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Introduction 3

1 Introduction  

 Principles of Cancer Immunotherapy 

Fighting a tumor with the body's own weapons is an alluring concept, especially 

against the background of conventional cancer therapies, which often lack the 

specificity crucial for a strong efficacy without severe side-effects. The immune 

system has been traditionally considered to be an effective means in particular 

against infectious diseases. On the other hand, the idea that it could protect the 

host from neoplastic disease is not new either and was initially proposed by 

Paul Ehrlich [1]. Later, this notion was more explicitly formulated as the "cancer 

immunosurveillance hypothesis" [2-4]. In the following decades this issue was 

heavily debated, mostly due to the lack of suitable animal models [5] or other 

experimental evidence which could definitely confirm this hypothesis. Today, 

however, there is compelling evidence that substantial interactions between 

tumors and the immune system take place [6, 7] and that immune cells can 

actually play an important role in the control of malignancy [8, 9]. 

Despite their recognition by the immune system, tumors obviously find ways to 

escape immunosurveillance and establish themselves within the body. Various 

mechanisms by which cancer cells circumvent recognition or elimination by 

immune cells have been frequently observed: impaired presentation of antigens 

to T lymphocytes either by loss or downregulation of HLA molecules [10] or by 

defects in antigen processing [11]; specific loss of targeted tumor antigens [12-

14]; loss of natural killer (NK) cell activating or T cell costimulatory ligands [15, 

16]; production of immunosuppressive cytokines [17] or T cell inhibitors [18]; 

inhibition of proinflammatory danger signals [19]; or specific attraction of 

immunosuppressive regulatory T cells [20]. 

Even though tumors possess this impressive arsenal of countermeasures, 

directing immune responses against them is not a hopeless effort. In some 

cancer patients spontaneous tumor regression occurs, most likely due to a 

regained responsiveness to immunologic mechanisms [21]. This indicates that 

even in established tumors the process of immune escape can be reversed. 

Furthermore, a vast number of clinical studies aiming at the generation of 

different kinds of tumor immune responses have shown promising results: 
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Measurable responses could be frequently generated, sometimes followed by 

real clinical benefit for the patients [8, 9, 22]. However, the difficult task for any 

immunotherapeutic concept in order to be ultimately successful is to take the 

adaptability of tumors under selective pressure into account and adequately 

address each of the various obstacles likely to be present in established tumor 

environments. 
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1.1 Immunotherapeutic approaches 

1.1.1 Exploiting the innate immune system 

If pathogens succeed in invading their host, they are first confronted with 

defense mechanisms of the innate immune system. These mechanisms can act 

very fast because they do not require clonal expansion of antigen-specific 

lymphocytes, which is necessary for an adaptive immune response. In most 

cases pathogens are already eliminated at this stage. For decades 

immunological research has mainly focused on the investigation of mechanisms 

underlying adaptive immune processes. However, triggered by the detection of 

pathogen-specific receptors on cells of the innate immune system and their 

ligands, elucidation of the molecular basics of innate immunity has arguably 

become the most active area of research in immunology over the last years. 

 

1.1.1.1 Toll-like receptors on antigen presenting cells 

Toll-like receptors (TLRs) are a very important family of pattern recognition 

receptors, which recognize specific microbial components and thereby activate 

the innate immune system. So far 11 mammalian TLRs are known [23], whereof 

9 are conserved between the human and mouse. TLR10 is non-functional in the 

mouse whereas TLR11 is not expressed in humans [24, 25]. Upon binding of 

the respective specific ligand, TLR signaling via several pathways [26] triggers 

the expression of various genes that are involved in immune responses, such 

as inflammatory cytokines and costimulatory molecules on cells of the innate 

immune system. This activation is essential for the generation of adaptive 

immune responses. For example, the activation and clonal expansion of 

antigen-specific naive T lymphocytes requires their interaction with professional 

antigen presenting cells (APCs) such as dendritic cells (DCs) that have been 

activated before, often via TLR signaling. 

This central role for the establishment of immune responses makes the innate 

immune system an important target for cancer immunotherapies. Interestingly, 

experiments by William Coley in the 1890s - now often considered the first 

specific attempts of anti-cancer vaccination - made use of exactly those 

principles. After observing a spontaneous remission in a cancer patient that had 
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acquired a skin infection, he tried to mimic this effect by inoculating other 

patients with the same organism causing the disease, Streptococcus pyogenes 

[27]. Due to the severe side effects of this live vaccine he later switched to 

bacterial extracts which still contained the relevant danger signals. We now 

know that several components of such extracts are specific ligands for different 

TLRs [28] and therefore may cause an inflammatory response that can lead to 

adaptive immunity specifically aimed at present tumor antigens. 

Today there is just one cancer species, superficial bladder cancer, for which 

bacterial treatment (with Bacillus Calmette-Guerin (BCG)) leading to immune 

activation is the established standard therapy [29]. The identification of TLR 

ligands has brought new momentum to the field by enabling the production of 

molecularly defined stimulatory agents. In contrast to bacterial surface 

components, nucleic acids can be more easily produced in drug quality. 

Bacterial CpG DNA motifs act via TLR9 [28] and have been effectively applied 

alone [30] or as adjuvants in antigen-specific vaccinations in tumor 

immunotherapy [31]. Similarly, single-stranded RNA has been shown to activate 

innate immune processes via TLR7 and TLR8 and can be used for immune 

activation [32-35]. In addition, artificial synthetic TLR7/8 agonists are a 

promising alternative [36, 37]. 

 

1.1.1.2 Cytokines 

An important component of innate immune reactions is the production of various 

cytokines, which may directly act on tumor cells or regulate further immune 

processes. Type 1 interferon secretion, mostly by DCs, is one of the first events 

in the innate immune response after antigen recognition [38]. These cytokines 

simultaneously act as a differentiation and maturation signal for DCs [39], 

activate natural killer (NK) cells [40], or directly affect tumor cells by sensitizing 

them for apoptosis [41] or inhibiting tumor angiogenesis [42]. Similar effects on 

tumors have been reported for interferon-け (IFN-け) [43-45]. In addition, IFN-け is 

crucial for the upregulation of MHC class I and II molecules and the necessary 

antigen processing and presentation pathways, thus enabling effective T cell 

responses against the tumor [46]. Interferon-g (IFN-g) is therapeutically used 

against different cancers and is most effective in hematological malignancies 

[47] but is also used for post-surgical adjuvant therapy in high-risk solid tumor 

settings [48, 49]. 
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Interleukin-12 (IL-12) is produced by phagocytic cells and DCs upon antigen 

recognition and has important effects on T cells and NK cells. It is the major 

cytokine for Th1-cell differentiation, allowing potent IFN-け production [50]. 

Dependent on the presence of NK, NKT, and T cells, which IL-12 can drive 

towards their most active effector functions against tumors, this cytokine has a 

potent anti-tumor activity [51]. IL-12 has been rarely used alone in clinical trials 

due to considerable toxicity [52]. In several adjuvant settings in connection with 

peptide-based vaccinations of melanoma settings, IL-12 has shown some 

encouraging results [53, 54]. 

Granulocyte-macrophage colony stimulating factor (GM-CSF) is mainly 

produced by T cells but has important effects on DC maturation necessary for 

the induction of potent adaptive immune responses [55]. Promising therapeutic 

strategies comprise vaccines of tumor cells engineered to secrete GM-CSF [56, 

57], adjuvant ex vivo maturation of DCs which are then loaded with antigen and 

transferred to the patient [58], or using GM-CSF directly with the vaccine in vivo 

[59]. 

Interleukin-2 (IL-2) is a cytokine which is not directly related to the innate 

immune system but is frequently used in tumor immunotherapy. It is the most 

important T cell proliferation factor and might therefore act by enhancing 

inadequate T cell responses against tumors [60]. Il-2 has been either used 

alone [61], with synthetic peptides [62], or in connection with adoptive T cell 

transfer [63]. 

 

1.1.1.3 Natural Killer cells and けh T cells 

Natural killer (NK) cells belong to innate immunity because their receptors are 

encoded by germline genes that do not require somatic recombination. 

Functionally, however, they more closely resemble T cells than any other 

leukocyte of the innate immune system, because they possess the same killing 

mechanism as cytotoxic T lymphocytes (CTL) and secrete IFN-け like CTL and 

Th1 helper T cells [64]. NK cells express an immense repertoire of activating 

and inhibitory receptors which all contribute to the resulting signal that decides 

about whether the cell is activated or not by the target cell. According to the 

classic "missing self recognition" concept [65], NK cells can be activated by loss 

of MHC class I molecule expression on target cells, which normally bind to 

inhibitory NK receptors. Consequently, NK cell mediated killing of MHC class I 
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negative tumor cells has been frequently observed [66]. More recently, research 

on NK cell activation has shifted its focus more to activating receptors, mainly to 

NKG2D [67], whose ligands are absent from normal cells but can be induced by 

stress like infections, but also tumorigenesis [68]. Expression of NKG2D ligands 

on MHC class I positive tumor cells can overcome NK cell inhibition and lead to 

tumor lysis [69]. Due to its novelty, only few approaches in mice are known 

making use of the NKG2D system and its ligands for immunotherapy [70, 71]. 

The human NKG2D ligands MICA and MICB can also be recognized by the T 

cell receptor (TCR) of a subset of けh T cells mostly located within intestinal 

epithelia [72, 73]. In contrast to "classical" gく T cells which account for the vast 

majority of all T cells and recognize short peptides bound to MHC molecules, けh 

T cells display a very restricted TCR repertoire and recognize a variety of 

possible antigens independent of MHC. They exhibit functions similar to gく T 

cells and NK cells such as cytokine production and killing [74] and might even 

play a role as professional APCs [75]. けh T cells have been found at relatively 

high proportion among tumor-infiltrating lymphocytes (TILs) of various origins 

[76] and several mouse models indicate that they likely play a role in tumor 

immunosurveillance [77-79]. The only well-characterized tumor ligands for 

human けh T cells are the NKG2D ligands MICA and MICB. Since けh T cells also 

express NKG2D, activation may occur via both, TCR and NKG2D binding [80]. 

Therapeutic applications of けh T cells against cancer have been so far restricted 

to rather unspecific stimulations in vivo using aminobisphosphonates in 

combination with IL-2 [81, 82]. 

 

1.1.2 Antibody-based therapies 

B lymphocytes are the fundamental cells of the adaptive humoral immune 

response. Their main function is the production and secretion of highly target-

specific antibodies. The extremely diverse repertoire of specificities that B cells 

are able to generate [83] can be exploited for various applications. Following the 

invention of stable hybridoma cell lines that are able to secrete virtually 

unlimited amounts of specific monoclonal antibodies (mAbs) [84], such 

antibodies have become one of the most widely-used tools in life sciences. 

Over the last years, various mAbs have been established for therapeutical use 

in humans. mAbs were first used for cancer therapy more than 20 years ago 
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[85], but showed only limited efficacy in the beginning. This was due to the 

immunogenicity of unmodified mouse antibodies used in humans, leading to 

their fast elimination by antibody responses directed against the mAb in 

patients. Equally important, mouse mAbs are not able to efficiently recruit 

effector mechanisms in the patients that can kill the target cells upon antibody 

binding. Therefore, humanized antibodies were developed, which contained 

only the mouse parts necessary for specificity engineered into a human 

antibody [86, 87]. Activation of appropriate effector mechanisms is an important 

issue for all antibody therapies. Even though some mAbs might act 

autonomously by blocking signaling pathways or inducing apoptosis [8], they 

rely in most cases on help from host systems in order to be effective. Antibodies 

bound to target cells can activate the complement system, a collection of 

plasma proteins which are ultimately able to cause inflammation, recruit 

phagocytes, or directly lyse pathogens or other cells covered by antigen-

antibody complexes [88]. Furthermore, binding of the Fc part of antibodies by 

Fc-け receptors on effector cells [89] is a prerequisite for antibody-dependent 

cell-mediated cytotoxicity (ADCC), a mechanism mainly mediated by NK cells 

and macrophages and likely a dominant component of anti-tumor activity of 

mAbs [90]. 

The first mAbs approved by the U.S. Food and Drug Administration (FDA) for 

treatment of cancer were Rituxan [91] (1997) against CD20 on B cells in Non-

Hodgkin Lymphoma and Herceptin [92] (1998) against the HER2/neu tyrosine 

kinase receptor often upregulated in breast cancer. Both antibodies have been 

shown to improve the overall survival when added to standard chemotherapy in 

randomized trials [93, 94]. A promising modification to increase the effector 

function of mAbs is to arm them with toxins [95] or radionuclides [96] coupled to 

their Fc parts. The idea behind this is to specifically guide cell-damaging agents 

to the desired target cells. Another option for the specific recruitment or 

activation of effector cells at the tumor site are bispecific antibodies containing a 

specificity for a tumor antigen and one for effector cell markers or costimulatory 

receptors, such as CD3 or CD28 on T cells [97, 98]. 

In the meantime, various antibodies for cancer therapy have obtained FDA 

approval and a lot more are in clinical trials. They are mostly used in 

combination with other treatments like standard chemotherapy and frequently 
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show clinical benefit. Thus, immunotherapy by passive administration of 

antibodies has become a clinical reality [99]. 

A different approach to utilize the therapeutic potential of antibodies is their in 

vivo induction by vaccination. For example, anti-idiotypic antibodies against B 

cell lymphomas have been generated by pulsing DCs with the unique idiotypic 

immunoglobulin (Ig) of the lymphoma to induce T helper cells followed by 

boosting with Ig coupled to keyhole limpet hemocyanin (KLH) [100]. This 

vaccination resulted in prolonged remissions but it is difficult to assess the exact 

role of the antibodies in this setting. Thus, while active immunization 

approaches are still in early experimental stages, the field of antibody-mediated 

cancer therapy will likely continue to be dominated by passive administration of 

mAbs specifically designed for selected tumor antigens. 

 

1.1.3 Cellular adaptive immunotherapy 

T lymphocytes are the cells mediating cellular adaptive immunity. gく T cell 

receptors (TCRs), present on most T cells, recognize short peptides bound to 

major histocompatibility complex (MHC) proteins [101]. T cells expressing the 

CD8 coreceptor (CD8+ T cells) recognize peptides on MHC class I (MHC-I) 

molecules mainly derived from intracellular source proteins whereas CD4+ T 

cells recognize peptides on MHC class II (MHC-II) molecules. MHC-II 

expression under normal conditions is restricted to immune cells [102], mainly 

APCs specialized in taking up extracellular antigens, the main source of MHC-II 

peptides. Therefore, T cell based tumor immunology has classically focused on 

CD8+ positive cytotoxic T lymphocytes (CTL) which should be able to kill tumor 

cells upon recognition of peptides derived from tumor associated proteins. 

To mediate anti-tumor-activity, T cells must first be activated by dendritic cells 

(DCs), the most effective APCs for T cell priming [103]. Therefore, appropriate 

activation of the innate immune system as discussed in chapter 1.1.1 is an 

indispensable prerequisite for successful T cell immunotherapies especially 

because non-activated DCs might generate tolerance against the vaccine [104]. 

Properly activated and differentiated effector CTLs may then be able to gain 

access to the tumor and either directly lyse tumor cells via the perforin and/or 

Fas pathway [105]. Furthermore, CTLs may produce cytokines such as IFN-け 
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that can arrest the proliferation of malignant cells or inhibit tumor angiogenesis 

[45]. 

Like for antibodies, the selection of appropriate tumor associated antigens 

(TAAs) is the crucial first decision to be made. Since this selection process is 

the main objective of this thesis, it will be addressed in detail in the following 

chapter 1.2. An alternative to defining specific antigens are vaccines based on 

either autologous whole tumor cells [106, 107], allogeneic tumor cell lines [108], 

or isolated components of tumors, like total RNA [109] or heat shock protein-

peptide complexes [110]. Such vaccines are mostly applied in combination with 

DCs in order to enable T cell priming [111] or tumor cells are being directly 

fused with DCs [112]. Such undefined approaches can be easily carried out in a 

patient-individual way, thereby including all individual antigens that may have 

arisen during tumorigenesis in this patient. Other advantages are that the 

vaccine can be applied independent of the HLA type, may include T helper cell 

epitopes, and no extensive analytical work has to be done to enable 

vaccination. However, these advantages are faced by some serious drawbacks: 

The undefined nature of the antigens makes a controlled monitoring of tumor-

reactive T cell populations virtually impossible and therefore prevents a step-

wise dissection of processes on the way to tumor regression or failure of the 

therapy. Moreover, important TAAs might be present in the vaccine at 

concentrations too low to induce a response, or the majority of irrelevant 

components might even induce autoimmune reactions in the potentially highly 

immunogenic environment established by the vaccination. 

If specific antigens are to be used, there are several possible application forms, 

which again have to take proper DC activation into account. DCs can be either 

isolated and loaded with antigen ex vivo or the antigen can be designed to 

reach and activate DCs in vivo. MHC binding peptides have been frequently 

used for vaccinations either directly with or without adjuvants [59, 113] or 

loaded on autologous DCs before [59, 114, 115]. Peptide vaccinations have 

some limitations due to the restriction of peptides to their specific HLA type, the 

limited number of known TAA peptides, or the possibly short half-life of MHC-

peptide complexes on DCs after loading, which may cause dissociation of a 

large proportion of MHC-peptide complexes already on the way to draining 

lymph nodes. The latter point has been addressed by various attempts to 

modify natural MHC ligands in order increase their affinity to MHC proteins [116, 
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117]. It is, however, questionable whether T cells generated to recognize such 

peptides are still able to do so for the natural form occurring on the tumor [118]. 

Recombinant proteins may be used as an alternative to peptides [119-121]. 

Depending on efficient processing, they have the potential to deliver T cell 

epitopes for various HLA alleles, including MHC-II. Unfortunately, they are 

extremely difficult to produce in clinical grade. Immunizations using recombinant 

virus or naked DNA are an alternative [122-125]. Do to their faster degradation, 

mRNA based vaccines can be more easily controlled and do not have the risk 

of undesired genomic integration like DNA constructs. Therefore, mRNA has 

been frequently used for DC transfection [126-128] and might be even effective 

by direct in vivo application [129]. 

Despite the attractiveness of active in vivo induction of anti-tumor T cell 

reactions, adoptive T cell transfer has so far been the more successful 

approach [22]. While allogeneic T cell transfer has the advantage of mediating 

an associated graft-versus-tumor (GvT) effect by reactions against minor 

histocompatibility antigens [130], this is accompanied by the risk of severe graft-

versus-host disease (GvHD) in the patient [131]. Therefore, autologous 

approaches are often employed, such as the isolation of tumor-infiltrating 

lymphocytes (TILs) followed by an in vitro expansion of tumor-reactive TILs and 

reinfusion into the patient, often after lymphodepletion [13, 63]. Objective clinical 

response rates of up to 50% have been reported for such studies [132]. In 

several studies it has been tried to genetically manipulate the TCR in order to 

increase its affinity for the TAA and adoptively transfer the resulting clones [133-

135]. Alternatively, chimeric receptors comprised of an antibody recognition 

domain fused to signaling domains of the TCR [136] or costimulatory molecules 

[137] have been used. 

Altogether, due to their specificity directly coupled to potent effector functions, T 

cells are an attractive means for tumor immunotherapy. Their success in reliably 

fighting established tumor masses, however, will largely depend on the 

selection of appropriate tumor antigens and finding the right stimulation 

procedures to maintain properly differentiated effector and memory cells at 

higher numbers over longer periods. 
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1.2 Tumor associated antigens 

The existence of structures distinguishing tumors from normal self is the 

indispensable basis for cancer immunotherapy. Knowledge about which of such 

tumor associated antigens (TAAs) are expressed by the specific tumor, how 

they may arise, and what the advantages and restrictions are for different types 

of TAAs, is an important prerequisite for the design of suitable therapeutic 

approaches. 

 

1.2.1 A classification of TAAs 

Every alteration occurring during tumorigenesis at the protein level can 

potentially cause recognition by T cells, provided that the altered protein can be 

processed and presented by MHC molecules. Therefore, it is not surprising that 

virtually all imaginable quantitative and qualitative changes have already led to 

observable T cell responses. Based on their origin or the specific process, by 

which such tumor epitopes are generated, several systems to classify TAAs are 

possible. The classification depicted in Table 1.2.1.1 follows a common scheme 

as applied by Novellino et al. [138]. 

 

Table 1.2.1.1. A selection of human tumor antigens recognized by T cells. Adapted from 
Novellino et al. [138]. 

Class of antigen Subclass Examples of antigens References 

 MAGE-A1  [139-141] 
 MAGE-A2  [142] 
 MAGE-A3  [143, 144] 
 NY-ESO-1 (CTAG1B)  [145, 146] 

Germ cell / Cancer-
testis antigens 

 SSX-2  [147-149] 
    

Melan-A / MART-1  [150-152] 
tyrosinase  [153, 154] 

expressed in 
melanocytes 

gp100  [155, 156] 
expressed in embryonic 
tissue 

CEA  [157-159] 

Differentiation 
antigens 

expressed in prostate PSA  [160, 161] 
    

 adipophilin  [162] 
 HER-2/neu  [163-165] 
 c-met oncogene  [166] 
 MUC1  [167, 168] 
 survivin  [169-171] 

Widely occurring 
overexpressed 
antigens 

 WT1  [172, 173] 
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Tumor specific 
antigens 

く-Catenin  [174] 

 CDK4  [175] 
 

point mutations 

ras  [176-178] 
 gene translocation and 

fusion 
bcr-abl  [179-182] 

 alternative mRNA 
splicing 

TRP-2 (DCT)  [183] 

 translation from an 
alternative ORF 

BING-4 (WDR46)  [184] 

 TGFBR2  [185, 186] 
 

translational frameshift 
OGT  [187] 

 translated intron TRP-2 (DCT)  [188] 
 posttranslational amino 

acid modification 
tyrosinase  [189] 

 FGF5  [190] 
 

protein splicing* 
gp100  [191] 

    
Oncoviral proteins  HPV16 E7 protein  [192, 193] 
    

* Protein splicing itself is most likely not tumor specific. Recognition of such epitopes by anti-
tumor CTLs is probably rather due to the overexpression of FGF5 and gp100 in the respective 
tumors. 

Since the identification of the first gene encoding a T cell epitope [139, 194] 

recognized on human tumor cells, there have been intensive efforts to identify 

such possible targets for a variety of cancers. This led to the identification of a 

considerable number of TAAs [138] generated by various mechanisms (Table 

1.2.1.1). Despite this success, the number of identified TAAs is still far away 

from being sufficient for comprehensive immunotherapeutical approaches 

based on molecularly defined antigens. One reason is the strong bias towards 

melanoma associated antigens, one of the most widely used model cancer in 

tumor immunology. A second bias is towards epitopes restricted by HLA-A*02. 

Even though this is the most frequent HLA class I allele in the caucasian 

population, HLA-A*02 epitopes are useless for more than 50% of the patients. 

In consequence the so far known TAAs are restricted to very few cancer 

species and HLA alleles. 

Concerning the different classes of antigens listed in Table 1.2.1.1, there are 

profound differences with respect to their quality for immunotherapy. 

 

1.2.1.1 Cancer-testis antigens 

This group of antigens has its name from their observed expression pattern: 

among healthy tissues, they are exclusively expressed in spermatocytes of 

testis and sometimes in placenta [195]. Because these cells do not express 
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HLA molecules [196], T cells in healthy individuals are normally not tolerized 

against those self-antigens. Upon tumorigenesis, they are transcriptionally 

activated in certain tumors and may provide tumor associated targets for T 

cells. Since cancer-testis antigens have no known physiological function in 

germ cells or tumors, cancer cells are likely able to escape from immune 

responses by downregulation of antigen expression [197]. 

 

1.2.1.2 Differentiation antigens 

These TAAs are shared between the tumor and the normal tissue from which 

the tumor arose. Most of the identified TAAs of this class belong to the 

melanoma/melanocyte group. Melanocytes are specialized in melanin 

biosynthesis and many enzymes needed for this are therefore highly specific for 

these cells. Expression of such melanocyte-specific genes in healthy individuals 

may lead to T cell tolerance against these antigens, which has to be broken to 

achieve an immune response in anti-melanoma vaccinations. T cells against 

differentiation antigens may lead to autoimmunity against the corresponding 

normal tissue. While the prostate is often completely removed in the case of 

prostate cancer, making autoimmunity against prostate antigens unlikely, 

melanoma vaccinations are often accompanied by vitiligo, due to melanocyte 

destruction [198]. However, such side effects against dispensable normal 

tissues can be justified in the face of potential therapeutic benefit. 

 

1.2.1.3 Widely occurring overexpressed antigens 

This class of antigens is expressed in many normal tissues, albeit at generally 

lower levels compared with tumors. Even though one might expect a profound T 

cell tolerance against such antigens, this is actually the TAA class with the 

highest number of members. Several mechanisms might explain, why reactive 

T cells against epitopes from such antigens exist. The expression levels of such 

antigens in the thymus or peripheral organs may be too low to lead to epitope 

densities sufficient for overcoming ignorance. Alternatively, altered antigen 

processing in tumors may cause the generation of MHC-bound peptides not 

present in other tissues. 

The advantage of these TAAs is their potential expression in different types of 

cancer, because tumorigenesis is likely to require general regulatory 
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mechanisms leading to comparable expression changes independent of the 

specific tissue [199]. This may implicate as an additional advantage the 

dependency of the tumor on the respective TAA, making loss of expression 

rather difficult. Unfortunately, however, these advantages are opposed by 

potentially severe drawbacks on the T cell side. The chance of breaking 

tolerance against widely expressed antigens may be low, and in case of 

successful establishment of a T cell response, one has to worry about 

autoimmunity against vital organs. Nevertheless, overexpressed TAAs have 

been used in several clinical trials showing specific T cell induction in vivo and 

low risks of severe autoimmune reactions [200-203]. 

 

1.2.1.4 Specific antigens 

Truly tumor specific T cell antigens can consist of peptides with either an amino 

acid sequence or posttranslational modifications not occurring in the normal 

proteome. Whereas reports on T cell recognition of posttranslational 

modifications like altered glycosylation [204] or altered amino acid side chains 

[189] are rare, many examples are known for mechanisms leading to unique 

peptide sequences recognized by T cells in tumors. 

Chromosomal translocations may lead to new epitopes at the fusion site. Such 

examples are mostly known for hematopoietic malignancies, especially chronic 

myelogenous leukemia (CML) [179-182]. Other frequently observed alterations 

at the genomic DNA level are point mutations [174-178]. At the mRNA level, 

unusual splicing may generate tumor specific antigens [183]. For the next step 

on the way to the MHC ligand, various abnormal translation events have been 

reported [184-188]. Of note in this context is the possibility that unusual start 

codons like CUG might lead to the generation of unexpected antigens, even 

though T cell recognition of such epitopes has only been described for mice so 

far [205, 206]. Recently, epitopes have been detected which are based on 

posttranslational splicing events within single proteins [190, 191]. The 

mechanism underlying this phenomenon is likely to involve proteasomal 

processing [191]. It is, however, not clear whether splicing itself has anything to 

do with the tumor. Most likely, tumor association of such epitopes is rather due 

to the overexpression of the respective protein in the tumor. 

Tumor specific antigens are the ideal targets for T cell based cancer 

immunotherapy, because there is no risk of autoimmunity, and tolerance 
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against these antigens should be less profound than for shared antigens. The 

best antigens among them are mutations which are essential for the tumor, 

such as in cell cycle regulators [175] because the tumor cannot easily get rid of 

them. The disadvantage of this class of TAAs, however, is their probably rather 

patient-specific occurrence. Even though some underlying mechanisms, like 

chromosomal translocations in leukemia, are a general hallmark of the 

respective cancer and can be easily screened for, both does most likely not 

apply to the majority of mechanisms listed here. In addition, one single defined 

mutation will generally lead to new epitopes only for a low number of HLA 

alleles, restricting its therapeutic potential to few patients. Against this 

background, it would be highly desirable to know at least some tumor specific 

antigens for each patient in order to be able to design an individualized vaccine. 

Unfortunately, with the current analytical technology, a feasible strategy to 

reliably detect even only few of such potential epitopes for a given patient within 

a reasonable time and with reasonable efforts is far out of reach yet. 

 

1.2.2 Strategies for the identification of tumor associated T 

cell epitopes 

1.2.2.1 The classical approach: Starting with T cells recognizing the 

tumor 

The group of Thierry Boon used an expression cloning approach to identify the 

first gene encoding an antigen recognized by a CTL on a human tumor - 

MAGE-A1 [194]. Cytotoxic T cells were isolated from a patient and used to 

screen expression libraries prepared from the recognized tumor cell, leading to 

the relevant gene. The gene containing the epitope was further narrowed down 

by truncation to a 0.3 kb region. The last step to the epitope was done by 

“epitope mapping”, a frequently used method since these days. The primary 

sequence is represented by many adjacent or partially overlapping small 

peptides of about 15 amino acids in length and each of the peptides is analyzed 

for its ability to mediate CTL response if loaded on cells expressing the 

respective MHC molecule. When a 15-mer peptide is recognized, all possible 

nonamer peptides included in the sequence are tested again. Thus, the HLA-

A*01-restricted epitope (EADPTGHSY) was identified [139]. 
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Another approach also starting with T cells was pioneered by the group of 

Slingluff [207]. Using the method described by Falk et al. [208], they isolated 

MHC-bound peptides from a melanoma cell line, which was recognized by 

melanoma-specific CTL lines from five different melanoma patients. After 

separation by HPLC, fractions were tested for their ability to reconstitute 

epitopes for two of the five CTLs after loading on T2 cells. Three peptides 

coeluting with the cytotoxic activity were sequenced by tandem mass 

spectrometry, and finally one of them, (YLEPGPVTA), was shown to be 

recognized by all five melanoma-specific CTLs. 

 

1.2.2.2 Reverse immunology: Starting with known tumor antigens 

The existence of HLA-allele-specific peptide motifs [208] is the basis for this 

approach. Characteristic lengths and sequence properties of peptides bound to 

each specific HLA allele restrict the otherwise unmanageable number of 

possible ligands derived from a given protein considerably and enable their 

prediction. Therefore, if a certain tumor antigen in connection with a specific 

HLA allele (with a known binding motif) is of interest, ligands that most likely 

bind to the HLA molecule can be predicted from the protein sequence. Thus, 

this approach does not rely on pre-existing T cells. It is, however, necessary to 

raise T cells against the predicted epitope in order to confirm actual recognition. 

The final proof should always come from a reaction of those T cells against a 

tumor cell line expressing the antigen in order to confirm its natural processing. 

Several programs offer epitope predictions for various HLA alleles, as for 

example BIMAS/HLA_BIND [209] or SYFPEITHI [210]. Predictions should also 

take into account proteasomal processing [211] and transport into the 

endoplasmic reticulum [212] of potential epitope precursors. A recent approach 

has combined all three steps into one integrated prediction algorithm [213]. As 

an important additional step to verify processing and presentation in actual 

tumor samples, predictions can be used to detect the peptide directly by mass 

spectrometry [214]. This approach has led to the identification and confirmation 

of an epitope from MAGE-A1 on HLA-A*02 [141]. 
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1.2.2.3 The third way: Starting with MHC ligands - definition of novel 

TAAs by mass spectrometry and gene expression analysis 

This approach, pioneered by Weinschenk et al. [215] aims at the identification 

of as many HLA ligands as possible from primary human tumors. From these 

data alone, it is not clear whether any of the peptides might be a candidate 

TAA. Therefore, in an additional step, whole-genome mRNA expression 

profiling is performed using oligonucleotide microarrays. Comparative analysis 

of the primary tumor, autologous corresponding normal tissue, and a panel of 

normal tissues pooled from several healthy individuals enables a relatively quick 

assessment of expression profiles for the genes underlying the identified 

peptides. Candidate TAA epitopes, characterized by a favorable expression 

profile, i.e. high expression in the tumor and low or undetectable expression in 

normal tissues, have the advantage that they are known to be processed and 

presented on real tumors in their natural environment and can be verified by the 

generation of T cells reacting against the peptide bound to the respective HLA 

allele. Two candidates identified by this approach have been already confirmed 

as TAA epitopes: adipophilin [162] and met proto-oncogene [166]. An additional 

advantage is the applicability in a patient-individual way, because all analyses 

can be carried out within few weeks and may ultimately lead to a set of several 

candidate TAAs fitting specifically to the tumor and therefore likely well-suited 

for an individualized vaccination. Altogether, this approach may lead to the 

identification of considerable numbers of new overexpressed TAAs which may 

be either patient-individual or may be of use in a more general way for cancer 

immunotherapy. 

While HLA ligands are in the center of this approach, they by themselves do not 

necessarily convey information about their tumor association. In fact, the 

majority of peptides identified from tumors originates from normal self-proteins 

that are irrelevant for immunotherapy. The definition of overexpressed TAAs 

requires some kind of quantitative information. Ideally, this information should 

be direct quantitative information of HLA ligand densities on the tumor and 

normal tissues, since this is the relevant parameter for T cell reactions [216-

218]. While methods exist to directly perform such quantitative comparisons 

[219], their routine application is still difficult and certainly cannot address ligand 

expression in different organs in order to obtain information about the grade of 

tumor association. Therefore, mRNA or protein levels have to be used as 
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surrogate parameters to define overexpression. The standard tools for protein 

quantification are based on monoclonal antibodies. Because such antibodies 

are not available for the majority of proteins, comprehensive quantifications 

including all source proteins of identified HLA ligands are impossible at present. 

Innovative solutions may arise in the future from the emerging field of protein 

microarray technology [220]. 

For the time being, mRNA expression is the only relevant parameter that can be 

quantitatively assessed in a comprehensive and routine setting by DNA 

microarrays. Since their invention in the mid 1990s [221], technology has rapidly 

developed and microarrays have now become a routine analytical tool 

accessible for many labs. Besides the still common original approach of printing 

of cDNAs on glass slides, oligonucleotide arrays are another important class of 

DNA microarrays [222]. During production of these arrays developed by 

Affymetrix, oligonucleotides are synthesized in situ on glass slides in a highly 

parallel fashion using photosensitive protection groups [223]. While cDNA 

arrays are more flexible, because each desired cDNA can be spotted, they bear 

the risk of major quality changes or errors due to confusion or contamination of 

cDNA samples during production. Considering the availability of commercial 

whole-genome oligonucleotide arrays for the most widely studied organisms, 

especially Affymetrix arrays are becoming more and more the gold standard. An 

advantage of such high-density oligonucleotide microarrays is their system of 

addressing each gene by several oligonucleotides (in general 11 25-mers plus 

11 mismatch controls) allowing for a certain level of statistical analysis for each 

gene. Furthermore, the Affymetrix system uses an integrated instrumentation 

approach, which is not as flexible as cDNA array systems but is likely to 

increase reproducibility [224] and has been shown to introduce less lab-to-lab 

variance compared to other systems [225]. The reliability and quality of this 

technology is also illustrated by the first FDA approval ever granted to a DNA 

microarray test for clinical diagnostics in 2004, which is manufactured by 

Affymetrix (http://www.fda.gov/bbs/topics/news/2004/new01149.html). Due to 

these advantages and despite their relatively high costs, Affymetrix arrays have 

been used for all microarray experiments described in this thesis. 

An important question is whether mRNA overexpression actually indicates 

higher presentation levels of HLA ligands from the respective protein. Recently, 

studies comparing mRNA and protein levels for larger number of genes have 
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found only weak correlations [226, 227]. However, this need not be true to the 

same extent for mRNA and HLA ligands. It is now widely believed that a large 

proportion of HLA ligands is derived from defective ribosomal products (DRiPs) 

[228], aberrantly translated proteins which are then degraded by the 

proteasome [229, 230]. Via this mechanism translation and thus mRNA levels 

might be more closely coupled to antigen processing and presentation than to 

steady state levels of intact proteins. Furthermore, protein levels are likely not a 

good indicator of epitope generation because they do not reflect turnover. Thus, 

mRNA might in fact be the best available surrogate marker for HLA ligand 

levels. However, it is unclear how far correlations are perturbed by the various 

processing steps lying in between mRNA and final peptide on the cell surface. 

Altogether, using mRNA expression data to define overexpressed TAAs seems 

to be justified by successful examples for epitopes identified by this means 

[162, 166, 231]. 

Assessing the feasibility of this approach at a larger scale, as shown in chapter 

2.1, and exploring the fundamentals of its extension to tumor species other than 

renal cell carcinoma, as shown in chapter 2.2, were major aims of this thesis. 
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1.3 Obstacles and opportunities on the way to an 

effective anti-tumor response 

While the identification of suitable TAAs is a necessary prerequisite for any 

molecularly defined tumor immunotherapy, it is clearly not sufficient for 

achieving an effective anti-tumor response. Therefore, much effort has been put 

into the development of strategies to improve priming of naive T cells against 

TAAs in therapeutical settings by appropriate DC differentiation and maturation 

signals such as different cytokines and TLR ligands [58]. Nevertheless, 

objective clinical response rates of cancer vaccine trials have been clearly 

below 10% [22, 232]. This is a clear indication that appropriate therapeutical 

settings have not been found yet. 

The focus so far has mostly been on generating CD8+ CTL responses but not 

so much on maintaining them. It is, however, becoming more and more evident, 

that CD4+ T cell help is crucial for the maintenance of fully functional CD8+ T 

cell immunity, including memory [233-235]. Therefore, efficacy of cancer 

vaccines could likely be improved if they were able to induce CD4+ T cell 

responses. The identification of more TAAs presented in the context of HLA 

class II might thus be a promising approach to follow. The work presented in 

chapter 2.3.1 of this thesis contributes to this aim by providing evidence for a 

novel mechanism for presentation of intracellular antigens on MHC-II molecules 

on tumor cells. This might be a way for HLA class II positive tumors to present 

TAAs to CD4+ helper T cells. 

Immunologists had obviously to be aware of tumor escape from immune 

recognition since tumor immunosurveillance had been hypothesized [236]. For 

a long time, it has been thought that escape was mostly passive, e.g. by 

downregulation of antigen presentation, and that immune cells could simply not 

reach sufficient activation due to the lack of costimulatory signals and cytokines. 

Such issues have been comprehensively addressed by vaccines targeting 

several TAAs and supplementing activators of costimulation and cytokines 

without achieving pronounced efficacy in general. However, more and more 

evidence is emerging for tumor mechanisms that actively target immune cells in 

order to induce suppression or recruit them for the tumor's own benefit [237, 

238]. Such mechanisms include the production of immunosuppressive 
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cytokines, like TGF-く, IL-10, VEGF, IL-6, or M-CSF, which shift the cytokine 

balance to a pattern that inhibit normal differentiation and maturation of DCs 

and generating phenotypes that may induce regulatory T (TReg) cells [238]. 

Furthermore, tumors may induce the expression of co-inhibitory ligands such as 

B7-H1 on DCs [239], which may increase TReg activation [240] and lead to 

apoptosis on effector T cells [241]. On the other hand, TReg cells recruited to the 

tumor and further stimulated by the mechanisms mentioned above, can act 

back on APCs e.g. by inducing IDO expression in DCs [20], thereby further 

shifting the balance from immunogenic to immunosuppressive APCs. By the 

time vaccination is performed, mostly in late stage tumors, such induced 

suppressor cells may have already spread to draining lymph nodes, inhibiting 

the induction of effective responses by active immunization even after surgical 

removal of the tumor. 

Against this background, it is not surprising that the most successful approach 

for T cell immunotherapy so far has been passive adoptive transfer of in vitro 

generated effector cells after lymphodepletion [22]. This method is likely to 

weaken suppressive mechanisms and their remaining activity may just be 

overwhelmed by the vast numbers of effector T cells necessary to achieve an 

effective response. The observation that even in this setting lymphodepletion is 

necessary for at least partial success illustrates how powerful 

immunosuppressive mechanisms might be in cancer patients  - or how strictly T 

cell homeostasis is regulated. However, increasing research efforts in this field 

will likely lead to treatment options that may effectively target such novel 

immunosuppressive mechanisms [238]. 

Since Edward Jenner's pioneering vaccinations, active immunotherapy has 

become a success story enabling effective protection against various pathogens 

by smart and well-tolerated strategies. Against this background and despite the 

rather discouraging present situation with respect to active tumor immunization, 

it clearly cannot be the ultimate goal of immunologists to fight cancer with brute 

force passive approaches like adoptive T cell transfer, which will most likely 

never be applicable to larger patient numbers. Very recent research has come 

up with novel explanations of why tumors are so difficult to attack with the 

immune system. If solutions to overcome such suppressive mechanisms are 

found, the hope is justified that an efficacious active cancer immunotherapy will 

ultimately become reality. 
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1.4 Aims of the thesis 

At the beginning of this thesis, the proof-of-principle for a patient-individual anti-

tumor vaccination approach had been established by Toni Weinschenk [215]. In 

a renal cell carcinoma model, HLA ligand identification of the tumor was 

combined with gene expression analysis of tumor and autologous normal 

kidney in order to identify overexpressed tumor associated antigens (TAAs). In 

this approach, assessment of gene expression in other normal tissues had been 

sporadically performed by quantitative real-time RT-PCR (qPCR). 

 

The first aim of this thesis was the extension of this existing strategy to rapidly 

define TAAs based on identified HLA ligands for a larger number of renal cell 

carcinoma patients. Such patient-individual vaccination candidates were 

required for a clinical trial. In order to achieve this goal, gene expression 

analysis for normal tissues could no longer be performed by time-consuming 

qPCR for each candidate gene. Therefore an in-house whole-genome 

microarray expression database had to be established which enabled the fast 

screening of known or newly identified HLA ligands for their tumor association in 

individual patients. The results of an analysis of several patients are shown in 

chapter 2.1. 

 

The second aim was to establish similar approaches for other tumor species. 

Colon adenocarcinoma is a technically more challenging tumor species for gene 

expression analysis, because tumor and normal tissue are quite 

heterogeneous. Therefore, laser microdissection was used to isolate specifically 

the cells of interest, yielding only minute amounts of RNA, sometimes of 

impaired integrity. Therefore, some technical issues had to be solved, regarding 

RNA quality and necessary amplification procedures. Finally, gene expression 

analysis could be successfully applied to define candidate TAAs for colon 

carcinoma. These results are shown in chapter 2.2. 
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The third aim was to assess the potential of comprehensive gene expression 

analysis for the exploration of more complex immunological processes relevant 

to tumor immunology. Chapter 2.3 shows that autophagy is a mechanism that 

can lead to MHC class II presentation of intracellular antigens on tumor cells 

and how gene expression analysis can contribute to the elucidation of such a 

process, which might be an important basis for the definition of CD4+ T helper 

cell TAAs in the future. 
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2 Results and Discussion 

2.1 General and patient-individual tumor antigens in 

renal cell carcinoma 

2.1.1 Lessons to be learned from primary renal cell 

carcinomas: Novel tumor antigens and HLA ligands for 

immunotherapy 

This chapter has been published in Cancer Immunology, Immunotherapy 

(electronic publication Dec 31, 2004) by the following authors: 

Tobias Krüger*, Oliver Schoor*, Claudia Lemmel, Bjoern Kraemer, Christian 

Reichle, Jörn Dengjel, Toni Weinschenk, Margret Müller, Jörg Hennenlotter, 

Arnulf Stenzl, Hans-Georg Rammensee, and Stefan Stevanovi5 

 

*Tobias Krüger and Oliver Schoor contributed equally to this work. 

 

The author of this thesis performed all gene expression experiments and 

contributed to the evaluation of mass spectra from several RCC samples. 

 

2.1.1.1 Abstract 

The lack of sufficient well-defined tumor-associated antigens is still a drawback 

on the way to a cytotoxic T lymphocyte-based immunotherapy of renal cell 

carcinoma (RCC). We are trying to define larger numbers of such targets by a 

combined approach involving HLA ligand characterization by mass 

spectrometry and gene expression profiling by oligonucleotide microarrays. 

Here we present the results of a large-scale analysis of 13 RCC specimens. We 

were able to identify more than 700 peptides, mostly from self proteins without 

any evident tumor association. However, some HLA ligands derived from 

previously known tumor antigens in RCC. In addition, gene expression profiling 

of tumors and a set of healthy tissues revealed novel candidate RCC-

associated antigens. For several of them we were able to characterize HLA 
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ligands after extraction from tumor tissue. Apart from universal RCC antigens, 

some proteins seem to be appropriate candidates in individual patients only. 

This underlines the advantage of a personalized therapeutic approach. Further 

analyses will contribute additional HLA ligands to this repertoire of universal as 

well as patient-individual tumor antigens. 

 

2.1.1.2 Introduction 

Metastatic renal cell carcinoma (RCC) remains a disease with a fatal prognosis. 

In 2004 more than 35,000 new cases and more than 12,000 cancer-related 

deaths were estimated in the US [1]. If metastasis is diagnosed, the one year 

survival rate decreases to approximately 60%. This underlines the 

dissatisfactory therapeutic situation. Currently numerous new therapeutical 

approaches are under investigation. The known, albeit rare, phenomenon of 

spontaneous regression of metastasis in RCC patients [2] and the existence of 

tumor-reacting and -infiltrating cytotoxic T lymphocytes suggests that RCC is an 

immunogenic tumor. Several immunological concepts of therapy have been 

proposed and several tumor-associated antigens (TAA) defined for RCC in the 

past. The aim of our investigations was to identify HLA class I-presented 

peptides characteristic for the tumor in vivo. These peptides, processed from 

proteins characteristically expressed in the malignancy, may serve as targets 

for a vaccination- induced cytotoxic T lymphocyte (CTL) response against the 

tumor. To achieve this goal, we performed mass spectrometry (LC/MS)-based 

peptide sequencing as well as patient-individual microarray gene expression 

profiling (Figure 2.1.1.1) with surgically resected RCCs. This led to the 

generation of a data set providing information on the one hand about the 

sequences of approximately 100 HLA-presented peptides for each tumor 

specimen of appropriate mass, on the other hand about the level of expression 

for approximately 14,000 particular genes in every tumor. Overexpressed genes 

were identified in individual tumors in comparison to a broad set of healthy 

tissues, covering most human organs. Extensively upregulated genes are 

expected to give rise to tumor-associated proteins and peptides, which should 

provide targets for specific CTL recognition of the tumor [3]. We consider such 

peptides suitable for vaccination. Combining both analytical tools, peptide 

analysis and gene expression profiling, we are able to identify such potential 
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CTL targets in individual malignancies, which might ultimately find their way into 

clinical applications. 

 

Figure 2.1.1.1. Patient individual analysis of gene expression patterns and HLA-presented 
peptides. 

During our investigations we were able to sequence peptides from classical 

TAAs such as carbonic anhydrase 9 (CA9) and met proto-oncogene (MET), as 

well as from constitutively or individually upregulated proteins such as insulin-

like growth factor binding protein 3 (IGFBP3), adipophilin (ADFP) and 

apolipoprotein L1 (APOL1). Here, we describe the results of a systematic 

analysis of peptide presentation patterns and gene expression profiles in 13 

RCC patients. 

 

2.1.1.3 Materials and Methods 

 

Patients and tumor specimens 

Surgically removed RCC specimens (Table 2.1.1.1) were provided by the 

Department of Urology, University of Tübingen, after written informed consent 



Results and Discussion 51

had been obtained from each patient. Specimens were snap frozen in liquid 

nitrogen immediately after surgery. Pathological staging and grading was 

performed by the Department of Pathology and HLA typing was done by the 

Department of Transfusion Medicine, University of Tübingen. This study has 

been approved by the local ethical review board. 

Table 2.1.1.1. Renal cell carcinoma specimens included in the study. Peptide data were 
generated from all samples while gene expression profiling data are available for specimens 
RCC44 - RCC130 only. 

Specimen Histology Grade and Stage HLA Typing 

RCC01 Clear cell RCC  T3 Nx Mx (G2) A*02; A*68; B*18; B*44 

RCC13 Clear cell RCC T2 Nx Mx (G2) A*02; A*24; B*07; B*40 
RCC44 Chromophilic RCC T1 Nx Mx (G2) A*03; A*11; B*27 
RCC68 Clear cell RCC T3 N0 Mx (G3) A*02; A*29; B*15; B*45 

RCC70 Clear cell RCC T3 N1 M0 (G2) A*01; A*02; B*07; B*08 

RCC73 Clear cell RCC T3 N0 (G2) A*02; A*03; B*07; B*57 

RCC75 Chromophilic RCC  T4 Nx M1 (G2-3) A*03; B*07; B*40 
RCC98 Clear cell RCC T3 Nx M1 (G2-3) A*01; A*03; B*07; B*18 

RCC103 Clear cell RCC T3 N0 Mx (G2) A*11; A*25; B*15; B*44 

RCC112 Metastasis of clear 
cell RCC in the 
adrenal gland 

 A*01; A*31; B*08; B*27 

RCC115 Clear cell RCC T3 N0 Mx (G2) A*02; A*03; B*15; B*18 

RCC116 Clear cell RCC T3 N2 Mx (G2) A*01; A*02; B*27; B*37  

RCC130 Clear cell RCC T1 N1 Mx (G3)  A*02; A*24; B*07; B*44 

  

Peptide isolation and sequencing 

Frozen tumor tissue was processed as described previously [4]. Peptides were 

isolated according to standard protocols [5] using the HLA class I specific 

antibody W6/32. 

For RCC01 and RCC44-75, eluted peptide mixtures were separated offline by 

reversed-phase high-performance liquid chromatography (SMART system, 

µRPC C2/C18 SC 2.1/10; Amersham Pharmacia Biotech, Freiburg, Germany) 

and fractions were analyzed by nano-ESI MS on a hybrid quadrupole 

orthogonal acceleration time-of-flight mass spectrometer (Q-TOF; Micromass, 

Manchester, UK) as described previously [4]. For RCC13 and RCC98-130, 

peptide mixtures were separated and analyzed online by a reversed phase 

Ultimate HPLC system (Dionex, Amsterdam, Netherlands) coupled directly to 

the mass spectrometer as described [6]. 

Fragment spectra were analyzed manually and database searches (National 

Center for Biotechnology Information, Expressed Sequence Tag) were carried 
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out using Multiple Alignment System for Protein Sequences Based on Three-

way Dynamic Programming (MASCOT, http://www.matrixscience.com). 

 

Peptide synthesis 

Synthetic peptides were synthesized in an automated peptide synthesizer 

EPS221 (Abimed, Langenfeld, Germany) following the 9-fluorenylmethyl-

oxycarbonyl/tert-butyl (Fmoc/tBu) strategy as described [4]. 

 

Gene expression analysis by high-density oligonucleotide microarrays 

Frozen fragments of tumors RCC44-130 were homogenized by mortar and 

pestle under liquid nitrogen. Total RNA was prepared from these samples using 

TRIzol (Invitrogen, Karlsruhe, Germany) according to the manufacturer’s 

protocol, followed by a cleanup with RNeasy (QIAGEN, Hilden, Germany). Total 

RNA from healthy human tissues was obtained commercially (Ambion, 

Huntingdon, UK; Clontech, Heidelberg, Germany; Stratagene, Amsterdam, 

Netherlands). The RNA from several individuals (between 2 and 62 individuals) 

was mixed in a way that RNA from each individual was equally weighted. 

Quality and quantity were assessed on an Agilent 2100 Bioanalyzer (Agilent, 

Waldbronn, Germany) using the RNA 6000 Pico LabChip Kit (Agilent).  

Gene expression analysis of all RNA samples except RCC130 was performed 

by Affymetrix Human Genome U133A oligonucleotide microarrays (Affymetrix, 

Santa Clara, CA). For RCC130, HG-U133 Plus 2.0 was used. The same normal 

kidney sample was hybridized to both array types to achieve comparability. All 

steps were carried out according to the Affymetrix manual 

(www.affymetrix.com/support/technical/manual/expression_manual.affx). 

Briefly, double-stranded cDNA was synthesized from 5-8 µg of total RNA using 

SuperScript RTII (Invitrogen) and the oligo-dT-T7 primer (MWG Biotech, 

Ebersberg, Germany) as described in the manual. In vitro transcription was 

performed with the BioArray™ High Yield™ RNA Transcript Labeling Kit (ENZO 

Diagnostics, Inc., Farmingdale, NY) for the U133A arrays or with the GeneChip 

IVT Labeling Kit (Affymetrix) for the U133 Plus 2.0 arrays, followed by cRNA 

fragmentation, hybridization, and staining with streptavidin-phycoerythrin and 

biotinylated anti-streptavidin antibody (Molecular Probes, Leiden, Netherlands). 

Images were scanned with the Agilent 2500A GeneArray Scanner (U133A) or 

the Affymetrix GeneChip Scanner 3000 (U133 Plus 2.0) and data were 
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analyzed with the MAS 5.0 (U133A) or GCOS (U133 Plus 2.0) software 

(Affymetrix) using default settings for all parameters. Pairwise comparisons 

were calculated using the respective normal kidney array as baseline. For 

normalization, 100 housekeeping genes provided by Affymetrix were used 

(http://www.affymetrix.com/support/technical/mask_files.affx). Relative 

expression values were calculated from the signal log ratios given by the 

software and the normal kidney sample was arbitrarily set as 1. 

 

2.1.1.4 Results and discussion 

Patient-individual analysis of tumor-associated peptides presented on 

RCC. 

LC/MS-based peptide sequencing of HLA ligands extracted from surgically 

removed RCC specimens yielded approximately 100 different peptides per 

patient. However, a lot more peptides are expected to be presented by tumor 

cells, so we estimate that we still detect only the most abundantly presented 

peptides, which make up just a few percent of the whole HLA "ligandome" [6]. 

From 13 primary RCC samples we were able to sequence more than 700 

different peptides using fragmentation-induced mass spectrometry 

(supplementary Table S1, http://www.uni-tuebingen.de/uni/kxi/PaperSupple 

ments/CII_S1.pdf). These peptides derived from more than 500 different source 

proteins and were presented by various HLA allotypes. The following 

assignments of peptide sequences to specific allotypes are solely based upon 

known binding motifs in connection with the HLA typing of the samples and not 

on direct experimental evidence. All natural HLA ligands will be included in the 

next update of the HLA ligand database SYFPEITHI (www.syfpeithi.de). With 

regard to their expression profiles, the source proteins of HLA ligands could be 

divided into three groups. Firstly (i), as expected, only a small percentage of the 

peptides identified were of relevance with regard to tumor immunotherapy. Most 

peptides derived from structure proteins, constitutively expressed enzymes, and 

receptors, and represented classical self-peptides. More important (ii), we were 

able to define various peptides derived from well-known tumor-associated 

antigens such as carbonic anhydrase 9 (CA9), met proto-oncogene (MET), and 

adipophilin (ADFP) which have already been used for vaccination in several 

patients in an ongoing clinical trial. Additionally (iii) we identified several novel 

antigens such as apolipoprotein L1 (APOL1), matrix metalloproteinase 7 
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(MMP7), insulin-like growth factor binding protein 3 (IGFBP3), regulator of G-

protein signalling 5 (RGS5) and acyl-CoA synthetase long-chain family member 

4 (ACSL4). 

In general, we considered an antigen overexpressed if the mRNA expression of 

its source protein was increased at least three-fold in the respective tumor 

compared to normal kidney and also markedly increased compared to other 

healthy tissues. With the knowledge of HLA ligands derived from such 

overexpressed antigens, vaccination cocktails can be designed which aim at 

individually distinct characteristics of the patient´s malignancy. 

 

Constitutively expressed structure proteins are a major source of HLA 

class I presented peptides.  

The majority of peptides which were sequenced throughout our analysis derived 

from housekeeping proteins such as vimentin, actin, or spectrin. For instance, 

we were able to sequence 14 different peptides from vimentin restricted to 

several different HLA subtypes (Table 2.1.1.2). So far our peptides cover nearly 

26% of the 466 amino acid sequence of vimentin; they were found on 8 of 13 

investigated tumors. From no other source protein were more peptides defined, 

underlining the observation that clear cell renal cell carcinomas express 

vimentin to a high extent [7]. A median of 3.5-fold overexpression of vimentin in 

comparison to normal kidney tissue (range 0.2-6.4) was determined, but only a 

1.9-fold overexpression if compared to the median of all other healthy tissues 

(median 1.6; range 0.3-6.1). The ubiquitous expression of vimentin and the 

resulting widespread presentation of vimentin-derived peptides on healthy 

tissues exclude vimentin peptides from usage for vaccination. The same is true 

for other structure proteins: six different peptides were found from 伊く-actin, five 

from non-erythrocytic beta, and three from alpha spectrin. Adipophilin, a tumor-

associated antigen we recently identified [8, 9], was the only exception which 

represented a non-structural protein. 
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Table 2.1.1.2. Proteins from which abundant HLA ligands were repeatedly found. 

Source Protein 
Overexpression > 3-fold in X/11 RCCs  
(M, median; R, range of overexpression) 

Entrez 
Gene 

ID 

Peptides 
Found on 
X/13 
Tumors 

Sequence HLA 
Restriction 
(n.a.: not 
assigned) 

vimentin (VIM) 
6/11 (M 3.5; R 0.2 - 6.4) 

7431 8 ALRDVRQQY 
ALRPSTSRSLY 
DLERKVESL [38] 
EEIAFLKKL [8] 
EENFAVEA 
MEENFAVEA 
NLRETNLDSLP 
NYIDKVRFL 
REKLQEEML 
RETNLDSLP 
SLYASSPGGVYATR 
SRISLPLPNF 
SSVPGVRLLQDSVDF 
SSVPGVRLLQDSVDFSL 

B*1501 
A*03 

A*0201 
B*18 
B*45 
B*45 
n.a. 
A*24 
B*40 
n.a. 
A*03 
B*27 
n.a. 
n.a. 

adipose differentiation-related protein 
(ADFP) 
5/11 (M 2.6; R 0.1 - 5.5) 

123 5 IARNLTQQL 
MAGDIYSVFR [8] 
MTSALPIIQK [8] 
SLLTSSKGQLQK 
SVASTITGV [8] 
TSALPIIQK 
VQKPSYYVR 

B*07 
A*6801 
A*6801 

A*03 
A*0201 

A*03 
A*31 

actin, beta (ACTB) 
0/11 (M 0.8; R 0.6 - 2.5) 

60 4 LRVAPEEHPVL 
MEKIWHHTF 
MQKEITAL 
RVAPEEHPV 
RVAPEEHPVL 
RVAPEEHPVLLT 

n.a. 
B*18 

B*1501 
A*02 
A*02 
A*02 

spectrin beta, non-erythrocytic 1 
(SPTBN1) 
0/11 (M 0.8; R 0.5 - 2.1) 

6711 5 AVCEVALDY 
DEKSIITY 
DEMKVLVL [8] 
EEASLLHQF 
KPRDVSSVEL 

n.a. 
B*18 
B*18 
B*44 
B*07 

myosin light chain alkali non-muscle 
isoform (MYL6) 
0/11 (M 0.7; R 0.4 - 1.0) 

4637 4 AEIRHVLVTL 
EAFVRHIL 
LVRMVLNG 
YEELVRMVL 

B*40 
B*08 
n.a. 
B*40 

catenin (cadherin-associated protein), 
alpha 1 (CTNNA1) 
0/11 (M 0.8; R 0.5 - 1.1) 

1495 3 FIDASRLVY 
LQHPDVAAY 
NEQDLGIQY [8] 

A*01 
B*1501 

B*44 / B*18 
spectrin alpha, non-erythrocytic 1 
(SPTAN1) 
0/11 (M 0.8; R 0.6 - 1.5) 

6709 3 ADSLRLQQL 
ETFDAGLQAF 
RQGFVPAAY 

B*37 
A*25 

B*1501 

  

 

Investigation of reported tumor-associated antigens in RCC 

Only few tumor-associated antigens have been described to be associated with 

renal cell carcinoma and suggested to serve as targets in tumor 

immunotherapy. We specifically searched for reported HLA ligands from these 

antigens and analyzed their gene expression (Table 2.1.1.3). From RAGE, 

PRAME, members of the MAGE family, NY-ESO-1, and from shared TAAs 

telomerase, survivin, and MUC-1 we detected no HLA-presented peptides 
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whatsoever. However, from adipophilin, MET, CA9, and cyclin D1 known and 

novel HLA ligands were characterized. Upregulation of their genes varied 

considerably (Table 2.1.1.3). Only three previously described tumor-associated 

antigens in renal cell carcinoma played a significant role during our analyses, 

the met proto-oncogene [8, 10], adipophilin [8, 9], and carbonic anhydrase 9 

[11] were upregulated in the majority of the tested specimens and yielded 

abundant HLA ligands (see below, Table 2.1.1.2, and Table 2.1.1.3). Survivin, 

cyclin D1, and PRAME were overexpressed in a minority of tumors, but MUC1, 

TERT, and RAGE did not fulfill our overexpression criteria in one single 

example. 

Table 2.1.1.3. Expression analysis, known T cell epitopes, and novel HLA ligands of reported 
RCC-associated antigens. 

RCC-associated Tumor Antigen 
Overexpression > 3-fold in X/11 RCCs  
(M, median; R, range of overexpression) 

Entrez 
Gene 

ID 

Known T Cell 
Epitopes 

HLA 
Restriction 

References Peptides Found  
in This Study 

met proto-oncogene (MET) 
11/11 (M 12.3; R 4.3 - 28.3) 

4233 YVDPVITSI A*02  [10] YVDPVITSI  
(A*02) [8] 

carbonic anhydrase isoform IX (CA9) 
7/11 (M 4.0; R 0.4 - 11.3) 

768 HLSTAFARV A*02  [26] SPRAAEPVQL  
(B*07) 

adipose differentiation-related protein 
(ADFP) 
5/11 (M 2.6 ; R 0.1 - 5.5) 

123 SVASTITGV A*02  [9] See Table 2 

cyclin D1 (CCND1) 
4/11 (M 1.8; R 0.7 - 5.7) 

595 RLTRFLSRV 
LLGATCMFV 

A*02 (allo) 
A*02 (allo) 

 [39] 
 [39] 

ETIPLTAEKL 
(A*6801) [8] 

survivin (BIRC5) 
3/11 (M 1.4; R 0.4 - 0.9) 

332 ELTLGEFLKL A*02  [40]  

preferentially expressed antigen in 
melanoma (PRAME) 
2/11 (M 0.4; R 0.1 - 4.7) 

23532 SLLQHLIGL 
ALYVDSLFFL 
VLDGLDVLL 
SLYSFPEPEA 
LYVDSLFFL 

A*02 
A*02 
A*02 
A*02 
A*24 

 [41] 
 [41] 
 [41] 
 [41] 
 [42] 

 

melanoma antigen, family A, 3 
(MAGEA3) 
1/11 (M 1.3; R 0.4 - 6.2) 

4102 FLWGPRALV 
KVAELVHFL 
EVDPIGHLY 
IMPKAGLLI 
TFPDLESEF 
MEVDPIGHLY 

A*02 
A*0201 

A*01, B*35 
A*24 

A*2402 
B*44 

 [43, 44] 
 [45] 

 [46, 47] 
 [48] 
 [49] 
 [50] 

 

renal tumor antigen (RAGE) 
0/11 (M 0.6; R 0.4 - 1.3) 

5891 PASKKTDPQK 
SPSSNRIRNT 

B*08 
B*07 

 [38] 
 [51] 

 

cancer/testis antigen 1B (NY-ESO-1) 
0/11 (M 0.7; R 0.5 - 2.6) 

1485 SLLMWITQC A*0201  [52]  

melanoma antigen, family A, 1 
(MAGEA1) 
0/11 (M 0.1; R 0.0 - 0.6) 

4100 KVLEYVIKV 
and many 
others 

A*0201 
 

 [53] 
 

 

mucin 1 (MUC1) 
0/11 (M 0.4; R 0.1 - 0.8) 

4582 LLLLTVLTV 
STAPPVHNV 
and others 

A*02 
A*0201 

 

 [54] 
 [54, 55] 

 

 

telomerase reverse transcriptase (TERT) 
0/11 (M 0.6; R 0.5 - 1.5) 

7015 ILAKFLHWL 
KLFGVLRLK 
VYGFVRACL 
VYAETKHFL 

A*0201 
A*03 

A*2402 
A*2402 

 [56] 
 [57] 
 [58] 
 [58] 
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Figure 2.1.1.2. mRNA expression profiles of met proto-oncogene (MET) (a) and carbonic 
anhydrase IX (CA9) (b) in 11 analyzed RCCs and various human tissues. Relative expression 
values are normalized to kidney (expression = 1). MET appeared highly overexpressed in all 
tumors,  CA9 was overexpressed over kidney in most tumors, while stomach and small intestine 
also show high expression of CA9. 

Both, met proto-oncogene [12] and carbonic anhydrase 9 [11] are known to be 

expressed by the vast majority of renal cell carcinomas. This was confirmed by 

our data: MET mRNA was upregulated in all analyzed RCCs by 12.3-fold in 

average in comparison to healthy kidney tissue (Table 2.1.1.3) with no relevant 

expression in all other human tissues (Figure 2.1.1.2a). The HLA-A*02-

presented CTL epitope YVDPVITSI [8] was previously shown to mediate tumor 

cell lysis in vitro [10]. Carbonic anhydrase 9 (CA9; G250), the only known 

tumor-associated isoform of carbonic anhydrase [11, 13], is also expressed by a 

set of other malignancies, for example breast cancer [14], non-small-cell lung 

cancer [15], and squamous cell head and neck cancer [16, 17]. CA9 expression 

in general is hypoxia-inducible, and was suggested to be an endogenous 

marker for tumor hypoxia [15]. The frequent deletion of the von Hippel-Lindau 

tumor suppressor gene (VHL) in the case of renal cell carcinoma is associated 

with the upregulation of CA9, a characteristic antigen for RCC [18]. The level of 

CA9 expression was even shown to be an independent prognostic marker for 

this disease [19]. In vivo studies show that the monoclonal anti-CA9 antibody 

G250 exclusively binds to tumor cells, and that CA9 can be used as a 

therapeutic target [20-22]. In consequence, it has been targeted in various 

investigational therapeutic approaches in renal cell carcinoma [23-25] and is 
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also considered a suitable source of epitopes in CTL-based immunotherapy. 

Although we could not detect the prominent HLA-A*02-restricted CTL epitope, 

HLSTAFARV [26], the HLA-B*07-presented CA9 peptide SPRAAEPVQL was 

sequenced by collision-induced tandem mass spectrometry (Figure 2.1.1.3) and 

represents a promising candidate for peptide-based immunotherapy. CA9 was 

overexpressed in 7/11 RCCs as expected [27], expression in normal tissue was 

relevant only in stomach, small intestine, and bladder (Figure 2.1.1.2b), 

consistent with previous reports [21, 27]. 

 

 

Figure 2.1.1.3. Fragmentation-induced mass spectra of the HLA-B*07-presented CA9 peptide 
SPRAAEPVQL. a) synthetic peptide, b) peptide extracted after immunoprecipitation of tumor 
HLA. 

The most abundant source of HLA ligands in the group of the reported tumor 

antigens was adipose differentiation-related protein adipophilin (ADFP), from 

which peptides were detected in five of thirteen investigated tumors. This led to 

the characterization of seven different peptides with different HLA restrictions 

(Table 2.1.1.2). According to this, adipophilin ranked second among our 

frequent source protein for peptides after vimentin, suggesting a high 

abundance of adipophilin peptides on the surface of RCC cells. Adipophilin was 

also highly overexpressed in most renal cell carcinomas of the clear cell 

subtype (data not shown), whereas both chromophilic RCCs, RCC44 and 

RCC75, showed no upregulation of adipophilin at the mRNA level. The only 

tissues with relevant adipophilin expression are female mammary gland and 
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placenta. This suggests that adipophilin-derived peptides can be used for 

vaccination in male patients with renal cell carcinoma, especially in clear cell 

type malignancies. One of the adipophilin-derived HLA ligands, the peptide 

SVASTITGV presented by HLA-A*02, was recently shown to be a T cell epitope 

which mediates tumor cell lysis in vitro [9]. The novel adipophilin peptides cover 

a broad range of HLA restrictions (Table 2.1.1.2), and thus represent candidate 

vaccination peptides in our concept of patient-individual immunotherapy [28]. 

 

Complementary analysis of gene expression and peptide presentation 

leads to the identification of new broadly expressed tumor-associated 

HLA ligands. 

A set of proteins was repeatedly found to be upregulated at the mRNA level and 

a source of HLA ligands in renal cell carcinoma (Table 2.1.1.4). These proteins 

are, according to their expression profiles, potential sources for vaccination 

peptides either in all or most patients as for insulin-like growth factor binding 

protein 3 (IGFBP3), apolipoprotein L 1 (APOL1), and the regulator of G-protein 

signalling 5 (RGS5), or only in few patients as for matrilysin (MMP7) or the acyl-

CoA synthetase long-chain family member 4 (ACSL4). 

Table 2.1.1.4. Novel RCC-associated antigens identified by overexpression and source of HLA 
ligands presented by several allotypes. 

Source Protein 
Overexpression > 3-fold in X/11 RCCs  
(M, median; R, range of overexpression) 

Entrez 
Gene ID

Sequence HLA 
Restriction 

References

apolipoprotein L, 1 (APOL1) 
9/11 (M 7.1; R 1.1 - 40.2) 

8542 FLGENISNFL 
ALADGVQKV 

A*0201 
A*0201 

 [8, 38] 
 [8, 38] 

insulin-like growth factor binding 
protein 3 (IGFBP3)  
8/11 (M 6.0; R 2.0 - 10.2) 

3486 RPTLWAAAL B*07  

regulator of G-protein signalling 5 
(RGS5) 
7/11 (M 7.2; R 0.3 - 14.9) 

8490 GLASFKSFLK 
LAALPHSCL 

A*03 
A*02 

 

matrix metalloproteinase 7, matrilysin 
(MMP7) 
4/11 (M 2.4; R 0.3 - 12.1) 

4316 FPNSPKWTSK 
SLFPNSPKWTSK

A*03 
A*03 

 

cytochrome P450, family 1, subfamily 
B, polypeptide 1 (CYP1B1) 
3/11 (M 0.6; R 0.3 - 9.2) 

1545 FLDPRPLTV A*02  

acyl-CoA synthetase long-chain family 
member 4 (ACSL4) 
1/11 (M 1.3; R 0.8 - 7.1) 

2182 KLFDHAVSKF 
VPNQKRLTLL 

A*03 
B*07 

 

  

Insulin-like growth factor 1 (IGF1) was shown to be involved in the progression 

of malignancies derived from proximal tubule epithelial cells, and insulin-like 

growth factor binding proteins, among them IGFBP3, are known to be 



Results and Discussion 60 

upregulated in clear cell renal cell carcinoma [12, 29, 30]. In our investigations, 

IGFBP3 was upregulated in at least 8 of 11 analyzed specimens (Table 2.1.1.4) 

with no relevant expression in normal tissues. One in vivo processed peptide 

from IGFBP3, RPTLWAAAL, was presented by HLA-B*07. 

The expression profile of APOL1 also suggests tumor association: Nine of 

eleven analyzed clear cell carcinomas showed an upregulation of APOL1 in 

comparison to normal kidney (Table 2.1.1.4), although the factors of 

overexpression were rather heterogeneous (Figure 2.1.1.4a). The repeated 

detection of HLA ligands derived from APOL1 and its extensive overexpression 

in tumors RCC68, RCC98, RCC115, and RCC130 justifies the usage of APOL1 

peptides for vaccination in these patients according to our criteria. 

 

 

Figure 2.1.1.4. mRNA expression profiles of a) apolipoprotein L 1 (APOL1) and b) regulator of 
G-protein signalling 5 (RGS5). APOL1 is extensively upregulated in RCC68, RCC98, RCC115, 
and RCC130. RGS5 appears overexpressed in RCC70, RCC73, RCC98, RCC112, and 
RCC115. 

RGS5, from which two HLA ligands were detected, was upregulated in seven of 

eleven tested tumors (Table 2.1.1.4) and reported to be overexpressed in RCCs 

previously [12, 31]. However, in comparison to the other healthy tissues, RGS5 

shows a very heterogeneous pattern of expression (Figure 2.1.1.4b), which 

necessitates an individual expression analysis of each tumor before its peptides 

are used for vaccination. 
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Some HLA ligands are tumor-associated candidates in individual cases 

only. 

MET, CA9, ADFP, IGFBP3, and APOL1 represent antigens overexpressed in all 

or most renal cell carcinomas. Such antigens provide a source for vaccination 

peptides per se, even if only few naturally processed peptides are known. 

However, individual patterns of gene expression may be found in individual 

cancer specimens. Therefore, we place our emphasis on a patient-individual 

concept of immunotherapy and perform individualized gene expression and 

peptide analysis [28]. In this individual approach we also use peptides derived 

from genes that are exclusively upregulated in one or only few patients. 

One example of such an antigen is matrix metalloproteinase 7 (MMP7), which 

was shown to be expressed in cancer cells of various origins and to play a role 

in the process of metastasis [32-34]. Apart from high expression levels in RCCs 

68, 98, and 116 (Table 2.1.1.4), we detected relevant MMP7 expression only in 

the bladder. The HLA-A*03 ligand SLFPNSPKWTSK, as well as its shorter 

variant FPNSPKWTSK, were found on RCC75 and RCC98. It has to be 

mentioned that for these peptides as well as for all other HLA ligands described 

in this and the preceding chapter no data on T-cell reactions exist so far. 

The acyl-CoA synthetase long-chain family member 4 (ACSL4) was 

overexpressed in one patient of the chromophilic subtype, RCC75 (Table 

2.1.1.4). ACSL4 overexpression was recently reported to be associated with 

colon adenocarcinoma [35] and hepatocellular carcinoma [36]. From RCC75, 

the HLA-A*03-presented peptide KLFDHAVSKF was characterized and later 

also found in RCC98. ACSL4 stands for an antigen which might be used for 

vaccination only in particular cases. 

 

Gene expression profiles from 11 RCCs allow for the identification of 

novel candidate RCC antigens. 

While gene expression analysis yields comprehensive data, HLA ligand 

characterization does not: From the estimated over 10,000 peptides making up 

the HLA class I ligandome of a given cell, only a very low percentage can be 

identified with current tools and strategies. In contrast, almost every gene of the 

human genome can be assessed by gene expression profiling. 

Therefore, we searched our gene expression data for genes upregulated in 

most tumors in relation to healthy tissues, even without identified HLA ligands. 
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Here we present three promising antigens that emerged from these analyses. 

The tumor necrosis factor (ligand) superfamily, member 7 (TNFSF7), was 

overexpressed in 5 of 11 tumors (Figure 2.1.1.5a). Ubiquitin D (UBD) is 

characterized by undetectable expression in most healthy tissues but strong 

expression in clear cell RCCs (Figure 2.1.1.5b). One peptide from UBD, 

DANPYDSVKKI (HLA-B*51) has recently been identified [37]. Our third example 

of a consistently overexpressed protein in RCC (nine of eleven tested tumors 

with a more than 18-fold overexpression) is the regulator of G-protein signalling 

1, RGS1 (Figure 2.1.1.5c). In contrast to RGS5, which has already been 

described as upregulated in RCC  [12, 31], RGS1 has not yet been mentioned 

in the context of RCC. Interestingly, no other members of the RGS family were 

overexpressed in our RCC samples. Unfortunately, no HLA-presented peptides 

from RGS1 are known so far. 

 

 

Figure 2.1.1.5. Novel potential RCC-associated antigens, identified by their overexpression in 
RCC. a) Tumor necrosis factor (ligand) superfamily, member 7 (TNFSF7), b) Ubiquitin D (UBD), 
c) Regulator of G- protein signalling 1 (RGS1). HLA-presented peptides have only been 
identified for UBD so far. 
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Conclusions 

In this report we present data resulting from a systematic large scale analysis of 

HLA peptide presentation patterns and mRNA expression profiles in renal cell 

carcinoma. We identified a number of novel HLA ligands from reported RCC 

antigens such as adipophilin and CA9 and confirmed the constitutively high 

expression of the classical antigens CA9, ADFP and MET, whereas no 

evidence was revealed for a concurrent elevated expression level of most other 

previously suggested tumor associated antigens. Various proteins constitutively 

or sporadically overexpressed in RCC were suggested tumor-associated 

antigens, for example RGS5, RGS1, IGFBP3, and APOL1. From some of these 

proteins novel HLA class I peptides were characterized that might turn out to 

represent target epitopes for CTL responses. Future T cell work will have to 

reveal the immunogenicity of these peptides. The therapeutic impact of a 

vaccination treatment with the mentioned peptides is currently under intensive 

investigation. 
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2.1.2 Metastases show an expression profile similar to the 

primary tumor 

2.1.2.1 Introduction 

Radical nephrectomy is the standard treatment for renal cell carcinoma (RCC) 

[1]. In consequence, after removal of the primary tumor any kind of follow-up 

therapy must aim at residual tumor cells or manifest metastases. In most cases, 

comprehensive analyses are only possible for the resected primary tumor. This 

especially applies to HLA ligand analyses described in chapter 2.1.1, since 

rather large amounts of material are necessary for this approach. Against this 

background it is important to ask whether residual tumor cells display the same 

characteristics as the primary tumor, which is generally used for therapeutic 

target selection but is not the actual target during therapy. 

The prevailing model of cancer progression assumes that primary tumors 

consist of heterogeneous subpopulations of tumor cells, which have different 

biological characteristics and are the product of neoplastic progression - an 

evolutionary process involving multiple stages and leading to several distinct 

tumor cell populations [2]. It is further postulated that most primary tumor cells 

have low metastatic potential and only very rare cells within those tumors 

acquire metastatic capacity through somatic mutation [3]. This implies that 

heterogeneous bulk primary tumor masses might be very different from 

metastases, which have their clonal origin in those rare cells. This model, 

however, has been recently challenged by a hypothesis suggesting that the 

tendency to metastasize is largely determined by mutant alleles acquired early 

during multistep tumorigenesis [4]. This alternative model has been heavily 

debated [5-7] but would be very attractive if it proved to be true in general, 

because - among other advantages - target selection for therapy based on 

primary tumors could be more easily justified and would more likely be 

successful. 

Various microarray gene expression studies on primary tumors have been 

performed in order to predict their metastatic potential and select appropriate 

treatment strategies [8-10]. However, only few direct comparisons of primary 

tumors and metastases have been published [11-15]. For renal cell carcinoma, 

only one such experiment has been described [16] using cultured cell lines 

originating from either primary tumors or metastases. This approach, however, 
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takes the tumor cells out of their natural microenvironment and therefore bears 

the risk of considerably altered expression patterns [17]. 

The following experiment addresses the gene expression of a primary renal cell 

carcinoma specimen, autologous normal kidney tissue, and two hilar lymph 

node metastases. 

 

2.1.2.2 Materials and Methods 

From the patient RCC190, surgically removed material from the primary tumor 

(RCC190T), normal kidney (RCC190N), and two hilar lymph node metastases 

(RCC190M1 and RCC190M2) was obtained. RNA was isolated and gene 

expression profiling was performed using Affymetrix HG-U133Plus 2.0 

microarrays containing approx. 54,000 probesets as described in chapter 

2.1.1.3. Commercially obtained normal kidney RNA (Clontech, Heidelberg, 

Germany) was also hybridized to the same array type and used as reference for 

comparison of differential expression. 

 

2.1.2.3 Results and Discussion 

Gene expression analysis by Affymetrix arrays provides several different 

parameters which can be used to assess the similarity of expression profiles. 

Figure 2.1.2.1A shows genes detected as present in the different samples of 

RCC190. The absolute numbers were quite similar for all samples. The overlap 

between tumor and metastases was slightly higher than between normal and 

malignant (tumor, metastasis 1, metastasis 2) samples. However, the rather 

small differences observed in this parameter do not allow any further 

interpretation. The picture becomes clearer if quantitative expression 

differences are taken into consideration. In order to assess those, RCC190 

samples were compared to pooled normal kidney RNA as a neutral reference. 

Figure 2.1.2.1B displays the number of genes which were at least two-fold 

overexpressed against this reference. Interestingly, the RCC190 normal kidney 

already showed a considerable number of overexpressed genes against the 

reference kidney but not as many as the malignant samples. The overlap of 

overexpressed genes identified in common between normal and malignant 

samples was about 50%, whereas the overlap among the three malignant 

samples was around 80%. This indicates that the expression signature of the 
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metastases is much more closely related to the primary tumor than to the 

autologous normal kidney and is in the same range as the between the 

metastases themselves. Altogether, these results suggest that differences 

between normal and malignant expression signatures for RCC are not so much 

characterized by a larger number of genes whose transcription is entirely turned 

on or off during tumorigenesis. In fact, altered profiles rather become manifest 

in quantitative changes observed for mRNA species characterizing the specific 

state of the sample. 
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Figure 2.1.2.1. Genes identified in common between different samples from RCC190. (A) 
Genes detected as "present" according to the detection call algorithm of the GCOS software. 
Black cells show the number of present genes for each sample. The lower left part of the table 
indicates the number of such genes that were found in common between the different sample 
combinations. The grey shaded upper right part of the tables shows the corresponding 
percentages. The smaller number of present genes among the two arrays constitutes the 
maximum number that could be detected in common and was therefore set as 100 percent. (B) 
Genes upregulated at least twofold compared with normal reference kidney. To be 
considered as overexpressed, genes had to fulfill general criteria for upregulation: an “increase” 
call together with a “present” call on the indicated array. Furthermore, a threshold criterion of 
twofold increase had to be met. Black cells show the number of such genes for each sample 
compared with reference kidney. The lower left part of the table indicates the number of genes 
that were found in common between the different sample combinations. The grey shaded upper 
right part of the tables shows the corresponding percentages. The smaller number of 
upregulated genes among the two array pairs constitutes the maximum number that could be 
detected in common and was therefore set as 100 percent. 

 

The most comprehensive approach of assessing quantitative expression 

differences consists in not only looking at the numbers of genes above a certain 

threshold but on the relative overexpression of every gene itself. This method is 

illustrated in Figure 2.1.2.2. 
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Figure 2.1.2.2. Correlation of differential expression measured for different samples 
against normal reference kidney. Expression differences between RCC190 samples and 
reference kidney were quantitatively determined by baseline comparisons using the GCOS 
software. The log2 values for differential expression obtained for each array pair (indicated 
RCC190 sample versus reference kidney) were compared with the other pairs: (A) Comparison 
of RCC190 tumor (versus reference kidney) with autologous RCC190 normal kidney (versus 
reference kidney). (B) RCC190 tumor compared with RCC190 metastasis 1. (C) Correlation 
coefficients r2 for all comparisons between sample pairs from RCC190. (D) Comparison of 
RCC190 tumor with another representative renal cell carcinoma primary tumor (RCC133). The 
average correlation coefficient of comparisons between 10 different RCC tumors was r2 = 0.60. 
Theses analyses were restricted to genes that were detected as present on both microarrays of 
each comparison. This pre-selection of genes was necessary in order to avoid measuring 
differential expression against background levels which would result in meaningless numbers 
inappropriate for measuring correlation in this way. 
 

The maximum correlation is observed between the two metastases (r2 = 0.85, 

Figure 2.1.2.2C), shortly followed by the comparison of the metastases with the 

primary tumor (r2 = 0.84 and 0.77, Figure 2.1.2.2B and C). All correlations 

between the autologous normal kidney and the malignant samples are much 

weaker (r2 = 0.34 to 0.44, Figure 2.1.2.2A and C). Additionally, correlation 

coefficients were calculated for RCC190 tumor compared with nine further 
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primary RCC tumors from other patients using the same method. The average 

correlation was r2 = 0.60 (data not shown). One representative example is 

shown in Figure 2.1.2.2D. These results indicate that the transcriptional profile 

between a primary tumor and its autologous metastases is more closely related 

than the profile between different primary tumors and that all malignant profiles 

are very different from autologous normal kidney. 

In order to obtain a well-substantiated picture of how closely related the 

malignant samples actually are, it is necessary to know the technical deviation 

from the ideal correlation of r2 = 1 inherent to the method. A sound estimation of 

this level of noise can be achieved by replicate experiments like those 

performed for another part of this thesis (chapter 2.2.2). Figure 2.2.2.4D shows 

that - starting always from the same RNA sample - for two microarray pairs 

processed according to the same protocol, the correlation of differential 

expression is r2 = 0.92. If these samples are compared with an array processed 

according to a slightly different protocol but still using the same starting RNA, 

the correlation decreases to r2 = 0.89 and 0.88, respectively. 

Thus, the observed correlations among the malignant samples are close to the 

level which corresponds to inevitable technical noise and therefore suggest that 

the expression signatures between the primary tumor and its metastases might 

in fact be identical. This finding is very positive for all therapeutic approaches 

relying on the analysis of primary tumors in order to find targets also applicable 

to fight metastases. It can be expected that if the expression profiles between 

tumor and metastases are so similar, this will apply to all relevant 

characteristics as well, even though this assumption cannot be easily verified. 

These results are supported by some of the initially mentioned microarray 

studies of other tumor species and metastases. For breast cancer, it has been 

reported that metastasis and primary tumor were as similar in their expression 

pattern as were repeated samplings of the same primary tumor and more 

similar to each other than either was to any other tumor sample from different 

patients [11]. On the other hand, genes differentially expressed in metastasis 

compared with primary tumors can also be identified [14]. Arguably the most 

important application for microarrays in cancer research is diagnostic marker 

identification. Various publications demonstrate that it is possible to identify 

gene expression signatures in primary tumors that predict their metastatic 

potential or even the clinical outcome of the disease [8-10, 18]. The success of 
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such approaches indicates that the tendency to metastasize is very likely 

inherent to the majority of cells within the primary tumor. These results are 

strong evidence against the conventional model [3] claiming that metastases 

arise from rare special cells within primary tumors. If this were true, it would be 

impossible to recognize metastatic potential from overall tumor profiles. In 

contrast, all available data are in favor of the alternative hypothesis suggesting 

that the tendency to metastasize is acquired early during tumorigenesis [4]. 

Moreover, this model is strongly supported by a recent comprehensive 

microarray study of primary tumors and metastases [13]. Based on similar 

expression signatures in metastases compared with a subset of different 

primary tumors, the authors claim that their data "support a model in which the 

propensity to metastasize reflects the predominant genetic state of a primary 

tumor rather than the emergence of rare cells with the metastatic phenotype". 

Altogether, the similarities between a primary RCC tumor and two hilar lymph 

node metastases demonstrated in this experiment together with ample evidence 

from the literature strongly suggest that tumors and their metastases might be 

so closely related, that target identification on primary tumors in order to fight 

metastasis can be justified. 
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2.2  Potential tumor antigens in colorectal carcinoma 

2.2.1 Gene expression analysis after laser microdissection 

2.2.1.1 Introduction 

Colorectal carcinoma as well as healthy colon tissue displays a very 

heterogeneous morphology if compared for example with kidney tissue (Figure 

2.2.1.1). Thus, RNA isolated from crude tissue samples constitutes a mixture 

representing an overlay of various cell types. It may be argued that examining 

the expression profile of the complete cellular microenvironment of a solid tumor 

provides the best overall perspective of the disease process. Nevertheless, 

such an approach holds the risk of losing essential information by diluting 

pronounced changes of specific genes in a certain cell type to insignificant 

levels due to the possibility that there is no change in expression in the majority 

of cells. 

 

Figure 2.2.1.1. HE-stained sections of human colon specimens. (A) Normal colonic mucosa 
(area 2) is characterized by crypts (arrows) which are open to the luminal side (area 1) and are 
lined by epithelial goblet cells. The mucosa is separated from the submucosa (area 4) by the 
lamina muscularis mucosa (area 3). (B) Colon adenocarcinoma arises from epithelial goblet 
cells. Tumor cells are frequently still arranged in crypt-like structures (arrows) surrounded by 
non-transformed connective tissue. 

Colon adenocarcinomas originate from epithelial goblet cells that are located in 

the colonic mucosa (Figure 2.2.1.1) [1], whereas surrounding cell types remain 

largely unaffected. Therefore, in order to identify tumor-associated antigens 

(TAA) in colon carcinoma, it is reasonable to specifically isolate tumor cells and 

their normal epithelial precursors and perform differential analyses on such 

homogeneous cell populations. 

Among the most precise and efficient techniques for the isolation of specific 

cells from solid tissues are laser-assisted methods, which have been used for 
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around 30 years [2]. With the invention of laser capture microdissection (LCM) 

in 1996 [3], a larger number of scientists got access to such tools. Since then, a 

variety of platforms using similar principles have been introduced. For the 

studies described here, laser microbeam microdissection (LMM) followed by 

laser pressure catapulting (LPC) was employed [4]. 

The amount of material which can be acquired by laser microdissection with 

reasonable efforts does not usually yield enough RNA for a direct microarray 

analysis based on standard protocols. In fact, additional amplification steps are 

necessary to obtain sufficient amounts of labeled target for microarray 

hybridizations. Most frequently employed amplification protocols are based on 

one of two different methodical approaches: PCR or in vitro transcription. A very 

important requirement for all such approaches is the maintenance of the original 

transcriptional signature, especially between different samples to be compared. 

While PCR-based techniques [5, 6] appear to be ideal to generate sufficient 

target molecules from minute starting amounts, they always bear the danger of 

introducing pronounced bias due to complex hybridization kinetics during 

thermal cycling and the exponential amplification of the reaction. In contrast, in 

vitro transcription-based methods [7, 8] are characterized by a hybridization-

independent isothermal and linear behavior, making them in theory less likely to 

be susceptible for distortions of the original profile. Therefore, methods using 

two sequential rounds of in vitro transcription are the most widely used for 

microarray analysis starting from small amounts of RNA. 

 

2.2.1.2 Materials and Methods 

Tissue Samples 

Surgically removed CCA specimens and autologous normal colon tissue were 

provided by the Department of General Surgery, University of Tübingen, after 

written informed consent had been obtained from each patient. Specimens were 

snap frozen in liquid nitrogen immediately after surgery. This study has been 

approved by the local ethical review board. 

 

Laser Microbeam Microdissection and Laser Pressure Catapulting 

(LMM/LPC) 

Frozen tissue specimens were embedded in OCT medium (Tissue-Tek, Sakura 

Finetek, Zoesterwoude, NL) and stored at -80°C. 8 µm sections were cut with a 
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cryostat (CM3000, Leica Microsystems, Wetzlar, Germany), mounted on 

membrane slides (P.A.L.M. Microlaser Technologies, Bernried, Germany) and 

immediately fixed in ice-cold 70% ethanol. Hematoxylin/Eosin (HE) staining was 

performed by dipping the slides in hematoxylin (Mayer's formulation, Sigma-

Aldrich, Steinheim, Germany) for 15 s, deionized water for 10 s, and 70% 

ethanol for 1 min, all at 4°C. The following steps were performed at room 

temperature: 100% ethanol for 1 min, 1% eosin (EosinY, Sigma-Aldrich, 

Steinheim, Germany), and 3-times 100% ethanol for 2 min each. Slides were 

air-dried and immediately used for laser microdissection. 

Typically 3 mm2 of normal colonic epithelial cells and tumor cells were selected 

and harvested using a Microbeam device (P.A.L.M.). Cells were collected in 

lysis buffer RLT (QIAGEN, Hilden, Germany) and total RNA was purified with an 

RNeasy kit (QIAGEN) including an on-column DNase I digest. RNA yield and 

integrity was determined using the RNA 6000 Pico LabChip kit on a 2100 

Bioanalyzer (Agilent Technologies, Waldbronn, Germany). 

 

Microarray Analysis 

20 ng of normal colon and tumor RNA were processed according to the two-

round amplification protocol as described in chapter 2.2.2.3. Hybridization to 

HG-U133 Plus 2.0 oligonucleotide microarrays (Affymetrix, High Wycombe, 

UK), staining, and scanning were performed by the Microarray Facility 

Tübingen. Data analysis was done with the GCOS software (Affymetrix) as 

described (2.2.2.3). In order to compare gene expression in CCA samples to 

pooled RNA samples from healthy human tissues as described in chapter 2.1.1, 

the kidney sample was amplified by the two-round protocol as well. Pairwise 

comparisons were calculated using this kidney array as baseline. 

 

2.2.1.3 Results and Discussion 

Laser Microdissection and RNA quality 

Approximately 3 mm2 of tumor and autologous normal epithelial cells were 

harvested from four colon carcinoma specimens (CCA145, CCA149, CCA156, 

CCA165) by laser microbeam microdissection followed by laser pressure 

catapulting (Figure 2.2.1.2). Counting actual cell numbers in stained 

cryosections is virtually impossible. Therefore, areas of dissected material were 
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used for quantitation. 3 mm2 of 8 µm sections yielded on average 30 ng of total 

RNA. 

 

Figure 2.2.1.2. LMM/LPC of tumor cells from CCA149. (A) Before microdissection, (B) after 
dissection and catapulting. Desired cells can be precisely selected and harvested. 

RNA quality constitutes an important issue in gene expression analysis of 

primary human samples. Especially ischemic times between surgery and further 

processing of the specimens are critical for RNA integrity [9, 10]. In addition, the 

multitude of steps necessary for further processing (i.e. cryosectioning, staining, 

laser dissection) bear the inherent risk of further degradation. In fact, all total 

RNA samples obtained from laser-dissected CCA material showed some 

symptoms of RNA degradation as assessed by microcapillary electrophoresis. 

Figure 2.2.1.3 shows representative examples of such RNA preparations. Apart 

from 28S and 18S ribosomal RNA (rRNA) - supposed to be present as the sole 

bands in intact total RNA - RNA species of intermediate and smaller sizes are 

visible as well, indicating degradation of rRNAs to some extent. Degradation 

should similarly affect mRNA and might disturb original expression profiles. 

However, RNA qualities comparable to those in Figure 2.2.1.3 can be routinely 

achieved by the described procedure and are likely to be sufficient for 

meaningful gene expression analysis. This is shown in the following chapter 

2.2.2, where technical issues concerning gene expression analysis from small, 

partially degraded RNA samples are addressed in detail. 
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Figure 2.2.1.3. Electropherograms of RNA samples from CCA165. (A) tumor, (B) 
autologous normal cells. Analysis was performed using the RNA 6000 Pico LabChip Kit on a 
Bioanalyzer (Agilent). Apart from ribosomal RNA bands, degradation products are visible as 
well. 

 

Identification of potential tumor associated antigens in CCA 

Differential gene expression analysis was performed of CCA145, CCA149, 

CCA156, and CCA165 against their autologous normal epithelial cells. In 

addition, tumor samples were directly compared with normal kidney RNA to 

enable further comparisons with a larger number of healthy human tissues. 

To be considered as potentially interesting tumor antigens, genes had to be 

strongly (at least 4-fold) upregulated in the tumor compared with autologous 

normal cells in two or more of the samples analyzed. The latter requirement 

was chosen to exclude technical outliers occurring in only one sample and in 

order to focus on antigens likely to be relevant not only in one single case. A 

further decrease of hits was achieved by requesting an "increase" (without 

defining a quantitative threshold) in the tumor against normal kidney. Thereby 

genes were filtered out which are most likely irrelevant for a potential 

immunotherapy due to a higher constitutive expression in another important 

organ. The remaining 94 genes are shown in Table 2.2.1.1. Expression profiles 

of these genes in comparison with a panel of healthy human tissues (see also 

chapter 2.1.1) were manually evaluated and genes which are promising 

candidates for tumor associated antigens in colorectal carcinoma, i.e. they are 

prominently overexpressed against all investigated healthy tissues, are printed 

in bold. 

A comprehensive HLA ligand analysis of these CCA specimens has not been 

performed. However, peptides for some of the overexpressed antigens are 

known from the literature or from our own unpublished studies and are listed in 

Table 2.2.1.1. 
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Table 2.2.1.1. Potential tumor associated antigens in colorectal carcinomas. Genes had to 
be at least 4-fold overexpressed in tumor cells compared with autologous normal epithelial cells 
in at least 2 samples. Additionally, overexpression against a reference kidney sample was 
required. Genes displaying a promising expression profile against a larger number of healthy 
tissues are printed in bold. Already known HLA class I ligands or T cell epitopes are shown 
together with the HLA allele they bind to. 
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KIAA1199 is strongly overexpressed in all four CCA tumors and displays only 

low levels in the normal tissues for which data were available (Figure 2.2.1.4a). 

Additionally, this gene is annotated in the Entrez Gene database 

(http://www.ncbi.nlm.nih.gov/entrez) as "colon cancer secreted protein", even 

though no reference can be found for this statement in the literature. These 

circumstances would make KIAA1199 an ideal antigen for an immunotherapy of 

colorectal carcinoma. However, no HLA ligands are known so far for this gene. 

Unfortunately, these results are a prime example for the dangers inherent to this 

approach: KIAA1199 is specifically expressed in the inner ear and plays an 

important role in hearing [11]. Therefore, generating an immune response 

against peptides from this protein bears the risk of autoimmune reactions 

against healthy cells in the ear. In fact, autoimmunity in the inner ear is a well-

established phenomenon with clinical manifestations [12, 13]. This example 

shows how important it is to include all available information in the selection 

process of overexpressed tumor antigens. However, for many genes not much 

is known so far and gene expression data remain as the only source of 

information. Unfortunately, gene expression data can never be specific enough 

to exclude expression in important cell types other than tumor cells. In bulk 

tissue samples, high expression in rare cells may be diluted to insignificant 

levels by the majority of irrelevant cells. Even if all different cell types in the 

body were accessible separately for gene expression analysis, variations in 
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different individuals would nevertheless be impossible to assess. Altogether, the 

selection process of overexpressed tumor antigens might be error-prone and 

the results should be critically scrutinized. 

 

 

Figure 2.2.1.4. mRNA expression profiles of (A) KIAA1199 (B) ubiquitin D (UBD). Both 
genes are strongly overexpressed in all four CCAs compared with autologous normal colon 
samples and also overexpressed against other normal tissues. 

Another example for a gene overexpressed in all four CCAs with a promising 

expression profile is ubiquitin D (UBD or FAT10). In this case, however, 

prominent overexpression against all normal tissues is only found for CCA145 

and CCA165 (Figure 2.2.1.4b). For these patients though, UBD would likely be 

an attractive target antigen. It is encoded in the MHC class I region and 

inducible by IFN-け [14]. Apart from its implications in protein degradation [15], 

UBD has been reported to be overexpressed in different cancers [16-18]. It 

might be involved in tumorigenesis or growth regulation through its binding to 

the mitotic spindle checkpoint protein MAD2 [14, 17]. Thus, expression data 

supported by possible mechanistic hints suggest UBD as a valuable target 

antigen. Interestingly, our own studies revealed a frequent overexpression also 

in renal cell carcinoma (see Figure 2.1.1.5b and [18]), suggesting that UBD 

might be a rather universal target antigen suitable for different tumor species. 

To test this antigen in peptide-based vaccinations, it would be desirable to 

identify other naturally presented HLA ligands for more frequent alleles apart 

from the two known HLA-B*51 binding peptides known so far (Table 2.2.1.1). 
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Figure 2.2.1.5. mRNA expression profiles of (A) cyclin B1 (CCNB1) (B) carcinoembryonic 
antigen-related cell adhesion molecule 6 (CEACAM6) (C) survivin (BIRC5). All three genes 
are strongly overexpressed in some CCAs compared with autologous normal colon samples 
and also upregulated against other normal tissues. 

Besides UBD, other proteins involved in cell cycle regulation were upregulated 

as well in some CCA samples. Cyclin B1 (CCNB1, Figure 2.2.1.5a) is an 

example for which HLA ligands are known, albeit again for rather rare alleles 

(Table 2.2.1.1). This gene has been known for its implications in colorectal 

carcinogenesis before [19]. Involvement in tumorigenesis also applies to other 

potential target antigens related to cell cycle regulation, like cyclin-dependent 

kinase inhibitor 3 (CDKN3 or KAP) [20] or cell division cycle 2 (CDC2 or CDK1) 

[21, 22]. Interestingly, CDC2 plays an important role in the regulation of a pre-

initiation complex for DNA replication consisting amongst others of MCM2, 

MCM4, and MCM6 [23, 24] - proteins which show up as interesting targets in 

Table 2.2.1.1 as well and have been described as cancer associated [25, 26]. 

Furthermore, MCM expression is regulated by the E2F transcription factor 

family [27, 28], whose member E2F3 is also a candidate target antigen in Table 

2.2.1.1 [29]. Altogether, these interconnected target genes give a hint to a 

regulatory network which might be necessary for tumor growth and could be 

exploited for an anti-tumor therapy. 
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A well-established source of tumor antigens is the carcinoembryonic antigen 

(CEA) family [30-33]. In this study, CEACAM6 appeared as a promising target 

(Figure 2.2.1.5b). It has been suggested as tumor antigen before [34] and 

shows a high overexpression in all CCA samples as compared with healthy 

tissues. However, for CCA149 the expression in normal cells is equally high. 

This might be explained by the assumption that the "normal" cells in this case 

already showed some signs of transformation, because upregulation of 

CEACAM6 expression in hyperplastic polyps and early adenomas represents 

one of the earliest observable molecular events leading to colorectal tumors 

[35]. 

Finally, survivin (BIRC5) is another example of a fetally expressed gene which 

is well-established as tumor antigen in different cancers [36-38] and which was 

identified as a potential antigen for some CCAs (Figure 2.2.1.5c). For this 

antigen, a naturally processed HLA-A*02 binding peptide is known (Table 

2.2.1.1, [39]), enabling a peptide-based immunotherapy of a considerable 

proportion of the population against different tumors including CCA with this 

antigen. 

 

Conclusions 

Comprehensive gene expression experiments on colon adenocarcinoma, either 

using laser microdissected cells or bulk tissue, are not new [40-46]. However, 

these studies mainly aim at the identification of marker genes or expression 

patterns for diagnostic purposes, i.e. tumor staging and substaging or 

classification according to susceptibility to different therapies. In contrast, this 

chapter focuses on therapeutic target identification: it demonstrates the 

feasibility but also some caveats of gene expression analysis in colon 

carcinoma for the detection of overexpression-based tumor antigens. Even 

though we have not yet performed comprehensive integrated gene expression 

analysis and HLA ligand identification for CCA as we have done for renal cell 

carcinoma (chapter 2.1.1), the results described here indicate that it is possible 

to successfully apply similar techniques to a more heterogeneous and therefore 

technically more challenging tumor entity. 
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2.2.2 Technical excursus: Moderate degradation does not 

preclude microarray analysis of small amounts of RNA. 

This chapter has been published in Biotechniques 35(6): 1192-1201 (2003) by 

the following authors: 

Oliver Schoor, Toni Weinschenk, Jörg Hennenlotter, Stefan Corvin, Arnulf 

Stenzl, Hans-Georg Rammensee, and Stefan Stevanovi5 

 

The author of this thesis designed and performed all experiments described 

herein. 

 

2.2.2.1 Summary 

Gene expression analysis by microarrays using small amounts of RNA is 

becoming more and more popular against the background of advances and 

increasing importance of small-sample acquisition methods like laser 

microdissection techniques. The quality of RNA preparations from such 

samples constitutes a frequent issue in this context. The aim of this study was 

to assess the impact of different extents of RNA degradation on the expression 

profile of the samples. We induced RNA degradation in human tumor and 

healthy tissue samples by endogeneous ribonucleases. Next, we amplified 20 

ng total RNA degraded to different extents by two rounds of in vitro transcription 

and analyzed them using Affymetrix oligonucleotide microarrays. Expression 

differences for some genes were independently confirmed by real-time 

quantitative PCR. Our results suggest that gene expression profiles obtained 

from partially degraded RNA samples with still visible ribosomal bands exhibit a 

high degree of similarity compared to intact samples and that RNA samples of 

suboptimal quality might therefore still lead to meaningful results if employed 

carefully. 

 

2.2.2.2 Introduction 

Since the initial days of gene expression analysis by DNA microarrays this 

technique has become more and more a standard tool for many research 

groups in all areas of life sciences. The possibility of measuring the expression 

of thousands of genes simultaneously under different conditions has led to new 
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insights into the behavior of various biological systems [1] and has provided 

new opportunities with respect to diagnosis or classification of diseases [2]. 

Recent advances in RNA and cDNA amplification methods have enabled 

microarray studies on small samples right down to very few cells [3, 4]. One of 

the most commonly applied methods for small-sample amplification is based on 

a technique originally described by the group of Eberwine [5]. The basic steps 

involve reverse transcription of mRNA with an oligo-dT primer containing a 

promoter sequence for T7 RNA polymerase. Synthesis of double-stranded 

cDNA is followed by an in vitro transcription (IVT) reaction resulting in multiple 

copies of antisense RNA (aRNA) from each cDNA molecule. Variations of this 

protocol enable its repetition in a second or even more rounds and therefore 

qualify it for the synthesis of sufficient amounts of aRNA or cDNA for microarray 

analysis from only few nanograms of total RNA. Even though such IVT based 

methods have been widely used, especially in combination with laser 

microdissection [6-9], it has only recently been demonstrated by extensive 

evaluations that they can indeed be applied without introducing too much 

artificial bias [10-16]. 

One important issue in the context of small-sample microarray analysis in 

particular remains the quality of initial RNA preparations. Methods aimed at the 

acquisition of single cells, for example laser microdissection techniques, 

frequently require a variety of additional steps that bear the risk of RNA 

degradation. Another problem may arise in the case of research on human 

tissue samples. Periods of warm ischemia between surgery and sample 

processing pose a serious threat to RNA integrity. It is often very challenging to 

decrease such times to a minimum within the framework of clinical routine 

procedures. RNA quality may also be impaired in samples stored for a long time 

or under suboptimal conditions. However, retrospective studies using the 

microarray technology now available on long-term archived tissues might be 

extremely valuable for the detection of new prognostic markers and the 

development of new treatments for diseases. Therefore, while it is obvious that 

intact RNA constitutes the best representation of the natural state of the 

transcriptome, there are situations in which gene expression analysis even on 

partially degraded RNA may be desirable. Nevertheless, little is known about 

the possibility of obtaining reasonable microarray data from RNA samples with 

impaired quality [17]. A recent publication suggests an amplification method 
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based on random priming that is shown to work remarkably well for degraded 

samples [18]. The aim of this study was to test a well-established two-round IVT 

protocol on 20 ng of partially degraded RNA and to assess the impact of such 

RNA degradation on gene expression data in comparison with high quality 

RNA. 

 

2.2.2.3 Materials and Methods 

 

RNA Samples 

Tissue samples from a renal cell carcinoma (RCC) patient were obtained from 

the Department of Urology, University of Tübingen. The local ethical committee 

approved this study and informed consent was obtained from the patient. 

Following nephrectomy, fragments of normal and malignant renal tissue were 

dissected, shock-frozen in liquid nitrogen, and stored at -80°C. For the isolation 

of RNA the fragments were ground by mortar and pestle under liquid nitrogen 

and the frozen powder was transferred immediately into TRIzol® reagent 

(Invitrogen, Karlsruhe, Germany). In order to obtain RNA degraded by 

endogenous ribonucleases (RNases), aliquots of powdered tissue were 

incubated in an equal volume of PBS at 22°C for different time periods. TRIzol 

was added to stop degradation. Samples were homogenized by being passed 

through a 25-gauge needle. Total RNA was isolated according to the 

manufacturer’s instructions and quantified by UV absorbance at 260 nm. Quality 

control was performed using the RNA 6000 Pico LabChip® Kit with a 2100 

Bioanalyzer (Agilent Technologies, Waldbronn, Germany). 

 

Real-time quantitative PCR 

RNA samples of tumor and normal tissue at different degradation states were 

used to synthesize single-stranded cDNAs. Reverse transcription was carried 

out in a reaction volume of 20 µL containing 1 µg total RNA, either 120 ng 

random hexamer primer (Amersham, Freiburg, Germany) or 500 ng oligo-

(dT)15 primer (MWG Biotech, Ebersberg, Germany), 0.5 mM dNTPs (Promega, 

Mannheim, Germany), 10 U RNasin® (Promega), 10 mM DTT, 200 U 

SuperScript™ II reverse transcriptase (Invitrogen) and the reaction buffer 

supplied with the enzyme. Negative control reactions were carried out for each 
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sample by replacing the enzyme with water. The mixture was incubated at 25°C 

for 10 min, 42°C for 50 min, and 70°C for 15 min. 

Real-time quantitative PCR (qPCR) was performed using the ABI PRISM® 

7000 Sequence Detection System (Applied Biosystems, Darmstadt, Germany). 

SYBR® Green PCR Master Mix (Applied Biosystems) was used for PCR 

amplification and real-time detection of PCR products. Primers (MWG Biotech) 

specific for different genes were designed to have a melting temperature of 

60°C and are shown in Table 2.2.2.1. PCR reactions were carried out in 20 µL 

with 300 nM of each primer and with the following temperature profile: 50°C for 

2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 s and 60°C for 1 min. All 

samples were amplified in duplicate. Formation of undesired side products 

during PCR that contribute to fluorescence was excluded by melting curve 

analysis after PCR. 

Table 2.2.2.1. Real-time quantitative PCR primers 

 

 

Expression differences between tumor and normal tissue samples for different 

genes were calculated from PCR amplification curves by relative quantification 

using the comparative threshold cycle (CT) method (http://docs. 

appliedbiosystems.com/pebiodocs/04303859.pdf). The housekeeping gene 

eukaryotic translation elongation factor 2 (EEF2) was equally expressed in both, 

tumor and normal tissue according to microarray data and was therefore 

chosen as reference for normalizations. The comparative CT method may be 

used when PCR amplification efficiencies for target and reference primer pairs 

are similar and close to 1. This was verified by serially diluting cDNA samples, 

performing qPCR with the different primer pairs, and calculating the 

amplification efficiencies from the slope of the line obtained by plotting CT 

values versus the logarithm of relative cDNA concentrations. 
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Microarray Analysis 

Expression analysis was performed using Affymetrix HG-U133A or HG-Focus 

oligonucleotide microarrays (Affymetrix, High Wycombe, UK). The Focus array 

contains a subset of approximately 8500 sequences from the larger U133A 

array. The following analyses are restricted to the sequences (= probesets) 

represented on both arrays. An overview of the samples hybridized to 

microarrays is given in Table 2.2.2.2. 

Table 2.2.2.2. RNA samples hybridized to microarrays 

 

 

Standard protocol 

One array pair for tumor and normal RNA of the best quality that could be 

obtained from the tissue samples (quality A) was generated from 15 µg total 

RNA according to the Affymetrix eukaryotic sample and array processing 

standard protocol (http://www.affymetrix.com/support/downloads/manuals/ 

expression_s2_manual.pdf) which is based on the in vitro transcription (IVT) 

method originally described in [5]. 

 

Two-round protocol 

We followed the protocol described in detail by Baugh et al. [10] for two rounds 

of IVT starting with 20 ng total RNA at different degradation states. The first 

round corresponds to the Affymetrix standard protocol described above with 

some modifications: First strand cDNA synthesis was performed in a reaction 

volume of 2 µl, T4 gene 32 protein (USB, Cleveland, OH, USA) was added at a 
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concentration of 0.4 µg/µL to increase the processivity of the reverse 

transcriptase [10], and the temperature was elevated to 48°C to increase yields. 

After the second-strand synthesis, IVT was performed with non-biotinylated 

NTPs using the AmpliScribe™ T7 High Yield Transcription Kit (Epicentre) for 9 

h at 42°C. First-round aRNA was cleaned using RNeasy spin columns (Qiagen, 

Hilden, Germany) and used to generate second-round cDNA in a random 

hexamer-primed reverse transcription. The second cDNA strand was 

synthesized using a T7-(dT)24 primer (MWG Biotech). Biotinylated aRNA was 

generated from this dscDNA for 8 h at 40°C using the BioArray™ HighYield™ 

RNA Transcript Labeling Kit (Enzo Life Sciences, Farmingdale, NY, USA). 

 

Microarray Hybridization and Staining 

All procedures were carried out according to the Affymetrix standard protocol. 

Biotinylated aRNA was cleaned by RNeasy columns (Qiagen), fragmented, and 

15 µg were used to prepare the hybridization cocktail. After hybridization for 16 

h, microarrays were washed and stained using the instrument’s standard 

protocol for the particular array type. Staining was performed with Streptavidin-

Phycoerythrin using antibody-mediated signal amplification. 

 

Data Analysis 

Scanned images were processed using the Microarray Analysis Suite 5.0 (MAS 

5.0, Affymetrix). Scaling of signal intensities was performed for each array 

based on the average intensity of 100 probesets representing housekeeping 

genes which are supposed to be expressed at similar levels in different cell 

types and which were selected by Affymetrix (http://www.affymetrix.com/ 

support/technical/mask_files.affx). Expression differences between tumor and 

normal samples were determined by baseline comparison algorithms provided 

by MAS 5.0. The normal sample was always defined as the baseline. Data were 

further processed using Microsoft Access and Excel. 
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2.2.2.4 Results and Discussion 

 

 

Figure 2.2.2.1. Electropherograms of RNA samples degraded to different extents. Analysis 
was performed using the RNA 6000 Pico LabChip Kit on a Bioanalyzer (Agilent). The left 
column shows RNA samples isolated from tumor (TA-TD), the right column from normal healthy 
tissue (NA-ND). Tissue sample were incubated at room temperature for the following time 
periods prior to RNA isolation: TA, NA: 0 min (freshly isolated); TB: 10 min; NB: 2 min; TC: 20 
min; NC: 5 min; TD: 90 min; ND: 15 min. The letters A, B, C, and D were assigned to samples in 
the order of increasing degradation. Although degradation patterns vary considerably between 
tumor and normal samples, the same letter was chosen for samples of comparable quality. To 
assess the size distribution of the RNA fragments quantitatively, four adjacent areas were 
defined as indicated. For an approximate calculation of the RNA amount, each intensity value 
(after subtraction of the baseline) was multiplied by the time between the data points and the 
results were summed up for each area. Percentages given in the figure indicate RNA amounts 
in each area in relation to the combined amount in all four areas. 28S/18S ratios were 
calculated from the respective percentages. 
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RNA degradation 

Powdered frozen tissue samples from a renal cell carcinoma patient were 

thawed and then incubated at room temperature in order to obtain RNA 

degraded by ribonucleases present in the tissue itself. This should lead to 

degradation patterns representative for naturally degraded samples. The quality 

of total RNA preparations is generally assessed according to the clear visibility 

of ribosomal 28S and 18S bands at a ratio of 2:1 and the absence of any other 

nucleic acid species after separation by electrophoresis. We performed capillary 

electrophoresis of high quality and degraded samples using a Bioanalyzer 

(Figure 2.2.2.1). The incubation times necessary to reach a certain degradation 

state were considerably longer for the tumor as compared to the normal tissue 

samples. This might reflect either decreased RNase activity in this tumor tissue 

or some other mechanism of RNA stabilization in the tumor. The observation 

cannot be explained by an overexpression of ribonucleases at the mRNA level 

in normal tissue as indicated by the microarray data of these samples (data not 

shown). 

For a quantitative description of the RNA degradation state we found the 

28S/18S ratio to be of no practical value. It should only be used as long as there 

are no prominent degradation products. Otherwise its sole use for the 

characterization of the sample can be misleading. This is especially apparent 

for the heavily degraded sample ND (Figure 2.2.2.1) that still has a 28S/18S 

ratio of 1.4. Therefore, we decided to include two additional parameters in the 

assessment: the amount of degradation products between the ribosomal peaks 

and the amount below the 18S peak. According to this model, the RNA samples 

that we refer to as “moderately degraded” (TB and NB, Figure 2.2.2.1) can be 

characterized as follows: The 28S peak still accounts for approx. 5% of the 

overall amount of RNA. 20% of fragmented RNA is located between the 28S 

and 18S rRNA whereas a bit more than 10% is found in the 18S area. Most 

importantly, about 60% of the overall RNA has a fragment size smaller than 18S 

rRNA. We would regard a sample that has more than 65% RNA in this area and 

less than 4% in the 28S area as heavily degraded. 
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Relative expression levels measured by qPCR are conserved in partially 

degraded RNA. 

 

 

Figure 2.2.2.2. Differential expression of selected genes between tumor and healthy 
normal tissue measured by real-time quantitative PCR and microarrays. Negative values 
indicate overexpression in normal tissue compared with the tumor. For panel A, cDNA was 
synthesized using random hexamer primers, for panel B, an oligo-dT primer was used. The first 
bar for each gene (Microarray, RNA quality A) indicates the expression difference measured by 
microarray using the samples TA-U and NA-U (Table 2.2.2.2). The following three bars show 
qPCR measurements using cDNAs from the samples with degradation states A, B and C 
(Figure 2.2.2.1). qPCR values are normalized to the endogenous reference gene EEF2. Error 
bars for qPCR values are standard deviations. Error bars for microarray values indicate 95% 
confidence intervals as calculated by the Affymetrix MAS 5.0 software. 
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qPCR was performed on cDNA synthesized directly from intact or degraded 

RNA samples without previous amplification by IVT. Figure 2.2.2.2 shows 

expression differences between tumor and normal healthy tissue for six genes 

measured at different RNA degradation states A, B, and C as defined in Figure 

2.2.2.1. qPCR measurements are frequently used as an independent method 

for the verification of microarray data. Comparison of the first two bars for each 

gene in Figure 2.2.2.2 shows a high concordance between the two methods. 

HSD11B2 was not clearly detected above background levels in the tumor 

sample. Therefore, the expression difference between tumor and normal 

samples for this gene rather reflects expression in normal tissue compared with 

the background of the particular method. 

Expression differences obtained from degraded samples using random-primed 

cDNA corresponded considerably well to high-quality samples (Figure 

2.2.2.2A). This is to be expected since random-priming captures all RNA 

fragments, and qPCR amplicons have a length in the range of only 100 base 

pairs (bp). Therefore fragmentation of RNA will result in a loss of the molecule 

for qPCR detection only if the break occurs within the short amplicon. This 

might be a rare event in only moderately degraded RNA. For the cDNA samples 

synthesized with oligo-dT primers only poly-A bearing 3’ ends of mRNA 

molecules are reverse transcribed. In degraded samples all fragments missing 

the original 3’ end are lost. Nevertheless, expression differences measured with 

oligo-dT-primed cDNA from degraded RNA (Figure 2.2.2.2B) still corresponded 

quite well to the values obtained from intact RNA. This might indicate that each 

individual mRNA species was affected quite uniformly by degradation in both 

tumor and normal tissue. 

 

Moderate RNA degradation disturbs microarray results only slightly. 

qPCR measurements with oligo-dT-primed cDNA indicated that the 3’ ends of 

degraded mRNA were sufficient to obtain reasonable gene expression 

differences. This finding encouraged us to apply a protocol on degraded RNA 

that is capable of generating labeled target RNA for microarray analysis by two 

rounds of in vitro transcription from total RNA amounts in the low nanogram 

range. This protocol leads to a pronounced 3’ bias of the resulting antisense 

RNA transcripts, especially in degraded samples. Our aim was to test the 

impact of RNA degradation on the measurement of differential gene expression 
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using Affymetrix microarrays that are designed to preferentially probe the 3’ 

ends of transcripts. The two-round IVT protocol was applied to 20 ng samples of 

degradation states A, B and D (Figure 2.2.2.1). Samples TA and NA were also 

subjected to the standard one-round protocol using 15 µg RNA. 

Table 2.2.2.3. Characteristics of microarray experiments 

 

Table 2.2.2.3 gives an overview of some general characteristics for each 

microarray. The two-round protocol applied to high quality RNA (TA-F1, TA-F2, 

NA-F) led to lower scale factors, slightly higher percentages of genes detected 

as present, and increased 3’/5’ ratios if compared to the standard protocol for 

high quality RNA (TA-U, NA-U). These differences may be explained by the fact 

that 3’-biased target RNA was applied to a 3’-biased microarray. Moderate 

degradation (TB-F, NB-F) caused an increase in scale factors and 3’/5’ ratios 

but only a slight decrease in the percentage of present genes, indicating that 

the sensitivity was largely unaffected by this kind of degradation. A pronounced 

loss in data quality became apparent for the most degraded samples (TD-U, 

ND-U). 

In order to identify differentially expressed genes, microarrays from normal 

tissue samples were defined as the baseline and tumor samples were 

compared to them. Figure 2.2.2.3 shows numbers of genes identified as up- or 

downregulated in common between different pairs of tumor and normal arrays 

together with the corresponding percentages. The highest percentage of 

overlapping genes (88%) was found for replicate tumor arrays compared with 

the same normal array (TA-F1 vs. NA-F compared with TA-F2 vs. NA-F). This 
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replicate setting indicates the minimal extent of inevitable variation immanent in 

the sample preparation and measurement procedure. The comparison of those 

small sample replicate pairs with the standard protocol array pair of the same 

starting RNA (TA-U vs. NA-U) showed slightly decreased percentages (~ 85%) 

representing small differences between the two protocols. The partially 

degraded sample pair (TB-F vs. NB-F), however, demonstrated a clear loss in 

concordance with the data obtained from high quality samples. Whereas all high 

quality samples showed an average 86% overlap regardless of the protocol 

used for preparation, it decreased to an average of 71% if the partially degraded 

pair was compared to each of the high quality samples. For the completely 

degraded sample pair the absolute number of differentially expressed genes 

was markedly lower than for the high quality and partly degraded samples, 

which showed no differences in this parameter. This resulted in a strong 

decrease in the number of regulated genes identified in common with the other 

sample pairs. It is remarkable, that elevating or lowering the threshold for the 

genes to be considered for this approach does not noticeably change the 

results (data not shown). This indicates that the perturbation introduced by the 

degradation cannot be filtered out by focusing only on genes with strong 

expression differences. 

 

 

Figure 2.2.2.3. Differentially expressed genes identified in common between samples at 
different degradation states. Black cells show the number of genes that were identified as 
either increased or decreased between tumor and normal tissue by each particular pair of 
microarrays (Table 2.2.2.2). The lower left part of each table indicates the number of such up- 
and downregulated genes that were found in common between different microarray pairs. The 
grey shaded upper right part of the tables shows the corresponding percentages. The smaller 
number of regulated genes among the two array pairs constitutes the maximal number that 
could be detected in common and was therefore set as 100 percent. To be considered as 
differentially expressed, genes had to fulfill general criteria for up- or downregulation: an 
“increase” call together with a “present” call on the tumor array or a “decrease” call together with 
a “present” call on the normal array. Furthermore, a threshold criterion of twofold increase or 
decrease had to be met. 
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Figure 2.2.2.4. Correlation of overexpression measured at different degradation states. 
Expression differences between tumor and normal tissue were quantitatively determined by 
baseline comparisons using the MAS 5.0 software for different pairs of tumor and normal 
arrays. The log2 values for differential expression obtained by each array pair were compared 
with the other pairs: (A) Comparison of the standard labeling protocol using high quality RNA 
(TA-U vs. NA-U, Table 2.2.2.2) with the small sample protocol applied to the same RNA (TA-F1 
vs. NA-F); (B) Partly degraded RNA (TB-F vs. NB-F) compared with high quality RNA (TA-F1 
vs. NA-F); (C) Completely degraded RNA (TD-U vs. ND-U) compared with high quality RNA 
(TA-F1 vs. NA-F); (D) Correlation coefficients r2 for all comparisons between array pairs. 
This analysis was restricted to 3288 genes that were detected as present on all microarrays of 
degradation state A and B. For comparisons that involve the most degraded samples D the 
analysis had to be further restricted to 1129 genes also present on those arrays. This pre-
selection of genes is necessary in order to avoid measuring differential expression against 
background levels which would result in meaningless numbers inappropriate for measuring 
correlation in this way. 

In addition to this kind of analysis, we wanted to obtain a more comprehensive 

picture by analyzing differential expression in a more quantitative way. Figure 

2.2.2.4 shows expression differences for a large set of genes measured by two 

different array pairs at a time. Each data point indicates the log2 fold-change 

values for one gene measured by each of the compared array pairs. Correlation 

coefficients for all comparisons of tumor vs. normal pairs are given in Figure 
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2.2.2.4D. As expected, the highest r2 value (0.92) was achieved by comparing 

semi-replicate array pairs (TA-F1 vs. NA-F and TA-F2 vs. NA-F). Comparison of 

these pairs with the standard protocol pair of the same RNA (TA-U vs. NA-U) 

resulted in r2 values close to the former (0.88 and 0.89). The correlation 

coefficients were somewhat decreased when the partially degraded sample pair 

was compared to the high quality pairs (0.70 to 0.75). However, this result still 

indicates a distinct tendency of this sample pair to reflect the overall expression 

pattern observed with high quality samples. In contrast, the most degraded 

sample pair showed only a weak correlation with the other samples which 

makes a trustworthy analysis impossible. 

Taken together, our methods for analyzing the microarray data indicated a 

certain decrease in data quality for the moderately degraded samples. A distinct 

loss of 5’ ends of transcripts was evident from the 3’/5’ ratios measured by 

microarrays. Nevertheless, a pronounced decrease in the number of genes 

detected or differentially expressed did not result from this loss. However, 

moderate RNA degradation introduced a certain variation into differential 

expression data. Even though comparable in size, sets of up- or downregulated 

genes between partially degraded and high quality samples showed a smaller 

overlap than was observed among high quality samples alone. Furthermore, 

correlations of quantitative expression differences determined between partially 

degraded and intact samples dropped behind correlations measured with intact 

RNA samples alone. Data obtained with the most degraded samples 

demonstrated such a low overall quality and correlation with the initial samples 

that they could not be reasonably considered for analysis. 

Genes identified using this approach should be validated with special care. 

While possible perturbations introduced by RNA degradation itself cannot be 

accounted for, at least possible artificial influences caused by the 3’ bias of the 

two-round IVT procedure can be excluded by qPCR measurements using 

random-primed cDNA, which contains all mRNA fragments of the degraded 

sample. 

In conclusion, while all efforts should be made to obtain high quality RNA 

samples that reflect the natural state most reliably, moderately degraded 

samples with a degradation signature similar to our samples TB and NB (Figure 

2.2.2.1) – 5% of the RNA in the 28S rRNA area and no more than 60% with 

fragment sizes smaller than 18S rRNA - may still lead to a reasonable 
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expression profile. 20 ng of such degraded RNA are sufficient for microarray 

analysis after two rounds of linear amplification by in vitro transcription. 

Expression differences measured with this method and verified by quantitative 

real-time PCR are similar to those obtained from high quality samples. 
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2.3 Microarrays in a more fundamental immunological 

context with implications for tumor immunology 

2.3.1 Autophagy promotes MHC class II presentation of 

peptides from intracellular source proteins 

This chapter has been published in Proceedings of the National Academy of 

Sciences of the USA 102(22): 7922-7927 (2005) by the following authors: 

Jörn Dengjel*, Oliver Schoor*, Rainer Fischer, Michael Reich, Marianne Kraus, 

Margret Müller, Katharina Kreymborg, Florian Altenberend, Jens Brandenburg, 

Hubert Kalbacher, Roland Brock, Christoph Driessen, Hans-Georg Rammensee 

and Stefan Stevanovi5 

 

*Jörn Dengjel and Oliver Schoor contributed equally to this work. 

 

The author of this thesis performed all gene expression experiments. 

 

2.3.1.1 Abstract 

MHC-peptide complexes mediate key functions in adaptive immunity. In a 

classical view, MHC-I molecules present peptides from intracellular source 

proteins, whereas MHC-II molecules present antigenic peptides from 

exogenous and membrane proteins. Nevertheless, substantial crosstalk 

between these two pathways has been observed. We investigated the influence 

of autophagy on the MHC-II ligandome and demonstrate that peptide 

presentation is altered considerably upon induction of autophagy. The 

presentation of peptides from intracellular and lysosomal source proteins was 

strongly increased on MHC-II in contrast to peptides from membrane and 

secreted proteins. In addition, autophagy influenced the MHC-II antigen 

processing machinery. Our study illustrates a profound influence of autophagy 

on the class II peptide repertoire and suggests that this has implications for the 

regulation of CD4+ T-cell mediated processes. 
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2.3.1.2 Introduction 

Peptides of foreign and self proteins are presented on major histocompatibility 

complex class I (MHC-I) and class II (MHC-II) molecules at the cell surface and 

can be recognized by CD8+ and CD4+ T lymphocytes, respectively [1, 2]. From 

a classical point of view, MHC-I molecules present antigenic peptides derived 

from intracellular proteins, whereas MHC-II molecules do so for exogenous and 

membrane proteins [3]. This phenomenon is reflected in the two major cellular 

breakdown pathways for proteins: proteasomal degradation, particularly 

relevant to the generation of MHC-I peptides [4], and degradation by the 

endosomal/lysosomal system, which is responsible for the processing of MHC-II 

peptides [5]. However, the separation of these distinct pools of source proteins 

is less stringent than originally believed. It is now well-established that MHC-I 

molecules are able to present peptides derived from exogenous antigens (Ag) 

by a process known as cross presentation [6]. On the other hand, intracellular 

proteins can be presented by MHC-II molecules [7, 8] even though the 

underlying processes are less clear. It has been recently shown that peptides 

from cytosolic model proteins can be presented on MHC-II molecules via 

autophagy [9-11]. Autophagy plays a role in the endosomal/lysosomal 

degradation pathway and is responsible for feeding intracellular components 

into this pathway. It is thought to be required for normal turnover of cellular 

components, particularly in response to starvation [12]. Against this 

background, we hypothesized that autophagy might mediate MHC-II 

presentation of intracellular Ag – meaning the contents of a cell contained within 

the plasma membrane, excluding large vacuoles and secretory or ingested 

material (Gene Ontology classifications) – in general. Therefore, we performed 

a detailed characterization of the MHC-II ligand repertoire (ligandome) 

presented at the cell surface under normal conditions and after increased 

autophagy, leading to a comprehensive overall picture of changes in peptide 

processing and presentation. 

 

2.3.1.3 Materials and Methods 

Cells and antibodies 

The human B-lymphoblastoid cell lines Awells (IHW-No. 9090; HLA-

DRB1*0401, HLA-DRB4*0101) and Awells-Ii-LGALS2 (Awells transfected with a 

fusion gene encoding the 80 N-terminal amino acids of Ii and LGALS2) were 
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maintained at 37°C in DMEM (C.C.Pro, Neustadt, Germany) containing 10 % 

FCS (Pan, Aidenbach, Germany) and supplemented with 2 mM L-glutamine 

(BioWhittaker, Verviers, Belgium), 100 U/ml penicillin, and 100 µg/ml 

streptomycin (BioWhittaker). During induction of autophagy, cells were kept in 

Hank’s Balanced Salt Solution (HBSS). For comparative ligand analysis it was 

crucial to maintain the cells at a density of 0.2×106 cells/ml. If cells were kept at 

higher densities, culture medium was rapidly exhausted leading to high basal 

autophagy levels. For autophagy inhibition, cells were kept in DMEM or HBSS 

supplemented with 10 mM 3-methyladenine (Sigma-Aldrich, Steinheim, 

Germany). Dead cells were generated by 3 rounds of freezing in liquid nitrogen 

and thawing at 37°C. After this procedure no live cells could be detected by light 

microscopy. The antibody L243 (anti–HLA-DR) [13] was purified from 

hybridoma culture supernatants using protein A-Sepharose beads (Pharmacia, 

Uppsala, Sweden). Antibodies used in flow cytometry analysis were from 

PharMingen (San Diego, CA, USA). 

 

Analysis of monodansylcadaverine (MDC) labeled vacuoles  

Autophagic vacuoles were labeled with MDC and analyzed using either 

fluorescence microspcopy [14, 15] or fluorescence spectroscopy in cell lysates 

[15], essentially as described. Briefly, cells were incubated at 37°C for 10 min 

with 0.05 mM MDC and subsequently washed four times with PBS. Cells were 

either analyzed by live cell microscopy or lysed in 10 mM Tris-HCl, pH 8 

containing 0.1% Triton X-100 for fluorescence spectroscopy. After lysis, 

remaining cellular debris was spun down. 

 

Fluorescence Microscopy 

Live cells were immediately analyzed at room temperature by epifluorescence 

microscopy on an inverted microscope (Axiovert 63W; Carl Zeiss, Jena, 

Germany) fitted with a 63 x 1.2 numerical aperture lens in eight-well chambered 

cover glasses (Nunc, Wiesbaden, Germany). Fluorescence emission and 

detection was performed with a filter system (excitation BP 365 nm, detection 

LP 397 nm, beam splitter FT 395 nm). Images were acquired with a Sensicam 

cooled 12-bit CCD camera (PCO Computer Optics, Kelheim, Germany) and 

processed using the program Axiovision 3.1 (Carl Zeiss).  
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Fluorescence Spectroscopy 

MDC concentrations in whole cell lysates [15] were determined using an LS50B 

spectrofluorometer (Perkin-Elmer, Norwalk, CT, USA), with excitation at 380 nm 

and detection of emission at 525 nm. The protein content of the lysates was 

determined using a commercially available Bradford protein assay kit (Bio-Rad 

Laboratories, München, Germany). 

 

Gene expression analysis by high-density oligonucleotide microarrays 

Total RNA was isolated from Awells using Trizol (Invitrogen, Karlsruhe, 

Germany) followed by an RNeasy cleanup (QIAGEN, Hilden, Germany) after 

autophagy induction for 6 h and 24 h and from cells cultured in normal medium 

for the same times as controls. High RNA quality was ensured by a 2100 

Bioanalyzer (Agilent, Waldbronn, Germany) assay using the RNA 6000 Pico 

LabChip Kit (Agilent). Gene expression analysis of the four RNA samples was 

performed by Affymetrix Human Genome U133 Plus 2.0 oligonucleotide 

microarrays (Affymetrix, Santa Clara, CA) according to the Affymetrix manual 

(http://www.affymetrix.com/support/technical/manual/ expression_manual.affx). 

Briefly, double-stranded cDNA was synthesized from 8 µg of total RNA using 

SuperScript RTII (Invitrogen) and the oligo-dT-T7 primer (MWG Biotech, 

Ebersberg, Germany) as described in the manual. In vitro transcription was 

performed with the BioArray™ High Yield™ RNA Transcript Labeling Kit (ENZO 

Diagnostics, Inc., Farmingdale, NY, USA), followed by cRNA fragmentation, 

hybridization, and staining with streptavidin-phycoerythrin and biotinylated anti-

streptavidin antibody (Molecular Probes, Leiden, NL). Images were scanned 

with the Affymetrix GeneChip Scanner 3000 and data were analyzed with the 

GCOS software (Affymetrix) using default settings for all parameters. 

Normalization was performed by scaling all four arrays based on the overall 

fluorescence intensity of each array. Scaling factors differed by no more than a 

factor of 1.2 and all other quality control parameters provided by the array 

indicated a high data quality. For each of the two time points a pairwise array 

comparison was calculated with the autophagy array as the experiment and the 

respective normal medium control array as the baseline. 

In order to identify functional categories or pathways for which a higher 

proportion of genes were up- or downregulated compared with the overall 

proportion of regulated genes, the following analysis was performed: First, 
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genes were selected that were reproducibly up- or downregulated after 6 h and 

24 h starvation according to the GCOS software. To be classed as 

“upregulated”, a gene had to fulfill the following requirements: "increase" in the 

change call algorithm, demonstrating "present" in the detection call algorithm for 

the autophagy array, and a log2 overexpression (signal log ratio, SLR) of at 

least 0.5 (approx. 1.4-fold overexpression). Downregulated genes had to show 

a "decrease", a "present" on the control array and an SLR equal to or smaller 

than -0.5. According to this, 1336 probe sets were reproducibly upregulated and 

1680 downregulated. In a second step, these genes were analyzed using 

MAPPFinder [16] and EASE [17]. Both programs aim at the identification of 

overrepresented biological themes within lists of genes based on gene ontology 

(GO) categories. The 8-10% of GO terms with the best scores for 

overrepresentation were selected for each of the programs and for both, up- 

and downregulated genes. GO terms identified in common by both programs 

were further edited manually to avoid extensive redundancy among overlapping 

terms and to exclude terms that were too general to draw any conclusions from 

them. The remaining GO categories are shown in Table 2.3.1.3 and Table 

2.3.1.4. In a second experiment, microarray analysis was repeated for freshly 

prepared batches of starved (24 h) and control cells. For the majority of genes 

shown in Table 2.3.1.3 and Table 2.3.1.4 the results in terms of up- or 

downregulation could be reproduced. Microarray data are available from the 

GEO repository (http://www.ncbi.nih.gov/geo/) with the accession no. 

"GSE2435". 

 

Western blot 

Cells/fractions lysed in NP-40/pH 7 lysis buffer (50 mM sodium acetate, 5 mM 

MgCl2, 0.5% NP-40) were resolved by 12.5 % SDS-PAGE, transferred to PVDF 

membrane (Millipore, Bedford, MA, USA), blocked, and probed with appropriate 

dilutions of the respective primary antibody, followed by a secondary anti-rabbit 

IgG antibody coupled with peroxidase (Southern Biotech, Birmingham, AL, 

USA). An ECL detection Kit (Amersham Pharmacia, Freiburg, Germany) was 

used to visualize the Ab-reactive proteins. Anti-cathepsin polyclonal antisera 

were provided by E. Weber (University of Halle, Germany). 
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Affinity-labelling of active cysteine proteases and in vitro digestions 

Crude endocytic fractions were generated by ultracentrifugation of postnuclear 

supernatants as described [18]. 5 µg total endocytic protein were incubated with 

reaction buffer (50 mM citrate/phosphate pH 5.0, 1 mM EDTA, 50 mM DTT) in 

the presence of DCG-0N, a derivative of DCG-04 that shows the same labelling 

characteristics [19] for 1 h at room temperature. Reactions were terminated by 

addition of SDS reducing sample buffer and immediate boiling. Samples were 

resolved by 12.5 % SDS-PAGE, then blotted on a PVDF-membrane and 

visualized using streptavidine HRP and the ECL-detection kit [20]. MBP83-99 

digestions were performed as described [21]. 

 

Elution of MHC Class II bound Peptides 

Frozen cell pellets (1×109 to 5.7×1010cells) were processed as previously 

described [22] and peptides were isolated according to standard protocols [23] 

using 5 mg to 25 mg HLA-DR specific mAb L243 [13]. 

 

Molecular analysis of HLA-DR-eluted peptides 

Peptides were separated by reversed-phase high performance liquid 

chromatography (HPLC, SMART system, µRPC C2/C18 SC 2.1/10; Amersham 

Pharmacia Biotech, Freiburg, Germany), and fractions were analyzed by 

MALDI-TOF mass spectrometry (MS) using a Bruker Reflex III mass 

spectrometer (Bruker Daltonik, Bremen, Germany). Peptides were further 

analyzed by nano-ESI (electrospray ionisation) MS/MS either on a Q-TOF mass 

spectrometer (Micromass, Manchester, United Kingdom) or on a QStar Pulsar i 

Qqoa Tof mass spectrometer (Applied Biosystems-MDS Sciex, Weiterstadt, 

Germany) as described [22, 23]. 

For comparative peptide analysis between peptides eluted from 1-3×109 control 

cells and 1-2×109 cells undergoing autophagy, peptides were analyzed by a 

reversed phase Ultimate LC system (Dionex, Amsterdam, Netherlands), 

coupled to a Q-TOF. Samples were loaded onto a C18 pre-column for 

concentration and desalting. After loading, the pre-column was placed in line for 

separation by a fused-silica microcapillary column (75 µm i.d. x 250 mm) 

packed with 5 µm C18 reversed-phase material (Dionex). Solvent A was 4 mM 

ammonium acetate/water. Solvent B was 2 mM ammonium acetate in 80% 

acetonitrile/water. Both solvents were adjusted to pH 3.0 with formic acid. A 
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binary gradient of 15% to 40% B within 120 min was performed, applying a flow 

rate of 200 µl/min reduced to approximately 300 nl/min by the Ultimate split-

system. A gold coated glass capillary (PicoTip, New Objective, Cambridge, MA, 

USA) was used for introduction into the micro-ESI source. In MS/MS 

experiments, sequence information was obtained by interpretation of fragment 

spectra using computer-assisted database (NCBInr, non-redundant protein 

database) searching tools (MASCOT, Matrix Science, London, UK) [24]. In 

order to differentially quantify the identified peptides, peptide signals in mass 

chromatograms from serial LC-MS runs (runs performed directly one after the 

other using the same settings) were summed and quantification was done from 

relative peak heights in the corresponding mass spectra. 

 

2.3.1.4 Results 

Proteomic analysis of the constitutive MHC-II ligandome: Source proteins 

of HLA-DR presented peptides are allocated throughout the cell 

We analyzed the constitutive human leukocyte antigen (HLA)-DR peptide 

repertoire of human Awells cells by mass spectrometry and were able to identify 

404 peptides from 173 different core sequences (Table 2.3.1.1), some of them 

posttranslationally modified (Table 2.3.1.2). This is the largest number of MHC-

presented peptides ever reported from a single experiment. In order to classify 

the source proteins according to their cellular localization (Figure 2.3.1.1) and 

function (Figure 2.3.1.2), we used the DAVID program [25] and the Gene 

Ontology (GO) classifications [26]. In contrast to the situation observed for 

MHC-I [27], the largest fraction of MHC-II source proteins, namely 41.1%, 

belonged to membrane proteins, which is in concordance with conventional 

MHC-II antigen processing via the endosomal/lysosomal pathway. However, a 

rather large proportion of source proteins (34.9%) is localized intracellularly – 

meaning the contents of a cell contained within the plasma membrane, 

excluding large vacuoles and secretory or ingested material (GO classifications) 

–, the site where MHC-I peptide processing is expected to take place. 

Furthermore, we could identify peptides from proteins localized in virtually every 

cell compartment: 10.1% lysosome, 9.2% nucleus, 4.0% cytoskeleton, 3.0% 

Golgi apparatus, 2.0% ER, 1.2% ribosome, 0.7% peroxisome and 0.2% 

mitochondrion. 
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Table 2.3.1.1. Sequences of peptides eluted from HLA-DR. Peptides are arranged according 
to their HLA-DR4 binding motive (http://www.syfpeithi.de), indicated by score and rank. Anchor 
amino acids are printed bold. 

 

 



Results and Discussion 117

Table 2.3.1.1, continued 

 

 



Results and Discussion 118 

Table 2.3.1.1, continued 
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Table 2.3.1.1, continued 
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Table 2.3.1.1, continued 
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Table 2.3.1.1, continued 
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Table 2.3.1.1, continued 
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Table 2.3.1.1, continued 

 

 

 

Table 2.3.1.2. Sequences of posttranslationally modified peptides eluted from HLA-DR. 
Peptides are arranged according to their HLA-DR4 binding motive (www.syfpeithi.de), indicated 
by score and rank. Anchor amino acids are printed in bold. Modifications are printed in italics: E, 
deamidation; C, cysteinylation; Gl, glycosylation. 
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Figure 2.3.1.1. Cellular distribution of source proteins of HLA-DR ligands. Peptides were 
isolated from 5.7×1010 cells, separated via HPLC, and subsequently analyzed by nanoflow ESI 
MS/MS. Displayed are percentages of peptides falling in each GO category of source proteins. 
The 404 identified peptides represent 100%. As some of the source proteins could be found in 
more than one compartment, the total is higher than 100%. 
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Figure 2.3.1.2. Biological processes in which HLA class II peptide source proteins take 
part. The major part of proteins was involved in responses to stimuli and in organismal 
physiological processes. Displayed are percentages of peptides falling in each GO category of 
source proteins (404 identified peptides represent 100%). As some of the source proteins could 
be found in more than one compartment, the total is higher than 100%. 

 

Induction of autophagy by starvation 

Next, we induced macroautophagy in Awells cells by deprivation of serum and 

amino acids [15, 28] in order to perform a comparative, quantitative HLA-DR 

ligandome analysis between cells undergoing autophagy and control cells by 

mass spectrometry. After 6 h and 24 h starvation, an increase in size and total 

number of autophagic vacuoles became evident when compared to non-starved 

control cells (Figure 2.3.1.3A-C). After 6 h starvation, the formation of 

autophagic vacuoles, assessed by the overall incorporation of 

monodansylcadaverine (MDC), had already reached the maximum and could 

not be increased any further by 24 h starvation (Figure 2.3.1.3D). We were able 

to inhibit MDC incorporation by 3-methyladenine, a specific inhibitor of 

autophagy (data not shown). We would like to point out that we detected basal 

levels of autophagy in cells even if they were not kept in starvation medium. 

This indicates that Awells cells already display a constitutive level of autophagy, 

which can be considerably enhanced by starvation. This has already been 

demonstrated for other cell lines [15, 28]. 
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Figure 2.3.1.3. Starvation enhances the level of autophagic vacuoles. Autophagic vacuoles 
were stained with the specific dye monodansylcadaverine (MDC) [14] and analyzed by 
fluorescence microscopy or fluorescence spectroscopy. Awells cells were incubated for (A) 24 h 
in DMEM (control cells), (B) 6 h HBSS or (C) 24 h HBSS (starved cells), subsequently for 10 
min with monodansylcadaverine (MDC), washed and immediately analyzed by fluorescence 
microscopy. Autophagic vacuoles are marked with an arrow. (D) Intracellular MDC 
measurement by fluorescence spectroscopy, unstained cells were used as negative control. 

 

In order to obtain a detailed impression of human genes involved in autophagy, 

a comparative gene expression analysis using oligonucleotide microarrays was 

performed. Genes that were reproducibly up- or downregulated at 6 h and 24 h 

were assigned to functional categories based on the Gene Ontology (GO) 

classification system [26]. Categories showing a significantly enhanced 

proportion of regulated genes compared to the overall proportion of regulated 

genes were filtered out and are shown in Table 2.3.1.3 and Table 2.3.1.4. 

Several characteristics of autophagy as a process to ensure cell survival in a 

nutritionally deprived environment are reflected in these categories, exhibiting a 

distinct transcriptional signature of starved cells. 
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Table 2.3.1.3. Gene ontology (GO) categories significantly upregulated under starvation. 
Genes fulfilling the up-regulation requirements are shown (2 means 200% of mRNA was 
detected in starved compared with control cells). The first column indicates the GO category 
together with the GO ID and the GO system (BP, biological process; CC, cellular component; 
MF, molecular function). 
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Table 2.3.1.4. Gene ontology (GO) categories significantly downregulated under 
starvation. Genes fulfilling the down-regulation requirements are shown (-2 means 50% of 
mRNA was detected in starved compared with control cells). The first column indicates the GO 
category together with the GO ID and the GO system (BP, biological process; CC, cellular 
component; MF, molecular function). 
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The formation of autophagic vacuoles is illustrated by the GO terms "small 

GTPase mediated signal transduction" and "ARF guanyl-nucleotide exchange 

factor activity", which comprise upregulated genes involved in the control of 

vesicular transport and membrane trafficking, especially in the 

endosomal/lysosomal pathway, as for example Rab proteins [29]. In contrast, 

genes regulating rather exocytotic transport processes appear decreased under 

the term "Golgi stack". In response to amino acid starvation, cells seem to 
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upregulate in particular genes involved in amino acid transport. This has been 

previously described in yeast [30]. Amino acid-dependent metabolic and 

proliferative activities can be expected to be reduced to a minimum under these 

conditions. This is reflected in the downregulation of various genes implicated in 

protein and nucleic acid synthesis. Gene categories such as DNA replication 

and repair, ribosome biogenesis and assembly, or rRNA, tRNA, and mRNA 

transcription and processing among the downregulated biological functions 

demonstrate this phenomenon. Consequently, genes mediating cell cycle arrest 

are upregulated. Enduring starvation may ultimately lead to cell death. 

Autophagic phenotypes have been associated with programmed cell death 

other than apoptosis, suggesting a particular autophagic death pathway 

independent of caspase activation [31-33]. We observed an upregulation of 

genes related to apoptosis during starvation, most of which are classified in the 

context of apoptosis inhibition, thus supporting the model of autophagic death 

independent of apoptosis. Interestingly, ceramide has been described as an 

important mediator of autophagy and autophagic cell death [34, 35] and the GO 

terms "sphingoid metabolism" and "ceramide metabolism" appeared among the 

upregulated categories in our experiment.  

 

Autophagy promotes the presentation of peptides from intracellular and 

lysosomal source proteins on MHC-II molecules 

To determine whether autophagy contributes to the endogenous presentation of 

intracellular antigens on HLA class II in general or if this process represents a 

minor event followed only by some model antigens [9-11], the presentation 

levels of peptides from different inherent source proteins were quantified and 

compared between starved cells (6 h and 24 h) undergoing autophagy and non-

starved control cells by mass spectrometry. For the quantitation experiments, 

smaller cell numbers were used, resulting in a smaller subset of MHC-II ligands 

that could be analyzed. In order to exclude possible influences caused by an 

altered MHC surface expression, we measured MHC-I and -II levels by flow 

cytometry and observed no substantial changes upon autophagy induction 

(data not shown). 
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Table 2.3.1.5. Differential Presentation of peptides on HLA-DR molecules and 
corresponding mRNA data. The given peptide and mRNA ratios refer to the comparison of 
cells grown under starvation with control cells. For peptides, ratios were calculated from the 
signal intensities in LC-MS experiments. mRNA ratios were calculated from the signal log ratios 
given by the microarray analysis. "NC" (= no change) is displayed if no significant change in the 
expression level was observed according to the change algorithm. 

 

 

Fifty-four HLA-DR-bound peptides from 31 different source proteins were 

sequenced, quantified, and divided into two groups: peptides from membrane 

and secreted proteins, which should be preferentially presented on MHC-II 
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molecules, and peptides from intracellular, especially nuclear, proteins, which 

should be preferentially presented on MHC-I molecules (Table 2.3.1.5). 

Additionally, we analyzed peptides from lysosomal proteins, because 

lysosomes take part in the autophagic turnover of the cell. After 6 h starvation, 

the presentation of peptides from intracellular and lysosomal proteins rose on 

average by 27% and after 24 h starvation by 56% (Figure 2.3.1.4) compared 

with peptides from membrane and secreted proteins. Upon application of 

unpaired two-tail student´s t-tests to the two groups of quantified ligands, the 

means turned out to be significantly different (p<0.001) with non-overlapping 

99% confidence intervals.  

 

 

Figure 2.3.1.4. Altered peptide presentation on HLA-DR under starvation. Displayed are 
the relative intensity ratios of HLA-DR eluted peptides from starved cells (6 h and 24 h) and 
control cells as assessed by liquid chromatography (LC)-mass spectrometry (MS). Peptides 
were quantified by their relative peak heights in mass spectra and grouped according to the 
cellular localization of their source proteins: membrane plus secreted proteins and intracellular 
plus lysosomal proteins. Data of serial LC-MS runs were normalized to the abundant peptide 
LSSWTAADTAAQITQR, which showed only marginal differences in presentation levels (Table 
2.3.1.5). Horizontal bars indicate the mean intensity ratios for each group. Marked in a box are 
the 4 peptides that showed the highest presentation levels after 24 h starvation. Their source 
proteins are localized in the nucleus and in lysosomes. 

Enhancement of presentation appeared to be selective for the cellular 

localization of peptide source proteins. From the 4 source proteins that showed 
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the highest presentation levels of peptides after 24 h starvation, 3 are localized 

in the nucleus and 1 in lysosomes (Table 2.3.1.5, Figure 2.3.1.4). In the case of 

these 4 peptides, presentation levels were raised on average by 131% after 24 

h autophagy. These changes represent relative differences in presentation 

levels normalized to the abundant peptide LSSWTAADTAAQITQR (Table 

2.3.1.5). The absolute changes in presentation levels could not be assessed by 

our assay. 

Apart from an increased uptake into autophagic vacuoles, several other 

processes might contribute to an enhanced presentation of peptides derived 

from intracellular proteins under starvation. To examine whether a higher mRNA 

expression for specific proteins upon autophagy induction led to an increased 

peptide presentation, gene expression for all 31 source proteins was assessed 

by oligonucleotide microarrays (Table 2.3.1.5). On average, mRNA levels of 

most genes remained stable under starvation. Among the membrane proteins, 

only HLA-E and carboxypeptidase D displayed an increased expression. For 

intracellular and lysosomal proteins, the same could be observed for TNF 

alpha-induced protein 3, heat shock 70 kDa protein 1, and cathepsin S. 

Peptides from the corresponding source proteins were also presented in higher 

amounts at the cell surface after induction of autophagy. We therefore cannot 

exclude the possibility that overexpression of these particular proteins during 

autophagy was the reason for elevated presentation levels of the corresponding 

peptides at the cell surface. However, only intracellular source proteins from 7 

of 24 analyzed peptides showed elevated mRNA expression levels during 

autophagy. It is therefore highly unlikely that altered source gene expression 

was a major contributor to the observed changes in presentation levels. 

In addition, an enhanced presentation of intracellular peptides on MHC-II 

molecules on cells undergoing autophagy might be due to an enhanced uptake 

of cellular debris by live cells, although this should affect intracellular and 

membrane proteins similarly. To exclude this possibility we incubated control 

cells and cells undergoing autophagy with the corresponding amounts of dead 

cells (3 freeze-thaw rounds) and analyzed the MHC-II ligands as described. We 

observed no enhanced presentation of intracellular peptides if dead cells were 

present (data not shown). Therefore, an enhanced uptake of dead cells in the 

starved samples does not contribute to the observed changes in MHC-II peptide 

presentation levels. 
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Figure 2.3.1.5. (A) Affinity labelling of active cathepsins. Endocytic extracts were generated 
from control cells, cells after 6 h and 24 h starvation, and from human peripheral blood 
monoyctes, respectively, by differential centrifugation as reported [18, 36]. 5 µg total endocytic 
protein (1.5 µg in monocytes) were either directly incubated with the active site-restricted 
biotinylated affinity label DCG-0N as described (lane 2: control cells; lane 3: 6 h starvation; lane 
4: 24 h starvation; and lane 9: monocytes), or were subjected to 95°C as negative control (lane 
1). In addition, control cells were incubated with the CatS-inhibitor LHVS (25 nM), the CatB-
inhibitor Ca074 (1 µM), the pan-cysteine protease inhibitors leupeptin (1 mM) or E64 (25 µM) 
(lanes 5-8), for 45 min at 37°C prior to labelling, as further controls. Active cathepsins were 
visualized after resolution by SDS-PAGE by streptavidin-HRP blot: Cat Z, B, H, and S at 36, 33, 
30, and 28 kDa, respectively. (B) Cathepsin polypeptides probed by Western blot. Identical 
amounts of total cellular protein from control cells (lane 1) and cells undergoing autophagy (6 h 
and 24 h starvation, respectively; lane 2 and lane 3) were probed for CatS, CatC, CatD, CatH, 
く-actin and LAMP-1 by Western blot. 
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Autophagy leads to a time-dependent decrease of lysosomal proteases 

and altered antigen processing 

Interestingly, presentation levels of peptides derived from the same source 

protein were differentially affected by starvation. This applied both, to proteins 

processed by the classical MHC-II pathway, for example HLA-A*0201, as well 

as to intracellular proteins, such as heat shock 70 kDa protein 1 (Table 2.3.1.5). 

This led us to hypothesize that activation of the autophagic pathway might 

concomitantly affect the MHC-II processing machinery by altering the activity 

levels of lysosomal proteases. Therefore, we assessed the activity of the major 

cathepsins during autophagy by affinity labelling (Figure 2.3.1.5A). Active 

cathepsins Z, B, H, S and C could be detected in control cells using this 

method, largely in agreement with previous studies in other cells [20]. Starvation 

of cells led to a time-dependent decrease of the activity signals for all 

cathepsins without a clear preference for any individual cathepsin. The same 

pattern of downregulation was observed when control cells and cells 

undergoing autophagy were probed for cathepsin polypeptides by Western blot 

(Figure 2.3.1.5B). This effect was not due to non-selective breakdown of total 

cellular protein or lysosomal protein in general, because the amounts of く-actin 

as well as of the lysosome-resident protein LAMP-1 remained unaffected by 

autophagy. 

To assess whether cathepsin downregulation had an effect on the generation of 

antigenic peptides, we incubated myelin basic protein (MBP) peptide 

ENPVVHFFKNIVTPRTP (MBP83-99), a well-characterized model peptide for 

MHC-II processing [37], with active lysosomal extracts from control cells and 

cells undergoing autophagy and analyzed the degradation products by RP-

HPLC, MALDI-MS and Edman microsequencing. Figure 2.3.1.6A shows the 

detected cleavage points which are largely in agreement with earlier data [21]. 

A quantitative analysis of the degradation products (Figure 2.3.1.6B) revealed 

that the downregulation of lysosomal proteases by autophagy affected the 

breakdown products to a different extent. As expected, the amount of 

undigested peptide was higher in autophagic cells, which exhibited lower 

cathepsin levels than control cells, and, in agreement with this, most of the 

breakdown products were more abundant in control cells than in autophagic 

cells (Figure 2.3.1.6C). 
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Figure 2.3.1.6. MBP83-99 digestion with lysosomal extracts from control cells and cells 
undergoing autophagy. (A) Preferential detected cleavage sites. MBP83-99 was incubated at 
pH 5.4 with lysosomal extracts from control cells and cells undergoing 24 h autophagy for 3 h. 
Breakdown products were subsequently separated by RP-HPLC and analyzed by MALDI-MS 
and Edman microsequencing. (B) RP-HPLC chromatogram of control cell MBP breakdown 
products at 214 nm. The annotated peaks correspond to the major breakdown products of 
MBP83-99 as identified by MALDI MS and Edman microsequencing. The corresponding 
chromatogram of autophagic cells is not shown. (C) Quantitative distribution of MBP83-99 
breakdown products. Breakdown products were quantified by their peak heights in the RP-
HPLC chromatogram. The total amount of identified peptides was set to 100%. Shown are the 
differences between control cells and cells undergoing 24 h autophagy and the lysosomal 
proteases which are known to be responsible for the generation of the corresponding fragments 
[21]. 
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However, the ratios of downregulation of breakdown products differed markedly 

corresponding to the involved proteases. Whereas asparagine endoproteinase 

(AEP) appeared to be quite sensitive to autophagy – the corresponding 

peptides dropped at an average of 33.2% – cathepsin D seemed to be more 

resistant, which is in concordance with the Western blot results (Figure 

2.3.1.5B). Thus, an overall downregulation of active lysosomal proteases with 

only subtle differences between the key enzymes can nevertheless markedly 

influence the generation of different MHC-II ligands corresponding to the 

involved proteases. This could explain the differences in MHC-II presentation 

levels of different peptides from the same source proteins that were observed in 

cells undergoing autophagy and control cells (Table 2.3.1.5). 

 

2.3.1.5 Discussion 

In order to assess the impact of autophagy on the HLA class II ligandome, we 

started by performing a detailed characterization of the MHC-II self peptide 

repertoire of a cell line grown under normal conditions. This analysis revealed 

that peptides from source proteins that are localized in almost all cell 

compartments and take part in general cellular processes are presented on 

MHC-II molecules. Some examples of peptides from intracellular proteins on 

MHC-II have been described before [38, 39]. However, in our case the number 

of such source proteins was surprisingly high. This possibly reflects the 

detected basal level of autophagy which might be responsible for a constant 

shuttling of intracellular source proteins into the endosomal/lysosomal 

compartment. Thus, peptides from intracellular antigens are likely to have a 

larger impact on CD4+ helper T cell regulation than was originally believed. It 

has already been reported that CD4+ T cells are able to recognize peptides 

from intracellular melanoma antigens [40, 41] and from the viral antigen EBNA1 

[42], and that under inflammatory conditions peptides from intracellular antigens 

are presented on HLA class II molecules on epithelial cells which are target 

cells in autoimmunity [43]. 

This study demonstrates that autophagy constitutes a general pathway 

promoting the processing of intracellular proteins by lysosomes and 

presentation of the resulting peptides on MHC-II molecules. Autophagy is a 

constitutive process responsible for the turnover of intracellular proteins [44]. 

Basal levels have been observed in most tissues [45] and can be particularly 
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enhanced by starvation. In addition, autophagy is involved in tumor 

development [45, 46]. Starvation-induced autophagy has been observed for 

example in lymphocytes isolated from patients with chronic lymphocytic 

leukemia [47]. This might indicate an important role of this process in tumor 

survival under nutrient-limiting conditions. In contrast, autophagy as a form of 

programmed cell death may accelerate tumor development if it is decreased 

[48]. Some anticancer drugs potentially act via triggering autophagy [35] and by 

doing so could cause an enhanced presentation of intracellular CD4+ T cell 

epitopes in MHC-II-expressing tumor cells. Autophagy has also been described 

as a constitutive process under nutrient-rich conditions for several tissues in 

vivo, including thymic epithelial cells [49]. For this reason, it might play an 

important role in the presentation of intracellular self-antigens to CD4+ T cells 

during negative selection.  

Our results indicate a profound impact of enhanced autophagy on MHC-II 

antigen processing caused by a decrease of active cathepsins in the endocytic 

compartment. Decreased cathepsin levels might favor the generation of MHC-II 

peptides due to a less efficient lysosomal protein digestion. This has been 

suggested as a mechanism to explain the superiority of dendritic cells over 

macrophages as antigen presenting cells [50]. Similarly, autophagy might 

subject the cell to an enhanced immune surveillance by CD4+ T cells under 

potentially dangerous stress conditions. 

Recently, it has been reported that peptides from cytosolic antigens [9, 10] as 

well as from a cytosolic viral antigen [11] can be presented via autophagy on 

MHC-II molecules. It was not clear, however, if this represents a minor event or 

if autophagy contributes to the endogenous presentation of intracellular 

antigens on HLA class II in general. This study sheds more light on this issue by 

demonstrating that autophagy affects MHC-II presentation of peptides from 

intracellular proteins in general and by providing clear evidence for altered 

lysosomal processing. Thus, apart from its various known implications in stress 

responses and cell death, autophagy might play an important role in the 

regulation of CD4+ T cell-mediated processes. 
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3 Summary 

Molecularly defined immunotherapies against cancer require the identification of 

appropriate tumor associated antigens (TAAs). Against this background, 

patient-individual TAAs for renal cell carcinoma were identified by whole-

genome mRNA expression analysis of tumors, autologous normal kidney, and a 

selection of other normal tissues using oligonucleotide microarrays. These 

results were applied to HLA ligands simultaneously identified on the patients' 

tumors in order to define peptide vaccines aiming at the generation of anti-

tumor cytotoxic T lymphocyte (CTL) responses. In addition, gene expression 

analysis was used to demonstrate that the overall expression profiles of 

metastases are closely related to the primary tumor. This similarity justifies the 

approach of TAA identification using resected primary RCC tumors in order to 

target metastases with the so defined vaccination cocktail. 

This approach for TAA identification was also applied to colorectal carcinoma, 

which is a heterogeneous tumor species requiring the careful isolation of tumor 

cells and corresponding normal epithelial cells in order to obtain tumor cell-

specific expression data. Laser microdissection followed by mRNA amplification 

was employed to generate microarray data and identify candidate TAAs. 

Impaired RNA quality is a frequent problem in this setting but it could be shown 

that moderate levels of degradation may still lead to meaningful microarray 

results. 

So far, it was unclear whether MHC class II positive tumors are able to directly 

present peptides of TAAs to CD4+ T helper cells. We could show that 

autophagy is a process enabling the presentation of MHC-II peptides from 

intracellular source proteins in general, thereby providing a mechanism for the 

potential recognition of tumors by CD4+ T cells. These results show how TAAs 

on MHC-II might arise and illustrates how comprehensive gene expression 

analysis may contribute to the elucidation of such a fundamental process, which 

likely has important implications for tumor immunology and cancer 

immunotherapy. 
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Zusammenfassung 

 

Jede molekular definierte Immuntherapie gegen Krebs erfordert die 

Identifizierung geeigneter tumor-assoziierter Antigene (TAAs). Vor diesem 

Hintergrund wurden patientenindividuelle TAAs beim Nierenzellkarzinom 

identifiziert. Dazu kam eine genomweite mRNA-Expressionsanalyse von 

Tumoren, autologem Nierennormalgewebe und einer Auswahl anderer 

Normalgewebe mittels Oligonukleotid-Microarrays zum Einsatz. Diese 

Ergebnisse wurden mit HLA-Liganden in Beziehung gesetzt, die zugleich auf 

Tumoren der Patienten identifiziert wurden, um Peptidvakzine zur Erzeugung 

einer gegen den Tumor gerichteten Immunantwort durch cytotoxische T-

Lymphocyten (CTLs) zu definieren. Zusätzlich wurde mit Hilfe der 

Genexpressionsanalyse gezeigt, dass die Gesamtexpressionsprofile von 

Metastasen denen eines Primärtumors sehr ähnlich sind. Diese Ähnlichkeit 

rechtfertigt die Identifizierung von TAAs auf operativ entfernten Primärtumoren, 

um mit dem so definierten Vakzin Metastasen anzugreifen. 

Diese Strategie zur Identifizierung von TAAs wurde auch auf das colorectale 

Karzinom angewandt. Es stellt eine heterogene Tumorspezies dar, die eine 

sorgfältige Isolierung von Tumor- und korrespondierenden normalen Epithel-

zellen erfordert, um tumorzellspezifische Daten zu ermöglichen. Deshalb wurde 

ein Verfahren zur lasergestützten Mikrodissektion eingesetzt, um Microarray-

Daten zu erhalten und potenzielle TAAs zu identifizieren. In diesem Zusammen-

hang tritt häufig das Problem auf, dass die gewonnene RNA in ihrer Qualität be-

einträchtigt ist. Es konnte aber gezeigt werden, dass ein gewisses Maß an 

RNA-Abbau immer noch zu aussagekräftigen Microarray-Daten führen kann. 

Bisher war unklar, ob MHC Klasse II-positive Tumore Peptide von TAAs direkt 

CD4+ T-Helferzellen präsentieren können. Wir konnten zeigen, dass Auto-

phagie ein Vorgang ist, der die Präsentation von MHC II-Peptiden aus intra-

zellulären Quellproteinen allgemein ermöglicht. Dies könnte ein Mechanismus 

für die Erkennung von Tumoren durch CD4+ T-Zellen sein. Diese Ergebnisse 

zeigen, wie TAAs auf MHC II entstehen könnten und liefern ein Beispiel dafür, 

wie umfangreiche Genexpressionsanalysen zur Aufklärung solch eines grund-

legenden Prozesses beitragen können, der möglicherweise wichtige Auswir-

kungen für Tumorimmunologie und Krebsimmuntherapie haben könnte. 
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4 Abbreviations 

Ab antibody 
ACSL4 acyl-CoA synthetase long-chain family member 4 
ADCC antibody-dependent cell-mediated cytotoxicity 
ADFP adipose differentiation-related protein, adipophilin 
AEP asparagine endoproteinase 
APC antigen presenting cell 
APOL1 apolipoprotein L, 1 
aRNA antisense ribonucleic acid 
BCG bacillus Calmette-Guerin 
BIRC5 baculoviral IAP repeat-containing 5 (survivin) 
bp base pairs 
CA9 carbonic anhydrase IX 
CatB cathepsin B 
CCA colorectal carcinoma 
CCD charge-coupled device 
CCNB1 cyclin B1 
CD cluster of differentiation 
CDC2 cell division cycle 2, G1 to S and G2 to M 
CDK1 = CDC2 
CDK4 cyclin-dependent kinase 4 
CDKN3 cyclin-dependent kinase inhibitor 3 
cDNA complementary deoxyribonucleic acid 
CEA carcinoembryonic antigen 
CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 
CML chronic myelogenous leukemia 
CTL cytotoxic T lymphocyte 
DC dendritic cell 
DMEM Dulbecco's Modified Eagle's Medium 
dNTP deoxynucleoside triphosphate 
DRiPs defective ribosomal products 
dscDNA double-stranded cDNA 
DTT dithiothreitol 
EBNA1 Epstein-Barr nuclear antigen 1 
EDTA ethylene diamine tetraacetic acid 
EEF2 eukaryotic translation elongation factor 2 
ESI electrospray ionization 
FAT10 = UBD 
Fc constant fragment 
FCS fetal calf serum 
FGF5 fibroblast growth factor 5 
GCOS GeneChip Operating Software 
GM-CSF granulocyte-macrophage colony stimulating factor 
GvHD graft-versus-host disease 
GvT graft-versus-tumor 
HBSS Hank’s Balanced Salt Solution 
HLA human leukocyte antigen 
HPLC high performance liquid chromatography 
HPV human papilloma virus 
HRP horse radish peroxidase 
HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 
IDO = INDO, indoleamine-pyrrole 2,3 dioxygenase 
IFN interferon 
Ig immunoglobulin 
IGF1 insulin-like growth factor 1 
IGFBP3 insulin-like growth factor binding protein 3 
kDa kilodalton 
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KLH keyhole limpet hemocyanin 
LGALS2 lectin, galactoside-binding, soluble, 2 (galectin 2) 
LMM laser microbeam microdissection 
LPC laser pressure catapulting 
mAb monoclonal antibody 
MAD2 = MAD2L1, mitotic arrest deficient-like 1 
MALDI matrix-assisted laser desorption ionization 
MBP myelin basic protein 
MCM minichromosome maintenance deficient 
M-CSF macrophage colony stimulating factor 
MDC monodansylcadaverine 
MHC major histocompatibility complex 
MIC MHC class I chain–related molecule 
MMP7 matrix metalloproteinase 7 (matrilysin, uterine) 
MUC mucin 
NK cell natural killer cell 
NKG2D = KLRK1, killer cell lectin-like receptor subfamily K, member 1 
NKT cell natural killer T cell 
NTP nucleoside triphosphate 
OGT O-linked N-acetylglucosamine (GlcNAc) transferase 
ORF open reading frame 
PCR polymerase chain reaction 
PSA = KLK3, kallikrein 3, (prostate specific antigen) 
qPCR quantitative real-time RT-PCR 
RCC renal cell carcinoma 
RGS regulator of G-protein signalling 
rRNA ribosomal ribonucleic acid 
RT-PCR reverse transcriptase PCR 
SDS sodium docecyl sulfate 
SLR signal log ratio 
TAA tumor associated antigen 
TCR T cell receptor 
TERT telomerase reverse transcriptase 
TGF transforming growth factor 
TGFBR2 transforming growth factor, beta receptor II 
Th1 cell T helper 1 cell 
TIL tumor infiltrating lymphocyte 
TLR toll-like receptor 
TNF tumor necrosis factor 
TNFSF7 tumor necrosis factor (ligand) superfamily, member 7, = CD70 
TOF time of flight 
TReg cell regulatory T cell 
tRNA transfer ribonculeic acid 
TRP tyrosinase related protein 
UBD ubiquitin D 
VEGF vascular endothelial growth factor 
VHL von Hippel-Lindau 
WT1 Wilms tumor 1 
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1982 - 1986 Kastengrundschule, Winnenden (elementary school) 
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Name: Oliver Schoor 

Geburtsdatum: 19.02.1976 

Geburtsort: Stuttgart - Bad Cannstatt 

  

09/2002 - 06/2005 Doktorarbeit am Interfakultären Institut für Zellbiologie, 

Abteilung Immunologie, Universität Tübingen unter 

Anleitung von Prof. Dr. Stefan Stevanovi5. 

Titel: Microarray-basierte Genexpressionsanalyse zur 

Untersuchung immunologisch relevanter Vorgänge in 

Tumoren. 

08/2002 Diplom in Biochemie 

01/2002 - 08/2002 Diplomarbeit am Interfakultären Institut für Zellbiologie, 

Abteilung Immunologie, Universität Tübingen unter 

Anleitung von Prof. Dr. Stefan Stevanovi5. 

Titel: Microarray Genchip-Analyse aus minimalen 

Zellzahlen nach Laser Capture Microdissection und RNA-

Amplifikation zur Identifizierung von Tumorantigenen 

09/1999 - 07/2000 Studium der Biochemie, Oregon State University, 

Corvallis, OR, USA 

10/1996 - 08/2002 Studium der Biochemie, Eberhard-Karls-Universität 

Tübingen 

08/1995 - 08/1996 Zivildienst, Krankenhaus für Psychiatrie und Neurologie, 

Winnenden 

06/1995 Abitur 

1986 - 1995 Albertus-Magnus-Gymnasium, Stuttgart Bad-Cannstatt 

1982 - 1986 Kastengrundschule, Winnenden 

 


