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1 Introduction 
1.1 Adenylyl cyclases 

Cyclic AMP (cAMP) is an important signalling molecule that controls a wide variety of 

cellular functions in many organisms, including virulence factors from a diverse range of 

pathogens (Botsford and Harman, 1992; D’Souza and Heitman, 2001; Gross et al., 2003; 

Petersen and Young, 2002; Smith et al., 2004; Wolfgang et al., 2003). It is produced in cells 

by adenylyl cyclases (Peterkofsky et al., 1993). This makes the modulation of AC activity the 

key step in regulating intracellular cAMP. ACs are subject to regulation by both extracellular 

and intracellular stimuli (Tang and Hurley, 1998). However the regulation and mechanism of 

action of cyclases can only be sufficiently understood by knowing the three-dimensional 

structure of the protein, which could be fulfilled through crystallization. 

Currently the catalytic domains of ACs are grouped into five classes based on sequence 

similarity (Barzu and Danchin, 1994; Cotta et al., 1998; Sismeiro et al., 1998).  

 

Class I ACs are present in many Gram-negative bacteria, best represented  by the Escherichia 

coli AC. The amino-terminal moiety is responsible for catalytic activity, whereas the carboxy-

terminal end confers glucose-mediated inhibition of activity. cAMP levels mirror the external 

presence and uptake of glucose, which is sensed through the phosphotransfer relay system 

(Barzu and Danchin, 1994). 

 

Class II ACs are present in two taxonomically unrelated pathogens, Bordetella pertussis and 

Bacillus anthracis. These extracellulary released ACs serve as toxins. Upon entry into the 

host mammalian cells, they become activated by the mammalian calmodulin causing 

unregulated synthesis of cAMP and impairment of cellular functions. Whether class II ACs 

also have an intracellular function in those pathogens is unknown (Barzu and Danchin, 1994; 

Linder and Schultz, 2003).  

 

Class III ACs include cyclases from eukaryotes as well as prokaryotes. Accordingly, 

intracellular physiological roles of cAMP seem to vary greatly among different organisms. 

Most mammalian ACs are monomeric integral membrane proteins which are catalytically 

active as pseudoheterodimers (Sunahara et al., 1996; Taussig and Zimmermann, 1998), while 

prokaryotes and lower eukaryotes produce both soluble and membrane-bound nucleotidyl 

cyclases of variant domain compositions functioning as homodimers (Guo et al., 2001; Linder 
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et al., 2002; Linder and Schultz, 2003). In eukaryotes, cAMP levels are modulated mostly in 

response to extracellular hormones via G-protein-coupled receptors (GPCR). Increase in 

cAMP usually then leads to activation of protein kinase A as the predominant cAMP-receptor. 

Therefore, cellular processes such as metabolism, secretion and proliferation are controlled 

via cAMP. On the other hand, GPCR-G-protein pathways are conspicuously absent in 

prokaryotes. Instead, the prokaryotic catalytic domain isoforms appear to be directly regulated 

by a variety of attached potential regulatory domains (Linder and Schultz, 2003; Sinha et al., 

2005).   

 

Classes IV and V ACs are currently represented by only a single member each from 

Aeromonas hydrophila (class IV) and Prevotella ruminicola (class V) (Cotta et al., 1998; 

Sismeiro et al., 1998). 

 

1.2 Class III adenylyl cyclases 

The most wide spread class of cAMP-generating enzymes are the class III ACs, which are 

further subdivided into four subclasses IIIa-IIId (Linder and Schultz, 2003). The catalytic 

domain of these ACs, also designated as the cyclase homology domain (CHD), is often linked 

to different protein domains which in many instances appear to impart peculiar regulatory 

features. As for example, GAF, BLUF, histidine kinase, receiver, PAS-associating and cation 

channel domains have been found in conjuction with the CHD of this class (Linder and 

Schultz, 2003). So far, all CHDs operate as dimers with mostly two catalytic centres 

positioned at the dimer interface, where catalysis is based on six highly conserved residues 

(Guo et al., 2001; Sunahara et al., 1998; Tesmer et al., 1997). Two aspartate residues 

coordinate two metal cofactors (Mg2+ or Mn2+), an asparagine and an arginine stabilize the 

transition-state and a lysine-aspartate couple specifies ATP as a substrate (Tesmer et al., 

1999; Tucker et al., 1998; Yan et al., 1997). However variations in all these six canonical 

catalytic residues do occur within the four subclasses IIIa-IIId (Linder and Schultz, 2003), and 

the functional consequenes of such changes are just beginning to be comprehended (Castro et 

al., 2005; Sinha et al., 2005).  

 

Class IIIa ACs are pseudoheterodimeric in metazoans (Krupinski et al., 1989) and 

homodimeric in bacteria (Guo et al., 2001; Kasahara et al., 2001). An (F/Y)XX(F/Y)D motif, 

which appears to participitate in formation of the dimer interface (Tang et al., 1995; Tesmer et 

al., 1997), and an EKIK motif, containing the substrate defining lysine (bold), are two 
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signature motifs of this class. Besides, the arm region of class IIIa CHDs, thought to be an 

essential feature for dimerization, is conserved to 14 residues in length (Linder and Schultz, 

2003). 

 

Class IIIb ACs exist in both gram-negative and gram-positive bacteria as well as in mammals. 

A characteristic feature of this class is the replacement of the substrate-defining aspartate by a 

threonine or serine (Kanacher et al., 2002), and a phosphate–binding arginine is frequently 

replaced by either a glycine or a serine. Here the arm region mentioned above consists of 15 

residues (Linder and Schultz, 2003). 

 

Class IIIc ACs are most frequently encountered in gram-positive bacteria but also in some 

gram-negative ones. In this class the arm region is shortened to only 7-11 residues. Also this 

class shows striking substitutions in the six canonical catalytic residues which calls for a 

plasticity of the catalytic mechanism within this subfamily (Linder and Schultz, 2003). 

 

Class IIId ACs are present in protozoans, trypanosomatids and fungi. A VEVKT motif 

surrounding the substrate-defining lysine appears to be a prominent signature motif. The arm 

region is mostly 14 residues in length (Linder and Schultz, 2003). 

 

1.3 Mycobacterium tuberculosis adenylyl cyclases 

M. tuberculosis, the etiologic agent of tuberculosis, is a leading cause of death of 

approximately 2 million people each year. Nearly one-third of the world’s population is 

latently infected with the M. tuberculosis bacillus, and 7 to 8 million new TB cases occur 

annually (Raviglione, 2003). So getting to know more about M. tuberculosis biochemistry, 

biology and gene regulation allows for a better understanding of the interaction of the tubercle 

bacillus with its environment, thus devising more effective treatments against TB.     

Little is known about the role of cAMP in mycobacteria, although it is found in both 

pathogenic and non-pathogenic species (Padh and Venkitasubramanian, 1976 and 1977). A 

correlation between intracellular cAMP levels and phospholipid synthesis in Mycobacterium 

smegmatis has been reported (Kaur and Khuller, 1995). Elevated cAMP levels were 

correlated with reduced phagolysosome fusion during mycobacterial infection of 

macrophages (Lowrie et al., 1979). A possible role for cAMP in persistence of M. 

tuberculosis infection by regulation of the glyoxylate shunt metabolism was reported (Gazdik 

and McDonough, 2005; McKinney et al., 2000). Also a recent study provided the first 
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evidence that cAMP regulates gene expression in mycobacteria, and that this regulation 

occurs more often under low-oxygen, CO2-enriched growth conditions suggesting that such 

conditions which the TB bacterium faces during its infection of a mammalian host, may 

provide a regulatory signal for the bacterium relayed by cAMP as a second messenger to 

effect regulation of genes that are required for its survival during intracellular growth (Gazdik 

and McDonough, 2005). 

 

Pathogenesis of M. tuberculosis is not yet attributable to single or a few defined gene 

products, as is the case in Bordetella pertussis and Bacillus anthrax where AC plays a pivotal 

role in the onset of the disease (Reddy et al., 2001; Khelef et al., 1993; Gueirard et al., 1998). 

For instance, a mycobacterial knockout strain illustrated that the AC Rv1625c alone is not a 

virulence factor in mice (Guo et al., 2005). A recent study identified 15 putative cyclases in 

the M. tuberculosis genome using Bayesian computational methods, showing that both the 

number and diversity of functional ACs in this bacteria are extraordinary compared to other 

microorganisms (Linder et al., 2004; McCue et al., 2000). Therefore it is likely that each 

cyclase is associated with a distinct signalling pathway. It is expected that specific cyclases 

are activated to produce cAMP in response to different physiological conditions as for 

example hypoxia, intramacrophage enviroment (Gazdik and McDonough, 2005) or pH 

changes (Tews et al., 2005). The selective availability of cAMP-binding effector molecules 

for each enviromental condition would allow for different outcomes, especially in view of that 

M. tuberculosis encodes 10 putative cNMP-binding proteins with diverse functions that could 

fulfill this role (Gazdik and McDonough, 2005; McCue et al., 2000). 

 

Two of the M. tuberculosis 15 predicted ACs belong to class IIIa, four to class IIIb and nine 

to class IIIc. One predicted class IIIa and six predicted class IIIc  cyclase genes possess 

variations at canonical positions of the catalytic centre, while the four IIIb cyclases contain 

the threonine variant mentioned above (Linder and Schultz, 2003). To date almost all 

mycobacterial ACs have been investigated [class IIIa: Rv1625c; class IIIb: Rv1318c, 

Rv1319c, Rv1320c, Rv3645; class IIIc: Rv1647, Rv1264, Rv1900c, Rv0386  (Castro et al., 

2005; Guo et al., 2001; Linder et al., 2002 and 2004; Reddy et al., 2001; Shenoy et al., 2005; 

Sinha et al., 2005; Tews et al., 2005)]. Rv2435c (class IIIa) and Rv2212c (class IIIc) are both 

investigated in this work. 

Mycobacterial CHDs, being class III domains, are fused to different domains which appear to 

be regulators of the AC function (see section 1.2 above). These include membrane anchors, a 
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pH-sensing domain, AAA-ATPase domains, helix-turn-helix DNA-binding domains, an α/β-

hydrolase domain and HAMP-domains (Linder et al., 2004; Tews et al., 2005). Despite the 

thorough investigations carried out in the past few years, still a lot is left to be known about 

these regulatory domains.  

 

In Rv1625c, the membrane anchor consisting of six transmembrane spans has a prominent 

role in protein dimerization thus remarkably increasing its affinity towards the substrate ATP 

(Guo et al., 2005). 

 

The N-terminal domain of Rv1264 is a pH sensor. So Rv1264 is probably required by the M. 

tuberculosis to counteract acidification of phagolysosomes during host invasion for 

intracellular survival (Pethe et al., 2004; Sturgill-Koszycki et al., 1994; Tews et al., 2005).  

 

Rv1900c and Rv0386 are examples of unconventional cyclase genes of M. tuberculosis, 

possessing deviations in the six canonical residues, and displaying variations in substrate 

specificity and catalytic mechanism. The presence of a sequence similarity between the N-

terminal domain of Rv1900c and α/β-hydrolases suggested that Rv1900c might possess lipase 

activity and hence was named ‘lipJ’ (Cole et al., 1998), although consensus residues that 

confer esterase activity are absent (Shenoy et al., 2004a). Whether regulation of the CHD 

activity is exerted by this uncharacterized N-terminal α/β-hydrolase domain in response to 

signals from unidentified ligands or protein partners, is still an open question (Sinha et al., 

2005).  

 

Rv0386 cyclase homology domain is fused to an AAA-ATPase/NB-ARC domain, which is 

similar to the respective domains of several bacterial transcriptional regulators, and a helix-

turn-helix DNA-binding domain suggesting that in Rv0386 an AC may be functionally linked 

with a transcriptional regulator (Castro et al., 2005). 

 

In mycobacterial class IIIb ACs, the HAMP domains appear to act directly as modulators of 

AC activity but without displaying a uniform regulatory input, instead each formed a distinct 

signalling unit with its adjoining CHD (Linder et al., 2004). 
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1.4 Aim of work 

Rv2435c is of particular interest because of its deviation in four of the six canonical residues 

participating in catalysis, and because of the presence of an N-terminal extracellular domain 

of unknown function. So the cloning and biochemical characterization of the so called class 

IIIa AC Rv2435c from M. tuberculosis is one of the aims of this work. 

 

On the other hand, Rv2212c is similar to Rv1264 in having a catalytic AC domain, conserved 

in canonical residues, and a regulatory N-terminal domain. To understand AC regulation, 3D 

structures of the enzyme should be determined using X-ray crystallography. A comparison of 

the structures will show why these proteins have different regulatory functions, despite their 

conservation and common domain structure. This might give new clues to class III AC 

regulation. 
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2 Materials 
2.1 Chemicals and materials 

Amersham Pharmacia Biotech, Freiburg: ECL Plus Western Blot Detection    

    System, Hyperfilm ECL, Thermo Sequenase Fluorescent Labelled Primer     

    Cycle Sequencing Kit with 7-deaza-dGTP, Formamide, [2,8-3H]-cAMP and   

    [8-3H]- cGMP 

AppliChem, Darmstadt: HEPES, Acrylamide 4K-Solution, 30% 

Appligene, Heidelberg: Taq DNA-Polymerase with 10x reaction buffer 

BIO-RAD, München: Protein-Assay Dye Reagent  

Biozym Diagnostik, Hess. Oldendorf: Sequagel XR, Sequagel Complete   

    Buffer Reagent, Chill-Out 14 Liquid Wax from MJ Research 

Canberra Packard, Taunusstein: Ultima Gold XR Scintillator 

Dianova, Hamburg: Goat anti-mouse IgG-Fc horseradish peroxidase conjugated  

    antibodies, goat anti-rabbit IgG-Fc horseradish peroxidase conjugated antibodies 

Emerald BioStructures, Bainbridge Island, Washington (USA): Wizard I & II reagent kits 

for protein crystallization  

Fluka, Basel: Sodiumdodecylsulfate, PEG, Nonidet P40 

Hampton Research, Laguna Niguel (USA): Crystal Screen, Crystal Screen 2 and Crystal  

   Screen Lite reagent kits for protein crystallization screening 

Hartmann Analytik, Braunschweig: [α-32P]-ATP and [α-32P]-GTP 

ICN Biomedicals, Eschwege: [α-32P]-ATP 

Macherey-Nagel, Düren: Nucleotrap Kit, Porablot PDVF-blotting membrane 

Merck, Darmstadt: Glycerol 87%, ethanol, methanol, 2-mercaptoethanol,   

   DMSO, imidazole, sodium chloride, amino acids, glyoxylic acid, linolenic acid, palmitic   

   acid, stearic acid 

MWG-Biotech, Ebersberg: Oligonucleotides 

New England Biolabs, Schwalbach/Taunus: Restriction endonucleases, BSA   

   for molecular biology, T4-Polynucleotide Kinase and 10x Kinase Buffer 

Pall Corporation, Michigan (USA): Nanosep 10K OMEGA centrifugal  

   devices 

Peqlab, Erlangen: Agarose, peqGOLD Protein Marker 

Promega, Madison (USA): Wizard Plus SV Plasmid Purification Kit   

   (Minipreps) 

Qiagen, Hilden: Ni2+-NTA Agarose, pQE-expression vectors, purified mouse  
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   monoclonal RGS-His4 antibody, Penta-His antibody, Tetra-His antibody 

Roche (Boehringer), Mannheim: Restriction endonuleases, Klenow- 

   Polymerase, Alkaline phosphatase, Rapid DNA Ligation Kit, dNTPs, Creatine  

   kinase, Creatine phosphate 

Roth, Karlsruhe: Glycin, ampicillin, kanamycin 

Sartorius, Göttingen: Cellulose acetate filter (0.2 µm),  

   polycarbonate filter holder 

Schleicher & Schuell, Dassel: Whatmanpaper 3 MM, Protran BA 83  

   cellulosenitrate 0.2µm (200 x 200 mm) nucleic acid and protein transfer media 

Serva, Heidelberg: Coomassie-Brilliant-Blue G250, visking dialysis tubing  

   8/32 (∅ 6 mm) and 27/32 (∅ 21 mm), Triton X-100 

Sigma, Deissenhofen: Glycerol 99%, MOPS, TRIS, EDTA, X-Gal, IPTG,  

   Tween 20, Ponceau S, TEMED, BSA, LB-agar powder, LB-broth powder, 

   bromophenol blue, D-mannose, L-arabinose, L-rhamnose, D-galactose, polidocanol, oleic  

   acid, linoleic acid, phospholipids 

Stratagene, Heidelberg: pBluescript II SK(-), E.coli XL1-Blue MRF' cells 

 

2.2 Equipment 

Amersham Pharmacia Biotech, Freiburg: ÄKTA FPLC with fraction  

  collector Frac- 950, pump P-920, monitor UPC-900, valve INV-907, mixer M- 

  925 , software Unicorn version 4.11 , gel filteration columns Superose 12 HR  

  10/30 and Superdex 200 

Bender & Hobein, Zurich: Vortex Genie 2TM 

Biometra, Göttingen: TRIO-Thermoblock thermocycler 

BIO-RAD, München: Trans-Blot SD Semi Dry Transfer Cell 

Branson, Danbury, Connecticut (USA): Sonifier B-12, ultrasound bath  

  Bransonic B12 

Carl Zeiss, Göttingen: Microscope Axioskop 40/40 FL with fixed polarisator,  

  Lambda plate, Canon Powershot G2 high quality digital camera with 4.0 M  

  pixel, CCD sensor and 3x optical zoom 

Eberhard-Karls-Universität, Tübingen: Gel electrophoresis chambers 

Eppendorf, Hamburg: Table centrifuge 3200 and miniSpin, Thermostat 5320, Table   

 centrifuges 5410 & 5414, Cooling centrifuge 5402, Biophotometer 

Gilson: Pipets 1-20 µl, 10-100 µl, 100-1000 µl 
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Hampton Research, Laguna Niguel (USA): VDX 24 well polystyrene pre-greased plates,  

  22 mm siliconized glass square cover slides  

Heraeus, Osterode: Megafuge 1.0 R (BS 4402/A), Biofuge A 

Idaho Technologies, Idaho Falls (USA): Air Thermo Cycler 1605 

Kontron-Hermle, Gosheim: Centrikon H401 & ZK401, Rotors A6.14 (SS34)   

  and A8.24 (GSA) 

LTF Labortechnik, Wasserburg: Videoprinter Mitsubishi Video Copy Processor P91 with  

  Sony CCD video Camera Modul XC-ST500E, Thermopapers K65HM, Software BioCapt  

  Version 99.01s 

Metrohm, Herisau (Switzerland): pH-Meter E 512  

Millipore, Eschborn: Water purification apparatus MilliQ UF Plus 

MWG-Biotech, Ebersberg: LI-COR DNA sequencer model 4000 

Promega, Madison (USA): Vac-Man ( vacuum for Wizard Plus SV Plasmid  

  Purification Kit) 

Sartorius, Göttingen: Balance BP 2100 S, analytical balance Handy 

Savant, Farmingdale (USA): Vacuum centrifuge speed vac concentrator SVC  

  100H 

SLM Instruments, Urbana (USA): French Pressure Cell Press FA-078-E1 

Vetter, Wiesloch: UV-Kontaktlampe Chroma 43 

 

2.3 Buffers and solutions 

MilliQ-H2O was used, pH-values were adjusted at RT, unless indicated otherwise. 

 

2.3.1 Molecular biology buffers and solutions 

All solutions and buffers were either sterile-filtered or autoclaved for 20 min at 120oC (1 bar). 

 

Buffers for DNA 

TAE                                                                10x Klenow buffer                                                

40 mM  TRIS/ acetate pH 8.0                          200 mM  TRIS/HCl pH 7.5 

  1 mM   EDTA                                                  60 mM  MgCl2 

                                                                           10 mM  Dithiothreitol 
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TE-buffer                                                        10x TBE buffer 

10  mM  TRIS/ HCl pH 7.5                              1000  mM  TRIS            

 1   mM   Na2EDTA                                            890  mM  Boric acid                                         

                                                                              25  mM  Na2EDTA 

 

4x Loading sample buffer (agarose gel)         10x Dephosphorylation buffer 

0.05 %   Bromophenol blue                                500  mM  TRIS/HCl pH 8.5   

0.05 %   Xylenecyanol                                            1  mM  Na2EDTA 

50.0 %   Glycerol 

 

10x CM buffer                                                 dNTPs 

100 mM  CaCl2                                                                                   25   mM   of each dNTP 

100 mM  MgCl2 

 

Bacterial culture media 

LB-broth                                                          LB-agar 

   1  %     Bacto Tryptone                                        1.5 %    Agar in LB-broth 

 0.5 %     Yeast extract 

   1  %     NaCl 

 

LB-ampicillin-agar plates 

 100 µg   Ampicillin/ml LB-agar 

 

2.3.2 Protein chemistry buffers and solutions 

 

Protein purification with NiNTA-agarose 

 

Pellet washing buffer                                       Cell lysis buffer 

 50 mM   TRIS/HCl pH 8.0                                    50  mM    TRIS/HCl pH 8.0 

   1 mM    EDTA                                                     0.02 %     α-monothioglycerol 
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Washing buffer A                                             Washing buffer B 

 50 mM   TRIS/HCl pH 8.0                                    50  mM    TRIS/HCl pH 8.0 

0.02 %     α-monothioglycerol                               0.02  %    α-monothioglycerol 

250 mM   NaCl                                                       15  mM    Imidazole 

  15 mM   Imidazole                                                 5  mM     MgCl2 

   5  mM   MgCl2 

 

Elution buffer                                                Equilibration mixture for NiNTA-agarose                                      

  50 mM   TRIS/HCl pH 8.0                                       5   ml     Cell lysis buffer                                

0.02 %     α -monothioglycerol                               250   mM   NaCl 

150 mM   Imidazole                                                 15   mM   Imidazole 

   2  mM   MgCl2                                                                   5   mM   MgCl2 

 

Dialysis buffer 

  50  mM  TRIS/HCl pH 7.5 

0.02  %     α -monothioglycerol 

  20  %      Glycerol 

 

SDS-Polyacrylamide gel electrophoresis 

 

Resolving gel buffer                                          Stacking gel  buffer 

 1.5  M     TRIS/HCl pH 8.8                                   500   mM    TRIS/HCl pH 6.8                                

 0.4   %     SDS                                                          0.4  %       SDS 

 

10x Running buffer                                           Coomassie staining solution 

 250  mM   TRIS                                                       0.2   %     Brilliant Blue  

1.92  M     Glycin                                                                      G-250                                                                  

     1   %     SDS                                                         40    %     Methanol 

                                                                                     1    %     Acetic acid 
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4x Sample buffer                                                Destaining solution 

 130  mM   TRIS/HCl pH6.8                                     10    %     Acetic acid 

  10    %     SDS                                                          30    %     Ethanol 

  20    %     Glycerol 

 0.06  %     Bromophenol blue 

  10    %     β-mercaptoethanol 

 

 

Western blot 

 

TBS buffer (TRIS Buffer Saline)                              M-TBS 

   20  mM   TRIS/HCl pH 7.5                                      5    %      Milk powder 

 150  mM   NaCl                                                                         in TBS buffer 

 

TBS-T                                                                Towbin-Blot-buffer 

 0.1   %     Tween 20                                                    25  mM   TRIS/HCl 

                  in TBS buffer                                           192  mM   Glycin 

                                                                                      20   %     Methanol 

Ponceau S staining solution 

0.1 % (w/v) Ponceau S in  

   5 % (v/v)  acetic acid 

 

Cyclase enzyme tests 

 

ATP or GTP stock solutions                            cAMP or cGMP stock solutions 

  10  mM     pH 7.5 (adjusted                               40  mM     pH 7.5 (adjusted with 

                   with NaOH)                                                        TRIS buffer)  

 

10x AC-Start solution                                     10x GC-Start solution 

   5  mM     ATP with                                             1  mM     GTP with 

                   2.5-4x106 Bq/ml                                                 2.5-4x106 Bq/ml             

                   [α-32P]-ATP                                                        [α-32P]-GTP 
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2x AC-Cocktail                                                 2x GC-Cocktail 

  43.5  %     Glycerol                                           43.5  %      Glycerol    

 100  mM    TRIS/HCl pH 7.5 or                      100 mM       TRIS/HCl pH 7.5   

                    BIS/TRIS pH 6.5                              4 mM        cAMP with 

    4  mM     cAMP with                                                          2-4x103 Bq/ml 

                    2-4x103 Bq/ml                                                     [2,8-3H]-cGMP 

                    [2,8-3H]-cAMP                                 6 mM         MnCl2 

0.23   mg  * Creatine kinase 

    6   mM * Creatine phosphate 

6-20  mM    MnCl2               

   20  mM    MgCl2  

 

Creatine kinase                                                   Creatine phosphate 

 4 U/2.5 µl    Creatine kinase in                           120 mM     Creatine phosphate 

                      10 mM TRIS/HCl pH 7.5                                 in 50 mM TRIS/HCl  

                                                                                                pH 7.5 

 

AC-Stop buffer                                                     GC-Stop buffer 

    3  mM     cAMP/TRIS pH 7.5                          1.5   %        SDS 

    3  mM     ATP 

  1.5  %        SDS    

 

Other buffers 

 

FPLC buffer                                                          

  50 mM      TRIS/HCl pH 8.0                                     

0.015 %      α-monothioglycerol                                

    2 mM      MgCl2                                                                         

250 mM      NaCl                                                     

  10   %       Glycerol 

 

 

 

*As an ATP-regenerating system when impure protein samples were tested. 
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Crystallization buffer 

The self-prepared crystallization buffers were prepared using deionized water (MilliQ) and 

were filtered through a 0.2 µm pore filter applying vacuum to a filter holder device. 

 

 

2.4 Oligonucleotides 

Restriction sites are underlined and mutations are in bold.  

 s = sense primer 

as = antisense primer 

 

Name  Sequence (5'→3') Position Comments 

Sequencing primers for plasmids 

T7 s TAA TAC GAC TCA CTA TAG 

GG 

625-646 universal for 

pBluescript II SK(-) 

T3 as AAT TAA CCC TCA CTA AAG 

GG 

772-791 reverse for 

pBluescript II SK(-) 

U- pQE s GAA TTC ATT AAA GAG GAG 

AAA 

88-108 universal for pQE-30

R- pQE as CAT TAC TGG ATC TAT CAA 

CAG G 

212-233 reverse for pQE-30 

Cloning primers for Rv2435c AC catalytic domain and holoenzyme 

2435cs s AAA GGA TCC AAT CTG CAA 

ACC AAA GAG 

1531-1548 BamHI 

2435cas as AAA AAG CTT TCA TGA TCG 

CTC CGA CAA 

2176-2193 HindIII 

2435hAs s AAA CCA TGG GAA CGT CGG 

GTG AGG CAC TG 

1-24 NcoI 

2435hBs s AAA CCA TGG GAC TCC GGC 

GTC GGC CGC GT 

73-96 NcoI 

2435hCs s AAA CCA TGG TGC TGC TGC 

TGT TGA CG 

121-141 NcoI 

2435hDas as AAA GGC GCC CAA CGC TTT 

AAG GTA 

760-777 SfoI 
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2435hEs  s TTT GGC GCC AAC GCC GTC 

GAC TTT 

788-795 SfoI 

2435hFas as AAA CTC GAG CCG CCG GAT 

TGG CCG 

1405-1424 XhoI 

2435hGs s AAA CTC GAG GTT GGC ACC 

CAG AAG 

1421-1440 XhoI 

2435hHas as AAA GGA TCC TGA TCG CTC 

CGA CAA TCG GTA 

2170-2190 BamHI 

Cloning primers for Rv2212c N-terminal domain 

2212s1 s AAA GGA TCC ATG GGC GTC 

CCT GCT GGC 

1-18 BamHI 

2212Nas as AAA AGC TTC TAG GTT CGT 

GCG CTG GCC AG 

589-606 HindIII 

Cloning primers for Rv2212c C-terminally His-tagged constructs 

2212s1 (see above) 

2212s3 s AAA GGA TCC TCG GCA AGC 

GTG ACG TGC GG 

634-653 BamHI 

2212NasC-His as AAA AGA TCT GGT TCG TGC 

GCT GGC CAG 

589-606 BglII 

2212HasC-His as AAA AGA TCT ATC ACT GGC 

GGC GGG GCT 

1147-1164 BglII 

Cloning primers for Rv2212c C-terminally shortened catalytic domains 

2212s3 (see above) 

2212RARas as AAA AGC TTC TAC CTC GCA 

CGA GGG TTG 

1116-1131 HindIII 

2212DNPas as AAA AGC TTC TAA GGG TTG 

TCG TGC AGT 

1107-1122 HindIII 

2212HDNas as AAA AGC TTC TAG TTG TCG 

TGC AGT TCG 

1104-1119 HindIII 

2212LHDas as AAA AGC TTC TAG TCG TGC 

AGT TCG AAG 

1101 -1116 HindIII 

2212ELHas as AAA AGC TTC TAG TGC AGT 

TCG AAG GCC 

1098-1113 HindIII 

2212FELas as AAA AGC TTC TAC AGT TCG 1095-1110 HindIII 

Materials 



          

 16 

AAG GCC ATC 

2212AFEas as AAA AGC TTC TAT TCG AAG 

GCC ATC ACC 

1092-1107 HindIII 

Cloning primers for Rv2212c mutants 

2212 s3 (see above) 

mut.FEVas as AAA AGC TTC TAC ACT TCG 

AAG GCC ATC 

1095-1110 HindIII 

mut.FEAas as AAA AGC TTC TAG GCT TCG 

AAG GCC ATC 

1095-1110 HindIII 

mut.FEGas 

 

as AAA AGC TTC TAC CCT TCG 

AAG GCC ATC 

1095-1110 HindIII 

Cloning primers for Rv2212c N-terminally shortened catalytic domains 

2212FELas (see above) 

2212ASVs s AAA GGA TCC GCA AGC GTG 

ACG TGC GGT 

637-654 BamHI 

2212SVTs s AAA GGA TCC AGC GTG ACG 

TGC GGT ATC 

640-657 BamHI 

2212VTCs s AAA GGA TCC GTG ACG TGC 

GGT ATC GGC 

643-660 BamHI 

2212TCGs s AAA GGA TCC ACG TGC GGT 

ATC GGC TTT 

646-663 BamHI 

2212CGIs s AAA GGA TCC TGC GGT ATC 

GGC TTT GCG 

649-666 BamHI 
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2.4 Plasmids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Qiagen 

Source: Qiagen 

Source: Stratagene 
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3 Methods 
3.1 Methods of gene technology 

 
3.1.1 Basic methods for analysis, processing and recombination of DNA 

 

3.1.1.1 Extraction of DNA fragments from agarose-gels and buffer exchange of  the DNA 

samples 

DNA fragments separated through gel electrophoresis were excised from the agarose gel with 

a scalpel and extracted with the Nucleotrap-Gelextraction-Kit from Macherey-Nagel. The 

manufacturer's protocols were used for purification and desalting.   

 

3.1.1.2 Plasmid isolation from E.coli 

The E.coli culture was inoculated with 5 ml LB-medium in a glass tube and then shaken 

overnight at 37oC and 220 rpm. 3-5 ml of this culture were used for a miniprep using Wizard 

Plus SV Plasmid Purification Kit. The recombinant DNA was eluted with 50 µl of H2O and 

was ready for restriction digest and/or DNA sequencing. 

 

3.1.1.3 Restriction of DNA molecules 

Restriction endonucleases were used according to the manufacturer's instructions. When a 

simultaneous digest was carried out using different enzymes, the most compatible buffer was 

used. Restriction digests contained 1 µg plasmid-DNA and 3-5 U enzyme. 0.5 µl purified 

BSA 100X from NEB was added to each incubation of 10 µl. Agarose-gel electrophoresis 

was used to analyse the digest. 

  

3.1.1.4  DNA separation by agarose-gel electrophoresis 

Agarose-gel electrophoresis was carried out in a horizontal electrophoresis apparatus. 

TAE-buffer was used for 1-1.5 % agarose (for 500-2000 bp DNA fragments). The gel was 

stained with ethidium bromide (0.01 mg/ml), the DNA band detected under a UV lamp (302 

nm) and photographed. EcoRI-HindIII-restricted λ-DNA was used as a size standard (DNA 

marker). 
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3.1.1. Blunting of DNA overhangs (Klenow digestion) 

The Klenow fragment of DNA polymerase I from E. coli was used to blunt DNA ends after a 

PCR or a restriction digest. The reaction mixture contained 6.7 µl DNA (0.5-3 µg), 0.5 µl 

BSA 100X, 1 µl 10x Klenow buffer and 0.8 U Klenow enzyme. After 10 min at 37oC, 1 µl 

dNTPs was added and the mixture was incubated for 30 min at 37oC. It was then heated to 

70oC for 10 min for enzyme denaturation. 

 

3.1.1.6  5'-Phosphorylation of PCR products 

PCR products were phosphorylated with T4-Polynucleotide Kinase. The reaction mixture 

contained in 10 µl Klenow-treated DNA, 1 mM ATP, 10 U enzyme and 1x T4-PNK-buffer 

(incubation at 37oC for 1 hr). 

 

3.1.1.7  5'-Dephosphorylation of linear plasmids 

To prevent restricted plasmids from religation, they were incubated for 1hr at 37oC with 2 U 

alkaline phosphatase and 1x dephosphorylation buffer. The plasmid was then purified by gel 

electrophoresis. 

 

3.1.1.8  Ligation of DNA molecules 

The Rapid DNA Ligation Kit (Roche) was used for ligation according to the manufacturer's 

instructions. The molar ratio of vector to DNA insert was about 1:1. 

 
3.1.1.9  Polymerase chain reaction (PCR) 

All PCRs were carried out using specific primers to amplify DNA from plasmid or genomic 

DNA and for the introduction of endonuclease restriction sites and /or point mutations. 

The reaction mixture contained (end concentrations): 

- 1-10 ng plasmid-DNA 

- 0.625 pmol/µl primer 

- 250 µM dNTPs 

- 5 %  DMSO 

- 1 U Taq-polymerase 

- 1x Incubation buffer (with 2 mM MgCl2 added). 

The following program was used: 
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Phase Temperature Time Cycles

Pre-denaturation 95oC 1 min  

Denaturation 95oC 1 min 

Primer annealing Ta 1 min 

Extension 72oC 1 min 

 

25-30 

Filling-up 72oC 10 min  

 

The annealing temperature (Ta in oC) was calculated from the following equation: 

 

Ta = 4 x (GC) + 2 x (AT)                (GC): number of bases G and C in the primer sequence 

                                                         (AT): number of bases A and T in the primer sequence 

When the annealing temperatures of both primers differed, the lower one was applied. 

                                                         

The PCR reaction mixture was analysed on an agarose gel, the required band was excised and 

the DNA was extracted by Nucleotrap. After 5'-phosphorylation of the DNA fragments, they 

were ligated in the correspondingly restricted plasmids or in EcoRV-restricted and 

dephosphorylated pBluescriptII SK(-). 

 

3.1.1.10  DNA-sequencing 

DNA was sequenced with the Thermo Sequenase Fluorescent Labelled Primer Cycle 

Sequencing Kit. 8-10 µl (~130 ng/Kb) plasmid-DNA were mixed with 2 µl (2-3 pmol/µl) 

fluorescent-labelled primers, 3% DMSO and then the volume was completed to 18 µl with 

water. 4 µl of these mixtures were mixed each with 2 µl of the reaction mixture (see 

manufacturer's protocol), covered with a drop of Chill out Wax and then run in a 

Thermocycler according to the following program: 

 

Phase Temperature Time Cycles

Denaturation 95oC 2 min  

Denaturation 95oC 20 s 

Primer annealing Ta 20 s 

Extension 70oC 20 s 

 

30 

Filling-up 4oC ∞  
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An annealing temperature of 56oC was used for the primers T3 and T7 while for primers U-

pQE and R-pQE a Ta of 54oC was used. 

Afterwards the samples were mixed with 6 µl stop buffer and 1 µl was taken from each 

sample and loaded on a 6% polyacrylamide gel. Electrophoresis was carried out with TBE 

buffer at 50 W (1500 V, 37 mA, 50oC). The DNA fragments were detected through a laser 

beam at 700 nm with a Li-cor DNA Sequencer Model 4000 and were then analysed with the 

BaseImagIR V.4.0 software. 

 

3.1.2 Transformation of recombinant DNA 

 

3.1.2.1 Preparing competent E.coli bacterial cells for transformation 

Competent E.coli cells were prepared with the CaCl2 method (Cohen et al., 1972). An 

overnight culture was inoculated in LB-medium in the ratio 1:100 and cultivated at 37oC and 

220 rpm until it reached an OD600 of 0.4. After 10 min on ice, cells were centrifuged for 15 

min at 4oC (1000x g). Pellets were suspended in 50 ml 100 mM CaCl2, left on ice for 20 min 

and after another centrifugation they were resuspended in 10 ml 100 mM CaCl2 + 20% 

glycerol. The suspended cells were left for 2 hr on ice, divided into 100 µl aliquots and stored 

at -80oC. 

 

3.1.2.2 Standard transformation into E.coli cells 

Plasmid-DNA and 10 µl 10x CM-buffer were brought to 100 µl by addition of H2O. After 

mixing with 100 µl competent bacterial cells by gentle agitation, the mixture was left for 20 

min on ice and then heat shocked for exactly 1 min at 42oC. Afterwards the reaction mixture 

was left again for 20 min on ice. 500 µl LB-medium were added (45-60 min, 37oC, 220 rpm). 

150-250 µl of this transformation reaction were spread on the appropriate antibiotic 

containing LB-agar plates which were incubated in an inverted position at 37oC for 12-16 hr. 

For transformation into pBluescript II SK (-), 40 µl of IPTG 0.1 M and 40 µl of X-Gal (2%) 

were spread on the LB agar plate prior to the bacterial culture in order to enable screening. 

Bacteria carrying the recombinant DNA formed white colonies, while those carrying empty 

plasmids formed blue colonies. 
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3.1.2.3 Preparation of bacterial stock cultures 

1ml of an overnight culture was centrifuged and the pellets were resuspended in  750 µl LB-

broth/glycerol  (4:1). The cultures could thus be stored at -80oC. 

 

3.2  Protein expression in E.coli 

 
All proteins were expressed in E.coli BL21(DE3)[pREP4] cells. These E.coli cells contain the 

low-copy plasmid pREP4 which confers kanamycin resistance and constitutively expresses 

the lac repressor protein which tightly regulates recombinant protein expression by a special 

"double operator" system in the pQE expression vectors. 

 

3.2.1 Pre-culture 

Cells were taken from the bacterial stock culture and inoculated in 10 ml LB-medium 

containing 50 µg/ml kanamycin and 100 µg/ml ampicillin. They were incubated overnight at 

37oC and 220 rpm. 

 

3.2.2 Expression  

10 ml pre-culture were inoculated and left to grow in 200 ml LB broth containing100 µg/ml 

ampicillin and 25 µg/ml kanamycin (30oC, 220 rpm) until an OD600 of 0.5-0.6 was reached. 

After induction with 60 µM IPTG, cells were incubated either at 22oC for 4-5 hr or at 16oC 

overnight and 220 rpm. They were harvested by centrifugation (15 min, 4000 x g, 4oC). 

Pellets were suspended in 40 ml pellet washing buffer and again centrifuged (15 min, 5500 x 

g, 4oC). Cell pellets were then shock-frozen in liquid nitrogen, stored at –80oC or were further 

worked upon (see protein purification).  

 

3.2.3 Protein purification from E.coli BL 21 (DE3) [pREP4] 

Protein purification was carried out through the C- or N- terminal hexa histidine residue 

(coded in pQE vectors, 6x His-tag). The 6x His-tag also enabled the immunochemical 

detection using anti-His antibodies as well as the affinity purification on Ni2+-NTA agarose. 

The purification was carried out according to QIA expressionist protocol (Qiagen, Third 

Edition, 2001). 
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The bacterial pellets from 200-400 ml culture were left at RT for thawing and then suspended 

in 20 ml cell lysis buffer. The suspended cells were either sonicated on ice for 3 x 10 sec at 

step 4 (Branson Sonifier B-12) or pressed twice through a French Press and then centrifuged 

for 30 min at 16,000 x g (4oC). Sometimes lysozyme (0.2 mg/ml, 30 min on ice) and DNAse I 

(0.02 mg/ml with 5 mM MgCl2, 30 min on ice) were added after sonication prior to  

centrifugation. 

The supernatant was then mixed with 250 mM NaCl and 15 mM imidazole and  shaken on ice 

for 1-2 hr (or overnight) with 200 µl of Ni2+-NTA agarose. Samples were centrifuged at 2500 

x g, 5 min. Ni2+-NTA agarose was suspended in 5 ml washing buffer A and transferred into a 

10 ml syringe to which a Wizard mini-column was attached. The resin was successively 

washed with washing buffers A and B (5 ml each) before protein was eluted with 300 µl 

elution buffer. All steps were carried out on ice. All fractions of the procedure (pellets, 

supernatants, washing and elution samples) were analysed on SDS-PAGE. The purified 

protein was either directly tested for AC activity, concentrated and used for crystallization or 

stored at -20oC with 20 % glycerol (V/V). 

 

 3.3 Protein chemistry methods 

 
3.3.1 Biorad protein determination (Bradford, 1976) 

1-10 µg protein in 800 µl water were mixed with 200 µl Biorad reagent and mixed. Samples 

were measured  at 595 nm and the protein concentration determined by means of a calibration 

curve. 0, 4, 6, 8 and 12 µg of BSA were used as standards. 

 

3.3.2 Protein dialysis 

The eluate of Ni2+-NTA-purification of the catalytic domain of Rv 2435c was dialysed 

overnight against 500 ml dialysis buffer in Visking Dialysis Tubing 8/32 (∅ 6 mm), to get rid 

of imidazole from the elution buffer which might affect the enzyme activity. 
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3.3.3 Protein concentration and buffer exchange 

For crystallization purposes protein was concentrated by centrifugation, first to achieve the 

desired concentrations and second to change the elution buffer to the protein crystallization 

buffer (10 mM TRIS/HCl pH 7.5, 1 mM MgCl2, 0.05 % α-monothioglycerol, 10 % glycerol). 

The Nanosep 10K Omega centrifugal devices were used, each filled with maximally 500 µl of 

purified protein solution and centrifuged in an Eppendorf centrifuge (11,000 rpm, 4oC, 5-20 

min) until a volume of 200 µl. This was repeated several times until the required 

concentration was reached in a volume of 200 µl. Protein crystallization buffer was added (5 x 

200 µl) until the concentration of the elution buffer was diluted to 3.125 %. Protein was kept 

at 4oC during preparation of the crystallization plates. 

 

3.3.4 Protein detection 

3.3.4.1 SDS-PAGE 

Proteins were separated according to their molecular weights by discontinuous gel 

electrophoresis (Laemmli, 1970). Samples were mixed with SDS-PAGE 4x-sample buffer, 

heated for 5 min at 95oC and loaded on to the gel. 

The following table shows the composition of the gels. 

 

Stacking gel 4.5 % Resolving gel 7.5 % 10 % 12.5 % 15 % 

Stacking gel buffer 1 ml Resolving gel buffer 3 ml 3 ml 3 ml 3 ml 

Water 2.4 ml Water 6 ml 5 ml 4 ml 3 ml 

AA/Bis 37.5: 1 0.6 ml AA/Bis 37.5: 1 3 ml 4 ml 5 ml 6 ml 

10% APS 40 µl 10% APS 80 µl 80 µl 80 µl 80 µl 

TEMED 10 µl TEMED 10 µl 10 µl 10 µl 10 µl 

 

These volumes are enough for 2 mini gels (Hoeffer, 10 cm x 8 cm, thickness: 1 mm). 

Electrophoresis was carried out in a vertical electrophoretic unit (Hoefer Mighty Small) at 20 

mA per gel and a maximum of 200 V. Electrophoresis was stopped as soon as the blue sample 

buffer band quitted the gel. Staining was with Coomassie Brilliant Blue for at least 30 min 

and with the Coomassie-decolorizer bleached until the protein bands were clearly seen. The 

peqGold marker (14.4-116 kDa) was used as a protein standard, and below is a list of its 

components: 
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    β-Galactosidase                    116 kDa 

    Bovine Serum Albumin         66 kDa 

    Ovalbumin                             45 kDa 

    Lactate dehydrogenase           35 kDa 

    RE Bsp981                              25 kDa 

    β-Lactoglobulin                   18.4 kDa 

    Lysozyme                            14.4 kDa 

The gels were photographed and filed by the Biocapt Software Version 99.01 . 

 

3.3.4.2 Western Blot 

For immuno-chemical detection proteins were transferred after SDS-PAGE to PVDF-

membrane through Semi-Dry-Electrotransfer (Towbin et al., 1979). The blot membrane was 

successively soaked in methanol, water and Towbin buffer each for 10 min. The following 

sandwich set-up was built up for the electric transfer: 

 . Three Whatman 3 MM papers were soaked in Towbin buffer and layed on the anode plate. 

 . Then comes the blot membrane over them, the gel and finally three soaked Whatman papers 

again on the side of the cathode plate. 

Protein transfer was carried out for 2-3 hr at 20V and 2.5 mA/cm2. The gel was stained in 

Coomassie Brilliant Blue to check transfer efficiency.  

The membrane was stained in Ponceau S for about 5 min, then it was decolorized with 

deionized water until the protein bands were clear enough and the marker bands were then 

marked  with a pencil. The membrane was blocked with M-TBS buffer for at least 1 hr at RT 

or overnight at 4oC and washed with TBS-T buffer (2 x 10 sec, 2 x 5 min). It was then 

incubated with the primary antibody (mouse monoclonal RGS-His4 antibody 1:2000, Penta-

His antibody 1:1000 or Tetra-His antibody 1:1000 diluted in M-TBS) for 1 hr. After washing 

(TBS-T, 1 x 15 min, 2 x 5 min) it was incubated with the secondary antibody (goat anti-

mouse IgG-Fc or goat anti-rabbit IgG-Fc horseradish peroxidase conjugated antibodies 1:5000 

diluted in M-TBS) for 1 hr and then washed as above with TBS-T. 

The chemiluminescent reaction with the ECL Plus Western Blotting Detection Kit 

(Amersham) was carried out according to the manufacturer's instructions and it was detected 

on Hyperfilm-ECL after its exposure to the detection reaction (from 10 sec to 15 min). 
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3.3.4.3 Dot Blot 

This was used to detect the expression of the C-terminal His-tagged constructs of Rv2212c as 

a preliminary step before a Western Blot. A set of serial dilutions of the purified protein 

(concentrations of 0.05-0.35 µg per spot) were applied directly to a Protran BA83 

nitrocellulose membrane. The membrane was then incubated in M-TBS buffer for 1 hr, after 

washing it was incubated with primary (Tetra-His antibody) and secondary (Goat anti-mouse) 

antibodies and developed as described for the Western Blot.  

 

3.3.5 Size-exclusion Chromatography (Gel filtration) 

Rv2212c wild type catalytic domain and Rv2212c213-370 were chromatographed on an ÄKTA 

FPLC at 4oC. Buffers used were prepared in MilliQ water, filtered through a microfilter (0.2 

µm) and degassed. Proteins were detected at 280 nm. All fractions were tested for AC 

activity. The column (Superose 12 HR 10/30) was first washed with the FPLC-buffer, then 

calibrated using the following calibration proteins (each 1 mg in 250 µl injection volume). 

This 1 mg protein was dissolved in elution buffer + 20% glycerol + 250 mM NaCl, to reflect 

the same conditions as the tested protein. 

 

Calibration Protein kDa 

Cytochrome C 12,5 

Chymotrypsinogen A 25 

Ovalbumin 45 

Bovine Serum Albumin 66 

 

200 µg of the wild type catalytic domain or 530 µg of Rv2212c213-370 (in 250 µl) were injected 

into the column. The column volume was 23.56 ml and the flow rate was 0.5 ml/min. 

Fractionation (500 µl) started after the first 7 ml and 65 fractions were collected. 

Larger amounts of Rv2212c213-370 (4.7 mg) were purified in three runs (same conditions as 

above). Fractions corresponding to the wanted peak were tested for activity, analysed on  

SDS-PAGE, united and concentrated using the Nanosep 10K Omega centrifugal devices.  
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3.3.6 Cyclase enzyme tests 

They were carried out after Salomon et al., 1974. 

 

3.3.6.1 Adenylyl cyclase test 

AC activity was measured by conversion of [α-32P]-ATP into [32P]-cAMP. [2,8- 3H]-cAMP 

was used as an internal standard. The standard test reaction mixture was composed of: 40 µl 

protein sample, 50 µl AC-Cocktail and 10 µl AC-Start solution. The protein sample and the 

cocktail were mixed in 1.5 ml epicups on ice, the reaction was started with ATP. Each sample 

was incubated at 37oC for 10 min (unless indicated otherwise). The reaction was stopped with 

150 µl AC-Stop buffer, returned on ice and 750 µl of water were added to each sample. 

Duplicates were routinely carried out. A blank sample contained only water. For separating 

the ATP from the cAMP the samples were applied onto Dowex columns (glass columns filled 

with 1.2 g Dowex-50WX4), washed with 3 ml water and eluted with 5 ml water on Al2O3 

columns (plastic columns filled with 1 g neutral, active Al2O3 90).They were  eluted with 4.5 

ml 0.1 M TRIS/HCl pH 7.5 into scintillation vials, mixed with 4 ml Ultima Gold XR 

scintillator and counted in a Liquid Scintillation Counter. The specific activity A (pmol·mg-

1·min-1) was calculated using the following formula: 

 

         Substrate (µM) x 100 µl                     1000 

A =                                               x     

                Time (min)                              Protein (µg) 

 

                

              cpm [3H] total                                           cpm [32P]sample - cpm [32P]blank 

x                                                   x     

    cpm [3H]sample - 3% [32P]sample                               cpm [32P]total 

 

 

The subtraction of 3% of the 32P-counts from the corresponding 3H-counts was made because 

of the spillover of 32P into the 3H channels. Activities lower than double the background (in 

cpm) were considered as zero activity. Columns were regenerated as follows: 
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- Dowex columns:     5 ml 2 N HCl, 1x 10 ml then 1 x 5 ml water 

- Al2O3 columns:       2 x 5 ml 0.1 M TRIS/HCl pH 7.5 

  

 

3.3.6.2 Guanylyl cyclase test 

The same protocol used for AC tests was followed for GC tests using GC-Cocktail, GC-Start 

solution and GC-Stop solution instead. Also the elution from the Dowex columns was in this 

case with 2 ml of water, after a washing step with 3 ml of  water, and from the Al2O3 columns 

with 4 ml 0.1 M TRIS/HCl pH 7.5. The Dowex columns were filled with 4 g while the Al2O3 

columns with 0.8 g. Calculation of the enzymatic activity  and regeneration of the columns 

were carried out as stated above.   

 

 

3.3.7 Crystallization  

The hanging drop vapour diffusion technique (fig. 3.1) was used using the 24 well 

polystyrene pre-greased plates and 22 mm siliconized glass square slide covers from Hampton 

Research. The reagent kits Crystal Screen (CS), Crystal Screen 2 (CS 2) and Crystal Screen 

Lite from Hampton Research and Wizard I & II from deCODE genetics were used for  

crystallization. 

 

                                         

 

 

 

 

Fig. 3.1: Scheme showing the hanging drop technique where the hanging drop was prepared 
on a siliconized slide cover by mixing the protein sample and the crystallization buffer in a 
ratio 1:1. The slide cover was then inverted over a well (reservoir) containing 500 µl of the 
crystallization buffer.  
 

 

Protein was either purified with Ni2+-NTA only or was further purified by gel filtration (in 

case of Rv2212c213-370 only). Proteins were assayed for stability in the crystallization solution 

and storage temperature. Crystallization trials were done within the scope of this work using 

different proteins under different crystallization conditions. 
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Buffers of the mentioned crystallization reagent kits were examined with the proteins as a first 

screening step. Different crystallization variables were examined as; protein concentration, 

incubation temperature and presence of glycerol in the protein crystallization solution. Also 

incubation of Rv2212c212-374 with ATP (substrate) overnight before setting the plates for 

crystallization was examined with buffers : CS # 3,11 ; Wizard I # 8, 9, 13, 16, 20, 27, 34, 43; 

Wizard II # 9, 10, 19, 3, 35, 41, 45,  46, 47, 48. Crystals were inspected under a polarization 

microscope every day for the first weak and then once every weak. After obtaining crystals 

the components of the corresponding precipitating buffer were varied to optimize size and 

form of the crystals. 

 
 
3.4 Cloning  

 M. tuberculosis genomic DNA was provided by Prof. Dr. Boettger (University of Zürich, 

Medical School). Generally all constructs were cloned into the MCS of pBluescriptII SK(-) as 

a first cloning step and for sequencing. They were then cloned into pQE-30 or pQE-60 for 

expression. As a result, all proteins ended up with an N-terminal MRGSH6GS or a C-terminal 

RSH6 extention, respectively. 

 

 

3.4.1 M. tuberculosis Rv2435c 

3.4.1.1 Catalytic domain of Rv2435c  

Rv2435c511-730 was amplified from M. tuberculosis genomic DNA by PCR using primers 

2435cs and 2435cas with insertion of 5'- BamHI and 3'- HindIII restriction sites. The PCR 

fragment was then ligated into a dephosphorylated EcoRV restricted pBluescript II SK(-), 

after Klenow treatment, transformed into E.coli XL1 blue MRF' and sequenced (fig. 3.2). 

 

 

                                                                    
Fig. 3.2: Chart showing the orientation of the insert in pBluescript II SK(-). F1(grey rectangle 
coding for Rv2435c511-730). The MCS of pBluescript II SK(-) is shown as a black beam. 
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F1 was then cloned into a dephosphorylated BamHI /HindIII digested pQE-30 (fig. 3.3).   

 

 
 

Fig. 3.3 : Cloning scheme for Rv2435c511-730  

 

 

 

3.4.1.2 Holoenzyme of Rv2435c 

In a trial to determine the actual start of the holoenzyme sequence, three different constructs 

were cloned each having a different start; Rv2435c1-730 starting with L1, Rv2435c25-730 with 

V25 and Rv2435c41-730 with M41. 

 

a-  Rv2435c1-730 

The holoenzyme was amplified in three separate fragments fom M. tuberculosis genomic 

DNA by 3 PCR reactions, thus covering the entire ORF (2190 bp), using primers (2435hAs, 

2435hDas, 2435hEs, 2435hFas, 2435hGs and 2435hHas; see table 3.1 for scheme). An ATG 

start codon was inserted instead of TTG coding for L1 followed by a glycine. S1 and S2 were 

ligated into a dephosphorylated EcoRV restricted pBluescript II SK(-), after treatment with 

Klenow, transformed into E.coli XL1 blue MRF' and sequenced. The third PCR fragment (S3) 

was ligated into a dephosphorylated BamHI/XhoI restricted pBluescript II SK(-), transformed 

into E.coli XL1 blue MRF' and sequenced (see table 3.1). 
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Clone Primer Length 

(bp/AA) 

Orientation of insert in pBluescript II SK(-) 

  S1 

 

 

 

 

 

2435hAs 

2435hDas 

    778 

 L1-G259 

 

 
 

 

 

 S2 2435hEs 

2435hFas 

    640 

A260-R473 

 
S3 2435hGs 

2435hHas 

    772 

L474-S730 

 
 

  Table 3.1: Subclones for Rv2435c1-730 are represented by grey rectangles. The MCS of   
   pBluescript II SK(-) is represented by a black beam. 
 

The three clones (S1, S2 and S3) were then ligated and inserted into a dephosphorylated 

NcoI/BamHI digested pQE-60 thus adding a GSRSH6 tag C-terminally (fig. 3.4).     
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Fig. 3.4 : Cloning scheme for Rv2435c1-730 . Labels and shading are as in Fig. 3.2 and table 

3.1.      

 

b- Rv2435c25-730 and Rv2435c41-730    

The 5'-terminal fragments of these two holoenzymes were amplified by PCR using primers 

(2435hBs, 2435hDas) and (2435hCs, 2435hDas) for Rv2435c25-730 and Rv2435c41-730 

respectively, and S1 (table 3.1) as template. A 5'-NcoI restriction site was also inserted. In 

Rv2435c25-730 an ATG start codon was inserted instead of GTG coding for V25  followed by a 

glycine. S4 and S5 were ligated into a dephosphorylated EcoRV restricted pBluescript II SK(-

), transformed into E.coli XL1blue MRF’ and sequenced (table 3.2).  
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Clone Primer Length 

(bp/AA) 

Orientation of insert in pBluescript II SK(-) 

S4 2435hBs 

2435hDas 

    708 

V25 – G 259 

 

S5 2435hCs 

2435hDas 

     657 

M 41 – G 259 

 
 

Table 3.2 : Subclones for Rv2435c25-730 and Rv2435c41-730. Labels and Shading as in table 

3.1. 

 

S4 and S5 were restricted with SfoI and NcoI and ligated with the fragment obtained after 

digestion of Rv2212c1-730 with SfoI and NcoI (fig. 3.5). 
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3.4.2 M. tuberculosis Rv2212c 

3.4.2.1  N-terminal domain (Rv2212c1-202) 

Rv2212c1-202 was amplified by PCR using the recombinant DNA of the Rv2212c1-388 in 

pBluescript II SK (-) (cloned by S. Zeibig, 2003) as a template. Primers 2212s1 and 2212Nas 

were used with the insertion of 5'-BamHI and 3'-HindIII restriction sites. The PCR fragment 

was ligated into a dephosphorylated EcoRV restricted pBluescript II SK(-), after Klenow 

treatment, transformed into  E.coli XL1 blue MRF' and sequenced (fig. 3.6). 
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Fig. 3.6 : Chart showing the orientation of the insert in pBluescript II SK(-). N1(grey 
rectangle coding for Rv2212c1-202). The MCS of pBluescript II SK(-) is shown as a black 
beam. 
 

N1 was cloned into a dephosphorylated BamHI /HindIII digested pQE-30 (fig. 3.7).   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.7 : Cloning scheme for Rv2212c1-202 
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3.4.2.2 C-terminally His-tagged constructs of  Rv2212c 

The N-terminal domain (Rv2212c1-202 C-His), the catalytic domain (Rv2212c212-388 C-His) and 

the holoenzyme (Rv2212c1-388 C-His) were amplified by PCR using the recombinant DNA of 

Rv2212c1-388 in pBluescript II SK (-) (cloned by S. Zeibig, 2003) as a template. 5'-BamHI and 

3'-BglII restriction sites were inserted in each construct introduced by the different primers 

used. 

 

a- Rv2212c1-202 C-His 

It was amplified using primers 2212s1 and 2212NasC-His. The PCR fragment (618 bp) was 

ligated into a dephosphorylated EcoRV restricted pBluescript II SK(-), after Klenow 

treatment, transformed in E.coli XL1 blue MRF' and sequenced. The correct clone was 

digested with BamHI/BglII and cloned into a dephosphorylated BamHI/BglII digested pQE-

60. 

 

b- Rv2212c212-388 C-His 

Primers 2212s3 and 2212HasC-His were used. The PCR fragment (543 bp) was ligated into a 

dephosphorylated EcoRV restricted pBluescript II SK(-), after Klenow treatment, transformed 

into E.coli XL1 blue MRF' and sequenced. The correct clone was digested with BamHI/BglII 

and cloned into a dephosphorylated BamHI /BglII digested pQE-60. 

 

c- Rv2212c1-388 C-His 

It was amplified using primers 2212s1 and 2212HasC-His. The PCR fragment (1176 bp) was 

ligated into a dephosphorylated EcoRV restricted pBluescript II SK(-), after Klenow 

treatment, transformed into E.coli XL1 blue MRF' and sequenced. The correct clone was 

digested with BamHI/BglII and cloned into a dephosphorylated BamHI /BglII digested pQE- 

60. 

 

3.4.2.3 C-terminally shortened Rv2212c212-388 (with N-terminal His-tag) 

Rv2212c 212-388 (N-His) had already been cloned by S. Zeibig. Successive C-terminal  

 truncations were carried out in order to achieve the shortest possible active catalytic centre of 

Rv2212c212-388.  Seven truncations were made and each time the AC activity was tested until 

the construct (Rv2212c212-369) having very poor activity was reached. The recombinant DNA 

of Rv2212c1-388 in pBluescript II SK(-) was used as a template and primer 2212s3 was used as 
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the sense primer for these constructs introducing a 5'-BamHI restriction site. The following 

antisense primers were used introducing a 3'-HindIII restriction site in each corresponding 

construct: 

               Rv2212c212-377:       2212RARas 

               Rv2212c212-374:       2212DNPas 

               Rv2212c212-373:       2212HDNas 

               Rv2212c212-372:       2212LHDas 

               Rv2212c212-371:       2212ELHas 

               Rv2212c212-370:       2212FELas 

               Rv2212c212-369:       2212AFEas 

The PCR fragments were ligated into a dephosphorylated  EcoRV restricted pBluescript II 

SK(-), after Klenow treatment, transformed into E.coli XL1 blue MRF' and sequenced. The 

correct clones were digested with BamHI/HindIII and cloned into a dephosphorylated 

BamHI/HindIIII digested pQE-30 (fig. 3.8). 
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Fig. 3.8 : Cloning scheme for the C-terminally shortened Rv2212c212-388 N-His constructs. 
The grey rectangles represent the constructs having different lengths. Base pair numbers are 
written above each rectangle. They are cloned into the same restriction site in pQE-30 (white 
rectangle). 
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3.4.2.4 Mutants of Rv2212c212-370 

Three different point mutations were introduced into Rv2212c212-370 changing L370 once to V, 

A or G. The recombinant DNA of Rv2212c1-388 in pBluescript II SK(-) was used as a template 

and primer 2212s3 was used as the sense primer for the three mutants introducing a 5'-BamHI 

restriction site. The antisense primers used were mut.FEVas, mut.FEAas and mut.FEGas for 

the mutants L370V, L370A and L370G respectively introducing a 3'-HindIII restriction site in 

each . 

Each PCR fragment (492 bp) was ligated into a dephosphorylated  EcoRV restricted 

pBluescript II SK(-), after Klenow treatment, transformed into E.coli XL1 blue MRF' and 

sequenced. The correct clones were digested with BamHI/HindIII and cloned into a 

dephosphorylated BamHI /HindIIII digested pQE-30. 

 

3.4.2.5 Shortening of Rv2212c212-370 at the N-terminus 

Successive N-terminal truncations were carried out in Rv2212c212-370 in order to achieve the 

shortest possible active catalytic centre. Five truncations were made and each time the AC 

activity was tested until the construct having no activity was reached. The recombinant DNA 

of Rv2212c1-388 in pBluescript II SK(-) was used as a template and primer 2212FELas was 

used as the antisense primer for these constructs introducing a 3'-HindIII restriction site. The 

following sense primers were used introducing a 5'-BamHI restriction site in each 

corresponding construct: 

          

               Rv2212c213-370:      2212ASVs 

               Rv2212c214-370:      2212SVTs 

               Rv2212c215-370:      2212VTCs 

               Rv2212c216-370:      2212TCGs 

               Rv2212c217-370:      2212CGIs  

The PCR fragments were ligated into a dephosphorylated  EcoRV restricted pBluescript II 

SK(-), after Klenow treatment, transformed into E.coli XL1 blue MRF' and sequenced. The 

correct clones were then digested with BamHI/HindIII and cloned into a dephosphorylated 

BamHI/HindIIII digested pQE-30 (fig. 3.9). 
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Fig. 3.9 : Cloning scheme for the N-terminally shortened constructs of Rv2212c212-370. The 
grey rectangles represent the constructs having different lengths. Base pair numbers are 
written above each rectangle. They are cloned into the same restriction site in pQE-30 (white 
rectangle). 
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4 Results 
   4.1  Expression and characterization of the adenylyl cyclase Rv2435c of        

          M. tuberculosis 

4.1.1 Sequence analysis of Rv2435c 

At the TubercuList website, the M. tuberculosis Rv2435c gene product (GenBank accession 

number BX842577) is predicted to be a probable cyclase (adenylyl- or guanylyl-). It is 

topologically predicted as a membrane protein composed of an extracellular domain, two 

transmembrane helices as a membrane anchor and a C-terminal catalytic domain (fig. 4.1, 

SOSUI). It was classified together with Rv1625c with the eukaryotic ACs (McCue et al., 

2000), although it possesses four exchanges in the six canonical amino acids in-register that 

have been identified as participating in catalysis (Tesmer et al., 1999; Yan et al., 1997; 

Sunahara et al. 1998). One of the aspartate residues which is supposed to coordinate the metal 

cofactor, is exchanged for an asparagine, the substrate-defining lysine for an arginine and the 

transition state stabilizing asparagine and arginine for a serine and a glutamine respectively 

(fig. 4.2). Later, it was classified as a class IIIa AC (Linder and Schultz, 2003) as the arm 

region of class IIIa cyclase homology domains which is thought to be an essential feature for 

dimerization (Tesmer et al., 1997), is conserved in length (14 residues between a conserved 

glycine and the substrate-defining aspartate, fig. 4.2). Other typical signature motifs of class 

IIIa adenylyl cyclases as the (F/Y)X2(F/Y)D motif, which appears to participate in formation 

of the dimer interface (Tesmer et al., 1997; Tang et al. 1995), shows up as a VX2FD in 

Rv2435c and the EKIK motif as an ERIR (Linder and Schultz, 2003). The extracellular 

domain of this protein was reported to have homology to the ligand binding N-terminal 

domain of a chemotaxis receptor H (DcrH) in the anaerobic, sulphate-reducing bacteria 

Desulfovibrio vulgaris (Deckers and Voordouw 1996) (see appendix section 8.3). The 

deduced amino acid sequence of DcrH protein indicated a structural similarity to that of other 

methyl-accepting chemotaxis proteins (MCPs) (Deckers and Voordouw 1996; McCue et al., 

2000). Also the Protein-Protein BLAST search program at NCBI (Aug-26-2005; 

http://www.ncbi.nlm.nih.gov/BLAST/ ; Altschul et al., 1997) showed similarity of this 

domain to the MCPs in Vibrio vulnificus. An alignment of the Rv2435c catalytic domain with 

that of Rv1625c, rat type IIC2 and canine type VC1 ACs revealed extensive similarities (fig. 

4.2). The identity to Rv1625c CHD was 32% and the similarity 55%. Similar values were 

obtained with C2 from rat AC type II and C1a from canine AC type V; an identity of 30% and 

26%, and a similarity of 49% and 48%, respectively.  
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Fig. 4.1: Topological prediction of Rv2435c from M. tuberculosis (SOSUI-prediction of 
transmembrane regions; http://sosui.proteome.bio.tuat.ac.jp/cgi-bin/adv_sosui.cgi). Amino 
acid residues for each domain are in brackets. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extracellular 
domain 

inracellular 

CHDN 

extracellular 

(S38 –Y60)  (S440 – L462)

(L1- Q37) (I463 –S660)

membrane 

(Q61 – A439)

Results



          

 43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 : Alignment of the CHDs of Rv2435c and Rv1625c from M. tuberculosis with C1-
domain from canine type V (VC1) and C2-domain from rat type II (IIC2) ACs. These two 
mammalian domains were chosen because of the available X-ray structures (Tesmer et al., 
1997, 1999; Zhang et al., 1997). The six canonical residues involved in catalysis are marked 
(Me: metal-cofactor, Ad: adenine/purine specifying, Tr: transition-state stabilizing). Note that 
the position of the γ-phosphate binding Arg (Pγ) is also indicated. The top bar specifies the so 
called arm region. 
 

 

 

 

Rv2435c      511 : NLQTKEELLNE-QRKENDRLLLSMMPEPVVERYRLGE---------QTI- 
Rv1625c      179 : DTARAEAVMEA-EHDRSEALLANMLPASIAERLKEPE---------RNII 
VC1          415 : RECIQARLHSQRENQQQERLLLSVLPRHVAMEMKADINAKQEDMMFHKIY 
IIC2         835 : NKFKKEREEIETMENLNRVLLENVLPAHVAEHF-LARSLKNEEL-----Y 
 
                             Me                                        
                          
Rv2435c     550 : AQEHQDVTVLFADILGVDEI--SSGLSGNEL--VKIVDELVRQFDSAAEH 
Rv1625c     219 : ADKYDEASVLFADIVGFTER--ASSTAPADL--VRFLDRLYSAFDELVDQ 
VC1         465 : IQKHDNVSILFADIEGFTSL--ASQCTAQEL--VMTLNELFARFDKLAAE 
IIC2        879 : HQSYDCVCVMFASIPDFKEFYTESDVNKEGLECLRLLNEIIADFDDLLSK 
                   
                          Ad  Me                                      
                           
Rv2435c     596 : L---GVERIRTLHNGYLAGCGVTTPRLD-----------NIPRTVDFALE 
Rv1625c     265 : H---GLEKIKVSGDSYMVVSGVPRPRPD-----------HTQALADFALD 
VC1         511 : N---HCLRIKILGDCYYCVSGLPEARAD-----------HAHCCVEMGMD 
IIC2        929 : PKFSGVEKIKTIGSTYMAATGLSAIPSQEHAQEPERQYMHIGTMVEFAYA 
                      
                                   Pγ                  Ad     Tr        
 
Rv2435c    632 : MRRIVDRFNCQTGNDLHLRVGINTGDVISGLVGRSSVVYDMWGAAVSLAY 
Rv1625c    301 : MTNVAAQLKDPRGNPVPLRVGLATGPVVAGVVGSRRFFYDVWGDAVNVAS 
VC1        547 : MIEAISLVREVTGVNVNMRVGIHSGRVHCGVLGLRKWQFDVWSNDVTLAN 
IIC2       979 : LVGKLDAINKHSFNDFKLRVGINHGPVIAGVIGAQKPQYDIWGNTVNVAS 
 
                 
                Tr                                                    
 
Rv2435c    682 : QMHSGSPQPGIYVTSQVYEAMRDVWQFTAA--GTISVGG--LEEPIYRLS 
Rv1625c    351 : RMESTDSVGQIQVPDEVYERLKDDFVLRER--GHINVKGKGVMRTWYLIG 
VC1        597 : HMEAGGKAGRIHITKATLSYLNGDYEVEPGCGGERNAYLKEHSIETFLIL 
IIC2      1029 : RMDSTGVLDKIQVTEETSLILQT-LGYTCTCRGIINVKGKGDLKTYFV-- 
                   
                                       
Rv2435c    728 : ERS------------------ 
Rv1625c    399 : RKVAADPGEVRGAEPRTAGV- 
VC1        647 : -RCTQKRKEEKAMIAKMN-RQ 
IIC2      1076 : ------NTEMSRSLSQSNLAS 
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4.1.2 Expression and characterization of adenylyl cyclase Rv2435c511-730 

4.1.2.1 Expression and purification 

The protein Rv2435c511-730 has a calculated MW of 25,19 kDa (including the N-terminal His6-

tag) and an isoelectric point of 4.8. It was expressed in E.coli for 5 hours with 60 µM IPTG at 

22oC. Cells were lysed by sonication and the protein was purified to homogeneity after 

absorption to Ni2+-NTA agarose for 60 min. The yield was 114 µg/200 ml. Expression 

overnight yielded 450 µg/200 ml. The protein was either stored at -20 oC with 20% glycerol, 

or dialyzed overnight to remove imidazole and tested immediately.  

All fractions were analyzed by SDS-PAGE (fig. 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.3: 15% SDS-PAGE. Supernatant and pellet of empty pQE-30 in BL21 cells as a control 
(lanes A and C), and (lanes B and D) from cells expressing homogenate of Rv2212c511-730. 2 
µg of purified Rv2212c511-730 (lane E). The majority of the protein can be seen in the 
supernatant at 25 kDa indicating the solubility of the protein. 
1 ml of the expression culture was taken after 2 hours of expression, centrifuged, pellets 
washed with pellet washing buffer, centrifuged, resuspended in cell lysis buffer and 
centrifuged once again (Eppendorf Kühl 15 min/14000 rpm/4oC) after sonication. 15 µl of the 
supernatant were mixed with 5 µl SDS-buffer and 15 µl were then loaded on the gel. The 
pellets (about 20 mg) were suspended in 50 µl H2O, mixed with 50 µl SDS-buffer and after 
centrifugation 5 µl from the supernatant were loaded on the gel.  
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4.1.2.2 Adenylyl cyclase activity 

AC tests were carried out to assay for AC-activity. The following tests were done and all 

showed no activity: 

- 40 µl of each of the supernatant and pellet (fig. 4.3 lanes B and D) were tested with 75 µM 

ATP for 10 min at 37oC, pH 7.5 (TRIS/HCl) and 3 mM MnCl2. 

- 3.8 and 7.6 µg of the purified Rv 2212c511-730 (fig. 4.3 lane E) were tested with 75 µM ATP 

for 10 min at 37oC, pH 7.5 (TRIS/HCl), using 3 mM MnCl2 or 10 mM MgCl2. 

- 9.6 µg of the purified Rv 2212c511-730 were tested with 500 µM ATP for 10 min at 37oC at 

different pH values; acetic acid (4.5), MOPS/TRIS (6.4) and TRIS/HCl (7.5 & 9), using 3 

mM MnCl2 or 5 mM MgCl2.  

- 9.6 µg of the purified Rv 2212c511-730 were also tested with 500 µM ATP for 10 min at 37oC, 

pH 7.5 (TRIS/HCl), 3 mM MnCl2 and 100 µM NAD+. 

- 10 and 20 µg of dialyzed Rv 2212c511-730 were tested with 100 µM ATP for 15 min at 37oC, 

pH 7.5 (TRIS/HCl), using 3 mM MnCl2 or 10 mM MgCl2. 

 

4.1.2.3 Guanylyl cyclase activity 

GC activity of 10 and 20 µg of the dialyzed protein was tested with 100 µM GTP for 15 min 

at 37oC, pH 7.5 (TRIS/HCl), using 3 mM MnCl2 or 10 mM MgCl2. No GC activity was 

detected. 

 

4.1.3 Expression and characterization of the adenylyl cyclase Rv2435c  

         holoenzymes 

4.1.3.1 Expression of Rv2435c1-730 

The protein has a calculated MW of 80.3 kDa and an isoelectric point of 5.5. It was first 

expressed in E.coli with 60 µM IPTG at 22oC overnight. No expression was detected in the 

supernatant or pellet as assayed by a 10 % SDS-PAGE or by Western blotting (exposure time 

up to 3 min). Thus expression was carried using different concentrations of IPTG (30, 120 and 

500 µM) at 16oC overnight. Protein was not detectable in the supernatants or pellets on a 10 

% SDS-PAGE, but it was faintly detected on a Western blot (fig. 4.4, a). A more pronounced 

band was visible at about 25 kDa which demonstrated degradation. This band appeared more 

prominent in the supernatant. Induction with three different concentrations of IPTG did not 

seem to have remarkable effects. No purification was attempted with the protein. 
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 4.1.3.2 Expression of Rv2435c25-730 and Rv2435c41-730   

Rv2212c25-730 and Rv2212c41-730  have MWs of 77.55 and 75.79 kDa, respectively. Both 

proteins were expressed in E.coli with 60 µM IPTG at 22oC overnight. Again no clear band at 

approximately 80 kDa could be detected in the supernatants and pellets by a 10 % SDS-PAGE 

or by a Western blot (exposure time up to 3 min). So expression was carried out again with 

different concentrations of IPTG (120 and 500 µM) at 16oC overnight. Both proteins were not 

detected in the supernatants and pellets on a 10 % SDS-PAGE, but were detected on  Western 

blots (fig. 4.4, b and c). 

 Rv 2212c25-730 appeared as a faint band at about 80 kDa and was more apparent in pellets 

than in the supernatant. A stronge band was detected at about 25 kDa which shows that most 

of the protein was degraded (fig. 4.4, b). Rv 2212c41-730 was detected only as a thick band at 

about 25 kDa indicating that all of the protein was degraded (fig. 4.4, c). Attempts for further 

purification of both proteins were not carried out. 

 

 

                                          

                                                                                                               

 

 

 

 

 

 

 

Fig. 4.4: Western blot from 10 % SDS-PAGE using the Penta-His antibody as the primary 
antibody. (a) Rv2212c1-730;  about 30 and 15 µg protein were applied in each lane from the 
supernatants and pellets resp. (b) Rv2212c25-730; 23.7 and 14.7 µg protein were applied in 
each lane from the supernatants and pellets resp. (c) Rv2212c41-730; 19.3 and 48 µg protein 
were applied in each lane from the supernatants and pellets, respectively. S = supernatant, P = 
pellet. 
 

 

 

4.1.3.3 Adenylyl cyclase activity 

An AC-test was carried out to test whether any of the three constructs had AC activity. The 

supernatants (78.4, 63.2 and 51.6 µg protein) as well as the pellets (75.6, 73.6 and 240 µg 
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protein) of each construct were tested with 100 µM ATP for 10 min at 37oC, pH 7.5 

(TRIS/HCl) and 3 mM MnCl2. No activity was measurable. Because of this general failure we 

discontinued work with gene product of Rv2435c and continued with gene Rv2212c, another 

of the 15 predicted mycobacterial ACs. 

 

 

4.2  Expression and characterization of adenylyl cyclase Rv2212c of        

       M. tuberculosis 

4.2.1 Sequence analysis of Rv2212c 

 Gene Rv2212c (GenBank accession number BX842576) codes for a soluble protein which is 

predicted to be composed of two distinct domains; a C-terminal catalytic domain (cyclase 

homology domain; CHD) and an N-terminal domain which represents a novel protein domain 

possessing sequence similarities to the N-termini of other bacterial ACs as its homolog from 

M. smegmatis, Rv1264 from M. tuberculosis and its homolog from M. smegmatis, one from 

B. liquefaciens (GeneBank accession number X57541), one from Streptomyces coelicolor 

(GeneBank accession number AL512667) and one from S. griseus (GeneBank accession 

number AB018557) (Linder et al., 2002). An alignment of Rv2212c CHD with the 

mammalian C1a catalytic segment from canine type V and the C2 segment from rat type II 

revealed considerable similarities and the conservation of the six amino acids annotated to be 

participating in catalysis (fig. 4.5). This unequivocally classifies the protein as a class III AC, 

probably operating as a homodimer. Recently, it was identified as a class IIIc AC catalyst 

which have a considerably shortened arm region (only 7 instead of 15 amino acids between 

the conserved glycine and the substrate defining aspartate outlined in fig. 4.5) (Linder and 

Schultz, 2003; Tesmer et al., 1997).  

Rv2212c and Rv1264, another class IIIc mycobacterial AC, share significant sequence 

similarity in their N-terminal domains (21% identity and 31% similarity) as well as catalytic 

domains (29% identity and 41% similarity) (fig. 4.6). These common features support the 

hypothesis of a similarity in AC regulation. Therefore attempts to crystallize Rv2212c were 

made for comparison with the known structure of Rv1264. Furthermore, the potential 

regulation of Rv2212c AC was analyzed. 
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Fig. 4.5: Alignment of the CHDs of Rv2212c and Rv1264 from M. tuberculosis with C1-
domain from canine type V (VC1) and C2-domain from rat type II (IIC2) adenylyl cyclases. 
These two mammalian domains were chosen because of the available X-ray structures 
(Tesmer et al., 1997, 1999; Zhang et al., 1997). The six canonical residues involved in 
catalysis are marked (Me: metal-cofactor, Ad: adenine/purine specifying, Tr: transition-state 
stabilizing). The position of the γ-phosphate binding Arg (Pγ) is also indicated. The top bar 
specifies the so called arm region. VC1 and IIC2 show an identity of 19% and 18%, and a 
similarity of 31% and 34% to Rv2212c CHD, respectively. 
 

 

 

                          Me                                            
 
Rv2212c  212  : SASVTCGIGFADLSSFTALTQALTPA----QLQDLLTEFDAAVTDVVHAD    
Rv1264   211  : PGARQVTVAFADLVGFTQLGEVVSAE----ELGHLAGRLAGLARDLT-AP    
VC1      466  : QKHDNVSILFADIEGFTSLASQCTAQ----ELVMTLNELFARFDKLAAEN    
IIC2     880  : QSYDCVCVMFASIPDFKEFYTESDVNKEGLECLRLLNEIIADFDDLLSKP    
                          
                       Ad  Me                                          
 
Rv2212c  258  : ---GGRLVKFIGDAVMWVS-----------SSPER-------LVRAAVDL    
Rv1264   256  : ---PVWFIKTIGDAVMLVC-----------PDPAP-------LLDTVLKL    
VC1      512  : ---HCLRIKILGDCYYCVSGL---------PEARADHAHC--CVEMGMDM    
IIC2     930  : KFSGVEKIKTIGSTYMAATGLSAIPSQEHAQEPERQYMHIGTMVEFAYAL   
                     
                                 Pγ                  Ad     Tr  Tr      
                       
Rv2212c  287  : VDHPG-AR--A-AELQVRAGLAYGTVLA-------LNGDYFGNPVNLAAR   
Rv1264   285  : VEVVD-TD--N-NFPRLRAGVASGMAVS-------RAGDWFGSPVNVASR   
VC1      548  : IEAISLVREVTGVNVNMRVGIHSGRVHCGVLGLRKWQFDVWSNDVTLANH   
IIC2     980  : VGKLDAINKHSFNDFKLRVGINHGPVIAGVIGAQKPQYDIWGNTVNVASR   
              
                                                                      
                     
Rv2212c  326  : LVAAAAPGQILAAAQLRDMLP-DWPALA------HGPLTLKGFDAPVMAF   
Rv1264   324  : VTGVARPGAVLVADSVREALG-DAPEADGFQWSFAGPRRLRGIRGDVRLF   
VC1      598  : MEAGGKAGRIHITKATLSYLNGDYEVEPG----CGGERNAYLKEHSIETF   
IIC2     1030 : MDSTGVLDKIQVTEETSLILQ-TLGYTCT----CRGIINVKGKGD-LKTY   
              
                                              
 
 
Rv2212c  369  : ELHDNPR----ARDADTPSPAASD--   
Rv1264   373  : RVRRGATRTGSGGAAQDDDLAGSSP-   
VC1      644  : LILRCTQ----KRKEEKAMIAKMNRQ   
IIC2    1074  : FVN-TEM----SRSLSQSNLAS----   
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Fig. 4.6: Alignment of Rv2212c and Rv1264 holoenzymes from M .tuberculosis. The start of 
the CHD is marked with a horizontal arrow pointing to the right. Three inverted triangles 
mark the three polar residues shown to be consereved in the N-terminal domains of seven 
other Gram-positive bacteria (Linder et al., 2002). The six canonical amino acids are marked 
by arrows and the γ-phosphate binding (Pγ) Arg is indicated by a vertical line. The top bar 
specifies the so called arm region. Ad, adenine ring binding; Me, metal-cofactor binding; Tr, 
transition state stabilizing. Residues identified by mutagenesis to be important for the 
interaction between the regulatory and catalytic domains in Rv1264 are indicated by black 
dots beneath them, also the α-N10 switch and the α1 switch are clearly determined (Tews et al., 
2005). 

Rv2212       1 : MGVPAGTLRQVYDSL------DFDALEAAGIANPR-ERAGLLTYLDELGF 
Rv1264       1 : ----------VTDHVREADDANIDDLLGDLGGTARAERAKLVEWLLEQGI 
                                                                        
  
 
Rv2212      44 : TVEEMVQAERRGRLFGLAGDVLLWSGPPIYTLATAADELGLSADDVARAW 
Rv1264      41 : TPDEIRATNPP---LLLATRHLVGDDGTYVSAREISENYGVDLELLQRVQ 
                  
                                                                    
 
 
Rv2212      94 : SLLGLT-VAGPDVPTLSQADVDALATWVALKAL-VGEDGAFGLLRVLGTA 
Rv1264      88 : RAVGLARVDDPDAVVHMRADGEAAARAQRFVELGLNPDQVVLVVRVLAEG 
 
                                                                    
 
 
Rv2212     142 : MARLAEAESTMIRAGSPNIQM--THTHDELATARA---YRAAAEFVPRIG 
Rv1264     138 : LSHAAEA----MRYTALEAIMRPGATELDIAKGSQALVSQIVPLLGPMIQ 
                              
 Me 
 
Rv2212     187 : ALIDTVHRHHLASARTYFEGVIGDT--SASVTCGIGFADLSSFTALTQAL 
Rv1264     184 : DMLFMQLRHMMETEAVNAGERAAGKPLPGARQVTVAFADLVGFTQLGEVV 
                                                                    
                          α-N10 switch       Ad    Me                 α1 switch 
 
Rv2212     235 : TPAQLQDLLTEFDAAVTDVVHADGGRLVKFIGDAVMWVSSSPERLVRAAV 
Rv1264     234 : SAEELGHLAGRL-AGLARDLTAPPVWFIKTIGDAVMLVCPDPAPLLDTVL 
                                                                   
                                Pγ            Ad          Tr    Tr 
                             
Rv2212     285 : DLVDHPGARAAELQVRAGLAYGTVLALNGDYFGNPVNLAARLVAAAAPGQ 
Rv1264     283 : KLVEVVDTDNNFPRLRAGVASGMAVSRAGDWFGSPVNVASRVTGVARPGA 
                   
                                                                   
  
                         
Rv2212     335 : ILAAAQLRDMLPDWPALA------HGPLTLKGFDAPVMAFELHDNPRARD 
Rv1264     333 : VLVADSVREALGDAPEADGFQWSFAGPRRLRGIRGDVRLFRVRRGATRTG      
     
 
                                  
Rv2212     379 : ADTPSP-----AASD--  
Rv1264     383 : SGGAAQDDDLAGSSP— 
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4.2.2 Expression and characterization of adenylyl cyclase Rv2212c  

         N-terminal domain  

 Rv2212c1-202 was expressed and purified for crystallization purposes.  

4.2.2.1 Expression and purification 

Rv2212c1-202 has a calculated MW of 23.43 kDa (including the N-terminal His6-tag). It was 

expressed in E.coli for 5 hours with 60 µM IPTG at 22oC. Cells were lysed by sonication, 

treated with lysozyme and DNAseI and the protein was purified to homogeneity by affinity 

chromatography on Ni2+-NTA. The purified protein yield was 2.6 mg/400 ml culture. The 

protein was either stored at -20 oC with 20% glycerol or concentrated for crystallization (see 

section 3.3.3) and stored at 4oC. The supernatants, pellets and purified Rv2212c1-202 were 

analyzed on SDS-PAGE (fig. 4.7). 

 

 

  

  

 

 

 

  

 

 

 

 

Fig. 4.7: 12.5% SDS-PAGE showing supernatants and pellets of empty pQE-30 in BL21 cells 
as a control (lanes B and D), supernatants and pellets of the construct (lanes A and C).  15% 
SDS-PAGE with 1.7 µg of Ni2+-NTA purified Rv2212c1-202 (lane E). 1 ml of the expression 
culture was taken after 2 1/2 hours of expression (see legend of fig. 4.3 for details).  
 

4.2.2.2 Crystallization of Rv2212c1-202 

The first crystals were obtained with buffer CS#19 from the Hampton research kit. Variation 

of the crystallization conditions and buffer concentrations were carried out to optimize the 

size and quality of the crystals (table 4.1, fig. 4.8). 
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Crystallization 

buffer 

Protein solution 

 

Protein 

concentration 

Crystal 

form 

Remarks 

30% isopropanol, 0.1 M 

TRIS/HCl pH 8.5, 0.2 M 

CH3COO NH4 (CS#19) 

10 mM TRIS/HCl,  

pH 7.5, 1mM MgCl2, 

0.05% 

α-monothioglycerol 

 

 

 

19.7 mg/ml 

Tiny prisms 
(see fig. 4.8, a) 

After 4 

days at 

16oC, and 

7 days at 

12oC 

Optimization based on buffer CS#19 (0.1 M TRIS/HCl, pH 8.5 constant) 

30% isopropanol, 

0.17 M CH3COO NH4 

Styloid 

prisms 

25×50µ 

After 7 

days at 

16oC 

30% isopropanol,  

   0.2 M CH3COO NH4 

Styloid 

prisms 

10×20µ 

After 7 

days at 

16oC 

30% isopropanol, 

0.22 M CH3COO NH4 

Styloid 

prisms 

50×100µ  
(see fig. 4.8,b)  

After 7 

days at 

16oC 

31% isopropanol, 

0.2 M CH3COO NH4 

Styloid 

prisms 

15×20µ 

After 7 

days at 

16oC 

32% isopropanol, 

0.17 M CH3COO NH4 

 

 

 

 

10 mM TRIS/HCl,  

pH 7.5, 1mM MgCl2, 

0.05% 

α-monothioglycerol 

 

 

 

 

 

 

19.7 mg/ml 

Styloid 

prisms 

25×50µ 
(see fig. 4.8, c) 

After 7 

days at 

16oC 

 

Table 4.1: Brief summary of the conditions in which crystals of Rv2212c1-202 were grown.  
(CS#19 = Crystal Screen buffer no.19 ; the numbering is according to the Hampton research 
kit).  
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Fig. 4.8: Crystals of Ni2+-NTA purified Rv2212c1-202 as outlined in table 4.1. The crystals did 
not diffract (Dr. Ivo Tews, BZH, Universität-Heidelberg). 
 

 

4.2.3 Expression and characterization of adenylyl cyclase Rv2212c  

         catalytic domain (Rv2212c212-388)  

4.2.3.1 Expression and purification 

The clone for this protein was from S. Zeibig (2003) in pQE-30 in BL21 cells. It was 

expressed in E.coli with 60 µM IPTG at 22oC for 4 hours. Cells were lysed by sonication and  

treated with lysozyme and DNAseI. The protein was purified to homogeneity by affinity 

chromatography on Ni2+-NTA (fig. 4.9). The yield was 360 µg/200 ml culture. The protein 

yield was not improved upon overnight expression at 16 oC. Protein was stored at -20 oC with 

20% glycerol. 
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Fig. 4.9: 15% SDS-PAGE of Rv2212c212-388. 2.3 µg of Ni2+-NTA purified protein was 
applied. MW = 20.46 kDa, pI = 4.4. 
 

4.2.3.2 Protein dependence 

A protein range from 5 to 140 nM (10 to 280 ng) was tested. The specific activity increased 

linearly up to 50 nM. Further protein increments resulted in decrease in specific activity (fig. 

4.10) suggesting formation of inactive oligomers at high protein concentrations. Half maximal 

activity was attained at 20 nM protein, indicating a high affinity of the catalytic domains for 

each other. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.10: Protein dependence of Rv2212c212-388. Assay conditions: 500 µM ATP, 3 mM 
Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC, 10 min. 
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4.2.3.3 Enzyme kinetics 

The kinetic properties of the catalytic domain were investigated. The Vmax and Km values 

were calculated  from a Hill-Plot, as a calculation after Lineweaver-Burk was not possible due 

to cooperativity, as indicated by a sigmoidal Michaelis-Menten curve (fig. 4.11). The Vmax 

was 26 ± 0.5 µmol/mg*min which is high compared to catalytic domains of other 

mycobacterial ACs. Also the Km value of 2.1 ± 0.01 mM ATP, is higher than the Km of the 

other mycobacterial ACs indicating a rather low ATP affinity. (Castro et al., 2005; Guo et al., 

2001; Linder et al., 2002, 2004 ; Sinha et al., 2005; Tang and Hurley, 1998). The Hill-

coefficient of 1.4 ± 0.02 indicated cooperativity (n = 2). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11: a) Michaelis-Menten curve of  Rv2212c212-388 . The assay was conducted at 0.15 µg 
(75nM) protein, BIS-TRIS/HCl buffer pH 6.5, 10 mM Mn2+ at 37oC and for 10 min.  
b) Corresponding Hill-Plot (y = 1.405x - 4.5815; R2 =0.9904). 
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4.2.3.4 Time dependence 

The curve (fig. 4.12) shows a linearity of cAMP formation for up to 16 min. 

 

 

          

 

  

 

 

 

 

 

 

 

 

Fig. 4.12: Time dependence of Rv2212c212-388. Assay conditions: 100 nM protein, 500 µM 
ATP, 3 mM Mn2+, BIS-TRIS/HCl pH 6.5, 37oC. 
 

 

4.2.3.5 pH dependence 

Different pH values strongly influenced AC activity. Protein was tested at different pH values 

(4.9-8.0) using 3 different buffer systems (fig. 4.13). An overlap in the pH values when 

changing the buffer system was intended to show the effect of buffer substance on enzyme 

activity. The pH optimum was at pH 6.5 (BIS-TRIS/HCl), therefore it was used in all 

subsequent assays. At pH 8, the activity increases clearly once again to 0.545 ± 0.01 

µmol/mg*min (n = 6).  
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Fig. 4.13: pH dependence of Rv2212c212-388. Assay conditions were 200 nM (0.4 µg) protein, 

500 µM ATP, 3 mM Mn2+, 37oC, 10 min. 

 

 4.2.3.6 Effect of phospholipids 

 As 70 µM of each of phosphatidyl ethanolamine and phosphatidyl choline inhibited the 

activity of Rv2212c holoenzyme (see section 4.2.7.5.4), it was worth testing the 

corresponding effect on the Rv2212c212-388. Both phospholipids were prepared as stated 

beneath 4.2.7.5.4 and tested with 100 nM Rv2212c212-388 using 500 µM ATP, 3 mM Mn2+, 

BIS-TRIS/HCl pH 6.5  at 37oC for 10 min. 70 µM phosphatidyl ethanolamine caused 50% 

reduction in activity while 1 mM phosphatidyl choline induced about 30% inhibition. 

 

4.2.3.7 Effect of fatty acids 

Fatty acids which turned out to stimulate holoenzyme activity (see section 4.2.7.5.5), were 

tested with Rv2212c212-388  to determine whether these stimulatory effects were mediated by 

the regulatory N-terminal domain. Fatty acid solutions were prepared as stated in 4.2.7.5.5 

and a concentration range 1-500 µM was tested. Linoleic acid (500 µM) stimulated the CHD 

5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

cA
M

P
[µ

m
ol

/m
g*

m
in

]

pH

Acetate/NaOH
BIS-TRIS/ HCl
TRIS/ HCl

0.2647.3

0.2037.3
TRIS/
HCl

0.3507

0.5836.5

0.5296.6

0.4766.8

0.1697.6

BIS-TRIS/ 
HCl

Acetate/
NaOH

Buffer used

0.5758

0.5366.3

0.5136.2

0.3916

0.3305.8

0.1955.6

0.2065.6

0.0044.9

Rv2212212-388

µmol/mg*min
pH

0.2647.3

0.2037.3
TRIS/
HCl

0.3507

0.5836.5

0.5296.6

0.4766.8

0.1697.6

BIS-TRIS/ 
HCl

Acetate/
NaOH

Buffer used

0.5758

0.5366.3

0.5136.2

0.3916

0.3305.8

0.1955.6

0.2065.6

0.0044.9

Rv2212212-388

µmol/mg*min
pH

Results



          

 57

activity 5-fold while oleic and arachidonic acid (300 µM and 70 µM, respectively) caused a 3-

fold increase in activity (fig. 4.14). The Hill coefficient of 1.0 denoted no cooperativity (table 

4.2). Arachidonic acid stimulated Rv2212c212-388 with an EC50 of 10 ± 0.05 µM (table 4.2). 

Linolenic and palmitic acids did not stimulate up to 500 µM. Vmax and the Hill coefficient of 

Rv2212c212-388 were unaffected in the presence of 100 µM linoleic acid, while Km decreased 

slightly (table 4.3). 
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Fig. 4.14: Dose–response curves of linoleic, oleic and arachidonic acid stimulation of 
Rv2212c212-388 and the corresponding Hill plots (a, b and c ) Assay conditions were 200 nM 
protein, 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl pH 6.5, 37oC, 10 min. For each fatty acid 
dilution, a control sample consisting of the solvent system free from FA was tested to exclude 
solvent effect.     
 

 

Fatty acid EC50 [µM] Hill coefficient

Linoleic 78 ± 1.7 (4) 1.0 ± 0.01 (4) 

Oleic 65 ± 0.3 (2) 1.0 ± 0.02 (2) 

Arachidonic 10 ± 0.05 (2) 1.0 ± 0.01 (2) 
 

Table 4.2: EC50 and Hill coefficients for fatty acids stimulation of Rv2212c212-388. EC50 values 
were derived by Origin 6.0 program and the Hill coefficients from the Hill plots above (fig. 
4.14). Standard errors of the mean are shown (number of experiments in brackets). 
     
 

 
Kinetic parameter 

 
Rv2212c212-388

Rv2212c212-388 

               + 
100µM linoleic

Vmax (µmol/mg*min) 7.5 ± 0.04 (6) 7.6 ± 0.1 (4) 

Km (mM) 3.3 ± 0.08 (6) 2.5 ± 0.2 (4) 

Hill coefficient 1.8 ± 0.0 (6) 1.7 ± 0.0 (4) 
 

Table 4.3 : Kinetic characterization of Rv2212c212-388 ± 100 µM linoleic acid. Assay 
conditions were 10 mM Mn2+, BIS-TRIS/HCl buffer pH 6.5 at 37oC for 10 min. An ATP 
range of 0.1-6 mM was used. Standard errors of the mean are shown (number of experiments 
in brackets). 
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 4.2.3.8 pH dependence of linoleic acid effect 

100 µM linoleic acid was tested with Rv2212c212-388 at a pH range 5-9. As apparent from fig. 

4.15, linoleic acid did not substantially affect the pH dependence (compare with fig. 4.13). 

There was an increase in the enzyme activity by 100 µM linoleic acid.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4.15: pH dependence of Rv2212c212-388 ± 100 µM linoleic acid. Assay conditions were 
200 nM protein, 500 µM ATP, 3 mM Mn2+, 37oC, 10 min. Buffer systems used: 
Acetate/NaOH (pH 5 and 5.6), BIS-TRIS/HCl (pH 5.6-7.3) and TRIS/HCl (pH 7.3-9). 
 

 

 

4.2.3.9 Effect of linoleic acid on the time dependence 

The activity of Rv2212c212-388 was tested in the presence of 100 µM linoleic acid at 2 min. 

time intervals (fig. 4.16). Linearity was observed up to 12 min ± 100 µM linoleic acid. The 

stimulation factor of linoleic acid decreased gradually over time. 
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Fig. 4.16: Time dependence of Rv2212c212-388 ± 100 µM linoleic acid. Assay conditions were 
200 nM protein, 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC . 
 

 

 

 

 

 4.2.3.10 Effect of detergents 

Only detergents which had a significant effect on the Rv2212c holoenzyme activity were 

tested with the CHD (see section 4.2.7.5.8). Detergents were prepared as stated in section 

4.2.7.5.8 and a concentration range of (0.2 – 4 ‰) was tested. Triton X-100 and Nonidet P40 

did not show a significant effect, CHAPS (2‰) stimulated 2-fold, while Polidocanol 

stimulated 7-fold. A dose-response curve for Polidocanol from 0.001‰ (1.7 µM) – 3‰ (5.1 

mM) showed an 8-fold increase in activity at 1‰ (1.7 mM) with an EC50 of 30 ± 2 µM (fig. 

4.17). The Hill coefficient was 1.3 ± 0.05 (n = 2) indicating cooperative binding of the 

detergent to the CHD (fig. 4.17). Kinetic characterization showed a slight increase in Vmax, 

decrease in the Hill coefficient while Km remained unchanged in presence of 0.1‰ 

Polidocanol (table 4.4).  
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Fig. 4.17: Dose–response curve of Polidocanol stimulation of Rv2212c212-388 and the 
corresponding Hill plot. Assay conditions were 200 nM protein, 500 µM ATP, 3 mM Mn2+, 
BIS-TRIS/HCl pH 6.5, 37oC, 10 min.  
 

 
Kinetic parameter 

 
Rv 2212c212-388

Rv 2212c212-388 

 + 
0.1‰ Polidocanol

 
Vmax (µmol/mg*min) 7.5 ± 0.04 (6) 16 ± 0.2 (2) 

Km (mM) 3.3 ± 0.08 (6) 3.4 ± 0.2 (2) 

Hill coefficient 1.8 ± 0.0 (6) 1.3 ± 0.005 (2) 
 

Table 4.4: Kinetic characterization of Rv2212c212-388 ± 0.1‰ (170µM) Polidocanol. Assay 
conditions were 200 nM protein, 10 mM Mn2+, BIS-TRIS/HCl pH 6.5, 37oC, 10 min. An ATP 
range of 0.1-7 mM was used. 
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4.2.3.11 Crystallization 

Rv2212c212-388 did not crystallize at 7.6 mg/ml using CS and CS2. The plates were initially 

incubated at 16oC and after 14 days transferred to 12oC. No further experiments were carried 

out. 

 

 

4.2.4 Expression and characterization of C-terminally shortened constructs  

         of Rv2212c212-388 (with N-terminal His6-tag) 

Useful structural data have been obtained from systems that are hard to crystallize by 

removing regions that interfere with crystal growth (Ducruix and Giegé, 1999). Flexible parts 

in proteins are generally good substrates for proteases and have to be eliminated because a 

residual proteolytic activity present in the sample could easily generate heterogeneity, as 

illustrated by the crystallizaton of the interferon γ receptor (Windsor et al., 1996), which 

required the deletion of eight amino-terminal residues. Also a flexible extremity might be 

responsible for the poor diffraction quality of crystals (Zhang et al., 1997; Ducruix and Giegé, 

1999). Here, seven successively C-terminal truncated constructs were made to determine the 

shortest possible active catalytic centre of Rv 2212c212-388 (fig. 4.18).  

 

 
Rv2212   353 : HGPLTLKGFDAPVMAFELHDNPRARDADTPSP-----AASD 
Rv1264   357 : AGPRRLRGIRGDVRLFRVRRGATRTGSGGAAQDDDLAGSSP 
 
Fig. 4.18: Alignment of the C-terminal ends of the CHDs of Rv2212c and Rv1264. Sites of 
C-terminal truncations in Rv 2212c are indicated by dotted lines. 
 

 

4.2.4.1 Expression and purification 

The constructs were expressed in E.coli with 60 µM IPTG at 16oC overnight, cells were lysed 

with a French Press and the protein was purified by Ni2+-NTA affinity chromatography. 

Purified protein yield and MW of each construct are tabulated in table 4.5. Proteins were 

either stored at -20 oC with 20% glycerol or concentrated to be used for crystallization and 

stored at 4oC. They were analyzed by SDS-PAGE where all showed a single band except for 

Rv2212c 212-369 which was further analyzed on a Western blot to confirm its expression (fig. 

4.19). 

 

Results



          

 64 

 

A)                         B) 

  

         

 

 

 

 

 

 

                     

Fig. 4.19: A) 15% SDS-PAGE showing Ni2+-NTA purified proteins of: 3 µg Rv2212c212-377 
(a) 5.1 µg Rv2212c212-374 (b) 4.5 µg Rv2212c212-373 (c) 1.2 µg Rv2212c212-372 (d) 2.4 µg 
Rv2212c212-371 (e) 2.4 µg Rv2212c212-370 (f). B) Western blot from a 15 % SDS-PAGE using 
the RGS-His4 antibody as primary antibody and goat anti-mouse IgG-Fc peroxidase 
conjugated antibody as secondary antibody. 2 µg of purified Rv2212c212-369 were applied on 
lane (a) and 15 µl of the impure supernatant on lane (b). Exposure time of the film is 4 min. 
Note that in lane (a) the purified protein shows 2 bands at about 18 kDa (      ) which probably 
means that part of the protein was degraded during purification.  
 

 

 

Construct MW (kDa) Protein yield /400 ml culture 

Rv2212c212-377 19.25 900 µg 

Rv2212c212-374 18.92 612 µg 

Rv2212c212-373 18.81 561 µg 

Rv2212c212-372 18.7 390 µg 

Rv2212c212-371 18.59 360 µg 

Rv2212c212-370 18.48 195 µg 

Rv2212c212-369 18.37 120 µg 

 

Table 4.5: MW and Ni2+-NTA purified protein yield of C-terminally shortened constructs of 
Rv2212c212-388 
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4.2.4.2 Enzyme kinetics 

The kinetic properties of the six shortened constructs were determined using substrate 

concentrations ranging from 0.1 to 6.0 mM ATP and 10 mM Mn2+ (fig. 4.20). The Vmax, Km 

and Hill coefficient values of all constructs did not show a significant difference when 

compared to the wild type catalytic domain Rv2212c212-388  (table 4.6) denoting that these 

truncations did not affect protein folding. Rv2212c212-369 showed a specific activity of 10 

pmol/mg*min using 7.5 µg protein. No experiments were conducted on this construct. 

 

Construct Vmax 
[µmol/mg*min] 

Km 
[mM] 

Hill coefficient Specific activity 
[µmol/mg*min] 

Rv2212c212-388   

     (wild type) 

26 2.1 1.4 3.1 

Rv2212c212-377 18 1.6 1.4 2.1 

Rv2212c212-374 15 1.6 1.5 1.2 

Rv2212c212-373 17 1.9 1.1 2.4 

Rv2212c212-372 10 1.9 1.1 1.5 

Rv2212c212-371 30 1.8 1.2 3.8 

Rv2212c212-370 32 1.9 1.4 3.3 

 

Table 4.6: Kinetic characterization and specific activities of the C-terminally shortened 
constructs of Rv2212c212-388. Assays were carried out for 10 min at 37oC using BIS-
TRIS/HCl, pH 6.5. 
 
 
 

 

  

  

 

 

 

 

 

 

 

 

  Rv2212c212-377 

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

cA
M

P
[µ

m
ol

/(m
g*

m
in

)]

ATP [mM]

y  = 1.464x-4.7251 
R2 = 0.9789 

log ATP [mM]

lo
g 

(V
/V

m
ax

-V
)

1.5 2.0 2.5 3.0 3.5 4.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Results



          

 66 

 

 

 

  

 

 

 

 

 

 

                                                           

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  Rv2212c212-374 

  Rv2212c212-373 

  Rv2212c212-372 

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

ATP [mM]

cA
M

P
[µ

m
ol

/(m
g*

m
in

)]

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

ATP [mM]

cA
M

P
[µ

m
ol

/(m
g*

m
in

)]

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

ATP [mM]

cA
M

P
[µ

m
ol

/(m
g*

m
in

)]

y  = 1.5804x-5.0946 
R2 = 0.9864 

y  = 1.0726x-3.5724 
R2 = 0.9933 

y  = 1.0604x-3.5317 
R2 = 0.9799 

lo
g 

(V
/V

m
ax

-V
)

1.5 2.0 2.5 3.0 3.5 4.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

log ATP [mM]

1.5 2.0 2.5 3.0 3.5 4.0

-1.5

-1.0

-0.5

0.0

0.5

lo
g 

(V
/V

m
ax

-V
)

log ATP [mM]

1.5 2.0 2.5 3.0 3.5 4.0

-1.5

-1.0

-0.5

0.0

0.5

lo
g 

(V
/V

m
ax

-V
)

log ATP [mM]

Results



          

 67

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.20: Kinetics of the six C-terminally shortened constructs of Rv2212c212-388 showing  
Michaelis-Menten curves and corresponding Hill-Plots. The assays were conducted using 
0.15 µg protein, BIS-TRIS/HCl, pH 6.5, 37oC, 10 min.  
 

 

 

 

  Rv2212c212-371 

  Rv2212c212-370 

0 1 2 3 4 5 6
0

5

10

15

20

25

ATP [mM]

cA
M

P
[µ

m
ol

/(m
g*

m
in

)]

y  = 1.4511x-4.7076 
R2 = 0.9844 

y = 1.2775x – 4.1701 
R2 = 0.9927 

0 1 2 3 4 5 6
0

5

10

15

20

25

30

ATP [mM]

cA
M

P
[µ

m
ol

/(m
g*

m
in

)]

1.5 2.0 2.5 3.0 3.5 4.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g 

(V
/V

m
ax

-V
)

log ATP [mM]

1.5 2.0 2.5 3.0 3.5 4.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g 

(V
/V

m
ax

-V
)

log ATP [mM]

Results



          

 68 

4.2.4.3 Crystallization of Rv2212c212-377, Rv2212c212-374 and Rv2212c212-370 

These three catalytic domains displayed a good activity, besides having comparable kinetic 

parameters when compared to wild type Rv2212c212-388. This encouraged crystallization. 

Rv2212c212-377 (16 mg/ml) was screened using kits CS and CS2. It was incubated at 16oC and 

after 7 days transferred to 12oC, but no crystals were observed. Rv2212c212-374 (13 mg/ml) was 

screened with CS, CS2 and the Wizard kit I and II at 16oC. Coffin lid-like crystals (75 X 125 

µ) probably of magnesium ammonium phosphate were grown, in about 7 days, in nearly all 

buffer systems containing ammonium phosphate: CS # 3, 11; Wizard I # 9, 34; Wizard II #10, 

33, 46. Also 8 mg/ml of Rv2212c212-374 was incubated with 1 mM ATP overnight on ice 

before setting the plates for crystallization. No protein crystals were obtained, only the same 

salt crystals with (NH4)2HPO4  buffers were observed. As with Rv2212c212-370, crystallization 

trials were made using 13.7 mg/ml (without 10% glycerol) with CS, CS2 and Wizard I and 

9.6 mg/ml (with 10% glycerol) with CS and Wizard II at 16oC. Only those coffin lid-like 

crystals were obtained as with Rv 2212c212-374. 

 

 

4.2.5 Expression and characterization of the mutants L370V, L370A 

         and L370G 

Successive C-terminal truncations in Rv2212c212-388  resulted in active constructs until the 

deletion of L370 which abolished the activity. Here I investigated by a mutational approach the 

importance of this residue for the catalytic domain activity. L370 in Rv2212c212-370 was 

mutated to V, A and G yielding L370V, L370A and L370G, respectively. 

 

4.2.5.1 Expression and purification  

The three mutants were expressed in E.coli with 60 µM IPTG at 16oC overnight. Cells were 

lysed with a French Press and the protein was purified by Ni2+-NTA affinity chromatography. 

The yield of proteins were 150 µg, 120 µg and 117 µg (per 400 ml culture) for L370V, 

L370A and L370G respectively. Proteins appeared as faint bands with a lot of impurities on 

15% SDS-PAGE, therefore a Western-Blot was carried out to detect the mutants in the 

supernatants, pellets and in the Ni2+-NTA purified fractions. L370A was detected only in the 

pellets (fig. 4.21). 
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Fig. 4.21: A) 15% SDS-PAGE. a = 2.6 µg L370V, b = 2 µg L370A and c = 4 µg L370G. 
B) and C) Western blots from a 15% SDS-PAGE using the RGS-His4 antibody as primary 
antibody and the goat anti-mouse IgG-Fc peroxidase conjugated antibody as secondary 
antibody. 5 µg and 4 µg of Ni2+-NTA purified L370V and L370G were applied and 10 µl of 
the impure supernatants. The pellets (about 20 mg) were suspended in 50 µl H2O, mixed with 
50 µl SDS-buffer and, after centrifugation, 10 µl from the supernatants were loaded on the 
gel. The supernatant of L370V shows two thick bands below the original protein band ( at 
18.48 kDa) , probably indicating degradation. Film exposure time is 60 sec (B) and 4 min (C). 
a = L370V, b = L370A, c = L370G, N= Ni2+-NTA purified protein, S = supernatant, P = 
pellet. 
 

 4.2.5.2 Adenylyl cyclase activity 

The AC activity of the mutants was assayed using purified fractions, supernatants and pellets. 

The assays were conducted using 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl pH 6.5 at 37oC 

and for 10 min. The three mutants showed no activity denoting the importance of L370 for 

folding, stability and, potentially, catalysis. 

    

4.2.6 Expression and characterization of N-terminally shortened constructs  

         of Rv2212c212-370 

Truncations were carried out at the N-terminus of Rv2212c212-370 to determine the shortest 

possible catalytically active form of Rv2212c. Five truncations were made and three active 

constructs (Rv2212c213-370, Rv2212c214-370, Rv2212c215-370) were characterized (fig. 4.22). 

 
Rv2212   212 : SASVTCGIGFADLSSFTALTQAL 
Rv1264   211 : PGARQVTVAFADLVGFTQLGEVV 
 
Fig. 4.22: Alignment of the N-terminal ends of the CHDs of Rv2212c and Rv1264. Sites of 
N-terminal truncations in Rv 2212c are indicated by dotted lines. 
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4.2.6.1 Expression and purification  

The constructs were expressed in E.coli with 60 µM IPTG at 16oC overnight. Cells were lysed 

with a French Press and proteins were purified by Ni2+-NTA affinity chromatography. The 

yields and the MWs of the constructs are shown in table 4.7. Proteins were stored at -20 oC 

with 20% glycerol. They were analyzed on an SDS-PAGE where all showed a single band 

except for Rv2212c216-370 and Rv2212c217-370 which were further analyzed on a Western blot to 

confirm expression (fig. 4.23). 

 

Construct MW (kDa) Protein yield /400 ml culture 

Rv2212c213-370 18.37     1 mg 

Rv2212c214-370 18.26     1 mg 

Rv2212c215-370 18.15 480 µg 

Rv2212c216-370 18.00 810 µg 

Rv2212c217-370 17.93 255 µg 

 

Table 4.7: MW and Ni2+-NTA purified protein yields of N-terminally shortened constructs of 

Rv2212c212-370. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.23 : A) 15% SDS-PAGE showing Ni2+-NTA purified proteins of: 6.8 µg Rv2212c213-370 
(a) 7.6 µg Rv2212c214-370 (b) and 0.96 µg Rv2212c215-370 (c). B) Western blot from a 15% 
SDS-PAGE using the RGS-His6 antibody as primary antibody and the goat anti-mouse 
peroxidase conjugated antibody as secondary antibody. 4 µg of purified proteins and 15 µl of 
the supernatants were applied per lane. Exposure time of the film is 2 sec. d = Rv2212c216-370  
e = Rv2212c217-370 , N= Ni2+-NTA  purified protein, S= supernatant. 
 

   a        b      c     

A) B) 

 N        N           S          S 

kDa

116 –
66 –

45 –
35 –

25 –

18 –

16 –

kDa

25 –

18 –

16 –

 d       e        d          e 

Results



          

 71

4.2.6.2 Enzyme kinetics 

The kinetic properties of the three active shortened constructs were investigated using 

substrate concentrations ranging from 0.1 to 6.0 mM ATP (fig. 4.24). Comparing the Vmax, 

Km and Hill coefficient (table 4.8) to the C-terminally shortened construct and the wild type, 

we can see that subtrate affinity and cooperativity were not largely affected by N-terminal 

truncations.  

 

Construct Vmax 
[µmol/mg*min] 

Km 
[mM] 

Hill coefficient Specific activity 
[µmol/mg*min] 

Rv2212c212-388   

     (wild type) 

26 2.1 1.4 3.1 

Rv2212c212-370 32 1.9 1.4 3.3 

Rv2212c213-370 18 1.7 1.4 1.7 

Rv2212c214-370 15 2.7 1.5 0.8 

Rv2212c215-370 16 1.3 1.9 1.3 

 

Table 4.8: Kinetic characterization and specific activities of the N-terminally shortened 
constructs of Rv2212c212-370. Assays were carried out for 10 min at 37oC using BIS-
TRIS/HCl, pH 6.5. 
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Fig. 4.24: Kinetics of the three active N-terminally shortened constructs of Rv2212c212-370 
showing Michaelis-Menten curves and corresponding Hill-Plots. The assays were conducted 
using 0.15 µg protein, BIS-TRIS/HCl pH 6.5, 10 mM Mn2+, 37oC, 10 min.  
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4.2.6.3 Protein dependence of Rv2212c213-370 and Rv2212c215-370 

The specific activities of both proteins were dependent on the protein concentration just like 

the wild type catalytic domain (see section 4.2.3.2). Protein concentrations from 5 to 120 nM 

for Rv2212c213-370 (10 - 240 ng) and 7 to 160 nM for Rv2212c215-370 (14 - 320 ng) were tested. 

The specific activity increased linearly up to 80 nM for Rv2212c213-370 and up to 60 nM for 

Rv2212c215-370, suggesting the formation of homodimers (fig. 4.25). Further increments in 

protein concentration of Rv2212c215-370 (> 60 nM) resulted in a gradual decrease in specific 

activity which may be attributed to formation of less productive multimers. Half maximal 

activities for Rv2212c213-370 and Rv2212c215-370 were attained at 30 and 20 nM, respectively, 

which are more or less similar to the Kdiss value of the wild type (20 nM).  
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Fig. 4.25: Protein dependence of Rv2212c213-370 (a) and Rv2212c215-370 (b). Assay conditions 
were 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl pH 6.5, 37oC, 10 min. Only protein 
concentrations from 10-120 nM were plotted for clarity.  
 

 

 

4.2.6.4 Gel filtration of Rv2212c213-370 

Chromatography on the Superose 12 HR 10/30 column was used to detect whether 

Rv2212c213-370 is a mono- or multimer. A single large peak was obtained (fig. 4.26, A). The 

protein fractions had AC activity (fig. 4.26, A). The protein eluted at 14.5 ml corresponded to 

a size of approximately 40 kDa which is about the size of a homodimer. This was expected as 

the Kdiss for Rv2212c213-370 is 30 nM (see above). Similarly 200 µg (in 250 µl) of Rv2212c212-

388 were chromatographed. It displayed the same protein profile, a large peak appeared at 14.3 

ml corresponding to fractions 27-33 which had AC activity when tested (fig. 4.26, B). 4.7 mg 

Rv2212c213-370 were purified in three runs on the column (250 µl portions) under the same 

conditions. Fractions 28-33 were collected (fig. 4.26, A), united and concentrated (see section 

3.3.5). The buffer was then exchanged to crystallization buffer.  
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Fig. 4.26: A) Gel filtration chromatography of Rv2212c213-370 (250 µl containing 530 µg 
protein were loaded) on  Superose 12 HR 10/30. Flow rate was 0.5 ml/min using FPLC buffer 
(see 2.3.2). The calibration proteins (marked by the inverted triangles) were cytochrome C 
(12.5 kDa), chymotrypsinogen A (25 kDa), ovalbumine (45 kDa) and BSA (66 kDa) (250 µl 
each). Fractions 27-34 were collected (500µl each) and AC activity tested for fractions 28, 30, 
32 and 33 (500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl buffer pH 6.5, 37oC, 10 min) and an 
activity curve was plotted (           ). The protein was detected at 280 nm (           ). 
15% SDS-PAGE showing fractions (27-34) of Rv2212c213-370 collected from Superose 12 HR 
10/30. 10 µl from each fraction was applied on the gel. 
B) Gel filtration chromatography of Rv2212c212-388 (250 µl containing 200 µg protein) on  
Superose 12 HR 10/30. Fractions 27-33 were collected (500µl each) and AC activity for each 
fraction was tested. Same conditions as above were applied. 
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4.2.6.5 Crystallization of Rv2212c213-370 

Although Rv2212c215-370 is the shortest active CHD, Rv2212c213-370 was better suited for 

crystallization because of its better protein yield. Ni2+-NTA purified Rv2212c213-370 (7.7 

mg/ml) was crystallized using CS and CS2 at 16oC. Also the gel filtrated protein (9.3 mg/ml) 

was tried with Wizard I and II kits at the same temperature. No crystals were obtained in both 

cases. 

 

 

 

4.2.7 Expression and characterization of adenylyl cyclase Rv2212c       

         Holoenzyme  

4.2.7.1 Expression and purification 

The clone for this protein was obtained from Stephan Zeibig (2003) in pQE-30 vector in 

BL21 cells. It was expressed in E.coli with 60 µM IPTG at 22oC for 5 hours. Cells were lysed 

by sonication, treated with lysozyme and DNAseI, and the protein was purified to 

homogeneity by Ni2+-NTA affinity chromatography (fig. 4.27). From a 200 ml culture 840 µg 

protein were obtained. Recovery was 1.9 mg from a 400 ml culture after an overnight 

expression at 16 oC and French Press lysis. The protein was stored at -20 oC with 20% 

glycerol. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27: 15% SDS-PAGE showing a single band of  2.8 µg Ni2+-NTA purified Rv2212c1-388 
MW = 43.67 kDa, pI = 4.5.  
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4.2.7.2 Protein dependence 

The specific activity was independent of the protein concentration over the tested range (fig. 

4.28). Comparing this result to that of the catalytic domain (see section 4.2.3.2), it seems that 

the N-terminal domain of Rv2212c plays an important role in dimerization as it shifts the 

equilibrium completely towards the dimer side already at very low protein concentrations. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.28: Protein dependence of Rv2212c1-388. Assay was conducted using 500 µM ATP, 3 
mM Mn2+, BIS-TRIS/HCl pH 6.5, 37oC, 10 min. 
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4.2.7.3 Time dependence 

The activity of 100 nM protein (0.4 µg) was tested at 2 min. time intervals. The curve (fig. 

4.29) shows linearity up to 14 min. Afterwards the activity went down probably due to the 

inhibiting effect of the increasing amounts of pyrophosphate. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.29: Time dependence of Rv2212c1-388. Assay conditions were 500 µM ATP, 3 mM 
Mn2+, BIS-TRIS/HCl pH 6.5 at 37oC . 
 

 

4.2.7.4 pH dependence 

100 nM (0.4 µg) protein was tested from pH 4.6 to 8.0 using 3 different buffer systems (fig. 

4.30). The pH strongly affected the specific activity The pH optimum was at pH 6.5 (BIS-

TRIS/HCl), as for the catalytic domain (see section 4.2.3.5). This demonstrated that the N-

terminal domain was not operating as a pH sensor as in Rv1264 (Tews et al., 2005). At 

alkaline pH (8.0), the activity increases clearly once again to 0.245 ± 0.01 µmol/mg*min (n = 

8), due to unknown reasons. 
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Fig. 4.30: pH dependence of Rv2212c1-388. Assay conditions were 0.4 µg protein, 500 µM 

ATP, 3 mM Mn2+ at 37oC for 10 min. 

 

4.2.7.5 Effect of chemical compounds on AC activity 

I wanted to find out how is Rv2212c holoenzyme regulated and what is the function of its 

regulatory N-terminal domain. Mycobacterium tuberculosis differs radically from other 

bacteria in that a very large portion of its coding capacity (about 30%) is devoted to 

production of enzymes involved in lipogenesis and lipolysis (Cole et al., 1998). Therefore 

among other compounds lipids were studied to see whether any of them would have a 

regulatory effect on enzyme activity.  
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4.2.7.5.1 Effect of sugars 

The activity was tested in the presence of 1 mM of: D-galactose, D-mannose, L-arabinose, L-

rhamnose, D-glucose, D-fructose, fructose-1,6-bisphosphate and glucose-6-phosphate. None 

of them affected AC activity (table 4.9). 

 

Compound tested 
(1mM) 

% of corresponding
basal activity 

Specific activity 
(µmol·mg-1·min-1)

D-galactose 123 2.1 

D-mannose 100 1.7 

L-arabinose 105 1.8 

L-rhamnose 100 1.7 

D-glucose 105 1.8 

D-fructose 123 2.1 

Fructose-1,6-bisphosphate 111 1.9 

Glucose-6-phosphate 105 1.8 
 
Table 4.9: Effect of monosaccharides on Rv2212c1-388 AC activity. Assay conditions: 100 nM 
enzyme, 500 µM ATP, BIS-TRIS/HCl pH 6.5, 10 mM Mn2+, 37oC, 10 min. Basal activity 
(without additives) was 1.7 µmol·mg-1·min-1.  
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4.2.7.5.2 Effect of amino acids 

The effect of 1 mM of: DL-threonine, L-isoleucine, L-valine, L-asparagine, L-histidine, L-

aspartic acid, D-alanine, L-alanine, L-cysteine, L-leucine and glycine, on AC activity of the 

holoenzyme was tested. None had a significant effect on enzyme activity (table 4.10). There is 

a clear drop in the basal activity of the enzyme compared to table 4.9. This reflects the 

instability in the enzyme activity which is referred to in the discussion (section 5.8). 

 

Compound tested 
(1mM) 

% of corresponding
basal activity 

Specific activity 
(nmol·mg-1·min-1)

DL-threonine 108 81 

L-isoleucine 113 85 

L-valine 126 95 

L-asparagine 134 101 

L-histidine 125 94 

L-aspartic acid 110 83 

D-alanine 96 72 

L-alanine 82 62 

L-cysteine 77 58 

L-leucine 80 60 

Glycine 82 62 

 

Table 4.10: Effect of different amino acids on Rv2212c1-388 AC activity. Assay conditions 
were as in table 4.9. Basal activity (without additives) was 75 nmol·mg-1·min-1. 
 

 

 

4.2.7.5.3 Effect of salts and other miscellaneous compounds 

Sodium chloride, potassium chloride, sodium citrate, sodium acetate, sodium bicarbonate, 

NADH, glyoxylic acid, α-ketoglutarate, pyruvate and phosphoenolpyruvate were tested with 

Rv 2212c1-388 at 1 mM concentration. AC activity was not remarkably affected by any of 

these compounds (table 4.11).    
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   Compound tested 
(1mM) 

Specific activity
nmol·mg-1·min-1

 

Basal activity 
(without additives)

nmol·mg-1·min-1 
 

Sodium chloride 32 34 

Potassium chloride 41 34 

Sodium citrate 32 34 

Sodium acetate 35 34 

Sodium bicarbonate 40 34 

NADH 50 34 

Glyoxylic acid 44 75 

α-ketoglutarate 1600 1786 

Pyruvate 1374 1786 

Phosphoenolpyruvate 1545 1786 
 

Table 4.11: Effect of salts and other miscellaneous compounds on Rv2212c1-388 AC activity. 
Assay conditions were the same as in table 4.9. Compounds were tested in three different 
tests.  
 

 

 

4.2.7.5.4 Effect of phospholipids 

A 10 mM solution in 10% alcohol/water of phosphatidyl ethanolamine and phosphatidyl 

choline was prepared. Further dilutions were with H2O. A concentration range of 1 µM-1 mM 

of each was tested with 100 nM Rv2212c1-388. 70 µM phosphatidyl ethanolamine caused a 

70% decrease in the specific activity while the same concentration of phosphatidyl choline 

caused a 50% decrease (table 4.12). No further tests were done with these phospholipids due 

to the difficulty in getting a reproducible dose-response curve probably due to the effect of 

alcohol which had to be used as a solvent. 1 mM of each was also tested with the 

holoenzymes of Rv1264 and Rv1625c as a control, but no significant effects were detected 

(table 4.12). 
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Holoenzyme 

 
Compound tested 

Specific activity
nmol·mg-1·min-1

 

Specific activity 
(without additives)

nmol·mg-1·min-1 
 

70 µM phosphatidyl ethanolamine 64.7  204 Rv2212c 

70 µM phosphatidyl choline 103 204 

1 mM phosphatidyl ethanolamine 88  109 Rv1264 

1 mM phosphatidyl choline 82  109 

1 mM phosphatidyl ethanolamine 541  313 Rv1625c 

1 mM phosphatidyl choline 421  313 

 

Table 4.12: Effect of phospholipids on AC activities of each of Rv2212c, Rv1264 and 
Rv1625c holoenzymes. Assay conditions were 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl 
buffer pH 6.5, 37oC, 10 min for Rv2212c. The same conditions were applied except for a 
different buffer system (MES/TRIS pH 5.7) for Rv1264 and a different buffer and reaction 
temperature (TRIS/HCl pH 7.5 at 30oC) for Rv1625c.  
 
 

4.2.7.5.5 Effect of fatty acids 

5 mM solutions of unsaturated FAs (except for arachidonic acid) were prepared in 1 mM 

TRIS. Further dilutions were done in BIS-TRIS/HCl, pH 6.5 for Rv2212c, in MES/TRIS, pH 

5.7 for Rv1264 (from Dr. Linder) and in TRIS/HCl, pH 7.5 for Rv1625c (from Dr. Guo). 

Arachidonic acid was obtained as a 328 mM alcohol solution from Prof. Laufer’s laboratory, 

diluted to 5 mM in 1 mM TRIS and further diluted in the buffers indicated above. Palmitic 

acid was dissolved in alcohol (300 mM), diluted to 5 mM in 1 mM TRIS and further diluted 

as above.  

FAs were tested at 1 to 500 µM with 100 nM Rv2212c1-388, Rv1625c and 600 nM Rv1264 

holoenzyme. Testing with Rv1625c and Rv1264 was done as a control to see whether any 

effect is specific to Rv2212c or it is generalized among other mycobacterial ACs. Linoleic 

acid (300 µM) caused a 13-fold increase in Rv2212c1-388 activity, while oleic and arachidonic 

acid (500 µM and 70 µM, respectively) stimulated 9-fold (fig. 4.31 a, b and c). Vmax was 

unaffected by the presence of 100 µM of any of these FA, Km decreased slightly and the Hill 

coefficient decreased indicating a loss in cooperativity in substrate binding (table 4.14). On 

the other hand, this effect was not detected with the other two mycobacterial ACs, Rv1264 

and Rv1625c (fig. 4.31, a and b). Rv1625c activity was not affected at all up to a 

concentration of 500 µM (linoleic and oleic), and Rv1264 was only 2-fold stimulated by 

linoleic acid (100 µM). Linolenic acid (300 µM) stimulated Rv2212c1-388 4-fold (fig. 4.31, d) 
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and palmitic acid (100 µM) 3-fold. While linolenic acid (30 and 300 µM), arachidonic acid 

(10 and 70 µM) and palmitic acid (100 and 300 µM) did not affect Rv1264 activity. The Hill 

coefficients of linoleic, oleic and arachidonic acid stimulation were 1.6 to 1.7 (table 4.13), 

denoting a cooperative binding of these fatty acids to Rv2212c1-388. Arachidonic acid was 

most active (EC50 = 10 µM), (table 4.13). Comparing these results to those in section 4.2.3.7, 

we can see that the effects of linoleic, oleic and arachidonic acid on Rv2212c212-388 are less 

than half of that on Rv2212c1-388. Also the Hill coefficients of 1.0 (table 4.2), show no 

cooperativity in binding of these FAs to Rv2212c212-388. 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

0 1 10 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

cA
M

P
[µ

m
ol

/m
g*

m
in

]

Linoleic acid [µM]

Rv 2212c
Rv 1264
Rv 1625c

y = 1.7112x – 2.7802 
R2 = 0.9574 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

lo
g 

(V
/V

m
ax

-V
)

log linoleic acid [µM]

1.424

1.694

1.551

1.160

0.329

0.139

0.117

0.116

0.124

0.132

Rv22121-388

µmol/mg*min

0.851

0.990

0.997

0.987

0.990

1.036

0.977

0.940

0.804

1.021

Rv1625
µmol/mg*min

0.101

0.121

0.160

0.160

0.131

0.102

0.051

0.067

0.080

0.084

Rv1264
µmol/mg*min

100

300

500

70

30

10

7

3

1

0

Linoleic acid
(µM)

1.424

1.694

1.551

1.160

0.329

0.139

0.117

0.116

0.124

0.132

Rv22121-388

µmol/mg*min

0.851

0.990

0.997

0.987

0.990

1.036

0.977

0.940

0.804

1.021

Rv1625
µmol/mg*min

0.101

0.121

0.160

0.160

0.131

0.102

0.051

0.067

0.080

0.084

Rv1264
µmol/mg*min

100

300

500

70

30

10

7

3

1

0

Linoleic acid
(µM)

Results



          

 85

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

b) 

c) 

0 1 10 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

cA
M

P
[n

m
ol

/m
g*

m
in

]

Oleic acid [µM]

Rv 2212c 
Rv 1264 
Rv 1625c 

Arachidonic acid [µM]
0 1 10 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

cA
M

P
[µ

m
ol

/m
g*

m
in

]

y = 1.7483x – 2.6498 
R2 = 0.9692 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 

(V
/V

m
ax

-V
)

log oleic acid [µM]

1.377

1.348

1.305

1.146

0.499

0.145

0.127

0.128

0.165

0.149

Rv22121-388

µmol/mg*min

0.806

0.804

0.837

0.865

0.923

0.905

0.931

0.884

0.830

0.897

Rv1625
µmol/mg*min

0.113

0.120

0.113

0.109

0.065

0.065

0.039

0.052

0.061

0.069

Rv1264
µmol/mg*min

100

300

500

70

30

10

7

3

1

0

Oleic acid
(µM)

1.377

1.348

1.305

1.146

0.499

0.145

0.127

0.128

0.165

0.149

Rv22121-388

µmol/mg*min

0.806

0.804

0.837

0.865

0.923

0.905

0.931

0.884

0.830

0.897

Rv1625
µmol/mg*min

0.113

0.120

0.113

0.109

0.065

0.065

0.039

0.052

0.061

0.069

Rv1264
µmol/mg*min

100

300

500

70

30

10

7

3

1

0

Oleic acid
(µM)

1.64970

1.504100

0.933300

1.52530

0.83410

0.3047

0.2293

0.1961

0.1910

Rv22121-388

µmol/mg*min
Arachidonic

acid
(µM)

1.64970

1.504100

0.933300

1.52530

0.83410

0.3047

0.2293

0.1961

0.1910

Rv22121-388

µmol/mg*min
Arachidonic

acid
(µM)

Results



          

 86 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.31: Dose–response curves of linoleic, oleic, arachidonic and linolenic acid stimulation 
of Rv2212c1-388 activity (a, b, c and d), and of linoleic and oleic acids on activities of Rv1264 
and Rv1625c (a and b). The corresponding Hill plots for Rv2212c1-388 are shown. Assay 
conditions were 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC, 10 min for 
Rv2212c. The same conditions were applied except for a different buffer system (MES/TRIS, 
pH 5.7) for Rv1264 and a different buffer and reaction temperature (TRIS/HCl, pH 7.5 at 
30oC) for Rv1625c. For each fatty acid dilution, a control sample consisting of the solvent 
system free from FA was tested to exclude the solvent effect.                                          
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Fatty acid  EC50 [µM]  Hill coefficient

Linoleic  56 ± 4 (2) 1.7 ± 0.1 (2) 

Oleic 41 ± 3 (2) 1.6 ± 0.1 (2) 

Arachidonic 10 ± 0.2 (4) 1.7 ± 0.1 (4) 

Linolenic 63 ± 0.8 (4) 1.3 ± 0.04 (4) 
 

Table 4.13: EC50 values and Hill coefficients for FAs tested with Rv2212c1-388. EC50 values 
were derived by Origin 6.0 program and the Hill coefficients from the Hill plots above (fig. 
4.31). Standard errors of the mean are shown (number of experiments in brackets). 
 

 

 

 
Kinetic 

parameter 

 
 

Rv2212c1-388 

 
Rv2212c1-388 

+ 
100 µM 
linoleic 

 

 
Rv2212c1-388 

+ 
100 µM oleic 

 

 
Rv2212c1-388 

+ 
70 µM 

arachidonic 
 

Vmax 

(µmol/mg*min) 

3.6 ± 0.1 (6) 3.8 ± 0.1 (6) 4.1 ± 0.0 (2) 3.6 ± 0.05 (2) 

Km (mM) 2.2 ± 0.2 (6) 0.9 ± 0.02 (6) 1.2 ± 0.01 (2) 1.1 ± 0.1 (2) 

Hill coefficient 1.8 ± 0.0 (6) 1.2 ± 0.02 (6) 1.0 ± 0.03 (2) 0,9 ± 0.01 (2) 
  
Table 4.14: Kinetic characterization of Rv2212c1-388 alone and in the presence 100 µM of  
linoleic and oleic acids, and 70 µM arachidonic. Assay conditions were 10 mM Mn2+, BIS-
TRIS/HCl, pH 6.5, 37oC, 10 min. An ATP range of 0.1-6 mM was used. Standard errors of 
the mean are shown (number of experiments in brackets). 
 
    

4.2.7.5.6 pH dependence of fatty acids effect 

100 µM linoleic, oleic and arachidonic acid were tested with 100 nM Rv2212c1-388 at different 

pH (5-9). The three fatty acids showed a significant stimulation of the enzymatic activity 

starting at pH 5.6 to pH 7.6, while above that hardly any stimulation was detected (fig. 4.32). 

Also the increase in specific activity usually observed at pH 8 was lost in presence of the FA. 

The specific activity increased 20-25 fold at pH 6.5 compared to that at pH 9, in the presence 

of  FAs (fig. 4.32). This points to a pH-sensory effect in presence of these FAs. Vmax values 

and Hill coefficients remained unaffected at pH 6.5 and 9, in the presence of 100 µM linoleic 

acid (table 4.15). While the Km value increased almost 25-fold from 0.9 ± 0.02 mM ATP at 
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pH 6.5 to 23 ± 0.5 mM at pH 9 (table 4.15). The effect of  linoleic (100 µM) and arachidonic 

(70 µM) acid was also tested on Rv1264 at different pH values (5.5, 6.5 and 7.5) as a control. 

A 4-fold increase in activity was shown by linoleic at pH 7.5, while arachidonic acid caused a 

2-fold stimulation. 
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Fig. 4.32: pH dependence curves of Rv2212c1-388 ± 100 µM of linoleic, oleic and  arachidonic 
acids (a,b and c.). Assay conditions were 500 µM ATP, 3 mM Mn2+, 37oC, 10 min. Buffer 
systems used: Acetate/NaOH (pH 5 and 5.6), BIS-TRIS/HCl (pH 5.6-7.3) and TRIS/HCl (pH 
7.3-9). 
 

 

 
Kinetic 

parameter 

 
Rv2212c1-388 

 
 
   (pH=6.5) 

Rv2212c1-388 
+ 

100 µM 
linoleic 

(pH=6.5) 

Rv2212c1-388 
+ 

100 µM 
linoleic 
(pH=9) 

Vmax 

(µmol/mg*min) 

3.6 ± 0.1 (6) 3.8 ± 0.1 (6) 3.9 ± 0.1 (6) 

Km (mM) 2.2 ± 0.2 (6) 0.9 ± 0.02 (6) 23 ± 0.5 (6) 

Hill coefficient 1.8 ± 0.0 (6) 1.2 ± 0.02 (6) 1.3 ± 0.01 (6) 
  
Table 4.15: Kinetic characterization of Rv2212c1-388 ± 100 µM linoleic acid at pH 6.5 and 
with 100 µM linoleic acid at pH 9. Assay conditions were 10 mM Mn2+, BIS-TRIS/HCl, pH 
6.5 and TRIS/HCl, pH 9 at 37oC for 10 min. An ATP range of 0.1-6 mM was used at pH 6.5 
and a range of 0.1-8 mM at pH 9. Kinetic parameters of Rv2212c1-388 at pH 9 without any 
additives were not determined. 
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4.2.7.5.7 Effect of linoleic acid on the time dependence 

100 µM of linoleic acid was tested with 100 nM holoenzyme at 2 min. time intervals. The 

velocity was linear up to 12 min ± linoleic acid (fig. 4.33). This could be due to the inhibiting 

effect of increasing amounts of the outcoming pyrophosphate. The stimulation factor of 

linoleic acid decreased gradually over time.  
 

 

 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.33: Time dependence of Rv2212c1-388 ± 100 µM linoleic acid. Assay conditions were 
100 nM enzyme, 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC . 
 
 
 
 
4.2.7.5.8 Effect of detergents 

To examine whether these stimulatory effects are just due to the detergent-like 

(hydrophilic/hydrophobic) properties of FA, the effect of different detergents on 100 nM 

Rv2212c1-388 activity was tested. 

Detergents were prepared as a 10% solution in BIS-TRIS/HCl, pH 6.5, and further dilutions 

were made in the same buffer. A concentration range of 0.001 – 3‰ was tested. Polidocanol 

(0.1‰ = 170 µM) increased the activity 12-fold, while Triton X-100 and Nonidet P40 caused 

5- and 4-fold increase respectively at 0.07‰ (fig. 4.34). Vmax was not changed by 170 µM 

Polidocanol, while Km decreased about 8-fold from 2.2 ± 0.2 mM ATP to 0.3 ± 0.05 mM 
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(table 4.17). The Hill coefficient decreased from 1.8 ± 0.0 to 1.1 ± 0.1. CHAPS (2‰) 

stimulated Rv2212c1-388 only 3-fold, while PEG (200, 400, 1000, 8000) did not show an effect 

up to 1‰. As a control, the activity of Rv1264 AC was tested in the presence of Polidocanol 

(0.1 and 0.01‰), Triton X-100, Nonidet P40 and CHAPS (0.2 and 2‰ each). None affected 

AC activity significantly. Detergents were prepared as above for this test but using 

MES/TRIS, pH 5.5 (optimum pH for Rv1264). Assay conditions were as in legend of fig. 

4.34, except for the MES/TRIS, pH 5.5. 
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Fig. 4.34: Dose–response curves of Polidocanol, Triton X-100 and Nonidet P40 stimulation 
of Rv2212c1-388 (a, b and c). The corresponding Hill plots are shown. Assay conditions were 
100 nM protein, 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC, 10 min.  
 

 

Detergent EC50 [µM] Hill coefficient

Polidocanol  16 ± 0.6 (2) 1.2 ± 0.04 (2) 

Triton X-100 16 ± 0.05 (2) 1.5 ± 0.2 (2) 

Nonidet P40 15 ± 0.2 (2) 1.5 ± 0.1 (2) 
 

Table 4.16: EC50 values and Hill coefficients of detergents tested with Rv2212c1-388. Assay 
conditions (see legend of fig. 4.34). Standard errors of the mean are shown (number of 
experiments in brackets). 
 
    

 
Kinetic parameter 

 
Rv2212c1-388

Rv2212c1-388 
+ 

170µM Polidocanol
 

Vmax (µmol/mg*min) 3.6 ± 0.1 (6)   3.8 ± 0.1 (2) 

Km (mM) 2.2 ± 0.2 (6)   0.3 ± 0.05 (2) 

Hill coefficient 1.8 ± 0.0 (6)   1.1 ± 0.1 (2) 

 

Table 4.17: Kinetic characterization of Rv2212c1-388 ± 170 µM (0.1‰) Polidocanol. Assay 
conditions were: 100 nM protein, 10 mM Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC, 10 min. An 
ATP range of 0.1-6 mM was used. Standard errors of the mean are shown (number of 
experiments in brackets). 
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4.2.7.5.9 pH dependence of the polidocanol effect 

100 nM of Rv2212c1-388 was tested with 0.2‰ (340 µM) Polidocanol at a pH range of 5-9. 

Polidocanol significantly stimulated the activity at all pH values. It maintained a more or less 

constant specific activity from pH 6 till pH 8.6 thus displaying a pH-independent stimulation 

of the holoenzyme (fig. 4.35). Polidocanol (340 µM) did not show an enzymatic stimulation 

when tested with Rv1264 at pH-values 5.5, 6.5 and 7.5 (table 4.18). 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.35: pH dependence curve of Rv2212c1-388 ± 0.2‰ polidocanol. Assay conditions were 
100 nM protein, 500 µM ATP, 3 mM Mn2+, 37oC, 10 min. Buffer systems used: 
Acetate/NaOH (pH 5 and 5.6), BIS-TRIS/HCl (pH 5.6-7.3) and TRIS/HCl (pH 7.3-9). 
 

 

pH Rv1264 
(nmol·mg-1·min-1)

 

Rv1264 + 340 µM polidocanol
(nmol·mg-1·min-1) 

 
5.5 71 45 

6.5 25 15 

7.5 2 2.8 

 
Table 4.18: Specific activities of Rv1264 ± 0.2‰ polidocanol at different pH. Assay 
conditions were 600 nM protein, 500 µM ATP, 3 mM Mn2+, 37oC, 10 min. Buffer systems 
used: MES/TRIS (pH 5.5), BIS-TRIS/HCl (pH 6.5) and TRIS/HCl (pH 7.5). 
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4.2.7.5.10 Effect of Polidocanol on the time dependence 

Polidocanol (0.2‰) caused a 14.5 X stimulation in activity of Rv2212c1-388. This stimulation 

factor decreased gradually with time. The same as with 100 µM linoleic acid (fig. 4.33), a 

linearity was displayed up to 12 min ± 0.2‰ Polidocanol, then the activity decreased slightly 

along with time (fig. 4.36). 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.36: Time dependence of Rv2212c1-388 ± 0.2‰ polidocanol. Assay conditions were 100 
nM protein, 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC . 
 
 

 

4.2.7.6 Crystallization of Rv2212c1-388   

The Ni2+-NTA purified protein was prepared in two different concentrations. 7.1 mg/ml was 

used with buffers from CS and CS2 kits at 12oC. A 12.9 mg/ml solution was tried with buffers 

from CS2 and CS Lite and left at 16oC, then transferred to 12oC after 17 days. Rv 2212c1-388  

had a high tendency to precipitate and no crystals grew.    
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4.2.8 Expression and characterization of C-terminally His-tagged   

         constructs of adenylyl cyclase Rv2212c       

 These constructs were cloned in pQE-60 and expressed to be used for crystallization. 

Transferring the His-tag to the C-terminus has been useful for crystallization as in the case of 

the CHD of Rv0386 (Castro, L.I., 2004). 

 

 

4.2.8.1 Expression and purification of Rv2212c1-202 C-His, Rv2212c212-388 C-His and     

           Rv2212c1-388 C-His 

The constructs were expressed in E.coli at 16oC overnight, using 60 µM IPTG for Rv2212c1-

202  and 100 µM for Rv2212c212-388  and Rv2212c1-388 . Cells were lysed by sonication, treated 

with lysozyme and DNAaseI, and proteins were purified to homogenity by Ni2+-NTA affinity 

chromatography. Protein yield was about 45 µg, 52 µg and 18 µg per 200 ml culture for each 

of Rv2212c1-202, Rv2212c212-388 and Rv2212c1-388 respectively. The proteins were stored at -20 

oC with 20% glycerol. They were analysed on a 12.5% SDS-PAGE where only Rv2212c1-202 

and Rv2212c212-388 were detected, Rv2212c1-388 was detected by a Western blot (fig. 4.37, A 

and B). A Dot-blot was also carried out to assure detection of the proteins because of the faint 

bands observed on the SDS-PAGE (fig. 4.37, C).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results



          

 97

 

 

  

 

 

 

 

 

 

 

 

Fig. 4.37:  A) 12.5 % SDS-PAGE of Ni2+-NTA purified proteins of: 2.2 µg Rv2212c1-202 C-
His (a) and 2.5 µg Rv2212c212-388 C-His (b). Note that in lane (a) the lower faint band of 
about 23.43 kDa is that of the purified protein. B) Western blot showing a single band at 
about 43 kDa of Rv2212c1-388 C-His, from a 12.5 % SDS-PAGE using Tetra-His antibody as  
primary antibody and the goat anti-mouse IgG-Fc peroxidase conjugated antibody as 
secondary antibody. Exposure time of the film is 4 sec. C) Dot-blot using the same antibodies 
as in (B). (a) Rv2212c1-202 C-His, (b) Rv2212c212-388 C-His and (c) Rv2212c1-388 C-His. 
Protein concentrations of 0.05-0.035 µg per spot were applied. Film exposure was 1 min. 
 

 

4.2.8.2 Adenylyl cyclase activity 

The specific activity of Rv2212c212-388 C-His was 332.4 nmol/mg*min which is only 10 % of 

the corresponding N-terminally His-tagged construct. While that of Rv2212c1-388 C-His was 

563.5 nmol/mg*min which is 78 % of  the corresponding N-terminally His-tagged 

holoenzyme. The assays were conducted using 500 µM ATP, 3 mM Mn2+, BIS-TRIS/HCl, 

pH 6.5, 37oC, 10 min. 3.4 and 2.4 µg of Rv2212c212-388 and Rv2212c1-388 were used in test. 

The constructs were not further used in crystallization experiments because of the poor yield 

and comparatively low activity. 
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5 Discussion 
5.1 Mycobacterial Rv2435c 

In the completed genome of M. tuberculosis H37Rv 15 open reading frames were identified 

which probably code for functional class III ACs, implying that the resulting signal 

transduction modalities using cAMP as a second messenger are of great importance to the 

tubercle bacillus (Cole et al., 1998; McCue et al., 2000). Two of these genes, Rv1625c and 

Rv2435c, code for proteins that are grouped with the mammalian ACs on a branch separate 

from other prokaryotic cyclases. This prompted further analysis of their protein sequences. 

Recent work concentrated on the membrane–bound Rv1625c (Guo et al., 2001, 2005; Reddy 

et al., 2001; Shenoy et al., 2003), while Rv2435c remained enigmatic. Seven predicted 

mycobacterial cyclase genes contain variations at canonical positions of the catalytic centre; 

one is Rv2435c belonging to class IIIa and six class IIIc genes. Four class IIIb cyclases 

contain a threonine variant at the substrate binding aspartate (Linder and Schultz, 2003). So 

the pressing question was whether this non-canonical predicted AC, Rv2435c, is capable of 

converting ATP into cAMP inspite of  having four deviations from the conserved hexad of 

catalytic residues. And if active, does it function as a homodimer like the similar mammalian-

type Rv1625c? What is the real function of its unique extracellular domain? Actually two 

main points encouraged the expression and biochemical characterization of Rv2435c at that 

time. First, the significant sequence similarity of its CHD to the catalytically active Rv1625c 

CHD (55%) as well as several eukaryotic ACs such as the C2 segment of rat type II (IIC2) and 

C1a of canine type V (VC1) (49 % and 48 %, respectively). Second, the rather unexpected 

enzymatic activities observed for unorthodox class IIIc mycobacterial ACs (Rv0386 and 

Rv1900c) which were investigated in parallel in this laboratory.  

 

5.2 Charaterization of Rv2435c511-730   

The recombinant Rv2435c511-730 was successfully expressed in E.coli BL21 cells and purified 

to be utilized in answering the first two of the former questions. It is a soluble protein having 

a molecular mass of 25 kDa. Activity was tested with different protein concentrations, 

substrate concentrations and  pH values. Both Mn2+ and Mg2+ were tested as a metal cofactor. 

The GC activity was also tested at 0.1 mM GTP. Unfortunately all these trials were in vain. 

This does not necessarily mean that the four variations in the six canonical residues are the 

only reason behind the inactivity of this CHD. Recently, mycobacterial ACs showing 

variations in these canonical residues appeared to be utilizing alternate mechanisms of 

catalysis or substrate-binding for the conversion of ATP to cAMP. For example, in the variant 
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AC Rv1900c both a histidine residue which substitutes the canonical transition-state 

stabilizing asparagine, and an asparagine-aspartate couple which replaces the usual substrate-

specifying lysine-aspartate pair appeared to be dispensable for catalysis. So the preference of 

Rv1900c for ATP over GTP is probably governed by other determinants as general steric 

constraints of the purine-binding pocket (Sinha et al., 2005). On the other hand, the 

unorthodox Rv0386 class IIIc AC revealed a completely novel mechanism of substrate 

binding where the glutamine-asparagine couple was specifically needed for catalysis (Castro 

et al., 2005). 

 

5.3 Characterization of Rv2435c holoenzyme 

Failure with Rv2435c CHD led to the transition to the next point and trying with the 

holoenzyme. Rv2435c holoenzyme seemed to be an interesting protein in terms of its domain 

composition. It is the only mycobacterial AC which possesses a C-terminal CHD preceeded 

by an extracellular domain anchored by two transmembrane helices (fig. 4.1). Through a 

sequence alignment with Rv1625c three different starts were chosen for the predicted 

Rv2435c AC holoenzyme. The three holoenzymes were detected by a Western blot in both 

supernatants and pellets. It is most likely that the main portion of the protein was degraded in 

all three constructs yielding a fragment corresponding to nearly the size of the CHD (25 kDa) 

to which the C-terminal His-tag is attached. It could be speculated that the folding of these 

holoenzymes was defective and that the most probable site for rupture was an interdomain, 

before the CHD. One hypothesis might be that a certain ligand for the Rv2435c extracellular 

domain exists in M. tuberculosis and not in E. coli which might be responsible for preserving 

the protein’s native conformation and stability. As it was recently reported that the 

transcription factor TraR of Agrobacterium tumefaciens must bind its inducing ligand to 

acquire its native conformation and protease resistance when expressed in E. coli cells (Zhu 

and Winans, 2001). It is worth saying that such phenomenon of holoenzyme degradation 

during expression was observed before with mycobacterial ACs Rv0386, Rv1319c and 

Rv1318c (Castro L.I., 2004; Hammer A., 2004).  

 

Inability of Rv2435c to function as an active AC could be attributed to one of several reasons: 

(i) Redundancy of  functional ACs in M. tuberculosis which could have led to an evolutionary 

deterioration of its activity. (ii) The need for a ligand that could initiate the enzymatic activity 

through the extracellular domain by inducing certain conformational changes under certain 

enviromental conditions in the host. (iii) The comparatively high deviation from the canonical 
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residues (4 out of 6 ) could lead us to the assumption that Rv2435c serves a different 

biological function in the mycobacterium, especially due to the similarity between its 

extracellular domain and the methyl accepting chemotaxis proteins. Replacing the odd 

residues with the canonical ones might give clues in this issue. 

 

5.4 Mycobacterial Rv2212c 

Attention was focused to Rv2212c after the discovery of the autoinhibitory and pH-sensing 

functions of the N-terminal domain of AC Rv1264 which has a similar domain organization 

(Linder et al., 2002; Tews et al., 2005). The Rv2212c CHD has a  specific activity of 3.1 

µmol cAMP·mg-1 ·min-1, and this belongs to the high activity CHDs of M. tuberculosis such 

as Rv1625c (2 µmol cAMP·mg-1 ·min-1; Guo et al., 2001), Rv1264 (1 µmol cAMP·mg-1 ·min-

1; Linder et al., 2002), Rv1900c (1 µmol cAMP·mg-1 ·min-1; Sinha et al., 2005) and Rv1647 (3 

µmol cAMP·mg-1 ·min-1; Shenoy et al., 2005). Being one of the most active mycobacterial 

ACs, the pressing question was how is it regulated.               

When Stephan Zeibig (2003) started working on Rv2212c, he expressed both Rv2212c212-388  

and Rv2212c1-388 and his main issue was to answer two questions: (i) Does the N-terminal 

domain of Rv2212c regulate the activity in a pH-dependent manner analogous to Rv1264? (ii) 

Does the N-terminal domain of Rv1264 retain its pH-sensing function when linked to the 

CHD of Rv2212c?  

Both Rv2212c1-388 and Rv2212c212-388 had optimal activities at the same pH (6.5). An 

activation of the Rv2212c1-388  by an acidic milieu was not observed. While Rv1264 

holoenzyme was activated 40-fold at acidic pH (6) (Tews et al., 2005). This gave a clear 

negative answer to the first of the two questions above.  

Two chimeras were built connecting the N-terminal domain of Rv1264 and the CHD of 

Rv2212c in a trial to investigate the second question (Zeibig, 2003). The linker region 

between the two domains in these chimeras was taken once from Rv2212c sequence and once 

from Rv1264 as shown in fig. 5.1.  
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Rv2212     187 : ALIDTVHRHHLASARTYFEGVIGDT--SASVTCGIGFADLSSFTALTQAL 
Rv1264     184 : DMLFMQLRHMMETEAVNAGERAAGKPLPGARQVTVAFADLVGFTQLGEVV 
                                                                    
 
Fig. 5.1: Sequence alignment showing the linker region between the CHD and the N-terminal 
domain in Rv2212c and Rv1264. The triangles mark the beginnings and the ends of the linker 
regions chosen in the two chimeras (Zeibig, 2003). Residues H192 and E195 in the α-N10 switch, 
identified by mutagenesis to be important for the interaction between the regulatory and 
catalytic domains in Rv1264, are indicated by black dots (Tews et al.,2005). 
 

Both chimeras displayed similar pH-dependence to that of Rv2212c1-388. Thus it is clear that 

the Rv1264 N-terminal domain did not confer its pH-sensing function to Rv2212c212-388. 

However a significant drop in the activities of these chimeras compared to that of Rv2212c1-

388 indicated a rather similar autoinhibition. This could argue for a structural similarity of the 

protein surfaces of the CHDs of both enzymes at the regions of contact between the regulatory 

and catalytic domains. For example, the conservation of a certain epitope which plays an 

important role in the autoinhibition mechanism (Zeibig, 2003). After the elucidation of  the X-

ray structure of Rv1264 in both the active and inhibited states (Tews et al., 2005), two 

residues in the αN10-switch helix were identified by mutagenesis to be important in the 

interaction between the regulatory and catalytic domains. H192 which is conserved in Rv2212c 

whereas E195 is not. Both were included in the N-terminal domain of Rv1264 in the above 

mentioned chimeras (fig. 5.1). In the inhibited state, H192 interacts with the conserved 

canonical K261 and D312 via hydrogen bonds, holding them away from their respective 

positions in the active state. Such an interaction might have occurred to some extent in the 

chimeras yielding the observed autoinhibition. E195 interacts, together with D62 and Y66, with 

R309 in the CHD. R309 is not conserved in Rv2212c CHD which probably disrupts the second 

site of interaction rendering the holoenzyme active and unregulated, as the R309A mutant in 

Rv1264 (Tews et al., 2005) (fig. 4.6). It is noteworthy that R309 is conserved in similar ACs 

from Brevibacterium liquefaciens and Streptomyces, but not in Rv2212c from M. tuberculosis 

and its ortholog from M. smegmatis (Linder et al., 2002). 

Such an assumption could only be proven by an elucidation of the X-ray structure of 

Rv2212c. So we are left with the question: what is the function of the N-terminal domain and 

does it at all possess a role in regulating the Rv2212c1-388? 
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5.5  Rv2212c1-202 

The dimer of N-terminal domains of Rv1264 was previously determined to 1.6 Ả resolution 

(F.Findeisen et al., unpublished data). This encouraged the idea of expression and purification 

of Rv2212c1-202 for crystallization. It was successfully purified in large quantities. The first 

crystals were obtained with buffer CS#19 of the Hampton research kit in four days at 16oC at 

a protein concentration of 19.7 mg/ml. Optimization of the size and quality of the obtained 

crystals was then carried out through variation of the crystallization conditions and buffer 

concentrations. Suitable styloid crystals 50×100 µ were obtained with 30% isopropanol, 0.22 

M CH3COO NH4, 0.1 M Tris/HCl pH 8.5 in seven days. But unfortunately these crystals did 

not diffract. Actually due to the presence of 30% isopropanol, the crystals had to be frozen 

and mounted at the beamline which might have disturbed the crystals. Due to the high 

crystallization potential of this domain, crystallization is continued in collaboration with the 

Biochemistry Centre in Heidelberg. Moving the His-tag to the C-terminal position was not 

tolerated by the Rv2212c1-202, because of a 96 % reduction in protein yield. Moreover the 

protein was not sufficiently purified for crystallization. 

 
5.6  Rv2212c212-388 

The recombinant Rv2212c212-388 displayed high AC activity (3.1µmol cAMP·mg-1 ·min-1) at 

0.5 mM ATP using Mn2+ as a cofactor, whereas Mg2+-mediated catalysis was not detected. A 

preference for Mn2+ was shown by all mycobacterial ACs examined so far. GTP was not 

accepted as a substrate irrespective of the metal cation employed (Zeibig, 2003). The amount 

of cAMP increased linearly with time. Operating as a symmetric homodimer with two 

identical catalytic centres is likely due to the conservation of the six canonical amino acids. 

The Hill coefficient of 1.4 ± 0.02 indicated a pronounced cooperativity for ATP, consistent 

with the presence of two catalytic sites. This is supported by the increase in specific activity 

with increasing protein concentrations. The specific activity tripled by increasing protein 

concentration from 5 to 80 nM. The apparent association constant of 20 nM indicated a high 

affinity of the monomers to each other. The apparent Vmax of 26 ± 0.5 µmol cAMP·mg-1 ·min-1 

derived from a Hill-plot is very high compared to other mycobacterial ACs. Rv2212c212-388 

had a relatively high Km (2.1 ± 0.01 mM) as the Km values observed for purified membrane-

bound and soluble ACs is within the range of 30-400 µM (Tang and Hurley, 1998). In 

comparison to the other mycobacterial CHDs (Km of Rv1264 = 0.3 mM; Rv1625c = 0.15 

mM; Rv0386 = 0.6 mM; Rv1900c = 0.3 mM; Rv1319c = 0.057 mM; Rv3645 = 1.2 mM) 
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(Castro et al., 2005; Guo et al., 2001; Linder et al., 2002, 2004; Sinha et al., 2005), 

Rv2212c212-388 had a rather low affinity for ATP which might be of a biological significance.  

Truncations at the C-terminus of Rv2212c212-388 were possible and not detrimental up to L370. 

Therefore crystallization was attempted with Rv2212c212-377, Rv2212c212-374 and Rv2212c212-

370. On the other hand, removing L370 or mutating it to V, A or G abolished AC activity. Also 

removal of the first three residues  at the N-terminus of Rv2212c212-370 up to V215 did not 

affect kinetic properties of the CHD. Deleting L370 at the C-terminus or V215 at the N-terminus 

probably caused important conformational changes affecting the catalytic fold and hence 

reducing activity besides leading to a drop in the expression. It is noteworthy that L370 is 

conserved in the Rv2212c ortholog in M. smegmatis (Linder et al., 2002). Both Rv2212c213-370 

and Rv2212c215-370 showed similar protein–dependence profiles as the wild type CHD. 

Rv2212c213-370 was chosen for crystallization because of its higher yield. Rv2212c 214-370 was 

not considered because of its low specific activity. Gel filtration for both wild type 

Rv2212c212-388 and Rv2212c213-370 gave a single peak at 14.5 ml corresponding to 

approximately 40 kDa which is about the size of a homodimer.  

Transferring the His-tag to the C-terminus caused a 90% drop in the specific activity of 

Rv2212c212-388 accompanied by an extremely poor protein yield. Therefore it was impossible 

to use this construct for crystallization or any other experiments. 

 

5.7  Rv2212c1-388 

An autoinhibitory effect of the N-terminal domain of Rv2212c1-388 analagous to that of 

Rv1264 was not observed as Rv2212c1-388 showed a specific activity of 0.72 µmol cAMP·mg-

1·min-1 at 0.5 mM ATP using 10 mM Mn2+. This is about 4.5-fold less than that of its CHD 

using identical assay conditions. The Rv2212c N-terminal domain displayed an important role 

in the dimerization and hence stabilization of the catalytically active dimer. This is 

demonstrated by the protein-dependence of Rv2212c1-388 where the equilibrium is shifted 

towards the active dimer already at 12 nM, whereas the CHD required a protein concentration 

of at least 80 nM to achieve maximal specific activity. The property of the holoenzyme to 

tolerate higher temperatures (over 43oC) and NaCl addition more than the CHD was further 

proof of the role played by the N-terminal domain in structurally stabilizing the holoenzyme. 

The activation energy for Rv2212c1-388 was 46 kJ/mol and for Rv2212c212-388 it was 65 kJ/mol 

(Zeibig, 2003). Also transferring the His-tag to the C-terminus was much more tolerated by 

Rv2212c1-388 as it caused a drop of only 22% in specific activity compared to a 90% drop in 

case of Rv2212c212-388. 
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5.8 The effect of chemicals on Rv2212c activity 

The function of the regulatory domain remained unclear. Random testing of different 

compounds, involved in M. tuberculosis metabolism, on enzymatic activity was used.  

The distinct stimulatory effect of the unsaturated fatty acids (arachidonic, oleic, linoleic, and 

linolenic) on Rv2212c was surprising, particularly because such an effect was neither 

observed with Rv1264 nor with Rv1625c (fig. 4.31, a and b). Detection of an oleic acid 

molecule embedded in the N-terminal domain of Rv1264 by X-ray analysis (confidential 

information) made it appear even more interesting. Linoleic, oleic and arachidonic acids 

demonstrated a significant stimulatory effect on Rv2212c1-388, whereas only 30-40 % of this 

effect was observed with Rv2212c212-388. Polidocanol was the only detergent that exhibited a 

comparable stimulatory effect on the holoenzyme. Probably due to structural similarities to 

FAs, having a long alkyl chain devoid of any aromatic rings (see appendix section 8.4). It also 

affected the Rv2212c212-388 (67% of the stimulatory effect). Furthermore, the FAs showed a 

significant cooperativity in binding to the holoenzyme not shown with the CHD as denoted 

from their corresponding Hill coefficients (tables 4.2 and 4.13), whereas Polidocanol showed 

a similar cooperativity in binding to both, the holoenzyme and CHD. The most striking was 

the change in the pH-dependence of the holoenzyme in presence of 100 µM of any of these 

FAs (fig. 4.32). The specific activity increased 20-25 fold at pH 6.5 compared to that at pH 9. 

This was clearly different in case of the CHD as only a 4-fold increase in the specific activity 

was detected going from pH 9 to pH 6.5 in presence of 100 µM linoleic acid (fig. 4.15). Also 

polidocanol did not demonstrate this effect as it maintained a pH-independent stimulation of 

the holoenzyme (fig. 4.35). 

 Taken together one may assume that the FAs possess a dual effect on Rv2212c. (i) A 

regulatory effect through the N-terminal domain, stimulating and conferring a pH-sensing 

function to the holoenzyme demonstrated by its pH-dependency in presence of 100 µM FA, 

somehow akin to the pH-sensing function of Rv1264 although there was a 40-fold increase in 

activity going from pH 8 to pH 6 accompanied with a 12-fold increase in Vmax and about a 2-

fold decrease in Km (Tews et al., 2005). The fact that Vmax of Rv2212c remained unaltered 

and the apparent Km value decreased 25–fold from 23 ± 0.5 mM at pH 9 to 0.9 ± 0.02 mM at 

pH 6.5 in presence of 100 µM linoleic acid, one could argue for a different mechanism in pH-

sensing. At the same time this raises questions concerning the role played by the embedded 

oleic acid molecule in the N-terminal domain of Rv1264, as whether it has a physiological 

function in pH-sensing. (ii) A detergent-like side effect, as manifested by polidocanol 
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stimulation which is pH-independent. Activation by detergents was also recently reported for 

the mycobacterial class IIIc AC Rv1647 (Shenoy et al., 2005). 

 

The presence of 100 µM of these FAs did not affect Vmax of the Rv2212c1-388 but slightly 

increased its substrate affinity at pH 6.5. In other words the stimulation factor of the FAs 

significantly decreased by increasing substrate concentrations up to 5 mM ATP where hardly 

any stimulation by FA could be observed. This drop in the stimulation factor by increasing 

ATP concentrations was barely visible with the CHD (see fig.5.2, a and c for comparison).  
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c)   

 

 

 

 

 

 

 

 

 

 

Fig. 5.2: Michaelis-Menten curves of Rv2212c1-388 ± 100µM linoleic acid (a), 170 µM 
polidocanol (b) and of Rv2212c212-388 ± 100 µM linoleic acid (c). Assay conditions were 10 
mM Mn2+, BIS-TRIS/HCl, pH 6.5, 37oC, 10 min. Rv2212c1-388 concentration was 100 nM and 
that of Rv2212c212-388 was 200 nM. An ATP range of 0.1-6 mM was used. 
 

This could lead us to the hypothesis that Rv2212c has two interconvertible states; an active 

state and an inhibited state in a way similar to Rv1264 (Tews et al., 2005). But in case of 

Rv2212c, either the FAs or high concentrations of ATP could shift the equilibrium towards 

the active state, by certain conformational changes, thus increasing the affinity towards the 

substrate and consequently the activity without affecting Vmax. It is the conformation to which 

the FA is bound, which is capable of sensing pH changes and hence be regulated accordingly. 

This also might be a good explanation for the instability in activity observed with Rv2212c1-

388 and Rv2212c212-388 throughout this work. The enzymatic activity is higher when more of 

the enzyme molecules are bound to FAs thus shifting the equilibrium more towards the active 

state. Another reason could be the reversibility in binding of these FAs causing continuous 

conformational interconversions leading to the observed instability.  

Yet the detergent-like effect of these FAs cannot be ignored as 170 µM of polidocanol did not 

change the Vmax of Rv2212c1-388, infact decreased the Km value about 8-fold (fig. 5.2 b). This 

implies that still a lot is left to be known about the actual role of FAs in Rv2212c stimulation 

and regulation. 
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5.9  Outlook 

The real biological function of Rv2435c in the tubercle bacillus is still an open question. Also 

exploring the mysterious task of its extracellular domain might lead to novel regulatory 

mechanisms in bacteria in general. 

As for the Rv2212c, unsaturated FAs had quite a clear role in stimulating and regulating this 

enzyme. How these FAs affect AC activity in such a regulatory mechanism remains a 

question for future studies. Success in structural elucidation of the N-terminal domain through 

X-ray crystallography would be of great help in answering this question. Also site directed 

mutagenesis in the region corresponding to the determined oleic acid binding site in Rv1264 

N-terminal domain, and testing these mutants in the presence of FAs could give clues to the 

way these FAs bind to and regulate Rv2212c. 
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6 Summary 
The Mycobacterium tuberculosis genome has 15 open reading frames for class III adenylyl 

cyclases. Here I report on two structurally different ACs belonging to two different 

subclasses; the mammalian-like Rv2435c classified as class IIIa, and Rv2212c belonging to 

class IIIc. Rv2435c is unique in possessing an extracellular domain, two transmembrane 

helices as a membrane anchor and a C-terminal catalytic domain. Having four deviations from 

the canonical hexad in the catalytic centre raised theoretical questions concerning AC activity. 

Three different holoenzyme constructs were expressed and were mostly degraded. Both the 

catalytic domain and these unstable holoenzymes did not display enzymatic activity. Rv2212c 

is composed of two distinct protein modules; a C-terminal CHD and an N-terminal regulatory 

domain, the occurrence of which is restricted to several adenylyl cyclases present in Gram-

positive bacteria including the mycobacterial Rv1264. All six amino acids annotated to be 

participating in catalysis are conserved. The expressed CHD was shown to function as a 

homodimer. Its specific activity (3.1µmol cAMP·mg-1·min-1) and Vmax were high compared to 

other mycobacterial ACs, whereas substrate affinity was quite low. GC activity was absent. 

The holoenzyme had a specific activity 4.5-fold lower than the CHD, arguing against the idea 

of an autoinhibitory N-terminal domain. Also the function of a pH-sensing N-terminal domain 

was excluded as both CHD and holoenzyme demonstrated a pH-optimum at pH 6.5. 

Nevertheless the N-terminal domain had a role in dimerization and enzyme stabilization. 

Unsaturated FAs (arachidonic, oleic and linoleic) caused a significant stimulation of the 

enzyme by increasing its substrate affinity but without altering Vmax and conferring an 

increased pH-sensitivity to the protein. The effect of the FAs did not only involve the N-

terminal domain because the CHD was similarly affected but to a much lesser extent. In 

particular, a pH-regulation in presence of FAs was not shown for the CHD, which makes the 

regulatory role played by the N-terminal domain in presence of FAs more relevant. 

Deciphering the molecular structure of this protein is required to be able to figure out how the 

FAs exert these effects and how exactly they interact with the enzyme.  
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7 Zusammenfassung 
Das Genom von M. tuberculosis enthält 15 Klasse III Adenylatcyclasen. Im Rahmen der 

vorliegenden Arbeit wurden zwei Adenylatcyclasen mit unterschiedlichen strukturellen 

Eigenschaften untersucht: die Mammalia-ähnliche Rv2435c aus Klasse IIIa und Rv2212c aus 

Klasse IIIc. Rv2435c ist die einzige mycobakterielle AC, die aus einer extrazellulären 

Domäne, zwei transmembranären Helices als Membrananker und einer C-terminalen 

katalytischen Domäne (CHD) besteht. Sie besitzt vier Abweichungen von den sechs 

kanonischen Aminosäuren im katalytischen Zentrum, was theoretische Fragen über die AC 

Aktivität aufgeworfen hat. Drei verschiedene Holoenzym-Konstrukte wurden exprimiert. 

Allerdings wurden größtenteils Abbruchprodukte gebildet. Sowohl die katalytische Domäne, 

als auch diese instabilen Holoenzyme zeigten keine enzymatische Aktivität. Rv2212c besteht 

aus zwei unterschiedlichen Domänen, einer C-terminalen CHD und einer N-terminalen 

regulatorischen Domäne, die auch in anderen Adenylatcyclasen aus Gram-positiven Bakterien 

(Rv1264 inbegriffen) gefunden wurde. Alle sechs kanonischen Aminosäuren sind konserviert. 

Die exprimierte CHD funktioniert als Homodimer. Ihre spezifische Aktivität (3.1µmol 

cAMP·mg-1·min-1) und Vmax waren hoch im Vergleich zu anderen mycobakteriellen 

Adenylatcyclasen, die Substrataffinität war allerdings gering. GC Aktivität wurde nicht 

gefunden. Die spezifische Aktiviät des Holoenzyms war 4,5-fach niedriger als die der CHD, 

was gegen eine mögliche autoinhibitorische Funktion der N-terminalen Domäne spricht. Auch 

eine Funktion als pH-Sensor kann ausgeschlossen werden, da CHD und Holoenzym ihr pH-

Optimum bei pH 6,5 haben. Dennoch spielt die N-terminale Domäne eine Rolle bei der 

Dimerisierung und der Enzymstabilität. Ungesättigte Fettsäuren (Arachidonsäure, Ölsäure 

und Linolsäure) stimulierten das Enzym  signifikant durch eine Erhöhung der Substrataffinität 

aber ohne eine Änderung von Vmax und verliehen dem Protein eine hohe pH- Empfindlichkeit. 

Diese Effekte betreffen allerdings nicht nur die N-terminale Domäne, denn auch die CHD 

wurde durch die Fettsäuren stimuliert in geringerem Ausmaß. Die Tatsache, dass eine pH-

Regulation durch die CHD in Anwesenheit der Fettsäuren nicht beobachtet werden konnten, 

spricht für die Bedeutung der N-terminalen Domäne bei der Regulation in Gegenwart von 

Fettsäuren. Durch die Aufklärung der molekularen Struktur des Proteins könnten der Einfluss 

der Fettsäuren und die Interaktionen mit dem Protein genauer untersucht werden.  
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8   Appendix 

 
8.1 DNA and protein sequences of Rv2435c 

Gene name MT2509, UniProtKB/TrEMBL accession number P71914.  

bp = base pairs, aa = amino acids.  

 
 

 
 
   bp         aa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TTGACGTCGGGTGAGGCACTGGACTCGGTAGCCGAGAGTGAATCCACCCCGGCTAAGAAG 60

L  T  S  G  E  A  L  D  S  V  A  E  S  E  S  T  P  A  K  K    20

CGCCATAAGAATGTGCTCCGGCGTCGGCCGCGTTTCCGGGCCAGCATCCAGTCCAAGCTC 120

R  H  K  N  V  L  R  R  R  P  R  F  R  A  S  I  Q  S  K  L    40 

ATGGTGCTGCTGCTGTTGACGAGTATCGTGTCCGTCGCGGCGATTGCGGCCATTGTCTAT 180

M  V  L  L  L  L  T  S  I  V  S  V  A  A  I  A  A  I  V  Y    60

CAATCTGGTCGCAC

TTGACGTCGGGTGAGGCACTGGACTCGGTAGCCGAGAGTGAATCCACCCCGGCTAAGAAG 60

L  T  S  G  E  A  L  D  S  V  A  E  S  E  S  T  P  A  K  K    20

CGCCATAAGAATGTGCTCCGGCGTCGGCCGCGTTTCCGGGCCAGCATCCAGTCCAAGCTC 120

R  H  K  N  V  L  R  R  R  P  R  F  R  A  S  I  Q  S  K  L    40 

ATGGTGCTGCTGCTGTTGACGAGTATCGTGTCCGTCGCGGCGATTGCGGCCATTGTCTAT 180

M  V  L  L  L  L  T  S  I  V  S  V  A  A  I  A  A  I  V  Y    60

CAATCTGGTCGCACTTCGCTAAGAGCAGCCGCCTACGAGCGGTTGACCCAGTTGCGCGAG 240

Q  S  G  R  T  S  L  R  A  A  A  Y  E  R  L  T  Q  L  R  E    80

TCGCAGAAGCGGGCAGTTGAGACACTATTTTCTGACCTGACGAATTCGCTGGTCATTTAC 300

S  Q  K  R  A  V  E  T  L  F  S  D  L  T  N  S  L  V  I  Y    100 

GAACGTGGACTCACGGTTGTCGATGCCGTCGTGCGGTTCACGGCCGGCTTTGACCAGCTG 360

E  R  G  L  T  V  V  D  A  V  V  R  F  T  A  G  F  D  Q  L    120 

GCTGACGCCACGATCAGCCCCGCCCAAC

TTCGCTAAGAGCAGCCGCCTACGAGCGGTTGACCCAGTTGCGCGAG 240

Q  S  G  R  T  S  L  R  A  A  A  Y  E  R  L  T  Q  L  R  E    80

TCGCAGAAGCGGGCAGTTGAGACACTATTTTCTGACCTGACGAATTCGCTGGTCATTTAC 300

S  Q  K  R  A  V  E  T  L  F  S  D  L  T  N  S  L  V  I  Y    100 

GAACGTGGACTCACGGTTGTCGATGCCGTCGTGCGGTTCACGGCCGGCTTTGACCAGCTG 360

E  R  G  L  T  V  V  D  A  V  V  R  F  T  A  G  F  D  Q  L    120 

GCTGACGCCACGATCAGCCCCGCCCAACAACAGGCGATCGTCAACTACTACAACAACGAA 420

A  D  A  T  I  S  P  A  Q  Q  Q  A  I  V  N  Y  Y  N  N  E    140 

TTCATCACACCCGTCGAACGCACGACCGGCGATAAACTCGACATCACCGCGCTGCTGCCG 480

F  I  T  P  V  E  R  T  T  G  D  K  L  D  I  T  A  L  L  P    160

ACTTCTCCGGCCCAAAGGTATCTTCAGGCGTACTACACTGCACCATTCACGTCGGACCAA 540

T  S  P  A  Q  R  Y  L  Q  A  Y  Y  T  A  P  F  T  S  D  Q    180

GATGCGATGCGGCTGGACGATGCCGGCGACGGCAGTGCATGG

AACAGGCGATCGTCAACTACTACAACAACGAA 420

A  D  A  T  I  S  P  A  Q  Q  Q  A  I  V  N  Y  Y  N  N  E    140 

TTCATCACACCCGTCGAACGCACGACCGGCGATAAACTCGACATCACCGCGCTGCTGCCG 480

F  I  T  P  V  E  R  T  T  G  D  K  L  D  I  T  A  L  L  P    160

ACTTCTCCGGCCCAAAGGTATCTTCAGGCGTACTACACTGCACCATTCACGTCGGACCAA 540

T  S  P  A  Q  R  Y  L  Q  A  Y  Y  T  A  P  F  T  S  D  Q    180

GATGCGATGCGGCTGGACGATGCCGGCGACGGCAGTGCATGGTCGGCCGCCAACGCGCAA 600

D  A  M  R  L  D  D  A  G  D  G  S  A  W  S  A  A  N  A  Q    200 

TTCAACAGCTATTTCCGGGAAATCGTCACCCGGTTCGATTACGACGACGCGGTATTGCTG 660

F  N  S  Y  F  R  E  I  V  T  R  F  D  Y  D  D  A  V  L  L    220 

GACACCCGGGGCAATATCGTCTATACCCTGAGCAAGGACCCCGACCTCGGTACCAACATT 720

D  T  R  G  N  I  V  Y  T  L  S  K  D  P  D  L  G  T  N  I    240 

CTGACCGGGCCGTATCGCGAATCCAATCTGCGTGACGCCTACCTTAAAGCGTTGGG

TCGGCCGCCAACGCGCAA 600

D  A  M  R  L  D  D  A  G  D  G  S  A  W  S  A  A  N  A  Q    200 

TTCAACAGCTATTTCCGGGAAATCGTCACCCGGTTCGATTACGACGACGCGGTATTGCTG 660

F  N  S  Y  F  R  E  I  V  T  R  F  D  Y  D  D  A  V  L  L    220 

GACACCCGGGGCAATATCGTCTATACCCTGAGCAAGGACCCCGACCTCGGTACCAACATT 720

D  T  R  G  N  I  V  Y  T  L  S  K  D  P  D  L  G  T  N  I    240 

CTGACCGGGCCGTATCGCGAATCCAATCTGCGTGACGCCTACCTTAAAGCGTTGGGCGCC 780

L  T  G  P  Y  R  E  S  N  L  R  D  A  Y  L  K  A  L  G  A    260 

AACGCCGTCGACTTTACCTGGATTACCGACTTCAAGCCGTATCAGCCTCAACTCGGCGTG 840

N  A  V  D  F  T  W  I  T  D  F  K  P  Y  Q  P  Q  L  G  V    280 
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CCGACCGCGTGGTTGGTGGCACCGGTCGAAGCGGGCGGCAAAACTCAGGGCGTTTTGGCG 900

P  T  A  W  L  V  A  P  V  E  A  G  G  K  T  Q  G  V  L  A    300        

CTGCCGTTGCCGATCGACAAGATCAATAAGATCATGACCGCCGACAGGCAATGGCAAGCG 960

L  P  L  P  I  D  K  I  N  K  I  M  T  A  D  R  Q  W  Q  A    320 

GCTGGCATGGGTAGTGGGACGGAAACCTATCTCGCCGGTCCGGACAGTCTGATGCGGTCC 1020

A  G  M  G  S  G  T  E  T  Y  L  A  G  P  D  S  L  M  R  S    340 

GATTCTCGGCTCTT

CCGACCGCGTGGTTGGTGGCACCGGTCGAAGCGGGCGGCAAAACTCAGGGCGTTTTGGCG 900

P  T  A  W  L  V  A  P  V  E  A  G  G  K  T  Q  G  V  L  A    300        

CTGCCGTTGCCGATCGACAAGATCAATAAGATCATGACCGCCGACAGGCAATGGCAAGCG 960

L  P  L  P  I  D  K  I  N  K  I  M  T  A  D  R  Q  W  Q  A    320 

GCTGGCATGGGTAGTGGGACGGAAACCTATCTCGCCGGTCCGGACAGTCTGATGCGGTCC 1020

A  G  M  G  S  G  T  E  T  Y  L  A  G  P  D  S  L  M  R  S    340 

GATTCTCGGCTCTTCCTGCAAGACCCGGAGGAATACCGGAAACAGGTTGTGGCAGCAGGC 1080

D  S  R  L  F  L  Q  D  P  E  E  Y  R  K  Q  V  V  A  A  G    360 

ACGTCACTTGATGTGGTCAACAGAGCGATCCAGTTCGGTGGGACGACGCTGCTGCAGCCT 1140

T  S  L  D  V  V  N  R  A  I  Q  F  G  G  T  T  L  L  Q  P    380 

GTTGCGACCGAAGGACTGCGCGCCGCCCAACGCGGACAGACCGGAACCGTCACCTCCACC 1200

V  A  T  E  G  L  R  A  A  Q  R  G  Q  T  G  T  V  T  S  T    400

GACTACACGGGTAGCAGGGAACTGGAGG

CCTGCAAGACCCGGAGGAATACCGGAAACAGGTTGTGGCAGCAGGC 1080

D  S  R  L  F  L  Q  D  P  E  E  Y  R  K  Q  V  V  A  A  G    360 

ACGTCACTTGATGTGGTCAACAGAGCGATCCAGTTCGGTGGGACGACGCTGCTGCAGCCT 1140

T  S  L  D  V  V  N  R  A  I  Q  F  G  G  T  T  L  L  Q  P    380 

GTTGCGACCGAAGGACTGCGCGCCGCCCAACGCGGACAGACCGGAACCGTCACCTCCACC 1200

V  A  T  E  G  L  R  A  A  Q  R  G  Q  T  G  T  V  T  S  T    400

GACTACACGGGTAGCAGGGAACTGGAGGCCTACGCGCCGCTGAATGTGCCGGACTCCGAT 1260

D  Y  T  G  S  R  E  L  E  A  Y  A  P  L  N  V  P  D  S  D    420

CTGCACTGGTCGATCCTGGCAACGCGGAACGATTCTGAGGCGTTCGCGGCCGTCGCGTCG 1320

L  H  W  S  I  L  A  T  R  N  D  S  E  A  F  A  A  V  A  S    440 

TTCAGCAGGGCGCTTGTGCTGGTTACAGTTGGCATCATTGTCGTCATCTGTGTGGCGTCG 1380

F  S  R  A  L  V  L  V  T  V  G  I  I  V  V  I  C  V  A  S    460

ATGCTGATCGCCCATGCGATGGTGCGGCCAATCCGGCGGCTC

CCTACGCGCCGCTGAATGTGCCGGACTCCGAT 1260

D  Y  T  G  S  R  E  L  E  A  Y  A  P  L  N  V  P  D  S  D    420

CTGCACTGGTCGATCCTGGCAACGCGGAACGATTCTGAGGCGTTCGCGGCCGTCGCGTCG 1320

L  H  W  S  I  L  A  T  R  N  D  S  E  A  F  A  A  V  A  S    440 

TTCAGCAGGGCGCTTGTGCTGGTTACAGTTGGCATCATTGTCGTCATCTGTGTGGCGTCG 1380

F  S  R  A  L  V  L  V  T  V  G  I  I  V  V  I  C  V  A  S    460

ATGCTGATCGCCCATGCGATGGTGCGGCCAATCCGGCGGCTCGAGGTTGGCACCCAGAAG 1440

M  L  I  A  H  A  M  V  R  P  I  R  R  L  E  V  G  T  Q  K    480

ATCAGCGCAGGCGACTACGAAGTCAACATTCCGGTAAAGTCACGCGACGAAATCGGTGAT 1500

I  S  A  G  D  Y  E  V  N  I  P  V  K  S  R  D  E  I  G  D    500 

CTTACAGCCGCTTTCAACGAGATGAGTCGGAATCTGCAAACCAAAGAGGAGCTGCTCAAC 1560

L  T  A  A  F  N  E  M  S  R  N  L  Q  T  K  E  E  L  L  N    520

GAGCAACGCAAGGAAAACGACCGGTTATTGCTATCGATGATGCCCGAGCCAGTTGT

GAGGTTGGCACCCAGAAG 1440

M  L  I  A  H  A  M  V  R  P  I  R  R  L  E  V  G  T  Q  K    480

ATCAGCGCAGGCGACTACGAAGTCAACATTCCGGTAAAGTCACGCGACGAAATCGGTGAT 1500

I  S  A  G  D  Y  E  V  N  I  P  V  K  S  R  D  E  I  G  D    500 

CTTACAGCCGCTTTCAACGAGATGAGTCGGAATCTGCAAACCAAAGAGGAGCTGCTCAAC 1560

L  T  A  A  F  N  E  M  S  R  N  L  Q  T  K  E  E  L  L  N    520

GAGCAACGCAAGGAAAACGACCGGTTATTGCTATCGATGATGCCCGAGCCAGTTGTCGAG 1620

E  Q  R  K  E  N  D  R  L  L  L  S  M  M  P  E  P  V  V  E    540 

CGGTACCGCCTTGGGGAGCAGACCATTGCGCAGGAGCACCAAGATGTCACCGTCCTGTTT 1680

R  Y  R  L  G  E  Q  T  I  A  Q  E  H  Q  D  V  T  V  L  F    560 
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GCCGACATCCTGGGTGTCGACGAGATTTCCAGCGGCCTGTCGGGTAACGAACTGGTCAAA 1740

A  D  I  L  G  V  D  E  I  S  S  G  L  S  G  N  E  L  V  K    580

ATTGTCGACGAGCTGGTCCGCCAGTTCGATTCGGCCGCCGAACACCTTGGTGTCGAACGC 1800

I  V  D  E  L  V  R  Q  F  D  S  A  A  E  H  L  G  V  E  R    600

ATTCGCACGCTGCACAATGGCTATCTCGCCGGTTGCGGGGTAACCACGCCACGGCTGGAC 1860

I  R  T  L  H  N  G  Y  L  A  G  C  G  V  T  T  P  R  L  D    620 

AATATTCCCCGAAC

GCCGACATCCTGGGTGTCGACGAGATTTCCAGCGGCCTGTCGGGTAACGAACTGGTCAAA 1740

A  D  I  L  G  V  D  E  I  S  S  G  L  S  G  N  E  L  V  K    580

ATTGTCGACGAGCTGGTCCGCCAGTTCGATTCGGCCGCCGAACACCTTGGTGTCGAACGC 1800

I  V  D  E  L  V  R  Q  F  D  S  A  A  E  H  L  G  V  E  R    600

ATTCGCACGCTGCACAATGGCTATCTCGCCGGTTGCGGGGTAACCACGCCACGGCTGGAC 1860

I  R  T  L  H  N  G  Y  L  A  G  C  G  V  T  T  P  R  L  D    620 

AATATTCCCCGAACCGTCGACTTCGCCCTAGAGATGCGGCGCATCGTCGATCGGTTCAAT 1920

N  I  P  R  T  V  D  F  A  L  E  M  R  R  I  V  D  R  F  N    640

TGCCAAACCGGTAACGATCTGCACCTGCGAGTCGGTATCAACACCGGGGACGTCATTAGC 1980

C  Q  T  G  N  D  L  H  L  R  V  G  I  N  T  G  D  V  I  S    660

GGGCTGGTCGGCAGATCAAGTGTCGTCTACGACATGTGGGGCGCGGCAGTGAGTCTGGCC 2040

G  L  V  G  R  S  S  V  V  Y  D  M  W  G  A  A  V  S  L  A    680 

TACCAAATGCACAGCGGTTCACCACAGC

CGTCGACTTCGCCCTAGAGATGCGGCGCATCGTCGATCGGTTCAAT 1920

N  I  P  R  T  V  D  F  A  L  E  M  R  R  I  V  D  R  F  N    640

TGCCAAACCGGTAACGATCTGCACCTGCGAGTCGGTATCAACACCGGGGACGTCATTAGC 1980

C  Q  T  G  N  D  L  H  L  R  V  G  I  N  T  G  D  V  I  S    660

GGGCTGGTCGGCAGATCAAGTGTCGTCTACGACATGTGGGGCGCGGCAGTGAGTCTGGCC 2040

G  L  V  G  R  S  S  V  V  Y  D  M  W  G  A  A  V  S  L  A    680 

TACCAAATGCACAGCGGTTCACCACAGCCCGGCATCTATGTCACCTCGCAGGTGTATGAG 2100

Y  Q  M  H  S  G  S  P  Q  P  G  I  Y  V  T  S  Q  V  Y  E    700

GCGATGCGAGACGTGTGGCAGTTCACGGCTGCGGGCACGATTTCTGTCGGAGGGTTAGAA 2160

A  M  R  D  V  W  Q  F  T  A  A  G  T  I  S  V  G  G  L  E    720

GAGCCGATCTACCGATTGTCGGAGCGATCATGAACCTGCTCGACTCGACATGGTTCTACT 2220

E  P  I  Y  R  L  S  E  R  S  .  T  C  S  T  R  H  G  S  T    740 

GGGCCGTTGGCATTGCGATCGGATTGCCGGCCGGGCTAATCG

CCGGCATCTATGTCACCTCGCAGGTGTATGAG 2100

Y  Q  M  H  S  G  S  P  Q  P  G  I  Y  V  T  S  Q  V  Y  E    700

GCGATGCGAGACGTGTGGCAGTTCACGGCTGCGGGCACGATTTCTGTCGGAGGGTTAGAA 2160

A  M  R  D  V  W  Q  F  T  A  A  G  T  I  S  V  G  G  L  E    720

GAGCCGATCTACCGATTGTCGGAGCGATCATGAACCTGCTCGACTCGACATGGTTCTACT 2220

E  P  I  Y  R  L  S  E  R  S  .  T  C  S  T  R  H  G  S  T    740 

GGGCCGTTGGCATTGCGATCGGATTGCCGGCCGGGCTAATCGTTCTCACCGAACTGCACA 2280
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 8.2 DNA and protein sequences of Rv2212c 

Gene name MT2268, UniProtKB/Swiss-Prot  accession number P64265.  

bp = base pairs, aa = amino acids.  

 

 

                                                                                                                bp        aa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ATGGGCGTCCCTGCTGGCACACTTAGGCAGGTGTACGATTCCTTGGACTTCGACGCCCTC 60

M  G  V  P  A  G  T  L  R  Q  V  Y  D  S  L  D  F  D  A  L    20 

GAGGCCGCCGGAATTGCCAACCCACGCGAGCGGGCCGGCTTGCTCACCTACCTGGATGAG 120

E  A  A  G  I  A  N  P  R  E  R  A  G  L  L  T  Y  L  D  E    40 

CTTGGCTTCACGGTCGAAGAGATGGTGCAAGCCGAACGCCGCGGCCGGTTGTTCGGGCTG 180

L  G  F  T  V  E  E  M  V  Q  A  E  R  R  G  R  L  F  G  L    60

GCCGGTGACGTCCT

ATGGGCGTCCCTGCTGGCACACTTAGGCAGGTGTACGATTCCTTGGACTTCGACGCCCTC 60

M  G  V  P  A  G  T  L  R  Q  V  Y  D  S  L  D  F  D  A  L    20 

GAGGCCGCCGGAATTGCCAACCCACGCGAGCGGGCCGGCTTGCTCACCTACCTGGATGAG 120

E  A  A  G  I  A  N  P  R  E  R  A  G  L  L  T  Y  L  D  E    40 

CTTGGCTTCACGGTCGAAGAGATGGTGCAAGCCGAACGCCGCGGCCGGTTGTTCGGGCTG 180

L  G  F  T  V  E  E  M  V  Q  A  E  R  R  G  R  L  F  G  L    60

GCCGGTGACGTCCTGCTATGGTCCGGGCCCCCGATCTACACCCTGGCGACCGCGGCTGAC 240

A  G  D  V  L  L  W  S  G  P  P  I  Y  T  L  A  T  A  A  D    80 

GAACTGGGGTTGTCAGCCGACGACGTCGCACGCGCGTGGAGTTTGCTCGGCCTCACCGTC 300

E  L  G  L  S  A  D  D  V  A  R  A  W  S  L  L  G  L  T  V    100 

GCGGGTCCCGACGTTCCCACGCTGAGCCAGGCCGACGTCGACGCCCTGGCGACCTGGGTC 360

A  G  P  D  V  P  T  L  S  Q  A  D  V  D  A  L  A  T  W  V    120

GCACTGAAGGCGCTGGTGGGTGAGGACG

GCTATGGTCCGGGCCCCCGATCTACACCCTGGCGACCGCGGCTGAC 240

A  G  D  V  L  L  W  S  G  P  P  I  Y  T  L  A  T  A  A  D    80 

GAACTGGGGTTGTCAGCCGACGACGTCGCACGCGCGTGGAGTTTGCTCGGCCTCACCGTC 300

E  L  G  L  S  A  D  D  V  A  R  A  W  S  L  L  G  L  T  V    100 

GCGGGTCCCGACGTTCCCACGCTGAGCCAGGCCGACGTCGACGCCCTGGCGACCTGGGTC 360

A  G  P  D  V  P  T  L  S  Q  A  D  V  D  A  L  A  T  W  V    120

GCACTGAAGGCGCTGGTGGGTGAGGACGGCGCATTCGGCCTGCTGCGAGTGCTCGGCACT 420

A  L  K  A  L  V  G  E  D  G  A  F  G  L  L  R  V  L  G  T    140 

GCCATGGCCCGACTCGCCGAGGCCGAGTCGACCATGATCCGCGCCGGGTCACCGAACATC 480

A  M  A  R  L  A  E  A  E  S  T  M  I  R  A  G  S  P  N  I    160 

CAAATGACGCACACCCACGACGAACTTGCCACGGCACGGGCCTATCGCGCGGCTGCGGAG 540

Q  M  T  H  T  H  D  E  L  A  T  A  R  A  Y  R  A  A  A  E    180

TTCGTCCCCCGGATCGGTGCGCTGATCGACACCGTCCACCGT

GCGCATTCGGCCTGCTGCGAGTGCTCGGCACT 420

A  L  K  A  L  V  G  E  D  G  A  F  G  L  L  R  V  L  G  T    140 

GCCATGGCCCGACTCGCCGAGGCCGAGTCGACCATGATCCGCGCCGGGTCACCGAACATC 480

A  M  A  R  L  A  E  A  E  S  T  M  I  R  A  G  S  P  N  I    160 

CAAATGACGCACACCCACGACGAACTTGCCACGGCACGGGCCTATCGCGCGGCTGCGGAG 540

Q  M  T  H  T  H  D  E  L  A  T  A  R  A  Y  R  A  A  A  E    180

TTCGTCCCCCGGATCGGTGCGCTGATCGACACCGTCCACCGTCACCACCTGGCCAGCGCA 600

F  V  P  R  I  G  A  L  I  D  T  V  H  R  H  H  L  A  S  A    200

CGAACCTACTTTGAAGGCGTCATTGGCGACACGTCGGCAAGCGTGACGTGCGGTATCGGC 660

R  T  Y  F  E  G  V  I  G  D  T  S  A  S  V  T  C  G  I  G    220

TTTGCGGATCTGTCCAGCTTCACCGCGTTGACCCAGGCGCTCACCCCCGCGCAGTTGCAG 720

F  A  D  L  S  S  F  T  A  L  T  Q  A  L  T  P  A  Q  L  Q    240

GACCTGCTCACCGAATTCGACGCCGCCGTCACCGACGTGGTGCATGCCGACGGTGG

CACCACCTGGCCAGCGCA 600

F  V  P  R  I  G  A  L  I  D  T  V  H  R  H  H  L  A  S  A    200

CGAACCTACTTTGAAGGCGTCATTGGCGACACGTCGGCAAGCGTGACGTGCGGTATCGGC 660

R  T  Y  F  E  G  V  I  G  D  T  S  A  S  V  T  C  G  I  G    220

TTTGCGGATCTGTCCAGCTTCACCGCGTTGACCCAGGCGCTCACCCCCGCGCAGTTGCAG 720

F  A  D  L  S  S  F  T  A  L  T  Q  A  L  T  P  A  Q  L  Q    240

GACCTGCTCACCGAATTCGACGCCGCCGTCACCGACGTGGTGCATGCCGACGGTGGCCGG 780

D  L  L  T  E  F  D  A  A  V  T  D  V  V  H  A  D  G  G  R    260 

TTGGTGAAGTTCATCGGCGACGCCGTGATGTGGGTGAGCTCGTCGCCCGAACGACTGGTG 840

L  V  K  F  I  G  D  A  V  M  W  V  S  S  S  P  E  R  L  V    280
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CGGGCGGCGGTGGATCTCGTCGATCATCCGGGTGCGCGCGCGGCCGAACTGCAGGTCCGT 900

R  A  A  V  D  L  V  D  H  P  G  A  R  A  A  E  L  Q  V  R    300   

GCCGGTCTTGCCTATGGCACGGTGCTGGCCCTTAACGGTGACTACTTCGGCAACCCGGTC 960

A  G  L  A  Y  G  T  V  L  A  L  N  G  D  Y  F  G  N  P  V    320

AACCTGGCTGCGCGCCTGGTGGCGGCCGCAGCGCCAGGGCAGATCCTGGCCGCAGCGCAA 1020

N  L  A  A  R  L  V  A  A  A  A  P  G  Q  I  L  A  A  A  Q    340 

CTCCGCGACATGTT

CGGGCGGCGGTGGATCTCGTCGATCATCCGGGTGCGCGCGCGGCCGAACTGCAGGTCCGT 900

R  A  A  V  D  L  V  D  H  P  G  A  R  A  A  E  L  Q  V  R    300   

GCCGGTCTTGCCTATGGCACGGTGCTGGCCCTTAACGGTGACTACTTCGGCAACCCGGTC 960

A  G  L  A  Y  G  T  V  L  A  L  N  G  D  Y  F  G  N  P  V    320

AACCTGGCTGCGCGCCTGGTGGCGGCCGCAGCGCCAGGGCAGATCCTGGCCGCAGCGCAA 1020

N  L  A  A  R  L  V  A  A  A  A  P  G  Q  I  L  A  A  A  Q    340 

CTCCGCGACATGTTGCCAGACTGGCCTGCCCTCGCCCATGGCCCATTGACGCTCAAGGGG 1080

L  R  D  M  L  P  D  W  P  A  L  A  H  G  P  L  T  L  K  G    360

TTTGACGCCCCGGTGATGGCCTTCGAACTGCACGACAACCCTCGTGCGAGGGATGCTGAC 1140

F  D  A  P  V  M  A  F  E  L  H  D  N  P  R  A  R  D  A  D    380 

ACGCCAAGCCCCGCCGCCAGTGATTAGGGTGGTTGCCCGTGACCACCGAACCGGGTTACC 1200

T  P  S  P  A  A  S  D  .  G  G  C  P  .  P  P  N  R  V  T    400
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8.3  Sequence alignment of Rv2435c with Desulfovibrio vulgaris 
      
                                                                         
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alignment of the N-terminal region of Rv2435c (including the extracellular domain, and the 
two transmembrane helices marked by top bars) with the ligand binding N-terminal domain of 
the chemotaxis receptor H (DcrH) in Desulfovibrio vulgaris UniProtKB/TrEMBL accession 
number Q726F3. Both domains show a 27% identity and a 47% similarity.            
 
 
 
                                                  

                                                                        
                           
Rv2435c      1 : LTSGEALDSVAESESTPAKKRHKNVLRRRPRFRASIQSKLMVLLLLTSIV 
DcrH         1 : MT-----------------------LKR----------KLMVGFILALFV 
                  
                                                                    
                          
Rv2435c     51 : SVAAIAAI-----------VYQSGRTSLRAAAYERLTQLRESQKRAVETL 
DcrH        18 : TCTLIAGVNWYFAHDGMNGIGDTAVEAMKDRARGQLESIRSAKALHIEDL 
                  
                                                                    
                           
Rv2435c     90 : FSDLTNSLVIYERGLTVVDAVVRFTAGFDQLADATISPAQQQAIV----- 
DcrH        68 : FQRIRNQTRTLAESLTVREAATTLSAAYFTVQGETTGALDAKALRGKLTE 
                       
                                                                    
                         
Rv2435c    135 : NYYNNEFITPVERTTGDKLD-------ITALLPTSPAQRYLQAYYTAPFT 
DcrH       118 : DYAGANYLANPTFATHARTAKGYAPRPAETYLPKDANGIILQAMYVHP-S 
                  
                                                                    
                           
Rv2435c    178 : SDQDAM----RLDDAGDGSAWSAANAQFNSYFREIVTRFDYDDAVLLDT- 
DcrH       167 : GNPNPLGEKHRLDANPLASTYNTLHRKYHPILRNYLTTFGYYDIFIIDAA 
                   
                                                                    
                         
Rv2435c    223 : RGNIVYTLSKDPDLGTNILTGPYRESNLRDAYLKALGANAV---DFTWIT 
DcrH       217 : SGVIVYTVFKEKDYATSLLTGPYRDTGLGAVFREAVENGRKGRRDAVSIS 
                   
                                                                    
                           
Rv2435c    270 : DFKPYQPQLGVPTAWLVAPV-EAGGKTQGVLALPLPIDKINKIMTADRQW 
DcrH       267 : DFAPYEPSYNAPAAFIAAPVFDDRGTCQAVLAFQMPVDNIDRIMTSNGRW 
                  
                                                                    
                         
Rv2435c    319 : QAAGMGSGTETYLAGPDSLMRSDSRLFLQDPEEYRKQVVAAGTSLDVVNR 
DcrH       317 : QEVGLGTTGETYLVGPD--MHPRSKL-----------RAASGASDEVV-- 
                    
                                                                    
                           
Rv2435c    369 : AIQFGGTTLLQPVATEGLRAAQRGQTGTVTSTDYTGSRELEAYAPLNVPD 
DcrH       352 : ------------VDSEAARKALGGESGTATIRDYRGKNVLAAWQPLRL-- 
                              
                                                               
                         
Rv2435c    419 : SDLHWSILATRNDSEAFAAVASFSRA------------LVLVTVGIIVVI 
DcrH       388 : EGLHYGLIAEIDIDEALLAASKITAARQGAEARTLWGTLLVLALGTLLGS 
                    
                                                                    
                           
Rv2435c    457 : CVASMLIAHAMVRPIRRLEVGTQKISAGDYEVNIPVKSRDEIGDLTAAFN 
DcrH       438 : GIAIALVG-ALSRPLQRLQVYAGDVAAGNLDARPEGQYPAELDAMRHSIE 
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8.4  Fatty acids and detergents tested with Rv2212c 
 
Compound Chemical name 
Linoleic acid 9,12-Octadecadienoic acid 
Oleic acid 9-Octadecenoic acid 
Arachidonic acid 5,8,11,14-Eicosatetraenoic acid 
Linolenic acid 9,12,15-Octadecatrienoic acid 
Palmitic acid Hexadecanoic acid 
Polidocanol Dodecyl nonaethylene glycol 
Triton X-100 Octylphenol-polyethyleneglycol ether 
Nonidet P 40 Nonylphenyl-polyethyleneglycol 
CHAPS 3-(3-Cholamidopropyl)-dimethylammonio-1-propane sulfonate 
 
 Chemical names of different fatty acids and detergents tested with mycobacterial Rv2212c. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Chemical structures of some fatty acids and detergents tested with mycobacterial Rv2212c. 
 
 

(MW = 280) 

(MW = 278) 

(MW = 282) 

(MW = 304) 

COOH

Arachidonic acid

(MW = 582) 

(CH3)HO(CH2CH2O)9

Polidocanol

(CH2)7COOH

H3C

Linolenic acid

(CH2)6COOHH3C(CH2)3

Linoleic acid

CH2(CH2)6COOHCH3(CH2)6CH2

HH

Oleic acid

(MW = 572) (MW = 646) 

C9H19

(OCH2CH2)nOH

Nonidet P40,   n = 8

C8H17

(OCH2CH2)nOH

Triton X-100,   n = 10
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