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Zusammenfassung

Um thermische (T), hydraulische (H) und mechanische (M) Prozesse, ihre Kopplungen und

ihren Einfluß auf das Systemverhalten besser zu verstehen, werden T-H-M Modelle entwick-

elt. Diese Modelle lassen Modellierungen im Nahbereich des Systems zu. Die Simulierung von

nicht-isothermen, thermo-hydraulischen (TH) Prozessen ist für Anwendungen wie Geothermie,

Wärmeunterstützte Grundwassersanierung, und Atommüllentsorgung wichtig. Diese Doktorar-

beit richtet sich spezifisch an den Anwendungen für Atommüllentsorgung aus, vor Allem an

den thermischen und hydraulischen Prozessen in diesem Bereich.

Thermische Prozesse kommen durch die Wärmestrahlung des Abfalls zustande und zeichnen

sich durch den Wärmetransport vom Kanister zum Bentonitpuffer aus. Andere wichtige ther-

mische Prozesse sind Verdampfung und Kondensierung, die mit dem Phasenwechsel zwischen

wässeriger- und gas Phase assoziiert sind. Wichtige hydraulische Prozesse sind das Eindrin-

gen von Wasser von dem Gastgestein in den Puffer und dann in den Kanister, sowie quellen

und schrumpfen des Bentonitpuffers. Bentonit quillt durch das Eindringen von Wasser und

trocknet durch den Wärmetransport des Abfalls.

Das Ziel der Arbeit ist die mathematische Formulierung der Prozesse und ihre Integrierung in

den objekt-orientierten finite-elemente Code GeoSys/RockFlow.

Puffer, Gastgestein und Fluide (in der wässerigen und gas Phase) formen gemeinsam ein

mehrphasiges-mehrkomponenten System (poröses Medium). Das TH Modell benötigt drei

Bilanzgleichungen, eine für die Wasserkomponente, eine für die Luftkomponente und eine für

Energie. Die drei Primärvariablen sind Gasdruck, Wassersättigung und Temperatur.

Um die Bilanzgleichungen zu lösen, werden Gleichungen, die das System beschreiben, benötigt.

Dies sind Materialparameter, wie zum Beispiel Kapillardruck - Sättigungsbeziehungen oder

Dichtegleichungen. Für die beschriebenen Prozesse sind diese Materialparameter und Zus-

tandsgleichungen meist nicht-linear und meist Funktionen der Temperatur, der Sättigung und

des Drucks. Nicht nur das Material, sondern auch der thermodynamische Zustand des Sys-

tems muß beschrieben werden. Dies wird mit Zustandsgleichungen erreicht, zum Beispiel

Funktionen zur Berechnung des Wasserdrucks, oder der Massenfraktionen. Materialparame-

ter und Zustandsgleichungen werden in die Bilanzgleichungen substituiert, es resultieren die

drei Modellgleichungen in Differentialform. Diese Gleichungen werden nach Umformungen von

GeoSys/RockFlow gelöst.

Die Implementierung läßt Phasenwechsel zwischen den Fluidphasen (wasser und gas) explizit

zu. Das Modell ermöglicht Simulationen von sehr undurchlässigem Tonmaterial mit hohen

Kapillardrücken. Beispiele der Modellvalidierung werden gezeigt, wo Ton durch hohe Temper-

aturen entsättigt wird.
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Summary

To better understand the coupling of thermal (T), hydraulic (H) and mechanical (M) processes

(T-H-M processes) and their influence on the system behaviour, models allowing T-H-M cou-

pling are developed. These models allow simulations in the near-field of the system. The

modeling of non-isothermal thermo-hydraulic (TH) processes is important for applications

such as geothermal energy generation, heat supported environmental remediation, and nuclear

waste disposal. The work presented herein focuses on deep geological disposal of nuclear

waste, and more specifically on the thermal and hydraulic processes in this application.

Thermal processes result directly from the heat radiation of the waste and include heat trans-

port from the core to the bentonite buffer. Other processes of importance are vaporization and

condensation associated with phase changes between the liquid and gaseous phases. Hydraulic

processes of importance include water intrusion from the host rock to the buffer and eventually

to the core, as well as swelling and shrinking processes in the bentonite. Bentonite swells as

a result of water intrusion from the host rock and dries as a result of the heat transport from

the core.

The objective of the work is to formulate the processes mathematically and to integrate them

into the object-oriented simulator GeoSys/RockFlow.

Buffer, host rock, and fluids in the gas and liquid phase form a multiphase-multicomponental

system (porous medium). The TH model consists of a set of three balance equations. One

balance equation for the water component, one balance equation for the air component and

one energy balance equation. The three primary, or independent variables are gas pressure,

water saturation, and temperature.

To solve these balance equations, equations describing the material modelled are necessary.

Material properties include for example capillary pressure-saturation relationships, density equa-

tions, or viscosity calculations. For those processes, material parameters and state variables

are highly non-linear and mostly functions of temperature, saturation, and pressure. Other

than describing the material, the thermodynamic state of the system has to be described.

This is achieved with equations of state, as for example functions for the calculation of liquid

pressure or mass fractions. When the material properties and the state functions are inserted

into the balance equations, governing equations in the differential form are obtained. After

numerical transformations, these equations are then solved by GeoSys/RockFlow.

The implementation allows phase changes between the fluid phases (gas and liquid) to occur

explicitly. The model allows the simulation of processes in very low permeability clays with

high capillary pressures. Examples for code validation are shown, where low permeability clay

is desaturated.
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List of Symbols

a . . . . . . . Component air [− ]
c . . . . . . . Specific heat capacity [ J

kg·K
]

C . . . . . . Mass matrix, subscript: variable [ kg ]

D . . . . . . Diffusion coefficient [ m2

s
]

g . . . . . . Gravity vector [ m
s2

]
g . . . . . . . Gas Phase, superscript [− ]

h . . . . . . Enthalpy [ J
kg

]

h . . . . . . Heat, subscript [− ]

J . . . . . . Flux [ kg
m·s

]

k . . . . . . Component (subscript) [− ]

k . . . . . . Permeability [ m2 ]

k . . . . . . Permeability tensor [ m2 ]
krel . . . . Relative permeability [− ]

K . . . . . . Conductivity matrix [ W
m·K

]

KH . . . . Henry coefficient [ 1
Pa

]

l . . . . . . . Liquid phase, superscript [− ]

M . . . . . Molar mass [ kg
mol

]
m . . . . . . Mass [ kg ]
n . . . . . . Porosity [− ]
p . . . . . . . Pressure [ Pa ]
p . . . . . . Pressure vector [ Pa ]
pc . . . . . . Capillary pressure [ Pa ]
pc . . . . . Capillary pressure vector [ Pa ]
Q . . . . . . Source term [ m3

s
]

R . . . . . . Gas constant [ J
mol·K

]

RHS . . Right hand side terms [− ]

S . . . . . . Saturation [− ]

S . . . . . . Saturation vector [− ]
Seff . . . . Effective saturation [− ]

Smax . . . Maximum saturation [− ]

Sr . . . . . Residual saturation [− ]
s . . . . . . . Solid phase, superscript [− ]

Sat. . . . . Saturated, subscript [− ]

T . . . . . . Temperature [ K ]

T . . . . . . Temperature vector [ K ]

t . . . . . . . Time [ s ]
u . . . . . . Internal energy [ J

kg
]

V . . . . . . Volume [ m3 ]
v . . . . . . Velocity vector [ m

s
]

X . . . . . . Mass fraction [− ]

X . . . . . . Mass fraction vector [− ]
w . . . . . . Water component, subscript [− ]

βp . . . . . . Fluid compressibility coefficient [ 1
Pa

]

βT . . . . . Thermal expansion coefficient [ 1
K

]
γ . . . . . . Fluid phase (superscript) [− ]

λ . . . . . . Thermal conductivity [ J
K·m·s

]
µ . . . . . . Fluid viscosity [ Pa · s ]
ρ . . . . . . . Density [ kg

m3 ]

θ . . . . . . . Time collocation factor [− ]
ψ . . . . . . Thermodynamic variable [− ]

0 . . . . . . . Initial or reference value, subscript [− ]
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1 Introduction

1.1 Work Description and Motivation

The work presented herein is the development of a numerical tool to simulate thermal (T)
and hydraulic (H) processes and their combined effects in low-permeable porous media. The
thermal and hydraulic processes are described mathematically through material properties and
state equations. The process interactions are especially complex in low-permeable porous
media such as bentonite, as swelling and suction play an important role. The state equations
are incorporated into general thermodynamic balance equations for mass and energy, in order
to form a set of equations. The material properties and the set of governing equations are
implemented into the finite element simulator GeoSys/RockFlow in the programming languages
C/C++. The treatment of numerical formulations becomes different for low-permeable porous
media, as the right hand side terms of the algebraic equations gain importance due to the
significant role of suction in these materials.

The aim of the implementation is applications in nuclear waste storage. In this field of appli-
cation clays and other low permeable materials are gaining importance as a barrier material to
protect against groundwater contamination. It is therefore essential to study these materials
in a large number of thermodynamic situations. Numerical simulations can enable this. The
model is calibrated with the help of laboratory tests and can then be used for predictions to
help with material engineering and performance assessment considerations.

1.2 The Rockflow Program

GeoSys/Rockflow is currently in the third generation of its development. Development started
in 1985 at the University of Hannover. At the time, GeoSys/Rockflow was only known as
Rockflow, and written as separate modules in Fortran. Each developer produced a stand-
alone module. By 1996 the following modules were present (Kolditz [1999], p. 115-118):
Groundwater flow (Wollrath [1990]), tracer transport (Kröhn [1991]), multiphase flow (Helmig
[1993]), coupling of boundary and finite elements (Shao [1994]), density-dependent flow (Ratke
et al. [1996]).

After that, came the second phase of the code�s development, which was driven by applications
in the field of environmental geology and geothermics (Lege et al. [1996], Kolditz [1997]),
including projects like the geothermal hot dry rock research project at Soultz-sous-Forêts in
France and Rosemanowes in the UK (Kolditz and Clauser [1998]).

From 1996, the third phase of code development was characterized by radical changes: The
program was rewritten in ANSI-C to enable the use of dynamic data structures and object-
oriented programming. Another significant change in the structure of the program was, that
whereas developers still wrote their own model, an effort was made to couple these models, as
demanded by applications. Coupling models meant the introduction of version management
and a more unified data structure. The coupling of the models allows Rockflow to start playing
a role in the simulation of coupled processes: Models for reactive transport (Habbar [2001]),
adaptive methods and groundwater flow (Kaiser [2001]), multiphase flow (Thorenz [2001b]),
gas transport and heat transport (Kolditz [1996]) emerge. Acompanying process modeling,
adaptive mesh methods are developed (Barlag [1997], Schulze-Ruhfus).
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In parallel to development of numerical methods, part of the research was invested in structural
modeling methods. Methods for geometric descriptions of porous and fractured media evolve
(Rother [2001], Kasper). These mesh generation and meshing methods are essential to the
adaptive mesh process modeling methods. Sylvia Moenickes worked specifically on mesh
generation for fractured porous media (Moenickes [2004]). In this field, a good cooperation
exists with Prof. Takeo Taniguchi from Okayama University, Japan.

The coupling of fluid flow and mechanical processes is of particular interest in soil mechanics.
In 2000, first approaches in the development of RockFlow were made in order to handle the
consolidation problem (Kolditz et al. [2000]). Swelling of bentonite material began to be an
important field of research (Kohlmeier et al. [2002], Kohlmeier et al. [2002]).

The ongoing code developments at the University of Hannover focus on coupled thermal,
hydraulic and mechanical processes. Starting from linear material models and integrating
existing and well validated flow and transport modules, the treatment of complex simulations
in combination with a user-friendly control system are the aim of the current research work
(Kohlmeier et al. [2003a]).

Since 2001, Rockflow is also developed at the University of Tübingen, in the Center for Applied
Geoscience (ZAG). The group, headed by Olaf Kolditz grew rapidly to encompass various
fields of research. The current developments of the group can be split into three categories:
Conceptual model development, numerical model development and software development. In
the first category, work has been undertaken for geotechnical applications (Kolditz and De
Jonge [2004], Wang and Kolditz [2003], Xie et al. [2003a]), regional groundwater modeling
(Beinhorn and Kolditz [2003]), groundwater remediation (Bauer and Kolditz [2003], Bauer
et al. [2004], Kolditz et al. [2003]), and geothermal reservoir modeling (McDermott and Kolditz
[2003]). In terms of numerical model development, the finite element library was extended,
the code was re-organized to benefit from further object-orientation and to allow an easier
switching between process couplings. This will be elaborated in the code section of this paper.
In terms of software development, activities can be summarized as follows: reorganization of
RockFlow into GeoSys: GEOLib, MSHLib, FEMLib, creation and encapsulation of process-
oriented objects (PCS), code parallelization (in cooperation with the HPC Center Stuttgart),
development of GUI (Multi-View, 3-D graphics).

1.3 Methods of Implementation into GeoSys/RockFlow

There are three main possible methods for the implementation of multiphase-multicomponental
formulations into the GeoSys/RockFlow. The first method is the explicit calculation of accu-
mulation terms. The second method, the explicit density calculation and the third method is
a fully implicit scheme with respect to the field quantities. This work presents the process for
implementing the first method.

1.4 Previous Work in Nuclear Waste Storage Modeling

Studies of thermo-hydraulic-mechanical (THM) processes in partially saturated, thermo-elastic
porous media, without phase change effects were presented by Geraminegad and Saxena [1986].
Alonso et al. [1987] discussed the theoretical background of THM modeling including all
important effects. Olivella et al. [1994], Gawin et al. [1995] and Gens et al. [1998] introduced
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the compositional approach for THM modeling of multiphase-multicomponental systems. In
their book, Lewis and Schrefler [1998] gave an excellent overview on coupled processes and
their modeling in the field of deformation and consolidation theory of porous media. Kanno
et al. [1999] developed and applied a THM model to study the temperature dependency of
hydraulic conductivity in saturated porous media and water diffusivity in unsaturated porous
media. An excellent overview on existing THM codes is given by Rutqvist et al. [2001]. A
major part of this work is based on the implementation of multiphase processes without phase
change into GeoSys/RockFlow (Thorenz [2001b]).

There are some very good models available for specific applications. In the field of geotech-
nical engineering, that we are considering here, the important findings from literature are the
following. The porous media theory is widely used, and whereas many models do not simulate
phase change and use the Richard�s approximation, a few include phase change and are mov-
ing towards multiphase-multicomponental formulations. However non-isothermal behavior in
swelling materials has not been researched extensively enough.

1.5 Report Organisation

The report follows the train of thought one would have for the implementation of this work.
First, the physical processes considered are described verbally (section 2). These processes
then have to be treated mathematically. The starting point is the development of the governing
equations (section 3), including the choice of primary variables, expression of balance equations,
material properties and equations of state. The numerical handling of these equations is the
subject of section 4. Finally, benchmarking examples are given in section 5.
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2 THM Processes

We need THM models to faithfully represent non-isothermal flow and deformation processes.
Figure 1 gives an overview of the different processes that take place in the near-field of
underground disposal sites for heat-generating wastes. Usually, the depth of deep geological
storage of highly active nuclear waste is planned between 500m and 1000m below sea level.
Solid materials usually involved are the waste itself; the waste canister, usually made of copper;
a buffer material, usually bentonite or a bentonite-sand mixture; a backfill material, usually
sand; and the host medium, either granite, clay, or salt. Fluids involved are air and water.
Hydraulic processes are marked in blue, thermal processes in red and mechanical processes
in brown. The core at the centre heats the near-field and causes non-isothermal conditions.
The bentonite buffer is an engineered barrier system that acts as an interface between the
waste and the host rock. Buffer, host rock, and fluids in the gas and liquid phase form a
multiphase-multicomponental system, or porous medium.

Figure 1: THM Processes

A complete THM model consists of a set of balance equations that take account of the phase
changes. Often, only the liquid fluid phase is included in the model, which only allows an
approximation of phase transitions.

One of the difficulties in establishing THM models is that many of the processes illustrated
in Figure 1 are non-linear and sometimes very difficult to express mathematically, for example
the relationship between capillary pressure and saturation.

2.1 Thermal processes

Thermal processes are a direct result of the heat radiation of the nuclear waste. Typically,
high-level nuclear waste will be stored and cooled until the waste, encased in a copper canister
will not exceed 100◦C. The surrounding buffer material and the host rock will normally have
temperatures not exceeding room temperatures, or at the most 40◦C. Heat radiation into the
host medium will decrease over hundreds of years.

The temperature gradient between waste and host rock creates a thermal gradient and in-
fluences hydraulic material properties such as fluid density or viscosity, and solid material
properties by inducing heat stresses on the materials. Affected material properties and their
mode of implementation in GeoSys/RockFlow are shown in Table 1.
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Other than directly influencing material properties, the temperature difference between the
waste and the host environment has an influence on the thermodynamic state of the system.
Temperature influences capillary pressure-saturation relationships by approximately 20% (En-
gelhardt et al. [2003]). Temperature also directly influences the saturation of the surrounding
materials, as the high temperatures induce phase transitions from liquid to gaseous phase, and
condensation from gaseous to liquid phase in the cooler regions. This is also reflected in the
mass fractions.

Table 1: Material properties directly related to temperature in GeoSys/RockFlow

Property Dependencies User Input
Heat conductivity n, S λsat, λg, λl

Heat capacity constant c
Density p, T T0, βT , p0, βp

T T0, βT

Viscosity p, T -
Capillary pressure S, T pc − S relationship, T0 set to 25◦C
Mass fractions p, T -

2.2 Hydraulic processes

The main hydraulic process involved is water intrusion from the water-saturated host rock into
the buffer and backfill materials. The infiltrated water will eventually reach the core. Water
intrusion is one of the main reasons for choosing bentonite or a bentonite-sand mixture as a
buffer material. Bentonite swells as its water saturation increases. This helps with sealing off
the waste and canister, and so assists in preventing chemical leakage. Xie et al. [2003b] gives
a detailed description of bentonite swelling mechanisms.

The main material properties concerned by hydraulic processes are fluid density and viscosity,
soil intrinsic and relative permeabilities, capillary pressure, saturation and mass fractions. Their
mode of implementation are summarized in Table 2.

Hydraulic processes also change the state of the system in that water intrusion, for example, is
directly related to water saturation of the porous medium, which in turn is related to relative
permeabilities and capillary pressure. In the systems considered in nuclear waste storage
applications, capillary pressure is a major quantity, as it is very high, up to 1010Pa at low
liquid saturations of the buffer material. This means that water is literally sucked into the
buffer material.
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Table 2: Material properties directly related to hydraulic processes in GeoSys/RockFlow

Property Dependencies User Input
Saturation pc(T ) depending on chosen function

Capillary pressure S, T pc − S relationship, T0 set to 25◦C
Equil. Vapour pressure T -

Equil. Air pressure ρ -
Diffusion coefficient constant constant for each fluid phase
Intrinsic permeability constant constant
Relative permeability S krel − S relationship

Density p, T T0, βT , p0, βp

p p0, βp

Viscosity p, T depending on chosen model
Mass fractions p, T -
Swelling model n, krel, S depending on chosen model
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3 Governing Equations

This chapter shows the development of the governing equations used in GeoSys/RockFlow
for the modeling of non-isothermal flow in porous media. The equations are built in three
stages; the thermodynamic balance equations form the base, into which equations of state
and material properties are substituted. The resulting equations in differential form constitute
the necessary set of equations to define the material and thermodynamic state of the material
to be modeled. This process is illustrated in Figure 2.

Figure 2: Flow chart for the development of governing equations

All formulations are based on the general thermodynamic balance equation.

dψ

dt
=

∂ψ

∂t
+ v∇ψ = −ψ∇ · v + Qψ (1)

Variable Symbol

Primary Variables
Gas Pressure pg

(for the air component)

Liquid Saturation Sl

(for the water component)

Temperature T
(for the energy component)

Secondary Variables
Vapour Pressure pg

w,sat

Capillary Pressure pc

Enthalpy hg
w

Mass Fractions Xγ
k

Internal Energy uγ

Table 3: Primary and secondary variables
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The implementation method is based on a componental approach for the development of the
mass balance equations. This means that governing equations are developed for the water
component and for the air component. This is preferred to an approach, where governing
equations are developed for the liquid phase and the gas phase, as for example in [Thorenz,
2001a]. A governing equation for the energy equation is developed separately. A primary
variable is chosen to be associated with each governing equation, i.e. liquid phase saturation
is associated with the water component and gas phase pressure is associated with the air
component. Temperature is associated with the energy equation (Table 3).

3.1 Balance Equations

3.1.1 Mass Balance equation

Equation (2) shows the mass balance equation for the water and air components. It is derived
from the general thermodynamic balance equation.

∂

∂t
(nSlρl

k + nSgρg
k) + ∇ · (Jls

k + J
gs
k ) + ∇ · (Jg

k + Jl
k) = Qk (2)

n [−] is porosity, S [−] is saturation, ρ [ kg
m3 ] is density, J [ kg

m·s
] is flux, and Q [m3

s
] is a source-sink

term. The superscripts l, g, and s denote the liquid phase, gas phase, and solid phase. The
subscript k denotes the component, which is air (a) or water (w) in this case. The first term
is the mass storage term. The second term on the left hand side are advective mass fluxes.
The last represents diffusive fluxes. The right hand side term is a sink or source term for mass
entering or leaving the system.

In the expression for the advective fluxes, the relative velocity of the liquid phase or gaseous
phase relative to the solid phase in the water species is used. Because of this, terms containing
the solid phase displacement velocity in the water species have to be added to the balance.
However, since this method does not include solid phase displacement, the solid velocity terms
cancel out of the equation.

The spatial deformation of porosity, saturation and liquid density in the water species is much
smaller than the temporal variation. Hence the spatial variation of these variables can be
neglected. The flux of the liquid phase in the water component can also be neglected. However,
in the air component the liquid diffusive flux cannot be neglected.

3.1.2 Energy Balance Equation

The balance equation for equilibrium temperature in the porous medium is given by Equation
(3) [Emmert, 1997].

∂

∂t

(

(1 − n)ρsus + nSgρgug + nSlρlul
)

+ (∇ · Js
h + ∇ · Jg

h + ∇ · Jl
h) = Qh (3)
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u [ J
kg

] is the internal energy and Jh [ J
m·s

] is heat flux, composed of advective, diffusive, and
conductive flux. The first term is the heat storage. The second term is heat flux. The right
hand side term is a sink or source term representing heat provided to, or taken away from, the
system.

3.2 Fluxes

For the water and air component, two types of fluxes have to be considered: advective fluxes
and diffusive fluxes. Additionally, conductive fluxes are considered in the energy balance
equation.

3.2.1 Advective Fluxes

Advective fluxes are movements of the liquid phase or gas phase relative to the solid phase.
We use an extension of the Darcy equation to express advective flux in terms of the primary
variables and capillary pressure.

Jls
k = nSlρl

k(v
l − vs)

= −ρl
k

kl
relk

µl
(∇pl − ρlg) = −ρl

k

kl
relk

µl
(∇pg −∇pc − ρlg) (4)

J
gs
k = nSgρg

k(v
g − vs)

= −ρg
k

kg

relk

µg
(∇pg − ρgg) (5)

J
γs
h = J

g
h + Jl

h

= nSlρl(vl − vs) + nSgρg(vg − vs) (6)

3.2.2 Diffusive Fluxes

The diffusive flux within the gaseous phase can also be expressed in terms of primary variables,
using the diffusion coefficient and mass fraction. The equations below show the diffusive fluxes.

J
g
k = nSgρg

k(v
g
k − vg) = −nSgρg

kD
g∇Xg

k (7)

Jl
k = nSlρl

k(v
l
k − vl) (8)

Jg
u = −∇ · (Dρghg

a∇Xg
a) −∇ · (Dρghg

w∇Xg
w) (9)

3.2.3 Conductive Fluxes

Equation (10) shows the conductive heat flux.

Jt = −∇ · (λ∇T ) (10)
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3.3 Equations of State

Equations of state define the thermodynamic state of the system that is described by the
balance equations. State variables are expressed mathematically and replaced into the balance
equations.

3.3.1 Saturated vapour pressure � pg
w,sat(T )

Calculations of vapor pressure in GeoSys/RockFlow are based on the following assumption:

pg
w ≡ pg

w,sat(T ) (11)

Saturated vapour pressure is dependent on temperature, as described by the Clausius-Clapeyron
equation (12). Vapour pressure is illustrated in Figure 3.

pg
w,sat(T ) = p0 exp

[

(
1

T0

−
1

T
)
hg

wMw

R

]

(12)
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Figure 3: Vapour pressure, pg
w,sat

3.3.2 Gas pressure of the air component � pg
a(p

g, T )

The gas pressure in the air component depends on temperature and the pressure of the gas
phase.

pg
a(p

g, T ) = pg − pg
w,sat(T ) (13)
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3.3.3 Mass Fractions � Xγ
k (pg, T )

Mass fraction is the fraction by mass of a component in a phase, compared to the other
components in the same phase. The addition of the mass fractions for a given phase is equal
to unity. Mass fractions for both components, depending on gas pressure and equilibrium
temperature, are illustrated in Figure 4. The vapor pressure curve is added in bold red.

Xg
w(pg, T ) =

mγ
k

∑

k mγ

Xg
w(pg, T ) = 1 − Xg

a

Xg
a =

[pg − pg
w,sat(T )]Ma

RTρg

X l
w(pg, T ) = 1 − X l

a

X l
a =

Ma

Ma − Mw(1 − [KH(T )pg
a]−1)

(14)

Where,

Xg
w(pg, T, ρg(pg, T )) ≡ Xg

w(pg, T ) (15)
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Figure 4: Mass Fractions; top left:X l
w, top right:Xg
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3.3.4 Enthalpy � h

Enthalpy is defined by h = u + pV . The phase enthalpies can be defined by means of the
specific heat capacities at constant pressure. The liquid phase is assumed to be incompressible.

hg = cg
pT +

pg

ρg
(16)

hl = cl
pT (17)

hγ = Xγ
a hγ

a + Xγ
whγ

w (18)

Enthalpy of the gas phase in water�hg
w Enthalpy can be defined as the heat content of

a fluid. In this case we consider the vaporization enthalpy of the liquid phase. Enthalpy as a
function of temperature is tabulated in steam tables of the American Society of Mechanical
Engineers (ASME) of 1967 and illustrated in Figure 5 . A program calculating the values
based on these steam tables was developed as a freeware program by Michael Lynn McGuire
of WinSim, Inc. (http://www.winsim.com/steam/steam.html). GeoSys/RockFlow uses this
software as a means of steam table value lookup. Resulting values for enthalpy have been
verified against steam table values.
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Figure 5: Enthalpy of the gas phase in water, hg
w

Comparing the software�s equations and the equation for vapor pressure, we have,

y

ρ1

= −hg
w

Mw

RT0

1

ρ2

= hg
w

Mw

R(T0 − T )
(19)

where all terms are dimensionless and T0 is a reference temperature.
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3.3.5 Internal energy � u

Internal energy is defined as the energy associated with the random, disordered motion of
molecules. The internal energy is calculated for each phase. The liquid phase is assumed to
be incompressible.

ug = cg
vT +

pg

ρg

ul = cl
vT (20)

3.4 Material Properties

3.4.1 Density

Phase densities � ργ(T ) Total fluid density is composed of the addition of partial density
terms.

ργ = ργ
a + ργ

w (21)

This is illustrated for the gas phase in Appendix 1, where vapor density (ρg
w), gas phase

density (ρg
a) in the air component and gas density (ρg) are plotted as a function of pressure

and temperature. Figure 6 shows the gas density.
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Figure 6: Gas phase density, ρg

ργ(T ) = ργ
0(1 + βγ

T (T − T0))

ργ(pg, T ) = ργ
0(1 + βγ

T (T − T0) + βγ
p (p − p0)) (22)
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Partial Densities Partial densities, such as water vapor density are calculated from the
appropriate phase density and mass fraction.

3.4.2 Fluid viscosity � µ

The viscosity of fluids depends on pressure and temperature. The viscosity of liquids depends
highly on temperature, whereas for most cases the variation of viscosity with pressure can
be neglected for liquids. Water presents an exception as in that its viscosity decreases with
pressure at constant temperature. Changes in temperature have opposite effects on liquids
than on gases: with decreasing temperature the viscosity of a liquid rises, while the viscosity
of a low density gas decreases. In our case, concentration of the liquid in the medium also
plays a role.

Most often in the applications of this work, viscosity was approximated by a constant value.
For gas phase viscosity the following function was also used (Reid et al. [1988]).

µg(p, T ) = µ0

(

1 +
Ap3/2

r

Bpr + (1 + CpD
r )−1

)

(23)

with the following parameters:

pr = p/pcrit Tr = T/Tcrit

A =
α1

Tr

exp(α2T
a
r ) B = A(β1Tr − β2)

C =
γ1

Tr

exp(γ2T
c
r ) D =

δ1

Tr

exp(δ2T
d
r )

(24)

pcrit = 33.9 × 104 Pa Tcrit = 126.2 K

α1 = 1.9824 × 10−3 α2 = 5.2683 a = −0.5767
β1 = 1.65552 β2 = 1.2760
γ1 = 0.1319 γ2 = 3.7035 c = −79.8678
δ1 = 2.9496 δ2 = 2.9190 d = −16.6169

3.4.3 Capillary pressure � pc

The capillary pressure can be defined as the tendency of a porous medium to suck in the wetting
fluid phase or to repel the non-wetting phase. Capillary pressure results from the pressure
discontinuity at the interface between two immiscible fluids. Capillary pressure depends on the
geometry of the void space, on the nature of solids and liquids and on the degree of saturation.
In porous media the geometry of the void space is idealized. Thus, the dependence reduces
to saturation for any given porous media. Care has to be taken, as capillary pressure is
not the same for drainage and re-wetting. The function connecting capillary pressure and
saturation has to be determined by laboratory experiments for every new porous medium. As
an approximation a linear relationship can be used. There are, however, analytical functions
that can be used, such as the van Genuchten (1980) model. α, n, m are function parameters.

Seff =
Sl − Sl

r

1 − Sl
r

= (1 + (α pc)
n)m , pc > 0 (25)
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pc =







0 Sl > Sl
max

ρlg
α

(S
−1/m

eff − 1)1/n Sl
r < Sl < Sl

max
pc max Sl < Sl

r

(26)

Brooks and Corey (1964) developed the following model.

Seff =
Sl − Sl

r

1 − Sl
r

=

(

pb

pc

)λ

, pc ≥ pb (27)

pc =







0 Sl > Sl
max

pb

(

1
Seff

)1/λ

Sl
r < Sl < Sl

max

pc max Sl < Sl
r

(28)

pb is the so-called bubbling pressure, the minimum pressure at which the gaseous phase exists,
λ is the pore size distribution index.

Another model example is that of Havercamp et al. (1977), where the formulas are given in
terms of pressure head h = pl/gρl and moisture content θ = nSl.

θ =
α(θs − θr)

α + |h|β
+ θr (29)

h =
(

−
α

θ
(θ − θs + θr)

)1/β

(30)

θ volumetric water (moisture) content [cm3/cm3]
θr residual volumetric water content 0.075 [cm3/cm3]
θs saturated volumetric water content 0.287 [cm3/cm3]
h(θ) soil water pressure head [cm]

relative to the atmosphere
α 1.611 × 106 [Pa−1]
β 3.96

Table 4: Model parameters for the Havercamp et al. model

Also included in the program is the temperature dependence of capillary pressure. The following
function is implemented (Olivella and Gens [2000]), where pc(T ) is the correction factor to
capillary pressure due to system temperature differing from 298K.
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c =
100 − T

647.3

c0 =
100 − T0

647.3
σT = (1. − 0.625 · c) · 0.2358 · c1.256)

σT0 = (1. − 0.625 · c0) · 0.2358 · c1.256)

pc(T ) =
σT

σT0

pc = pc(S) · pc(T ) (31)

3.4.4 Permeability � k

Permeability is a user defined constant in the input file and that is different for each solid
material.

3.4.5 Relative Permeability�krel

For porous media containing more than one fluid, the concept of relative permeability is
introduced. The relative permeability is used to calculate the effective permeability (kγ

relS
γ)k,

which is described in the extended Darcy law. The relationship depends strongly on the
saturations. Different relationships are possible: constant values, user-defined functions, linear
functions, potential functions, or functions found in literature, such as the van Genuchten
Model (1980),

krel(h) =
1 − (αh)n−2 [1 + (αh)n]−m

[1 + (αh)n]2m
(32)

or the relationship developed by Haverkamp et al.(1977)

krel(h) = Ks
A

A + |h|β
(33)

h =
(

−
α

θ
(θ − θs + θr)

)1/β

(34)

or the Brooks and Corey model (1966)

Seff =
Sl − Sl

r

Sl
max − Sl

r

(35)

kl
rel = S4

eff (36)
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3.4.6 Specific heat capacity � c

The specific heat is the amount of heat per unit mass required to raise the temperature by one
degree Celsius. This does not apply if a phase change is encountered, because the heat added
or removed during a phase change does not change the temperature. Specific heat capacity
can be expressed at constant volume or at constant pressure.

cV =
∂u

∂T
(37)

cp =
∂h

∂T
(38)

3.4.7 Thermal conductivity � λ

During thermal conduction, heat is exchanged between molecules due to their collision. For a
fluid or solid continuum, thermal conduction can be described by Fourier�s Law at the macro-
scopic level as the proportional relationship between the flux of thermal energy by conduction
and temperature, with the thermal conductivity λ as a proportionality coefficient.

The thermal conductivity is specific to the fluid, through which the flux takes place. In gases
and liquids, λ depends on temperature and pressure. However the pressure dependency is far
smaller than the temperature dependency. At low gas density, the thermal conductivity of
gases increases with temperature. However the thermal conductivity of most liquids decreases
with temperature. Polar liquids may have a maximum in the temperature dependency of
thermal conductivity.

The thermal conductivity considered here is the overall thermal conductivity of the porous
medium. Overall thermal conductivity is a function of porosity and saturation. It is given by
the geometric mean approximation

λ = (1 − n)λs + nSlλl + nSgλg (39)

3.4.8 Diffusion coefficient � D

In the model a constant value is currently used for the diffusion coefficient, which can be
specified by the user for each fluid phase as an approximation to tortuosity and saturation
dependent formulations.

3.5 Governing Equations

3.5.1 Governing equation for the air and water components

To obtain the governing equation, fluxes, state functions, and material functions are substituted
into the mass balance equation (2).
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nXg
k

(

Sg ∂ρg

∂pg
+ Sl ∂ρl

∂pl

)

∂pg

∂t

− ∇ ·

(

ρgXg
k

kg

relk

µg
∇pg

)

−∇ ·

(

ρlX l
k

kl
relk

µl
∇pg

)

+ n(−ρgXg
k + ρlX l

k)
∂Sl

∂t

+ (Sgρg + Slρl)mTL
∂us

∂t
︸ ︷︷ ︸

MH coupling term

= Qk

+ (nSlX l
k

∂ρl

∂pl
)
∂pc

∂t
−∇ ·

(

ρlX l
k

kl
relk

µl
∇pc

)

− ∇ ·

(

ρgXg
k

kg

relk

µg
ρgg

)

+ ∇ ·

(

ρlX l
k

kl
relk

µl
ρlg

)

+ ∇ · (nSgρgDg
k∇Xg

k)
︸ ︷︷ ︸

TH coupling term

(40)

βp is the fluid compressibility, p is liquid phase pressure, t is time, k is permeability tensor, µ

is liquid viscosity, g is gravity vector, us is solid phase displacement, mT and L are matrix
operators. L is an operator that gives the relationship between displacement and strain, X

is mass fraction, pc is capillary pressure, krel is relative permeability, and D is componental
diffusion coefficient.

The mechanical - hydraulic (MH) and thermal - hydraulic (TH) coupling terms of deformation
and heat transport to the flow processes are highlighted. The MH coupling term is only shown
here as a reminder that GeoSys/RockFlow is capable of this coupling. Mechanical processes
are, however, not within the scope of this work. Coupling is also due to dependencies of
material and state functions such as density, viscosity, capillary pressure, vapor pressure, mass
fractions on the primary variables: gas pressure, liquid saturation, temperature, and solid
displacement.

3.5.2 Governing equation for the energy component

The governing equation for the energy component is obtained by inserting the equation of
the fluxes into the balance equation and by using the equations of state. The implementation
of the governing equation for the energy component allows the activation and deactivation
of latent heat terms through keywords in the input file, according to the requirements of the
problem to be solved.

(

(1 − n)ρscs + nSgρgcg + nSlρlcl + nSlβT ∆h
) ∂T

∂t

+
(

ρgcg kg

relk

µg
(∇pg − ρgg)
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+ρlcl k
l
relk

µl
(∇pl − ρlg)

)

∇T

− ∇ ·
((

(1 − n)λs + nSgλg + nSlλl
)

∇T
)

= ρQT −n∆h
∂Sl

∂t
− nSlβ∆h

∂pl

∂t
−∇vl∆h

︸ ︷︷ ︸

Enthalpy source term

(41)

c [ J
kg·K

] is heat capacity, λ [ J
K·m·s

] is thermal conductivity, and h [ J
kg

] is enthalpy.

We now have three governing equations in differential form, one for each primary variable.
Together with the equations of state and with the material properties, they form a complete
set of equations.
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4 Numerical Formulation

In this section, the physical concepts derived mathematically in the previous section are formu-
lated numerically. The three governing equations (water component, air component, energy
conservation) are the starting point.

4.1 Weak Formulation

The governing equations cannot be solved numerically as they stand. They have to be approx-
imated. The approximation method used is the method of weighted residuals. The weighting
functions associated with this process have been defined by the Bubnov-Galerkin method,
which sets the weighting function equal to the interpolation function. For any given element,
the interpolation function is equal to the shape function N . The resulting equation is called
the weak formulation. Once the Bubnov-Galerkin method is applied, a time collocation, i.e.
the time within the time step, at which the variables are calculated, is defined. The resulting
equation is called weak formulation with time collocation. Figure 7 illustrates this process.

Figure 7: Numerical Approximation Procedure

4.2 Algebraic Equations

The algebraic equations are derived from the weak formulation with time discretization. Each
term is written in matrix form. The matrices are the element matrices. This is the formulation
needed for the implementation of the equations into the code. The element matrices are
implemented individually for each element type, calculated and then combined according to
the algebraic equations. The algebraic equations for the non-isothermal multicomponent model
are detailed in Kolditz and De Jonge [2004].
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4.3 Element Matrices

The terms in the weak integral with time discretization can be expressed as matrices when
considered for a particular finite element. 1-D, 2-D triangular and quadratic, as well as 3-D
hexahedral element matrices were implemented for the calculation of non-isothermal processes
as part of this work. Element matrices contain an integral that has to be approximated
numerically. The approximation is done with the help of shape functions, which depend on
the dimension and the shape of the mesh elements. Details can be found in De Jonge et al.
[2004].

4.4 System Matrix and Right Hand Side Vector

The system matrix assembles the element matrices. The form of the system matrix and
right hand side (RHS) vector depends on the chosen coupling scheme. Equation 42 shows
a completely partitioned coupling scheme. Equation 43 shows a coupling scheme, where the
primary variables for the air and water components, i.e. gas pressure and liquid saturation are
coupled and temperature is calculated separately.

[θ(Kls
w + Kgs

w )][p̂g] = RHSP
[

1

∆t

(

Cg
w − Cl

w

)

− Kls
w

∂pc

∂S

]

[Ŝl] = RHSS

(
1

∆t
Cs

t − θKs
t

)

[T̂]n+1
τ+1 = RHST (42)




θ(Kgs

a + Kls
a ) 1

∆t

(

Cg
a − Cl

a

)

− Kls
a

∂pc
∂S

θ(Kgs
w + Kls

w) 1
∆t

(

Cg
w − Cl

w

)

− Kls
w

∂pc
∂S





[

p̂g

Ŝl

]

= RHS

(
1

∆t
Cs

t − θKs
t

)

[T̂]n+1
τ+1 = RHST (43)
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5 Benchmarking

In this section, two benchmark examples are presented.

5.1 Benchmarks th partitioned, th monolithic

This example is to qualitatively test the effect of the large capillary pressures up to 1010 Pa
occurring in extremely low-permeable bentonite materials. Also, we compare the different
coupling schemes for solving the set of coupled equations. For this purpose we start with a
simple 1-D case. A one meter long bentonite column is heated on the left hand side, triggering
bentonite desaturation. Initial and boundary conditions are illustrated in Figure 8. Results for
the partitioned coupling scheme are illustrated in figure 9 and for the monolithic coupling
scheme in figure 10. A more detailed description of this example, as well as a discussion of
results is given in Kolditz and De Jonge [2004].

Figure 8: Example initial and boundary conditions
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Figure 9: Computation results for Example 1 using the TH2/M model (partitioned coupling
scheme)
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Figure 10: Computation results using the TH2/M model (monolithic coupling scheme)

The second aim of this benchmark was to compare results obtained with different elements.
Figure 11 shows the results when using a mesh made up of 3-D hexahedral finite elements.
Figure 12 shows a comparison between results obtained by using 1-D linear, 2-D quadrilateral,
and 3-D hexahedral finite elements for the calculation of this benchmark.
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5.2 Benchmarks desat

These test cases are based on an example proposed by Olivella and Gens [2000]. This example
portrays the desaturation of a bentonite sample due to heating in a closed system. The set-up
is as illustrated in Fig. 13. A detailed description of the benchmarks is given in Kolditz and
De Jonge [2004].

Because the capillary pressures in bentonite are very high (up to 104MPa, a large suction
pressure is initiated, that strongly favors saturation of the sample from the open side (at the
right). Vapor movement, and hence desaturation due to sample heating can only be modelled
if vapor flow is encouraged. This is due to the vapour diffusion term of the balance equation for
fluid masses (air and water components). Olivella and Gens [2000] introduced a dual relative
permeability model, i.e. different relative permeabilities for gases and liquids, so that vapor
movement is favored at low liquid phase saturations (Sl), when capillary pressure is highest.
This dual permeability model is based on experimental evidence for bentonite.
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Figure 13: Definition of the test case

The results thus show successful modeling of a desaturation process in bentonite due to
evaporation, by using the TH2/M model. We obtained very similar results as the experimental
results shown in Olivella and Gens [2000], as illustrated in Figure 14b. Additionally, we used
this benchmark to check different element types for TH2/M processes. We obtain identical
results for different element types (bar, triangular, quadrilateral elements) which serves as a
verification test for element implementations.

When latent heat terms are activated in the energy equation, examples extending beyond
100◦C can be simulated. To show this, the desat benchmark was run with a temperature
boundary condition of 130◦C instead of 100◦C. The results are illustrated in figure 15,
including a comparison to experimental results.
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zu homogenen Ersatzsystemen. Bericht Nr.28/1990, Universität Hannover, 1990.

M. Xie, O. Kolditz, S. Tripathy, and T. Schanz. Numerical moedlling of swelling processes in
compacted bentonite. Rockflow-report 2002-4, Centre of Applied Geosciences, University
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Non-isothermal two-phase flow in low-permeable porous media

O. Kolditz, J. De Jonge

Abstract In this paper, we consider non-isothermal two-
phase flow of two components (air and water) in gaseous
and liquid phases in extremely low-permeable porous
media through the use of the finite element method (FEM).
Interphase mass transfer of the components between any
of the phases is evaluated by assuming local thermody-
namic equilibrium between the phases. Heat transfer
occurs by conduction and multiphase advection. General
equations of state for phase changes (Clausius–Clapeyron
and Henry law) as well as multiphase properties for the
low-permeable bentonites are implemented in the code.
Additionally we consider the impact of swelling/shrinking
processes on porosity and permeability changes. The
numerical model is implemented in the context of the
simulator RockFlow/RockMech (RF/RM), which is based
on object-oriented programming techniques. The finite
element formulations are written in terms of dimension-
less quantities. This has proved to be advantageous for
preconditioning composite system matrices of coupled
multi-field problems. Three application examples are
presented. The first one examines differences between the
Richards’ approximation and the multicomponent/multi-
phase approach, and between two numerical coupling
schemes. The second example serves as partial verification
against experimental results and to demonstrate coherence
between different element types. The last example shows
simultaneous desaturation and resaturation in one system.

Keywords Non-isothermal multiphase flow, Porous
media, Object-oriented programming, Geotechnics

List of Symbols
A System matrix [–]
A Advection matrix [–]
a Component air [–]

b Right hand side vector [–]
c Heat capacity [J/Kg�K]
C Mass matrix, subscript: variable [kg]
Cp Compressibility number [–]
D Diffusion coefficient [m2/s]
Di Diffusivity number [–]
e Void ratio [–]
g Gravity vector [m/s2]
g Gas Phase, superscript [-]
h Enthalpy [J/kg]
h Heat, subscript [–]
J Flux [kg/m�s]
JA Advective flux [kg/m�s]
JD Diffusive flux [kg/m�s]
Jh Heat flux [J/m�s]
JAh

Advective heat flux [J/m�s]
JDh

Diffusive heat flux [J/m�s]
k Component (subscript)[–]
k Permeability [m2]
k Permeability tensor [m2]
krel Relative permeability [–]
kerel Rel. perm. due to swelling[–]
K Conductivity matrix [W/m�K]
KH Henry coefficient [1/Pa]
l Liquid phase, superscript [–]
M Molar mass [kg/mol]
m Mass [kg]
N Interpolation function [–]
n Porosity [–]
n Time step number [–]
Ne Neumann number [–]
p Pressure [Pa]
p Pressure vector [Pa]
pc Capillary pressure [Pa]
pcmax Maximum capillary pressure [Pa]
pc Capillary pressure vector [Pa]
pcrit Critical pressure [Pa]
p
g
w;sat Vapour pressure [Pa]f
Q Source term [m3/s]
R Gas constant [J/mol�K]
RHS Right hand side terms [–]
S Saturation [–]
S Saturation vector [–]
Seff Effective saturation [–]
Smax Maximum saturation [–]
Sr Residual Saturation [–]
St Storativity number [1/Pa]
s Solid phase, superscript [–]
T Temperature [K]
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T Temperature vector [K]
t Time [s]
u Solution vector [–]
u Internal energy [J/kg]
v Velocity vector [m/s]
x Mole fraction [–]
X Mass fraction [–]
X Mass fraction vector [–]
w Water component, subscript [–]
bp Fluid compressibility coefficient [1/Pa]
bT Thermal expansion coefficient [1/K]
c Fluid phase (superscript)[–]
k Thermal conductivity [J/K�m�s]
l Fluid viscosity [Pa�s]
q Density kg/m3 Density
H Time collocation factor [–]
X Domain [–]
0 Initial or reference value, subscript [–]

1
Introduction
Clays and bentonites receive increasing attention as tech-
nical buffer materials in geological barriers that isolate
waste. Therefore, detailed knowledge of the behavior of
these materials under a large variety of thermodynamical
conditions is of special interest. In order to obtain a good
knowledge of the processes involved, we develop numer-
ical models of the physical processes and their coupling.
The process interactions are especially complex in low-
permeable porous media, such as bentonite, as swelling
and suction play an important role. Equally, the treatment
of numerical formulations becomes different, as the right
hand side terms of the algebraic equations gain impor-
tance. The objective of this paper is to present a new model
for the general FE simulator RockFlow/RockMech
(RF/RM) as an analysis tool for these processes.

Figure 1 gives an overview on THM processes. Coupling
processes have been studied in detail in the past, but
analysis and evaluation of these systems at larger scales is
still a challenge to research. An excellent review on

coupled processes has been presented by Tsang, 1991. A
number of numerical methods have been developed for the
purpose of modeling non-isothermal flow in multiphase
systems. A very essential aspect in those hydraulic, ther-
mal and mechanical operations is the understanding of
induced coupled processes. First models to evaluate those
coupled processes were built up by [1, 19, 33–35,45–47,
51]. More recently, a model was developed by Korsawe
et al., 2000. That model is based on the concept of rational
mechanics and is using the Raviart–Thomas mixed finite
element method, as well as a an implicit Euler time dis-
cretization. The model is only developed for the special
case of a rigid soil skeleton.

Modeling of non-isothermal flow in porous media is of
interest in several practical areas, such as groundwater
remediation techniques, use of geothermal energy, or
geotechnical technologies for waste isolation. Modeling is,
in particular, useful to evaluate the impact of coupling
phenomena on overall system performance.

In the field of groundwater remediation techniques,
thermally enhanced procedures, such as steam injection,
are recognized techniques to treat subsurface contamina-
tion by non-aqueous phase liquids (NAPLs). Numerical
models for simulation of the related non-isothermal pro-
cesses were developed by [9, 11, 13–15, 20]. These codes
have found wide application in simulating NAPL remedi-
ation for systems with relatively large permeability.

Natural thermo-hydraulic processes in the surrounding
area of geothermal reservoirs have been studied by a large
number of authors (e.g. [41, 42]). An excellent review of
modeling thermo-hydraulic processes in geothermal sys-
tems is presented by [40]. [5] investigated the effect of
injection of colder water into a fracture near a geothermal
reservoir, and the advance of the thermal front along the
fracture was simulated with a numerical model. The role of
fracture networks in geothermal reservoirs is discussed
and demonstrated in site studies by [22]. Long-term fluid
and heat extraction from geothermal systems result in
significant deformation processes [29, 27] presented a
THM model for geothermal systems, where capillarity
effects are neglected.

In geomechanical models the stress state and the
resulting deformation process is of special interest. As a
consequence the solid phase has to be treated explicitly.
The interaction of fluid (phase) flow and solid (phase)
deformation in the framework of the porous medium
approach can be modeled based on the consolidation
theory [4, 49]. Modeling of geotechnical barriers for heat
emitting waste often requires a coupled thermo-hydro-
mechanical (THM) analysis. First studies of THM pro-
cesses in that field were presented by [8]. However, only
one fluid phase was considered. In that case, multiphase
effects and phase change processes can not be addressed.
[6] and [48] investigated swelling and shrinking phe-
nomena in bentonites. They developed a material model
for porosity and permeability changes with undergoing
moisture transport. Studies of THM processes in partially
saturated, thermo-elastic porous media without phase
change effects were presented by [18]. [2] discussed the
theoretical background of THM modeling including all
important effects. [36], [16] and [17] introduced theFig. 1. TH2/M processes in bentonite buffer systems, [10]



compositional approach for THM modeling of
multiphase-multicomponental systems. In their book, [28]
gave an excellent overview on coupled processes and their
modeling in the field of deformation and consolidation
theory of porous media. [21] developed and applied a
THM model to study the temperature dependency of
hydraulic conductivity in saturated porous media and
water diffusivity in unsaturated porous media. An excel-
lent overview on existing THM codes is given by [44].
Most of the cited models in this paragraph have found
wide application in simulating geotechnical systems.
In most cases the systems analyzed were restricted to
relatively large permeabilities.

As this literature review shows, there are some very
good models available for specific applications. In the field
of geotechnical engineering that we are considering here,
the important findings from literature are the following.
The porous media theory is widely used, and whereas
many models do not consider phase change and use the
Richard’s approximation, a few are considering phase
change and moving towards multiphase-multicomponen-
tal formulations. However non-isothermal behavior in
swelling materials has not been researched extensively.
There is also a big gap in research on numerical stability
analysis of codes modeling such systems.

The RF/RM code is an existing finite element code,
which has its background in fracture hydraulics. As the
field of application was getting wider, the need to be able
to simulate situations in low-permeable porous media
became apparent. The authors believe that combining
codes is not an option in this situation, because of the
complex coupling. It therefore became necessary to make
use of the object-oriented features of RF/RM and
implement a new model.

In this paper the details of the mathematical and
numerical multiphase-multicomponental formulation for
porous media, as well as the code implementation are
described. Test examples are shown to illustrate the code.

The numerical model TH2/M has been developed for the
purpose of modeling non-isothermal multiphase flow in
porous media. The capital letters TH2/M denote a fully
coupled thermo-hydraulic model with a weak mechanical
coupling and 2 is the number of fluid phases. Mechanical
effects of clay swelling/shrinking are incorporated via the
phenomenological model by [6] and [48]. Previously, work
on isothermal multiphase flow had been done by [50]. For
non-isothermal multiphase flow however, a new process
kernel had to be implemented. TH2/M is a part of the
multi-purpose finite element simulator RF/RM, which is
based on an object-oriented software architecture
(www.rockflow.net, [25]).

2
Physico-chemical processes
Non-isothermal multiphase flow in porous media involves
several complex interacting phenomena. We consider the
porous medium a three component system, with the
components air, water, and soil. Each of these components
can be present in three phases (gas, liquid, and solid
phase). Although air and soil consist of several compo-

nents, they are treated as a single pseudo component with
average properties. The chemical composition may be
different in each phase.

Hydraulic processes result from pressure and gravita-
tional and frictional forces described by the extension of
Darcy’s law for multiphase flow and illustrated in Fig. 1.
We have to deal with concurrent flow of compressible (gas
phase) and incompressible fluids (liquid phase). The
mobility of the fluid phases is characterized by their
relative permeabilities. Relative permeability is in turn
related to capillary pressure via saturation, as shown in the
van Genuchten equations [52]. In particular in materials
with very small grain fractions such as bentonite, ex-
tremely large capillary pressures up to 1010 ¼Pa can exist.

Transport of the components (air, water, and soil)
occurs by advection and diffusion in the fluid phases.
Mechanisms of interphase mass transfer for the water
component include evaporation into the gas phase and
corresponding condensation of the water vapor from the
gas phase. Mechanisms of interphase mass transfer for the
air component include dissolution in the liquid phase and
corresponding release based on the equilibrium parti-
tioning between the gas and liquid phases. It is assumed
that all phases are in local chemical and thermal equilib-
rium. We have to deal with following phase change pro-
cesses (i.e. mass transfer between phases): evaporation of
liquid water species to the gas phase, solution of gaseous
air species in the liquid phase.

The system is characterized by strong heat transfer in a
three-phase system (gas, liquid, solid phases), in which the
mass transfer of components between the phases (i.e.
evaporation, condensation) is significant. Heat transfer
occurs due to multiphase advection and conduction.
Effects of phase transitions between the gas and liquid
phases are taken into account by considering latent heat.

Clay-like materials and bentonites swell/shrink with the
presence/absence of water. The swelling effect results from
additional embedding of water molecules into the solid
matrix. As a consequence of this process, porosity and
permeability change. Swelling/shrinking is a strong
hydro-mechanical coupling phenomenon.

There is a strong dependence of fluid material proper-
ties on temperature and pressure, such as for density,
viscosity, and thermal conductivity. The overall material
properties of the porous medium itself depend in a large
extent on the liquid saturation distribution and its evolu-
tion. Those complexities of non-linear processes limit the
general application of analytical solution techniques.

The above processes are constrained by the following
assumptions:

� All components of the gas phase obey the ideal gas law.
� Partial pressure of water in the gas phase is equal to the

saturated vapor pressure of water at the local tempera-
ture.

� Regarding vapor flow, two assumptions are made.
Firstly, the Knudsen number is proportional to (length
of mean free path)/(characteristic dimension) and is
used in momentum and mass transfer in general and
very low pressure gas flow calculations in particular. It
can be seen from the work of [37], that as permeability



decreases, Knudsen diffusivity becomes very small. This
is why Knudsen diffusivity has been neglected in the
TH2/M model so far, but it will be implemented in the
future, for accuracy. Secondly, the Klinkenberg, or gas
slip effect arises when the dimensions of the moving
molecule and that of the path are close to equal. The
molecules at the interface are usually assumed station-
ary. Under gas slip conditions though, they are moved
and create additional vapor flux. According to [3], the
Klinkenberg effect is relevant for gas flow at low pres-
sures. Since our applications are mainly taking place in
the subsurface, gas pressures are not very low. Typically,
gas pressures in laboratory experiments in this field are
kept above atmospheric pressure.

� Chemical and thermal local equilibrium is assumed.
� We work with idealized void spaces in the solid matrix.
� Componental diffusion is only taken into account in the

gas phase.
� The model enables the user to work with the Richards

approximation, if chosen.

3
Model equations
The theoretical framework is composed of four parts:
balance equations (Sect. 3.1), fluxes (3.2), and equations of
state (3.3), which are used to derive the governing equations
(3.4). The primary variables of themodel are gas pressure pg ,
liquid saturation Sl, and temperatureT, as shown in Table 1.

3.1
Balance equations
In a non-isothermal system containing two components,
two mass balance equations and a heat balance equation
are required to fully describe the system. A multiphase/
multicomponent approach is used to derive the balance
equations for mass conservation of each component
(Eq. 1). Subscripts refer to the components air (k ¼ a) and
water (k ¼ w), whereas superscripts indicate gaseous
(c ¼ g) and liquid phases (c ¼ l).

o

ot
ðnSgq

g
k þ nSlqlkÞ þ r � J

g
k þr � Jlk ¼ Qk ð1Þ

where n is porosity, Sc is fluid phase saturation, qck is
component mass per unit volume of the fluid phase. The
total flux of component k in phase c: Jck ¼ JA

c
k þ JD

c
k con-

sists of an advective JA and a diffusive part JD. Qk is the
componental source term, i.e. generation of component k
per unit volume.

The heat balance equation for the porous medium
consisting of three phases (solid, gas, liquid) is given by

o

ot
ð1� nÞqsus þ nSgqgug þ nSlqlul
� �

þ ðr � Jsh þr � J
g
h þr � JlhÞ ¼ Qh ð2Þ

where uc is phase internal energy, qc is phase density. The
total heat flux in phase c: Jch ¼ J

c
Ah þ J

c
Dh includes both an

advective J
c
Ah and a diffusive part JcDh. Qh is the heat

source term, i.e. heat generation rate per unit volume. The
phase change terms cancel out with the addition of the
individual phases. We work under the assumption of local
thermodynamic equilibrium, meaning that all phase
temperatures are equal.

3.2
Flux terms
In general, two types of fluxes have to be considered:
advective fluxes and diffusive fluxes of fluid mass or
energy.

Advective componental fluxes JcAK are movements of
components k with the fluid phase c relative to the solid
phase. We use an extension of the Darcy equation to ex-
press advective fluxes in terms of the primary variables. If
convenient, capillary pressure can be used instead of a
corresponding fluid phase pressure: pc ¼ pg � pl.

J
c
Ak ¼ nScqckðv

c � vsÞ ¼ nScqcXc
kðv

c � vsÞ

¼ �qcXc
k

kcrelk

lc
ðrpc � qcgÞ ð3Þ

where kcrel is the fluid phase relative permeability, k is the
reference permeability tensor, lc is the fluid phase
dynamic viscosity, and g is the gravitational acceleration
vector. Xc

k is the mass fraction, which is discussed in detail
in Sect. 3.3.

Advective internal energy flux in a fluid phase c is
defined as

J A
c
h ¼ ucJ A

c ¼ ucnScqcðvc � vsÞ

¼ �ucqc
kcrelk

lc
ðrpc � qcgÞ ð4Þ

Diffusive mass flux of components within the fluid phase is
given by Fick’s law and is driven by mass fractions.

J
c
Dk

¼ nScqckðv
g
k � vgÞ ¼ �nScqcDc

krXc
k ð5Þ

where Dc
k is the diffusion coefficient of component k in

phase c. Note, that due to balance requirements
J
c
Da þ J

c
Dw ¼ 0. This relationship ensures that the total

diffusive mass flux in a fluid phase summed over all
components is zero with respect to the average mass
velocity [11].

Total diffusive heat flux in the porous medium is given
by Fourier’s law for heat conduction

J Dh ¼ �krT ð6Þ

where k is the thermal conductivity of the porous medium

k ¼ ð1� nÞks þ nSgkg þ nSlkl ð7Þ

3.3
Equations of state
The set of balance equations needed to solve for the
primary variables is not complete without the equations
of state. Furthermore, equations of state link the balance
equations for water, air and energy with each other and

Table 1. Primary and secondary variables

Primary variable Symbol

Gas pressure (for the air component) pg

Liquid saturation (for the water component) Sl

Temperature (for the energy component) T



describe the physical state of the system that is modelled.
In non-isothermal flows, major non-linearities in the
model equations arise from large variations of secondary
variables and parameters. Therefore, an accurate compu-
tation of secondary variables and material functions is of
considerable importance. A complete list of the secondary
variables along with their dependence on the primary
variables is given in Table 2. The following sections show
how those properties are calculated.

Componental mass density – q
c

kðp
c;TÞ

In the framework of the multi-componental approach, the
phase density is composed by the sum of the corre-
sponding partial componental mass densities qck,

qc ¼ qca þ qcw ¼ Xc
aq

c þ Xc
wq

c ð8Þ

where Xc
k is the mass fraction of the component k in phase

c. Mass fractions are defined as

Xc
k ¼

mc
k

mc
¼

q
c
k

qc
ð9Þ

where m is the mass of component k in phase c.
Therefore, mass conservation of components during

phase changes is represented by the constraining
condition Xc

a þ Xc
w ¼ 1

To derive relationships for componental densities, we
have to employ the assumption of local thermodynamic
equilibrium. The equilibrium restrictions for the vapor
pressure (p

g
w) is given by the Clausius–Clapeyron equation

(Eq. 10). The partial pressure of water in the gas phase is
assumed to be equal to the saturated vapor pressure of
water at the local temperature

pgw � p
g
w;satðTÞ ¼ p0 exp

1

T0
�

1

T

� �
h
g
wMw

R

� �

ð10Þ

The equilibrium restrictions for mass of dissolved air in
liquid phase (qla) is described by Henry’s law (11) in terms
of mole fractions,

xga ¼ KHp
g
a ð11Þ

where KH is the Henry coefficient, which is defined for a
binary water-air system as

KH ¼ 0:8942þ 1:47 exp�0:04394T
� �

� 10�10 in Pa�1

ð12Þ

Mole fractions are defined as

xck ¼
nck
nc

¼
pck
pc

ð13Þ

where n is the number of moles of component k in phase c.
Water vapor is assumed to be an ideal gas. According to
the Clausius–Clapeyron equation (10), the partial mass
density of water species in the gas phase (vapor mass) is

qgw ¼
Mw

RT
pgw ¼ Xg

wq
g

¼
Mw

RT
p0 exp

1

T0
�

1

T

� �
h
g
wMw

R

� �

ð14Þ

where Mw is the molecular weight of water, R is the
universal gas constant, T is equilibrium temperature in
Kelvin. The value of vapor pressure is calculated from
steam table equations given by the International
Formulation Committee [31] and [32].

After some transformations, the partial mass density of
the air species in the liquid phase (mass of dissolved air)
can be determined from Henry’s law (Eq. 11), as shown in
Eq. (16).

qla ¼ Xl
aq

l

¼
Ma

Ma �Mwð1� ½KHðTÞp
g
a�
�1Þ

ql ð15Þ

Vapour diffusivity–D
g
w

Molecular diffusion of water species in air is governed by
Fick’s law. The user can choose between a constant vapour
diffusivity function and a function given by [38].

Dg
w ¼ 5:9� 10�12 T

2:3

pg
in ½m2s�1� ð16Þ

In the equation, T is in C and p in MPa.

Table 2. Summary of second-
ary variables Secondary Variables Needed in balance equation

Water Air Energy

Liq gas liq gas liq gas

Saturated water pressure p
g
w;sat

Capillary pressure pc
Enthalpy h

g
w hl hg

Mass fractions Xl
w X

g
w Xl

a X
g
a

Pressure p
g
w p

g
a

Internal energy ul ug

Fluid density qlw q
g
w qla q

g
a

Fluid viscosity ll lg ll lg

Specific heat capacity c
Thermal conductivity k
Diffusion coefficient D
Therm compress blT
Permeability k k
Relative permeability kre krel



Fluid phase density – qcðpc;TÞ
The liquid phase density is approximated by the following
linear function,

qlðpl;TÞ ¼ ql0ð1þ blpðp
l � pl0Þ þ blTðT � T0ÞÞ ð17Þ

where bp is the compressibility coefficient and bT is the
thermal expansion coefficient.

Temporal changes of the liquid density can now be
expressed in terms of primary variables

oql

ot
¼ ql0b

l
p

opl

ot
þ ql0b

l
T

oT

ot
ð18Þ

Gas phase density is calculated as the sum of the compo-
nental mass densities (Eq. 8), which follow the ideal gas
law.

qgðpg ;TÞ ¼
Ma

RT
pg þ

ðMw �MaÞ

RT
p
g
w;satðTÞ ð19Þ

Temporal changes of the gas phase density can now be
expressed in terms of primary variables

oqg

ot
¼

Ma

RT

opg

ot
þ
ðMw �MaÞ

RT

op
g
w;sat

oT

oT

ot
ð20Þ

Fluid phase viscosity – lcðpc;TÞ
The gas phase viscosity for non-isothermal flow is
calculated as a function of pressure and temperature [43]

lgðp;TÞ ¼ l0ðTÞ 1þ
Ap

3=2
r

Bpr þ ð1þ CpDr Þ
�1

 !

ð21Þ

where A, B, C, and D are coefficients, and pr ¼ p=pcrit.
Water vapor viscosity can be computed from steam table
values. Alternatively, the user can choose a constant
viscosity function.

Specific enthalpy – hc

Specific enthalpy of liquid phase hl is assumed to be
independent of compositional effects and is computed as a
function of pressure and temperature only. The partial
water enthalpy hlw is calculated from steam table functions
[31] and [32]. Specific enthalpy of the gas phase is a
function of composition and is calculated as mass fraction
weighted sum of the componental enthalpies.

hg ¼ Xg
ah

g
a þ Xg

wh
g
w ð22Þ

Again, water vapor specific enthalpy h
g
w can be evaluated

from steam table functions [31] and [32]. The specific air
enthalpy in gas phase is

hga ¼ caT þ
p
g
a

q
g
a

ð23Þ

where ca is the heat capacity of air.

Capillary pressure – pcðS
l;TÞ

The capillary pressure can be defined as the tendency of a
porousmedium to suck in the wetting fluid phase or to repel
the non-wetting phase. Capillary pressure results from the
pressure discontinuity at the interface between two immis-
cible fluids. Capillary pressure depends on the geometry of

the void space, on the nature of solids and liquids and on the
degree of saturation. In porous media the geometry of the
void space is idealized. Thus, the dependence reduces to
saturation for any given porous media. Care has to be taken,
as capillary pressure is not the same for drainage and re-
wetting. The function connecting capillary pressure and
saturation has to be determined by laboratory experiments
for every new porous medium. Frequently, an analytical
functions is used, such as the [52] model

pcðS
lÞ ¼

0 Sl > Slmax

qlg
a
ðS

�1=m
eff � 1Þ1=n Slr < Sl < Slmax

pcmax Sl < Slr

8

>><

>>:

ð24Þ

with the effective saturation

Seff ¼
Sl � Slr
1� Slr

¼ 1þ ðap cÞ
nð Þ

m
; p c > 0 ð25Þ

where a, m, and n are the van Genuchten parameters and
Slr is the liquid residual saturation. Additionally, capillary
pressure is a function of temperature. The function is
given by [39].

rðTÞ ¼ ð1� 0:625aÞð0:2358a1:256Þ

a ¼
374:15� T

647:3

ð26Þ

where T is in �C, and T < 360� C.

Relative permeability – klrelðS
lÞ and k

g
relðS

lÞ
For porous media containing more than one fluid, the
concept of relative permeability is introduced. The relative
permeability is used to calculate the effective permeability
ðkcrelS

cÞk, which is described in the extended Darcy law.
The relationship strongly depends on the saturations.
Different relationships are possible: constant values, user-
defined functions, linear functions, potential functions, or
functions found in literature, such as the van Genuchten
model [52],

klrelðS
lÞ ¼ S

1=2
eff 1� ð1� S

1=m
eff Þm

� �2

ð27Þ

k
g
relðS

lÞ ¼ 1� klrel ð28Þ

where m is the van Genuchten parameter.
Capillary pressure and relative permeabilities are

among the most important parameters affecting
multiphase flow.

Swelling/Shrinking effects
Material models for bentonites have successively been
developed e.g. by [7] corresponding to a large range of
pressures, void ratios, temperatures and materials itself.
In particular, they investigated the elastic and plastic
behavior of swelling clays in detail. In RF/RM, the user
can choose to include swelling and shrinking effects
with the elastic volumetric model for MX-80 bentonite
by [7].

Swelling pressure reflects the effect of pore fluid
compression due to the volume increase of the grain



material. [48] and [6] showed that swelling pressure
largely depends on dry porosity, i.e. the packing of
the material. They found the relationship between
swelling pressure and saturation to be almost linear
pl ¼ CSl.

As a consequence of moisture swelling, the effective
porosity as well as permeability are changing. Both
parameters are decreasing with increasing water satura-
tion. [48] and [6] found the following relationships for
void ratio

eðpðSlÞÞ ¼ e0
pðSlÞ

p0

� �b

ð29Þ

where

b ¼
Dlne

Dln pðSlÞ
< 0

where b is a fitting parameter.
As void ratio is defined as: e ¼ n=ð1� nÞ, we can write

the following equation for temporal porosity changes.

on

ot
¼

on

opc
opc

ot
¼

e0b

p0

pc

p0

� �b�1
opc

ot

¼
e0b

S0

Sc

S0

� �b�1
oSc

ot
ð30Þ

The dependency of saturated permeability on swelling
pressure is given by [48] and [6] as follows,

kerelðpðS
lÞÞ ¼ kerel0

eðpðSlÞÞ

e0

� �g

;

where g ¼
DðlnkerelÞ

Dðln eÞ
; 0:5 < e < 2 ð31Þ

where kerel is the relative permeability due to swelling
processes, and g is a fitting parameter. A new approach to
model swelling processes in porous media based on
hydro-chemical coupled analysis is presented by [53].

3.4
Model equations
The system of model equations to determine the chosen
field variables: fluid gas pressure pg , fluid liquid saturation
Sl and equilibrium temperature T is based on the balance
equations for fluid mass and heat (Sect. 3.1) in combina-
tion with the flux terms (Sect. 3.2) and the equations of
state (Sect. 3.3).

Fluid component equation
Based on the fluid mass balance (1) the following model
equation can be derived.
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In order to introduce the selected primary variables: gas
pressure and liquid saturation, we use the relationships
(33) to substitute liquid pressure and gas saturation:

pl ¼ pg � pc

Sg ¼ 1� Sl

Xl
k ¼ 1� X

g
k

ð33Þ

Then we obtain the fluid component equation in terms of
primary variables.
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Richards approximation
As an option, the model can be simplified by the Richards
approximation, which assumes a constant gas pressure. As
a result, there is only one independent unknown in the
fluid mass balance equation, which we choose to be liquid
pressure (pl). Then we have only one independent un-
known function: liquid pressure (pl) or phase saturation
(Sc). Using the following relationship
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the fluid component equation (32) can be written for
liquid pressure (pl) as the unknown function.
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Equation (36) is explicitly non-linear due to the term m.
Additionally, non-linearities arise from material proper-



ties, i.e. from the dependence of phase saturations on li-
quid pressure according to the capillary pressure function
(Eq. 24) as well as from the dependence of relative per-
meability on phase saturation (Eq. 27) in term n. Either
the equation for air or for water species can be used to
determine the liquid pressure. Equation (36) can be
termed Richards equation for non-isothermal flow.

Thermal energy equation
Based on the heat balance equation (2) for the porous
medium consisting of three phases, we obtain the
following thermal energy equation.
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4
Numerical scheme
RF/RM uses the finite element method (FEM). Details of
the FEM, as applied in the code can be found in
Appendix I.

4.1
Algebraic Equations
Time discretization using first-order finite difference
schemes and time collocation for spatial terms yield the
following system of algebraic equations for the fluid
component equation (32) and the heat energy equation
(37). The symbol definitions of the finite element matrices
are given in the list of symbols.

Fluid component equations (k ¼ a;w), where h 2 ½0; 1�
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Heat energy equation
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The equations above can be written more compactly as
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We introduce the following characteristic numbers to
achieve a dimensionless form of the algebraic equations.
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Now the fluid component equations (38) can be rewritten
as
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4.2
Coupling schemes
There are different techniques to solve the coupled equa-
tion system (38) and (39): partitioned and monolithic



schemes, as well as combinations of both. The partitioned
scheme means subsequent solution of individual equations
embedded in an iteration scheme for the coupling,
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where

CPa ¼
Xc

CP
c
k

The monolithic scheme means solution of all equations in
a single step.
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Due to the weak coupling between the flow and heat
transport process, we use the following coupling scheme.
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 �
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The multiphase flow problem is handled with a monolithic
scheme, whereas the heat transport problem is treated
separately. This reflects the strong coupling of the multi-
phase flow and a weaker coupling between flow and heat
transport. The non-linearities in the above equations are
resolved using a Picard fixpoint iteration scheme (e.g.
[23]).

Appendix II shows the algebraic equations for the
partitioned and monolithic coupling schemes.

4.3
Code implementation
Object-oriented (OO) methods become more and more
important in scientific computing in order to develop
software in teams, and to be able to extend the code
continuously for new applications [30].

RF/RM is based on object-oriented principles pro-
grammed in C-objective and C++. The code consists of a
collection of independent units (objects) with specific
purposes in order to solve initial-boundary-value
multi-field problems (Table 3).

As a result of the numerical approximation method, a
set of a algebraic equations can be derived.

Aiðt; x; ui; ujÞui ¼ biðt; x; ui; ujÞ ð46Þ

where i; j denote different processes, with Ai system matrix
of process i, t time, x coordinates, ui solution vector
(primary variable) of process i, bi right-hand-side (RHS)
vector of process i. Dependence of process i on process j
means coupling, and dependence of system matrix on
solution itself means non-linearity.

The idea is that required data and algorithms to solve
algebraic equation systems can be generalized: (1) initial-
ize equation system and solution vector (IC), (2) calculate
element matrices, (3) assemble equation system,
(4) incorporate boundary conditions and source terms,
(5) solve equation system, (5) calculate secondary vari-
ables, (6) store results for next iteration / step. In addition
to object-orientation, we introduce an process-orientated
concept [24]. Processes (PCS objects) can handle the
complete solution procedure of PDEs. The most important
methods are given below:

1 - void CRFProcess::PCSCreateProcesses(void)

2 - void CRFProcess::PCSConfigProcess(int

pcs_type)

3 - void CRFProcess::PCSExecuteProcess(EQUA-

TION_SYSTEM *pcs_eqs)

The first step (1) is creating the data structures of PCS,
which is basically the equation system (EQS) and pointer
to basic objects (3). Depending on the type of process (e.g.
flow, mass or heat transport, deformation) the PCS object
is configured (2). In this step virtual PCS functions are
overwritten, i.e. a specific function to calculate element
matrices for two-phase/two-componental flow is selected.
The processes created are inserted into a list, which is the

Table 3. RF/RM objects
Acronym Subject Examples

GEO geometric objects points, polylines, surfaces, volumes
ELE elements different finite element types

IC initial conditions uiðt ¼ 0; xÞ
BC boundary conditions uiðt; x ¼ bÞ
ST source terms ruiðt; x ¼ bÞ

MAT materials fluid, solid, porous medium properties
NUM numerics parameter of numerical method
TIM time parameter of time discretization

KER kernel finite element matrices
EQS equation system system matrix, solution vector, RHS vector



last step of the pre-processing part. In the processing part,
PCS instances are executed (3) with the general steps de-
scribed above but with specified properties and methods.
In the case of coupled multi-field problems (such as
non-isothermal two-phase flow) we have to consider the
process interactions.

Object-orientation allows the combination of flow,
transport, and deformation modules, based on the same
data structures. This allows a wide field of application.

5
Examples
Three examples are presented here. The first example
shows a desaturation process in a simple 1-D case. The
aim of this example is to compare the three models
presented in this paper. The second example serves to
compare RF/RM to experimental results, and to compare
calculations using 1-D and 2-D elements. The third
example includes desaturation and resaturation in a 2-D
setup.

5.1
Example 1–low permeability desaturation process

5.1.1
Problem description
This example is to qualitatively test the effect of the large
capillary pressures up to 1010 Pa occurring in extremely
low-permeable bentonite materials (Fig. 3). Also, we
compare the different coupling schemes for solving the
set of coupled equations (Sect. 2). For this purpose we
start with a simple 1-D case. A one meter long bentonite
column is heated on the left hand side. Element dis-
cretization length is Dx ¼ 0:01 m. The initial conditions
of the system are: atmospheric gas pressure, full liquid
saturation and a temperature of 12 �C. The heater has a
constant temperature of 100 �C. Flow boundary condi-
tions on the left side are gas pressure of 106 Pa and 15%
liquid saturation. On the right side we have atmospheric
pressure, full liquid saturation and no diffusive heat flux.
As a consequence, a typical desaturation process of
bentonite is triggered. The complete set of initial and
boundary conditions is given in Fig. 2. The material
properties for this example are summarized in Table 4.
Figure 3 shows the capillary pressure–saturation rela-
tionship.

5.1.2
Results and discussion
The series of Figs. 4, 5, 6 shows calculated profiles along
the bentonite beam at several time stages, t ¼ 103 to 105 s
for the Richards model, the partitioned, and monolithic
schemes of the multiphase-multicomponental (TH2/M)
model. All the depicted results in this series are calcu-
lated using the Börgesson swelling model. The bench-
mark results with all three models show how the
saturation front moves from left to right, and how
temperature moves towards a linear distribution. Flow
dynamics results are illustrated by Figs. 4a, b, c; 5a, b, c;
6a, b, c. In these figures pressure and saturation curves

illustrate the desaturation process, i.e the advance of the
gas phase front from the left to the right side. As usual
for multiphase systems, there is the typical sharp satu-
ration front in the beginning, which becomes smoother
with time. Figures. 4d, 5d, and 6d show temperature
evolution along the bentonite column. The temperature
distribution is nearly the same for all models. This is due
to heat diffusion being the dominating transport mech-
anism. Heat advection and dispersion are very small in a
low-permeable medium. Figs. 4e, f; 5e, f; and 6e, f
illustrate component (air, water) transport. Componental
mass fractions depend on both, temperature and gas
pressure distributions. Vapour mass in the gas phase X

g
w

and dissolved air mass in the liquid phase Xl
a are

secondary variables, which are calculated according to
Eqs. (15) and (11), respectively.

Between the partitioned and monolithic scheme there
are not many differences, as may be expected. There is a
slight undershooting of the gas pressure in the partitioned
scheme, which is be due to the partitioned coupling
scheme. This shows that the partitioned scheme is not as
accurate as the monolithic scheme. The undershooting has
repercussions on the values of the mass fractions. For both
coupling schemes, it can be seen that the mass fractions
are influenced by gas pressure where it is above atmo-
spheric and then temperature dominates the mass fraction
term.

This is also where the main difference with the
Richard’s approximation resides. Since the gas pressure is
kept at atmospheric pressure in that case, only tempera-
ture effects are seen in the mass fractions. Hence, phase
transitions are not taken into account. At a temperature of
100 �C and pressure of 101325 Pa the gas phase is fully
saturated with water vapour Xl

w ¼ 1. However, at gas
pressures of 106 Pa, as often used in laboratory experi-
ments, the water vapour mass fraction at a temperature of
100 �C is equal to Xl

w ¼ 0:065. This emphasizes the
necessity to take the gas phase dynamics into account. The
different advances of the gas pressure and temperature
fronts result in peaks of vapour mass fraction at the gas
pressure front.

There are differences in the evolution of capillary
pressure with time for the Richards model and the TH2/M

Fig. 2. Example initial and boundary conditions



models. The differences of the advance of saturation and
capillary pressure fronts indicate additional mechanisms
for fluid redistribution. Firstly, the additional fluid trans-
port is a result of componental diffusion effects. Secondly,
there are evaporation effects due to the advance of the
thermal front. Both of these effects are not taken into
account by the Richard’s approximation.

In this case it can be observed that the Richard’s
approximation gives very similar results for saturation and
temperature. Should one be interested in phase changes
and mass fractions, the Richards’s approximation would
give an incomplete illustration. The applicability of the
Richard’s approximation remains thus one of scope and
aim of the calculation.

Figure 7 shows a comparison between the Richard’s
approximation run with and without the Börgesson
swelling model. With the swelling model, the saturation

curve gets a second point of inflection and the desatu-
ration process is much more rapid. This phenomenon is
due to the pore space reduction in the swollen bentonite,
which causes a swelling pressure that squeezes the water
out.

5.2
Example 2–desaturation by evaporation

5.2.1
Problem description
This test case is based on an example proposed by [37].
This example portrays the desaturation of a bentonite
sample due to heating in a closed system. The set-up is as
illustrated in Fig. 8.

The corresponding material parameters are as
summarized in Table 5.

Because the capillary pressures in bentonite are very
high (up to 104 MPa, as shown in Fig. 9), a large suction
pressure is initiated, that strongly favors saturation of the
sample from the open side (at the right). Vapor movement,
and hence desaturation due to sample heating can only be
modelled if vapor flow is encouraged. This is due to the
vapour diffusion term of the balance equation for fluid
masses (air and water components).

[37] were introducing a dual relative permeability
model, i.e. different relative permeabilities for gases and
liquids, so that vapor movement is favored at low liquid
phase saturations (Sl), when capillary pressure is high-
est. This dual permeability model is based on experi-
mental evidence for bentonite. The reason behind it is,
that in the dry bentonite accessible pore spaces are
larger resulting in higher permeability. When bentonite
is wet however, it swells and pore spaces are reduced
accordingly. Figure 9 (right) shows an example of such a
dual relative permeability model for bentonite used in
this study.

Table 4. Material properties
Symbol Meaning Value/Ref Unit

Fluid properties
qg Gas density Eq (19) kg/m3

bgp Gas compress. coeff. 6:67� 10�6 Pa�1

ql Liquid density Eq (17) kg/m3

blp Liq. compress. coeff. 4:70� 10�7 Pa�1

lg Gas viscosity 1:8� 10�5 Pa\s
ll Liquid viscosity 1:2� 10�3 Pa\s
cg Gas heat capacity 1:01� 103

cl Liquid heat capacity 4:2� 103

kg Gas heat conductivity 0.026 W/(m\K)
kl Liquid heat conductivity 0.6 W/(m\K)

Medium properties
q Density 1830 kg/m3

n Porosity 0.407
c Heat capacity 1:6� 103

k Heat conductivity 0.718 W/(m\K)
k Permeability 8:23� 10�20 m2

pc Capillary pressure Eq (24) Pa
Fig. 3

krel Relative permeability Eq (27, 28)

Fig. 3. Capillary pressure as function of liquid saturation pcðS
lÞ



5.2.2
Results and discussion
Because there are no saturation and pressure boundary
conditions in the example, these parameters are free to
fall and rise. This can be observed in the results shown in
Fig. 10b. From the initial liquid phase saturation of 0.4,

the value drops progressively next to the heater, as
expected. On the right boundary, where temperature is
maintained at 30 �C, the effects of capillary pressure can
be seen through the higher value of liquid phase satu-
ration. Gas phase pressure shows a small response to the
saturation distribution. Where liquid saturation drops,

Fig. 4. Computation results for example 1 using the Richard’s model



and by reciprocity gas saturation increases, gas pressure
also increases. At the right boundary, the decrease in gas
pressure corresponds to the increase in liquid saturation
(Fig. 10a). One can see that the stationary temperature is
reached in less than 0.5 days (Fig. 10c). Vapor mass

fraction responds to the temperature distribution
immediately.

The results thus show successful modeling of a
desaturation process in bentonite due to evaporation, by
using the TH2/M model. We obtained very similar results

Fig. 5. Computation results for example 1 using the TH2/M model (partitioned coupling scheme)



as the experimental results shown in [37], as illustrated in
Figs. 10b. Additionally, we used this benchmark to check
different element types for TH2/M processes. We obtain

identical results for different element types (bar, triangular,
quadrilateral elements) which serves as a verification test
for element implementations.

Fig. 6. Computation results using the TH2/M model (monolithic coupling scheme)



5.3
Example 3–Desaturation/re-saturation of bentonite sample

5.3.1
Problem description
This 2-D example shows desaturation and resaturation
processes in the near-field of heat emitting containments.
The example shows that qualitatively the code is able to
reproduce these processes. In an x-z plane, a heating
element is modelled at the left hand side. At the lower
border a fracture is modelled by placing a fully liquid
phase saturated boundary condition. This setup is
illustrated in Figure 11. Material parameters are same as
in Example 2 (Table 5).

5.3.2
Results and Discussion
Figure 12 shows the temporal evolution of liquid satura-
tion, as well as temperature and gas pressure patterns.
There are two interesting regions. Firstly, near the heater
there is desaturation due to evaporation and vapor diffu-
sion. Secondly, the fracture supplies liquid water into the
system which is transported to the heater due to capillary
forces. The desaturation near the heater results in in-
creased suction. After 5� 105 the heater area is almost
flooded by liquid water delivered from the fracture.

Due to this increased suction, water supplied by the
fracture is forced upward towards the less liquid satu-
rated region. As the water recharge is good, the area
saturates progressively. In regions of OP1 and OP2, it
can be seen from Fig. 12a, that saturation rises con-
stantly from the initial low liquid saturation. This region
is not affected by the heater and thus does not show any
desaturation. At observation points OP3, OP6, OP7 and
OP8 this is not the case. Here desaturation precedes
resaturation. The amount of desaturation is in direct
proportion with distance to the heater and inversely
distance from the fracture. Temperature shown in
Fig. 12e propagates in a wave-like manner around the
heating element and is not influenced by the fracture.
Gas pressure on the other hand is only minimally
influenced by the heater, but strongly influenced by the
fracture. The minimal influence of the heater can be
observed by the slope against horizontal of the gas
pressure front.

6
Summary and conclusions
We presented a finite element model for non-isothermal
two-phase flow in porous media. This model accounts for
flow of liquid-gas systems including phase changes
(evaporation/condensation and gas solution/dissolution)
as well as for swelling processes. The algebraic equations
of the multi-field problem resulting from the method of
weighted residuals can be solved in a sequential way
(partitioned algorithm) and in one step (monolithic algo-
rithm). We introduced a dimensionless formulation in
order to improve the conditioning of the system matrix.
This numerical formulation also substantially improved
the convergence behavior.

The first example showed the comparison between the
coupling schemes mentioned above and the Richard’s
approximation. The example results demonstrated that

� The monolithic coupling scheme is more correct and
precise for calculation of gas phase pressure.

� Results for the multiphase/multicomponental formula-
tion and the Richard’s approximation give similar
results, except for the calculation of mass fractions.

� The adequacy of the Richard’s approximation is for this
example, one of scope.

� Incorporating swelling effects makes a significant
difference in the saturation profile.

The second example allowed verification against experi-
mental results and comparison between numerical

Fig. 7. Comparison of liquid phase saturation with (line) and
without (dashed line) the Börgesson swelling model

Fig. 8. Definition of the test case

Table 5. Material properties

Parameter Unit Value

Porosity [m3/m3] 0.44
Permeability [m2] 5� 10�19

Relative permeability [–] Figure 9
Capillary pressure [–] Figure 9
Bentonite density [kg/m3] 1650
Bentonite heat capacity [J/kgK] 1605
Bentonite heat conductivity [J/Kms] 0.5



elements in one and two dimensions. The final example,
was a two-dimensional one and showed qualitative results
for the mutual influence of desaturation and saturation
processes.

While there is still scope for code improvement, we
believe that these examples show that the existing code is
able to faithfully reproduce situations encountered in low-
permeable porous media under non-isothermal condi-
tions, where the scope is to model the thermal and
hydraulic processes.

Appendix I: FE formulations
We use the method of weighted residuals to derive the
weak forms of the differential field equations for gas fluid
pressure, liquid saturation and temperature. The unknown
functions are approximated by trial solutions (p̂g ; Ŝl; T̂)
based on nodal values (p̂

g
i ; Ŝ

l
i; T̂i) and interpolation

functions (Ni).
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ð47Þ

In order to reduce the order of spatial derivatives we use
the Gauss-Ostrogradskian integral theorem. Time deriv-
atives are approximated by finite differences. Based on
the model equations (34), (36), (37) we yield the fol-
lowing weak forms for the determination of the primary
variables.
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Heat energy equation
Primary variable is T̂
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Fig. 9. Capillary pressure–saturation relationship (left), Dual relative permeability–saturation relationships (right)



Appendix II: coupling Schemes

Partitioned TH2/M Scheme
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Fig. 11. Geometry and boundary conditions of example 3
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Water component equation (k ¼ a)
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Introduction

This report describes a particular method for the implementation of mulicomponent-
multiphase model formulations into a fully coupled thermo-hydraulic (TH/M) model
for non-isothermal flow processes. The model presented here is meant to be joined
with a hydrological-mechanical (HM/T) model developed at the University of Han-
nover to form a complete thermo-hydraulic-mechanical model (THM).

THM Processes

We need THM models to faithfully represent non-isothermal flow and deformation
processes. Figure 1 gives an overview of the different processes that take place in
the near-field of underground disposal sites for heat-generating wastes. Hydraulic
processes are marked in blue, thermal processes in red and mechanical processes
in brown. The core at the centre heats the near-field and causes non-isothermal
conditions. The bentonite buffer is an engineered barrier system that acts as an
interface between the waste and the host rock.

Figure 1: THM Processes

Buffer, host rock, and fluids in the gas and liquid phase form a multiphase-
multicomponental system, or porous medium. The processes should be treated for
the whole system in its entirety.

A complete THM model consists of a set of balance equations that take account
of the phase changes. Often, only the liquid fluid phase is included in the model,
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which only allows an approximation of phase transitions.

One of the difficulties in establishing THM models is that many of the processes
illustrated in Figure 1 are non-linear and sometimes very difficult to express mathe-
matically, as for example the relationship between capillary pressure and saturation.

The Rockflow Program

Rockflow is an object oriented modelling program. A program description is outside
the scope of this report. A good description of the program can be found in [Kolditz,
2002].

The multiphase flow modelling capabilities implemented in the program are mainly
based on the work done by Carsten Thorenz [Thorenz, 2001], who developed the
corresponding Rockflow kernels. However, to account for non-isothermal processes
including phase changes of fluid components we have to make use of the componen-
tal approach [Forsyth, 1988]. This is a substantial extension, therefore, we decided
to set up a new Rockflow kernel for a multiphase-multicomponental formulation:
RF-MPC.

Methods of Implementation of Non-Isothermal Flow Processes

in Porous Media into Rockflow

There are three main methods for the implementation of multiphase-
multicomponental formulations into the Rockflow code. The first method is the
explicit calculation of accumulation terms. The second method, the explicit density
calculation and the third method is a fully implicit scheme with respect to the field
quantities. This report only describes the process for implementing the first method.
The implementation of the other two methods will be the subjects of later reports.

Report Organisation

The organization of this report follows the implementation steps: In Chapter 1,
we derive the governing equations from conservation principles. In Chapter 2, we
show how the finite element method is applied to the governing equations. We
present the implementation of state variables and material functions into Rockflow in
Chapter 3 presents the material and component functions and their implementation
in RockFlow. The implementation of the element and system matrices will be the
subject of subsequent reports.

Acknowlegement
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(BGR) under grant 2-1003822. We thank Dr. Wallner and Dr. Shao for their
support of this research project.
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1 Governing Equations

All formulations are based on the general balance equation.

dψ

dt
=

∂ψ

∂t
+ vE∇ψ = −ψ∇ · vE + qψ (1)

Method 1 expresses the equations in terms of gas pressure, gas saturation (Table
1).

The method is based on a componental approach. This means that governing
equations are developed for the water component and for the air component. This
is preferred to an approach, where governing equations are developed for the liquid
phase and the gas phase, as for example in [Thorenz, 2001]. A governing equation
for the energy equation is developed separately. A primary variable is associated
with each governing equation, i.e. gas saturation (1-liquid saturation) is associated
with the water component and gas pressure is associated with the air component.
Temperature is associated with the energy equation.

The balance equation and the governing equation are shown in this section for both
components, water and air and for the energy equation.

Variable Symbol

Primary Variables
Gas Pressure pg

(for the air component)

Gas Saturation Sg

(for the water component)

Temperature T
(for the energy component)

Secondary Variables
Vapour Pressure pg

w,sat

Capillary Pressure pc

Enthalpy hg
w

Mass Fractions Xγ
k

Internal Energy uγ

Table 1: Primary and secondary variables
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1.1 Balance Equations

1.1.1 Mass Balance equation

Equation (2) shows the mass balance equation for the water and air components.
In the expression for the advective fluxes, the relative velocity of the liquid phase
or gaseous phase relative to the solid phase in the water species is used. Because
of this, terms containing the solid phase displacement velocity in the water species
have to be added to the balance. However, since this method does not include
displacement, the solid velocity terms cancel out of the equation.

The spatial deformation of porosity, saturation and liquid density in the water species
is much smaller than the temporal variation. Hence the spatial variation of these
variables can be neglected in all methods. The flux of the liquid phase in the water
component can be neglected. In the air component the liquid diffusive flux cannot
be neglected.

∂

∂t
(nSlρl

k + nSgρg
k) + ∇ · (Jls

k + J
gs
k ) + ∇ · (Jg

k + Jl
k) = Qk (2)

1.1.2 Energy Balance Equation

The balance equation for equilibrium temperature in the porous medium is given by
Equation (3) [Emmert, 1997]. The first term is the heat storage. The second term
is the advective heat flux. This term is the heat flux of the liquid and gaseous phase
relative to the solid phase. The third term is the diffusive heat flux term. Diffusive
heat flux is only relevant for the gas phase, but in both components, air and water.
This term only gets into the equation because there are multiple components. The
fourth term is the conductive heat flux. On the RHS the sink term is listed, using
the Darcy velocity.

The phase change terms cancel out with the addition of the individual phases. We
work under the assumption of local thermodynamic equilibrium, meaning that all
phase temperatures are equal.

∂uρ

∂t
+ (∇ · Jgs

u + ∇ · Jls
u + ∇ · Jg

u + ∇ · Jt) = qe (3)
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1.2 Fluxes

For the water and air component, two types of fluxes have to be considered: ad-
vective fluxes and diffusive fluxes.

1.2.1 Advective Fluxes

Advective fluxes are movements of the liquid phase or gas phase relative to the solid
phase. We use an extension of the Darcy equation to express advective flux in terms
of the primary variables. Capillary pressure is of interest too, as it can be measured.

Jls
k = nSlρl

k(vl − vs)

= −ρl
k

kl
rel

k

µl
(∇pl − ρlg) = −ρl

k

kl
rel

k

µl
(∇pg −∇pc − ρlg) (4)

J
gs
k = nSgρg

k(vg − vs)

= −ρg
k

kg
rel

k

µg
(∇pg − ρgg) (5)

Jγs
u = nSlρl(vl − vs) + nSgρg(vg − vs)

= −ρlhl k
l
rel

k

µl
(∇pl − ρlg) − ρghg kg

rel
k

µg
(∇pg − ρgg)

= −ρlhl k
l
rel

k

µl
(∇pg − p

(S)
c ) − ρghg kg

rel
k

µg
(∇pg − ρgg)

(6)

1.2.2 Diffusive Fluxes

The diffusive flux within the gaseous phase can also be expressed in terms of primary
variables, using the diffusion coefficient and mass fraction. The equations below
show the diffusive fluxes.

J
g
k = nSgρg

k(vg
k − vg) = −nSgρg

kDg∇Xg
k (7)

Jl
k = nSlρl

k(vl
k − vl) (8)

Jg
u = −∇ · (Dρghg

a∇Xg
a) −∇ · (Dρghg

w∇Xg
w) (9)
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1.2.3 Conductive Fluxes

Equation (10) shows the conductive heat flux.

Jt = −∇ · (λ∇T ) (10)

10



1.3 Equations of State

The set of equations needed to solve for the primary variables is not complete
without the equations of state. Furthermore, equations of state link the balance
equations for water, air and energy with each other and describe the physical state
of the system that is modelled.

Saturated vapour pressure�pg
w,sat(T )

We define the following equilibrium condition:

pg
w ≡ pg

w,sat(T ) (11)

Saturated vapour pressure is dependent on temperature, as described by the Clausius-
Clapeyron equation (12). Vapour pressure is illustrated in Figure 2.

pg
w,sat(T ) = p0 exp

[

(
1

T0
−

1

T
)
hg

wMw

R

]

(12)
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Figure 2: Vapour pressure, pg
w,sat

Gas pressure of the air component� pg
a(pg, T )

The gas pressure in the air component depends on temperature and the pressure of
the gas phase.

pg
a(pg, T ) = pg − pg

w,sat(T ) (13)

11



Mass Fractions�Xγ
k (pg, T )

Mass fraction is the fraction by mass of the phase of a component, compared to
the other components in the same phase. The addition of the mass fractions for a
given phase is equal to unity. Mass fractions for both components are illustrated in
Figure 3.

Xg
w(pg, T ) = 1 − Xg

a

Xg
a =

[pg − pg
w,sat(T )]Ma

R(T + 273.15)ρg

X l
w(pg, T ) = 1 − X l

a

X l
a =

Ma

Ma − Mw(1 − [KH(T )pg
a]−1)

(14)

Enthalpy�h

Enthalpy is defined by h = u + pV . The phase enthalpies can be defined with help
of the specific heat capacities at constant pressure. The liquid phase is assumed to
be incompressible.

hg = cg
pT +

pg

ρg
(15)

hl = cl
pT (16)

hγ = Xγ
a hγ

a + Xγ
whγ

w (17)

Enthalpy of the gas phase in water�hg
w

Enthalpy can be defined as the heat content of a fluid. In this case we consider the
vapourisation enthalpy of the liquid phase. Enthalpy as a function of temperature is
tabulated in steam tables of the American Society of Mechanical Engineers (ASME)
of 1967 and illustrated in Figure 4 . A software calculating the values based on these
steam tables was developed as a freeware by Michael Lynn McGuire of WinSim, Inc.
(http://www.winsim.com/steam/steam.html)

Comparing the software�s equations and the equation for vapour pressure, we have,

y

ρ1
= −hg

w

Mw

RT0

1

ρ2
= hg

w

Mw

R(T0 − T )
(18)
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Figure 3: Mass Fractions; top left:X l
w, top right:Xg

w bottom left:X l
a, bottom

right:Xg
a
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Figure 4: Enthalpy of the gas phase in water, hg
w

where all terms are dimensionless and T0 is a reference temperature.

u � Internal energy

Internal energy is defined as the energy associated with the random, disordered
motion of molecules. The internal energy is calculated for each phase. The liquid
phase is assumed to be incompressible.

ug = cg
vT +

pg

ρg

ul = cl
vT (19)
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1.4 Material Properties

The material properties describe the components that are to be modelled. They
can be divided into thermal, hydraulic and mechanical properties.

Phase densities�ργ(T )

Total fluid density is composed of the addition of partial density terms.

ργ = ργ
a + ργ

w (20)

This is illustrated for the gas phase in Appendix 1, where vapour density (ρg
w),

gas phase density (ρg
a) in the air component and gas density (ρg) are plotted as a

function of pressure and temperature. Figure 5 shows the gas density.
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Figure 5: Gas phase density, ρg

ρl(T ) = ρl
0(1 + βl

T (T − T0))

ρg(pg, T ) = ρg
a + ρg

w

=
Mg

a

RT
pg

a +
Mg

w

RT
pg

w

=
Ma

RT
(pg − pg

w,sat) +
Mw

RT
pg

w,sat

=
Ma

RT
pg +

(Mw − Ma)

RT
pg

w,sat

(21)
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Figure 6: Water vapour density

Water vapour density�ρg
w(pl, T )

Water vapour density is the mass of water per unit volume of gas phase. Figure
1.4 illustrates the water vapour density function, and and also shows the vapour
pressure curve.

Water vapour density can be defined in terms of mass fractions or with help of the
ideal gas law, Kelvin�s equation or the psychromatic law as shown below.

ρg
w = Xg

wρg =
Mw

TR
pg

w Ideal gas law

ρg
w =

Mw

TR
pg

w,sat(T ) f(pc, T ) Kelvin�s equation

ρg
w =

Mw

TR
exp

[

(
1

T0
−

1

T
)
hg

wMw

R

]

exp

[

−pc(S
g)Mw

R(273.15K + T )ρl

]

Psychromatic law

∂ρg
w

∂t
=

Mw

TR

∂ρg
w

∂pc

∂pc

∂Sg

∂Sg

∂t
+

Mw

TR
(
∂pg

w

∂T
−

pg
w

T
)
∂T

∂t
(22)

Water liquid density�ρl
w

Water liquid phase density is the mass of water per unit liquid phase volume.

ρl
w = X l

wρl (23)
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Gaseous air density�ρg
a(pg, T )

The gaseous air density is the mass of air per unit volume of gas phase. It is a
function of gas pressure and temperature.

ρg
a = Xg

aρg

ρg
a =

Ma

TR
pg

a Ideal gas law

ρg
a =

Ma

TR
(pg − pg

w) Dalton�s law

∂ρg
a

∂t
=

Ma

TR
(
∂ρg

∂t
−

∂ρl
w

∂t
)

(24)

Dissolved air density�ρl
a(pg, T )

Dissolved air density is the mass of air per unit volume of the liquid phase.

ρl
a = X l

aρl =
Ma

Ma − Mw(1 − 1
KHpg

a
)
ρl(pl, T ) Henry�s law (25)

µ � Fluid viscosity

Viscosity is defined as shearing stress per unit area divided by a velocity gradient and
it has the dimension of N s/m2 or Pa s. All gases and most fluids follow Newton�s
law of viscosity, as shown below.

τyx = −µ
∂v

∂y
(26)

The viscosity of fluids depends on pressure and temperature. The viscosity of liquids
depends highly on temperature, whereas for most cases the variation of viscosity
with pressure can be neglected for liquids. Water presents an exception as in that its
viscosity decreases with pressure at constant temperature. Changes in temperature
have opposite effects on liquids than on gases: with decreasing temperature the
viscosity of a liquid rises, while the viscosity of a low density gas decreases.In our
case, concentration of the liquid in the medium also plays a role.

µα(C, T ) =
µ

f1 + f2
(27)

f1 = f(C)

f2 = f(T )
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• Non-isothermal flow of water (de Marsily 1986) (Fig. 7)

µw(T ) = 2.285 × 10−5 + 1.01 × 10−3 log T (28)

Figure 7: Water viscosity as a function of temperature

• Non-isothermal flow of gas (Reid et al. 1988) (Fig. 8)

µg(p, T ) = µ0

(

1 +
Ap

3/2
r

Bpr + (1 + CpD
r )−1

)

(29)

with the following parameters:

pr = p/pcrit Tr = T/Tcrit

A =
α1

Tr
exp(α2T

a
r ) B = A(β1Tr − β2)

C =
γ1

Tr
exp(γ2T

c
r ) D =

δ1

Tr
exp(δ2T

d
r )

(30)

pcrit = 33.9 × 104 Pa Tcrit = 126.2K
α1 = 1.9824 × 10−3 α2 = 5.2683 a = −0.5767
β1 = 1.65552 β2 = 1.2760
γ1 = 0.1319 γ2 = 3.7035 c = −79.8678
δ1 = 2.9496 δ2 = 2.9190 d = −16.6169

• Non-isothermal flow of brines (Lever and Jackson 1985)

µw(T,C) = µ0
1 + 1.85ω − 4.1ω2 + 44.5ω3

1 + 0.7063ζ − 0.04832ζ2
(31)

with:

ω =
C

ρ
, ζ =

T − 150◦C

100◦C
(32)
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Figure 8: Gas viscosity as a function of temperature and pressure

Capillary pressure�pc

The capillary pressure can be defined as the tendency of a porous medium to suck
in the wetting fluid phase or to repel the non-wetting phase. Capillary pressure
results from the pressure discontinuity at the interface between two immiscible fluids.
Capillary pressure depends on the geometry of the void space, on the nature of solids
and liquids and on the degree of saturation. In porous media the geometry of the
void space is idealized. Thus, the dependence reduces to saturation for any given
porous media. Care has to be taken, as capillary pressure is not the same for
drainage and re-wetting. The function connecting capillary pressure and saturation
has to be determined by laboratory experiments for every new porous medium. As
an approximation a linear relationship can be used. There are, however, analytical
functions that can be used, such as the van Genuchten (1980) model

Seff =
Sw − Sw

r

1 − Sw
r

= (1 + (α pc)
n)

m
, pc > 0 (33)

pc =







0 Sw > Sw
max

ρwg
α (S

−1/m

eff
− 1)1/n Sw

r < Sw < Sw
max

pc max Sw < Sw
r

(34)

Brooks and Corey (1964) developed the following model.

Seff =
Sw − Sw

r

1 − Sw
r

=

(

pb

pc

)λ

, pc ≥ pb (35)
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pc =











0 Sw > Sw
max

pb

(

1
S
eff

)1/λ

Sw
r < Sw < Sw

max

pc max Sw < Sw
r

(36)

pb is the so-called bubbling pressure, the minimum pressure at which the gaseous
phase exists, λ is the pore size distribution index.

Another model example is that of Havercamp et al. (1977), where the formulas are
given in terms of pressure head h = pw/gρw and moisture content θ = nSw.

θ =
α(θs − θr)

α + |h|β
+ θr (37)

h =
(

−
α

θ
(θ − θs + θr)

)1/β

(38)

θ volumetric water (moisture) content [cm3/cm3]
θr residual volumetric water content 0.075 [cm3/cm3]
θs saturated volumetric water content 0.287 [cm3/cm3]
h(θ) soil water pressure head [cm]

relative to the atmosphere
α 1.611 × 106 [Pa−1]
β 3.96

Table 2: Model parameters for the Havercamp et al. model

Permeability�k

Permeability is a constant that is used defined in the input file and that is different
for each solid material.

Relative Permeability�krel

For porous media containing more than one fluid, the concept of relative permeabil-
ity is introduced. The relative permeability is used to calculate the effective perme-
ability (kγ

rel
Sγ)k, which is described in the extended Darcy law. The relationship

depends strongly on the saturations. Different relationships are possible: constant
values, user-defined functions, linear functions, potential functions, or functions
found in literature, such as the van Genuchten Model (1980),

krel(h) =
1 − (αh)n−2 [1 + (αh)n]−m

[1 + (αh)n]2m
(39)
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Figure 9: Relative permeability functions (Source: van Genuchten Model (1980))

or the relationship developed by Haverkamp et al.(1977)

krel(h) = Ks
A

A + |h|β
(40)

h =
(

−
α

θ
(θ − θs + θr)

)1/β

(41)

or the Brooks and Corey model (1966)

Seff =
Sw − Sw

r

Sw
max − Sw

r

(42)

kw
rel

= S4
eff

(43)
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Material constants

Mw = 18.016
kg

kmol

Ma = 28.96
kg

kmol

R = 8.31451
kJ

kmolK

βl
T =

1

ρl
0

∂ρ

∂T
(44)

c � Specific heat capacity

The specific heat is the amount of heat per unit mass required to raise the temper-
ature by one degree Celsius. This does not apply if a phase change is encountered,
because the heat added or removed during a phase change does not change the
temperature. Specific heat capacity can be expressed at constant volume or at
constant pressure.

cV =
∂u

∂T
(45)

cp =
∂h

∂T
(46)

λ � Thermal conductivity

During thermal conduction, heat is exchanged between molecules, due to the ki-
netic energy resulting because of their collision. For a fluid or solid continuum,
thermal conduction can be described by Fourier�s Law at the macroscopic level as
the proportional relationship between the flux of thermal energy by conduction and
temperature, with the thermal conductivity λ as a proportionality coefficient.

The thermal conductivity is specific to the fluid, through which the flux takes place.
In gases and liquids, λ depends on temperature and pressure. However the pressure
dependency is far smaller than the temperature dependency. At low gas density,
the thermal conductivity of gases increases with temperature. However the thermal
conductivity of most liquids decreases with temperature. Polar liquids may have a
maximum in the temperature dependency of thermal conductivity.

The thermal conductivity considered here is the overall thermal conductivity of
the porous medium. Overall thermal conductivity is a function of porosity and
saturation. It is given by the geometric mean approximation

λ = (1 − n)λs + nSlλl + nSgλg (47)
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There are different models of expressing thermal conductivity. In DECOVALEX II,
the dependency of thermal conductivity from saturation was expressed by

λ(S) = 0.5 + 1.2S (48)

D � Diffusion coefficient

The diffusion coefficient can be expressed by the following function.

D = τnSgDm (49)

In the model, however, a constant value is currently used for the diffusion coeffi-
cient.
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1.5 Governing Equations

1.5.1 Governing equation for the air and water components

To obtain the governing equation, fluxes, state functions, and material functions
are substituted into the mass balance equation (2).

− ∇ ·

(

ρgXg
k

kg
rel

k

µg
∇pg

)

−∇ ·

(

ρlX l
k

kl
rel

k

µl
∇pg

)

= Qk

−
∂

∂t
(nSlρlX l

k + nSgρgXg
k )

+ ∇ · (nSgρgDg∇Xg
k )

− ∇ ·

(

ρlX l
k

kl
rel

k

µl
∇pc

)

− ∇ ·

(

ρlX l
k

kl
rel

k

µl
ρlg

)

−∇ ·

(

ρgXg
k

kg
rel

k

µg
ρgg

)

(50)

1.5.2 Governing equation for the energy component

The governing equation for the energy component is obtained by inserting the
equation of the fluxes into the balance equation an by using the equations of state

Primary variables: pg, Sg/Xg
w, T

(1 − n)ρscs ∂T

∂t
+ n

∂ρgSgug

∂t
+ n

∂ρlSlul

∂t

− ∇ · (ρlhl k
l
rel

k

µl
(∇pg −∇pc − ρlg)) −∇ · (ρghg kg

rel
k

µg
(∇pg − ρgg))

− ∇ · (λ∇T )

− ∇ · (Dρghg
a∇Xg

a) −∇ · (Dρghg
w∇Xg

w)

= ρQT (51)

We now have three governing equations in differential form, one for each primary
variable. Together with the equations of state and with the material properties,
they form a complete set of equations.
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2 Numerical Formulation

In this section, the physical concepts derived in the previous section are formulated
numerically. The three governing equations (water component, air component,
energy conservation) are the starting point.

The governing equations cannot be solved numerically as they stand. They have
to be approximated. The approximation method used is the method of weighted
residuals. The weighting functions associated with this process have been defined
by the Bubnov-Galerkin method, which sets the weighting function equal to the
interpolation function. For any given element, the interpolation function is equal to
the shape function N . The resulting equation is called the weak formulation. Once
the Bubnov-Galerkin method is applied a time collocation, i.e. the time within the
time step, at which the variables are calculated. The resulting equation is called
weak formulation with time collocation. Figure 10 illustrates this process.

Figure 10: Numerical Approximation Procedure

2.1 Weak Formulation

2.1.1 Air and water components

Based on equation (51) we have:

+

[

∫

Ω

∇NT

(

ρlX l
k

kl
rel

k

µl

)

∇N dΩ +

∫

Ω

∇NT

(

ρgXg
k

kg
rel

k

µg

)

∇N dΩ

]

[p̂g]

=

∫

Ω

NT Qk dΩ
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+

[

∫

Ω

∇NT

(

ρlX l
k

kl
rel

k

µl

dpc

dS

)

∇N dΩ

]

[Ŝg]

−
d

dt

∫

Ω

NT ([nŜlρlX̂l
k]dΩ

−
d

dt

∫

Ω

NT ([nŜgρgX̂
g
k]dΩ

+

[
∫

Ω

∇NT (nSgρgDg)∇N dΩ

]

[X̂g
k]

−

∫

Ω

∇NT

(

ρlX l
k

kl
rel

k

µl
ρlg

)

dΩ −

∫

Ω

∇NT

(

ρgXg
k

kg
rel

k

µg
ρgg

)

dΩ (52)

Weak formulation and time discretization

The next step is to include the time discretization. Here a time θ collocation factor
is included.

+

[

∫

Ω

∇NT

(

ρlX l
k

kl
rel

k

µl

)

∇N dΩ +

∫

Ω

∇NT

(

ρgXg
k

kg
rel

k

µg

)

∇N dΩ

]

θ[p̂g]n+1
τ+1

=

∫

Ω

NT Qk dΩ

−

[

∫

Ω

∇NT

(

ρlX l
k

kl
rel

k

µl

)

∇N dΩ +

∫

Ω

∇NT

(

ρgXg
k

kg
rel

k

µg

)

∇N dΩ

]

(1 − θ)[p̂g]n

+

[

∫

Ω

∇NT

(

∂pc

∂S
ρlX l

k

kl
rel

k

µl

)

∇N dΩ

]

θ[Ŝg]n+1
τ

+

[

∫

Ω

∇NT

(

∂pc

∂S
ρlX l

k

kl
rel

k

µl

)

∇N dΩ

]

(1 − θ)[Ŝg]nτ

−
1

∆t
θ

∫

Ω

NT [nρlX̂l
kNŜl]n+1

τ dΩ −
1

∆t
(1 − θ)

∫

Ω

NT [nρlX̂l
kNŜl]nτ dΩ

−
1

∆t
θ

∫

Ω

NT [nρgX̂
g
kNŜg]n+1

τ dΩ −
1

∆t
(1 − θ)

∫

Ω

NT [nρgX̂
g
kNŜg]nτ dΩ

−

[
∫

Ω

∇NT (nSgρgDg)∇N dΩ

]

θ[X̂g
k]n+1

τ −

[
∫

Ω

∇NT (nSgρgDg)∇N dΩ

]

(1 − θ)[X̂g
k]nτ

+

∫

Ω

∇NT

(

ρlX l
k

kl
rel

k

µl
ρlg

)

θ dΩ +

∫

Ω

∇NT

(

ρlX l
k

kl
rel

k

µl
ρlg

)

(1 − θ) dΩ

+

∫

Ω

∇NT

(

ρgXg
k

kg
rel

k

µg
ρgg

)

θ dΩ +

∫

Ω

∇NT

(

ρgXg
k

kg
rel

k

µg
ρgg

)

(1 − θ) dΩ (53)
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2.1.2 Energy Component

As for the water and air components, the governing equation for the energy equa-
tion has to be discretized. The weak formulation is presented directly with time
discretization.

1

∆t

[
∫

Ω

NT ((1 − n)ρscs)N dΩ

]

[T̂]n+1
τ+1

−

[
∫

Ω

∇NT (κ )∇N dΩ

]

θ[T̂]n+1
τ+1

=

∫

Ω

NT ρQT dΩ

+
1

∆t

[
∫

Ω

NT ((1 − n)ρscs)N dΩ

]

[T̂]n

+

[
∫

Ω

∇NT (κ )∇N dΩ

]

(1 − θ)[T̂]n

−
1

∆t

[
∫

Ω

NT (nρgug)N dΩ

]

[Ŝg]n+1
τ +

1

∆t

[
∫

Ω

NT (nρgug)N dΩ

]

[Ŝg]n

−
1

∆t

[
∫

Ω

NT
(

nρlul
)

N dΩ

]

[Ŝl]n+1
τ +

1

∆t

[
∫

Ω

NT
(

nρlul
)

N dΩ

]

[Ŝl]n

+ θ

[
∫

Ω

∇NT

(

ρghg kg
rel

k

µg

)

∇N dΩ

]

[p̂g]n+1
τ − (1 − θ)

[
∫

Ω

∇NT

(

ρghg kg
rel

k

µg

)

∇N dΩ

]

[p̂g]n

+ θ

[

∫

Ω

∇NT

(

ρlhl k
l
rel

k

µl

)

∇N dΩ

]

[p̂g]n+1
τ − (1 − θ)

[

∫

Ω

∇NT

(

ρlhl k
l
rel

k

µl

)

∇N dΩ

]

[p̂g]n

− θ

[

∫

Ω

∇NT

(

ρlhl k
l
rel

k

µl

)

∇N dΩ

]

[p̂g
c ]

n+1
τ + (1 − θ)

[

∫

Ω

∇NT

(

ρlhl k
l
rel

k

µl

)

∇N dΩ

]

[p̂g
c ]

n

+ θ

[
∫

Ω

∇NT (Dρghg
a)∇N dΩ

]

[X̂g
a]n+1

τ

+ (1 − θ)

[
∫

Ω

∇NT (Dρghg
a)∇N dΩ

]

[X̂g
a]n

+ θ

[
∫

Ω

∇NT (Dρghg
w)∇N dΩ

]

[X̂g
w]n+1

τ

+ (1 − θ)

[
∫

Ω

∇NT (Dρghg
w)∇N dΩ

]

[X̂g
w]n

− θ

∫

Ω

∇NT

(

ρghg kg
rel

k

µg
ρgg

)

dΩ + (1 − θ)

∫

Ω

∇NT

(

ρghg kg
rel

k

µg
ρgg

)

dΩ

− θ

∫

Ω

∇NT

(

ρlhl k
l
rel

k

µl
ρlg

)

dΩ + (1 − θ)

∫

Ω

∇NT

(

ρlhl k
l
rel

k

µl
ρlg

)

dΩ (54)
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Finite element equation

In practice, the equations are calculated over elemental volumes. The union of these
elemental volumes forms the entire domain.

Ω =
⋃

Ωe (55)
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2.2 Algebraic Equations

The algebraic equation is derived from the weak formulation with time discretization.
Each term is written in matrix form. The matrices are element matrices. Their
properties are described in the next section. This is the formulation needed for the
implementation of the equations into the code.

2.2.1 Algebraic equation of the air and water components

θ(Kls
k + K

gs
k )[p̂g]n+1

τ+1 = θ[rk]n+1
τ + (1 − θ)[rk]n

− (1 − θ)(Kls
k + K

gs
k )[p̂g]n

−
1

∆t

(

[Ck]n+1
τ − [Ck]n

)

+ θKls
k

∂pc

∂S
[Ŝg]n+1

τ + (1 − θ)Kls
k

∂pc

∂S
[Ŝg]n

+ (ρlgls
k + ρgg

gs
k )

+ (1 − θ)Kg
k[X̂g

k]n+1
τ + θKg

k[X̂g
k]nτ (56)

2.2.2 Algebraic equation of the energy component

(

1

∆t
Cs

t − θKs
t

)

[T̂]n+1
τ+1 = θ[rt]

n+1
τ + (1 − θ)[rt]

n

+

(

1

∆t
Cs

t + θKs
t

)

[T̂]n

−
1

∆t
Cg

u[Ŝg]n+1
τ +

1

∆t
Cg

u[Ŝg]n

−
1

∆t
Cl

u[Ŝl]n+1
τ +

1

∆t
Cl

u[Ŝl]n

+ θ(Kg
h + Kl

h)[p̂g]n+1
τ + (1 − θ)(Kg

h + Kl
h)[p̂g]n

+ θKl
h[p̂g

c ]
n+1
τ + (1 − θ)Kl

h[p̂g
c ]

n

+ (ρlGls
w + ρgGgs

w )g

+ θKg
a[X̂g

a]n+1
τ + (1 − θ)Kg

a[X̂g
a]nτ

+ θKg
w[X̂g

w]n+1
τ + (1 − θ)Kg

w[X̂g
w]nτ (57)

Finite element equation

The union of all elemental volumes forms the domain.

Ω =
⋃

Ωe (58)
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2.3 Element Matrices

Element matrices contain an integral that has to be approximated numerically.
The approximation is done with the help of shape functions, which depend on the
dimension and the shape of the mesh elements.

In the first part of this section, the element matrices are evaluated for 1-dimensional
linear elements. In the second part of this section the same matrix types are evalu-
ated for 2-dimensional triangular elements.

2.3.1 1-D Linear Element Matrices

The shape functions for 1-D elements are as follows in global coordinates.

Ne
1 (r) =

x2 − x

x2 − x1

Ne
2 (r) =

x − x1

x2 − x1
(59)

In local coordinates, the shape functions are expressed by

Ne
1 (r) =

1 − r

2

Ne
2 (r) =

r − 1

2
(60)

Below, the element matrices for the water component are evaluated for 1-D linear
elements. The matrices in equations (61) to (64) are used in the algebraic equations
of the air and water components. The matrices in equations (65) to (69) are used
in the algebraic equation of the energy component.

Conductivity Matrix/ Capillarity Matrix The conductivity matrix and capillarity
matrix are equal. They are matrices of K-type integral:

∫

∇Nf(ui)∇NdΩ.

K
γs
k =

∫

Ωe

∇NT

(

ργXγ
k

kγ
rel

k

µγ

)

∇N dΩe

=

∫

V e

[

∇N1

∇N2

]T (

ργXγ
k

kγ
rel

k

µγ

)

[

∇N1 ∇N2

]

dV e

= Ae

∫

Le

[

∂N1/∂x′

∂N2/∂x′

]T (

ργXγ
k

kγ
rel

kx′

µγ

) [

∂N1/∂x′

∂N2/∂x′

]T

dx′

= Ae

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]

[J−1
1D ]T

(

ργXγ
k

kγ
rel

kx′

µγ

)
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×[J−1
1D ]

[

∂N1/∂x′

∂N2/∂x′

]T

detJ1D dr

=

(

ργXγ
k

kγ
rel

k

µγ

)e
Ae

Le

[

1 0
0 1

]T

(61)

Capacitance Matrix The capacitance matrix is a matrix of the type C-type inte-
gral:

∫

Nf(ui)NdΩ

C
γ
k =

∫

Ωe

NT
(

nργX̂γ
k

)

N dΩe

=

∫

V e

[

N1

N2

]T
(

nργX̂γ
k

)

[

N1 N2

]

dV e

= Ae

∫

Le

[

N1

N2

]T
(

nργX̂γ
k

)

[

N1 N2

]

dx′

= Ae

∫ +1

−1

[

N1

N2

]T
(

nργX̂γ
k

)

[

N1 N2

]

detJ1D dr

=
(

nργX̂γ
k

)e AeLe

6

[

2 1
1 2

]

(62)

Component Diffusion Matrix The component diffusion matrix is a matrix of the
type K-type integral:

∫

∇Nf(ui)∇NdΩ

D
γ
k =

∫

Ωe

∇NT (nSγργDγ)∇N dΩe

=

∫

V e

[

∇N1

∇N2

]T

(nSγργDγ)

[

∇N1

∇N2

]T

dV e

= Ae

∫

Le

[

∂N1/∂x′

∂N2/∂x′

]T

(nSγργDγ)

[

∂N1/∂x′

∂N2/∂x′

]T

dx′

= Ae

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]T

[J−1
1D ]T (nSγργDγ)

×[J−1
1D ]

[

∂N1/∂x′

∂N2/∂x′

]T

detJ1D dx′

= (nSγργDγ)
Ae

Le

[

+1 −1
−1 +1

]

(63)
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Gravity Forces Gravity forces are written as a matrix of g-type integral:
∫

∇Nf(ui)dΩ

g
γs
k =

∫

Ωe

∇NT

(

ργXγ
k

kγ
rel

k

µγ
ργg

)

dΩe

=

∫

V e

[

∇N1

∇N2

]T (

ργXγ
k

kγ
rel

k

µγ
ργg

)

dV e

= Ae

∫

Le

[

∂N1/∂x′

∂N2/∂x′

]T (

ργXγ
k

kγ
rel

k

µγ
ργg

)

dx′

= Ae

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]T

[J−1
1D ]T

(

ργXγ
k

kγ
rel

k

µγ
ργg

)

detJ1D dx′

=

(

ργXγ
k

kγ
rel

k

µγ
ργg

)

Ae

Le

[

−1
+1

]

(64)

Heat Capacitance Matrix for the Solid Phase The heat capacitance matrix is
a matrix of the type C-type integral:

∫

Nf(ui)NdΩ

Cs
t =

∫

Ωe

NT ((1 − n)ρscs)N dΩe

=

∫

V e

[

N1

N2

]T

((1 − n)ρscs)
[

N1 N2

]

dV e

= Ae

∫

Le

[

N1

N2

]T

((1 − n)ρscs)
[

N1 N2

]

dx′

= Ae

∫ +1

−1

[

N1

N2

]T

((1 − n)ρscs)
[

N1 N2

]

detJ1D dr

= ((1 − n)ρscs)
e AeLe

6

[

2 1
1 2

]

(65)

Heat Capacitance Matrix for the Gas or Liquid Phase The heat capacitance
matrix is a matrix of the type C-type integral:

∫

Nf(ui)NdΩ

C
g
t =

∫

Ωe

NT (nργuγ)N dΩe

=

∫

V e

[

N1

N2

]T

(nργuγ)
[

N1 N2

]

dV e

= Ae

∫

Le

[

N1

N2

]T

(nργuγ)
[

N1 N2

]

dx′
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= Ae

∫ +1

−1

[

N1

N2

]T

(nργuγ)
[

N1 N2

]

detJ1D dr

= (nργuγ)
e AeLe

6

[

2 1
1 2

]

(66)

Heat Conductivity Matrix The conductivity matrix is a matrix of K-type integral:
∫

∇Nf(ui)∇NdΩ.

K
γ
t =

∫

Ωe

∇NT
(

nSgλg + nSlλl + (1 − n)λs
)

∇N dΩe

=

∫

V e

[

∇N1

∇N2

]T
(

nSgλg + nSlλl + (1 − n)λs
)

[

∇N1

∇N2

]T

dV e

= Ae

∫

Le

[

∂N1/∂x′

∂N2/∂x′

]T
(

nSgλg + nSlλl + (1 − n)λs
)

[

∂N1/∂x′

∂N2/∂x′

]T

dx′

= Ae

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]T

[J−1
1D ]T

(

nSgλg + nSlλl + (1 − n)λs
)

[J−1
1D ]

×

[

∂N1/∂x′

∂N2/∂x′

]T

detJ1D dr

=
(

nSgλg + nSlλl + (1 − n)λs
)e Ae

Le

[

+1 −1
−1 +1

]

(67)

Heat advection matrix for the gas and liquid phase The conductivity matrix
is a matrix of K-type integral:

∫

∇Nf(ui)∇NdΩ.

K
γs
t =

∫

Ωe

∇NT

(

ργ kγ
rel

k

µγ
hγ

)

∇N dΩe

=

∫

V e

[

∇N1

∇N2

]T (

ργ kγ
rel

k

µγ
hγ

)

[

∇N1 ∇N2

]

dV e

= Ae

∫

Le

[

∂N1/∂x′

∂N2/∂x′

]T (

ργ kγ
rel

k

µγ
hγ

) [

∂N1/∂x′

∂N2/∂x′

]T

dx′

= Ae

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]T

[J−1
1D ]T

(

ργ kγ
rel

k

µγ
hγ

)

×[J−1
1D ]

[

∂N1/∂x′

∂N2/∂x′

]T

detJ1D dr

=

(

ργ kγ
rel

k

µγ
hγ

)e
Ae

Le

[

+1 −1
−1 +1

]

(68)
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Component Diffusion Matrix The component diffusion matrix is a matrix of the
type K-type integral:

∫

∇Nf(ui)∇NdΩ

D
γ
k =

∫

Ωe

∇NT (ργDγhγ)∇N dΩe

=

∫

V e

[

∇N1

∇N2

]T

(ργDγhγ)

[

∇N1

∇N2

]T

dV e

= Ae

∫

Le

[

∂N1/∂x′

∂N2/∂x′

]T

(ργDγhγ)

[

∂N1/∂x′

∂N2/∂x′

]T

dx′

= Ae

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]T

[J−1
1D ]T (ργDγhγ)

×[J−1
1D ]

[

∂N1/∂x′

∂N2/∂x′

]T

detJ1D dx′

= (ργDγhγ)
Ae

Le

[

+1 −1
+1 −1

]

(69)

2.3.2 2-D Triangular Matrices

The shape functions for 2-D triangular elements are as shown in equation (shape
triangle). The shape functions Ni are the area coordinates Li, i.e. we have isopara-
metric elements.







N1

N2

N3







=
1

2A





x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1











1
x
y







(70)

Now the derivatives of the shape functions can be written down.

∂N

∂x
=































∂N1

∂x
=

y2 − y3

2A
∂N2

∂x
=

y3 − y1

2A
∂N3

∂x
=

y1 − y2

2A































∂N

∂y
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
























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∂N1

∂y
=

x3 − x2

2A
∂N2

∂y
=

x1 − x3

2A
∂N3

∂y
=

x2 − x1

2A































(71)

When element matrices have to be evaluated we are faced with integration of quan-
tities defined in terms of area coordinates. Equation (72) shows that an exact
calculation is possible for triangular elements.

∫∫

∆

La
1Lb

2L
c
3dxdy = 2∆

a!b!c!

(a + b + c + 2)!
(72)

The matrices below are evaluated for an orthotropic medium. The matrices in
equations (73) to (76) are used in the algebraic equations of the air and water
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components. The matrices in equations (77) to (81) are used in the algebraic
equation of the energy component.

Conductivity Matrix/ Capillarity Matrix The conductivity matrix is a matrix of
of K-type integral:

∫

∇Nf(ui)∇NdΩ.

Ke
ij =

∫

Ωe

∂Ni

∂xα

(

ργXγ
k

kγ
rel

kαβ

µγ

)

∂Nj

∂xβ
dΩe

=

∫

Ωe

∂Ni

∂x

[(

ργXγ
k

kγ
rel

kxx

µγ

)

∂Nj

∂x
+

(

ργXγ
k

kγ
rel

kxy

µγ

)

∂Nj

∂y

]

dΩe

+

∫

Ωe

∂Ni

∂y

[(

ργXγ
k

kγ
rel

kyx

µγ

)

∂Nj

∂x
+

(

ργXγ
k

kγ
rel

kyy

µγ

)

∂Nj

∂y

]

dΩe

=

(

ργXγ
k

kγ
rel

ke
xx

µγ

)
∫

Ωe

∂Ni

∂x

∂Nj

∂x
dΩe +

(

ργXγ
k

kγ
rel

ke
yy

µγ

)
∫

Ωe

∂Ni

∂y

∂Nj

∂y
dΩe

=

(

ργXγ
k

kγ
rel

ke
xx

µγ

)
∫

Ωe

yj − yk

2A

yk − yi

2A
dΩe

+

(

ργXγ
k

kγ
rel

ke
yy

µγ

)
∫

Ωe

xk − xj

2A

xi − xk

2A
dΩe

=

(

ργXγ
k

kγ
rel

ke
xx

4Aµγ

)

(yj − yk)(yk − yi)

+

(

ργXγ
k

kγ
rel

ke
yy

4Aµγ

)

(xk − xj)(xi − xk)

Ke =

∫

Ωe

∇N

(

ργXγ
k

kγ
rel

k

µγ

)

∇NT dΩe

=

(

ργXγ
k

kγ
rel

ke
xx

4Aµγ

)

×





(y2 − y3)(y2 − y3) (y2 − y3)(y3 − y1) (y2 − y3)(y1 − y2)
(y3 − y1)(y2 − y3) (y3 − y1)(y3 − y1) (y3 − y1)(y1 − y2)
(y1 − y2)(y2 − y3) (y1 − y2)(y3 − y1) (y1 − y2)(y1 − y2)





+

(

ργXγ
k

kγ
rel

ke
yy

4Aµγ

)

×





(x3 − x2)(x3 − x2) (x3 − x2)(x1 − x3) (x3 − x2)(x2 − x1)
(x1 − x3)(x3 − x2) (x1 − x3)(x1 − x3) (x1 − x3)(x2 − x1)
(x2 − x1)(x3 − x2) (x2 − x1)(x1 − x3) (x2 − x1)(x2 − x1)





(73)
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Element capacitance matrix The capacitance matrix is a matrix of the type
C-type integral:

∫

Nf(ui)NdΩ

Ce
ij =

∫

Ωe

Ni

(

nργX̂γ
k

)e

Nj dΩe

=
(

nργX̂γ
k

)e

A

{

1
6 i = j
1
12 i �= j

Ce =

∫

Ωe

N
(

nργX̂γ
k

)e

N dΩe

=
(

nργX̂γ
k

)e
∫

Ωe





N1N1 N1N2 N1N3

N2N1 N2N2 N2N3

N3N1 N3N2 N3N3



 dΩe

=
(

nργX̂γ
k

)e A

12





2 1 1
1 2 1
1 1 2



 (74)

Component Diffusion Matrix The component diffusion matrix is a matrix of the
type K-type integral:

∫

∇Nf(ui)∇NdΩ

Ke
ij =

∫

Ωe

∂Ni

∂xα

(

nSγργDγ
αβ

) ∂Nj

∂xβ
dΩe

=

∫

Ωe

∂Ni

∂x

[

(nSγργDγ
xx)

∂Nj

∂x
+

(

nSγργ
xyDγ

) ∂Nj

∂y

]

dΩe

+

∫

Ωe

∂Ni

∂y

[

(

nSγργDγ
yx

) ∂Nj

∂x
+

(

nSγργDγ
yy

) ∂Nj

∂y

]

dΩe

= (nSγργDγ,e
xx )

∫

Ωe

∂Ni

∂x

∂Nj

∂x
dΩe +

(

nSγργDγ,e
yy

)

∫

Ωe

∂Ni

∂y

∂Nj

∂y
dΩe

= (nSγργDγ,e
xx )

∫

Ωe

yj − yk

2A

yk − yi

2A
dΩe

+
(

nSγργDγ,e
yy

)

∫

Ωe

xk − xj

2A

xi − xk

2A
dΩe

=
(nSγργDγ,e

xx )

4A
(yj − yk)(yk − yi) +

(

nSγργ,e
yy Dγ

)

4A
(xk − xj)(xi − xk)
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Ke =

∫

Ωe

∇N (nSγργDγ) ∇NT dΩe

=
(nSγργDγ,e

xx )

4A





(y2 − y3)(y2 − y3) (y2 − y3)(y3 − y1) (y2 − y3)(y1 − y2)
(y3 − y1)(y2 − y3) (y3 − y1)(y3 − y1) (y3 − y1)(y1 − y2)
(y1 − y2)(y2 − y3) (y1 − y2)(y3 − y1) (y1 − y2)(y1 − y2)





+

(

nSγργDγ,e
yy

)

4A





(x3 − x2)(x3 − x2) (x3 − x2)(x1 − x3) (x3 − x2)(x2 − x1)
(x1 − x3)(x3 − x2) (x1 − x3)(x1 − x3) (x1 − x3)(x2 − x1)
(x2 − x1)(x3 − x2) (x2 − x1)(x1 − x3) (x2 − x1)(x2 − x1)





(75)

Gravity Forces Gravity forces are written as a matrix of g-type integral:
∫

∇Nf(ui)dΩ.

ke =

∫

Ωe

∇N

(

ργXγ
k

kγ
rel

k

µγ
ργg

)

dΩe

=







∂N1

∂x
∂N1

∂z
∂N2

∂x
∂N1

∂z
∂N3

∂x
∂N1

∂z







(

ργXγ
k

kγ
rel

2µγ
ργ

)[

kxx kxz

kzx kzz

] [

0
g

]

=







∂N1

∂x
∂N1

∂z
∂N2

∂x
∂N1

∂z
∂N3

∂x
∂N1

∂z







(

ργXγ
k

kγ
rel

2µγ
ργ

)[

0
gkzz

]

= gkzz

(

ργXγ
k

kγ
rel

2µγ
ργ

)







∂N1

∂z
∂N2

∂z
∂N3

∂z







=
1

2A
gkzz

(

ργXγ
k

kγ
rel

2µγ
ργ

)





x3 − x2

x1 − x3

x2 − x1



 (76)

Heat Capacitance Matrix for the Solid Phase The capacitance matrix is a
matrix of the type C-type integral:

∫

Nf(ui)NdΩ

Ce
ij =

∫

Ωe

Ni ((1 − n)ρscs)
e
Nj dΩe

= ((1 − n)ρscs)
e
A

{

1
6 i = j
1
12 i �= j

Ce =

∫

Ωe

N ((1 − n)ρscs)
e
N dΩe
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= ((1 − n)ρscs)
e
∫

Ωe





N1N1 N1N2 N1N3

N2N1 N2N2 N2N3

N3N1 N3N2 N3N3



 dΩe

= ((1 − n)ρscs)
e A

12





2 1 1
1 2 1
1 1 2



 (77)

Heat Capacitance Matrix for the Gas or Liquid Phase The capacitance matrix
is a matrix of the type C-type integral:

∫

Nf(ui)NdΩ.

Ce
ij =

∫

Ωe

Ni (nργuγ)
e
Nj dΩe = (nργuγ)

e
A

{

1
6 i = j
1
12 i �= j

Ce =

∫

Ωe

N (nργuγ)
e
N dΩe = (nργuγ)

e
∫

Ωe





N1N1 N1N2 N1N3

N2N1 N2N2 N2N3

N3N1 N3N2 N3N3



 dΩe

= (nργuγ)
e A

12





2 1 1
1 2 1
1 1 2



 (78)

Heat Conductivity Matrix The heat conductivity matrix is a matrix of the type
K-type integral:

∫

∇Nf(ui)∇NdΩ

Ke =

∫

Ωe

∇N

(

ργ kγ
rel

k

µγ
hγ

)

∇NT dΩe

=
1

4A

(

ργ kγ
rel

kxx

µγ
hγ

)

∗





(y2 − y3)(y2 − y3) (y2 − y3)(y3 − y1) (y2 − y3)(y1 − y2)
(y3 − y1)(y2 − y3) (y3 − y1)(y3 − y1) (y3 − y1)(y1 − y2)
(y1 − y2)(y2 − y3) (y1 − y2)(y3 − y1) (y1 − y2)(y1 − y2)





+
1

4A

(

ργ kγ
rel

kyy

µγ
hγ

)

∗





(x3 − x2)(x3 − x2) (x3 − x2)(x1 − x3) (x3 − x2)(x2 − x1)
(x1 − x3)(x3 − x2) (x1 − x3)(x1 − x3) (x1 − x3)(x2 − x1)
(x2 − x1)(x3 − x2) (x2 − x1)(x1 − x3) (x2 − x1)(x2 − x1)





(79)
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Heat advection matrix for the gas and liquid phase The heat conductivity
matrix is a matrix of the type K-type integral:

∫

∇Nf(ui)∇NdΩ

Ke =

∫

Ωe

∇N
(

nSgλg + nSlλl + (1 − n)λs
)

∇NT dΩe

=
1

4A

(

nSgλg
xx + nSlλl

xx + (1 − n)λs
xx

)

∗




(y2 − y3)(y2 − y3) (y2 − y3)(y3 − y1) (y2 − y3)(y1 − y2)
(y3 − y1)(y2 − y3) (y3 − y1)(y3 − y1) (y3 − y1)(y1 − y2)
(y1 − y2)(y2 − y3) (y1 − y2)(y3 − y1) (y1 − y2)(y1 − y2)





+
1

4A

(

nSgλg
yy + nSlλl

yy + (1 − n)λs
yy

)

∗




(x3 − x2)(x3 − x2) (x3 − x2)(x1 − x3) (x3 − x2)(x2 − x1)
(x1 − x3)(x3 − x2) (x1 − x3)(x1 − x3) (x1 − x3)(x2 − x1)
(x2 − x1)(x3 − x2) (x2 − x1)(x1 − x3) (x2 − x1)(x2 − x1)





(80)

Component Diffusion Matrix The component diffusion matrix is a matrix of the
type K-type integral:

∫

∇Nf(ui)∇NdΩ

Ke
ij =

∫

Ωe

∂Ni

∂xα

(

ργhγDγ
αβ

) ∂Nj

∂xβ
dΩe

=

∫

Ωe

∂Ni

∂x

[

(ργhγDγ
xx)

∂Nj

∂x
+

(

ργhγDγ
xy

) ∂Nj

∂y

]

dΩe

+

∫

Ωe

∂Ni

∂y

[

(

ργhγDγ
yx

) ∂Nj

∂x
+

(

ργhγDγ
yy

) ∂Nj

∂y

]

dΩe

= (ργhγDγ,e
xx )

∫

Ωe

∂Ni

∂x

∂Nj

∂x
dΩe +

(

ργhγDγ,e
yy

)

∫

Ωe

∂Ni

∂y

∂Nj

∂y
dΩe

= (ργhγDγ,e
xx )

∫

Ωe

yj − yk

2A

yk − yi

2A
dΩe +

(

ργhγDγ,e
yy

)

∫

Ωe

xk − xj

2A

xi − xk

2A
dΩe

=
(ργhγDγ,e

xx )

4A
(yj − yk)(yk − yi) +

(

ργhγDγ,e
yy

)

4A
(xk − xj)(xi − xk)
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Ke =

∫

Ωe

∇N (ργhγDγ) ∇NT dΩe

=
(ργhγDγ,e

xx )

4A





(y2 − y3)(y2 − y3) (y2 − y3)(y3 − y1) (y2 − y3)(y1 − y2)
(y3 − y1)(y2 − y3) (y3 − y1)(y3 − y1) (y3 − y1)(y1 − y2)
(y1 − y2)(y2 − y3) (y1 − y2)(y3 − y1) (y1 − y2)(y1 − y2)





+

(

ργhγDγ,e
yy

)

4A





(x3 − x2)(x3 − x2) (x3 − x2)(x1 − x3) (x3 − x2)(x2 − x1)
(x1 − x3)(x3 − x2) (x1 − x3)(x1 − x3) (x1 − x3)(x2 − x1)
(x2 − x1)(x3 − x2) (x2 − x1)(x1 − x3) (x2 − x1)(x2 − x1)





(81)

2.4 System Matrix and Right Hand Side Vector

The system matrix assembles the element matrices. The form of the system matrix
and right hand side (RHS) vector depends on the chosen coupling scheme. Equation
82 shows a completely partitioned coupling scheme. Equation 83 shows a coupling
scheme, where the primary variables for the air and water components, i.e. gas
pressure and gas saturation are coupled and temperature is calculated separately.

[θ(Kls
w + Kgs

w )][p̂g] = RHSP
[

1

∆t

(

Cg
w − Cl

w

)

− Kls
w

∂pc

∂S

]

[Ŝg] = RHSS

(

1

∆t
Cs

t − θKs
t

)

[T̂]n+1
τ+1 = RHST (82)

[

θ(Kgs
a + Kls

a ) 1
∆t

(

Cg
a − Cl

a

)

− Kls
a

∂pc
∂S

θ(Kgs
w + Kls

w) 1
∆t

(

Cg
w − Cl

w

)

− Kls
w

∂pc
∂S

] [

p̂g

Ŝg

]

= RHS

(

1

∆t
Cs

t − θKs
t

)

[T̂]n+1
τ+1 = RHST (83)
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3 Code Implementation

To calculate the matrix, the code needs to gain access to the variables. A sum-
mary of all state variables and material properties and their implementation into the
Rockflow code is shown in Appendix 1. The following sections show the Rockflow
functions for state variables and material functions.

3.1 State Variables

In this section the implementation of the state variables is briefly explained . The
aim of this section is to enable the reader to understand where these variables can
be found in the program. Program details are not in the scope of this section. Table
3 gives an overview of the state variables.

Variable Function Used in Defined in

Xγ
k MPCGetMassFraction() MPC KER MPC

pg
w,sat MATCalcVapourPressure MPC/ENT MAT FP

hγ
k MATGetEnthalpy ENT MAT FP

hγ MATCalcEnthalpyPhase ENT MAT FP

Table 3: Overview of data access for state variables

3.1.1 Vapour pressure�pg
w,sat

Vapour pressure is calculated according to the Claudius Clapeyron equation, using
the vapourisation enthalpy library described in section 1.3.

The functions for vapour pressure are located in the MAT FP kernel of the program,
as shown in Table 4.

Description Function RF Object

Calculation of vapour pressure MATCalcVapourPressure MAT FP

Table 4: Vapour pressure functions
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3.1.2 Mass Fractions�Xγ
k

To obtain mass fraction results, we implement the structure shown in Table 5 into
the program.

Description Function RF Object

Calculation MATCalcMassFraction MAT-FP

Data access in kernel
for finite element matrix MPCGetMassFraction MPC
calculation

Specification of data access MPCGetMassFraction =

MODGetMassFractionXX MOD

Table 5: Mass fraction functions

3.1.3 Internal energy

The function for internal energy are located in the MAT FP kernel of the program,
as shown in Table 6.

Description Function RF Object

Calculation of vapour pressure MATGetInternalEnergy MAT FP

Table 6: Vapour pressure functions

3.1.4 Phase enthalpy�hγ

The function for the calculation of all enthalpies is located in the MAT FP kernel
of the program. Table 7 shows the Rockflow functions for enthalpy calculation.
The function for the calculation of partial enthalpies works by formula and uses the
library for the vapourisation enthalpy. The phase enthalpies are calculated using the
mass fraction functions and the partial enthalpies.
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Description Function RF Object

Calculation of partial enthalpies MATGetEnthalpy MAT FP

Calculation of phase enthalpies MATCalcEnthalpyPhase MAT FP

Table 7: Enthalpy functions

3.1.5 Vapourisation Enthalpy�hg
w

As described in Section 1.3 of this report, vapourisation enthalpy is only dependent
on temperature and can therefore be tabulated. Therefore, as already mentioned,
a library can be used to calculate the function. The library files are included in the
model:

#include "steam67.h"

#include "mathlib.h"

There is no function for the vapourisation enthalpy, as it is calculated directly in
the function for vapour pressure and in the function for enthalpy.
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3.2 Material Properties

In this section the implementation of material functions is briefly explained . Table
8 gives an overview of the material properties.

Variable Function Used in Defined in

ργ GetFluidDensity() MAT FP MAT FP
µγ GetFluidViscosity() MMP/MPC MAT FP
Ae GetElementExchangeArea() ELE ELE
k GetPermeabilityTensor() ENT/MMP/MPC MAT MP
kγ
rel

CalcAllRelativePermeabilities() MAT MP MAT MP
n GetSoilPorosity() MAT MP MAT MP
Sγ MPCGetNodeSaturation() MOD MOD
Dγ MATGetDiffusionCoefficient() MAT TP MAT TP

Table 8: Overview of data access for material properties used in element matrices

The access to material functions has been changed to a more direct access. Tables
9 and 10 show the old and new procedure. Before, the functions had variable
parameter lists, which is no longer the case. The parameters are extracted with the
help of a MODGetNodeIndexX function, which is defined in the model object. The
advantages of this method are:

• more direct, as one function less to hand over

• saves computation time, as no variable parameter lists have to be evaluated.

The user wishing to calculate material functions with this method should add the
get function MODGetNodeIndexParameter XX to the model, XX being the model
name.

Description Function RF Object

FE kernel needs material function GetMatFunction() MPC/ENT
for FE matrix calculation

Calculation of material function CalcMatFunction MAT FP

Specification of model GetMatFunction=

specific parameters GetCalcMatFunctionXX MOD
�→CalcMatFunction

Table 9: Old procedure for material function data access
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Description Function RF Object

Access to material function in kernel rho=MATCalcMatFunction() MPC/ENT

Calculation of material function MATCalcMatFunction() MAT FP

Overwriting MATGetIndexParameter= MOD
MODGetNodeIndexParameter XX

Definition of model function for
access to node index MODGetNodeIndexParameter XX MOD

Table 10: New procedure for material function data access

The data input for material properties (fluid properties only to date) has also
changed with the introduction of subkeywords. We hope, that this makes the input
easier to follow. The first number in the subkeyword is the calculation method that
will be used. This is followed for the parameters needed by the particular method.
Below, parameter example values are given for each method currently implemented.

#FLUID_PROPERTIES_NEW

$DENSITY

0 1000. ; rho\_0: reference density,

1 1000. 1e-4 ; rho\_0,drho/dp:compressibility

2

3

10 1000. 0.2 ; rho\_0,drho/dC:expansion coeff.

11 1000. 0.2 1e-4 ; rho\_0,drho/dC,drho/dT:therm. expan. coeff.

12 1000. 1e-4 ; rho\_0,drho/dT

13 ; no parameters needed

$VISCOSITY

0 1e-3 ; my\_0: reference viscosity

$HEAT_CAPACITY

0 4800. ; c\_0: reference heat capacity

$HEAT_CONDUCTIVITY

0 0.6 ; lamda\_0: reference heat conductivity

45



3.2.1 Fluid phase density

Fluid density can be computed in one of the following ways in the Rockflow code :

Case Function

0 ρα = ρα
0

1 ρα(p) = ρα
0 + βα

p pα

2 ρα(C) = ρα
0 + max(ρα(C), ρα

0

3 ρα(Ci) = ρα
0 + max(ρα

i (Ci), ρ
α
0

8 Template
9 Template

10 ρα(C) = ρα
0 + ∂ρα

∂C (C − C0)
11 ρα(C, T ) = ρα

0 + max(C, 0)βp + max(T, 0)βT

12 ρα(T ) = ρα
0 + ∂ρ

∂T (T − T0)

13 ρα(pg, T ) = Ma

RT pg + (Mw−Ma)
RT pg

w,sat(T )

Table 11: Fluid density calculation methods implemented in Rockflow

Data access

The implementation of fluid density functions into the Rockflow code is as follows.

Description Function RF Object

Access to fluid density in kernel rho=MATCalcFluidDensity() MPC/ENT

Calculation of density MATCalcFluidDensity MAT

Overwriting MATGetNodeIndexTemperature= MOD
MODGetNodeIndexTemperature XX

Definition of model function for
access to node index MODGetNodeIndexTemperature XX MOD

Table 12: Fluid density functions in Rockflow
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3.2.2 Fluid Viscosity

Fluid viscosity can be computed in one of the ways illustrated in Table 13. To
obtain fluid viscosity results, the structure shown in Table 14 is implemented in the
program.

Case Function

0 µα(p) = µα
0

1 µα(p) = GetCurveV alue(get fp curve(fp), 0, pavg, gueltig)

2 µα(p) = µα
0 + pavg · dµ

dp

8 Template

10 µα(C, T ) = µ
f1+f2 f1 = f(C), f2 = f(T )

Table 13: Fluid viscosity calculation methods implemented in Rockflow

Description Function RF Object

FE-Kernel needs fluid viscosity
for finite element matrix
calculation GetFluidViscosity MPL

Calculation of viscosity using
one of the cases
as described above CalcFluidViscosity MAT

Specification of model
specific parameters for GetFluidViscosity =

fluid viscosity calculation THMGetFluidViscosity MOD

Table 14: Fluid viscosity functions in Rockflow

3.2.3 Material Properties contained in the input file

The material properties that are used in our application and that are provided by
the user in the input file are

• capillary pressure

• permeability

• relative permeability

• specific heat capacity
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• thermal conductivity

• diffusion coefficient

The input file contains reference to curves for capillary pressure relationships and
for relative permeability relationships. These are summerised in Tables 15 and 16.

pc(S) model
cp[0] cp[1] cp[2] cp[3] cp[4] cp[5]
0 No capillary pressure pc = 0
1 User-defined curve Curve
2 Linear function Sw

r Sw
max pcmax

3 Parabolic function Sw
r Sw

max a b
4 van Genuchten (1980) Sw

r Sw
max α m n

5 Haverkamp et al. (1977) Sw
r Sw

max A b c
6 Brooks & Corey (1966) Sw

r pb λ

Table 15: Rockflow models for capillary pressure

krel(S) model
rp[0] rp[1] rp[2] rp[3] rp[4] rp[5] rp[6]
0 Perfectly mobile phases
1 User-defined curve 1st 2nd ...
2 Linear function Sg

1 Sg
2 Sw

1 Sw
2

3 Parabolic function Sg
1 Sg

2 a Sw
1 Sw

2 b
4 van Genuchten (1980) Sw

r Sw
max α m n

5 Haverkamp et al. (1977) Sw
r Sw

max α A β
6 Brooks & Corey (1966) Sw

r Sw
max

Table 16: Rockflow models for relative premeability

The user has a lot of freedom in the definition of the material properties functions.
The text below is a sample extract of an input file. Input files that include material
properties have the extension .rfd. In general, function 0 denotes a constant value.
The keys are in the Rockflow manual.

; 7 Materials

----------------------------------------------------------

#REFERENCE_CONDITIONS

9.810000 0.000000 101325.000000

#FLUID_PROPERTIES ; gas

0 1.15 ; density function, parameter

0 1.800000e-005 ; viscosity function, parameter

48



3.000000e+003 1.000000e+000 ; heat capacity, heat conductivity

#FLUID_PROPERTIES ; liquid

0 1.050000e+003 ; density function, parameter

0 0.0012 ; viscosity function, parameter

0.000000 ; real gas factor

4.000000e+003 2.000000e+000 ; heat capacity, heat conductivity

#SOIL_PROPERTIES ; rock

2 1.0 ; dimension, (thickness),

0 ; porosity model

3.79000e-001 1.000000e+000 ; porosity, tortuosity

0.000000e-006 ; storativity

0 0 7.68895e-021 ; permeability model, permeability tensor, permeabilities

4.000000e+000 0.1 1.0 0.37 0.77 4.37 0.000000e+000 ; k-S function

4.000000e+000 0.1 1.0 0.37 0.77 4.37 0.000000e+000 ; p-S function

0.000000e+000 0.000000e+000 ; mass dispersion parameters

3.000000e+000 0.300000e+000 ; heat dispersion parameters

3.000000e+003 1.000000e+003 ; rock density, heat capacity

0 3.000000e+000 ; heat conductivity parameters
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3.3 Finite Element Matrices

The matrices for the water and air component are calculated together in the MPC
kernel. This is possible as the matrices are the same for both components. The
matrices for the energy equation are calculated separately in the ENT kernel.

The Rockflow function MPCCalcElementMatrix1D element matrices of a 1-D linear
element of kernel MPC. The Rockflow function MPCCalcElementMatrix2DTriangle
calculates the finite element matrices of a 2-D linear triangular element of kernel
MPC.

The Rockflow function ENTCalcElementMatrix1D element matrices of a 1-D linear
element of kernel ENT. The Rockflow function ENTCalculateElementMatrix2DTriangle

calculates the finite element matrices of a 2-D linear triangular element of kernel
MPC.

The matrices calculated by the functions are:

• hydraulic conductance matrix

• hydraulic capacitance matrix

• capillary forces

• gravity forces

• vapour diffusion term

The input parameters in hiarchal order are:

• element number

• phase

• component number

• matrix type

The matrices are calculated for a given component first. This means that the
component number is set, then the phase number is set and for that component
and phase, that matrix type is calculated for all elements. Then the next phase
is chosen, and calculation is carried out for all elements, then the component is
changed.
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3.4 System Matrix and Right Hand Side Vector

The Rockflow kernel, in which the system matrix and RHS vector are calculated is
cgs mpc.c/h and cgs ent.c/h. The Rockflow functions MPCMakeEquationSystem
and KERMakeEquationSystemENT calls for calculating element matrices, calculat-
ing RHS terms, assembling the system matrix, incorporating boundary conditions
and source terms. The Rockflow functions needed for this are:

• MPCCalculateElementMatrices / KERCalculateElementMatricesENT

• MPCAssembleSystemMatrix / KERAssembleSystemMatrixENT

• MPCIncorporateBoundaryConditions / KERIncorporateBoundaryConditionsENT

• MPCIncorporateSourceTerms / KERIncorporateSourceTermsENT

The function MPCCalculateElementMatrices was described in the previous sec-
tion. The function MPCAssembleSystemMatrix assembles the system matrix by
calling up the function that makes the element entries. Boundary conditions and
source terms are incorporated by MPCIncorporateBoundaryConditions and
MPCIncorporateSourceTerms.
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4 Examples

In this section, two examples are presented. The first one shows evaporation from
a system. The second one is a two-dimensional example from the DECOVALEX
project.

4.1 Evaporation Example

The evaporation example is a test example to check that the model has physical
integrity. A one meter long bentonite beam is heated on the left side. The heater
has a constant temperature of 100◦C. Figure 11 shows the test setup and the
initial conditions. The initial temperature of the bentonite beam is 12◦C, with a
gas saturation of 0.5, at a gas pressure of 1 bar.

Figure 11: Evaporation example layout

In Figures 12, 13, 14, 15, and the results for the example are shown.

As the bentonite is heated, the temperature distribution across the bentonite slab
changes. Figure 12 shows the temperature across the beam. As expected, the
temperature at the left side of the beam, where the heater is, increases. From left
to right the temperature decreases across the beam.

Figure 12: Evaporation example: Temperature
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Some of the liquid phase evaporates into the gas phase. The gas pressure has to
increase, as we see in Figure 13.

Figure 13: Evaporation example: Gas Pressure

As shown in Figure 14, while gas saturation increases somewhat, liquid saturation
has to decrease by the same amount.

Figure 14: Evaporation example: Gas and Liquid Saturation

The capillary pressure increases, as the temperature rises.

Figure 15: Evaporation example: Capillary Pressure

The mass fraction for vapour increases as expected, whereas the mass fraction for
dissolved air decreases.
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Figure 16: Evaporation example: Mass Fraction Vapour, Mass Fraction Air in Liquid
Phase

The results show all expected physical characteristics.
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4.2 DECOVALEX Example

This example is taken from task BMT1 of the DECOVALEX project. The DECO-
VALEX project task BMT1 deals with the modelling of processes in the nearfield of
underground nuclear waste storage. The layout is shown in Figure 17. Horizontal
tunnels are dug at 1000m depth. At regular intervals, vertical shafts go down from
the tunnels. In these shafts, a heating element is stored, surrounded by a bentonite
buffer. The tunnel is then backfilled. The heater is set to heat for a predefined
amount of time.

In our example, a 2-dimensional vertical cut is made through the setup. The mesh
is a coarse triangular element mesh.

T= 45°C
P=950m

T= 20°C
w=15%

Density: 1750kg/m3

Effective Porosity: 30%
Specific heat: c=(32.3+4.18w)/(100+w)
Hydraulic conductivity: 1.9 x 10-11 m/s

Backfill

Rock
Density: 2746kg/m3

Effective Porosity: 37.9%
Specific heat: c=900 J/(kgK)
Hydraulic conductivity: 1x10-13 m/s

Density: 1800kg/m3

Effective Porosity: 20%
Specific heat: c=(32.3+4.18w)/(100+w)
Hydraulic conductivity: 1x10-13 m/s

Buffer

Figure 17: DECOVALEX example layout

In Figure 18 the effects of the heating process of the core can be seen. The gas
pressure diminished with a similar pattern with distance from the core, as can be
observed in Figure 19.

In Figure 20 the results for saturation are illustrated. On close observation, one
can observe that they complement eachother, as they should. Figure 21 illustrates
the capillary pressure. Figure 22 illustrates the capillary pressure. These results are
conform to expectations
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Figure 18: DECOVALEX example:
Temperature

Figure 19: DECOVALEX example:
Gas Pressure

Figure 20: DECOVALEX example:Gas Saturation and Liquid Saturation
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Figure 21: DECOVALEX example: Capillary Pressure

Figure 22: DECOVALEX example: Mass Fraction Vapour, Mass Fraction Air in
Liquid Phase
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Figure 23: Vapour density (above), gas phase density in the air component (middle),
and gas density (below)
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B Algebraic Equations

For θ = 1

Gas Pressure, Air Component

θ(Kls
a + Kgs

a )[p̂g]n+1
τ+1 = Qa

−
1

∆t

(

Cg
a − Cl

a

)

[Ŝg]n+1 +
1

∆t

(

Cg
a − Cl

a

)

[Ŝg]n

+ Kls
a

∂pc

∂S
[Ŝg]n+1

+ Dg
a[X̂g

a]n+1 (84)

Saturation, Water Component

[

1

∆t

(

Cg
w − Cl

w

)

− Kls
w

∂pc

∂S

]

[Ŝg]n+1 = Qw

+
1

∆t

(

Cg
w − Cl

w

)

[Ŝg]n

− (Kls
w + Kgs

w )[p̂g]n+1

+ Dg
w[X̂g

w]n+1 (85)

B.0.1 Coupling Version 1

Pressure – pg

+ ∇ ·

(

ρlX l
a

kl
rel

k

µl
∇p̂g

)

+ ∇ ·

(

ρgXg
a

kg
rel

k

µg
∇p̂g

)

= Qa

−
∂

∂t
(nρlX l

aŜl + nρgXg
a Ŝg)

− ∇ ·

(

ρlX l
a

kl
rel

k

µl
∇p̂c

)

+ ∇ · (nSgρgXg
aDg∇Xg

a)

− ∇ ·

(

ρlX l
a

kl
rel

k

µl
ρlg

)

−∇ ·

(

ρgXg
a

kg
rel

k

µg
ρgg

)

(86)

Saturation – Sg
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+
∂

∂t
(nρlX l

wŜl + nρgXg
wŜg)

+ ∇ ·

(

ρlX l
w

kl
rel

k

µl
∇p̂c

)

= Qw

+ ∇ ·

(

ρgXg
w

kg
rel

k

µg
∇p̂g

)

+ ∇ ·

(

ρlX l
w

kl
rel

k

µl
∇p̂g

)

+ ∇ · (nSgρgDg∇Xg
w)

− ∇ ·

(

ρlX l
w

kl
rel

k

µl
ρlg

)

−∇ ·

(

ρgXg
w

kg
rel

k

µg
ρgg

)

(87)

B.0.2 Coupling Version 2
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Pressure – pg

+ ∇ ·

(

ρlX l
a

kl
rel

k

µl
∇p̂g

)

+ ∇ ·

(

ρgXg
a

kg
rel

k

µg
∇p̂g

)

+
∂

∂t
(nρlX l

aŜl + nρgXg
a Ŝg)

+ ∇ ·

(

ρlX l
a

kl
rel

k

µl
∇p̂c

)

= Qa

+ ∇ · (nSgρgXg
aDg∇Xg

a)

− ∇ ·

(

ρlX l
a

kl
rel

k

µl
ρlg

)

−∇ ·

(

ρgXg
a

kg
rel

k

µg
ρgg

)

(88)

Saturation – Sg

+
∂

∂t
(nρlX l

wŜl + nρgXg
wŜg)

+ ∇ ·

(

ρlX l
w

kl
rel

k

µl
∇p̂c

)

− ∇ ·

(

ρgXg
w

kg
rel

k

µg
∇p̂g

)

−∇ ·

(

ρlX l
w

kl
rel

k

µl
∇p̂g

)

= Qw

+ ∇ · (nSgρgDg∇Xg
w)

− ∇ ·

(

ρlX l
w

kl
rel

k

µl
ρlg

)

−∇ ·

(

ρgXg
w

kg
rel

k

µg
ρgg

)

(89)

[θ(Kls
w + Kgs

w )][pg] = RHSP
[

1

∆t

(

Cg
w − Cl

w

)

− Kls
w

∂pc

∂S

]

[Ŝg] = RHSS

(

1

∆t
Cs

t − θKs
t

)

[T̂]n+1
τ+1 = RHST (90)

[

θ(Kgs
a + Kls

a ) 1
∆t

(

Cg
a − Cl

a

)

− Kls
a

∂pc
∂S

θ(Kgs
w + Kls

w) 1
∆t

(

Cg
w − Cl

w

)

− Kls
w

∂pc
∂S

] [

pg

Sg

]

= RHS

(

1

∆t
Cs

t − θKs
t

)

[T̂]n+1
τ+1 = RHST (91)
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C Governing Equations

+
∂

∂t
(nργXγ

k Sγ)

− ∇ ·

(

ργXγ
k

krelγk

µγ
∇p̂γ

)

− ∇ · (nSγργDγ∇Xγ
k )

+ ∇ ·

(

ργXγ
k

krelγk

µγ
ργg

)

= Qk (92)

D Henry’s Law

KH = (0.8942 + 1.47e−0.04394T )10−10 (93)
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Strömunsmechanik und Elektron. Rechnen im Bauwesen der Universität Han-
nover, 1996.

O. Kolditz. Computational Methods in Environmental Fluid Mechanics. Springer,
2002.

Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, Inc.,
seventh edition, 1993.

R. W. Lewis and B. A. Schrefler. The Finite Element Mehtod in the Static and

Dynamic Deformation and Consolidation of Porous Media. John Wiley & Sons,
Inc., second edition.

Pierre Perrot. A to Z of Thermodynamics. Oxford University Press.

Bruce E. Poling, John M. Prausnitz, and John P. O�Connell. The Properties of

Gases and Liquids. Mc Graw Hill, fifth edition, 2001.

Carsten Thorenz. Model Adaptive Simulation of Multiphase and Density Deiven

Flow in Fractured and Porous Media. PhD thesis, Institut für Strömunsmechanik
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Abstract

This report is one in the series describing the finite element simulator GeoSys/RockFlow.
The simulator has multiple applications. The application of the work described here
are situations where non-isothermal multiphase-multicomponental flow calculations
are needed, such as in deep geological nuclear waste storage.

GeoSys/RockFlow is written in an object-oriented way. The process (PCS) kernel
described by this work is the multiphase-multicomponental (MPC) kernel of the pro-
gram. The first section of the report describes general coordinate transformation
tools and shape functions used in the finite element method (FEM). Subsequent
sections show the development of the element matrix types needed for the kernel.
The specific matrices, taking into account all needed material functions are then
developed. Finally, a simple example illustrates that the element matrices have been
correctly implemented.

List of Symbols

A . . . . . . . Element area [ m2 ]

C . . . . . . . Mass matrix [ kg ]

D . . . . . . . Diffusion coefficient [ m2

s
]

e . . . . . . . . Element (superscript) [− ]
g . . . . . . . . Gravity vector [ m

s2
]

J . . . . . . . . Jacobian matrix [− ]

k . . . . . . . . Component (subscript) [− ]

k . . . . . . . . Permeability [ m2 ]

k . . . . . . . . Permeability tensor [ m2 ]
krel . . . . . . Relative permeability [− ]

K . . . . . . . Conductivity matrix [ W
m·K

]

L . . . . . . . . Element length [ m ]

N . . . . . . . Interpolation function [− ]

n . . . . . . . . Porosity [− ]
p . . . . . . . . Pressure [ Pa ]

S . . . . . . . . Saturation [− ]

V . . . . . . . Element volume [ m3 ]

W . . . . . . . Element thickness [ m ]

X . . . . . . . Mass fraction [− ]

γ . . . . . . . . Fluid phase (superscript) [− ]
µ . . . . . . . . Fluid viscosity [ Pa · s ]
ρ . . . . . . . . Density [ kg

m3 ]
Ω . . . . . . . . Domain [− ]

0 . . . . . . . . Initial or reference value, subscript [− ]
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1 Introduction

This report is the second part of the report series on Non-Isothermal Flow Processes
in Porous Media. Part I (De Jonge and Kolditz [2002]) dealt with the development
of the governing equations from conservation laws and material properties. This
part deals more specifically with the development of the element matrices needed
for the multiphase-multicomponental formulation.

GeoSys/RockFlow uses the finite element method (FEM). FEM can be defined
as the subdivision of complex structures into small substructures assembling the
elements (Kolditz [2002]). For the FEM, the domain is discretised into elements.
The multiphase-multicomponental formulation supports the following elements: 1-
D linear, 2-D triangular, 2-D quadrilateral, 3-D hexagonal. The second step in the
FEM consists in writing the the governing equations in integral form. This was the
object of report Part I . The last step is the generation of interpolation functions to
approximate a solution for the integral equations. This last step will be the object
of this report.

In GeoSys/RockFlow, the discretisation is done by the method of weighted residu-
als, where the unknown function is approximated by a trial solution. Here this is
the Bubnov-Galerkin method where the test function is equal to the interpolation
function. These functions are usually taken to be polynomials. They are the subject
of the first section of this report.

In Part I, the governing and algebraic equations were developed. The matrices
used in the derived algebraic equation belong to two types of matrices, denoted C
or K types. In subsequent sections, general forms of the two main matrix forms
are developed. In the last sections, these matrices are shown especially for the
multiphase-multicomponental case for all available element types.

In the appendix the differences between numerical and analytical integration is
shown through an example.

Acknowledgement

The work presented in this report was largely funded by the Federal Institute of
Geosciences and Natural Resources (BGR). We thank Dr. Liedtke for his support
of this research project.
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2 Tools for numerical integration

In this section, the interpolation functions and related numerical tools are devel-
oped. In RockFlow, the interpolation functions are chosen to be locally defined
polynomials, that are null outside the considered element. Interpolation functions
for specific element types are called element shape functions. These will be shown
in this section. For a more detailed explanation on how these are obtained, the
reader should refer to Kolditz [2002].

2.1 1-D linear elements

The shape functions for 1-D elements are as follows in global coordinates.

NT =

{

Ne
1 (r)

Ne
2 (r)

}

(1)

Ne
1 (r) =

x2 − x

x2 − x1

Ne
2 (r) =

x − x1

x2 − x1

(2)

In local coordinates, the shape functions are expressed by

Ne
1 (r) =

1 − r

2

Ne
2 (r) =

r − 1

2
(3)

Additionally, the determinant of the Jacobian matrix is needed for matrix integra-
tion. For the 1-D case this can be written as det[J1D] = L

2
.

Matlib functions: No matlib functions are needed, as integration for 1-D elements
is done analytically.

2.2 2-D quadrilateral elements

The shape functions for 2-D linear quadrilateral elements are as shown in equation
(4). The shape functions Ni are the area coordinates Ai, i.e. we have isoparametric
elements.

NT =















N1

N2

N3

N4















=
1

4









(1 + r)(1 + s)
(1 − r)(1 + s)
(1 − r)(1 − s)
(1 + r)(1 − s)









(4)
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ex´

ey´

Figure 1: Isoparametric mapping of bilinear quadrilateral elements

Now the derivatives of the shape functions can be written down.

∂N

∂r
=















































∂N1

∂r
=

1 + s

4
∂N2

∂r
= −1 + s

4
∂N3

∂r
= −1 − s

4
∂N4

∂r
=

1 − s

4















































∂N

∂s
=















































∂N1

∂s
=

1 + r

4
∂N2

∂s
=

1 − r

4
∂N3

∂s
= −1 − r

4
∂N4

∂s
= −1 + r

4















































(5)

∇xyN =



























∂N1

∂x

∂N1

∂y

∂N2

∂x

∂N2

∂y

∂N3

∂x

∂N3

∂y

∂N4

∂x

∂N4

∂y



























, ∇rsN =

























∂N1

∂r

∂N1

∂s
∂N2

∂r

∂N2

∂s
∂N3

∂r

∂N3

∂s
∂N4

∂r

∂N4

∂s

























(6)

In general we can use the interpolation function to transform coordinates, i.e.
(x, y)real =⇒ (r, s)unit.

x = x(r, s) =
4

∑

i=1

Ni(r, s)xi
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y = y(r, s) =
4

∑

i=1

Ni(r, s) yi (7)

Then we speak about an isoparametric coordinate transformation. In this case the
two-dimensional Jacobian matrix is given by

[J2D] =







Ni

∂r
xi

Ni

∂r
yi

Ni

∂s
xi

Ni

∂s
yi






= [∇rsN] [A2D] (8)

∇xyN = [J2D]−1∇rsN (9)

with

[J2D]−1 =









∂r

∂x

∂s

∂x
∂r

∂y

∂s

∂y









(10)

Finally we determine [J2D]−1 by inversion of the Jacobian. det[J2D] is A
4
.

Matlib functions:

• Weighting of gauss points: MXPGaussPkt

• Transposed of the Inverse Jacobi matrix and determinant of that matrix:
Calc2DElementJacobiMatrix

2.3 2-D triangular elements

(Kolditz [2002], p146-147)

NT =







N1

N2

N3







=
1

2A





x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1











1
x
y







(11)

The shape functions Ni are simply the area coordinates Li, i.e. we have isopara-
metric elements.

Now the derivatives of the shape functions can be easily written down.

∂N

∂x
=































∂N1

∂x
=

y2 − y3

2A
∂N2

∂x
=

y3 − y1

2A
∂N3

∂x
=

y1 − y2

2A































∂N

∂y
=































∂N1

∂y
=

x3 − x2

2A
∂N2

∂y
=

x1 − x3

2A
∂N3

∂y
=

x2 − x1

2A































(12)
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For 2-D triangular elements the following expression can be used to integrate ana-
lytically.

∫∫

∆

La
1L

b
2L

c
3dxdy = 2∆

a!b!c!

(a + b + c + 2)!
(13)

Because of the analytical integration, no matlib functions for numerical integration
are needed.

2.4 3-D hexahedral elements

The shape functions for 3-D hexahedral elements are as shown in equation (14).
The shape functions Ni are the area coordinates Ai, i.e. we have isoparametric
elements. (Kolditz [2002], pages 154-157.)

7

4

5

6

ey´

8

3

2

1

ez´

ex´

x´

r

+1

2

7

4

1

s

+1

3

6 5

8

-1

t

Figure 2: Hexahedron in global and local coordinates

Shape functions in local and global element coordinates. can be defined in following
way.

N1 =
1

8
(1 + r)(1 + s)(1 + t) , N1 =

x − x2

x1 − x2

y − y4

y1 − y4

z − z5

z1 − z5

N2 =
1

8
(1 − r)(1 + s)(1 + t) , N2 =

x − x3

x2 − x3

y − y1

y2 − y1

z − z6

z2 − z6

N3 =
1

8
(1 − r)(1 − s)(1 + t) , N3 =

x − x4

x3 − x4

y − y2

y3 − y2

z − z7

z3 − z7

N4 =
1

8
(1 + r)(1 − s)(1 + t) , N4 =

x − x1

x4 − x1

y − y3

y4 − y3

z − z8

z4 − z8

N5 =
1

8
(1 + r)(1 + s)(1 − t) , N5 =

x − x6

x5 − x6

y − y8

y5 − y8

z − z1

z5 − z1

N6 =
1

8
(1 − r)(1 + s)(1 − t) , N6 =

x − x7

x6 − x7

y − y5

y6 − y5

z − z2

z6 − z2

N7 =
1

8
(1 − r)(1 − s)(1 − t) , N7 =

x − x8

x7 − x8

y − y6

y7 − y6

z − z3

z7 − z3

8



N8 =
1

8
(1 + r)(1 − s)(1 − t) , N8 =

x − x5

x8 − x5

y − y7

y8 − y7

z − z4

z8 − z4

(14)

N = (N1, N2, ..., N8) (15)

Implementation: MOmega3D(omega,r,s,t)

The matrix of shape function derivatives is therefore given as follows

∇rstN =



























































∂N1

∂r

∂N1

∂s

∂N1

∂t
∂N2

∂r

∂N2

∂s

∂N2

∂t
∂N3

∂r

∂N3

∂s

∂N3

∂t
∂N4

∂r

∂N4

∂s

∂N4

∂t
∂N5

∂r

∂N5

∂s

∂N5

∂t
∂N6

∂r

∂N6

∂s

∂N6

∂t
∂N7

∂r

∂N7

∂s

∂N7

∂t
∂N8

∂r

∂N8

∂s

∂N8

∂t



























































(16)

=
1

8

























(1 + s)(1 + t) (1 + r)(1 + t) (1 + r)(1 + s)
−(1 + s)(1 + t) (1 − r)(1 + t) (1 − r)(1 + s)
−(1 − s)(1 + t) −(1 − r)(1 + t) (1 − r)(1 − s)

(1 − s)(1 + t) −(1 + r)(1 + t) (1 + r)(1 − s)
(1 + s)(1 − t) (1 + r)(1 − t) −(1 + r)(1 + s)

−(1 + s)(1 − t) (1 − r)(1 − t) −(1 − r)(1 + s)
−(1 − s)(1 − t) −(1 − r)(1 − t) −(1 − r)(1 − s)

(1 − s)(1 − t) −(1 + r)(1 − t) −(1 + r)(1 − s)

























Implementation: MGradOmega3D(gradient,r,s,t)

Shape function derivatives in global coordinates (x − y − z) can be determined by
use of the inverse Jacobian matrix [J3D]−1.

∇xyzN = [J3D]−1∇rstN (17)
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The Jacobian matrix in 3-D case is given by

[J3D] =

















∂x

∂r

∂y

∂r

∂z

∂r
∂x

∂s

∂y

∂s

∂z

∂s
∂x

∂t

∂y

∂t

∂z

∂t

















= [∇rstN] [A3D] (18)

which can be rewritten, if using the isoparametric coordinate transformation equa-
tion as

[J3D] =

















∂Ni

∂r
xi

∂Ni

∂r
yi

∂Ni

∂r
zi

∂Ni

∂s
xi

∂Ni

∂s
yi

∂Ni

∂s
zi

∂Ni

∂t
xi

∂Ni

∂t
yi

∂Ni

∂t
zi

















(19)

Implementation: Calc3DElementJacobianMatrix(element,r,s,t,invjac,detjac)

The required inverse Jacobian [J3D]−1 has to be calculated by formulas for matrix
inversion.

Implementation: M3Invertiere(matrix)

det[J1D] is V
8
.

2.5 Implementation of Matrix Operations in RockFlow/Geosys

• Matrix multiplication: MMultMatMat

• Matrix multiplication with vector: MMultMatVec

• Vector multiplication with matrix: MMultVecMat

• Matrix transposition: MTranspoMat

• Matrix initialization: MNulleMat

• Vector transposition: MTranspoVec

• Vector initialization: MNulleVec

10



3 C-Type Matrices

In the algebraic equations for multiphase-multicomponent flow, this type of matrix
describes the storage terms of quantities such as pressure. They are present in the
equations for both components, air and water and in the energy equation. The
matrices below are evaluated for an orthotropic medium. mat denotes the material
properties, which are assumed to be element-wise constant. The capacitance matrix
is a matrix of the type C-type integral:

∫

NT f(ui)NdΩ

3.1 1-D C-Type Matrix

C
γ
k =

∫

Ωe

NT (mat)N dΩe

=

∫

V e

[

N1

N2

]T

(mat)
[

N1 N2

]

dV e

= Ae

∫

Le

[

N1

N2

]T

(mat)
[

N1 N2

]

dx′

= Ae

∫ +1

−1

[

N1

N2

]T

(mat)
[

N1 N2

]

det[J1D] dr

= (mat)
e AeLe

3 · 21

[

2 1
1 2

]

= (mat)
e V e

6

[

2 1
1 2

]

(20)

3.2 2-D C-Type Matrix

C
γ
k =

∫

Ωe

NT (mat)N dΩe

= W

∫

Ae

NT (mat)N dAe

= W (mat) detJ2D

∫ 1

−1

∫ 1

−1

NT N drds

C = (mat)
e V

9









1 1
2

1
4

1
2

1 1
2

1
4

1 1
2

1









C11 = W (mat)
A

22

∫ 1

−1

∫ 1

−1

1

4
(1 + r)(1 + s)

1

4
(1 + r)(1 + s) drds

11



C11 = W (mat)
A

4

1

16

∫ 1

−1

(1 + r)(1 + r)

∫ 1

−1

(1 + s)(1 + s) drds

C11 = W (mat)
A

4

1

16

8

3

8

3

C11 = (mat)
V

9

C12 = W (mat)
A

22

∫ 1

−1

∫ 1

−1

1

4
(1 − r)(1 + s)

1

4
(1 + r)(1 + s) drds

C12 = W (mat)
A

4

1

16

∫ 1

−1

(1 − r)(1 + r)

∫ 1

−1

(1 + s)(1 + s) drds

C12 = W (mat)
A

4

1

16

4

3

8

3

C12 = (mat)
V

18
(21)

3.3 3-D C-Type Matrix

C
γ
k =

∫

Ωe

NT (mat)N dΩe

=

∫

V e

NT (mat)N dV e

= (mat) detJ3D

∫ 1

−1

∫ 1

−1

∫ 1

−1

NT N drdsdt

C = (mat)
V

27

























1 1
2

1
4

1
2

1
2

1
4

1
8

1
4

1 1
2

1
4

1
4

1
2

1
4

1
8

1 1
2

1
8

1
4

1
2

1
4

1 1
4

1
8

1
4

1
2

1 1
2

1
4

1
2

1 1
2

1
4

1 1
2

1

























C11 = (mat)
V

23

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

8
(1 + r)(1 + s)(1 + t)

1

8
(1 + r)(1 + s)(1 + t) drdsdt

C11 = (mat)
V

8

1

64

∫ 1

−1

(1 + r)(1 + r)dr

∫ 1

−1

(1 + s)(1 + s)ds

∫ 1

−1

(1 + t)(1 + t)dt

C11 = (mat)
V

8

1

64

8

3

8

3

8

3

C11 = (mat)
V

27
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C12 = (mat)
V

23

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

8
(1 + r)(1 + s)(1 + t)

1

8
(1 − r)(1 + s)(1 + t) drdsdt

C12 = (mat)
V

8

1

64

∫ 1

−1

(1 + r)(1 − r)dr

∫ 1

−1

(1 + s)(1 + s)ds

∫ 1

−1

(1 + t)(1 + t)dt

C12 = (mat)
V

8

1

64

4

3

8

3

8

3

C12 = (mat)
V

54
(22)
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4 K-Type Matrices

K-Type matrices are present in all algebraic equations for the multiphase-multicomponental
model. They represent the movement of quantities, such as diffusion. Because of
the spatial variation, the derivative of the test function is used. Hence, a matrix of
K-type integral has the form:

∫

∇NT f(ui)∇NdΩ.

4.1 1-D K-Type Matrix

K =

∫

Ωe

∇NT (mat)∇N dΩe

=

∫

V e

[

∇N1

∇N2

]

(mat∗)k
[

∇N1 ∇N2

]

dV e

= Ae

∫

Le

[

∂N1/∂x′

∂N2/∂x′

]

(mat∗)k
[

∂N1/∂x′ ∂N2/∂x′
]

dx′

= Ae (mat∗)

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]

[J−1
1D]T k[J−1

1D] ×
[

∂N1/∂r ∂N2/∂r
]

detJ1D dr

= Ae (mat∗) [J−1
1D]T [J−1

1D] detJ1D

∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]

k ×
[

∂N1/∂r ∂N2/∂r
]

dr

= (mat∗)
e
kxA

√
2

Le

√
2

Le

Le

2

[

+1 −1
−1 +1

]

= (mat∗)
e
kx

Ae

Le

[

+1 −1
−1 +1

]

(23)

4.2 2-D K-Type Matrix

As the aim is to evaluate the relationship of K-Type matrices between the dimen-
sions, the Element can be chosen so that the Jacobi matrix is equal to the unity
matrix. This avoids having to multiply with the inverse of the Jacobi matrix. Fur-
ther, only the orthotropic medium is considered, hence the permeability tensor can
be extracted and replaced by a scalar.

K
γ
k =

∫

Ωe

∇NT (mat∗)k∇N dΩe

= W

∫

Ae

∇NT (mat∗)k∇N dAe

= W (mat∗)

∫ 1

−1

∫ 1

−1

∇rsN
T (J−1

2D)T kJ−1
2D∇rsN detJ2D drds

= W (mat∗)

∫ 1

−1

∫ 1

−1

∇rsN
T k∇rsN drds

14



(24)

K = (mat∗)e 2V

3









1 − 1
4

− 1
2

− 1
4

1 − 1
2

− 1
2

1 − 1
6

1









K11 = W (mat)
A

22

∫ 1

−1

∫ 1

−1

1

4
(1 + r)(1 + s)

1

4
(1 + r)(1 + s) drds

K11 = W (mat)
A

4

1

16

∫ 1

−1

(1 + r)(1 + r)

∫ 1

−1

(1 + s)(1 + s) drds

K11 = W (mat)
A

4

1

16

8

3

8

3

K11 = (mat)
V

9

K12 = W (mat)
A

22

∫ 1

−1

∫ 1

−1

1

4
(1 − r)(1 + s)

1

4
(1 + r)(1 + s) drds

K12 = W (mat)
A

4

1

16

∫ 1

−1

(1 − r)(1 + r)

∫ 1

−1

(1 + s)(1 + s) drds

K12 = W (mat)
A

4

1

16

4

3

8

3

K12 = (mat)
V

18
(25)

4.3 3-D K-Type Matrix

The same assumptions as for the evaluation of the 2-D K-Type matrices apply here.

K
γ
k =

∫

Ωe

∇NT (mat∗)k∇N dΩe

= (mat∗)

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇rstN
T (J−1

3D)T kJ−1
3D∇rstN detJ3D drdsdt

K =

























2
3

0 − 1
6

0 0 − 1
6

− 1
6

− 1
6

2
3

0 − 1
6

− 1
6

0 − 1
6

− 1
6

2
3

0 − 1
6

− 1
6

0 − 1
6

2
3

− 1
6

− 1
6

− 1
6

0
2
3

0 − 1
6

0
2
3

0 − 1
6

2
3

0
2
3

























(26)
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K11 = (mat∗) k

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇rstN
T∇rstNdetJ3D drdsdt

=
1

82
(mat∗) k

∫ 1

−1

∫ 1

−1

∫ 1

−1

[(1 + s)2(1 + t)2 + (1 + r)2(1 − t)2 + (1 + r)2(1 + s)2] drdsdt

=
1

82
3 · 2 · 8

3

8

3
(mat∗) k

=
2

3
(mat∗) k

K12 = (mat∗) k

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇rstN
T∇rstNdetJ3D drdsdt

=
1

82
(mat∗) k

∫ 1

−1

∫ 1

−1

∫ 1

−1

[−(1 + s)2(1 + t)2 + (1 − r)2(1 + t)2 + (1 − r)2(1 + s)2] drdsdt

=
1

82
(mat∗) k · 2 · 8

3
(−8

3
+

4

3
+

4

3
)

= 0

K13 = (mat∗) k

∫ 1

−1

∫ 1

−1

∫ 1

−1

∇rstN
T∇rstNdetJ3D drdsdt

=
1

82
(mat∗) k

∫ 1

−1

∫ 1

−1

∫ 1

−1

[−(1 − s)2(1 + t)2 − (1 − r)2(1 + t)2 + (1 − r)2(1 − s)2] drdsdt

=
1

82
(mat∗) k · 2 · 4

3
(−8

3
− 8

3
+

4

3
)

= −1

6
(27)
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5 G-Type Vectors

In this section the derivation of the gravity vector is shown.

Gravity forces can be computed based on the K-Type matrices in the case of the
multiphase-multicomponent formulation. This is very efficient and time-saving. The
general formula is:

g = ρgKz (28)

where g is the gravity vector, K is the conductivity matrix z is the elevation of the
element nodes, i.e. the values of the z-coordinates in the global coordinate system
(x,y,z).
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6 1-D Linear MPC Matrices

Conductivity Matrix/ Capillarity Matrix The conductivity matrix and capillarity
matrix are equal. They are matrices of K-type integral:

∫

∇NT f(ui)∇NdΩ.

K
γs
k =

∫

Ωe

∇NT

(

ργXγ
k

kγ

rel
k

µγ

)

∇N dΩe

=

(

ργXγ
k

kγ

rel
k

µγ

)e
Ae

Le

[

1 0
0 1

]T

(29)

Capacitance Matrix The capacitance matrix is a matrix of the type C-type inte-
gral:

∫

NT f(ui)NdΩ

C
γ
k =

∫

Ωe

NT
(

nργX̂γ
k

)

N dΩe

=
(

nργX̂γ
k

)e AeLe

6

[

2 1
1 2

]

(30)

Storativity Pressure Matrix The storativity pressure matrix is a matrix of the
type C-type integral:

∫

NT f(ui)NdΩ

C
γ
k =

∫

Ωe

NT

(

nSγ
k Xγ

k (
∂ρ

∂p
)γ

)

N dΩe

=

(

nSγ
k Xγ

k (
∂ρ

∂p
)γ

)e
AeLe

6

[

2 1
1 2

]

(31)

Component Diffusion Matrix The component diffusion matrix is a matrix of the
type K-type integral:

∫

∇NT f(ui)∇NdΩ

D
γ
k =

∫

Ωe

∇NT (nSγργDγ)∇N dΩe

= (nSγργDγ)
Ae

Le

[

+1 −1
−1 +1

]

(32)

Gravity Forces Gravity forces are written as a matrix of g-type integral:
∫

∇Nf(ui)dΩ
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g
γs
k =

∫

Ωe

∇NT

(

ργXγ
k

kγ

rel
k

µγ
ργg

)

dΩe

=

(

ργXγ
k

kγ

rel
k

µγ
ργg

)

Ae

Le

[

−1
+1

]

(33)
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7 2-D Quadrilateral MPC Matrices

Conductivity Matrix/ Capillarity Matrix The conductivity matrix and capillarity
matrix are equal. They are matrices of K-type integral:

∫

∇NT f(ui)∇NdΩ. On
the condition that the medium is isothropic, i.e. that kxx = kyy, k can be extracted
from the calculation and be treated like a scalar. Further, the way the matrix is
computed here is the special case of J = 1

K
γs
k =

∫

Ωe

∇NT

(

ργXγ
k

kγ

rel
k

µγ

)

∇N dΩe

=

(

ργXγ
k

kγ

rel
k

µγ

)e
2V

3









1 − 1
4

− 1
2

− 1
4

1 − 1
2

− 1
2

1 − 1
6

1









(34)

Capacitance Matrix The capacitance matrix is a matrix of the type C-type inte-
gral:

∫

NT f(ui)NdΩ

C
γ
k =

∫

Ωe

NT
(

nργX̂γ
k

)

N dΩe

=
(

nργX̂γ
k

)e V

9









1 1
2

1
4

1
2

1 1
2

1
4

1 1
2

1









(35)

Storativity Pressure Matrix The storativity pressure matrix is a matrix of the
type C-type integral:

∫

NT f(ui)NdΩ

C
γ
k =

∫

Ωe

NT

(

nSγ
k Xγ

k (
∂ρ

∂p
)γ

)

N dΩe

=

(

nSγ
k Xγ

k (
∂ρ

∂p
)γ

)e
V

9









1 1
2

1
4

1
2

1 1
2

1
4

1 1
2

1









(36)

Component Diffusion Matrix The component diffusion matrix is a matrix of the
type K-type integral:

∫

∇NT f(ui)∇NdΩ
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D
γ
k =

∫

Ωe

∇NT (nSγργDγ)∇N dΩe

= (nSγργDγ)
2V

3









1 − 1
4

− 1
2

− 1
4

1 − 1
2

− 1
2

1 − 1
6

1









(37)

Gravity Forces The gravity vector has 4 entries in the 2-D quadrilateral dis-
cretization. The conductivity matrix is computed as shown above, and can be used
to compute the gravity vector. z is the vector of the z-values of all element nodes in
the global coordinate system. Hence, the gravity vector will be null if the calculation
is done in a x-y plane with z coordinates that are 0.

g = ρgKγs
k z

(38)
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8 3-D Hexahedral MPC Matrices

The matrices as shown here are examples that were calculated assuming that J

is equal to the unity matrix, hence also detJ = 1. This development allows an
evaluation of the relationiship between the matrix entries. In order to see this
relationship can only be observed in numerical integrations with at least 2-3 Gauss
points. With 1 Gauss point the accuracy of the numerical integration is not good
enough. This should also be noted for the execution of calculations.

Conductivity Matrix/ Capillarity Matrix The conductivity matrix and capillarity
matrix are equal. They are matrices of K-type integral:

∫

∇NT f(ui)∇NdΩ. On
the condition that the medium is isothropic, i.e. that kxx = kyy, k can be extracted
from the calculation and be treated like a scalar.

K
γs
k =

∫

Ωe

∇NT

(

ργXγ
k

kγ

rel
k

µγ

)

∇N dΩe

=

(

ργXγ
k

kγ

rel
k

µγ

)e






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


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(39)

Capacitance Matrix The capacitance matrix is a matrix of the type C-type inte-
gral:

∫

NT f(ui)NdΩ

C
γ
k =

∫

Ωe

NT
(

nργX̂γ
k

)

N dΩe

=
(

nργX̂γ
k

)e V
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(40)

Storativity Pressure Matrix The storativity pressure matrix is a matrix of the
type C-type integral:

∫

NT f(ui)NdΩ
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C
γ
k =

∫

Ωe

NT

(

nSγ
k Xγ

k (
∂ρ

∂p
)γ

)

N dΩe

=

(

nSγ
k Xγ

k (
∂ρ

∂p
)γ

)e
V
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(41)

Component Diffusion Matrix The component diffusion matrix is a matrix of the
type K-type integral:

∫

∇NT f(ui)∇NdΩ

D
γ
k =

∫

Ωe

∇NT (nSγργDγ)∇N dΩe

= (nSγργDγ)
V
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(42)

Gravity Forces The gravity vector has 8 entries in the 3-D quadrilateral dis-
cretization. The conductivity matrix is computed as shown above, and can be used
to compute the gravity vector. z is the vector of the z-values of all element nodes
in the global coordinate system.

g = ρgKγs
k z

(43)
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9 Example

A one meter long bentonite beam is heated to 373K at the left side. The initial
conditions and boundary conditions are shown in Table 9. Material properties are
listed in Table 9 and the capillary pressure - saturation relationship is illustrated in
Figure 3. Spatial discretization is 0.01m in x,y, and z direction. Calculation time is
1.0e5 seconds.

Initial Conditions Unit Value
Gas Pressure Pa 101325

Liquid Saturation - 1.0
Temperature K 285

Boundary Conditions Unit Value
Gas Pressure left Pa 1.0e6
Gas Pressure right Pa 101325

Liquid Saturation left - 0.15
Liquid Saturation right - 1.0

Temperature left K 373

Table 1: Initial and Boundary Conditions

Material Property Unit Value
Porosity - 0.407407407
Permeability m2 8.22854E-20

Diffusion coefficient m2

s
2.13e-6

Density kg
m3 1830

Heat capacity J
kg·K

1605

Heat conductivity J
K·m·s

0.718799939
Börgesson swelling coefficients
Relative permeability - 1.0
Void ratio - 7.0
Eta - 3293673.0
Swelling pressure Pa -0.165
Swelling pressure - saturation curve - 3.0

Table 2: Material Properties for the benchmark th partitioned

Figure 4 shows a comparison for 1-D and 3-D results for liquid saturation, gas
pressure and temperature at time t = 1.0e + 5 seconds. It can be seen that the
results are virtually identical.

24



Saturation [-]

C
ap

illa
ry

P
re

ss
ur

e
[P

a]

0 0.2 0.4 0.6 0.8 1
0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

1E+10

Figure 3: Capillary pressure - saturation relationship for the benchmark
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NUMERICAL IMPLEMENTATION OF THERMALLY AND HYDRAULICALLY COUPLED 
PROCESSES IN NON-ISOTHERMAL POROUS MEDIA 
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Abstract:  To better understand the coupling of thermal (T), hydraulic (H) and mechanical (M) processes 
(T-H-M processes) and their influence on the system behaviour, models allowing T-H-M coupling are 
developed. These models allow simulations in the near-field of the system. Such a model has been developed 
within the simulator RockFlow/RockMech. This paper concentrates on the thermal and hydraulic processes.  
For those processes, the material parameters and state variables are highly non-linear and mostly functions of 
temperature, saturation and pressure.  This paper shows how these dependencies are formulated 
mathematically and are implemented into RockFlow/RockMech. The implementation allows phase changes 
between the fluid phases (gas and liquid) to occur explicitly. The model allows the simulation of very low 
permeability clays with high capillary pressures.  An example for code validation is shown, where low 
permeability clay is desaturated, lastly, current work on the calculations performed in the near field study 
(BMT1) of the DECOVALEX III project is outlined. 

 
 
1. INTRODUCTION 
   For deep geological disposal of nuclear waste, 
engineered barrier systems have to be developed.  
To develop appropriate barriers, the disposal 
scenario has to be simulated numerically, as a 
prediction and engineering tool in the near-field of 
the disposal site.  The numerical model has to be 
able to reproduce the various processes.  Figure 1 
shows a plan view of a possible disposal scenario, 
with nuclear waste packed into the core at the 
centre, a bentonite buffer surrounding it.  Waste 
canister and buffer are placed into the host rock.  
The processes arising in this situation are coupled 
processes, composed of  thermal processes 
(heating, cooling, evaporation, condensation),  
hydraulic processes (water intrusion, saturation, 
desaturation), mechanical processes (elastic and 
plastic deformation), and chemical processes 
(radiation, reactions).  This paper concentrates on 
the coupling of  thermal and hydraulic processes.    
     The engineered buffer used in deep geological 
disposal sites is often pure bentonite or a bentonite 
– sand mixture.  Bentonite is a material with very 
low permeability and swelling properties.  The 
swelling properties are used as a seal against water 
intrusion.   
    RockFlow is a simulator that is used to model 
near-field situation of the type described above 
(Kolditz et al. (2003)).  It is a finite element code, 
programmed using object-oriented techniques.  
Object-orientation allows a wide spectrum of 
applications for the code, and also simultaneous 
code development (Kolditz (2002)).  This paper 

will concentrate on the model within RockFlow, 
that is used for simulating the coupling of thermal 
and hydraulic processes (TH).  The governing 
equations of the model are shown, as well as how 
these equations are treated numerically.  A code 
application example for the desaturation of 
bentonite will be presented.  The first example is 
based on an example in Olivella and Gens (2000) 
and partially serves as model verification.  
Furthermore, the code development finds 
application in  bench mark test 1 (BMT1) of the 
DECOVALEX III (International co-operative 
project for the DEvelopment of COupled models 
and their VALidation against EXperiments in 
nuclear waste isolation) project (Jing et al. (1999)).  
Current work on this project is presented.   
 

 
Figure 1. THM processes in deep geological 

disposal sites.   



2. GOVERNING EQUATIONS  
    We use a componental formulation as applied by 
Emmert (1997) for modelling of steam injection for 
soil remediation strategies.  The TH code in 
RockFlow has three primary variables, gas phase 
pressure, liquid phase saturation, and temperature.  
The set of three governing equations result from 
two balance equations, the general mass balance 
equation and the energy balance equation.  The 
general mass balance is shown in equation (1), 
where n [-] is porosity, S [-] is saturation, t [kg/m3] 
is density, J [kg/(ms)] is flux, and Q [m3/s] is a 
source-sink term.  The superscripts l, g, and s 
denote the liquid phase, gas phase, and solid phase 
respectively. The subscript k denotes the 
component, which is air (a) or water (w).  The first 
term of equation (1) is a mass storage term,  the 
second term shows mass movement and the right 
hand side accounts for mass leaving or entering the 
system.   
 

 (1) 
 

    Equation (2) shows the general energy balance 
equation, where u [J/kg] is internal energy and J 
[J/(ms)] is heat flux.  The structure of the    
equation is similar to that of equation (1).    
 

 (2) 
 
    Equations of state and material laws give the 
necessary specifications to transform the balance 
equations into governing equations for the model.  
The equations of state and material laws used in the 
TH model are thoroughly described in De Jonge 
and Kolditz (2002).   
    In the TH code the governing equations are split 
according to components, rather than phases.  This 
choice was made in regard to phase changes.   
Hence, the general mass balance equation results in 
the component equation for air, and the component 
equation for water, which are our components in 
the TH model.  Each component equation contains 
terms for both, the liquid and the gas phase.  
Equation (3) shows the governing equation for air 
or water, (k = a, w), where X [-] is the mass 
fraction, P [Pa] is pressure, krel [-] is the relative 
permeability, k [m2] is the reference permeability, 
o [Pas] is viscosity, Pc [Pa] is capillary pressure, g 

[m/s2] is the gravity vector, and D [m2/s] is the 
diffusion coefficient.    

 

 

(3) 
 

Equation (4) shows the governing equation 
resulting from the energy balance equation, where 
c [J/(kgK)] is heat capacity, n [J/(Kms)] is thermal 
conductivity, and h [J/kg] is enthalpy. 
 

(4) 
 
 
3. NUMERICAL IMPLEMENTATION 
    Figure 2 illustrates the numerical implementation 
used in RockFlow.  The method of weighted 
residuals is applied to the governing equations, 
resulting the weak formulation of the algebraic 
equations.  The order of spatial derivatives is 
reduced by using the Gauss-Ostrogradski theorem, 
thus resulting in the algebraic equation system. 
    Equation (5) shows the resulting algebraic 
equation for the water and air components, where 
(k = a, w) and s"is a value between [0,1].  CP, CS, 
KP, and KS are element matrices, that are dependent 
on element dimension and shape.  Development for 
the case of 1-D elements is shown in Kolditz and 
De Jonge (2003),  and 2-D triangular elements in 
De Jonge and Kolditz (2002).    
 



 
Figure 2. Numerical implementation 

 

(5) 
 
    Equation (6) shows the algebraic equation for the 
energy component in matrix form.  As above, the 
element matrices for the 1-D and 2-D triangular 
elements can be found in De Jonge and Kolditz 
(2002).   
 

(6) 
 
    In the implementation,  each algebraic equation 
is linked to a primary variable. Thus, the algebraic 
equation for air is linked to gas pressure, the 
equation for water is linked to liquid phase 
saturation and the energy equation is linked to 
temperature.  The system of equations can be 
solved in two ways in the TH model; either they 
are solved iteratively, gas pressure and liquid 
saturation are solved simultaneously, followed by 
temperature, as shown in the system of equations 
(7).   
 

(7) 
 
 
4. EXAMPLE – DESATURATION 
    The example presented here is based on the one 
shown  in Olivella and Gens (2000) with slightly 
modified material properties and temperature 
boundary condition values.  The example portrays 
the desaturation of bentonite due to heating in a 
closed system.  The set-up is as illustrated in Figure 
3.  A bentonite block is heated to 100°C on the left 
side.  Dimensions and initial conditions are as 
shown on Figure 3.  The only boundary condition 
is the temperature boundary condition at the heater.   
 

 
Figure 3. Desaturation example set-up 

 
    The material parameters are as summarised in 
Table 1.  Because the capillary pressures in 
bentonite are very high (up to 1010 Pa, as shown in 
Figure 5),  a large suction pressure is created, that    
 
Table 1.  Material parameters for the desaturation 
example.  
Parameter  Value 
Porosity [-] 0.44 
Tortuosity [-] 0.1 
Permeability [m2] 5 x 10-19 
Relative permeability [-] Figure 4 
Capillary pressure Figure 5 
Density [kg/m3] 1650 
Heat capacity [J/(kg*K)] 1605 
Heat conductivity [J/(K*m*s)] 0.5 
 
strongly favours saturation of the sample.  Vapour 
movement, and hence desaturation due to sample 
heating can only be modelled if vapour flow is 
encouraged.  This can be achieved by including a 
vapour diffusion term into the balance equation or 



alternatively, by choosing a dual relative 
permeability – saturation relationship so that 
vapour movement is favoured at low liquid phase 
saturations (when capillary pressure is highest).  
Olivella and Gens (2000) developed such a model.  
It is based on experimental observations of 
bentonite properties.  The reasoning behind it is, 
that in the dry bentonite pore spaces are higher, 
resulting in a higher permeability.  When bentonite 
is wet however, it swells and pore spaces are 
accordingly small.  Figure 4 shows an example of 
such a dual relative permeability – saturation 
model.   
 

 
Figure 4. Relative permeability – saturation 

relationship – dual model 

 

 
Figure 5. Capillary pressure – saturation 

relationship. 

    Because there are no saturation and pressure 
boundary conditions in the example, saturation is 

free to fall and rise.  This can be observed in the 
results shown in Figure 7.  From the initial liquid 
phase saturation of 0.4, the value drops 
progressively next to the heater, as expected.  On 
the right boundary, the effects of capillary pressure 
can be seen through the higher value of liquid 
phase saturation.  The gas phase pressure shows a 
small response to the saturation distribution.  
Where liquid saturation drops, and by reciprocity 
gas saturation increases, gas pressure also 
increases.  At the right boundary, the decrease in 
gas pressure corresponds to the increase in liquid 
saturation.  One can see that the stationary 
temperature is reached in less than ½ day.  The 
vapour mass fraction responds to the temperature 
distribution immediately.   
    The results thus show successful modelling of a 
desaturation process in bentonite, by using the 
RockFlow TH model.   
 
 
5. EXAMPLE – BMT1 DECOVALEX III 
    This section describes the current work on the 
near-field bench mark test (BMT1) of the 
DECOVALEX project.  The results shown in this 
section are preliminary and serve to outline the 
direction of current code development and to 
further illustrate the working of the RockFlow TH 
model.   
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Figure 6. Set-up for BMT1. 

    In BMT1 a typical deep geological waste 
repository set-up is studied.  Figure 6 shows a 
detail of the set-up.  The waste canister is 
surrounded by a bentonite buffer material, and the 
backfill for the tunnel is made of a bentonite-sand 
mixture.  The host rock is granite.  Material  



 
(a) 

 
(b) 

 
(c) 

 
(d)

Figure 7.  Results of desaturation example. (a) liquid phase saturation, (b) gas phase pressure, (c) vapour 
mass fraction, (d) Temperature. 

 
(a) 

  
(b) 

Figure 8. Preliminary BMT1 Results (a) Temperature evolution , (b) Liquid phase saturation evolution in 
the observation points. 



parameters, initial conditions and boundary 
conditions are as described in the BMT1 
definition.   
 
Table 2. Material properties for BMT1 
Proper ty Buffer  Rock 

mass 
Backfill

Density  
[kg/m3] 

1650 2746 1750 

Effective Porosity  
[%] 

20 3 30 

Initial Water content 
[%] 

15 100 15 

Permeability  
[m/s] 

1.6 10-20 1 10-17 1.9 10-19

Specific heat  
[J/kg/K] 

426 833 826 

Thermal conductivity 
[W/m/K] 

1.26 2.71 1.37 

Capillary pressure  
[Pa] Van Genuchten 
Relative permeability  
[-] Van Genuchten 
 
    The liquid saturation rises steadily in 
observation point B6.  At all the other observation 
points the liquid saturation remains the same over 
the considered time.     
The temperature goes through a maximum after a 
period of 1.5 years.  At observation point B4, the 
maximum temperature is 78°C.  After 100 years, 
the temperature decreases to a range between 
48°C and 52°C for all observation points.  The 
vapour mass fraction follows the temperature 
pattern, going through the maximum at the same 
time.   
 
 
6. CONCLUSIONS 
    This paper presented the thermo-hydraulic (TH) 
coupled finite element model that we developed 
within the object-oriented simulator RockFlow.  
The governing equations, their numerical 
implementation, and the algebraic equations, as 
well as available coupling schemes for the 
RockFlow TH model were presented.   
    The model can now be used for the analysis of 
flow and heat transport processes in the near field 
of nuclear waste disposal.  The model benefits of 
the componental approach, and is not restrained 
by the Richards approximation.   
    The bentonite evaporation example showed that 
the RockFlow TH model is able to faithfully 

represent the drying of bentonite near a heat 
source and a consequent saturation at the far end 
of the sample within a closed system.   
    Current work on BMT1 was reported.  From 
the results, one can see that the dual relative 
permeability – saturation model used in the 
desaturation example might be useful for larger 
scale tests, such as the BMT1 application, so that 
desaturation near the heater can be reproduced 
correctly by the TH model.   
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University of Tübingen, Germany

2Federal Institute for Geosciences and Natural Resources
Hannover, Germany

Abstract

Non-isothermal multi-componental problems describe the interaction of thermal, hydraulic, and
mechanical processes (THM Processes). Various computer codes have been developed to simulate
that kind of problem. However, few benchmarks have been developed specifically for the coupling
of thermal and hydraulic processes (TH Processes). This paper proposes an experiment and its
treatment as a benchmark. The experiment is a column setup, where a water saturated bentonite
sample is first heated, then nitrogen is injected into sample, thus creating a TH process setup. The
experiment was simulated with the code iTOUGH2, an inverse modelling tool, and with RF/RM
a forward modelling tool. The simulation approaches of both simulators are described, then the
approaches and their implications on the results are compared and discussed.

Introduction

In the last years, a number of codes for solving non-isothermal multi-componental problems have been
developed. Non-isothermal multi-componental problems describe the interaction of thermal, hydraulic
and mechanical processes (THM). The codes vary in the choice of primary variables, the approach used,
the degree of coupling, and the numerical method utilized.

CODE BRIGHT, RockFlow/RockMech (RF/RM), THAMES, and TOUGH2 are examples of codes
that are utilized in the field of multiphase simulations. CODE BRIGHT is a 3-D THM simulator de-
veloped in Barcelona, Spain (Technical University of Catalonia (UPC)). The code is a finite element
code, that solves any partial set of the five following equations: stress equilibrium, water mass balance,
air mass balance, energy balance, and balance of conservative solute. Its applications lie in the field of
nuclear waste disposal and soil remediation (Olivella et al. [1996]). RF/RM is a finite element simula-
tor, developed in Germany (University of Tübingen and University of Hannover). RF/RM is a finite
element code, written in C-objective/C++, using object oriented programming techniques. This allows
RF/RM to be applied to a variety of THM problem situations (geothermal engineering, soil remediation,
and nuclear waste storage), using application specific models and kernels within the simulator. For TH
modelling, which is the object of this paper a 1-D and 2-D code has been developed within the RF/RM
simulator. The TH code takes phase transitions into account and works with a non-constant gas phase
pressure. The code is documented in a variety of publications, for example Kolditz [2002], Kolditz et al.
[2003] and Thorenz [2001]. The program THAMES is developed in Japan, originally it was developed
by Ohnishi et al. (Ohnisi et al. [1985]). It is a 3-D finite element THM code that has been developed
in the context of nuclear waste disposal in the subsurface. The unknown variables are total pressure,
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displacement vector and temperature (Chijimatsu et al. [2000]). The program TOUGH2 is developed at
the Lawrence Berkeley National Laboratory (LBNL), USA, for geothermal reservoir applications. Time
and space are discretized using the finite difference method. The program TOUGH2 is valid for one-,
two-, and three-dimensional numerical models to simulate the coupled transport of water, vapor, air, and
heat in porous and fractured media (Pruess [1987]). TOUGH2 has further been applied for studies of
high-level nuclear waste isolation in partially saturated porous media. The TOUGH2 simulator takes
account of fluid flow in the liquid and gas phase under pressure, viscous, and gravity forces according
to DARCY� s law with interferences between the phases represented by the relative permeability functions.

Other areas of numerical simulations have classical benchmark problems, such as the Theis or Buckley
problems, which can be calculated analytically. This is not the case for THM simulations. There are,
however, some benchmarks, that, even if complex help verify and calibrate codes. The DECOVALEX
(International co-operative project for the DEvelopment of COupled models and their VALidation against
EXperiments in nuclear waste isolation) program and BENCHPAR program include a benchmark test
for THM processes in the near-field applied to nuclear waste storage problems. The FEBEX problem is
also within the frame of the DECOVALEX and BENCHPAR and deals with a large scale heater test for
the same application. Another large scale heater test was performed in Japan, named the BIG-BEN (Big
Bentonite facility) test. (Chijimatsu et al. [2000]). However, all these benchmark tests are extremely
complex.
We were interested in a direct comparison of how a less complex laboratory experiment was handled by
two different codes, RF/RM and iTOUGH2. The aim is to provide an adequate benchmarking example
for TH processes and to analyze how two numerically very different codes handle the simulation. The
simulation of the experiment also partially serves as a code validation for RF/RM.

1 RF/RM Governing Equations

The formulation adopted is a componental formulation. This means, that rather than expressing the
governing equations for the phases, the governing equations are expressed for the components (here these
are air and water). Equation (1) shows the mass balance equation for the air and water components
(k = a,w).

∂

∂t
(nSlρl

k + nSgρg
k) + ∇ · (Jls

k + J
gs
k ) + ∇ · (Jg

k + Jl
k) = Qk (1)

n [−] is porosity, S [−] is saturation, ρ [ kg
m3 ] is density, J [ kg

m·s
] is flux, and Q [m3

s
] is a source-sink term.

The superscripts l, g, and s denote the liquid phase, gas phase, and solid phase. The subscript k denotes
the component, which is air (a) or water (w) in our examples. Taking material parameters and equations
of state into account, equation (1) can be rewritten as shown in equation (2).
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X [−] is the mass fraction, p [Pa] is pressure, krel [−] is the relative permeability, k [m2] is the reference

permeability, µ [Pa · s] is viscosity, pc [Pa] is capillary pressure, g [ m
s2 ] is the gravity vector, and D [m2

s
]

is the diffusion coefficient.

The energy balance equation (equation 3) completes the set of equations.

∂
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)

+ (∇ · Js
h + ∇ · J

g
h + ∇ · Jl

h) = Qh (3)

u [ J
kg

] is the internal energy and Jh [ J
m·s

] is heat flux. Equation (4) shows the governing equation for the
energy equation.
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c [ J
kg·K

] is heat capacity, λ [ J
K·m·s

] is thermal conductivity, and h [ J
kg

] is enthalpy.
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2 RF/RM Numerical Methods

RF/RM is a finite element code. To get from the governing equation to the weak formulation of the
algebraic equation, the method of weighted residuals is used. The order of spatial derivatives is reduced
by the Gauss-Ostrogradsky method. The time derivatives are approximated by the first-order finite dif-
ference method. This leads to the algebraic equation (5) for the air and water components and equation
(6) for the energy equation.

Fluid component equations (k = a,w), where θ ∈ [0, 1]
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Heat energy equation
[
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The equations above can be written more compactly as
[

1
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1
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[

1

∆t
CPw + KPw

]

[p̂g]n+1 +

[

1

∆t
CSw

]
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1
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]

[T̂]n+1 = RHST

(7)

There are different ways to solve the three equations. So far, two possibilities have been implemented
for multiphase, multi-componental problems in RF/RM. The equations can either be solved one after
another, iterating between them, or the equations for gas pressure and liquid saturation can be solved
simultaneously, then iterating with the temperature equation. Details of the numerical procedure can be
found in Kolditz and Jonge [2003].
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3 Experimental Data

3.1 Studied Material

Lab experiments were designed to determine material parameters of potential backfill material that is
suggested as engineered barrier for a high-level nuclear waste repository at Äspö test site in Sweden. We
performed experiments with a specially constructed permeameter to estimate the thermal and unsaturated
hydraulic parameters of the backfill under conditions that occur in a deep repository. The analyzed backfill
material consists of 30%wgt. sodium-bentonite and 70%wgt. crushed rock. The sodium-bentonite is used
as fine powder, product name SPV Volclay, and contains 75% montmorillonite with 85.5% exchangeable
sodium (Müller-Vonmoos and Kahr [1983]). The crushed rock consists of granite with a maximum grain
size of 5 mm. The used synthetic water has a similar ionic content to the groundwater that prevails at
Äspö HRL (Äspö water) (see Table 1).

Table 1: Composition of the synthetic Äspö water
Parameter

Äspö Water Na+ Mg2+ Ca2+ K+ S2− Cl− pH
[mol/L] 1.5 · 10−2 2.7 · 10−3 1.8 · 10−3 3.6 · 10−4 5.1 · 10−4 1.9 · 10−2 7.4

3.2 Laboratory Equipment

The permeameter we used to study heat and gas flow in the backfill is shown in Figure 1. The permeameter
consists of a 30cm-long steel sample column (2) with a diameter of 5cm. Inside the bottom of the sample
column a heating element is fixed in a steel chamber. We maintained a constant pressure or a constant
pressure gradient along the sample column by use of the water container (1) that can be connected to
the bottom and/or to the top of the sample column. The water in the container can be pressurized up
to 20 bar. A burette (3) is plugged to the top of the sample column. We could connect or disconnect
the burette to the sample column. The pressure in the burette can be held at atmospheric pressure or
increased up to 10 bar.

Inside the sample column of the permeameter, we added backfill to Äspö water, and compacted the
mixture with a piston to avoid air entrapment. With this procedure we reached a dry density of 1.6g/cm3

and a porosity of 48%. At the top and bottom of the sample, we inserted fine sand, geotextile, and a metal
filter to assure one-dimensional flow and to prevent the bentonite from being washed out of the sample.
The outside of the sample column, we wrapped with insulating wool to minimize heat loss through the
boundary.

3.3 Saturated Hydraulic Experiments

We started the experimental procedure with measurements to specify the water saturated hydraulic
conductivity. The water flow through the sample due to a pressure gradient of 20 bar was measured in
the connected burette. After adjusting a pressure gradient along the sample column, and by measuring
the water volume entering the burette, the viscosity, and the density of Äspö water, knowing the cross-
sectional area of the sample, we could calculate the hydraulic conductivity up to 90◦C. Results for these
calculations are described in Engelhardt et al. [2003].

3.4 Thermal Experiments

Using the water container, the sample was pressurized to 10 bar at the top and bottom so that we main-
tained a stationary flow field across the sample. During the thermal experiment we disconnected the
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Figure 1: Experimental setup

burette from the column. The heating was submerged in water, and switched on to 90◦C. Five temper-
ature sensors recorded the initial temperature increase, and the time-invariant temperature distribution
along the axis of the sample during the three week experiment (see Figure 2).

Figure 2: Thermal experiment and measured temperature distribution

3.5 Non-isothermal Drainage Experiment

Four days after starting the thermal experiment we replaced the water surrounding the heating element
by air. This replacement from water to air caused the temperature drop as can be seen in Figure 2 at time
zero. Then nitrogen was injected from below into the already heated and pressurized sample for 17 days.
The nitrogen injection pressure was increased stepwise. We started to inject nitrogen with 11.5 bar to
remain below the entry pressure of the backfill material. After 4 days we increased the injection pressure
to 15 bar, and after 10 days to 20 bar. During the drainage experiment we connected the burette to the
sample column, and pressurized it at the beginning to 10 bar. The pressure in the burette increased due
to water, and eventually gas entering the burette (see Figure 3). We poured 51 ml Äspö water into the
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Figure 3: Non-isothermal drainage experiment and measured data

burette, corresponding to 41% of its maximum water capacity. The volume of Äspö water in the burette
increased to 57.5 ml after 17 days of drainage. Figure 3 shows the measured drained water volume that
entered the burette, the recorded gas pressure increase by the water inflow, and the nitrogen injection
pressure at the bottom of the sample.

4 Numerical Analysis

4.1 Parameter Estimation using iTOUGH2

Methodology

We used the measured water discharge rate, gas pressure in the burette, and temperature as calibration
data for inverse modeling with the program iTOUGH2 (Finsterle [1999]). By automatically matching the
calculated with the measured system behavior we determined the thermal and hydraulic parameters of
the backfill material. The inverse modeling procedure used to obtain thermal and unsaturated hydraulic
parameters is discussed in detail in Engelhardt et al. [2003].

In the iTOUGH2 simulation a two-dimensional, radial model was developed to capture fluid and heat
flow along the axis of the column as well as radial heat losses through the boundary. The column
was discretized along the axial direction into 60 gridblocks with a spacing of 0.5 cm. The thermal and
gas-injection experiment was simulated in a single model run. The sample column itself was initially
fully water saturated with a pressure of 10 bar, and a temperature of 19.4◦C. Analyzing the thermal
experiment, radial heat loss as well as heat transfer through the top cap of the column was accounted
for, by specifying appropriate thermal parameters for the insulation material. We fixed the temperature
of the lowest temperature sensor (T1) as a time-dependent temperature boundary condition. The initial
and boundary conditions of the simulation with iTOUGH2 are shown in Figure 4.

When simulating the nitrogen injection experiment, the top element was connected to a further element
representing the burette. This element had the correct experimental volume and initial gas saturation.
This allowed us a correct modeling of the observed increase in pressure due to incoming liquid or nitrogen.

Both, the BROOKS- COREY (Brooks and Corey [1964]) and VAN GENUCHTEN (Van Genuchten
[1980]) model, were used to describe the two-phase relative permeability and capillary pressure functions
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Figure 4: Initial and boundary conditions used for the iTOUGH2 simulation

of the backfill material during the drainage experiment. To avoid overparameterization, the pore size
distribution indices λ and n, as well as the residual saturations Swr and Snwr were fixed in the inversion.
Only four parameters were estimated by inverse modelling: absolute permeability, gas entry pressure Pd
(or capillary strength parameter 1/a), thermal conductivity, and the specific heat. Since both hydraulic
parameters are expected to vary over many orders of magnitude, we estimated their logarithms. The
material parameters resulting from the inverse modelling are summarized in Table 2.

Results

Using the program iTOUGH2 the temperatures are well matched throughout the 3-week experiment.
The match is independent of the choice between the Brooks- Corey or van Genuchten model. The total
heat flow through the column we calculated with the calibrated forward model was about 45.0 W , while
the heat loss through the boundary was about 2.1 W . The calibrated non-isothermal two-phase flow
model with the van Genuchten functions provides a reasonably good fit with the measured volume of
water collected in the burette during the gas injection experiment, especially of the last 7days. However,
during the first part of the gas injection experiment, both the van Genuchten and Brooks-Corey models
significantly underestimate the displaced amount of water. The van Genuchten model yields a dispersed
gas distribution that reaches the top of the column after 10.8 days, with a relatively low maximum gas
saturation of 28% near the injection point. The Brooks-Corey model predicts that the nitrogen front
penetrates the column to a distance of only 7.5 cm, with an almost piston-like displacement resulting in
high gas saturations in the injection zone (see Figure 5). The Brooks-Corey model predicts a relatively
sharp gas-liquid front within the column, preventing gas breakthrough. However, no gas breakthrough
during the three-week experiment was evident from the experimental data. Figure 5 shows a comparison
of the predicted gas phase distribution after 16days for both models calculated with the calibrated model
using TOUGH2 (Pruess et al. [1999]).
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Table 2: Summary of the inverse modelling results for the backfill
Material Parameter Model FixedValue Best Estimate
Porosity [%] van Genuchten 48

Brooks-Corey 48
Density [kgm−3] van Genuchten 2700

Brooks-Corey 2700
Pore size Distribution Index
n [−] van Genuchten 1.44
λ [−] Brooks-Corey 0.4
Residual Water/Gas Saturation [−] van Genuchten 0.07/0.01

Brooks-Corey 0.07/0.01
log(k[m2]) van Genuchten -17.89

Brooks-Corey -18.08
log(1/a[Pa])log(Pd[Pa]) van Genuchten 5.15

Brooks-Corey 4.60
λT [Wm−1K−1] van Genuchten 2.28

Brooks-Corey 2.35
c [Jkg−1K−1] van Genuchten 900

Brooks-Corey 900

Figure 5: Gas phase distribution calculated with iTOUGH2
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4.2 RF/RM Simulation

4.2.1 Thermal Experiment

Methodology

The temperatures recorded in the laboratory experiment described in Section 3 were modelled with
RF/RM. The mesh used was a 1-dimensional vertical cut of the laboratory setup. The heating element
and the top plate were modelled as separate material groups from the backfill material. The parameters
for the model input are summarized in Table 3. The simulation time was 3.3 days. This is the time up
to the start of the gas injection, equivalent to time 0 in Figure 2. The initial conditions and boundary
conditions for the simulation are summarized in Table 4.

Table 3: RF/RM input parameters
Parameter Unit Value Parameter Unit Value
Top plate Backfill
Cross-sectional area m2 0.001964 Cross-sectional area m2 0.001964
Porosity - 0.01 Porosity - 0.48
Tortuosity - 1 Tortuosity - 1
Permeability m2 0 Permeability m2 8.6 · 10−19

Density kg
m3 7800 Density kg

m3 2720
Heat capacity J

kg·K
460 Heat capacity J

kg·K
900

Heat conductivity J
K·m·s

14 Heat conductivity J
K·m·s

2.35

Parameter Unit Value
Heating element
Cross-sectional area m2 0.001964
Porosity - 0.95
Tortuosity - 1
Permeability m2 1.0 · 10−10

Density kg
m3 7800

Heat capacity J
kg·K

460

Heat conductivity J
K·m·s

14

For the thermal experiment, no capillary pressure - saturation or relative permeability - saturation curves
were prescribed, as the backfill remains saturated due to the experimental setup. The model only calcu-
lated the temperature distribution.

Table 4: Initial and Boundary Conditions for the Thermal Experiment
Condition Unit Value
Initial conditions

Gas Pressure, whole domain Pa 1013250
Gas Saturation, whole domain, except at top plate % 0.0
Gas Saturation, top plate % 0.99
Temperature, whole domain K 292.65

Boundary conditions

Pressure at heating element Pa 1013250
Gas saturation at heating element % 0.0
Temperature at heating element K Figure 1, curve T5
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As the model is based on a laboratory test, the backfill steel column has to be taken into consideration.
Hence there is a heat flux through the steel column. This is modelled by introducing sinks at nodes
(taken to correspond to temperature measurement locations for convenience), as shown in Figure 6. The
sinks are highly time dependent. Initially, more heat is lost through the sample enclosing material, than
when the temperature is stationary.

Results

Figure 7 shows the simulation results. One can see that there is a good fit with the experimental
measurements.
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Figure 7: RF/RM simulation results for the thermal experiments

4.2.2 Drainage Experiment

Methodology

The drainage experiment described in Section 3 was also modelled in RF/RM. The aim in modelling the
experiment with RF/RM was to simulate the saturation evolution in the sample. For this, a 1-D model
was established. The initial and boundary conditions are as illustrated in Figure 8. The injection gas
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pressure, the measured pressure in the burette and the flow into the burette were used as time-dependent
boundary conditions.

Two constitutive equations describe the material behaviour of partially saturated porous media. The
capillary pressure - saturation relationship and the relative permeability - saturation relationship. The
choice of model for the capillary pressure - saturation relationship has a particular importance for the
measured water flow in the burette. The measured data was represented well in the simulation with
iTOUGH2 (Engelhardt et al. [2003]), hence the capillary pressure - saturation curve determined in the
iTOUGH simulation using the van Genuchten model was used in the RF/RM simulation.

The measurement of the gas pressure in the burette is closely related to the propagation of the gas phase
distribution in the sample. The relative permeability - saturation relationship has a determining effect on
those data. Nor the van Genuchten, or the Brooks Corey model take the influence of swelling processes on
relative permeability into account. To be able to simulate the propagation of the gas phase distribution
in a porous medium capable of swelling, the function after Olivella and Gens [2000] was implemented
into RF/RM and used. According to this model, separate permeabilities have to be used for the gas and
liquid phases when modelling bentonite. This is because of the swelling effects that occur in bentonite as
water imbibes the bentonite. Therefore, in the unsaturated state, permeability is much higher than in the
saturated state. Olivella and Gens have determined that the difference between the two permeabilities
is of the order of 105. The curve for liquid phase and gas phase permeability used in this simulation is
shown in Figure 9. The curve is not smooth, as the relative permeability - saturation values determined
experimentally by Olivella and Gens have been multiplied with the measured intrinsic permeability for
the bentonite sample considered in this experiment. Using such a model makes a great difference to the
vapour flow, which gets enhanced.

Figure 8: RF/RM simulation setup for the drainage experiment

Results

During the experiment, the nitrogen injection pressure is increased in steps. Numerically these steps
present a challenge, as the time stepping scheme has to change. Figure 10 shows the modelling results
for the saturation evolution as a profile. Figure 11 shows the time evolution of saturation 3 cm above the
nitrogen injection point . Both figures show that the gas travels trough the sample, displacing the liquid,
but no gas breakthrough is estimated, as was observed in the experiment.
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5 Discussion of Results

Thermal Experiment

Figure 12 shows that both models fitted the temperature evolution well. While separate thermal proper-
ties were specified for the insulation material in iTOUGH2 to account for heat loss, sink terms were used
in RF/RM.

The influence of different numerical models and methodology (i.e. boundary element versus heat sink
terms) can nearly only be seen during the temperature increase. The decisive parameter for the inverse
simulation is the thermal conductivity of the sample and of the chosen boundary element. Because of the
assumption of a constant thermal conductivity for the boundary element in the iTOUGH2 simulation,
the temperature increase at the start is underestimated. From Figure 12 one can extrapolate that for the
temperature increase phase the heat loss occurs faster than modelled with iTOUGH2. For the simulation
of the heating of the sample a time-dependent thermal conductivity as a function of heat loss would
therefore be a better choice for the boundary element. The change of thermal properties of the boundary
in dependence of temperature increase was well represented in RF/RM due to the choice in heat sinks.
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Figure 12: Comparison of results for the thermal experiments

Drainage Experiment

Figure 13 shows the comparison between the simulations made with iTOUGH2 and RF/RM. For simu-
lations made with iTOUGH2, the capillary pressure - saturation relationship and relative permeability
- saturation relationship were given according to either the van Genuchten model or the Brooks Corey
model. The flow out of the sample into the burette was the calculated parameter. In simulations with
RF/RM, only the capillary pressure - saturation relationship was given according to the van Genuchten
method. For the relative permeability - saturation relationship a model described in Olivella and Gens
[2000] was used. The flow out of the sample into the burette was set as a time dependent boundary
condition for the model. Gas phase saturation was the calculated parameter.

One can see in Figure 13 that the calculations of the gas phase distribution made with RF/RM lie in
between the calculations performed with iTOUGH2. The relative permeability - saturation relationship
used in RF/RM enhances vapour flow. However, as the flow into the burette was used as a boundary
condition, the model was prevented from predicting a gas phase breaktrough. The Brooks Corey model
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did not predict such a breakthrough either. The van Genuchten model used in iTOUGH2 predicted the
breaktrough, which, however was not observed in the experiment.

The gradient of the curve that describes the gas penetration using the the Olivella and Gens [2000]
relative permeability - saturation model corresponds somewhat to the gradient of Brooks Corey model
curve. The gas penetration using the method by Olivella and Gens [2000] also has a clearly defined
plume, but not with the fast increase in gas saturation to 40% predicted by the Books Corey model, but
only to 25%.

Using the Olivella and Gens [2000] relative permeability - saturation model results in a gas penetration
that lies between the diffusive gas distribution achieved by the van Genuchten model and the piston like
displacement resulting from the Brooks Corey model.

Because the water flow into the burette and the pressure in the burette were fixed as time-dependent
boundary conditions in the RF/RM simulation, the RF/RM calculated saturation may best represents
the measured system behavior.
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Figure 13: Comparison of results for the drainage experiments

6 Conclusions

To study thermal-hydraulic processes that occur in permanent repositories for the disposal of nuclear
waste it is necessary to have numerical codes that are able to calculate the system behavior. The simulated
results should be independent of the numerical method used. Therefore, two laboratory experiments
were modelled with two different numerical simulation codes, namely iTOUGH2 and RF/RM. While
iTOUGH2 is an inverse model, using the finite difference method, RF/RM is a forward model using the
finite element method. The approaches to modelling the experiments were thus different. In iTOUGH2,
the two experiments were modelled as one, continuous experiment. We could demonstrate that the two
codes provided comparable results for the numerical simulation of the laboratory experiment.

For the long term study of disposal sites the simulation of temperature increases is crucial, as a higher
temperature influences capillary pressure and the hydraulic properties. For this part of the long term
study the choice of heat sinks would be more appropriate than the choice of a boundary element. Both
models however concur on the stationary temperature results. The calculation of the extension of the gas
phase is important for the simulation of the drainage of a geotechnical barrier in the case of a damage
of the radioactive waste container. To model the behavior of clay minerals with swelling properties in
the buffer and backfill correctly with respect to gas phase propagation, the assumption of the relative
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permeability - saturation after Olivella and Gens (Olivella and Gens [2000]) seems the most appropriate.
The choice of the relative permeability-saturation function is more sensitive for predicting the gas phase
distribution than the numerical method employed . Measurements within the sample column would have
been useful to decide which model estimates the system behavior of swelling clay best.

References

R. N. Brooks and A. T. Corey. Hydraulic properties of porous media. Hydrology Papers, Colorado State

University, Fort Collins, 3, 1964.

M. Chijimatsu, T. Fujita, A. Kobayashi, and M. Nakano. Experiment and validation of numerical simu-
lation of coupled thermal, hydraulic and mechanical behaviour in the engineered buffer materials. Int.

J. Numer. Anal. Meth. Geomech., 24:403–424, 2000.

I. Engelhardt, S. Finsterle, and C. Hofstee. Experimental and numerical investigation of flow phenomena
in non-isothermal, variably saturated bentonite/crushed rock mixtures. Vadose Zone Journal, 2, 2003.
available at http://www.vadosezonejournal.org.

S. Finsterle. iTOUGH2 user�s guide. Report LBNL-40040, Lawrence Berkeley National Laboratory, CA,
1999.

O. Kolditz. Computational Methods in Environmental Fluid Mechanics. Springer, 2002.

O. Kolditz, S. Bauer, M. Beinhorn, J. de Jonge, T. Kalbacher, C. McDermott, W. Wang, M. Xie,
R. Kaiser, and M. Kohlmeier. ROCKFLOW - Theory and users manual, release 3.9. Groundwater
modeling group, Center for Applied Geosciences, University of Tuebingen, Institute of Fluid Mechanics,
University of Hannover, 2003.

O. Kolditz and J. De Jonge. Non-isothermal two-phase flow in porous media. Prepared for Computational

Mechanics, 2003.

K. Müller-Vonmoos and G. Kahr. Mineralogische Untersuchungen von Wyoming Bentonit MX80 und
Montigel. NTB 83-12, NAGRA, Wettingen, Switzerland, 1983. In German with English Abstract.

Y. Ohnisi, H. Shibata, and A. Kobayasi. Development of finite element code for the analysis of coupled
thermo-hydro-mechanical behaviours of saturated - unsaturated medium. Proceedings of the Interna-
tional Symposium on Coupled Processes Affecting the Performance of a Nuclear Waste Repository,
1985. 263-268.

S. Olivella and A. Gens. Vapour transport in low permeability unsaturated soil with capillary effects.
Transport in Porous Media, 40:219–241, 2000.

S. Olivella, A. Gens, J. Carrera, and E. E. Alonso. Numerical formulation for a simulator
(CODE BRIGHT) for the coupled analysis of saline media. Engng Comput., 13(7):87–112, 1996.

K. Pruess. Tough user�s guide. Report LBNL-20700, Lawrence Berkeley National Laboratory, Berkeley,
CA, 1987.

K. Pruess, C. Oldenburg, and G. Modidis. Tough2 user�s guide, version 2.0. Report LBNL-43134,
Lawrence Berkeley National Laboratory, Berkeley, CA, 1999.

C. Thorenz. Model adaptive simulation of multiphase and density driven flow in fractured and porous

media. PhD thesis, Universität Hannover, 2001.

M. T. Van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturated
soils. Soil Sci. Soc. Am. J., 44:892–898, 1980.

16



Contributions to computational geotechnics Appendix F

Numerical modelling of swelling pressure in
unsaturated expansive elasto-plastic porous

media.

Manuscript submitted to:

Transport in Porous Media, July 2004



Numerical Modelling of Swelling Pressure in

Unsaturated Expansive Elasto-Plastic Porous

Media

Mingliang Xie, Wenqing Wang, Joëlle de Jonge and Olaf Kolditz
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Abstract

The focus of this work is to provide a new concept for accessing the
swelling stress in expansive porous media, especially in highly compacted
bentonite. The key to the new approach is the simulation with a chemical
swelling model of an in�nitesimal volume change followed by a back com-
paction processes. Free swelling is allowed in the �rst step, to calculate the
interlayer porosity change (micro) and the induced volume change (macro).

The object-oriented FEM simulator GeoSys/RockFlow allows the com-
bination of different processes. The hydro-mechanic/chemical (H2M/C)
model takes into consideration two phase �ow and deformation, as well as
chemical swelling effects. The negative displacements on each boundary after
the free swelling simulation are taken as Dirichlet boundary conditions of the
back compaction problem. The deformation step is simulated in the context
of elasto-plasticity using the modi�ed Cam-Clay model. The stresses obtained
by back compaction represent the swelling pressure.

A 2D example of compacted bentonite is analyzed with the new H2M/C
model. The results are in good agreement with existing experimental obser-
vations.

Key words: expansive porous media, two phase �ow, free swelling, swelling
pressure, modi�ed Cam-Clay model, numerical modelling

1 Introduction

Clays rich in bentonite swell and shrink with wetting and drying processes. The
magnitude of swelling and shrinking properties of bentonite can be greatly in�u-
enced by many factors, which can be divided into two groups - factors that depend
on the nature of the soil particles (type and amount of clay minerals) and factors
determined by the placement as well as environmental conditions (dry density, initial
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water content, compaction method, soil structure, thermal conditions, electrolyte
concentration in the pore water) (Norrish (1955), Mielenz and King (1955), Seed
et al. (1962), Holtz and Bara (1965), Parcher and Liu (1965), Low (1979), Evans
et al. (1985), Low (1987), Kaya et al. (2000), Huyghe and Janssen (1999)). The
swelling effect results from additional embedding of water/solution molecules into
the soil matrix, especially into the interlayers of expansive minerals. In the case
of free swelling, volume changes up to 1400 to 2000 percent for puri�ed dry Na-
montmorillonite samples in powder immersed in pure water and changes up to 45 to
145 percent for Ca-montmorillonite are reported (Mielenz and King (1955)). In the
case of constrained swelling, however, swelling can result in macro- and mesopore
volume reduction and simultaneously in swelling pressure, which can be measured
in oedometers or triaxial cells. Effective porosity and consequently, intrinsic perme-
ability decrease (Volkaert et al. (1994), Olivella and Gens (2000)).

Various theoretical approaches have been proposed to relate clay compressibility to
basic particle-water-cation interactions. The original Gouy-Chapmann diffuse dou-
ble layer (DDL) theory (Gouy (1910), Chapman (1913)) is the most widely used
one (Bolt (1955); Sridharan and Jayadeva (1982); Mitchell (1993); Quirk (1997);
Marcial et al. (2002)). On the basis of this, many other theories were suggested to
overcome some of the factors that have not been considered in the original DDL the-
ory (Verwey and Overbeek (1948); Pusch et al. (1990); Low and Margheim (1979);
Low (1980); Sridharan and Choudhury (2002); Komine and Ogata (1994); Tripa-
thy and Schanz (2003)). However, these theories can not simulate the saturation
process induced swelling pressure.

Classical modelling of the swelling behavior of bentonite was developed in order
to obtain the stress-strain behavior of expansive clays on the basis of laboratory
oedometer tests and the concept of Terzaghi�s effective stresses (Mitchell (1993),
Sridharan (1990)). Many numerical models for simulating the complex processes
in bentonites as buffer materials have been developed and proved to be important
in waste repository design (Börgesson et al. (1995), Murad and Cushman (1997),
Olivella and Gens (2000), Bennethum and Cushman (2002a), Bennethum and Cush-
man (2002b)). A very essential aspect in those hydraulic, thermal, and mechanical
operations is the understanding of induced coupled processes. The �rst model to
evaluate those coupled processes was built up by Noorishad et al. (1982). A model
developed by Korsawe et al. (2003) is based on the concept of rational mechanics
and is using the Raviart-Thomas mixed �nite element method, as well as an implicit
Euler time discretisation. The model is only developed for the special case of a rigid
soil skeleton without taking the chemical in�uence on swelling into consideration.

In geomechanical models, the stress state and the resulting deformation process is
of special interest. As a consequence, the solid phase has to be treated explicitly.
The interaction of �uid (phase) �ow and solid (phase) deformation in the frame-
work of the porous medium approach can be modelled based on the consolidation
theory (Terzaghi (1925), Biot (1941)). Börgesson (1985) and Studer et al. (1984)
investigated swelling and shrinking phenomena in bentonites and developed a ma-
terial model for porosity and permeability changes with moisture transport. Studies
of hydro (two phase �ow)-mechano-chemical (H2M/C) processes in partially sat-
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urated, thermo-elastic porous media without phase change effects were presented
by Geraminegad and Saxena (1986). The model was veri�ed against full scale cou-
pled experimental data. More recently, the Barcelona Expansive Model (BExM)
is developed based on the consideration of two levels of structure (Alonso et al.
(1999)). It well represents the phenomena of stress-suction path dependency and
swelling-shrinkage fatigue. Most of the cited models have found wide application in
simulating geotechnical systems (Kolditz (2002)). In most cases, the systems an-
alyzed were restricted to relatively high permeabilities without taking account the
in�uence of porewater chemistry on swelling.

This paper presents a numerical simulation of the swelling pressure by a new back-
compaction method using the object-oriented FEM simulator GeoSys/RockFlow
H2M/C - a new chemo-hydro-mechanical model - which has been developed for the
purpose of modelling isothermal multiphase �ow in bentonite. This model is based
on the diffuse double layer theory and connects both, the unique microstructural
parameters of bentonite and chemical properties of porewater, with macrostructural
swelling effects. In the case of free swelling, the volume change can be calculated
according to the interlayer porosity change. This value represents the swelling
potential of bentonite, and is assumed to be the strain needed for back compaction.
The necessary pressure to achieve the strain thus represents the swelling pressure.

2 Conceptual model

Bentonite is a mixture of clayey minerals, in which smectite plays a central role for
swelling. Typical smectite like montmorillonite is composed of two structural units,
the silica tetrahedron and the alumina octahedron. These units are interconnected
and extend to form thin sheets (each is only about 10 �A in thickness). Several
such sheets are stacked one above the other, to form a crystal particle. Owing to
the weak connection between the sheets, water easily enters between them with
the help of electron repulsion, which results from the net charge of the bentonite
particle. Consequently, the particles may be separated into smaller pieces. Katti and
Shanmugasundaram (2001) observed the breakdown of the clay agglomerates into
small sized particles by increasing saturation through digital analysis of the images
obtained by using energy-dispersive X-ray analysis. Herbert and Moog (2002) proved
variation of the interlayer distances by changes of pore water chemical compositions.

Swelling/shrinking always results from moisture change within the isothermal multi-
phase �ow in bentonite, which involves several complex interacting phenomena. The
main processes involved in swelling/shrinking in bentonite as buffer material are the
hydraulic processes (water transport), chemical process (particle-water-cation inter-
action), mechanical processes (swelling pressure and volume change), and thermal
processes (evaporation/condensation). These processes are fully coupled and re-
lated to porosity and permeability change (Figure 1). This paper presents numerical
modelling of swelling pressure by taking the hydro-mechanical/chemical (H2M/C)
coupled processes in bentonite into consideration.
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Figure 1: Coupled processes in unsaturated expansive porous media

2.1 Porosity

On the surface of the mineral sheets, nett negative charge exists, which results
in the formation of diffuse double layer (DDL) on the surface of sheets (Gouy
(1910), Chapman (1913)). The thickness of DDLs depends on the surface charge
and effluent, and can be calculated according to the Gouy-Chapman DDL theory
developed by Gouy (1910) and Chapman (1913) for single layer, and according
to the DLVO theory (named after Derjaguin and Landau (1941) and Verwey and
Overbeek (1948)) developed later by Derjaguin and Landau (1941) and Verwey and
Overbeek (1948) for adjacent DDLs. Both theories (traditional DDL and DLVO)
use the same parameter describing the �thickness� of DDL de�ned by equation 3
in section 2.1.1. The physical properties of the water within the DDLs, especially
water directly in contact with the mineral surfaces, differ from free water owing to
electrostatic interaction. Therefore, the mobility of the water molecules in interlayers
is largely reduced. Hence, the water entered into interlayer gaps of highly compacted
bentonite is practically immovable. Therefore, it is worthwhile to separate the
total porosity n of bentonite into interlayer nIL (porosity within the particles) and
interparticle porosity nIP (porosity between particles).

n = nIP + nIL (1)

With this de�nition, nIP reveals the coarse pore and can be assumed as the initial
porosity of a dry sample. In the case of constrained swelling, the total porosity
remains constant. The interlayer porosity increases with the saturation process.
Therefore, interparticle porosity decreases accordingly.

4



2.1.1 Interlayer porosity (microscopic)

According to the H2M/C swelling model, volume change resulting from free swelling/shrinking
can be obtained by calculating the interlayer porosity change (Xie et al. (2004)).

Around the particles and within the interlayer space, diffuse double layers tend to
build up, completely only in the case of free swelling (Figure 2). The maximal
interlayer porosity for one particle with m effective layers can be calculated as
follows:

nILi =
2m · A · δ

V0

(2)

A

m layers

d

2

Montmorillonite

mineral sheet

Figure 2: Concept of interlayer porosity within one particle

where A is the particle surface area, V0 is the speci�c volume. δ is the effective
�thickness� of the DDL:

δ =
( εε0RT

2F 2I × 103

)1/2

(3)

where R is the universal gas constant [= 8.3145(J ·mol−1K−1)], k is the Boltzmann
constant (= 1.38066×10−23), T is the absolute temperature [K], F is the Faraday
constant [= 96485.309(C ·mol−1)], ε is dielectric constant and ε0 the permittivity
of free space [= 8.854×10−12(CV −1m−1)]. The Debye parameter 1/κ is inversely
proportional to the ionic strength I (see e.g. References Stumm and Morgan (1996),
Dzombak and Morel (1990)), where ci is the ith ion concentration of pore water
[M ], zi represents the ion valence of the ith ion.

Assuming that the particle can be represented by a circle with diameter d, then

A =
πd2

4
(4)

The number of effective layers m within one particle of expansive minerals in ben-
tonite is a mineral structural parameter, which is de�ned as the number of layers
contributing to the swelling effect. As the montmorillonite particles are very �ne
in size, the average m value is used and calculated by the ratio of total speci�c
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surface area Stotal in m2 g−1 (including the surface between layers, which can sep-
arate by swelling) to external speci�c surface area S0 in m2 g−1 (only the surface
of particles).

m =
Stotal

S0

(5)

The value Stotal is normally determined by the methylene blue and the Keeling
hygroscopy methods. The value S0 is normally measured through BET (Brunnett-
Eellete-Deller N2 Adsorption) method (ASTM (2001a), ASTM (2001b), FEBEX
Working groups (2000)).

As the bentonite particles are very small, for simplicity, the particle sizes are assumed
to be the same. Thus, number of the particles N can be derived from the external
speci�c surface S0:

N =
S0

2A + πdmτ
(6)

where τ is the mean thickness of the effective sheets (Figure 2).

Hence, the total interlayer porosity nIL of the specimen is de�ned as:

nIL =
∑

i

nILi = NnILi =
S0

2A + πdmτ

πmd2

2V0

δ (7)

After some simpli�cations, the maximal total interlayer porosity can be computed
(Xie et al. (2004)):

nILmax = mS0ρd

( εε0RT

2F 2I × 103

)

1

2

(8)

Taking account of the fact that swelling pressure increases with the saturation
process and that the magnitude of swelling potential depends on the expansive
fraction, the total interlayer porosity nIL of the specimen can be calculated:

nIL = (Sl)η · β · nILmax (9)

in which Sl is degree of liquid saturation, β represents volume fraction of the
expansive minerals, η is a dimensionless coefficient.

2.1.2 Effective porosity

Effective porosity is the amount of interconnected pore space in a soil or rock
through which �uids can pass, expressed as a percent of bulk volume (US Bureau
of Mines (1997)). Owing to electrostatic attraction, interlayer-water in compacted
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bentonite is practically immovable. Therefore, the effective porosity neff of com-
pacted bentonite varies with the saturation and swelling processes. In the case of
constrained swelling, the effective porosity decreases with the saturation process.
Theoretically, it can be reduced to zero, which means the permeability reaches zero.
However, this is not the case in the practice. A fraction of the porosity remains,
which is de�ned here as the minimal porosity. It depends on the swelling pressure
and the compressibility of the sample. Therefore, the effective porosity of ben-
tonite in the case of constrained swelling can be derived from the initial porosity
n0, interlayer porosity nIL and minimal porosity nmin :

neff =

{

n0 − nIL , neff ≤ nmin

nmin , neff > nmin

(10)

In the case of free swelling, the volume change should be taken into consideration,
which means the total porosity ntot changes with swelling/shrinking. The effective
porosity is:

neff = ntot − nIL (11)

However, if the water content is less than shrinkage limit, free swelling/shrinking is
limited. Macroscopically, volume change nearly vanishes. Microscopically, interlayer
porosity variation changes the interparticle porosity. In this case, equation (10) can
be used for calculating neff .

2.2 Two phase �ow

The saturation process in bentonite signi�cantly contributes to swelling/shrinking of
bentonite by changing interlayer structure within the tiny expansive mineral particles
through particle-water-cation interactions. This happens also with variations of
chemical composition in pore water. As a consequence, the effective porosity and
intrinsic permeability of a bentonite specimen change upon saturation/desaturation.
Due to the low permeability of bentonite, the compressibility of gas �ow has to be
taken into account. In the model, functions dealing with concurrent �ow of highly
compressible (gas phase) and lowly compressible �uids (liquid phase) are considered.
The mobility of the �uid phases is characterized by their relative permeabilities and
capillary pressure via the degree of saturation, as shown in the van Genuchten�s
equations (van Genuchten (1980)). For completely dry state, the capillary pressure
is limited to 109 Pa (Kolditz and de Jonge (2004)).

Capillary Pressure The parameters pc(S) (capillary pressure) and krel(S) (relative
permeability) are key factors affecting multiphase �ow. Capillary pressure is de�ned
as the difference between partial pressures of non-wetting and wetting phases and
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is a function of degree of saturation (Helmig (1997)). The pc(S) value can be
measured for a given soil with respect to various �uids. The measured capillary
pressure - water saturation curve is used for the numerical analysis (see Section 5).

Relative permeability - Saturation For porous media containing more than one
�uid, relative permeability is a key parameter. It is used to calculate the effective
permeability (kγ

rel(S
γ)k), which is described in the extended Darcy�s law. Different

relationships between kγ
rel and Sγ can be found in literatures, i.g., constant value,

linear function, potential function. The van Genuchten model in conjunction with
the approach of Mualem is adopted in this study (van Genuchten (1980), Helmig
(1997), Lenhard and Parker (1987)):

kl
rel = S

l 1

2

eff

[

1 − (1 − S
l1/α

eff )α
]2

(12)

Sl
eff =

θ − θr

θs − θr
(13)

where α is the van Genuchten parameter, s and r indicate saturated and residual
values of the water content (θ) respectively.

kg
rel = (1 − Sl

eff)
1

2

[

1 − (S
l1/α

eff )
]2α

(14)

where α is the van Genuchten parameter.

Relative Permeability - Swelling Effective porosity of expansive porous media,
especially compacted ones, changes with the saturation processes. Consequently,
its permeability varies.

A large number of studies were aimed at generating methods to independently
predict permeability in sedimentary rocks by bulk porosity (Carman (1937), Berg
(1970), Bloch (1991) and Neuzil (1994)). It was found that measured permeabil-
ities of clays and shales varied over the range of 10−22 m2 to 10−14 m2. Oelkers
(1996) suggested correlation of intrinsic permeability with effective porosity, which
is adopted for highly compacted bentonite. Based on this, the swelling relative
permeability kl

relsw
for highly compacted bentonite is de�ned as:

kl
relsw

k = 9.87 × 10−12e−10+8neff (15)

in which k in m2 represents the intrinsic permeability before swelling, and neff is
the effective porosity as in equation (10).

8



2.3 Elasto-plastic deformation

In the present study we cast the swelling induced inelastic deformation in the frame-
work of elasto-plasticity and employ the modi�ed Cam-Clay model, which has ad-
vantages of simplicity and capability to represent the stress strain behaviour of soil
realities. The strain rate ǫ̇ is decomposed into two parts taking account of swelling
as

ǫ̇ǫǫ = ǫ̇ǫǫe + ǫ̇ǫǫp (16)

where ǫǫǫe represents the elastic part and ǫǫǫp represents the plastic part.

The modi�ed Cam-Clay model is given by

F =
q2

M
+ p (p − pcrit) = 0, (17)

where p = − 1

3
tr(σσσ) is volumetric stress, q =

√

3/2‖σσσ − 1

3
tr(σσσ)1‖ denotes the

deviatoric stress with 1 := δij , the Kronecker notation, M is the slope of critical
state line and pcrit is the preconsolidation pressure.

Consider the associative �ow rule. The plastic train, ǫ̇ǫǫp, can be expressed as

ǫ̇ǫǫp = λ̇
∂F

∂σσσ
(18)

together with loading-unloading Kuhn-Tucker criterion:

Ḟ ≤ 0, λF = 0 , λ ≥ 0 (19)

where λ̇ is the plastic multiplier.

The hardening function in rate form is given by

ṗc = ϑpcǫ̇
p
v, ǫ̇p

v = tr(ǫǫǫp), ϑ =
1 + e

λ − κ
(20)

where e is the void ratio, λ is the virgin compression index, and κ is the swelling/re-
compression index.

The relationship of stress and strain is governed by the following constitutive equa-
tion as

σ̇σσ = CCCeǫ̇ǫǫe = CCCe(ǫ̇ǫǫ − ǫ̇ǫǫp) (21)

where CCCe is a forth order tensor of elasticity.

2.4 Swelling pressure model

The aim of the present study is to model stress induced by swelling effect solely.
From the viewpoint of thermodynamics, swelling pressure indicates a type of energy.
Kahr et al. (1989) showed with experiments on compacted bentonites that swelling
pressure can be calculated from the adsorption isotherms measured by means of the
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water vapor adsorption-desorption isotherm and heat immersion with liquid water.
This means, drier bentonites swell because of the surface energy. Because of the
extremely high value in total speci�c surface of bentonite and additionally high nett
negative charge on the surface of bentonite particles (Grim and Güven (1978)), the
surface energy can be very high under dry state (Yan and Luo (1995)). If water
enters into the bentonite, this energy can be transformed through wetting into
work resulting the volume change in the case of free swelling, or into strain energy
resulting swelling pressure in the case of constrained swelling (Figure 3). Therefore,
it is reasonable to calculate the swelling pressure from the swelling potential, which
is considered to be equal in value to the volume change under free swelling condition.

Montmorillonite

Minerals

Wetting Wetting

Interlayer

pore volume

Interparticle

pore volume

Nonswelling

minerals

V
V

V
IP

V
IL

V
m

V
nm

V
S

n =V /(V +V )IL IL V S

n =V /(V +V )

V =const.
IP IP V S

V

nIL

nIP

dry Psw

Psw

Figure 3: Concept of swelling pressure

The concept to assess the stress induced solely by the swelling effect is illustrated
in Figure 4. We consider a bounded domain. The computation of swelling induced
stress is performed in two steps: 1. compute the free swelling deformation con-
tributed by volume change (dV ) in the domain; 2. press the free swelling strain
back and calculate the resulting stress after compaction process. In the second
stage, an elasto-plasticity problem is analyzed by taking the negative displacement
results on the boundary (after the �rst computation step) as Dirichlet boundary con-
dition. The stress obtained after the second computation step is the stress induced
solely by swelling.

2.4.1 Step 1: free extension

The concept of swelling potential was �rst used by Seed et al. (1962) to represent
the swelling ability of bentonite. In the present paper, swelling potential is de�ned as
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nIL

nIP

Free swelling

Psw

Origin Back compaction

dV

Figure 4: Conceptual model of back compaction

the porosity change potential nsw responsible for swelling pressure (equation (22)).
In the case of constrained swelling, interlayer porosity change can not fully be
converted into swelling pressure. Part of it is used to compact the large pores
(initial interparticle porosity nIP0), especially at the early stage. The looser the
sample, the more interlayer porosity change will be converted. Theoretically, the
large pores can totally be compacted, but in reality, a certain interparticle porosity
always remains. This is de�ned as the minimal porosity (nIPmin). This value is
lower, the higher the swelling pressure σ. It depends on the compressibility of the
material.

nsw = △nIL − (nIP0 − nIPmin) (22)

nIP0 = n0 − nIL0 (23)

nIPmin = f(σ) (24)

where n0 is the initial porosity, nIL0 is the initial interlayer porosity.

According to this swelling model, the porosity nIP0 in equation (22) can practically
be extended to include construction gaps between bentonite blocks plus intergran-
ular porosity within the bentonite blocks, if the gaps disappear through bentonite
expansion.

2.4.2 Step 2: back compaction

As described in Section 2.4, the computation of swelling induced stress is carried
out in two individual steps.

To compute the free swelling deformation, an admissible strain approach is utilized.

In this approach, it is assumed that the strain ǫǫǫ consists of an elastic part and a
swelling induced part as shown in equation (25),

ǫǫǫ = ǫǫǫe + ǫǫǫsw, (25)
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where the swelling induced part ǫǫǫsw is de�ned as

ǫxx = ǫyy = nsw/2
ǫxy = 0

(26)

for a plane strain problem. The de�nition of ǫǫǫsw implies that the free swelling is an
non-linear deformation.

Consider the free swelling phenomena as a coupled hydraulic-mechanical process.
The displacement under free swelling conditions can easily be obtained in the frame-
work of the �nite element method.

The displacement results obtained by the above approaches are taken into account
for the calculation of the domain deformation. Since the deformed domain will be
compacted back to its original shape, the swelling induced stress is obtained by
solving the compaction process. The swelling behaviour of bentonite in turn causes
deformation. This implies that restricted swelling may induce inelastic deformation
in bentonite. The analysis of the inelastic deformation during the back compaction
process is set in the context of elasto-plasticity using the modi�ed Cam-Clay model
described in Section 2.3.

3 Governing equations

In the macroscopic model, two-phase �ow is considered. In general, there are
two concepts to formulate the balance equations: phase-related and composi-
tional approaches. The compositional approach is advantageous for multiphase-
multicomponental processes with phase changes (Gawin et al. (1995), Gens et al.
(1998)), and is adopted for the study. The porous medium is considered as a three
component system, with the components air, water and soil. Each of these compo-
nents can be presented in three phases (gas, liquid and solid phase). In the study,
air and solid are treated as single pseudo components with averaged properties, even
if they consist of several components.

Hydraulic processes resulting from pressure, frictional, and gravitational forces are
described by the extension of Darcy�s law for multiphase �ow. The mobility of the
�uid phases is characterized by their relative permeability and capillary pressure via
saturation.

The mechanic processes resulting from hydraulic processes and swelling are de-
scribed in the fully coupled general mass balance equation via deformation:

∂

∂t
(nSgρg + nSlρl) + αSl ∂

∂t
∇ · u + ∇ · (Jg

k + Jl
k) = Qk, (27)

where n is porosity, S is phase saturation (g, gas; l, liquid), ρ is component mass
density, g means gas, l means liquid, subscript k denotes component, a (air) or w
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(water), and α is given by Biot�s constant as

1 − α =
Kt

Ks
,

Kt : bulk modulus of skeleton,
Ks : bulk modulus of the grain material.

For incompressible porous media, we assume, α = 1.0. J
γ
k are �uxes of component

k in phase γ (g or l).

The �ux terms of the mass of �uid phase as described in the generalized Darcy�s
law are used to describe the linear momentum balance of multiple �uid phases in a
porous medium (see e.g. Bear and Bachmat (1990), Helmig (1997)):

Jγs = nSγργ(vγ − vs) = −ργ kγ
relk

γ

µγ
(∇pγ − ργg) (28)

The �ux is a function of pressure gradients and saturation. The decisive material
function for the �ux term is relative permeability kγ

rel(S
γ).

In a partially saturated regime, the momentum balance of porous media is governed
by

∇ [σσσ − (Slpl + Sgpg)1] + [(1 − n)ρs + nSlρl + nSgρg]g = 0 (29)

4 Numerical approach

Details of the numerical schema for multiphase-multicomponent �ow in non-deformable
porous media can be found in Kolditz and de Jonge (2004). The extensions for
swelling and deformation processes are presented in this paper.

Finite element formulations

The weak forms of the differential �eld equations for �uid pressure and saturations
are formulated using the method of weighted residuals. The unknown functions are
approximated by trial solutions based on nodal values and interpolation functions.
According to the Darcy�s law, �uid �uxes depend on pressure gradients (28). In order
to extract the independent �eld variables, the �ux terms are treated in their weak
form using the Gauss-Ostrogradskian integral theorem. The weak form is discretized
using a mixed �P2/P1� element (quadratic interpolation of displacements and linear
interpolation of saturation and pressure).
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Denote the shape functions of linear interpolation as N1 and quadratic interpolation
as N2, respectively. The following equations can be obtained:

[
∫

Ω

NT
1

(

nSgXg
k

∂ρg

∂pg
+ nSlX l

k

∂ρl

∂pl

)

N1 dΩ

] [

dp̂g

dt

]

+

[

∫

Ω

∇NT
1

(

ρgXg
k

kg
relk

µg
+ ρlX l

k

kl
relk

µl

)

∇N1 dΩ

]

[p̂g]

−

[
∫

Ω

NT
1

(

nρgXg
k − nρlX l

k

)

N1 dΩ

]

[

dŜl

dt

]

+

[
∫

Ω

NT
1 αSlmB dΩ

] [

dû

dt

]

=

∫

Ω

NT
1 Qk dΩ

+

[
∫

Ω

NT
1

(

nSlX l
k

∂ρl

∂pl

)

N1 dΩ

] [

dp̂c

dt

]

+

[

∫

Ω

∇NT
1

(

ρlX l
k

kl
relk

µl

)

∇N1 dΩ

]

[p̂c]

−

[
∫

Ω

∇NT
1 (nSgρgXg

kDg
k)∇N1 dΩ

]

[

X̂
g
k

]

−

∫

Ω

∇NT
1

(

ρgXg
k

kg
relk

µg
ρgg + ρlX l

k

kl
relk

µl
ρlg

)

dΩ

(30)

for a mutli-phase �ow problem and

∫

Ω

BTσσσ dΩ =

∫

Ω

BT mN1 dΩ
[

Slp̂l + Sgp̂g
]

−

∫

Ω

N2[(1 − n)ρs + nSlρl + nSgρg]gdΩ +

∫

Γ

NstdΓ (31)

for the displacement �eld, where p̂g and Ŝl and û are nodal variables, B is the
strain displacement matrix, m is a unit mapping vector, Ns is the shape function
on the face of an element and t is boundary traction.

Equation (31) is solved by the general Newton-Raphson method with the return
mapping of stress. The partitioning iterative scheme is employed to deal with the
coupling items in equations (30, 31).
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5 Example

5.1 Problem definition

The following example is investigated for swelling pressure calculation by using the
back compaction method. The simulation begins with isothermal two phase �ow
coupled with deformation. Free swelling is allowed at the �rst stage to calculate the
free swelling displacement on the boundary, which is then used as the displacement
boundary condition for the back compaction process.

The objectives of this example study are:

• Demonstrating free expansion by the swelling model presented herein

• Calculating swelling pressure by the back-compaction method

The geometric set-up and boundary conditions (BC) are as shown in Figure 5. The
sample is a compacted bentonite block, 0.025 m in length and 0.024 m in height.
The element discretization is △x = 0.00125m and △y = 0.00124m. The ini-
tial conditions (IC) of the isothermal system are: atmospheric gas pressure, liquid
saturation Sl = 0.357. A water solution (ionic strength I = 0.316M) enters the
sample from the bottom between x = −0.0075m and x = 0.0075m under a pres-
sure described by the curve in Figure 6. The corresponding part on the boundary is
fully saturated. This model set-up is similar to a case of fractured rock/bentonite
contact.

0.025 m

0.
02

4
m

water intrusion

y

x0

BC:
Sl=1.0
Pl=Pl(t)

IC:
Sl=0.357
Pg=1.01e5 Pa

Figure 5: Model set-up of the example
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Figure 6: Curve of the liquid pressure on the boundary

The material properties for this example are based on data in the literature (Agus
and Schanz (2003), Poling et al. (2001)) and summarized in Table 1 for �uid and
in Table 2 for porous medium. The minimum porosity de�ned in equation (24) is
assumed to be constant.

Table 1: Fluid properties

Symbol Meaning Value Unit
ρg initial gas density 1.26 kg/m3

βg
p gas compress. coeff. 6.67 × 10−6 Pa−1

ρl initial liquid density 1000 kg/m3

βl
p liq. compress. coeff. 4.70 × 10−10 Pa−1

µg gas viscosity 1.80 × 10−5 Pa s
µl liquid viscosity 1.20 × 10−3 Pa s
cg gas heat capacity 1.01 × 103 −
cl liquid heat capacity 4.20 × 103 −
λg gas heat conductivity 0.026 W/(m K)
λl liquid heat conductivity 0.60 W/(m K)
from Poling et al. (2001)

The deformation under free swelling conditions is assumed to be linearly elastic,
whereas the deformation during back compaction is elasto-plastic. For the com-
paction computation, an initial status σxx = σyy = 1MPa, σzz = 0.7MPa is
given with ν = 0.35 for the modi�ed Cam-Clay model, which satis�es plane strain
conditions. The solid material parameters used in the present computation are given
in Table 3.
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Table 2: Porous medium properties

Symbol Meaning Value/Ref Unit
ρ density 1600∗ kg/m3

n porosity 0.37∗ −
S0 extern. spec. surface 31.80 m2/g
β swelling fraction 0.85 −
m effective layer number 5 −
I ionic strength 0.316 M
nmin min. porosity 0.05 −

c heat capacity 1.6 × 103∗∗

λ heat conductivity 0.718∗∗ W/(m K)
k permeability eqn(15)
pc capillary pressure Figure 7 Pa
krel relative permeability eqn (12, 14)
∗ from Agus and Schanz (2003)

∗∗ from Poling et al. (2001)

Table 3: Solid material properties

Symbol Meaning Value Unit
Elasticity (free swelling)
E Young�s modulus 3.5 MPa
ν Poisson ratio 0.3 —
Plasticity (back compaction)
M Slope of the critical state line 1.4 —
λ Virgin compression index 0.165∗ —
κ swelling/recompression index 0.087∗ —
pc Initial preconsolidation pressure 4.96∗∗ MPa
∗ from FEBEX Working groups (2000)

∗∗ from Nishimura (2001)

5.2 Results and discussion

The simulation results of the free swelling processes after 5.8 × 105s (6.7 days)
are as shown in Figure 9a-d. With the intrusion of water from the bottom, the
saturation process starts. This phenomena can clearly be seen from the saturation
evolution pro�le along the vertical symmetric axis (Figure 8). At the early stage, the
value of liquid saturation increases quite fast, owing to the high capillary pressure of
the specimen and extra liquid pressure (see Figure 6). After 4.9 × 105s (5.7 days),
the liquid pressure on the bottom sinks and at 5.0 × 105s (5.8 days) reaches zero.
Because of the low permeability of bentonite, the liquid pressure at the center of the
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Figure 7: Capillary pressure-saturation curve

specimen sinks slower, which results in the higher pressure region in the specimen
after 6.7 days as shown in Figure 9a.

With the intrusion of water, the sample begins to expand. After 6.7 days, the shape
of the specimen should be as shown in Figure 9. This is owing to the interlayer
porosity increase as shown in the Figure 9d with the increase of the liquid saturation
(Figure 9c). The maximal width of the specimen increases about 20% (Figure 9).
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Figure 8: Computed pro�les of liquid saturation along the vertical symmetric axis
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Figure 9: Simulation results of the free swelling process - Distribution of a) liquid
pressure, b) capillary pressure, c) liquid saturation, d) interlayer porosity, at t =
5.8 × 105s
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Figure 10: Simulated shape of the sample, and distribution of liquid saturation for
non-swelling material at t = 5.8 × 105s

For comparison, the same example is recalculated without the swelling model (nsw =
0.0 in equation (26)). In this case, the sample deforms only by the coupling effect
of �ow and deformation, which appears to be negligibly small as shown in Figure 10.
This demonstrates that the swelling effect is signi�cant.

In order to calculate the swelling pressure, the back compaction process is per-
formed using the modi�ed Cam-Clay model. The back compaction of the expanded
sample is simulated to the original shape using the computed displacement values
on the boundaries at the free swelling stage as displacement boundaries. The dis-
tributions of stress (Figure 11a,c) and strain (b,d) are within the expected ranges.
The simulated values of stress σyy, which represent the swelling stress, are between
0.089MPa and 0.93MPa.

The minimum porosity de�ned in equation (24) is assumed to be constant. This
causes negative nsw value at the early saturation stage, which is treated to be
zero, owing to the fact that the swelling strain contributes to the compression of
large pores. The reactive transport in bentonite, which can cause pore water ionic
strength variation, is not taken into account because of the short simulation time.
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Figure 11: Results of the back compaction process - Distribution of a) stress σxx, b)
strain ǫxx, c) stress σyy, d) strain ǫyy, e) displacement uy, f) accumulated plastic
strain ǫp

yy at time = 6.0 × 106s
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6 Conclusions

This paper presents a new modelling concept of the numerical assessment of swelling
pressure, i.e. the stress induced by swelling solely, in expansive porous media. In the
presented method, swelling pressure is computed through free swelling followed by a
back compaction. The application of this method takes two steps: 1. Free swelling
simulation on the basis of the H2M/C model for accessing displacement on the
boundaries. This model is based on the diffuse double layer theory, and connects
the microstructural mineral parameters of bentonite and porewater chemistry with
macroscopic swelling effects. Variations of effective porosity and consequently, of
the permeability of bentonite have been taken into account; 2. Back compaction
using the displacement on the boundaries obtained by the �rst step through the
modi�ed Cam-Clay elasto-plastic model. The resulting stress is considered to be
the swelling pressure.

The strong non-linearity arising from multiphase �ow and elasto-plastic deformation
processes are resolved by the Picard and Newton-Raphson methods, respectively.
The partitioning iterative scheme is employed to deal with the H2M/C coupling
system equations. The stability of this scheme is observed. A 2D example was
computed to demonstrate the capability of the modelling concept for design of
swelling pressure experiments.
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Abstract: Object-oriented (OO) methods become more and more important
in order to meet scientific computing challenges, such as the treatment of
coupled non-linear multi-field problems with extremely high resolutions. This
two-part paper introduces an object-oriented concept for numerical modelling
multi-process systems in porous media (Part 1). The C++ implementation of
the OO design for process objects (PCS) as a class is described and illustrated
with several applications. Due to the importance of the encapsulation of
processes as individual PCS objects we denote our concept as an process-
oriented approach.

The presented examples (Part 2) are dealing with thermal (T), hydraulic
(H), mechanical (M) and componental processes (C) in bentonite materi-
als, which are used as buffer material for the isolation of hazardous waste
in geologic barriers. In particular, we are interested in coupling phenom-
ena such as thermally induced desaturation, non-isothermal consolidation,
swelling/shrinking phenomena as well as in a better understanding of the
coupled, non-linear THM system.

1 Introduction

For deep geological disposal of nuclear waste, engineered barrier systems have
to be developed. To develop appropriate barriers, the disposal scenario has
to be simulated numerically, as a prediction and engineering tool in the near-
field of the disposal site. The numerical model has to be able to reproduce the
various processes. Figure 1 shows a plan view of a possible disposal scenario,
with nuclear waste packed into the core at the centre, a bentonite buffer
surrounding it. Core and buffer are placed into the host rock. The processes
arising in this situation are coupled processes, composed of thermal processes
(heating, cooling, evaporation, condensation), hydraulic processes (water in-
trusion, saturation, desaturation), mechanical processes (elastic and plastic
deformation), and chemical processes (radiation, reactions).

The engineered buffer used in deep geological disposal sites is often pure
bentonite or a bentonite - sand mixture. Bentonite is a material with very low
permeability and complex swelling properties (Tripathy and Schanz (2002)).
The swelling properties are used as a seal against water intrusion.
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Fig. 1. THM processes in the near field of a disposal site

Natural thermo-hydraulic processes in the surrounding area of geothermal
reservoirs have been studied by a large number of authors (e.g. Pruess and
Narasimhan (1982), Pruess and Narasimhan (1985)). An excellent review of
modelling thermo-hydraulic processes in geothermal systems is presented by
Pruess (1990). Bodvarsson and Tsang (1982) investigated the effect of the
injection of colder water into a fracture near a geothermal reservoir, and
the advance of the thermal front along the fracture was simulated with a
numerical model. The role of fracture networks in geothermal reservoirs is
discussed and demonstrated in site studies by Kolditz (2001). Long-term fluid
and heat extraction from geothermal systems result in significant deformation
processes (Lippmann et al. (1976)). Lewis et al. (1989) presented a THM
model for geothermal systems, where capillarity effects are neglected.

In geomechanical models the stress state and the resulting deformation
process is of special interest. As a consequence the solid phase has to be
treated explicitly. The interaction of fluid (phase) flow and solid (phase) de-
formation in the framework of the porous medium approach can be modeled
based on the consolidation theory (Terzaghi (1925), Biot (1941)). Modeling of
geotechnical barriers for heat emitting waste often requires a coupled thermo-
hydro-mechanical (THM) analysis. First studies of THM processes in that
field were presented by Borsetto et al. (1984). However, only one fluid phase
was considered. In that case, multiphase effects and phase change processes
can not be addressed. Börgesson (1985) and Studer et al. (1984) investigated
swelling and shrinking phenomena in bentonites. They developed a mate-
rial model for porosity and permeability changes with undergoing moisture
transport. Studies of THM processes in partially saturated, thermo-elastic
porous media without phase change effects were presented by Geraminegad
and Saxena (1986). Alonso et al. (1987) discussed the theoretical background
of THM modeling including all important effects. Olivella et al. (1994), Gawin
et al. (1995) and Gens et al. (1998) introduced the compositional approach
for THM modeling of multiphase-multicomponental systems. In their book,
Lewis and Schrefler (1998) gave an excellent overview on coupled processes
and their modeling in the field of deformation and consolidation theory of
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porous media. Kanno et al. (1999) developed and applied a THM model to
study the temperature dependency of hydraulic conductivity in saturated
porous media and water diffusivity in unsaturated porous media. An excel-
lent overview on existing THM codes is given by Rutqvist et al. (2001). The
model was verified against full scale coupled experimental data. Most of the
cited models have found wide application in simulating geotechnical systems.
In most cases the systems analysed were restricted to relatively large perme-
abilities.

Thermo-hydraulic processes are important in the field of groundwater re-
mediation techniques as well, i.e. thermally enhanced procedures, such as
steam injection, are recognized techniques to treat subsurface contamination
by non-aqueous phase liquids (NAPLs). Numerical models for simulation of
the related non-isothermal processes were developed by Falta et al. (1992a),
Emmert (1997), Helmig (1997), and Class (2000). These codes have found
wide application in simulating NAPL remediation but in systems with rela-
tively large permeability.

RockFlow/GeoSys is a simulator that is used to model near-field situa-
tion of the type described above (Kolditz et al. (2003)). It is a finite element
code, programmed using object-oriented techniques. Object-orientation al-
lows a wide spectrum of applications for the code, and also simultaneous code
development. This paper will concentrate on a process-oriented approach,
that is used for simulating the coupling of thermal, hydraulic, mechanical
and chemical (THMC) processes. The governing equations of the model are
shown, as well as how these equations are treated numerically. A code appli-
cation example for the desaturation of bentonite will be presented. The first
example is based on an example in Olivella and Gens (2000) and partially
serves as model verification. Furthermore, the code development finds ap-
plication in bench mark test 1 (BMT1) of the DECOVALEX (International
co-operative project for the DEvelopment of COupled models and their VAL-
idation against EXperiments in nuclear waste isolation) project (Jing et al.
(1999)). Current work on this project is presented.

2 Model Equations

In multi-field problems we have to deal with several processes, which are
described by a corresponding set of partial differential equations (PDEs).
We may have different types of processes such as flow (H-Process), heat (T-
Process) and component transport (C-Process) as well as deformation (M-
Process). Those processes are described by PDEs of different types (compare
Table 1), which are derived from the basic conservation principles of mass and
energy together with the corresponding material laws (e.g. Kolditz (2002)).
Associated with each PDE are the corresponding initial and boundary con-
ditions, as well as the appropriate numerical and solution techniques.

The system of model equations to determine the chosen field variables
(fluid gas pressure pg, fluid liquid saturation Sl and equilibrium temperature
T ) is based on the balance equations for fluid mass and heat in combination
with the flux terms and the equations of state.



4 Kolditz et al.

Table 1. PDE types of processes

Acronym Process PDE type

T Thermal mixed parabolic-hyperbolic
H Hydraulic parabolic
M Mechanic elliptic
C Componental mixed parabolic-hyperbolic

2.1 H2 Processes: Fluid component equations

Here we deal with two-phase flow (H2) processes (exponent denotes number of
fluid phases). Based on the fluid mass balance the following model equation in
terms of primary variables: gas pressure, liquid saturation, solid displacement
can be derived.

nXg
k

(

Sg ∂ρg

∂pg
+ Sl ∂ρl

∂pl

)
∂pg

∂t

− ∇ ·

(

ρgXg
k

kg

relk

µg
∇pg

)

−∇ ·

(

ρlX l
k

kl
relk
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∇pg

)

+ n(−ρgXg
k + ρlX l
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∂Sl
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+ (Sgρg + Slρl)mT L
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MH coupling term

= Qk
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kl
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ρlg
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+ ∇ · (nSgρgDg
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k )
︸ ︷︷ ︸

TH coupling term

(1)

where n is porosity, βp is the fluid compressibility, p is liquid phase pres-
sure, t is time, k is permeability tensor, µ is liquid viscosity, g is gravity
vector, us is solid phase displacement, mT and L are matrix operators. L
is an operator that gives the relationship between displacement and strain,
X is mass fraction, pc is capillary pressure, krel is relative permeability, ρ is
density, and D is componental diffusion coefficient. Index k = a,w denotes
air and water components,respectively and exponent γ = g, l, s denotes gas,
liquid, solid phase, respectively.

The MH and TH coupling terms of deformation and heat transport to
the flow processes are highlighted. Coupling is also due to the dependencies
of material and state functions such as density, viscosity, capillary pressure,
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vapor pressure, mass fractions on the primary variables: gas pressure, liquid
saturation, temperature and solid displacement.

2.2 T Process: Thermal energy equation

Based on the heat balance equation for the porous medium consisting of three
phases, we obtain the following thermal energy equation.

(
(1 − n)ρscs + nSgρgcg + nSlρlcl

) ∂T

∂t

+
(

ρgcg
kg

relk

µg
(∇pg

− ρgg)

+ρlcl
kl
relk

µl
(∇pl

− ρlg)
)

∇T

− ∇ ·
((

(1 − n)λs + nSgλg + nSlλl
)
∇T

)

− ∇ · (nSgρgDg
ahg

∇Xg
a)

− ∇ · (nSgρgDg
whg

∇Xg
w)

= ρQT (2)

where in addition to above equations: cγ is specific heat capacity of phase
γ, T is temperature, λγ is thermal conductivity of phase γ, hγ is enthalpy of
fluid phase γ, QT is a heat source term.

2.3 M Process: Equilibrium equation

Porous medium momentum conservation in terms of stresses is

∇ · (σ − (Slpl + Sgpg)I
︸ ︷︷ ︸

HM coupling term

− βT (T − T0)I
︸ ︷︷ ︸

TM coupling term

) + ρg = 0 (3)

where σ is the effective stress of the porous medium, I is the Kronnecker
symbol. ρ = nρl +(1−n)ρs is the density of porous media. Hereby we assume
solid grains itself are incompressible, i.e. dsu/dst = 0

To solve the initial-boundary-value-problem, we have to specify initial and
boundary conditions for the field functions and their derivatives (fluxes).

3 Object-oriented design

3.1 Processes of multi-field problems

Processes can have complex relationships and interactions (Fig. 2), e.g. trans-
port processes of chemical species are based on a defined flow field. These
chemical species may also react with each other. Those reactions can change
the porous material itself. Thermal effects influence flow and deformation
processes.
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Fig. 2. Dependencies of THMC processes

Traditionally, one computer code was developed to simulate one physi-
cal process. The code could therefore deal with one PDE and the associated
sets of boundary and initial conditions, and provided a set of numerical tech-
niques to solve the equation system. These codes were then extended to
deal with coupled processes or to handle more than one PDE. This was of-
ten done without changing the data and programm structure used and thus
caused a complicated and inflexible code. Sometimes, as e.g. in the case of
the simulation programs MODFLOW and MT3D, two programs have to be
run sequentially to simulate both flow (MODFLOW) and transport (MT3D),
with intermediate program output and input. Therefore the need for a new
design of the multi-process approach is obvious.

The solution of an equation system EQS as the representative of a phys-
ical process is a universal procedure which can be applied to each process
independently of their specific type. This allows us to generalize the code
and to treat processes in an object-oriented way.

The computation scheme must be very flexible concerning the number of
fluid phases (number of H processes) and the number of chemical components
to be transported (number of C processes). Additionally, there must be a flex-
ible way of specifying the relation between the flow processes as well as very
general way to define reactions between the involved chemical species. The
new process object therefore corresponds to all numerical and physical prop-
erties of a �conventional� program and the multi-process concept presented
here can therefore be seen as a merging of many programs, each for a specific
physical problem. Data structures as well as the grid and the timestepping
are common for all processes, whereas the parameters, boundary conditions
and the type of PDE and thus also the solving technique used may vary from
process to process.
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3.2 PCS object design

Fig. 3 gives a graphical illustration of the process (PCS) relationships to
other objects. From these objects information is required to solve a process.
Because this information is universal, we build an object for processes, the
PCS object, which is implemented as a class.

Fig. 3. Relationships of processes

Discrete approximation methods for PDEs result in algebraic equation
systems (AES). The general task of a process is, therefore, to build and solve
the corresponding equation system (EQS).

� EQS: Au = b

Processes must have a related equation system consisting of a system
matrix A, a solution vector u, and the right-hand-side (RHS) b. For
the solution procedure of an AES we also need parameters to control
the equation solver (SOL). During the solution procedure, system matrix,
solution vector and RHS vector will be manipulated according to specified
initial conditions IC, boundary conditions BC, and source terms ST. All
this data is related to nodes of the numerical grid. Having several equation
systems to deal with, we must be able to correlate the data with the
corresponding equation system. This will be done by names. The EQS

name will be selected according to the corresponding field quantity, e.g.
PRESSURE for fluid flow and CONCENTRATION for component transport. In
case of multi-phase or multi-component systems, we have to specify these
names by adding the related phase or component number, i.e. PRESSURE1
or CONCENTRATION1 for the first fluid phase or component, PRESSURE2 or
CONCENTRATION2 for the second fluid phase or component and so on.

� NUM:
The numerics object contains parameters of the numerical method, such
as time collocation factors, the number of Gaussian points, upwind pa-
rameters etc. Again, a NUM object will be related to the PCS by name.

� SOL:
Solver objects enclose parameters controlling the equation solver algo-
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rithm, such as solver method, tolerance criterion, maximum iteration
number etc.

� IC:
Initial conditions are necessary for any initial value problem. They pre-
scribe values for a certain time point u(t0). Initial conditions are related
to PCS by the process name. IC values correspond to grid nodes.

� BC:
Boundary conditions are necessary for any boundary value problem. They
can be of different kind, prescribing a value u(x0), a flux ∇u(x0) or a com-
bination of both. Boundary conditions are related to PCS by the process
name. BC values correspond to grid nodes.

� ST:
Source terms give nodal loads to a system. They can be directly applied
to the RHS vector b. Source terms are related to PCS by a name. ST

values correspond to grid nodes.
� MAT:

In general, the system matrix is built by material properties MAT, by
shape functions N , and their derivatives ∇N . For flow and transport pro-
cesses in porous media we need fluid , component and medium properties.
The number of instances for the fluid, component, and medium properties
corresponds to the number of specified fluid phases, chemical components
and material groups.

� TIM:
For transient problems we have to apply appropriate time discretization
schemes. Time stepping schemes are governed by numerical stability cri-
teria, which depend on the specific type of PDE.

� KER:
As we use the finite element method for the spatial discretization of the
multi-field system, we need special data constructs for finite element ma-
trices, which are linked to the element list.

In fact, the size of a multi-field problem in continuum mechanics is defined
by the corresponding balance equations to be solved in order to determine the
required field quantities. For flow and transport processes in porous media
this is equivalent to the number of fluid phases and the number of chemical
components involved. Then the set of PDEs consists of fluid and component
mass conservation equations. In case of deformable porous medium a stress
equilibrium equation has to be solved.

In the framework of discrete approximation methods, such as the finite
element method, processes must be able to access node and element data,
in order to save the own solution vector ui or resultants (e.g. flux vectors).
Moreover for coupled multi-field problems, processes must have the right
to use solution vectors or resultants of the other processes. This has to be
implemented by data access functions to nodes (NOD) and elements (ELE)
via the node and element lists.

� NOD:
Each process has to define his related node values (e.g. the field quantity
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at the old and new time step, etc.). Nodal values of all field variables will
be stored in a vector, which is connected with the node list. This nodal
value vector must be flexible in order to account for a variable number of
field variables, e.g. as a result of chemical reactions.

� ELE:
Each process has to define his related element values (e.g. element resul-
tants (fluxes, stresses, strains), characteristic numbers, material proper-
ties, etc.). Element values of all processes will be stored in a vector, which
is connected with the element list. This element value vector must also
be flexible in order to account for a variable number of values.

3.3 PCS Methods

After outlining the requirements and the object structure for PCS objects, we
turn to the methods associated with them, i.e. the functions of PCS objects.
This functionality is determined by the algorithm of the multi-process scheme,
which is depicted in Fig. 4.

NODPCSCreateProcessesList()

NOD

NOD

NOD

NOD

PCSCreateProcess()

PCSDestroyProcess()

NODNODPCSExecuteProcess()

NODPCSDestroyProcessesList()

NOD
PCSCalcProcessInteractions()

L
O

O
P

T
IM

E
L

O
O

P

L
O

O
P

L
O

O
P

Fig. 4. PCS methods

As is visible in Fig. 4, first the process list is created, which contains
all the processes to be handled during a program run. These processes then
have to be created and configured and the connections between all objects
have to be set. Then the process can be executed within the time loop by
solving the corresponding PDE and obtaining the field variables as well as
values wanted additionally. Within the time loop interactions of the processes
can also be calculated. Functions are thus needed to create the PCS list as
well as the PCS instances themselves. In order to destroy the list and its in-
stances, corresponding destroy-functions are required. The symmetry of data
construction-destruction is very important for working with dynamic data
and is clearly reflected in the structure of Fig. 4. This way the general meth-
ods for processes become visible: construction and destruction of the process
list and the corresponding list operations, and secondly, process construction
and destruction as well as process execution for the individual process.
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3.4 PCS Implementation

The PCS object must be able to administrate all required data for the com-
plete solution algorithm of a PDE. PCS objects are implemented as a class:

class CRFProcess

{

...

private:

\\ EQS - equation system for this process

public:

\\ Relationships to other objects

...

}

The PCS has private and public data. The most important private prop-
erty of a process is the connected equation system EQS, while public data
reflect the relationship to other objects (Fig. 2). Typical methods of process
instances are PCS creation, configuration, and execution. Instances of the
PCS class are organized in a list.

After having created and configured the process object PCS instances,
they can be executed to set up and solve the equation system. This is done
by

void CRFProcess::PCSExecuteProcess(EQUATION_SYSTEM *eqs)

The algorithm for process execution consists of the following steps: (1)
initialize system matrix A, RHS-vector b, and solution vector u, (2) calculate
finite element matrices, (3) assemble equation system, (4) solve equation
system, and (5) store time step results.

The source code can be written now in a very compact way.

void CRFProcess::PCSExecuteProcess(EQUATION_SYSTEM *eqs) {

DisplayMsgLn("Process: ", eqs->name);

// 1 - Initializations -----------------------------

EQSSetZeroLinearSolver(eqs);

// system matrix, RHS vector

nidx = PCSGetNODValueIndex(this->name);

// get solution vector (initial values)

NODTransferValues2EQS(nidx,eqs);

// 2 - Calc element matrices -----------------------

PCSCalcElementMatrices();

// 3 - Assemble equation system --------------------

PCSAssembleSystemMatrix(eqs->b,eqs->x);

// 4 - Solve EQS -----------------------------------

EQSExecuteLinearSolver(eqs);

// 5 - Store solution vector in node values vector -

EQSTransferNODValues(eqs,nidx);

}

The function parameter is the equation system connected to the current
process: pcs->eqs. Note that the above function sets up and solves a PDE,
which can have different types (Table 1). More details of the PCS concept
and the implementation can be found in Kolditz and Bauer (2003).
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Conclusions

An object-oriented approach is developed to solve coupled, non-linear multi-
field problems for porous media. The treatment of processes as objects (PCS)
has several advantages

� Standardization of process data,
� Generalization of the solution procedure of PDEs (calculation of element

matrices, assembling and solving resulting equation systems),
� Easy to create, configure and execute processes in user-defined loops.

The PCS concept was applied to analyze thermo-hydro-mechanical pro-
cesses in the near-field of heat emitting container embedded in bentonite
material. The variety of phenomena is spreading from TH2, THM to TH2M
processes.
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unsaturated porous media. Géotechnique, 36:539–550, 1986.

R. Helmig. Multiphase Flow and Transport Processes in the Subsurface. Springer,
Berlin, 1997.

L. Jing, O. Stephansson, L. Börgesson, M. Chijimatzu, F. Kautsky, and C.-F. Tsang.
Decovalex ii project technical report - task 2c. Ski report 99:23. issn 1104-1374,
DECOVALEX team, 1999.

T. Kanno, T. Fujita, H. Ishikawa, K. Hara, and M. Nakano. Coupled thermo-hydro-
mechanical modelling of bentonite buffer material. Int. J. Numer. Anal. Meth.
Geomech., 23:1281–1307, 1999.

M. Kohlmeier, R. Kaiser, O. Kolditz, and W. Zielke. Finite element simulation
of consolidation and bentonite swelling in the framework of unsaturated porous
media. In: Developments in Water Science, 47:57–64, 2002.

O. Kolditz. Non-linear flow in fractured rock. Int. J. Numer. Methods for Heat &
Fluid Flow, 11(6):547–575, 2001.

O. Kolditz. Computational methods in environmental fluid mechanics. Springer
Science Publisher, Berlin - New York - Tokyo, 2002.

O. Kolditz and S. Bauer. A process-oriented approach to compute multi-field prob-
lems in porous media. submitted to Hydroinformatics, 2003.

O. Kolditz, J. de Jonge, M. Beinhorn, M. Xie, T. Kalbacher, W. Wang, S. Bauer,
C. McDermott, R. Kaiser, and M. Kohlmeier. ROCKFLOW - Theory and users
manual, release 3.9 (in preparation). Groundwater modeling group, Center for
Applied Geosciences, University of Tuebingen, Institute of Fluid Mechanics, Uni-
versity of Hannover, 2003.

R. W. Lewis, P. J. Roberts, and B. A. Schrefler. Finite element modelling of two-
phase heat and fluid flow in deforming porous media. Transport in Porous Media,
4:319–334, 1989.

R. W. Lewis and B. A. Schrefler. The finite element method in the static and
dynamic deformation and consolidation of porous media. Wiley, 1998.

M. J. Lippmann, T. N. Narasimham, and P. A. Witherspoon. Numerical simulation
of reservoir compaction in liquid-dominated geothermal systems. In Proc. 2nd
Int. Symposium Land Subsidence, pages 179–189. IAHS, 1976.

S. Olivella, J. Carrera, A. Gens, and E. E. Alonso. Nonisothermal multiphase flow
of brine and gas through saline media. Transport in Porous Media, 15:271–293,
1994.

S. Olivella and A. Gens. Vapour transport in low permeability unsaturated soil
with capillary effects. Transport in Porous Media, 40:219–241, 2000.



A process-oriented approach to compute THM problems 1 ... 13

K. Pruess. Modeling of geothermal reservoirs: Fundamental processes, computer
simulations and field applications. Geothermics, 19(1):3–15, 1990.

K. Pruess and T.N. Narasimhan. On fluid reserves and the production of super-
heated steam from fractured, vapor-dominated geothermal reservoirs. J. Geo-
phys. Res., 87(B11):9329–9339, 1982.

K. Pruess and T.N. Narasimhan. A practical method for modeling fluid and heat
flow in fractured porous media. Society of Petroleum Engineers Journal, 25(1):
14–26, 1985.

J. Rutqvist, L. Börgesson, M. Chijimatsu, A. Kobayashi, L. Jing, T. S. Nguyen,
J. Noorishad, and C.-F. Tsang. Thermodynamics of partially saturated geo-
logic media: governing equations and formulation of four finite element models.
International Journal of Rock Mechanics & Mining Sciences, 38:105–127, 2001.

J. Studer, W. Ammann, P. Meier, Ch Müller, and E. Glauser. Verfüllen und Ver-
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Abstract: Object-oriented (OO) methods become more and more important
in order to meet scientific computing challenges, such as the treatment of
coupled non-linear multi-field problems with extremely high resolutions. This
two-part paper introduces an object-oriented concept for numerical modelling
multi-process systems in porous media (Part 1). The C++ implementation of
the OO design for process objects (PCS) as a class is described and illustrated
with several applications. Due to the importance of the encapsulation of
processes as individual PCS objects we denote our concept as an process-
oriented approach.

The presented examples (Part 2) are dealing with thermal (T), hydraulic
(H), mechanical (M) and componental processes (C) in bentonite materi-
als, which are used as buffer material for the isolation of hazardous waste
in geologic barriers. In particular, we are interested in coupling phenom-
ena such as thermally induced desaturation, non-isothermal consolidation,
swelling/shrinking phenomena as well as in a better understanding of the
coupled, non-linear THM system.

Part 1 of this paper is about design and implementation of processes in
an object-oriented way. Here we give numerical examples to show the variety
of problems which can be treated based on the process-oriented approach.

Examples

We consider three classes of THM problems with increasing complexity:

– Non-isothermal single-phase flow in elasto-plastic porous media (THM
processes) (section 1)

– Non-isothermal two-phase/two-componental flow in porous media (TH2/M
processes) (section 2)

– Non-isothermal two-phase/two-componental flow in elasto-plastic porous
media (TH2M processes) (section 3)
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1 Non-isothermal consolidation of saturated
elasto-plastic materials (THM process)

The process features of this problem class and the treatment are given in
Table 1.

Table 1. Processes

Acronym Process Treatment

T Heat transport Heat balance equation
H Single phase flow Mass balance equation
M Inelastic deformation Momentum balance equation

Example 1: Biaxial test

Example description

The biaxial test with thermal effect is analyzed to demonstrate the efficiency
of the process oriented concept. The sample is sand in rectangle shape with
size of 0.1m×0.34m under plain strain condition (Mokni and Desrues (1998)).
Details of the numerical analysis of the biaxial test can be found in Wang
and Kolditz (2003).

The geometry, boundary conditions and mesh are shown in Fig. 1 The
initial and boundary conditions are:

– Thermal: The whole sample is under a room temperature of 283K before
the boundary condition is applied. Temperature in a range of x = [0.2, 0.8]
on the top boundary is kept constant with the value of 383K.

– Hydraulic: The pressure is uniformly distributed in whole sample at the
beginning. Boundaries are impervious except for the top boundary, where
constant pressure of 3× 105Pa is imposed.

– Mechanical: The top boundary is imposed a time dependent vertical dis-
placement load at the speed of 0.2mm/s. Both of the lateral boundaries
are prescribed with constant pressure, 105Pa.

The material parameters are given in Table 2.

Simulation results

The distributions of displacements, stresses and accumulative plastic strain
at the time t = 1980s are shown in Fig. 2 and Fig. 3 (a-c), respectively. The
impact of temperature increment on the top of boundary to stresses and the
accumulative plastic strain can be found in Fig. 4(a-c).
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Constant temperature increment

Fig. 1. Set up of biaxial test

Table 2. Material parameters

Parameter Unit Value

Young’s modulus MPa 250.0
Poisson ratio 0.328
Initial yield stress MPa 2.0
Plastic hardenning MPa -1.0
Thermal expansion 1/K 5× 10−5

Internal friction angle ◦ 21
Dilatancy angle ◦ 26
Permeability m/s 2.55× 10−12

Porosity 0.2
Thermal conductivity W/mK 0.43
Thermal capacity J/kg 1000.0
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DISPLACEMENTX1[m]
0.00294663
0.00252568
0.00210473
0.00168379
0.00126284
0.000841893
0.000420947
0

-0.000420947
-0.000841893
-0.00126284
-0.00168379
-0.00210473
-0.00252568
-0.00294663

(a)

DISPLACEMENTY1[m]
-0.00198
-0.00396
-0.00594
-0.00792
-0.0099
-0.01188
-0.01386
-0.01584
-0.01782
-0.0198
-0.02178
-0.02376
-0.02574
-0.02772
-0.0297
-0.03168
-0.03366
-0.03564
-0.03762

(b)

STRESSXX[Pa]
36538.4
876.834

-6140.8
-13602.3
-706764
-1.53996E+06
-2.37315E+06
-3.20635E+06
-4.03954E+06
-4.87273E+06
-5.70593E+06
-6.53912E+06
-7.37231E+06
-8.20551E+06

(c)

Fig. 2. Distributions of (a) ux, (b) uy, (c) σxx, t = 1980s

STRESSXY[Pa]
3.98408E+06
3.32007E+06
2.65605E+06
1.99204E+06
1.32803E+06
664014
4.65661E-10

-664014
-1.32803E+06
-1.99204E+06
-2.65605E+06
-3.32007E+06
-3.98408E+06

(a)

STRESSYY[Pa]
-4.63311E+06
-4.64813E+06
-4.65505E+06
-4.71502E+06
-4.8676E+06
-5.42686E+06
-6.19867E+06
-6.97048E+06
-7.74229E+06
-8.5141E+06
-9.28591E+06
-1.00577E+07
-1.08295E+07
-1.16013E+07
-1.23731E+07
-1.3145E+07
-1.39168E+07

(b)

STRESSZZ[Pa]
-1.08807E+06
-1.26923E+06
-1.37003E+06
-1.38497E+06
-1.41067E+06
-1.4504E+06
-1.60338E+06
-1.63156E+06
-1.81272E+06
-1.99388E+06
-2.17505E+06
-2.35621E+06
-2.53737E+06
-2.71853E+06
-2.8997E+06
-3.08086E+06
-3.26202E+06
-3.44318E+06
-3.62435E+06
-3.80551E+06

(c)

Fig. 3. Distributions of (a) σxy, (b) σyy, (c) σzz, t = 1980s

2 Non-isothermal two-phase flow in swelling materials
(TH2/M)

The process features of this problem class and the treatment are given in
Table 3.
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STRAINPLS[m/m]
0.0271497
0.0256414
0.024133
0.0226247
0.0212013
0.0206553
0.0191715
0.0188369
0.0134372
0.0123064
0.0103683
0.00939527
0.00830572
0.00452495
0.00349621
0.00301663
0.00150832

(a)

PRESSURE1[Pa]
99979
99957.9
99936.9
99915.8
99894.8
99873.8
99852.7
99831.7
99810.6
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Fig. 4. Distributions of (a) ǭpl (b) pl, (c) T , at t = 1980s

Table 3. Processes

Acronym Process Treatment

T Heat transport Heat balance equation
H2 Two-phase flow Mass balance equation
(M) porosity/permeability change Material functions

Example 2: Desaturation process in low-permeability media

Example description

This example of the process-oriented approach to multi-field problems is deal-
ing with non-isothermal two-phase flow of water-air through geotechnical
buffer materials such as bentonite.

The mathematical formulation of this multi-field problem consists of three
partial differential equations derived from the mass balances of fluid compo-
nents (air, water) and the thermal energy balance. The two-component/two-
phase flow equations are highly non-linear and strongly coupled. Details of
the continuums-mechanical model and the numerical solution procedure are
described in de Jonge et al. (2003) and Kolditz and de Jonge (2003), respec-
tively. The temporal evolutions of the primary variables: gas pressure (pg),
liquid saturation (Sl), and temperature (T ) are depicted in Figures 9a,c,d.

This example is to test the effect of the large capillary pressures up to 1010

Pa occurring in extremely low-permeable bentonite materials (Fig. 6). Kolditz
and de Jonge (2003) also compared the different coupling schemes for solving
the set of coupled equations as well as different approaches to multiphase flow
(Richards model, two-phase/two-componental systems). For this purpose we
start with a simple 1-D case. A one meter long bentonite column is heated on
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the left hand side. Element discretization length is ∆x = 0.01m. The initial
conditions of the system are: atmospheric gas pressure, full liquid saturation
and a temperature of 12oC. The heater has a constant temperature of 100oC.
Flow boundary conditions on the left side are gas pressure of 108Pa and 15%
liquid saturation. On the right side we have atmospheric pressure, full liquid
saturation and no diffusive heat flux. As a consequence, a typical desaturation
process of bentonite is triggered. The complete set of initial and boundary
conditions is given in Figure 5. The material properties for this example are
summarized in Table 4. Figure 6 shows the capillary pressure - saturation
relationship.

Fig. 5. Example description: initial and boundary conditions

Table 4. Material properties

Symbol Meaning Value/Ref Unit

ρg gas density ρg(pg, T ) kg/m3

βg
p gas compressibility coeff. 6.67× 10−6 Pa−1

ρl liquid density ρl(pl, T ) kg/m3

βl
p liquid compressibility coeff. 4.70× 10−7 Pa−1

µg gas viscosity 1.8× 10−5 Pa s

µl liquid viscosity 1.2× 10−3 Pa s
cg gas heat capacity 1.01× 103 J/kg K

cl liquid heat capacity 4.2× 103 J/kg K
λg gas heat conductivity 0.026 W/(m K)

λl liquid heat conductivity 0.6 W/(m K)
ρ density 1.83× 103 kg/m3

n porosity 0.407
c heat capacity 1.6× 103 J/kg K
λ heat conductivity 0.718 W/(m K)
k permeability 8.23× 10−20 m2

pc capillary pressure Fig. 6 Pa

krel relative permeability krel(S
l, T )

Results and discussion

The series of Figures 9 show calculated profiles along the bentonite column at
several time stages, t = 103 to 105 seconds for the Richards model, the parti-
tioned and monolithic schemes of the multiphase-multicomponental (MPC)
model.
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Fig. 6. Capillary pressure as function of liquid saturation pc(S
l)

Flow dynamics - Figs. 9a,b,c:
Pressure and saturation curves illustrate the desaturation process, i.e the ad-
vance of the gas phase front from the left to the right side. For the Richards
model the liquid pressure is plotted because gas pressure is assumed to be
constant. As usual for multiphase systems, there is the typical sharp satura-
tion front in the beginning, which becomes smoother with time. There are
differences in the evolution of capillary pressure with time for the Richards
model and the MPC models. The differences between the coupling schemes
are rather small for the flow process. In the case of the monolithic scheme
the saturation and pressure fronts are steeper. The differences of the advance
of saturation and capillary pressure fronts indicate additional mechanisms
for fluid redistribution. Firstly, the additional fluid transport is a result of
componental diffusion effects. Secondly, there are evaporation effects due to
the advance of the thermal front.

Heat transport - Figs. 9d:
Fig. 9d show temperature evolution along the bentonite column. The tem-
perature distribution is nearly the same for all models. This is due to heat
diffusion being the dominating transport mechanism. Heat advection and
dispersion are very small in a low-permeable medium.

Component transport - Figs. 9e,f:
Componental mass fractions depend on both, temperature and gas pressure
distributions. Vapour mass in the gas phase Xg

w and dissolved air mass in
the liquid phase X l

a are secondary variables, which are calculated according
to ideal gas and Henry equations, respectively. There are clear differences
between the Richards model and the multiphase/multi-componental models.
In the Richards model the gas pressure is assumed to be constant and equal
to atmospheric pressure. As a consequence, the Richards model can account
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only for temperature dependencies of the componental mass fractions. At
a temperature of 100◦C and pressure of 101325Pa the gas phase is fully
saturated with water vapour X l

w = 1. However, at realistic gas pressures of
106Pa, the water vapour mass fraction at a temperature of 100◦C is equal to
X l

w = 0.065. This emphasises the necessity to take the gas phase dynamics
into account. The different advances of the gas pressure and temperature
fronts result in peaks of vapour mass fraction at the gas pressure front.

As this example is drying of bentonite material, reduction of liquid sat-
uration will result in decrease of interlayer porosity (Fig. 7) (i.e. increase
of effective porosity) and increase of liquid permeability (Fig. 8). Interlayer
porosity is defined as nIL = e/(1 + e), where e is void ratio. Details of the
chemical swelling model can be found in Xie et al. (2003).
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Fig. 9. Multiphase/multi-component model (monolithic coupling scheme): com-
puted profiles a) gas pressure, b) capillary pressure, c) liquid saturation, d) tem-
perature, e) mass fractions of dissolved air, f) mass fraction of water vapour at
t = 103, 104, 2× 104, 4× 104, 6× 104, 8× 104, 105s
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Example 3: Desaturation by evaporation

Example set-up

This test case is based on an example proposed by Olivella and Gens (2000).
This example portrays the desaturation of a bentonite sample due to heating
in a closed system. The set-up is as illustrated in Fig. 10.

Fig. 10. Definition of the test case

The corresponding material parameters are as summarized in Table 5.

Table 5. Material properties

Parameter Unit Value

Porosity [m3/m3] 0.44
Tortuosity [m3/m3] 0.1
Permeability [m2] 5× 10−19

Relative permeability [-] Figure 11
Capillary pressure [-] Figure 11
Bentonite density [kg/m3] 1650
Bentonite heat capacity [J/kgK] 1605
Bentonite heat conductivity [J/Kms] 0.5

Because the capillary pressures in bentonite are very high (up tp 104MPa,
as shown in Fig. 11), a large suction pressure is initiated, that strongly favors
saturation of the sample from the open side (at the right). Vapor movement,
and hence desaturation due to sample heating can only be modelled if vapor
flow is encouraged. This due to the vapour diffusion term of the balance
equation for fluid masses (air and water components).

Olivella and Gens (2000) were introducing a dual relative permeability
model, i.e. different relative permeabilities for gases and liquids, so that va-
por movement is favored at low liquid phase saturations (Sl), when capillary
pressure is highest. This dual permeability model is based on experimental
evidence for bentonite. The reason behind it is, that in the dry bentonite
accessible pore spaces are larger resulting in higher permeability. When ben-
tonite is wet however, it swells and pore spaces are reduced accordingly. Fig.
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11(right) shows an example of such a dual relative permeability model for
bentonite used in this study.
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Fig. 11. Capillary pressure - saturation relationship (left), Dual relative perme-
ability - saturation relationships (right)

Simulation results

Because there are no saturation and pressure boundary conditions in the ex-
ample, saturation is free to fall and rise. This can be observed in the results
shown in Fig. 12b. From the initial liquid phase saturation of 0.4, the value
drops progressively next to the heater, as expected. On the right boundary,
the effects of capillary pressure can be seen through the higher value of liquid
phase saturation. The gas phase pressure shows a small response to the sat-
uration distribution. Where liquid saturation drops, and by reciprocity gas
saturation increases, gas pressure also increases. At the right boundary, the
decrease in gas pressure corresponds to the increase in liquid saturation (Fig.
12a). One can see that the stationary temperature is reached in less than
0.5 day (Fig. 12c). The vapor mass fraction responds to the temperature
distribution immediately.

The results thus show successful modelling of a desaturation process in
bentonite due to evaporation, by using the TH2 model. We obtained very
similar results as Olivella and Gens (2000) did. Additionally, we used this
benchmark to check different element types for TH2 processes. We obtain
identical results for different element types (bar, triangular, quadrilateral
elements) which serves as verification tests for the element implementations.

Example 4: Desaturation / saturation of bentonite sample

Example description

This example is proposed to study two processes in the near field of heat
emitting containments: First, desaturation due to evaporation at heating el-
ements and second, saturation due to a high-permeable fracture supplying
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Fig. 12. Profiles of primary variables along the buffer material: gas pressure, liquid
saturation, temperature (from top to bottom) for time points: 103, 104, 2× 104, 4×
104, 6× 104, 8× 104, 105 seconds (curves from left to right)

water to the heated area. Set-up of this example is shown in Fig. 13 as well
as boundary conditions for temperature and liquid saturation.

The material parameters used for example are the same as for example 2
(Table 5).
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Fig. 13. Boundary conditions of example 4

Simulation results

Fig. 14 show the temporal evolution of the redistribution of the liquid satura-
tion as well as temperature and gas pressure pattern. There are two interest-
ing regions. First, near the heater there is a desaturation due to evaporation
and vapor diffusion. Second, the fracture supplies liquid water into the system
which is transported to the heater due to capillary forces. The desaturation
near the heater results in increased suction. After 5× 105 the heater area is
almost flooded by liquid water delivered from the fracture.
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Fig. 14. TH2 processes in bentonite: computed distributions of primary variables:
a),b),c),d) liquid saturation at t = 104, 5×104, 105, 5×105s, e) temperature, f) gas
pressure at 5× 105s

We will return to this example in section 3, when discussing TH2M pro-
cesses.
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Example 5: BMT1B test case of the DECOVALEX project

This section describes the current work on the near-field bench mark test
(BMT1) of the DECOVALEX project (see introduction of part 1). The re-
sults shown in this section are preliminary and serve to outline the direction
of current code development and to further illustrate the working of the
RockFlow TH2 processes.

Example description

In BMT1 a typical deep geological waste repository set-up is studied. Figure
15 shows a detail of the set-up. The waste canister is surrounded by a ben-
tonite buffer material, and the backfill for the tunnel is made of a bentonite-
sand mixture. The host rock is granite. Material parameters, initial conditions
and boundary conditions are as described in the BMT1 definition.
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Fig. 15. Definition of the BMT1b test case: distribution of materials (heater, ben-
tonite, backfill, granite and fracture) and observation points (left); computation
mesh (right)

Results

The evolution of liquid saturations shows a complex picture of the desatu-
ration / saturation process due to evaporation near the heater element and
liquid water supply by the fracture. The liquid saturation rises steadily in
observation points B8, B9 nearest to the fracture. Observation points at the
heater B3, B7 exhibit first a drying and then resaturation from the fracture
water (Fig. 16, left). The corresponding capillary pressure are given in Fig.
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17 (left). The development of vapor mass fractions (Fig. 16, right) is mainly
controlled by the temperature evolution (Fig. 17, right).
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Fig. 16. Evolution of liquid saturations (left) and vapor mass fractions (right) at
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3 Non-isothermal consolidation of unsaturated
elasto-plastic materials (TH2M process)

The process features of this problem class and the treatment are given in
Table 6.
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Table 6. Processes

Acronym Process Treatment

T Heat transport Heat balance equation
H2 Two-phase flow Mass balance equation
M Inelastic deformation Momentum balance equation

Example 6: Non-isothermal desaturation/saturation of
elasto-plastic sample

Example description

We return to example 4 (section 2). In this section we considered non-
isothermal two-phase/two-componental flow in static porous media. Now we
include deformation processes ruled by elasto-plasticity according to Drucker-
Pragers constitutive relationship (see Wang and Kolditz (2003)).

Simulation results

The developed object-oriented approach is working for very different pro-
cesses as well as for different finite element types. We showed examples using
line, triangular, quadrilateral elements as well as combinations of them.

The mechanical load are uniformly distributed pressures on top boundary
of 106Pa and on the left side of 3.5 × 106Pa. The mechanical properties of
the material are given in Table 7.

Table 7. The mechanical material parameters

Parameter Unit Value

Young’s modulus MPa 20.0
Poisson ratio 0.4
Initial yield stress MPa 0.5
Plastic hardenning MPa -1.0
Thermal expansion 1/K 10−5

Internal friction angle ◦ 20.0
Dilatancy angle ◦ 10.0

The distribution of stresses and displacements are illustrated in Figs. 18,
respectively. Gas phase pressures, liquid phase saturation and temperature
are depicted in Fig. 19 (a-c). In the computation, the stresses decrease along
with the time elapses. The resulting accumulated plastic strain at the time
of 5× 105s is shown in Fig. 19(d).
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Fig. 18. σ xx(a), σ yy(b), σ xy(c), σ zz(d),ux(e),uy(f) at t = 5× 105s



A process-oriented approach to compute THM problems 2 ... 19

X (M)

Y
(M

)
0 0.05 0.1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

PRESSURE1[P
100063
100057
100038
99524
98984.8
98445.5
97906.3
97367.1
96827.9
96288.7
95749.4
95210.2
94671
94131.8
93592.5

(a)

X (M)

Y
(M

)

0 0.05 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

TEMPERATURE
358.714
354.429
350.143
345.857
341.571
337.286
333
328.714
324.429
320.143
315.857
311.571
307.286

(c)

X (M)

Y
(M

)

0 0.05 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

SATURATION1[m
0.747577
0.694178
0.64078
0.533983
0.480585
0.427187
0.373788
0.32039
0.266992
0.213593
0.160195
0.106797
0.0533983

(b)

X (M)
Y

(M
)

0 0.05 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

STRAINPLS[m
0.0951878
0.0856727
0.0761576
0.0666425
0.0571273
0.0476122
0.0380971
0.028582
0.0145563
0.014089
0.0133857
0.0120852
0.0095517
0.0066404
0.0045450
0.0026596
0.0009366

(d)

Fig. 19. pg (a) , Sl (b) , T (c) and accumulated plastic strain (d) at t = 5× 105s

Conclusions

An object-oriented approach is developed and implemented (paper part 1) to
solve coupled, non-linear multi-field problems for porous media. The treat-
ment of processes as objects (PCS) has several advantages

– Standardization of process data,
– Generalization of the solution procedure of PDEs (calculation of element

matrices, assembling and solving resulting equation systems),
– Easy to create, configure and execute processes in user-defined loops.

The PCS concept was applied to analyze thermo-hydro-mechanical pro-
cesses in the near-field of heat emitting containers embedded in bentonite
material (paper part 2). The variety of phenomena is spreading from TH2,
THM to TH2M processes.
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