ε̄2
ε̄









=









0
0
0
0









, (2.91)

where

A11(σ) =

∫ ∞

0

exp(−(σa+M(a)))da,

A13(σ) =
κN(0)

N̄0

∫ ∞

0

exp(−(σa+M(a)))

∫ a

0

s(τ) exp((σ − ρ0)τ)dτda,

A23(σ) = −1 +
κN(0)

N̄0

∫ ∞

0

exp(−((σ + γ)a+M(a)))

∫ a

0

s(τ) exp((σ − ρ0 + γ)τ)dτda,

A31(σ) =

∫ ∞

0

exp(−(σa+M(a)))da, (2.92)

A33(σ) = γ
κN(0)

N̄0

·
∫ ∞

0

exp(−(σa+M(a)))

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

s(ξ) exp((σ − ρ0 + γ)ξ)dξdτda,
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A41(σ) = −1 +

∫ ∞

0

β(a) exp(−(σa+M(a)))da,

A43(σ) = γ
κN(0)

N̄0

·
∫ ∞

0

β(a) exp(−(σa+M(a)))

∫ a

0

c(τ) exp(−γτ)
∫ τ

0

s(ξ) exp((σ − ρ0 + γ)ξ)dξdτda.

This system has a nontrivial solution if and only if

A23(σ)A41(σ) = 0.

Therefore, either A41(σ) = 0 or A23(σ) = 0. I.e., either
∫ ∞

0

β(a) exp(−(σa+M(a)))da = 1 (2.93)

or
κN(0)

N̄0

∫ ∞

0

exp(−((σ + γ)a+M(a)))

∫ a

0

s(τ) exp((σ − ρ0 + γ)τ)dτda = 1. (2.94)

Equation (2.93) has an infinite number of solutions. Comparing with equation (2.7), we observe
that the real solution is σ = ρ0 whereas the remaining set consists of conjugate complex roots.
From (2.87) and (2.16), we get

κ
N(0)

N̄0

=
R0

∫∞
0

exp(−(ρ0a+M(a)))
∫ a

0
s(τ) exp(−γ(a− τ))dτda

. (2.95)

Using (2.94) and (2.95), we get

R0

∫ ∞

0

exp(−(ρ0a+M(a)))

∫ a

0

s(τ) exp(−(σ − ρ0 + γ)(a− τ))dτda =

∫ ∞

0

exp(−(ρ0a +M(a)))

∫ a

0

s(τ) exp(−γ(a− τ))dτda. (2.96)

Assume that σR and σI are the real and imaginary perts of σ. Then equation (2.96) leads to

R0

∫ ∞

0

exp(−(ρ0a +M(a)))

∫ a

0

s(τ) exp(−(σR − ρ0 + γ)(a− τ)) cos (σI(a− τ))dτda =

∫ ∞

0

exp(−(ρ0a+M(a)))

∫ a

0

s(τ) exp(−γ(a− τ))dτda. (2.97)

Equation (2.97) is a nonlinear equation in the variable σ. The right hand side is constant,
whereas the left hand side is the multiplication of both the basic reproduction number R0 and
a function in σ. There are two cases:
case 1: If Re(σ) = σR = ρ0, then equation (2.97) says R0 = 1.
Case 2: If Re(σ) = σR 6= ρ0. Assume that Re(σ) < ρ0, then

∫ ∞

0

exp(−(ρ0a+M(a)))

∫ a

0

s(τ) exp(−(σR − ρ0 + γ)(a− τ)) cos (σI(a− τ))dτda >

∫ ∞

0

exp(−(ρ0a+M(a)))

∫ a

0

s(τ) exp(−γ(a− τ))dτda.
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Therefore, R0 < 1 since the right hand side in (2.97) is constant. Whence R0 < 1 if and only
if Re(σ) < ρ0. According to the theory of homogeneous evolution equations, the condition
of stability is Re(σ) < ρ0. Thereon, the infection free equilibrium is locally asymptotically
exponentially stable if and only if R0 < 1.

2.16 Summary

In this chapter we presented an SIR epidemic model for a potentially lethal infection. Rather
than following the standard approach by considering a demographically stationary population
and the so-called differential mortality approach, we considered a population which grows ex-
ponentially and we considered the case fatality approach. In section (2.5) we introduced the by
now called demographic characteristic equation from which we determine the rate of growth.
If the infection is not fatal, this rate of growth has its largest value being called the Malthusian
parameter. With the increase of the case fatality, the rate of growth decreases nonlinearly. The
possibility to drive the rate of growth to zero and hence the host population to extinction has
been discussed in section (2.10). The importance of the relations in section (2.10) is that they
show the requirements on the case fatality to pull down the growth rate to zero in both cases if
the case fatality is constant and if it is age-dependent. In a numerical example, section (2.14),
which represents the case of smallpox in Europe in the Eighteenth Century we found out that
smallpox was nowhere able to eradicate or even to stop the growth of the host population.

Section (2.8) presents the relationship between the basic reproduction number R0 and the
proportion of susceptible individuals in the endemic equilibrium, x̄. If both the susceptibility
and the per capita death rate are age-independent and in addition is the population demo-
graphically stationary, then the basic reproduction number is the inverse of the proportion
of susceptible individuals in the endemic equilibrium. Equation (2.28) says that the product
R0x̄ 6= 1 in general but it equals the product of two ratios. One of them is the ratio between
two averages of susceptibilities, in the absence s̄0 and in the presence s̄λ of the infection. The
other ratio is that between two average discounts in the duration of the infectious period for
an individual of age a in a growing population with growth rate ρ0 for D̄0 and ρ1 for D̄λ. Even
if we have a demographically stationary population but age-dependent model parameters, the
product R0x̄ 6= 1 in general (see the corollary in section (2.8)). In the numerical example we
have s̄0 = 0.904, s̄λ = 0.402, D̄0 = 0.0192 years, D̄λ = 0.0218 years, R0 = 8.63, and x̄ = 0.2295.
We notice that R0x̄ = 1.98 = s̄0

s̄λ

D̄0

D̄λ
.

Formula (2.40) in section (2.9) explains the gain in the life expectancy. It contains five quanti-
ties (the life expectancies at birth in the absence L0 and presence L of infection, the duration of
the lifetime spent in the susceptible state Lu and in the infected state Lv, and an average case
fatality c̄). We can find one of them if we know the rest. These quantities are all measurable
in the sense that they can be estimated from the data. In the numerical example we evaluated
the life expectancies at birth in the absence of infection L0 = 28.483 years and in the presence
of infection L = 25.89 years. The expected duration of the lifetime spent in the susceptible
and infected states are Lu = 3.881 years and Lv = 0.0114 years, respectively. Hence we can
estimate the average case fatality using (2.40) to be c̄ = (L0 −L)/(L0 −Lu−Lv) = 0.105. The
remaining proportions of susceptible and infected individuals are x̄ = 0.2295, and ȳ = 0.0006.
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The expected time an individual of any age a will live is shown in section (2.13).
Finally, the proportion of immunes at any age a changes if we change the case fatality. If

we consider a case fatality which is the product of a parameter and the present case fatality,
the proportion of immunes at any age increases or decreases according to the value of the pa-
rameter. if the parameter is larger than one, the proportion of immunes at any age extends ,
whereas if the parameter is less than one, the proportion shrinks. This is shown in figure 2.6.
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3 The minimum effort required to eradicate infections in models with backward
bifurcation

We study an epidemiological model which assumes that the susceptibility after a primary
infection is r times the susceptibility before a primary infection. For r = 0 (r = 1) this is
the SIR (SIS) model. For r > 1 + µ/α this model shows backward bifurcations, where µ is
the death rate and α is the recovery rate. We show for the first time that for such models
we can give an expression for the minimum effort required to eradicate the infection if we
concentrate on control measures affecting the transmission rate constant β. This eradication
effort is explicitly expressed in terms of α, r, and µ. As in models without backward bifurcation
it can be interpreted as a reproduction number, but not necessarily as the basic reproduction
number. We define the relevant reproduction numbers for this purpose. The eradication effort
can be estimated from the endemic steady state. The classical basic reproduction number R0 is
smaller than the eradication effort for r > 1+µ/α and equal to the effort for smaller values of r.
The method we present is relevant to the whole class of compartmental models with backward
bifurcation.

3.1 Introduction

We analyze a special case of a model which K. P. Hadeler proposed together with Carlos
Castillo-Chavez [40] for studying the effect of behaviour changes for the control of a sexually
transmitted disease. This model is of the SIS type, i.e. individuals return to the susceptible
state after each infection. Hadeler and Castillo-Chavez distinguish primary susceptible and
”educated” or ”vaccinated” susceptible which differ by their susceptibility. They showed that
this model can have backward bifurcations for certain parameter values. This backward bifur-
cation phenomenon (the appearance of multiple infective stationary states) has recently been
studied in several epidemic models, e.g. [37], [44], [54], [55], [56], [68], [69], [74], and [75]. In
all those cases there exist, for certain values of the parameters, three endemic steady states,
two of which are stable and one is unstable. The basis of our model is a special case of the
model of Hadeler and Castillo-Chavez when there is no direct transfer of primary susceptible
to the state of ”educated” susceptible (ψ = 0 in their notation) and all recovered individuals
enter the class of ”educated” susceptible (γ = 1 in their notation). The ”educated” susceptible
can be interpreted as ”immunized” susceptible because they can only reach this state after
having experienced at least one infection. We drop this terminology as used by Hadeler and
Castillo-Chavez for the rest of our paper.

Our model comprises a whole family of infectious disease models which contains on one end
the SIR model (i.e. individuals have zero susceptibility after the first and only infection, i.e.
they are fully immune). The key parameter of our model is the ratio r of the susceptibility after
a primary infection and the susceptibility before a primary infection. For the SIR model, r = 0.
For the SIS model we have r = 1. We shall provide a lower bound of r for which backward
bifurcations are possible. When they occur, then r > 1, i.e. after a primary infection the sus-
ceptibility is higher than before. This could be interpreted as immuno-suppression, which may
be relevant for some infections like pertussis where backward bifurcations have been studied in
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a slightly more complicated model by van Boven et al [74].
We describe the model and its steady states in Section 2. In Section 3 we determine the

minimum eradication effort and show how this can be obtained from the stable endemic equi-
librium. Since for models without backward bifurcation the minimum eradication effort is
identical to the basic reproduction number R0 [20], we investigate to what extent this result
still holds true for this model with backward bifurcation. We shall distinguish an episode repro-
duction number from the effective reproduction number (Section 4). In Section 5 we determine
for which initial conditions the minimum eradication effort can be interpreted as a reproduc-
tion number. In Section 6 we shall discuss the applicability of our approach to models with
backward bifurcation.

3.2 The model and its equilibria

Consider a demographically stationary population structured into three classes of individuals
according to their epidemiological status. The first class is that of susceptible without past
infections S0(t), i.e. individuals who never were infected and may contract the infection (to
be referred to as naive individuals); the second class is that of infectious individuals I(t); and
the third class is that of susceptible with at least one past infection S1(t), to be referred to
as recovered. We model in terms of fractions and assume that the total size is equal to one,
S0 + I + S1 = 1.

Assume that individuals are born naive with per capita birth rate µ. Naive individuals can
either die with per capita death rate µ or they get infected with linear incidence rate βI = r0κI
where κ is the per capita contact rate and r0 is the probability of success of contacts between
infected and naive individuals and hence β is the successful contact rate between S0 and I.
Infected individuals can either die with per capita death rate µ or recover with per capita rate
α. Recovered individuals can either die with per capita death rate µ or get infected again with
linear incidence rate β̃I = r1κI, where r1 is the probability of success of contacts between I and
S1 and hence β̃ is the successful contact rate between infected and recovered individuals. Define
r = r1

r0
as the ratio of transmission probabilities. Hence the successful contact rate between

infected and recovered individuals is rβ. These assumptions lead to the following system of
ordinary differential equations:

dS0

dt
= µ− (µ+ βI)S0,

dI

dt
= (βS0 + β̃S1)I − (α + µ)I, (3.1)

dS1

dt
= αI − (µ+ β̃I)S1,
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or equivalently:

dS0

dt
= µ− (µ+ βI)S0,

dI

dt
= β(S0 + rS1)I − (α + µ)I, (3.2)

dS1

dt
= αI − (µ+ rβI)S1.

When r = 0, the model is an SIR model; when r = 1, the model becomes an SIS model.
For system (3.2) we have

R0 =
β

α + µ
.

Note that r plays no role in R0 since in the invasion phase in a homogeneously mixing popu-
lation, the probability that a recovered individual comes into contact again with an infectious
individual is neglected.

3.2.1 SIR model

When r = 0, the dynamical system (3.2) is written as:

dS0

dt
= µ− (µ+ βI)S0,

dI

dt
= βS0I − (α + µ)I, (3.3)

dS1

dt
= αI − µS1,

which is the well-known SIR model with two steady states [19]:

(1) The infection-free equilibrium (IFE) (1, 0, 0), which is globally asymptotically stable if and
only if β ≤ α + µ, i.e. when R0 ≤ 1.

(2) The endemic equilibrium (EE) (1/R0,
µ

α+µ
(1−1/R0),

α
α+µ

(1 − 1/R0)), which is unique and

is globally asymptotically stable if and only if R0 > 1 (i.e., in the set of solutions with
Ī > 0).

3.2.2 SIS model

When r = 1, the dynamical system (3.2) is written as:

dS0

dt
= µ− (µ+ βI)S0,

dI

dt
= β(S0 + S1)I − (α + µ)I, (3.4)

dS1

dt
= αI − (µ+ βI)S1.
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Equations (3.4) represent an SIS model with the following steady states [19]:

(1) The infection-free equilibrium (1, 0, 0), which is globally asymptotically stable if and only
if R0 ≤ 1.

(2) The endemic equilibrium ( µ
µ+β(1−1/R0)

, 1−1/R0,
α(1−1/R0)

µ+β(1−1/R0)
), which is unique and is globally

asymptotically stable if and only if R0 > 1.

3.2.3 Forward bifurcations

If 0 < r < 1 + µ
α
, then the dynamical system (3.2) has the following endemic states:

(1) The infection-free equilibrium (1, 0, 0), which is globally asymptotically stable if and only
if R0 < 1.

(2) The endemic equilibrium (S̄0, Ī , S̄1), which is unique and is globally asymptotically stable
if and only if R0 > 1, where:

Ī =
1

2





(

1 − 1

rR0
− µ

(α + µ)R0

)

+

√

(

1 − 1

rR0
− µ

(α + µ)R0

)2

+
4µ(1 − 1

R0

)

(α + µ)rR0



 ,

S̄0 =
µ

µ+ αĪ
, (3.5)

S̄1 =
αĪ

µ+ αĪ
.

For R0 > 1/r and α � µ, the endemic equilibrium for I is approximately equal to 1 −
1/(rR0). Although the endemic level Ī increases monotonically with R0, there are two inflection
points close to R0 = 1/r. Both the point with the minimal and the maximal slope are close to
each other (Figure (3.1a)).

3.2.4 Backward bifurcation model

For r > 1+µ/α, the model (3.2) exhibits a backward bifurcation. Apart from the infection-free
equilibrium (S0, I, S1) = (1, 0, 0) there can exist a single unique endemic steady state or two
positive steady states depending on the solutions to a quadratic equation. The endemic steady
state values for S0 and S1 are as given above in (3.5), where Ī ∈ [0, 1] is the solution of the
quadratic equation:

f(I) = rβ2I2 + (rµ− (rβ − (α+ µ)))βI + µ(α + µ− β) = 0. (3.6)

This equation has one or two feasible (i.e. positive, real) solutions, depending on the values
of the parameters. As seen in the previous subsection, there is one solution, given in (3.5), for
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Figure 3.1: This figure shows the endemic prevalence I as a function of the contact rate β for
two values of r (r = 0.2 part (a), r = 1.5 part (b), α = 10 per year and µ = 0.015 per year). For
r between 0 and 1 + µ/α, there are two inflection points close to R0 = 1/r. For R0 > 1/r, the
endemic equilibrium is close to 1 − 1/(rR0) (a). For r > 1 + µ/α, there are three equilibrium
points between R0 = R?

0 and R0 = 1 (b).

the case when R0 > 1 and arbitrary r > 0. For R0 < 1 the situation is more complicated. For
r > 1 + µ/α there is a region of values for R0 < 1 where there are two feasible solutions:

Ī± =
1

2





(

1 − 1

rR0
− µ

(α + µ)R0

)

±

√

(

1 − 1

rR0
− µ

(α + µ)R0

)2

+
4µ(1 − 1

R0

)

(α + µ)rR0



 . (3.7)

3.2.5 The critical contact rate β?

We denote the two endemic steady states by E+ and E−. We now refer to Figure 3.1b for
additional notation for the situation r > 1+µ/α. On the vertical axis we give the I-component
of E+ and E−. On the horizontal axis we vary the contact rate β. In other words, on the
horizontal axis we vary R0, but we assume that all ingredients of R0 other than β are constant.
When moving from R0 > 1 to R0 < 1 we only decrease β. The effect is that the corresponding
values for the I-component of E+ and E− will come closer together. At the turning point
[72] of the bifurcating branch the steady states coincide in a point E?, with I-component
I+ = I− =: I?. The value of β and R0 for which that happens will be denoted by β? and R?

0,
respectively. It is a straightforward calculation from (3.7) to obtain that at the turning point

β? =

(

√

µ(r − 1) +
√
α
)2

r
for r ≥ 1 +

µ

α
(3.8)

R?
0 =

β?

α + µ
,

I? =
rβ? − rµ− (α + µ)

2rβ?
.
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Figure 3.2: Bifurcation diagram in the (R0, r)-plane showing the partition of the plane according
to the number of the endemic equilibrium points (α = 10 per year and µ = 0.015 per year).

When we reduce r from a value slightly above 1+µ/α the bifurcating curve will shift down
and to the right and for r = 1 + µ/α the turning point coincides with the intersection with the
horizontal axis, i.e. β = α + µ which is equivalent to R0 = 1, and the curve of steady state
solutions for I will be forward bifurcating from that intersection. There is only one positive
endemic steady state. For all values of r ≤ 1+µ/α this will be the case and therefore β? = α+µ
in that region. On the other hand, if we increase r from a value slightly above 1 + µ/α the
bifurcating curve will shift down and to the left and if r tends to ∞ the turning point coincides
with the horizontal axis when β = µ which is equivalent to very small R0, may be very close
to zero and therefore there is only a forward bifurcating curve. The following Proposition
summarizes the behaviour. Figure 3.2 shows the partition of the (R0, r)-plane with the same
information about the steady states.

Proposition 3.1.
For:

(a) R0 > 1, a unique positive endemic equilibrium exists in addition to the infection-free
equilibrium,

(b) R?
0 < R0 < 1 and r > 1+µ/α two positive endemic equilibria exist in addition to the IFE,

(c) 0 < R0 < R?
0 or (R?

0 < R0 < 1 and r < 1 + µ/α), there is only the IFE.
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Figure 3.3: The dependence of the components of the point E? on the ratio r for parameter
values α = 10 per year, and µ = 0.015 per year. The left picture is a ”zoom in” of the right
one.

Proof:
From (3.6), one can simply evaluate:

f(1) = β(rµ+ α) + µ(α+ µ),

f(0) = µ(α+ µ)(1 −R0),

f ′(0) = β(rµ+ α + µ− rβ).

It is easy to check that f ′(I?) = 0 where I? = rβ−rµ−(α+µ)
2rβ

> 0 iff β > µ+ (α + µ)/r.

It is clear that f(1) > 0, f(0) can be positive or negative depending on the value of the basic
reproduction number R0, and f ′(0) can be positive or negative according to the relation be-
tween the parameters. If f(0) > 0, f ′(0) < 0 and f(I?) < 0 , there are two positive endemic
equilibria in addition to the infection-free equilibrium. If f(0) < 0 and f ′(0) > 0, then there is
a unique positive endemic state in addition to the infection-free equilibrium. Otherwise, there
is only the infection-free equilibrium. It is easy to check that:

f(0) > 0 if and only if R0 < 1.

f ′(0) < 0 if and only if R0 >
µ

(α+µ)
+ 1

r
.

f(I?) < 0 if and only if R0 > R?
0.

Combining the conditions together finishes the proof.

2
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Figure 3.4: The dependence of the components of the point E? on the ratio r for parameter
values α = 10 per year, and µ = 0.5 per year. The left picture is a ”zoom in” of the right one.

For r > 1+µ/α, we have computed the turning point where the two positive endemic states
merge by E? = (S?0 , I

?, S?1) where

S?0 =
1

1 +
√

α
µ(r−1)







r

r − 1







I? =
1

1 +
√

α
µ(r−1)



1 − S?0





S?1 =

√

α
µ(r−1)

1 +
√

α
µ(r−1)



1 − S?0





Figures 3.3 and 3.4 show how these coordinates depend on r. At the beginning, S?0
(continuous line) starts with value one and it decreases till reaching a minimum when r =

2

(

1 + µ
α

+
√

µ
α
(1 + µ

α
)

)

and then it increases and approaches one again when r tends to infinity.

On the other hand, both I? (dashed line) and S?1 (dotted line) start with zero and they increase

until reaching their maximum when r = 1+ α
µ

(

1 + 2µ
α

)2

and r = 1
2

(

3 + 9
4
µ
α

+
√

9
4
µ
α

(

2 + 9
4
µ
α

)

)

,

respectively. After that, they decrease and approach zero again when r tends to infinity.
In summary the critical contact rate β? is the contact rate at which positive endemic equi-

libria starts to appear. Therefore,

β? =







α + µ for r ≤ 1 + µ
α
,�√

µ(r−1)+
√
α
�2

r
for r ≥ 1 + µ

α
,

(3.9)
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Figure 3.5: This figure shows the contour lines for both the episode (straight lines) and the
case (hyperbolic lines) reproduction number in a ternary plot for model’s parameters (α = 10
per year, µ = 0.015 per year, β = 1.8 per year, and r = 8). The marked line indicates the
maximum case reproduction number for fixed S1. Notice that the S0, I, and S1 axes increase
counter clockwise.

3.3 The minimum effort R required to eradicate an infection

In the last section we saw that a reduction of the contact rate β below its critical value β?

would reduce the equilibrium prevalence to zero, for the region of values for r, where our
system exhibits a backward bifurcation. For the region r < 1 + µ

α
we found that β? = α + µ,

so also there β? is the value of β separating between the existence of the zero and endemic
steady state. Given this one could define a measure for the control effort required to eradicate
an infection in such a system when starting from a situation where the contact rate has the
value β and we concentrate our control effort on reducing contacts. Can we find a measure
that indicates minimum effort needed and express this in terms of measurable steady state
fractions? We denote the measure of eradication effort by

R :=
β

β?
,

where β? is given by (3.9).
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Figure 3.6: Barycentric plot for the episode and the case reproduction numbers in the case of
backward bifurcation with two endemic equilibria E+ (stable) and E− (unstable). The straight
dotted line through these points is the contour line Re = 1. The continuous hyperbola through
these points is the contour line Rc = 1. The dashed dotted line is the contour line where
Re = Rc. The dashed line through E? is the contour line Re = β

β? . This line hits the axis

I = 0 in the point P
◦

. This line intersects the line Re = Rc at the points P1 and P2 where
both reproduction numbers are equal to the eradication effort. The line with arrow heads
indicates the maximum Rc for fixed S1. The contour lines divide the triangle into areas where
the inserted inequalities are valid.

Proposition 3.2.
The ratio between the contact rate, β, and the critical contact rate, β?, at equilibrium is given
by:

R =
β

β?
=















1
S̄0+rS̄1

for r ≤ 1 + µ
α
,

1
(r

S̄0

1−S̄0

Ī(1− 1

r
)+

r
S̄1(1+

1

r

S̄0

1−S̄0

)

)2 for r ≥ 1 + µ
α
, (3.10)

where the ratio r is determined from the relation

r =
S̄0

1 − S̄0

(

α

µ

I

S1

− 1

)

. (3.11)
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Figure 3.7: This figure shows the curve in the triangle on which the point E? lies for values
of r ≥ 1 + µ

α
and the isoclines Re = β

β? for values of r = 2, 20, 200, 2000, 20000, and 200000.

In Fig. 3.7(b), we have the whole curve. At r = 1 + µ
α
, E? coincides with the IFE. When r

increases, the point E? moves clockwise on a closed curve until reaching the IFE again when r
tends to infinity. The behaviour is as follows: First S0 decreases while S1 increases till reaching
the corner in the left and then it turns to the right with an increase of S0 accompanied by a
decrease in S1. An explanation to the left corner is shown in Fig. 3.7(a). This is done for values
of r, clockwise from the right bottom, located at head arrows 1.08, 1.2, 1.45, 2, 3.5, 5.5, 8.5, and
12.5 respectively.

Proof:
At equilibrium, one can find:

µ = βĪ
S̄0

1 − S̄0

,

α = β

(

S0 + r(1 − S0 − I) − I
S0

1 − S0

)

.

Substituting these expressions into the relation

β? =







α + µ for r ≤ 1 + µ
α
,

(√
µ(r−1)+

√
α
)2

r
for r ≥ 1 + µ

α
,

and performing some simple calculations finish the proof of (3.10). To derive (3.11), we find at
equilibrium

βĪ =
µ(1 − S̄0)

S̄0

,

rS̄1 =
αĪ − µS̄1

βĪ
.
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to infinity, it asymptotically approaches −

√
3.

Hence,

r = α
Ī

S̄1

− µ
S̄0

µ(1 − S̄0)
,

=
S̄0

1 − S̄0

(

α

µ

I

S1

− 1

)

.

2

Note that for the SIR (r = 0) and SIS (r = 1) models, the control effort R = R0=
1
S

and
we recover the well-known identity according to which the product of the basic reproduction
number and the equilibrium proportion of susceptible equals one (where S is S0 or S0 + S1, as
appropriate). For other values of r < 1 + µ

α
, the equilibrium proportion of susceptible S̄0 and

S̄1 are weighted according to their relative susceptibility r. For r > 1 + µ
α

the corresponding
formula is more complicated but it can still be given in an explicit form (3.10).

If we know the equilibrium solution, (S̄0, Ī, S̄1), in addition to the model parameters α and
µ, we can evaluate r from (3.11) and then use (3.10) to evaluate the effort required to eradicate
the infection. The equilibrium proportions of the three epidemiological states can be estimated
from a cross sectional survey. The death rate µ is obtained from demographic observations and
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the recovery rate α is estimated from the duration of the infectious period of infected cases.
The question arises whether the expression for control effort can be interpreted as a repro-

duction number like in the case of the SIR and SIS model. This problem will be addressed
in the following sections. We can define two reproduction numbers: the episode reproduction
number and the case reproduction number. The first reproduction number determines how
many secondary infectious episodes are generated during one infectious episode. It depends on
both S0 and S1. The case reproduction number asks how many new cases are generated by one
case throughout life. It only depends on S0 and on the prevalence of infection which determines
the duration of all infectious periods throughout life of a newly infected individual. If the popu-
lation is completely susceptible (i.e. (S0, I, S1) = (1, 0, 0)), then both reproduction numbers are
identical and equal to R0. We will regard these numbers in a broader setting, however, where
we want to express the ”reproductive capacity” of an infected individual in a population with
arbitrary characteristics (S0, I, S1). One often sees the term ”effective” reproduction number
for such a quantity. We give two different names since the quantities defined are in general not
equal. We note that, since the population composition is not fixed for their definition, all these
reproduction numbers are in fact functions, in contrast to R0. To emphasize their biological
interpretation and dimension we stick, however, to the term ”numbers” for all quantities.

The ratio of the control effort R and the basic reproduction number will play a role in the
following sections. We therefore give it explicitly for easy reference

R
R0

=
r(α + µ)

(

√

µ(r − 1) +
√
α
)2

=
S0 + rS1

(√

S0

1−S0

I(1 − 1
r
) +

√

S1(1 + 1
r

S0

1−S0

)
)2 (3.12)

where r is given by (3.11). R
R0

is always larger than one.

3.4 The episode reproduction number Re and the case reproduction number Rc

The episode reproduction number, denoted by Re, is defined as the average number of sec-
ondary episodes (infectious periods) produced by one episode (infectious period) when the
sub-populations are given by the fractions (S0, I, S1). In the simple case of our model system,
it is the product of three quantities:

Re =
β (S0 + rS1)

(α + µ)
(3.13)

One can see immediately from the differential equation for I in (3.2) that Re = 1 in steady
state. Also, when the population consists of naive individuals only we see that Re = R0.

The case reproduction number, denoted by Rc, is the expected number of secondary cases
produced by one infected case throughout life. It is the product of three quantities: the
successful contact rate, the proportion of individuals who have never got infected, and the total
time of life spent in the infectious state T (I). Hence:
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(I) For the SIR model we have

Rc =
βS0

α+ µ
. (3.14)

(II) For the SIS model we get

Rc =
βS0(µ+ βI)

µ(α+ µ+ βI)
. (3.15)

(III) In general we have

Rc = βS0T (I), (3.16)

T (I) =
µ+ rβI

µ(α+ µ+ rβI)
.

To evaluate T (I) we follow a newly infected individual i. An infected individual i can either
die with per capita death rate µ or recover without immunity to become recovered individual
s1 with per capita recovery rate α. Such recovered individuals can either die with per capita
death rate µ or become infected again with force of infection rβI where I is the proportion
of infected in the whole population. The dynamics of the newly infected individual is then
described by the simple model:

di

dt
= rβIs1 − (α + µ)i, (3.17)

ds1

dt
= αi− (µ+ rβI)s1,

with initial conditions:

i(0) = 1, (3.18)

s1(0) = 0.

Applying Laplace transformation, we can evaluate the total time spent in the infected state as

T (I) =

∫ ∞

0

i(τ)dτ =
µ+ rβI

µ(α+ µ+ rβI)
.

An alternative way of expressing the above calculation is to describe the dynamics of state
changes for the newly infected individual by a Markov transition matrix as in [19]. For the
system described above there are two states I and S1, and the transition matrix is given by

G =

(

−(α + µ) rβI
α −(rβI + µ)

)

.

The expected time spent in state 1 (I) is then given by
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Figure 3.9: This figure shows the trajectories in the triangle for the parameter values given at
the top.

T (I) = −
(

1 0
)

G−1

(

1
0

)

.

By rearranging the equations of system (3.2) at steady state, one can easily see that the
case reproduction number, Rc has the following properties: Rc = 1 at equilibrium; in case the
population consists of naive individuals only, Rc = R0.

We now study the system’s dynamics in terms of the quantities defined. In order to show
the isoclines of Re in the unit simplex we use so-called ternary plots. This graphical tool (also
known as De Finetti diagram) is quite common in genetics for the representation of the relative
frequencies of three genotypes ([41] and [53]). Figure 3.5 shows the contour lines for the episode
reproduction number Re (straight lines) and the case reproduction number Rc (hyperbolic lines)
for values of model’s parameters in the area in which there are two positive endemic equilibria
in addition to the IFE. Along the axis S0 = 0, Re increases linearly with S1 for r > 1 with a
maximum value equal to rβ

α+µ
for S1 = 1 and a minimum value equal to zero for I = 1. Isoclines

are parallel straight lines in a ternary plot, whose slopes depend on r.

We are particularly interested in the isocline passing through the point E? = (S?0 , I
?, S?1),
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endemic equilibrium. Here we notice that the positive stationary solution is the global attractor.
The dotted straight line passing through the equilibrium point corresponds to Re = 1.

see Fig. 3.6. Along this line, Re = β
β? . It intersects the line I = 0 in the point with coordinates:

P ◦ = (S◦
0 , I

◦, S◦
1) =

1

r − 1

(

r − R
R0

, 0,
R
R0

− 1

)

.

It also intersects with the isocline Re = Rc in two points P1 and P2. The coordinates of the
points (P1 and P2) of intersection between the lines Re = β

β? and Re = Rc are

I1,2 =
1

2

(

1 − µ+ R(α + rµ)

R(
√
α +

√

µ(r − 1))2

)

±
√

1

4

(

1 − µ+ R(α + rµ)

R(
√
α+

√

µ(r − 1))2

)2

− µ

R(
√
α +

√

µ(r − 1))2

(R
R0

− 1

)

,

S01,2 =
1

r − 1

(

r(1 − I1,2) −
R
R0

)

, (3.19)

S11,2 =
1

r − 1

(

−(1 − I1,2) +
R
R0

)

.

The isocline which connects the two equilibria, E− and E+, corresponds to an Re value of
1. The location of the point E? in the triangle and the slope of isocline Re = β

β? for all possible
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Figure 3.11: This figure shows the trajectories when there are two stable equilibria E+ and
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separates the domains of attraction of the two stable equilibria.

values of r are shown in the Fig. 3.7 and Fig. 3.8 respectively.

From the last discussion we deduce that the episode reproduction number Re is increasing
in S1 for all 1 < r.

3.5 Transient behaviour

Since analytical solutions of model (3.2) are impossible, numerical simulations have been per-
formed. Fig. 3.9 shows the trajectories in a ternary plot when only the infection free equilibrium
S0 = 1 is stable. If we begin the calculations at a random position within the ternary triangle
first I and S0 decrease, whereas S1 increases up to a maximum value depending on the initial
values until I approaches zero. Subsequently, S1 decreases again and S0 eventually increases
to reach 1.

In this case we find that the episode reproduction number Re is always less than one, as
a consequence we get a monotonic decrease of the prevalence I while in the case of a unique
endemic equilibrium in addition to the IFE, the behaviour of the trajectories is more varied.
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The initial Re can be less than or bigger than one. If Re > 1 we get a monotonic increase until
reaching the equilibrium. This increase can be uniform in speed or it can be composed of a fast
and slow component (weak growth followed by a strong one). On the other hand, if, however,
Re < 1 we get either a uniform decrease until reaching the equilibrium or an initial decrease
followed by a sudden increase (Fig. 3.10).

If we solve the system with random initial conditions in the ternary triangle with param-
eter values for which there are two endemic equilibria in addition to the IFE (Fig. 3.11), we
get a combination of the previous types of behaviour. The separatrix (broken line) divides
between the domains of attraction of the IFE and the stable positive endemic equilibrium.
It passes through the unstable endemic equilibrium. The isocline Re = 1 is a straight line
passing through the two positive endemic states. In the domain of attraction of the IFE, the
trajectories behave exactly like the solutions in Fig. 3.9. In the other part of the triangle we
have two patterns (above and below Re = 1). Below the line Re = 1, both S0 and I initially
increase while S1 decreases till reaching the line Re = 1 and suddenly S0 decreases. Above the
line Re = 1, both I and S0 decrease while S1 increases until reaching the line Re = 1 and then
I increases to reach the equilibrium. We see that Re plays an important role in the dynamics.

The important thing to notice is that for given initial prevalence I we can reach both of
the stable equilibria. This makes the initial conditions useless in evaluating the eradication
effort in the presence of backward bifurcations. This is in contrast to the situation in the case
without such bifurcations.

Since α and µ are the removal and birth/death rate respectively, we fix them in all cal-
culations (the length of the infectious period ”1/(α + µ)” is fixed). Hence the variability can
occur with respect to both r and β. We considered three different points of (β, r) namely
(3.5, 2), (14, 2) and (2, 7). They belong to the three areas in the (R0, r)-plane in figure 3.2 and
are representative for the different behaviour of the solutions in the three areas of the (R0, r)-
plane.

The importance of using ternary triangles here is that we can immediately see the dynamics
of the three components simultaneously and the local and global attractors. In Fig. 3.9 for
example we notice that if we start anywhere, then a sudden decrease in both S0 and I accompa-
nied by a sudden increase in S1 occurs and then S0 increases again with a decrease in S1 where
I seems to be very close to zero. However, in Fig. 3.10 we notice that if we start anywhere,
then there are three types of behaviour depending on the value of the episode reproduction
number Re. If Re < 1, then both S0 and I decrease while S1 increases till reaching the global
attractor. If 1 < Re < R0, then both I and S1 increase while S0 decreases till reaching the
global attractor. If R0 < Re, then I always increases while both S0 and S1 change to reach the
equilibrium. Finally, Fig. 3.11 shows a behaviour which combines the previous two types of
behaviour.

3.6 Discussion

Several authors noted before that for models with backward bifurcation, the basic reproduction
number can no longer be used as an indicator of the eradication effort([5], [14], [24], [36], [37],
[54], [55], [56], [69], [74], and [75]). In the present chapter, we provide for the first time a
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method to determine the eradication effort for models with backward bifurcation. It can be
estimated from the composition of the population at the endemic equilibrium. We generalize
the notion of the basic reproduction number for an arbitrary composition of the population in
order to determine those initial conditions at which the episode reproduction number equals the
eradication effort. In all models without backward bifurcation, the basic reproduction number
is evaluated at the infection free equilibrium (i.e. at the IFE the episode reproduction number
coincides with the basic reproduction number). At this point, R0 represents the maximum re-
production number. In the present model with backward bifurcation the generalization of the
basic reproduction number is not unique because it is ambiguous what one should call a new
case: each time someone gets infected with the agent or only the infections of naive susceptible
without infection history for that agent. In the infection free equilibrium both concepts (the
episode reproduction number Re and the case reproduction number Rc) are indistinguishable
from the basic reproduction number R0. We have seen, however, that for a model with back-
ward bifurcation the two concepts (Re and Rc) are only identical along a hyperbolic curve.
Outside this curve, they behave in opposite directions: for increasing proportion of susceptible
with previous infections the episode reproduction number increases whereas the case reproduc-
tion number decreases. It therefore does not help to take the maximum of the two reproduction
numbers like in the models without backward bifurcation, because these maxima occur at op-
posite ends of the proportion of susceptible with primary infections. One cannot even take the
maximum of the reproduction numbers where both concepts agree with each other, because
then the eradication effort would be overestimated. There are exactly two compositions of the
population where both concepts agree with each other and with the eradication effort. They
are connected by a straight line which goes through the critical composition of the population
which yields the smallest positive endemic level if we decrease the contact rate. Since epidemics
do not start in general in these states, this insight is only of theoretical use. If R0 < 1, then one
infective introduced into a large fully susceptible population without past infections would not
trigger an epidemic at all. In order to reach a positive equilibrium, either the initial proportion
of susceptible with past infections would have to be above a certain threshold or the initial
number of infectives would have to be sufficiently high. In practice, one usually does not know
the state of the population at the beginning of an epidemic. By the time, epidemiologists arrive
to study the epidemic it is too late to determine the initial state.

Formula (3.11) defines the relative susceptibility r in terms of the three equilibrium propor-
tions S̄0, S̄1 and Ī and the model parameters µ and α. If we know these five quantities we can
estimate r and then we substitute in equation (3.10) to get the necessary eradication effort R.
The importance of this formula is that it does not depend on the contact rate β. Hence we
conclude that the new formula (3.10) is relevant for stable endemic states.

Our approach is applicable to the whole class of compartmental models with backward bi-
furcation. It has been applied successfully to simple and complicated models like those in [37],
[40], [44], [68], and [74].
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Figure 4.1: Compartmental diagram for the model.

4 A simple SIS endemic model with vaccination and backward bifurcation

In this chapter, I would like to introduce a more general, but still simple, model in which one
sees the backward bifurcation phenomenon. It is a simple SIS model with vaccination leading to
incomplete immunity. The aim of the vaccination is to immunize the organism. In other words,
the body of the organism acquires some protection through vaccination against certain diseases.
There are two types of vaccinations, passive vaccination and active vaccination. In a passive
vaccination, the body receives antibodies against a specific disease. Passive vaccination can
be applied if there is an immediate threat of becoming infected, or, on the public health level,
of an epidemic. In the latter case, campaigns work extensively to vaccinate the population.
In an active vaccination, we inject antigens in the form of attenuated or killed germs or parts
of it into the body immediately after birth. In this way, the body produces the antibodies
actively. Therefore, the body gets a specific and long-lasting protection. I will consider the two
cases when we immediately vaccinate after birth and when there is some delay until getting
vaccinated and the difference I would like to discuss.

Passive vaccination Problem

4.1 Construction of the model

We subdivide the total population into three categories. The first is that of susceptible S,
individuals being able to contract the infection. The second is that of vaccinated V , individuals
who were susceptible and received a vaccine. The last is that of infected I, individuals being
able to transmit the infection to others. Individuals are supposed to be born susceptible with
birth rate µ. Susceptible individuals can either die with death rate µ, be vaccinated with
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vaccination rate ψ but with imperfect vaccine, or be infected with force of infection βI deduced
from a law similar to that of mass action in chemistry, where β is the successful contact rate
between S and I individuals and is the product of two quantities (the number of contacts per
unit of time and the probability of success of a contact). Vaccinated individuals can either
die with death rate µ or be infected with force of infection rβI, different from the previous
one, where r denotes the relative susceptibility of individuals in the compartment V to those
in the compartment S and is the ratio between the probability of successful contact between
individuals in V and I to the probability of successful contact between individuals in S and I.
If r < 1, the vaccine gives partial protection. If it is bigger than one, this can be interpreted as
immnosuppression. Infected individuals can either die with per capita death rate µ or recover
without immunity to be susceptible again with removal rate α. This is shown in figure 4.1.

4.2 The model

The mathematical representation of the model is

Ṡ = µ(S + V + I) + αI − (βI + ψ + µ)S,

V̇ = ψS − (rβI + µ)V, (4.1)

İ = β (S + rV ) I − (α + µ)I,

1 = S + V + I,

where the dot means derivative with respect to time. If r = 0, the model is reduced to an SIS
with perfect vaccination. If 0 < r < 1, the vaccine gives partial protection. The case r > 1
corresponds to immuno-suppression.

4.3 Stationary states

The importance of mathematically modeling a biological phenomenon is that it allows to pre-
dict the behaviour of compartments after long time such that the trajectory has reached the
global attractor. In many concrete examples it reaches a stationary point. Therefore we first
discuss stationary points by setting the time derivatives equal to zero which gives the system
of equations

0 = µ+ αĪ −
(

βĪ + ψ + µ
)

S̄,

0 = ψS̄ −
(

rβĪ + µ
)

V̄ , (4.2)

0 = β
(

S̄ + rV̄
)

Ī − (α+ µ)Ī

1 = S̄ + V̄ + Ī .

The uninfected solution is given by

(S̄, V̄ , Ī) =

(

µ

µ+ ψ
,

ψ

µ+ ψ
, 0

)

.
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4.4 Reproduction numbers

The basic reproduction number R0

The basic reproduction number is the expected number of secondary cases produced by one
case when it is introduced into a totally susceptible population. Mathematically it is

R0 =
β

α + µ

(

µ

µ+ ψ
+ r

ψ

µ+ ψ

)

. (4.3)

It is the product of three quantities: The successful contact rate between susceptible individuals
and infected, the length of the infectious period, and a third quantity representing the sum of
two terms. One of these two is the proportion of susceptible in an infection free population and
the other is the relative susceptibility of vaccinated to susceptible times the endemic propor-
tion of vaccinated individuals in a population which is free from the infection. Another way to
interpret the basic reproduction number in (4.3) is to explain it as the sum of two reproduction
numbers. One is the basic reproduction number for a population consisting entirely of suscep-
tible and the other is the basic reproduction number for an entirely vaccinated population. A
third way to interpret R0 is to say, it is the ratio between the successful contact rate β and
the zero successful contact rate, say β0, where β0 means the successful contact rate when the
endemic prevalence of infected falls down to be zero. This will be explained later on.

The episode reproduction number Re

The episode reproduction number is the expected number of secondary episodes produced by
one episode when the sub-populations are given by the fractions (S, V, I). It is given by

Re =
β

α + µ
(S + rV ) (4.4)

From the third equation in (4.1) we notice that the episode reproduction equals one in the
steady state. If Re > 1, then I initially increases while if Re < 1 it initially decreases. When
the population is totally susceptible, the basic reproduction number coincides with the episode
reproduction number.

4.5 Bifurcation equation

We want a simple characterization of the infected stationary solutions. In (4.2) we assume
I 6= 0 and we eliminate the variables S and V . Then we arrive at a scalar equation for the
variable Ī

0 = F (β, Ī) = rβ2Ī2 + (µ+ r(α + µ+ ψ − β))βĪ + (µ+ ψ)(µ+ α) − β(µ+ rψ) (4.5)

which can be seen as a bifurcation equation. Once a solution Ī > 0 of this equation has been
obtained, we find positive V and S from the other equations. Hence we have a one-to-one
correspondence between the positive solutions of (4.5) and the infected stationary points.
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Figure 4.2: The (r, β)-plane is subdivided into three regions according to the number of positive
endemic equilibria in addition to the infection free equilibrium (IFE) a region has. The dashed
dotted line separates between nonexistence and existence of positive stationary states. We see
here three regions. Each one has a number representing the number of positive equilibrium
points. If β > β0 (i.e. above the solid curve), there is a unique endemic equilibrium in addition
to the IFE. In this region, the latter is not stable whereas the first is globally asymptotically
stable. In the region denoted by 2, there are two positive stationary solutions in addition to
the IFE. Both the IFE and the bigger positive endemic equilibrium are locally asymptotically
stable while the third, lying in between, is unstable. The unstable one is sometimes called the
breakpoint. Plotting has been performed with parameter values α = 10 per year, µ = 0.015
per year, and ψ = 0.2 per year.

We keep the parameters µ, α, ψ and r fixed and discuss the equation in terms of β and
Ī. Eventually we are interested in the solutions Ī for a given value of β and in the global
dependence of Ī depending on β.

The function F is a polynomial of order four in two variables β and Ī. Now we describe
qualitative features of the null set. For fixed β, the polynomial is quadratic in Ī and hence
there are at most two solutions Ī. For fixed Ī, the polynomial is quadratic in β and hence there
are at most two solutions β. For β = 0 there are no solutions. For large β, i.e., |β| → ∞, the
asymptotes are Ī ∼ 0 and Ī ∼ 1. For Ī = 0, the only solution is positive, β = β0.

Hence the curve described by F (β, Ī) = 0 has at least two branches, one in β > 0 and one in
β < 0. There are only two branches because otherwise there would be more than two solutions
for some given Ī. The negative branch looks like a hairpin in 0 < Ī < 1 with asymptotes 0
and 1, the positive branch is another hairpin which is asymptotic to 1 from below and also
asymptotic to 0 from below. It crosses the β axis at Ī = 0, β = β0 where β0 is the zero contact
rate.
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Figure 4.3: The (r, R0)-plane is subdivided into three regions according to the number of positive
endemic equilibria in addition to the infection free equilibrium (IFE) a region has. The dashed
dotted line separates between nonexistence and existence of positive stationary states. We see
here three regions. Each one has a number representing the number of positive equilibrium
points. If R0 > 1, there is a unique endemic equilibrium in addition to the IFE. In this region,
the latter is not stable whereas the first is globally asymptotically stable. In the region denoted
by 2, there are two positive stationary solutions in addition to the IFE. Both the IFE and the
bigger positive endemic equilibrium are locally asymptotically stable while the third, lying in
between, is unstable. The unstable one is sometimes called the breakpoint. Plotting has been
performed with parameter values α = 10 per year, µ = 0.015 per year, and ψ = 0.2 per year.

Definition 4.1. Zero contact rate β0

The zero contact rate β0 is the value of the contact rate at which the prevalence of infected is
zero. This is determined by solving (4.5) with respect to β when Ī = 0. Therefore

β0 =
(α+ µ)(ψ + µ)

(rψ + µ)
. (4.6)

Of course only the positive branch is of interest with respect to the epidemiological problem.

4.6 Direction of bifurcation

At β = β0, Ī = 0 we compute the direction of bifurcation:

dĪ

dβ
= −Fβ

FĪ
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whereby

Fβ |(β0,0) = −(µ + rψ) < 0,

FĪ |(β0,0) = β0[µ+ r(µ+ α + ψ) − rβ0].

Using the definition of β0, we thus find

dĪ

dβ
=

(µ+ rψ)2

β0

1

µ2 + rψ(µ− α) + r2ψ(µ+ α + ψ)
.

Hence we have a forward bifurcation if

µ2 + rψ(µ− α) + r2ψ(µ+ α + ψ) > 0 (4.7)

and a backward bifurcation if

µ2 + rψ(µ− α) + r2ψ(µ+ α + ψ) < 0. (4.8)

This condition for a backward bifurcation is not very transparent in terms of the original
epidemiological parameters. It is obvious that the conditon can be met provided r ∈ (0, 1), the
other parameters being fixed, for large α. We show the following proposition.

Proposition 4.1. The condition (4.8) for backward bifurcation is equivalent with the following
set of inequalities:

α > 3µ, (4.9)

ψ > ψc =
4µ2

α− 3µ
, (4.10)

r1 < r < r2, (4.11)

where

r1,2 =
ψ(α+ µ) ∓

√

ψ2(α− µ)2 − 4µ2ψ(α + µ+ ψ)

2ψ(α+ µ+ ψ)
. (4.12)

The inequalities (4.9), (4.10) ensure that 0 < r1 < r2 < 1.

Proof: Define
φ(r) = r2ψ(µ+ α+ ψ) + rψ(µ− α) + µ2.

Then φ(0) > 0, φ(1) > 0, φ′(0) < 0, φ′(1) > 0. Hence the minimum of φ is in (0, 1). Hence it
is sufficient to check whether φ is definite. The function φ is negative for some r if

4(µ+ α + ψ)µ2 < ψ(α− µ)2.

The rest of the proof is elementary.

2
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4.7 The critical contact rate

Once we have a backward bifurcation, the turning point of (the positive part of) the curve of
infected solutions in the (β, I)-plane has a positive I coordinate. We want to determine the
corresponding value of β which we call β?. For given β, the quadratic equation F (β, I) = 0 has
two solutions

Ī = − 1

2βr
(µ+ r(µ+ α + ψ) − rβ)

±
√

[
1

2βr
(µ+ r(µ+ α+ ψ) − rβ)]2 − (µ+ α)(µ+ ψ)

rβ2
+
µ+ rψ

rβ
.

At β = β? the two solutions coalesce, the radicand vanishes. From this condition we obtain β?

as

β? =
1

r

(

(

√

(1 − r)ψ +
√

r(α+ µ)
)2

− (µ+ ψ)

)

. (4.13)

The other root of the quadratic equation corresponds to the negative branch. This formula
gives the turning point of the positive branch independent of the direction of bifurcation. In
the case of a forward bifurcation the value I at the turning point is negative and hence β? > β0

has no biological meaning. However, in the case of a backward bifurcation we have β? < β0

and the corresponding value I? is positive. In this case β? is the minimal contact rate for which
there are infected stationary solutions.

Now it makes sense to extend the definition to comprise both cases and put

β? =







1
r

(

(

√

(1 − r)ψ +
√

r(α + µ)
)2

− (µ+ ψ)

)

; r1 ≤ r ≤ r2, ψc ≤ ψ, α+ µ > 4µ,

β0 ; otherwise.

(4.14)
We try to interpret these formulae in epidemiological terms. The condition 4µ < α + µ

or equivalently 1
α+µ

< 1
4µ

means that the length of the infectious period has to be less than

one fourth (a quarter of) the life expectancy at birth in the absence of infection. Whereas
ψc < ψ or equivalently 1

ψ
< 1

ψc
means that the average age of getting vaccinated, 1

ψ
, has to

be less than the product of the life expectancy at birth in the absence of infection, 1
µ
, and

another quantity representing the difference between one fourth the ratio of the life expectancy
at birth in the absence of infection to the length of the infectious period, α+µ

4µ
, and 1. The

inequality r1 < r < r2 means that the relative susceptibility of vaccinated individuals lies in an
interval (r1, r2) ⊂ (0, 1). A relative susceptibility r ∈ (0, 1) means that the vaccine gives some
protection against the infection, however multiple stationary states exist. Hence, larger effort
than reducing R0 to values slightly less than zero is required to eradicate the infection.

Definition 4.2. The critical basic reproduction number R?
0: The critical basic reproduc-

tion number is the basic reproduction number evaluated at the turning point, i.e, we replace β
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by β?. Therefore,

R?
0 =

β?

α + µ

(

µ

µ+ ψ
+ r

ψ

µ+ ψ

)

. (4.15)

Proposition 4.2.
Assume that β? is well defined, then the (r, R0)-plane is partitioned as follows:
If 0 ≤ R0 < R?

0, there is only the infection free equilibrium which is globally asymptotically
stable in this area,
If R?

0 < R0 < 1, there are two positive endemic equilibria in addition to the infection free
equilibrium. The larger of them and the IFE are locally asymptotically stable, whereas the
lower, lying in between, is unstable. If R0 = R?

0, then the two positive equilibria coincide. The
point corresponding to this is called the turning point.
If R0 ≥ 1, there is a unique positive endemic equilibrium in addition to the IFE. The IFE
is locally asymptotically unstable, whereas the positive one is globally asymptotically stable. If
R0 = 1, the lower positive endemic equilibrium is reduced to the IFE.

Figure 4.2 shows the partition of the (r, β)-plane according to the number of positive sta-
tionary states. Although r and R0 are not independent, we draw Figure 4.3 to explain the area
below R0 = 1 which has positive stationary states. I.e., reducing R0 below one is not sufficient
to eliminate the infection.

4.8 The turning point

The turning point in our notation corresponds to the point in the (β, Ī)-plane at which both
positive endemic states coincide. Therefore, the proportions of the three states at this point
are S?, V ?, and I? where

S? =

(

r

1 − r

)

(

(1 − r)(α+ µ) −
√

r(1 − r)ψ(α+ µ)

r(α+ µ) − (µ+ rψ) + 2
√

r(1 − r)ψ(α + µ)

)

V ? =

(

2(1 − r) +
r(α + µ) − (µ+ rψ)
√

r(1 − r)ψ(α + µ)

)−1

(4.16)

I? =
−(µ+ rψ) +

√

r(1 − r)ψ(α+ µ)

r(α + µ) − (µ+ rψ) + 2
√

r(1 − r)ψ(α + µ)

As a function of the relative susceptibility, r, the critical prevalence of infected, I?, starts
with zero prevalence for all r ∈ [0, r1] and then it increases to reach a maximum at r = rmaxI

where

rmaxI =
µ
(

√

µ(α+ µ) +
√

µ(α + µ) − ψ(α + ψ + 2µ)
)2

+ µψ(2(α+ ψ) + 5µ)

4µ2(α + µ) + ψ(α + ψ + 3µ)2
(4.17)

then it decreases again to zero when r = r2. On the other hand, the critical proportion of
vaccinated individuals starts with level ψ

µ+ψ
at r = r1 and it decreases to reach a minimum at
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Figure 4.4: In this figure we show the components of the turning point as functions of the
relative in susceptibility of individuals in compartment V to those in compartment S. Let us
stick ourselves to the interval [r1, r2] in which there is a possibility to get multiple stationary
solutions. At r = r1, the prevalence of infected at the turning point, I?, is zero while the
proportion of susceptible and vaccinated are respectively µ

µ+ψ
and ψ

µ+ψ
, i.e., a totally susceptible

population. With the increase of the relative susceptibility r, the prevalence of infected increases
till reaching a maximum at r = rmaxI and then it decreases again to reach zero when r = r2.
However, the proportion of susceptible at the turning point, S?, increases slowly till reaching
a maximum at r = rmaxs and then it decreases again to reach µ

µ+ψ
when r = r2 whereas the

proportion of vaccinated at the turning point decreases to reach a minimum at r = rminV and
then it increases again to reach ψ

µ+ψ
when r = r2. This is explained in the part (b) of the

current figure. The right part is an enlarged part of the figure (a). Calculations have been
performed with parameter values α = 10 per year, µ = 0.015 per year, and ψ = 0.1 per year.

r = rminV , where rminV is the feasible solution of the nonlinear algebraic equation

4r(1 − r)
√

r(1 − r)ψ(α+ µ) − µ(1 − r) − r(α− ψ) = 0.

By the feasible solution, I mean a value of r ∈ (r1, r2). In a similar way, one can evaluate the
relative susceptibility corresponding to dS?

dr
= 0 and notice that the solution of this algebraic

equation is exactly the value of r ∈ (r1, r2) at which the critical proportion of susceptible has
its maximum. An explanation of this is shown in figure 4.4.

In figure 4.5 we show how this point, the turning point, behaves in a ternary plot. The
ternary plot is presented by this triangle with S, I, and V as its vertices. They are set in a
counterclockwise direction as shown on the figure. We notice that the turning point moves on
a closed path. It starts its trip when r = r1 at a point on the horizontal. This position on the
horizontal corresponds to the infection free equilibrium and is denoted by E0. As r increases
from r1 on, both I? and S? increase whereas V ? decreases until I? reaches a maximum. After
that, both I? and V ? decrease whereas S? continues to increase until S? reaches a maximum
and V ? reaches a minimum. After that, V ? increases again and both S? and I? decrease again
to reach their levels in the infection free equilibrium at r = r2. Therefore, the trip starts and
ends at the infection free equilibrium.
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Figure 4.5: The turning point is drawn in the ternary plot for several values of the relative
susceptibility r in the interval [r1, r2]. The turning point moves on a closed curve starting the
trip from the point E0 representing the initial free equilibrium when r = r1. With the increase
of r, it moves clock wisely on the closed curve. This movement is described as follows. First V ?

decreases while both S? and I? increase whereinto I? reaches a maximum at r = rmaxI . Then,
S? continues to increase whereas both I? and V ? decrease until S? reaches a maximum at
r = rmaxS . After that, V ? increases while both S? and I? decrease until V ? reaches its maximum
again with maximum ψ

µ+ψ
. This occurs when r = r2 at which the turning point coincides with

the infection free equilibrium. Calculations have been performed with parameter values α = 10
per year, µ = 0.015 per year, and ψ = 0.1 per year.

4.9 The eradication effort R
We claim that R = β

β? can be interpreted as a reproduction number. For this purpose, we
consider the episode reproduction number and evaluate it at the turning point. Therefore, we
need to evaluate Re(β, S

?, V ?). Since

S? + rV ? =
r(α+ µ)

(

√

(1 − r)ψ +
√

r(α + µ)
)2

− (µ+ ψ)

=
α + µ

β?
(4.18)

Hence,

R = Re(β, S
?, V ?) =

β

β?
(4.19)
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Figure 4.6: The compartments S, I, and V are represented here in terms of a ternary plot.
They are set in a counterclockwise direction. Here we show the contour lines for the episode
reproduction number Re when it equals some constant times the basic reproduction number R0.

We notice that the contour lines are straight lines with slope (1−r)
√

3
1+r

. If r < 1, then the contour
lines tangent to the right as in this figure. This is the case of interest now. The dashed line
corresponds to an Re = R0. This line passes through the IFE. The continuous line corresponds
to an Re = 1 and passes through the two positive endemic equilibria. The dashed dotted line
corresponds to an Re = β

β? and passes through the turning point (The point at which both

positive stationary states coincide). Calculations have been performed with parameter values
β = 13 per year, r = 0.6, α = 10 per year, µ = 0.015 per year, and ψ = 0.1 per year.

An explanation of this is shown in figure 4.6. There, we draw the contour lines for the episode
reproduction number in the ternary plot. The contour lines correspond to an Re equal to a
constant times the basic reproduction number R0. Therefore, they are all parallel and their

tangent is (1−r)
√

3
1+r

. These contour lines are represented by the straight dotted lines. The first
but high line corresponds to an Re = 0.1R0. Then we continue increasing the constant by
step 0.1. The dashed line corresponds to an Re = R0 and it passes through the infection free
equilibrium, E0. The continuous contour line corresponds to an Re = 1 and it passes through
the two positive equilibria, E+ and E−. The dashed dotted line represents the contour line for
an Re = R = β

β? and it goes through the point corresponding to the turning point, E?.

Proposition 4.3. The ratio between the contact rate β and the critical contact rate β? at
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Figure 4.7: This figure shows the trajectories in the ternary plot for parameter values corre-
sponding to the area in which the infection free equilibrium is globally asymptotically stable.
If we start anywhere, a sudden decrease in the prevalence of infected accompanied by a sudden
increase in the proportion of susceptible occurs. Thereon, an increase in the proportion of
vaccinated accompanied by a decrease in the proportion of susceptible occurs. Calculations
have been performed for parameter values R0 = 0.1 (β = 28.33 per year), r = 0.01, α = 10,
per year µ = 0.015 per year, and ψ = 0.1 per year.

equilibrium is given by

β

β?
=















1
S̄+rV̄

(

r(α+µ)�√
(1−r)ψ+

√
r(α+µ)

�2

−(µ+ψ)

)

; r1 ≤ r ≤ r2, ψc ≤ ψ, α + µ > 4µ,

1
S̄+rV̄

(

µ
µ+ψ

+ r ψ
µ+ψ

)

; otherwise

(4.20)

where the ratio r is determined from the relation

r =
S̄

V̄

(

(µ+ α)Ī

(µ+ α)Ī − ψS̄ + µV̄
− 1

)

. (4.21)

The importance of (4.20) is that it does not explicitly depend on the contact rate β. If
we know the composition of the population at equilibrium in addition to the life expectancy
at birth in the absence of infection 1/µ, the length of the infectious period 1/(α + µ), and
the average age of getting vaccinated 1/ψ, then we can use (4.21) to determine the relative
susceptibility r and hence by (4.20) we estimate the eradication effort R = β/β?.
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Figure 4.8: Here we show the trajectories for parameter values β = 19 per year, r = 0.3,
α = 10 per year, µ = 0.015 per year, and ψ = 0.025 per year. These values correspond to
the area in which there is a unique positive endemic state in addition to the IFE. If Re < R0,
a sudden increase in the proportion of susceptible accompanied by sudden decrease in both
the prevalence of infected and that of vaccinated. Thereon, a decrease in the proportion of
vaccinated individuals and increase in the other two proportions occurs to get to the equilibrium.
However, ifRe > R0, a decrease in the proportion of susceptible accompanied with an increase in
the proportion of vaccinated occurs. After that, both the proportions of susceptible and infected
increase, whereas the proportion of vaccinated individuals declines. All solutions approach the
endemic state which is globally asymptotically stable in this area. Therefore E+ is the attractor.

4.10 Transient behaviour

Since analytical solutions to model (4.1) are impossible, numerical simulations have been per-
formed. Figure (4.7) shows the trajectories in the ternary plot for parameter values corre-
sponding to the area in which the infection free equilibrium is globally asymptotically stable.
A description of the behaviour is mentioned in the legend of the figure.

If we solve the system (4.1) with parameter values for which there is a unique endemic
equilibrium in addition to the infection free equilibrium, we get a dramatic behaviour. The
prevalence of infected can initially decrease and then increase again to reach the equilibrium or
it can uniformly increase to reach the equilibrium. This is shown and explained in figure 4.8.

Figure (4.9) shows the trajectories with parameter values for which there are two positive
stationary states in addition to the IFE. The higher stationary state, denoted by E+, as well
as the infection free equilibrium, denoted by E0, is locally asymptotically stable whereas the
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Figure 4.9: This figure shows the trajectories when there are two positive stationary solutions
in addition to the infection free equilibrium.

lower positive stationary state, denoted by E−, is unstable. The dashed straight line going
through the IFE E0 represents the contour line for Re = R0. However, the continuous straight
line passing through both the positive equilibria, E+ and E−, represents the line for an Re = 1.
The point denoted by E? represents the turning point and is represented by this star in the
right corner. The dotted line coming down from the left and passing through the unstable
equilibrium, E−, represents the separatrix. By the separatrix we mean the line separating
the domain of attraction of both the stable states, E0 and E+. If we are in the domain of
attraction of the IFE, an increase in the proportion of susceptible occurs whereas a sudden
decrease in the prevalence of infected occurs until it reaches zero. After that, there are two
cases. Either it reaches zero on the left of E0 (in this case, the proportion of susceptible
increases while the proportion of vaccinated increases to reach the IFE) or it reaches zero on
the right of E0 (in this case, a decrease in the proportion of susceptible accompanied by an
increase in the proportion of vaccinated individuals occurs). On the other hand, if we start
somewhere in the domain of attraction of the stable positive endemic state, there are two cases.
Either Re < 1 (in this case, the proportion of susceptible increases to reach some level while
both the proportions of vaccinated and infected decrease. The decline in the infected is much
faster. After that, the prevalence of infected increases until reaching the locally asymptotically
stable equilibrium E+.), or Re > 1 (in this case, an increase in both proportions of infected
and vaccinated individuals occurs whereas the proportion of susceptible declines till some level.
Then, the proportion of vaccinated individuals declines, while both proportions of susceptible
and infected occur till reaching the stable equilibrium). Calculations have been performed with

87



10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

r
β

1

0

2

 r = r
1

 r = r
2

r = r
3

 r = r
4

Figure 4.10: The bifurcation diagram in the (r, β)-plane for both cases, linear and nonlinear
incidence. Simulations have been performed with parameter values α = 10 per year, µ = 0.015
per year, and ψ = 0.2 per year. The plane is subdivided into three areas according to the
number of positive endemic states an area has. If β > β0 (area above the dashed-dotted line),
There is a unique endemic state in addition to the IFE. The first is globally asymptotically
stable whereas the later is unstable in this area. If β < β0 (area below the horizontal dashed-
dotted line), we have an area which is subdivided into two areas. One of them has two positive
stationary states and the other has no positive endemic state in addition to the IFE. Both
the IFE and the higher positive stationary state are locally asymptotically stable, whereas the
lower positive one lies in between and is unstable. The bounds of the one containing two are
as follows: from the left and right we respectively have r = r1 and r = r2, from above we
have β = β0, and from down we have a curve denoted by β? (the dashed (nonlinear incidence)
or the continuous (linear incidence)). The area in which there are multiple stationary states
shrinks if we consider nonlinear incidence. r1 gets bigger (to coincide with r3) while r2 gets
smaller (to coincide with r4), and β? gets higher whereas β0 is fixed. The rest of the area below
β = β0 represents the area in which there is no positive stationary state but the IFE is globally
asymptotically stable.

parameter values β = 17 per year, r = 0.1, α = 10 per year, µ = 0.015 per year, and ψ = 0.025
per year.

4.11 Effect of nonlinear incidence

In this section we would like to look at the problem from another point of view. We would
like to investigate how the results change with nonlinear incidence of the infection and try to
compare this with the linear one. Liu et al. [61, 62] proposed models that incorporate nonlinear

incidence rates of the form κIl

(1+αIh)
with positive parameters κ, l, α, and h. Here we assume that

l = h = α = 1. Thus the force of infection affecting susceptible is κI
1+I

. In our notation, it is
βI

1+I
where β = rsκ1. κ1 represents the number of contacts per unit of time that an infected

individual makes with susceptible, and rs represents the probability of success that a contact
leads to infection. Thus β is the successful contact rate between infected and susceptible.
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Figure 4.11: The bifurcation diagram in the (r, R0)-plane for both cases, linear and nonlinear
incidence. Simulations have been performed with parameter values α = 10 per year, µ = 0.015
per year, and ψ = 0.2 per year. The plane is subdivided into three areas according to the
number of positive endemic state an area has. If R0 > 1 (area above the horizontal dashed-
dotted line), There is a unique endemic state in addition to the IFE. The first is globally
asymptotically stable whereas the later is unstable in this area. If R0 < 1 (area below the
horizontal dashed-dotted line), we have an area which is subdivided into two areas. One of
them has two positive stationary states and the other has no positive endemic state in addition
to the IFE. Both the IFE and the higher positive stationary state are locally asymptotically
stable, whereas the lower positive one lies in between and is unstable. The bounds of the one
containing two are as follows: from the left and right we respectively have r = r1 and r = r2,
from above we have R0 = 1, and from down we have a curve denoted by R?

0 (the dashed
(nonlinear incidence) or the continuous (linear incidence)). The area in which there multiple
stationary states shrinks if we consider nonlinear incidence. r1 gets bigger while r2 gets smaller,
and R?

0 gets higher whereas R0 is fixed. The rest of the area below R0 = 1 represents the area
in which there is no positive stationary state but the IFE is globally asymptotically stable.

The model
The model reads

Ṡ = µ−
(

β
I

1 + I
+ ψ + µ

)

S + αI,

V̇ = ψS −
(

rβ
I

1 + I
+ µ

)

V, (4.22)

İ = (S + rV )β
I

1 + I
− (α + µ)I

1 = S + V + I.
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Figure 4.12: The ternary plot shows the contour lines for the episode reproduction number,
the contour lines for Re = R0, Re = 1, and Re = R = β

β? the equilibria (E0, E
−, and E+) , and

the point corresponding to the turning point (E?). All contour lines are parallel and have the

same tangent (1−r)
√

3
1+r

. The contour line Re = R = β
β? goes through the point E?. Calculations

have been done with parameter values α = 10 per year, µ = 0.015 per year, β = 13 per year,
r = 0.6, ψ = 0.1 per year.

The infection free equilibrium remains the same, whereas the bifurcation equation reads

0 = F (I) = ((ψ + µ)(α + µ+ rβ) + β(µ+ r(α + β))) I2

+ (2(ψ + µ)(α+ µ) + rβ(α+ µ− rβ)) I

+ (ψ + µ)(α + µ) − β(µ+ rψ) (4.23)

Both the zero contact rate β0 and the basic reproduction number R0 remain the same, whereas
the episode reproduction number reads

Re =
β(S + rV )

(α+ µ)(1 + I)
(4.24)

The critical contact rate β?1 turns out to be

β? =







1
r

(

(

√

r(α + µ) +
√

2(1 − r)ψ
)2

− 2(ψ + µ)

)

; r3 ≤ r ≤ r4, ψcn ≤ ψ, α + µ > 8µ,

β0 ; otherwise

(4.25)
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Figure 4.13: Bifurcation diagram for the model if we consider active vaccination (i.e., we
vaccinate immediately after birth). There are two main areas (either β > β0, this corresponds
to the area in which there is a unique endemic equilibrium in addition to the infection free
equilibrium, or β < β0 (this area is subdivided into two areas, one with two positive steady
states and the other without)). The numbers 0, 2, and 1 on the figure represent the number of
positive stationary states in the corresponding areas. Simulations have been performed With
parameter values α = 10 per year, µ = 0.015 per year, and p = 0.3.

where

ψcn
µ

=

(

−1 +
α + µ

8µ

)−1

r3,4 =
1

2

(

1 +
2ψ

α + µ

)−1
(

(

1 − 4µ

α + µ

)

∓
√

1 − 8µ

α+ µ

(

1 +
µ

ψ

)

)

(4.26)

The first condition, α + µ > 8µ means that the length of the infectious period must be less
than one eighth the life expectancy at birth in the absence of infection, whereas the condition
ψ > ψcn or equivalently, µ

ψ
< µ

ψcn
means that the proportion of the life expectancy at birth in

the absence of infection spent until getting vaccinated is less than minus one plus one eighth
the ratio between the life expectancy at birth in the absence of infection and the length of the
infectious period.

The bifurcation diagram is explained in figures 4.11 and 4.10. Details are given in the
legends.

If we substitute the components of the turning point in the formula for the episode re-
production number defined in (4.24), we get that Re = R = β

β? . The contour lines for the
episode reproduction number, the stationary states, the line Re = R0, the line Re = 1, the
point corresponding to the turning point, and the line Re = β

β? are shown in figure 4.12.
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Figure 4.14: Bifurcation diagram for the model if we consider active vaccination (i.e., we
vaccinate immediately after birth). There are two main areas (either R0 > 1, this corresponds
to the area in which there is a unique endemic equilibrium in addition to the infection free
equilibrium, or R0 < 1 (this area is subdivided into two areas, one with two positive steady
states and the other without)). The numbers 0, 2, and 1 on the figure represent the number of
positive stationary states in the corresponding areas. Simulations have been performed With
parameter values α = 10 per year, µ = 0.015 per year, and three times for p. p = 0.3 (the
dashed), p = 0.5 (the continuous), and p = 0.8 (the dashed-dotted). We notice that the
area of multiple stationary states extends with the increase of the proportion of children being
vaccinated immediately after birth.

4.12 Active vaccination problem

Here, we assume that the vaccination will be given immediately after birth to a proportion p
of the newborns. Therefore, the model reads:

Ṡ = (1 − p)µ− (µ+ βI)S + αI,

V̇ = pµ− (µ+ rβI)V, (4.27)

İ = β(S + rV )I − (α + µ)I.

The infection free equilibrium is E0 = (1 − p, p, 0).
The bifurcation equation is

0 = F (I) = r(βI)2 + (µ+ r(α + µ− β))βI + µ(α + µ− (1 − p+ rp)β). (4.28)

The zero contact rate is

β0 =
α + µ

1 − p+ rp
(4.29)

whereas the basic reproduction number is

R0 =
β

β0

=
β((1 − p) + rp)

α + µ
. (4.30)
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Figure 4.15: The coordinates corresponding to the components of the turning point as functions
of the relative susceptibility of vaccinated individuals to susceptible. The critical prevalence
of infected I? starts at zero when r = r5 and initially increases till reaching a maximum when
r = rmax2I and then it decreases again to reach zero when r = r6. However, while the critical
proportion of susceptible S? increases from (1−p) at r = r5, the critical proportion of vaccinated
individuals V ? decreases from p until S? reaches a maximum at which V ? reaches its minimum
and thereon S?(V ?) decreases (increases) to reach again the level corresponding to the IFE at
r = r6. Simulations have been performed with parameter values α = 10 per year, µ = 0.015
per year, p = 0.4.

The critical contact rate is

β? =







1
r

(

√

(1 − r)pµ+
√

rα− (1 − p)(1 − r)µ
)2

; 0 < r5 ≤ r ≤ r6 < 1, p > pc,

β0 ; otherwise
(4.31)

where

pc = 4

(

µ

α + µ

)(

1 +
µ

α + µ

)−2

r5,6 =
1

2





(

1 − µ

α + µ

)

∓

√

(

1 +
µ

α + µ

)2

− 4

p

µ

(α+ µ)



. (4.32)

This means that the vaccination ratio, p, has to be greater than a critical ratio, pc. This critical
vaccination ratio depends mainly on the ratio between the length of the infectious period to
the life expectancy at birth in the absence of infection.

The bifurcation diagram is shown in figures 4.13 and 4.14. Details are given in the legends.
The critical contact rate depends on the vaccination ratio, p. Extending the vaccination ratio
extends the area in which multiple endemic equilibria exist.

93



S*

V *

I* 

p = 0.8

p = 0.4

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

Figure 4.16: The representation of the turning point in the ternary plot for α = 10 per year,
µ = 0.015 per year, and two values of p (p = 0.4 and p = 0.8) and for r5 ≤ r ≤ r6. The
turning point moves on a closed curve. The trip starts at the infection free equilibrium when
r = r5 in a clockwise direction and ends at the infection free equilibrium when r = r6. An
initial but quick increase in the critical prevalence of infected I? occurs, while a slower increase
(decrease) in the critical proportion of susceptible S? (vaccinated individuals V ?) occurs. This
quick increase in I? happens till it reaches a maximum when r = rmax2I . Then, I? starts to
decrease while S? (V ?) continues to increase (decrease) until reaching a maximum (minimum).
Thereon, S? (V ?) decreases (increases) again while I? continues to decrease until reaching the
position corresponding to the infection free equilibrium. In the figure we see two closed curves,
each of them corresponds to a value of the proportion of immediately vaccinated children after
birth. The one within corresponds to p = 0.4 while the outer one corresponds to p = 0.8.
This means that the closed path extends with the extension in the proportion of vaccinated
individuals.

The coordinates of the point corresponding to the turning point are

I?1 =
1

2






1 − µ+ r(α + µ)

(

√

(1 − r)pµ+
√

rα− (1 − p)(1 − r)µ
)2







S?1 =
r

2(1 − r)






1 +

α+ (1 − r)(α+ µ)
(

√

(1 − r)pµ+
√

rα− (1 − p)(1 − r)µ
)2






(4.33)

V ?
1 = 1 − (S? + I?)

As functions of the relative susceptibility r, the components corresponding to the turning
point are shown in figure 4.15. A ternary plot containing the correspondence to the turning
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Figure 4.17: The contour lines for the episode reproduction number in the ternary plot. They

are all parallel and have the same tangent (1−r)
√

3
1+r

. The line Re = 1 goes through the two positive
equilibria, E− and E+. The line Re = R0 goes through the infection free equilibrium, E0. The
line Re = β

β? goes through the point corresponding to the turning point, E?. Simulations have
been performed with parameter values β = 11 per year, r = 0.6, α = 10 per year, µ = 0.015
per year, and p = 0.6.

point for values of r ∈ [r5, r6] is shown in figure 4.16.
The episode reproduction number, Re, is

Re(β, S, V ) =
β(S + rV )

α + µ
(4.34)

We notice that

Re(β, S
?
1 , V

?
1 ) =

β

β?
(4.35)

Figure (4.17) shows the contour lines for the episode reproduction number and the equilibria.
It also shows that the contour line Re = β

β? goes through the point corresponding to the turning

point. Hence, R = β
β? is a reproduction number.

4.13 Discussion and conclusion

In this chapter we introduced a simple SIS epidemic model with vaccination which gives partial
immunity against the infection. However, we considered the model in three different cases. In
the first two cases we consider linear incidence deduced from a law similar to that of mass action
and nonlinear incidence of Holling-type II both with vaccination given sometime after birth. In
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Figure 4.18: This figure consists of four parts with different values of the vaccination rate ψ.
Each part shows the minimum effort required to eradicate the infection R for different values
of the relative susceptibility r in each part and the basic reproduction number for the model if
we consider no vaccination. Simulations have been done for parameter values α = 10 ber year,
µ = 0.015 per year, and different values for the relative susceptibility r. r = 0.0490 (the dashed
dotted line), r = 0.1467 (the dotted line), and r = 0.7819 for the broken (dashed) line. The
solid line in each part of the figure represents the basic reproduction number if we consider no
vaccination R00 = β/(α + µ). The remaining three lines in each part represent the minimum
effort R for the different values of r. With the increase of the vaccination rate ψ, the minimum
effort decreases. On the contrary, the minimum effort increases with increase of r. We notice
that the minimum effort R is always less than the basic reproduction number if we consider no
vaccination.

the third case we consider linear incidence but the vaccination is given immediately after birth
for a proportion p of the newborns. The first thing that I would like to discuss is the problem
of vaccination. If we do not vaccinate, then there is no backward bifurcation. Therefore the
effort required to eliminate the infection is simply to reduce the basic reproduction number in
case of no vaccination R0 = β/(α+ µ) to values slightly less than one. However if we consider
the model with vaccination, the basic reproduction number differs. Let us stick now to the first
model in this chapter which considers linear incidence with delayed vaccination and is defined
in system (4.1) and similar discussion is correct for the remaining two models in the chapter.
For this model the basic reproduction number is given by formula (4.3) and the model ensures
the existence of multiple stationary states. However if we reduce R0 in (4.3) to values slightly
less than one, the infection can not be eradicated. Therefore, we need to estimate another
quantity which achieves our goal. This is what we introduced in (4.19) and it is bigger than
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R0 in (4.3). However this new but big quantity is still smaller than the basic reproduction
number for a model with no vaccination R0 = β/(α + µ). In figure 4.18 we draw both R0

and R in different cases. First of all the figure has four parts corresponding to four different
values of the vaccination rate ψ as explained in each part. Then each part has a solid straight
line representing R00 and three other lines corresponding to R for three different values of the
relative susceptibility r. We notice that R is always less than R00 and with increasing ψ, R
decreases.

The second thing I would like to discuss is the area in which multiple stationary states are
possible. Figure (4.11) shows simply that the area in which backward bifurcation is possible
shrinks under the effect of nonlinear incidence. This means that if we neglect the nonlinearity,
then we are on the safe side but we simply give more effort.

If we vaccinate immediately after birth, then backward bifurcation is possible to occur under
some conditions as explained in section (4.12).
For all cases, we deduce that R = β/β? is interpreted as a reproduction number.

Therefore we conclude that the earlier the administration of the vaccination is, the smaller
the eradication effort is. Also, the more the efficiency of the vaccine (i.e., the less the value of
r), the less the eradication effort of the infection.
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Figure 5.1: Compartmental diagram for the model.

5 A core group model for disease transmission revisited

In this chapter, I would like to reformulate the model of Hadeler and Castillo-Chavez in 1995
and study it.

5.1 Construction of the model

The total population is subdivided into three categories: Susceptible of type one S1, susceptible
of type two S2, and infected. Infected individuals are those being able to transmit the infection.
However, to recognize susceptible we perform a test for the level of antibodies. Individuals with
normal range levels are categorized to the susceptible of type one compartment, whereas the rest
are categorized to the compartment of type two susceptible. We assume here a demographically
stationary population. Individuals are supposed to be born susceptible of type one with birth
rate µ. Individuals of type one can either die with death rate µ, be vaccinated (with imperfect
vaccine) with vaccination rate ψ to be susceptible of type two, or get infected with force of
infection βI deduced from the mass action law, where β is the successful contact rate between
infected and type one susceptible and it is the product of the number of type one susceptible
partners to an infected individual and the transmission probability (the susceptibility to the
infection). Susceptible of type two can either die with death rate µ, or get infected with force of
infection rβI different from the previous one. The parameter r is of course dimensionless and
is the relative susceptibility of type two susceptible to type one susceptible (mathematically, it
is the ratio between the susceptibility of type two susceptible and that of type one susceptible).
If r < 1, then individuals in the S2 compartment are partially protected against the infection,
whereas if r > 1, then this corresponds to an immuno-suppression. Infected individuals can
either die with death rate µ or be removed with removal rate α. A proportion g of the removed
individuals will be transferred to the type two susceptible compartment, whereas the rest will
be transferred to the compartment of type one susceptible. Therefore, the parameter g here
represents the probability that a removed individual from the compartment of infected indi-
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r = 0

r = 1

0<r<1

1 < r

Notes g = 0 g = 0, ψ = 0 g = 1 g = 1, ψ = 0

No backward
bifurcation
(BB) at all

No BB at all

There is BB
iff
g < g

1
 < 1 &

ψ > ψ
2
 > 0

There is BB
for all
 g∈ [0, 1]
and some
conditions
on ψ

SIS with
vaccination

SIS with
useless
vaccination,
no BB

SVIS,
yes for BB

No BB at all No BB at all

SIS,
no BB at all

Traditinal SIS,
no BB at all

SIS without
vaccination,
no BB at all

SIR with
vaccination,
no BB at all

SIVI with
useless
vaccination,
no BB at all

SIVI with
vaccination,
no BB at all

yes for BB yes for BB

SIVI
without
vaccination,
no BB at
all

Usual
SIS,
no BB at
all

SIR without
vaccination,
no BB at
all

Table 1: This table explains the connection to other models as special cases of the model under
consideration.

viduals will be transferred to the compartment of type two susceptible. This is shown in figure
5.1.

5.2 The model

The mathematical representation of the model is

Ṡ1 = µ− (βI + ψ + µ)S1 + (1 − g)αI,

Ṡ2 = ψS1 − (rβI + µ)S2 + gαI, (5.1)

İ = (S1 + rS2) βI − (α + µ)I,

1 = S1 + S2 + I,

where the dot means derivative with respect to time. If 0 < r < 1, the individuals in the S2

compartment are partially protected. If r > 1, their immune system is suppressed.
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5.3 Connection to other models

The model can be connected to other models depending on the values of the parameters g, r,
and ψ. Table (1) shows some connections to other cases.

5.4 Equilibrium

The stationary states are obtained by putting the derivatives, with respect to time, in the left
hand side of (5.1) equal zero. Therefore,

0 = µ−
(

βĪ + ψ + µ
)

S̄1 + (1 − g)αĪ,

0 = ψS̄1 −
(

rβĪ + µ
)

S̄2 + gαĪ, (5.2)

0 =
(

S̄1 + rS̄2

)

βĪ − (α + µ)Ī ,

1 = S̄1 + S̄2 + Ī .

The infection free equilibrium

The equilibrium solution corresponding to a totally susceptible population is given by (S
◦

1 , S
◦

2 , I
◦

)
= ( µ

µ+ψ
, ψ
µ+ψ

, 0).

5.5 Reproduction numbers

The basic reproduction number R0

It is defined as the expected number of secondary cases produced by one infected case introduced
into a totally susceptible (free infection) population. Therefore,

R0 =

(

β

α + µ

µ

µ+ ψ
+

β

α + µ

rψ

µ+ ψ

)

=
β

α + µ

(

µ

µ+ ψ
+ r

ψ

µ+ ψ

)

(5.3)

=
β

(α + µ)(ψ + µ)/(µ+ rψ)
.

So, the basic reproduction number can be interpreted in three ways. It is the summation of two
reproduction numbers, one of them is the basic reproduction number for a population consisting
entirely of susceptible of type one, whereas the other is the basic reproduction number for a
population consisting entirely of all susceptible of type two. Another interpretation is, it is the
product of three quantities: the successful contact rate between susceptible of type one and
infected, the length of the infectious period, and a quantity representing the summation of the
endemic proportion of susceptible of type one if there is no infection and the product of the
relative susceptibility, r, and the endemic proportion of susceptible of type two if there is no
infection. The third relation represents the ratio between the successful contact rate to the zero
contact rate between infected and susceptible of type one.
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The episode reproduction number, Re

Usually, reducing the value of the basic reproduction number, R0, to slightly less than one or
even to one, forces the infection to go to extinction. This is true if we have only forward bifur-
cation. However, in some models (like the current one) the backward bifurcation phenomenon
exists. This means that even if we reduce the value of the basic reproduction number to slightly
less than one, the infection can be established. Therefore, the basic reproduction number is
no longer meaningful and we have to find another concept. We introduce here the so-called,
episode reproduction number. It is defined as the expected number of episodes produced by
one episode and is given mathematically by

Re(β, S1, S2) =
β

α + µ
(S1 + rS2). (5.4)

It is defined as the successful contact rate β times the length of the infectious period times
the sum of the proportion of susceptible of type one and the relative susceptibility r times the
proportion of susceptible of type two.

5.6 The endemic equilibria

Assume that I 6= 0, then we can get

S̄1 =
µ+ (1 − g)αĪ

µ+ ψ + βĪ
,

S̄2 = 1 − S̄1 − Ī . (5.5)

where Ī ∈ [0, 1] is the endemic prevalence of infected and is determined from the following
equation

0 = F (Ī) = r(βĪ)2 + (µ+ gα+ (µ+ ψ + (1 − g)α− β)r)βĪ

+ (α + µ)(ψ + µ) − β(µ+ rψ). (5.6)

We notice that
F (1) = (α + µ)(ψ + µ) + ((g + (1 − g)r)α+ rµ)β

is always positive, whereas

F (0) = (α + µ)(ψ + µ) − (µ+ rψ)β

can be positive or negative depending on the parameter values. Therefore, there is a possibility
to get multiple stationary states. Conditions on the parameter values to assure the existence
of multiple stationary states will be clarified in the diagnostic section.
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Figure 5.2: Bifurcation diagram in the (g, ψ)-plane. The vertical straight dotted line corre-
sponds to the line g = gc. However, the solid curve corresponds to ψ1(g) and the dashed line
corresponds to ψ2(g). Above the dashed curve as well as below the solid one there is a possibil-
ity for multiple stationary states to exist, whereas in between forward bifurcation phenomenon
exists. Above the dashed curve, it holds 0 < r1 < r < r2 < 1, while 1 < r1 < r < r2 in the area
below the solid one.

5.7 Identification of thresholds

I would like to start this section by introducing some definitions.
The zero contact rate β0: It is the value of the contact rate at which the prevalence of
infected is zero (it is the value of β corresponding to the bifurcation point in the (β, Ī)-plane),
in other words it is the value of the contact rate at which the basic reproduction number is
equal to one. We also may define it as the value of the contact rate at which the infection free
equilibrium changes its stability status.

The critical contact rate: It is the value of the contact rate at which positive stationary
states start to appear. This means that below this value, the infection free equilibrium is
globally asymptotically stable whereas above it, positive endemic states exist. In other words,
it is the value of the contact rate corresponding to the point in the (β, Ī)-plane separating
between nonexistence and existence of positive endemic equilibria. If there is no backward
bifurcation, then the critical contact rate coincides with the zero contact rate β0. Otherwise,
it is less than the zero contact rate (β? < β0). Therefore, the critical contact rate in the case
there is backward bifurcation is given by
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Figure 5.3: Bifurcation diagram in the (r, R0)-plane. Calculations are done here for parameter
values α = 10 per year, µ = 0.015 per year, and the pair (g, ψ) differs from part to part. In
the three parts a), b), and c), we have, respectively, g = 0.7, 0.7, and 0.96, whereas ψ = 0.5 per
year, 0.01 per year, and 0.04 per year. The plane is subdivided into three regions according to
the number of positive endemic states, in addition to the trivial equilibrium. The numbers 0, 1,
and 2 denote the number of positive equilibria in the correspondent regions. Here we consider
three cases. In part a), we consider the case if g < gc and ψ is taken above the dashed curve in
figure 5.2, whereas part b) corresponds to g < gc and ψ below the solid curve. However, part
c) corresponds to g > gc and ψ below the solid curve. The broken curve represents the critical
basic reproduction number R?

0, whereas the horizontal solid line represents R0 = 1. The two
vertical dotted lines represent r = r1 on the left, and r = r2 on the right. In part a) we have
0 < r1 < r2 < 1, This corresponds to the area above the broken curve in figure 5.2. However,
in the remaining two parts b) and c), we have 1 < r1 < r2 where the calculations are performed
for values of g and ψ from the area below the solid curve in figure 5.2.

β? =
(gα− µ) + r(µ+ (1 − g)α− ψ) + 2

√

(1 − r)(rψ(µ+ (1 − g)α) − gµα)

r
. (5.7)

In the case there is backward bifurcation, The critical contact rate β? is well defined if and only
if r1 ≤ r ≤ r2,

µ
µ+α

< 1
4
, and some conditions on both g and ψ where

r1,2 =
b∓

√
b2 − 4ac

2a
;

a = (µ+ ψ + (1 − g)α)ψ,

b = gµα+ ((1 − g)α− µ)ψ, (5.8)

c = µ(µ+ gα).

The condition µ
µ+α

< 1
4

means that the ratio of the expected time of life, at birth in the absence
of infection, spent in the infectious state for an episode must be less than four. The conditions
on the parameters g and ψ determine the bifurcation in the (g, ψ)-plane. To show them, we
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Figure 5.4: This figure shows the components of the point corresponding to the turning point as
functions of the relative susceptibility r ∈ [r1, r2]. Calculations have been done with parameter
values: α = 10 per year, µ = 0.015 per year, g = 0.05, and ψ = 0.5 per year. These values
correspond to the area in figure 5.2 above the broken line. When r = r1, the components
corresponding to the turning point coincide with the coordinates of the infection free equilib-
rium. Then as functions of the relative susceptibility r, both the critical proportions of type
one susceptible S?1 and infected I? increase while the critical proportion of type two susceptible
S?2 decrease until I? reaches a maximum. Thereby, I? decrease, S?2 continues to decrease while
S?1 continues to increase until S?2 reaches a minimum at which S?1 reaches a maximum. Then, I?

continues to decrease, S?2 increases, whereas S?1 decreases until all components coincide again
with the components of the infection free equilibrium E0. This coincidence occurs when r = r2
(see the right part). Thus the point corresponding to the turning point moves on a closed curve
(the left part) in a clockwise direction. It starts the trip, from the very left and moves to the
right, at r = r1 with coordinates typical to that of E0 and ends the trip at r = r2 with the
same coordinates of E0.

define the following quantities:

gc =

(

1 − µ

µ+ α

)−1(

1 − 2

√

µ

µ+ α

)

,

ψc =
µg2

cα
2

2((α+ µ)(gcα + 2µ) − g2
cα

2)
(5.9)

=

(

1

µ+ α

(

1 − µ

µ+ α

))−1(√
µ

µ+ α

(

1 +

√

µ

µ+ α

)

− 4
µ

µ+ α

(

1 − µ

µ+ α

))

,

104



10
0

10
1

0.00

0025

0.50

0.75

1.00

r

S
1* , S

2* , I
*

S
1

I

S
2

S
1

E
0

E
0

(0,0,1) (1,0,0)

(0,1,0)

(0.2, 0.0, 0.0)

(0.8, 0.0, 0.0)

Figure 5.5: The dynamics of the point corresponding to the turning point. Calculations have
been done with parameter values: α = 10 per year, µ = 0.015 per year, g = 0.9, and ψ = 0.005
per year. These values correspond to the area below the solid line and on the left of the vertical
dotted line in figure 5.2. The point corresponding to the turning point moves on a closed curve
in a clockwise direction (the first two parts from the left). It starts the trip from the very right
at r = r1 and moves to the left on a closed path until returning again to starting point when
r = r2. The start and end points coincide of course with the infection free equilibrium E0. The
dynamical behaviour is shown in the very right part of the figure. The dashed line corresponds
to the critical proportion of type one susceptible S?1 , the solid line represents the curve of the
critical proportion of susceptible of type two S?2 , whereas the dashed dotted line represents the
critical prevalence of infected I?. At r = r1, then I? = 0, S?1 = µ

ψ+µ
, whereas S?2 = ψ

ψ+µ
. As

functions of the relative susceptibility r, both I? and S?2 increase while S?1 decreases until S?1
reaches a minimum at which S?2 has its maximum. Then, I? continues to decrease while both
S?1 and S?2 change their behaviour from decrease to increase and vice versa. This happens till
I? reaches a maximum. After that, I? decreases till reaching zero at r = r2 while both S?1 and
S?2 continue with the same bahaviour till reaching their starting values again when r = r2.

ψ1,2 =
µ
(

−g2α2 + (α + µ)(
√
gα+ µ∓√

µ)2
)

(µ+ (1 − g)α)2 − 4µ(α+ µ)

= µ

(

(

1 − g +
gµ

α+ µ

)2

− 4
µ

µ+ α

)−1
(

(
√

g +
(1 − g)µ

µ+ α
∓
√

µ

µ+ α

)2

−

g2

(

1 − µ

µ+ α

)2)

.

We notice that: if g = 0 then ψ1 = 0 whereas ψ2 = µ
(

4µ
µ+α

)(

1 − 4 µ
µ+α

)−1

. However, if g = 1

then ψ1 is no longer defined, whereas

ψ2 = (µ+ α)

(

1 + 2
µ

µ+ α

)−1(

− µ

µ+ α

(

1 +
µ

µ+ α

)

+ 2

√

µ

µ+ α

)

.

Therefore, the bifurcation analysis in the (g, ψ)-plane is determined as follows:

1) If g = 0, then multiple stationary states exist if and only if ψ > µ
(

4µ
µ+α

)(

1 − 4 µ
µ+α

)−1

,
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Figure 5.6: The behaviour of the point corresponding to the turning point in both the plane (the
very right part) and the ternary plot (the two parts on the left) for several values of r ∈ [r1, r2].
Calculations have been performed with parameter values: α = 10 per year, µ = 0.015 per year,
g = 0.97, and ψ = 0.025 per year. These values correspond to the area below the solid curve
and on the right of the dotted vertical straight line in figure 5.2. The point corresponding to
the turning point E? moves on a closed curve (see the two parts on the left of the figure) in the
triangle with S1, I, and S2 as the three sides. At r = r1, the components of E? coincide with the
components of the infection free equilibrium E0. Then the point E? moves from the very right
to the left in a clockwise direction on a closed curve and it reaches the initial point E0 again
when r = r2. To explain the behaviour of each component, we consider the plane shown in the
right part of the figure. As functions of r, the proportion I? (the dashed dotted curve) starts
with zero at r = r1, whereas S?1 (the dashed curve) and S?2 (the solid curve) start respectively
with the values µ

µ+ψ
and ψ

µ+ψ
. Then I? and S?2 increase while S?1 decreases till S?1 reaches a

minimum at which S?2 reaches its maximum. Then, I? continues to increase whereas both S?1
and S?2 exchange their behaviour (decrease to increase and vice versa). This occurs until I?

reaches its maximum. After that, I? decreases while the other two components continue with
the same bahaviour until the three components coincide with their initial values when r = r2.
What is clear is that for parameter values corresponding to the area below the solid line in
figure 5.2, the point E0 in the ternary is always at the very right and the point corresponding
to the turning point E? moves first to the left and then it returns to reach the starting point
again when r = r2.

2) If 0 < g < gc, then multiple stationary states exist if and only if either ψ < ψ1 or ψ > ψ2,

3) If g = gc, then there are multiple stationary states if and only if ψ < ψc,

4) If gc < g ≤ 1, then multiple equilibria exist if and only if ψ < ψ2.

This is shown in figure 5.2.

The critical basic reproduction number R?
0: It is the basic reproduction number evaluated

at the point at which both positive equilibria coincide, i.e., we replace β by β? in the R0 relation.
Therefore,

R?
0 =

β?

α + µ

(

µ

µ+ ψ
+ r

ψ

µ+ ψ

)

. (5.10)
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Figure 5.7: The contour lines for the episode reproduction number in three cases. The left part
corresponds to the case if we take parameter values from the area above the broken curve in
figure 5.2, whereas the middle part corresponds to an area below the solid curve but on the
left of the vertical dotted straight line in figure 5.2, and the right part corresponds to the area
below the solid curve but on the right of the dotted vertical straight line in the figure (5.2).
Calculations have been done with parameter values: β = 15, 6, 4.7 per year, r = 0.6, 2.6, 2.6,
α = 10 per year, µ = 0.015 per year, ψ = 0.4, 0.005, 0.025 per year, and g = 0.025, 0.9, 0.97
respectively for the three parts of the figure from left to right. Whereas the contour line Re = 1
goes always through the two positive equilibria E+

2 and E−
2 , the contour line Re = R0 goes

through the infection free equilibrium E0, and the contour line Re = β/β? passes through the
point E? which corresponds to the turning point. In the left part, the episode reproduction
number increases from left to right, whereas in the other two parts of the figure Re increases
from right to left. This is because r < 1 in the first case, while r > 1 in the other two cases.

Assume now that the pair (g, ψ) is chosen such that multiple stationary states exist, then in the
(r, R0)-plane there are multiple stationary states if and only if R?

0 < R0 < 1 and r1 < r < r2. If
R0 > 1, then a unique positive endemic state exists in addition to the infection free equilibrium.
Otherwise, no positive stationary state exists and the infection free equilibrium is globally
asymptotically stable. This is shown in figure 5.3.

5.8 The turning point

The turning point is the point in the (β, Ī)-plane at which both positive equilibria coincide. In
other words, it is the point separating between nonexistence and existence of multiple positive
stationary states. Therefore, the components corresponding to the turning point are S?1 , S

?
2 ,
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and I? where

I? =
−(µ+ rψ) +

√

(1 − r) ((α + µ)rψ − gα(µ+ rψ))

−(µ+ rψ) + (1 − r)gα+ r(α + µ) + 2
√

(1 − r) ((α+ µ)rψ − gα(µ+ rψ))
,

S?1 =
α + µ− rβ?(1 − I?)

(1 − r)β?
, (5.11)

=
r

1 − r

(

(1 − r)(µ+ (1 − g)α) +
√

(1 − r) ((α + µ)rψ − gα(µ+ rψ))

−(µ+ rψ) + gα+ r(µ+ (1 − g)α) + 2
√

(1 − r) ((α + µ)rψ − gα(µ+ rψ))

)

,

S?2 = 1 − S?1 − I?.

Numerical calculations which show the movement of the point E? in the ternary plot and
the behaviour of the coordinates S?1 , S

?
2 and I? with parameter values corresponding to the

areas in the (g, ψ)-plane and several values of r ∈ [r1, r2] are shown in figures 5.4, 5.5, and 5.6.

5.9 The eradication effort R
Here we introduce a new concept called the minimum effort required to eradicate the infection.
If the model shows a backward bifurcation phenomenon, then we claim that the effort is just the
ratio between the contact rate β and the critical contact rate β?. However, if the model shows
only forward bifurcation, then the effort is the basic reproduction number R0 which is the ratio
between the contact rate β and the zero contact rate β0. To analytically evaluate this effort,
we come to the definition of the episode reproduction number in formula (5.4). Then we get
R = Re(β, S

?
1 , S

?
2) = β

β? . However, the basic reproduction number is R0 = Re(β, S
◦

1 , S
◦

2) = β
β0

.
Numerical calculations to show the contour lines for the episode reproduction number Re in
the ternary plot for the three areas in figure 5.2 are shown in figure 5.7. The contour line
Re = 1 goes through both the stable and unstable positive equilibra E+

2 and E−
2 , respectively,

whereas the contour lines Re = 1 and Re = R = β
β? go , respectively, through the infection free

equilibrium E0 and the point corresponding to the turning point E?.

5.10 Summary

The current model is a model of SIS type. What we wanted to stress here is the applicability of
our approach, the minimum eradication effort, which we had introduced in the chapter 3. For
fixed g and variable ψ, there is always a possibility for the occurrence of multiple stationary
states. The same is done if we fix ψ and let g vary. However, if we choose the pair (g, ψ) to be
in the area denoted by 2 in figure 5.2, there is always the backward bifurcation phenomenon.
Any way, this says for any imperfect vaccination there is a possibility of multiple stationary
states.
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6 Summary

Despite the great progress in medicine which lead to the discovery of safe and effective drugs and
vaccines, infectious diseases are still a major cause of death, disability and social and economic
burden for millions of people around the world. Every year, about 20% of all deaths are
caused by infectious diseases. Therefore, we need to know about the impact of these infections
on demography and about the minimum efforts required to eliminate them. Since it is not
possible to perform randomized trials with whole populations, we need mathematical models
to explore different control strategies.

In this work, we concentrate on prevalence models (i.e., models in which we subdivide
the total population into disjoint classes like susceptible, latent, infectious, and recovered). We
address two main problems, namely the impact of an immunising potentially lethal infection on
demography and the minimum effort required to eradicate infections in models with backward
bifurcation.

In the first two chapters we generalize the classical epidemiological SIR model of Daniel
Bernoulli for a potentially fatal infection to a growing population with age structure. The total
population is subdivided into three classes, namely susceptible, infected, and immune. Rather
than following the by now standard approach of differential mortality, we describe the epidemic
and demographic phenomena in terms of case fatality (the proportion of infected individuals
who die due to the infection). Individuals are assumed to be born susceptible with per capita
age-specific birth rate β(a) where a denotes the age of the mother. All individuals are assumed
to die with per capita age-specific infection-free death rate µ(a). Susceptible individuals will
either get infected with force of infection λ(a, t), where t denotes time, or die with per capita
death rate µ(a). Infected individuals will either recover with life-long immunity with per capita
rate (1 − c(a))γ, where c(a) is the case fatality and γ is the exit rate from the infected state,
or die with rate µ(a) + γc(a). Immune individuals will die with per capita rate µ(a). The case
of age-independent model parameters is considered in chapter one, while the analysis for the
general case of age structure has been performed in chapter two.

An important concept in mathematical epidemiology is the basic reproduction number. It
is the average number of secondary cases produced by an infected case, during the infectious
period, introduced in a totally susceptible population. Usually, if R0 > 1 then the infection
persists. If R0 ≤ 1 then the infection dies out. However, in models with backward bifurcation
we find that, even if R0 is reduced to values slightly less than one, the infection does not
go to extinction. Therefore R0 is no longer meaningful and we need another quantity. In
chapters 3, 4, and 5, we study the necessary effort required to eradicate infections in three
models with backward bifurcation. To our best knowledge, we provide, for the first time, a
method to determine the eradication effort (if we concentrate on control measures affecting the
transmission rate) for models with backward bifurcation.

From the thesis we come to the following conclusions: In the case fatality model, the basic
reproduction number is not affected by the case fatality of the infection, while in the differential
mortality models it gets smaller with increasing differential mortality. The rate of growth of
the population declines monotonically with the increase of the case fatality while it can increase
after reaching a minimum in case of the differential mortality model. The simple formula that
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the basic reproduction number R0 equals the inverse of the endemic proportion of susceptible x̄
is no longer true in general. However, the product R0x̄ is the ratio between the times available
to make successful contacts during the infectious period in the absence and presence of the
infection, respectively. In the limiting case of high infectivity and short infectious period, there
is always a feasible case fatality being able to drive the host population to extinction. However,
when the infectious period has a positive duration then the critical case fatality required to
stop the growth of the population exists only if the basic reproduction number R0 satisfies
R0 ≥ 1 + b

γ
R0(µ) where b is the birth rate, γ is the removal rate, and R0(µ) is the basic

reproduction number in case of a static population.
The present model allows to determine the demographic impact of a potentially lethal

infection in terms of the reduction in life expectancy and the reduced growth rate. The present
analysis suggests that smallpox was nowhere near to stop population growth. The present
model is applicable to any potentially lethal immunizing infection (e.g. measles) in growing
populations whose age-distribution is close to the stationary distribution.

In models with the backward bifurcation phenomenon, the basic reproduction number is no
longer meaningful. The ratio between the actual contact rate and the critical contact rate at
which positive stationary states start to appear can be interpreted as a reproduction number.
For models in which the immunity wanes, there is a possibility for multiple stationary states
to occur. In the simple SIS endemic model with vaccination, the earlier we give a partially
protective vaccine, the less the effort to eradicate the infection.
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