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Zusammenfassung 

Die nachfolgende Arbeit befasst sich mit den Problemen der nicht-fehlerfreien 

Kommunikation mit Hilfe der binären Kommunikationsgeräte, die insbesondere von den an 

dem sogenannten „locked-in“ Syndrom leidenden Patienten verwendet werden. 

 

Die praktische Motivation für diese Arbeit besteht vor allem darin, die Lebensqualität für 

solche Patienten durch Verbesserung ihrer Kommunikationsmöglichkeiten zu erhöhen. Das 

„locked-in“ Syndrom wird in dem „Pschyrembel Klinisches Wörterbuch“, Seite 974, als 

„Unfähigkeit, sich bei erhaltenem Bewusstsein sprachlich oder durch Bewegungen spontan 

verständlich zu machen“ definiert. In den meisten Fällen wird dieses Syndrom durch eine 

vollständige oder fast vollständige Paralyse aufgrund eines Gehirn- oder 

Rückenmarkschadens, oder aber durch eine Erkrankung namens amyotrophe 

Lateralsklerose verursacht. Die meisten Patienten, die an dem „locked-in“ Syndrom im 

fortgeschrittenen Stadium leiden, verfügen über keine motorischen Fähigkeiten mehr und  

sind bei der Kommunikation mit ihrer Umwelt auf sogenannte Brain-Computer Interfaces 

(BCI’s) angewiesen, wobei man unter Brain-Computer Interfaces Geräte und Verfahren 

versteht, die für die Kommunikation zwischen dem menschliche Gehirn und einem 

Computer dienen. Solange die motorischen Fähigkeiten noch vorhanden sind, können sie 

zur Bedienung motorischer Kommunikationsgeräte eingesetzt werden. 

 

Die Mehrheit der motorischen Kommunikationsgeräte und BCI’s funktionieren so, dass dem 

Patienten eine Sequenz von Zeichen und / oder Buchstaben angezeigt wird, aus der der 

Patient bestimmte Buchstaben auszuwählen versucht, um so zu gewünschten Worten und 

Phrasen zu kommen. In den meisten Fällen kann der Patient aufgrund seiner Behinderung 

lediglich angeben, ob er eine bestimmte Sequenz der Buchstaben in betracht ziehen 

möchte oder nicht, so dass man mit einem binären Signal „Ja/Nein“ zu tun hat und in 

diesem Zusammenhang auch von binären Spelling Interfaces spricht. Eine weitere 

Herausforderung stellt die Tatsache dar, dass die Patienten, die weder ihr Gehirn noch ihre 

verbleibende Motorik vollständig kontrollieren können, auch diese eingeschränkte Wahl 

nicht immer genau treffen und fehlerhaft eine falsche Sequenz auswählen können, was zu 

einer hohen Fehleranfälligkeit insbesondere im Falle der BCI’s führt. Die Verbesserung der 

Kommunikationsmöglichkeiten kann daher zweierlei erreicht werden: zum einen durch 

Beschleunigung der Kommunikationsgeschwindigkeit und zum anderen durch Erhöhung 
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der Fehlerfreiheit. Das Kapitel 3 dieser Arbeit beschäftigt sich mit einer ausführlichen 

Analyse der existierenden binären Spelling Interfaces, deren Funktionsweise, 

Eigenschaften und Leistungsfähigkeit. Es wird gezeigt, dass ausschließlich der an der 

Universität Tübingen entwickelte Thought-Translation Device (TTD) praktische Anwendung 

gefunden hat. 

 

Der Schwerpunkt dieser Arbeit liegt also darin, die Kommunikation sowohl zu 

beschleunigen als auch fehlerfreier zu machen, was durch Optimierung von BCI’s 

einerseits und Berücksichtigung der patientenspezifischen Besonderheiten andererseits 

erreicht werden kann. Um dies zu erreichen, wurde im Kapitel 4 zuerst ein Kriterium 

entwickelt, welches diesem Optimierungsproblem entspricht. Das Kriterium beschreibt die 

mathematische Erwartung der Anzahl der Schritte, die erforderlich sind, um eine 

gewünschte Buchstabe zu schreiben, wobei die eventuell gemachten Fehler sowie deren 

Berichtigung mit Hilfe der sogenannten „delete“-Funktion berücksichtigt wird. Die „delete“-

Funktion wirkt dabei wie die Backspace-Taste und, wenn sie ausgewählt wird, löscht die 

letzte geschriebene Buchstabe. Die Sequenz der Buchstaben entspricht einem binären 

Baum; die „Ja/Nein“ Wahl entspricht der Wahl des linken oder des rechten Teibaums. 

 

Um das oben beschriebene Problem hinsichtlich der schnelleren und fehlerfreieren 

Kommunikation zu lösen, muss man eine Sequenz der Buchstaben aufstellen, bei der das 

entwickelte Kriterium sein Minimum erreicht. Es handelt sich dabei also um ein 

Optimierungsproblem, welches dadurch gelöst wird, dass man Algorithmen entwickelt, mit 

dessen Hilfe eine oder mehrere optimalen Sequenzen der Buchstaben durch Synthese 

aufgebaut werden. Dabei müssen zwei Aspekte besonders stark berücksichtigt werden und 

stellen nicht triviale Herausforderungen dar. Zum einen ist es die Tatsache, dass die 

Kommunikation nicht fehlerfrei abläuft. Dies bedeutet, dass der gewünschte Teilbaum mit 

einer Auswahlwahrscheinlichkeit keiner 1 ausgewählt wird, wobei sich die 

Auswahlwahrscheinlichkeiten für den linken und den rechten Teilbaum im Allgemeinen 

voneinander unterscheiden. Zum anderen muss berücksichtigt werden, dass diese 

Auswahlwahrscheinlichkeiten auch für unterschiedliche Patienten verschieden sind.  

 

Die entwickelten Algorithmen tragen diesen beiden Anforderungen Rechnung, wobei die 

Gründe der praktischen Anwendbarkeit erfordern, dass mehr als ein Algorithmus entwickelt 

wurde. Als erstes wurde ein Algorithmus entwickelt, welches die Darstellung der binären 
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Bäume in Form der sogenannten P-Sequenzen ermöglicht, und zwar dadurch, dass es die 

Dekodierung der P-Sequenzen als binäre Bäume gestattet. Es sei gesagt, dass die P-

Sequenzen eine der handlichsten und bequemsten Darstellungsformen für die binären 

Bäume sind. 

 

Als nächstes wurde ein sogenanntes „Full-Search“-Algorithmus entwickelt, welches die 

Erstellung aller möglichen binären Bäume für ein bestimmtes Alphabet, verknüpft mit 

bestimmten Auftritthäufigkeiten der einzelnen Buchstaben, sowie für bestimmte, 

patientenspezifische Werte der Auswahlwahrscheinlichkeiten für das „Ja/Nein“-Signal 

ermöglicht. 

 

Da dieses Algorithmus das Optimierungsproblem zwar prinzipiell löst, für die praktische 

Anwendung jedoch aufgrund seiner sehr langen Rechenzeiten jedoch weniger geeinigt ist, 

wurden zwei weitere Algorithmen entwickelt, die sich mit dem stark inhomogenen Fall (d.h. 

Auswahlwahrscheinlichkeiten für das „Ja“- und für das „Nein“-Signal sind sehr 

unterschiedlich) und mit dem homogenen Fall (d.h. beide Auswahlwahrscheinlichkeiten 

sind gleich, jedoch ungleich 1) befassen. Diese Algorithmen ermöglichen erhebliche 

Beschleunigung hinsichtlich der Rechenzeit im Vergleich zu dem „Full-Search“-Algorithmus. 

Dies wird anhand diverser Vergleiche und Beispiele demonstriert. Es sei gesagt, dass alle 

drei Algorithmen die Synthese der optimalen binären Bäume ermöglichen, also Bäume, die 

hinsichtlich der Kommunikationsgeschwindigkeit und Fehlerfreiheit nach dem oben 

aufgeführten Kriterium am besten geeignet sind. Zusammen decken sie die komplette 

Bandbreite an möglichen Fällen ab und stellen in Kombination die einzige bekannte 

universelle Methode dar, bestehend aus Kriterien und Algorithmen, die eine Synthese der 

individuell passenden Spelling Interfaces ermöglicht, denn sie berücksichtigt individuelle 

Auswahlwahrscheinlichkeiten eines bestimmten Patienten. Dadurch kann sichergestellt 

werden, dass ein Spelling Interface, welches mit Hilfe dieser Methode erstellt wurde, das 

aus der Sicht der Patienten optimale Interface darstellt und ermöglicht, die 

schnellstmögliche und möglichst fehlerfreie Kommunikation zu führen.  

 

Die letzte Sektion im Kapitel 4 befasst sich mit dem integrierten Computertool, welches 

zwecks praktischer Anwendbarkeit der entwickelten Algorithmen und Erzeugung der 

binären Bäume für die Verwendung durch Patienten entwickelt wurde, wobei die 

individuellen Fertigkeiten und Fähigkeiten eines Patienten einerseits und sowohl die neu 
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entwickelten als auch die bestehenden Algorithmen (wie z.B. das Perelmouter-Birbaumer 

Algorithmus) andererseits berücksichtigt wurden.  

 

Das Kapitel 5 beinhaltet die Zusammenfassung und den Ausblick, wobei es klar gemacht 

wird, dass sich die Problemstellung der nicht-fehlerfreien Kommunikation mit Hilfe der 

binären Kommunikationsgeräte nicht nur auf die Kommunikation mit gelähmten Patienten 

beschränkt. 
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1. Introduction and Motivation 

1.1. Motivation 

Accomplishments of surgery, increasing level of efficiency of life-support systems as well of 

intensive care result in the increasing number of patients who survive severe accidents or 

diseases, such as stroke in the brain stem, tumors, encephalitis, some forms of polyneuritis 

or brain injuries. Although patients survive, they can suffer from serious injures of the brain 

and spinal cord, resulting, in the worst case, in paralysis or in the so-called locked-in 

syndrome – “active mind in a paralyzed body” [33, 34, 49]. A very common reason for 

paralysis and locked-in symptom is, for instance, amyotrophic lateral sclerosis or ALS. ALS 

involves a continuously progressive degeneration of central and peripheral motor neurons, 

usually (but not exclusively) after the age of 30. The question of causes of ALS has not 

been answered yet, and effective therapeutic strategies still have to be developed. The 

incidence of ALS is about 1.5-2:100,000 [8], with an increasing trend [11], thus, leading to a 

comparably high ratio of locked-in patients. Other causes for the locked-in symptom that 

are described above also take their toll. Therefore, the ever increasing number of locked-in 

patients remains an important concern for today’s society. 

 

Locked-in patients, suffering either from ALS or other diseases, remain conscious and can 

both hear and see their surroundings, although they are unable to use their muscles and, 

therefore, to communicate with their environment either vocally or manually (using body 

language, per writing or keyboard etc.). Hence, in order to maintain at least a minimal 

degree of quality of life they need artificial means for communication. Usually, such 

communication devices provide a patient with a sequence of letters. Using his / her 

remaining motor ability (e.g., finger movements or blinks), the patient tries to choose the 

correct letters, thereby creating words and phrases [2]. The remaining motor ability can be 

so scanty  that only the binary (“Yes/No”) communicational signal could be delivered to a 

device (for example, to a so-called "head-switch" communication device). 

 

A definite drawback of such communication devices for artificial spelling is their error-

proneness. Using such systems for alternative communication with motor response control, 

a patient very often is not able to produce an absolutely reliable single binary response, 

especially if suffering from very severe motor paralysis. This means that in many cases the 
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binary signal will be delivered to the device with an error. Moreover, the progressive 

disease can lead to further muscle atrophy, when even minimal movements, which are 

required to operate such communication devices, can become impossible for a patient.  

  

As a result, motor communication becomes extremely restricted or even impossible. In 

order to overcome this problem, so-called direct brain-computer communication devices are 

being developed for fully locked-in patients. These devices allow muscle-independent 

communication and create a direct communication channel between the patient’s brain and 

the computer, making possible for a patient to select different characters or menu items 

using their electrical brain activity [26, 50]. The first such device, which has been already 

successfully used for practical communication with ALS-patients [7, 25], is the TTD 

(Thought-Translation Device). It was developed by Prof. N. Birbaumer and his group at the 

University of Tübingen and is based on the principle of the biofeedback of slow cortical 

potentials (SCP). 

 

Brain-computer interfaces are even more error-prone than artificial spelling devices based 

upon movements. The reason for that is the obvious fact that the muscle control prevails 

over the brain control. Nevertheless, in case of fully locked-in patients brain-computer 

interfaces represent the only existing possibility of communication with the environment. As 

described above, in many cases the disease is progressing, thus, leading sooner or later to 

a fully locked-in syndrome. Therefore, as the second important concern one can mention 

the fact that brain-computer interfaces become a single mean of communication for locked-

in patients in a long run. 

 

The third concern deals with the error-proneness itself and its psychological consequences. 

Especially for locked-in patients it is extremely important to have a reliable communication 

channel, since this is the only one communication option that they possess. On the other 

hand, due to non-trivial skills to voluntarily control the brain activity, the communication via 

brain-computer interfaces is conducted essentially slower and with more errors than verbal 

or motor communication. Hence, both the communicating patient and his / her environment 

/ relatives need to devote a very high amount of patience and time in order to achieve a 

desired outcome. In many cases, however, either patients their selves or their relatives or 

both are so depressed and dispirited by a low communication rate that their initial wish for 

communication is distinguished, leading, in the worst case, even to a complete 



On the building of optimal binary trees for Spelling Interface 

 
Page 11 

abandonment of communication attempts. Every acceleration of either communication rate 

or accuracy of communication will, therefore, lead to an increasing level of quality of life for 

locked-in patients. This can be achieved through optimization of brain-computer interfaces 

used for communication in terms of increasing of error-propones and adoption to individual 

patient’s characteristics. These are, first of all, the individual needs of the patient as well as 

his / her skills with respect to voluntary control of brain activity. 

1.2. Problem description 

The initial problem that is covered in this thesis consists of all three main concerns 

presented above and deals primarily with increasing of quality of life for locked-in patients, 

who are or will be using brain-computer interfaces for communication. We strive to solve 

this problem through increasing of communication speed and accuracy due to both 

optimization of interfaces and adoption to individual patient’s characteristics. As we will see 

further on, this initial problem will lead to a general problem of a non-zero error 

communication and can be applied to all types of binary communication devices. 

 

In order to solve the problem, we need to set a criterion that matches this problem and to 

develop a method of creation of optimal brain-computer interfaces, which corresponds to 

this optimization criterion. Hereby the individual characteristics of the patient need to be 

taken into account. The aim of this research is to find such criterion, to develop optimization 

methods for it and to implement these methods in form of mathematical algorithms and of a 

corresponding computer tool. The results of this work are intended, first and foremost, for 

the Thought-Translation Device and its applications, but could be also applied to all type of 

binary augmentative communication devices. 

1.3. Thesis outline 

In the next chapter we will introduce the most important definitions and descriptions of 

terms that are used in this thesis and are related to mathematics, information technologies 

and brain-computer interfaces. Additionally to this, explanation of optimization problems 

and algorithms will be provided. Also, the complete description of the Huffman’s algorithm 

will be given, since it plays a crucial role in creation of optimal brain-computer interfaces. 

These definitions and explanations will build the required foundation for understanding both 

mathematical and psychological relations and, thus, will make it possible to follow 

presented deductions even for a reader without large expertise in these areas. 
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The chapter 3 deals with the state of the art of brain-computer interfaces. In the first section 

of this chapter all major existing binary Spelling Interfaces will be presented, together with 

their principles and the most important characteristics. Also some additional insights with 

respect to EEG activity and psychological relations will be given. Since the Thought-

Translation Device plays the most important role of all existing BCI’s from the practical point 

of view, its thorough description will be provided. In addition, at the end of the section an 

overall summary for described interfaces will be given, whereat the major focus will be put 

on practical applicability. This section is based upon a comprehensive literature research. 

 

In the second section of the chapter 3 the general problem definition of the non-zero error 

communication will be given. Algorithms that can provide solution of this general problem 

represent the major focus of this thesis. The relevance of the general problem to particular 

aspects of building of optimal Spelling Interfaces for individual handicapped patients will be 

shown. Besides, we will discuss known approaches that seek to solve this problem and 

show their advantages and disadvantages. 

 

The fourth chapter deals with actual algorithms that solve the problem of non-zero error 

communication. Since this problem represents an optimization problem, the first step is to 

develop a practically relevant optimization criterion. In the next step we will present a newly 

developed algorithm for decoding of P-sequences and the so-called Full-Search algorithm. 

In order to further accelerate the search, two additional algorithms – the inhomogeneous 

algorithm and the merging algorithm – have been developed. They will be compared with 

the Full-Search algorithms in order to show the search acceleration. The last section of the 

chapter 4 will be focused on the developed integrated computer tool that allows creating 

optimal Spelling Interfaces for handicapped patients, taking into consideration individual 

patient’s abilities and skills. 

 

The final chapter of the thesis provides an overall summary and gives an outlook with 

respect to further development potentials for Spelling Interfaces. 

 



On the building of optimal binary trees for Spelling Interface 

 
Page 13 

2. Fundamentals 

In the following sub-chapters one can find definitions and descriptions of terms, structures 

and methods used in this thesis. Especially areas dealing with binary trees, optimization 

problems and devices for brain communication and binary communication are wide-ranging 

covered. 

 

The most fundamental definitions, especially with respect to the graph theory, binary trees 

and optimization problems, are given according to [9]. 

 

2.1. Graphs, trees and data structures 

Directed and undirected graphs 

A directed graph G is a pair (V, E), where V is a finite set and E is a binary relation on V. 

The set V is called the vertex set of G, and its elements are called vertices. The set E is 

called the edge set of G, and its elements are called edges. In a so-called undirected 

graph G = (V, E), the edge set E consists of unordered pairs of vertices, rather than 

ordered pairs. 

 

Connected graphs 

An undirected graph is connected if every pair of vertices is connected by a path. 

 

Free trees 

A free tree is a connected, acyclic, undirected graph. A rooted tree is a free tree, in which 

one of the vertices is distinguished from the others. The distinguished vertex is called the 

root of the tree. Vertices of a rooted tree are often referred to as nodes of the tree. 

 

Parents, children, leaves 

If the last edge on the path from the root r of the tree T to a node x is (y, x), then y is the 

parent of x, and x is the child of y. The root is the only node in T with no parents. If two 

nodes have the same parent, they are siblings. A node with no children is an external 

node or leaf. A nonleaf node is an internal node. 
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Degree, depth, height 

The number of children of a node x in a rooted tree T is called the degree of x. The length 

of the path from the root r to a node x is the depth of x in T. The largest depth of any node 

in T is the height of T. 

 

Binary trees 

A binary tree is a structure defined on a finite set of nodes that either: 

contains no nodes, or is comprised of three disjoint sets of nodes: a root node, a binary 

tree called its left sub-tree, and a binary tree called its right sub-tree. 

 

Full binary trees 

A full binary tree is a binary tree, in which each node is either a leaf or has degree exactly 

2. 

 

Means of description of binary trees 

There is a variety of ways and methods how to describe given binary trees. An inorder tree 

walk, for instance, prints the root of the sub-tree between the values in its left sub-tree and 

its right sub-tree. A preorder tree walk prints the root of the tree before the values in either 

sub-tree. A postorder tree walk prints the root of the tree after the values in either sub-tree. 

 

In a so-called Polish notation the set B of binary trees is recursively defined by the 

equation B = �+�BB, where � is an internal node and � is an external node or leaf. Here 

a preorder tree walk is used – firstly visiting the root and then – all the leaves walking anti-

clockwise. For example, the tree in the Figure 2-1 can be notated in this way as 

�����������.  
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Figure 2-1: A full binary tree with 6 leaves 

 

We denote by T the number of leaves of the tree T and by r(T) the degree of the root of 

the tree T, i.e. r(T) = 0, if T = �, and r(T) = 2 otherwise. Let TL and TR be the left and the 

right sub-trees of T, and �T1T2 – the product of T1 and T2,  which admits T1 as the left 

sub-tree and T2 as the right sub-tree.  

 

Two trees T and T´ are in B-order, T < T´ if 

1) r(T) < r(T´), or 

2) r(T) = r(T´) and TL < T´L or 

3) r(T) = r(T´) and TL = T´L and TR = T´R. 

 

The P-sequence of a binary tree T is the integer sequence (pT (1), …, pT (T-1)), where 

pT (i) is the number of internal nodes � written before the leaf i in the Polish notation of T. 

For the tree in the Figure 2-1, for instance, the P-sequence is (2, 4, 4, 4, 5). 

 

Stacks and queues 

Stacks and queues are dynamic sets, in which the element removed from the set is pre-

specified. In a stack, the element deleted or removed from the set is the one most recently 

inserted: the stack implements a last-in, first-out, or LIFO, policy. In a queue, the element 

deleted is always the one that has been in the set for the longest time: the queue 

implements a first-in, first-out, or FIFO, policy. 
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Alphabets 

An alphabet is a finite set of symbols. 

Catalan numbers 

The number of different binary trees on n internal nodes bn is given by the n-th Catalan 

number [e.g. 22]: 
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An asymptotic estimation for bn is: 
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As one can see from this formula, the n-th Catalan number, and therefore the number of 

different binary trees grows exponentially with n. 

 

For many reasons, including the synthesis of binary SI, it is often useful to have the whole 

list of all possible shapes of trees of a certain type – a so-called enumeration all these 

trees. In such cases it is advantageous to have some concise representation for the 

structure of each tree.  An ideal situation [28] is the one where an interval of Cat(n) integers 

has “one-to-one” correspondence with the trees on n internal nodes. Fortunately, many 

papers have appeared, which contain algorithms for generating all binary trees of a certain 

type [23, 28, 35, 42, 47, 53]. Typically, the trees are encoded as integer sequences and 

those sequences are, in turn, generated lexicographically. There is a lot of such coding 

methods – coding based on permutations (tree permutations [43], ballot sequences [42], 

permutation pairs, level sequences, Zaks’ sequences [53] etc.), coding based on rotations 

[28] and so on.  As noted in [28], “different coding methods highlight different aspects of the 

tree structure and a good choice emphasizes the aspect that is essential for the application“. 

We will use further on so-called P-sequences, which are n-tuples of numbers of preceding 

internal nodes for each leaf in preorder. 
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2.2. Optimization problems, greedy algorithms and greedy-choice property  

Optimization problems deal with either maximization or minimization of certain criteria. In 

such problems there can be many possible solutions. Each solution corresponds to a 

particular value of the criterion or criteria, and one attempts to find a solution with the 

optimal (minimum or maximum) value. Such a solution is called an optimal solution to the 

problem, as opposed to the optimal solution, since there may be several solutions that 

achieve the optimal value. 

 

Algorithms for optimization problems typically go through a sequence of steps, with a set of 

choices at each step. For many optimization problems, however, going through the whole 

variety of choices in order to determine the best choice is overkill. Thus, more efficient 

algorithms are required. A greedy algorithm always makes the choice that looks best at 

the moment. That is, it makes a locally optimal choice in order to achieve a globally optimal 

solution, requiring in general essentially fewer steps than algorithms of dynamic 

programming. 

 

Greedy algorithms do not always yield optimal solutions. In order to be able to say whether 

a greedy algorithm actually solves a particular optimization problem, one should use a so-

called greedy-choice property: a globally optimal solution can be arrived at by making a 

locally optimal (greedy) choice. Therefore, the usage of greedy algorithms requires that it is 

proven that a greedy choice at each step yields a globally optimal solution, and thus, a 

greedy-choice property is fulfilled. 

 

2.3. Huffman codes 

Huffman codes represent a widely used and very effective technique for a number of 

greedy problems, especially for compressing data. In order to compress a set of characters 

each character is represented by an optimal binary characteristic code or an optimal unique 

binary sting that is built with help of the Huffman’s greedy algorithm based upon a table of 

the frequencies of characters.  

 

Let us assume one has to compress (which is to write in the most compact way) some 

amount of data based on an alphabet consisting of six different characters (chart 2-2). If 
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one uses a co-called fixed-length code, one needs for instance 3 bits in order to represent 

these six characters. 

 

 a b c d e f 

Frequency (in thousands) 45 13 12 16 9 5 

Fixed-length codeword 000 001 010 011 100 101 

Variable-length codeword 0 101 100 111 1101 1100 

 

Chart 2-2: A character-coding problem. Developed fix-length-codes and variable-length codes 

 

If each character is assigned a 3-bit codeword, a data set of 100,000 characters can be 

encoded in 300,000 bits. Using the variable-length code built upon the Huffman’s 

algorithm, the same data set can be encoded in 224,000 bits. 

 

2.3.1. Prefix codes and the cost function 

Codes, in which no codeword is also a prefix of some other codeword, are called prefix 

codes. It is possible to show that the optimal data compression achievable by a character 

code (which is writing down data in the most compact way) can always be achieved with a 

prefix code. 

 

Given a tree T corresponding to a prefix code, it is a simple matter to compute the number 

of bits required to encode some particular amount of data. For each character c in the 

alphabet C, let f(c) denote the frequency of c and let dT(c) denote the depth of the c’s leaf in 

the tree. dT(c) is at the same time the length of the codeword for the character c. The 

number of bits required to encode the data is thus 

 

( ) ∑
∈

=
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which is denoted as the cost function or the cost of the tree T. In general, optimization 

problems with respect to trees often strive to either maximize or minimize the cost function. 
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2.3.2. Constructing a Huffman code 

The Huffman algorithm builds the tree T corresponding to the optimal code in a bottom-up 

manner. It begins with a set of |C| leaves and performs a sequence of |C|-1 co-called 

“merging” operations to create the final tree.  

 

In the following example C is a set of n characters and each character c 
�

 C is an object 

with a defined frequency f [c]. A priority queue Q, keyed on f, is used to identify the two 

least-frequent objects to merge together. The result of the merger of two objects is a new 

object, whose frequency is the sum of the frequencies of the two objects that were merged. 

 

Huffman’s Algorithm 

 

n �|C| 

Q �C 

for i=1 to n-1 do 

 extract characters x and y with the lowest values of the cost from Q 

 make a new sub-tree z, where x and y are the left and the right leaf respectively and  the 

cost of z is f [z] = f [x] + f [y] 

 insert  z into Q 

return Q 

 

In the example corresponding to the chart 2-2, Huffman’s algorithm proceeds as shown in 

the figure 2-3. Since there are 6 letters in the alphabet, the initial queue size is n = 6, and 5 

merge steps are required to build the tree. The final tree represents the optimal prefix code. 

The codeword for a letter is the sequence of edge labels on the path from the root to the 

letter (leaf). 
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Figure 2-3: The steps of Huffman’s algorithm for the alphabet and the frequencies given in the chart 

2-2 

 

To prove that the greedy-algorithm of Huffman is correct, two following lemmas are required 

and sufficient. The first lemma shows that the greedy-choice property holds. 

 

Lemma 2-1 

Let C be an alphabet, in which each character c �C has frequency f [c]. Let x and y be two 

characters in C having the lowest frequencies. Then there exists an optimal prefix code for 

C, in which the codewords for x and y have the same length and differ only in the last bit. 

 

Proof: 

The idea of the proof is to take the tree T representing an arbitrary optimal prefix code and 

modify it to make a tree representing another optimal prefix code such that the characters x 
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and y appear as sibling leaves of maximum depth in the new tree. If one can do this, then 

their codewords will have the same length and differ only in the last bit. 

 

Let b and c be two characters that are sibling leaves of maximum depth in T. Without loss 

of generality, one can assume that f [b] � f [c] and f [x] � f [y]. Since f [x] and f [y] are the 

two lowest leaf frequencies, in order, and f [b] ��� f [c] are two arbitrary frequencies, in 

order, we have f [x] � f [b] and f [y] � f [c]. As shown in the figure 2-4, one can exchange 

the positions in T of b and x to produce a tree T’, and then one exchanges the positions in 

T’ of c and y to produce a tree T’’. According to the above definition of the cost, the 

difference in cost between T and T’ is: 
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because both f [b] � f [x] and dT[b] – dT[x] are nonnegative. 
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Figure 2-4: The key step in the proof of the lemma 2-1. In the optimal tree T, the leaves b and c are 

two of the deepest leaves and are siblings 

 

More specifically, f[b] – f[x] is nonnegative because x is a minimum-frequency leaf, and dT[b] 

– dT[x] is nonnegative because b is a leaf of maximum depth in T. Similarly, because 

exchanging y and c does not increase the cost, B(T’) – B(T’’) is nonnegative. Therefore, 

B(T’’) � B(T), and since T is optimal, B(T) � B(T’’), which implies B(T’’) = B(T). Thus, T’’ is 
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an optimal tree, in which x and y appear as sibling leaves of maximum depth, from which 

the lemma follows. 

 

This lemma implies that the process of building up an optimal tree by mergers can, without 

loss of generality, begin with the greedy (local optimal) choice of merging together those 

two characters of lowest frequency. Since the Huffman’s algorithm is a greedy-algorithm, it 

chooses out of all possible mergers at each step the one that incurs the least cost. 

 

Lemma 2-2 

Let T be a full binary tree representing an optimal prefix code over an alphabet C, where 

frequency f[c] is defined for each character c � C. In the next step, let us consider any two 

characters x and y that appear as sibling leaves in T, and let z be their parent. Then, 

considering z as a character with frequency f [z] = f [x] + f [y], the tree T’ = T – {x, y} 

represents an optimal prefix code for the alphabet C’ = C – {x, y}	 {z}. 

 

Proof: 

We first show that the cost B(T) of tree T can be expressed in terms of the cost B(T’) of tree 

T’ by considering the component costs according to the cost definition above. For each c �
C – {x, y}, we have dT[c] = dT’[c], and hence, f[c]dT(c)=f[c]dT’(c). Since dT(x)=dT(y)=dT’(z)+1, 

we have 
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from which we conclude that 
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If T’ represents a nonoptimal prefix code for the alphabet C’, then there exists a tree T’’, 

whose leaves are characters in C’ such that B(T’’)<B(T’). Since z is treated as a character 

in C’, is appears as a leaf in T’’. If we add x and y as children of z in T’’, then we obtain a 

prefix code for C with cost B(T’’) + f [x] + f [y] < B(T), contradicting the optimality of T. Thus, 

T’ must be optimal for the alphabet C’. 
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2.4. Brain-computer interfaces and binary augmentative communication 

Since remaining motor abilities of locked-in patients can be extremely sparse, 

communication devices based upon muscle movement are not suitable for many such 

patients (see also chapter 1). Alternative approaches were suggested, based upon either 

electric brain activity or so-called autonomic functions (i.e. skin temperature, heart rate etc.). 

However, according to [26], the very slow rate of responsibility and the high metabolic noise 

of many autonomic responses, as well as the high incidence of pathological changes in 

locked-in patients, make autonomic functions useless for precise and reliable 

communication. So far only the usage of electrical brain activity, which can be either event-

dependent or not, has proved itself being useful. Devices using electrical brain activity for 

communication are commonly referred to as brain-computer interfaces. This sub-chapter 

is dedicated to basics of brain-computer interfaces. 

 

2.4.1. Electric brain activity 

The electroencephalogram (EEG) refers to the electrical signals of the brain. In particular, 

EEG refers to electrical activity arising from neurons in the cerebral cortex and is usually 

recorded non-invasively (that is, without surgical operation) from the scalp of a patient 

according to the international 10-20 system∗ (figure 2-5). 

 

Figure 2-5: Electrode placement on the scull according to the international 10-20 system 

                                                 
∗ Since shape of heads (or skulls) varies from individual to individual, it is impossible to set positions for 

electrode placement absolutely. Therefore, electrodes are positioned in relative (instead of absolute) 

distances. In the international 10-20 system these distances make up 10% and 20% of the total scope of the 

individual skull. The capital letters refer to the lobes of the brain (F = frontal: T= temporal; P= parietal; O= 

occipital). Electrodes placed on the left hemisphere are marked with odd numbers, those on the right with 

even numbers, and those sagittal with z. 
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The electrical activity of the brain measured with help of EEG includes spontaneous 

electrical activity of the cerebral network as well as the cortical responses to external or 

internal events. 

 

Electrical brain responses that are linked to physical stimuli or behavioral responses are 

called event-related potentials. They are characterized and named based upon their 

voltage amplitude and their latency in relation to stimulus onset (figure 2-6) [26]. 

 

 

 

Figure 2-6: Averaged event-related potentials as responses to acoustic stimuli 

 

For example, the negative peak that arises 100 ms after the occurrence of the stimulus is 

called N100, the positive peak 300 ms after the occurrence of the stimulus is called P300 

etc. 
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We differentiate between exogenous and endogenous event-related potentials. 

Exogenous potentials occur up to 100 ms after the occurrence of the stimulus itself and are 

rather obligatory responses to the presentation of physical stimuli, therefore depending 

more on the physical parameters of the stimulus, rather than on psychological aspects of 

the patient or the situation. Endogenous potentials occur at least 100 ms up to several 

seconds later than the stimulus occurred and rely first of all on behavioral and psychological 

processes related to the event. Event-related potentials with the latency ranging from 500 

ms up to 10 s or more are called slow cortical potentials. Since cortical potentials play an 

absolutely crucial role for various brain-computer interfaces and are, therefore, extremely 

important for this research, they are discussed more thoroughly in the chapter 3. 

The EEG normally contains characteristic bands of different frequencies [26]. Electrical 

signals between 8 and 13 Hz are referred to as alpha band, which is most prominent over 

occipital, parietal and posterior regions in the state of relaxed wakefulness with closed eyes. 

The 
-rhythm is defined as arch-shaped electric activity over the sensorimotor cortex in 

the alpha band. Contrary to the visual alpha rhythm, it is not dependent on vision, but is 

linked to motor activity, motor imagery and movement conduction and preparation. The 

beta band deals with frequencies above 13 Hz and is measured mainly over frontal and 

central skull regions. The theta band covers frequencies from 4 Hz to 8 Hz and is only 

weakly expressed in an EEG of a normal waking adult. Frequencies from 0.5 Hz to 4 Hz 

form the delta band. They are present only in deep sleep or anesthesia. Frequencies 

above 30 Hz are referred to as the gamma band and have been related to the 

synchronization of neuronal assembles involved in the generation of mental representation 

[26]. 

 

2.4.2. Brain-computer interfaces 

Brain-computer interfaces can be divided into two large groups based upon two founding 

approaches: the direct recognition approach and the operant conditioning approach. 

The direct recognition approach deals with direct and immediate recognition of brain 

potentials without prior training or conditioning, whereat it is assumed that specific and 

detectable event-related brain potentials or EEG power spectra reflect the confrontation of 

the individual with certain kinds of stimuli [12] or engagement in certain cognitive tasks [18, 

19]. 
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The operant conditioning approach, on the other hand, is based upon principles of learning 

psychology and assumes that the individual can bring EEG signals under his or her 

voluntary control and, therefore, establish control of the target EEG response by means of 

sensory feedback, positive reinforcement of correct behavior, or both. Sensory feedback, 

for instance, can be provided by the movement of a cursor on a computer screen. With help 

of brain-computer interfaces based upon operant-conditioning patients receive continuous 

feedback of their target brain response and learn to produce or withhold certain levels of the 

EEG signal. This signal can be reflected in certain voluntary movement of symbols on the 

computer screen or in voluntary changing of frequencies of sounds according to the 

amplitude of the brain response. Successful learning using reinforcement and shaping of 

the response lead thus to obtaining of a new, non-motor skill – the voluntary control of the 

EEG signal. 

 

From the clinical point of view and from the point of view of increasing of patient’s quality of 

live, there are two major criteria of brain-computer interfaces: speed and accuracy. Speed 

deals first of all with the time required to select a character or, for menu-based interfaces, 

an intended menu item. For locked-in patients, there is presumably a limit, below which the 

speed and, therefore, the communication rate should not fail. This limit certainly depends 

on the motivation and the patience of individual patients and their social environment. 

However, cases have been reported [26], when patients dropped off communication 

attempt due to slow communication.  

 

Accuracy is often defined as percentage of correct responses, that is, correct selections per 

time interval or per attempt. Accuracy, therefore, does not apply to the correctness of the 

final message. Since individuals can not absolutely control their responses, it is extremely 

important for successful communication and for acceptance of brain-computer interfaces 

through patients to increase the level of accuracy. As we will see in the chapter 3, the 

voluntary control of responses can vary a lot from individual to individual. In case of the 

Thought-Translation Device, for instance, it can differ from 20% to 90%. Although the level 

of accuracy for devices based upon the operation conditioning approach can be increased 

through patient’s training, this is often not sufficient for accurate communication. In order to 

evaluate brain-computer interfaces from the standpoint of accuracy, it is important to take 

into account, whether means of error correction is available. Basically, there are two 

possible means of correction: the delete option and the step-back option. 
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The delete option functions similar to the backspace key on the computer keyboard, that is, 

it deletes of the last written character and creates of the original state before the last writing 

attempt has been started. 

 

The step-back option resumes the state before the last action has been taken; therefore, 

returning the patient one level higher than the last level he or she was at. Both the delete 

option and the step-back option have their particular advantages and disadvantages and 

can be the more or less preferred means of the error correction, depending of the general 

design of the particular interface. In brain-computer interfaces, the delete option has been 

proven itself being more convenient for patients. 

 

From the psychological point of view, especially from the point of view of training of patients, 

the easiest and most reliable way to achieve the highest values of both speed and accuracy 

with help of the voluntary control of the EEG signal is to make use of the easiest reveal of 

this skill – the binary signal (i.e. “yes” or “no”). With respect to the EEG such signals can be 

given, for instance, through voluntary positivity or negativity of certain potentials. Since a 

binary signal itself is sufficient for successful communication (i.e. binary computer code), it 

can serve as a basis for successful communication. Devices that use binary signals for 

communication with help of electric brain activity are called binary brain-computer 

interfaces. 

 

In the chapter 3 – “State of the Art of Binary Spelling Interfaces” – which gives an overview 

of and compares existing brain-computer interfaces, we will see that only binary brain-

computer interfaces based upon operation conditioning have found practical application for 

locked-in patients so far. 
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3. State of the Art of Binary Spelling Interfaces 

As mentioned in the chapter 2, the absolutely sufficient and the most effective way to use 

brain-computer interfaces for communication is to produce a binary signal, either as a result 

of application of certain stimuli (the direct recognition approach) or as a result of the 

voluntary controlling of EEG signals (the operant conditioning approach). Therefore, the 

most brain-computer interfaces described in the available literature are binary spelling 

interfaces, which belong to one of the both above groups, depending on whether training to 

self-regulate an EEG response is necessary for usage of the brain-computer interface or 

not. 

 

In the following sub-chapters one can find descriptions and functional principles of major 

brain-computer interfaces developed till now. The focus will be put on the so-called 

Thought-Translation Device, developed by Professor N. Birbaumer and co-workers [e.g. 36], 

as the device most successfully used in the practice. 

 

3.1. Overview of the existing binary spelling interfaces, their principles and 

characteristics 

3.1.1. The P300 brain-computer interface 

As mentioned in the chapter 2, the P300 is a positive peak of the EEG that occurs 

approximately 300 to 400 ms after stimulus onset. The P300 is endogenous and event-

related, which means that it relies on behavioral and psychological processes linked to 

some particular rare event. The P300 potential consists of two components – the P300a 

potential that occurs earlier and is often linked to the newness of the event, and the P300b 

potential that occurs later and is important for the practical usage in brain-computer 

interfaces. The P300b potential is recorded at the electrode location Pz (compare the figure 

2-5). The best way to measure the P300 potential is to do it in the so-called oddball 

paradigm: the test person is confronted with a row of rare and frequent events. Additionally, 

the test person has to conduct a task of categorizing these events in some way, for 

instance, counting them. Under these circumstances, desired rare events lead to 

occurrence of P300 potentials. The rarer the desired event is, the larger is the amplitude of 

the P300 potential.  
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Since the P300 potential is endogenous and event-related, patients do not need to be 

trained in order to be able to generate this potential, as it happens automatically and 

voluntary as a response to rare task-relevant events. These properties of the P300 potential 

were employed for the practical application in brain-computer interfaces, e.g. as described 

in [10]. For these purposes the square matrix of the size 6x6 was presented to test persons. 

This matrix contained 36 symbols – letters of the English alphabet, numbers and the space 

symbol, used for word separation (see the figure 3-1). In order to generate task-related 

events, rows and columns of the matrix flashed in some random order, and the test person 

had to count the number of times the cell with the target letter would flash. In each trial each 

of six rows and each of six columns of the matrix would flash once for the period of time of 

100 ms, thus resulting in 12 events per trial. Since the target cell would always flash twice – 

once contained in the target row and once contained in the target column, these two task-

relevant events can be considered as rare as compared to the other events. Thus, only 

flashing of rows or columns containing the target cell resulted in occurrence of the 

prominent P300b potential. Flashing of the other rows or columns did not produce 

prominent P300 potentials (compare the figure 2-6). The measurements were conducted 

online in the time frame of 100 ms before to 500 ms after the occurrence of the event, 

whereat the EEG background noise was taken into account. According to [10], with 

accuracy of 80%, up to 7.8 characters per minute could be written. 
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Figure 3-1: The P300 brain-computer interface – electrode placement points, EEG-activity and 

visualization 

 

Altogether, the P300 brain-computer interface was tested with four patients suffering from 

complete or incomplete paraplegia. Due to various reasons, the P300 brain-computer 

interface is not in practical use. 

 

3.1.2. The visual event-related potential brain-computer interface 

Different visual stimuli, such as flickering illumination or flashes, can elicit so-called visual 

even-related potentials. These potentials can differ in their amplitude and frequency and 

can, in turn, be used for control of brain-computer interfaces [30]. An important pre-

requirement with respect to the usage of such interfaces is, however, the ability of the 

patient to control the gaze direction. All described visual event-related potential BCI’s 

function as follows: a patient is presented with a screen containing various items for 
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selection. First of all, the patient has to focus on the desired item and, therefore, to fixate 

his / her eyes on it. Then items on the screen are sequentially visually activated (e.g. 

through flickering illumination), and the brain-computer interface detects the visual event-

related potential elicited by the desired item, which, in turn, results in its selection. 

 

One of well-known visual event-related BCI’s is the one developed by Sutter and Tran [30, 

45, 46, 48], where a patient is presented an 8x8 matrix containing either characters or other 

items for selection. Cells of the matrix were activated by flickering illumination in a pseudo-

random order. The matrix cell that elicited the largest event-related potential amplitude over 

the occipital cortex was considered being the target cell a patient wanted to select.  

  

This BCI was tested in 60 participants without disabilities, whereby successful 

communication was reported. However, different issues and problems occurred when using 

the BCI in patients. In patients suffering from neurological impairment communication 

problems occurred due to large muscular artifacts from neck muscles, which interfere with 

the visual event-related potential recording. Limitations in patients suffering from cerebral 

palsy were reported due to artifacts caused by involuntary athetoid movements. Limitations 

in patients suffering from amyotrophic lateral sclerosis were linked to artifacts caused by 

fasciculation. Attempting to overcome these limitations, the authors decided to implant an 

electrode between the dura mater and the scull of one patient suffering from amyotrophic 

lateral sclerosis. In this case the authors reported a very high communication rate of 10 – 

12 words per minute. According to [26], however, the usage of the system is limited to this 

only one patient. No data about training duration or accuracy of this system are available. 

 

3.1.3. The EEG brain-computer interface based upon motor imagery or cognitive tasks 

Different cognitive tasks, such as imagining a rotation of a three-dimensional geometric 

figure or imagining a movement of a finger, lead often to distinct, task-specific distribution of 

EEG frequency patterns over scalp. These patterns can, in turn, be recognized and can 

serve as a basis for brain-computer communication. Typically, such interfaces deal rather 

with encoding of special commands than with written communication. For instance, an EEG 

recorded during mental rotation of a geometric figure after imagining a movement of one 

specific finger could turn on a TV. An EEG recorded while imagining a movement of one 
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specific finger after a movement of another specific finger could turn off a TV. This happens, 

again, due to the fact that such EEG patterns are distinct and task-specific.  

 

In case of motor imagery this pattern has been proven in series of extensive studies [e.g. 

38]. These studies have also shown that the accuracy of communication improves 

significantly when different parameters of experimental setup, such as electrode position or 

frequency range of an EEG, are optimized for particular patients. For example, at electrode 

positions over the central motor cortex (C3 and C4, compare the figure 2-5) researchers 

could record an event-related desynchronization of an EEG over the hemisphere [26]. This 

desynchronization occurred due to imagined movement, whereat synchronization of the 

EEG was kept over the ipsilateral hemisphere (see figure 3-2). This difference in the EEG 

frequency patterns over both hemispheres made possible to control a cursor on a computer 

screen [39]. At the moment the same principle is used in a brain-computer interface, which 

allows a patient suffering from tetraplegia to control a device to open and close his hand 

(referred to as an orthosis). This patient needed overall 62 training sessions lasting for over 

5 months in order to control the orthosis over the corresponding brain-computer interface 

with accuracy of 90% to 100%. He remains the only one patient using this BCI based upon 

motor imagery.  

 

Figure 3-2: The brain-computer interface using EEG frequency patterns related to motor imagery 

 

In case of usage of EEG frequency patterns related to other mental tasks for 

communication an extensive research was conducted as well [1, 18, 19]. The following 

mental tasks were investigated [26]: 

 

� Thinking of nothing in particular (baseline task); 
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� Solving a multiplication problem; 

� Mentally rotating a complex three-dimensional block figure∗; 

� Mentally writing a letter to a friend without vocalization; 

� Visualizing numbers being written on a black-board sequentially, with each number 

being erased before the next one is written. 

 

These studies claim to allow an offline classification of the distribution of spectral power 

with an accuracy of 80% - 90%, thus making possible to conclude from the particular EEG 

power spectra characteristic to a particular task. The studies dealt, however, purely with 

healthy participants. No attempt of applying these principles for communication with 

handicapped patients has been described so far. 

 

3.1.4. The action potential frequency (“firing rate”) brain-computer interface 

The principle of such brain-computer interfaces is based upon the fact that the action 

potential of a neuron is a so-called “all-or-none” signal of constant amplitude. Under the 

assumption that patients suffering from the locked-in syndrome can obtain control over the 

number of these signals (that is, the action potential frequency or firing rate of neurons in 

the central nervous system), this principle can be used to encode information and, therefore, 

be employed for communication. Since it is not possible to record action potentials directly 

from the scalp, electrodes have to be placed into cortical tissue of a patient, thus requiring 

an invasive operation. 

 

A number of studies has been conducted with monkey in order to investigate the action 

potential firing of cortical neurons [e.g. 20]. Glass electrodes containing so-called 

“proprietary neurotrophic factors” were implanted into cortical tissue. Neurotrophic factors 

were intended to allow adjacent neurons to grow into tips of electrodes. Next, the neuronal 

activity was measured directly from cortical tissue. These studies demonstrated that in 

monkeys implanted electrodes can remain active for 15 to 16 months, thus making possible 

the conduction of training sessions as well as actual communication. In the next step, a 

female patient suffering from amyotrophic lateral sclerosis and being close to a total locked-

                                                 
∗ The task of mentally rotating a three-dimensional figure was conducted as follows: first, participants had to 

study a drawing of a figure for 30 seconds. Then the drawing was removed, and participants were instructed 

to imagine the figure rotation around its axis. 
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in syndrome underwent a procedure of an electrode emplacement. Two electrodes were 

implanted in the hand area of the right motor cortex, and approximately two weeks after 

action potentials could be recorded. Subsequently, training sessions were conducted, which 

allowed the patient to increase or decrease her firing rate voluntary in order to produce a 

binary signal. During training sessions, both visual and auditory feedback was given. 

Unfortunately, the patient died before she could actually use the brain-computer interface 

for communication. According to [21], another patient underwent the emplacement of 

electrodes and was able to successfully communicate at a maximal rate of 3 letters per 

minute on the 423rd day after the operation. 

 

Altogether, the necessity of invasive electrode emplacement, which is required for action 

potential frequency brain-computer interfaces, results in their very limited applicability. 

 

3.1.5. The �-rhythm based brain-computer interface 

Μ-rhythm based brain-computer interfaces rely upon ability to control the �-rhythm of an 

EEG. As described in the chapter 2, the �-rhythm is not dependent on vision, but is linked 

to motor activity, motor imagery and movement conduction and preparation. The fact that 

the �-rhythm can be controlled, has been demonstrated in cats [52] and in humans [27]. In 

later investigations healthy participants were able to demonstrate a skill of moving a cursor 

on a computer screen towards a target either at the top or at the bottom with help of the �-

rhythm  control [51]. Hereby the direction of a cursor movement was determined through 

the voltage of the �-rhythm frequency (8 – 12 Hz). Increased amplitude led to the 

movement towards the top target, decreased amplitude towards the bottom target (see the 

figure 3-3). Several weeks of training were required for healthy participants in order to reach 

an accuracy of approximately 90%. 
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Figure 3-3: 
-rhythm based brain-computer interface – electrode placement points, EEG-activity 

and visualization 

 

In further studies the same group managed to identify and, subsequently, to improve 

parameters that affect the accuracy and the speed of communication. Such, it was 

determined individually, what electrode sites are more advantageous from the point of view 

of recording the �-rhythm [e.g. 29]. Later on, studies were spread from healthy participants 

only to patients suffering from disabilities such as amyotrophic lateral sclerosis and spinal 

cord injuries. Both healthy participants and handicapped patients had to attend trainings 

prior to actual usage of brain-computer interfaces for communication. The reported 

accuracy after this training amounts to up to 90%. According to [26], several patients with 

different diagnoses currently employ the �-rhythm based  brain-computer interface in the 

lab. 

 

The main disadvantage of the �-rhythm based BCI is the fact that the �-rhythm itself is 

linked to motor activities. Since paralyzed patients tend, in general, to loose their ability to 

control and, later on, to imagine the control over motor activities, their ability to voluntarily 

influence their �-rhythm also tend to fade away. Thus, at some point of time it can become 

impossible for them to communicate with help of �-rhythm based interfaces. Here it needs 

to be emphasized again that general skills and behavior of healthy participants and 
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handicapped patients can be very different, therefore, making the aspect of the practical 

applicability of brain-computer interfaces even more important. 

 

3.1.6. The brain-computer interface based upon slow cortical potentials (the Thought-

Translation Device or TTD) 

As described in the chapter 2, slow cortical potentials play an extremely important role in 

the applied brain-computer communication. As we will see, the Thought-Translation Device 

based upon cortical potentials is currently the only one BCI device that is in the practical 

use for severe or totally paralyzed patients both at home or in nursing homes. Therefore, it 

is required to create a better understanding for the nature of slow cortical potentials and to 

discuss them and the TTD more thoroughly. 

 

As shown above, slow cortical potentials (SCP) are shifts in the depolarization level of the 

upper cortical dendrites with frequency less than 1-2 Hz and amplitude from 10 to 100 µV. 

The vertical arrangement of pyramidal cells in the cortex is essential for the generation of 

far field potentials measured in the electroencephalogram (EEG). The apical dendrites of 

pyramidal cells are located in cortical layers I and II. Depolarization of the apical dendrites 

leading to SCP generation is dependent on sustained afferent intracortical and 

thalamocortical input to layers I and II and on simultaneous depolarization of large pools of 

pyramidal neurons. The SCP amplitude recorded from the scalp depends on the 

synchronicity and intensity of the afferent input to layers I and II [44]. Negative SCP are the 

sum of synchronized ultraslow excitatory postsynaptic potentials (EPSP) at the apical 

dendrites with the source (electrical positivity) in deeper layers (III and IV) near or at the 

soma. If an EPSP is initiated, a net inflow of cations occurs at the site of the membrane 

located below the excitatory synapse. This inflow of positive electrical charge is referred to 

as a sink (electrical negativity) of the potential gradient, which develops along both sides of 

the neuronal membrane. In the case of cortical negativity the sink occurs at the apical 

dendrites [31, 44].  To long lasting positive SCP may contribute several physiological 

mechanisms. For instance, a cortical positivity can be elicited by sinks (electrical negativity) 

in layer III and IV due to synchronous excitatory activity of pyramidal synapses at the axon 

hillock. 
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The depolarization of cortical cell assemblies reduces their excitation threshold. Firing of 

neurons in regions responsible for specified motor or cognitive tasks is facilitated and 

therefore cortical resources are provided. Whenever a task-relevant event is expected 

cortical excitation thresholds are lowered in the corresponding cortical cell assemblies to 

facilitate neuronal excitation. The negative SCP amplitude shifts can be recorded in the 

EEG using typical experimental paradigms that elicit negative SCP shifts [6, 41]. Negative 

amplitude shifts grow with increasing attentional or cognitive resource allocation.  

 

A strong relationship between self-induced cortical negativity and reaction time, signal 

detection and short-term memory performance has been reported in many studies in 

humans [3, 26]. For example, cognitive task (e.g., memory retrieval) or motor tasks (e.g., 

pressing a button) are performed significantly better when presented after spontaneous or 

self-induced cortical negativity. Studies of Prof. Birbaumer and co-workers [4, 6], as well as 

other researchers have demonstrated that healthy subjects and neurological patients can 

attain reliable control over their SCP amplitude at vertex, frontal and parietal locations with 

operant conditioning. Moreover, subjects can learn to control SCP differences between the 

left and right hemisphere [5]. In the operant control condition participants have to generate 

SCP shifts of different amplitude and polarity. Participants were reinforced for increasing or 

reducing negative SCP shifts, depending on the discriminative stimuli (i.e. the letters A or B 

presented on the screen), where continuous feedback of the SCP amplitude shifts was 

presented to a participant. 

 

This skill to voluntarily control SCP represents a basis for corresponding brain-computer 

interfaces. These BCI’s are binary in their nature and are usually referred to as Thought-

Translation Devices or TTD’s. 

 

In the original version of the Thought Translation Device (TTD) the self-regulation training 

and feedback is realized as follows [25]. Participants observe two rectangles (goals); one at 

the top and one at the bottom of the computer screen. A graphic signal referred to as a 

"ball" informs the subjects about their SCP shifts. Participants are instructed to move the 

ball towards either the top or the bottom rectangle as indicated on the screen. Participants 

are instructed how to move the ball. They are only advised to be attentive to the feedback 

and sort out the most successful mental strategy. Rhythmic acoustical timing signals are 

introduced to shorten the time for generation of a particular brain response. A high-pitched 
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tone marks the beginning of a trial. The first two seconds after the high-pitched tone 

represent a passive phase, during which the ball does not move. A low-pitched tone 

introduces an active feedback phase and signals that the ball could be moved.  During the 

active phase subjects attempt to move the ball and the feedback is provided to them.  

 

Figure 3-4: The experimental setup of the TTD 

 

The average EEG within a 500 ms interval prior to the low-pitched tone serves as baseline. 

The ball providing feedback moves in proportion to the integrated EEG of the active phase, 

which refers to the average of the baseline. The active phase lasts from 2 to 5 s depending 

on a particular patient. Therefore, the duration of a trial varies from 4 to 7 s, but has to be 

constant within one session. One training session usually consists of 100 trials. The 

experimental setup of the TTD [25] can be seen in the figure 3-4. 

 

The EEG is recorded from Cz – a spot on a human scalp according to the international 10-

20 system (compare paragraph 2.4.1 and figure 3-5). SCP changes at the vertex move the 

ball in the vertical direction. Cz is recorded against both A1 (left mastoid) and A2 (right 

mastoid) at a sampling rate of 256 Hz. A simulated Cz-linked mastoid channel is calculated 

on-line as ½ [(Cz-A1) + (Cz-A2)]. At the beginning of the trial one of the rectangles is 

illuminated indicating that it is the target, towards which the ball has to be moved 

(discriminative stimulus). The rectangles can be illuminated either in random order or in a 

sequence given by a trainer. Whenever a rectangle is hit as required it flashes as a positive 

reinforcement. The criterion for a SCP amplitude shift required to move the ball into the 

rectangle (the hit amplitude) is set individually [24, 25]. Whenever the SCP amplitude shift 
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exceeds the corresponding threshold, the ball touches the rectangle, and the computer 

counts a hit. In a more sophisticated version of the thought translation device a smiling face 

saying "very well", "fantastic" etc. is shown to enhance the reinforcement value. As a rule, 

patients achieve a stable response accuracy of more than 70% after 3-5 months with 1-2 

training sessions per week; each training session consists of 7-12 sessions comprised of 

70-100 trials. 

 

 

 

Figure 3-5: The TTD – electrode placement points, EEG-activity and visualization 

 

When the stable patient response accuracy about 70% has been reached, the patient is 

provided with a Language Support Program (LSP) [36]. The LSP presents letters for 

selection in form of alternating sets in the bottom goal, while selected letters (a written text) 

appear in the top goal. The letters (or groups of letters) are presented in some particular, 

individual for each patient order, which we will discuss below in the section devoted to SI. If 

the patient wants to select one letter in the currently presented on the screen set, he or she 
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has to generate a positive SCP shift; otherwise this SCP shift must be nonnegative. Once 

the set on the screen has been selected, the patient has to select among its subsets until 

he or she reaches the desired letter, which appears in the written text. 

 

At the beginning patients have to select only among few letters and they have to copy 

words given by the trainer. This step of the training is called a copy-spelling. Increasing 

gradually the number of letters and the length of words to copy, the trainer assures a 

confident patient handling of the TTD.  During this phase the response accuracy grows up 

to about 75%. In the figures 3-6 and 3-7 typical selection and rejection probabilities 

depending on the number of training sessions are presented (the data are obtained from 

[36]). It could be seen that the TTD can also be adapted to a particular patient through the 

varying of a selection threshold value. 

 

a) Selection probability
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Figure 3-6: Probabilities of selection for a locked-in patient∗ 

 
 
 
 
 
 
 

                                                 
∗ Probabilities of selection (a) and rejection (b)  for a locked-in patient, who learned to operate a Thought-
Translation-Devices  by producing positive SCP during 170 training sessions for different threshold values of 

SCP: 1) S  = 1 µV, 2) S = 5 µV and 3) S = 9 µV. 
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b) Rejection probability
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Figure 3-7: Probabilities of rejection for a locked-in patient* 

 

After this copy-spelling phase patients are allowed to use a free-spelling mode of the 

Language Support Program. They can write whatever they want to write and so 

communicate with their environment. In this manner the first completed text ever written 

with self-regulation of brain signals was communicated and published [7]. This spelling 

communication mode is not the only one application of the TTD. Some patients are 

provided with a menu containing preconceived expressions, which were grouped according 

to their meaning and correspond to patients’ daily needs. Patients can not only 

communicate wordy, but can also independently switch on/off the TV, radio, alarm, light [25], 

navigate through the internet a special brain controlled internet browser [14]. They can even 

switch on/off the TTD itself without any assistance [17]. 

 

With respect to the practical usage of the Thought-Translation Device it has to be 

mentioned that altogether 12 patients have been using this device successfully for several 

months or even years. All of these patients are strongly handicapped; some are completely 

paralyzed (including artificial feeding and artificial ventilation). A medium of 20 to 40 training 

sessions per patient was required to achieve stable responses and the accuracy rate of 

65% to over 90%. It was also determined that accuracy rates lower than 65% lead to very 

high error rates that basically make communication impossible. Hence, from the practical 
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point of view, the first step always has to be conducting copy-spelling trainings and, thus, 

achieving sufficient accuracy of at least 65% - 70%. 

 

3.1.7. Limitations of BCI’s, comparison of the existing BCI’s and summary 

Brain-computer interfaces described above undergo different limitations. According to [26], 

the main limitations are the following: 

 

- Habituation; 

- Interference and distraction; 

- Impaired visual system; 

- Instability of EEG frequency bands; 

- Invasive recording. 

 

Let us take a closer look at these limitations and their impact on the analyzed brain-

computer interfaces. 

 

Habituation 

Especially the P300 BCI is well-known for its habituation issues. It depends on the nature of 

the P300 event-related potential and has been shown in several publications [40]. In the �-

rhythm-based BCI and in the Thought-Translation Device the long training periods exposed 

that the correspondent EEG responses do not habituate and remain the same for weeks, 

months, and years. 

 

Interference and distraction 

This kind of limitations occurs especially in an “every day’s life” type of communication, 

when patients use the BCI device for communicating their actual needs and not only for 

following trainer’s instructions as a part of a training session. Here, again, particularly the 

P300 BCI is the subject of interference and distraction due to its nature. As described 

above, the usage of the P300 BCI requires on the one hand counting the number of flashes 

of the matrix cell containing the target letter. On the other hand, a patient has to 

concentrate on the message he or she is going to communicate, thus, thinking of what 

letters, words and sentences are going to be used. This situation requires split attention and, 

therefore, leads to distracted concentration and lower selection accuracy. 
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Other BCI’s that are based upon production of specific EEG patterns (e.g. the TTD) can 

also be a subject of interference and distraction, whereat the mechanism is different. In this 

case it is a correlation or interference of thoughts a patient tries to communicate and 

cognitive responses a patient executes in order to generate a specific EEG pattern. Since 

generation of desired EEG patterns occurs individually for each patient, and the used 

techniques are individual too, it is impossible to foresee what thoughts would lead to 

interferences. Nevertheless, since the control of EEG patterns can be learned, upcoming 

interferences can be overcome through additional training. For instance, in case of the TTD 

it has been reported for to patients that their accuracy and performance decreased 

significantly during the transfer from the cursor movement phase to the copy-spelling phase 

and from the copy-spelling phase to free communication [7]. However, patients managed to 

return to the high level of accuracy and performance again after several additional weeks of 

training. 

 

Impaired visual system 

While using BCI’s based upon visual event-related potentials, patients have to fixate their 

eyes at items they want to select. In case patients occasionally move their eyes off the 

target, for instance, as a result of poor control of eye muscles, a communication error takes 

place, since false target is fixated. Therefore, visual attention is absolutely critical for BCI 

that are based purely on visual attention, such as the P300 BCI. However, both visual 

attention and the visiomotor system may be impacted in paralyzed patients. Moreover, in 

case of the locked-in syndrome even eye muscle paralysis can occur, thus, making it 

impossible for a patient both to control horizontal and vertical movement of his eyes and to 

move his eyelids voluntarily. Also the eyesight can decrease. Hence, BCI’s related only on 

visual event-related potentials are not suitable for patients, who already suffer from visual 

impairment, and can become unsuitable for other paralyzed patients as their disease is 

progressing. Consecutively, BCI’s related upon operant learning require additional feedback 

options apart from visual stimuli.  For example, the Thought-Translation Device possesses 

auditory and tactile feedback modes, thus, reducing possible impacts of decreasing visual 

abilities. 

 

Instability of EEG frequency bands 

EEG responses are characterized through the fact that they do not necessarily remain the 

same, but can vary during conduction of cognitive tasks [e.g. 41]. This instability leads to 
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difficulties with respect to correct recognition and classification of frequency bands. It has 

been shown, for instance, that even within a very short period of time of less than one hour 

an EEG pattern changed significantly while a patient underwent a very simple aversive 

conditioning paradigm [13]. In case of the TTD, however, no major issues with respect to 

unstable EEG responses have been reported. 

 

Invasive recording 

Some brain-computer interfaces – e.g. the action potential frequency brain-computer 

interface – are based upon invasive recording techniques that require surgical intervention. 

These techniques lead, on the one hand, to increasing costs and risks that are typical for 

any kind of brain neurosurgery. On the other hand, the positive outcome of such 

comprehensive techniques is rather very limited, if humanly existing. It could not be shown 

that the signal-to-noise ratio for electrical responses is higher in case of invasive recording 

than for non-invasive recording from the scalp. Besides, invasive recording always results 

in very long training periods and implanted electrodes remain intact for a limited length of 

time, thus, resulting in inadequate overall communication from the patient’s point of view. 

Hence, the preference is mostly given to non-invasive BCI’s, such as the TTD. 

 

Altogether, the TTD is less impacted by existing limitations than other BCI’s, which results 

in its higher practical applicability. Below one can find an overall table, which allows its 

comparison with other existing BCI’s from the point of view of speed, accuracy and practical 

usage by patients. 

 

 

 

BCI Speed Accuracy Practical usage 

P300 event-related 
potential 

7.8 characters per 
minute 

~ 80% 
4 patients, no locked-in 
patients 

Visual event-related 
potential 

10-12 words per 
minute 

Not reported 1 locked-in patient 

EEG frequency patterns 
– motor imagery 

No letter selection, 
but orthosis 

90% - 100% 1 locked-in patient 

EEG frequency patterns 
– cognitive tasks 

Not reported 70% - 90% None 
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Action potential firing 
rate 

3 characters per 
minute 

Not reported 1 locked-in patient 

Μ-rhythm No letter selection ~ 90% Several patients 

TTD - slow cortical 
potentials 

0.15-3 characters per 
minute 

70% - 90% 
12 locked-in patients 
(partially or fully locked-in) 

 
Table 3-8: Comparison of the existing BCI’s 

 

Thus, we have learned what kinds of principles are used to allow direct communication 

between the brain and the computer, what brain-computer interfaces are built upon these 

principles and how the actual communication is carried out. We have also seen that the 

majority of BCI’s is binary. We have figured out that the Thought-Translation Device 

represents the only existing BCI that is in practical use for successful communication with 

fully locked-in patients for a longer period of time and that it is characterized through 

relatively high speed and accuracy, relatively low average training duration and the step-

back option as a mean of error correction. Besides, the TTD is less affected by common 

BCI limitations than other BCI’s. 

  

3.2. Problem definition for optimal BCI’s in terms of coding and communication 

theory 

3.2.1. Problem definition for a non-zero error communication 

All brain-computer interfaces described above can deal with both letters and menu items. 

Generally speaking, both letters and items are objects of some particular alphabet, upon 

which a BCI is based. For simplicity and due to issues of practical usage, in the following 

we will discuss alphabets consisting of letters. However, all formulas, results and 

deductions can be applied to alphabets consisting of menu items or other objects. 

 

With the only one exception of the P300-based BCI, which operates randomly due to its 

nature, all described brain-computer interfaces deal with a sequence of letters presented to 

a patient, from which he or she has to choose. These letters can be presented either 

separately or in sets and subsets. The choice itself happens always in a binary manner, i.e. 

the patient either selects or rejects a particular letter or a set, in which the letter is contained. 
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The sequence, in which letters are presented to a patient, influences greatly both the speed 

of communication and its accuracy and, therefore, is absolutely crucial for the acceptance 

of the BCI as a means of communication by a patient. Cases have been reported [e.g. 26], 

when patients refused to use particular BCI’s due to slow and inaccurate communication. 

As one can easily recognize, an optimal sequence can vary from case to case and relies 

both on the alphabet itself and on the skills and capabilities of a particular patient. Thus, for 

instance, optimal sequences can differ for German and English languages, even if all other 

parameters are the same. On the other hand, somebody whose level of voluntarily control 

of his or her responses is low tends to make more mistakes and, therefore, needs a 

different sequence than a person who hardly makes any wrong choices, while using the 

same language. 

 

From the point of view of communication theory, the sequence of subsets, in which a 

particular letter is presented, represents essentially a prefix code of this letter. Each letter in 

the alphabet possesses its own unique code, through which it can be specifically identified. 

The length of the code corresponds with the number of steps that are required to reach the 

desired letter in one attempt, thus, not yet taking into account possible mistakes. Since 

prefix codes and trees are closely related (compare chapter 2), the length of the code 

represents consequently the depth, in which the desired letter is located in a corresponding 

tree, whereat the depth can vary from letter to letter. 

 

The psychological problem of creation of an optimal sequence for handicapped patients 

leads, therefore, to a general communication problem of creation of an optimal variable-

length code for some particular alphabet. The term optimal implies from the psychological 

point of view achieving the best compromise between high speed of communication and 

high accuracy. From the point of view of communication theory it means that it is required to 

define a correspondent cost function, which, in turn, needs to be either maximized or 

minimized in order to create an optimal binary characteristic code (compare chapter 2). 

 

The problem of creation of an optimal variable-length code is a well-known problem, which 

arose first in communication theory and computer science in the context of data 

compression. It can be solved with help of the Huffman’s algorithm through bottom-up 

creation of optimal binary trees. However, it can only be solved this way under the 

absolutely crucial assumption that the selection of right or left edges in binary trees 
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happens exactly as desired, e.g. the proper edge is always selected if desired. Hence, it 

implies that there is no noise or other disturbing factors. Besides, it implies there is no need 

for any means of error correction. In case of brain-computer interfaces or other devices 

apart from computers such kind of selection is not present at all times. For BCI’s, for 

instance, the success of desired selection of a proper edge (which, in turn, corresponds to 

successful selection or rejection of some subset of letters) greatly depends on the BCI itself, 

the level of patient’s training, environmental factors and is, therefore, strongly dependent on 

particular patient. As shown in the section 3.2, for some BCI’s results can be effectively 

enhanced through training. Usually, one speaks about selection or rejection probabilities, 

which are individual for each patient (compare section 3.5.6). Thus, in many cases and, in 

particular, in case of BCI’s one of crucial assumptions, upon which the Huffman’s algorithm 

is based – the equity of selection and rejection probabilities to 1 – is not fulfilled. Patients 

can and do make mistakes while selecting letters or sets of letters. These mistakes must be 

taken into account from both points of view: creation of an optimal sequence and providing 

a means of error correction, for instance, with help of a delete option. 

 

Thus, the Huffman’s algorithm itself does not cover this more general problem of 

communication. In the accessible literature only two approaches are descried, which strive 

to solve this problem. We will discuss both approaches below in the section 3.2.2. 

 

Therefore, the overall problem this thesis deals with can be defined as follows: 

 

To define an optimization criterion and to find corresponding algorithms for creation of an 

optimal variable-length binary characteristic code (e.g. an optimal binary tree) for some 

particular alphabet with a means of error correction, whereat code signals are delivered 

with possible errors (e.g. in an optimal binary tree occasionally wrong edges are taken and 

selection and rejection probabilities are not equal to 1). 

 

As one can easily see from the above definition, the overall problem represents a general 

problem of communication and covers a very broad specter of applications. It can be used 

in any system dealing with binary data compression and transmission disturbances, when 

binary signals are delivered with undesirable noise. The problem is, therefore, not limited to 

binary brain-computer interfaces, but rather completely fulfills the requirements for optimal 

BCI’s. However, since the problem definition itself arose from the usage of BCI’s in general 
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and the Thought-Translation Device in particular, all examples, calculations and practical 

usage will be, first and foremost, discussed in the BCI context. 

 

3.2.2. Known approaches for a non-zero error communication problem 

As mentioned above, Huffman invented a greedy algorithm that constructs an optimal prefix 

code called a Huffman code. This algorithm builds the tree T corresponding to the optimal 

code in a bottom-up manner. It begins with a set of |Ω| leaves and performs a sequence of 

|Ω|-1 “merging” operations to create a final tree. The result of the merger of two objects is a 

new object, which frequency is the sum of the frequencies of the two objects that were 

merged. 

 

In terms of BCI’s, this optimization corresponds to minimization of the expectation of the 

number of selection steps, which are needed to write one letter from the alphabet in the 

case when each single selection can be made without any errors (selection probability p 

equals rejection probability q equals 1) and therefore, no delete-option is needed. In the 

common case of non-zero error communication, a synthesis of the optimal tree has to take 

into account that the path from the root to the leaf, where a letter c∈Ω is placed, consists of 

xT (c) left- and yT (c) right-edges, so that  the depth of the letter c accounts to dT(c) = xT (c) 

+ yT (c), and the probability to achieve this leaf (i.e. to write the letter into a final text) without 

any error is 
)()( cycx TT qp . This means also that with the probability of 

∑
Ω∈

−
c

cycx TT qpcf
)()(

)(1

we 

will need a correction with the delete-option after every writing attempt. This delete-option 

must be built into the tree. Thus, again, the Huffman’s algorithm itself can not be used in 

such a situation and a new other method need to be developed in order to optimize a 

Spelling Interface.  Below we will discuss two approaches to the problem, which were 

published in the last time. 

 

In spite of the world wide application of spelling communication systems for the physically 

disabled, who control them with a binary signal using their limited motor abilities, we can not, 

with exception of [36] and [37], find sources in the accessible literature, which contain an 

analysis or estimation of the actual effectiveness for their spelling interfaces. As described 

in the chapter 3, most of communication systems operate on the following two ways. Either 

they use an alphabetical or frequency ordered sequential presentation of letters. Or a set of 
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letters is arranged as a two-dimensional array with the possibility to select a letter in a „row-

column“ manner. For the overwhelming majority of such systems the binary signal is 

assumed to be delivered into the spelling interface without errors. Thus, these systems are 

not equipped with means for correction, which is usually sufficient in case when the error 

probability is substantially higher than zero.  On contrary, the publications [36] and [37] 

mentioned above deal exactly with the TTD Spelling Interface, and, therefore, will be 

thoroughly analyzed here. 

 

The paper [36] discusses the design of a LSP interface (Spelling Interface for the TTD), 

including the selection of a set of symbols, the organization of their presentation and the 

LSP equipment with an error correction means (a go-back function). Authors used a set 

consisting of 32 (i.e., 25) symbols: 29 letters of the German alphabet, 2 punctuation marks 

{,} and {.}, and the symbol {-} indicating space between words. This symbol set makes up 

the basis for different spelling structures, which may be described in terms of „parent-

children” relations. The whole set Ω as a parent-set consists of children Ω1
1, Ω1

2,..., which 

are disjoint subsets of the parent, and represents the highest level of the SI structure (level 

1). Each subset Ωi
k  at the level i is the parent of disjoint subsets Ωi+1

n, Ωi+1
n+1 ... at the level 

i+1. This partition process continues until each child contains only one symbol. In terms of 

the graph theory, such structure may be described as a tree. The nodes of the tree are 

subsets of Ω, its edges connect parents with their children, and its end nodes (leaves) are 

subsets containing only one symbol. The particular subset of alphabetical symmetrical 

spelling structures was analyzed. These structures satisfy the following two properties: 

 

1. The symbols in each subset are arranged in alphabetical order, and the division of 

each subset into its children subsets is also alphabetical. 

2. All parents belonging to the same level generate an equal number of children.  

 

There are 16 different symbol structures, which posses these properties. Each structure 

was analyzed and compared with others with the help of the following tree evaluation 

criteria: the average time (number of selection steps), which is necessary for the correct 

selection of one letter, the mean probability of the correct selection of one letter and the 

expectation of the number of trials which are necessary to write one letter if an upper limit 

of the writing time is given. The results concerning the third criterion are the most important 
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from the clinical viewpoint as they assess the complete SI design and allow choosing the 

best among others SI for any patient’s values of selection probability and rejection 

probability. For an efficient calculation of this criterion a statistical modeling (simulation) 

was used. A computer program simulated the writing process for each symbol with any 

given spelling structure and any combination of the selection/rejection probability values 

and then estimated the statistic characteristics for a certain number of realizations. These 

characteristics were averaged and weighted by letter frequencies in German. As the result 

of this investigation the optimal symbol structure for every pair (selection probability, 

rejection probability) was found. These structures are used in the TTD (as the LSP) up to 

date. 

 

There is no doubt that the results of  this investigation are of significant theoretical and 

practical importance – the presented criteria, especially the expectation of the number of 

trials which are necessary to write one letter, are relevant to practical problems of 

augmentative communication. The first successful matter-of-fact application of the BCI-

spelling was realized with the SI found in this way [7, 25]. At the same time it should be 

noted that this paper devotes to only the evaluation of the given binary tree and for the 

given arrangement of letters over it, but not to the problem of an optimal binary tree 

synthesis. Although the binary trees examined in this paper are relevant to practical 

communication (they use the over learned alphabetical order and a simple symmetry, so 

that each patient can easily predict, which set of symbols will be presented for selection at 

the next step within one writing session), it is clear that the search for the optimal SI can not 

be restricted only to such structures. Not every alphabet in a general sense (consisting of 

menu-items) can be a basis for alphabetical ordered symmetrical spelling structures. 

Besides, even when such structures can be built for a given alphabet, it is impossible to 

judge apriori whether these structures have advantage compared to some other letter 

arrangements.   

 

In the paper [37] an algorithm for design of a spelling interface based on a modified famous 

Huffman's algorithm is presented. This algorithm pretends to build a full binary tree 

corresponding to the following optimization criterion - the average probability to write one 

character without any errors 

min,)()( →⋅=Φ ∑
Ω∈c

cAcf
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where c is the character from the alphabet Ω,  f(c) is the frequency of occurrence for c and  

A(c) is the probability of the unerring attainment of character c (i.e. the probability of 

reaching the leaf, where character c is located, without any errors). The algorithm is a 

certain generalization of Huffman's algorithm for the case when each parent node of the 

tree has left and right children with different weights p<1 and q<1, where p and q are the 

probabilities to select the left child and the right child respectively. The presented algorithm 

also builds the full binary tree corresponding to the optimal Φ in a bottom-up manner. It also 

begins with a set of n leaves and performs a sequence of n-1 merging operations to create 

the final tree. For each merging operation firstly the two least-frequent objects (characters 

or sets of characters) must be identified to merge together. The result of the merger of two 

objects is a new object, which frequency is the sum of the frequencies of the two weighted 

by p and q objects merged, respectively. When p ≤ q,  and a and b denote these merged 

two objects then the frequency of the new object in case of  f(a) ≤ f(b) is 

f p f a q f bnew = ⋅ + ⋅( ) ( ) , otherwise it is f p f b q f anew = ⋅ + ⋅( ) ( ) . In the second part of the 

paper a delete-option is discussed as a means to correct possible errors in writing and a 

method to build this delete-option into the optimal binary tree. 

 

It should be noted here that the proof of the correctness of the algorithm the authors 

presented did not take into account a possible lost of the greedy-choice property upon 

some special circumstances. When selection probabilities p and q essentially distinct one 

from the other (a so-called “strong” inhomogeneous SI) and the number of letters is large, 

the globally optimal solution could not be arrived at by making a locally optimal (greedy) 

choice.  It means that algorithms, which build the full binary tree in a bottom-up manner, 

can not be applied to this case. The globally optimal solution could not be arrived at by 

making a greedy choice just because the two least-frequent objects can belong to different 

parent nodes at different levels of the optimal binary tree. In this case the deepest leaves of 

the tree do not correspond to minimal values of probabilities to reach these leaves without 

any error. 

 

To estimate these limitations of an algorithm practical applicability let us consider p < q. 

The analyzed condition is the following “a probability to reach any leaf at the (i-1)-th level of 

the tree must be not less than a probability to reach any leaf at the i-th level of the tree”. 

This condition is enough for the algorithm applicability and can be expressed as 
ii

qp ≥−1

, 
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because 
1−i

p  is the minimal probability of the unerring attainment the (i-1)-th level and 
i

q  is 

the maximal probability of the unerring attainment the i-th level of the tree. From this follows 

that qpq
ii <≤− )1/( . Thus, the value p must be limited not only with respect to its maximum 

but also with respect to it’s minimum. Figure 3-9 demonstrates the left part of this inequity 

(a minimal value of the probability p) for different value q depending of the depth of the tree.  
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Figure 3-9: The minimal value of p, which limits the applicability of the algorithm, depending on the 

tree depth for different values of q 

 

Altogether, the algorithm works very well in case of equal probabilities and represents the 

generalization of the Huffman’s algorithms, which works only for the selection probabilities 

equal to 1. As could be seen in this figure, the algorithm presented in [37] can be applied to 

a relatively limited class of binary SI with non-equal probabilities: for example, if q=0.7 and 

under an assumption that the depth of the tree is not greater than 8 levels, the value of p 

must satisfy the inequity 0.665< p <0.7. If q=0.7 and under an assumption that the depth is 

not greater than 4 levels, the value of p must satisfy the inequity 0.621<p<0.7 etc. So, 

greedy algorithms can be applied only to “almost” homogeneous SI with equal (or almost 

equal) selection probabilities. 

  

Thus, papers devoted to the optimization problem for binary SI deal either with methods of 

evaluations for given SI or with the optimization method, which solves the problem for the 

criterion “the average probability to write one character without any errors” for almost equal 

selection probability values. It means that the overall problem described above can not be 

denoted as completely solved and any successful effort of further investigation in this field 
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and further development of new methods for an optimal binary SI synthesis will be very 

valuable and beneficial. This is especially factual taking into account the value the faster 

and more accurate communication will bring to handicapped patients. 

 

In the chapter 4 we will present a number of approaches and algorithms dealing with 

exactly with the overall problem of a non-zero error communication. 
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4. Algorithms for the optimal building (synthesis) of binary SI’s 

4.1. Optimization criterion 

As we have seen above, a binary SI consists of a binary tree with n internal nodes (which 

means n+1 leaves), a pair of selection probabilities (p, q), where p and q are probabilities of 

selecting respectively the left child and the right child when desired, and an alphabet Ω, 

which consists of exactly n letters or menu items {ci} with corresponding frequencies of 

occurrence {f(ci)}. In each leaf of the tree one letter from the alphabet is placed, and one 

remaining leaf is used as a delete-option leaf (or δ-leaf), which selection means a deletion 

of the last written letter from a written text. A distribution of letters over the tree, which 

defines an order of selection, is also an important component of SI. 

 

The most natural criterion for the evaluation of different SI’s from the point of view of 

practical usage by handicapped patients is the average expectation M of the number of 

trials (or writing steps) that are necessary to write one letter (to select one menu item) 

taking into account a needed correction of possible writing mistakes. For the SI with the 

“delete” option δ this criterion could be expressed as following. Let pi be a probability to 

write the ith letter (to achieve the ith leave in the tree) without errors, in the binary case 

,ii yx

i qpp =  

where x(i), y(i) are numbers of “left” and “right” steps from the root to the ith-leave in the tree 

respectively. A corresponding number of steps (left and right) can be, therefore, expressed 

as   

).()( iyixS i +=  

 

Let  pδ  and Sδ be the probability to achieve the δ-leave in the tree without errors and the 

corresponding number of steps respectively; R – the expected number of steps by a so-

called “false attempt”. The last means the number of steps towards a needed letter and 

then, after an occasional error has been made, the number of steps needed to escape the 

SI-tree and to start a new attempt. Here we assume that R is a constant for the given tree 

cardinality n+1 and will discuss this assumption later on. 
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The expectation of number of steps needed to achieve, if desired, the δ-leave in the tree 

can therefore be expressed as: 

).2)(1( δδδδδ MRpSpM +−+=  

The term pδ Sδ represents the average number of steps required to achieve the δ-leave in 

the first attempt, which will happen with the probability of pδ >0.5. If the probability pδ  is not 

larger than 0.5 it means that the patient is effectively not capable of deleting the wrong 

written letter and, therefore, requires further training sessions (as we have seen in the 

section 3, average selection and rejection probabilities for TTD after the standard training 

course account to over 75% or 0.75). If the δ-leave could not be reached in the first attempt; 

we need to leave the tree spending R steps, to cancel the false letter and to repeat the 

attempt. This, in turn, will happen with the probability of (1- pδ) etc. It gives us the formula 

).12/())1(( −−+= δδδδδ pRpSpM  

 

The expectation of number of steps needed to write the ith letter (if desired) taking into 

account the required correction of all mistakes by deleting wrong written letters with the 

delete option can be written in the same way as: 
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Thus, the optimization criterion - the average expectation of the number of trials, which are 

necessary to write one letter- we can write as 
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where fi  - the frequency of ith letter in the alphabet and n – the number of letters contained 

in this alphabet. 

 

In order to express R = R(n+1) for the binary case we can use an estimation of Munro [32] 

(see also [43]), who described random walks on binary trees. Such a walk starts at the root 

and takes a right or a left sub-tree with probability p or 1-p respectively. The walk stops, 

when a chosen sub-tree is empty. Munro proves that for p=0.5 (meaning that probabilities 

to take the left or the right sub-tree are equal, which, in our case, is equal to p=q) the 

average number of random steps is 
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,
3

6
2)1(

+
−=+

n
nR  

and, therefore, R depends solely on the cardinality (that is, number of leaves) of a given 

tree. 

 

It should be noted here that the above formulas work not only for binary SI’s, but also for k-

ary SI’s. In case of k-ary SI’s, however, R needs to be taken into account accordingly.  

 

In case the binary tree is given, an optimal distribution of the given set of letters over the 

tree could be easily found following the next procedure: in case there are no leaves in the 

tree with pi >0.5 the tree does not need to be analysed further. Otherwise the delete option 

δ is placed consequently in those leaves of the tree, which pi is higher than 0.5, and for the 

values pδ and Sδ, which are obtained in this way, the optimal letters’ distribution over the 

leaves is the distribution, when the most frequent letter is placed in the leaf with the minimal 

value of Mi. The second most frequent letter is placed in the leaf with the second lowest 

value of Mi etc.  

 

This property obviously follows directly from the features of the bi-linear form (4.1), in 

particular, from the fact that in case f1≥ f2≥ …≥ fn>0 the bi-linear form  

i

n

i

if λ∑
=

=∆
1

 

reaches its minimal value, if and only if 0<λ1≤λ2…≤λn. To show this let us assume that 
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1  

and calculate 

0))((1 >−−=−−+=∆−∆ sttsttssstts ffffff λλλλλλ , 

which contradicts our assumption. It means that for the given binary tree we need only to 

place the delete option δ, the other letters can be placed automatically. Thus, for the given 

binary tree with n+1 leaves there are exactly n+1variants to calculate criterion values, which 

need to be compared with each other in order to obtain the optimal tree. 

 

One can also note that for binary trees and for ∀pi ≡ 1 (p≡q≡1) there is no need of the δ-

leave in the tree and the solution of the problem (4.1) can be obtained with help of the 
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famous Huffman’s algorithm [9, 15]. Besides that, in order to express the criterion (1) we 

used no assumption connected with the “binary nature” of SI. It means that this criterion 

could be used also for k-ary SI, where k>2. 

 

4.2. Decoding of P-sequences for criterion computation and the Full-Search algorithm 

4.2.1. Algorithm for decoding of the given P-sequence 

As we have seen in the previous section, for a given binary tree an optimal distribution of 

letters can be easily found through computation of the criterion (4.1). Thus, for our purposes 

we need to compute values of the optimization criteria (4.1) and to compare these values in 

order to choose the minimum.  To calculate these values in the effective way, we need a 

decoding algorithm, which can compute pairs of  left and right steps (xi, yi) for all leaves i∈[0, 

n+1] from the given P-sequence (p1, p2, …, pn), since with help of P-sequences one can 

describe a binary tree in the easiest way. Such an algorithm can be written as shown below. 

Note that a stack S, which implements a LIFO (last-in, first-out) policy for a set of leaves’ 

“power” coordinates {(x, y)} is used. Here x represents the number of left steps and y – the 

number of right steps required to achieve a particular letter. 

 

Algorithm 4-1 – Decoding of the given P-sequence 

p0 ← 0 

pn+1 ← pn 

x ← 0 

y ← 0 

Push(S, (x, y)) 

for i ←1 to n+1 do 

 (x, y) ← Pop(S) 

 for j ← 0 to pi - pi-1 -1 do 

  xR ← x 

  yR ← y + 1 

  Push(S, (xR, yR)) 

  x ← x + 1 

 enddo 
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 xi ← x 

 yi ← y 

enddo 

 

Example 4-1 

This algorithm can be illustrated with the following example. The P-sequence P = (2, 4, 4, 4, 

5) is given. The corresponding binary tree looks as shown in the figure 4-1, it is the same 

tree as in the figure 2-1, but each leaf of it has been assigned a number. We show all 

calculations for each leaf i = 1, 2, …, n+1. 
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Figure 4-1: A full binary tree with 6 numerated leaves 

 

We follow the algorithm step by step and describe the values of all variables and the stand 

of the stack S, which will be filled (with the standard Push-procedure) and popped (with the 

standard Pop-procedure) from the left to the right. We begin with p1=2, p2=p3=p4= 4, p5=5. 

 

Step 0.  p0 = 0;  p6 = 5; (x,  y) = 0 ; S = {(0, 0)} 

Step 1. i = 1;  j = 0; (x, y) = (0, 0);  (xR, yR) = (0, 1);  S = {(0, 1)};  (x, y) = (1, 0) 

  i = 1;  j = 1; (x, y) = (1, 0);  (xR, yR) = (1, 1);  S = {(1, 1), (0, 1)};  (x, y) = (2, 0) 

 (x1, y1) = (2, 0) 

Step 2. i = 2;  j = 0; (x, y) = (1, 1);  (xR, yR) = (1, 2);  S = {(1, 2), (0, 1)};  (x, y) = (2, 1) 

  i = 2;  j = 1; (x, y) = (2, 1);  (xR, yR) = (2, 2);  S = {(2, 2), (1, 2), (0, 1)};  (x, y) = (3, 1) 

(x2, y2) = (3, 1) 

Step 3. i = 3;  (x, y) = (2, 2);  S = {(1, 2), (0, 1)};   



On the building of optimal binary trees for Spelling Interface 

 
Page 60 

 (x3, y3) = (2, 2) 

Step 4. i = 4;  (x, y) = (1, 2);  S = {(0, 1)};   

 (x4, y4) = (1, 2) 

Step 5. i = 5;  j = 0;  (x, y) = (0, 1); (xR, yR) = (0, 2);  S = {(0, 2)};  (x, y) = (1, 1) 

 (x5, y5) = (1, 1) 

Step 6. i = 6;  (x, y) = (0, 2);  S = ∅;   

 (x6, y6) = (0, 2) 

 

4.2.2. The Full-Search algorithm 

The algorithm 4-2 for generation of all binary trees with n internal nodes (the Full-Search 

algorithm) bases on the following lemma and the following two theorems. 

 

Lemma 4-1 

Given two trees T1 and T2, the p-sequence of the product of T1 and T2 is 

).)1(,...,)1(,,1)1(,...,1)1(( 121111 22121
TTpTpTTppp TTTTTT +−++−+=Ο  

 

Theorem 4-1 

An integer sequence (p1, p2, …, pn) is the P-sequence of a binary tree with n internal nodes, 

if and only if: 

1) pn = n 

2) ∀i∈[1, n-1]:  pi ≤ pi+1 

3) ∀i∈[1, n-1]:  pi ≥ i 

 

Theorem 4-2 

Given two trees T1 and T2, such that T1= T2, T1 and T2 are in B-order, so that T1 < T2, if 

and only if the P-sequences for T1 is lexicographically less then the P-sequences for T2. 

 

The following algorithm generates, corresponding to the both theorems, all P-sequences in 

the lexicographical order beginning with (1, 2, …, n) and ending with (n, n, …, n). 
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Algorithm 4-2 – The lexicographical generation of all P-sequences for binary trees with n 

internal nodes (e.g., n+1 leaves) (the Full-Search algorithm) 

 

for i =1 to n do 

pi = i 

enddo 

while i = max{k| pk < n} exists do 

pi ← pi +1 

for j = i +1 to n do 

 pj ← max{ pi, j} 

enddo 

enddo 

 

Generating all P-sequences of the length n we can compute values of the optimization 

criterion (4.1) and compare these values in order to choose the minimum. Thus, for 

relatively small values n the problem of optimization of binary SI is solved: we generate all 

P-sequences with the Full-Search algorithm 4-2 and compute the corresponding values of 

our criterion (4.1), using the decoding algorithm 4-1 and looking for an optimal letters’ 

distribution over the binary tree. Our calculation experiments have shown that for 

optimisation of binary SI over the alphabet with 14 letters and one delete option (14 internal 

nodes tree) we need with this Full-Search algorithm about 5 min, when calculating on an 

Intel-Pentium (R) IV CPU with 2GHz. When the number of letters increases the 

computation time grows dramatically – the Catalan numbers raise exponentially with n. 

Therefore, to solve the problem for n > 14 we need some other generating algorithm. 

Further on we describe a heuristic idea and a correspondent algorithm, which allows 

accelerating the search for the optimal binary SI for the case of the inhomogeneous SI. 

 

4.2.3. The usage of asymmetrical features of the SI’s and the inhomogeneous algorithm 

The difference between p and q can severely influence the shape of the tree: if p < q, where 

p is the probability to select a left sub-tree TL and q is the probability to select a right tree TR, 

the probability to find the optimal tree with TL<TR is essentially higher than to find an 

optimal tree with TL>TR. On the other hand, P-sequences have the following property: 

if in the P-sequence pi+1 – pi = si > 0, it means that the i+1-leaf is the left leaf of the tree and 
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a left branch, where this leaf is placed, has at least si leaves on it. Therefore, one can try to 

estimate values of si based upon the ratio of possible leaves in left and right (sub-) 

branches. This ratio, in turn, depends on values of p and q. Hence, the idea is to set a 

threshold for values si (i∈[1, n-1]) so, that the “left careen” of the tree shape is restricted. It 

should be noted here that these threshold values si strongly depend not only on the 

selection probability values, but also on i – the place in the P-sequence, since it must be 

taken into account, how many leaves remain in the tree by the preorder walking. Such 

information can be obtained, for example, from asymmetrical features of the completed 

binary tree with the selection probabilities p ≠ q and the depth n. Further on in this section 

we will assume for simplicity that p < q. This assumption could be always fulfilled through a 

simple change of direction and gives us the possibility to discuss here in terms of “left-right”. 

 

Let C be the completed binary tree with the depth n, which means that all leaves of C have 

the same depth n and all internal nodes have the degree of 2. Based upon this completed 

binary tree we try to estimate a ratio of possible leaves in left and right (sub-) branches. 

Possible leaves are obviously leaves that add to the values of the criterion (4.1) as little as 

possible. Hence, we only need to take into account nodes that satisfy the inequality 

)2.4(,
)12(

)1()1(

)12(

)1()1(
n

n

i

i

i
qq

Rqq
n

pq

Rqp
S

−
+−

+≤
−

+−
+  

where Si = x(i)+y(i)  is the number of steps needed to rich the i-node, pi=px(i)qy(i) is the 

probability to rich the i-node without any error, R is the Munro’s estimation of the number of 

random steps along the tree. Nodes (internal and leaves) that satisfy this inequality, add to 

the values of the criterion (4.1) not more than the leaf adds, which is placed on the maximal 

remoteness from the root in the right branch of the tree. This leaf belongs to the tree with 

the P-sequence (n, n, …, n) and can serve as a measure of the minimal possible (“best 

possible”) contribution v (which equals to the right term in the inequality) from the maximum 

depth n to the criterion (4.1). All the nodes that do not satisfy this inequality are wittingly 

“unfavourable” to the criterion (4.1) and, therefore, do not need to be taken into account. 

The inequality allows us to sort out all nodes, which are wittingly “unfavourable” for the 

criterion (4.1), since their contributions are greater than v and their distance from the root is 

less than n. Therefore, through analysis of C we estimate a ratio of possible leaves in left 

and right branches and determine the threshold for s1. We can repeat this procedure for 
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other si using corresponding completed binary trees and thereby reduce the number of 

possible P-sequences. 

 

The simplest estimation for the threshold value can be based on the ratio of number of 

nodes in the left and in the right branches of the tree. It means that the threshold value s1 

for two first members of the P-sequence, s1: p2 – p1 ≤ s1, can be calculated as: 

,
)()(

)(
entire1 




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



+
⋅

=
nNnN

nNn
s

RL

L  

 where NL(n) is the number of nodes in the left branch of the tree with the depth n, which 

satisfy the inequality (4.2), and NR(n) is the same number for the right branch. All other 

values of sj (∀j < n) can also be calculated in the same fashion – through substitution of (n-j) 

instead of n in the formula above. 

 

Taking into account all these considerations, we can now formulate features of P-

sequences for the case of inhomogeneous SI as: 

1) pn = n; 

2) ∀i∈[1, n-1]:  pi ≤ pi+1; 

3) ∀i∈[1, n-1]:  pi ≥ i; 

4) ∀i∈[1, n-1]:  pi+1 - pi ≤ si 

 

The next algorithm generates lexicographically all P-sequences with such features and will 

be used as the main algorithm for a search for the optimal inhomogeneous SI. 

 

Algorithm 4-3 – Generation of P-sequences for inhomogeneous binary SI’s with n+1 leaves 

 

for i =1 to n do 

pi = i 

enddo 

while i = max{k| pk < min{ pk-1 + sk, n}} exists do 

pi ← pi +1 

for j = i +1 to n do 
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 pj ← max{ pj-1, j} 

enddo 

enddo 

 

By generating all such P-sequences, computing and comparing values of the optimization 

criterion we can solve the optimization problem, sparing a generation of wittingly 

“unfavorable” binary trees. 

 

4.2.4. Comparison of the Full-Search algorithm and the inhomogeneous algorithm 

(example) 

The following example helps us to compare the both algorithms described above from the 

point of view of the value of the optimization criterion and the number of calculation steps. 

 

Example 4-2 

Let us consider an alphabet A, which consists of 14 letters A={a, b, c, d, e, f, g, h, i, j, k, l, m, 

n} with frequencies of occurrence 0.2, 0.15, 0.12, 0.11, 0.10, 0.08, 0.07, 0.05, 0.04, 0.03, 

0.02, 0.015, 0.01 and 0.005 respectively. Table 4-2 illustrates 6 different examples (different 

values of selection probabilities) of SI-optimization over the alphabet A with both algorithms: 

the Full-Search algorithm (Algorithm 4-2) and the search based on asymmetrical SI 

features – our main search algorithm (Algorithm 4-3). In this table one can see the number 

of generated trees, the founded optimal P-sequence, the order of letters (in preorder) and 

the minimal value of the optimization criterion. 
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Table 4-2: A comparison of both algorithms for 15-leaves binary SI over the alphabet A for the 

example 4-2 

 

As could be seen from the table, both algorithms deliver the same results: all criterion 

values are the same. The difference in the number of generated trees demonstrates 

benefits of the consideration of asymmetrical SI features – these benefits are significant for 

cases with essential different values of p and q – the first example (p=0.5, q=0.7) shows 

more than 5-time acceleration in the search. The differences in the optimal trees in the 

Selection 
probabilities 

Algorithm 4-2 
(a full-search algorithm) 

Algorithm 4-3 

p=0.5 
q=0.7 

Number of trees = 2674440 
(3, 4, 4, 6, 7, 7, 10, 10, 10,  
11, 12, 13, 14, 14) 
a, c, b, d, h, e, m, j, f, g, i, k,  

n, l, δ 
Criterion =54.835839 

Number of trees = 516394 
(3, 4, 4, 6, 8, 8, 8, 10, 10, 11,  
12, 13, 14, 14) 
a, c, b, d, m, j, e, h, f, g, i, k, n,  

l, δ 
Criterion =54.835839 

p=0.6 
q=0.7 

Number of  trees = 2674440 
(4, 4, 5, 5, 8, 8, 8, 11, 11,  
11, 14, 14, 14, 14) 
f, c, d, a, i, h, b, l, k, g, n, m,  

j, e, δ 
Criterion =34.339081 

Number of trees = 1276462 
(4, 4, 5, 5, 8, 8, 8, 11, 11, 13,  
13, 13, 14, 14) 
f, c, d, a, i, h, b, l, k, n, m, j, g,  

e, δ 
Criterion =34.339081 

p=0.6 
q=0.8 

Number of  trees = 2674440 
(3, 4, 4, 6, 7, 7, 9, 9,10, 11,  
12, 13, 14, 14) 
b, f, a, g, i, c, j, d, e, h, k, m,  

n, l, δ 
Criterion =20.633935 

Number of trees = 980863 
(3, 4, 4, 6, 7, 7, 9, 9,10, 11,  
12, 13, 14, 14) 
b, f, a, g, i, c, j, d, e, h, k, m,  

n, l, δ 
Criterion =20.633935 

p=0.7 
q=0.8 

Number of  trees = 2674440 
(3, 4, 4, 6, 7, 7, 10, 10, 10, 11,  
12, 14, 14, 14) 
a, c, b, d, h, e, l, j, f, g, i, n,  

m, k, δ 
Criterion =14.353286 

Number of trees = 1541227 
(3, 4, 4, 6, 7, 7, 10, 10, 10, 11,  
12, 14, 14, 14) 
a, c, b, d, h, e, l, j, f, g, i, n,  

m, k, δ 
Criterion =14.353286 

p=0.7 
q=0.9 

Number of  trees = 2674440 
(3, 4, 4, 6, 6, 8, 8, 9, 10, 11,  
12, 13, 14, 14) 
c, f, a, g, b, i, d, e, h, j, k, m,  

n, l, δ 
Criterion =10.249402 

Number of trees = 980863 
(3, 4, 4, 6, 6, 8, 8, 9, 10, 11,  
12, 13, 14, 14) 
c, f, a, g, b, i, d, e, h, j, k, m,  

n, l, δ 
Criterion =10.249402 

p=0.8 
q=0.9 

Number of  trees = 2674440 
(3, 4, 4, 6, 6, 8, 8, 10, 10, 11,  
12, 13, 14, 14) 
a, d, b, e, c, g, f, j, h, i, k, l,  

n, m, δ 
Criterion = 7.793403 

Number of trees = 1337206 
(3, 4, 4, 6, 6, 8, 8, 10, 10, 11,  
12, 13, 14, 14) 
a, d, b, e, c, g, f, j, h, i, k, l,  

n, m, δ 
Criterion = 7.793403 
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examples (for instance, for p=0.5, q=0.7 and p=0.6, q=0.7) show that the optimal tree can 

be not unique – here there are at least 2 optimal trees with the same value of the criterion. 

Figure 4-3 shows the computation acceleration for SI over the alphabet A. The computation 

acceleration is calculated as a ratio of the number of trees generated by the Full-Search 

algorithm and the number of trees generated by the main algorithm. 
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Figure 4-3: Search acceleration depending on selection probability value (Example 4-2) 

 

4.3. Synthesis of optimal homogenous SI’s, the auxiliary optimization problem and 

the merging algorithm 

4.3.1. Necessity for an additional algorithm in case of homogeneous SI’s 

The main algorithm presented above works very well for selection probabilities p and q, 

which have strongly different values. However, it has almost no benefits in comparison with 

the Full-Search algorithm when both selection probabilities p and q are close to each other 

and, therefore, the SI is a homogeneous one. It is clear that in this case statistical features 

of binary trees can not help find and use some kind of asymmetry just because there is no 

asymmetry at all. Thus, a new approach has to be found in order to reduce a number of 

calculations in this homogeneous case.  
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One such approach is definitely building optimal sub-trees, which are parts of the optimal 

SI-tree and can be built before the Full-Search algorithm is applied. Below we will present 

the developed algorithm, which can, under some conditions, build optimal sub-trees from 

sub sets of letters and in this way to reduce the number of letters for the Full-Search 

algorithm. It can be helpful especially in the case when section probability values are about 

0.6-0.9, which is the typical situation for SI-applications. We assume here that both 

selection probabilities have the same value p. It also should be noted here that in the 

particular case of p=q=1 the solution can be obtained with help of Huffman’s algorithm. 

 

When both selection probabilities have the same value p, the criterion of the optimization 

can be transformed as: 
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where k is the depth of the delete leaf δ and dT(ai) is the depth of the ith letter in the binary 

tree T. It could be seen that the second term of the above expression grows essentially with 

the increasing k. Such a behavior is even stronger, when values of p are relatively small (for 

p≤(0.5)1/2
 ≈ 0.71 this is an evident fact) and the cardinality of the alphabet n increases. Thus, 

it is naturally enough to assume that for relatively small values of selection probability p or 

for big alphabet cardinality values n the delete leaf is placed at the first level of the optimal 

tree (k=1). This assumption corresponds to the fact that the need for the delete option 

grows with complexity of SI (cardinality of the alphabet) and with decrease of the selection 

probability. It is impossible to estimate in general the threshold value of the selection 

probability pt such, that for any p<pt the delete leaf lays at the first level of the optimal tree, 

because there is a lot of factors involved – the structure of the frequencies distribution over 

the alphabet, the cardinality of the alphabet, the value of the selection probability. But this 

effect is easily predictable and can be illustrated in numerous examples. For instance, the 

figure 4-4  illustrates this fact for 3 different optimal spelling interfaces: over the alphabet A 

with frequencies of occurrence calculated as fi = 2-i   (i=1, …, n-1), fn = 2-(n-1), over the 

alphabet B with fi = 1/(i+1)2  (i=1, , …, n-1),  ∑
−

=

−=
1

1

1
n

i

in ff  and over the alphabet C with 

normalized frequencies of the first n English letters ascending ordered by their frequencies 
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)( . One can see that the threshold value for all alphabets increases with the 

alphabet cardinality and reaches values of about 0.87-0.91 for the cardinality n=14. 
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Figure 4-4: Threshold values for selection probability pt such, that for any 0.5<p<pt the delete leaf 

lays at the first level of the optimal tree 

 

Thus, the optimization problem can be reduced to the building of the tree with the delete 

leaf on the top of it. Such a definite configuration of the tree gives us the possibility to 

consider trees without this delete leaf and to reduce the optimization problem to the 

optimization problem discussed below. 

 

4.3.2. The auxiliary optimization problem 

Let us consider now the following optimization problem. Given are an alphabet A = {ai}, 

where i=1,.., n; and two nonnegative sequences {fi = f(ai)} and {gi = g(ai)}. The auxiliary 

optimization problem is to build a full binary tree T with n leaves, in each leaf one letter from 

the alphabet A is placed,  so that 
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where dT(ai) is the depth of the leaf with the letter ai in the tree T and p∈(0; 1). We will 

present an algorithm, which solves this problem in case when {fi} and {gi} possess a special 

property – they keep the same “merging order” by a merging operation relatively p. 

 

The merging operation could be described as follows. Let both nonnegative sequences { fi } 

and { gi }be non-increasing (f1 ≥  f2  ≥… ≥   fn  and  g1 ≥  g2  ≥… ≥   gn). Then we can build two 

new sequences {fi′} and {gi′} where i=1,.., n-1, so that 
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These formulas define the merging operation relatively p∈(0; 1), which transforms two 

sequences of the length n into two new sequences consisting of n-1 elements. The next 

definition bases on this merging operation and will be used in this topic further on. 

 

Definition 

Two nonnegative sequences {fi } and {gi} (i∈[1, n]) keep the same merging order if ∃ i, j ∈[1, 

n] so that ∀ k≠i, j and k∈[1, n]:  fi ≤ fk , gi ≤ gk,  fj ≤ fk , gj ≤ gk. 

 

If these sequences keep the same merging order after the merging operation, this operation 

can be applied to them once more, since in this case we can define two minimal elements 

in each sequence and these elements have the same number in both sequences. 

 

4.3.3. The merging algorithm 

The algorithm presented below is the some “variation on theme” of the famous Huffman’s 

algorithm, but can be effectively applied only while corresponding sequences keep the 

merging order defined above. If the same merging order is kept after each merging 

operation, the algorithm also allows building the tree T corresponding to the optimal B(T) in 

a bottom-up manner. Like the Huffman’s algorithm, it begins with a set of n leaves and 

performs a sequence of merging operations to create the final tree. A priority queue can be 

used in order to identify the two objects (letters or sets of letters) with minimal values of  fi 
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and gi to merge together. The result of the merger of two objects is a new object, which 

values are 
jinew fff +=  and pggg jinew /)( += , where i and j correspond to the merged objects. 

Thus, the merging algorithm can be described as follows. 

 

Algorithm 4-4 – The merging algorithm 

1) Let L be a list of the values (fi , gi) of the letters corresponding to the leaves of the tree. 

2) If the same merging order is kept, take the two smallest values in L (they always exist, 

when the same merging order is kept), make the corresponding nodes siblings and 

generate the intermediate node as their parent. 

3) Replace the two values in L that are mentioned above with their sums 
jinew

fff +=  and 

pggg jinew /)( += , associated with the new intermediate node. If the new L contains only 

one element, then stop, otherwise return to step 2. 

 

The proof of correctness for the algorithm is almost similar to that for the Huffman’s 

algorithm and bases also on the similar ideas (the greedy-choice and the optimal 

substructure properties), which will be demonstrated in the following lemmas. 

 

Lemma 4-2 

Let in the alphabet A the sequences {fi = f(ai)} and {gi = g(ai)}keep the same merging order 

and letters x and y be two letters having the lowest values (f(x),g(x))  and  (f(y), g(y)). Then 

there exists an optimal tree T, in which the depths of x and y are the same, and x and y 

appear in the T as sibling leaves. 

 

Proof. We assume that b∈A and c∈A are two letters that are sibling leaves of maximum 

depth in T. Since (f(x), g(x)) and  (f(y), g(y)) are two pairs of the lowest values and (f(b), g(b)) 

and  (f(c), g(c)) are two pairs of arbitrary values, then f(x) ≤ f(b), g(x) ≤ g(b),  f(y) ≤ f(c) and 

g(y) ≤ g(c). We exchange the positions of b and x in T and create a tree T1. Then we 

exchange the positions of c and y in T1 and create a tree T2. The difference in values of 

criteria between T and T1 is: 
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because all the terms are nonnegative:  f(x) ≤ f(b), g(x) ≤ g(b) and  dT(x) ≤ dT(b), since we 

assumed that b is in the leaf of maximum depth in T. Similarly, because exchanging y and c 

does not increase the value of the criterion, B(T1)-B(T2) is nonnegative. Therefore, B(T2) ≤ 

B(T), which implies B(T2) = B(T). Thus, T2 is an optimal tree, in which x and y appear as 

sibling leaves of maximum depth, from which the lemma follows. This lemma implies that 

the process of building up an optimal tree by mergers can, without loss of generality, begin 

with the greedy choice of merging together two letters of the lowest values f and g. 

 

Lemma 4-3 

Let T be a full binary tree representing a solution of the optimization problem for B over an 

alphabet A with sequences { fi } and { gi } and p∈(0; 1). Let us consider any two letters x 

and y that appear as sibling leaves in T, and let z be their parent. Then considering z as a 

letter with new values fz = fx + fy and gz = (gx + gy)/p, the tree T1 = T- {x, y} represents an 

optimal solution of the optimization problem for B over an alphabet A1 = A – {x, y}∪z. 

 

Proof. We show first that the criterion B(T) of the tree T can be expressed in terms of the 

criterion B(T1). For each letter c ∈ A - {x, y}, we have )()(
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from which we can conclude that B(T)=B(T1)+f(x)+f(y). If T1 represents a non-optimal tree 

for the alphabet A1, then there exists a tree T2, which leaves are letters from A1, such that 

B(T2) < B(T1). Since z is treated as a letter in A1, it appears as a leaf in T2. If we add x and y 

as children of z in T2, then we obtain an optimal solution for A with the criterion value 



On the building of optimal binary trees for Spelling Interface 

 
Page 72 

B(T2)+f(x)+f(y) < B(T), which contradicts the optimality of T. Thus, T1 must be optimal for the 

alphabet A1. This lemma demonstrates that the optimization problem (4.4) has the optimal 

substructure property. 

 

The presented merging algorithm can be illustrated with help of the following example.  

 

Example 4-3 

Let an alphabet A consist of five letter A={a, b, c, d, e} with frequencies of occurrence 0.35, 

0.25, 0.20, 0.15, 0.05 respectively; the selection probability value is p=0.8. Table 4-5 

illustrates the merging algorithm and shows both ordered sequences {fi} and {gi}, and 

corresponding subsets of letters after each algorithm step (after each merging operation). 

The step 0 is the situation at the beginning of calculations. 

 

Step 0 a b c d e 

{fi} 0.35 0.25 0.20 0.15 0.05 

{gi} 0.35 0.25 0.20 0.15 0.05 

Step 1 a b d, e c  

{fi} 0.35 0.25 0.20 0.20  

{gi} 0.35 0.25 0.25 0.20  

Step 2 d, e, c a b   

{fi} 0.40 0.35 0.25   

{gi} 0.562 0.35 0.25   

Step 3 a, b d, e, c    

{fi} 0.60 0.40    

{gi} 0.75 0.562    

 

Table 4-5: All the steps of the merging algorithm for the example 4-3 

 

As the result of these calculations we obtain the optimal tree T (see figure 4-6), which 

corresponds to the minimal criterion value B(T)=3.841. In this example, as could be seen 

from the table, the both sequences {fi} and {gi} keep the same merging order till the end of 
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the algorithm procedure. An attachment of the δ-leaf to the tree T (at the first level) leads to 

an optimal full binary SI (the tree T1) over the alphabet A with the criterion-value 

M(T1)=6,352. 
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Figure 4-6: The optimal SI for the example 4-3 

 

4.3.4. Comparison of the Full-Search algorithm and the merging algorithm (incl. example) 

The auxiliary optimization problem discussed above and the corresponding merging 

algorithm can be used in some cases for our main optimization problem (4.1) and help to 

decrease its dimension. The criterion of optimization (4.1) – the average expectation of the 

number of trials, which are necessary to write one letter – in case of the homogeneous SI 

and when the delete leaf is placed at the first level of the tree, can be transformed as: 
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where di is the depth of the leaf with the letter ai in the tree T and K = p(1+R) /(2p-1). Thus, 

we can see that, considering gi = Kfi, the problem (4.1) of optimization of the criterion M 

possesses all the properties of the discussed auxiliary problem. The algorithm presented 

above can perform at least the first merging operation (because on account of gi = Kfi the 

first merging operation is always possible) and works while the corresponding sequences 

keep the same merging-order relatively p.  It allows us to use the presented auxiliary 

algorithm for the search for optimal sub-trees that, in turn, can be used in the Full-Search 

algorithm 4-2 as simple letters. A success of such acceleration depends on the 

circumstance, how long the sequences {fi} and {Kfi} would keep the same merging order. In 
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any case, this algorithm is useful, because even in the worst situation it accelerates the 

search by transforming an alphabet with n letters into an alphabet with n-1 letters. 

 

For an alphabet, which consists of n letters, the merging algorithm processes firstly with 

sequences {fi} and {gi}, where at the beginning gi = Kfi, because the delete leaf is assumed 

to lay at the first level of the optimal tree. We can also, equally, assume that gi ≡ fi, because 

the value of K does not matter for the merging algorithm itself and can be taken into 

account later on. When all possible sub-trees T1, T2, …, Tm  (m < n) are created and the 

merger order does not keep any longer, the Full-Search algorithm starts generating binary 

trees with n-l+m leaves, where l (l > m) is the number of letters in sub-trees {Ti}. For each 

tree generated in this way the value of the optimization criterion must be calculated and 

then compared with all other criterion values. While calculating the criterion values, one 

needs to place all m founded sub-trees {Ti} in n-l+m leaves. For each such distribution of 

sub-trees the arrangement of n-l non-merged letters means essentially their distribution by 

frequencies of occurrence in the alphabet. So we have for each full binary tree the number 

of 
1
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times, calculated as a ratio of the number of criterion calculations and comparisons by the 

search for an optimal n-l+m-leaves tree with a following search for an optimal sub-trees 

distribution and the number of criterion calculations and comparisons by the full search for 

an optimal n-leaves tree.  For instance, for n=15, m=2 and l=7 (see the example 4-4 below), 

we have the acceleration in 9694845*16/(4862*90) ≈ 354.5 times, where 9694845 – the 

number of generated 16-leave trees, 16 – the number of different placements for the delete 

option among 16 leaves, 4862 -  the number of generated 10-leave trees, 90 – the number 

of different distributions for 2 sub-trees among 10 leaves. 
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Example 4-4 

Let A be an alphabet, which consists of 15 letters with corresponding frequencies of 

occurrence (see table 4-7). Let us build an optimal spelling interface over this alphabet in a 

homogenous case, when both selection probabilities have the same value p=0.7. 

Letter Frequency Letter Frequency Letter Frequency 

a 0.2 f 0.08 k 0.02 

b 0.15 g 0.07 l 0.01 

c 0.12 h 0.05 m 0.01 

d 0.11 i 0.04 n 0.005 

e 0.10 j 0.03 o 0.005 

 

Table 4-7: Alphabet A (letters and their frequencies of occurrence) for the example 4-4 

 

Since the selection probability value of 0.7 is relatively low, we can be sure that the delete 

leaf is situated at the first level of an optimal tree. Now we will demonstrate the above 

developed technique. Firstly, we will use the merging algorithm and try to find sub-trees of 

the optimal tree. Table 4-8 illustrates this algorithm from the beginning (Step 0) until the end 

(Step 5), when both sequences {fi} and {gi} lose the same merging order. We show in this 

table not all letters, but only the letters and sets of letters, which have 4 minimal values of  fi 

and gi. 

 

Step 0 l m n o 

{fi} 0.01 0.01 0.005 0.005 

{gi} 0.01 0.01 0.005 0.005 

Step 1 k n, o l m 

{fi} 0.02 0.01 0.01 0.01 

{gi} 0.02 0.01429 0.01 0.01 

Step 2 j l, m k n, o 

{fi} 0.03 0.02 0.02 0.01 

{gi} 0.03 0.02857 0.02 0.01429 

Step 3 I n, o, k j l, m 

{fi} 0.04 0.03 0.03 0.02 
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{gi} 0.04 0.04898 0.03 0.02857 

Step 4 l, m, j h i n, o, k 

{fi} 0.05 0.05 0.04 0.03 

{gi} 0.0837 0.05 0.04 0.04898 

Step 5 g n, o, k, i l, m, j h 

{fi} 0.07 0.07 0.05 0.05 

{gi} 0.07 0.12711 0.083673 0.05 

 

Table 4-8: Steps of the merging algorithm for the alphabet A in the example 4-4 

 

As one can see, having applied this merging algorithm we obtained two following sub-trees: 

T1 with letters {l, m, j} and T2 with letters {n, o, k, i} – see the figure 4-9 below: 
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Figure 4-9: Sub-trees T1 and T2 for the example 4-4 

 

These sub-trees are used as simple letters in the Full-Search algorithm in order to find an 

optimal tree with 15-7+2 = 10 leaves. The full binary tree for the optimal SI in this case is 

presented in the figure 4-10 (the criterion value is 23.327). 
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Figure 4-10: The final optimal full binary tree for the example 4-4 

 

Being optimized as a SI-binary tree with all 16 leaves (15 letters and the delete-option) with 

the Full-Search algorithm, the optimal tree possesses the same criterion value and also 

belongs to optimal solutions of the optimization problem. Therefore, using two different 

algorithms we have obtained the same solution, but the first algorithm (merging and then – 

the Full-Search among founded sub-trees and left unmerging letters) in this case is 

essentially faster than the second one, since it needs essentially less computations (in 

about 354 times). 

 

4.4. Computer implementation 

In the sections above we have seen a number of developed algorithms and optimization 

methods that allow creation of optimal trees for spelling interfaces. In order to ensure the 

practical applicability of these algorithms and methods it was required to create a 

corresponding computer tool. 

 

4.4.1. Requirements for integrated computer tool 

As shown in chapters 2 and 3, the TTD represents the only one Brain-Computer Interface, 

which has been being practically used. The current version of the TTD bases, due to 
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historical reasons, upon a different optimization criterion - “the average probability to write 

one letter without errors” – that was described in the paper [37]. Hence, it would be very 

beneficial to consider this criterion as an additional criterion for the computer 

implementation, thus, developing an integrated computer tool. This tool should, therefore, 

cover all known methods and algorithms intended for creation of optimal binary SI’s, both 

newly developed and previously described. 

 

In addition to that, an integrated computer tool should cover a comprehensive range of 

requirements and tasks linked to actual creation of ready-to-use Brain-Computer Interfaces, 

such as input of alphabet’s characteristics, consideration of predefined sub-trees etc. The 

complete list of these practical requirements can be found below. 

 

1) Optimization criteria 

a. The average expectation of the number of trials, which are necessary to write one 

letter; 

b. The average probability to write one letter without errors. 

 

2) Optimization methods∗ 

a. The Full-Search algorithm; 

b. The Huffman’s algorithm; 

c. The inhomogeneous algorithm; 

d. The merging algorithm; 

e. The Perelmouter-Birbaumer’s algorithm (also refer to [37]). 

 

3) Input data 

a. Definition of a new alphabet (a list of letters or menu items and their frequencies 

of occurrence ); 

b. Definition of predefined sub-trees; 

                                                 
∗ Clearly enough, not all optimization methods can be applied with each criterion in order to create an optimal 
binary SI for this particular criterion. Rather, specific methods fit to specific criteria. In case of the criterion 
“The average expectation of the number of trials, which are necessary to write one letter” four methods 
mentioned above would work – the full-search algorithm and the Huffman’s algorithm (for p=q=1) as universal 
methods, the inhomogeneous algorithm and the merging algorithm as methods developed for this particular 
criterion. In case of the criterion “The average probability to write one letter without errors” the full-search 
algorithm would work as a universal method, the inhomogeneous algorithm and the Perelmouter-Birbaumer’s 
algorithm – as methods developed for this particular criterion. All restrictions and limitations of algorithms 
described above should be taken into account accordingly. 
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c. Definition of predefined P-sequences; 

d. Definition of individual selection probabilities p and q. 

 

4) Additional requirements 

a. Merging of P-sequences; 

b. Merging of sub-trees. 

 

4.4.2. General description of the integrated computer tool TBSIO; input and output data 

Based upon the above requirements, the integrated computer tool called TBSIO (Tool for 

Binary Interface Optimization) has been created. It can be used for creation, evaluation, 

comparison and the final selection of the optimal Spelling Interface, which best matches 

both the individual requirements (alphabet) and the possibilities (selection probability values) 

of a particular patient. In the following figure 4-11 the main screen of the application is 

shown. 

 

 

 

Figure 4-11: The TBSIO – the main screen 
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The tool is essentially a Windows-application that was built in the programming language 

C++ in the Microsoft Visual C++ 6.0 environment and shares the library Microsoft 

Foundation Classes. The application itself represents a so-called Windows multiple 

documents application (compare figure 4-11). 

 

For input and output purposes text files are used. The application works with the following 

types of text files: 

 

- *.abc (alphabet) – input files, which contain letters (or menu items) and the 

frequencies of their appearance; 

 

- *.psq (P-sequence) – input files containing P-sequence elements; 

 

- *.bst (binary sub-tree) – input files, which contain letters (or menu items) and the 

corresponding P-sequence and, therefore, describe a binary sub-tree. Such binary 

sub-trees contain a letter or a menu item in each of it’s leaves and can be built taking 

into consideration some other aspects than the optimal criterion value (also see 

below); 

 

- *.bsi (Binary Spelling Interface) – output files, which describe an obtained Spelling 

Interface and its main properties, such as the value of the corresponding criterion. 

 

The necessity to have input files of the type *.bst is based upon the practical requirement to 

take into account sub-trees, which are built according to factors that are important or 

sometimes even crucial for a patient but don’t comply with the optimal criterion value. Thus, 

in many cases, some menu items (or letters of the according alphabet) should be grouped 

in some particular way, which is useful for a patient. E.g., from the point of view of a patient, 

all menu items related to nutrition need to be located in the same sub-menu, where no 

other menu items should be located. Another example is a case when the subjective 

importance of some menu item for a patient is perceived as high and will not correspond to 

the effective frequency of choosing this particular menu item. For instance, a patient who is 

oversensitive to his environment would prefer to place the menu items “Open the window” 

and “Close the window” to the top of the spelling tree, even if their actual selection occurs 

rather seldom. 
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The application can deal with input files in a proper format regardless the way they were 

created. So, generally speaking, it is possible to create an input file of any type using a text 

editor and providing the created file with the required extension afterwards. However, the 

most convenient and safest way to create input files is to use dialogs for construction and 

control of input files, which can be found in the drop-down menu “File” of the TBSIO 

application (see figure 4-12). 

 

 

 

Figure 4-12: The TBSIO – the drop-down menu “File” 

 

Using menu items „New Alphabet“, „New P-sequence“ and „New Sub-Tree“, one can open 

corresponding modal dialogs  (for instance, the menu item „New Alphabet“, when being 

selected, opens the dialog shown in the figure 4-13; dialogs for creation of new P-

sequences and new sub-trees look similar) and create desired input files in the dialog-

based manner. During the creation of an input file and its consecutive recording the tool 

automatically conducts all necessary checks: 

 

- each letter in the alphabet or in the external sub-tree must be unique; 

 

- the sum of the frequencies of appearances for all letters must be equal to 1; 

 

- elements of P-sequences must fulfill the requirements described in the theorem 4-1. 
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After an input file has been created it can be opened in the main window of the application 

and can be modified manually, if required. 

 

 

 

Figure 4-13: The TBSIO – the modal dialog “New Alphabet” 

 

Additionally to the creation of a new alphabet and building of an optimal BCI upon it, a user 

can easily build desired predefined structures – P-sequences and sub-trees – through 

consecutive merging of simpler structures or even basic elements (compare lemma 4-1). 

This can be done using appropriate modal dialogs by selecting the menu items „Merge 2 P-

sequences“ or „Merge 2 Sub-Trees“ and makes the application very suitable and 

convenient for creation of P-sequences and sub-trees. In the corresponding dialogs the 

user has to define two input files containing either valid P-sequences or valid binary sub-

trees and the desired output file of the same type. Prior to execution of the merging process 

the application also checks the uniqueness of the letters of the alphabet contained in the 

substructures that need to be merged. 

The menu item “Open” allows the user to browse through file folders and to find, select and 

open desired input files. The menu item “Print Setup” deals with setting up a printer. 
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The application shows four last used input and output files, thus, allowing the user to 

quickly access them. The menu item “Exit” closes the application. 

 

4.4.3. Optimization criteria and methods 

Input files described in the above section are used for the search for optimal Binary Spelling 

Interfaces by means of the optimization algorithms. Desired algorithms can be selected in 

the drop-down menu “Optimization”. The application supports the optimization based upon 

the both criteria described above: “the average expectation of the number of trials, which 

are necessary to write one letter” (see figure 4-14) and “the average probability to write one 

letter without errors” (see figure 4-15). 

 

 

 

Figure 4-14: The TBSIO – the menu for selection of optimization algorithms based on the criterion 

“the average expectation of the number of trials, which are necessary to write one letter” 

 

 

 

 

Figure 4-15: The TBSIO – the menu for selection of optimization algorithms based on the criterion 

“the average probability to write one letter without errors” 

 

In order to carry out the optimization process it is required to define input and output files as 

well as other required data. This is done with help of correspondent modal dialogs. The 

figure 4-16 provides a good example for such modal dialogs and shows the dialog window 
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in case of the application of the Full-Search algorithm. Other modal dialogs are built in the 

similar way. 

 

 

 

Figure 4-16: The TBSIO – the modal dialog “Full-Search” for definition and control of the input data 

in case of the application of the Full-Search algorithm  

 

The text field “Alphabet File Name” defines the name of the input file that contains the 

desired alphabet. The text filed “Resulting SI File Name” defines the name of the output file 

the created optimal SI will be written into. Both text fields dealing with probabilities allow the 

user to enter values of individual selection and rejection probabilities of the patient the SI is 

meant for. Both values should stay in the interval (0.5; 1). However, as explained above, 

due to practical applicability both values should amount to at least 0.65 – 0.7. 

 

In case the user decides to include predefined sub-trees into the SI he has to enter the 

names of input files into corresponding text fields. The user can include up to five sub-trees. 
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The button “OK” starts the calculation of the optimal SI. The button “”Cancel” closes the 

modal dialog. 

 

In all algorithms based on the exhaustive search (the Full-Search algorithms and the 

inhomogeneous algorithm, represented through the menu item “Search for inhomogeneous 

SI”) it is possible to use simultaneously both single letters and completed sub-trees built in 

advance. The check-up prior to the optimization process ensures that the input data are 

consistent (e.g. a letter from one sub-tree must not be contained in other sub-trees and 

must belong to the selected alphabet etc.). 

 

Contrary to this, in the algorithms based on the merging procedure (the Huffman’s algorithm, 

the merging algorithm, represented through the menu item “Search for homogeneous SI”, 

the Perelmouter-Birbaumer’s algorithm) only alphabets can be used as input data. Thereby 

in case of the merging algorithm, for instance, the application builds possible sub-trees 

using the merging algorithm 4-4 and in the next step informs a user of the dimension of the 

upcoming optimization problem (see figure 4-17). The user can either proceed with the 

optimization process through starting the Full-Search algorithm or has an option to change 

input data. 
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Figure 4-17: The TBSIO – the result of the merging algorithm as it is shown to a user (in this 

particular case an alphabet containing 19 letters consists after the merging of 2 sub-trees and 14 

simple letters)  

 

During the optimization process the current value of the optimization criterion and the 

number of conducted calculations are being computed and shown to a user on the screen 

(see figure 4-18). Optimization can be aborted by a user selecting the „Cancel“ button or 

continues until all binary graphs built by the correspondent algorithm have been analyzed 

and evaluated. 

 

In both cases – upon abort or upon completion – the application creates an output file of the 

type *.bsi and opens it in the main application window. The outcome of the computation is 

indicated at the end of the file, where either the text “The optimization is completed” 

appears (in case the computation has been completed by the application) or the text “The 

optimization is not competed” (in case the computation has been aborted by a user; see 

figure 4-19). 
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Figure 4-18: The TBSIO – the progress indicator during the optimization process  

 

 

 

Figure 4-19: The TBSIO – the example of an output file in the main window (a Spelling Interface 

derived as a result of the optimization process)  
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While selecting the criterion “The average expectation of the number of trials, which are 

necessary to write one letter” (see formula 4.1) the following alternatives are possible. In 

case a patient is capable of the absolutely reliable selection (selection probabilities p=q=1) 

the user should use the Huffman’s algorithm that builds the Spelling Interface without a 

delete-option, which is not required. In case values of selection probabilities differ from 

each other a lot, one should apply the algorithm 4-3 – the inhomogeneous algorithm. In 

case values of selection probabilities are close to each other, one should use the method 

presented in the section 4.3 “Synthesis of optimal homogenous SI’s, the auxiliary 

optimization problem and the merging algorithm” – the merging algorithm 4-4 with the 

consecutive search among the created sub-trees and single letters left after the merging 

algorithm has been applied. In case of a low number of letters in an alphabet (low alphabet 

cardinality) the Full-Search algorithm 4-2 delivers the most consistent results. 

 

For the criterion “The average probability to write one letter without any errors” that was 

introduced by Perelmouter and Birbaumer [37] the following alternatives are possible. In 

case the greedy-choice property (values of selection probabilities are close to each other or 

even equal) is fulfilled one can apply the Perelmouter-Birbaumer’s algorithm. Since the 

application automatically checks whether the greedy-choice property is fulfilled or not (as 

shown in the Figure 4-20), it makes sense to always start the optimization using the 

Perelmouter-Birbaumer’s algorithm. In case values of selection probabilities differ from 

each other a lot, one should apply the inhomogeneous algorithm 4-3. And, finally, similar to 

the first criterion the Full-Search algorithm 4-2 delivers the most consistent results. 
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Figure 4-20: The TBSIO – an error message in case the greedy-choice property is not fulfilled for 

the input data (Perelmouter-Birbaumer’s algorithm) 

 

Thus, the application TBSIO completely covers and solves – at the current state of the art – 

the problem of creation of optimal Binary Spelling Interfaces based upon both criteria given 

above and represents an integrated computer tool covering all presented requirements.  

It can be successfully used for building of optimal binary Spelling Interfaces for all kinds of 

binary communication. 
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5. Summary and outlook  

5.1. Summary 

The general problem of finding variable-length codes for non-zero communication has been 

described and formally defined in this thesis. In order to solve this problem, with respect to 

especially (but not only) Spelling Interfaces, an optimization criterion (or a corresponding 

cost function) needs to be defined, and an optimization method or methods have to be 

found. 

 

Therefore, in the first step we have defined and presented the new optimization criterion for 

the SI-optimization. This criterion represents the most natural criterion for SI’s from the 

point of view of usage by handicapped patients. In the second step, we have developed a 

number of new optimization methods, which help accelerate solving such an optimization 

problem. The introduced criterion corresponds exactly to the aim of SI building and can be 

used not only for binary SI, but also for k-ary problems, since it allows us not only to 

optimize but also to compare different given SI with each other and then to evaluate them 

from the unified point of view. This has been impossible so far. The presented criterion has 

an important advantage over other evaluation criteria described in [36], which need a 

simulation in order to obtain one particular criterion value. Contrary to such a 

comprehensive technique, values of the presented criterion can be directly calculated from 

the formula (4.1), thus, allowing quick and direct comparison and evaluation. 

 

The developed optimization methods, which strive to minimize the value of the criterion, are 

built upon a number of invented algorithms. These algorithms are intended to be used, first 

and foremost, for the search for the binary SI, which is optimal in sense of the criterion (4.1). 

Besides that, the Full-Search algorithm and the algorithm for decoding of P-sequences can 

be used for an optimization procedure for any possible optimization criterion. Another 

developed algorithm covers the case of the optimization of inhomogeneous SI and can 

essentially accelerate a computation process in this case. The effectiveness of using 

asymmetrical SI properties depends only on difference in values of selection probabilities 

and is always achievable, thus, resulting in major search acceleration. 
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The merging algorithm, in turn, deals with the so-called homogeneous case and, together 

with the inhomogeneous algorithm and Huffman’s algorithm, covers all cases of 

optimization problem for the criterion (4.1). It also can essentially accelerate a computation 

process. Whereat the Huffman’s algorithm must be used in the case of p=q=1 and the 

inhomogeneous algorithm – in the case of essentially different values of p<1 and q<1, the 

merging algorithm is developed especially for the case p=q<1 and, together with the Full-

Search algorithm applied to founded sub-trees, is usually highly efficient. The effectiveness 

of solving such homogeneous optimization problems with the presented merging method 

depends on the properties of the used alphabet – in particular, on the distribution of 

frequencies of occurrence – and can be easily estimated before the actual optimization 

process applying the presented merging algorithm. For example, for the English alphabet 

(26 letters with natural frequencies of occurrence) the merging leads in case of p=0.9 to 3 

sub-trees (2, 2, and 6 letters) and 16 letters left unmerged, which decreases the dimension 

of the optimization problem from a 26-leaf tree to a 19-leaf tree. In the case of 0.75 ≤ p ≤ 

0.85 the algorithm gives us 1 sub-tree (5 letters) and 21 letters left unmerged, so 

decreasing the dimension to a 22-leaf tree and so on. As one can see, such an acceleration 

of a computation process is very valuable for the practical usage. 

 

It is clear, that all these algorithms, being NP-hard, strongly depend on the cardinality of the 

alphabet (the computation in the case of n~20 needs some hours). But for binary SI’s for 

German and English languages, which consist of 26 letters or menu items, the practical 

relevance of the proposed algorithms is given in the most cases, especially when the 

merging is possible. Moreover, the elaborated method makes possible merging of given 

binary sub-trees to a final tree, thus permitting to take into account predefined orders of 

letters or menu items. This is especially useful in case of menu-based BCI’s, since it allows 

clustering of particular menu items based on their nature. For instance, all items dealing 

with nutrition – such as “hungry”, “thirsty” etc. – can be grouped under the menu “Food and 

Drinks”, all items dealing with environmental and comfort issues – such as “cold”, “warm”, 

“open window” etc. – can be grouped under the menu “Environment” and so on. Such 

groups of items can be built according to individual needs of a patient and then distributed 

with help of elaborated methods to create an optimal menu-based BCI. 

 

Furthermore, the combination of developed methods represents the only known universal 

method, consisting of both criteria and algorithms, that allows the synthesis of individually 
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fitting Spelling Interfaces, since it considers individual selection and rejection probabilities of 

a patient. Therefore, it can be ensured that a Spelling Interface created with help of 

developed methods represents an optimal Spelling Interface for a particular patient, thus, 

making it possible for this certain patient to communicate at the maximal possible rate. 

 

It should be noted again that the proposed algorithms and methods are useful not only for a 

binary Brain-Computer interface, but also for any type of menu-oriented communication 

system, which is controlled through a binary response and where appearance of errors is 

possible, thus, completely solving also the general problem of a non-zero error 

communication described in the section 3.2. 

 

Additionally to invented optimization methods, a supporting computer tool called TBSIO has 

been developed. This computer tool covers the complete range of features required for 

synthesis of optimal binary Spelling Interfaces (e.g. definition of the alphabet, definition of 

predefined trees etc.). It allows the synthesis of binary SI’s based upon two criteria: 

“average number of writing steps needed to write one letter” that has been identified in this 

thesis as the most natural criterion; and “average probability to write one letter without 

errors” that was described in the paper [37] and that currently builds a basis for the TTD 

Spelling Interface and, therefore, needs to be considered further from the point of view of 

practical applicability. In the computer tool all newly invented optimization methods as well 

as optimization methods described in the paper [37] were considered, whereat all 

corresponding limitations and checks (such as, a fulfillment of a greedy-choice property) 

were taken into account. Thus, the developed computer tool represents the only existing 

universal tool for creation of optimal binary SI’s. 

 

5.2. Outlook 

Methods and algorithms developed in this research give for the very first time the 

opportunity to create individually fitting Spelling Interfaces that are optimal for particular 

patients. This leads to increasing speed and accuracy of communication, resulting, in turn, 

in increased motivation and quality of life. With respect to further upsurge and further 

possible improvements of communication with locked-in patients the following aspects can 

be mentioned. 
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First, the most optimization algorithms for SI’s described in this thesis (either invented as a 

part of this thesis or developed by other authors before) are NP-hard in their nature. The 

calculation power of modern CPU’s, however, definitely allows the synthesis of optimal SI’s 

for alphabets consisting of twenty or more items even currently, thus, making its possible to 

create individual SI’s for particular patients in English and German languages in many 

cases. On the other hand, the required calculation time corresponds with the Catalan 

number and increases exponentially with the cardinality of the used alphabet, thus, 

resulting in longer calculation times for a number of other languages (e.g. Russian, which 

alphabet consists of 32 letters). Although the increasing CPU power will help overcome this 

issue in the nearest future, any successful approach to further reduce calculation times will 

be very valuable. At the same time, it is extremely unlikely that other approaches will lead to 

development of algorithms that are not NP-hard. 

 

Second, the successful training remains the major prerequisite for brain-computer 

communication. With help of training it is possible to increase the level of control of brain 

activity and, thus, increase values of selection and rejection probabilities. This will lead to 

reduction of the value of the optimization criterion and result in faster and more accurate 

communication. In order to achieve this, the development of new training concepts, 

supplementary to copy-spelling, is required. 

 

Third, in case of menu item-based communication, as opposed to letter-based 

communication, final trees are created mostly out of pre-defined sub-trees. These sub-trees 

consist, in turn, of logically grouped menu items. The developed integrated computer tool 

provides a capability of merging pre-defined sub-trees to an optimal final tree. First of all, 

this kind of communication allows influencing cardinality of the used alphabet. Furthermore, 

it logically provides an opportunity for communication for the patients whose spelling skills 

are poor. Unfortunately, no comprehensive research has yet been accomplished on a 

subject, what core needs locked-in patients have in general and how these needs can be 

clustered in particular. Here, again, any successful attempt would be of a great value. 
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