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1 A brief historical survey of cathepsin D (1929-2005) 

1 A brief historical survey of cathepsin D (1929-
2005) 

The term “cathepsin” was introduced in 1929 [Willstätter & Bamann 1929] and the 

root of the word originates from the Greek, where it means “to digest”. In the 

beginning the term cathepsin was used to describe extracts of animal tissues 

containing a proteolytic system which showed proteolytic activity against hemoglobin 

at pH 3.5. Until that point, no further differentiation between the involved proteases 

had been made and so the first publication about isolation of this acidic proteolytic 

system from bovine spleen was entitled “The purification of cathepsin” [Anson 1940]. 

During these years, the term “cathepsin” was generally used to describe acidic 

intracellular proteases. 

Great efforts have been made to characterise and specify proteases such as 

papain [Bergmann et al. 1935], papain peptidase I [Bergmann et al. 1936], pepsin 

[Fruton & Bergmann 1939], trypsin [Bergman et al. 1939] and chymotrypsin 

[Bergmann & Fruton 1937] in order to understand their physiological function. At the 

same time it has been shown that the enzymatic action of proteases is not only 

restricted to peptide bonds in proteins of high molecular weight but also to 

constructed peptides and peptide derivatives. First peptide substrates were 

designed, synthesised and used for the determination of enzyme specificity and 

characterisation [Bergmann et al. 1937]. 

The peptide substrates enabled the scientist for the first time to distinguish 

between similar protease activities in a fast and simple way. According to this, the 

proteolytic system so far known as cathepsin proved to consist of at least three types 

of cathepsins in bovine spleen [Fruton et al. 1941]. These enzymes of the cathepsin 

system were correspondingly named cathepsin A, B and C. Further investigations 

were made and in 1957 cathepsin B (CatB) was isolated from bovine spleen 

[Greenbaum & Fruton 1957]. At the end of 1959 a new member of the cathepsin 

family was detected in bovine spleen and was consequently named cathepsin D 

because it did not hydrolyse any of the typical substrates for cathepsin A, B and C 

[Press et al. 1960]. The new found cathepsin D differed not only in its specificity from 

the other cathepsins but also in its mechanism of action, since the protease inhibitors 

iodacetamide (inhibitor for cysteine proteases), ethylenediaminetetraacetic acid 

1 



1 A brief historical survey of cathepsin D (1929-2005) 

(EDTA, inhibitor for metalloproteases) and diisopropylfluorophosphate (inhibitor for 

serine proteases) had no effect on its proteolytic activity. These finding showed, that 

CatD is an aspartate protease (also known as acid protease or aspartic protease) in 

contrast to CatA which is a serine protease and CatB and CatC [Tallan et al. 1952] 

which are cysteine proteases. CatD has a pH optimum of 3.0 and represents two-

thirds of the proteolytic activity of crude spleen extract. The B chain of oxidized 

insulin [Sanger et al. 1949] was digested with pepsin and CatD and the generated 

peptides were identified, showing that the specificity of CatD, though more restricted, 

is similar to that of pepsin. CatD cleaved the B chain of oxidized insulin 

predominantly between leucine and tyrosine, phenylalanine and phenylalanine as 

well as between phenylalanine and tyrosine. Weak cleavage was observed between 

glutamic acid and alanine and between tyrosine and leucine [Press et al. 1960]. 

These newly introduced in vitro digestion experiments described for the first time the 

specificity of CatD to cleave peptide bonds preferably between hydrophobic and 

aromatic amino acids. 

The subsequent enzymatic investigations and characterisations were all more or 

less based on peptide substrates. Therefore great amounts of synthetic peptides 

with high purities were required. At this time peptides were commonly synthesised in 

solution and expensive purification and recrystallisation procedures had to be made 

following each coupling step. The synthesis of a decapeptide, for example, took up 

to one month or even longer and this fact clearly limited investigations based on 

peptide substrates. In the early sixties a new, fast and effective method for peptide 

synthesis was introduced by Merrifield [Merrifield 1963]. Peptide synthesis was 

carried out on solid phase using a copolymer of styrene which was cross-linked with 

1% divinylbenzene. The carboxyl group of the first amino acid was then coupled 

covalently to the resin and successively the peptide chain was elongated. The 

reason for this approach was that the growing peptide chain could easily be filtered 

and washed free of reagents and by-products. The combination of solid-phase 

peptide synthesis and in vitro digestion experiments smoothed the way for the 

characterisation of proteases. 

In 1962 another cathepsin, differing from CatD in pH optimum and charge at pH 

8.2 was isolated from rabbit bone marrow. The protease was also active against the 

synthetic substrates for CatA, CatB and CatC [Lapresle & Webb 1962] and was 

named CatE. The “enzyme brothers” CatD and CatE represented and still represent 
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1 A brief historical survey of cathepsin D (1929-2005) 

the main aspartate proteases in mammalian cells and distinguishing between the two 

especially their involvement in cellular processes will become a biochemical 

problem, which will engage scientists for a long period of time [Arnold et al. 1997, 

Ostermann et al. 2004, Chain et al. 2005, Chou et al. 2005]. As recently as 2005 a 

specific substrate was described for CatE [Yasuda et al. 2005]. 

First assumptions were made to clarify the physiological function of CatD since 

cathepsins were known to be greatly elevated in muscular dystrophy [Tappel et al. 

1962, Iodice et al. 1965] and therefore contribute to the increased protein catabolism 

[Iodice et al. 1966a]. CatD has also been implicated in the pathological breakdown of 

cartilage matrix in rheumathoid arthritis [Fell & Dingle 1963, Ali 1964], osteoarthritis 

[Weston et al. 1969], digestion of immunoprecipitates [Wasi et al. 1966] and with 

collagen loss in involution of the uterus post partum [Woessner 1965]. 

During the next years cathepsins were purified from various tissues such as CatA 

and CatD, which were isolated from skeletal chicken muscle [Iodice et al. 1966b], 

lysosomal acid proteases from rabbit liver [Barrett 1967] and CatD from human and 

chicken liver [Barrett 1970]. 12 distinct forms of CatD were found in bovine uterus 

[Sapolsky & Woessner 1972] and 6 CatD isozymes in porcine spleen [Huang et al. 

1979]. For the first time Huang et al. showed, that CatD occurs as a single chain 

form with an apparent molecular weight of 50 kDa and a two-chain CatD form 

consisting of a light chain (15 kDa) and a heavy chain (35 kDa). Furthermore they 

showed that the N-terminus of CatD is homologous to other acid proteases such as 

pepsin and, that the N-terminal sequence of the single chain is apparently the same 

as the light chain sequence suggesting that these forms emerge from each other 

during biosynthesis. Further, the data of Huang et al. proved that CatD is a 

glycoprotein with at least four carbohydrate units, one in the light chain and three in 

the heavy chain. These preliminary results were studied in detail during the 1980s. 

Several purification methods and assays have been reviewed by Takahashi & Tang, 

1981. 

The knowledge of the biochemical properties of precursors and of their conversion 

to mature protein were well advanced in several systems, including secretory 

proteins [Campbell & Blobel 1976], membrane proteins [Toneguzzo & Ghosh 1978], 

viral proteins [Hershko & Frey 1975] and a few organellar proteins [Maccecchini et 

al. 1979, Cote et al. 1979]. The first results of the biosynthesis of lysosomal enzymes 

as precursors were published for β-galactosidase in macrophages of thioglycollate-
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1 A brief historical survey of cathepsin D (1929-2005) 

treated mice [Skudlarek & Swank 1979]. In the same year the group of Erickson and 

co-workers suggested a possible pathway for biosynthesis and proved the existence 

of two proforms of CatD, a 43 kDa and a 46 kDa form as well as the enzymatically 

active 30 kDa form of CatD [Erickson & Blobel 1979]. These initial findings were 

studied in more detail in the following years leading to the following pathway for the 

biosynthesis of CatD. 

CatD (EC 3.4.23.5) is synthesized as non-glycosylated preprocathepsin D (MW 

43000) at the rough endoplasmatic reticulum and represents the primary translation 

product which is then transported via the Golgi complex to the lysosomes [von 

Figura & Hasilik 1986, Kornfeld & Mellman 1989]. A sorting tag has been identified 

which distinguishes molecules destined for lysosomes. Phosphate attached to the 6 

position of mannose residues on carbohydrate groups of soluble lysosomal enzymes 

is sufficient to target these molecules for lysosomal transport [Hasilik & Neufeld 

1980]. The initial selection step for the pathway is carried out by a single 

phosphotransferase located in the cis-Golgi which distinguishes soluble lysosomal 

enzymes from the numerous other proteins passing through this compartment 

[Kornfeld & Mellman 1989]. 

The pre-sequence (20 residues), which resembles the sequences of secretory 

proteins, is then cleaved off to yield glycosylated procathespin D (MW 46000). The 

pre-sequence functions as a signal sequence for translocation across the 

endoplasmatic reticulum membrane. A part of procathepsin D is secreted and can be 

detected in the culture medium. The intracellular amount of procathepsin D is further 

converted to enzymatically active single chain CatD by removal of the pro sequence 

(44 residues) which shows sequence homology to the 44 residue activation peptide 

of pepsinogen. The pro-sequence serves as an activation peptide that keeps the 

enzyme inactive during intracellular transport to the lysosome [Erickson et al. 1981]. 

The cleavage of the pro sequence has been shown to be pH-dependent (pH 3.5) 

and pepstatin-inhibitable leading to an increase in enzyme activity [Hasilek et al. 

1982]. During this processing step not only active single-chain CatD is generated but 

also three peptides which show inhibitory activity towards active CatD similar to the 

activation of pepsinogen [Puizdar & Turk 1981]. Activation of procathepsin D may 

occur via a unimolecular, autoproteolytic mechanism [Conner 1989]. Single chain 

cathepsin D undergoes further cleavage into a 15 kDa N-terminal domain (light 

chain) and a 30 kDa C-terminal domain (heavy chain). This cleavage results in the 
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1 A brief historical survey of cathepsin D (1929-2005) 

removal of seven amino acid residues between the light chain and the heavy chain 

[Shewale & Tang 1984, Faust et al. 1985]. Finally, several amino acids are removed 

from the C-terminus of the heavy chain [Erickson & Blobel 1983]. 

In general all lysosomal enzymes are synthesized as inactive precursors which 

are processed either autocatalytically or by other enzymes to remove an N-terminal 

propeptide. The propeptide is thought to block the active site of the enzyme, thus 

preventing proteolytic activity. In addition to this inhibitory function, the propeptides of 

some aspartate proteases have been proposed to function in the folding of the 

nascent protein [Yonezawa et al. 1988] as proved to be the case for CatD [Conner 

1992]. 

The current known structural properties of human preprocathepsin D concerning 

disulfide bonds, subdivisions, actice site residues and glycosylation sites [Zhang et 

al. 2003] are summarised in Figure 1 [reviewed by Fusek et al. 2005]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 (A) Amino acid sequence of preprocathepsin D. Residues 1 to 18 are the 

signal peptide, residues 19 to 64 are the activation peptide, residues 65 to 
161 represent the light chain and residues 169 to 412 represent the heavy 
chain. (B) Schematic representation of structural features of Preprocathepsin 
D 
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1 A brief historical survey of cathepsin D (1929-2005) 

Lysosomal proenzymes, such as procathepsin D, have been shown to be 

associated with intracellular membranes in a mannose-6-phosphate-independent 

manner and therefore are sorted to the lysosome by another targeting system 

[Rijnboutt et al. 1991a, Rijnboutt et al. 1991b] differing from the common mannose-6-

phosphate pathway. It is a fact that the propeptides of vacuolar enzymes also 

contain a signal that is necessary for targeting to the organelle [Rothman et al. 1989] 

but this sorting mechanism does not account for CatD [Conner 1989]. Recently 

published data show, that the cysteine protease CatL is involved in CatD processing 

in order to generate the light chain and heavy chain from single chain CatD [Wille et 

al. 2004]. 

Rapid affinity chromatography is the method of choice for the isolation of 

proteolytic enzymes, especially endoproteases. The commonly used ion-exchange 

methods or gel chromatography require large amounts of sample from which the 

recovery is rather small. Since 1970 the aspartate protease inhibitor pepstatin was 

discovered [Umezawa et al. 1970] and used as active site titrant [Workman & Burkitt 

1979] and in immobilized form on sepharose for the isolation of CatD [Takahashi & 

Tang 1981, Kazakova et al. 1976] and CatE from rat spleen [Yamamoto et al. 1978]. 

The well established purification protocols permitted the isolation of CatD in large 

amounts and in high purity [Huang et al. 1979]. Isolation from porcine spleen was 

done by the group of Jordan Tang [Huang et al. 1979] as well as sequence analysis 

for the light [Takahashi & Tang 1983a] and heavy chain [Shewale & Tang 1983]. 

Further they showed that porcine spleen cathepsin D contains two glycosylation 

sites, one on each chain [Takahashi et al. 1983b]. Cloning and sequence analysis of 

cDNA for human CatD was done for the first time by Faust et al. 1985. 

The aspartate protease inhibitor pepstatin was introduced by Morishima et al. 

1970 and the interaction of human CatD with pepstatin was further investigated 

indicating that binding is strongly pH dependent so that in biological experiments 

near neutral pH, large molar excesses of pepstatin over CatD is required for efficient 

inhibition [Knight & Barrett 1976]. Presently the commonly used concentration of 

pepstatin for biological investigations is 10 µM and even 100 µM for cell cultur 

applications. 

In the last decade of the 20th century the pepstatin inhibited crystal structure of 

CatD was determined [Baldwin et al. 1993] as well as mapping of the CatD subsite 

preferences [Majer et al. 1997]. 
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1 A brief historical survey of cathepsin D (1929-2005) 

Aspartate proteases represent a large family of enzymes that catalyze peptide 

bond hydrolysis through an acid-base mechanism mediated by two catalytic aspartic 

acid residues (97Asp and 295Asp) [Davies 1990, Tang & Wong 1987] from which only 

one carboxyl group is protonated due to the fact that the total charge of the active-

site aspartic acids is -1 [Xie et al. 1997]. According to these properties aspartate 

proteases show an acidic pH optimum normally about pH 3-4. More recent results 

have also shown that pH dependent conformational switching of CatD modulates 

substrate specificity [Lee et al. 1998]. 

A set of inhibitory peptides had already been synthesized and tested for their 

inhibitory properties [Lin & Williams 1979] and new inhibitors based on the general 

structure 4-(morpholinosulfonyl)-L-Phe-P2-(cyclohexyl)Ala-P1’-P2’ [Rao et al. 1993]. 

The specificity of CatD was further investigated concluding the following preferences: 

a hydrophobic residue in P2 whereas residues capable of hydrogen bonding are also 

accepted but strongly positively charged amino acids are rejected; a preference of Ile 

in P3 over the smaller Ala was also observed [Scarborough et al. 1993]. Concerning 

the P2’ position CatD prefers positively charged side-chains whereas Glu in P2’ 

yielded a poor substrate and Asp in this position created a substrate that was not 

cleaved. Substrates bearing large hydrophobic side-chains at P3’ were excellent 

substrates [Beyer & Dunn 1998]. 

In the human genome about 500-600 proteases have been identified [Lopez-Otin 

& Overall 2002] from which about 60 are lysosomal proteases [Mason 1995]. 

Lysosomal proteases include a group of about 12 papain-like cysteine proteases. 

These cysteine proteases are all named cathepsin. The sole lysosomal papain-like 

cysteine protease which is not named cathepsin is legumain or asparaginyl 

endopeptidase (AEP) [Chen et al. 1997, 1998] and was characterised within our 

group [Schwarz et al. 2002]. Among the cathepsins only CatE and CatG are not 

lysosomal [lysosomal cysteine proteases were reviewed by Turk et al. 2000, Turk et 

al. 2001, Turk & Guncar 2002]. In Table 1 all known cathepsins are listed. 
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1 A brief historical survey of cathepsin D (1929-2005) 

Table 1 Nomenclature recommended by the IUBMB and properties of human 
cathepsins (www.branda.uni-koeln.de, www.merops.sanger.ac.uk) 

 

 
Recommended 

Name 

EC 
number 

Classification Reference 

Cathepsin B 3.4.22.1 Carboxypeptidase, liberating C-
terminal dipeptides 

Bond et al. 
1980, Barrett et al. 

1981 

Cathepsin C 3.4.14.1 
Aminopeptidase, release of a N-

terminal dipeptide except when P1 
is Arg or Lys, or P1’ or P2’ is Pro 

Planta et al. 
1964, Metrione et 

al. 1966 

Cathepsin L 3.4.22.15

Endoprotease, with preference 
for a residue bearing a large 

hydrophobic side chain at the P2 
position and does not accept Val at 

P1', compared to CatB, CatL 
exhibits higher activity towards 
protein substrates, but has little 

activity on Z-Arg-Arg-NHMec and 
no peptidyl-dipeptidase activity 

Kirschke et al. 
1988; Barrett & 
Kirschke, 1981 

Cathepsin H 3.4.22.16 Aminopeptidase and 
endoprotease 

Bromme et al. 
1987 

Cathepsin K 3.4.22.38

Endoprotease, the major 
determinant of specificity is P2, 

which is preferably Leu, Met > Phe 
and not Arg 

Inaoka et al. 
1995, Bromme et 

al. 1996 

Cathepsin F 3.4.22.41
Endoprotease, cleaves 

synthetic substrates with Phe and 
Leu in P2 better than Val 

Wang et al. 
1998, Wex et al. 

1999 

Cathepsin O 3.4.22.42
Endoprotease, hydrolyses Z-

Phe-Arg-NHMec and Z-Arg-Arg-
NHMec 

Velasco et al. 
1994 

Cathepsin S 3.4.22.27

Endoprotease, similar to CatL 
but with much less activity on Z-

Phe-Arg-NHMec and more activity 
after the Z-Val-Val-Arg compound 

Bromme et al. 
1975, Kirschke et 

al. 1989 

Cathepsin V 3.4.22.43

endoprotease, hydrolyses 
proteins, Z-Phe-Arg NHMec > Z-

Leu-Arg-NHMec > Z-Val-Arg-
NHMec 

Adachi et al. 
1998, Bromme et 

al. 1999 

C
ys

te
in

e 
pr

ot
ea

se
s 

Cathepsin X 3.4.18.1 
Carboxypeptidase which lacks 

action on C-terminal proline, weak 
endopeptidase activity 

Nagler et al. 
1999 

Cathepsin A 3.4.16.5 
Carboxypeptidase 

(also known as 
carboxypeptidase C) 

Miller et al. 1992 

Se
rin

e 
pr

ot
ea

se
s 

Cathepsin G 3.4.21.20
Endoprotease which preferably 

cleaves after Leu, Tyr, Phe, Met, 
Trp, Gln and Asn 

Tanaka et al. 
1985 

Cathepsin D 3.4.23.5 Similar to pepsin A, between 
hydrophobic residues 

Faust et al. 
1985, Scarborough 

et al. 1993 

A
sp

ar
ta

te
 

pr
ot

ea
se

s 

Cathepsin E 3.4.23.34 Similar to CatD 
Azuma et al. 

1989, Lapresle et 
al. 1986 
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1 A brief historical survey of cathepsin D (1929-2005) 

Cathepsins which are not yet included in the IUBMB recommendations, e.g. CatP 

[Puzer et al. 2005] and CatW (P56202, EC number 3.4.22. - not yet assigned) 

[Dalton & Brindley 2004] are not considered. CatT (EC number 3.4.22.24) is a 

cysteine protease but was only detected in rattus norvegicus to date [Pitot et al. 

1987] and therefore is not listed in table 1. 

The intracellular distribution of CatD as well as the relative amount of CatD in 

several cell types such as B cells, monocytes, dendritic cells, HeLa cells etc. still 

needs to be determined and will be clarified in the following chapters. 

In the early 1930s, proteases were typically determined using the trichloroacetic 

acid (TFA) method which uses denatured hemoglobin as substrate [Anson & Mirsky 

1932]. After digestion the intact hemoglobin was precipitated with TFA and the 

digestion products in the supernatant were then estimated colorimetrically with a 

phenol reagent yielding a blue colour with tyrosine and tryptophane moieties [Folin & 

Looney 1922, Looney 1926]. The detection of tyrosine and tryptophane was 

improved using the Folin and Ciocalteu reagent [Folin & Ciocalteu 1927]. The 

method has then been applied to the four known types of proteases at that time 

which were pepsin [Anson & Mirsky 1932], trypsin [Anson & Mirsky 1933], papain 

[Anson 1936] and already cathepsin [Anson 1936]. About two years later these data 

were confirmed using a simplified and standardised protocol [Anson 1938] which 

became the standard method for determination of protease activity. Currently, CatD 

activity is still determined using the hemoglobin assay with slight modifications 

[Shibata et al. 2002, Williamson et al. 2002, Bidere et al. 2003, Skrzydlewska et al. 

2005]. 

Recently, an enzyme-family assay based on microarrays was developed and used 

for determination of enzyme activities [Funeriu et al. 2005]. The new research results 

indicate, that the problem of specific and precise determination of enzyme activity is 

still ongoing. The presence and enzymatic function of CatD in various human cells 

and secrets such as sweat still needs to be investigated (see chapter 3 and 4). 

Multicellular animals are obligated to eliminate cells that are in excess or 

potentially dangerous. Therefore a programmed cell death program is needed in 

order to control cell numbers, tissue sizes and to protect the organism itself from 

rogue cells that threaten homeostatis. The term finally adopted for programmed cell 

death was apoptosis [Kerr et al. 1972]. The apoptotic cell death differs from 
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pathological, necrotic cell death since only single cells are affected and not groups of 

neighbouring cells. 

The mechanism of apoptosis is very complex and depends on various factors. In 

general, there are two major apoptotic pathways in mammalian cells known: the 

death-receptor pathway and the mitochondrial pathway [reviewed by Hengartner 

2000, Boya et al. 2001, Kaufmann & Gores 2000]. Both pathways depend more or 

less on the activation of caspases (Cysteine Aspartate Specific ProteASEs) [Alnemri 

et al. 1996]. Consequently apoptosis research has focused on caspases and their 

role in programmed cell death. The concept, that caspases are the sole executive 

proteases in apoptosis now seems to be outdated by a growing body of evidence 

that strongly points to a role of lysosomes, especially lysosomal proteases in 

apoptosis. This phenomenon is meanwhile widely recognized and the term 

“lysosomal pathway of apoptosis” is accepted [reviewed by Guicciardi 2004]. 

Lysosomal permeabilization [Erdal et al. 2005] induced by the synthetic 

lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride causes 

apoptosis [Li et al. 2000]. Cells undergo either apoptotic or necrotic cell death 

dependent on the amount of lysosomal enzymes released into the cytosol: selective, 

partial permeabilization triggers apoptosis and complete lysosomal breakdown 

triggers necrosis [Bursch 2001, Turk et al. 2002]. Once in the cytosol, lysosomal 

proteases interfere with caspases in the signalling pathway which has been shown 

for CatB [Salvesen 2001] or by direct cleavage of key cellular substrates [Leist & 

Jaattela 2001]. It has been shown that lysosomal extracts cleaves proapoptotic Bcl-

2-like proteins such as Bid or Bax and causes cytochrom c release followed by 

caspase activation [Stoka et al. 2001]. Detailed studies regarding CatD showed that 

it is rapidly translocated from lysosomes to the cytosol and increase the level of p53 

protein. According to this finding the CatD activity is drastically increased during 

apoptosis induced by oxidative stress [Kagedal et al. 2001]. Pepstatin A prevented 

cytochrom C release [Roberg et al. 1999] producing evidence for the involvement of 

CatD in apoptosis. It has been reported that pharmacological inhibition of CatD block 

cell death induced by interferon-gamma [Deiss et al. 1996] or tumour-necrosis factor-

α [Demoz et al. 2002]. Further investigations were made on the role of CatD in 

apoptosis and revealed, that CatD acts upstream of the caspase cascade i.e. before 

cytochrome c release and caspase activation at least in fibroblasts [Johansson et al. 

2003]. However, in HeLa cells no influence on apoptosis concerning cleavage of Bid 
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by CatD has been observed but papain-like lysosomal cysteine proteases proved to 

be actively involved in apoptosis [Cirman et al. 2004]. Focusing on CatD, recently 

published results indicate that CatD triggers Bax activation and that early apoptotic 

events can be inhibited with pepstatin A causing a delayed cell death [Bidere et al. 

2003]. 

At this time impressive results support the hypothesis that lysosomes and 

lysosomal proteases respectively may play a key role in apoptosis, but the 

mechanisms by which this occurs and the possible, functional relationship and/or 

cross-talks with other known apoptotic pathways remains largely unknown [Salvesen 

2001]. However, it has been shown that catalytically inactive CatD did not affect 

apoptosis [Tardy et al. 2003]. 

For further investigations concerning the intracellular localization of active CatD 

new methods have to be developed for the visualization of enzyme activity within 

living cells (see chapter 5). 

In the 1970s studies showed that coupling of poly-lysine to proteins enhances 

their cellular uptake [Ryser et al. 1978] which was the beginning of the area of so 

called cell-penetrating peptides (CPPs). A decade later it was shown that the HIV-1 

Tat protein is internalized by tissue culture cells [Frankel & Pabo 1988] and further 

investigations revealed, that the basic domain containing amino acids 48 to 60 (Tat 

peptide) to be responsible for this [Vives et al. 1997]. In the 1990s other CPPs were 

described such as penetratin [Derrossi et al. 1994], transportan [Pooga et al. 1998] 

and poly-arginine (R7 and R9) [Suzuki et al. 2002] for which Futaki et al. 

demonstrated, that the optimal number of arginine residues for the most efficient 

translocation is approximately 9 [Futaki et al. 2003]. 

CPPs such as transportan [Pooga et al. 2001], Tat peptide [Silhol et al. 2002] and 

nona-arginine [Luedtke et al. 2003] were used as vehicles for the cellular delivery of 

substances such as oligonucleotide analogues [Turner et al. 2005], antigenic 

peptides [Shibagaki & Udey 2002], peptide nucleic acids [Pooga et al. 1998], full-

lenghts proteins [Schwarze et al. 1999, Nagahara et al. 1998, Fawell et al. 1994] and 

drugs in general [reviewed by Trehin et al. 2004, Gupta et al. 2005]. A comparative 

study about protein cargo delivery by several CPPs was recently published [Säälik et 

al. 2004, see Graslund et al. 2004 and Lindgren et al. 2000 for reviews about CPPs 

in general]. The uptake of CPPs in cells can be accompanied by toxic effects 
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resulting from membrane perturbation at higher peptide concentration [Saar et al. 

2005]. 

The mechanism of uptake is not completely understood and still discussed up to 

now. In the late 1990s a direct transport through the lipid bilayer has been proposed 

[Vives et al. 1997, Derossi et al. 1996] since internalization is not significantly 

inhibited by depletion of the cellular ATP or by inhibitors of endocytosis. Whereas 

more recentely it has been shown that endocytosis is involved in the cellular 

internalization of Tat peptide and nona-arginine [Richard et al. 2003]. Especially for 

the TAT peptide a clathrin-dependent endocytosis mechanism was shown [Richard 

et al. 2005]. 

New methods for the precise quantification of cellular uptake of CPPs and their 

proteolytic fate needs to be developed to learn more about the involved 

internalization mechanisms [reviewed by Liu et al. 2003]. This problem will be 

discussed in more detail in chapters 5 and 6 respectively whereas a new quantitative 

method for the detection of internalized fluorescent peptides will be described. 

The functional linkage between apoptosis and cancer has been recently shown 

and reviewed by Kaufmann & Gores 2000, indicating that some oncogenes act by 

inhibiting cell turnover rather than enhancing proliferation e.g. myc [Evan et al. 1992, 

Vaux et al. 1998]. 

In general cysteine cathepsins [for review see Jedeszko & Sloane 2004] and in 

particular CatD [for review see Nomura & Katunuma 2005] are known to be involved 

in the pathology of various forms of cancer such as breast cancer [Foekens et al. 

1999, Vetvicka et al. 2002], colorectal cancer [Skrzydlewska et al. 2005] or lung 

cancer [Vetvicka et al. 2004]. Recent studies could even show that defective 

acidification of intracellular organelles results in secretion of CatD in cancer cells 

[Kokkonen et al. 2005]. 
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2 Materials and methods 
2.1 Enzymes and chemicals 

CatD (bovine spleen and human liver) was purchased from Sigma (Taufkirchen, 

Germany) and stored as a 32.3 µM stock solution in 0.1 M citric acid, pH 4.5 at -20 

°C prior to use. Pepstatin A, Zwittergent 3-12 and Rink amide resin were purchased 

from Calbiochem-Novabiochem (Schwalbach, Germany). All other chemicals and 

solvents were from Merck (Darmstadt, Germany). Fmoc amino acids were 

purchased from MultiSynTech (Witten, Germany) for the synthesis of the CatD 

substrates I, II, III and for all DCD-1L derived peptides and LL-37. 

Standard chemicals for the synthesis of R9-CatD-substrate were obtained from 

Fluka (Deisenhofen, Germany) and Merck (Darmstadt, Germany). All solvents were 

p. a. grade. Fmoc-amino acids were purchased from Novabiochem (Heidelberg, 

Germany), Senn Chemicals (Dielsdorf, Switzerland), and Orpegen Pharma 

(Heidelberg, Germany). Fmoc-Lys(Dde)-OH was purchased from Novabiochem 

(Läufelfingen, Switzerland). Rink amide resin was from Rapp Polymere (Tübingen, 

Germany). The isomeric mixtures of 5(6)-carboxyfluorescein (Fluo) and 5(6)-

carboxytetramethylrhodamin (Tamra)-N-succinimidylester were from Fluka 

(Deisenhofen, Germany). 
Bafilomycin A1 was obtained from Tocris Biotrend, Bristol, UK and chloroquine 

diphosphate from Fluka [Bowman et al. 1988, Clague et al. 1994, de Duve et al. 

1974, Kozak et al. 1999]. The bacterial metabolite lactacystin was purchased from 

Prof. Corey, Harvard University, Boston, USA) and Pepstatin A from Bachem, 

Bubendorf, Switzerland. The covalent cysteine protease inhibitor E-64d was 

purchased from Bachem. 

 

2.2 Solid-phase peptide synthesis 

Peptides were synthesized using standard Fmoc/tBu chemistry [Fields et al. 1991] 

and synthesis was performed on the multiple peptide synthesizer Syro II 

(MultiSynTech, Witten, Germany) on a 0.025 mmol scale using a six fold molar 

excess of Fmoc amino acids (MultiSynTech, Witten, Germany) on TCP-resin 

(PepChem, Reutlingen, Germany). All other reagents and solvents for peptide 

synthesis were purchased from Merck KGaA (Darmstadt, Germany). In situ 
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activation was performed using TBTU (6 eq.) and HOBt (1 eq.) followed by the 

addition of N-methylmorpholine (12 eq.) in DMF. After completion of the automated 

synthesis, the resin bound peptides were Fmoc-deprotected using 60% (v/v) 

piperidine in DMF twice for 15 min and washed subsequently with DMF, isopropanol 

and diethyl ether. To release the peptides from the resin and to remove the side 

chain protecting groups the following solution was used: 95% (v/v) TFA containing 

3% (v/v) thioanisol, 3% (w/v) phenol and 2% (v/v) ethanedithiol. The peptides then 

were precipitated in diethyl ether, dried and dissolved in 80% (v/v) tert-Butanol in 

water followed by lyophilisation. Crude peptides were purified using preparative 

reversed-phase high-performance liquid chromatography (RP-HPLC) and identity of 

the peptides was confirmed using electrospray ionization mass spectrometry (ESI-

MS). Peptide purities were determined via analytical RP-HPLC and proved to be 

higher than 97 %. The peptides were stored at 4 °C until use. 

 

2.3 Synthesis of the CatD-substrates I, II and III 

2.3.1 Synthesis of Fmoc-Lys(biotin)-Rink amide resin 

Fmoc-Lys-OH (368.4 mg, 1.0 mmol) was dissolved in 8 ml DMF and reacted with 

biotin-OSu (341.4 mg, 1.0 mmol) and NMM (111 µl, 1.0 mmol) for 6 h. The reaction 

mixture was extracted with chloroform, washed twice with 4 M KHSO4, water and 

finally evaporated to dryness. The obtained Fmoc-Lys(biotin)-OH derivative was 

coupled to Rink amide resin using the TBTU/HOBt coupling method. After this step 

the remaining free amino groups were blocked by acetylation with acetic 

anhydride/DIPEA/DMF (1:1:8, v/v/v) twice for 30 min. The degree of coupling was 

estimated to be 0.35 mmol/g. 

 

2.3.2 Solid-phase peptide synthesis (SPPS) 

The peptide substrates were synthesised by solid-phase synthesis using the 

standard Fmoc/tBu protocol [Fields et al. 1991] on the multiple peptide synthesizer 

Syro II (MultiSynTech, Witten, Germany) on a 0.025 mmol scale using a six fold 

molar excess of Fmoc amino acids. Side chain protecting groups were: tBu for Glu, 

Asp and Ser, Boc for Lys, 2,2,4,6,7-pentamethyl-dihydrobenzofuran-5-sulfonyl (Pbf) 

for Arg and Cys was Acm-protected. 
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In situ activation was performed using TBTU (6 eq) and HOBt (1 eq) followed by 

the addition of NMM (12 eq). After the completion of the coupling the resin bound 

peptides were Fmoc-deprotected using piperidine/DMF (2:3, v/v twice for 15 min) 

and washed subsequently with DMF, isopropyl alcohol and diethyl ether. 

 

2.3.3 On-resin labelling of substrates with Amca 

The fluorophore Amca (7-Amino-4-methylcoumarin-3-acetic acid) was coupled at 

a three fold excess directly to the α-amino group of the side chain-protected resin-

bound peptide in DMF using the TBTU/HOBt activation method for 3 h in the dark. 

Subsequently the resin was washed with DMF, isopropyl alcohol, diethyl ether and 

then dried. 

 

2.4 Kinetic characteristics of substrate I, II and III 

To measure the initial rates of substrate proteolysis and to determine the kinetic 

parameters of the substrates, digestion was monitored using RP-HPLC. Hydrolysis 

of substrates was performed in 48 µl of 50 mM Gly/HCl buffer (pH 3.5) containing 1 

µl of a 0.32 µM CatD solution. CatD dilutions were prepared in 0.1 M citric acid pH 

5.0 containing 0.05% (v/v) Triton X-100. The reaction was started by adding 1 µl of 

the appropriate substrate solution so that the final substrate concentration was 

between 5 and 80 µM. The reaction was performed at 37 °C. 

Every 2 min 2 µl of the reaction mixture were removed and added to 38 µl stop 

solution (H2O/ACN/TFA/Zwittergent 3-12, (94:5:1:0.2, v/v/v/w)). The obtained 

solutions were applied to an analytical C8 column (Nucleosil 100, 125 × 2 mm, C8 

column, 5 µm particle diameter, Wicom, Heppenheim, Germany) and eluted with a 

0% to 80% gradient of solvent B for 40 min. The HPLC column eluent was analysed 

measuring fluorescence emission at 450 nm following excitation at 350 nm using a 

fluorescence HPLC monitor RF-535 (Shimadzu, Duisburg, Germany). The peak of 

fluorescently labelled digestion product and the peak of undigested substrate were 

integrated and the amount of converted substrate in µM was determined. 

Then the initial velocity was calculated from the linear part of the cleavage curve 

which proved to be between 1 and 10 min. The Km (µM) and Vmax (µM × s-1) values 

were determined using the Lineweaver-Burk method. The kcat values (s-1) were 

calculated from the equation: 
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[ ]totalcat CatD
k max=    (equation 1) 

 V

 

where [CatD]total is the total enzyme concentration in µM and Vmax is the maximal 

velocity in µM × s-1.  

 

2.5 Digest & pull down assay 

The cleavage of the peptide amide substrates was performed in 48 µl 50 mM 

Gly/HCl buffer (pH 3.5) containing protease inhibitors (2 mM phenylmethanesulfonyl 

fluoride and 20 µM leupeptin for the inhibition of serine proteases, 10 mM EDTA for 

the inhibition of metalloproteases and 10 mM iodacetamide for the inhibition of 

cysteine proteases). 

For the digest & pull down assay 1 µl of a 0.5 mM substrate solution in 50% (v/v) 

DMSO was used. The appropriate sample volume of the cell fractions containing 0.5 

µg total protein determined according to Bradford [Bradford 1976] was then added. 

The calibration curve was determined using the appropriate sample volume of CatD. 

After 10 min at 37 °C, 90 µl stop solution were added to 10 µl of the reaction 

mixture. The fluorescence of a 50 µl aliquot of the solution was then measured using 

the microplate reader Spectra Fluor (Nunc, Wiesbaden, Germany) at an emission 

wavelength of 465 nm with excitation at 360 nm, obtaining F1 in fluorescence units 

(FU). This solution was then added to 5 µl of streptavidin-coated magnetic beads 

(MagPrep® Streptavidin Beads by Merck, 1 µm, 1.4 g/l, 1012 particles/g). Magnetic 

beads were rinsed twice for 2 min with 50 mM Gly/HCl buffer (pH 3.5) before 

application. We determined that 2 µl of the magnetic beads suspension captures up 

to 0.1 nmol biotinylated peptide. The mixture was stirred and kept at RT for at least 

10 min but not longer than 30 min. Longer incubation leads to an increase of 

unspecific binding. The solution should be homogeneous for complete binding of the 

biotinylated molecules to the streptavidin-coated magnetic beads. After 10 min the 

magnetic beads were separated using a permanent magnet (after 1 min the 

supernatant should be clear). The fluorescence of 50 µl of the obtained supernatant 

was measured according to F2. The concentration of generated digestion product 

(DP) in µmol/l per min is calculated using the equation 
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where [S0] is the initial substrate concentration (µM) and t is the digestion time in 

min. [DP0] is the value of biotinylated peptides not bound to the magnetic beads (µM) 

and has to be determined in parallel to each test series. 

 

2.6 Synthesis of R9-CatD-substrate 

The doubly-labeled peptide R9-CatD-substrate (Ac-RRRRRRRRR-Lys(Tamra)-

APISFFELG-εLys(αFluo)-CONH2) was synthesized using the previously developed 

Nα-carboxyfluorescein-labeled lysyl-Rink amide resin [Fischer et al. 2003]. The 

peptide RRRRRRRRR-Lys(Dde)-APISFFELG was assembled on this resin in a 15 

µmol scale as described above. For analytical purposes a small fraction of the 

peptide was cleaved off and analyzed (RRRRRRRRR-Lys(Dde)-APISFFELG-

εLys(Fluo)-CONH2, purity 80 % as determined by RP-HPLC, 214 nm, calc. [M+H]+ = 

3164.7 Da, exp. [M+H]+ = 3164.0 Da as determined by MALDI-MS). 

Derivatizations of the peptide were performed manually in 2 ml syringes on a 

shaker at RT. Reactions were stopped by washing the resins 3 times each with 

DMF, MeOH, DCM and diethylether. The synthesis of the doubly-labeled peptide 

was performed in a 5 µmol scale. The amino terminus of the resin-bound and side-

chain protected peptide was acetylated using 1 ml DMF/acetic anhydride/DIPEA 

(8:1:1, v/v/v). Deprotection of the Dde-protecting group was performed using 2 % 

(v/v) hydrazine monohydrate in DMF twice for 3 min. Then the free ε-amino group 

was reacted with 5(6)-carboxytetramethylrhodamine-N-succinimidyl ester (10 µmol, 

5.3 mg) in DMF (200 µl) containing DIPEA (25 µmol, 4.3 µl). After 16 h, the resin was 

thoroughly washed followed by cleavage off the resin and deprotection of the doubly-

labeled peptide amide. The peptide was dissolved in ACN/water (1:1, v/v), 

lyophilized and analyzed by RP-HPLC and MALDI-MS (see Figure 25). Afterwards 

the R9-CatD-substrate was purified by preparative RP-HPLC. 
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2.7 Cell culture 

HeLa cells were grown in a 5 % CO2 humidified atmosphere at 37 °C in RPMI 

1640 medium with stabilized glutamine and 2.0 g/l NaHCO3 (PAN Biotech, 

Aidenbach, Germany) supplemented with 10 % (v/v) fetal calf serum (PAN Biotech), 

100 U/ml penicillin, and 100 µg/ml streptomycin (Biochrom, Berlin, Germany). 

Confluent cells were passaged by trypsinization with 

trypsin/ethylenediaminetetraacetic acid (EDTA) (0.05/0.02 % (w/v)) (Biochrom) in 

PBS every third to fourth day. 

The EBV-transformed human B cell line Boleth (IMGT/HLA sequence database 

number: HC10329) and the human monocyte cell line U937 (ATTC number: CRL-

2367) were grown at 37 °C in tissue culture flasks (Nunc, Wiesbaden, Germany) with 

RPMI 1640 medium (containing 10% (v/v) fetal calf serum; 2 mM L-glutamine; 25 

mM Hepes; Invitrogen-Gibco, Karlsruhe, Germany) supplemented with 80 µg/ml 

gentamycin (Merck, Darmstadt, Germany) in a humidified atmosphere (5 % CO2/air). 

108 Cells were harvested (1000 rpm for 10 min, Heraeus-Christ Varifuge K) and 

subcellular fractionation was performed as previously described by Schröter et al. 

1999. The obtained fractions were crude cell extract (CCE), endosomal fraction (E) 

and lysosomal fraction (L). 

 

2.8 SDS-PAGE and western blot analysis 

2.8.1 Western blot analysis of subcellular fractions 

Subcellular fractions were separated by SDS-polyacrylamide gel electrophoresis 

(15 µg protein/lane) on a 15% separating gel and transferred to a PVDF-membrane 

(Amersham Biosciences, Freiburg, Germany) in a Novex mini-trans-blot-apparatus 

(Invitrogen, Karlsruhe, Germany). The membranes were blocked for 16 h at 4 °C in 

Tris buffered saline with Tween 20 (TBST, 0.15 M NaCl, 10 mM Trizma® Base, 

0.05% Tween 20 (v/v), pH 8.0) containing 10% (v/v) Roti® Block (Roth, Karlsruhe, 

Germany). Rabbit anti-human CatD (Calbiochem, Schwalbach, Germany) was 

diluted 1:5000 in TBST containing 10% (v/v) Roti® Block and incubated for 2 h. 

Subsequently, filters were washed 3 times in TBST and incubated for 1 h with 

horseradish peroxidase-conjugated goat anti-rabbit IgG (Jackson Immuno Research, 

West Grove, USA) diluted 1:10000 in TBST containing 10% (v/v) Roti® Block. After 
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washing the filters 3 times with TBST, western blots were developed according to the 

ECL protocol by Amersham Biosciences (Freiburg, Germany). 

 

2.8.2 Western blot analysis of HeLa cell lysate 

106 HeLa cells were lysed in 200 µl phosphate buffered saline (PBS) containing 1 

% (v/v) NP-40, 0.5 % (w/v) sodium desoxycholate and 0.1 % (w/v) sodium dodecyl 

sulfate (SDS) (all detergents were obtained from Sigma) complemented with 

protease inhibitors for tissue extracts (Sigma). The protein content of the lysate was 

determined using a commercially available Bradford protein assay kit (Bio-Rad 

Laboratories, München, Germany). Proteins were separated using SDS-

polyacrylamide gel electrophoresis on a 10 % separating gel and then transferred to 

a PVDF-membrane in transfer buffer (195 mM glycine, 12.5 mM Tris/HCl, 0.01 % 

(w/v) SDS and 10 % (v/v) methanol) in a HEP-1 Panther Semi Dry Electroblotting 

System (OWL, Portsmouth, USA). The PVDF-membrane was first blocked for 1 h at 

RT with blocking solution (2 % (w/v) low-fat milk powder in PBST (PBS + 0.05 % 

(v/v) Tween) and subsequently incubated with rabbit anti-human CatD antibody at 4 

°C for 16 h (Calbiochem-Novabiochem Corporation, San Diego, USA; diluted 1:5000 

in blocking solution). Then the membrane was incubated with horseradish 

peroxidase-conjugated goat anti-rabbit IgG (DakoCytomation, Glostrup, Denmark; 

diluted 1:5000 in blocking solution) for 1 h at RT. After washing the membrane 3 

times for 10 min with PBST, western blots were developed according to the ECL 

protocol by Amersham Biosciences (Freiburg, Germany). 

 

2.8.3 Western blot analysis of sweat 

Sweat samples were run on a 15% Bis-Tris (Bis-(2-hydroxyethyl)-glycin) 

separating gel with Tris-glycine running buffer (25 mM Tris-HCl, 192 mM glycine, 

0.1% (w/v) SDS, pH 8.3) and stained with Simply Blue™ Safe Stain (Invitrogen, 

Karlsruhe, Germany). Gel bands were excised and stored at -18 °C until digestion 

with trypsin. Western blot analysis was performed using a 10% Bis-Tris gel 

(Invitrogen, Karlsruhe, Germany) with MES ((2-(N-morpholino)ethanesulfonic acid) 

running buffer according to the manufacturer’s instructions. Proteins then were 

transferred to a PVDF (polyvinylidene difluoride) membrane (Amersham 

Biosciences, Freiburg, Germany) in a Novex mini-trans blot-apparatus (Invitrogen, 
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Karlsruhe, Germany). The membrane was blocked for 16 h at 4 °C in Tris buffered 

saline with Tween 20 (TBST, 0.15 M NaCl, 10 mM Trizma® Base, 0.05% (v/v) Tween 

20, pH 8.0) containing 10% (v/v) Roti® Block (Roth, Karlsruhe, Germany). Rabbit 

anti-human CatD (Sigma, Taufkirchen, Germany) was diluted 1:10,000 in TBST 

containing 10% (v/v) Roti® Block. After 2 h incubation membranes were washed and 

incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG (Jackson 

Immuno Research, West Grove, USA) (1:10,000) for 1 h. Western blots were then 

developed according to the ECL protocol of Amersham Biosciences. 

 

2.9 Collection and preparation of sweat 

Human sweat samples from several healthy donors were collected from the 

surface of the face, neck or chest during physical exercise or in a hot environment as 

previously described [Schittek et al. 2001]. For some experiments sweat samples 

were pooled (pooled sweat). SDS-PAGE analysis was performed with 100 µl sweat. 

Before gel electrophoresis sweat samples were dialyzed (48 h) using a 1 kDa 

membrane Tube-O-Dialyzer™ (Geno Technology, St. Louis, USA) to remove small 

interfering substances such as salts. The resulting 150 µl sample were concentrated 

to dryness using a centrifugal vacuum concentrator (Savant SpeedVac® SPD111, 

Thermo Quest, Egelsbach, Germany) and then resuspended in 20 µl water. Western 

blot analyses and in vitro digestion experiments were performed with pure sweat, 

centrifuged at 1500 g (Biofuge pico, Kendro, Osterode, Germany). The obtained 

supernatants were stored at -80 °C until use. 

 

2.10 In-gel tryptic digestion and analysis of tryptic fingerprint 

Excised gel bands were diced to approximately 1 mm3 and washed once for 15 

min with water before being resuspended in 40 µl 50% (v/v) acetonitrile (ACN)/water 

and incubating for further 15 min. Gel pieces were then subsequently shrunk with 40 

µl 100% ACN and 40 µl of 100 mM (NH4)2CO3. Afterwards gel pieces were 

incubated for 15 min with a 1:1 solution of ACN and 100 mM (NH4)2CO3 and then 

vacuum-centrifuged to complete dryness. 40 µl of a trypsin solution (10 ng/ml) in 

digestion buffer (5 mM CaCl2 and 50 mM (NH4)2CO3) were added and incubated for 

45 min. The trypsin solution was removed and gel pieces were incubated for 16 h at 

37 °C in 50 µl digestion buffer. Tryptic peptides were eluted from the gel pieces by 
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covering them with 0.1% (v/v) TFA in water and sonicated for 30 min. The extraction 

step was repeated successively with 30% (v/v) ACN/water and with 60% (v/v) 

ACN/water. The obtained supernatants were pooled and vacuum centrifuged to 50% 

of the original volume to remove TFA and ACN. After adding 10 µl formic acid, 

samples were measured by MALDI-Re-TOF (time of flight) MS on a Voyager DE-

STR (Applied Biosystems, Foster City, CA, USA). Peptide fingerprints were exported 

for database matching, and subsequently identified using the Mascot program 

[Perkins et al. 1999] available through www.matrixscience.com. In certain cases the 

results of tryptic fingerprint analysis were not definite, thus the samples were 

additionally analyzed by automated LC-ESI-MS/MS using an Esquire 3000 plus ion-

trap mass spectrometer (Bruker-Daltonics, Bremen, Germany). The obtained MS/MS 

data were also analyzed using Mascot sequence query for probability based peptide 

identification. 

 

2.11 In vitro digestion of LL-37 and DCD-1L with CatD 

In vitro digestions of synthetic LL-37 and DCD-1L with CatD (Sigma, Taufkirchen, 

Germany) were performed in 50 mM Glycine/HCl buffer pH 3.5 and in sweat buffer 

pH 5.5 (40 mM NaCl, 10 mM KCl, 1 mM CaCl2, 1 mM MgCl2 and 1 mM NaH2PO4) 

(14). DCD-1L (24.9 µM) and LL-37 (26.7 µM) were incubated with 0.6 µM CatD for 8 

h at 37 °C. The reaction was stopped by addition of 25 µl stop solution (95% (v/v) 

ACN, 1% (v/v) TFA in water). 

Peptide fragments were separated via analytical RP-HPLC using a 125 × 2 mm 

Nucleosil 100 C 8 column (Wicom, Heppenheim, Germany) with the following solvent 

system: (A) 0.055% (v/v) TFA (trifluoroacetic acid) in H2O and (B) 0.05% (v/v) TFA in 

ACN/H2O (4:1, (v/v)). The column was eluted with a 5% to 80% gradient of solvent B 

for 40 min. UV-detection was carried out at 214 nm (UV detector SPD-10AV, 

Shimadzu, Duisburg, Germany). Manually collected fractions were subsequently 

analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-

MS) and Edman degradation on an automated 494A Procise peptide sequencer 

(Applied Biosystems, Darmstadt, Germany). The in vitro inhibition experiments were 

analyzed in the same way using a RF-10AXL fluorescence detector (Shimadzu, 

Duisburg, Germany) by measuring the emission at 450 nm following excitation at 

350 nm. 
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2.12 Determination of aminopeptidase activity 

Aminopeptidase activity was measured using the substrate H-Leu-AMC (Bachem 

AG, Bubendorf, Switzerland) (15 µM) according to the manufacturer’s protocol and 

25 µl pooled sweat to a final volume of 200 µl in PBS. Fluorescence signal was 

continuously measured using the microplate reader Spectra Fluor (Nunc, 

Wiesbaden, Germany) at an emission wavelength of 465 nm with excitation at 360 

nm. 

 

2.13 SELDI Protein Chip® Technology 

Sweat samples were analyzed by surface-enhanced laser desorption/ionization 

(SELDI) mass spectrometry [Wright 2002] on reversed-phase (H4) chips (Ciphergen 

Biosystems, Fremont, USA) which were equilibrated three times for 5 min in 

ACN/water (1:1, (v/v)). 1 µl human sweat was diluted into 2 µl binding buffer (50 mM 

sodium phosphate pH 6.5) and the chromatographic arrays were incubated in a 

humid chamber for 30 min. Then chips were washed three times for 5 min with 

binding buffer followed by a final water wash to remove interfering substances such 

as salts. After drying a saturated solution of sinapinic acid in ACN/H2O (1:1, (v/v)) 

supplemented with 0.5% (v/v) TFA was added and peptide masses were read from 

the array surface using a ProteinChip Reader (Ciphergen Biosystems, Fremont, 

USA). The instrument was externally calibrated using two different synthetic peptides 

(DCD-1L and DCD-1) and bovine insulin. Internal calibration was performed by 

adding 100 fmol of porcine dynorphin A, adrenocorticotropic hormone (1-24) and 

bovine insulin. The data obtained were analyzed using the ProteinChip Software 

(Version 3.0). 

 

2.14 Antimicrobial assays 

Antimicrobial activities of synthetic peptides were tested by the Department of 

Dermatology, University of Tübingen, using the colony-forming units (CFU) assay as 

previously described [Valore et al. 1998]. Escherichia coli (ATCC 25922) or 

Staphylococcus aureus (ATCC 25923) single cell colonies were cultured overnight, 

subcultured and grown to mid-exponential growth phase prior to the antimicrobial 

assay. Cells were washed twice with 10 mM Na-phosphate buffer pH 7.0 containing 
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10 mM NaCl. Bacterial concentration was estimated photometrical at 600 nm. 

Absorbance of 1.0 corresponded to 8.56*108 cells of E. coli and to 1.97*108 cells of 

S. aureus per ml. After dilution to a concentration of 106 CFU/ml in 30 mM Na-

phosphate buffer pH 7.0 containing 30 mM NaCl, 10µl of the dilutions were 

incubated at 37°C for 2h with 20µl various peptide concentrations in water. After 

incubation cells were diluted 1:100 in 10 mM Na-phosphate buffer pH 7.0 containing 

10 mM NaCl. Then 90 µl of the diluted bacterial suspension were plated in triplicates 

on blood agar. The plates were incubated overnight at 37 °C and the number of 

colonies were counted. Antimicrobial activity is expressed as percentage of cell 

death (PCD): 
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where CFUcontrol is the number of colony-forming units without peptide incubation 

and CFUsample is the number of colony-forming units of the appropriate sample. 

 

2.15 RP-HPLC for the R9-CatD-substrate 

The peptide was analyzed by analytical RP-HPLC using a H2O (0.1 % TFA) 

(solvent A)/ACN (0.1 % TFA) (solvent B) gradient on a Waters 600 System 

(Eschborn, Germany) with detection at 214 nm. The sample was analyzed on an 

analytical column (Nucleosil 100, 250 x 2 mm, C18 column, 5 µm particle diameter; 

Grom, Herrenberg, Germany) using a linear gradient from 10 % B to 100 % B within 

30 min (flow rate: 0.3 ml/min). The R9-CatD-substrate was purified by preparative 

RP-HPLC (Nucleosil 300, 250 x 20 mm, C18 column, 10 µm particle diameter; Grom, 

Herrenberg, Germany) on a Gilson (Bad Camberg, Germany) preparative system, 

equipped with a 321 Pump and a 156 UV/Vis Detector, flow rate: 10 mL/min. 

The purified R9-CatD-substrate was dissolved in DMSO at a concentration of 10 

mM. This stock solution was further diluted 1:20 in H2O. The peptide concentration 

was determined by UV/VIS-spectroscopy of a further 1:100 dilution in methanol. 

Absorptions of these solutions were then measured at 540 nm (ε = 95.000 

L/(mol⋅cm). 
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2.16 MALDI-MS 

1 µl of 2,5-dihydroxyacetophenone (DHAP) matrix (20 mg of DHAP, 5 mg of 

ammonium citrate in 1 ml of isopropyl alcohol/H2O (4:1, v/v)) was mixed with 1 µl of 

each sample (dissolved in ACN/water (1:1, v/v) at a concentration of 1 mg/ml) on a 

gold target. Measurements were performed using a MALDI-TOF (time-of-flight) 

system (G2025A, Hewlett-Packard, Waldbronn, Germany). For signal generation 20-

50 laser shots were added up in the single shot mode. 

 

2.17 Digestion of the R9-CatD-substrate with proteinase K for 
ratiometric measurements 

Fluorescence emission spectra were recorded at RT using an LS50B 

spectrofluorometer (Perkin-Elmer, Norwalk, USA). The spectra were corrected for 

the sensitivity of the detection system. The excitation and emission bandwidths were 

set to 10 nm. Purified R9-CatD-substrate (100 nM) was digested at 37°C with 

proteinase K (20 µg/ml, Sigma, Taufkirchen, Germany) in NP-40 lysis buffer (0.5 % 

(v/v) NP-40, 150 mM NaCl, 5 mM EDTA, 50 mM TRIS, pH 7.0). After 3 h the reaction 

was stopped by adding PMSF (final concentration 500 µM). Definite amounts of 

digested and undigested R9-CatD-substrate diluted in 100 nM in NP-40 lysis buffer, 

including 500 µM PMSF were mixed and fluorescence emission spectra of the 

solutions were recorded (excitation 492 nm). All digests and measurements were 

performed as duplicates. 

 

2.18 Fluorescence emission measurements in cell lysates 

HeLa cells were seeded in 12-well plates (Becton-Dickinson, Heidelberg, 

Germany) in serum-containing medium and grown to 90% confluency (300,000 cells 

per well). The cell layer was first washed with serum-free medium and incubated with 

250 µl serum-free medium (containing the indicated inhibitors) for 30 min. Then the 

R9-CatD-substrate was added at the indicated concentration. Following the peptide 

incubation for 1 h cells were washed twice with PBS, detached using 5 mM EDTA in 

PBS (15 min at 37 °C), transferred into a tube and spun down. The cell pellet was 

then lysed in 200 µl NP-40 lysis buffer containing a protease inhibitor cocktail (Roche 

Diagnostics, Mannheim, Germany). These lysates were sonicated and centrifuged 

for 10 min at 4 °C and 14,000 rpm. Fluorescence emission spectra of the 
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supernatants were recorded immediately (excitation at 492 nm) and fluorescence 

emission ratios (520nm/585 nm) were calculated. 

In the cases of the digestion of the lysate with proteinase K (Figure 3A), four wells 

of a 12 well plate were incubated with the R9-CatD-substrate as indicated. Two of 

four obtained cell pellets were lysed in protease inhibitor containing NP-40 lysis 

buffer as indicated above and fluorescence emission spectra of the two lysates were 

recorded (excitation at 492 nm). The other two cell pellets were lysed in NP-40 lysis 

buffer without protease inhibitors and lysates were prepared. Those lysates were 

subsequently digested with 0.1 mg/ml proteinase K for 16 h. 

 

2.19 Confocal laser scanning microscopy (CLSM) 

CLSM was performed on an inverted LSM510 laser scanning microscope (Carl 

Zeiss, Göttingen, Germany) fitted with a Plan-Apochromat 63x 1.4 N.A. lens. All 

measurements were performed with living, non-fixed cells. 

HeLa cells were seeded at a density of 50,000/well in eight-well chambered cover 

glasses (Nunc, Wiesbaden, Germany). One day later cells were washed once with 

serum-free medium. AlexaFluor 633-Transferrin (Molecular Probes, Eugene, USA) 

and R9-CatD-substrate were added as indicated in serum-free medium. After 30 min 

incubation with the R9-CatD-substrate and AlexaFluor 633-Transferrin, images were 

acquired immediately at RT with peptide and transferrin in the medium. 

For triple detection of fluorescein, Tamra and AlexaFluor 633, a 488 nm Argon-ion 

laser, a 543 nm Helium/Neon and a 633 nm Helium/Neon laser were used for 

excitation in combination with a filter set containing an HFT UV/488/543/633 beam 

splitter. For fluorescein detection a BP 505-530 detection filter was applied, for 

Tamra detection a BP 560-615 detection filter, and a LP650 long pass filter for 

AlexaFluor 633 detection. To avoid cross-talk detection, the multi-track modality of 

the LSM was employed for image acquisition. The AlexaFluor 633 channel was 

virtually free of cross-talk from the other two fluorophores as determined from control 

samples loaded with the R9-CatD-substrate. 
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3 New substrates for the detection of CatD activity 

3.1 Intention 

For cellbiological investigations, for the discovery of specific inhibitors or for 

clinical diagnostics it is necessary to have a fast and reproducible assay for the 

parallel testing of the proteolytic activity of CatD. Previously, several methods have 

been described for measuring the activity of aspartic proteases [Folin & Ciocalteau 

1927, Anson 1938, Dunn et al. 1986, Filippova et al. 1996, Gulnik et al. 1997, 

Yasuda et al. 1999]. A very common method using natural protein substrates like 

bovine hemoglobin is rather time consuming and lacks of specificity [Anson 1939]. 

The generated trichloroacetic acid soluble cleavage products of hemoglobin are 

measured at 280 nm or the tyrosine and tryptophane content is determined using the 

phenol reagent of Folin and Ciocalteau [Folin & Ciocalteau 1927]. A faster method 

uses substrates containing a chromophore, such as a nitrophenylalanine residue, at 

position P1’. Product formation can be measured by monitoring the increase of 

absorbance at 300-310 nm by UV spectroscopy [Dunn et al. 1986]. Recently, 

fluorogenic substrates containing fluorophore and quencher groups like o-

aminobenzoic acid and p-nitroanilide [Filippova et al. 1996] or 5-[(2-

aminomethyl)amino]naphthalene-1-sulfonic acid) (EDANS) and 4’-

dimethylaminoazobenzene-4-carboxylic acid (DABCYL) [Gulnik et al. 1997, 

Matayoshi et al. 1990] within the same molecule have been developed. Upon 

cleavage of the peptide the fluorescence signal is no longer quenched and its 

increase can be measured continuously [Yaron et al. 1979]. 

Here we describe the synthesis of simultaneously fluorophore and biotin labelled 

decapeptide amide substrates and their application to a novel heterogeneous bead-

assay for the determination of CatD activitiy. This method is applied to biological 

samples to analyse CatD activity in endosomal and lysosomal compartments as well 

as in cell lysates of human EBV-transformed B cells and human monocytes. 
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3.2 Results 

3.2.1 Synthesis of biotinylated and fluorescent CatD substrates 

The substrate I was designed based on the published CatD peptide substrate 

KPILF FRL. Within this substrate the Phe-Phe bond is predominantly cleaved by 

CatD as previously described by Scarborough et al. 1993. We modified this 

substrate for our digest & pull down assay system by including the two charged 

amino acids glutamic acid and aspartic acid (Table 2) at the N-terminus in order to 

increase solubility. At the C-terminus a glycine residue was introduced as a spacer 

and a lysine residue for the conjugation of the biotin moiety via its ε-amino-group. 

This was achieved by using a Rink amide resin carrying an ε-biotinylated lysine 

residue (Fig. 2). The peptide substrate then was synthesised by elongation via SPPS 

on the lysine’s α-amino-group. After SPPS the substrate was then N-terminally 

labelled with the pH-insensitive fluorophore Amca due to the fact that the assay will 

be performed in an acidic buffer system because CatD has a pH optimum at 3.5 – 

4.0 [Yasuda et al. 1999]. After deprotection and cleavage from the resin the peptide 

amides were purified by preparative RP-HPLC and checked for their correct masses 

using ESI-MS. Peptide purities were determined via analytical RP-HPLC and proved 

to be higher than 97 %. 

 

Table 2 Proteolytic fragments obtained after digesting substrate I, II and III with CatD 
as determined with mass spectrometry. P1 and P1’ residues are shown in 
bold. 
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Figure 2 Synthesis of the biotinylated and fluorescent peptide amide Amca-
EDKPILFFRLGK(biotin)-CONH2. (A) Coupling of Fmoc-Lys(biotin)-OH to Rink 
amide resine. (B) Capping of the remaining amino-groups by acetylation. (C) 
Solid-phase peptide synthesis. (D) Introduction of the fluorophor Amca at the 
N-terminus. (E) Cleavage of the peptide from the resin and side chain 
deprotection 

 

3.2.2 In vitro digestion and optimisation of the peptide substrate 

Substrate I was digested in vitro with CatD and the generated peptide fragments 

were separated using RP-HPLC (Fig. 3, panel A) and identified by MALDI-MS (Table 

2). Substrate I did not posses just one single cleavage site for CatD and was cleaved 

between I L, L F and F F (Table 2, entry I). However, the development of a 

specific CatD assay preferably requires a substrate possessing one single cleavage 

site. Therefore we replaced the hydrophobic amino acid residue leucine in P2 

position with the Acm-protected cysteine derivative Cys(Acm) (substrate II) or the 

hydrophilic amino acid serine (substrate III), respectively. The peptide amide 

substrates II and III were synthesised as described in the experimental section and 

peptide purities were determined using analytical RP-HPLC and proved to be higher 

than 97 %. Substrate II and III were also digested with CatD and the generated 
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peptide fragments were separated by RP-HPLC and identified by MALDI-MS. Both 

substrates were only cleaved between the two phenylalanine residues yielding 2 

peptide fragments (Table 2, entries II and III). No further digestion products were 

observed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 RP-HPLC profiles of substrates I-III after incubation with CatD at pH 3.5 in 50 
mM Glycin-HCl buffer with (upper line) or without (lower line) 10 µM Pepstatin 
using fluorescence detection (λEx. = 350 nm, λEm. = 450 nm). (A) Digestion of 
substrate I with CatD leads to at least 6 determined cleavage products. 
Substrate II (B) and III (C) show only one cleavage site for CatD. 

 

These results suggest that CatD preferable cleaves peptide substrates between 

uncharged and hydrophobic amino acids according to previous published data 

[Scarborough et al. 1993]. Replacement of the uncharged hydrophobic amino acid 

leucine at P2 position renders the substrates II and III to more specific substrates 

which make them attractive tools for the development of a specific CatD assay. 

 

3.2.3 Kinetic characteristics of the developed CatD substrates 

Next we characterised substrates I, II and III with respect to their kinetic properties 

by measuring the initial velocities at various substrate concentrations using analytical 

RP-HPLC with fluorescence detection for the quantification of proteolytic activity. In 

order to obtain data that can be used for kinetic analysis, we tested in which time 

frame the initial velocity is linear (Fig. 4). Within the first 10 min the initial velocity is 

linear and the obtained parameters could be used for Lineweaver-Burk analysis as 
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described in the experimental section. The obtained Km, kcat and kcat/ Km values of 

the substrates I, II and III are listed in Table 3.  

 

 

 

 

 

 

 

 

 

Figure 4 Time courses of the hydrolysis of 10.5 µM substrate I, II and III with 6.5 nM 
CatD in 50 mM Gly/HCl buffer (pH 3.5). The amount of digestion product (DP) 
was determined using RP-HPLC with fluorescence detection as described in 
the experimental section. The hatched area indicates the linear phase of the 
hydrolysis (0 - 10 min). In the presence of 10 µM pepstatin A CatD was 
completely inhibited. 

 

The determined kinetic parameters for the substrates are slightly higher than 

described for previously published substrates [Scarborough et al. 1993, Gulnik et al. 

1997, Yasuda et al. 1999]. Conjugation with biotin and Amca as well as the 

replacement of the hydrophobic amino acid leucine in P2 position leads to a small 

increase of the Km values. As expected substrate I exhibits the lowest Km value due 

to the fact that it possesses several cleavage sites for CatD. Substrate III is more 

specific than substrate I and has a smaller Km value than substrate II and therefore 

proved to be the most suitable substrate for a rapid and specific substrate-based 

CatD assay. Therefore substrate III was used for further experiments. 

 

Table 3 Kinetic parameters for the hydrolysis of the synthesised fluorescent substrates 
I, II and III by CatD. P1 and P1’residues are shown in bold. 
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3.2.4 Application of the substrates for the determination of CatD 

activity 

Figure 6 shows the principle of our novel digestion & pull down assay. After 

incomplete digestion of the substrate III the following peptides are in solution: intact 

substrate and both, fluorescent and biotinylated digestion products. First total 

fluorescence of the reaction solution is measured at an emission wavelength of 465 

nm with excitation at 360 nm immediately after digestion. The obtained value is 

called F1 and represents the total amount of fluorescent peptides in solution i.e. 

digested and undigested fluorescent substrate. In the next step all biotinylated 

peptides are removed using streptavidin-coated magnetic beads, leaving only 

fluorescent digestion products in solution. Then the remaining fluorescence is 

measured yielding the value F2. 
  

 

 

 

 

 

 

Figure 5 Characterisation of the streptavidin-coated magnetic beads. (A) Binding 
capacity of the streptavidin-coated magnetic beads. (B) Time course of the 
conjugation of biotinylated peptide substrate III to 2 µl of the streptavidin-
coated magnetic beads. 

 

Under the conditions described in the experimental section about 95 % of all 

biotinylated molecules are bound and removed (Fig. 5A) from the solution within 10 

min (Fig. 5B). Longer incubation times or the application of more magnetic beads do 

not improve the efficiency of the removal of the biotinylated peptides. The difference 

between the values F1 and F2 coincides proportionally with the amount of digested 

substrate. Using equation 2 shown in the experimental section, the concentration of 

the digestion product (DP) after the appropriate time can be calculated. 
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Figure 6 Principle of the digest & pull down assay: (A) Incomplete digestion of peptide 
substrate and fluorescence measurement (F1). (B) Capturing of biotinylated 
digestion products with streptavidin-coated magnetic beads. (C) Measurement 
of fluorescence (F2) after separation of magnetic beads with a permanent 
magnet 

 

Determination of absolute CatD activity in biological samples requires a calibration 

curve. For this purpose substrate III was incubated with different amounts of CatD in 

the range from 15 mU/ml to 45 mU/ml (Fig. 7). The obtained values were 

interpolated leading to the following equation 

[ ]
1656.0×

=
t
DPCatD   (equation 3) 

where [DP] is the concentration of the digestion product in µmol/l, t is the digestion 

time in min and CatD is the enzyme activity in mU/ml. The constant factor 0.1656 
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represents the slope of the calibration curve. One unit is defined as the increase in 

the absorbance at 280 nm of 1.0 in 30 min at pH 3.3 and at 37 °C measured as 

trichloroacetic acid soluble products using acid-denaturated hemoglobin as substrate 

(Sigma-Aldrich, Taufkirchen, Germany). 

 

 

 

 

 

 

 

Figure 7 Calibration curve for the determination of CatD activity using the bead-assay. 
Varying concentrations of CatD were incubated with substrate III (10.6 µM) in 
50 µl 50 mM Gly/HCl buffer (pH 3.5) at 37 °C for 10 min. Values represent the 
mean of at least three independent experiments 

 

3.2.5 Determination of CatD activity in subcellular compartments 

of human B cells and monocytes 

To demonstrate the applicability of the digest & pull down assay for biological 

samples the distribution of CatD in different subcellular fractions of the human EBV-

transformed B cell line Boleth and the human monocyte cell line U937 was analysed. 

The two cell lines were selected because of their different CatD expression levels. 

The cell line U937 exhibits a very high level of CatD compared to the Boleth cell line 

where no CatD was detectable in cell lysates using western blot analysis [Greiner et 

al. 2003]. 

In order to validate the versatility of our novel digest & pull down assay for cellular 

CatD activity measurements we compared it with standard western blot analysis. 

Therefore the two cell lines were homogenized and fractionated as previously 

described [Schröter et al. 1999] yielding the following subcellular fractions: crude cell 

extract (CCE), endosomal fraction (E) and lysosomal fraction (L). The total amount of 

protein of each fraction was determined using the method of Bradford [Bradford 

1976]. 15 µg total protein of the subcellular fractions were applied to a 15 % SDS-

polyacrylamide gel and the proteins then were transferred to a PVDF-membrane 

followed by western blot analysis using a rabbit anti-CatD (human) antibody (Fig. 
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8A). Lanes 1, 2 and 3 and 5, 6, 7 represent lysosomal fraction, endosomal fraction or 

crude cell extract of the Boleth cell line and U937 cell line, respectively. Human CatD 

was used as a positive control and is shown in lane 4. The band migrating at 31 kDa 

represents the active mature form of CatD. Two weaker bands at 44 kDa and 51-55 

kDa stand for the intermediate single chain form of CatD and for glycosylated 

proforms of CatD respectively [Rijnboutt et al. 1992]. The control human CatD shows 

a major band at 31 kDa and a small amount of the intermediate single chain form 

and the proform of CatD due to the fact that it has been isolated from human liver. 

In the endosomal fraction and in crude cell extracts of the Boleth cell line no CatD 

could be detected. The band visible in crude cell extract and in the lysosomal fraction 

of the Boleth cell line migrating at 33 kDa is not mature CatD due to the fact that it 

migrates above the mature CatD band. This CatD form has not been identified by 

anyone until now. Only in the lysosomal fraction of the Boleth cell line a small 

amount of mature CatD as well as the intermediate single chain CatD and the 

proform of CatD could be detected. 

In contrast to this intracellular CatD distribution in the Boleth cell line, in all 

fractions of the U937 cell line almost the same amount of mature CatD was detected. 

The single chain intermediate form of CatD is predominantly found in endosomal 

fraction and to a smaller amount in lysosomal fraction and crude cell extract. 

Now the two cell lines were analysed for their CatD activity using substrate III and 

our novel digest & pull down assay. The digest & pull down assay was performed 

with 0.5 µg total protein of the subcellular fraction. The digestion products were then 

separated by RP-HPLC and identified by MALDI-MS. Substrate III was only cleaved 

between the two phenylalanine residues and no further cleavage sites were 

observed when using the inhibitor mix described in the experimental section (data 

not shown). These findings proved that substrate III can be used for specific 

determination of CatD in subcellular fractions of human B cells and human 

monocytes respectively. 

Substrate III was also incubated for 10 min with the subcellular fractions and 

analysed using a microplate reader at an emission wavelengths of 465 nm with 

excitation at 360 nm obtaining F1 and F2 respectively. The amount of digestion 

product in µmol/l was calculated using equation 2. For the determination of the 

absolute CatD activity in the subcellular fractions the obtained amount of digestion 

product was inserted in equation 3 yielding the absolute CatD activity in mU/ml 
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sample volume. The results are shown in Figure 8B and represent the mean of at 

least 3 different experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 (A) Distribution of CatD in subcellular fractions of human EBV-transformed B 
cells and human monocytes (U937) detected by western blot analysis: 52 ng 
of hCatD was used as a positive control and shows a signal at 31 kDa 
(mature CatD) and at 51-55 kDa (proCatD). In all fractions of U937 and in the 
lysosomal fraction of Boleth cells the 31 kDa-mature CatD band is visible. The 
intermediate single chain form of CatD migrating at 44 kDa could only be 
detected in U937. (B) CatD activity in mU/ml as determined by the bead-
assay using the calibration curve shown in figure 6 (L, lysosomal fraction; E, 
endosomal fraction; CCE, crude cell extract) 

 
In the endosomal fraction and in the crude cell extract of the Boleth cell line no 

CatD activity could be detected. Only weak CatD activity was measured in the 

lysosomal fraction. These results concerning the distribution of CatD in subcellular 

compartments agree well with those obtained by western blot analysis. 

As previously described the U937 cell line exhibits a higher CatD expression level 

[Greiner et al. 2003] corresponding to the results obtained with the digest & pull 

down CatD assay. We found an about 40-fold higher CatD activity in the fractions of 

the U937 cell line compared to the Boleth cell line. Another difference between these 

two cell lines is the intracellular distribution of CatD. The lysosomal fraction of U937 

shows an about 20 % higher CatD activity than the endosomal fraction whereas 

CatD in the Boleth cell line could only be detected in the lysosomal fraction and not 

in endosomal fractions. Furthermore the crude cell extract of the U937 cell line 
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exhibits almost the same CatD activity as the lysosomal fraction of U937. These 

results suggest that CatD maybe only slightly enriched in lysosomal fractions and 

otherwise more ubiquitary distributed in the human monocyte cell line U937. 

The developed digest & pull down assay proved to be suitable for determination of 

CatD activity in biological samples. The measured activity using substrate III is 

specific for CatD under the described conditions since there was no other cleavage 

site observed. 

 

3.3 Discussion 

This contribution describes a robust and specific method for the determination of 

CatD activity in biological samples. We present the solid-phase synthesis and in vitro 

digestion of biotinylated fluorescent CatD substrates and their application to a novel 

digest & pull down assay. The CatD digest & pull down assay presented here is 

based on the CatD-mediated cleavage of peptidic substrates bearing a fluorophore 

at their N-terminus and a biotin moiety at their C-terminus. The biotin tag and the 

fluorophore are separated upon digestion with CatD. Subsequent removal of all 

biotin-carrying peptides from the assay solution using streptavidin-coated magnetic 

beads leaves only digested fluorescent substrate in solution. From this amount of 

fluorescent peptide the enzymatic activity of CatD can easily be determined. 

The digest & pull down assay offers several advantages over other state-of-the-art 

protease assays. Commercially available sensitive assays (Amersham Biosciences, 

Freiburg, Germany) are based on the application of substrates bearing two different 

fluorophores. The synthesis of such doubly-labelled fluorescent peptides goes 

beyond standard SPPS [Hoogerhout et al. 1999, Fischer et al. 2003]. Moreover 

many fluorescent dyes used for these substrates are reasonable expensive in 

milligram quantities which clearly limits their broad applicability in straightforward 

solid-phase synthesis, which routinely requires high molar excesses. The choice of 

the two fluorescent dyes for these substrates needs to be evaluated carefully since 

the two different fluorophores can either undergo FRET or quench each other 

significantly [Wei et al. 1994]. 

Another commercially available CatD assay (Molecular Probes, EnzChek™ 

protease assay kit, Leiden, the Netherlands) is based on casein derivatives that are 

labelled with many fluorescent dyes, resulting in almost total quenching of the 
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conjugate’s fluorescence because of the high density of fluorophores within the 

casein protein. After cleavage of the fluorescent casein the quenching of the dyes is 

abolished and the net fluorescence increases significantly [Jones et al. 1997]. 

However, this system lacks specificity since there are lot of potential cleavage sites 

in casein for other proteases. 

The presented digest & pull down assay proved to be more specific for CatD since 

substrate III was only cleaved between the two phenylalanine residues by reaction 

with the subcellular fractions. Another advantage of the digest & pull down assay 

over the assays using quenched peptide substrates is, that a change of the 

fluorescence signal can only result from cleavage of the substrate and not from 

conformational changes of the peptide backbone e.g. caused by binding to another 

protein contained in the sample. 

In the digest & pull down assay described here, short incubation times were 

selected for a fast assay performance. In order to increase the assay’s sensitivity 

longer incubation times may also be applied. The described synthesis of fluorescent 

peptide substrates is simple and can easily be transferred to peptide substrates of 

other proteases and would clearly extend the applicability of this digest & pull down 

assay. Moreover other pH-stable fluorescent dyes, such as rhodamine derivatives, 

may be used for N-terminal labelling of the protease substrates and thus increase 

the sensitivity of the digest & pull down assay due to higher quantum yields. 

For technical applications and high-throughput screening the digest & pull down 

assay can be performed in 96-well plates. All steps including enzymatic hydrolysis, 

removal of biotinylated peptides using the streptavidin-coated magnetic beads and 

fluorescence measurements can be realised in parallel and performed in the 96-well 

plate format. This option underlines that the digest & pull down assay offers a fast 

alternative to other commercially available assays. 

 

3.4 Supplemental data 

3.4.1 Distribution of Cathepsin D in different human cells 

The described digest and pull down assay was additionally applied to determine 

CatD activity in different human PBMCs (peripheral blood monocyte cells). Therefore 

human PBMCs were isolated from buffy coats of donor blood. Subpopulations of B-

lymphocytes, monocytes, granulocytes, and T-cells were positively selected by 
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MACS technique (Miltenyi Biotec, Bergisch Gladbach, Germany) using CD 19, CD 

14, CD 15 and CD 3 antibodies, respectively. Immature dendritic cells were 

generated from CD 14 positiv monocytes which have been isolated using Miltenyi 

Beads after culturing them in IL-4 and GM-CSF containing medium. The CD1c 

positive subform of dendritic cells was directly isolated from human blood. Dendritic 

cells were stimulated for 24 h with lipopolysacharid (LPS), interferon γ (IFNγ) and 

tumor necrosis factor α (TNF-α). 

 

Table 4 CatD Activities in endocytic compartments of different human blood cells. 
 

 

 

 

 

 

 

 

 

 

To determine cathepsin D activity in samples where only a very low amount of 

material is available we analyzed the hydrolysis products by using microbore RP-

HPLC with fluorescence detection. We have been able to measure cathepsin D in 

endocytotic compartments of different human blood cell subpopulations (table 2). 

Endocytic compartments of granulocytes (CD 15) show the smallest amount of 

cathepsin D compared to B-lymphocytes (CD 19), monocytes (CD 14), T-cells (CD 

3) and dendritic cells (DC). The highest cathepsin D activities were measured in 

monocytes and T-cells and are comparable to each other. As previously described 

[Fiebiger et al. 2001] cathepsin D is important for processing of antigens in 

professional antigen-presenting cells (APC) such as DCs. Thus the amount of 

cathepsin D in endocytic compartments of dendritic cells was determined. 

We stimulated dendritic cells with LPS, TNF-α and IFN-γ and determined the 

cathepsin D activities. Stimulated (mature) DCs showed the same cathepsin D 

activity as unstimulated (immature) DCs. These results are in good agreement with 

published data from Trombetta et al. 2003. 
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3 New substrates for the detection of CatD activity 

Further the activity of CatD in lysosomes from resting vs. IFN-γ-stimulated 

microglia as well as astrocytes as a control was tested. CatD showed little variability 

in the presence/absence of IFN-γ both in microglia and astrocytes (Fig. 9). 

 

 

 

 

 

 

 

 

 

Figure 9 Lysosomal extracts from resting vs. IFN-γ-stimulated microglia (MG) was 
assessed for CatD activity. Astrocytes (Astroc.) served as controls and CatD 
activities are expressed in arbitrary units. Mean values and standard deviation 
of triplicate samples are presented (from: Burster et al., 2005). 
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4 Cathepsin D in human eccrine sweat 

4.1 Intention 

The protein pattern of healthy human eccrine sweat was investigated and 10 

major proteins were detected from which apolipoprotein D, lipophilin B and cathepsin 

D (CatD) were identified for the first time in human eccrine sweat. We focused in our 

studies on the function of the aspartate protease CatD in sweat. In vitro digestion 

experiments using a specific fluorescent CatD substrate showed that CatD is 

enzymatically active in human sweat. To identify potential substrates of CatD in 

human eccrine sweat, LL-37 and DCD-1L, two antimicrobial peptides present in 

sweat, were digested in vitro with purified CatD. LL-37 was not significantly digested 

by CatD whereas DCD-1L was cleaved between 44L and 45D and between 29L and 
30E almost completely. The DCD-1L derived peptides generated in vitro by CatD 

were also found in vivo in human sweat as determined by surface-enhanced laser 

desorption/ionization (SELDI) mass spectrometry. Furthermore, besides the CatD 

processed peptides we identified additionally DCD-1L derived peptides which are 

generated upon cleavage with a 1,10-phenanthroline sensitive carboxypeptidase and 

an endoprotease. Taken together proteolytic processing generates 12 DCD-1L 

derived peptides. To elucidate the functional significance of postsecretory processing 

the antimicrobial activity of three CatD processed DCD-1L peptides was tested. 

Whereas two of these peptides showed no activity against gram-positive and gram-

negative bacteria, one DCD-1L derived peptide showed an even higher activity 

against these microorganisms than DCD-1L. Functional analysis indicated that 

proteolytic processing of DCD-1L by CatD in human sweat modulates the innate 

immune defense of human skin. 

Human skin serves as a first line of defense against potential pathogens by 

building a mechanical barrier. In addition to physical mechanisms, the epithelia of 

mammalian skin produce antimicrobial peptides such as cathelicidins [Zanetti et al. 

1995, Nizet et al. 2001] and β-defensins [Harder et al. 1997, Ali et al. 2001] or small 

proteins, such as the recently described 11 kDa S100 protein psoriasin [Glaser et al. 

2005]. Cathelicidins and β-defensins share properties concerning their biosynthesis 

as proforms, which are subsequently processed into mature peptides [Zanetti et al. 

1995, Daher et al. 1988, Valore & Ganz 1992]. During inflammatory conditions such 
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as wound healing [Frohm et al. 1997] or psoriasis [Ong et al. 2002] the expression, 

processing and secretion of the antimicrobial peptides LL-37 [Murakami et al. 2002] 

and β-defensin 1 and 2 [Ali et al. 2001] are increased. As part of the innate defense 

of human skin the antimicrobial peptide dermcidin (DCD) is constitutively expressed 

in eccrine sweat glands, secreted into sweat [Rieg et al. 2004] and present on the 

skin surface at an average concentration of 1 to 10 µg/ml [Schittek et al. 2001]. In 

human sweat the 110 amino acid dermcidin-proform is first processed to the 48 

amino acid peptide DCD-1L. Subsequently DCD-1L is further C-terminally processed 

by a yet unidentified carboxypeptidase [Flad et al. 2002, Rieg et al. 2005]. 

The sole human cathelicidin hCAP-18 is extracellularly processed by proteinase 3 

[Sorensen et al. 2001] to an active 37 amino acid peptide named LL-37 which is 

found in sweat at an average concentration of 0.013 µM [Lopez-Garcia et al. 2005]. 

After secretion LL-37 undergoes further enzymatic processing by an unidentified 

serine protease yielding 3 peptides which enhances the antimicrobial activity of LL-

37 itself [Murakami et al. 2004]. 

Beside these antimicrobial peptides and proteins the surface of human skin 

provides other proteins such as human serum albumin [Nakayashiki 1990], 

cytokeratin I [Langbein et al. 2005], Zn-α-2-glycoprotein [Tada et al. 1991], prolactin-

inducible protein [Myal et al. 1991] and cystatin A [Zeeuwen et al. 2001, Zeeuwen et 

al. 2002]. Additionally certain proteases have been described in human sweat such 

as gelatinolytic and caseinolytic proteases [Horie et al. 1986], cathepsin B- and H-

like cysteine proteases [Yokozeki et al. 1987], human stratum corneum chymotryptic 

enzyme [Kishi et al. 2004] and tissue kallikrein and kininase II [Hibino et al. 1994]. In 

general, the physiological function of these proteins and proteases as well as their 

significance for the immunity of the skin and their interaction with other sweat 

components, especially with antimicrobial peptides, still remains to be determined. 

This contribution presents an overview of the major proteins in human eccrine 

sweat involving 10 dominant proteins. 7 out of these proteins have already been 

described in sweat glands, in sweat or to be secreted by keratinocytes. For the first 

time apolipoprotein D, lipophilin B and CatD (EC 3.4.23.5) were detected and 

identified in human eccrine sweat. 

Furthermore our data show, that CatD takes part in the postsecretory processing 

of the antimicrobial peptide DCD-1L. During these in vitro and in vivo studies we 
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observed two other yet unidentified protease avtivities: a 1,10-phenanthroline 

sensitive carboxypeptidase and an endoprotease which in combination with CatD 

are responsible for the degradation of DCD-1L in sweat yielding 12 DCD-1L derived 

peptides. The antimicrobial activity of three CatD processed DCD-1L peptides was 

tested. Whereas two of these peptides showed no activity against gram-positive and 

gram-negative bacteria, one DCD-peptide showed a higher activity against these 

microorganisms. These data indicate that by postsecretory proteolytic processing the 

antimicrobial activity of DCD-1L is modulated and therefore the immune defense on 

the skin surface. 

 

4.2 Results 

4.2.1 Identification of dominant proteins in human eccrine sweat 

In order to identify dominant proteins in human eccrine sweat standard proteomic 

techniques were applied. In a first step female and male human eccrine sweat 

samples were separated by SDS-PAGE and proteins were stained using Simply 

Blue™ Safe Stain (Fig. 10A). Major protein bands were then excised and digested in-

gel with trypsin. Resulting tryptic peptides were analyzed by MALDI-Re-TOF-MS and 

LC-ESI-MS/MS, respectively. Altogether 10 dominant proteins were identified by 

peptide mass fingerprinting and are listed in Figure 10B. 

We identified human serum albumin (band at 65 kDa) and the antimicrobial 

peptide DCD-1L (bands at 4 kDa) which both have already been described in sweat 

[Nakayashiki 1990, Schittek et al. 2001]. Cytokeratin I (19; 53 kDa) as well as Zn-α-

2-glycoprotein [Tada et al. 1991](38 kDa) and cystatin A [Zeeuwen et al. 2001, 

Zeeuwen 2002](12 kDa) have been described to be present in the duct and 

secretory coil of sweat glands. Myal et al. showed that the prolactin-inducible protein 

(15 kDa) is present in sweat glands [Myal et al. 1991]. Psoriasin has been recently 

identified in keratinocytes [Glaser et al. 2005]. Since psoriasin is secreted by 

keratinocytes in large amounts onto the skin surface it is not surprising that we 

identified this protein also in human sweat. Besides these proteins already described 

to be present in sweat glands or sweat we identified for the first time in eccrine sweat 

apolipoprotein D, lipophilin B and CatD. 
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Figure 10 A) 15% SDS-PAGE of 100 µl desalted and concentrated female and male 
sweat samples. Proteins were stained using Simply Blue™ Safe Stain. B) 
Proteins identified in human eccrine sweat as determined by in-gel tryptic 
digestion followed by mass spectrometry analysis. In certain cases ( ) data 
were additionally obtained by automated LC-ESI-MS/MS analysis. All MS data 
were analyzed using Mascot Sequence Query at www.matrixscience.de for 
probability based peptide identification. 

 

4.2.2 The active β-chain of cathepsin D is present in human 

eccrine sweat 

We identified for the first time the β-chain of the aspartate protease CatD in 

human eccrine sweat. The results obtained with tryptic fingerprint analysis were 

proven by Western blot analysis of male (two individuals), female (two individuals) 

and pooled human eccrine sweat. Purified human CatD was used as a positive 

control. Both forms, the active β-chain of CatD (31 kDa) as well as the proform (56 

kDa) could be detected in eccrine sweat, the latter in lower amounts (Fig. 11). We 

did not observe any significant differences between male and female sweat. 
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Figure 11 Western blot analysis of 16 µl female (f1 and f2), male (m1 and m2) and 
pooled (p) human eccrine sweat. Polyclonal rabbit anti-human CatD was used 
as primary antibody and horseradish peroxidase-conjugated goat anti-rabbit 
IgG as secondary antibody. Purified human cathepsin D (human liver) served 
as control and shows a major band at 31 kDa (enzymatically active β-chain) 
and weaker bands at 50 kDa representing several proforms. 

 

Next, we investigated if the β-chain of CatD is enzymatically active in sweat by 

performing in vitro digestion experiments using a specific fluorescent CatD substrate 

as we reported previously [Baechle et al. 2005]. The substrate was incubated for 30 

min with purified CatD or pooled sweat, respectively. Digestion products were then 

separated using analytical RP-HPLC with fluorescence detection (Fig. 12). CatD 

cleaves the substrate Amca-EEKPISFFRLGK specifically between the two 

phenylalanine residues yielding the two peptides Amca-EEKPISF and FRLGK. Only 

the first peptide can be detected using fluorescence detection. The amount of 

generated fluorescent Amca-EEKPISF is proportional to the CatD activity. Figure 

12A shows the undigested CatD substrate with a retention time of 21.7 min. Figure 

12B shows the digestion product Amca-EEKPISF eluting at 20.6 min after digestion 

with purified CatD. In Figure 12C the same sample was measured in presence of the 

metalloprotease inhibitor 1,10-phenanthroline (peak at 11.6 min). The peak areas of 

Amca-EEKPISF in chromatogram B and C are comparable indicating that the 

inhibitor 1,10-phenanthroline has no influence on CatD activity. 
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Figure 12 The CatD substrate Amca-EEKPISFFRLGK was incubated with CatD (B), 
without CatD (A), with CatD and the aspartate protease inhibitor pepstain A 
(C) and with CatD and 1,10-phenanthroline. The substrate further was 
incubated with pooled sweat (D) and with pooled sweat in the presence of 
pepstatin A (E), iodacetamide (F), E-64 (G), leupeptin (H), PMSF (I), EDTA (J) 
and 1,10-phenanthroline (K). Digestion products were then separated using 
RP-HPLC with fluorescence detection (λex=350 nm; λem=450 nm). 

 

After incubation of the substrate with pooled human eccrine sweat Amca-

EEKPISF was generated according to the specificity of CatD (Fig. 12D). This 

cleavage site could be completely inhibited with the aspartate protease inhibitor 

pepstatin A (Fig. 12E), but not with iodacetamide and E-64 (inhibitors for cysteine 

proteases, Fig. 12F and Fig. 12G), leupeptin and PMSF (inhibitors for serine 

proteases, Fig. 12H and Fig. 12I) or EDTA and 1,10-phenanthroline (inhibitors for 

metalloproteases, Fig. 12J and Fig. 12K). These data show, that digestion between 
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the phenylalanine residues is caused by CatD and consequentially that CatD is 

present in its enzymatically active form in human eccrine sweat. 

 

4.2.3 A 1,10-phenanthroline sensitive carboxypeptidase is 

present in human eccrine sweat 

The CatD-substrate is additionally cleaved between serine and phenylalanine 

when incubated with sweat yielding Amca-EEKPIS which has a retention time of 

16.2 min. This finding indicates that another protease is present in sweat. Its activity 

could be completely and specifically inhibited with 1,10-phenanthroline (Fig. 12K) 

showing that the protease is presumably a Zn2+-metalloprotease as the common 

metalloprotease inhibitor EDTA had no effect on the activity (Fig. 12J). Surprisingly 

pepstatin A inhibited both, CatD and the observed cleavage between serine and 

phenylalanine (Fig. 12E). This finding show, that the 1,10-phenanthroline sensitive 

protease cannot cleave the intact substrate until CatD has digested the substrate. 

This suggests that the carboxypeptidase could not cleave the basic amino acid 

lysine but the hydrophobic amino acid phenylalanine. 

To verify this hypothesis the substrate was incubated longer in order to achieve 

additional digestion products which are not generated within 30 min. After 1 h over 

95% of the substrate was cleaved and digestion products were then identified using 

UV-detection and MALDI-MS (data not shown). The peptides Amca-EEKPISF and 

the corresponding peptide FRLGK are initially generated by CatD. Subsequently the 

C-terminally trimmed peptides Amca-EEKPIS, Amca-EEKPI and Amca-EEKP are 

generated but not the corresponding peptides FFRLGK, SFFRLGK and ISFFRLGK 

as would be required for the cleavage by an endopeptidase. These findings show 

that the responsible protease is a carboxypeptidase. 

The intact CatD substrate (lysine at its C-terminus) and Amca-EEKP are not C-

terminally trimmed showing that the 1,10-phenanthroline sensitive protease is a 

carboxypeptidase which releases C-terminal amino acids such as phenylalanine, 

serine and isoleucine but not lysine and proline. 

Our results show that the β-chain of CatD as well as a 1,10-phenanthroline 

sensitive metalloprotease with carboxypeptidase activity are present in their active 

forms in human eccrine sweat. 

46 



4 Cathepsin D in human eccrine sweat 

4.2.4 In vitro digestion of the antimicrobial peptides LL-37 and 

DCD-1L with cathepsin D 

Next we investigated whether CatD is able to cleave peptides present in sweat. 

Therefore we incubated the antimicrobial peptides DCD-1L and LL-37 with purified 

CatD and digestion products were then analyzed using RP-HPLC (Fig. 13) followed 

by MALDI-MS of the single fractions (Table 5). These in vitro digestion experiments 

were performed in CatD-buffer (Fig. 13A) and in sweat buffer (Fig. 13B). There were 

no differences for CatD activity detectable between these buffer systems. In both 

buffer systems CatD could be completely inhibited with pepstatin A showing that the 

detected digestion products are exclusively generated by CatD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 In vitro digestion of synthetic DCD-1L and LL-37 with CatD in 50 mM Gly/HCl 
buffer pH 3.5 (A) and in sweat buffer pH 5.5 (B). Digestion products were 
separated using RP-HPLC with UV-detection at 214 nm. Peaks then were 
collected and peptides were analyzed using MALDI-MS and Edman 
microsequencing (see Table 5). 
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DCD-1L (28.66 min) was cleaved by CatD dominantly between 44L and 45D 

yielding SSL-44 (25.58 min) and the tetrapeptide DSVL (9.11 min) and to a lower 

amount between 29L and 30E leading to the peptides SSL-29 (22.96 min) and the 

corresponding peptides ESV-19 (22.50 min) and ESV-15 (16.48 min), respectively. 

These cleavage sites agree well with the specificity of CatD, which preferably 

cleaves proteins and peptides with leucine or an aromatic amino acid residue in P1 

position [van Noort & van der Drift 1989]. 

LL-37 (31.18 min) was also digested with purified CatD but only weak cleavage 

was observed between 5F and 6F yielding FRK-32 (28.16 min) and between 27F and 
28L yielding LRN-10 (13.08 min) and LLG-27 (25.36 min). Taken together, DCD-1L 

proved to be a good substrate for CatD (more than 60 % degradation) whereas LL-

37 is barely digested by CatD (less than 20 % degradation) under the same 

experimental conditions. These results agree well with recently published data, 

stating that LL-37 is processed by a serine protease and not by an aspartate 

protease like CatD [Murakami et al. 2004]. 

 

Table 5 Identified peptides after in vitro digestion of DCD-1L and LL-37 with cathepsin 
D as determined by MALDI-MS and Edman microsequencing. Retention times 
allude to those in figure 14. 

 

 

 

 

 

 

 

 

 

 

Since CatD shows almost no reaction with LL-37 further studies concerning the 

function of CatD in human eccrine sweat focused on DCD-1L. The CatD generated 

DCD-1L derived peptides as well as intact DCD-1L are further processed by the 

above described 1,10-phenanthroline sensitive carboxypeptidase causing a 

successive release of C-terminal amino acids. As a consequence of these in vitro 

results, in vivo investigations were made to find out if one or more of these predicted 
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peptides upon cleavage with CatD and/or the carboxypeptidase are present in 

human eccrine sweat. 

 

4.2.5 In vivo detection of DCD-1L derived peptides in human 

eccrine sweat 

The following DCD-1L derived peptides were found after in vitro digestion of DCD-

1L with CatD: SSL-29, SSL-44, ESV-19, ESV 15 and DSVL (Table 5). These DCD-

1L derived peptides could be further processed by the carboxypeptidase and lack 

one or more C-terminal amino acids leading to a bigger set of predicted DCD-1L 

derived peptides. Now we investigated if one or more of these DCD-1L peptides are 

present in human eccrine sweat. For their detection, sweat samples of 18 healthy 

individuals were applied to SELDI Protein Chip® Technology using reversed-phase 

(H4) chips. Figure 14 shows a representative SELDI-spectrum of sweat in the mass 

range between 2000 Da and 5000 Da. The expected and found molecular masses 

are assigned to the different processed DCD-1L derived peptides seen in the SELDI-

spectrum and are listed in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 In vivo detection of DCD-1L derived peptides in human eccrine sweat using 
SELDI protein chip® technology. 1 µl sweat was diluted into 2 µl binding buffer 
(50 mM sodium phosphate pH 6.5) and applied to a reversed phase (H4) chip 
surface for 30 min in a humid chamber. After washing three times with binding 
buffer and a final water wash, peptide masses then were read directly from 
the array surface using a ProteinChip reader. 
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Altogether we identified 12 DCD-1L derived peptides in sweat in agreement with 

recently published data [Rieg et al. 2005]. The DCD-1L peptides in sweat agree well 

with our in vitro prediction for the processing of DCD-1L. In addition, peptides lacking 

of the N-terminal tripeptide SSL have been identified. Further enzymatically 

specification of postsecretory processing was achieved by kinetic measurements. 

 

Table 6 DCD-1L derived peptides present in human eccrine sweat and their 
theoretical isoelectric points (pI’s). Asterisks (*) indicate the DCD-1L derived 
peptides generated upon cleavage with cathepsin D. 

 

 

 

 

 

 

 

 

 

 

4.2.6 Temporal order of the postsecretory processing 

Sweat was analyzed at various time points after secretion using SELDI-MS to 

elucidate the temporal order of the postsecretory processing steps. Initially the 48 

amino acid peptide DCD-1L is processed from its C-terminus into the peptide DCD-1 

agreeing with our in vitro results that a carboxypeptidase is active in human sweat. 

This initial processing step starts immediately after secretion of DCD-1L into sweat 

and therefore is experimental difficult to detect. Since harvesting measurable 

amounts of sweat takes time the initial processing steps are barely detectable. To 

solve this problem synthetic DCD-1L was spiked to sweat so that the initial cleavage 

steps could be analyzed in detail. The resulting enzyme-substrate ratio decelerated 

the reaction so that longer incubation was needed. After cleavage of C-terminal 

leucine the peptide DCD-1 (4705.3 Da) is further C-terminally processed into SSL-46 

(4606.2 Da). This processing step occurs simultaneously to the N-terminal cleavage 

of SSL since the peptide LEK-44 (4418.0 Da) arises at about the same time (Fig. 

15). 
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Figure 15 50 µl pooled sweat was spiked with 12 µg synthetic DCD-1L and analyzed by 
SELDI protein chip® technology after 1 h (upper lane) and 15 h (lower lane) at 
37 °C. 

 

Figure 16 shows an example for the temporal order of one particular sweat 

sample whereas the initial processing step into DCD-1 is not apparent for the above-

described reason so the time point “0 min” indicates the time point when the sweat 

sample was thawed and set at 37 °C to start the kinetic measurement. 

After the carboxypeptidase has processed DCD-1L into DCD-1 the next 

processing step is further C-terminal trimming in parallel with N-terminal cleavage of 

the tripeptide SSL by an endoprotease. This processing step generates the peptides 

LEK-45, LEK-44, LEK-43, LEK-42 and LEK-41 (Fig. 16, first 4 spectra). 

Cleavage between 44L and 45D can be performed by CatD as well as by 

subsequent cleavage of four C-terminal amino acids by the carboxypeptidase. We 

wanted to find out which of the two proteases is mainly responsible for this 

processing step. Therefore we synthesized the peptide ESV-17 which represents the 

C-terminus of DCD-1L lacking the last C-terminal amino acids leucine and valine. 

ESV-17 showed no reaction with purified CatD in vitro (data not shown) indicating 

that the two amino acids are essential for the cleavage by CatD. This finding shows 

that the C-terminus of DCD-1L is dominantly processed by the carboxypeptidase. 

In a third processing step the previously generated peptides are cleaved between 
29L and 30E by CatD obtaining the peptides LEK-26 and SSL-29 (Figure 16, last 2 

spectra). The two peptides can be generated from all present DCD-1L derived 

peptides in sweat differing only in their N-terminal sequence. 
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Figure 16 SELDI spectra of sweat after the indicated incubation times at 37 °C. 

52 



4 Cathepsin D in human eccrine sweat 

The final processing step consists of two reactions which occur in parallel. One 

reaction is the successive cleavage of the C-terminal amino acids leucine and 

aspartic acid of LEK-26 yielding LEK-24 which is stable against further proteolytic 

breakdown. The other reaction is the conversion of SSL-29 into SSL-25. Since the 

intermediate peptides SSL-28, SSL-27 and SSL-26 could not be detected it remains 

unclear whether this proteolytic degradation is also caused by the 1,10-

phenanthroline sensitive carboxypeptidase or by another endoprotease. The peptide 

SSL-25 undergoes no further enzymatic degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Temporal order of the postsecretory processing of DCD-1L in sweat. The 
initial processing step is the cleavage of the C-terminal amino acid leucine by 
a 1,10-phenanthroline sensitive carboxypeptidase (A). The second processing 
step is the cleavage between 3L and 4L by an unidentified endoprotease 
simultaneously to further C-terminal trimming steps (B). The generated DCD-
1L derived peptides are finally digested by CatD yielding LEK-26 and SSL-29 
which are processed to LEK-24 and SSL-25, respectively (C). 
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Single processing steps are summarized in Figure 17 considering data of various 

sweat samples and not only those representatively shown in Figure 15 and Figure 

16, respectively. First DCD-1L is converted to DCD-1 by the 1,10-phenanthroline 

sensitive carboxypeptidase (Fig. 17A). In a next step DCD-1 undergoes further C-

terminal trimming simultaneously to the cleavage of the N-terminal tripeptide SSL by 

an endoprotease (Fig. 17B). Since no aminopeptidase activity was detectable using 

the specific substrate H-Leu-AMC (data not shown) this processing step is caused 

by an endoprotease and not by an aminopeptidase. The third processing step is the 

cleavage between 29L and 30E by CatD obtaining the peptides LEK-26 and SSL-29 

which are further processed to the proteolytical stable peptides LEK-24 and SSL-25 

(Fig. 17C). 

 

4.2.7 Antimicrobial activity of the DCD-1L derived peptides 

Antimicrobial peptides such as LL-37 and DCD-1L play an important part in 

establishing a skin defense barrier against microbes and should be considered as an 

integral part of the innate immune system [Murakami et al. 2002, Schittek et al. 2001, 

Murakami et al. 2004]. Therefore the effect of the postsecretory processing on the 

antimicrobial activity of DCD-1L and DCD-1L derived peptides was investigated. 

The above-described postsecretory processing leads to the proteolytic stable 

peptides LEK-24 and SSL-25 which differ from all other DCD-1L derived peptides 

since they are cationic (for pI values see Table 6, last column). Therefore further 

studies focused on these peptides. In addition, the peptide SSL-29 was chosen since 

recently published data showed that SSL-29 is contained in 89% of sweat samples 

analyzed [Rieg et al. 2005]. This indicates that SSL-29 is a quite stable intermediate 

in postsecretory processing. 

In order to elucidate the biological function of the postsecretory processing by 

CatD, the peptides SSL-29, SSL-25 and LEK-24 were tested for their antimicrobial 

activity against E. coli (Fig. 18A) and Staph. aureus (Fig. 18B) and compared to the 

activity of DCD-1L. 

DCD-1L is highly active against E. coli (LC50 = 30 µg/ml) and Staph. aureus (LC50 

= 10 µg/ml). The peptides LEK-24 and SSL-29 were found to have lost the 

antimicrobial activity against these microorganisms. The peptide SSL-25, the most 
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cationic peptide (pI = 9.4) among the DCD-1L derived peptides shows higher activity 

against E. coli and Staph. aureus (LC50 = 7 µg/ml) compared to DCD-1L. 

 

 

 

 

 

 

 

Figure 18 The antimicrobial activity of DCD-1L and DCD-1L derived peptides SSL-29, 
LEK-24 and SSL-25 evaluated by colony-forming units assay against E. coli 
(A) and Staph. aureus (B). 

 

4.3 Discussion 

Altogether we identified 10 dominant proteins in human eccrine sweat from which 

6 proteins (human serum albumin, cytokeratin I, Zn-α-2-glycoprotein, prolactin-

inducible protein, cystatin A, DCD-1L) have already been described in sweat or in 

sweat glands. Psoriasin was recently identified in keratinocytes as a secretory 

antimicrobial protein [Glaser et al. 2005] indicating, that sweat also contains proteins 

secreted by keratinocytes. The proteins apolipoprotein D, lipophilin B and CatD were 

identified for the first time in human eccrine sweat. Their origin, from sweat glands or 

keratinocytes still remains to be determined. The presented sweat protein pattern 

summarizes the dominant proteins in human eccrine sweat and thus provides useful 

information for further investigations concerning skin diseases such as atopic 

dermatitis or psoriasis in which some of the proteins are involved e.g. cytokeratin I 

[Algermissen et al. 1996]. 

The presence of proteases in sweat and their function is barely understood. There 

are only a few proteases described until now, such as the serine proteases tissue 

kallikrein and kininase II Hibino et al. 1994] and the human stratum corneum 

chymotryptic enzyme [Kishi et al. 2004]. Beside these serine proteases Yokozeki et 

al. [Yokozeki et al. 1987] described cysteine proteases in general to be present in 

sweat but without further specifications. Screening studies revealed that sweat also 

contains several gelatinolytic and caseinolytic proteases [Horie et al. 1986]. 
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However, the functional significance of these proteases in sweat is almost 

completely unknown. 

Recently published data show, that a yet unidentified serine protease is 

responsible for the postsecretory processing of LL-37 in sweat [Murakami et al. 

2004] revealing one possible physiological function of sweat proteases. In 

consideration of these results we show that DCD-1L is postsecretory processed into 

12 DCD-1L derived peptides. Additionally the temporal order of the postsecretory 

processing was investigated in more detail. The initial step is the cleavage of the C-

terminal amino acid leucine by a 1,10-phenanthroline sensitive carboxypeptidase 

which has not been described in sweat until know. The data show, that the 1,10-

phenanthroline sensitive carboxypeptidase resembles carboxypeptidase A (EC 

3.4.17.1) concerning their specificity to release C-terminal amino acids such as Leu, 

Val, Phe, Ile, and Ser but little or no action with Arg, Lys, Glu, Asp or Pro [Peterson 

et al. 1976]. Furthermore the sweat carboxypeptidase is inhibited with 1,10-

phenanthroline but not with EDTA indicating that it is presumably a Zn2+-

metalloprotease. The second processing step is the cleavage between 3L and 4L by 

an unidentified endoprotease which occurs simultaneously to further C-terminal 

trimming steps. Afterwards DCD-1L derived peptides are cleaved by CatD between 
29L and 30E leading to the peptides SSL-29 and LEK-26 which are further processed 

yielding the proteolytic stable peptides LEK-24 and SSL-25. These peptides and the 

peptide SSL-29 were tested for their antimicrobial activity to show the physiological 

significance of the postsecretory processing. The peptide SSL-25 is highly active 

against E. coli and Staph. aureus whereas the cleavage products LEK-24 and SSL-

29 loose their antimicrobial activity. 

The biological role of the postsecretory processing of the antimicrobial peptide 

DCD-1L is to modulate the innate immune response of human skin by the generation 

of a set of shortened peptides which differ in their antibacterial activity. CatD, a 1,10-

phenanthroline sensitive carboxypeptidase and at least one endoprotease are 

involved in the postsecretory processing of DCD-1L and therefore modulate the 

immune defense on the skin surface. The described postsecretory immune 

modulation on the skin surface may smoothen the way for new clinical approaches in 

treatment of skin diseases such as psoriasis since CatD is involved in the 

etiopathology of this inflammatory disease [Chen et al. 2000]. 

 

56 



5 A cell permeable CatD substrate 

5 A cell permeable CatD substrate 

5.1 Intention 
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Proteases play central roles in many physiological and pathological processes 

such as cell death, cancer and infectious diseases. Posttranslational modifications 

and interactions with other cellular components may affect the proteolytic activity. To 

obtain maximum information about the pathological relevance of a given protease, it 

is therefore required to measure not only the amount and distribution of the enzyme, 

but also its specific activity in living cells. For this purpose activity-based probes 

need to be developed that specifically probe for protease activities in living cells. 

Here, we present a cell-penetrating protease substrate developed to specifically 

probe the activity of the endolysomal protease cathepsin D (CatD) in living cells. The 

R9-CatD-substrate consists of the highly cationic sequence (RRRRRRRRR, R9) 

which has been described as a cell-penetrating peptide [Futaki et al. 2001] and the 

cathepsin D specific peptide substrate EEKPISFFRLGK which is specifically cleaved 

by cathepsin D between the aromatic phenylalanine residues [Baechle et al. 2005] 

(Fig. 19). 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Principle of the R9-CatD-substrate 

 

The cell-penetrating R9-CatD-substrate was synthesized by a robust and straight-

forward procedure (Fig. 20) which will be generally applicable to a large variety of 

different protease substrates. Efficient endolysosomal targeting was achieved by N-
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terminal elongation of the probe with the cell-penetrating peptide (CPP) nona-

arginine. So far, in spite of several reports on the import of CPPs by endocytosis, the 

application of CPPs as low molecular weight endosomal targeting sequences has 

received only marginal attention. The protease substrate was flanked by two different 

fluorophores – cleavage of the substrate was detected by changes in the efficiency 

of fluorescence resonance energy transfer (FRET). By incubation of cells with 

different protease inhibitors the contribution of individual proteolytic activities and 

especially of CatD to the break-down of the probe in living cells could be determined 

quantitatively (Fig. 19). 

 

5.2 Results and discussion 

DNA microarray analysis and two-dimensional gel electrophoresis have 

revolutionized the analysis of changes in the levels of transcription and translation of 

proteins. However, for enzymes, the levels of transcription and translation, in many 

cases, do not correlate with their activities [Gygi et al. 1999]. Therefore, in order to 

arrive at a functional understanding of molecular networks, the large scale 

approaches for expression analysis have to be complemented by functional 

analyses. Proteases play essential roles in all live cycles of organisms. Given this 

importance, different strategies have been developed for measuring enzyme 

activities. Activity-based probes (ABPs) have been widely used for the analysis of 

cysteine, serine and threonine proteases [Speers & Cravatt 2004]. Especially for 

caspases, proteases essential in the initiation and execution of programmed cell 

death, numerous small and large molecule probes have been presented [Chahroudi 

et al. 2003, Bullok & Piwnica-Worms 2005]. However, many of these protease-

directed ABPs lack specificity. Therefore, especially quantitative information on the 

activity of a particular enzyme is difficult to obtain. Until now lengthy biochemical 

analyses such as SDS-PAGE of cell lysates and identification of proteases bound by 

the ABP are required. 

Ideally, (i) an activity-based probe should provide quantitative information on a 

specific enzymatic activity in living cells, and (ii) the manipulations required for 

processing of samples be minimized enabling such functional analyses in high 

through-put. For a general application in tissue culture, tumor samples and in vivo 

synthetic low molecular weight probes are highly preferable as transfection of cells 
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with genetically encoded enzyme probes imposes severe constraints on the 

experimental design [Harpur et al. 2001]. Finally, the design of these probes should 

be based on a principle that can easily be adapted to different proteases. 

Here, we present a synthetic low molecular probe that efficiently targets the 

endolysosomal compartment for probing the activity of the aspartic protease 

cathepsin D (CatD, EC 3.4.23.5). The aspartic protease CatD possesses major 

physiological and pathophysiological implications. In the control of the immune 

response, CatD is involved in the degradation of proteins and generation of peptides 

presented by MHC class II molecules [Rodriguez & Diment 1992]. Moreover, CatD is 

necessary for the processing of the β-amyloid precursor protein playing a major role 

in Alzheimer's disease [Ladror et al. 1994]. Finally, overexpression of CatD in breast 

cancer cells is associated with an increased risk of metastasis, caused by the CatD-

induced cancer cell proliferation [Glondu et al. 2001]. 

A short doubly-labeled substrate for a fluorescence-based read-out was combined 

with a cell-penetrating peptide (CPP), serving as an endolysosomal targeting 

peptide. Cell-penetrating peptides represent widely used vectors for the import of 

molecules into mammalian cells in basic and applied biomedical research [Fischer et 

al. 2005]. However, to this point, the application of these peptides nearly exlusively 

intended to target molecules into the cytoplasm or nucleus. Recent findings 

demonstrated a role of endocytosis in the uptake of CPPs [Richard et al. 2003]. We 

therefore intended to explore whether these synthetic low molecular weight vectors 

could be used to efficiently target a substrate to lysosome-resident CatD. Because of 

its efficient cellular uptake, nona-arginine was selected as a CPP [Wender et al. 

2000]. 

As a substrate we selected a peptide recently developed in our laboratory 

[Baechle et al. 2005]. This substrate is cleaved efficiently by CatD between the two 

phenylalanine residues. This peptide was N-terminally elongated with nona-arginine. 

Fluorescence resonance energy transfer (FRET) was selected for detecting the 

degradation of the targeted substrate. Site-specific attachment of carboxyfluorescein 

and carboxytetramethylrhodamine to either terminus of the substrate, instead of 

attachment to the termini of the entire peptide, was intended to maximize the 

specificity of this probe for CatD. The design and the synthesis of this targeted 

protease substrate are depicted in Figure 20. 
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Figure 20 Synthesis of the doubly-labeled R9-CatD-substrate (Ac-RRRRRRRRR-
Lys(εTamra)-APISFFELG-εLys(αFluo)-CONH2). The peptide was assembled 
by automated solid-phase peptide synthesis on the free ε-amino group of the 
Nα-carboxyfluorescein(Trt)lysine-preloaded Rink amide resin [Fischer et al. 
2003]. a) Repeated cycles of SPPS, the N-terminal amino group was blocked 
post-synthesis by acetylation b) Removal of the Dde-protecting group c) 
Introduction of the second fluorophore using carboxytetramethylrhodamine-N-
succinimidyl ester d) Cleavage of the peptide amide off the resin and side-
chain deprotection 

 

The synthesis of this molecule was based on a Rink amide-based resin preloaded 

with a lysyl-residue carrying a tritylated carboxyfluorescein (Fluo) at its α-amino 

group that enables the highly efficient synthesis of peptide collections labeled with 

fluorescein at the C-terminus [Fischer et al. 2003]. Following automated synthesis of 

the conjugate, the orthogonal Dde (1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl)-

protecting group was removed smoothly [Bycroft et al. 1993]. The free ε-amino group 

of the lysine was derivatized with carboxytetramethylrhodamine (Tamra) using the 

succinimidylester-preactivated fluorophore. The resulting peptide (= R9-CatD-

substrate) was cleaved off the resin and side-chain deprotected. 

The crude peptide amide was obtained at 65% purity (Fig. 21) and was purified for 

further investigations. 
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Figure 21 (A) MALDI-TOF mass spectrum of the crude R9-CatD-substrate, calc. [M+H]+ 
= 3455.0 Da). (B) HPLC elution profile of the crude peptide (purity 70 % (RP-
HPLC, 214 nm)). 

 

Digestion of the peptide with purified human CatD and analysis of the digestion 

products by RP-HPLC and MALDI-MS revealed that the R9-CatD-substrate is 

specifically cleaved between the two phenylalanine residues (Fig. 22). Therefore 

purified R9-CatD-substrate (30 µM) was incubated for 1 h in 50 mM Gly/HCl buffer 

pH 3.5 with 0.65 µM bovine CatD in a volume of 50 µl. The reaction was stopped by 

adding 50 µl of a H2O/ACN/TFA (94:5:1, v/v/v). Digestion products were then 

separated by analytical RP-HPLC with detection at 214 nm. The column was eluted 

at a flow rate of 0.2 ml/min with the following solvent system: (A) 0.055% (v/v) TFA in 

H2O and (B) 0.047% (v/v) TFA in ACN/water (4:1, v/v) using a linear gradient from 

5% B to 80% B within 30 min. The chromatograms are shown in Figure 22A. 

Identified peptides are listed in Figure 22B. 

 

 

 

 

 

 

 

 

 

Figure 22 (A) HPLC elution profile of the purified R9-CatD-substrate (left) and of the 
CatD digested R9-CatD-substrate (right). (B) Identification of the CatD 
digestion products. The two FELGK(Fluo) fragments result from the positional 
isomers of carboxyfluorescein used for the preparation of the Nα-
carboxyfluorescein-labeled lysyl-Rink amide resin [Fischer et al. 2003]. 
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In order to confirm that the R9-CatD-substrate was targeted to endocytic 

compartments we performed live cell confocal fluorescence microscopy (CLSM) of 

HeLa cells incubated with the peptide. The R9-CatD-substrate was taken up 

efficiently (Fig. 23). A high degree of co-localization for the fluorescence of both 

fluorophores attached to the R9-CatD-substrate could be observed within vesicular 

structures. Moreover the vesicular staining of both peptide-derived fluorescence 

signals co-localized with AlexaFluor 633-labeled transferrin, which is internalized by 

clathrin-mediated endocytosis. These microscopy data demonstrate that the R9-

CatD-substrate is internalized by endocytosis and subsequently found in endocytic 

compartments. 

Inside intact cells, the reduction of fluorescein fluorescence by the acidic 

conditions within lysosomes and concentration quenching set a limit to a quantitative 

assessment of the proteolytic break-down using microscopy [Sjöback et al. 1995, 

Chen & Knutson 1988]. For this reason, we complemented the cellular analyses by 

spectral analyses in cell lysates prepared from HeLa cells pulsed with the R9-CatD-

substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Endocytic uptake and intracellular localization of the R9-CatD-substrate in 
HeLa cells. HeLa cells were incubated with serum-free medium containing the 
R9-CatD-substrate (2 µM) and AlexaFluor 633-transferrin (25 µg/ml) for 30 
min and were then analyzed by multi-channel CLSM: (A) Fluorescein 
fluorescence, (B) Tamra fluorescence of the substrate, (C) overlay of these 
two channels, (D) AlexaFluor 633-transferrin fluorescence, (E) overlay of all 
three fluorescence channels, (F) transmission. 
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HeLa cells were selected since this cell line has served as a model for 

investigating the internalization of CPPs [Richard et al. 2003, Fittipaldi et al. 2003, 

Console et al. 2003, Potocky et al. 2003, Saalik et al. 2004] and more importantly 

these cells express CatD (Fig. 24) [Deiss et al. 1996, Cirman et al. 2004]. 

 

 

 

 

 

 

 

Figure 24 Western Blot analysis for the validation of the CatD expression in HeLa cells 
(lane 1: 30 ng of purified human CatD, lane 2: 100 µg total protein of HeLa 
cell lysate). 

 

In order to validate this technique for a quantitative determination of break-down 

we recorded fluorescence emission spectra upon excitation at 492 nm after mixing 

different amounts of completely digested and intact R9-CatD-substrate (Fig. 25A). 

 

 

 

 

 

 

 

 

 

Figure 25  (A) A solution containing 100 nM of the R9-CatD-substrate was digested with 
proteinase K. After blocking protease activity by addition of PMSF different 
amounts of this solution and a 100 nM R9-CatD-substrate solution were 
mixed to yield the indicated fractions of digested peptide. The fluorescence 
emission spectra were recorded upon excitation at 492 nm. (B) Ratios of 
fluorescence at 520 nm and 585 nm were calculated from the fluorescence 
emission spectra. All digests and measurements were performed as 
duplicates; error bars represent the absolute deviations from the mean value 
(a.u., arbitraty units). 
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Calculation of ratios of fluorescence at 520 and 585 nm rendered the detection of 

peptide break-down independent of concentration [Takakusa et al. 2002]. Ratios of 

fluorescence emissions ranged from 1.0 to 3.8 and correlated positively with the 

fraction of degraded peptide (Figure 25B). This experiment clearly indicates that for 

the R9-CatD-substrate ratiometric measurements can be used to determine 

quantitatively the degree of proteolytic breakdown. 

 

 

 

 

 

 

 

 

 

 

Figure 26 Fluorescence emission ratios for the determination of proteolytic degradation 
in the endolysosomal pathway. (A) HeLa cells were incubated with the R9-
CatD-substrate (1 µM) for 1 h. (B) HeLa cells were incubated with the R9-
CatD-substrate (1 µM) for 1 h in the absence or presence of different 
inhibitors (300 nM bafilomycin A1, 100 µM chloroquine, 50 µM lactacystin). 
The inhibitors were added 1 h prior to the probe. Each condition was tested in 
duplicate; error bars represent the absolute deviations from the mean value. 

 

For HeLa cell lysates, after a 1 h peptide pulse, a ratio of about 2.0 was measured 

(Fig. 26A). Further treatment of this cell lysate with proteinase K yielded a ratiometric 

value of about 3.6, indicating that in the lysate about 50% of the substrate moiety 

had still been intact. 

We suspected that a significant part of the degradation inside the cell had resulted 

from the activity of other enzymes. As a first step towards a quantitative 

determination of the fraction of probe digested by CatD we therefore investigated 

whether intracellular peptide stability was affected in the presence of inhibitors that 

perturb the activity of proteases inside living cells. A set of three inhibitors was 

selected. Bafilomycin A1 and chloroquine represent widely used inhibitors of 

endosomal acidification and exert an indirect inhibitory effect on endolysosomal 

proteolysis. The bacterial metabolite lactacystin selectively inhibits the 20S 
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proteasome and was selected to block the major protease activity in the cytoplasm. 

For cells pulsed with peptide in the absence of inhibitor, the emission ratio was 2.0. 

Both bafilomycin A1 and chloroquine had a significant effect on the intracellular 

stability of the R9-CatD-substrate. The emission ratios decreased to about 1.0 

(bafilomycin A1) and 1.6 (chloroquine). Lactacystin had a little, albeit reproducible 

effect on the emission ratio (Fig. 26B). These results clearly demonstrate that 

inhibitors can be used to dissect the contributions of proteolytic activities in 

subcellular compartment on the degradation of the R9-CatD-substrate in living cells. 

The proteasome cleaves only a small amount of the internalized peptide whereas the 

endosomal passage and endosome-resident proteases have a major impact on the 

integrity of the probe inside HeLa cells. 

After having determined the contribution of proteases inside the endolysosomal 

compartment on the digestion of the R9-CatD-substrate we next sought to quantify 

the role of individual proteases in this compartment and especially of CatD. Instead 

of inhibitors that exert a general effect on endolysosomal proteases, in this case, 

protease-specific compounds were employed. Pepstatin A was selected as a specific 

inhibitor of CatD and aspartic proteases. In addition the influence of E-64d acting as 

a broad-band irreversible cysteine protease inhibitor was investigated. This chemical 

is commonly used for the inhibition of cysteine proteases involved in endosomal 

degradation. Members of the cysteine protease family make up most of the 

proteases that are present in the endolysosomal compartment. In this case, a 

calibration curve (Fig. 25B) obtained from cell lysates that contained different 

amounts of digested and intact peptide was used to convert the ratiometric values 

into absolute values for the fraction of digested peptide (for detailed description see 

material and methods section). In HeLa cells pepstatin A decreased the amount of 

digested peptide from 30% to 25%, E-64d from 30% to about 15% (Fig. 27). 

Since pepstatin A inhibits CatD as an aspartic protease and E-64d endolysosomal 

cysteine proteases, the inhibitory effect of both drugs should be additive. Indeed the 

amount of digested peptide was diminished to less than 5 % indicating almost 

complete inhibition of intracellular proteolysis by a combination of E-64d and 

pepstatin A. 
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Figure 27 Fraction of the R9-CatD-substrate digested by CatD. HeLa cells were 
incubated with the R9-CatD-substrate (1 µM) for 1 h in serum-free medium in 
the absence or presence of protease inhibitors (100 µM pepstatin A, 40 µM E-
64d or both inhibitors). The inhibitors were added 1 h prior to the substrate. 
Then cells were washed, harvested with EDTA/PBS and lysed. Afterwards 
fluorescence emission spectra were recorded in cell lysates. The percentage 
of digested peptide in cell lysates was calculated based on internal standard 
lysis buffer solutions containing definite amounts of digested and intact 
peptide. Each condition was tested in duplicate and error bars represent the 
absolute deviations from the mean value. 

 

In summary our data clearly show that conjugation of a protease substrate to 

nona-arginine results in a highly efficient targeting of this enzyme probe to the 

endolysosomal compartment. In combination with protease inhibitors, the small 

molecule smart protease probe yielded detailed quantitative information on 

proteolytic activities inside a cell. The concept is highly relevant for pharmaceutical 

applications since it the probe design and assay format are compatible with 

quantitative cellular screening formats. 
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6 A new method for the detection of fluorescein-
labeled substances using RP-HPLC 

6.1 Intention 

A vast number of applications in bioanalytical chemistry depend on fluorescently 

labeled molecules [Brand & Johnson 1997]. Fluorescein derivatives have evolved to 

widely used reagents for the preparation of hydrolytically stable fluorescent peptide 

and protein conjugates [Weber et al. 1998]. Fluorescein-labeled peptide derivatives 

have been employed as fluorescent markers in bioanalytical applications such as 

confocal laser scanning microscopy [Schmidt et al. 1998] and intracellular 

fluorescence correlation spectroscopy [Waizenegger et al. 2002]. One major 

drawback of this fluorophore apart from the moderate photostability [Song et al. 

1995] is the strong pH-dependence of the fluorescence properties [Sjöback et al. 

1995]. Carboxyfluorescein exhibits bright fluorescence emission in neutral and basic 

buffers. However, under acidic conditions, protonation lowers the fluorescence 

quantum yield, decreases the molar extinction coefficient and shifts the maximum of 

the excitation spectrum towards shorter wavelengths. 

Exploiting either pre- or post-column derivatization procedures, fluorescein has 

been employed for the highly sensitive detection of molecules after chromatographic 

separation [Krull et al. 1997]. However, standard reversed-phase high-performance 

liquid chromatography (RP-HPLC) solvents commonly contain trifluoroacetic acid 

(TFA) as ion-pairing agent. When standard RP-HPLC analysis of fluorescein-labeled 

compounds is combined with fluorescence detection, the acidic pH of TFA drastically 

reduces the sensitivity of the analytical system. Our aim was to develop a method 

that would enable the highly sensitive detection of fluorescein-labeled peptides by 

RP-HPLC, however, would not require a modification of established optimized 

gradient systems. Here we demonstrate that post-column alkalinization of RP-HPLC 

eluates before detection enabled the highly sensitive detection of fluorescein-labeled 

peptides. 
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6.2 Results and discussion 

A commercially available fluorescence-based HPLC-system (Shimadzu, Duisburg, 

Germany) consisting of a system controller (SCL-10A VP), an auto injector (SIL-

10AD VP), two micro-plunger piston pumps (LC-10 AD VP), a UV detector (SPD-

10AV VP) and a fluorescence detector (RF-10A XL) was modified (Fig. 31). Peptides 

were separated on a RP-column (Nucleosil 100, C18, 125×2 mm, 5 µm particle 

diameter) using a binary solvent gradient (solvent (A) 0.055% (v/v) TFA in H2O, 

solvent (B) 0.047% TFA (v/v) in acetonitrile/water (4:1, v/v) with a flow rate of 0.2 

ml/min and a linear gradient from 5% B to 80% B within 40 min. The pH value of both 

solvents approximated 2.5. Post column, the eluate was mixed on-line with an 

aqueous ammonia solution (NH4OH/water, 2.5:100, v/v, pH 11.5) which was 

delivered by another micro-plunger piston pump (L-6200 A, Merck/Hitachi 

(Darmstadt, Germany) with a flow rate of 0.15 ml/min resulting in a pH value of the 

eluate of 10. The flow rate and the concentration of the aqueous ammonia solution 

was optimized so that no mixing chamber was required. Under these conditions no 

loss of reproducibility and peak resolution was observed. Detection was carried out 

using both the UV detector (214 nm) and the fluorescence detector (λex = 490 nm 

and λem = 520 nm). 

To demonstrate the bioanalytical applicability of the post-column alkalinization 

method we selected the cell-penetrating peptide (CPP) penetratin [Derossi et al. 

1994] as a model peptide. Fluorescein represents the most-widely used fluorophore 

for the investigation of the cellular uptake and intracellular routing of CPPs [Fischer 

et al. 2004]. Penetratin (RQIKIWFQNRRMKWKK-COOH) and the non cell-

penetrating control peptide ANDREASDANIEL-COOH were synthesized using 

standard solid-phase peptide synthesis and labeled at their N-termini with the 

fluorophore 5-carboxyfluorescein (Fluo) as described previously [Baechle et al. 

2005]. The crude peptides were purified by preparative RP-HPLC (purities > 95%) 

and the identity of both peptides was confirmed using matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS). 

Twenty fmol Fluo-penetratin (52.1 pg) were separated according to the above 

described procedure and elution profiles were recorded. Using the settings routinely 

used for the detection of fluorescein (λex = 490 nm and λem = 520 nm) [Oefner et al. 

1994], only little signal intensity could be detected in the TFA-containing eluents (Fig. 
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28, chromatogram a). Adjustment of the excitation wavelength to 435 nm, the 

maximum of the absorption spectrum of fluorescein at pH 2.5 [Sjöback et al. 1995], 

yielded a 2.7-fold signal increase compared to chromatogram a). For the same 

sample the above described post-column alkalinization procedure (chromatogram c) 

yielded a 42-fold signal amplification compared to chromatogram a) and a 15-fold 

signal amplification compared to chromatogram b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 Dependence of peak intensities on detection conditions. Detection without 
sample alkalinization with excitation at 490 nm (a) and 435 nm (b) and with 
sample alkalinization and excitation at 490 nm (c). In all cases 20 fmol Fluo-
penetratin (52.1 pg, 2 nM) were loaded onto the column and fluorescence 
detection was carried out at 520 nm. 

 

In order to validate the method for quantification of fluorescein-labeled peptides, 

the response function was recorded for 7 different amounts of Fluo-penetratin 

ranging from 0.2 fmol (0.52 pg) to 40 fmol (104.2 pg). A linear concentration 

dependence (R2=0.99) was obtained for the entire concentration range. The 

detection limit was approximately 0.2 fmol with a signal-to-noise ratio of 5. Fluo-

penetratin eluted at 26.10 min and retention times exhibited an excellent 

reproducibility (relative standard deviation for the retention time: 0.13%). Previously 

published detection limits for post-column derivatization including fluorescein 

isothiocyanate (detection limit: 50 fmol, S/N = 2)[Muramoto et al. 1984], N-

hydroxysuccinimidyl fluorescein-O-acetate (detection limit: 3.2 fmol, S/N = 3) [Wang 

et al. 2000], and 6-oxy-(N-succinimidyl acetate)-9-(2’-methoxycarbonyl)fluorescein 

(detection limit: 2.0 fmol, S/N = 3) [Cao et al. 2005] were 10 to 100 fold higher than 
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the detection limit of our post-column alkalinization method which is 0.2 fmol with a 

signal-to-noise ratio of 5. 

In addition to a strong benefit in sensitivity, fluorescence-based detection is highly 

attractive for the analysis of peptide uptake and break-down in complex biological 

samples. Fluorescence enables the highly specific discrimination of exogeneously 

added CPP’s from endogenous molecules. To demonstrate the applicability of the 

post-column alkalinization RP-HPLC method for biological samples, the two above 

mentioned peptides were compared with respect to their ability to interact with cells. 

Human EBV-transformed B cells (Boleth, IMGT/HLA sequence database number: 

HC10329) were incubated with Fluo-penetratin and Fluo-ANDREASDANIEL. Fluo-

penetratin is described to efficiently associates with the plasma membrane and to be 

internalized into different cell types [Derossi et al. 1994]. For the control peptide 

Fluo-ANDREASDANIEL no such association and internalization were expected. 

B cells were diluted in serum-free RPMI 1640 medium (Gibco, Invitrogen-Gibco, 

Karlsruhe, Germany) and transferred into a 96-well plate (Nunc, Wiesbaden, 

Germany) with 200 µl cell suspension per well (105 cells/well). The two peptides 

were added to a final concentration of 5 µM to the cell suspensions. After 2 h 

incubation at 37 °C cells were washed 5 times with PBS (pH 7.4, Gibco-Invitrogen, 

Karlsruhe, Germany), lysed in 200 µl detergent-containing buffer (0.5% (w/v) 

Zwittergent 3-12 in 50 mM Tris(hydroxymethyl)aminomethane, pH 8.0) and boiled for 

5 min. After removal of cell debris by centrifugation (13000 rpm, 5 min, Heraeus 

Biofuge pico), 50 µl of the supernatants (total volume: 200 µl) were applied to the 

post-column alkalinization RP-HPLC system (Fig. 29). All chromatographic 

measurements were performed as triplicates. The amount of Fluo-penetratin 

(chromatogram a) was more than 10 times greater than that of the control peptide 

Fluo-ANDREASDANIEL (chromatogram b). 

Absolute amounts of cell-associated fluorescence were calculated based on the 

calibration curve (y = 242.91 × x, where y is the peak area and x stands for the 

absolute amount of fluorescein-labeled peptide in fmol) and yielded 117.3 fmol (0.3 

ng, 2.3 nM in 50 µl cell lysate) of Fluo-penetratin and 9.7 fmol (17.2 pg, 0.2 nM in 50 

µl cell lysate) of Fluo-ANDREASDANIEL per 2.5×104 B cells. The total amount of 

Fluo-penetratin eluting at 26.17 min compared to the one of all other fragments 

indicated that only 10% of the internalized CPP had remained intact. These data 
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show that the post-column alkalinization RP-HPLC method can be used for the 

quantification of the cellular internalization of fluorescent cell-penetrating peptides 

and the identification of proteolytic break-down. In addition this approach may be 

combined with off-line MALDI-MS for the identification of degradation products 

[Elmquist & Langel 2003]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Detection of Fluo-penetratin (a) and Fluo-ANDREASDANIEL (b) in cell 
lysates. B cells (2.5 × 104 B cells) were incubated with the indicated amount of 
the corresponding peptide (5 µM), washed and lysed in 200 µl lysis buffer. 
Subsequently 50 µl of each lysate were subjected to the described separation 
procedure (including post-column alkalinization and fluorescence detection 
(λex = 490 nm and λem = 520 nm). 

 

The presented data clearly demonstrate that our post-column alkalinization RP-

HPLC method strongly enhances the sensitivity of fluorescence detection of 

fluorescein-labeled compounds by more than 40-fold compared to previously 

published protocols. Moreover the method is highly reproducible and suitable for the 

determination of fluorescent peptides in complex cell lysates. The method represents 

a valuable complementation to the analysis of peptide uptake and distribution by flow 

cytometry and fluorescence microscopy [Fischer et al. 2004] as it provides absolute 

quantities and allows the differentiation between degraded and intact fluorescent 

peptides. 
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6.3 Supplemental data 

The following figure illustrates the configuration of the RP-HPLC system for the 

postcolumn alkalinization method. Only an additional pump for the delivery of the 

ammonium hydroxide solution is necessary without a mixing chamber. Optimization 

of the flow rates of the solvents is sufficient for the optimal separation and detection 

of fluorescein-labeled peptides. 

 

 

 

 

 

 

 

 

 

Figure 30 Configuration of the RP-HPLC system for post-column sample alkalinization 
including system controller, auto injector (AI), peristaltic pumps (p), solvent 
degasser (SD), UV detector (D1, 214 nm) and fluorescence detector (D2, λex 
= 490 nm and λem = 520 nm). The samples are separated at pH 2.5, 
alkalinized and detected at pH 10. 

 

The calibration curve stated below points out, that the post-column alkalinization 

method is highly reproducible indicated by the small standard deviation. Furthermore 

the method is suitable for the determination of fluorescein-labeled substances within 

a wide concentration range since the signals (i.e. peak areas) are linear from 0.2 

fmol to 40 fmol (R2 = 0.99) (Fig. 31). 
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Figure 31 Calibration curve for the total amount of Fluo-penetratin (fmol) determined 
using the postcolumn alkalinization procedures followed by peak integration. 
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Recently the uptake of different CPPs (penetratin [Derossi et al. 1994], pVEC 

(LLIILRRRIRKQAHAHSK) [Säälik et al. 2004] and (KFF)3K [Petersen et al. 2004]) in 

two yeast species, Saccharomyces cerevisiae and Candida albicans, was studied 

using fluorescence HPLC-analyses of cell content whereas the intracellular 

degradation of the CPPs varies from complete stability to complete degradation 

according to our results [Holm et al. 2005]. 

Moreover the described postcolumn alkalinization procedure was applied for the 

detection of the peptide inhibitor D-JNKI-1 for the c-Jun N-terminal Kinase (EC 

2.7.1.37) in cooperation with the Hearing Research Center Tübingen. Results were 

part of the final report within a research project financially supported by the 

University Hospital Tübingen (fortüne project 1309-0-0). The peptide was conjugated 

to Tat and labelled with FITC. Continuous local application of the peptide to the 

guinea pig cochlea yielded only low signal intensities due to the different membrane 

structure of the cochlea compared to, for example, HeLa cells or EBV-transformed B 

cells. 
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7 Conclusion 

7.1 Abstract 

The specific and sensitive detection of protease activities within aqueous 

biological fluids such as blood, urine, sweat or cell lysates is important since 

proteases are widely used biomarkers for the discrimination between diseased and 

healthy samples. Recently, great efforts have been made to develop new proteomic 

approaches implying screening studies for the parallel determination of various 

parameters. Therefore specific and high-throughput compatible methods are 

required. The present work describes a new method for the determination of CatD 

activity which is generally applicable on peptide substrates and represents a useful 

tool and complements established enzyme assays. The applicability of the digest & 

pull down assay was applied to biological samples such as cell lysates and sweat. 

As a result thereof, CatD was detected in human eccrine sweat. Furthermore, we 

could show that CatD, in combination with at least two other proteases, is involved in 

the postsecretory processing of the antimicrobial peptide DCD-1L into 12 DCD-1L 

derived peptides from which at least one (SSL-25) shows an higher activity than 

DCD-1L. Thus postsecretory processing by CatD modulates the innate immune 

defense of human skin by generating a bigger set of DCD-1L derived peptides with 

different antimicrobial activities. 

Recently, fluorescence based visualization techniques such as confocal laser 

scanning microscopy (CLSM) and fluorescence associated cell sorting (FACS) more 

and more became the methods of choice for cellular investigations. So it is highly 

desirable to develop innovative fluorescent probes which are compatible to these 

bioanalytical methods. Since protease activities commonly can only be detected in 

cell lysates a new cell permeable peptide substrate was designed for the 

visualization of protease activity within living cells. The developed R9-CatD-substrate 

consists of the cell-penetrating peptide R9 and the specific CatD-substrate. The 

scissile bond is flanked by TAMRA and carboxyfluorescein respectively. Upon 

cleavage with CatD the quenching of the fluorophores is abolished and both the 

TAMRA and the carboxyfluorescein fluorescence can be measured. Once in the 

endolysosomal pathway the R9-substrate is cleaved and the fluorescence increases 

as can be determined by CLSM and FACS analysis. The presented design of cell-

74 



7 Conclusion 

penetrating, doubly-labeled peptide substrates and their application for cellular 

investigations is an innovative and promising approach which reasonably endorses 

other common techniques such as in vitro digestion experiments or western blot 

analysis. 

As already mentionend above, a vast number of applications in bioanalytical 

chemistry depend on fluorescein labeled molecules. Fluorescein derivatives have 

evolved to widely used reagents for the preparation of hydrolytically stable 

fluorescent peptide and protein conjugates. However, the strong pH dependence of 

the fluorophore narrows its applicability especially in acidic buffer systems such as it 

is the case for commonly used RP-HPLC systems. Therefore a new RP-HPLC 

method was developed yielding a 40-fold signal increase without loss of 

reproducibility or peak resolution. This method has been used for the quantification 

of cellular uptake of the fluorescent labeled cell-penetrating peptide penetratin by 

human EBV-transformed B cells. 

Taken together, a new method for the determination of CatD activity based on 

biotinylated and fluorescent peptide substrates was developed and applied to 

various biological samples particularly to human eccrine sweat, where CatD could be 

detected for the first time. In this context the physiological function of CatD in human 

eccrine sweat was investigated stating its involvement in the postsecretory 

processing of the antimicrobial peptide DCD-1L and therefore its role in the 

modulation of the immune defense of human skin. Moreover the designed CatD 

substrate was modified by making it cell permeable and by the introduction of two 

fluorophores so that it can be used as an activity-based probe for the intracellular 

localisation and quantification of CatD activity within living cells. In general, the 

cellular uptake of fluorescein-labelled cell-penetrating peptides by human EBV-

transformed B cells was quantified by a new RP-HPLC based method. 

 

7.2 Zusammenfassung 

Der spezifische und empfindliche Nachweis von Proteaseaktivitäten in wässrigen 

biologischen Proben wie Blut, Urin, Schweiß oder Zelllysaten ist wichtig, da 

Proteasen häufig als Biomarker verwendet werden um zwischen Proben von 

Kranken und Gesunden zu unterscheiden. In den letzten Jahren wurden neue 

Proteomics-Anwendungen entwickelt um in einem Ansatz parallel mehrere 
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Parameter zu detektieren. Aufgrund dieser Tatsache werden spezifische Methoden, 

die sich zur Automatisierung eignen benötigt. In der vorliegenden Arbeit wird eine 

neue Methode zum Nachweis der CatD Aktivität vorgestellt, die sich prinzipiell auch 

auf beliebige andere Peptidsubstrate übertragen lässt und deshalb eine sinnvolle 

Ergänzung zu den bisher bekannten Enzymaktivitätstests darstellt. Der entwickelte 

Digest & Pull Down Assay wurde zur Bestimmung der CatD-Aktivität in biologischen 

Proben wie Zelllysaten und Schweiß verwendet. CatD konnte so in menschlichem 

Schweiß nachgewiesen werden. Des weiteren konnte gezeigt werden, dass CatD in 

Verbindung mit noch mindestens zwei weiteren Proteasen für die postsekretorische 

Prozessierung des antimikrobiellen Peptids DCD-1L in 12 DCD-1L abgeleitete 

Peptide verantwortlich ist, von denen mindestens ein Peptid (SSL-25) eine höhere 

antimikrobielle Aktivität besitzt als DCD-1L. Die angeborene Immunabwehr der Haut 

wird durch postsekretorische Prozessierung mittels CatD moduliert, indem 12 DCD-

1L abgeleitete Peptide generiert werden, die unterschiedliche antimikrobielle 

Aktivitäten besitzen. 

Die fluoreszenzbasierenden Visualisierungstechniken konfokale Laser-Raster-

Mikroskopie (CLSM) und Durchflusszytometrie (FACS) entwickelten sich in den 

letzten Jahren immer mehr zur bevorzugten Methode für zelluläre Untersuchungen. 

Die Entwicklung innovativer fluoreszierender Substanzen für diese Anwendungen ist 

deshalb von größter Bedeutung. Da Proteaseaktivitäten üblicherweise nur in 

Zelllysaten detektierbar sind, wurde ein neues zellgängiges Peptidsubstrat 

konstruiert, um Proteaseaktivitäten auch in lebende Zellen nachweisbar und sichtbar 

zu machen. Das R9-Substrat setzt sich aus dem zellgängigen Peptid R9 und dem 

spezifischen CatD-Substrat zusammen. An die zu spaltende Bindung grenzen die 

Fluorophore TAMRA und Carboxyfluorescein. Nach der Spaltung durch CatD ist der 

Quenching-Effekt der beiden Fluorophore aufgehoben und sowohl die TAMRA- als 

auch die Fluorescein-Fluoreszenz kann detektiert werden. In endolysosomalen 

Kompartimenten wird das R9-Substrat unter Zunahme des Fluoreszenzsignales 

gespalten und kann durch konfokale Laser-Raster-Mikroskopie oder 

durchflußzytometrisch nachgewiesen werden. Das vorgestellte Prinzip der 

zellpermeablen, doppelt markierten Peptidsubstrate und ihre Anwendung für 

zelluläre Untersuchungen ist ein innovativer und viel versprechender Ansatz, der 

eine sinnvolle Ergänzung zu herkömmlichen Techniken wie in vitro 

Verdauexperimente oder Western Blot Analysen bietet. 
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Wie bereits oben erwähnt, basieren viele bioanalytische Anwendungen auf 

Fluoreszenz-markierten Substanzen. Besonders die hydrolytisch stabilen, mit 

Fluorescein gekoppelten Peptide und Proteine finden eine breite Anwendung. 

Jedoch verringert die starke pH-Abhängigkeit von Fluorescein dessen Anwendung 

vor allem in sauren Puffersystemen, wie sie zum Beispiel bei gängigen RP-HPLC-

Systemen verwendet werden. Dieses Problem wurde durch die Entwicklung einer 

neuen RP-HPLC-Methode gelöst, die um den Faktor 40 sensitiver ist als 

herkömmliche Systeme und mit der gleichen Reproduzierbarkeit und Peak-

Auflösung arbeitet. Mit dieser Methode wurde die Aufnahme des zellgängigen 

Peptids Penetratin von humanen EBV-transformierten B-Zellen quantifiziert. 

Eine neue Methode zum Nachweis von CatD Aktivität basierend auf biotinylierten 

und fluoreszierenden Peptidsubstraten wurde entwickelt und auf verschiedene 

biologische Proben angewendet, insbesondere auf Schweiß, wo CatD zum ersten 

Mal nachgewiesen wurde. In diesem Zusammenhang wurde die physiologische 

Funktion von CatD im Schweiß gezeigt. CatD ist an der postsekretorischen 

Prozessierung des antimikrobiellen Peptids DCD-1L beteiligt und dadurch an der 

Modulation der Immunabwehr der Haut. Des weiteren wurde das konstruierte CatD-

Substrat zellgängig und durch die Kopplung mit zwei Fluorophoren nachweisbar 

gemacht und kann so zur intrazellulären Lokalisation von CatD-Aktivität verwendet 

werden. Die Internalisierung von fluoreszenzmarkierten, zellgängigen Peptiden von 

humanen EBV-transformierten B-Zellen im allgemeinen wurde durch eine neu 

entwickelte RP-HPLC-Methode quantifiziert. 

 

 

77 



8 References 

8 References 

Adachi,W. et al. Isolation and characterization of human cathepsin V: a major proteinase in corneal 
epithelium. Invest Ophthalmol. Vis. Sci. 39, 1789-1796 (1998). 
Algermissen,B., Sitzmann,J., LeMotte,P. & Czarnetzki,B. Differential expression of CRABP II, 
psoriasin and cytokeratin 1 mRNA in human skin diseases. Arch. Dermatol. Res. 288, 426-430 
(1996). 
Ali,R.S. et al. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 
in normal human skin. J. Invest Dermatol. 117, 106-111 (2001). 
Ali,S.Y. The degradation of cartilage matrix by an intracellular protease. Biochem. J. 93, 611-618 
(1964). 
Alnemri,E.S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996). 
Anson, M.L. The estimation of pepsin, trypsin, papain, and cathepsin with haemoglobin. J. Gen. 
Physiol 22, 79-89 (1938). 
Anson,M.L. & Mirsky,A.E. The estimation of pepsin with haemoglobin. J. Gen. Physiol 16, 59-63 
(1932). 
Anson,M.L. The estimation of cathepsin with haemoglobin and the partial purification of cathepsin. J. 
Gen. Physiol 20, 561-563 (1937). 
Anson,M.L. The estimation of papain with haemoglobin, J. Gen. Physiol 20, 565-574 (1937). 
Anson,M.L. The purification of cathepsin. J. Gen. Physiol 23, 695-704 (1940). 
Arnold,D. et al. Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal 
sequencing of peptide pools. Eur. J. Biochem. 249, 171-179 (1997). 
Authier,F., Metioui,M., Fabrega,S., Kouach,M. & Briand,G. Endosomal proteolysis of internalized 
insulin at the C-terminal region of the B chain by cathepsin D. J. Biol. Chem. 277, 9437-9446 (2002). 
Azuma,T., Pals,G., Mohandas,T.K., Couvreur,J.M. & Taggart,R.T. Human gastric cathepsin E. 
Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic 
proteinases. J. Biol. Chem. 264, 16748-16753 (1989). 
Baechle,D. et al. Biotinylated fluorescent peptide substrates for the sensitive and specific 
determination of cathepsin D activity. J. Pept. Sci. 11, 166-174 (2005). 
Baldwin,E.T. et al. Crystal structures of native and inhibited forms of human cathepsin D: implications 
for lysosomal targeting and drug design. Proc. Natl. Acad. Sci. U. S. A 90, 6796-6800 (1993). 
Barrett,A.J. & Kirschke,H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 80 Pt C, 
535-561 (1981). 
Barrett,A.J. Cathepsin D. Purification of isoenzymes from human and chicken liver. Biochem. J. 117, 
601-607 (1970). 
Barrett,A.J. Lysosomal acid proteinase of rabbit liver. Biochem. J. 104, 601-608 (1967). 
Bergmann,M. & Fruton,J.S. On proteolytic enzymes. XIII. Synthetic substrates for chymotrypsin. J. 
Biol. Chem. 118, 405-415 (1939). 
Bergmann,M., Fruton,J.S. & Fraenkel-Conrat,H. On proteolytic enzymes. XV. Regarding the general 
nature of intracellular proteolytic enzymes. J. Biol. Chem. 119, 35-46 (1937). 
Bergmann,M., Fruton,J.S. & Pollok,H. The specificity of trypsin, J. Biol. Chem. 127, 643-648 (1939). 
Bergmann,M., Zervas,L. & Fruton,J.S. On proteolytic enzymes. VI. On the specificity of papain. J. 
Biol. Chem. 111, 225-244 (1935). 
Bergmann,M., Zervas,L. & Fruton,J.S. On proteolytic enzymes. XI. The specificity of the enzyme 
papain peptidase I. J. Biol. Chem. 115, 593-611 (1936). 
Beyer,B.M. & Dunn,B.M. Prime region subsite specificity characterization of human cathepsin D: the 
dominant role of position 128. Protein Sci. 7, 88-95 (1998). 
Beyer,B.M. & Dunn,B.M. Self-activation of recombinant human lysosomal procathepsin D at a newly 
engineered cleavage junction, "short" pseudocathepsin D. J. Biol. Chem. 271, 15590-15596 (1996). 

78 



8 References 

Bidere,N. et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor 
(AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J. Biol. Chem. 
278, 31401-31411 (2003). 
Bond,J.S. & Barrett,A.J. Degradation of fructose-1,6-bisphosphate aldolase by cathepsin B. Biochem. 
J. 189, 17-25 (1980). 
Bowman,E.J., Siebers,A. & Altendorf,K. Bafilomycins: a class of inhibitors of membrane ATPases 
from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. U. S. A 85, 7972-7976 
(1988). 
Boya,P., Roques,B. & Kroemer,G. New EMBO members' review: viral and bacterial proteins 
regulating apoptosis at the mitochondrial level. EMBO J. 20, 4325-4331 (2001). 
Bradford,M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein 
utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 (1976). 
Brand,L. & Johnson,M.L. (Eds.). Fluorescence spectroscopy: Methody in Enzymology. 278, Academic 
Press, San Diego (1997). 
Bromme,D. et al. The specificity of bovine spleen cathepsin S. A comparison with rat liver cathepsins 
L and B. Biochem. J. 264, 475-481 (1989). 
Bromme,D., Bescherer,K., Kirschke,H. & Fittkau,S. Enzyme-substrate interactions in the hydrolysis of 
peptides by cathepsins B and H from rat liver. Biochem. J. 245, 381-385 (1987). 
Bromme,D., Klaus,J.L., Okamoto,K., Rasnick,D. & Palmer,J.T. Peptidyl vinyl sulphones: a new class 
of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in 
comparison with cathepsins S and L. Biochem. J. 315 ( Pt 1), 85-89 (1996). 
Bromme,D., Li,Z., Barnes,M. & Mehler,E. Human cathepsin V functional expression, tissue 
distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. 
Biochemistry 38, 2377-2385 (1999). 
Bullok,K. & Piwnica-Worms,D. Synthesis and characterization of a small, membrane-permeant, 
caspase-activatable far-red fluorescent peptide for imaging apoptosis. J. Med. Chem. 48, 5404-5407 
(2005). 
Bursch,W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death. 
Differ. 8, 569-581 (2001). 
Bycroft,B.W., Chan,W.C., Chhabra,S.R. & Hone,N.D. A novel lysine-protecting procedure for 
continous flow solid phase synthesis of branched peptides. J. Chem. Soc. , Chem. Commun. 778-779 
(1993). 
Campbell,P.N. & Blobel,G. The role of organelles in the chemical modification of the primary 
translation products of secretory proteins. FEBS Letters 72, 215-226 (1976). 
Cao,L.W., Wang,H., Li,J.S. & Zhang,H.S. 6-Oxy-(N-succinimidyl acetate)-9-(2'-
methoxycarbonyl)fluorescein as a new fluorescent labeling reagent for aliphatic amines in 
environmental and food samples using high-performance liquid chromatography. J. Chromatogr. A 
1063, 143-151 (2005). 
Chahroudi,A., Silvestri,G. & Feinberg,M.B. Measuring T cell-mediated cytotoxicity using fluorogenic 
caspase substrates. Methods 31, 120-126 (2003). 
Chain,B.M. et al. The expression and function of cathepsin E in dendritic cells. J. Immunol. 174, 1791-
1800 (2005). 
Chandran,K., Sullivan,N.J., Felbor,U., Whelan,S.P. & Cunningham,J.M. Endosomal proteolysis of the 
Ebola virus glycoprotein is necessary for infection. Science 308, 1643-1645 (2005). 
Chen,J.M. et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl 
endopeptidase. J. Biol. Chem. 272, 8090-8098 (1997). 
Chen,J.M., Rawlings,N.D., Stevens,R.A. & Barrett,A.J. Identification of the active site of legumain 
links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett. 
441, 361-365 (1998). 
Chen,R.F. & Knutson,J.R. Mechanism of fluorescence concentration quenching of carboxyfluorescein 
in liposomes: energy transfer to nonfluorescent dimers. Anal. Biochem. 172, 61-77 (1988). 

79 



8 References 

Chen,S.H. et al. Response of keratinocytes from normal and psoriatic epidermis to interferon-gamma 
differs in the expression of zinc-alpha(2)-glycoprotein and cathepsin D. FASEB J. 14, 565-571 (2000). 
Chou,K.C. Modeling the tertiary structure of human cathepsin-E. Biochem. Biophys. Res. Commun. 
331, 56-60 (2005). 
Cirman,T. et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by 
cleavage of Bid by multiple papain-like lysosomal cathepsins. J. Biol Chem. 279, 3578-3587 (2004). 
Clague,M.J., Urbe,S., Aniento,F. & Gruenberg,J. Vacuolar ATPase activity is required for endosomal 
carrier vesicle formation. J. Biol. Chem. 269, 21-24 (1994). 
Conner,G.E. Isolation of procathepsin D from mature cathepsin D by pepstatin affinity 
chromatography. Autocatalytic proteolysis of the zymogen form of the enzyme. Biochem. J. 263, 601-
604 (1989). 
Conner,G.E. The role of the cathepsin D propeptide in sorting to the lysosome. J. Biol. Chem. 267, 
21738-21745 (1992). 
Console,S., Marty,C., Garcia-Echeverria,C., Schwendener,R. & Ballmer-Hofer,K. Antennapedia and 
HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high 
molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278, 35109-
35114 (2003). 
Cote,C., Solioz,M. & Schatz,G. Biogenesis of the cytochrome bc1 complex of yeast mitochondria. A 
precursor form of the cytoplasmically made subunit V. J. Biol. Chem. 254, 1437-1439 (1979). 
Daher,K.A., Lehrer,R.I., Ganz,T. & Kronenberg,M. Isolation and characterization of human defensin 
cDNA clones. Proc. Natl. Acad. Sci. U. S. A 85, 7327-7331 (1988). 
Dalton,J.P. & Brindley,P.J. Cathepsin W. In Handbook of Proteolytic Enzymes, 2 edn (Barrett,A.J., 
Rawlings,N.D. & Woessner,J.F. eds), Elsevier, London, 1109-1112, (2004). 
Davies,D.R. The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. 
Chem. 19, 189-215 (1990). 
de Duve,C. et al. Commentary. Lysosomotropic agents. Biochem. Pharmacol. 23, 2495-2531 (1974). 
Deiss,L.P., Galinka,H., Berissi,H., Cohen,O. & Kimchi,A. Cathepsin D protease mediates programmed 
cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 15, 3861-3870 (1996). 
Demoz,M. et al. Endosomal-lysosomal proteolysis mediates death signalling by TNFalpha, not by 
etoposide, in L929 fibrosarcoma cells: evidence for an active role of cathepsin D. Biol. Chem. 383, 
1237-1248 (2002). 
Derossi,D. et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-
independent. J. Biol. Chem. 271, 18188-18193 (1996). 
Derossi,D., Joliot,A.H., Chassaing,G. & Prochiantz,A. The third helix of the Antennapedia 
homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450 (1994). 
Deussing,J. et al. Cathepsins B and D are dispensable for major histocompatibility complex class II-
mediated antigen presentation. Proc. Natl. Acad. Sci. U. S. A 95, 4516-4521 (1998). 
Dick,L.R. et al. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role 
for clasto-lactacystin beta-lactone. J. Biol. Chem. 271, 7273-7276 (1996). 
Dreyer,R.N. et al. Processing of the pre-beta-amyloid protein by cathepsin D is enhanced by a familial 
Alzheimer's disease mutation. Eur. J. Biochem. 224, 265-271 (1994). 
Dunn,B.M. et al. A systematic series of synthetic chromophoric substrates for aspartic proteinases.  
Biochem. J. 237, 899-906 (1986). 
Elmquist,A. & Langel,U. In vitro uptake and stability study of pVEC and its all-D analog. Biol. Chem. 
384, 387-393 (2003). 
Erdal,H. et al. Induction of lysosomal membrane permeabilization by compounds that activate p53-
independent apoptosis. Proc. Natl. Acad. Sci. U. S. A 102, 192-197 (2005). 
Erickson,A.H. & Blobel,G. Carboxyl-terminal proteolytic processing during biosynthesis of the 
lysosomal enzymes beta-glucuronidase and cathepsin D. Biochemistry 22, 5201-5205 (1983). 
Erickson,A.H. & Blobel,G. Early events in the biosynthesis of the lysosomal enzyme cathepsin D. J. 
Biol. Chem. 254, 11771-11774 (1979). 

80 



8 References 

Erickson,A.H., Conner,G.E. & Blobel,G. Biosynthesis of a lysosomal enzyme. Partial structure of two 
transient and functionally distinct NH2-terminal sequences in cathepsin D. J. Biol. Chem. 256, 11224-
11231 (1981). 
Evan,G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119-128 (1992). 
Faust,P.L., Kornfeld,S. & Chirgwin,J.M. Cloning and sequence analysis of cDNA for human cathepsin 
D. Proc. Natl. Acad. Sci. U. S. A 82, 4910-4914 (1985). 
Fawell,S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A 
91, 664-668 (1994). 
Fell,H.B. & Dingle,J.T. Studies on the mode of action of excess of vitamin A. 6. Lysosomal protease 
and the degradation of cartilage matrix. Biochem. J. 87, 403-408 (1963). 
Fenteany,G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine 
modification by lactacystin. Science 268, 726-731 (1995). 
Fiebiger,E. et al. Cytokines regulate proteolysis in major histocompatibility complex class II-dependent 
antigen presentation by dendritic cells. J. Exp. Med. 193, 881-892 (2001). 
Fields,C.G., Lloyd,D.H., Macdonald,R.L., Otteson,K.M. & Noble,R.L. HBTU activation for automated 
Fmoc solid-phase peptide synthesis. Pept. Res. 4, 95-101 (1991). 
Filippova,I.Y. et al. Fluorogenic peptide substrates for assay of aspartyl proteinases. Anal. Biochem. 
234, 113-118 (1996). 
Fischer,R., Fotin-Mleczek,M. & Brock,R. Break on through to the other side - Biophysics and cell 
biology shed light on cell-penetrating peptides. ChemBioChem in print, (2005). 
Fischer,R., Kohler,K., Fotin-Mleczek,M. & Brock,R. A stepwise dissection of the intracellular fate of 
cationic cell-penetrating peptides. J. Biol. Chem. 279, 12625-12635 (2004). 
Fischer,R., Mader,O., Jung,G. & Brock,R. Extending the applicability of carboxyfluorescein in solid-
phase synthesis. Bioconjug. Chem. 14, 653-660 (2003). 
Fittipaldi,A. et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. 
J. Biol. Chem. 278, 34141-34149 (2003). 
Flad,T. et al. Detection of dermcidin-derived peptides in sweat by ProteinChip technology. J. Immunol. 
Methods 270, 53-62 (2002). 
Foekens,J.A. et al. Cathepsin-D in primary breast cancer: prognostic evaluation involving 2810 
patients. Br. J. Cancer 79, 300-307 (1999). 
Folin,O. & Ciocalteu,V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 
627-650 (1927). 
Folin,O. & Looney,J.M. Colorimetric methods for the separate determination of tyrosine, tryptophane, 
and cystine in proteins. J. Biol. Chem. 51, 421-434 (1922). 
Frankel,A.D. & Pabo,C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 
55, 1189-1193 (1988). 
Frohm,M. et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in 
human keratinocytes during inflammatory disorders. J. Biol. Chem. 272, 15258-15263 (1997). 
Fruton,J.S. & Bergmann,M. The specificity of pepsin. J. Biol. Chem. 127, 627-641 (1939). 
Fruton,J.S., Irving,G.W. & Bergmann,M. On the proteolytic enzymes of animal tissues. II. The 
composite nature of beef spleen cathepsin. J. Biol. Cchem. 138, 249-262 (1941). 
Funeriu,D.P., Eppinger,J., Denizot,L., Miyake,M. & Miyake,J. Enzyme family-specific and activity-
based screening of chemical libraries using enzyme microarrays. Nat. Biotechnol. 23, 622-627 (2005). 
Fusek,M. & Vetvicka,V. Dual role of cathepsin D: ligand and protease. Biomed. Pap. Med. Fac. Univ 
Palacky. Olomouc. Czech. Repub. 149, 43-50 (2005). 
Futaki,S. et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having 
potential as carriers for intracellular protein delivery. J. Biol. Chem.  276, 5836-5840 (2001). 
Glaser,R. et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. 
Nat. Immunol. 6, 57-64 (2005). 
Glondu,M. et al. A mutated cathepsin-D devoid of its catalytic activity stimulates the growth of cancer 
cells. Oncogene 20, 6920-6929 (2001). 

81 



8 References 

Graslund,A. & Eriksson,L.E. Properties and applications of cell-penetrating peptides. Genet. Eng (N. 
Y. ) 26, 19-31 (2004). 
Greenbaum,L.M. & Fruton,J.S. Purification and properties of beef spleen cathepsin B, J. Biol. Chem. 
226, 173-180 (1957). 
Greiner,A., Lautwein,A., Overkleeft,H.S., Weber,E. & Driessen,C. Activity and subcellular distribution 
of cathepsins in primary human monocytes. J. Leukoc. Biol. 73, 235-242 (2003). 
Guagliardi,L.E. et al. Co-localization of molecules involved in antigen processing and presentation in 
an early endocytic compartment. Nature 343 , 133-139 (1990). 
Guicciardi,M.E., Leist,M. & Gores,G.J. Lysosomes in cell death. Oncogene 23, 2881-2890 (2004). 
Gulnik,S.V. et al. Design of sensitive fluorogenic substrates for human cathepsin D. FEBS Lett. 413, 
379-384 (1997). 
Gupta,B., Levchenko,T.S. & Torchilin,V.P. Intracellular delivery of large molecules and small particles 
by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 57, 637-651 (2005). 
Gygi,S.P., Rochon,Y., Franza,B.R. & Aebersold,R. Correlation between protein and mRNA 
abundance in yeast. Mol. Cell Biol 19, 1720-1730 (1999). 
Harder,J., Bartels,J., Christophers,E. & Schroder,J.M. A peptide antibiotic from human skin. Nature  
387, 861 (1997). 
Harpur,A.G., Wouters,F.S. & Bastiaens,P.I. Imaging FRET between spectrally similar GFP molecules 
in single cells. Nat. Biotechnol. 19, 167-169 (2001). 
Hasilik,A. & Neufeld,E.F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of 
mannose residues. J. Biol. Chem.  255, 4946-4950 (1980). 
Hasilik,A., von Figura,K., Conzelmann,E., Nehrkorn,H. & Sandhoff,K. Lysosomal enzyme precursors 
in human fibroblasts. Activation of cathepsin D precursor in vitro and activity of beta-hexosaminidase 
A precursor towards ganglioside GM2. Eur. J. Biochem. 125, 317-321 (1982). 
Hengartner,M.O. The biochemistry of apoptosis. Nature 407, 770-776 (2000). 
Hershko,A. & Fry,M. Post-translational cleavage of polypeptide chains: role in assembly. Annu. Rev. 
Biochem. 44, 775-797 (1975). 
Hewitt,E.W. et al. Natural processing sites for human cathepsin E and cathepsin D in tetanus toxin: 
implications for T cell epitope generation. J. Immunol. 159, 4693-4699 (1997). 
Hibino,T., Takemura,T. & Sato,K. Human eccrine sweat contains tissue kallikrein and kininase II. J. 
Invest Dermatol. 102, 214-220 (1994). 
Holm,T. Netzereab,S., Hansen,M. Langel,U. & Hallbrink,M. Uptake of cell-penetrating peptides in 
yeasts. FEBS Lett. in press (2005) 
Hoogerhout,P. et al. Solid-phase synthesis and application of double-fluorescent-labeled lipopeptides, 
containing a CTL-epitope from the measles fusion protein. J. Pept. Res. 54, 436-443 (1999). 
Horie,N., Yokozeki,H. & Sato,K. Proteolytic enzymes in human eccrine sweat: a screening study. Am. 
J. Physiol 250, R691-R698 (1986). 
Huang,J.S., Huang,S.S. & Tang,J. Cathepsin D isozymes from porcine spleens. Large scale 
purification and polypeptide chain arrangements. J. Biol. Chem. 254, 11405-11417 (1979). 
Inaoka,T. et al. Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase 
predominantly expressed in bone. Biochem. Biophys. Res. Commun. 206, 89-96 (1995). 
Iodice,A.A. & Weinstock,I.M. Cathepsin A in nutritional and hereditary muscular dystrophy. Nature 
207, 1102 (1965). 
Iodice,A.A., Leong, V. & Weinstock,I.M. Separation of cathepsin A and D of skeletal muscle. Arch. 
Biochem. Biophys. 117, 477-486 (1966b). 
Iodice,A.A., Leong,V. & Weinstock,I.M. Proteolytic activity of skeletal muscle of normal and dystrophic 
chickens and rabbits. Enzymol. Biol. Clin. (Basel) 6, 269-278 (1966a). 
Jedeszko,C. & Sloane,B.F. Cysteine cathepsins in human cancer. Biol. Chem. 385, 1017-1027 
(2004). 

82 



8 References 

Johansson,A.C., Steen,H., Ollinger,K. & Roberg,K. Cathepsin D mediates cytochrome c release and 
caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death. Differ. 10, 
1253-1259 (2003). 
Jones,L.J. et al. Quenched BODIPY dye-labeled casein substrates for the assay of protease activity 
by direct fluorescence measurement. Anal. Biochem. 251, 144-152 (1997). 
Kagedal,K., Johansson,U. & Ollinger,K. The lysosomal protease cathepsin D mediates apoptosis 
induced by oxidative stress. FASEB J. 15, 1592-1594 (2001). 
Kaufmann,S.H. & Gores,G.J. Apoptosis in cancer: cause and cure. Bioessays 22, 1007-1017 (2000). 
Kazakova,O.V. & Orekhovich,V.N. Crystallization of cathepsin D. Biochem. Biophys. Res. Commun. 
72, 747-752 (1976). 
Kerr,J.F., Wyllie,A.H. & Currie,A.R. Apoptosis: a basic biological phenomenon with wide-ranging 
implications in tissue kinetics. Br. J. Cancer 26, 239-257 (1972). 
Kirschke,H., Wiederanders,B., Bromme,D. & Rinne,A. Cathepsin S from bovine spleen. Purification, 
distribution, intracellular localization and action on proteins. Biochem. J. 264, 467-473 (1989). 
Kirschke,H., Wikstrom,P. & Shaw,E. Active center differences between cathepsins L and B: the S1 
binding region. FEBS Lett. 228, 128-130 (1988). 
Kishi,T. et al. Development of an immunofluorometric assay and quantification of human kallikrein 7 in 
tissue extracts and biological fluids. Clin. Chem. 50, 709-716 (2004). 
Knight,C.G. & Barrett,A.J. Interaction of human cathepsin D with the inhibitor pepstatin. Biochem. J. 
155, 117-125 (1976). 
Kokkonen,N. et al. Defective acidification of intracellular organelles results in aberrant secretion of 
cathepsin D in cancer cells. J. Biol. Chem. 279, 39982-39988 (2004). 
Kornfeld,S. & Mellman,I. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5, 483-525 (1989). 
Kozak,S.L., Kuhmann,S.E., Platt,E.J. & Kabat,D. Roles of CD4 and coreceptors in binding, 
endocytosis, and proteolysis of gp120 envelope glycoproteins derived from human immunodeficiency 
virus type 1. J. Biol. Chem. 274, 23499-23507 (1999). 
Krull,I.S. et al. Labeling reactions applicable to chromatography and electrophoresis of minute 
amounts of proteins. J. Chromatogr. B Biomed. Sci. Appl. 699, 173-208 (1997). 
Ladror,U.S., Snyder,S.W., Wang,G.T., Holzman,T.F. & Krafft,G.A. Cleavage at the amino and 
carboxyl termini of Alzheimer's amyloid-beta by cathepsin D. J. Biol. Chem. 269 , 18422-18428 
(1994). 
Ladror,U.S., Snyder,S.W., Wang,G.T., Holzman,T.F. & Krafft,G.A. Cleavage at the amino and 
carboxyl termini of Alzheimer's amyloid-beta by cathepsin D. J. Biol Chem. 269, 18422-18428 (1994). 
Langbein,L. et al. Characterization of a novel human type II epithelial keratin K1b, specifically 
expressed in eccrine sweat glands. J. Invest Dermatol. 125, 428-444 (2005). 
Lapresle,C. & WebbB,T. The purification and properties of a proteolytic enzyme, rabbit cathepsin E, 
and further studies on rabbit cathepsin D. Biochem. J. 84, 455-462 (1962). 
Lapresle,C., Puizdar,V., Porchon-Bertolotto,C., Joukoff,E. & Turk,V. Structural differences between 
rabbit cathepsin E and cathepsin D. Biol. Chem. Hoppe Seyler 367, 523-526 (1986). 
Lee,A.Y., Gulnik,S.V. & Erickson,J.W. Conformational switching in an aspartic proteinase. Nat. Struct. 
Biol. 5, 866-871 (1998). 
Leist,M. & Jaattela,M. Triggering of apoptosis by cathepsins. Cell Death. Differ. 8, 324-326 (2001). 
Li,W. et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 470, 35-39 
(2000). 
Lin,T.Y. & Williams,H.R. Inhibition of cathepsin D by synthetic oligopeptides. J. Biol. Chem. 254, 
11875-11883 (1979). 
Lindgren,M., Hallbrink,M., Prochiantz,A. & Langel,U. Cell-penetrating peptides. Trends Pharmacol. 
Sci. 21, 99-103 (2000). 
Liu,J. & Shapiro,J.I. Endocytosis and signal transduction: basic science update. Biol. Res. Nurs. 5, 
117-128 (2003). 

83 



8 References 

Looney,J.M. The colorimetric estimation of tyrosine, tryptophane, and cystine in proteins. J. Biol. 
Chem. 69, 519-538 (1926). 
Lopez-Garcia,B., Lee,P.H., Yamasaki,K. & Gallo,R.L. Anti-fungal activity of cathelicidins and their 
potential role in Candida albicans skin infection. J. Invest Dermatol. 125, 108-115 (2005). 
Lopez-Otin,C. & Overall,C.M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. 
Cell Biol. 3, 509-519 (2002). 
Luedtke,N.W., Carmichael,P. & Tor,Y. Cellular uptake of aminoglycosides, guanidinoglycosides, and 
poly-arginine. J. Am. Chem. Soc. 125, 12374-12375 (2003). 
Maccecchini,M.L., Rudin,Y., Blobel,G. & Schatz,G. Import of proteins into mitochondria: precursor 
forms of the extramitochondrially made F1-ATPase subunits in yeast. Proc. Natl. Acad. Sci. U. S. A 
76, 343-347 (1979). 
Mackay,E.A. et al. A possible role for cathepsins D, E, and B in the processing of beta-amyloid 
precursor protein in Alzheimer's disease. Eur. J. Biochem. 244, 414-425 (1997). 
Majer,P., Collins,J.R., Gulnik,S.V. & Erickson,J.W. Structure-based subsite specificity mapping of 
human cathepsin D using statine-based inhibitors. Protein Sci. 6, 1458-1466 (1997). 
Mason,R.W. Lysosomal metabolism of proteins. Subcell. Biochem. 27, 159-190 (1996). 
Mason,R.W., Bergman,C.A., Lu,G., Frenck,H.J. & Sol-Church,K. Expression and characterization of 
cathepsin P. Biochem. J. 378, 657-663 (2004). 
Matayoshi,E.D., Wang,G.T., Krafft,G.A. & Erickson,J. Novel fluorogenic substrates for assaying 
retroviral proteases by resonance energy transfer. Science 247, 954-958 (1990). 
Merrifield,R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Cchem. Soc. 
85, 2149-2154 (1963). 
Metcalf,P. & Fusek,M. Two crystal structures for cathepsin D: the lysosomal targeting signal and 
active site. EMBO J. 12, 1293-1302 (1993). 
Metroione,R.M., Neves,A.G. & FRUTON,J.S. Purification and properties of dipeptidyl transferase 
(Cathepsin C). Biochemistry 5, 1597-1604 (1966). 
Miller,J.J., Changaris,D.G. & Levy,R.S. Purification, subunit structure and inhibitor profile of cathepsin 
A. J. Chromatogr. 627, 153-162 (1992). 
Mizuochi,T. et al. Both cathepsin B and cathepsin D are necessary for processing of ovalbumin as 
well as for degradation of class II MHC invariant chain. Immunol. Lett. 43, 189-193 (1994). 
Morishima,H., Takita,T., Aoyagi,T., Takeuchi,T. & Umezawa,H. The structure of pepstatin. J. Antibiot. 
(Tokyo) 23, 263-265 (1970). 
Mousavi,S.A. et al. Uptake of denatured collagen into hepatic stellate cells: evidence for the 
involvement of urokinase plasminogen activator receptor-associated protein/Endo180. Biochem. J. 
387, 39-46 (2005). 
Murakami,M. et al. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system 
for the skin. J. Invest Dermatol. 119, 1090-1095 (2002). 
Murakami,M., Lopez-Garcia,B., Braff,M., Dorschner,R.A. & Gallo,R.L. Postsecretory processing 
generates multiple cathelicidins for enhanced topical antimicrobial defense. J. Immunol. 172, 3070-
3077 (2004). 
Muramoto,K., Kamiya,H. & Kawauchi,H. The application of fluorescein isothiocyanate and high-
performance liquid chromatography for the microsequencing of proteins and peptides. Anal. Biochem. 
141, 446-450 (1984). 
Myal,Y. et al. The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. 
Mol. Cell Endocrinol. 80, 165-175 (1991). 
Nagahara,H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 
induces cell migration. Nat. Med. 4, 1449-1452 (1998). 
Nagler,D.K. et al. Human cathepsin X: A cysteine protease with unique carboxypeptidase activity. 
Biochemistry 38, 12648-12654 (1999). 
Nakayashiki,N. Sweat protein components tested by SDS-polyacrylamide gel electrophoresis followed 
by immunoblotting. Tohoku J. Exp. Med. 161, 25-31 (1990). 

84 



8 References 

Nizet,V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 
414, 454-457 (2001). 
Nomura,T. & Katunuma,N. Involvement of cathepsins in the invasion, metastasis and proliferation of 
cancer cells. J. Med. Invest 52, 1-9 (2005). 
Oefner,P.J. et al. High-resolution liquid chromatography of fluorescent dye-labeled nucleic acids. 
Anal. Biochem. 223, 39-46 (1994). 
Ong,P.Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. 
Med. 347, 1151-1160 (2002). 
Ostermann,N., Gerhartz,B., Worpenberg,S., Trappe,J. & Eder,J. Crystal structure of an activation 
intermediate of cathepsin E. J. Mol. Biol. 342, 889-899 (2004). 
Perkins,D.N., Pappin,D.J., Creasy,D.M. & Cottrell,J.S. Probability-based protein identification by 
searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567 (1999). 
Petersen,L. et al. Synthesis and in vitro evaluation of PNA-peptide-DETA conjugates as potential cell 
penetrating artificial ribonucleases. Bioconjug. Chem. 15, 576-582 (2004). 
Peterson,L.M., Sokolovsky,M. & Vallee,B.L. Purification and crystallization of human 
carboxypeptidase A. Biochemistry 15, 2501-2508 (1976). 
Pitot,H.C. & Gohda,E. Cathepsin T. Methods Enzymol. 142, 279-289 (1987). 
Planta,R.J., Gorter,J. & Gruber,M. The Catalytic Properties of Cathepsin C. Biochim. Biophys. Acta 
89, 511-519 (1964). 
Pooga,M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain 
transmission in vivo. Nat. Biotechnol. 16, 857-861 (1998). 
Pooga,M. et al. Cellular translocation of proteins by transportan. FASEB J.  15, 1451-1453 (2001). 
Pooga,M., Hallbrink,M., Zorko,M. & Langel,U. Cell penetration by transportan. FASEB J. 12 , 67-77 
(1998). 
Potocky,T.B., Menon,A.K. & Gellman,S.H. Cytoplasmic and nuclear delivery of a TAT-derived peptide 
and a beta-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278, 50188-50194 (2003). 
Press,E.M., Porter,R.R. & Cebra,J. The isolation and properties of a proteolytic enzyme, cathepsin D 
from bovine spleen. Biochem. J. 74, 501-514 (1960). 
Puizdar,V. & Turk,V. Cathepsinogen D: characterization and activation to cathepsin D and inhibitory 
peptides. FEBS Lett. 132, 299-304 (1981). 
Puzer,L. et al. Defining the substrate specificity of mouse cathepsin P. Arch. Biochem. Biophys. 435, 
190-196 (2005). 
Rao,C.M. et al. Specificity in the binding of inhibitors to the active site of human/primate aspartic 
proteinases: analysis of P2-P1-P1'-P2' variation. J. Med. Chem. 36, 2614-2620 (1993). 
Richard,J.P. et al. Cell-penetrating peptides-A reevaluation of the mechanism of cellular uptake. J. 
Biol. Chem. 278, 585-590 (2003). 
Richard,J.P. et al. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent 
endocytosis and heparan sulfate receptors. J. Biol. Chem. 280, 15300-15306 (2005). 
Rieg,S. et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic 
dermatitis correlates with an impaired innate defense of human skin in vivo.  J. Immunol. 174, 8003-
8010 (2005). 
Rieg,S., Garbe,C., Sauer,B., Kalbacher,H. & Schittek,B. Dermcidin is constitutively produced by 
eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br. J. 
Dermatol. 151, 534-539 (2004). 
Rijnboutt,S., Aerts,H.M., Geuze,H.J., Tager,J.M. & Strous,G.J. Mannose 6-phosphate-independent 
membrane association of cathepsin D, glucocerebrosidase, and sphingolipid-activating protein in 
HepG2 cells. J. Biol. Chem. 266, 4862-4868 (1991a). 
Rijnboutt,S., Kal,A.J., Geuze,H.J., Aerts,H. & Strous,G.J. Mannose 6-phosphate-independent 
targeting of cathepsin D to lysosomes in HepG2 cells. J. Biol. Chem. 266, 23586-23592 (1991b). 
Rijnboutt,S., Stoorvogel,W., Geuze,H.J. & Strous,G.J. Identification of subcellular compartments 
involved in biosynthetic processing of cathepsin D. J. Biol. Chem. 267, 15665-15672 (1992). 

85 



8 References 

Roberg,K., Johansson,U. & Ollinger,K. Lysosomal release of cathepsin D precedes relocation of 
cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by 
oxidative stress. Free Radic. Biol. Med. 27, 1228-1237 (1999). 
Rochefort,H. & Liaudet-Coopman,E. Cathepsin D in cancer metastasis: a protease and a ligand. 
APMIS 107, 86-95 (1999). 
Rodriguez,G.M. & Diment,S. Role of cathepsin D in antigen presentation of ovalbumin. J. Immunol. 
149, 2894-2898 (1992). 
Rothman,J.H., Yamashiro,C.T., Raymond,C.K., Kane,P.M. & Stevens,T.H. Acidification of the 
lysosome-like vacuole and the vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort 
vacuolar proteins. J. Cell Biol. 109, 93-100 (1989). 
Ryser,H.J. & Shen,W.C. Conjugation of methotrexate to poly(L-lysine) increases drug transport and 
overcomes drug resistance in cultured cells. Proc. Natl. Acad. Sci. U. S. A 75, 3867-3870 (1978). 
Saalik,P. et al. Protein cargo delivery properties of cell-penetrating peptides. A comparative study. 
Bioconjug. Chem. 15, 1246-1253 (2004). 
Saar,K. et al. Cell-penetrating peptides: A comparative membrane toxicity study. Anal. Biochem. 345, 
55-65 (2005). 
Sakai,H., Saku,T., Kato,Y. & Yamamoto,K. Quantitation and immunohistochemical localization of 
cathepsins E and D in rat tissues and blood cells. Biochim. Biophys. Acta 991, 367-375 (1989). 
Saku,T., Sakai,H., Shibata,Y., Kato,Y. & Yamamoto,K. An immunocytochemical study on distinct 
intracellular localization of cathepsin E and cathepsin D in human gastric cells and various rat cells. J. 
Biochem. (Tokyo) 110, 956-964 (1991). 
Salvesen,G.S. A lysosomal protease enters the death scene. J. Clin. Invest 107, 21-22 (2001). 
Sanger,F. The terminal peptides of insulin. Biochem. J. 45, 563-574 (1949). 
Sapolsky,A.I. & Woessner,J.F., Jr. Multiple forms of cathepsin D from bovine uterus. J. Biol. Chem. 
247 , 2069-2076 (1972). 
Scarborough,P.E. et al. Exploration of subsite binding specificity of human cathepsin D through 
kinetics and rule-based molecular modeling. Protein Sci. 2, 264-276 (1993). 
Schittek,B. et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. 
Immunol. 2, 1133-1137 (2001). 
Schmidt,M.C. et al. Translocation of human calcitonin in respiratory nasal epithelium is associated 
with self-assembly in lipid membrane. Biochemistry 37, 16582-16590 (1998). 
Schröter,C.J. et al. A rapid method to separate endosomes from lysosomal contents using differential 
centrifugation and hypotonic lysis of lysosomes. J. Immunol. Methods 227, 161-168 (1999). 
Schwarz,G. et al. Characterization of legumain. Biol. Chem. 383, 1813-1816 (2002). 
Schwarze,S.R., Ho,A., Vocero-Akbani,A. & Dowdy,S.F. In vivo protein transduction: delivery of a 
biologically active protein into the mouse. Science 285, 1569-1572 (1999). 
Shewale,J.G. & Tang,J. Amino acid sequence of porcine spleen cathepsin D. Proc. Natl. Acad. Sci. U. 
S. A 81, 3703-3707 (1984). 
Shibagaki,N. & Udey,M.C. Dendritic cells transduced with protein antigens induce cytotoxic 
lymphocytes and elicit antitumor immunity. J. Immunol. 168, 2393-2401 (2002). 
Shibata,M. et al. Cathepsin D is specifically inhibited by deoxyribonucleic acids. FEBS Lett. 517, 281-
284 (2002). 
Silhol,M., Tyagi,M., Giacca,M., Lebleu,B. & Vives,E. Different mechanisms for cellular internalization 
of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur. J. 
Biochem. 269, 494-501 (2002). 
Sjöback,R., Nygren,J. & Kubista,M.. Absorption and fluorescence properties of fluorescein. 
Spectrochim. Acta A 51, L7-L21 (1995). 
Skrzydlewska,E., Sulkowska,M., Wincewicz,A., Koda,M. & Sulkowski,S. Evaluation of serum 
cathepsin B and D in relation to clinicopathological staging of colorectal cancer. World J. 
Gastroenterol.  11, 4225-4229 (2005). 

86 



8 References 

Skudlarek,M.D. & Swank,R.T. Biosynthesis of two lysosomal enzymes in macrophages. Evidence for 
a precursor of beta-galactosidase. J. Biol. Chem. 254, 9939-9942 (1979). 
Snyder,D.S., Simonis,S., Uzman,B.G. & Whitaker,J.N. Rat neural tissue cathepsin D: ultrastructural 
immunocytochemistry. J. Neurocytol. 14, 579-596 (1985). 
Song,L., Hennink,E.J., Young,I.T. & Tanke,H.J. Photobleaching kinetics of fluorescein in quantitative 
fluorescence microscopy. Biophys. J. 68, 2588-2600 (1995). 
Sorensen,O.E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by 
extracellular cleavage with proteinase 3. Blood 97, 3951-3959 (2001). 
Speers,A.E. & Cravatt,B.F. Chemical strategies for activity-based proteomics. ChemBioChem 5, 41-
47 (2004). 
Stoka,V. et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the 
most likely route. J. Biol. Chem. 276, 3149-3157 (2001). 
Suzuki,T. et al. Possible existence of common internalization mechanisms among arginine-rich 
peptides. J. Biol. Chem. 277, 2437-2443 (2002). 
Tada,T. et al. Immunohistochemical localization of Zn-alpha 2-glycoprotein in normal human tissues.  
J. Histochem. Cytochem. 39, 1221-1226 (1991). 
Takahashi,T. & Tang,J. Amino acid sequence of porcine spleen cathepsin D light chain. J. Biol. 
Chem. 258, 6435-6443 (1983a). 
Takahashi,T. & Tang,J. Cathepsin D from porcine and bovine spleen. Methods Enzymol. 80 Pt C, 
565-581 (1981). 
Takahashi,T., Schmidt,P.G. & Tang,J. Oligosaccharide units of lysosomal cathepsin D from porcine 
spleen. Amino acid sequence and carbohydrate structure of the glycopeptides. J. Biol. Chem. 258, 
2819-2830 (1983b). 
Takakusa,H. et al. Design and synthesis of an enzyme-cleavable sensor molecule for 
phosphodiesterase activity based on fluorescence resonance energy transfer. J Am Chem Soc. 124, 
1653-1657 (2002). 
Tallan,H.H., Jones,M.E. & Fruton,J.S. On the proteolytic enzymes if animal tissues. X. Beef spleen 
cathepsin C. J. Biol. Chem. 194, 793-805 (1952). 
Tamai,M. et al. In vitro and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64. J. 
Pharmacobiodyn. 9, 672-677 (1986). 
Tanaka,T., Minematsu,Y., Reilly,C.F., Travis,J. & Powers,J.C. Human leukocyte cathepsin G. Subsite 
mapping with 4-nitroanilides, chemical modification, and effect of possible cofactors. Biochemistry 24, 
2040-2047 (1985). 
Tang,J. & Wong,R.N. Evolution in the structure and function of aspartic proteases. J. Cell Biochem. 
33, 53-63 (1987). 
Tappel,A.L., Zalkin,H., Caldwell,K.A., Desai,I.D. & Shibko,S. Increased lysosomal enzymes in genetic 
muscular dystrophy. Arch. Biochem. Biophys. 96, 340-346 (1962). 
Tardy,C., Tyynela,J., Hasilik,A., Levade,T. & Andrieu-Abadie,N. Stress-induced apoptosis is impaired 
in cells with a lysosomal targeting defect but is not affected in cells synthesizing a catalytically inactive 
cathepsin D. Cell Death. Differ. 10, 1090-1100 (2003). 
Toneguzzo,F. & Ghosh,H.P. In vitro synthesis of vesicular stomatitis virus membrane glycoprotein 
and insertion into membranes. Proc. Natl. Acad. Sci. U. S. A 75, 715-719 (1978). 
Trehin,R. & Merkle,H.P. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. 
Eur. J. Pharm. Biopharm. 58, 209-223 (2004). 
Trombetta,E.S., Ebersold,M., Garrett,W., Pypaert,M. & Mellman,I. Activation of lysosomal function 
during dendritic cell maturation. Science 299, 1400-1403 (2003). 
Turk,B. et al. Apoptotic pathways: involvement of lysosomal proteases. Biol. Chem. 383, 1035-1044 
(2002). 
Turk,B., Turk,D. & Turk,V. Lysosomal cysteine proteases: more than scavengers. Biochim. Biophys. 
Acta 1477, 98-111 (2000). 
Turk,D. & Guncar,G. Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta 
Crystallogr. D. Biol. Crystallogr. 59, 203-213 (2003). 

87 



8 References 

Turk,V., Turk,B. & Turk,D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20, 4629-
4633 (2001). 
Turner,J.J., Arzumanov,A.A. & Gait,M.J. Synthesis, cellular uptake and HIV-1 Tat-dependent trans-
activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating 
peptides. Nucleic Acids Res. 33, 27-42 (2005). 
Valore,E.V. & Ganz,T. Posttranslational processing of defensins in immature human myeloid cells. 
Blood 79, 1538-1544 (1992). 
Valore,E.V. et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest 
101, 1633-1642 (1998). 
van Noort,J.M. & Jacobs,M.J. Cathepsin D, but not cathepsin B, releases T cell stimulatory fragments 
from lysozyme that are functional in the context of multiple murine class II MHC molecules. Eur. J. 
Immunol. 24, 2175-2180 (1994). 
van Noort,J.M. & van der Drift,A.C. The selectivity of cathepsin D suggests an involvement of the 
enzyme in the generation of T-cell epitopes. J. Biol. Chem. 264, 14159-14164 (1989). 
Van Noort,J.M. et al. Antigen processing by endosomal proteases determines which sites of sperm-
whale myoglobin are eventually recognized by T cells. Eur. J. Immunol. 21, 1989-1996 (1991). 
Vaux,D.L., Cory,S. & Adams,J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates 
with c-myc to immortalize pre-B cells. Nature 335, 440-442 (1988). 
Velasco,G., Ferrando,A.A., Puente,X.S., Sanchez,L.M. & Lopez-Otin,C. Human cathepsin O. 
Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and 
expression analysis in human tissues. J. Biol. Chem. 269, 27136-27142 (1994). 
Vergelli,M. et al. T cell response to myelin basic protein in the context of the multiple sclerosis-
associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T 
cells. J. Neuroimmunol. 77, 195-203 (1997). 
Vetvicka,V., Benes,P. & Fusek,M. Procathepsin D in breast cancer: what do we know? Effects of 
ribozymes and other inhibitors. Cancer Gene Ther. 9, 854-863 (2002). 
Vetvicka,V., Vetvickova,J. & Benes,P. Role of enzymatically inactive procathepsin D in lung cancer. 
Anticancer Res. 24, 2739-2743 (2004). 
Villadangos,J.A. et al. Proteases involved in MHC class II antigen presentation. Immunol. Rev. 172, 
109-120 (1999). 
Vives,E., Brodin,P. & Lebleu,B. A truncated HIV-1 Tat protein basic domain rapidly translocates 
through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 
(1997). 
von Figura,K. & Hasilik,A. Lysosomal enzymes and their receptors. Annu. Rev. Biochem. 55, 167-193 
(1986). 
Waizenegger,T., Fischer,R. & Brock,R. Intracellular concentration measurements in adherent cells: a 
comparison of import efficiencies of cell-permeable peptides. Biol. Chem. 383, 291-299 (2002). 
Wang,B. et al. Human cathepsin F. Molecular cloning, functional expression, tissue localization, and 
enzymatic characterization. J. Biol. Chem. 273, 32000-32008 (1998). 
Wang,H., Li,J., Liu,X., Yang,T.X. & Zhang,H.S. N-hydroxysuccinimidyl fluorescein-O-acetate as a 
fluorescent derivatizing reagent for catecholamines in liquid chromatography. Anal. Biochem. 281, 15-
20 (2000). 
Wasi,S., Uriuhara,T., Taichman,N.S., Murray,R.K. & Movat,H.Z. Proteolytic activity in the serum of 
rabbits during anaphylaxis. Experientia 22, 196-198 (1966). 
Weber,P.J., Bader,J.E., Folkers,G. & Beck-Sickinger,A.G. A fast and inexpensive method for N-
terminal fluorescein-labeling of peptides. Bioorg. Med. Chem. Lett. 8, 597-600 (1998). 
Wei,A.P., Blumenthal,D.K. & Herron,J.N. Antibody-mediated fluorescence enhancement based on 
shifting the intramolecular dimer<-->monomer equilibrium of fluorescent dyes. Anal. Chem. 66, 1500-
1506 (1994). 
Wender,P.A. et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular 
uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A 97, 13003-13008 (2000). 

88 



8 References 

Weston,P.D., Barrett,A.J. & Dingle,J.T. Specific inhibition of cartilage breakdown. Nature 222, 285-
286 (1969). 
Wex,T., Levy,B., Wex,H. & Bromme,D. Human cathepsins F and W: A new subgroup of cathepsins. 
Biochem. Biophys. Res. Commun. 259, 401-407 (1999). 
Wille,A. et al. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 
human lung epithelial cells. Biol. Chem. 385, 665-670 (2004). 
Williamson,A.L. et al. Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and its 
potential contribution to host specificity. FASEB J. 16, 1458-1460 (2002). 
Willstätter,R. & Bamann,E. Über die Proteasen der Magenschleimhaut. Erste Abhandlung über die 
Enzyme der Leukozyten. Hoppe-Seylers Z. Physiol. Chemie 180, 127-143 (1929). 
Woessner,J.F., Jr. Acid hydrolases of the rat uterus in relation to pregnancy, post-partum involution 
and collagen breakdown. Biochem. J. 97, 855-866 (1965). 
Wright,G.L., Jr. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. 
Expert. Rev. Mol. Diagn. 2, 549-563 (2002). 
Xie,D. et al. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: 
direct measurement of the protonation states of the catalytic aspartic acid residues. Biochemistry 36, 
16166-16172 (1997). 
Yamamoto,K., Katsuda,N. & Kato,K. Affinity purification and properties of cathepsin-E-like acid 
proteinase from rat spleen. Eur. J. Biochem. 92, 499-508 (1978). 
Yaron,A., Carmel,A. & Katchalski-Katzir,E. Intramolecularly quenched fluorogenic substrates for 
hydrolytic enzymes. Anal. Biochem. 95, 228-235 (1979). 
Yasuda,Y., Kageyama,T., Akamine,A., Shibata,M., Kominami,E., Uchiyama,Y. & Yamamoto,K. 
Characterisation of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and D. 
J. Biochem. (Tokyo) 125, 1139-1143 (1999). 
Yasuda,Y., Kohmura,K., Kadowaki,T., Tsukuba,T. & Yamamoto,K. A new selective substrate for 
cathepsin E based on the cleavage site sequence of alpha2-macroglobulin. Biol. Chem. 386, 299-305 
(2005). 
Yokota,S. & Atsumi,S. Immunoelectron microscopic localization of cathepsin D in lysosomes of rat 
nerve cells. Histochemistry 79, 345-352 (1983). 
Yokozeki,H., Hibino,T. & Sato,K. Partial purification and characterization of cysteine proteinases in 
eccrine sweat. Am. J. Physiol 252, R1119-R1129 (1987). 
Yonezawa,S. et al. Structures at the proteolytic processing region of cathepsin D. J. Biol. Chem. 263, 
16504-16511 (1988). 
Zanetti,M., Gennaro,R. & Romeo,D. Cathelicidins: a novel protein family with a common proregion 
and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1-5 (1995). 
Zeeuwen,P.L. et al. Cystatin M/E expression is restricted to differentiated epidermal keratinocytes and 
sweat glands: a new skin-specific proteinase inhibitor that is a target for cross-linking by 
transglutaminase. J. Invest Dermatol. 116, 693-701 (2001). 
Zeeuwen,P.L., Vlijmen-Willems,I.M., Egami,H. & Schalkwijk,J. Cystatin M / E expression in 
inflammatory and neoplastic skin disorders. Br. J. Dermatol. 147, 87-94 (2002). 
Zhang,H., Li,X.J., Martin,D.B. & Aebersold,R. Identification and quantification of N-linked 
glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. 
Biotechnol. 21, 660-666 (2003). 

 

89 



9 Abbreviations 

9 Abbreviations 

For amino acids the suggestions of the IUPAC-IUB-commission for biological 

nomenclature [Eur. J. Biochem. 138, 9-37 (1984)] were applied. 

 

#    fraction 

ACN   acetonitrile 

Amca   7-Amino-4-methylcoumarin-3-acetic acid 

Cat    cathepsin 

CatD   cathepsin D 

CCE   crude cell extract 

CLSM   confocal laser scanning microscopy 

CPP   cell-penetrating peptide 

DABCYL   4’-dimethylaminoazobenzene-4-carboxylic acid 

DC    dendritic cell 

DG    digestion product 

E    endosomal fraction 

EC number  enzyme commission number 

EDANS   5-(2-aminoethyl) aminonaphthalene-1-sulfonic acid 

EDTA   ethylenediaminetetraacetic acid 

ESI    electrospray ionisation 

eq    equivalent 

FACS   fluorescence activated cell sorting 

Fluo   5-carboxyfluorescein 

IFN-γ   interferon γ 

L    lysosomal fraction 

LPS   lipopolysacharid 

MALDI matrix-assisted laser desorption/ionization 

MS  mass spectrometry 

MW   molecular weight 

m/z    mass/charge ratio 

Pbf    2, 2, 5, 7, 8-pentamethyl-dihydrobenzofuran-5-sulfonyl 

RP-HPLC   reversed-phase high-performance liquid chromatography 

RT    room temperature 
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9 Abbreviations 

SPPS   solid-phase peptide synthesis 

t    time 

TAMRA   5(6)-carboxytetramethylrhodamine 

TBST   Tris-buffered saline with Tween 

TBTU   2-(1H-benzotriazol-1-yl)-1, 1, 3, 3-tetramethyluronium 

tBu    tert.-butyl 

TCA   trichloroacetic acid 

TFA   trifluoroacetic acid 

TNF-α   tumor necrosis factor α 

Tris    tris(hydroxymethyl)aminomethane 

UV    ultraviolet 

V    volume 
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