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zur Erlangung des Grades eines
Doktors der Naturwissenschaften vorgelegt

2005



Tag der mündlichen Qualifikation: 22.07.2005
Dekan: Prof. Dr. P. Schmid
1. Berichterstatter: Prof. Dr. V. Batyrev
2. Berichterstatter: Prof. Dr. J. Hausen



Gorenstein toric Fano varieties

Benjamin Nill
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Introduction

In this thesis we concern ourselves with Gorenstein toric Fano varieties, that
is, with complete normal toric varieties whose anticanonical divisor is an am-
ple Cartier divisor. These algebraic-geometric objects correspond to reflexive
polytopes introduced by Batyrev in [Bat94]. Reflexive polytopes are lattice
polytopes containing the origin in their interior such that the dual polytope
also is a lattice polytope. It was shown by Batyrev that the associated vari-
eties are ambient spaces of Calabi-Yau hypersurfaces and together with their
duals naturally yield candidates for mirror symmetry pairs. This has raised
a lot of interest in this special class of lattice polytopes among physicists and
mathematicians. It is known that in fixed dimension d there only are a finite
number of isomorphism classes of d-dimensional reflexive polytopes. Using their
computer program PALP [KS04a] Kreuzer and Skarke succeeded in classifying
d-dimensional reflexive polytopes for d ≤ 4 [KS98, KS00, KS04b]. They found
16 isomorphism classes for d = 2, 4319 for d = 3, and 473800776 for d = 4.

While there are many papers devoted to the study and classification of non-
singular toric Fano varieties [WW82, Bat82a, Bat82b, Bat99, Sat00, Deb03,
Cas03a, Cas03b], in the singular case there has not yet been done so much, es-
pecially in higher dimensions. This can be explained by several difficulties: First
many algebraic-geometric methods like birational factorization, Riemann-Roch
or intersection theory cannot simply be applied, especially since there need not
exist a crepant toric resolution. Second most convex-geometric proofs relied on
the vertices of a facet forming a lattice basis, a fact which is no longer true
for reflexive polytopes, where facets can even contain lattice points in their in-
terior. Third the huge number of reflexive polytopes causes any classification
approach to depend heavily on computer calculations, hence often we do not
get mathematically satisfying proofs even when restricting to low dimensions.

The aim of this thesis is to give a first systematic mathematical investiga-
tion of Gorenstein toric Fano varieties by thorougly examining the combinatorial
and geometric properties of their convex-geometric counterparts, that is, reflex-
ive polytopes. We would like to generalize useful tools and theorems previously
only known to hold for nonsingular toric Fano varieties to the case of mild singu-
larities and to prove classification theorems in important cases and in arbitrary
dimension. Moreover we are interested in finding constraints on the combina-
torics of reflexive polytopes and conjectures and sharp bounds on invariants
that can explain interesting observations made in the large computer data.

As we will see most of these aims are actually not out of reach, for instance
it will unexpectedly turn out that Q-factorial Gorenstein toric Fano varieties
are in many aspects nearly as benign as nonsingular toric Fano varieties. More-
over by these generalizations with a strong focus on combinatorics even results
previously already proven in the nonsingular case become more transparent.
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10 Introduction

Above all this work provides useful tools, several conjectures to prove in the
future and many results that show reflexive polytopes to be truly interesting
objects - not only from a physicist’s but also from a pure mathematician’s point
of view.

This thesis is organized in six chapters. Any major chapter (3-6) starts with
an introductory section, in which also an explicit list of the most important new
results is contained. Furthermore the reader will find right after this introduc-
tion a summary of notation and at the end of this thesis an index as well as a
comprehensive bibliography.

The first two chapters cover the notions that are basic for this work.
Chapter 1 fixes the main notation and gives a survey of important results

from toric geometry.
Chapter 2 gives an exposition of toric Fano varieties and classes of singu-

larities that appear naturally when trying to desingularize toric Fano varieties.
Here we set up the dictionary of convex-geometric and algebraic-geometric no-
tions: Fano polytopes correspond to toric Fano varieties, smooth Fano polytopes
to nonsingular toric Fano varieties and canonical (respectively terminal) Fano
polytopes to toric Fano varieties with canonical (respectively terminal) singu-
larities. Moreover simplicial Fano polytopes are associated to Q-factorial toric
Fano varieties.

Chapter 3 is the heart of this thesis. Here the main objects of study are in-
troduced: Reflexive polytopes corresponding to Gorenstein toric Fano varieties.

At the beginning two elementary technical tools are investigated and gener-
alized that have already been used to successfully investigate and classify non-
singular toric Fano varieties [Bat99, Sat00, Deb03, Cas03b]. The first one, that
is especially useful in lower dimensions, is the projection map. We prove some
general facts about projections of reflexive polytopes (Prop. 3.2.2), thereby we
can relate the properties of Gorenstein toric Fano varieties to that of lower-
dimensional toric Fano varieties. As an application we present generalizations
to mild singularities of an algebraic-geometric result due to Batyrev [Bat99]
stating that the anticanonical class of a torus-invariant prime divisor of a non-
singular toric Fano variety is always numerically effective (Cor. 3.2.7, Prop.
3.2.9). Moreover we get as a trivial corollary (Lemma 3.5.6) that a lattice point
on the boundary that has lattice distance one from a facet F has to be con-
tained in a facet F ′ intersecting F in a codimension two face. Previously this
observation could be proven by Debarre in [Deb03] only in the case of a smooth
Fano polytope by using a lattice basis among the vertices of F .

The second important tool is the notion of primitive collections and rela-
tions. It was introduced by Batyrev in [Bat91] to completely describe smooth
Fano polytopes and has been essential for his classification of nonsingular toric
Fano 4-folds [Bat99]. In general this tool is not applicable for reflexive poly-
topes, since it uses the existence of lattice bases among the vertices. The special
case of a primitive collection of length two corresponds to a pair of lattice points
on the boundary that do not lie in a common facet. This situation is extremely
important and was investigated by Casagrande in [Cas03a] to prove some strong
restrictions on smooth Fano polytopes. Now the author has been able to suit-
ably generalize this notion to reflexive polytopes (Prop. 3.3.1) and apply it
successfully to show that the same restrictions also hold for simplicial reflexive
polytopes. In algebraic-geometric language the corresponding statement reads
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as follows: the Picard number of a Q-factorial Gorenstein toric Fano variety
exceeds the Picard number of a torus-invariant prime divisor at most by three
(Cor. 3.5.17). As another application we prove that any pair of vertices of a
simplicial reflexive polytope can be connected by at most three edges, where the
case that less than three edges do not suffice can only occur for a centrally sym-
metric pair of vertices (Cor. 3.3.2). In graph-theoretic language this yields that
the diameter of the edge-graph of a simplicial reflexive polytope is at most three.
From this we easily get that certain combinatorial types cannot be realized as
reflexive polytopes (Cor. 3.3.4).

The main part of the third chapter deals with upper bounds on the volume
and the number of lattice points and vertices of a reflexive polytope.

We state in Conjecture 3.5.2 that a d-dimensional reflexive polytope has at
most 6d/2 vertices, where equality holds only for one special even-dimensional
reflexive polytope. We also present some preliminary coarse bounds depending
on the combinatorics of the facets (Prop. 3.5.5). In the last chapter the conjec-
ture will be proven to hold for centrally symmetric simple reflexive polytopes.
Here in the third chapter the main focus is on the simplicial case: We extend
the long-standing conjecture of Batyrev on the maximal number of vertices of
smooth Fano polytopes to simplicial reflexive polytopes (Conj. 3.5.7): It states
that a d-dimensional simplicial reflexive polytope has at most 3d vertices, if d
is even, and 3d− 1 vertices, otherwise. We have also included in this conjecture
the extra statement that the number of 3d vertices should only be obtained in
one unique case. Now using the previously described tools we give a proof in
the case of a centrally symmetric pair of vertices of the dual polytope (Thm.
3.5.11). Based on these results that were published in the preprint [Nil04a]
Casagrande has been able to successfully prove Conjecture 3.5.7 in [Cas04].

In low dimensions the maximal number of lattice points of a reflexive poly-
tope is achieved only by some reflexive simplices. Hence it makes sense to restrict
to this situation in order to find a good general upper bound. A possible way
to do this is to prove a sharp upper bound on the volume of a reflexive sim-
plex. This has been achieved by the author in Theorem 3.7.13. To this end we
describe in section 3.6 the common approach of Batyrev [Bat94] and Conrads
[Con02] to determine lattice simplices by so called weight systems. In the case
of reflexive simplices they correspond to unit fractions summing up to one, e.g.,
1
2 + 1

3 + 1
6 = 1. Now the proof follows from upper bounds on the denominators of

these unit fractions (Prop. 3.6.29). Moreover using this approach we can prove
in Thm. 3.7.19 an observation of Haase and Melnikov [HM04] stating that there
is a unique d-dimensional reflexive simplex with the maximal number of lattice
points on an edge, namely 2yd−1 − 1, for the sequence (yn) defined as y0 = 2
and yn = 1 + y0 · · · yn−1.

So we see that in this situation convex-geometric questions naturally cor-
respond to non-trivial problems in elementary number theory. However these
results may also be translated into algebraic geometry: For instance the bound
on the volume yields a sharp upper bound on the anticanonical degree of a
d-dimensional Gorenstein toric Fano variety X with class number one, in par-
ticular on weighted projective spaces with Gorenstein singularities (Thm. 3.7.7):
For d = 2, respectively d = 3, the degree of X is at most 9, respectively 72; for
d ≥ 4 the degree of X is at most 2(yd−1 − 1)2, and equality holds only for one
special variety. This bound for d = 3 (called the Fano-Iskovskikh conjecture)
has recently been proven by Prokhorov [Pro04] for three-dimensional Goren-
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stein Fano varieties with canonical singularities. Now the previous result yields
enough evidence to motivate a generalization of the Fano-Iskovskikh conjecture
to higher dimensions. This shows again that toric varieties are fertile testing
grounds for conjectures on more general varieties.

We also describe as another useful tool ”counting modulo a natural number”
as introduced by Batyrev in [Bat82a]. This simple method can be successfully
applied to prove a sharp bound on the number of lattice points in terminal
reflexive polytopes (Cor. 3.7.23) and will also be used in the last chapter.

Chapter 4 gives a first application of the techniques developed in the previ-
ous chapter: a complete, explicit, computer-independent classification of three-
dimensional Gorenstein toric Fano varieties with terminal singularities. There
are precisely 100 isomorphism classes, corresponding to so called quasi-smooth
Fano polytopes (Thm. 4.3.2). The main idea of the proof is to show that in
most cases there exists a vertex that is centrally symmetric to some other vertex
and at the same time the sum of two other vertices. Then we use the result
(Prop. 4.2.17) that the corresponding quasi-smooth Fano polytope is uniquely
determined by a small set of special relations among its vertices, these are called
quasi-primitive relations. To this end we include a general discussion of various
notions of primitive collections and relations at the beginning of this chapter.

Chapter 5 is concerned with a special set of lattice points that can be as-
sociated to a complete fan, called the set of roots. For the fan of normals of
a reflexive polytope the set of roots is precisely the set of lattice points in the
interior of facets. Roots are important in order to describe the automorphism
group of the associated toric variety, in particular its dimension. Centrally sym-
metric roots are called semisimple roots. The automorphism group is reductive
if and only if any root is semisimple. There are two different approaches to
describe the set of roots: The more algebraic one due to Cox [Cox95] uses the
notion of the homogeneous coordinate ring and can be applied to complete toric
varieties. The more geometric one is due to Bruns and Gubeladze [BG99] and
directly concerned with lattice polytopes. The author first applied to the set of
roots the results in the third chapter about pairs of lattice points in reflexive
polytopes, here it turned out Bruns and Gubeladze had already derived similar
observations. Later the author gave a generalization to complete toric varieties
using the approach of Cox. The main idea is to introduce so called facet bases
and root bases that parametrize the set of facets containing roots and the set of
semisimple roots in a geometrically convenient way (Def. 5.1.6, Prop. 5.1.22).

As an application of this notion we derive that a complete toric variety
is already a product of projective spaces, if the set of semisimple roots span
the vectorspace (Prop. 5.1.19). In the case of a reflexive polytope we even
get that the intersection of the reflexive polytope with the space spanned by
all semisimple roots is again a reflexive polytope associated to a product of
projective spaces (Thm. 5.2.12). The figure on the title of this work illustrates
for P3 the general phenomenon 5.1.18 that the convex hull of all semisimple
roots is also always a reflexive polytope. Further we obtain that a d-dimensional
reflexive polytope has at most 2d facets containing roots, where equality implies
the toric variety to be a product of projective lines (Cor. 5.2.4). As one of the
main results we prove that the reductive automorphism group of a d-dimensional
complete toric variety that is not a product of projective spaces has at most
dimension 2 for d = 2, respectively d2 − 2d + 4 for d ≥ 3 (Thm. 5.1.25). This
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sharp bound yields an explanation for observations on the number of roots of
reflexive polytopes due to Kreuzer and the author in the database [KS04b].

One of the main motivation to study the set of roots was given by the goal to
find combinatorial criteria for the automorphism group to be reductive. There
is a well-known result due to Matsushima that the automorphism group of a
nonsingular Fano variety is reductive, if the variety admits an Einstein-Kähler
metric. In [BS99] Batyrev and Selivanova showed that such a metric exists, if
the reflexive polytope, whose fan of normals is associated to the toric variety, is
symmetric, i.e., the group of linear automorphisms of the polytope has no non-
zero fixpoint. Hence they got that symmetry implies any root to be semisimple,
and they asked for a purely convex-geometric proof of this corollary. Moreover
the existence of an Einstein-Kähler metric implies the barycenter of this reflexive
polytope to be zero, the reverse implication could only be proven very recently
in [WZ04] by Wang and Zhu. However at the beginning of this research it was
not clear that even in the case of a nonsingular toric Fano variety the vanishing
of the barycenter implies all roots to be semisimple, yet this was observed by
Batyrev and Kreuzer even for any reflexive polytope up to dimension four in the
computer database and they conjectured that this should hold in any dimension.

Now this chapter contains purely convex-geometric proofs of these conjec-
tures and implications in greatest possible generality, as well as some other com-
binatorial criteria that are sufficient for the automorphism group to be reductive
(Thm. 5.3.1). We illustrate these results by several examples and classify all
three-dimensional symmetric reflexive polytopes (Thm. 5.4.5). Moreover we
show, how these criteria relate to the approach of Kreuzer [Kre03a, Kre03b] to
investigate sums of lattice points in multiples of a reflexive polytope by a variant
of the Erhart polynomial.

Chapter 6 gives as a final application of the results achieved some insight
in centrally symmetric reflexive polytopes. A main result states that the unit
lattice cube [−1, 1]d is the one and only d-dimensional centrally symmetric re-
flexive polytope with the maximal number of lattice points (Thm. 6.5.1). For
the proof we use the fact that the unit lattice cube is also the only such polytope
with the maximal number of 2d roots (Thm. 6.1.1).

In the case of a simple centrally symmetric reflexive polytope we can prove
the general Conjecture 3.5.2 on the maximal number of vertices (Thm. 6.2.2).
This is actually an application of the other main result of this chapter: a com-
plete classification of arbitrary-dimensional simplicial reflexive polytopes having
a centrally symmetric pair of facets (Thm. 6.3.1, Cor. 6.3.3). This is a unifying
generalization of results of Ewald [Ewa88] and his students [Wag95, Wir97]; the
proofs here are considerably simpler since we use dual bases rather than cal-
culations with determinants. Applying to d ≤ 5 yields 4, 5, 15, 20 isomorphism
classes of these d-dimensional polytopes (Thm. 6.3.12). As a corollary we get
that any d-dimensional simplicial reflexive polytope with a centrally symmetric
pair of facets can be embedded in the unit lattice cube [−1, 1]d, while the dual
polytope can be embedded in bd/2c [−1, 1]d. Moreover we prove a general re-
sult on embedding a reflexive polytope into a multiple of the unit lattice cube
under some mild assumptions (Thm. 6.4.4). Finally we determine the maximal
number of lattice points, namely 2d2 + 1, a simplicial reflexive polytope with
a centrally symmetric pair of facets can have. Again there is only one such
polytope with this number of vertices (Thm. 6.5.3).
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Notation

General
N = {0, 1, 2, . . .}; 0 is a natural number but not positive
αk calculating modulo k (p. 88)
bxc (dxe) the greatest (lowest) integer lower (greater) or equal to x ∈ R

. . . , âi, . . . the ”hat”-symbol means that the ith entry ai is left out

N , M , 〈·, ·〉 dual lattices N and M with pairing 〈·, ·〉 (p. 19)
NR,MR associated real vectorspaces
d usually the dimension of N , M , NR, MR

lin, aff the linear span, respectively the affine span (p. 19)
pos, conv the positive hull, respectively the convex hull (p. 19)
< A >Z the set of integer linear combinations of elements in A ⊆M

Fans
4 usually a (complete) fan (often in N) (p. 19)
4(k) the set of k-dimensional cones of 4
supp(4) the support of 4 (p. 21)
X(N,4) the toric variety associated to lattice N and fan 4 (p. 20)
σ usually a (full-dimensional) cone

σ
∨

the dual cone of σ (p. 19)
τ usually a ray, i.e., a one-dimensional cone in 4
Vτ the torus-invariant primedivisor associated to ray τ (p. 21)
vτ the unique primitive lattice point on ray τ (p. 22)
SF(N,4) the set of piecewise linear functions (p. 22)
h often an element in SF(N,4)
Dh the Cartier divisor associated to h (p. 22)
Ph the polytope of global sections of Dh (p. 26)
Gσ, G4 set of primitive lattice points on rays of σ, resp. 4 (p. 35, 37)
Q4, P4 Q4 = conv(G4), P4 = Q4

∗ (p. 37, 37)
4v = ΣPv

(p. 49)

4 fan associated to some ray τ (p. 49)

Important polytopes and varieties

Ed the d-dimensional reflexive simplex with X(M,ΣEd
) ∼= Pd (p. 126)

Zd the d-dimensional standard lattice zonotope (p. 58)
S3 the two-dimensional del Pezzo surface X(M,ΣZ2

) (p. 58)
Fd the d-dimensional del Pezzo polytope (p. 153)
Wd the d-dimensional del Pezzo variety X(M,ΣFd

) (p. 153)

F̃d the d-dimensional pseudo del Pezzo polytope (p. 153)

W̃d the d-dimensional pseudo del Pezzo variety X(M,ΣF̃d
) (p. 153)

Dd d-dimensional simplicial reflexive polytope with 2d vertices (p. 155)
Dd = X(M,ΣDd

) (p. 155)

15



16 Notation

Polytopes

P usually a d-dimensional polytope (often in MR)
P ∗ the dual polytope of P (p. 24)
NP the fan of normals of P (p. 24)
ΣP the fan spanned by the faces of P
XP the toric variety associated to the normal fan of P
bP the barycenter of P (p. 25)
wbP the weighted barycenter of P (p. 140)
eP the Ehrhart polynomial of P (p. 25)
sP the lattice point sum polynomial of P (p. 140)
rP the root sum polynomial of P (p. 143)
vol(P ) the volume of P , if P is full-dimensional
W(P ) the graph of lattice points on the boundary of P (p. 53)
AutM (P ) automorphisms of M leaving P ⊆MR invariant
∂P the boundary of P
intP the interior of P , if P is full-dimensional

G ≤ P G is a face of P
V(P ) the set of vertices of P
F(P ) the set of facets of P
F usually a facet of P
ηF the unique inner normal of F , i.e., 〈ζF , F 〉 = −1 (p. 24)
ζF the unique primitive inner normal of F (p. 25)
νF = −ηF
relintF the relative interior of F
rvol(F ) the relative volume of F (p. 25)
det aff(F ) determinant of affine sublattice generated by F

v,w, x, y usually lattice points
[x, y] = conv(x, y), similarly ]x, y], ]x, y[
v ∼ w v,w are contained in a common facet
v ` w v is away from w for v, w lattice points on ∂P (p. 47)
st(v) the star set of v for v ∈ ∂P (p. 47)
∂v the link of v for v ∈ ∂P (p. 47)
πv the projection map along a lattice point v (p. 48)
ιv the inverse map of πv from Pv onto st(v) (p. 48)
Mv, Pv Mv = M/Zv, Pv = πv(P )
Xv = X(Mv,4v) (p. 49)
z(v, w) lattice point in ∂P , if v 6∼ w and v + w 6= 0 (p. 52)

Quasi-smooth Fano polytopes
P a primitive collection of P (p. 91)
σ(P) the sum of the elements in P (p. 91)
deg(P) the degree of P (p. 92)
LR(P ) group of linear relations of lattice points in P (p. 93)
πi,Pi,Mi,ιi = πvi

, πvi
(P ), Mvi

, ιvi
for vertex vi (p. 97)

∂M (vi) = ∂(vi) ∩M (p. 97)
deg(vi) = |∂M (vi) |, the degree of the vertex vi (p. 97)
mi(v), bi(v) numbers associated to vertices vi, v (p. 104)
n = |V(P ) | for P quasi-smooth Fano polytope (p. 113)
fi, p number of i-dim. faces, parallelogram facets (p. 113)
λ(P ), M(P ) λ(P ) = n− 3 − ρX , rank of the matrix M(P ) (p. 113)
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Toric varieties
X usually a (toric) variety of dimension d (p. 20)
Aut(X) automorphism group, Aut◦(X) is connected component
KX , −KX canonical, respectively anticanonical, divisor of X
deg(X) = (−KX)d, the (anticanonical) degree of X
Cl(X) The class group of X (p. 21)
≡ linear equivalence of divisors (p. 21)
Pic(X) the Picard group of X (p. 22)
ρX the Picard number of X (p. 22)
NE(X) the Mori cone of X (p. 23)
discr(X) discrepancy of X (p. 34)
jX the Gorenstein index of X (p. 33)
E := Exc(f) the exceptional locus of a birational morphism f
E(1) the union of the exceptional divisors
X∗ the ”dual” toric variety (p. 84)

Weight systems

Herm(d, λ) Hermite normal form matrices of size d, det λ (p. 69)

Q here a weight system, i.e., an element of Qd+1
>0 (p. 68)

Qred the reduction of the weight system Q (p. 68)
|Q | the total weight of the weight system Q (p. 68)
λQ the factor of the weight system Q (p. 68)
mQ an invariant of the weight system Q (p. 70)
P(Q) weighted projective space with weight system Q
QP weight system associated to lattice polytope P (p. 69)
λP the factor of the weight system QP (p. 69)
MP the lattice generated by the vertices of P
PQ simplex associated to reduced weight system Q (p. 69)
SQ polytope associated to reduced weight system Q (p. 72)
Qd Sylvester weight system of length d (p. 73)
Q′
d enlarged Sylvester weight system of length d (p. 73)

yn Sylvester sequence 2, 3, 7, 43, . . . (p. 73)
tn = yn − 1 = y0 · · · yn−1, sequence 1, 2, 6, 42, . . . (p. 73)

Roots
R set of roots of fan or reflexive polytope (p. 122, 130)
S set of semisimple roots (p. 122, 130)
U = R\S, set of unipotent roots
τm, xm associated ray, resp. monomial, to a root m (p. 124)
S1 = {m ∈ S : τm not associated to some unipotent root}
S2 = S\S1

v⊥w v and w are orthogonal (p. 123, 132)
p(v, w) root associated to roots v, w (p. 124)
v ≡ w v and w are equivalent semisimple roots (p. 124)
Fv facet containing root v of a reflexive polytope P
ηv = ηFv

for a reflexive polytope, in general see p. 122
S often the homogeneous coordinate ring (p. 123)
Y ,M indeterminates, respectively monomials, in S (p. 124)
Yi equivalence class of indeterminates in S (p. 125)
p, q, r, s number of special equivalence classes Yi (p. 125)





Chapter 1

Fans, polytopes and toric

varieties

Introduction

The main purpose of this chapter is to fix the notation and to give an overview
of the most important results about toric varieties and lattice polytopes. All
toric varieties are normal, but may be singular. Proofs are usually left out, since
they can be easily found in the literature, i.e., [Ewa96], [Ful93] and [Oda88].

1.1 Cones and fans

Let N ∼= Zd be a d-dimensional lattice and M = HomZ(N,Z) ∼= Zd the dual
lattice with 〈·, ·〉 the nondegenerate symmetric pairing. As usual, NQ = N ⊗Z

Q ∼= Qd and MQ = M ⊗Z Q ∼= Qd (respectively NR and MR) will denote the
rational (respectively real) scalar extensions.

Throughout this work the roles of N and M are interchangeable.

For a subset S of NR let lin(S), resp. aff(S), be the linear span, resp. affine
span, of S. We denote by pos(S) the positive hull of S, i.e., the set of positive
linear combinations, and by conv(S) = pos(S) ∩ aff(S) the convex hull of S.

A polyhedral cone σ ⊆ NR is the positive hull pos(G) of finitely many points
G in NR. If additionally the generators G are lattice points, i.e., G ⊆ N , then
σ is called a polyhedral lattice cone. Finally a cone σ is called strongly convex,
if it does not contain a linear subspace, i.e., 0 ∈ N is an apex of σ.

We define further the dual cone σ∨ = {u ∈ MR : 〈u, v〉 ≥ 0 ∀ v ∈ σ}. It is
fully (d-)dimensional if and only if σ is strongly convex. If σ is a lattice cone,
then also σ∨ is a lattice cone (Farkas Lemma).

A face of a cone σ is the intersection of σ with an affine hyperplane such
that σ is contained in one of the two halfspaces. A defining vector for such
an hyperplane is called a defining outer, respectively inner, normal for that
face. The normal of a codimension one face can be uniquely defined by some
normalizing condition.

A fan 4 is here defined to be a collection of finitely many strongly convex
polyhedral lattice cones such that any face of a cone in 4 is also an element of
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4 and the intersection of two cones in 4 is a face in each. For k ∈ N we let
4(k) denote the set of k-dimensional cones in 4.

1.2 The classical construction of a toric variety

from a fan

Let σ be a cone in a fan 4. Then the set Sσ = M∩σ∨ of lattice points in its dual
cone is a finitely generated saturated additive submonoid of M generating M ,
i.e., < Sσ >Z= M . Here saturation for a submonoid W of M means that any
lattice point that can be written as a rational positive combination of elements
in W , i.e., a lattice point in pos(W ) ∩MQ, must already be contained in W .

Now we define the finitely generated C-Algebra Aσ := C[Sσ], and the
corresponding affine scheme Uσ := Spec C[Sσ]. Uσ is called the affine toric
variety associated to σ. When looking at its closed points, i.e., the max-
imal spectrum of Aσ, the Hilbertscher Nullstellensatz implies Spm C[Sσ] =
HomC−alg.(C[Sσ],C) = Hommon(Sσ,C) = {φ : Sσ → C, φ(0) = 1, φ(m+m′) =
φ(m) · φ(m′)}.

A{0} = C[M ] is isomorphic to the ring of laurent polynomials and TN := U{0}

is an algebraic torus, i.e., the closed points of TN are Spm C[M ] = Hommon(M,C)
= HomZ(M,C∗) = N ⊗Z C∗ ∼= (C∗)d. The characters e(m) ∈ A{0} of the torus
are just the monomials for m ∈M .

If τ ≤ σ is a face of σ, then one has Aτ = (Aσ)e(u) for some u ∈ Sσ with

τ = σ ∩ u⊥. Especially the natural map Uτ → Uσ, on the closed points given
by φ 7→ φ |Sσ

, is an open immersion as the elementary open set DUσ
(e(u)). The

embedding of TN is called the big torus.
There is a natural torus action of TN given on the closed points of Uσ by

TN × Uσ → Uσ, (t, φ) 7→ t · φ pointwise, induced by the map Aσ → TN ⊗ Aσ,
e(u) → e(u) ⊗ e(u). This extends the action of the big torus TN on itself.

Finally we define the toric variety X(4) = X(N,4) associated to the fan
4 as the disjoint union of the affine toric varieties Uσ (σ ∈ 4), where for
σ1, σ2 ∈ 4 one glues (as schemes) along the in Uσ1

und Uσ2
mutually open

subvariety Uσ1∩σ2
.

An alternative construction of a toric variety X as a categorical quotient was
given by Cox in [Cox95], here X can even be described as a geometric quotient
if and only if any cone in the fan defining X is a simplex.

1.3 The category of toric varieties

Let 4 be a fan. Then the previously constructed X(4) is a variety in the sense
of [Har77, II.4.10], i.e., an integral separated scheme of finite type over C, X(4)
is normal and equipped with a natural torus action by TN extending its inherent
diagonal action. Of course X(4) is a disjoint union of the orbits under the torus
action, this can be read off explicitly from the fan, see [Ful93, 3.1]. Every cone
σ ∈ 4 corresponds exactly to a dim(σ)-codimensional torus orbit closure Vσ in
X(4).

We generally define a toric varietyX as a normal irreducible algebraic variety
over C with an open embedded algebraic torus T = (C∗)d acting on X in
extension of its own action.
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To get a category of toric varieties one needs a suitable notion of a morphism:
So let X and Y be two toric varieties with its embedded toruses TX and TY .
Then a morphism of varieties f : Y → X is called a morphism of toric varieties,
if additionally a morphism of algebraic groups f ′ : TY → TX exists, so that f
is equivariant with respect to f ′, i.e., f(t · y) = f ′(t) · f(y) for all t ∈ TY and
y ∈ Y .

Now again let 4 be a fan with the lattice N , and also 4′ a fan with the
lattice N ′. A Z-linear map φ : N ′ → N is called a map of fans, if the image of
any cone in 4′ under φ⊗Z R is mapped in a cone in 4. Then one can construct
a morphism of toric varieties φ∗ : X(N ′,4′) → X(N,4) that is equivariant
with respect to φ∗|TN ′ = φ⊗ 1 : TN ′ = N ′ ⊗Z C∗ → TN = N ⊗Z C∗.

This gives a natural map from the category of fans to the category of toric va-
rieties. One has the theorem that this is a covariant isomorphism of categories.
Under this correspondence an affine toric variety corresponds to the fan of the
faces of a strongly convex polyhedral lattice cone. Also proper toric varieties
correspond to complete fans. A complete fan 4 is a fan such that its support
is the whole space NR, where its support supp(4) is defined as the union of all
cones contained in 4.

In [Oda88, Prop. 1.33] it is explained, when an equivariant morphism be-
tween toric varieties corresponds to a toric fibre-bundle; in particular products
of toric varieties correspond to products of the associated fans. In the same
way a toric blow-up, i.e., a blow-up of a toric variety along a torus-invariant
subvariety, is associated to a fan that is a star subdivision of the corresponding
cone, this can be found in [Oda88, Prop. 1.26].

1.4 The class group, the Picard group and the

Mori cone

As typical in the case of toric varieties their invariants can be extracted from
the fan. Let X = X(N,4).

A k-cycle is defined to be an element of the free abelian group on the k-
dimensional irreducible closed subvarieties of X. Define the Chow group Ak(X)
of X as the quotient of the group of k-cycles modulo rational equivalence (see
[Har77, A.1]). Then Ak(X) is generated by the classes of orbit closures Vσ for
σ ∈ 4(d− k).

Let’s look at the class group Cl(X) = Ad−1 of X, i.e., the group of Weil
divisors modulo linear equivalence ≡. Any torus-invariant primedivisor Vτ cor-
responds exactly to one ray τ ∈ 4(1), i.e., a one-dimensional cone in 4. These
divisors generate the group of torus-invariant Weil divisors TNDiv(X). Further
a torus-invariant principal Weil divisor is exactly given by div(e(u)) for u ∈M .
We have the following right exact sequence, which is exact, if every element of
NR is a linear combination of elements in supp(4), i.e., lin(supp(4)) = NR:

0 →M → TNDiv(X) =
⊕

τ∈4(1)

ZVτ → Cl(X) → 0. (1.1)

In particular Cl(X) is a finitely generated abelian group, its rank is called the
class number of X. When the rays of 4 span NR, we have rank(Cl(X)) = r−d.
Cl(X) is in general not torsionfree, even if X is proper.
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The calculation of the Picard group Pic(X), i.e., the group of Cartier divisors
modulo linear equivalence, is based on the following notion: Let SF(N,4)
denote the set of all functions h : supp(4) → R being Z-valued on N ∩ supp(4)
and linear on supp(4), i.e., for every σ ∈ 4 there exists lσ ∈M with h |σ= lσ |σ.
Let TNCDiv(X) denote the set of torus-invariant Cartier divisors. For a ray
τ ∈ 4(1) we define vτ to be the (unique) primitive lattice point on τ , i.e., the
first lattice point on τ . For h ∈ SF(N,4) we set

Dh := −
∑

τ∈4(1)

h(vτ )Vτ ∈ TNCDiv(X).

For σ ∈ 4 we get Dh |Uσ
= div(e(−lσ)). The map h 7→ Dh defines an isomor-

phism of free abelian groups:

SF(N,4) ∼= TNCDiv(X).

Note: A Weil divisor D on X is Cartier iff D |Uσ
is principal for all σ ∈ 4.

Again we have a right exact sequence which is exact if lin(supp(4)) = NR:

0 →M → SF(N,4) → Pic(X) → 0. (1.2)

Pic(X) is also a finitely generated abelian group. Define the Picard number
ρX of X to be the rank of Pic(X). We have ρX ≤ rank(Cl(X)) = |4(1) | − d.
If 4 contains at least one d-dimensional cone, then Pic(X) is (torsion-)free
which is equivalent to the splitting of this sequence. If X is proper, i.e., 4 is
complete, then any maximal cone of 4 is d-dimensional. In the proper case one
can explicitly compute the Picard number from the fan (see [Ewa96, V.5.9] and
[Eik93]).

Between the above two sequences we have a natural commutative diagram
enduced by the embedding TNCDiv(X) ⊆ TNDiv(X). Exactly in the case of a
nonsingular variety these groups are equal and the two diagrams are naturally
isomorphic.

If any maximal cone in a fan is d-dimensional, e.g., 4 complete, we have:

Pic(X) ∼= H2(X; Z).

This implies
Pic(X) ∼= NS(X), (1.3)

where NS(X) is the Néron-Severi-Group, i.e., the group of Cartier divisors mod-
ulo algebraic equivalence.

From now on let X be proper. Define N 1(X) as the group of Cartier divi-
sors modulo numerical equivalence. Two Cartier divisors are called numerically
equivalent, if they have the same intersection number (see [Deb01]) with every
curve, i.e., both associated invertible sheafs have the same degree on of their
restrictions to any curve. Now we simply get:

Pic(X) ∼= N1(X).

Especially the above defined Picard number is in the proper case the same as
the usual Picard number ρX = rank(N1(X)) (see [Deb01, 1.3]).

In the same way let’s look at curves for X proper. A1(X) is generated by
the classes of the one-dimensional orbit closures Vρ for ρ ∈ 4(d− 1), such a ρ
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is called a wall. By [Rei83] or [Mat02] we have for every irreducible curve C in
X that C is rationally equivalent to

∑

ρ∈4(d−1) aρ[Vρ] for aρ ∈ N.

Now one defines N1(X) as the quotient of the group of 1-cycles modulo
numerical equivalence, where two 1-cycles are numerically equivalent if they
have the same intersection number with every Cartier divisor. This gives a
nondegenerate intersection pairing

Pic(X) ×N1(X) → Z.

Hence if X is nonsingular, then by (1.2) we get that N1(X) is isomorphic to the
group of integer relations among the primitive generators of the rays of 4.

Let NE(X) denote the Mori cone of curves, i.e. the set of classes of effec-
tive 1-cycles in N1(X) ⊗Z R. Because rational equivalence implies numerical
equivalence, the above result on rational equivalence of curves yields that

NE(X) =
∑

ρ∈4(d−1)

R≥0[Vρ] (1.4)

is a closed polyhedral cone generated by the classes of the walls of the fan.

1.5 Polytopes and lattice points

First two important results from convex geometry (e.g., see [Ewa96, Zie95]).
Let S ⊆MR be any subset.

Theorem 1.5.1 (Helly’s theorem). Any point in conv(S) is in the convex
hull of at most d+ 1 points in S.

Theorem 1.5.2 (Steinitz’s theorem). Any point in the interior of conv(S)
is in the interior of the convex hull of at most 2d points in S.

Now let’s define the main objects:
A polyhedron is a finite intersection of halfspaces in MR. A bounded polyhe-

dron is called a polytope. A polytope P can also be characterized as the convex
hull of finitely many points.

The boundary of P is denoted by ∂P , the relative interior of P by relintP .
When P is full-dimensional, its relative interior is also denoted by intP . Analo-
gously to cones one can define faces and normals of a polytope. A k-dimensional
face of P is called a vertex for k = 0, an edge for k = 1, or a facet, if it is has
codimension one. A face F of P is denoted by F ≤ P , the vertices of P form
the set V(P ), the facets of P the set F(P ). A polytope is always the convex
hull of its vertices. The boundary is covered by facets. There is the so called
diamond property stating that any (d − 2)-dimensional face of a d-dimensional
polytope is contained in exactly two different facets.

P is called a lattice polytope, respectively rational polytope, if V(P ) ⊆ M ,
respectively V(P ) ⊆MQ. A homomorphism (resp. iso-) of lattice polytopes is a
homomorphism (resp. iso-) of the associated lattices such that the induced real
linear homomorphism maps the one polytope to (resp. onto) the other.

There is the so called support function hP of a (rational) polytope P ⊆MR

defined by
hP : NR → R, y 7→ inf{〈y, x〉 : x ∈ P}.
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hP is a positive homogeneous (see [Ewa96, Def. 5.5]) upper convex function.
There exists a coarsest complete fan NP in NR called the normal fan of P
such that hP is linear on each cone. This terminology comes from the following
observation: Define for a face F of P the normal cone NP (F ) as the union of
{0} and the set of inner normals of F . In terms of hP this means

NP (F ) = {y ∈ NR : hP (y) = 〈y, x〉 ∀ x ∈ F},

where we take the closure of NP (F ). Then

NP = {NP (F ) : F ≤ P}.
Now let P be a d-dimensional lattice polytope with 0 ∈ intP . Apart from

the normal fan there is a more obvious possibility to define a complete fan from
P : Let ΣP := {pos(F ) : F ≤ P} be the fan spanned by P .

These two constructions can be related by the notion of the dual polytope

P ∗ := {y ∈ NR : 〈y, x〉 ≥ −1 ∀ y ∈ P}.

P ∗ is a d-dimensional rational polytope with 0 ∈ intP and vertices in NQ. P ∗

does not have to be a lattice polytope again.

F
η

F

We have the duality
(P ∗)∗ = P.

There is an inclusion-reversing combinatorial correspondence between k-
dimensional faces of P and d − 1 − k-dimensional faces of P ∗. For instance
the dual of a simplicial polytope, where any facet is a simplex, i.e., the convex
hull of d vertices, is a simple polytope, where any vertex is only contained in d
facets.

Geometrically, if F is a face of P , then its corresponding face of P ∗ is given
by all inner normals of F which lie in the affine hyperplane {y ∈ NR : 〈y, x〉 =
−1∀ y ∈ F}. For a facet F ≤ P we let ηF ∈ NQ denote the unique inner normal
satisfying 〈ηF , F 〉 = −1. Hence we have

V(P ∗) = {ηF : F ∈ F(P )}.

We have now the following important relation

NP = ΣP∗ and vice versa NP∗ = ΣP .

The dual of the product of di-dimensional polytopes Pi ⊆ Rdi with 0 ∈ intPi
for i = 1, 2 is given by

(P1 × P2)
∗ = conv(P ∗

1 × {0}, {0} × P ∗
2 ) ⊆ Rd1 × Rd2 . (1.5)

It is in general an unsolved problem to find equations or inequalities between
non-combinatorial invariants of P and P ∗ such as the number of lattice points
or the volume. For some partial relations in low dimensions see 3.7.1.
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Now let’s do a short excursion into some more or less well-known convex and
enumerative geometry (see for instance [Sta86]).

So let from now on P ⊆MR be a lattice polytope of dimension n ≤ d.
Choose a Z-basis of MR, so one can measure lengths and volumes, and

also a regular parametrization φ : Rn → P where the image of the canonical
basis e1, . . . , en is a lattice basis of the affine sublattice aff(P ) ∩M . Then the
Jacobian of φ is denoted by det aff(P ), this is just the volume of the fundamental
paralloped of the affine sublattice aff(P ) ∩M . If F is a facet of P and n = d,
then one can also prove that det aff(F ) is the length of ζF , where ζF ∈ N is
defined as the unique primitive inner normal of F , i.e., ζF is the first non-zero
lattice point on the one-dimensional cone of inner normals of F .

Now the relative volume or lattice volume of P is well-defined as

rvol(P ) := volRn(φ−1(P )) =
voln(P )

det aff(P )
,

where voln(P ) is just the volume of P in the sense of differential geometry.
rvol(P ) is thereby invariant under unimodular transformations of MR, so inde-
pendent of the chosen Z-basis. The relative volume is just the ordinary one, if
P is full-dimensional, i.e., n = d.

Now recall the definition of the analytical barycenter bP of P

bP :=

(

∫

P
x1 dx

voln(P )
, . . . ,

∫

P
xn dx

voln(P )
)

)

,

where the integral must be understood in the sense of differential geometry.
Obviously S(P ) ∈MQ is invariant of the chosen Z-basis.

In the case of bP = 0 there is the following (coarse) inequality called Blaschke-
Santaló inequality (see [Lut93, p.165]):

vol(P )vol(P ∗) < ω2
d, (1.6)

where ωd is the volume of the d-dimensional unit ball in Rd.
An important definition is the lattice point enumerator of P :

eP (k) := |kP ∩M | for k ∈ N.

There is the following classical result:

Theorem 1.5.3 (Theorem of Ehrhart). There exists a unique polynomial
e(X) ∈ Q[X] called Ehrhart polynomial of P such that e(k) = eP (k) for all
k ∈ N. It has degree deg(e) = n = dim(P ). Denote coeff i(e) ∈ Q for the
coefficient of e(x) of degree i ∈ N. Then one has

coeffn(e) = rvol(P ),

coeffn−1(e) =
1

2

∑

F∈F(P )

rvol(F ),

coeff0(e) = 1.

And the following reciprocity law holds:

|relint(kP ) ∩M | = (−1)de(−k) ∀k ∈ N>0.
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Especially the relative volume of a lattice polytope is a rational number. By
augmentation this is also true for polytopes with vertices in MQ.

As an application let’s prove the theorem of Pick: Let P be a two-dimensional
lattice polytope in the plane. Then vol2(P ) = coeff2(eP ) = 1/2((eP (1) − 1) +
(eP (−1)−1)) = 1/2(|P ∩M |+| intP ∩M |−2) = 1/2|∂P ∩M |+| intP ∩M |−1.

Recently the theorem of Ehrhart was substantially generalized by the fol-
lowing theorem of Brion and Vergne [BV97, Prop.4.1]:

Theorem 1.5.4. Let P ⊆ MR be a d-dimensional lattice polytope. Let φ be a
homogeneous polynomial function of degree g. Define for k ∈ N

i(φ, P )(k) :=
∑

m∈kP∩M

φ(m) and i(φ, intP )(k) :=
∑

m∈(kintP )∩M

φ(m).

Then one has
k 7→ i(φ, P )(k) and k 7→ i(φ, intP )(k)

are polynomials of degree ≤ d+ g. There is the reciprocity law:

i(φ, intP )(k) = (−1)d+gi(φ, P )(−k) ∀ k ∈ N>0.

To recover the main parts of the theorem of Ehrhart just choose φ = 1.

1.6 Big and nef Cartier divisors

Let X = X(N,4) and h ∈ SF(N,4). We define the polyhedron

Ph := {x ∈MR : 〈x, y〉 ≥ h(y) ∀ y ∈ supp(4)}.
If supp(4) generates NR as a cone, i.e., pos(supp(4)) = NR, e.g., 4 complete,
then Ph is a (possibly empty) polytope of dimension n ≤ d. The global sections
of Dh are

H0(X,OX(Dh)) =
⊕

u∈Ph∩M

Ce(u). (1.7)

Especially the dimension over C of the global sections of OX(Dh) is just the
number of lattice points in Ph.

Let X from now on be proper and h be (uniquely) given by lσ ∈M on every
cone σ ∈ 4(d).

It follows from 1.7 that, if Ph 6= ∅, then

ePh
: k 7→ dimC H

0(X,OX(kDh))

is just the Ehrhardt polynomial of the n-dimensional polytope Ph of degree n
with leading coefficient rvol(Ph).

Generally a Cartier divisor D on X is called big, if

lim inf
k→+∞

dimC H
0(X, kD)

kd
> 0.

It follows therefore that

Dh big ⇐⇒ Ph has dimension n = d.

One calls a Cartier divisor D nef, if D ∈ NE(X)∨, i.e., D.C ≥ 0 for all
curves C on X.
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Proposition 1.6.1. There are the following equivalences:

1. Dh is base-point-free, i.e., OX(Dh) is generated by its global sections

2. h is upper convex, i.e., h(x) + h(y) ≤ h(x+ y) for all x, y ∈ NR

3. lσ ∈ Ph for all σ ∈ 4(d)

4. Ph = conv(lσ : σ ∈ 4(d))

5. Dh.Vρ ≥ 0 for all ρ ∈ 4(d− 1)

6. Dh is nef

If this holds, then h(v) = inf{〈u, v〉 : u ∈ Ph ∩M} for v ∈ N and h is the
support function of the non-empty n-dimensional lattice polytope Ph.

These equivalences can be regarded as a strong version of the base-point-
freeness theorem (see [Deb01, 7.32]) for proper toric varieties.

In this context we should mention, how to compute the intersection number
in the fifth equivalence:

Let ρ ∈ 4(d− 1). There exist σ1, σ2 ∈ 4(d) with ρ = σ1 ∩ σ2. Now let
N := N/ < ρ ∩N >Z. One has the canonically projected fan 4 = {{0}, σ1, σ2}
where σ1 = pos(vσ1

) and σ2 = pos(vσ2
) for primitive vσ1

, vσ2
∈ N . We have

Vρ = X(N,4) ∼= P1. For h = h− lσ1
∈ SF(N,4) we have

Dh.Vρ = deg(OVρ
(Dh)) = −h(vσ1

) − h(vσ2
).

Let’s look at the self-intersection number of a Cartier divisor D on X: Dd

is generally defined as d!-times the leading coefficient of the polynomial

qD : k 7→ χ(X,OX(kD))

of degree ≤ d.

For Dh nef, there is the following vanishing theorem (that is special for the
toric case):

Hi(X,OX(Dh)) = 0 for all i > 0. (1.8)

If Dh is nef, then this implies

qDh
= ePh

and therefore we get (no vanishing theorem is necessary for this, see [Deb01,
1.31])

Dh
d = d! vold(Ph),

and Dh is also big iff this number is not zero.

Going further into intersection theory and mixed volumes one can prove the
theorem of Bernstein (see [Ful93, 5.5]).
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1.7 Ample Cartier divisors and projective toric

varieties

Let X = X(N,4) be a proper toric variety and h ∈ SF(N,4) given by elements
lσ ∈M for σ ∈ 4(d).

Let E = {m0, . . . ,ms} ⊆ Ph ∩M be a non-empty set of global sections of
Dh (under the usual identification). Then we have:

E generates OX(Dh) iff lσ ∈ E for all σ ∈ 4(d).

Such an E exists iff Dh is base-point-free, i.e., nef. In this case there is the
following morphism of toric varieties:

ΨE : X → Ps(C), x 7→ [e(m0)(x) : · · · : e(ms)(x)] (1.9)

Proposition 1.7.1. There are the following equivalences:

1. E generates OX(Dh) and ΨE is a closed immersion

2. For all σ ∈ 4(d) is ΨE |Uσ
a closed immersion and Ψ−1

E ({xj 6= 0}) = Uσ
for mj = lσ

3. Sσ is generated by E− lσ for all σ ∈ 4(d) and h is strictly upper convex,
i.e., h(x) + h(y) ≤ h(x+ y) for all x, y ∈ NR with equality iff x and y are
contained in a common cone σ ∈ 4(d)

4. Dh is ample and Sσ is generated by E − lσ for all σ ∈ 4(d)

For any such E the degree of X under the closed immersion ΨE is d!vold(Ph).

To get a criterion for very ampleness, just set E = Ph ∩M :
Dh is very ample iff Dh is nef and ΨPh∩M a closed immersion

iff Sσ is generated by Ph ∩M − lσ for all σ ∈ 4(d)
and h is strictly upper convex.

However ampleness is a more combinatorial condition:

Proposition 1.7.2. There are the following equivalences:

1. h is strictly upper convex

2. lσ ∈ Ph for all σ ∈ 4(d) and lσ1
6= lσ2

for σ1, σ2 ∈ 4(d) with σ1 6= σ2

3. Ph has as vertices exactly the pairwise different elements lσ for σ ∈ 4(d)

4. Dh.Vρ > 0 for all ρ ∈ 4(d− 1)

5. Dh is ample, i.e., there exists a k > 0 such that Dkh is very ample

If Dh is ample, then Dh is also nef and big, especially Dh is base-point-free and
Ph is a d-dimensional lattice polytope with NPh

= 4.

So in the toric case Kleiman’s criterion holds also for proper varieties. One
gets as a corollary:

X is projective iff 4 is spanned by a d-dimensional
lattice polytope Q ⊆ NR with 0 ∈ intQ

iff 4 is the normal fan of a d-dimensional
lattice polytope P ⊆MR.



1.7. Projective toric varieties 29

Definition 1.7.3. Let P ⊆MR be a rational polytope. We define the associated
projective toric variety as

XP := X(N,NP ).

A concrete way to describe XP is to take E as the set of lattice points in a
sufficiently large multiple of P and define XP as the closure of ΨE(C∗)d in (1.9).
An alternative construction is also possible by describing XP as the projective
spectrum of a semigroup algebra (see [Bat94]).

For d-dimensional rational polytopes P1, P2 equation (1.5) implies

XP1
×XP2

∼= XP1×P2
.

Remark 1.7.4. As was observed in [Con02, Prop. 2.1] projective toric varieties
are isomorphic as abstract varieties if and only if they are as toric varieties.





Chapter 2

Singularities and toric Fano

varieties

Introduction

In this section desingularization or resolution of singularities is described and
how different classes of singularities can be derived from this. Since this subject
is not explicitly contained in the standard literature of algebraic geometry such
as Hartshorne [Har77], it is a treated here in a more detailed manner than above.
We refer to [Mat02] and [Deb01]. Furthermore we set up the correspondence
of toric Fano varieties and Fano polytopes, this section is essential for the next
chapters. Here we refer to [Dai02], [Deb03] and [Sat02].

2.1 Resolution of singularities and discrepancy

Let X be a normal complex variety. X is called globally factorial iff any Weil
divisor is principal (Cl(X) = 0). In the affine case this is just the fact that the
coordinate ring is factorial. Recall that a Cartier divisor is a locally principal
Weil divisor. There is the analogous definition of a factorial variety iff any
Weil divisor is Cartier. This is equivalent to the fact that any localization is a
factorial ring. This holds for X nonsingular. Analogous one can define a Weil
divisor D to be Q-principal, respectively Q-Cartier, if there exists a positive
natural number k such that kD is principal, respectively Cartier. If any Weil
divisor is Q-principal, respectively Q-Cartier, X is called globally Q-factorial,
respectively Q-factorial. Finally an element in Div(X)⊗Z Q is called Q-divisor.

Remark 2.1.1. It would be more systematic to call globally (Q-)factorial va-
rieties (Q-)factorial varieties, and (Q-)factorial varieties locally (Q-)factorial
varieties (this is done in [Deb01]). However in toric literature the notion of
Q-factorial varieties is already established (see [Mat02] or [Cas04]).

Let X,Y be complex varieties of dimension d.
Generally a desingularization or resolution of singularities of X is defined

as a proper birational morphism f : Y → X with Y nonsingular. The existence
of such a resolution is part of the next theorem which is somewhat stronger and
needs some more notation.

31
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First let f : Y → X be a proper birational morphism with X normal. Define
the exceptional locus E := Exc(f) as the closed subset of Y where f is not a
local isomorphism. Then f is surjective, E = f−1(f(E)) and codimXf(E) ≥ 2.
f(E) is the set of elements of X with positive dimensional fibre and X − f(E)
is the domain of f−1, i.e., the largest open set over which f−1 : X−−→Y is
defined. Here it is important to note that, if X is Q-factorial every irreducible
component of Exc(f) has codimension 1, i.e., the exceptional locus is the union
of primedivisors. In general this might not be true. (For these results see [Deb01,
1.40]).

Second let Y be nonsingular and D an effective divisor on Y . D has sim-
ple normal crossings iff each irreducible component of Dred is nonsingular and
whenever some irreducible components meet at a point y, their local equa-
tions form a part of a regular system of parameters in OY,y. This just means
that any subset of irreducible components of Dred intersect transversally, i.e.,
edimOY,y/(f1, . . . , fr) = d − r for f1, . . . , fr locally defining equations of ir-
reducible components D1, . . . , Dr of Dred for ∩i=1,...,rDi 6= ∅. Especially any
non-empty intersection of irreducible components of Dred is nonsingular.

Now there is the following fundamental result (see [Deb01, 7.22]):

Theorem 2.1.2 (Hironaka’s theorem on embedded resolution). Let X
be a complex variety and Z a subscheme of X. There exists a nonsingular
complex variety Y and a projective birational morphism f : Y−−→X such that
Exc(f) ∪ f−1(Z) is an effective divisor with simple normal crossings.

Next let’s define a hierarchy of singularities on a normal complex variety X
of dimension d:

For this we first construct the canonical divisor on a possibly singular X by
reduction to the nonsingular case. Let Xreg := X −Sing(X) be the nonsingular
locus. Then there exists ΩdXreg

the sheaf of differentials on Xreg, a locally free

sheaf of rang d. Therefore ωXreg
:= ∧dΩdXreg

the canonical sheaf on Xreg is

an invertible sheaf. Choose a Weil divisor KXreg
with OXreg

(KXreg
) = ωXreg

.
Because of codimXSing(X) ≥ 2 there exists a unique Weil divisor KX called
canonical divisor on X with KX |Xreg

= KXreg
. Note that KX only is unique up

to linear equivalence. −KX is called anticanonical divisor.

For the construction of the so called ramification formula the next lemma
(see [Deb01, 7.11] and proof on page 177) and its corollaries are essential:

Lemma 2.1.3. Let f : Y → X be a proper birational morphism with X normal.
D a Cartier divisor on X and F an effective Cartier divisor on Y whose support
is contained in E := Exc(f). Then

H0(X,D) ∼= H0(Y, f∗D + F ) ∼= H0(Y − E, f∗D + F ) ∼= H0(X − f(E), D).

Corollary 2.1.4. Let f , X, Y , E as in the lemma.

1. The (global) sections of the structure sheafs on Y, Y −E,X,X − f(E) are
the same.

2. There are no non-zero principal divisors on Y whose support is contained
in E.
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3. Let F be a Cartier divisor on Y whose support is contained in E. If F is
effective, then

f∗OY (F ) ∼= OX .

The reverse implication holds, if Y is nonsingular.

4. Let Y be nonsingular. If D, D′ are Cartier divisors on X and F ,F ′ are
divisors on Y whose support is contained in E with

f∗D + F ≡ f∗D′ + F ′,

then D ≡ D′ and F = F ′.

Let f : Y → X be a resolution of singularities, and let K ′ be an arbitrary
canonical divisor on Y . We have

Y − E ∼= X − f(E), OY−E(K ′ |Y−E) ∼= OX−f(E)(KX |X−f(E)).

Therefore there exists a rational function r on Y such that for the canonical
divisor KY := K ′ + div(r) the Weil divisor KY |Y−E maps to KX |X−f(E).
Because of the second point in the corollary KY is uniquely determined by f
and KX .

Finally there is the following definition:

Definition 2.1.5. Let KX be Q-Cartier, i.e., there exists a positive integer j
such that jKX is a Cartier divisor. The smallest such j is called the (Gorenstein)
index jX of X. This definition is of course independent of the chosen canonical
divisor KX .

In this case there exist unique numbers ai ∈ Z such that

jXKY = f∗(jXKX) +
∑

i

aijXEi,

where Ei are the exceptional divisors, i.e., the irreducible components of E of
dimension d− 1.

As an equality of Q-divisors we get the so called ramification formula

KY = f∗KX +
∑

i

aiEi.

where
∑

i aiEi is called the ramification divisor.

If CX , CY were any canonical divisors on X, respectively Y , with

CY ≡ f∗CX +
∑

i

a′iEi,

then a′ = ai by the last point of the corollary. Especially the ai and the
ramification divisor are independent of the chosen canonical divisor on X.

So in the ramification formula we can replace equality = by linear equivalence
≡. If X and Y are both projective, then by using [Deb01, 7.19] we can show
that a Cartier divisor on Y whose support is contained in E is equal to 0 iff it is
numerically equivalent to 0. So it would be well-defined even to replace linear
by numerical equivalence in the ramification formula.

If for a resolution f the ramification divisor vanishes, i.e., ai = 0 for all
exceptional divisors Ei, e.g., no exceptional divisor exists, then f is called a
crepant resolution. This does not imply other resolutions also to be crepant.
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Now we are ready to define terminal and canonical singularities.

Definition 2.1.6. A complex variety X has terminal (respectively canonical)
singularities, if X is normal, the canonical divisor is Q-Cartier, and ai > 0
(respectively ai ≥ 0) for all i in a given resolution of singularities f .

The last condition is equivalent to the intrinsic condition f∗OY (jXKY −
E(1)) ∼= OX(jXKX) for E(1) the union of the exceptional divisors (respectively
f∗OY (jXKY ) ∼= OX(jXKX)) as can be seen from the third point of the corollary
by using the projection formula.

Because two desingularizations can always be dominated by a third, one can
show as in [Deb01, 7.14] again by using above corollary that this definition does
not depend on the chosen resolution of singularities.

What we have seen so far implies immediately that if X is Q-factorial and
has terminal singularities and there exists a crepant resolution, then X must
already be nonsingular.

Now by considering so called boundary-divisors one can do very much the
same in the so-called log-situation. But instead of repeating here this more
general construction we use the unifying notion of discrepancy:

Definition 2.1.7. Let X be normal with Q-Cartier canonical divisor. The
discrepancy discr(X) of X is the minimum of all ai and 1, if ai ≥ −1 for all
i, and −∞ otherwise, where the ai are defined in the ramification formula for
some resolution of singularities f such that E(1) =

∑

iEi is an effective divisor
with simple normal crossings.

Such a resolution exists by Hironaka’s theorem and this notion is independent
of the chosen desingularization.

X has terminal (respectively canonical) singularities iff discr(X) > 0 (re-
spectively discr ≥ 0). Eventually we also define:

Definition 2.1.8. X has log terminal (respectively log canonical) singularities,
if discr(X) > −1 (respectively discr ≥ −1).

Some remarks concerning the notion ’log terminal’ should be made. There
are many technical definitions around. They all involve a log-pair (X,D) where
D is a so called boundary divisor, i.e., a Q-divisor where all coefficients are in
[0, 1]. To get the case above just set D = 0. In general one defines the dis-
crepancy slightly different in an intrinsic manner (see [Mat02, 4.4.1]) to get the
strongest notion called ’purely log terminal’ as in [Mat02, 4.4.2]. The above
notion is actually the weaker notion ’log terminal’ which is in general not inde-
pendent of the given resolution, for this see [Mat02, 4.3.2,4.3.3]. On the other
hand if all coefficients of the boundary divisor are < 1 (as in the case here) these
two definitions coincide with one called ’kawamata log terminal’ (see [Mat02,
4.4.3] and [Deb01, 7.24]), a notion which is again independent of the given
resolution, as described in [Deb01, 7.25].

Finally one should remark that these definitions given above are indeed local.

In dimension two a normal surface has terminal singularities iff it is non-
singular ([Mat02, 4.6.5]). In dimension three or higher a normal variety with
terminal singularities satisfies codimSing(X) ≥ 3 ([Mat02, 4.6.6]).
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2.2 Singularities on toric varieties

In this section it will be shortly described, how to characterize above defined
singularities on toric varieties using the results of the previous chapter (see
[Bor00] and [Dai02]).

So let X = X(N,4). We define Gσ := {vτ : τ ∈ σ(1)} for σ ∈ 4.
The strongest condition is actually X being globally factorial. This is equiv-

alent to the fact that {vτ : τ ∈ 4(1)} is part of a Z-basis of N . This holds iff
Vτ is a principal divisor for all τ ∈ 4(1).

In the toric case there are the following special equivalences:

Proposition 2.2.1. The following conditions are equivalent:

1. X is nonsingular

2. Gσ is part of a Z-basis of N for all σ ∈ 4
3. Uσ ∼= Cdimσ × (C∗)d−dimσ for all σ ∈ 4
4. Uσ is globally factorial for all σ ∈ 4
5. Vτ is Cartier for all τ ∈ 4(1)

6. X is factorial

In low dimensions one can try to find classification results of isomorphism
classes of proper nonsingular toric varieties up to some Picard number ρX =
|4(1) | − d. In the two-dimensional case the set of isomorphism classes are in
bijection with a special set of so-called weighted circular graphs, see [Oda88,
1.29]. Using these results three-dimensional proper nonsingular toric varieties
with Picard number five or less which are minimal in the sense of equivariant
blow-ups were completely described in [Oda88, 1.34].

Analogously let’s examine the ’Q-case’:
X is globally Q-factorial iff {vτ : τ ∈ 4(1)} is linearly independent iff Vτ is

Q-principal for all τ ∈ 4(1).

Proposition 2.2.2. The following conditions are equivalent:

1. 4 is simplicial, i.e., |σ(1) | = dim(σ) for all σ ∈ 4
2. Gσ is linearly independent for all σ ∈ 4
3. Uσ is globally Q-factorial for all σ ∈ 4
4. Vτ is Q-Cartier for all τ ∈ 4(1)

5. X is Q-factorial

Our next goal is to describe the resolution of singularities in the toric case.
For this one needs a toric description of the canonical divisor:

KX := −
∑

τ∈4(1)

Vτ

is a canonical divisor (see [Mat02, 14.3.1]). Here one should note that any toric
variety is Cohen-Macaulay, and this canonical divisor defines the dualizing sheaf
of X. Furthermore X always has rational singularities. For these notions see
[Ful93, pp. 30,76,89] and [Dai02].
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Remark 2.2.3. KX is Q-Cartier iff for all σ ∈ 4 the set Gσ is contained in
an affine hyperplane, or equivalently, iff for all σ ∈ 4 there exists an uσ ∈ MQ

such that 〈uσ, vτ 〉 = 1 for all τ ∈ σ(1).

As described in [Ewa96, VI.8.5] one can refine by finitely many so called
stellar subdivisions the fan 4 into a nonsingular fan 4′ with 4(1) ⊆ 4′(1) so
that f : X ′ := X(N,4′) → X is a toric morphism and moreover a resolution
of singularities. Then we get that

E(1) =
∑

τ ′∈4′(1)−4(1)

Vτ ′

is an effective divisor on X ′ with simple normal crossings.
It should be noted that there is a toric Chow’s lemma, i.e., if X is proper,

one can choose f such that Y is projective.
Let KX be Q-Cartier. Then the ramification formula looks like this:

−jX
∑

τ ′∈4′(1)

Vτ ′ = jXf
∗KX +

∑

τ ′∈4′(1)−4(1), τ ′⊂σ∈4

jX(−1 + 〈uσ, vτ ′〉)Vτ ′ ,

because jXKX |Uσ
= div(jXe(uσ)) for all σ ∈ 4 and uσ as in 2.2.3. Therefore

discr(X) = −1 + min
σ∈4maximal,06=v∈σ∩N−Gσ

〈uσ, v〉

is a rational number in ] − 1, 1] (see also [Deb03, Prop.12]).

Proposition 2.2.4. Let KX be Q-Cartier (and uσ defined as in 2.2.3). Then
X has log terminal singularities.
X has terminal singularities iff {x ∈ σ : 〈uσ, x〉 ≤ 1} ∩N = {0} ∪Gσ

for all σ ∈ 4 maximal.
X has canonical singularities iff {x ∈ σ : 〈uσ, x〉 < 1} ∩N = {0}

for all σ ∈ 4 maximal.

The resolution f above is crepant iff for all exceptional divisors Vτ ′ we have
vτ ′ ∈ aff(Gσ) for τ ′ ⊂ relint(σ) and some σ ∈ 4.

If all maximal cones of 4 are d-dimensional, then the Gorenstein index jX
is the least common multiple of all (positive) denominators of the coefficients of
the vectors {uσ}σ∈4(d).

The existence of a crepant resolution implies jX = 1.

2.3 Toric Fano varieties

Here we lay out the basic notions of toric Fano varieties. For a survey see
[Deb03] and [Sat02].

Definition 2.3.1. A complex variety X is called Fano variety (respectively
weak Fano variety), if X is projective, normal and the anticanonical divisor
−KX is an ample (respectively nef and big) Q-Cartier divisor.

Because Fano varieties are in some sense opposed to varieties of general type,
i.e., where the canonical divisor KX is ample, they are quite rare and objects
of major studies (see [Deb01, Deb03, PSG99]).
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In some sources (e.g., [Deb03]) a Fano variety is assumed to be log terminal.
Since we are only concerned with the toric case, this assumption is redundant
by Prop. 2.2.4.

Now to the toric case: Let 4 be a complete fan in NR, and X := X(N,4)
the associated complete normal toric variety.

We set G4 := {vτ : τ ∈ 4(1)} and Gσ := G4 ∩ σ for σ ∈ 4 as in the
previous section.

Now we define the lattice polytope Q4 := conv(G4) ⊆ NR with 0 ∈ intQ4,
and the rational dual polytope P4 := Q∗

4 ⊆MR.
From the results of the last chapter we can immediately derive the following

propositions:

Proposition 2.3.2. The following conditions are equivalent:

1. X is a toric weak Fano variety

2.
∑

τ∈4(1) Vτ is a nef Q-Cartier divisor

3. There exists k ∈ N>0 and an upper convex h ∈ SF(N,4) such that h(vτ ) =
−k for all τ ∈ 4(1)

4. conv(Gσ) generates an affine hyperplane for all σ ∈ 4(d) and any facet
of Q4 consists of an union of conv(Gσ) for some σ ∈ 4(d)

If this holds, then the minimal k is just the Gorenstein index jX , and when h
is given by {lσ}, then

jXP4 = conv(lσ : σ ∈ 4(d)) = Ph,

with V (P4) = {lσ/jX : σ ∈ 4(d)}. Especially jX is also the minimal k such
that kP4 is a lattice polytope.

Proposition 2.3.3. The following conditions are equivalent:

1. X is a toric Fano variety

2.
∑

τ∈4(1) Vτ is an ample Q-Cartier divisor

3. There exists k ∈ N>0 and a strictly upper convex h ∈ SF(N,4) such that
h(vτ ) = −k for all τ ∈ 4(1)

4. For all σ ∈ 4(d) the polytope Fσ := conv(Gσ) is a facet of Q4

5. 4 = ΣQ4

6. 4 = NP4

In this case V(Q4) = G4 and V (P4) = {lσ/jX : σ ∈ 4(d)} with |V(P4) | =
|4(d) |.

Example 2.3.4. In the following figure we have fans that define in this order:
not a weak Fano variety; a Fano variety; just a weak Fano variety; a Fano
variety. Hereby the black polygon is Q4 and the black dots form the set G4:
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The following (hierarchically descending) definitions are now convenient:

Definition 2.3.5. Let Q ⊆ NR be a d-dimensional lattice polytope containing
the origin in its interior.

· Q is called a Fano polytope, if the vertices are primitive lattice points.

· Q is called a canonical Fano polytope, if intQ ∩N = {0}.

· Q is called a terminal Fano polytope, if Q ∩N = {0} ∪ V(Q).

· Q is called a smooth Fano polytope, if the vertices of any facet of Q form
a Z-basis of the lattice N .

Remark 2.3.6. Beware: In most papers (see [Bat99, Sat00]) a Fano polytope
is assumed to be already a smooth Fano polytope. This more systematic nota-
tion that will be used throughout this thesis was partly introduced in [Deb03].
Moreover in polytope literature sometimes a polytope is called ’smooth’, if it
has a special symmetry property or even if the dual is a smooth Fano polytope.
So one always has to check the definitions carefully!

We have the following correspondence theorem (see 1.7.4 and 2.2.4):

Proposition 2.3.7. There is a correspondence between isomorphism classes of
Fano polytopes and isomorphism classes of toric Fano varieties.

Thereby canonical Fano polytopes correspond to toric Fano varieties with
canonical singularities, i.e., discrX ≥ 0;

terminal Fano polytopes correspond to toric Fano varieties with terminal
singularities, i.e., discrX > 0;

smooth Fano polytopes correspond to nonsingular toric Fano varieties.

Example 2.3.8. There are infinitely many non-isomorphic d-dimensional Fano
polytopes for d ≥ 2 as the following examples for d = 2 show. Hereby the
polygon is terminal and smooth for k = 1, canonical but not terminal for k = 2,
and not canonical for k ≥ 3:

(k,1)
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In any dimension there is up to isomorphism always only a finite number
of canonical Fano polytopes, as follows from the following important finiteness
theorem (see [Bor00] for a survey, this result can be deduced from 3.7.14):

Theorem 2.3.9. For ε > 0 there exist only finitely many isomorphism classes
of d-dimensional toric Fano varieties with discrepancy greater than −1 + ε.

For the weak case we define:

Definition 2.3.10. Let Q ⊆ MR be a Fano polytope spanning 4. Then a
fan 4′ is called a crepant refinement of 4, if 4′ is a refinement of 4 in the
usual sense and additionally for any τ ′ ∈ 4′(1) there exists a σ ∈ 4 such
that vτ ′ ⊆ conv(Gσ). When the toric variety associated to the fan 4′ is again
projective, the fan 4′ is called a coherent crepant refinement.

Using the ramification formula (as on page 36) we see that such crepant
refinements correspond to equivariant proper birational morphisms
f : X ′ = X(M,4′) → X = X(M,4) with KX′ = f∗KX .

Proposition 2.3.11. Toric weak Fano varieties correspond uniquely up to iso-
morphism to coherent crepant refinements of fans spanned by Fano polytopes.

For the next result (see Prop. 2.2.2 for the first and [Bat94, Thm. 2.2.24]
for the second part) recall that a polytope is simplicial, if any facet is a simplex:

Proposition 2.3.12. Q-factorial toric Fano varieties correspond uniquely up
to isomorphism to simplicial Fano polytopes.

There exists a coherent crepant refinement by stellar subdivisions that re-
solves a weak toric Fano variety X with canonical singularities to a Q-factorial
weak toric Fano variety X ′ with terminal singularities.

Such a morphism X ′ → X is called a MPCP-desingularization in [Bat94].
X is said to admit a coherent crepant resolution, if such an X ′ can be chosen to
be nonsingular.

Finally we come to the essential notion:

Definition 2.3.13. A complex variety X is called Gorenstein, iff jX = 1, i.e.,
KX is a Cartier divisor.

There are other characterizations of the Gorenstein property in terms of the
local rings [Eis94, Ch. 21] and the affine semigroup rings [Oda88, p.126, Remark
(i)]. For our purposes this definition is the most suitable one, we refer to [Bat94]
and [CK99, App. A].

Now let’s look a little bit more closely at the local situation:

Proposition 2.3.14. The following conditions are equivalent for σ ∈ 4(d):

1. Uσ is Gorenstein

2.
∑

τ∈σ(1) Vτ is a principal divisor

3. There exists lσ ∈M such that 〈lσ, vτ 〉 = −1 for all τ ∈ σ(1)

4. The unique inner normal ηF of the facet F := conv(Gσ) of conv(0, Gσ) is
a lattice point
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5. There exists a Z-basis e1, . . . , ed of N such that Gσ ⊆ {x ∈ NR : xd = −1}

6. Any v ∈ Gσ can be extended to a Z-basis e1, . . . , ed−1, v such that Gσ ⊆
{x ∈ NR : xd = 1}

Especially N ∩ {x ∈ σ : 〈lσ, x〉 > −1} = {0}.

Proof. 3.⇒ 4., 3.⇔ 6. stems from the splitting of the short exact sequence

0 → {x ∈ N : 〈lσ, x〉 = 0} → N
〈lσ,·〉→ Z → 0.

The other implications are immediate.

In the global case we have the following equivalences:

Proposition 2.3.15. The following conditions are equivalent:

1. X is a Gorenstein toric Fano variety

2.
∑

τ∈4(1) Vτ is an ample Cartier divisor

3. There exists a strictly upper convex h ∈ SF(N,4) such that h(vτ ) = −1
for all τ ∈ 4(1)

4. Q4 spans the fan 4 and P4 is a lattice polytope

Then V (P4) = {lσ : σ ∈ 4(d)} with |V(P4) | = |4(d) |.
We have by (1.6) for the anticanonical degree of X:

deg(X) := (−KX)d = d!vol(P4).

As an important corollary from 2.3.14 and 2.3.9 we get:

Corollary 2.3.16. Gorenstein toric (weak) Fano varieties have canonical sin-
gularities. In fixed dimension d there is only a finite number of isomorphism
classes of d-dimensional Gorenstein toric Fano varieties.



Chapter 3

Reflexive polytopes

Introduction

In this chapter the main objects of study are introduced: Gorenstein toric Fano
varieties. We investigate this class of varieties by combinatorial methods using
the notion of a reflexive polytope which appeared in connection to mirror sym-
metry (see [Bat94] and [CK99]). A reflexive polytope is just a lattice polytope,
that contains as the only lattice point the origin in its interior, such that the
dual polytope is also a lattice polytope. There is up to isomorphism only a finite
number of reflexive polytopes in fixed dimension.

This chapter contains generalizations of tools and results previously known
only for nonsingular toric Fano varieties (due to Casagrande and Debarre),
as well as a detailed treatment of an approach by Batyrev and Conrads. As
applications we obtain new classification results and bounds of invariants, and
we formulate conjectures concerning combinatorial and geometrical properties of
arbitrary-dimensional reflexive polytopes. In the remaining parts of this thesis
the results achieved here will be applied.

In section 1 we give the definition and several characterizations of a reflexive
polytope (see Prop. 3.1.4) and describe its basic properties.

In sections 2 and 3 two elementary technical tools are investigated and gen-
eralized that were already previously used to successfully investigate and classify
nonsingular toric Fano varieties [Bat99, Sat00, Cas03b].

In section 2 we investigate the projection of a reflexive polytope along a lat-
tice point on the boundary (see Prop. 3.2.2). Thereby we can relate properties
of a Gorenstein toric Fano variety to that of a lower-dimensional toric Fano va-
riety (e.g., Cor. 3.2.5). As an application we give a new, purely combinatorial
proof (Cor. 3.2.8) of a result due to Batyrev [Bat99, Prop. 2.4.4] stating that
the anticanonical class of a torus-invariant prime divisor of a nonsingular toric
Fano variety is always numerically effective, and we generalize this result to the
case of locally complete intersections (Prop. 3.2.9).

In section 3 we consider pairs of lattice points on the boundary of a reflexive
polytope and show that in this case there exists a generalization of the notion
of a primitive relation as introduced by Batyrev in [Bat91] (Prop. 3.3.1). As
an application we prove that there are constraints on the combinatorics of a
reflexive polytope, in particular on the diameter of the edge-graph of a simplicial
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reflexive polytope (Cor. 3.3.2). Thereby we get that certain combinatorial types
of polytopes cannot be realized as reflexive polytopes (Cor. 3.3.3, Cor. 3.3.4).

In section 4 we give a short review of classification results of reflexive poly-
topes in low dimensions. In particular we give a concise proof of the classifica-
tion of reflexive polygons (Prop. 3.4.1). Furthermore we describe the algorithm
that was used by Kreuzer and Skarke for the computer classification of reflexive
polytopes in dimension three and four (see [KS97, KS98, KS00]).

In section 5 we are concerned with the maximal number of vertices of a
reflexive polytope, respectively a simplicial reflexive polytope. In the general
case we formulate a conjecture (Conj. 3.5.2), that will be proven in the case of a
centrally symmetric simple reflexive polytope in the last chapter (Thm. 6.2.2).
Here we give coarse bounds that depend on the maximal number of vertices
of a facet by generalizing results of Voskresenskij, Klyachko and Debarre (see
Prop. 3.5.5). We also extend the conjecture on the maximal number of vertices
of a smooth Fano polytope to the case of a simplicial reflexive polytope (Conj.
3.5.7). One of the main results of this section, that is even new in the smooth
case, is the verification of this conjecture under the assumption of an additional
symmetry of the polytope (Thm. 3.5.11). For this we generalize a result due to
Casagrande [Cas03a, Thm. 2.4] to the case of a Q-factorial Gorenstein toric Fano
variety (Cor. 3.5.17) stating that the Picard number of a nonsingular toric Fano
variety exceeds the Picard number of a torus-invariant prime divisor at most by
three. These results were published in [Nil04a] as a preprint in May 2004. In
November 2004 Casagrande published in [Cas04] the proof of the conjecture in
the case of a smooth Fano polytope. The author pointed out to her a possible
simplification in her argument and in December 2004 Casagrande published a
complete proof of Conj. 3.5.7 partly relying on results of this section, especially
on Thm. 3.5.11. From her proof we can also derive a bound on the number
of vertices of a general reflexive polytope (Cor. 3.5.13), thereby improving on
Prop. 3.5.5.

In section 6 we deal with reflexive simplices. We describe the approach
of Batyrev and Conrads how to determine these simplices by so called weight
systems. Then we prove sharp upper bounds on the total weight of these weight
systems (Thm. 3.6.22). The proof relies on some number-theoretic inequalities
concerning sums of unit fractions.

In section 7 we are concerned with the number of lattice points in a reflexive
polytope. Reflexive polytopes can be characterized by its Ehrhart polynomial
that counts lattice points in multiples of the polytope (Prop. 3.7.2). The main
theorem of this section is a sharp upper bound on the volume of a reflexive
simplex (Thm. 3.7.13), the corresponding algebraic-geometric result yields a
general conjecture on the maximal anticanonical degree of a Gorenstein Fano
variety with canonical singularities. We also obtain a bound on the number
of lattice points of a reflexive simplex, and furthermore we prove that in any
dimension there is a unique reflexive simplex with the maximal number of lattice
points on an edge (Thm. 3.7.19), this was observed in low dimensions in [HM04].
At the end of this section we count lattice points modulo a natural number, and
show how this is useful in the case of terminal reflexive polytopes (Cor. 3.7.23).

Summary of most important new results of this chapter:

· Properties of projecting reflexive polytopes (Prop. 3.2.2, p. 48)
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· The anticanonical class of a torus-invariant prime divisor of a Q-factorial
Gorenstein toric Fano variety with terminal singularities is a nef Q-Cartier
divisor (Cor. 3.2.7, p. 50).

· The anticanonical class of a torus-invariant prime divisor of a toric Fano
variety with terminal singularities and locally complete intersections is a
nef Cartier divisor (Prop. 3.2.9, p. 51).

· Properties of pairs of lattice points on the boundary (Prop. 3.3.1, p. 52)

· The diameter of the edge-graph of a simplicial reflexive polytopes is at
most three (Cor. 3.3.2, p. 53)

· Proof of sharp upper bound on the number of vertices of a simplicial
reflexive polytope in the case of a centrally symmetric pair of vertices of
the dual polytope (Thm. 3.5.11, p. 61)

· The Picard number of a Q-factorial Gorenstein toric Fano variety exceeds
the Picard number of a torus-invariant prime divisor at most by three
(Cor. 3.5.17, p. 66)

· Let V be the anticanonical degree of a Gorenstein toric Fano variety X of
class number one, and V ∗ the anticanonical degree of the ”dual” variety
X∗. Then we prove sharp bounds on V (Thm. 3.7.7, p. 83), on V · V ∗

(Thm. 3.7.11, p. 84), and on the anticanonical degree of a torus-invariant
curve on X (Thm. 3.7.9, p. 84).

3.1 Basic properties

Reflexive polytopes naturally enter the picture as the combinatorical counter-
parts of Gorenstein toric Fano varieties.

Definition 3.1.1. A Fano polytope whose dual is a lattice polytope is called
reflexive polytope.

By Proposition 2.3.15 the next result is straightforward:

Theorem 3.1.2. Gorenstein toric Fano varieties correspond uniquely up to
isomorphism to reflexive polytopes.

Gorenstein toric weak Fano varieties correspond uniquely up to isomorphism
to coherent crepant refinements of fans spanned by reflexive polytopes.

From 2.3.16 we get:

Theorem 3.1.3. A reflexive polytope is canonical. There are only finitely many
equivalence classes of reflexive polytopes in any given dimension.

This finiteness result is one of the main reasons why the study of reflexive
polytopes is on the one hand very motivating, because classification results
should be at least in very low dimensions achievable, and on the other hand so
difficult because of the ’sporadic’ nature of reflexive polytopes.

It would be interesting to find a direct proof of this result that only uses the
definition of a reflexive polytope.

Here is an example to illustrate the difference of canonical Fano polytopes
and reflexive polytopes, it is taken from [KS96] (see 3.2.6 for another example):
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(1,1,2)

(−1,−1,−2)

(1,0,0)

(0,1,0)

The outer polytope is a centrally symmetric reflexive polytope, however the
interior one is a centrally symmetric terminal polytope that is not reflexive, in
fact all facets have lattice distance two from the origin, i.e., the unique primitive
outer normal has value 2 on the defining facet.

It is obvious that lattice points on the boundary of a canonical Fano polytope
are primitive, for a reflexive polytope however even more is true. The next result
summarizes the most important equivalences of reflexivity (8. and 12. seem to
be not yet written down somewhere else):

Proposition 3.1.4. Let P ⊆ MR be a d-dimensional lattice polytope with 0 ∈
intP .

1. P is reflexive

2. P ∗ is a lattice polytope

3. P ∗ is reflexive

4. X(M,ΣP ) is a (Gorenstein toric) Fano variety

5. X(N,NP ) is a (Gorenstein toric) Fano variety

6. All facets have integral lattice distance one from the origin (i.e., for any
F ∈ F(P ) there exists νF ∈ N such that 〈νF ,m〉 = 1 for all m ∈ F )

7. There are no lattice points lying between the affine hyperplane spanned by
a facet and its parallel through the origin

8. Any lattice point on an affine hyperplane spanned by a facet is primitive

9. ηF ∈ N for any F ∈ F(P )

10. ζF = ηF for any F ∈ F(P )

11. For any F ∈ F(P ) and m ∈ F ∩M there is a Z-basis e1, . . . , ed of M such
that ed = m and F ⊆ {x ∈MR : xd = 1} (in particular M ∩ η⊥F has as a
Z-basis e1, . . . , ed−1, and ηF = −e∗d in the dual Z-basis e∗1, . . . , e

∗
d of N)

12. For any F ∈ F(P ) there is a Z-basis e1, . . . , ed of M such that ‖ηF ‖ = 1
and ‖m‖ = 1 for some m ∈ F ∩M (the norm taken with respect to this
basis, respectively its dual)
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Proof. 8. ⇒ 6.: Let νF := −ζF ∈ N be the unique primitive outer normal,
so there exists a primitive lattice point m ∈ M such that 〈νF ,m〉 = 1. Let
c := 〈νF , F 〉 ∈ N>0. Then cm is a lattice point in aff(F ), so primitive, hence
c = 1.

The other implications and equivalences are obvious or follow from the re-
sults of the last section in the previous chapter, in particular from Propositions
2.3.14 and 2.3.15.

For important algebraic-geometric characterizations of reflexive polytopes
(generic anticanonical hypersurfaces are Calabi-Yau) see [Bat94, Thm. 4.1.9] or
[HM04, 2.1], for its consequences in mirror symmetry see [Bat94] or [CK99], for
other combinatorial equivalences see subsection 3.7.1.

Corollary 3.1.5. P 7→ XP := X(N,NP ) induces a correspondence of isomor-
phism classes of reflexive polytopes and Gorenstein toric Fano varieties.

In particular there is a complete duality of reflexive polytopes. This implies
a natural (mirror) symmetry of isomorphism classes of Gorenstein toric Fano
varieties. In the following example the left fan defines P2, the right a quotient
P2/Z2:

If P is a reflexive polytope, then XP is a nonsingular toric Fano variety if
and only if P ∗ is a smooth Fano polytope.

It is also important to note (e.g., see (1.5)) that products of reflexive poly-
topes are again reflexive.

In low dimensions reflexive polytopes have a very important and peculiar
property (see [Bat94]):

Proposition 3.1.6. For d ≤ 3 any d-dimensional Gorenstein toric Fano variety
admits a coherent crepant resolution (see 2.3.12).

For a four-dimensional counterexample see 3.2.6.
We recall a convenient definition for the proof:

Definition 3.1.7. A lattice polytope P ⊆MR is called empty, if P∩M = V(P ).

Now 3.1.6 follows from 2.3.12 and the next well-known lemma:

Lemma 3.1.8. Let P be a d-dimensional lattice polytope with 0 ∈ intP .

1. Let d = 2. Lattice points x, y form a Z-basis if and only if conv(0, x, y)
is an empty two-dimensional polytope. If P is a canonical Fano polytope,
this holds, if x, y are lattice points on the boundary that are not contained
in a common facet of P and x+ y 6= 0.

In particular any two-dimensional terminal Fano polytope is a smooth
Fano polytope, and any two-dimensional canonical Fano polytope is a re-
flexive polytope.
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2. Let d = 3 and P be reflexive. Three lattice points x, y, z in a common
facet of P form a Z-basis if and only if conv(x, y, z) is empty.

In particular any three-dimensional simplicial terminal reflexive polytope
is a smooth Fano polytope.

It is well-known that ample Cartier divisors on a complete nonsingular toric
variety are already very ample (see [Oda88, Cor.2.15]). For a general bound see
[EW91] or [Pay04], for a related conjecture see [Kan98]. Here we prove a result
that seems to be folklore:

Proposition 3.1.9. Let X be a d-dimensional Gorenstein toric Fano variety
with d ≤ 3.

Then the ample anticanonical divisor −KX is very ample.

Proof. Let P ⊆MR the corresponding reflexive polytope, u ∈ V(P ∗) arbitrary.
Let n ∈ pos(P ∗ −u)∩N . By the results in section 1.7 we have to show that

n is a linear combination with positive integers of elements in (P ∗ ∩N) − u.
It is easy to see that there exist F ∈ F(P ∗) and x1, x2 ∈ F ∩ N such that

conv(u, x1, x2) is an empty lattice polytope and n ∈ pos(0 − u, x1 − u, x2 − u).
By 3.1.8(2) we get that {u, x1, x2} is a Z-basis of N . In particular n is a linear
combination of {−u, x1 − u, x2 − u} with positive integers.

3.2 Projecting along lattice points on the bound-

ary

Throughout the section let P be a d-dimensional reflexive polytope in MR.

The projection map along a vertex of P is an essential tool in investigating
toric Fano varieties, since one hopes to get some information from the cor-
responding lower-dimensional variety (see [Bat99, Cas03a]). In the case of a
reflexive polytope it is also useful to consider projecting along lattice points on
the boundary of P that are not necessarily vertices.

The following definitions will be used throughout this work:

Definition 3.2.1. Let x, y ∈ ∂P with x 6= y.

· [x, y] := conv(x, y), ]x, y] := [x, y]\{x}, ]x, y[:= [x, y]\{x, y}.

· x ∼ y, if [x, y] is contained in a face of P , i.e., x and y are contained in a
common facet of P .

· The star set of x is the set

st(x) := {y ∈ ∂P : x ∼ y} =
⋃

{F ∈ F(P ) : x ∈ F}.

· The link of x is the set

∂x := ∂ st(x) =
⋃

{G ≤ P : G ⊆ st(x), x 6∈ G}.



3.2. Projecting along lattice points on the boundary 47

· y ` x (y is said to be away from x), if y is not in the relative interior of
st(x). Hence

∂x = {y ∈ st(x) : y ` x}.
y is away from x iff there exists a facet that contains y but not x, e.g., if
y is a vertex or x 6∼ y. There is also a local criterion:

y ` x ⇐⇒ x+ λ(y − x) 6∈ P ∀ λ > 1.

The next proposition shows the important properties of the projection of a
reflexive polytope along some lattice point on the boundary.

Proposition 3.2.2. Let P ⊆MR be a reflexive polytope. Let v ∈ ∂P ∩M .
We define the quotient lattice Mv := M/Zv and the canonical projection

map along v
πv : MR → (Mv)R = MR/Rv.

Then Pv := πv(P ) is a lattice polytope in (Mv)R with V(Pv) ⊆ πv(V(P )) that
contains the origin in its interior.

1. Let U be the set of elements x ∈ P such that x+ λv 6∈ P for all λ > 0.

The restriction of πv to U induces a bijection

U → Pv.

We denote the inverse map by ιv.

For S := st(v) we have
U = S

and thus
Pv = conv(πv(V(P ) ∩ ∂v)).

2. The projection map induces a bijection S ∩M → Pv ∩Mv.

3. The projection map induces a bijection ∂v → ∂Pv. ∂Pv is covered by the
projection of all (d−2)-dimensional faces C such that C ∈ F(F ) for some
facet F of P with v ∈ F and v 6∈ C; πv(C) is contained in a facet of Pv.

4.
ιv(V(Pv)) ⊆ V(P ) ∩ ∂v.

Let z ∈ V(P )∩ ∂v. Then πv(z) ∈ ∂Pv. If ]v, z[ is contained in the relative
interior of a facet of P , then πv(z) ∈ V(Pv).

5. Let F ∈ F(P ) with v ∈ F . Then

pos(πv(F )) ∩ Pv = πv(F ).

6. The image πv(F ) of a facet F parallel to v, i.e., 〈ηF , v〉 = 0, is a facet of
Pv. It is π−1

v (πv(F )) ∩ P = F . There are at least |V(πv(F )) |-vertices of
F in S. Any point in F ∩ S is contained in a facet that contains v and
intersects F in a (d− 2)-dimensional face.

The preimage Γ := π−1
v (F ′) ∩ P of a facet F ′ of Pv is either a facet of P

parallel to v or a (d − 2)-dimensional face of P . In the last case Γ → F ′

is an isomorphism, and there exists exactly one facet of P that contains Γ
and v.



48 Chapter 3. Reflexive polytopes

7. Suppose −v ∈ P . Then any facet of P either contains v, or −v, or is
parallel to v, i.e., a facet of the form π−1

v (F ′) ∩ P for F ′ ∈ F(Pv).

8.

(Pv)
∗ ∼= P ∗ ∩ v⊥ as lattice polytopes.

Pv is reflexive if and only if P ∗ ∩ v⊥ is a lattice polytope.

Proof. 1. Let F be a facet of P containing v and x. If λ > 0, then 〈ηF , x+λv〉 =
−1 − λ < −1, so x+ λv 6∈ P . Hence S ⊆ U .

On the other hand let x ∈ U . Considering the polytope P ∩ lin(v, x) we see
there is a facet F of P not parallel to v that contains x with 〈ηF , v〉 < 0. Since
P is reflexive, we have 〈ηF , v〉 = −1, hence v ∈ F and x ∼ v. This implies
S = U .

2. Let m′ ∈ Pv ∩Mv. We have u := ιv(m
′) ∈ U = S. So there exists a facet

F ∈ F(P ) with v, u ∈ F . By 3.1.4(11) there is a Z-basis e1, . . . , ed−1, ed = v of
M such that V(F ) ⊆ {x ∈ MR : xd = 1}, i.e., ηF is the dual vector −e∗d. Let
u = λ1e1 + · · · + λded for λ1, . . . , λd ∈ R. Now e1, . . . , ed−1 is a Z-basis of Mv.
Therefore λ1, . . . , λd−1 ∈ Z. Since u ∈ F , we get λd = ud = 〈−ηF , u〉 = 1, hence
u ∈M .

3. The projection induces an homeomorphism S → Pv, and hence a bijection
of their boundaries.

4. The first statements follow from the first and the third point. Let z ∈
V(P )∩ ∂v be such that ]v, z[ is contained in the relative interior of a facet of P .
Then there is only one facet F ∈ F(P ) that contains v and z. Since z ∈ V(F )
we can choose an affine hyperplane H that intersects F only in z and is parallel
to v. For Pv := πv(P ) and H ′ := πv(H) let x′ ∈ H ′ ∩ Pv. It remains to show
that x′ = z′ := πv(z). So assume not. H ′ intersects πv(F ) only in z′. Therefore
ιv(y

′) 6∈ F for all y′ ∈]z′, x′]. Finiteness of F(P ) implies that z is contained in
another facet 6= F containing v, a contradiction.

5. This is proven in the same manner as the third point.

6. The first statements follow from the third and the fourth point.

For the second statement let dim(Γ) = d − 2. Now observe that if Γ →
F ′ were not injective, a facet containing Γ necessarily would be parallel to
v, so its image a facet containing F ′, a contradiction. Therefore Γ → F ′ is
an isomorphism of polytopes with respect to their affine spans. We choose
x ∈ relintF ′. Let y := ιv(x) ∈ S ∩ Γ. By assumption also y ∈ relintΓ. Let
G ∈ F(P ) with v, y ∈ G. Then Γ ⊆ G, hence G is one of the two facets
containing Γ.

7. Let −v ∈ P . Any facet F ∈ F(P ) satiesfies −1 ≤ 〈ηF , v〉 = −〈ηF ,−v〉 ≤
1. From this the statements follow.

8. Choose again a facet F of P with v ∈ F , and a Z-basis e1, . . . , ed of
M such that ed = v and e1, . . . , ed−1 is a Z-basis of M ∩ η⊥F ∼= Mv. In these
coordinates we get (Pv)

∗ = {y′ ∈ Rd−1 : 〈y′, x′〉 ≥ −1 ∀x′ ∈ Pv} = {y′ ∈
Rd−1 : 〈(y′1, . . . , y′d−1, 0), (x1, . . . , xd)〉 ≥ −1 ∀x ∈ P} = P ∗ ∩ v⊥.

The last point and its proof are taken from [AKMS97, theorem in section 3].
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Let’s consider the algebraic-geometric interpretation of the projection map:

Throughout let X := X(M,4) for 4 := ΣP and P ⊆MR reflexive.
Let v ∈ V(P ), τ := pos(v) ∈ 4(1), and πv as in the previous proposition.

As in [Oda88, 1.7] the fan 4 := {πv(σ) : σ ∈ 4, τ ≤ σ} = {pos(πv(F )) : F ∈
F(P ), v ∈ F} defines the projective toric variety Vτ that is the torus invariant
prime divisor corresponding to the ray τ .

On the other hand there is the projected polytope Pv := πv(P ) that spans
a fan 4v in (Mv)R, we denote the corresponding projective toric variety by Xv.
In the following we discuss, how and when Vτ and Xv are related.

We choose a triangulation T := {Tk} of ∂v into simplicial lattice polytopes.
Then 4T := {pos(πv(Tk))} is a simplicial fan in (Mv)R with corresponding Q-
factorial complete toric variety XT . From Proposition 3.2.2(5) it follows that
4T is a common refinement of 4 and 4v. Especially there are induced proper
birational morphisms XT → Vτ and XT → Xv.

In general 4 is not a refinement of 4v (and vice versa). However in the case
that P is simplicial, we can choose T obviously in such a way that 4T = 4, in
particular this implies that 4 is a refinement of 4v.

In order to draw conclusions about the canonical divisor and singularities of
these lower-dimensional toric varieties there is the following sufficient assump-
tion:

∃ f ∈ N>0 : ∀ w ∈ V(P ) ∩ ∂v : | [v, w] ∩ M | − 1 = f. (3.1)

Suppose this condition holds. For any w ∈ V(P ) ∩ ∂v the second point in the
proposition implies | [0, πv(w)] ∩Mv |−1 = f . Furthermore let w′ ∈ V(Pv), τ

′ :=
pos(w′). Since proposition 3.2.2(4) implies ιv(w

′) ∈ V(P ) ∩ ∂v, the previous
consideration yields vτ ′ = (1/f)w′, hence Q4v

= (1/f)Pv (for this notation see
p. 37). Therefore −KXv

is an ample Q-Cartier divisor, i.e., Xv is a toric Fano
variety.

Definition 3.2.3. X, respectively P , is called semi-terminal , if for all v ∈ V(P )
condition (3.1) holds for f = 1, i.e., [v, w]∩M = {v, w} for all w ∈ V(P )∩ ∂v.
Proposition 3.2.4. Let P ⊆MR be a reflexive polytope.

1. P is semi-terminal iff Pv is a Fano polytope for all v ∈ V(P ).

2. P is terminal iff Pv is a canonical Fano polytope for all v ∈ V(P ).

Proof. 1. From left to right: This holds, since Q4v
= Pv is a Fano polytope.

From right to left: Let v 6= w ∈ V(P ) with v ∼ w. Choose C and F
as in Proposition 3.2.2(3) such that w ∈ V(C). Therefore we see that F ′ :=
aff(πv(C)) ∩ Pv is a facet of Pv. Hence by 3.2.2(6) for Γ := π−1

v (F ′) ∩ P we
have either Γ = G for a facet G ∈ F(P ) that is parallel to v or Γ = C. In
the first case 〈ηG, v〉 = 0 and 〈ηG, w〉 = −1, so | [v, w] ∩M | = 2. In the second
case obviously F ′ = πv(C), so πv(w) ∈ V(F ′), hence by assumption a primitive
lattice point. From 3.2.2(2) we get | [v, w] ∩M | = 2.

2. From left to right: Let v ∈ V(P ), 0 6= m′ ∈ Mv ∩ Pv. In the notation of
Proposition 3.2.2(1,2) we get ιv(m

′) ∈ M ∩ ∂P ⊆ V(P ) by assumption. Hence
m′ = πv(ιv(m

′)) ∈ ∂Pv by Proposition 3.2.2(4).
From right to left: Assume there is a w ∈ ∂P ∩M , w 6∈ V(P ). Then w is a

proper convex combination of vertices of P contained in a common facet. Let v
be one of them. Then πv(w) is in the interior of Pv, a contradiction.
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Corollary 3.2.5. Let X be a Gorenstein toric Fano variety.
Then the following two statements are equivalent:

1. X has terminal singularities

2. X is semi-terminal and Xv has canonical singularities for any v ∈ V(P )

If this holds, then Xv is a toric Fano variety for any v ∈ V(P ).

In particular we see that terminality is a necessary condition for obtaining
a reflexive polytope under projection, however not sufficient for d ≥ 4.

Example 3.2.6. Let d = 4, and e1, . . . , e4 a Z-basis of M . We define the
simplicial centrally symmetric reflexive polytope P := conv(±(2e1 + e2 + e3 +
e4),±e2,±e3,±e4). Then P is combinatorially a crosspolytope, has 8 vertices
and 16 facets. It is a terminal Fano polytope but not a smooth Fano polytope, so
especially it admits no crepant resolution. The projection Pe4 along the vertex
e4 has 6 vertices, Pe4 is even a terminal Fano polytope but not reflexive. This
polytope is taken from [Wir97] where it is used in a different context.

Now we consider Vτ : To ensure that the canonical divisor of Vτ is Q-Cartier,
we need in general the Q-factoriality of X. So let P be simplicial and assume
again that condition (3.1) holds. Then 4 is a coherent crepant refinement of
4v. Hence −KVτ

is a nef Q-Cartier divisor, i.e., Vτ is a toric weak Fano variety.
From Cor. 3.2.5 we get:

Corollary 3.2.7. Let X be a Q-factorial Gorenstein toric Fano variety.
Then the following two statements are equivalent:

1. X has terminal singularities

2. X is semi-terminal and Vτ has terminal singularities for any τ ∈ 4(1)

If this holds, then Vτ is a Q-factorial toric weak Fano variety for any τ ∈ 4(1).

Finally to additionally derive the Gorenstein property, i.e., that the canonical
divisor is Z-Cartier, we need a stronger assumption, that is trivial in the case
of a smooth Fano polytope:

For any F ∈ F(P ) with v ∈ F and C ∈ F(F ) with v 6∈ C

there exist w1, . . . , wd−1 ∈ C ∩M such that (3.2)

w1, . . . , wd−1, v is a Z-basis of M .

If this condition is fulfilled, then (3.1) holds for f = 1, Pv is reflexive by Prop.
3.2.2(3), and Xv is a Gorenstein toric Fano variety. If P is also simplicial, then
Vτ is a Gorenstein toric weak Fano variety.

Suppose now X is semi-terminal, simplicial and Vτ is nonsingular for any
τ ∈ 4(1). It follows from 3.1.4(11) that (3.2) holds for any v ∈ V(P ). Then Pv
is reflexive, in particular canonical for any v ∈ V(P ), hence Cor. 3.2.5 implies
that P is terminal. Since P is also simplicial, the assumption implies that P is
already a smooth Fano polytope. We have proven the following corollary:
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Corollary 3.2.8. Let X be a Q-factorial Gorenstein toric Fano variety.
Then the following two statements are equivalent:

1. X is nonsingular

2. X is semi-terminal and Vτ is nonsingular for any τ ∈ 4(1)

If this holds, then Vτ is a Q-factorial toric weak Fano variety for any τ ∈
4(1), and Xv is a Gorenstein toric Fano variety admitting the coherent crepant
resolution Vτ → Xv for any v ∈ V(P ), τ = pos(v).

The important fact that the projection of a smooth Fano polytope is reflexive
was already proven by Batyrev in [Bat99, Prop. 2.4.4], however he used the
notion of a primitive relation [Bat91] and results of Reid about the Mori cone
[Rei83]. Another proof that is essentially equivalent to the one of Batyrev was
done by Evertz [Eve88] by explicitly calculating equations of facets.

There is now a generalization of this result to the class of toric Fano varieties
with locally complete intersections. These varieties were thoroughly investigated
in [DHZ01], where it was proven that they admit coherent crepant resolutions.

Proposition 3.2.9. Let X be a Gorenstein toric Fano variety that has singu-
larities that are locally complete intersections.
Then the following three statements are equivalent:

1. X is semi-terminal

2. X has terminal singularities

3. Any facet of P can be embedded as a lattice polytope into [0, 1]d−1

If this holds, then Xv is a Gorenstein toric Fano variety for any v ∈ V(P ).
If additionally X is Q-factorial, then X is nonsingular.

Proof. The facets of the corresponding reflexive polytope P are so called Naka-
jima polytopes, a comprehensive description can be found in [DHZ01]. Using
their results it is straightforward to prove the following statement by induction
on n:

Let v be a vertex of an n-dimensional Nakajima polytope F in a lattice M
such that | [w,w′] ∩M | = 2 for all w,w′ ∈ V(P ), w 6= w′. Then F is empty, can
be embedded as a lattice polytope in [0, 1]n, and for any facet C ∈ F(F ) with
v 6∈ C there exist n vertices w1, . . . , wn of C such that w1 − v, . . . , wn − v is a
Z-basis.

From this result the proposition is obvious using condition (3.2).

In Example 3.2.6 we have the situation that any facet satisfies the third con-
dition of the previous proposition. The corresponding variety X is Q-factorial,
has terminal singularities, but Xv is never a Gorenstein toric Fano variety, so
X does not have locally complete intersections.
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3.3 Pairs of lattice points on the boundary

Throughout the section let P be a d-dimensional reflexive polytope in MR.

In [Bat91] the important notions of primitive collections and primitive rela-
tions were defined for nonsingular projective toric varieties and used in [Bat99]
for the classification of four-dimensional smooth Fano polytopes (for a more
general definition and treatment of these notions see section 4.1). Here primi-
tive relations are in some sense minimal integer relations among the vertices of a
smooth Fano polytope, hence they give 1-cycles on the variety (see p. 23), that
even generate the Mori cone (see [Rei83] and [Bat91]). Unfortunately these use-
ful tools cannot simply be generalized to the class of reflexive polytopes, since
they rely on the existence of lattice bases among the vertices of a facet. However
the next proposition shows that in the simplest yet most important case of a
primitive collection of order two, i.e., a pair of lattice points on the boundary
that are not contained in a common face (see Def. 4.1.4), we still have a kind
of generalized primitive relation (v+w = 0 or av+ bw− z = 0) that (unlike the
trivial choice in Def. 4.1.6) mimics the good properties of the nonsingular case:

Proposition 3.3.1. Let P ⊆MR be a reflexive polytope, v, w ∈ ∂P ∩M , v 6= w.
Exactly one of the following three statements holds:

1. v ∼ w

2. v + w = 0

3. v + w ∈ ∂P

Let the third condition be satisfied. Then the following statements hold:
v, w is a Z-basis of lin(v, w)∩M . There exists exactly one pair (a, b) ∈ N2

>0

such that, if we set z := z(v, w) := av + bw, then z ∈ ∂P , v ∼ z and w ∼ z.
Moreover:

i. a = 1 or b = 1. a = | [w, z] ∩M | − 1 and b = | [v, z] ∩M | − 1.
If F ∈ F(P ) with v, z ∈ F , then 〈ηF , w〉 = a−1

b .

ii. Any facet containing z (or v + w) contains exactly one of the points v or
w.

iii. For any F ∈ F(P ) containing v and z there exists a facet G ∈ F(P )
containing w and z such that F ∩G is a (d− 2)-dimensional face of P .

iv. If z ∈ V(P ), b = 1, and ]v, z[ is contained in the relative interior of a facet
of P , then [w, z] is contained in an edge.

Proof. Let v 6∼ w and v + w 6= 0. The first condition implies that for any facet
F ∈ F(P ) we have 〈ηF , v + w〉 = 〈ηF , v〉 + 〈ηF , w〉 > −2. However reflexivity
of P implies that this must be a natural number greater or equal to −1, so
v + w ∈ P by duality. We get 0 6= v + w ∈ ∂P , because P is canonical.

Since conv(0, v, w) is an empty two-dimensional polytope, by 3.1.8(1) we see
that v, w is a Z-basis.

Let F be a facet of P containing v + w. We may assume 〈ηF , v〉 = −1 and
〈ηF , w〉 = 0. This implies v ∼ v + w.
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We can use this consideration again for the pair v + w,w. Since F ∩M is
finite, this eventually yields a natural number b ∈ N>0 such that z = v+bw ∈ F
and w ∼ z. In particular a = 1. This proves the existence of z and i.

ii. Let F ′ ∈ F(P ) with z ∈ F ′. Assume v, w 6∈ F ′, hence −1 = 〈ηF ′ , z〉 =
a〈ηF ′ , v〉 + b〈ηF ′ , w〉 ≥ 0, a contradiction.

iii. Let F ∈ F(P ) with v, z ∈ F . Since z ∈ ∂F and z ` v, there exists a
face H ∈ F(F ) with z ∈ H and v 6∈ H. By the diamond property (p. 23) there
exists a facet G ∈ F(P ) such that G ∩ F = H. In particular z ∈ G and v 6∈ G,
so by the second point w ∈ G.

iv. Follows from Prop. 3.2.2(4) applied to πv.

The statement and the proof shall be illustrated by the following figure:

v+wv z = v + 2 w

w

For another example note that the following situation cannot occur for a
three-dimensional reflexive polytope, since conv(x, y, z(v, w)) does not contain
v or w, a contradiction to 3.3.1(ii); the reader should not try to prove this by
explicitly calculating facets:

v

y w

z(v,w)
x

The symmetric relation ∼ defines a graph W(P ) on ∂P ∩M , where ∂P ∩M
are the vertices of W(P ), and {v, w} is an edge of W(P ) if and only if v ∼ w.

From the previous proposition we can now easily derive the following corol-
lary about combinatorial properties of reflexive polytopes:

Corollary 3.3.2. Let P ⊆MR be a reflexive polytope.

1. Any pair of points in ∂P ∩M can be connected by at most three edges
of the graph W(P ), with equality only possibly occuring for a centrally
symmetric pair of points.

2. The previous statement also holds for the subgraph of W(P ) whose vertices
consist of V(P ); this is a purely combinatorial object. In the case of a
simplicial polytope this is just the usual edge-graph on the vertices of P .

3. By dualizing we get that a pair of facets of a reflexive polytope is either
parallel, contains a common vertex, or does have mutually non-trivial in-
tersection with another facet.

Proof. 1. Let v, w ∈ ∂P ∩M , v 6= w, v 6∼ w. If v + w 6= 0, then 3.3.1 yields
z := z(v, w) ∈ ∂P ∩M such that v ∼ z ∼ w. If v + w = 0, then we can choose
w′ ∈ V(P ), w′ 6= w, with w′ ∼ w. Now apply 3.3.1 for the lattice points v, w′.



54 Chapter 3. Reflexive polytopes

2. Let v, w ∈ V(P ), v 6= w, v 6∼ w. We can again assume v + w 6= 0, and
z := z(v, w) ∈ ∂P ∩M . Now 3.3.1(iii) implies that there exists z′ ∈ V(P ) such
that v ∼ z′ ∼ w.

3. This is obvious from the second point.

The statement and the proof of the first point is illustrated by the following
figures:

z

w

wv v

w’

v

w=−v
w’

z’v

w=−v

Without using the existing classification of two-dimensional reflexive poly-
topes (see Prop. 3.4.1) the proposition and the corollary yield an immediate
application in the case of d = 2 (for the proof of the second point use statement
i of the proposition).

Corollary 3.3.3. Let P be a two-dimensional reflexive polytope.

1. P has at most six vertices; equality occurs iff P is of type 6a in Prop.
3.4.1.

2. Any facet of P contains at most five lattice points; there exists a facet with
five lattice points iff P is of type 8c in Prop. 3.4.1.

This first point is also a direct consequence of [PR00, Thm. 1] stating that
|∂P ∩M | + |∂P ∗ ∩N | = 12 for a two-dimensional reflexive polytope, where
however no direct combinatorial proof is known that does not use some kind of
induction (see also Prop. 3.4.1 below). In higher dimensions there is no such
direct relation between the lattice points in the dual pair of reflexive polytopes.

Another application is to show that certain combinatorial types of polytopes
cannot be realized as reflexive polytopes. As an example we have a look at the
regular polyhedra (see for instance [Sti01]).

These contain the d-simplex, the d-cube, and its dual, the d-crosspolytope;
for d = 3 these are the tetrahedron, the cube, and the octahedron. In any dimen-
sion these combinatorial types can be realized as reflexive polytopes. However
apart from these three infinite families there are five sporadic cases. For d = 3
we also have the icosahedron (simplicial, with 12 vertices and 20 facets), and
its dual, the dodecahedron. Moreover for d = 4 there are the 24-cell (self-dual,
with 24 vertices, facets are octahedra), the 600-cell (simplicial, with 120 vertices
and 600 facets), and its dual, the 120-cell. Now there is the following result:

Corollary 3.3.4. There is no reflexive polytope that is combinatorially isomor-
phic to the dodecahedron or the icosahedron. There is no reflexive polytope that
is combinatorially isomorphic to the 120-cell or the 600-cell.
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Proof. Let P be a reflexive polytope and d = 3. By duality we can assume that P
is combinatorially isomorphic to an icosahedron. Corollary 3.3.2(2) immediately
yields by looking at the edge-graph that P is centrally symmetric. However any
three-dimensional centrally symmetric simplicial reflexive polytope has at most
8 vertices as will be proven in Theorem 3.5.11.

Finally by Corollary 3.3.2(2) and duality it is enough to note that there are
pairs of vertices of the simplicial 600-cell that cannot be connected by at most
three edges (see [Sti01, Fig. 5]).

It is now an astonishing observation (see [KS02]) that the self-dual 24-cell can
be uniquely realized as a reflexive polytope with vertices {±ei : i = 1, . . . , 4}
∪{±(ei−ej) : i = 1, 2, j = 2, 3, 4, j > i}∪{±(ei−e3−e4) : i = 1, 2}∪{±(e1 +
e2 − e3 − e4)} for e1, . . . , e4 a Z-basis of M . It is even centrally symmetric and
terminal. Here it is interesting to note the necessity of these conditions:

Corollary 3.3.5. Let P be a four-dimensional reflexive polytope P that is com-
binatorially a 24-cell. Then P has to be centrally symmetric and terminal.

Proof. Let v be a vertex of P . Now choose the vertex w ∈ V(P ) corresponding
to the usual antipodal point. Assume v + w 6= 0. It is easy to see (see [Sti01,
Fig. 4]) that the intersection of a facet containing v and a facet containing w is
empty or consists of a unique vertex z where ]v, z[ and ]w, z[ are contained in the
relative interiors of these facets. This implies v 6∼ w and z(v, w) = z ∈ V(P ), a
contradiction to the last point of Prop. 3.3.1.

The terminality of P can be proven in an analogous way.

Due to the list [KS04b] the previously described polytope is even the only
four-dimensional reflexive polytope with 24 vertices and 24 facets such that any
vertex is contained in 6 facets.

3.4 Classification results in low dimensions

In this section we will give a survey of special classes of reflexive polytopes and
previously achieved classification results in low dimensions.

Smooth Fano polytopes, as they form the most important class of reflexive
polytopes, were intensively studied over the last decade by Batyrev [Bat91,
Bat99], Casagrande [Cas03a, Cas03b], Debarre [Deb03], Sato [Sat00], et al. It
could be proven that there are 18 smooth Fano polytopes for d = 3 (see [Bat82a,
WW82]) and 124 for d = 4 (see [Bat99, Sat00]) up to isomorphism. Here we
will have a look at recent classification results of reflexive polytopes in low
dimensions.

For d = 1 the polytope [−1, 1] corresponding to P1 is the only Fano poly-
tope. For d = 2 any canonical Fano polytope is reflexive by 3.1.8(1), and these
isomorphism classes can be easily classified (e.g., see [KS97] or [Sat00, Thm.
6.22]). For the convenience of the reader and later reference we will give the list
of the 16 isomorphism classes of reflexive polygons as well as a simple proof.

Proposition 3.4.1. There are exactly 16 isomorphism classes of two-dimen-
sional reflexive polytopes (the number in the labels denotes the number of lattice
points on the boundary):
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4a3 4b 4c

5a 5b 6a 6b

6c 6d 7a 7b

8a 8b 8c 9

There exist the following dual pairs of reflexive polygons:
(3,9), (4a,8a), (4b,8b), (4c,8c), (5a,7a), (5b,7b).
Each of the reflexive polygons 6a, 6b, 6c, 6d is isomorphic to its dual.

Proof. Let P be a two-dimensional reflexive polytope. We distinguish three
different cases:

1. Any facet of P contains only two lattice points, i.e., P is a terminal Fano
polytope. There are three different cases (see Prop. 3.3.1):

(a) P is combinatorially a triangle.

By 3.1.8(1) we may assume that (1, 0), (0, 1) are vertices of P . Let x
be the third vertex. From Prop. 3.2.4(2) it follows that the projection
of P along (1, 0) is a canonical Fano polytope, i.e., isomorphic to
[−1, 1], hence x2 = −1. By projecting along (0, 1) we get x1 = −1,
so P is of type 3.

(b) There exist three vertices u, v, w ∈ V(P ) with u+ w = v.

Since P is a terminal Fano polytope, Prop. 3.3.1 implies u ∼ v and
w ∼ v, and we may assume u = (−1, 1), v = (0, 1), w = (1, 0). Again
projecting along v yields P ∩ {(−1, x) : x ∈ Z} ⊆ {(−1, 0), (−1, 1)},
P ∩ {(0, x) : x ∈ Z} ⊆ {(0,−1), (0, 0), (0, 1)}, P ∩ {(1, x) : x ∈ Z} ⊆
{(1,−1), (1, 0)}. We get as possible types 4b, 5a, 6a.
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(c) Any two vertices that are no neighbours are centrally symmetric.

This immediately implies that P is of type 4a.

2. There exists a facet F containing exactly one lattice point in relintF .

We may assume V(F ) = {(−1, 1), (1, 1)}. Then by Prop. 3.2.2(1) we have
P ⊆ {x ∈ R2 : −1 ≤ x1 ≤ 1, x2 ≤ 1}. Since (0,−1) is not contained in
intP , we get P ⊆ {x ∈ R2 : x2 ≥ −3}. From this we readily derive the
next ten isomorphism types 4c,5b,6b,6c,6d,7a,7b,8a,8b,8c.

3. The remaining case.

We may assume V(F ) = {(−1, 1), (a, 1)} for a ∈ N, a ≥ 2. Let v ∈ V(P )
with v2 ≤ −1 minimal. As (1, 0) is not in the interior of P , we have v1 ≤ 0.
Then by assumption necessarily conv((−1, 1), (−1,−2), (2, 1)) ⊆ P . This
must be an equality, hence P is of type 9.

The proof includes the statement that there are exactly five toric Del Pezzo
surfaces , i.e., two-dimensional nonsingular toric Fano varieties: Type 3 corre-
sponds to P2, 4a to P1 ×P1, 4b to the Hierzebruch surface, 5a to P1 ×P1 blown
up in one torus invariant point, 6a to P1 × P1 blown up in two torus invariant
points. This result can also be proven by birational factorisation [Oda88, Prop.
2.21], primitive relations [Bat91] or determinants [Ewa96, Thm. V.8.2].

In general even for d = 3 there are too many reflexive polytopes to give a
classification by pencil and paper. However by restricting to smaller classes of
reflexive polytopes it is still interesting to find rigorous mathematical proofs of
observations and classification results by directly using their intrinsic properties:

Recently Kasprzyk classified in [Kas03] all 634 three-dimensional terminal
polytopes by first describing the minimal cases purely mathematically and then
using a computer program for the remaining ones. In [Kas04] a complete list is
available, where for each polytope the Gorenstein index is specified, so that it is
possible to recover all 100 terminal reflexive three-dimensional polytopes (note
that in [Kas03, Kas04] terminal Fano polytopes are called Fano polytopes, and
the Gorenstein index is referred to as the Fano index). Independently (already
in 2002) the author has obtained this list (see Thm. 4.3.1), this classification
is explained in the next chapter. Wagner classified three-dimensional centrally
symmetric reflexive polytopes (see [Wag95]). Moreover the author gave a classi-
fication of three-dimensional reflexive polytopes where the linear automorphism
group does not have non-trivial fixpoints (see Thm. 5.4.5).

Kreuzer and Skarke described in [KS97, KS98, KS00] a general algorithm to
classify reflexive polytopes in fixed dimension d. Using their computer program
PALP (see [KS04a]) they applied their method for d ≤ 4, and found 4319 reflex-
ive polytopes for d = 3 and 473800776 for d = 4. They also described how to find
a normal form of lattice polytopes, toric fibrations and symmetries. The com-
plete list of three-dimensional reflexive polytopes and a searchable database of
the four-dimensional reflexive polytopes can be found on their webpage [KS04b].

Here the ideas of their algorithm shall be shortly sketched (in the case of
a reflexive simplex an explicit approach due to Conrads is described in section
3.6): First they showed that any lattice polytope Q ⊆ NR that is minimal with
respect to the so called IP-property, i.e., it contains the origin in its interior, can
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be combinatorially decomposed into simplices, a so called IP simplex structure.
There are 2, 3, 9 such structures for d = 2, 3, 4. For any simplex we have a unique
weight system (see section 3.6), hence an IP-simplex structure yields a so called
combined weight system (CWS). Let Ncoarsest be the lattice generated by the
vertices of Q, and Mfinest its dual lattice. Then the CWS q of Q determines
Q∗ and hence Q up to an isomorphism of Mfinest respectively Ncoarsest. Now
we define the lattice polytope Q(q) := conv(Q∗ ∩Mfinest). They proved that if
Q(q) has the IP-property, then this is true for any weight system in the CWS.
For d ≤ 4 this even implies Q(q) to be reflexive. Now they determined any such
possible CWS, and hence classified any lattice polytope Q that is minimal with
respect to the IP-property. When we have a reflexive polytope P ⊆ MR, we
can always find such a Q ⊆ NR with V(Q) ⊆ V(P ∗). Hence P ⊆ Q∗, where the
vertices of Q∗ generateMfinest. Now in order to recover our reflexive polytope we
just have to choose some lattice subpolytope P of Q∗ (with respect to Mfinest).
Then we check, if the vertex-pairing-matrix is integral, and in this case we again
find M as a a lattice M ⊆ Mfinest containing the vertices of P . This can be
done in a systematic way using Hermite normal forms (see Thm. 3.6.6)

Using this list we find 194, respectively 5450, classes of three-dimensional, re-
spectively four-dimensional, simplicial reflexive polytopes. Moreover this yields
151 four-dimensional terminal simplicial reflexive polytopes (for d = 3 any such
polytope is smooth, see 3.1.8(2)).

3.5 Sharp bounds on the number of vertices

Throughout the section let P be a d-dimensional reflexive polytope in MR.

Since in higher dimensions only in very special cases classification results
exist, one tries to find at least sharp bounds on invariants and to characterize the
case of equality. Here we examine the number of vertices of a reflexive polytope.
While for general reflexive polytopes only a conjecture due to the author exists,
in the simplicial case we have an almost complete answer. This was achieved by
Casagrande after the publication of the preprint [Nil04a]. Moreover the author
could generalize previous non-trivial results of Debarre and Casagrande about
smooth Fano polytopes to simplicial reflexive polytopes.

The number of vertices corresponds to the rank of the class group of the
toric variety X := X(M,ΣP ) associated to the fan spanned, we have by (1.1)

rankCl(X) = |V(P ) | − d. (3.3)

The computer classification of Kreuzer and Skarke (see [KS04b]) yields that
the maximal number of vertices of a d-dimensional reflexive polytope is 6 for
d = 2, 14 for d = 3 and 36 for d = 4 (note that there is a misprint on page 1220
of [KS00] stating 33 as the maximal number of vertices).

Definition 3.5.1. Zd := conv([0, 1]d,−[0, 1]d) is called the n-dimensional stan-
dard lattice zonotope. It is a centrally symmetric terminal reflexive polytope, for
d ≥ 3 it is not simplicial (see [DHZ01, Proof of Thm. 3.21] where Z (d) = Zd−1).
A picture of Z3 can be found on p. 118.

However Z2 = conv(±[0, 1]2) is the (up to isomorphism) unique centrally
symmetric self-dual smooth Fano polytope with 6 vertices (of type 6a in Prop.
3.4.1). We denote by S3 := X(M,ΣZ2

) the associated nonsingular toric Del
Pezzo surface that is the blow up of P2 in three torus-invariant points.
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Conjecture 3.5.2. Let P be a d-dimensional reflexive polytope. Then

|V(P ) | ≤ 6
d
2 ,

where equality occurs if and only if d is even and P ∼= (Z2)
d
2 .

Remark 3.5.3. It would be enough to prove this conjecture for d even, because
products of reflexive polytopes are again reflexive.

For d = 2 a rigorous proof is known (see Cor. 3.3.3(1) and Prop. 3.5.5(1)
below). For d ≤ 4 the author checked this conjecture using the classification data
[KS04b] and the computer program PALP (see [KS04a]). In higher dimensions
this conjecture will be proven for centrally symmetric simple reflexive polytopes
in the last chapter, see Theorem 6.2.2 on page 149.

Remark 3.5.4. In the paper [HM04] Haase introduces the notion of the re-
flexive dimension refldim(Q) of a lattice polytope Q as the least dimension d
a reflexive polytope P can have that contains Q as a face. He proves that
refldim(Q) is finite. Assuming the previous conjecture we get

refldim(Q) > 2 log6 V(Q).

If d is odd, there is no such obvious candidate as Zd/2 is for the even case. For
d = 3 the maximal number of vertices is 14, and Z3 is the only reflexive polytope
with this number of vertices, it is not simple. For odd d ≥ 5 the reflexive

polytope S
(d−3)/2
3 ×Z3 has 6(d−3)/214 vertices. Of course one could conjecture

that this were the maximal number of vertices. Let P have the maximal number
of vertices for d odd, then we get assuming the previous conjecture

6(d−1)/2 14

6
≤ |V(P ) | < 6(d−1)/2

√
6 = 6d/2.

For d = 5, this would imply 84 ≤ |V(P ) | ≤ 88. So even assuming the correctness
of above conjecture there could exist a reflexive polytope with more than 84
vertices without implying an obvious contradiction.

The next result yields two coarse upper bounds on the number of vertices of
a reflexive polytope in terms of some combinatorial invariants of the facets. The
first bound is a straightforward generalization of a bound due to Voskresenskij
and Klyachko [VK85, Thm.1] originally proven in the setting of a smooth Fano
polytope. The second upper bound is a generalization of [Deb03, Thm. 8],
where Debarre improved from a bound of order O(d2) on the number of vertices
of a smooth Fano polytope to a bound of order O(d3/2). We recover the original
results for simplicial reflexive polytopes. Of course by dualizing one can derive
upper bounds on the number of facets. These results will be further improved
in the remainder of this section (see Theorem 3.5.12 and Corollary 3.5.13).

Proposition 3.5.5. Let P be a reflexive polytope.
Define α := max(V(F ) : F ∈ F(P )) and β := max(F(F ) : F ∈ F(P )).

1. |V(P ) | ≤ 2dα.

More precisely we distinguish two cases:

If α ≥ 2d− 3, then |V(P ) | ≤ 2d(α− d+ 2) − 2.
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If α ≤ 2d− 3, then |V(P ) | ≤ dα+ α− d+ 1.

If P is simplicial, i.e., α = d, and d ≥ 3, this yields

|V(P ) | ≤ d2 + 1.

2. |V(P ) | ≤ (α− d+ 1)β + 2 + 2
√

(α− 1)(d+ 1)((α− 1) + (α− d+ 1)β)).

If P is simplicial, i.e., α = d = β, this yields

|V(P ) | ≤ d+ 2 + 2
√

(d2 − 1)(2d− 1).

Proof. Analyzing the proofs of Thm. 1 in [VK85] and Thm. 8 in [Deb03] in the
more general setting of a reflexive polytope, we see that by taking the general
invariants α and β into account we just have to reprove remark 5(2) in section
2.3 of [Deb03], because only there explicitly a lattice basis was used. That result
is essentially the first part of the next lemma.

Lemma 3.5.6. Let P ⊆MR be a reflexive polytope.
Let F ∈ F(P ), u := ηF ∈ V(P ∗) and {Fi}i∈I the facets that intersect F in

a (d− 2)-dimensional face. Let m ∈ ∂P ∩M with 〈u,m〉 = 0.
Then m ∈ ∪i∈IFi.
Let additionally F be a simplex with V(F ) = {e1, . . . , ed}. Let e∗1, . . . , e

∗
d be

the dual R-basis of NR. For i = 1, . . . , d denote by Fi the facet of P such that
Fi ∩ F = conv(ej : j 6= i).

1. For i ∈ {1, . . . , d} we have

m 6∈ Fi ⇐⇒ 〈e∗i ,m〉 ≥ 0.

2. If there exists i ∈ {1, . . . , d} such that m ∈ Fi and m 6∈ Fj for all j ∈
{1, . . . , d}, j 6= i, then m 6∼ ei.

3. Assume that for every i = 1, . . . , d − 1 there exists a lattice point mi on
Fi such that 〈u,mi〉 = 0 and 〈e∗i ,mi〉 = −1. Then e1, . . . , ed is a Z-basis
of M .

Proof. The first part follows from Prop. 3.2.2(6) for πm.

Now let F be a simplex. Then u =
∑d
j=1(−e∗j ) ∈ N . Let i ∈ {1, . . . , d}.

Since mi 6∈ F and 0 is in the interior of P , the number αi := −1−〈u,mi〉
〈e∗i ,m

i〉 > 0 is

well-defined. We get ηFi
= u+ αie

∗
i . From this 1. is readily derived. 2. is just

a corollary. In 3. we get αi = 1 and e∗i = ηFi
− u ∈ N for i = 1, . . . , d − 1 and

e∗d = −u− e∗1 − . . .− e∗d−1 ∈ N .
This proof is inspired by remark 5(2) in section 2.3 of [Deb03].

In the following we will focus on the class of simplicial reflexive polytopes,
i.e., where the corresponding varieties are Q-factorial, or equivalently, the class
number equals the Picard number. The previous proposition already gave a
hint that simplicial reflexive polytopes are actually quite close to smooth Fano
polytopes at least when considering only the number of vertices. This motivated
the author to state the following explicit conjecture:
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Conjecture 3.5.7 (Nill 5/2004). Let P be a d-dimensional simplicial reflexive
polytope. Then

|V(P ) | ≤
{

3d , d even,
3d− 1 , d odd.

For d even equality holds if and only if P ∗ ∼= (Z2)
d
2 , i.e., X ∼= (S3)

d
2 .

Remark 3.5.8. It would be enough to prove this conjecture for d even: Assume
there were a simplicial reflexive polytope P with d odd and |V(P ) | ≥ 3d. Then
necessarily P ∗×P ∗ ∼= (Z2)

d, this would imply P to be centrally symmetric with
|V(P ) | = 3d, a contradiction to d odd.

From [Kas03] we get that reflexivity is essential, because the maximal num-
ber of vertices a three-dimensional simplicial terminal Fano polytope can have
is 10.

The previous conjecture was originally proposed in the case of smooth Fano
polytopes by Batyrev [Ewa96, p. 337], and was up to 2003 only rigorously proven
to hold for (up to) five-dimensional smooth Fano polytopes by Casagrande in
[Cas03a, Thm. 3.2].

The bound is also sharp in the odd-dimensional case, take X = P1×(S3)
d−1
2 .

However even for d = 3 there is exactly one another simplicial reflexive polytope
with 8 vertices, it is a smooth Fano polytope, not centrally symmetric, and the
corresponding toric variety X is an equivariant S3-fibre bundle over P1. So it is
also tempting to formulate an explicit conjecture:

Conjecture 3.5.9. In Conjecture 3.5.7 equality holds for d odd if and only if
the reflexive polytope defines a toric variety that is a (nonsingular) equivariant

(S3)
d−1
2 -fibre bundle over P1.

This was proven in the nonsingular case by Casagrande for d ≤ 5, in this gen-
eral form however it could only be confirmed in the case of a centrally symmetric
pair of facets, this will be proven in Theorem 6.2.4.

Another observation for d ≤ 4 is that the maximal number of facets a sim-
plicial reflexive polytope can have (d = 2: 6, d = 3: 12, d = 4: 36) is achieved
by the ones with the maximal number of vertices. In even dimension this is of
course just a corollary of conjectures 3.5.2 and 3.5.7.

Remark 3.5.10. For the proof of these conjectures in low dimensions the
Dehn-Sommerville equations were used together with the following theorem by
Batyrev [Bat99, Prop. 2.3.7] for nonsingular toric Fano varieties, where fi is
the number of i-dimensional faces of the corresponding smooth Fano polytope:

12fd−3 ≥ (3d− 4)fd−2.

It is astonishing to observe that for d ≤ 4 by the classification of Kreuzer and
Skarke this relation is also valid for simplicial reflexive polytopes. However there
is not yet an algebraic-geometric explanation for this phenomenon!

The main goal of this section is to give a proof of Conjecture 3.5.7 in the
case of additional symmetries of the polytope:

Theorem 3.5.11. Conjecture 3.5.7 holds in the case of a simplicial reflexive
polytope P where P ∗ contains a vertex u ∈ V(P ∗) such that −u ∈ P ∗.
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The results in this section were published in the preprint [Nil04a] in May
2004. However in October 2004 Casagrande proved Conjecture 3.5.7 for the
class of smooth Fano polytopes. For this she needed the fact that the sum
of all vertices in the dual polytope is zero, she proved this using birational
factorization. Then she applied a simple and neat enumerating argument to get
the upper bound, for the proof she only used the previous lemma in the case of
a smooth Fano polytope as given in [Deb03]. For the equality case she refered to
Theorem 3.5.11 of the author. In November 2004 the author pointed out to her
that the first fact is actually a folklore result in convex geometry (see Lemma
5.3.8) and can for instance be found in another preprint [Nil04b] of the author
published in July 2004. In December 2004 Casagrande published a new version
of her paper [Cas04] where she simplified her approach to get the following final
result [Cas04, Thm.1(i)]:

Theorem 3.5.12 (Casagrande 12/2004). Conjecture 3.5.7 holds.

Not only does this result render the coarse bounds in Prop. 3.5.5 obsolete in
the simplicial case, but analyzing the proof in [Cas04] it is possible to get also
an improvement of the general bound in Prop. 3.5.5(2):

Corollary 3.5.13. Let P be a reflexive polytope.
Define α := max(V(F ) : F ∈ F(P )) and β := max(F(F ) : F ∈ F(P )).

|V(P ) | ≤ 2α+ (α− d+ 1)β.

Using the ideas of Casagrande’s proof the author realized that Theorem
3.5.11 could actually be reduced to the centrally symmetric case, where an
easier proof is possible, even more, a complete classification is now available,
see section 6.3. However in the remainder of this section we give the original
proof as published in [Nil04a], since it uses a technique (Lemma 3.5.15) that is
interesting in itself.

The main result for analyzing smooth Fano polytopes is a theorem of Reid
about extremal rays of the Mori cone and primitive relations (see [Rei83] and
[Cas03a, Thm. 1.3]). Although for simplicial reflexive polytopes there is no
general notion of a primitive relation, for the simplest case as defined in Prop.
3.3.1 we still have an analogous result (recall Definition 3.2.1):

Lemma 3.5.14. Let P be a simplicial reflexive polytope.
Let v ∈ V(P ), w ∈ ∂P ∩M with v + w ∈ ∂P and z := z(v, w).
Let x ∈ ∂P , x 6∈ {v, w, z}, with x ∼ z and x away from v.
Then conv(x, z, w) is contained in a face.
Moreover exactly one of the following two conditions holds:

1. Any facet containing x and z contains also w.

2. There exists a facet F with x, v, z ∈ F .

The second case must occur, if w ∈ V(P ) and x is away from w.
If the second case occurs, we have:
For any such F there exists a unique facet G with x,w, z ∈ G such that

F ∩G is a (d− 2)-dimensional face of P . F ∩G consists of those elements of F
that are away from v, respectively those elements of G that are away from the
(unique) vertex not in F . Obviously w 6∈ F and v 6∈ G.
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Proof. Assume the first case does not hold. Prop. 3.3.1(ii) implies that there
exists a facet F ∈ F(P ) with x, z, v ∈ F . By 3.3.1(iii) there is a facet G ∈ F(P )
containing w and z such that F ∩ G is a (d − 2)-dimensional face. Since F,G
are simplices and v ∈ V(F ), the remaining statements are now straightforward.

The two cases are illustrated in the following figure for a three-dimensional
reflexive polytope (where x as in the first, x′ as in the second case):

v

z

w

x’

x
v+w

The next result is a generalization of a lemma proven by Casagrande [Cas03a,
Lemma 2.3] for smooth Fano polytopes, here we recover the original statement
in the more general setting of a terminal simplicial reflexive polytope.

Lemma 3.5.15. Let P be a simplicial reflexive polytope.
Let v, w ∈ V(P ), w′ ∈ ∂P ∩M away from w. Furthermore let v + w ∈ ∂P

and v + w′ ∈ ∂P , z := z(v, w) and z′ := z(v, w′).
We define K := P ∩ lin(v, w,w′). Then K is a two-dimensional reflexive

polytope (of possible types 5a, 6a, 6b, 7a in Prop. 3.4.1).
If K is terminal, then z = v+w, w′ = −v−w = −z, z′ = v+w′ = −w; and

either ∂K ∩M = {v, w, z, w′, z′} or ∂K ∩M = {v, w, z, w′, z′,−v = w + w′ =
z(w,w′)}.

Essentially the lemma states that the following figure is two-dimensional:

v

z z’

w’
w

Proof. Let z = av + bw and z′ = a′v + b′w′ as in 3.3.1. We note that w′ and z
are away from v and w; z′ is away from v and w′.

Assume w′ ∼ z. Since w′ is away from w ∈ V(P ), it follows from 3.5.14 that
there exists a facet that contains w′, z, v, hence w′ ∼ v, a contradiction.

Thus w′ 6∼ z; in particular, z 6= z′. There are now two different cases, and
it must be shown that the second one cannot occur.

1. v, w,w′ are linearly dependent.

By 3.3.1 there are three possibilities:

If w ∼ w′, then K = conv(v, z, w, z′, w′). If w+w′ = 0, then v ∈ conv(v+
w, v + w′), a contradiction. If w + w′ ∈ ∂P , then K = conv(v, z, w, z′, w′,
z(w,w′)).
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Thus in any case K is a lattice polytope with 5 or 6 vertices, canonical,
hence by 3.1.8(1) reflexive. By analyzing the cases in 3.4.1 we get the
remaining statements.

2. v, w,w′ are linearly independent.

Hence also z, z′, v are linearly independent.

Assume z′ ∼ z. 3.5.14 implies that conv(z′, z, w) is contained in a facet
F ∈ F(P ). Since v 6∈ F and z′ ∈ F , 3.3.1(ii) implies w′ ∈ F , a contradic-
tion to w′ 6∼ z.

Thus z 6∼ z′.

By assumption z + z′ 6= 0, hence z + z′ ∈ ∂P . Let y := z(z′, z) =
kz′ + lz ∈ ∂P ∩M . We have y 6∈ {z, z′, v, w,w′}, because v, w,w′ are
linearly independent.

Choose y′ ∈ ∂P with y′ = v+λ(y−v) for λ ≥ 1 maximal, so that y′ is away
from v. Furthermore y′ ∼ z′ and y′ ∼ z. So by 3.5.14 there exist facets
F1, F2 ∈ F(P ) such that conv(y′, z, w) ⊆ F1 and conv(y′, z′, w′) ⊆ F2;
v 6∈ F1, F2.

Now choose y′′ = w + µ(y′ − w) ∈ P for µ ≥ 1 maximal; so y′′ is away
from w. Furthermore conv(y′′, y′, z, w) ⊆ F1 and y′′ away from v, so by
3.5.14 there exists a facet G ∈ F(P ) that contains y′′, v, z and intersects
F1 in a (d − 2)-dimensional face. Hence necessarily 〈ηF1

, v〉 = b−1
a and

〈ηG, w〉 = a−1
b .

K is a three-dimensional polytope. Any face of K is contained in a face of
P . Since y′, z, w (resp. y′, z′, w′) are linearly independent, F1 ∩K (resp.
F2 ∩K) is a facet of K. Moreover F1 ∩K 6= F2 ∩K, because w′ 6∼ z. So
C := F1∩F2∩K is a vertex or edge ofK containing y′. Since also w′+z 6= 0
and w′ 6∼ z, we get w′ + z ∈ ∂P . We set x := z(w′, z) ∈ ∂P ∩M . Since
z, w′, w (resp. z, w′, y) are linearly independent, we have x 6= w (resp.
x 6= y).

We distinguish several cases:

(a) y′ = y .

In the R-basis w,w′, z of R3 we see that y has negative first and non-
negative second and third coordinate, so pos(w′, z) ∩ [w, y] consists
of one point x′. We have x′ ∈ ]w, y[ ⊆ F1. Moreover since x′ ∼ z, we
get x′ ∈ ]z, x].

i. w ∈ F2.
The vertices of C consist of y′′ and w. Since x′ ∈ C, we have
x′ ∼ w′, hence x = x′ ∈ ]w, y[ ⊆ C, thus also x 6= y′′. If a = 1,
it were 0 = 〈ηG, w〉 > 〈ηG, x〉 > 〈ηG, y′′〉 = −1, a contradiction.
Therefore a ≥ 2, b = 1, 〈ηG, w〉 = a− 1 > 0.

Then 〈ηF2
, v〉 = b′−1

a′ and −1 = 〈ηF2
, y〉 = −k+ la b

′−1
a′ − lb, thus,

since b = 1,
k − 1

l
= a

b′ − 1

a′
− 1 ∈ N. (3.4)

Since b′−1
a′ 6= 0, b′ ≥ 2 and a′ = 1.

If k = 1, then (3.4) yields 1 = a(b′ − 1) ≥ a ≥ 2, a contradiction.
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If l = 1, then 〈ηG, y〉 = −k−1+kb′〈ηG, w′〉. So −1 = 〈ηG, y′′〉 =
(1−µ)(a−1)+µ〈ηG, y〉 = (1−µ)(a−1)−µk−µ+µkb′〈ηG, w′〉.
This implies 〈ηG, w′〉 =

−a
µ

+k+a

kb′ . Since (3.4) yields k = a(b′−1),
this implies

〈ηG, w′〉 =

−1
µb′ + 1

b′ − 1
∈ N.

On the other hand µ ≥ 1 and b′ ≥ 2 yields 0 < −1
µb′ + 1 < 1, this

contradicts the previous equation.

ii. w 6∈ F2.
This immediately implies y′′ = y. Assume x′ 6= x. This yields
x ∈ F1. Let x′′ ∈ F1 away from w such that x ∈ [w, x′′]. By
assumption w, z, x′, y, x, x′′ are contained in F1 and aff(z, y) ∩
F1 = F1 ∩G ∩K. Now 3.5.14 yields x′′ ∈ F1 ∩G, so y ∈ ]z, x′′[.
However w′ ∼ y, so w′ ∼ z, a contradiction. Hence x = x′ ∈
]w, y[.
Since w′ ∼ x there exists a facet H ∈ F(P ) containing w′, w, y;
furthermore H 6= F2, since w 6∈ F2. Hence there are edges F2 ∩
H ⊇ [w′, y] and F1 ∩H = [w, y] of K.
Since w 6∼ z′ we can define in a double recursion x0

r := x,
x0
l := x(z′, w), xir := x(xi−1

l , z), xil := x(z′, xi−1
r ) for i ∈ N,

i ≥ 1. As w′, y, z and w, y, z′ are linearly independent, we eas-
ily see that this procedure is well-defined, and x0

l , x
1
l , x

2
l , . . . are

pairwise different lattice points in ]w′, y[ and x0
r, x

1
r, x

2
r, . . . are

pairwise different lattice points in ]w, y[. Hence we have con-
structed infinitely many lattice points in P , a contradiction.

(b) y′ 6= y.

If y′′ 6= y′, then y is a lattice point in the interior of K, a contradic-
tion.

Thus y′′ = y′. This implies y ∈ ]v, y′[, so y ∈ G, and conv(z′, y′, y, v)
is contained in a facet F ′ ∈ F(P ). 3.5.14 implies that there exists a
unique facet G′ ∈ F(P ) that contains w′, z′, y′ such that F ′ ∩G′ is a
(d− 2)-dimensional face.

Furthermore b−1
a = 〈ηF1

, v〉 > 〈ηF1
, y〉 > 〈ηF1

, y′〉 = −1, hence b ≥ 2
and a = 1. Especially we get 〈ηG, w〉 = 0.

i. w ∈ G′.
Since w ∈ V(P ), w 6∈ F ′ and w′ is away from w ∈ V(G′), 3.5.14
implies that w′ ∈ G′ ∩ F ′, a contradiction.

ii. w 6∈ G′.
Let C ′ := G′ ∩ F1 ∩K. Then y′ is a vertex of C ′.
Assume C ′ were an edge. Let v′ ∈ V(C ′) with v′ 6= y′. This
implies v′ 6= w. Then v′ is away from w, hence by 3.5.14 v′ ∈ G,
therefore v′ = y′, a contradiction.
So C ′ = {y′}, and the same way we see that [w, y′] is an edge of
K.
Obviously x ∈ [w, y′]∪ [y′, z′], however because x ∼ z, this yields
x ∈ ]w, y′]. Since 0 = 〈ηG, w〉 > 〈ηG, x〉 ≥ 〈ηG, y′〉 = −1, this
implies x = y′.
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Furthermore we have y′ = (1 − λ)v + λy = ((1 − λ) + λ(ka′ +
la))v + λkb′w′ + λlbw, where λ > 1. On the other hand x =
rw′ + sz = rw′ + sav + sbw for r, s ∈ N, r, s ≥ 1.
Comparing the coefficients for w′ and w this yields

λl = s, λkb′ = r.

From the first equation we get s = λl > l ≥ 1, so s ≥ 2. This
implies 1 = r = λkb′ > kb′ ≥ 1, a contradiction.

Using Prop. 3.2.2(1-4) and analyzing the possible cases in Prop. 3.4.1 it is
straightforward to prove a corollary of the previous lemma:

Corollary 3.5.16. Let P be a simplicial reflexive polytope and v ∈ V(P ).
There are at most three vertices of P not in the star set of v; equality implies

that −v ∈ V(P ). For Pv := πv(P ) and Mv := M/Zv we have

|V(P ) | ≤ |∂Pv ∩Mv | + 4,

where equality implies −v ∈ V(P ). There are now two cases:

1. Let w ∈ V(P ) with w 6= −v and w 6∼ v.

Then any lattice point on the boundary of P is in the star set of v or in
the star set of w but not away from w or in lin(v, w). This implies

|Pv ∩Mv |+ | intPw ∩Mw | ≤ |∂P ∩M | ≤ |Pv ∩Mv |+ | intPw ∩Mw |+ 2;

if the second equality holds, then −v ∈ P .

2. No such w as in 1. exists. Then:

|V(P ) | ≤ |∂Pv ∩Mv | + 2.

Going back to algebraic geometry we derive a generalization of a theorem
proven by Casagrande in the nonsingular case [Cas03a, Thm. 2.4]:

Corollary 3.5.17. If X is a Q-factorial Gorenstein toric Fano variety with
torus-invariant prime divisor Vτ , then the Picard numbers satisfy the inequality

ρX − ρVτ
≤ 3.

Finally using Lemmas 3.5.6 and 3.5.15 we are now ready to prove the main
theorem.

Proof of theorem 3.5.11. Let P be a simplicial reflexive polytope such that there
exists a vertex u ∈ V(P ∗) with −u ∈ P ∗. Let F be the facet corresponding to u
and F ′ the face defined by −u. Now define the set {v1, . . . , vd} of vertices not
in F but in facets intersecting F in a codimension two face.
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Lemma 3.5.6 immediately implies that V(P )\(V(F )∪V(F ′)) = {v ∈ V(P ) :
〈u, v〉 = 0} ⊆ {v1, . . . , vd}. This yields the bound |V(P ) | ≤ 3d.

In order to prove Conjecture 3.5.7 and thereby finish the proof of Theorem
3.5.11 we may assume that |V(P ) | = 3d and d is even by Remark 3.5.8.

Let e1, . . . , ed be the vertices of the facet F such that Fi := conv(vi, ej :
j 6= i) is a facet for i = 1, . . . , d. Since by 3.5.6 any lattice point x in ∂P with
〈u, x〉 = 0 is contained in some Fi, however vi is the only vertex of Fi with
〈u, vi〉 ≥ 0 (resp. 〈u, vi〉 = 0), this necessarily implies x = vi. Hence we get

{x ∈ ∂P ∩M : 〈u, x〉 = 0} = {v1, . . . , vd}.

Analogously let b1, . . . , bd be the vertices of F ′ such that conv(vi, bj : j 6= i)
is a facet for i = 1, . . . , d. Then we get the following three facts for i, j, k ∈
{1, . . . , d}:

· Fact 1: For i 6= j: vi ∼ vj or vi + vj = 0.
(Proof: Assume not. Then there exists a k such that vi + vj = vk ∈ Fk.

By 3.3.1(ii) this implies vi ∈ Fk or vj ∈ Fk, giving vi = vk or vj = vk, a
contradiction.)

· Fact 2: For i: ei + vi ∈ ∂P and bi + vi ∈ ∂P .
(Proof: Since vi 6∈ Fj for all j 6= i and vi ∈ Fi, 3.5.6(2) yields ei 6∼ vi. By

symmetry the same holds for bi.)
· Fact 3: Let i, j such that ei + bj ∈ ∂P . Then z(ei, bj) = ei + bj = vk for

some i 6= k 6= j.
(Proof: Since 〈u, ei + bj〉 = 0, let ei + bj = vk for some k. Assume ei 6∼ vk.

By 3.3.1 then also 2ei + bj ∈ ∂P . This implies vk = 1/2(bj + (2ei + bj)), a
contradiction to vk ∈ V(P ). By symmetry we get ei ∼ vk ∼ bj . By fact 2
necessarily i 6= k 6= j.)

Let i ∈ {1, . . . , d}. By fact 2 we can apply Lemma 3.5.15 to the vertices
vi, ei, bi. From fact 3 and analyzing the possible types in 3.4.1 we get that
P∩lin(vi, ei, bi) must be a terminal two-dimensional reflexive polytope, so −ei =
vi + bi ∈ F ′, −bi = vi + ei ∈ F , vi = z(−ei,−bi) = −ei + (−bi). As this is true
for all i = 1, . . . , d, we get F ′ = −F and −ei,−bi ∈ V(P ).

This gives a map

s : {1, . . . , d} → {1, . . . , d}, i 7→ s(i), such that bs(i) := −ei.

1. s is injective, hence a permutation.

2. There are no fixpoints under s, i.e., s(i) 6= i for all {1, . . . , d}.

3. −vi = ei + bi ∈ ∂P for all i ∈ {1, . . . , d}.
(Proof: By 3.5.15 it is enough to show that −vi ∈ P . Assume not. Fact
1 implies then vi ∼ vs(i) = z(−es(i),−bs(i)) = z(−es(i), ei), so by 3.5.14
vi ∼ ei, a contradiction to fact 2.)

4. s ◦ s = id.

(Proof: Assume there exists an i ∈ {1, . . . , d} such that for j := s(i) we
have bs(j) 6= bi. This implies bi ∼ vs(i) = z(−es(i),−bs(i)) = z(bs(j), ei), so
by assumption and 3.5.14 bi ∼ ei. This is a contradiction to (c).)



68 Chapter 3. Reflexive polytopes

Property (d) implies that P is centrally symmetric. Furthermore s is a
product of d

2 disjoint transpositions in the symmetric group of {1, . . . , d}. This
permutation s and the set {e1, . . . , ed} of vertices of F uniquely determine P ,
because F ′ = −F and vi = −ei + es(i) for all i ∈ {1, . . . , d}.

For any i ∈ {1, . . . , d} we get 〈u, vi〉 = 0 and 〈e∗i , vi〉 = 〈e∗i ,−ei+es(i)〉 = −1.
Hence 3.5.6(3) implies that e1, . . . , ed is a Z-basis of M . This immediately yields
the uniqueness of P up to isomorphism of the lattice.

3.6 Reflexive simplices

A lattice polytope is determined by the relations among the vertices and the
coordinates of some linearly independent family of vertices. Often the first infor-
mation can be derived from the combinatorial data and the second information
is encoded in some matrix normal forms. In the case of centrally symmetric
simplicial reflexive polytopes this is described and illustrated in the last chap-
ter.

The most general approach to describe the combinatorics is to use the notion
of the weight system of a polytope, especially prominent in the general approach
of Kreuzer and Skarke [KS97] (see p. 57). Here we examine the simplest case,
that is, the case of a reflexive simplex in detail. It is well-known that there is a
direct relation to elementary number theory in this setting.

In the first subsection we summarize in a new and unifying way the results
of Conrads in [Con02] (based upon observations of Batyrev in [Bat94]) about
lattice simplices and their weight systems. Here weighted projective spaces
with Gorenstein singularities correspond uniquely to so called reflexive weight
systems.

In the second subsection we give the correspondence of reflexive weight sys-
tems and unit partitions, that is, unit fractions that sum up to one. Using new
number-theoretic results we get as the main result upper bounds on the total
weight of weight systems of reflexive simplices.

3.6.1 Weight systems of simplices

This subsection summarizes results of Batyrev in [Bat94, 5.4,5.5] and Conrads
in [Con02].

The following notion is essential:

Definition 3.6.1. A family of positive rational numbers Q := (q0, . . . , qd) is

called a weight system of length d and total weight |Q | :=
∑d
i=0 qi. The reduction

Qred of Q is defined as the unique primitive lattice point in pos(Q), and the
factor λQ ∈ Q>0 of Q is defined by Q = λQQred. Two weight systems are
regarded to be isomorphic, if their entries are just permutated.

Let Q consist only of natural numbers. Then we have λQ = gcd(q0, . . . , qd).
Such a Q is called reduced, if λQ = 1, and normalized, if after removing an
arbitrary weight we still have a reduced weight system.

There is now the following connection to lattice simplices:

Definition 3.6.2. Let P = conv(v0, . . . , vd) ⊆MR be a d-dimensional rational
simplex with 0 ∈ intP .
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Then we define qi := |det(v0, . . . , v̂i, . . . , vn) | ∈ Q>0 for i = 0, . . . , n and the
family QP := (q0, . . . , qd). QP is called the associated weight system of P of
factor λP := λQP

.

Furthermore we need the following definition:

Definition 3.6.3. For a lattice polytope P ⊆ MR we generally define the
sublattice MP of M as the lattice generated by the vertices of P , i.e., the
coarsest lattice such that P is a lattice polytope.

A d-dimensional lattice simplex P ⊆MR is called spanning, if 0 ∈ intP and
M = MP .

We have the following characterization:

Lemma 3.6.4. Let P be a d-dimensional simplex with 0 ∈ intP . Then for
QP = (q0, . . . , qn) we have

d
∑

i=0

qivi = 0.

Furthermore let P be a lattice simplex. Then (QP )red = QP /λP = (q′0, . . . , q
′
n)

is the unique reduced weight system satisyfing

d
∑

i=0

q′ivi = 0.

Moreover λP = detMP = |M/MP |. Especially P is a spanning lattice simplex
if and only if the associated weight system is reduced.

Proof. This is the content of [Con02, Lemma 2.4]. Also observe that the kernel

of the surjective map Zd+1 →MP
∼= Zd, x 7→∑d

i=0 xivi is free of rank one.

When considering sublattices the following definition is very convenient:

Definition 3.6.5 (Hermite normal form). For d, λ ∈ N≥1 we denote by
Herm(d, λ) the finite set of lower triangular matrices H ∈ Matd(N) with deter-
minant λ satisfying hi,j < hi,j for all j = 1, . . . , d− 1 and i > j.

Theorem 3.6.6. For any U ∈ Matd(Z) with determinant λ 6= 0 there exists a
matrix L ∈ GLd(Z) and a Hermite normal form matrix H ∈ Herm(d, λ) such
that LU = H.

This is [Con02, Thm. 4.2].
There is now the following result due to Conrads [Con02, 3.6-3.8, 4.4-4.7], see

also [Bat94, Thm. 5.4.5]. As usually we denote by P(Q) the weighted projective
space associated to a weight system Q ∈ Qd+1

>0 , e.g., P(1, . . . , 1) = Pd.

Theorem 3.6.7 (Batyrev, Conrads).

1. P 7→ QP yields a well-defined correspondence of isomorphism classes of
spanning lattice simplices and reduced weight systems. We denote the
reverse map by Q 7→ PQ.
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2. Hereby P is a a Fano polytope if and only if QP is a normalized weight
system.

Furthermore P 7→ X(ΣP ,M) ∼= P(QP ) gives a well-defined correspon-
dence of isomorphism classes of spanning Fano simplices and isomorphism
classes of weighted projective spaces.

3. Any lattice simplex containing the origin in its interior with weight system
Q is the image of PQred

under a Hermite normal form matrix of deter-
minant λP . In particular there are only finitely many lattice simplices
containing the origin in its interior and having the same associated weight
system.

Such a lattice simplex P ⊆MR defines a toric variety that is the quotient of
the weighted projective space P(Q) by the action of the finite group M/MP

of order λP .

How to explicitly construct the unique spanning simplex associated to a
reduced weight system is described in [Con02]. Note however that for general
lattice simplices the associated weight system does not have to determine the
lattice simplex uniquely!

There is now an important invariant of a weight system, this generalizes
[Con02, Def. 5.4] as will be seen in 3.6.26(1):

Definition 3.6.8. Let Q a weight system of length d. Then we define

mQ :=
|Q |d−1

q0 · · · qd
∈ Q>0.

For the proof of next result we need a lemma that is proven by an explicit
calculation:

Lemma 3.6.9.

det

















n1 − 1 −1 · · · · · · −1
. . .

. . .
. . .

−1 · · · −1 ni − 1 −1 · · · −1
. . .

. . .
. . .

−1 · · · · · · −1 nd − 1

















= n1 · · ·nd −
d
∑

j=1

n1 · · · n̂j · · ·nd

Now we can add some interesting additional information that is missing in
the paper [Con02]:

Proposition 3.6.10. Let P ⊆ MR a d-dimensional simplex with 0 ∈ intP .
Then

QP∗ = mQP
QP .
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Proof. Let Q := QP , t := |Q |, V(P ) = {v0, . . . , vd} and for i = 0, . . . , d we
denote by Fi = conv(v0, . . . , v̂i, . . . , vd). Fix a basis of M and its dual basis of N .
Now fix i ∈ {0, . . . , d}, and let Ai be the matrix consisting of the coordinates of
v1, . . . , v̂i, . . . , vd as rows, and let Bi be the matrix consisting of the coordinates
of ηF1

, . . . , ˆηFi
, . . . , ηFd

as columns. Since vi = −∑j 6=i
qj

qi
vj , we get 〈ηFi

, vi〉 =
∑

j 6=i
qj

qi
= t−qi

qi
= t

qi
− 1.

Without restriction we set i = 0. Applying the previous lemma to A0B0,

we get det(A0B0) = t
q1

· · · t
qd

−∑d
j=1

t
q1

· · · t̂qj
· · · t

qd
= td−1

q1···qd
(t −∑d

j=1 qj) =

td−1

q1···qd
q0. Therefore det(B0) = det(A0B0)

det(A0)
= td−1

q1···qd
.

In particular we observe that there is an involution:

(R\{0})d+1 → (R\{0})d+1 : x 7→ (x0 + · · · + xd)
d−1

x0 · · ·xd
x.

So this motivates to define a duality also on the level of weight systems:

Definition 3.6.11. For a weight system Q we define the dual weight system
Q∗ := mQQ for mQ as above. This is a duality in the sense (Q∗)∗ = Q.

If Q = λQQred is a weight system, then

Q∗ =
mQred

λQ
Qred. (3.5)

The proposition can now be reformulated as QP∗ = (QP )∗.
This yields a condition for self-duality (use above theorem):

Corollary 3.6.12. Let P be a lattice simplex with 0 ∈ intP , Q := QP .
If P is self-dual, i.e., P ∼= P ∗, then Q∗ = Q, i.e., λP =

√
mQred

.
If P is a spanning lattice simplex, the reverse holds (with λP = 1 = mQred

).

In the situation of a reflexive simplex the following definition turns out to
be convenient:

Definition 3.6.13. A weight system is called reflexive, if it is reduced and any
weight is a divisor of the total weight. Especially it has to be normalized.

The notion of a reflexive weight system is motivated by the following result
[Con02, Prop. 5.1] (partially [Bat94, Thm. 5.4.3]):

Theorem 3.6.14 (Batyrev, Conrads). Under the correspondence of Theorem
3.6.7 we get correspondences of isomorphism classes of

· reflexive simplices whose vertices span the lattice

· reflexive weight systems

· weighted projective spaces with Gorenstein singularities

Summing this discussion up we get a generalization of [Con02, 5.3, 5.5]:
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Proposition 3.6.15. Let P ⊆MR be a reflexive simplex with associated weight
system Q := QP = λPQred. Then Qred is a reflexive weight system.

Let Pred ⊆MR be the reflexive simplex corresponding to Qred. Then:

1. (QP∗)red = Qred, λP∗ = mQP
λP =

mQred

λP
, mQred

= λ(Pred)∗ ∈ N>0.

2.

Pred
λP→ P

mQred
λP→ (Pred)∗.

for injective lattice homomorphisms of the given integer determinant.

3. λP | mQred
. Furthermore

λP = 1 ⇐⇒ P ∼= Pred, λP = mQred
⇐⇒ P ∼= (Pred)∗.

Proof. From [Con02, 5.1] we get that Qred is a reflexive weight system (an easy
calculation).

1. Follows from 3.6.10 and 3.6.4. 2. First apply 3.6.7 to P . Then apply
3.6.7 to the lattice simplex P ∗, use 1. and dualize. 3. from 2.

From (3.3) and 3.6.7(3) we get the following corollary:

Corollary 3.6.16. Gorenstein toric Fano varieties with class number one are
uniquely associated to fans spanned by the faces of a reflexive simplex.

Any such variety is the quotient of a weighted projective space P(Q) with
Gorenstein singularities by the action of a finite abelian group of order less or
equal to mQ. Equality holds iff the variety is associated to the fan spanned by
the faces of (PQ)∗.

Note however, that if a spanning lattice simplex P has a (reduced) weight
system Q such that Q∗ is also a weight system with only natural numbers, i.e.,
mQ ∈ N, then P does not necessarily has to be reflexive, i.e., Q does not have
to be reflexive, e.g., Q = (1, 1, 1, 9) with mQ = 16 and Q∗ = (16, 16, 16, 144).

Next we are concerned with the question how to construct lattice simplices
from weight systems. This is actually a non-trivial task, however at first glance
there seems to be a naive way of doing it:

Definition 3.6.17. Let Q = (q0, . . . , qd) be a reduced weight system. Define
(k0, . . . , kd) := (|Q |/q0, . . . , |Q |/qd) ∈ Qd+1

>0 . We assume kd = max(k0, . . . , kd).
We define CQ := conv(conv(0, k0e0, . . . , kd−1ed−1) ∩M) ⊆ MR, where e0,

. . ., ed−1 is an arbitrary but fixed Z-basis of M . For e := e0 + · · · + ed−1 we
denote by SQ := CQ − e an (up to lattice isomorphism well-defined) lattice
polytope associated to the weight system Q.

Note that SQ may not be a simplex anymore (e.g., Q = (6, 2, 1))! However:

Proposition 3.6.18. Let Q be a reflexive weight system with minimal weight
qd. Then we have in the notation of the previous definition that

SQ ∼= conv(k0e0 − e, . . . , kd−1ed−1 − e,−e)

is a lattice simplex with associated weight system qdmQQ.
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Furthermore

SQ is reflexive ⇐⇒ qd = 1 ⇐⇒ SQ ∼= (PQ)∗.

In this case

PQ ∼= conv(e0, . . . , ed−1,−q0e0 − · · · − qd−1ed−1).

Proof. Obviously S := SQ = conv(k0e0 − e, . . . , kd−1ed−1 − e,−e) is a lattice
simplex satisfying 1/k0(k0e0 − e) + · · ·+ 1/kd−1(kd−1ed−1 − e) + 1/kd(−e) = 0.
Using Lemma 3.6.4 we get QS = λSQ. Using Lemma 3.6.9 we get λSq0 =
|det(k1e1 − e, . . . , kd−1ed−1 − e,−e) | = k1 · · · kd−1, hence λS = k0···kd−1

|Q| =

|Q|d−1

q0···qd−1
= qdmQ.

For the second part we can assume by the previous proposition that qd = 1,
and we have to show that S is reflexive. Now we simply observe that −q0e0 −
· · · − qd−1ed−1, e0, . . . , ed−1 are the inner normals of S.

So we see that under this naive construction reflexive weight systems not
necessarily yield reflexive simplices, e.g., look at Q = (4, 3, 3, 2); only in the
(more or less trivial) case where the vertices of a facet of the corresponding
spanning reflexive simplex form a lattice basis. So we get:

Corollary 3.6.19. Q 7→ SQ ∼= (PQ)∗ yields a correspondence of reflexive weight
systems containing 1 as an entry and the duals of reflexive simplices containing
a facet whose vertices form a lattice basis.

3.6.2 The main result

We need the following well-known sequence (e.g., see [AS70]):

Definition 3.6.20. The recursive sequence [Slo04, A000058] of pairwise co-
prime natural numbers y0 := 2, yn := 1+y0 · · · yn−1 is called Sylvester sequence.
It satisfies yn = y2

n−1 − yn−1 + 1 and starts as y0 = 2, y1 = 3, y2 = 7, y3 = 43,
y4 = 1807. We also define tn := yn − 1 = y0 · · · yn−1.

Using these numbers we define two special sets of reflexive weight systems:

Definition 3.6.21.

· The d+ 1-tuple of natural numbers

Qd := (
td
y0
, . . . ,

td
yd−1

, 1)

is called Sylvester weight system of length d.

· The d+ 1-tuple of natural numbers

Q′
d := (

2td−1

y0
, . . . ,

2td−1

yd−2
, 1, 1)

is called enlarged Sylvester weight system of length d.
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The goal of this section is to prove the following theorem:

Theorem 3.6.22.

1. If Q is a reflexive weight system of length d, then

|Q | ≤ td, with equality iff Q is isomorphic to Qd.

2. If P is a reflexive simplex for d ≥ 3, then

|QP | ≤ 2t2d−1,

with equality iff P ∼= SQred
for Qred isomorphic to Q′

d or (3, 1, 1, 1).

3. If P is a reflexive simplex, then

|QP ||QP∗ | ≤ t2d,

with equality iff P ∼= SQd
(∼= S∗

Qd
).

Since by Theorem 3.6.7(3) (see also 3.6.15 and 3.6.16) there are only finitely
many reflexive polytopes having as the reduction of their associated weight
system the same reflexive weight system we get from the first point a direct
proof of a fact that is known to hold in general for reflexive polytopes:

Corollary 3.6.23. There is only a finite number of isomorphism classes of
d-dimensional reflexive simplices.

In particular there is a classification algorithm as described in [Con02]: First
determine all reflexive weight systems Q of length d. Then construct the asso-
ciated spanning reflexive simplex PQ. Eventually we look for reflexive simplices
in the images of PQ under any Hermite normal form matrix of determinant λ
for λ a divisor of mQ, where λ ≤ mQ/2 suffices by duality.

Now the proof of the theorem is essentially pure number theory.
For this we need the notion of a unit partition that is closely related to that

of an Egyptian fraction, e.g., see [Epp04]:

Definition 3.6.24. A family of positive natural numbers (k0, . . . , kd) is called

a unit partition of total weight lcm(k0, . . . , kd), if
∑d
i=0 1/ki = 1.

The crucial observation is the following result (essentially due to Batyrev in
[Bat94, 5.4]):

Proposition 3.6.25. There is a a bijection between reflexive weight systems

and unit partitions, given by mapping Q ∈ Qd+1
>0 to ( |Q|q0 , . . . ,

|Q|
qd

), respectively

mapping (k0, . . . , kd) to ( lcm(k0,...,kd)
k0

, . . . , lcm(k0,...,kd)
kd

).
Hereby the length and the total weight of the reflexive weight system and the

corresponding unit partition are the same.

From Propositions 3.6.15 and 3.6.12 we get the following corollary:

Corollary 3.6.26. Let P ⊆ MR be a reflexive simplex with Q := QP . Let
Pred ⊆ MR be the reflexive simplex corresponding to Qred and (k0, . . . , kd) the
associated unit partition. Then
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1.

mQred
=

k0 · · · kd
lcm(k0, . . . , kd)2

= λ(Pred)∗ ∈ N>0.

2. If P is self-dual (i.e., P ∗ ∼= P ), then k0 · · · kd has to be a square. Pred is
self-dual if and only if k0 · · · kd = lcm(k0, . . . , kd)

2.

In particular the first point yields the purely number-theoretic corollary that
the square of the least common divisor of a unit partition divides the product.
The first part of this corollary was already proven by Batyrev in [Bat94, Cor.
5.5.4] when investigating fundamental groups.

Now we define the unit partitions corresponding to above weights systems:

Definition 3.6.27.

· (y0, . . . , yd−1, td) is called Sylvester partition of length d (corresponding to
Qd). It is a unit partition of total weight td = td−1yd−1. Since mQd

= 1,
it corresponds to a self-dual reflexive simplex SQ ∼= PQ.

· (y0, . . . , yd−2, 2td−1, 2td−1) is called enlarged Sylvester partition of length
d (corresponding to Q′

d). Note that mQ′
d

= td−1.

These two unit partitions were defined upon observations by Haase and
Melnikov in [HM04] (in turn basing on [LZ91], [Hen83], [PWZ82]).

As an illustration of the previous notions we classify the five two-dimensional
reflexive simplices:

Example 3.6.28. Consider the case d = 2. We have three unit partitions:

1. (3, 3, 3) corresponding to Q := (1, 1, 1). This yields mQ = 3. So we
have PQ := conv((1, 0), (0, 1), (−1,−1)) (corresponding to P2) and SQ =
(PQ)∗ ∼= conv((2,−1), (−1, 2), (−1,−1)) as the only reflexive simplices P
with (QP )red = Q (due to 3.6.15(3)):

3
9=3*

(index 3)

2. The Sylvester partition (2, 3, 6) corresponding to Q := Q2 = (3, 2, 1). This
yields mQ = 1. So we get the self-dual reflexive simplex PQ = SQ ∼=
conv((1, 0), (0, 1), (−3,−2)) (corresponding to P(Q)):

6d=(6d)*

(index 1)
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3. The enlarged Sylvester partition (2, 4, 4) corresponding to Q := Q′
2 =

(2, 1, 1). This yieldsmQ = 2. So we have PQ := conv((1, 0), (0, 1), (−2,−1))
(corresponding to P(Q)) and SQ = (PQ)∗ ∼= conv((1,−1), (−1, 3), (−1,−1))
as the only reflexive simplices P with (QP )red = Q:

4c

8c=(4c)*

(index 2)

Using Proposition 3.6.15, Corollary 3.6.26 and Equation (3.5) on p. 71 it is
straightforward to deduce Theorem 3.6.22 from the second and third statements
of the following number-theoretic proposition:

Proposition 3.6.29. Let (k0, . . . , kd) be a unit partition.

1.
d+ 1 ≤ max(k0, . . . , kd) ≤ td,

with equality in the second case only for the Sylvester partition.

Furthermore: If k0 ≤ . . . ≤ kd, then

kj ≤ (d− j + 1)tj

for j ∈ {0, . . . , d}.

2.
(d+ 1)2 ≤ lcm(k0, . . . , kd)

2 ≤ k0 · · · kd ≤ t2d,

with equality in the last case only for the Sylvester partition.

3. Let d ≥ 3 and k0 ≤ . . . ≤ kd. Then

k0 · · · kd
lcm(k0, . . . , kd)

≤ k0 · · · kd−1 ≤ 2t2d−1,

where the first equality holds iff kd = lcm(k0, . . . , kd), and the second equal-
ity iff (k0, . . . , kd) is the enlarged Sylvester partition or (2, 6, 6, 6).

For the proof we need several results about sums of unit fractions.
The most important one was given by Curtiss [Cur22, Thm. I], however his

proof is rather complicated.

Theorem 3.6.30 (Curtiss). Let x1, . . . , xn be positive integers such that
s :=

∑n
i=1

1
xi
< 1. Then

s ≤
n−1
∑

i=0

1

yi
= 1 − 1

tn
,

with equality if and only if {x1, . . . , xn} = {y0, . . . , yn−1}.
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In the case of a unit partition there is also a very insightful and easy proof
that is straightforward to deduce from the following nice result [IK95, Lemma
1]. Here we have included statements that are implicit in their proof.

Lemma 3.6.31 (Izhboldin, Kurliandchik). Let x1, . . . , xn be real numbers
satisfying x1 ≥ x2 ≥ · · · ≥ xn ≥ 0, x1 + · · · + xn = 1 and x1 · · ·xk ≤ xk+1 +
· · · + xn for k = 1, . . . , n− 1. Then

xn ≥ 1

tn−1
, x1 · · ·xn ≥ 1

t2n−1

,

where equality in the first case holds iff equality in the second case holds iff
xi = 1

yi−1
for i = 1, . . . , n− 1.

We can now make an addition to this result. For this we need the following
inequality:

Lemma 3.6.32. Let n ≥ 4, 1 ≤ k ≤ n− 1. Then

(k + 1)ktk+1
n−k−1 ≤ 2t2n−2,

with equality iff k = 1 or (n, k) = (4, 2).

Proof. Proof by induction on n. By explicitly checking n = 4, 5, we can assume
n ≥ 6.

For k = 1 the statement is trivial, so let k ≥ 2. By induction hypothesis
for (n − 1, k − 1) we have kk−1tkn−k−1 ≤ 2t2n−3, this yields (k + 1)ktk+1

n−k−1 ≤
2t2n−3tn−k−1(

k+1
k )kk. Since (k+1

k )k < e, it is enough to show t2n−3tn−k−1ek ≤
t2n−2, or equivalently, tn−k−1ek ≤ y2

n−3.
For n ≥ 6 it is easy to see that e(n − 1) ≤ yn−3 (e.g., by 3.6.33 below).

Hence tn−k−1ek ≤ tn−3e(n− 1) ≤ tn−3yn−3 < y2
n−3.

The following lemma gives the asymptotical behavior of the Sylvester se-
quence (e.g., [GKP89, (4.17)]):

Lemma 3.6.33. There is a constant c ≈ 1.2640847353 · · · (called Vardi con-
stant, see [Slo04, A076393]) such that for any n ∈ N

yn =

⌊

c2
n+1

+
1

2

⌋

.

Using 3.6.32 and the ideas of the proof of 3.6.31 we can now show:

Lemma 3.6.34. Let n ≥ 4, x := (x1, . . . , xn) as in Lemma 3.6.31. Then

x1 · · ·xn−1 ≥ 1

2t2n−2

,

with equality iff (1/x1, . . . , 1/xn) equals (2, 6, 6, 6) or the enlarged Sylvester par-
tition of length n− 1.
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Proof.

STEP I:

Let A denote the set of n-tupels x satisfying the conditions of the lemma.
It is easy to see that we have for x ∈ A necessarily 1 > x1 and xn > 0.

Since A is compact, there exists some x ∈ A with x1 · · ·xn−1 minimal.
Because of ( 1

y0
, . . . , 1

yn−3
, 1

2tn−2
, 1

2tn−2
) ∈ A we have x1 · · ·xn−1 ≤ 1

2t2n−2

.

Let us assume that xn−1 > xn.

Claim: In this case we have

x1 > x2 > · · · > xn−1 > xn,

x1 · · ·xk = xk+1 + · · · + xn for k = 1, . . . , n− 2.

Proof of claim:

By convention we let x0 := 1 and xn+1 := 0. We proceed by induction on
l = 1, . . . , n− 1, and assume by induction hypothesis that x1 > x2 > · · · > xl ≥
xl+1 and x1 · · ·xk = xk+1 + · · · + xn for k = 1, . . . , l − 2.

We distinguish three cases:

1. xl > xl+1 and x1 · · ·xl−1 = xl + · · · + xn.

In this case we can proceed.

2. xl > xl+1 and x1 · · ·xl−1 < xl + · · · + xn.

This implies l ≥ 2. Then we can find some δ > 0 s.t. x′ ∈ A with
x′l−1 := xl−1 + δ, x′l := xl − δ and x′j := xj for j ∈ {1, . . . , n}\{l − 1, l}.
Hence x′1 · · ·x′n−1 = x1···xn−1

xl−1xl
(xl−1xl + δ(xl − xl−1) − δ2) < x1 · · ·xn−1, a

contradiction.

3. xl = xl+1 = · · · = xi > xi+1 for l + 1 ≤ i ≤ n− 1.

This implies l ≤ n − 2. Again we find some δ > 0 s.t. x′ ∈ A with
x′l := xl + δ, x′i := xi − δ and x′j := xj for j ∈ {1, . . . , n}\{l, i}.
This can be done, since otherwise there has to exist l ≤ j < i such
that x1 · · ·xj = xj+1 + xj+2 + · · · + xn. Since xj = xj+1 we have 0 =
(1 − x1 · · ·xj−1)xj + xj+2 + · · · + xn, a contradiction.

Since again x′1 · · ·x′n−1 < x1 · · ·xn−1, we get a contradiction.

End of proof of claim.

So we have x1 = x2 + · · · + xn = 1 − x1, hence x1 = 1
2 = 1

y0
. By induction

on k = 2, . . . , n− 2 we get x1 · · ·xk = xk+1 + · · ·+xn = 1−x1 − · · ·−xk, hence
1

tk−1
xk = 1− 1

y0
− · · ·− 1

yk−2
−xk = 1

tk−1
−xk, so xk = 1− tk−1xk. This implies

xk = 1
1+tk−1

= 1
yk−1

. So this yields x1 = 1
y0
, . . . , xn−2 = 1

yn−3
.

Furthermore xn−1+xn = 1−x1−· · ·−xn−2 = 1
tn−2

. Since xn−1 > xn, we get

xn−1 >
1

2tn−2
. Therefore we have proven x1 · · ·xn−1 >

1
2t2n−2

, a contradiction.

So this step yields xn−1 = xn.
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STEP II:

Let A′ denote the set of (n − 1)-tupels w ∈ Rn−1 satisfying the following
conditions: w1 ≥ w2 ≥ · · · ≥ wn−2 ≥ wn−1

2 ≥ 0, w1 + · · · + wn−1 = 1 and
w1 · · ·wk ≤ wk+1 + · · · + wn−1 for k = 1, . . . , n− 2.

Now let w ∈ A′ be fixed with w1 · · ·wn−1 minimal.

Since ( 1
y0
, . . . , 1

yn−3
, 1
tn−2

) ∈ A′, we have w1 · · ·wn−1 ≤ 1
t2n−2

.

Let z := ws = · · · = wn−2 = wn−1

2 for 1 ≤ s ≤ n− 1 minimal.

We define k := n− s. There are three cases to consider:

1. s = 1, i.e., k = n− 1.

Then nz = (n− 2)z+ 2z = w1 + · · ·+wn−2 +wn−1 = 1, so z = 1/n. This
implies w1 · · ·wn−1 = 2

nn−1 . However 1
t2n−2

< 2
nn−1 for n ≥ 4 by 3.6.32, a

contradiction.

2. s = 2, i.e., k = n− 2.

Then 1 = w1+w2+ · · ·+wn−2+wn−1 = w1+(n−3)z+2z = w1+(n−1)z,
hence w1 = 1− (n− 1)z. Since w1 > z, we get z < 1

n . On the other hand
w1 ≤ w2 + · · · + wn−1 = (n− 1)z, hence z ≥ 1

2(n−1) .

We have w1 · · ·wn−1 = (1 − (n − 1)z)2zn−2. This function attains its
minimum on the interval [ 1

2(n−1) ,
1
n [ only for z = 1

2(n−1) . (The proof of

this statement is left to the reader.)

Therefore 1
t2n−2

≥ w1 · · ·wn−1 ≥ 1
(2(n−1))n−2 . However by 3.6.32 we have

1
(2(n−1))n−2 ≥ 1

t2n−2

, with equality only for n = 4. Hence we get n = 4,

z = 1
2(n−1) , and w = ( 1

2 ,
1
6 ,

1
3 ).

3. s ≥ 3, i.e., k ≤ n− 3.

Now a similar reasoning as in the proof of above claim yields

w1 =
1

y0
, . . . , ws−2 =

1

ys−3
.

Then 1 = w1 + · · ·+ws−2 +ws−1 +ws + · · ·+wn−1 = 1− 1
ts−2

+ws−1 +

(n− s+ 1)z, hence ws−1 = 1
ts−2

− (k + 1)z.

Since ws−1 > z, we get z < 1
(k+2)ts−2

.

Since w1 · · ·ws−2ws−1 ≤ ws + · · · + wn−1, we get 1
ts−2

( 1
ts−2

− (k + 1)z) ≤
(k + 1)z, hence z ≥ 1

(k+1)t2s−2(1+
1

ts−2
)

= 1
(k+1)ts−1

.

Now we have w1 · · ·wn−1 = 1
ts−2

( 1
ts−2

− (k + 1)z)2zn−s =: f(z).

Since the function f(z) is for z > 0 strictly monotone increasing up to
some value and then strictly monotone decreasing, we see that

1
t2n−2

≥ w1 · · ·wn−1 ≥ min(f( 1
(k+1)ts−1

), f( 1
(k+2)ts−2

)) =

min( 2

(k+1)ktk+1
s−1

, 2

(k+2)k+1tk+2
s−2

).
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There are two cases:

(a) s = n− 1, i.e., k = 1.

Here w1 · · ·wn−1 ≥ min( 1
t2n−2

, 2
9t3n−3

). Since 1
t2n−2

≤ 2
9t3n−3

(by the

recursive definition), we get w1 · · ·wn−1 = 1
t2n−2

, and z = 1
2tn−2

.

Hence w = ( 1
y0
, . . . , 1

yn−3
, 1
tn−2

).

(b) s ≤ n− 2, i.e., k ≥ 2.

Here 2

(k+1)ktk+1
s−1

≤ 2

(k+2)k+1tk+2
s−2

if and only if
yk+1

s−2

ts−2
≥ (k+2)k+1

(k+1)k . This

is true for k = 2. For k ≥ 3 we have (k+2)( k+2
k+1 )k < (k+2)e ≤ 3k ≤

yks−2 <
yk+1

s−2

ts−2
. Hence 1

t2n−2

≥ w1 · · ·wn−1 ≥ 2

(k+1)ktk+1
s−1

, a contradiction

to 3.6.32.

STEP III:

Now we can finish the proof: Since w′ := (x1, . . . , xn−2, 2xn−1) ∈ A′, we get

x1 · · ·xn−1 = w′
1 · · ·w′

n−2

w′
n−1

2
≥ 1

2t2n−2

,

where equality implies that (x1, . . . , xn) = ( 1
y0
, . . . , 1

yn−3
, 1

2tn−2
, 1

2tn−2
) or n = 4

and (x1, x2, x3, x4) = (1/2, 1/6, 1/6, 1/6).

It is now straightforward to prove the main result of this section:

Proof of Proposition 3.6.29. We can assume k0 ≤ . . . ≤ kd. First we show that
for xi := 1/ki the conditions in 3.6.31 are satisfied: So let i ∈ {0, . . . , d − 1}.
Then 0 < xi+1 + · · ·+xd = 1−x0 − · · · −xi =

k0···ki−
Pi

j=0 k0···k̂j ···kd

k0···ki
≥ 1

k0···ki
=

x0 · · ·xi.
1. The first lower bound can be immediately derived from the partition

property. The upper bounds are proven by showing

1

kj
≥ 1

d− j + 1

1

tj

for j ∈ {0, . . . , d}.
For j = 0 the result is trivial since t0 = 1, 1/k0 + · · · 1/kd = 1 and k0 =

min(k0, . . . , kd). For j ∈ {1, . . . , d} Lemma 3.6.30 implies 1−1/kj−· · ·−1/kd =
∑j−1
i=0 1/ki ≤ 1−1/tj , so 1/kj+· · ·+1/kd ≥ 1/tj , hence the ordering assumption

yields the desired statement.

2. The lower bound follows from 1., the middle bound from 3.6.26(1). The
upper bound follows from 3.6.31.

3. This follows immediately from 3.6.34.
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3.7 Lattice points in reflexive polytopes

It is interesting to try to find sharp upper bounds on the number of lattice
points in a d-dimensional reflexive polytope. On the one hand this is motivated
by convex geometry (see for instance [LZ91]) and geometry of numbers (see
the results in the previous section), on the other hand there is also a direct
algebraic-geometric interpretation: Let P ⊆MR be reflexive, then by (1.7)

|P ∩M | = h0(XP ,−KXP
). (3.6)

Another important invariant of a lattice polytope is its volume; moreover
bounding the volume of a lattice polytope also bounds the number of lattice
points (e.g., [LZ91]):

Lemma 3.7.1 (Blichfeldt). Let P ⊆ MR be a d-dimensional lattice polytope.
Then

|P ∩M | ≤ d+ d! vol(P ).

If P ⊆ MR is reflexive, then the normalized volume of P is just the (anti-
canonical) degree of XP (see Prop. 2.3.15):

deg(XP ) = (−KXP
)d = d! vol(P ). (3.7)

In algebraic geometry one is interested in finding a sharp upper bound on the
degree of a Gorenstein Fano variety with canonical singularities (see [Pro04]).
The results achieved here can be used as a conjecture for this more general
situation.

In the first subsection we show how the duality property of reflexive poly-
topes effects the Ehrhart polynomial. In the second we prove upper bounds
on the volume and hence on the number of lattice points of a reflexive simplex
and determine the maximal number of lattice points on an edge. In the last
subsection we describe how to count lattice points modulo a natural number.
This is useful in the case of centrally symmetric or terminal reflexive polytopes.

3.7.1 The Ehrhart polynomial

In this subsection the topic of lattice points in polytopes is continued from
section 1.6. The well-known fact is presented, how the symmetry property of
reflexive polytopes can be found again in the Ehrhart polynomial (see Thm.
1.5.3). In three dimensions a simple and also well-known Pick type formula for
the volume of a reflexive polytope is derived. This result is certainly folklore,
however the author could not find an explicit reference.

There is the following well-known result (e.g., see [Has00], [HM04]) with
most parts originally due to Hibi [Hib92]:

Proposition 3.7.2. Let P ⊆ MR be d-dimensional lattice polytope with 0 ∈
intP . The following conditions are equivalent:

1. P is reflexive

2. eP (k) = |relint((k + 1)P ) | for all k ∈ N
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3. eP (k) = (−1)deP (−k − 1) for all k ∈ N

4. rvol(P ) = 1
d

∑

F∈F(P ) rvol(F )

5. coeffd−1(eP ) = d
2 coeffd(eP )

For the proof first observe that any full-dimensional cone in MR contains a
lattice basis. From this we easily deduce:

Lemma 3.7.3. P as in the proposition, F ∈ F(P ), νF ∈ NQ with 〈νF , F 〉 = 1.
The following conditions are equivalent:

1. νF ∈ N

2. 〈νF ,m〉 ∈ Z for all m ∈ pos(F ) ∩M
3. pos(F ) ∩M ⊆ ∪k∈NkF

Using the lemma and the reciprocity law in Theorem 1.5.3 the first three
equivalences are straightforward to prove. The remaining equivalences are easy
to see by 3.1.4 and the results in section 1.5.

In particular we get by the third equivalence in the proposition:

Corollary 3.7.4. The Ehrhart polynomial of a d-dimensional reflexive polytope
is determined by its values for k = 1, . . . , b d2c.

For d = 2, 3 the corollary yields that eP is determined by eP (1) = |P ∩M |:
Corollary 3.7.5. Let P ⊆MR be a d-dimensional reflexive polytope.

If d = 2, then

eP (x) = (
|P ∩M |

2
− 1

2
)x2 + (

|P ∩M |
2

− 1

2
)x+ 1,

In particular vol(P ) = (|P ∩M | − 1)/2.
If d = 3, then

eP (x) = (
|P ∩M |

3
− 1)x3 + (

|P ∩M |
2

− 3

2
)x2 + (

|P ∩M |
6

+
3

2
)x+ 1,

In particular vol(P ) = |P ∩M |/3 − 1.

Proof. Just check the equality of both sides using Proposition 3.7.2.

In higher dimensions there is no such direct relation between the volume and
the number of lattice points of a reflexive polytope (e.g., see page 88).

An alternative proof of this formula in the three-dimensional case could have
been given by using the two-dimensional formula of Pick for lattice polygons
and the fact that the facets have lattice distance one from the origin. A purely
algebraic-geometric proof would be possible by proving the formula first for a
smooth Fano polytope using Riemann-Roch and the double-weight-formula of
Oda [Oda88, Cor. 1.32] and then using the existence of a crepant resolution in
3.1.6.

Applying the so called ”Arithmetic Euler-Poincaré formula” as given in
[Kan98, Theorem 6] by Kantor we get (recall Definition 3.1.7):
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Corollary 3.7.6. In any triangulation of the boundary of a three-dimensional
reflexive polytope P ⊆MR of Volume V such that any two-dimensional simplex
is an empty lattice polygon the numbers fi (i = 0, 1, 2) of i-dimensional simplices
satisfy:

f0 = |P ∩M | − 1 = 3V + 2, f1 = 9V, f2 = 6V.

3.7.2 Bounds on the volume and lattice points

Throughout the section let d ≥ 2.

In this subsection we will prove three results that will be first formulated in
algebraic-geometric language and then in the convex-geometric setting. They
give upper bounds on

1. the anticanonical degree of a Gorenstein toric Fano variety X of class
number one (Thm. A), respectively the volume of a reflexive simplex P
(Thm. A’);

2. the anticanonical degree of a torus-invariant curve C on X (Thm. B),
respectively the number of lattice points on an edge of a reflexive simplex
P (Thm. B’);

3. the product of the degrees of the dual pair X and X∗ (Thm. C), respec-
tively the product of the volumes of P and P ∗ (Thm. C’).

Now we give the first algebraic-geometric result, here as in the whole sub-
section, we use the notation from the previous section:

Theorem 3.7.7 (A). Let X be a d-dimensional Gorenstein toric Fano variety
with class number one.

1. If d = 2, then

(−KX)2 ≤ 9,

with equality iff X ∼= P2.

2. If d = 3, then

(−KX)3 ≤ 72,

with equality iff X ∼= P(3, 1, 1, 1) or X ∼= P(Q′
3) = P(6, 4, 1, 1).

3. If d ≥ 4, then

(−KX)d ≤ 2t2d−1,

with equality iff X ∼= P(Q′
d).

This motivates the following conjecture:

Conjecture 3.7.8. The results of theorem A hold for Gorenstein Fano varieties
with canonical singularities.
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In the case of threefolds the bound in theorem A is the so-called Fano-
Iskovskikh conjecture. It has very recently been proven by Prokhorov [Pro04].

Due to a sharp version of the Cone Theorem (p. 23) for projective toric
varieties as given in [Fuj03] we know that there is always a torus-invariant
integral curve on X such that its anticanonical degree is at most d + 1. The
next theorem shows that there is is a general upper bound in our setting:

Theorem 3.7.9 (B). Let X be a d-dimensional Gorenstein toric Fano variety
with class number one. Let C be a torus-invariant integral curve on X. Then

−KX .C ≤ 2td−1,

where equality implies X ∼= P(Q′
d).

Let X be a d-dimensional Gorenstein toric Fano variety with class number
one. Then X = XP for some reflexive simplex P ⊆MR (see Cor. 3.6.16).

Definition 3.7.10. We define X∗ as the Gorenstein toric Fano variety with
class number one that is associated to the fan spanned by the faces of P .

There is also the following result:

Theorem 3.7.11 (C). Let X be a d-dimensional Gorenstein toric Fano variety
with class number one. Then

(−KX)d (−KX∗)d ≤ t2d,

with equality iff X ∼= P(Qd). In this case X ∼= X∗.
Furthermore let X be a weighted projective space with Gorenstein singulari-

ties. Then

(−KX∗)d ≤ td,

with equality iff X ∼= P(Qd).

One could conjecture that theorem B and the first part of theorem C might
also be true for Gorenstein toric Fano varieties with arbitrary class number.

Now the next observation shows how to apply the results of the previous
section:

Lemma 3.7.12. Let P ⊆MR be a lattice simplex with associated weight system
QP = (q0, . . . , qd). Then

vol(P ) =
d
∑

i=0

qd
d!

=
|QP |
d!

.

From Prop. 3.6.15(2) we see that if Q is the associated reflexive weight
system of P (i.e., Q is the reduction ofQP ), then vol(P ) ≤ vol((PQ)∗). Moreover
if min(Q) = 1, as for Qd or Q′

d, then recall from Definition 3.6.17 and Prop.
3.6.18 that SQ ∼= (PQ)∗.

By (3.7) on p. 81 theorem A can be derived from the following convex
geometric result:
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Theorem 3.7.13 (A’).

1. S(1,1,1) is the unique two-dimensional reflexive simplex with the largest

volume 9
2 , respectively the largest number of lattice points 10.

2. S(3,1,1,1) and SQ′
3

are the only three-dimensional reflexive simplices with
the largest volume 12, respectively the largest number of lattice points 39.

3. Let d ≥ 4. Then SQ′
d

is the unique d-dimensional reflexive simplex with the

largest volume of 2t2d−1/d!. Any d-dimensional reflexive simplex contains
at most d+ 2t2d−1 lattice points.

Proof of theorem A’. This is straightforward from Example 3.6.28, Corollary
3.7.5, Theorem 3.6.22(2), Lemma 3.7.1 and the previous lemma.

These bounds vastly improve on more general bounds on lattice simplices
containing only one lattice point in the interior as given (see [Pik00]). Here we
cite the following theorem from [LZ91]:

Theorem 3.7.14 (Hensley, Lagarias, Ziegler). Let V be the maximal vol-
ume of a canonical Fano polytope in MR. Then V is finite with

V ≤ 14d2
d+1

.

Any canonical Fano polytope can be embedded (i.e., is isomorphic as a lattice
polytope to a canonical Fano polytope contained) in the lattice cube of side length
at most d · d!V (respectively d!V , if the polytope is a simplex).

From this theorem we get the finiteness of isomorphism classes of canonical
polytopes in a fixed dimension.

The bound in the theorem is extremely too large at least for reflexive poly-

topes in low dimensions, e.g., for d = 2 we get 1422d+1

= 1416, however any
canonical Fano polygon has at most a volume of 4.5, achieved by the polytope
of type 9 in Prop. 3.4.1.

In general Theorem A’ gives always a better upper bound on the volume of
a reflexive simplex than the previous theorem!

Using a lower bound on the number of lattice points in SQ′
d

due to [PWZ82]
we see that there is still a small gap to bridge:

Corollary 3.7.15. Let J denote the maximal number of lattice points some
d-dimensional reflexive simplex can have. Then we get for d ≥ 3

1

3(d− 2)!
t2d−1 < J ≤ d+ 2t2d−1 ∈ O(c2

d+1

),

where c ≈ 1.26408 is the Vardi constant (see 3.6.33).

The computer classification of Kreuzer and Skarke [KS04b] yields that the
maximal number of lattice points in a d-dimensional reflexive polytope is 10 for
d = 2, 39 for d = 3 and 680 for d = 4. The cases of equality are precisely the
reflexive simplices given in theorem A’! This motivates the following conjecture:

Conjecture 3.7.16. Let d ≥ 4: The reflexive simplex SQ′
d

is the unique d-
dimensional reflexive polytope with the largest number of lattice points.
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As a corollary of the previous two theorems we can look at an embedding
into a multiple of the unit lattice cube [−1, 1]d (see also section 6.4):

Corollary 3.7.17. Any d-dimensional reflexive simplex (for d ≥ 4) can be

embedded in [−l, l]d for some l ∈ N with l ≤ 2t2d−1 ≤ 2c2
d+1

for c ≈ 1.26408.

Theorem C translates by (3.7) and Theorem 3.6.14 into:

Theorem 3.7.18 (C’). Let P be a d-dimensional reflexive simplex. Then

vol(P ) vol(P ∗) ≤ t2d
(d!)2

,

with equality iff P ∼= SQd
. Here SQd

∼= (SQd
)∗.

Furthermore let the vertices of P generate the lattice M . Then

vol(P ) ≤ td
d!
,

with equality iff P ∼= SQd
.

Proof of theorem C’. Follows immediately from Theorem 3.6.22(3) and Lemma
3.7.12.

Here the first inequality can be seen as a generalization of the Blaschke-
Santaló inequality (1.6) in section 1.5.

Finally concerning theorem B we remark that any torus-invariant integral
curve C is given by a wall ρ ∈ 4(d − 2), i.e., a (d − 2)-dimensional cone of 4.
Moreover ρ is obviously in correspondence with an edge e of P . There is the
following observation (see [Lat96, Cor. 3.6]):

−KX .C = |e ∩M | − 1. (3.8)

Here the right side is called the lattice length of the edge e.
Using equation (3.8) we see that theorem B can be derived from the following

combinatorial result:

Theorem 3.7.19 (B’). The maximal number of lattice points on an edge of a
d-dimensional reflexive simplex is 2td−1 +1, with equality attained only for SQ′

d
.

This result has been observed by Haase and Melnikov in [HM04] for d ≤ 4
and initialized this research.

Here one should state the following related result (see [Fuj03, 2.2]):

Proposition 3.7.20. Let Q be a normalized weight system with associated sim-
plex PQ = conv(v0, . . . , vd). Let i, j ∈ {0, . . . , d}, i 6= j. Then we have for the
torus-invariant integral curve C on P(Q) associated to the wall pos(vk : i 6=
k 6= j):

(−KP(Q)).C =
|Q |

lcm(qi, qj)
.

In particular, when Q is a reflexive weight system with corresponding unit
partition (k0, . . . , kd), we get:

(−KP(Q)).C = gcd(ki, kj).
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Proof of theorem B’. The fact that SQ′
d

satisfies the bound is trivial from the
definition and 3.6.18.

Let P = conv(v0, . . . , vd) ⊆MR be a reflexive simplex with associated weight
system QP , and let Q := (QP )red = (q0, . . . , qd) correspond to the unit partition
(k0, . . . , kd). Let [vd, vd−1] contain the maximal number of lattice points on an
edge of P . Let m ∈M be the primitive lattice point such that vd − vd−1 = cm
for c ∈ N>0. Obviously | [vd, vd−1] ∩M | = c+ 1.

Assume c ≥ 2t2d−1. Since
∑d
i=0 qivi = 0, we have c〈ηFd

,m〉 = 〈ηFd
, vd〉+1 =

|Q|
qd

− 1 + 1 = kd. Furthermore c〈ηFd−1
,m〉 = −kd−1. Hence

c | gcd(kd, kd−1). (3.9)

An alternative argument would have used Proposition 3.7.20.
As we have already seen in the proof of 3.6.29 (take j = 1) applying Lemma

3.6.30 yields
1

kd−1
+

1

kd
≥ 1

td−1
. (3.10)

From now on we assume without restriction that kd ≥ kd−1. Hence the previous
two equations yield 2td−1 ≤ c ≤ kd−1 ≤ 2td−1, so we have c = 2td−1 = kd−1 =

kd. In particular we get
∑d−2
i=0 1/ki = 1 − 1/td−1.

Now Lemma 3.6.30 implies {k0, . . . , kd−2} = {y0, . . . , yd−2}. Hence Q = Q′
d

corresponds to the enlarged Sylvester partition.
By 3.6.18 we can choose V(Pred) = {e1, . . . , ed, e := −q0e1 − · · · − qd−1ed}

for some Z-basis e1, . . . , ed of M . By Theorem 3.6.7 there is (up to unimodular
equivalence) a matrix H = {hi,j} in Hermite normal form of determinant λP
such that H(e1) = v0, . . . , H(ed) = vd−1, H(e) = vd. Recall that a quadratic
matrix H is in Hermite normal form, if it is a lower triangular matrix with
natural numbers as coefficients such that hi,j < hj,j for i > j.

Since vd−1 is primitive, we get hd,d = 1, so vd−1 = ed. Because of

1

2td−1
(H(e) − ed) = m ∈M and

qi
2td−1

=
1

yi
for i = 0, . . . , d− 2

we get the following d− 1 equations:

h1,1

y0
∈ N

y0(
h2,1

y0
+
h2,2

y1
) ∈ N

. . .

y0 · · · yd−3(
hd−1,1

y0
+ · · · + hd−1,d−1

yd−2
) ∈ N.

Using the fact that gcd(yi, yj) = 1 for i 6= j, we deduce by induction that yi−1

divides hi,i for i = 1, . . . , d− 1. Hence we have

mQ = td−1 = y0 · · · yd−2 ≤ h1,1 · · ·hd−1,d−1hd,d = detH = λP ≤ mQ.

Now 3.6.15(3) implies P ∼= (Pred)∗ = SQ′
d
.
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3.7.3 Counting lattice points in residue classes

There is an easy method that is originally due to Batyrev [Bat82a, Lemma 1]
how to get a sharp bound on the number of lattice points in some special cases:
We simply count lattice points modulo a natural number k:

Definition 3.7.21. For k ∈ N we have the canonical homomorphism

αk : M →M/kM ∼= (Z/kZ)d.

For a convex set C ⊆MR with C ∩M 6= ∅ one easily sees that the minimal
k ∈ N≥1 such that the restriction of αk to C ∩M is injective is just the max-
imal number of lattice points on an intersection of C with an affine line. This
invariant minus one is called the discrete diameter of C in [Kan98].

Lemma 3.7.22. Let d ≥ 2, P a canonical Fano polytope and B ⊆ ∂P ∩M with
| [x, y] ∩M | = 2 for all x, y ∈ B, x 6= y, x ∼ y. Let s denote the number of
centrally symmetric pairs in B. Then

|B | ≤ 2d+1 − 2, s ≥ |B | + 1 − 2d.

Proof. We consider the restriction of α2 to B. As P is canonical, the fibre of 0
is empty. Using the assumption it is also easy to see that the fibre of a non-zero
element in (Z/2Z)d has at most two elements, and in the case of equality it
consists of one pair of centrally symmetric lattice points in B. From this the
bounds can be derived.

For a semi-terminal canonical Fano polytope P (see Definition 3.2.3), the
set B = V(P ) satisfies the assumptions of lemma 3.7.22, so we immediately get
a sharp bound on the number of vertices of P .

In particular we get a result that was proven in the case of a smooth Fano
polytope in [Bat99, Prop. 2.1.11]:

Corollary 3.7.23. Let P be a terminal Fano polytope. Then

|∂P ∩M | = |V(P ) | ≤ 2d+1 − 2.

If equality holds, then P is centrally symmetric. This holds for the terminal
reflexive d-dimensional standard lattice zonotope Zd = conv(±[0, 1]d).

The results in [Kas03] show that Zd is even the only terminal Fano poly-
tope with the maximal number of vertices for d ≤ 3. However the computer
classification of Kreuzer and Skarke yields two non-isomorphic four-dimensional
terminal reflexive polytopes with 25 − 2 = 30 vertices. They have different
volumes, but of course the same number of lattice points!

The second case where counting modulo k works is the class of centrally
symmetric reflexive polytopes as will described in the very last section of this
thesis.



Chapter 4

Terminal Gorenstein toric

Fano 3-folds

Introduction

In this chapter three-dimensional Gorenstein toric Fano varieties with termi-
nal singularities are classified. They consist of 100 isomorphism classes. These
varieties are particularly interesting, since due to the mild nature of their singu-
larities they are still close to the well-known 18 smooth toric Fano 3-folds (see
section 3.4). For instance in [Nam97] Namikawa proved that any Fano 3-fold
with Gorenstein terminal singularities is smoothable by a flat deformation.

The classification uses the combinatorial description of these varieties as
three-dimensional terminal reflexive polytopes. Very recently Kasprzyk classi-
fied in [Kas03] even all three-dimensional terminal Fano polytopes, however his
proof relied partly on computer calculations, where in the reflexive case here no
computer has been used and any calculation has been explicitly written down.
For the classification we first observe that any three-dimensional terminal reflex-
ive polytope has as facets either a triangle with vertices a, b, c or a parallelogram
with vertices a, b, c, a+ b− c for a lattice basis a, b, c. This means geometrically
that the singularities appearing are at most conifold singularities, i.e, they look
locally like z1z2 − z3z4 = 0. Then we use properties of the projection map and
some special relations among the vertices.

Many ideas for this approach are due to Batyrev. Furthermore Müller gave in
his Diplomarbeit [Mül01] advised by Prof. Batyrev some preliminary results and
presented a useful list containing vertices, facets and figures of these polytopes
based on the computer database [KS04b]. However he did not yet describe an
effective approach, the proofs were not rigorous and the list contained several
errors, e.g., polytopes no. 8.12 and 8.21 (in his notation), as well as no. 8.7 and
8.14, were actually isomorphic.

In the first section of this chapter we discuss various notions of primitive
collections and relations as introduced by Batyrev in [Bat91], since this tool
was important for the classification of Fano 4-folds due to Batyrev [Bat99] and
also enormously influenced the method of classification achieved in this chapter.
Here we show how this data can in some cases be used to completely determine
the polytope and its relations.

89
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In the second section we define in the first subsection the notion of a quasi-
smooth Fano polytope and show that this precisely gives the set of three-
dimensional terminal reflexive polytopes. Moreover we introduce so called quasi-
primitive collections and relations, these are especially suitable for describing
quasi-smooth Fano polytopes. In the second subsection we define the notion of
a symmetric vertex, where its antipodal point is also a vertex, and of an additive
vertex, that is the sum of two other vertices. We examine their peculiar prop-
erties when projecting along such a vertex by using the list of two-dimensional
reflexive polytopes in Prop. 3.4.1, as well as the results in Prop. 3.2.2(7) and
Prop. 3.3.1.

In the third section we give the proof of the main classification theorem.
It relies on the notion of an AS-point, i.e., a vertex that is both symmetric
and additive. If no such AS-point exists, then we use Prop. 3.2.4(2) to show
that the polytope has at most eight vertices, so by Prop. 3.1.6 we can use the
classification of three-dimensional proper nonsingular toric varieties with Picard
number five or less which are minimal in the sense of equivariant blow-ups as
described in [Oda88, 1.34]. On the other hand if there exists an AS-point, then
we can use Proposition 4.2.17 in the second section to completely classify the
polytope by its quasi-primitive relations.

In the last section we give the list of 100 quasi-smooth Fano polytopes with
some of their invariants. Moreover we show how to determine the Picard number
of the corresponding toric varieties.

Summary of most important new results of this chapter:

· There are up to isomorphism 100 three-dimensional Gorenstein toric Fano
varieties with terminal singularities (Prop. 4.3.2, p. 101)

· Their Picard numbers depend only on the combinatorics of the corre-
sponding reflexive polytope (Prop. 4.4.2, p. 113)

· The corresponding reflexive polytopes can be uniquely determined by a
small set of special relations among its vertices (Prop. 4.2.17, p. 101;
Prop. 4.3.3, p. 102)

4.1 Primitive collections and relations

Here the notions of primitive collections and relations are described. For their
important algebraic-geometric properties in particular concerning the associated
1-cycles in the Mori cone we refer to [Rei83], [Bat91], [BC94], [Bat99], [Sat00],
and [Cas03c]. In the case of a primitive collection consisting of only two elements
one should compare the definitions and results here with Proposition 3.3.1 and
the remarks made there.

For any complete fan the following definition may be useful.

Definition 4.1.1. Let 4 be a complete fan. A subset P ⊆ 4(1) will be called
a primitive collection, if it satisfies the conditions

1. For any σ ∈ 4 we have pos(P) 6⊆ σ,

2. For any τ ∈ P there is a σ ∈ 4 such that pos(P\τ) ⊆ σ.
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This definition can also be found on p. 11 of the manuscript [Cox03]. When
the fan consists only of simplicial cones, a set of rays is contained in a cone of
the fan if and only if it generates some cone of the fan. Hence this definition
coincides with the definition of a primitive collection as given in [Bat91] in
the case of a nonsingular proper variety. By substituting ⊆ with = in any
of the above two conditions, we get different generalizations of the notion of
a primitive collection. However only the given definition yields the following
essential observation:

Lemma 4.1.2. Let C be a subset of rays of a complete fan 4. Then C is
contained in a cone of 4 if and only if C does not contain a primitive collection.

This holds, since primitive collections are precisely the minimal elements
among the subsets of rays where not all elements are contained in a common
cone. From this result we see that primitive collections suffice to determine the
set of rays generating maximal cones. Since any cone in a complete fan is the
intersection of maximal cones, we derive:

Proposition 4.1.3. Two complete fans are combinatorially isomorphic, i.e.,
there is a bijection between the set of rays mapping generators of cones onto
generators of cones, if and only if there is a bijection between the set of rays
mapping primitive collections onto primitive collections.

From now on let P ⊆MR be a reflexive polytope and 4 := ΣP .

Definition 4.1.4. A subset P ⊆ ∂P ∩M will be called a primitive collection,
if it satisfies the conditions

1. For any F ∈ F(P ) we have P 6⊆ F ,

2. For any m ∈ P there is a F ∈ F(P ) such that P\{m} ⊆ F .

When P ⊆ V(P ), P is called a V(P )-primitive collection.

Hence V(P )-primitive collections just correspond to primitive collections of
4 = ΣP . By 4.1.3 we get that the set of V(P )-primitive collections determines
the combinatorial type of P . For instance the d-dimensional crosspolytope can
be uniquely combinatorially described as 2d vertices partitioned into d pairs of
primitive collections. In the case of a terminal reflexive polytope the notions of
V(P )-primitive and primitive collections of course coincide.

As before we have:

Lemma 4.1.5. Let C be a subset of ∂P ∩M . Then C is contained in a face of
P if and only if C does not contain a primitive collection.

To determine P as a lattice polytope we give a generalization of the notion
of a primitive relation as defined in [Bat91].

Definition 4.1.6. Let P := {w1, . . . , wl} be a chosen primitive collection of P .
There is a unique face G(P) of P such that

σ(P) :=
l
∑

i=1

wl ∈ relint(pos(G(P))).
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Then by Helly’s theorem 1.5.1 we find an equation

σ(P) =

t
∑

j=1

λjvj ,

where λj ∈ Q>0 and v1, . . . , vt are lattice points on G(P) and 1 ≤ t ≤ d; this is
called a primitive relation associated to P. We have {v1, . . . , vt} = ∅, iff t = 0,
iff σ(P) = 0.

Although as intrinsic as the notion of a primitive collection, the set of prim-
itive relations associated to P contains in general more than one element. How-
ever this ambiguity can be resolved by explicitly choosing a triangulation of the
polytope:

Let 4′ be a fixed crepant subdivision of 4 corresponding to a Q-factorial
weak toric Fano variety with terminal singularities as in Prop. 2.3.12. In this
case by choosing v1, . . . , vt as the generators of a cone in 4′, there is a unique
primitive relation called the primitive relation of P with respect to 4′.

Let F be a facet of P containing v1, . . . , vt, set νF := −ηF . Since not all
w1, . . . , wl are contained in F , we have

0 <

t
∑

j=1

λj = 〈νF , σ(P)〉 =

l
∑

i=1

〈νF , wi〉 ∈ Z≤l−1.

Hence we can define the degree of a primitive relation as

deg(P) := l −
t
∑

j=1

λj ∈ N≥1. (4.1)

Under some assumptions there is a convenient property when determining
primitive relations (generalizing [Bat91, Prop. 3.1]):

Lemma 4.1.7. Let
∑l
i=1 wi =

∑t
j=1 λjvj be a primitive relation such that

λj ≥ 1 for all j = 1, . . . , t.
Then {w1, . . . , wl} ∩ {v1, . . . , vt} = ∅.

Proof. Assume w1 = v1. Let C be the smallest cone in 4 that contains
w2, . . . , wl. Define C ′ as the smallest cone in 4 containing v1, . . . , vt, if λ1 > 1,
or containing v2, . . . , vt otherwise. Then

l
∑

i=2

wi = (λ1 − 1)v1 +
t
∑

j=2

λjvj ∈ relintC ∩ relintC ′.

Hence C = C ′. Let C ′′ be a cone of 4 containing v1, . . . , vt. Then w2, . . . , wl ∈
C ⊆ C ′′ and w1 = v1 ∈ C ′′, a contradiction.

We have the following result:

Proposition 4.1.8. Assume for any primitive collection we can choose a prim-
itive relation such that λj ≥ 1.

If the lattice points of a fixed facet of a reflexive polytope P are given, then P
is determined by the set of primitive collections and chosen primitive relations.



4.1. Primitive collections and relations 93

Proof. Let F ∈ F(P ) and x1, . . . , xd be a set of linearly independent vertices
of F . Let w ∈ ∂P ∩M with a := 〈νF , w〉 ≤ 0 such that any y ∈ ∂P ∩M with
〈νF , y〉 > a is already determined.

Since {w, x1, . . . , xd} is not contained in a face of P , by 4.1.5 we can assume
there is a primitive collection P = {w, x1, . . . , xs} (s ≤ d). Now let σ(P) :=
w +

∑s
i=1 xi =

∑t
j=1 λjvj the associated primitive relation. If 〈νF , vi〉 > a for

all j = 1, . . . , t we are finished.
So we may assume 〈νF , v1〉 ≤ a. Hence a+s = 〈νF , σ(P)〉 =

∑t
j=1 λj〈νF , vj〉

≤ λ1a+
∑t
j=2 λj〈νF , vj〉 ≤ λ1a+

∑t
j=2 λj . Since s+ 1−∑t

j=1 λj ≥ 1 by (4.1),
this yields

0 < λ1 ≤ s−
t
∑

j=2

λj ≤ (λ1 − 1)a.

Since a ≤ 0, this implies λ1 < 1, a contradiction.

An analogous result can be formulated for V(P )-primitive collections.
If 4′ in Definition 4.1.6 can be chosen to be nonsingular, then the coefficients

λj in a primitive relation with respect to 4′ are non-zero natural numbers, in
particular they satisfy the condition of the previous proposition. Hence the
intrinsic and finitely many conditions that for any primitive collection P there
exist lattice points in the face of P that contains σ(P) in the relative interior such
that σ(P) is a non-negative integer combination are important obstructions for
the existence of a crepant resolution. However obviously they are not sufficient
as can been seen in Example 3.2.6.

As a corollary we generalize a well-known result for nonsingular toric Fano
varieties (see [Bat99]):

Corollary 4.1.9. A reflexive polytope corresponding to a toric variety admitting
a crepant resolution is uniquely determined by the lattice points of one arbitrary
facet and the set of primitive collections and primitive relations (chosen with
integer coefficients).

We can also determine the group of linear relations:

Definition 4.1.10. Let C ⊆ MR be a lattice polytope. We let LR(C) denote
the group of linear relations with integer coefficients among elements of C ∩M .

Proposition 4.1.11. Assume for any primitive collection we can choose a
primitive relation such that λj ∈ N.

Then the group LR(∂P ) is generated by {LR(F ) : F ∈ F(P )} and the
chosen primitive relations.

Proof. Let
s
∑

i=1

αiwi −
r
∑

j=1

βjuj = 0

be a relation g such that {αi}, {βj} are non-zero natural numbers, W :=
{w1, . . . , ws} ⊆ ∂P ∩M and U := {u1, . . . , ur} ⊆ ∂P ∩M with V ∩W = ∅,
and the ’absolute norm’ abs(g) :=

∑s
i=1 αi +

∑r
j=1 βj ∈ N>0 is minimal with

the property that this integer relation g is not contained in the subgroup H of
LR(∂P ) generated by {LR(F ) : F ∈ F(P )} and the set of primitive relations.
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If W and U are each contained in a face of P , then their relative interiors
intersect, hence W and U are contained in a common facet of P , however this is
a contradiction to g 6∈ H. So we may assume W is not contained in a face of P ,
so by 4.1.5 we can assume that there is a primitive collection P = {w1, . . . , wl}
(l ≤ s) and a corresponding primitive relation

l
∑

i=1

wi −
t
∑

j=1

λjvj = 0

with λj ∈ N>0. The difference of the previous two equations yields a relation g′

l
∑

i=1

(αi − 1)wi +
s
∑

i=l+1

αiwi +
t
∑

j=1

λjvj −
r
∑

j=1

βjuj = 0.

Necessarily g′ 6∈ H. Regrouping the elements yields

abs(g′) ≤
l
∑

i=1

(αi − 1) +

s
∑

i=l+1

αi +

t
∑

j=1

λj +

r
∑

j=1

βj = abs(g) − deg(P) < abs(g),

by (4.1), a contradiction.

4.2 Combinatorics of quasi-smooth Fano poly-

topes

4.2.1 Definition and basic properties

Definition 4.2.1. Let d = 3 and F a subset of MR. We call F a smooth
triangle, if F = conv(v1, v2, v3) such that v1, v2, v3 is a Z-basis of M .

Definition 4.2.2. Let d = 3 and F a subset of MR. We call F a smooth
lattice parallelogram, if there exist lattice elements v1, v2, v3, v4 ∈ M having
F as its convex hull such that v1, v2, v3 form a Z-basis of the lattice M and
v1 + v3 = v2 + v4. In this case v1, v2, v3, v4 are the vertices of the lattice
polytope F and any subset of its vertices having three elements form a Z-basis
of the latticeM . [v1, v3] and [v2, v4] are called the diagonals of the parallelogram.

Definition 4.2.3. Let d = 3 and P a polytope in MR with 0 ∈ intP . We call P
a quasi-smooth Fano polytope, if each facet F of P is either a smooth triangle
or a smooth lattice parallelogram.

P has only triangles as facets iff it is a smooth Fano polytope, or equivalently
X(M,ΣP ) is nonsingular. Otherwise P contains at least one parallelogram as
a facet, we call P singular in this case.

Here is the motivation for this definition:

Proposition 4.2.4. The set of quasi-smooth Fano polytopes is precisely the set
of three-dimensional terminal reflexive polytopes.

Isomorphism classes of three-dimensional toric Fano varieties with at most
conifold singularities correspond to isomorphism classes of Gorenstein toric
Fano varieties with terminal singularities.
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Proof. Obviously any quasi-smooth Fano polytope is a terminal reflexive poly-
tope. On the other hand let P be a terminal reflexive polytope. Since P is
terminal, any facet of P is an empty two-dimensional lattice polytope. It is
elementary to see that any such two-dimensional polytope is lattice equivalent
to conv(0, e1, e2) or conv(0, e1, e2, e1 + e2) for a two-dimensional lattice basis
e1, e2. Since P is reflexive, 3.1.8(2) shows that P is quasi-smooth.

Let e1, e2, e3 be a Z-basis of M . If σ = pos(e1, e2, e3), then we get σ
∨

=
pos(e∗1, e

∗
2, e

∗
3). If σ = pos(e1, e2, e3, e1 + e3 − e2), then σ

∨

= pos(e∗1, e
∗
3, e

∗
1 +

e∗2, e
∗
2 + e∗3). In particular the only singularities of a toric variety corresponding

to the fan spanned by a quasi-smooth Fano polytope are isolated singularities
of the type z1z3 − z2z4 = 0.

Applying Lemma 3.7.22 yields:

Proposition 4.2.5. The number of vertices n = n(P ) of any quasi-smooth
Fano polytope P is not greater than 14. The number of symmetric pairs of
vertices is at least n− 7.

Let P ⊆MR be a reflexive polytope and 4 := ΣP .

Since by Prop. 3.1.6 any three-dimensional reflexive polytope has a crepant
resolution, by 4.1.8 it is determined by the vertices of a facet, primitive collec-
tions and primitive relations with integer coefficients. For our purposes it will
make even sense to define another type of primitive collection:

Definition 4.2.6. A subset P ⊆ ∂P ∩M will be called a quasi-primitive col-
lection, if it satisfies the conditions

1. For any face G of P we have conv(P) 6= G,

2. For any m ∈ P there is a face G of P such that conv(P\{m}) = G.

Quasi-primitive collections of order ≥ 2 are precisely the minimal elements
among the subsets of V(P ) that are not the vertex set of some face of P .

Hence we only get one direction of Lemma 4.1.5: Any subset of V(P ) that
is not a face of P contains a quasi-primitive collection. Since a quasi-primitive
collection that is not contained in a facet is also a primitive collection, there
are fewer collections of this kind. On the other hand, when a quasi-primitive
collection is contained in a face, the degree of a corresponding primitive relation
as in (4.1) is zero. So most results of the previous section cannot be generalized.

We can ’artificially’ make sense of the notion of a quasi-primitive relation by
urging Lemma 4.1.7 to hold:

Definition 4.2.7. Let P be a reflexive polytope and P = {w1, . . . , wl} a quasi-
primitive collection. If we can find an equation

σ(P) :=

l
∑

i=1

wi =

t
∑

j=1

λjvj ,

where λj ∈ Q>0, and v1, . . . , vt are the generators of the unique face whose
positive hull contains σ(P) in its relative interior, 1 ≤ t ≤ d and {w1, . . . , wl} ∩
{v1, . . . , vt} = ∅, then it is called a quasi-primitive relation associated to P.
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In general these conditions might be too strong, so no quasi-primitive relation
can be associated to a given quasi-primitive relation. However in the case of a
quasi-smooth Fano polytope we have existence and uniqueness:

Proposition 4.2.8. Let P be a quasi-smooth Fano polytope with |V(P ) | > 4,
and P = {w1, . . . , wl} a primitive (respectively quasi-primitive) collection.

Then exactly one primitive (respectively quasi-primitive) relation can be as-
sociated to P. There are the following possible cases:

1. For l = 2:

(a) w1 + w2 = 0

(b) w1 + w2 = v1 for v1 ∈ V(P ), in this case w1 ∼ v1 ∼ w2

(c) w1 +w2 = v1 + v2 where w1, w2, v1, v2 are the vertices of a parallelo-
gram facet, this is the only case where P = {w1, w2} is contained in
a common face, so P is not a primitive collection.

2. For l = 3:

(a) w1 + w2 + w3 = 0

(b) w1 + w2 + w3 = cv1 for c ∈ {1, 2} and v1 ∈ V(P ).

Proof. Let l = 2. The four cases follow immediately from 3.3.1, terminality of
P and the parallelogram relation. Let l = 3. We can assume that {w1, w2, w3}
is not contained in a facet. By (4.1) it is enough to assume there were vertices
v1, v2 in a facet F of P such that w1 + w2 + w3 = v1 + v2. Then necessarily
〈ηF , w1〉 + 〈ηF , w1〉 + 〈ηF , w1〉 = −2, so by reflexivity we can assume w1, w2 ∈
F and 〈ηF , w3〉 = 0. So by definition {w1, w2, v1, v2} are the vertices of a
parallelogram facet, hence they satisfy the parallelogram relation, from this
an easy calculation yields a contradiction. l ≥ 4 were only possible for the
smooth Fano polytope that is the simplex spanning the fan corresponding to
three-dimensional projective space.

In 4.2.16 the case (1b) will be further investigated.
Since any primitive relation is necessarily integral, we get as a corollary from

4.1.11:

Corollary 4.2.9. The group of linear relations with integer coefficients among
the vertices of a quasi-smooth Fano polytope is generated by the parallelogram
relations of facets and the set of unique primitive relations associated to the set
of primitive collections.

When looking at a the simplest singular quasi-smooth Fano polytope, namely
the pyramide with parallelogram basis conv(e1, e2,−e1 + e2 + e3, e3) and apex
−e2−e3, we see that there is only one quasi-primitive relation, i.e., the parallel-
ogram relation, however the group of linear relations has rank 2, so the previous
corollary does not hold for quasi-primitive relations.

From this example we see that it is not at all obvious that the set of quasi-
primitive relations should suffice to determine the isomorphism type of a quasi-
smooth Fano polytope as a lattice polytope. However by the classification 4.3.2
this result holds, in particular see Proposition 4.2.17 for a partial explanation.
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4.2.2 Projections of quasi-smooth Fano polytopes

Let P be always a quasi-smooth Fano polytope and vi ∈ V(P ) a vertex of P .

Definition 4.2.10. Let πi := πvi
, Pi := πi(P ), Mi := Mvi

, ιi := ιvi
as in 3.2.2.

Let ∂M (vi) := ∂(vi) ∩M = (st(vi) ∩ V(P ))\{vi}.
The number deg(vi) := |∂M (vi) | of vertices 6= vi in the star set of vi is called

the degree of vi.
Two elements vj , vk ∈ ∂M (vi) are called contiguous with regard to πi, if

πi(vj), πi(vk) are contained in a facet of Pi such that [πi(vj), πi(vk)] ∩ Mi =
{πi(vj), πi(vk)}.

It is important to remark that it is possible to determine the star set and
thereby the degree of a vertex by knowing only the quasi-primitive collections
and quasi-primitive relations of P as follows immediately from the definition
and 4.2.8(1).

Since by 3.1.8 canonical Fano polygons are reflexive, we get by applying
3.2.4(2) and 3.2.2 the following result:

Proposition 4.2.11. A three-dimensional reflexive polytope is a quasi-smooth
Fano polytope if and only if the projection along any vertex yields a canonical
Fano polytope.

We have the following properties:

1. Pi is a two-dimensional reflexive polytope.

2. If 0 6= w ∈Mi∩Pi, then πi
−1(w)∩V(P ) = {vj , vk}, with vj = vk ∈ ∂M (vi)

or vj + vi = vk ∈ ∂M (vi) or vk + vi = vj ∈ ∂M (vi).

3. The elements of ∂M (vi) can be (up to reversion and cyclic permutation
uniquely) ordered as sl+1 = s1, s2, . . . , sl with l = deg(vi) such that sj , sj+1

are contiguous for j = 1, . . . , l; then conv(vi, sj , sj+1) is contained in a
facet of P for j = 1, . . . , l; if [vi, sj ] is not an edge, then necessarily
conv(vi, sj−1, sj , sj+1) is a smooth parallelogram facet.

This motivates the following definition:

Definition 4.2.12. A nonzero lattice point w ∈ Pi is called double point with
regard to πi, if there exist two different vertices vj , vk ∈ V(P ) such that πi(vj) =
w = πi(vk). Otherwise w is called simple point with regard to πi.

By 4.2.11 it is possible to determine the double points of πi by knowing only
the quasi-primitive collections and quasi-primitive relations of P .

As another application of 3.2.2 there is the following observation (due to
Batyrev, see [Mül01]).

Proposition 4.2.13. Let Γ be a facet of Pi. Then G := πi
−1(Γ) ∩ P is a face

of P , we have |Γ ∩Mi | ≤ 3.

1. If |Γ ∩Mi | = 2, then G is an edge, a triangle or a parallelogram, respective
Γ having no, one or two double points.

2. Let |Γ ∩Mi | = 3 and Γ ∩Mi = {x, y, z} with y = (x+ z)/2. Then G is a
facet, [vi, ιi(y)] is an edge, and x, z are simple points. G is a parallelogram
iff y is a double point.
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In particular there are up to isomorphism of the lattice Mi exactly 11 possible
types of πi-images of P as given in the following list ordered by the degree of vi.
Lines between 0 and a lattice point w denote that [vi, ιi(w)] necessarily has to
be an edge of P .

4a3 4b 4c

5a 5b 6a 6b

6c 7a 8a

Proof. Since by 3.2.2 and terminality of P the set of vertices ofGmaps surjective
on the set of lattice points in Γ, the edge Γ has at most four lattice points. By
4.2.11(2) the case |Γ ∩Mi | = 2 is trivial.

Let |Γ ∩Mi | ≥ 3. Then by 3.2.2(6) G has to be a triangle or a parallelogram
facet that is parallel to vi. By 3.2.2(2) the set of vertices of G in the star set of vi
is in bijection with the set of lattice points in Γ. However |∂M (vi) ∩ V(G) | = 3.
If G is a parallelogram, then by definition obviously the middle point y has to
be a double point.

For the list use 3.4.1 and 4.2.11(3), and observe that, if vj ∈ ∂M (vi) ∩ V(P )
with [vi, vj ] not an edge, then πi(vj) is additive by the parallelogram relation.

There are three special classes of vertices of P :

Definition 4.2.14.
vi is called additive, if vi is the sum of two other vertices of P , i.e. there

exists a quasi-primitive relation vj + vk − vi = 0 for vertices vj , vk ∈ V(P ).
vi is called symmetric, if −vi ∈ V(P ) is also a vertex, i.e. there exists a

quasi-primitive relation vi + vj = 0 for a vertex vj ∈ V(P );
vi is called AS-point, if vi is additive and symmetric.

In the symmetric case there is more to say about the double points of πi, the
combinatorics of P and quasi-primitive collections among elements of ∂M (vi).

Lemma 4.2.15. Let vi ∈ V(P ) be a symmetric vertex of P .

1. V(P ) = (st(vi)∪st(−vi))∩V(P ); ∂M (vi)∩∂M (−vi) contains the vertices vk
of P where πi(vk) is a simple point; ∂M (vi)\∂M (−vi) contains the vertices
vk of P where πi(vk) is a double point, the preimage is {vk, vk−vi}, where
vk− vi ∈ ∂M (−vi)\∂M (vi). A vertex in V(P ) whose projection is a double
point is additive.
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2. Any facet G of P either contains vi or −vi as a vertex or is the inter-
section of P and the πi-preimage of a facet Γ of Pi. If in the last case
|Γ ∩Mi | = 3, then G is a parallelogram (the middle point of Γ ∩Mi is a
double point, the other two lattice points are simple points). We have for
vk, vl ∈ ∂M (vi):

[vk, vl] is an edge of P if and only if vk, vl are contiguous.

Therefore:

{vk, vl} is a quasi-primitive collection if and only if vk, vl are not contigu-
ous. If in this case vk ∼ vl, then [vk, vl] is a diagonal of a parallelogram
facet (not necessarily containing vi), so there is another vertex vt ∈ ∂M (vi)
contagious to both vk and vl.

3. Let vk, vl ∈ ∂M (vi) be two vertices with πi(vk) = −πi(vl). Then {vk, vl}
is a quasi-primitive collection with vk + vl ∈ {vi, 0,−vi}.
If πi(vk) and πi(vl) are double points, then vk + vl = vi.

If vk + vl = −vi, then πi(vk) and πi(vl) are simple points.

If vk + vl 6= 0, then vi or −vi is an AS-point.

If πi(vk) is a double point, then vk or vk − vi is an AS-point.

These statements can be easily verified using 3.2.2(7), 4.2.11, 4.2.8.
In the additive case there are strong restrictions on the structure of st(vi):

Lemma 4.2.16. Let vi ∈ V(P ) be an additive vertex of P with vj + vk = vi for
vertices vj , vk ∈ V(P ).

There are exactly two vertices vl, vr ∈ ∂M (vi)\{vj , vk} such that [vi, vl] and
[vi, vr] are edges of P .

Precisely the following 10 cases can occur (up to exchanging of vj and vk,
respectively vl and vr), where the labels denote the degree of vi:

1. [vi, vj ] and [vi, vk] are edges:

vk

vj vj

vi vi vi

vj

vk vk

vl vl vl

vr vr vr

5 64

vj vj vj

vivivi

vkvk vk

vl vl vl

vrvrvr

6 76
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vi

vj

vk

vr

vl

8

2. Either [vi, vj ] or [vi, vk] is an diagonal (here without restriction [vi, vk]):

vj

vi

vjvj

vi
vi

vk vk
vk vlvl vl

vr vr vr

4 5 6

Proof. Since P is a three-dimensional polytope, there are at most two facets
containing [x, y] for vertices x, y of P , with equality iff [x, y] is an edge.

So let F be a facet of P containing vi. By 4.2.8 F contains [vi, vj ] or [vi, vk].
So there are at most four facets containing vi, especially any vertex in the star
set of vi has to be a vertex of one of these facets.

Assume [vi, vj ] and [vi, vk] were diagonals, i.e., there are exactly two facets
containing vi. This implies that vj , vr, vk, vl is an ordering of ∂M (vi) as in
4.2.11(3), where conv(vi, vj , vl, vr) and conv(vi, vk, vl, vr) are parallelograms.
Necessarily vi + vj = vl + vr and vi + vk = vl + vr, an obvious contradiction.
Alternatively use 3.3.1(iv).

Combining the previous two propositions we get a result that will be the key
factor in classifying quasi-smooth Fano polytopes:

Proposition 4.2.17. Quasi-smooth Fano polytopes having AS-points are uni-
quely determined by their quasi-primitive relations.

More precisely the following data uniquely determines the quasi-smooth Fano
polytope P :

1. The existence of an AS-point vi ∈ V(P ) (with quasi-primitive relation
vj + vk = vi)

2. The associated quasi-primitive relation of the quasi-primitive collection
{vl, vr} for the unique vertices vl, vr ∈ V(P )\{vj , vk} such that [vi, vl] and
[vi, vr] are edges

3. What case in 4.2.16 occurs, i.e. which of the lines [vj , vr], [vj , vi], [vj , vl],
[vk, vr], [vk, vi], [vk, vl] are no diagonals

4. Which of the boundary lattice points in Pi are double points
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The vertices occuring in the quasi-primitive relation associated to {vl, vr}
are contained in

{vl, vj , vj − vi, vi, 0,−vi, vr, vk, vk − vi}.

Proof. Let vi as in 1. By 4.2.16 vl, vr as in 2. exist and are not contagious, so
{vl, vr} is a quasi-primitive collection by 4.2.15(2). By 4.2.16 conv(vi, vj , vr) is
contained in a face of P , so it is possible to choose vr, vj , vi as a Z-basis of the
lattice. Obviously −vi and vk are determined by vr, vj , vi. Now the additional
statement about the vertices occuring in the quasi-primitive relation of {vl, vr}
follows from analyzing the possible types of Pi in 4.2.13 and using 4.2.8 and
4.2.11. So vl can be determined by vi, vj , vr and the relation in 2. By 3. and
4.2.16 all vertices in the star set of vi are determined by vi, vj , vk, vr, vl, and
therefore by vr, vj , vi. Now take a vertex v ∈ V(P ), v 6∈ {vi,−vi}, then by
4.2.11(2) there is a unique vertex vh ∈ ∂M (vi), and by 4. it is known whether
v = vh or v = vh − vi. Therefore all vertices of P are uniquely determined by
1. - 4. up to an isomorphism of the lattice, and obviously the conditions 1. to
4. are determined by quasi-primitive relations.

4.3 Classification of quasi-smooth Fano polytopes

4.3.1 The main theorem

The goal of this section is to prove the following theorem:

Theorem 4.3.1. There exist exactly 100 isomorphism types of three-dimensional
Gorenstein toric Fano varieties with terminal singularities. Of these are 18 non-
singular and 82 singular.

This is a corollary of the following convex-geometric formulation:

Theorem 4.3.2. There exist exactly 100 isomorphism types of quasi-smooth
Fano polytopes. Of these are 18 smooth and 82 singular. Quasi-smooth Fano
polytopes are uniquely determined by the quasi-primitive relations associated to
their quasi-primitive collections.

number of vertices 4 5 6 7 8 9 10 11 12 13 14
number of polytopes 1 5 11 18 23 18 13 6 3 1 1
of these are smooth 1 4 7 4 2 0 0 0 0 0 0
of these are singular 0 1 4 14 21 18 13 6 3 1 1

The strategy of the classification process is based upon the observations in
the previous section. There are essentially two different parts:

If a quasi-smooth Fano polytope P has an AS-point, then applying the key
result Proposition 4.2.17 gives us an explicit algorithm for uniquely determining
P . This is done in subsection 4.3.3.
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On the other hand if no AS-point of P exists, then we first deal with the
case when there are no symmetric vertices, here we can apply an existing clas-
sification of Oda in [Oda88]. If there exists no AS-point but a symmetric vertex
v, then we use the fact that there are only 11 types of polytopes that can occur
when projecting along v to prove very strong restrictions on the polytope that
will suffice to determine P .

4.3.2 Classification when no AS-points exist

In this subsection we are going to prove the following proposition:

Proposition 4.3.3. There exist exactly 17 quasi-smooth Fano polytopes having
no AS-points. Of these are 8 smooth (namely P3, B1, B2, B3, B4, C3, D1, D2 in
the notation of [Bat99, 2.5]) and 9 singular (namely 5.1, 6.2, 6.4, 7.2, 7.3, 7.11,
7.13, 8.2, 8.21). They are uniquely determined by the quasi-primitive relations
associated to their quasi-primitive collections. In the following list the vertices
of the 9 singular polytopes are given relative to a Z-basis v, v′, v′′ of the lattice:

n0 vertices of P
5.1 v, v′, v′′,−v − v′′,−v′ − v′′

6.2 v, v′, v′′,−v − v′′,−v′ − v′′, v + v′ + v′′

6.4 v, v′, v′′,−v′′,−v′,−v + v′ + v′′

7.2 v, v′, v′′,−v′′, v − v′′, v′ − v′′,−v − v′

7.3 v, v′, v′′,−v′′, v − v′′, v′ − v′′,−v − v′ + v′′

7.11 v, v′, v′′,−v′′,−v,−v′,−v − v′ + v′′

7.13 v, v′, v′′,−v − v′′,−v′ − v′′,−v − v′,−v − v′ − v′′

8.2 v, v′, v′′,−v′′, v − v′′, v′ − v′′,−v − v′ + v′′,−v − v′,
8.21 v, v′, v′′, v − v′ + v′′,−v,−v′,−v′′,−v + v′ − v′′

The first case is handled using the existing classification of nonsingular
proper toric varieties with a very small Picard number:

Lemma 4.3.4. There exist exactly three quasi-smooth Fano polytopes that are
singular and have no symmetric vertices. These are 5.1, 6.2, 7.13.

Proof. By 4.2.5 the number of vertices of P is seven or less. As listed in [Oda88,
Thm. 1.34] there are exactly three three-dimensional compact nonsingular toric
varieties with Picard number four or less being minimal in the sense of equivari-
ant blowing-ups where the associated fan has no symmetric pair of generators of
one-dimensional cones. In the notation given there these are 34, (3243)′′, 314353.
The last fan corresponds already to a quasi-smooth Fano polytope that is sin-
gular, namely 7.13. Now one has just to check that by equivariantly blowing-up
the first two varities at most three, respectively two times one can only get 5.1,
a pyramide with a parallelogram basis, or 6.2, a stacked simplex on a pyra-
mide, as associated quasi-smooth Fano polytopes that are singular and have no
symmetric vertices. This is an easy but tedious calculation that will be omitted.

The next lemma will give restrictions on quasi-smooth Fano polytopes to
have no AS-points:
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Lemma 4.3.5. Let P be a quasi-smooth Fano polytope having no AS-point. Let
vi ∈ V(P ) be a symmetric vertex. If there exist w1, w2 nonzero lattice points in
Pi with w1 + w2 = 0, then w1 and w2 are simple points. Let v1, v2 ∈ V(P ) be
the unique vertices with πi(v1) = w1 and πi(v2) = w2. Then v1 + v2 = 0.

Proof. Because P has no AS-points it follows from the statements in 4.2.15(3)
that v1 + v2 = 0 and w1, w2 are simple points.

Now the proof of the proposition could also be done by the classification
of Oda, because in the proof it will be shown that n(P ) ≤ 8 is a necessary
condition for a quasi-smooth Fano polytope to have no AS-points. Instead the
polytopes will be classified using the language of quasi-primitive relations as
this seems to be more instructive.

Proof of Proposition 4.3.3. By [Bat99, 2.5] it is easy to check that there exist
exactly 8 smooth Fano polytopes having no AS-points. So let P be singular.
By 4.3.4 we can assume that there exist vertices vi, vj ∈ V(P ) with vi + vj = 0.
By 4.2.15(2) a facet of Pi having three lattice points contains the middle point
as the only double point. Also by 4.3.5 symmetric nonzero lattice points of Pi
are simple points and their unique preimages in V(P ) are symmetric. Looking
up all 11 possible projection types in 4.2.13 one sees that there are only the
following cases left:

3: In order for P not being simplicial there have to exist at least two double
points of Pi.

If the remaining nonzero lattice point of Pi is no double point, then one can
choose a Z-basis e1, e2, e3 = vi of M such that P consists of a Fano pyramide
with basis e1, e2, e1 − e3, e2 − e3 and apex v ∈ V(P ) with πi(v) = (−1,−1) and
two stacked simplices with vertices v, e3, e1, e2, respective v,−e3, e1−e3, e2−e3.
By 4.2.8(2) v+e1+e2 ∈ {0, e3, 2e3} and v+(e1−e3)+(e2−e3) ∈ {0,−e3,−2e3}.
By symmetry this gives two non-isomorphic quasi-smooth Fano polytopes with
seven vertices depending on whether one of these two quasi-primitive relations
equals 0; if one does, P is isomorphic to 7.2, otherwise 7.3.

If the remaining nonzero lattice point of Pi is a double point, then one
shows similarily that P is even uniquely determined as a quasi-smooth Fano
polytope with eight vertices consisting of a prisma with two stacked simplices;
P is isomorphic to 8.2.

4a: Because by 4.3.5 P then consists of six symmetric vertices, P would be
an octahedron, which is simplicial. A contradiction.

4b: By 4.3.5 there exist vj , vk ∈ V(P ) with vj +vk = 0, πi(vj), πi(vk) simple
points and vl, vr ∈ ∂M (vi) with πi(vl+vr) = πi(vk). By 4.2.15 {vl, vr} is a quasi-
primitive collection. Assume vl + vr ∈ V(P ), then vl + vr = vk, because πi(vk)
is a simple point. This means vk is an AS-point, a contradiction. Therefore
[vl, vr] is a diagonal, by 4.2.15 vl + vr = vi + vk without restriction (substitute
−vi for vi otherwise). Assume πi(vl) were a double point. Then vl − vi ∈ V(P )
and (vl − vi) + vr = vk, contradiction. The same is true for πi(vr). So there
are no double points in Pi and all six vertices in P are uniquely defined. P is
isomorphic to 6.4.

5a: By 4.3.5 take an ordering vj , vr, vt, vk, vl of ∂M (vi) such that vj +vk = 0
and vl + vr = 0 and all points except possibly πi(vt) are simple points of Pi.
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Exactly as in the previous case one can assume that vl+ vt = vi+ vk and πi(vt)
is a simple point. This yields 7.11.

6a: By 4.3.5 P is a completely symmetric polytope with eight vertices. Be-
cause P contains a smooth lattice polytope, by symmetry it follows immediately
that P is the unique quasi-smooth Fano cube 8.21.

Finally it is easy to check that all these quasi-smooth Fano polytopes are
uniquely determined by their quasi-primitive relations.

4.3.3 Classification when AS-points exist

In this subsection the following proposition will be proved which will yield to-
gether with Proposition 4.3.3 the proof of Theorem 4.3.2:

Proposition 4.3.6. There exist exactly 83 quasi-smooth Fano polytopes hav-
ing an AS-point. Of these are 10 smooth and 73 singular. They are uniquely
determined by the quasi-primitive relations associated to their quasi-primitive
collections.

The second part and the main idea of the proof is contained in the key result
Proposition 4.2.17.

Now the classification of singular quasi-smooth Fano polytopes that have an
AS-point is split up into four Lemmas 4.3.9 to 4.3.14 depending on the minimal
degree of an AS-point. From the proofs of these lemmas the coordinates of the
vertices of the polytopes can be immediately read off by choosing vr, vj , vi (as
in 4.2.17) as a Z-basis of the lattice.

Let P be always a quasi-smooth Fano polytope.
To simplify the proofs we need two definitions:

Definition 4.3.7. Let vi ∈ V(P ) and v ∈ V(P ).

· We set
mi(v) := |πi−1(πi(v)) ∩ V(P ) |.

For v ∈ ∂M (vi) we get:

mi(v) = 1, iff πi(v) is a simple point, and mi(v) = 2, iff πi(v) is a double
point. Hence 4.2.17(4) means exactly to determine mi(v) for all v ∈
∂M (vi).

· Assume vi is symmetric. Then there is a unique vertex bi(v) ∈ ∂M (−vi)
such that πi(bi(v)) = πi(v). For v ∈ ∂M (vi) we get:

If mi(v) = 1, then bi(v) = v; otherwise bi(v) = v − vi by 4.2.15.

The following technical lemma that will be subsequently used shows how to
deduce in some cases the combinatorics of st(−vi) from st(vi).

Lemma 4.3.8. Let vi ∈ V(P ) be a symmetric vertex of P . Also let vl, vj , vr ∈
∂M (vi) such that vl, vj and vj , vr are contiguous. We set

x := (mi(vl),mi(vj),mi(vr)) ∈ {0, 1}3.

1. Let [vi, vj ] be an edge of P and vl + vr = vj a quasi-primitive relation.

Then x 6= (2, 1, 2). conv(−vi, bi(vl), bi(vj), bi(vr)) is a parallelogram facet
of P iff x ∈ {(1, 1, 2), (2, 1, 1), (2, 2, 2)}.
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2. Let [vi, vj ] be an edge of P and vl+vr = vj−vi a quasi-primitive relation.

If mi(vj) = 1, then x = (1, 1, 1) and conv(−vi, vl, vj , vr) is a parallelogram
facet of P .

If mi(vj) = 2, then x 6= (2, 2, 2). conv(−vi, bi(vl), vj − vi, bi(vr)) is a
parallelogram facet of P iff x ∈ {(2, 2, 1), (1, 2, 2)}.

3. Let πi(vl) + πi(vr) = πi(vj). Then x = (2, 1, 2) iff conv(vi, vl, vj , vr) and
conv(−vi, bi(vl), bi(vj), bi(vr)) are parallelogram facets of P .

4. Let conv(vi, vl, vj , vr) be a parallelogram facet of P . Then there exists no
quasi-primitive relation vt + vl = vr − vi for a vertex vt ∈ V(P ).

Proof. 1.,2.,3. are easy consequences of 4.2.8, 4.2.11 and 4.2.15, so a proof will
be omitted.

4. Assume vt + vl = vr − vi were a quasi-primitive relation. If mi(vr) =
1, then conv(−vi, vt, vr, vl) were a parallelogram facet containing −vi, so by
4.2.11(3) vl would be contagious to vr; a contradiction. So let mi(vr) = 2, then
by 4.2.8 vl ∈ st(vr − vi). By 4.2.15(2) it follows that [vl, vr − vi] is a diagonal of
a parallelogram facet containing −vi, also vl ∈ ∂M (−vi), so mi(vl) = 1; this is
a contradiction to 3.

Finally the four lemmas will be proved.

Lemma 4.3.9. There exist exactly 34 quasi-smooth Fano polytopes having an
AS-point of degree ≤ 4. Of these are 10 smooth and 24 singular.

Proof. By [Bat99, 2.5] and 4.3.3 there are exactly 10 smooth Fano polytopes left
having AS-points, by 4.2.16 necessarily of degree 4. So let P be singular. Let
vi ∈ V(P ) be an AS-point (as in 4.2.17(1)) with deg(vi) = 4 and vj + vk = vi a
quasi-primitive relation for vj , vk ∈ V(P ). Choose also vl, vr as in 4.2.17(2) with
quasi-primitive relation P. By 4.2.16 one can distinguish without restriction the
following two cases (corresponding to 4.2.17(3)):

CASE I: [vi, vj ] and [vi, vk] are edges of P .
By 4.2.8(1) and 4.2.13 there are without restriction the following possibilities

for P left (corresponding to 4.2.17(2)):
Subcase (a): vl + vr = 0. (Pi is of type 4a.) In order for P not to be

simplicial there have to be at least two contagious lattice points of Pi by 4.2.13
and 4.2.15, so let without restriction mi(vj) = 2 = mi(vr). By 4.2.15(3) then
mi(vl) = 1. The following two cases for the determination of double points of
Pi (corresponding to 4.2.17(4)) are now only left:

mi(vk) type of P
1 8.4
2 9.17

Subcase (b): vl + vr = vi. (Pi is of type 4a.) For P not being simplicial
let again without restriction mi(vj) = 2 and mi(vr) = 2. By symmetry also
mi(vk) ≥ mi(vl). The following cases are then only left:



106 Chapter 4. Terminal Gorenstein toric Fano 3-folds

mi(vk) mi(vl) type of P
1 1 8.3
2 1 −vi AS-pt: case I(a)
2 2 10.1

Subcase (c): vl + vr = −vi. (Pi is of type 4a.) By 4.2.15(3) mi(vl) = 1 =
mi(vr). Then P must be simplicial, contradiction.

Subcase (d): vl + vr = vj . (Pi is of type 4b.) By symmetry let mi(vr) ≥
mi(vl). In order for P to have a parallelogram facet, the following cases are
only left by 4.3.8(1):

mi(vj) mi(vk) mi(vr) mi(vl) type of P
1 1 2 1 7.8
1 2 2 1 8.8
2 1 2 1 8.14
2 1 2 2 9.8
2 2 2 1 9.18
2 2 2 2 10.4

Subcase (e): vl + vr = vj − vi ∈ V(P ). (Pi is of type 4b.) Especially
mi(vj) = 2. By symmetry let mi(vr) ≥ mi(vl). In order for P to have a
parallelogram facet, the following cases are only left by 4.3.8(2):

mi(vk) mi(vr) mi(vl) type of P
1 2 1 8.11
2 2 1 9.14

Subcase (f): vl + vr = vj + (vj − vi) is the parallelogram relation of a facet.
(Pi is of type 4c.) Especially mi(vj) = 2, and by 4.2.15(2) mi(vl) = 1 = mi(vr).
So the following two cases are left:

mi(vk) type of P
1 7.1
2 8.1

Subcase (g): vl + vr = vj − vi is the parallelogram relation of a facet. (Pi
is of type 4b.) By 4.2.15(1) especially mi(vj) = mi(vl) = mi(vr) = 1. So the
following two cases are left:

mi(vk) type of P
1 6.3
2 7.14

Subcase (h): vl + vr = (vj − vi) − vi is the parallelogram relation of a facet.
(Pi is of type 4b.) By 4.2.15(1) especially mi(vj) = 2, mi(vl) = mi(vr) = 1. So
the following two cases are left:

mi(vk) type of P
1 7.7
2 vj AS-pt: case I(f)



4.3. Classification of quasi-smooth Fano polytopes 107

CASE II: [vi, vj ] is an edge of P and conv(vi, vr, vk, vl) is a parallelogram
facet with diagonals [vi, vk] and [vl, vr]. (Pi is of type 4b.)

Then all vertices in ∂M (vi) are determined. Letmi(vr) ≥ mi(vl). Ifmi(vj) =
2 = mi(vk), then −vi is an AS-point of case I because of 4.3.8(3). So the
following possibilities are left:

mi(vj) mi(vk) mi(vr) mi(vl) type of P
1 1 1 1 6.1
1 1 2 1 7.5
1 1 2 2 8.9
2 1 1 1 vj − vi AS-pt: case I
2 1 2 1 8.7
2 1 2 2 9.3
1 2 1 1 vk − vi AS-pt: case I (by 4.3.8(3))
1 2 2 1 8.5
1 2 2 2 9.6

Lemma 4.3.10. There exist exactly 37 quasi-smooth Fano polytopes having an
AS-point of minimal degree 5. They are all singular.

Proof. Let vi = vj+vk be an AS-point as in 4.3.9 and {vl, vr} the quasi-primitive
collection with [vl, vi], [vi, vr] edges of P .

Distinguish two cases:
CASE I: [vi, vj ] and [vi, vk] are edges of P .
Without restriction by 4.2.16 let conv(vi, vj , vr) be a facet of P and

conv(vi, vr, vr − vj , vk) a parallelogram facet of P . By 4.2.15(2) {vl, vr − vj} is
also a quasi-primitive collection.

Subcase (a): vl + vr = 0. (Pi is of type 5a.) Then vj + (vr − vj) = vr and
vl + (vr − vj) = vk − vi. So by 4.2.15(3) and 4.3.8(1,2,3) there are the following
cases left:

mi(vj) mi(vr) mi(vr − vj) mi(vk) mi(vl) type of P
1 1 1 1 1 7.12
2 1 1 1 1 8.12
1 2 1 1 1 8.13
2 2 1 1 1 9.11
· 1 1 2 1 vk − vi AS-pt: deg. 4
1 2 1 2 1 9.15
2 2 1 2 1 10.12
1 1 2 2 1 9.4
1 2 2 2 1 10.5
2 2 2 2 1 11.1
1 1 1 2 2 9.13
2 1 1 2 2 10.10

Subcase (b): vl + vr = vi. (Pi is of type 5a.) By symmetry let mi(vr) ≥
mi(vk), and mi(vj) ≥ mi(vl), if mi(vr) = mi(vk). It is vj + (vr − vj) = vr and
vl + (vr − vj) = vk. By 4.3.8(1,3) the following cases are then only left:



108 Chapter 4. Terminal Gorenstein toric Fano 3-folds

mi(vj) mi(vr) mi(vr − vj) mi(vk) mi(vl) type of P
1 1 1 1 1 7.9
2 1 1 1 1 vk AS-pt: case I(a)
2 1 1 1 2 9.5
1 1 2 1 1 8.18
1 2 1 1 · vr − vi AS-pt: deg. 4
2 2 1 1 1 vj − vi AS-pt: case I(a)
2 2 1 1 2 10.11
1 2 2 1 1 9.10
2 2 2 1 1 10.7
1 2 1 2 1 9.16
2 2 1 2 1 vj − vi AS-pt: case I(a)
2 2 1 2 2 11.4
1 2 2 2 1 10.9
2 2 2 2 1 11.2
2 2 2 2 2 12.1

Subcase (c): vl + vr = −vi. (Pi is of type 5a) By 4.2.15(3) mi(vl) = 1 =
mi(vr). Then vl + (vr − vj) = (vk − vi) − vi. Therefore mi(vk) = 2 and
mi(vr − vj) = 1. Then there are the following cases left:

mi(vj) type of P
1 vk − vi AS-pt: deg. 4
2 vj AS-pt: deg. 4

Subcase (d): vl + vr = vj . (Pi is still of type 5a.) Then vl + (vr − vj) = 0.
By 4.2.15(3), 4.3.8(1,3) the following cases are left:

mi(vj) mi(vr) mi(vr − vj) mi(vk) mi(vl) type of P
1 1 1 1 1 7.4
1 1 2 1 1 vr − vj AS-pt: deg. 4
· 1 1 2 1 vj AS-pt: deg. 4
1 1 2 2 1 vj AS-pt: case I(b)
2 1 1 1 1 8.15
1 2 1 1 1 8.17
1 2 2 1 1 9.9
1 2 1 2 1 vk − vi AS-pt: case I(a)
1 2 2 2 1 10.6
2 2 1 1 1 vj − vi AS-pt: case I(b)
2 2 2 1 1 −vi AS-pt: case I(a)
2 2 · 2 1 vj AS-pt: case I(b)
1 1 1 1 2 vl AS-pt: deg. 4
1 1 1 2 2 9.12
2 1 1 · 2 −vi AS-pt: case I(a/b)
2 2 1 1 2 again 10.6
2 2 1 2 2 11.3
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Subcase (e): vl + vr = vj − vi ∈ V(P ). (Pi is of type 5a.) Especially
mi(vj) = 2. Then vl+(vr−vj) = −vi, so by 4.2.15(3) mi(vl) = 1 = mi(vr−vj).
So it follows by 4.3.8(2):

mi(vr) mi(vk) type of P
1 1 −vi AS-pt: case I(a)
2 1 −vi AS-pt: case I(d)
1 2 −vi AS-pt: case I(b)
2 2 10.2

Subcase (f): vl + vr = vk. (Pi is of type 5b.) Then by 4.2.15(2) mi(vk) = 2,
mi(vl) = 1 = mi(vr − vj). By 4.3.8(1,3) it follows:

mi(vj) mi(vr) type of P
· 1 vk − vi AS-pt: deg. 4
1 2 9.7
2 2 vj AS-pt: case I(e)

Subcase (g): vl + vr = vk − vi is a quasi-primitive relation. This is a contra-
diction to 4.3.8(4).

Subcase (h): vl+vr = vj−vi is the parallelogram relation of a facet. (Pi is of
type 5a.) Especially mi(vl) = mi(vj) = mi(vr) = 1. Then vl + (vr − vj) = −vi,
so also by 4.2.15(3) mi(vr − vj) = 1. So the following two cases are left:

mi(vk) type of P
1 7.10
2 vk − vi AS-pt: deg. 4

Subcase (i): vl + vr = vj + (vj − vi) is the parallelogram relation of a facet.
(Pi is of type 5b.) By 4.2.15(2) especially mi(vj) = 2, mi(vl) = mi(vr) = 1.
Then vl + (vr − vj) = vj − vi, so also vr − vj ∈ ∂M (−vi) and mi(vr − vj) = 1 by
4.2.15(1). It follows:

mi(vk) type of P
1 8.6
2 −vi AS-pt: case I(f)

CASE II: [vi, vj ] is an edge of P and conv(vi, vr, vk, vl) is a parallelogram
facet with diagonals [vi, vk] and [vl, vr]. (Pi is of type 5a.)

By 4.2.16 let without restriction conv(vi, vj , vr − vk, vr) be a parallelogram
facet of P . Then all vertices in ∂M (vi) are determined. By symmetry (along
[vi, vr]) let mi(vj) ≥ mi(vl), and mi(vr − vk) ≥ mi(vk), if mi(vj) = mi(vl). If
mi(vj) = 2 = mi(vk) or mi(vl) = 2 = mi(vr − vk), then −vi is an AS-point of
case I because of 4.3.8(3). So by 4.3.8(1,3) the following possibilities are left:



110 Chapter 4. Terminal Gorenstein toric Fano 3-folds

mi(vj) mi(vr − vk) mi(vr) mi(vk) mi(vl) type of P
1 1 1 1 1 7.6
1 1 2 1 1 8.16
1 2 · 1 1 vr − vk − vi AS-pt:

case I
1 2 2 2 1 10.3
2 1 1 1 1 vj − vi AS-pt: deg. 4
2 1 2 1 1 vj − vi AS-pt: case I
2 2 · 1 1 vj − vi AS-pt: case I
2 1 1 1 2 vj − vi AS-pt: case I
2 1 2 1 2 10.8

Lemma 4.3.11. There exist exactly 12 quasi-smooth Fano polytopes having an
AS-point of minimal degree 6. They are all singular.

Proof. Let vi = vj + vk be an AS-point of degree 6 with associated quasi-
primitive relation, and {vl, vr} the unique quasi-primitive collection with [vi, vl]
and [vi, vr] edges of P . By 4.2.16 we will distinguish the following cases:

CASE I: There are 3 parallelogram facets of P containing vi.
Let vj , vr − vk, vr, vk, vl = vi + vk − vr, vi − vr be an ordering of ∂M (vi)

according to 4.2.16(2). (Pi is of type 6a.) Let W := {πi(vr− vk), πi(vk), πi(vi−
vr)}.

Subcase (a): There exists an element w ∈W with w and −w double points.
Without restriction let mi(vk) = 2 and mi(vj) = 2. Then vk is an AS-point,
having necessarily degree ≥ 6, it follows mi(vl) = 2 = mi(vr). Without restric-
tion there are now three cases:

mi(vr − vk) mi(vi − vr) type of P
1 1 12.2
2 1 13.1
2 2 14.1

Subcase (b): There exists an element w ∈ W with w double point and −w
simple point, but no element in W as in subcase (a). Without restriction let
mi(vk) = 2 and mi(vj) = 1. Also let mi(vr) ≥ mi(vl) and mi(vr − vk) ≥
mi(vi − vr), if mi(vr) = mi(vl). By 4.3.8(1) there are now the following cases:

mi(vr − vk) mi(vr) mi(vl) mi(vi − vr) type of P
1 1 1 1 9.1
1 2 · 1 vr − vi AS-pt: deg. 5
2 2 1 1 11.5

Subcase (c): All elements in W are simple points, i.e. mi(vr − vk) = 1,
mi(vk) = 1, mi(vi − vr) = 1. Without restriction there are the following cases:

mi(vj) mi(vr) mi(vl) type of P
1 1 1 8.19
2 · 1 vj − vi AS-pt: deg. ≤ 5
2 2 2 11.6
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CASE II: There are exactly 2 parallelogram facets of P containing vi and
there is no AS-point of the type as in case I.

Here the following sublemma is useful:

Sublemma 4.3.12. In this situation let there be nonzero lattice points w,w′ ∈
Mi ∩ Pi such that w + w′ = 0. Then w is not the middle point of a facet of Pi
with three lattice points.

Let v, v′ ∈ ∂M (vi) with πi(v) = w, πi(v
′) = w′. If additionally w is a

double point and [vi, v] a diagonal of a parallelogram facet of P , then v is not
symmetric, v + v′ = vi, w

′ is a simple point and v − vi is an AS-point.

Proof. First three remarks:
(i) Assume there were an AS-point vt ∈ V(P ) such that vt = vp + vq with

[vt, vp] a diagonal of a parallelogram facet of P . By 4.2.16(2) then vt would have
degree ≤ 5 or degree 6 with 3 parallelogram facets containing vt as in case I ; a
contradiction.

(ii) Let now w be a double point and assume v were symmetric. Then
v = vi + (v − vi) were an AS-point. So by (i) [vi, v] or [v, v − vi] must not be
diagonals.

(iii) Finally if w is a double point, then by 4.2.15(3) v + v′ ∈ {0, vi}.
Now put these observations together:
Assume w is the middle point of a facet of Pi with three lattice points. By

4.2.15(2) w is a double point and [v, v − vi] a diagonal. So by (ii) v must not
be symmetric, therefore by (iii) v + v′ = vi. Then v − vi is an AS-point with
[v − vi, v] a diagonal; a contradiction to (i). Now let w be a double point and
[v, vi] a diagonal, so by (ii) v is not symmetric, especially by (iii) v + v′ = vi
and v′ − vi 6∈ V(P ), i.e. w′ simple.

As an immediate corollary we get:

Sublemma 4.3.13. Pi does not contain facets with three lattice points, espe-
cially Pi is of type 6a.

Proof. By 4.2.13 Pi contains facets with three lattice points only if Pi is of type
6b or 6c. But in these cases Pi also has symmetric middle points of facets with
three lattice points; this is not possible by the previous sublemma.

There are now two cases:
CASE IIA: The two parallelogram facets containing vi are contained in one

halfspace of the plane Rvj + Rvi.
Let also vr be element of this halfspace. Then vj , vr − vk, vr, vr − vj , vk, vl is

an ordering of ∂M (vi) as in 4.2.11(3) and πi(vr) is the middle point on a facet
of Pi with three lattice points; a contradiction to Sublemma 4.3.13.

CASE IIB: The two parallelogram facets containing vi are not contained in
one halfspace of the plane Rvj + Rvi.

Without restriction let conv(vi, vj , vr−vk, vr) be a parallogram facet. There
are now two further cases to consider:

Case IIB1: conv(vi, vl, vl − vk, vj) is a parallellogram facet of P .
Then vj , vr − vk, vr, vk, vl, vl − vk is an ordering of ∂M (vi) as in 4.2.11(3).

By Sublemma 4.3.13 we must have πi(vl + vr) = πi(vk).
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Subcase (a): vl + vr = vk. Then (vl − vk) + vr = 0, so by Sublemma
4.3.12 mi(vl − vk) = 1. Analogously mi(vr − vk) = 1. Let without restriction
mi(vr) ≤ mi(vl). By 4.3.8(1) there are the following cases:

mi(vj) mi(vr) mi(vk) mi(vl) type of P
· · 1 · vl AS-pt: deg. 5
1 1 2 1 9.2
1 1 2 2 10.13
· 2 2 2 vk − vi AS-pt: case IIA
2 1 2 · vk AS-pt: deg. ≤ 5

Subcase (b): vl + vr = vk − vi. Then (vl − vk) + (vr − vk) = (vj − vi) − vi
is a quasi-primitive relation, so by 4.2.15(1) mi(vl − vk) = 1, mi(vj) = 2,
mi(vr − vk) = 1 and vj − vk is an AS-point of degree 4.

Subcase (c): vl + vr = (vk − vi) − vi is the parallelogram relation of a facet
of P . Then (vl − vk) + (vr − vk) = (vj − vi) − 2vi is a quasi-primitive relation;
a contradiction.

Case IIB2: conv(vk, vl − vj , vj , vl, vj) is a parallellogram facet of P .
Then vj , vr−vk, vr, vk, vl−vj , vl is an ordering of ∂M (vi) as in 4.2.11(3). By

Sublemma 4.3.13 we must have πi(vl + vr) = 0.
Subcase (a): vl + vr = 0. By 4.2.15(3) without restriction mi(vr) = 1. It is

(vl− vj)+ (vr− vk) = −vi, so mi(vl− vj) = 1 = mi(vr− vk) by 4.2.15(3). Then
by 4.3.8(1,2) there are only the following cases:

mi(vj) mi(vk) mi(vl) type of P
1 1 1 8.20
2 1 · vj − vi AS-pt: deg. 5
· 2 1 vk − vi AS-pt: deg. 5
· 2 2 vk − vi AS-pt: case IIA

Subcase (b): vl + vr = vi. Then (vl − vj) + (vr − vk) = 0, so mi(vl − vj) =
1 = mi(vr−vk) by Sublemma 4.3.12. By symmetry there are only the following
cases to consider:

mi(vj) mi(vr) mi(vk) mi(vl) type of P
1 1 1 1 8.10
2 1 · · vj − vi AS-pt: deg. 5
2 2 · 1 vj − vi AS-pt: case IIB1
2 2 2 2 12.3

Subcase (c): vl+vr = −vi. Then (vl−vj)+(vr−vk) = −2vi; a contradiction.

Lemma 4.3.14. There exist no quasi-smooth Fano polytopes having an AS-
point of minimal degree ≥ 7.

Proof. Let vi ∈ V(P ) be an AS-point of degree ≥ 7. Because of 4.2.13 and
4.2.15(2) there exists a symmetric double point w ∈ Pi on the middle of a facet
of Pi. Because of 4.2.15(3) there exists an AS-point v ∈ V(P ) with πi(v) = w.
By 4.2.15(2) and 4.2.16(2) therefore v is an AS-point of degree ≤ 6.
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4.4 Table of quasi-smooth Fano polytopes

Throughout the section let P be a quasi-smooth Fano polytope with toric variety
X = X(M,ΣP ).

In the tables below all three-dimensional Gorenstein toric Fano varieties
with terminal singularities are listed by their corresponding quasi-smooth Fano
polytopes. Also shown are their interesting numerical characteristics.

An obvious combinatorial invariant of a quasi-smooth Fano polytope P is
the f-vector (f0, f1, f2) giving the number of vertices, edges and facets. In the
following let always n = f0 be the number of vertices and p the number of
parallelogram facets of P .

Proposition 4.4.1. Let P be a quasi-smooth Fano polytope with n vertices and
p parallelogram facets. Then

f1 = 3n− 6 − p, f2 = 2n− 4 − p, vol(P ) =
1

3
n− 2

3
.

Proof. Let s be the number of simplicial facets of P . Then the statements follow
from solving these three equations for s, f1, f2:

f1 =
3s+ 4p

2
, f2 = s+ p, n− f1 + f2 = 2,

and 3.7.5. Alternatively use 3.7.6.

Next it shall be described how to determine the Picard number ρX of these
varieties by calculating the combinatorial Picard number of the associated quasi-
smooth Fano polytope P , see [Ewa96, V.5]. In this special case this leads to the
following:

Proposition 4.4.2. Let P be a quasi-smooth Fano polytope with n vertices
{v1, . . . , vn} and p parallelogram facets {F1, . . . , Fp}. Then

Pic(X) ∼= Zn−3−λ(P ), ρX = n− 3 − λ(P ),

for

λ(P ) := rank(M(P )),

where M(P ) is a matrix with n columns and p rows, where each row consists
exactly of two entries 1, two entries −1 and the remaining entries 0, such that
[vj1 , vj2 ] is a diagonal of Fi iff M(P )i,i1 = M(P )i,i2 6= 0.

Especially the Picard number of a Gorenstein toric Fano variety with termi-
nal singularities does only depend on the combinatorial structure of its associated
quasi-smooth Fano polytope.

Proof. Define for a facet F of P the affine relation space

AR(F ) := {α ∈ Qn |
∑

vj∈F

αjvj = 0,
∑

vj∈F

αj = 0, and αj = 0 if vj 6∈ F}.
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If F is simplicial, AR(F ) = 0 obviously. If F is a parallelogram facet with
diagonals [vj1 , vj3 ], [vj2 , vj4 ], then AR(F ) = Z(ej1 + ej3 − ej2 − ej4) = Z(ej2 +
ej4 − ej1 − ej3) as is easily seen from the definition.

Now the proposition follows immediately from [Eik93, Thm. 4.1], which
states:

Pic(X) ∼= Z
n−3−dim

P

facets F of P

AR(F )
.

Remark 4.4.3. One should remark that instead of mechanically computing
the rank of the matrix M(P ) it is very often possible to directly derive the
value of λ(P ) from the combinatorial structure of the parallelogram facets of
the polytope P by identifying rows with parallelograms. This means that certain
operations on the rows correspond to some on the parallelograms, starting with
the set of parallelogram facets of P . The following guidelines (i) to (iii) give,
when recursively used, in most cases a basis of parallelograms, i.e. the corre-
sponding rows in M(P ) form a basis of the row space of M(P ), thereby giving
λ(P ).

(i) If there is a vertex contained in only one parallelogram F , calculate a
basis of the row space without F and append F to get a basis of the whole row
space.

(ii) If there is a cycle of parallelograms, i.e. a closed sequence of parallelo-
grams such that each pair of adjacent ones has exactly one common edge and
any two of these common edges have empty intersection, then removing any
parallelogram gives a basis of the corresponding row space.

(iii) If there are parallelograms F = conv(a, b, c, d) and F ′ = conv(a′, b′, c′, d′)
with the common edge [b, c] = [a′, d′] for b = a′ and c = d′, then the associated
row space is also generated by F and F ′′ := conv(a, b′, c′, d). This has the ad-
vantage that F, F ′ can be substituted by F, F ′′, where for instance b is contained
in one parallelogram less. It is important to note that F ′′ is in general only a
lattice parallelogram but no facet of P any more. But this is irrelevant for the
continuing calculation of λ(P ).

Example 4.4.4. Let P as usual a quasi-smooth Fano polytope.

1. If p = 0, ρX = n− 3 as is expected for a nonsingular toric variety.

2. If p ≤ 2, then λ(P ) = p. If p = 3, then λ(P ) = 3 except when the
parallelogram facets of P form a prisma. In this case λ(P ) = 2 by 4.4.3(ii).

3. The cube 8.21 has λ(P ) = 4. This follows from applying 4.4.3(ii) two times
to get a basis of four parallelogram facets, as is immediately checked by
4.4.3(i). Therefore ρX = 1. The cube is simple, so this could have also
been concluded from [Eik93, Thm. 4.6]. As can be seen from the classi-
fication 8.21 is the only quasi-smooth Fano polytope with parallelogram
facets that is simple, because it is the only one to satisfy the equivalent
equation n = 2f2 − 4 (see [Eik93, Lemma 3.6]).
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In the tables below now all quasi-smooth Fano polytopes P are listed with
the following invariants: n = f0 ist the number of vertices, p is the number of
parallelograms facets and f2 the number of facets of P , ρX the Picard number
and deg(X) = (−KX)3 the anticanonical degree of the Gorenstein toric Fano
variety X = X(M,ΣP ) with terminal singularities, here we have by (3.7)

deg(X) = 3! vol(P ∗).

First the list of all 18 smooth Fano polytopes (i.e. p = 0) in the notation of
[Bat99]:

n0 n f2 ρX deg(X)
P3 4 4 1 64
B1 5 6 2 62
B2 5 6 2 56
B3 5 6 2 54
B4 5 6 2 54
C1 6 8 3 52
C2 6 8 3 50
C3 6 8 3 48
C4 6 8 3 48
C5 6 8 3 44
D1 6 8 3 50
D2 6 8 3 46
E1 7 10 4 46
E2 7 10 4 44
E3 7 10 4 42
E4 7 10 4 40
F1 8 12 5 36
F2 8 12 5 36

Now the list of all 82 quasi-smooth Fano polytopes with p > 0, here the
last column gives a reference to Proposition 4.3.3, if there are no AS-points,
or otherwise to the proof of one of the Lemmas 4.3.9, 4.3.10, 4.3.11, where the
isomorphism type according to Prop. 4.2.17 has been described.

n0 n p f2 ρX deg(X) type of P
5.1 5 1 5 1 54 4.3.3
6.1 6 1 7 2 54 4.3.9(II)
6.2 6 1 7 2 46 4.3.3
6.3 6 1 7 2 46 4.3.9(I(g))
6.4 6 1 7 2 48 4.3.3
7.1 7 1 9 3 48 4.3.9(I(f))
7.2 7 1 9 3 40 4.3.3
7.3 7 1 9 3 38 4.3.3
7.4 7 1 9 3 42 4.3.10(I(d))
7.5 7 1 9 3 46 4.3.9(II)
7.6 7 2 8 2 46 4.3.10(II)
7.7 7 1 9 3 42 4.3.9(I(h))
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n0 n p f2 ρX deg(X) type of P
7.8 7 1 9 3 42 4.3.9(I(d))
7.9 7 1 9 3 44 4.3.10(I(b))
7.10 7 2 8 2 38 4.3.10(I(h))
7.11 7 3 7 1 40 4.3.3
7.12 7 2 8 2 40 4.3.10(I(a))
7.13 7 3 7 2 40 4.3.3
7.14 7 1 9 3 38 4.3.9(I(g))
8.1 8 1 11 4 36 4.3.9(I(f))
8.2 8 3 9 3 32 4.3.3
8.3 8 1 11 4 38 4.3.9(I(b))
8.4 8 1 11 4 36 4.3.9(I(a))
8.5 8 2 10 3 42 4.3.9(II)
8.6 8 3 9 2 40 4.3.10(I(i))
8.7 8 2 10 3 36 4.3.9(II)
8.8 8 2 10 3 34 4.3.9(I(d))
8.9 8 2 10 3 38 4.3.9(II)
8.10 8 2 10 3 36 4.3.11(IIB2(b))
8.11 8 2 10 3 38 4.3.9(I(e))
8.12 8 3 9 2 34 4.3.10(I(a))
8.13 8 2 10 3 36 4.3.10(I(a))
8.14 8 1 11 4 40 4.3.9(I(d))
8.15 8 2 10 3 38 4.3.10(I(d))
8.16 8 2 10 3 42 4.3.10(II)
8.17 8 2 10 3 38 4.3.10(I(d))
8.18 8 3 9 2 38 4.3.10(I(b))
8.19 8 3 9 2 38 4.3.11(I(c))
8.20 8 4 8 2 32 4.3.11(IIB2(a))
8.21 8 6 6 1 32 4.3.3
9.1 9 5 9 2 32 4.3.11(I(b))
9.2 9 5 9 2 30 4.3.11(IIB1(a))
9.3 9 4 10 2 30 4.3.9(II)
9.4 9 4 10 2 34 4.3.10(I(a))
9.5 9 4 10 2 30 4.3.10(I(b))
9.6 9 3 11 3 36 4.3.9(II)
9.7 9 3 11 3 38 4.3.10(I(f))
9.8 9 3 11 3 34 4.3.9(I(d))
9.9 9 3 11 3 34 4.3.10(I(d))
9.10 9 3 11 3 36 4.3.10(I(b))
9.11 9 3 11 3 32 4.3.10(I(a))
9.12 9 3 11 3 30 4.3.10(I(d))
9.13 9 3 11 3 32 4.3.10(I(a))
9.14 9 3 11 3 32 4.3.9(I(e))
9.15 9 2 12 4 34 4.3.10(I(a))
9.16 9 2 12 4 36 4.3.10(I(b))
9.17 9 2 12 4 32 4.3.9(I(a))
9.18 9 2 12 4 32 4.3.9(I(d))
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n0 n p f2 ρX deg(X) type of P
10.1 10 4 12 4 28 4.3.9(I(b))
10.2 10 4 12 3 30 4.3.10(I(e))
10.3 10 5 11 2 34 4.3.10(II)
10.4 10 5 11 3 28 4.3.9(I(d))
10.5 10 4 12 3 32 4.3.10(I(a))
10.6 10 4 12 3 30 4.3.10(I(d))
10.7 10 5 11 2 30 4.3.10(I(b))
10.8 10 5 11 3 28 4.3.10(II)
10.9 10 3 13 4 34 4.3.10(I(b))
10.10 10 5 11 2 28 4.3.10(I(a))
10.11 10 4 12 3 28 4.3.10(I(b))
10.12 10 3 13 4 30 4.3.10(I(a))
10.13 10 5 11 2 28 4.3.11(IIB1(a))
11.1 11 6 12 2 28 4.3.10(I(a))
11.2 11 5 13 3 28 4.3.10(I(b))
11.3 11 6 12 2 26 4.3.10(I(d))
11.4 11 5 13 3 26 4.3.10(I(b))
11.5 11 8 10 2 26 4.3.11(I(b))
11.6 11 6 12 2 26 4.3.11(I(c))
12.1 12 8 12 2 24 4.3.10(I(b))
12.2 12 7 13 3 24 4.3.11(I(a))
12.3 12 6 14 4 24 4.3.11(IIB2(b))
13.1 13 9 13 1 22 4.3.11(I(a))
14.1 14 12 12 2 20 4.3.11(I(a))

Remark 4.4.5. As will be seen from the list the only quasi-smooth Fano poly-
topes where also the polar polytope is quasi-smooth are the self-dual polytope
13.1 and the dual pair 12.3, 14.1. These polytopes are also the only one that
satisfy the obstruction deg(X) = 2f2 − 4 as given in Prop. 4.4.1. By the way
14.1 is exactly Z3 (see 3.5.1) and 12.3 is hence Z∗

3 , that is, the inner polytope on
the third page of this thesis. Here are the figures of these polytopes, visualized
by the software package polymake [GJ00, GJ05]:

The quasi-smooth Fano polytope 12.3 (∼= Z∗
3 ):
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The quasi-smooth Fano polytope 13.1 (self-dual):

The quasi-smooth Fano polytope 14.1 (∼= Z3):



Chapter 5

The set of roots

Introduction

In this paper we study the set of roots that is essential for determining the
automorphism group of a complete toric variety. Using these results we can give
criteria for the automorphism group of a complete toric variety to be reductive.

Here one source of motivation comes from the following result (for the defi-
nition of an Einstein-Kähler metric see [BS99] or [WZ04]):

Theorem (Matsushima 1957). If a nonsingular Fano variety X admits an
Einstein-Kähler metric, then Aut(X) is a reductive algebraic group.

In 1983 Futaki introduced the so called Futaki character, whose vanishing is
another important necessary condition for the existence of an Einstein-Kähler
metric. For a nonsingular toric Fano variety with reductive automorphism group
there is an explicit criterion (see [Mab87, Cor. 5.5]):

Theorem (Mabuchi 1987). Let X be a nonsingular toric Fano variety with
Aut(X) reductive.

The Futaki character of X vanishes if and only if the barycenter of P is zero,
where P is the reflexive polytope with X ∼= XP (see 3.1.5).

In [BS99, Thm. 1.1] Batyrev and Selivanova were able to give a sufficient
criterion for the existence of an Einstein-Kähler metric:

Theorem (Batyrev/Selivanova 1999). Let X be a nonsingular toric Fano
variety. Let P be the reflexive polytope with X ∼= XP .

If X is symmetric, i.e., the group of lattice automorphisms leaving P invari-
ant has no non-zero fixpoints, then X admits an Einstein-Kähler metric.

In particular they got as a Corollary [BS99, Cor. 1.2] that the automorphism
group of such a symmetric X is reductive. Expressed in combinatorial terms
this just means that the set of lattice points in the relative interiors of facets
of P is centrally symmetric. So they asked whether a direct proof of this result
exists. Indeed there is even a generalization to complete toric varieties with a
simple combinatorial proof (see Theorem 5.3.1(1) and Prop. 5.4.2):

Theorem. Let X be a complete toric variety.
If the group of automorphisms of the associated fan has no non-zero fixpoints,

then Aut(X) is reductive.

119
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Motivated by above results it was conjectured by Batyrev that in the case
of a nonsingular toric Fano variety already the vanishing of the barycenter of
the associated reflexive polytope were sufficient for the automorphism group to
be reductive. Indeed there is even the following more general result that has a
purely convex-geometric proof (see Theorem 5.3.1(2i)):

Theorem. Let X be a Gorenstein toric Fano variety. Let P be the reflexive
polytope with X ∼= XP .

If the barycenter of P is zero, then Aut(X) is reductive.

Only very recently Xu-Jia Wang and Xiaohua Zhu could prove that the van-
ishing of the Futaki character is even sufficient for the existence of an Einstein-
Kähler metric in the toric case (see [WZ04, Cor. 1.3]):

Theorem (Wang/Zhu 2004). Let X be a nonsingular toric Fano variety.
Then X admits an Einstein-Kähler metric if and only the Futaki character

of X vanishes.

Combined with the previous results this yields a generalization of the above
theorem of Mabuchi that is also implicit in [WZ04, Lemma 2.2]:

Corollary. Let X be a nonsingular toric Fano variety.
Then X admits an Einstein-Kähler metric if and only if the barycenter of P

is zero, where P is the reflexive polytope with X ∼= XP .

It is now conjectured by Batyrev that this result may also hold in the singular
case of a Gorenstein toric Fano variety.

Another source of motivation that orginated this research was the aim to
give mathematical explanations for observations made by Batyrev, Kreuzer and
the author in the computer database [KS04b] of 3- and 4-dimensional reflexive
polytopes. Here one of the main results is a necessary condition for the auto-
morphism group of a complete toric variety to be reductive that is given by the
following sharp upper bound on the dimension (see Theorem 5.1.25):

Theorem. Let X be a d-dimensional complete toric variety that is not a product
of projective spaces.

If Aut(X) is reductive, then dim Aut(X)

{

= 2 , for d = 2
≤ d2 − 2d+ 4 , for d ≥ 3

This chapter is organized as follows:
The first section deals with the automorphism group Aut(X) of a d-dimen-

sional complete toric variety X. Here the set of roots R plays a crucial part in
determining the dimension and whether the group is reductive (see Prop. 5.1.3).
Using results of Cox in [Cox95] we construct families of roots that parametrize
the set of semisimple roots S := R ∩ −R in a geometrically convenient way,
these are called S-root bases. As an application we show in Prop. 5.1.19 that X
is isomorphic to a product of projective spaces if and only if there are d linearly
independent semisimple roots. When Aut(X) is reductive, we obtain the bound
dim Aut(X) ≤ d2 +2d, with equality iff X ∼= Pd (see 5.1.20). Moreover studying
this approach in more detail we get in Prop. 5.1.22 the existence of some special
families of roots that yields several restrictions on the set R (see 5.1.23 and
5.1.24). From this we can derive the above bound on dim Aut(X) in Theorem
5.1.25.
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In the second section we more closely examine the case of a d-dimensional
Gorenstein toric Fano variety X = XP associated to a reflexive polytope P .
Here a root of X is just a lattice point in the relative interior of a facet of P ,
so the results of the previous section have a direct geometric interpretation.
For instance we obtain that P has at most 2d facets containing roots of P , with
equality if and only if X is the product of d projective lines (see Corollary 5.2.4).
Furthermore the intersection of P with the space spanned by all semisimple roots
is a reflexive polytope associated to a product of projective spaces (see Theorem
5.2.12).

In the third section we present and discuss several equivalent and sufficient
combinatorial criteria for the automorphism group of a complete toric variety,
respectively a Gorenstein toric Fano variety, to be reductive (see Theorem 5.3.1).

In the fourth section we deal with the above mentioned notion of a symmetric
toric variety, and sketch the proof of the classification of all three-dimensional
symmetric reflexive polytopes (see Theorem 5.4.5).

The fifth section is concerned with an analogue of the notion of the Ehrhart
polynomial. Here we do not count lattice points in multiples of lattice poly-
topes but we sum them. This yields a vector-polynomial and we determine the
two heighest coefficients (see Prop. 5.5.2). Their vanishing is another strong
sufficient condition for the automorphism group to be reductive (see Cor. 5.5.5).

In the last section we compare all these combinatorial conditions and give
several examples.

The work in the last two sections was done in collaboration with M. Kreuzer.

Summary of most important new results of this chapter:

· A characterization of products of projective spaces (Prop. 5.1.19, p. 127)

· A sharp upper bound on the dimension of the reductive automorphism
group of a complete toric variety (Thm. 5.1.25, p. 129)

· A d-dimensional reflexive polytope has at most 2d facets containing lattice
points in their interior, with equality if and only if isomorphic to [−1, 1]d

(Corollary 5.2.4, p. 130)

· The intersection of a reflexive polytope with the space spanned by all
semisimple roots is a reflexive polytope associated to a product of projec-
tive spaces (Theorem 5.2.12, p. 133).

· We give equivalent and sufficient combinatorial criteria for the automor-
phism group of a complete toric variety, respectively a Gorenstein toric
Fano variety to be reductive; including the vanishing of the barycenter
(Theorem 5.3.1, p. 134)

· There are up to isomorphism 31 three-dimensional symmetric reflexive
polytopes (Theorem 5.4.5, p. 139).

5.1 The set of roots of a complete toric variety

In this section the set of roots of a complete toric variety is investigated, and
some classification results and bounds on the dimension of the automorphism
group are achieved.
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Throughout the section let 4 be a complete fan in NR with associated com-
plete toric variety X = X(N,4).

Definition 5.1.1. Let R be the set of Demazure roots of 4, i.e.,

R := {m ∈M | ∃ τ ∈ 4(1) : 〈vτ ,m〉 = −1 and ∀ τ ′ ∈ 4(1)\{τ} : 〈vτ ′ ,m〉 ≥ 0}.

For m ∈ R we denote by ηm the unique primitive generator vτ of the unique
ray τ with 〈vτ ,m〉 = −1. For a subset A ⊆ R we define η(A) := {ηm : m ∈ A}.

Let S := R ∩ (−R) = {m ∈ R : −m ∈ R} be the set of semisimple roots
and U := R\S = {m ∈ R : −m 6∈ R} the set of unipotent roots. We say that
4 is semisimple, if R = S, or equivalently U = ∅.

Furthermore we define S1 := {x ∈ S : ηx 6∈ η(U)} and S2 := S\S1,
analogously U1 := {x ∈ U : ηx 6∈ η(S)} and U2 := U\U1. In particular
η(S1) ∩ η(S2) = ∅ and η(S2) = η(U2).

Usually the set −R is denoted as the set of Demazure roots (see [Oda88,
Prop. 3.13]), however the sign convention here will turn out to be more conve-
nient when considering normal fans of polytopes. Note that R only depends on
the set of rays 4(1).

Here is a direct combinatorical proof of a well-known fact:

Proposition 5.1.2. |R| <∞.

Proof. Since 4 is complete, the origin is in the interior of the convex hull of
{vτ}τ∈4(1). By Steinitz’s theorem 1.5.2 we find a subset I ⊆ 4(1) containing
an R-basis of NR such that 0 =

∑

τ∈I kτvτ for positive integers {kτ}τ∈I . For
m ∈ R this yields

∑

pos(ηm)6=τ∈I

kτ 〈vτ ,m〉 = kpos(ηm),

hence 〈vτ ,m〉 ∈ {−1, 0, . . . , kpos(ηm)} for all τ ∈ I. Since I contains an R-basis
of NR, there are only finitely many choices for the coordinates of m ∈ R in a
dual R-basis of MR.

For a root m ∈ R we get a one-parameter subgroup xm : C → Aut(X).
Then the identity component Aut◦(X) is a semidirect product of a reductive
algebraic subgroup containing the big torus (C∗)d and having S as a root system
and the unipotent radical that is generated by {xm(C) : m ∈ U}. Furthermore
Aut(X) is generated by Aut◦(X) and the finite number of automorphisms that
are induced by lattice automorphisms of the fan 4. These results are due to
Demazure (see [Oda88, p. 140]) in the nonsingular complete case, and were gen-
eralized by Cox [Cox95, Cor. 4.7] and Bühler [Büh96]. Bruns and Gubeladze
considered the case of a projective toric variety in [BG99, Thm. 5.4]. In partic-
ular there is the following result (recall that an algebraic group is reductive, if
the unipotent radical is trivial).

Proposition 5.1.3.

1. Aut(X) is reductive if and only if 4 is semisimple.

2. dim Aut◦(X) = |R| + d.
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When X is nonsingular, it is well-known (see [Oda88, p. 140]) that each
irreducible component of the root system S is of type A. Here we will give an
explicit description of S and η(R) by orthogonal families of roots that will turn
out to be useful for geometric applications.

When considering roots there is an algebraic Ansatz due to Cox that will
be discussed below. It is very convenient for proofs however has very little
geometric intuition attached. On the other hand there is an approach due to
Bruns and Gubeladze that is especially in the Gorenstein case very close to
convex geometry. We proceed here in a kind of combination of these ideas,
essentially the definitions are close to geometry (and were introduced by the
author before having seen [BG02] and [Cox95]), most results however are proved
in the simplest way using the paper of Cox.

Definition 5.1.4. A pair of roots v, w ∈ R is called orthogonal, in symbols
v⊥w, if 〈ηv, w〉 = 0 = 〈ηw, v〉. In particular η−v 6= ηw 6= ηv 6= η−w.

We remark that the term ’orthogonal’ may be misleading, because most
standard properties do not hold, e.g., v⊥w does not necessarily imply (−v)⊥w.

Lemma 5.1.5. Let B = {b1, . . . , bl} be a non-empty set of roots such that
〈ηbi

, bj〉 = 0 for 1 ≤ j < i ≤ l. Then B is a Z-basis of lin(B) ∩M .

Proof. We prove the base property by induction on l. Let x := λ1b1+· · ·+λlbl ∈
M with λ1, . . . , λl ∈ R. Then λl = −〈ηbl

, x〉 ∈ Z. So x − λlbl = λ1b1 + · · · +
λl−1bl−1 ∈M . Now proceed by induction.

We define two special pairwise orthogonal families of roots:

Definition 5.1.6. Let A ⊆ R.
A pairwise orthogonal family B ⊆ A is called

· A-facet basis, if η(A) = {ηb : b ∈ B} ∪ {η−b : b ∈ B,−b ∈ A}.

· A-root basis, if A = R∩ lin(B).

Remark 5.1.7. When B is an A-root basis, we have lin(A) = lin(B), hence
dimR lin(A) = |B | by 5.1.5. If furthermore B ⊆ S, then Prop. 5.1.12 below
implies that A ⊆ S, A can be easily described by B, and B is also an A-facet
basis. Note however that in general an S-root basis is not a fundamental system
for the root system S in the usual sense.

For arbitrary A ⊆ R we cannot expect the existence of an A-root basis.
However it is one of the goals of this section to show that there are always R-
facet bases (5.1.22(2)) and S-root bases (5.1.17). To explicitly construct these
families an algebraic approach due to Cox shall now be discussed:

In [Cox95] Cox described R as a set of ordered pairs of monomials in the
homogeneous coordinate ring of the toric variety. For this we denote by S :=
C[xτ : τ ∈ 4(1)] the homogeneous coordinate ring of X, i.e., S is just a
polynomial ring where any monomial in S is naturally graded by the class
group Cl(X), i.e., the degree of a monomial

∏

τ x
kτ
τ is the class of the Weil

divisor
∑

τ kτVτ , where Vτ is the torus-invariant prime divisor corresponding to
the ray τ . Recall that each τ ∩N is generated by vτ .
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We let Y denote the set of indeterminates {xτ : τ ∈ 4(1)} and M the set
of monomials in S. For any root m ∈ R we define τm := pos(ηm) ∈ 4(1) and
xm := xτm

∈ Y . Now there is the following fundamental result [Cox95, Lemma
4.4] (with a different sign convention):

Lemma 5.1.8 (Cox 95). In this notation there is a well-defined bijection

h : R → {(xτ , f) ∈ Y ×M, : xτ 6= f, deg(xτ ) = deg(f)},

m 7→ (xm,
∏

τ ′ 6=τm

x
〈vτ′ ,m〉
τ ′ ).

For m ∈ R we have
m ∈ S ⇐⇒ h(m) ∈ Y × Y,

in this case h(m) = (xm, x−m).

The next result can be used to ’orthogonalize’ pairs of roots:

Lemma 5.1.9. Let v, w ∈ R, v 6= −w, 〈ηv, w〉 > 0.
Then 〈ηw, v〉 = 0 and v + w ∈ R.
Moreover p(v, w) := 〈ηv, w〉v + w ∈ R, v⊥p(v, w), ηp(v,w) = ηv+w = ηw.

p(v, w) ∈ S iff v + w ∈ S iff v ∈ S and w ∈ S.

Proof. Let v correspond to (xv, f) and w to (xw, g) as in Lemma 5.1.8. It is
xv 6= xw. The assumption implies that xv appears in the monomial g. Assume
〈ηw, v〉 > 0. Then xw would appear in the monomial f . However since v 6= −w
this is a contradiction to the antisymmetry of the order relation defined in
[Cox95, Lemma 1.3]. The remaining statements are easy to see.

Corollary 5.1.10. v ∈ U and w ∈ S1 implies 〈ηv, w〉 = 0.

Lemma 5.1.9 defines a partial addition on R and generalizes parts of [BG02,
Prop. 3.3] in a paper on polytopal linear groups due to Bruns and Gubeladze.
The setting there is that of so called ’column structures’ of polytopes where
’column vectors’ correspond to roots. Most parts of this lemma were however
already independently known and proven by the author as an application of
Corollary 5.2.8 below in the case of a reflexive polytope.

For an unambiguous description of S it is now convenient to define an equiv-
alence relation on the set of semisimple roots.

Definition 5.1.11. Let v ≡ w (v is equivalent to w), if v, w ∈ S, v 6= w and
η−v = η−w. In particular this yields 〈η−v, w〉 = −〈η−v,−w〉 = 1.

Proposition 5.1.12. Let A ⊆ R and B ⊆ S an A-root basis partitioned into t
equivalence classes of order c1, . . . , ct. Then:

A = {±b : b ∈ B} ∪ {b− b′ : b, b′ ∈ B, b 6= b′, b ≡ b′} ⊆ S,
|A | = |B | +∑t

i=1 c
2
i ≤ |B | + |B |2,

η(A) = {η±b : b ∈ B}, |η(A) | = |B | + t ≤ 2|B |.
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Proof. Only the first equation has to be proven: Let m ∈ A, by 5.1.5 we have
m =

∑

b∈B λbb for λb ∈ Z. Let l :=
∑

b∈B |λb |. Proceed by induction on l,
let l > 1. By orthogonality we have −1 ≤ 〈ηb,m〉 = −λb, hence λb ≤ 1 for all
b ∈ B. Assume there is an element b ∈ B with λb < 0. Lemma 5.1.9 implies
b +m ∈ lin(B) ∩ R = A, so b +m ∈ S by induction hypothesis. Now Lemma
5.1.9 yields −m ∈ A. Hence λb = −1. Therefore λb ∈ {1, 0,−1} for all b ∈ B.
Assume l > 2. By possibly replacing m with −m we can achieve that there are
two elements b, b′ ∈ B with λb = 1 = λb′ , hence ηb = ηm = ηb′ , a contradiction.
Therefore l = 2, and there are two elements b, b′ ∈ B with m = b− b′. Assume
b 6≡ b′. Then necessarily 〈η−b′ , b〉 = 0, so ηb = ηm = η−b′ , a contradiction.

Definition 5.1.13. The grading of the polynomial ring S := C[xτ : τ ∈ 4(1)]
by the class group Cl(X) induces a partition of Y into equivalence classes:

1. Let Y1, . . . , Yp be the equivalence classes of order at least two such that
there exists no monomial in M\Y of the same degree.

2. Let Yp+1, . . . , Yq be the remaining classes of order at least two.

3. Let Yq+1, . . . , Yr be the the equivalence classes of order one such that there
exists an monomial in M\Y of the same degree.

4. Let Yr+1, . . . , Ys be the remaining classes of order one.

By Lemma 5.1.8 ordered pairs of indeterminates contained in one of the
equivalence classes Y1, . . ., Yp correspond to roots in S1, ordered pairs in Yp+1,
. . ., Yq correspond to roots in S2. As changing m↔ −m for m ∈ S just means to
reverse the corresponding pair of monomials, we immediately see that −S1 = S1

and −S2 = S2. Moreover Lemma 5.1.8 yields that any root in S1 is orthogonal,
and not equivalent, to any root in S2.

We have:

p = |η(S1) |, q − p = |η(S2) | = |η(U2) |, r − q = |η(U1) |, r = |η(R) |.

We get from Lemma 5.1.8:

|S1 | =

p
∑

i=1

|Yi |(|Yi | − 1), |S2 | =

q
∑

i=p+1

|Yi |(|Yi | − 1).

Moreover if we define for i = p+1, . . . , r the equivalence class Mi consisting
of monomials in M\Y having the same degree as an element in Yi, then we get:

|U1 | =

r
∑

i=q+1

|Mi |, |U2 | =

q
∑

i=p+1

|Yi ||Mi |.

In particular |U2 | 6= ∅ implies |U2 | ≥ 2. Since by Lemma 5.1.8 for i =
p+1, . . . , r no indeterminate in Yi can appear in an monomial in Mi, we obtain
that v, w ∈ U with ηv 6= ηw and deg(xv) = deg(xw) are orthogonal. See Example
5.1.15 for an illustration.
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Example 5.1.14. Let’s look at X = Pd: We let Ed denote the d-dimensional
simplex conv(e1, . . . , ed,−e1−· · ·−ed), where e1, . . . , ed is a Z-basis of N . Hence
P := E∗

d is the reflexive polytope corresponding to d-dimensional projective
space XP = Pd. The homogeneous coordinate ring S = C[x0, . . . , xn] is trivially
graded. Aut(X) is reductive with d2 + d roots. For e∗1, . . . , e

∗
d the dual basis of

M the family b1 := e∗1, b2 := e∗1 − e∗2, . . . , bd := e∗1 − e∗d forms an S-root basis,
where all elements are mutually equivalent.

Example 5.1.15. For another example with X = XP we consider the three-
dimensional reflexive simplex P := conv((1, 0, 0), (1, 3, 0), (1, 0, 3), (−5,−6,−3))
with V(P ∗) = {(−1, 0, 0), (−1, 0, 2), (2,−1,−1), (−1, 1, 0)}. We have dimR S =
2, |S | = 4. F1 and F2 contain one antipodal pair of semisimple roots, while F3

and F4 contain the other pair. F3, F4 each contain three unipotent roots, pairs
of unipotent roots in different facets are orthogonal. We can read this off the
data S = C[x0, x1, x2, x3], Cl(XP ) ∼= Z, deg(x1) = deg(x2) = 1 and deg(x3) =
deg(x4) = 2. Hence Y1 = {x1, x2}, Y2 = {x3, x4}, p = 1, q = r = s = 2,
{x2

1, x1x2, x
2
2} are the elements in M\Y of degree 2. XP is just the weighted

projective space with weights (1, 1, 2, 2).

The next proposition shows how to construct root bases:

Proposition 5.1.16. Let a subset I ⊆ {1, . . . , q} be given. Choose for any
element i ∈ I a family of subset Ki,j ⊆ Yi of cardinality ci,j + 1 for 1 ≤ j ≤ ir.
Denote by Ri,j the set of ci,j semisimple roots corresponding to ordered pairs
in Ki,j with the same fixed second element. Define B := ∪i∈I,1≤j≤irRi,j and
A := lin(B) ∩R.

Then B is an A-root basis partitioned into equivalence classes {Ri,j}, and
any root in A corresponds exactly to an ordered pair in Ki,j for some i ∈ I and
1 ≤ j ≤ ir.

Moreover any A-root basis is given by this construction.

Proof. By construction and Lemma 5.1.8 〈ηv, w〉 = 0 = 〈ηw, v〉 for v, w ∈ B,
v 6= w, hence B is an A-root basis with given equivalence classes. Using Lemma
5.1.8 and the description of A in Prop. 5.1.12 the remaining statements are easy
to see.

For A ⊆ S and v ∈ A we also see that

| {w ∈ A : ηw = ηv} | = | {w ∈ A : ηw = η−v} | .

Choosing I = {1, . . . , q}, ir = 1 for all i, and Ki = Yi, we get (see also
Remark 5.1.7):

Corollary 5.1.17. S-root bases exist, in particular R∩ lin(S) = S. Moreover

dimR lin(S) =
q
∑

i=1

(|Yi | − 1).

Remark 5.1.18. P ′ := conv(S) is a centrally symmetric terminal reflexive
polytope with V(P ′) = ∂P ′ ∩M = S.
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More precisely due to 5.1.12 there is an isomorphism of lattice polytopes
(with respect to lattices lin(S) ∩M and Zc1+···+cq )

conv(S) ∼= (Zc1 ⊕ · · · ⊕ Zcq
)∗,

where ci := |Yi | − 1 for i = 1, . . . , q, and Zn = conv(±[0, 1]n) is the n-
dimensional standard lattice zonotope (see 3.5.1). For a stronger statement
see Theorem 5.2.12.

The existence of an S-root basis yields:

Proposition 5.1.19. A d-dimensional complete toric variety is isomorphic to
a product of projective spaces iff there are d linearly independent semisimple
roots.

In this case

X ∼= P|Y1|−1 × · · · × P|Yq|−1.

Proof. Let q = 1, so there is an S-root basis b1, . . . , bd with η−b1 = · · · = η−bd
.

Assume there exists τ ∈ 4(1) with τ 6∈ {τb1 , . . . , τbd
, τ−b1}. Then 〈vτ , bi〉 = 0

for i = 1, . . . , d, since bi ∈ S. This implies vτ = 0, a contradiction. Therefore
4(1) is determined. Since no cone in 4 contains a linear subspace, this already
implies X ∼= Pd. The general case is treated similarly and left to the reader.

As a corollary we get from the existence of an S-root basis and Prop. 5.1.12:

Corollary 5.1.20. |S | ≤ d2 + d, with equality iff X ∼= Pd.

Moreover using Propositions 5.1.12 and 5.1.16 we can now characterize the
subsets of S that admit root bases:

Corollary 5.1.21. Let A ⊆ S. The following conditions are equivalent:

1. There exists an A-root basis

2. A = S ∩ V for an R-subvectorspace V of MR

3. R∩ lin(x, y) ⊆ A for any x, y ∈ A

4. A = −A, and if x, y ∈ A with x 6= ±y and 〈ηx, y〉 > 0, then p(x, y) ∈ A

The details of the proof are left to the reader (only 4. to 1. has to be proven).

Above results yield now the following existence theorem:

Proposition 5.1.22.

1. There exists an R-linearly independent family B of roots that can be par-
titioned into three pairwise disjoint subsets B1, B2, B3 such that B1 is an
S1-root basis, B2 is an S2-root basis, B1 ∪B2 is an S-root basis and B3 is
a U1-facet basis such that 〈ηb, b′〉 = 0 for all b ∈ B1 ∪B2 and b′ ∈ B3.

Hence dimR lin(S) + |η(U1) | = |B | ≤ d.
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2. There exists an R-facet basis D that can be partitioned into three pairwise
disjoint subsets D1, D2, D3 such that D1 is a U1-facet basis, D2 is a
U2-facet basis, D1 ∪D2 is a U-facet basis and D3 is an S1-root basis.

Hence |η(U1) | + |η(U2) | + dimR lin(S1) = |D | ≤ d.

Proof. 1. Applying 5.1.16 to Y1, . . . , Yp, respectively Yp+1, . . . , Yq, gives the
existence of an S1-root basis B1, respectively an S2-root basis B2. The union
of these two families gives an S-root basis.

Let x ∈ U1. For any b ∈ B1 ∪ B2 we have 〈ηb, x〉 ≥ 0. If 〈ηb, x〉 ≥ 1, then
by 5.1.9 we can substitute p(b, x) ∈ U1 for x because of ηp(b,x) = ηx. Since
the elements in B1 ∪ B2 are pairwise orthogonal, this process finally gives an
element x ∈ U1 with 〈ηb, x〉 = 0 for all b ∈ B1 ∪B2.

Assume now we already have x1, . . . , xl ∈ U1 pairwise orthogonal such that
any one satisfies the previous condition. Let x ∈ U1 with ηx 6= ηxi

for i =
1, . . . , l. First we can assume as before that 〈ηb, x〉 = 0 for all b ∈ B1 ∪ B2 ∪
{x1, . . . , xl}. Now all we have to do is to ”orthogonalize” the set x1, . . . , xl, x.
Let’s do this by induction on i = 1, . . . , l: We assume xj⊥x for j = 1, . . . , i− 1.
Since 〈ηxi

, x〉 = 0, we substitute p(x, xi) for xi because of ηp(x,xi) = ηxi
. Then

x1, . . . , xl is still a pairwise orthogonal family, and we additionally get xj⊥x for
j = 1, . . . , i.

2. As before it is not difficult to get the existence of a U-facet basis D1 ∪D2

such that D1 is a U1-facet basis and D2 is a U2-facet basis. Let D3 be an S1-root
basis. By 5.1.10 〈ηy, x〉 = 0 for all y ∈ D1 ∪D2 and x ∈ S1. For any element in
D3 we now just have to successively modify D1 ∪D2 in the same way as at the
end of 1.

Corollary 5.1.23.

1. |η(U) | ≤ d, where equality implies that η(R) = η(U).

2. |η(U)\η(S) | ≤ codimRlin(S).

3. |η(R) | ≤ 2d, with equality iff X ∼= P1 × · · · × P1.

Proof. 1. Follows from 5.1.22(2). 2. Follows from 5.1.22(1).
3. Let D be the R-facet basis from 5.1.22(2), we have |D | ≤ d. By definition

η(R) = {ηx : x ∈ D1 ∪ D2} ∪ {η±x : x ∈ D3}, this gives the upper bound.
Equality implies D = D3, i.e., R = S, with no element in D equivalent to any
other. Applying the previous proposition we get the desired result.

While the case when MR is spanned by semisimple roots is completely classi-
fied, there are at least some partial results in the case of codimension one. This
research was motivated by the observations of the author that there were no
semisimple reflexive polygons with only one pair of roots (see Corollary 5.2.5)
and that were there no semisimple three-dimensional reflexive polytopes with 6
roots apart from [−1, 1]3 in a list given to the author by Kreuzer [Kre03a].

Proposition 5.1.24. Let dimR lin(S) = d− 1.

1. If |4(1) | 6= η(S), then there exists τ ∈ 4(1)\η(S) such that 4(1)\η(S) ⊆
{±τ}, and we have Vτ ∼= P|Y1|−1 × · · · × P|Yq|−1.
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2. If q = 1, i.e., |S | = d2 − d, then |η(U) | = 1 and η(S) ∩ η(U) = ∅.

Proof. Let b1, . . . , bd−1 be an S-root basis. By 5.1.5 we can find a lattice point
bd ∈ M such that b1, . . . , bd is an Z-basis of M . Let e1, . . . , ed denote the dual
Z-basis of N .

1. Let τ ∈ 4(1)\η(S). Then 〈vτ , bi〉 = 0 for all i = 1, . . . , d − 1, hence
vτ ∈ {±ed}. The set S is by construction canonically the set of roots of Vτ , so
we can apply Prop. 5.1.19.

2. Let q = 1. By 5.1.12 this is equivalent to |S | = (d− 1)2 + d− 1 = d2 − d.
For i = 1, . . . , d − 1 there exist ki ∈ Z such that ηi := ηbi

= −ei + kied. There
exists kd ∈ Z such that ηd := η−b1 = e1 + · · · + ed−1 + kded.

Since |η(S) | = d, there exists τ ∈ 4(1)\η(S), we may assume vτ = ed. Let
x = λ1b1 + · · · + λdbd ∈ M . We have x ∈ R with ηx = ed iff 〈x, ed〉 = −1
and 〈x, ηi〉 ≥ 0 for i = 1, . . . , d. This is equivalent to λd = −1, λi ≤ −ki for
i = 1, . . . , d− 1 and λ1 + · · ·+ λd−1 ≥ kd. Hence there exists a root x ∈ R with
ηx = ed if and only if k1 + · · · + kd ≤ 0.

On the other hand let u := k1b1 + · · · + kd−1bd−1 + bd ∈ M . Then u⊥

is a hyperplane spanned by η1, . . . , ηd−1. We have 〈u, ed〉 = 1 and 〈u, ηd〉 =
k1 + · · ·+ kd. Therefore when |4(1) | = d+1, we get 〈u, ηd〉 < 0, so there exists
x ∈ R with ηx = ed, necessarily ed ∈ η(U). Otherwise for 4(1)\η(S) = {±ed},
the analogous computation for −ed yields that either ed or −ed is in η(U).

Assume η(S) ∩ η(U) 6= ∅, so S2 6= ∅. Use the family B in Prop. 5.1.22(1):
Since by assumption all elements in B1 ∪ B2 are mutually equivalent, however
no element in S1 is equivalent to one in S2, we have B = B2, i.e., S = S2. This
yields |η(U2) | = d. Since |η(U1) | = 1, we get a contradiction to 5.1.23(1).

For Gorenstein toric Fano varieties the second point cannot simply be im-
proved as can be seen from Example 5.1.15.

This result yields sharp upper bounds on dim Aut(X) in the reductive case:

Theorem 5.1.25. Let X be a d-dimensional complete toric variety with reduc-
tive automorphism group. Let n := dim Aut◦(X). Then

n ≤ d2 + 2d, with equality only in the case of projective space.

If d = 2 and X is not a product of projective spaces, then n = 2.
If d ≥ 3 and X is not a product of projective spaces, then

n ≤ d2 − 2d+ 4,

where equality holds iff q = 2 with |Y1 | = 2 and |Y2 | = d− 1.

Proof. Let ci := |Yi | − 1 for i = 1, . . . , q. By 5.1.12 and 5.1.17, we have l :=
c1 + · · · + cq = dimR S and |S | = c21 + · · · + c2q + l ≤ l2 + l. Recall from 5.1.3
that n = |S | + d. From 5.1.19 we get the first statement for l = d (or see
5.1.20). Moreover for the second statement we can assume l = d − 1, since
(d− 2)2 + (d− 2) < d2 − 3d+ 4.

By 5.1.24(2) we have q > 1, since 4 is semisimple; in particular d > 2.
We may assume c1 ≤ . . . ≤ cq.
If q = 2, then c1 + c2 = d− 1, hence either c1 = 1 and c2 = d− 2 (this yields

c1c2 = d− 2), or c1 ≥ 2 and c2 ≥ (d− 1)/2 (this yields c1c2 ≥ d− 1).
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If q ≥ 3, then
∑

i<j cicj ≥ c1(c2 + · · ·+ cq)+ c2c3 = c1(c1 + · · ·+ cq)+ c2c3 −
c1c1 ≥ c1(d− 1) ≥ d− 1.

In any case |S | = c21 + · · · c2q +d−1 = (c1 + . . .+ cq)
2 +d−1−2

∑

i<j cicj ≤
(d−1)2 +d−1+2(2−d) = d2−3d+4, with equality only for q = 2 with c1 = 1
and c2 = d− 2.

The following example shows that the last bound is sharp for any d ≥ 3:

Example 5.1.26. (due to C. Haase, Duke University)
Let P ⊆ Rd be the d-dimensional reflexive polytope defined as the convex hull
of (2E∗

1 ) × {0} × {1} and {0} × (2E∗
d−2) × {−1}, where E∗

k ⊆ Rk denotes as in

5.1.14 the k-dimensional reflexive polytope corresponding to Pk. This implies
that P ∩(R1×Rd−2×{0}) ∼= E∗

1 ×E∗
d−2, NP is semisimple with dimR S = d−1,

and the last upper bound in the previous theorem is attained by XP .

5.2 The set of roots of a reflexive polytope

Throughout the section let P be a d-dimensional reflexive polytope in MR.

In this section we will focus on Gorenstein toric Fano varieties, these varieties
correspond to reflexive polytopes as described in the third chapter (see Cor.
3.1.5). When P is reflexive, we have by definition that the set of roots R of
the normal fan NP is exactly the set of lattice points in the relative interior of
facets of P .

Definition 5.2.1. The set R of roots of P is defined as the set of roots of NP .
Form ∈ R we denote by Fm the unique facet of P that containsm, and we again
define ηm = ηFm

to be the unique primitive inner normal with 〈ηm,Fm〉 = −1.
For a subset A ⊆ R it is convenient to define F(A) := {Fm : m ∈ A}. We say
P is semisimple, if NP is semisimple, i.e., R = −R.

Most results of the previous section have now a direct geometric interpreta-
tion. Here three examples shall be explicitly stated (just use Corollary 5.1.23(1),
the basic fact −S1 = S1, and Corollary 5.1.23(3)):

Corollary 5.2.2. There are at most d facets of P containing unipotent roots.

Corollary 5.2.3. If a facet of P contains an unipotent root and a semisimple
root x, then the facet containing −x also contains an unipotent root.

Corollary 5.2.4. There are at most 2d facets containing roots; equality holds
if and only if P ∼= [−1, 1]d (isomorphic as lattice polytopes).

For another example we apply Prop. 5.1.19 and Prop. 5.1.24(2) to d = 2
to get a characterization of semisimple reflexive polygons without using the
existing classification 3.4.1. The proof relies on the well-known fact that a two-
dimensional terminal Fano polytope is a smooth Fano polytope, e.g., 3.1.8(1).

Corollary 5.2.5. Let P be a two-dimensional reflexive polytope. For k ∈ N>0

let the reflexive polytope Ek be defined as in 5.1.14, i.e., XE∗
k

∼= Pk.

Then P is semisimple iff P is a smooth Fano polytope or P ∼= E∗
2 or P ∼= E2

1 .
P or P ∗ is semisimple iff P or P ∗ is a smooth Fano polytope.
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As an illustration of these results we give the list of reflexive polygons, where
filled squares are unipotent roots and empty squares are semisimple roots:

3 4a 4b 4c

5a 5b 6a=(6a)* 6b=(6b)*

6d=(6d)*6c = (6c)* 7a=(5a)* 7b=(5b)*

8a=(4a)* 8b=(4b)* 8c=(4c)* 9=3*

Especially we see that type 9, where XP corresponds to P2, has the maximal
number 6 of semisimple roots; type 8a, i.e., [−1, 1]2, has the maximal number
4 of facets containing roots; and there is no semisimple polygon with precisely
one pair of roots, as proven in Prop. 5.1.24(2), respectively Thm. 5.1.25.

In general there is a nice property of pairwise orthogonal families of roots:

Proposition 5.2.6. Let B be a non-empty set of pairwise orthogonal roots.

Then F :=
⋂

b∈B

Fb is a non-empty face of P of codimension |B |, and the

sum over all elements in B is a lattice point in the relative interior of F .

Proof. Let B = {b1, . . . , bl} with |B | = l. For i ∈ {1, . . . , l} we define si :=
∑i
j=1 bj and Fi := ∩ij=1Fbj

. Orthogonality implies that {Fb1 , . . . ,Fbl
} is ex-

actly the set of facets containing sl. Therefore sl ∈ relintFl, and since any l-
codimensional face of P is contained in at least l facets, we must have codimFl ≤
l. On the other hand si 6∈ Fi+1 for all i = 1, . . . , l, so F1 ) · · · ) Fl, hence we
obtain codimFl = l.

This proposition can be applied to a U-facet basis (see 5.1.22(2)):

Corollary 5.2.7. If U 6= ∅, then
⋂

F∈F(U)

F is a face of codimension |F(U) | ≤ d.

In particular if P is not semisimple, then the sum over all lattice points in
the non-empty face

⋂

F∈F(U) F is a non-zero fixpoint of AutM (P ).
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To sharpen the results of the previous section we use the elementary but
fundamental property of pairs of lattice points on the boundary of a reflexive
polytope as described in Prop. 3.3.1. This partial addition extends the partial
addition of roots in 5.1.9 (see also [BG02, Def. 3.2]).

Now we easily get:

Lemma 5.2.8. Let v ∈ R, w ∈ ∂P ∩M with w 6∈ Fv and w 6= −v.
Then v + w ∈ ∂P ∩M and z(v, w) ∈ Fv. Moreover

〈ηv, w〉 > 0 iff z(v, w) = av + w for a ≥ 2.

In this case z(v, w) = (〈ηv, w〉 + 1)v + w and v⊥〈ηv, w〉v + w = p(v, w).

Extending Definition 5.1.4 we may also more generally define an intrinsic
notion of orthogonality:

Definition 5.2.9. v⊥w for v, w ∈ ∂P ∩M , if v+w ∈ ∂P and z(v, w) = v+w.

As a corollary of 5.2.6 we get:

Corollary 5.2.10. Let v, w ∈ ∂P ∩M with v+w ∈ ∂P . Then v⊥(z(v, w)− v)
or w⊥(z(v, w) − w).

Moreover if v, w ∈ R, then z(v, w) is in the relative interior of the face
F(v) ∩ F(w) of codimension two.

Remark 5.2.11. As can be immediately seen from the results of the previous
section (or by elementary observations), there are essentially two possibilities
for the set of roots in the span of two linearly independent semisimple roots. In
the case of a reflexive polytope this shall be clearly illustrated:

So let v, w ∈ S with v 6= ±w. By orthogonalizing with Lemma 5.1.9 we can
assume v⊥w. Let A := R ∩ lin(v, w). By 5.1.12 {v, w} is an A-root basis, and
there are two cases:

1. v ≡ w. Hence A = {±v,±w,±(v − w)}.
The previous lemma implies for P ∩ lin(v, w):

v

w

2. v 6≡ w. Hence A = {±v,±w}.
The previous lemma implies for P ∩ lin(v, w):

v

w

Note that v ≡ w if and only if v − w ∈ F(v) ∩ S.
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Now we can improve Prop. 5.1.19 by taking the ambient space of semisimple
roots into account (recall the definition of Ed in 5.1.14).

Theorem 5.2.12. Let B ⊆ S be an A-root basis for a subset A ⊆ R, and
R1, . . . , Rt the partition of B into equivalence classes of order c1, . . . , ct. Then
there are isomorphisms of lattice polytopes (with respect to lattices lin(A) ∩M
and Zc1+···+ct)

P ∩ lin(A) ∼=
t
⊕

i=1

P ∩ lin(Ri) ∼=
t
⊕

i=1

E∗
ci
.

In particular the intersection of P with the space spanned by all semisimple roots
is again a reflexive polytope associated to a product of projective spaces.

Proof. Let t = 1, i.e., all elements inB are mutually equivalent. Let l = |B | ≥ 2,
B = {b1, . . . , bl}, b := b1 + · · · + bl.

Claim: P ∩ lin(b1, . . . , bl) = conv(b, b− (l + 1)bi : i = 1, . . . , l) ∼= E∗
l .

Denote by Q the simplex on the right hand side of the claim, so Q ∼= E∗
l .

By 5.2.6 b ∈ ⋂li=1 Fbi
. Since by assumption 〈η−bi

, b〉 =
∑l
j=1〈η−bi

, bj〉 =
∑l
j=1〈η−bj

, bj〉 = l, it follows from 5.2.8 that z(−bi, b) = b − (l + 1)bi ∈ F−bi

for i = 1, . . . , l. Hence Q ⊆ P ∩ lin(b1, . . . , bl). On the other hand the previous
calculation and orthogonality also implies that Q ∩ Fb1 , . . . , Q ∩ Fbl

, Q ∩ F−b1

are exactly the facets of the simplex Q. This proves the claim.
Let t > 1.
We define for i = 1, . . . , t the reflexive polytopes Qi := P ∩ lin(Ri) ∼= E∗

ci
.

Let xi ∈ Qi∩M for i = 1, . . . , t. We show by induction that x1+ . . .+xs ∈ P
for s = 1, . . . , t. Assume s ≥ 2 and x′ := x1+. . .+xs−1 ∈ P . Without restriction
0 6= xs 6= −x′. Assume x′ ∼ xs. Let F ∈ F(P ) be a facet containing x′ and xs.
Since xs ∈ lin(Rs)∩M , by 5.1.5 xs is an integral linear combination of elements
in Rs, hence there has to exist some bs ∈ Rs such that b = bs or b = −bs satisfies
〈ηF , b〉 = −1. This implies F = F(b). Since x′ ∈ F in the same way there exists
j ∈ {1, . . . , s− 1} such that xj ∈ F(b). This implies 〈ηb, xj〉 = −1, hence again,
since xj ∈ lin(Rj), by 5.1.5 there exists b′ ∈ ±Rj such that 〈ηb, b′〉 = −1, a
contradiction. Hence by 3.3.1 we get x′ + xs ∈ P as desired.

Therefore the polytope Q :=
⊕t

i=1 P ∩ lin(Ri) is contained in P ∩ lin(A).
However since the facets ofQ are exactlyQ∩F±bi

for i = 1, . . . , t, both polytopes
have to be equal.

Remark 5.2.13. The figure on the title of this work shows exactly the situation
for P ∼= E∗

3 , where the inner polytope is the convex hull of all roots (isomorphic
to Z3, see Remark 5.1.18) and the outer simplex is E∗

3 . The visualization was
done using the program polymake [GJ00, GJ05].

5.3 Criteria for a reductive automorphism group

In this section we give several criteria for the automorphism group of a complete
toric variety, respectively a Gorenstein toric Fano variety, to be reductive.
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Theorem 5.3.1.

1. Let X = X(N,4) be a complete toric variety.

The following conditions are equivalent:

(a) 4 is semisimple, i.e., Aut(X) is reductive

(b) conv(R) is centrally symmetric

(c) conv(R) is a centrally symmetric terminal reflexive polytope (with
respect to the lattice M ∩ lin(R)) with vertices R

(d)
∑

x∈R

x = 0

(e)
∑

τ∈4(1)

〈vτ , x〉 = 0 for all x ∈ R

If
∑

τ∈4(1)

vτ = 0, then 4 is semisimple.

2. Let XP be a Gorenstein toric Fano variety for P ⊆MR reflexive.

The following conditions are equivalent:

(a) P is semisimple, i.e., Aut(XP ) is reductive

(b)
∑

x∈R

x = 0

(c)
∑

v∈V(P∗)

〈v, x〉 = 0 for all x ∈ R

(d)
∑

y∈P∗∩N

〈y, x〉 = 0 for all x ∈ R

(e) 〈bP∗ , x〉 = 0 for all x ∈ R
(f) rvol(F ′) = rvol(Fx) for all x ∈ R, F ′ ∈ F(P ) with 〈ηF ′ , x〉 > 0

(g) |F ′ ∩M | = |Fx ∩M | for all x ∈ R, F ′ ∈ F(P ) with 〈ηF ′ , x〉 > 0

Any one of the following conditions is sufficient for P to be semisimple:

i. bP = 0

ii.
∑

m∈P∩M

m = 0

iii. bP∗ = 0

iv.
∑

y∈P∗∩N

y = 0

v.
∑

v∈V(P∗)

v = 0

vi. All facets of P have the same relative lattice volume

vii. All facets of P have the same number of lattice points

Condition vi. implies v., e.g., if P is a smooth Fano polytope.

Remark 5.3.2. Using the list of d-dimensional reflexive polytopes for d ≤ 4 and
the computer program PALP due to Kreuzer and Skarke (see [KS04a, KS04b])
we found examples showing that in the second part of the theorem the sufficient
conditions i.− v. are pairwise independent, i.e., in general no condition implies
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any other. These examples can be found in the next section. For instance the
following seven column vectors are the vertices of a four-dimensional reflexive
polytope P that satisfies bP = 0,

∑

m∈P∩M m = 0,
∑

v∈V(P ) v = 0, however P ∗

does not satisfy any of these three conditions.
1 0 0 0 −1 −1 1
0 1 0 0 0 −1 0
0 0 1 0 −1 0 0
0 0 0 1 0 0 −1

Example 5.3.3. The ”dual” of condition v. is not a sufficient condition: The
following polygon is not semisimple, however the sum of the five vertices is zero.

For the proof of Theorem 5.3.1 we need some lemmas. The first is just a
simple observation:

Lemma 5.3.4. Let 4 be a complete fan in NR.

m ∈ R =⇒
∑

τ∈4(1)

〈vτ ,m〉 ∈ N,

in this case
m ∈ S ⇐⇒

∑

τ∈4(1)

〈vτ ,m〉 = 0.

Lemma 5.3.5. Let 4 be a complete fan in NR.
Let A ⊆ R be a subset such that

∑

m∈A

kmm = 0

for some positive integers {km}m∈A. Then A ⊆ S.

Proof. Assume A ∩ U 6= ∅. Then by 5.3.4
0 =

∑

τ∈4(1)

〈vτ ,
∑

m∈A

kmm〉 =
∑

m∈A∩U

km
∑

τ∈4(1)

〈vτ ,m〉 ≥ 1, a contradiction.

In the case of a reflexive polytope the following result is fundamental:

Lemma 5.3.6. Let P be a d-dimensional reflexive polytope in MR.
Let m ∈ R. Define the canonical projection map along m

πm : MR →MR/Rm.

Then πm induces an isomorphism of lattice polytopes

Fm → πm(P ),

with respect to the lattices aff(F ) ∩M and M/Zm.
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Proof. Prop. 3.2.2 immediately implies that πm : Fm → πm(P ) is a bijection.
It is even an isomorphism of lattice polytopes by 3.1.4(11).

Another proof can be easily done using only the definition of a root.

Using this lemma we get a reformulation of 5.3.4. Note that A − B :=
{a−b : a ∈ A, b ∈ B} for arbitrary sets A,B ⊆ Rd; a facet F of a d-dimensional
polytope Q ⊆MR is said to be parallel to Rx for some x ∈MR, if 〈ηF , x〉 = 0.

Lemma 5.3.7. Let P be a d-dimensional reflexive polytope in MR.
For m ∈ R with F := Fm we have:

1. P ⊆ F−R≥0x, P∩M ⊆ (F∩M)−Nx, {n ∈ P ∗∩N : 〈n,m〉 < 0} = {ηm}.

2. P = conv(F, F ′) iff there is only one facet F ′ with 〈ηF ′ ,m〉 > 0.

3. m ∈ S iff the previous condition is satisfied and 〈ηF ′ ,m〉 = 1.

In this case F ′ = F−m. Furthermore F and F ′ are naturally isomorphic
as lattice polytopes and {n ∈ P ∗ ∩N : 〈n,m〉 6= 0} = {ηm, η−m}.

Lemma 5.3.8. Let P be a d-dimensional reflexive polytope in MR.
For v ∈ V(P ∗) we denote by v∗ ∈ F(P ) the corresponding facet of P . Then

∑

v∈V(P∗)

rvol(v∗) v = 0.

Proof. Having chosen a fixed lattice basis of M we denote by vol the associated
differential-geometric volume in MR

∼= Rd. Let F ∈ F(P ) arbitrary. Since ηF is
primitive, it is a well-known fact that the determinant of the lattice aff(F )∩M ,
i.e., the volume of a fundamental paralleloped, is exactly ‖ηF ‖, hence we get
vol(F ) = rvol(F ) · ‖ηF ‖. The easy direction of the so called existence theorem
of Minkowski (see [BF71, no. 60]) yields

∑

F∈F(P ) rvol(F ) ηF = 0.

The approximation approach in the next proof is based upon an idea of
Batyrev.

Lemma 5.3.9. Let Q ⊆ MR be a d-dimensional polytope with a facet F and
x ∈ aff(F ) such that Q ⊆ F − R≥0x. For q ∈ Q with q = y − λx, where y ∈ F
and λ ∈ R≥0, we define A(q) := y − 2λx. This definition extends uniquely to
an affine map A of MR.

Then A(bQ) is either in the interior of Q or in the relative interior of a facet
of Q not parallel to Rx. The last case happens exactly iff there exists only one
facet F ′ 6= F not parallel to Rx.

Proof. First assume there is exactly one facet F ′ 6= F not parallel to Rx. This
implies Q = conv(F, F ′). Choose an R-basis e1, . . . , ed of MR such that ed = x
and Re1, . . . ,Red−1 are parallel to F . Now let y ∈ F and define h(y) ∈ R≥0

such that y−h(y)x ∈ F ′. For k ∈ N>0 let Fk(y) := y+∪d−1
i=1 [−1/(2k), 1/(2k)]ei

and Qk(y) := Fk(y) − [0, h(y)]x. Then bQk(y) = y − h(y)/2x and A(bQk(y)) =
y − h(y)x ∈ F ′. Let M ′ :=< e1, . . . , ed−1 >Z and z ∈ relintF . For any k ∈ N>0
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we define Gk := (z + M ′/k) ∩ F and Fk := ∪y∈Gk
Fk(y). For k → ∞ the

sets Fk converge uniformly to F . Therefore also Qk := ∪y∈Gk
Qk(y) converges

uniformly to Q for k → ∞. This implies that bQk
converges to bQ for k → ∞.

Since A is affine and bQk
is a finite convex combination of {bQk(y) : y ∈ Gk}

for any k ∈ N>0, also A(bQk
) is a finite convex combination of {A(bQk(y) : y ∈

Gk} ⊆ F ′ for any k ∈ N>0. This implies A(bQk
) ∈ F ′ for any k ∈ N>0. Since

A is continuous and F ′ is closed, this yields A(bQ) ∈ F ′. Moreover obviously
A(bQ) ∈ relintF ′.

Now let there be more than one facet different from F and not parallel to Rx.
Then we can choose a polyhedral subdivision of Q into finitely many polytopes
{Kj} such that any Kj satifies the assumption of the previous case. Hence,
since bQ is a proper convex combination of {bKj

}, also A(bQ) is a proper convex
combination of {A(bKj

)} ⊆ ∂Q. However since not all A(bKj
) are contained in

one facet, A(bQ) is in the interior of Q.

Proof of Theorem 5.3.1. The first part of the theorem, when X is a complete
toric variety, follows from 5.1.18, 5.3.4 and 5.3.5. So letX = XP for P ⊆MR a d-
dimensional reflexive polytope, and we consider the second part of the theorem.

(a) and (b) are equivalent by 5.3.5. The equivalences of (a), (c), (d), (e) and
the sufficiency of iii., iv., v. follow from 5.3.4 and 5.3.7.

(f) and (g) are necessary conditions for semisimplicity due to 5.3.7.

Let (f) be satisfied and x ∈ R. By 5.3.7(1) and 5.3.8 we have

rvol(Fx) =
∑

v∈V(P∗), 〈v,x〉>0

rvol(v∗)〈v, x〉.

By assumption there is only one vertex v ∈ V(P ∗) with 〈v, x〉 > 0, furthermore
〈v, x〉 = 1. Hence 5.3.7 implies x ∈ S.

Let (g) be satisfied. Let x ∈ R, F := Fx and F ′ ∈ F(P ) with 〈ηF ′ , x〉 > 0.
Due to 5.3.7(1) and by assumption there is a bijective map h : F ′ → F of lattice
polytopes, i.e., h(F ′ ∩M) = F ∩M . Now there exists a lattice point x′ ∈ F ′

with h(x′) = x, necessarily x′ = −x ∈ relintF ′, so x ∈ S.

The sufficiency of vi., vii. is now trivial, 5.3.8 shows that vi. implies v.

From now on let x ∈ R and A the affine map defined as in 5.3.9 for Q := P
and F := Fx.

Let i. be satisfied. By 5.3.7(1) we can apply Lemma 5.3.9 to get −x =
x− 2x = A(0) = A(bP ) ∈ R, since P is a canonical Fano polytope.

Finally let ii. be satisfied. For any y ∈ F ∩ M define xy ∈ P ∩ M with
xy := y − kx for k ∈ N maximal, and let Ty := [y, xy]. Then 5.3.7(1) implies
that

−x = A(0) = A

(

1
|P∩M|

∑

m∈P∩M

m

)

= A

(

∑

y∈F∩M

|Ty∩M|
|P∩M|

1
|Ty∩M|

∑

m∈Ty∩M

m

)

=
∑

y∈F∩M

|Ty∩M|
|P∩M| A

(

1
|Ty∩M|

∑

m∈Ty∩M

m

)

=
∑

y∈F∩M

|Ty∩M|
|P∩M| xy.

Hence −x is a proper convex combination of {xy}y∈F∩M , so −x ∈ R.
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5.4 Symmetric toric varieties

Definition 5.4.1. A toric variety X = X(N,4) is called symmetric, if the
linear automorphism group of the fan 4 has only the origin as a fixpoint.

A lattice polytope Q ⊆ NR is called symmetric, if the group of linear auto-
morphisms AutN (Q) of Q has only the origin as a fixpoint.

When X is a Fano variety, i.e., 4 = ΣQ for a Fano polytope Q ⊆ NR, then
X is symmetric iff Q is symmetric.

In particular centrally symmetric lattice polytopes are symmetric and prod-
ucts of projective spaces are symmetric. Moreover symmetry is invariant under
dualizing as observed by Batyrev, hence the previous definition equals the one
given in the introduction:

Proposition 5.4.2. Let P ⊆MR a reflexive polytope. Then

P is symmetric if and only if P ∗ is symmetric.

In particular a Gorenstein toric Fano variety XP is symmetric if and only if P
is symmetric.

Proof. Let G := AutM (P ). We denote by Fix(G) the set of elements in MR that
are fixed by the action of G. Since G is a finite group, the theorem of Maschke
yields an G-invariant R-subvectorspace U of MR such that Fix(G)⊕G U = MR.
Dualizing yields Fix(G)∗⊕G∗ U∗ = NR. Hence dimR(Fix(G)) ≤ dimR(Fix(G∗)).
Symmetry yields dimR(Fix(G)) = dimR(Fix(G∗)). SoG has non-trivial fixpoints
iff G∗ does. Since AutN (P ∗) = AutM (P )∗, the proof is finished.

As explained in the introduction Batyrev and Selivanova obtained in [BS99]
from the existence of an Einstein-Kähler metric, that if XP is a nonsingular
symmetric toric Fano variety, then P has to be semisimple. They asked whether
a direct proof for this combinatorial result exists. Indeed there are even at least
five essentially different proofs:

Corollary 5.4.3. Let P ⊆MR be a reflexive polytope.
If P is symmetric, then P and P ∗ are semisimple.

Proof. We easily see that the second equivalent and even the first five sufficient
conditions in the second part of Theorem 5.3.1 are satisfied. For yet another
proof we could use Corollary 5.2.7.

Furthermore the first part of Theorem 5.3.1 immediately yields a general-
ization to complete toric varieties:

Corollary 5.4.4. Let X be a complete toric variety.
If X is symmetric, then Aut(X) is reductive.

Since symmetric toric Fano varieties were of interest as natural examples of
the existence of an Einstein-Kähler metric, Kreuzer gave in [Kre03a] a list of
these polytopes up to dimension four using the computer database (finding 527
polytopes for d = 4). The author verified the list for d ≤ 3:
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Theorem 5.4.5. E2, E
∗
2 , E

2
1 , (E

2
1)∗,Z2 are precisely the two-dimensional sym-

metric reflexive polytopes. There are 31 three-dimensional symmetric reflexive
polytopes.

Sketch of proof. For d = 2 by 5.4.3 and 5.2.5 we only have to look at the reflexive
polytopes E∗

2 and E2
1 and the five del Pezzo-surfaces. Now the result is obvious.

For d = 3 we can assume that P is not centrally symmetric, since in this case
there already exists a classification due to Wagner [Wag95] (for a straightforward
approach by putting P in a box see Proposition 6.4.1).

Let’s look at G := AutM (P ) ⊆ GL(M) ∼= GL3(Z). In [Tah71] Tahara
classified all finite subgroups of GL3(Z). From this list we get that there are
exactly 10 non-conjugated finite subgroups G of GL3(Z) such −id 6∈ G and G
is minimal with Fix(G) = {0}. Six of these have order 4 and four have order 6.

The idea of the classification is to distinguish these 10 cases and to use the
symmetries in G to determine P .

Here we will show how to proceed in two typical situations:

We observe in the list that except when G ∼= Z/6Z (which is a special and
rather easy case) there is an element g ∈ G that is conjugated by GL3(Z) to




−1 0 0
0 −1 0
0 0 1



 or





−1 0 0
0 0 1
0 1 0



, hence P has always a rotational symmetry.

The simplest situation occurs, when g is exactly the first matrix before, in
the Z-basis e1, e2, e3. Let v ∈ V(P ) with v3 6= 0. Then (v + vg)/2 = (0, 0, v3) ∈
P ∩ M . As P is canonical, (0, 0, v3) ∈ ∂P ∩ M , and since any lattice point
on the boundary is primitive, we get v3 = ±1. By assumption the sum of all
vertices of P is zero, P is canonical but not centrally symmetric, so we can easily
prove that P±1 := P ∩ {x ∈ MR : x3 = ±1} are either both one- or both two-
dimensional faces of P with ±e3 ∈ P±1. However if both were two-dimensional,
then by projecting along ±e3 Prop. 3.2.2 implied that P were just a prisma
over centrally symmetric facets, so itself centrally symmetric, a contradiction.
Hence P1 = [v, vg] and P−1 = [w,wg]. By looking at the list we can assume that
|G | = 4, hence G is abelian. Now since P is symmetric, it is easy to see that
there exists h ∈ G that does not fix e3. So (e3)

h = (v+vg)h/2 = (vh+(vh)g)/2 =
(0, 0, (vh)3), hence h has to exchange e3 ↔ −e3. We set w := vh. Let v ∼ −e3,
then conv(P−1, v) are contained in a facet. By applying g, h, hg we get that also
conv(P−1, v

g), conv(P1, w), conv(P1, w
g) are contained in facets, so P is just a

simplex. Therefore we can assume by 3.3.1 that also v−e3, vg−e3, w+e3, w
g+e3

are contained in P0 := P ∩ {x ∈ MR : x3 = 0}, and furthermore any lattice
point in P0 different from these four has to be in st(e3) ∩ st(−e3). This yields
that πe3(P ) = P0 = π−e3(P ) is a canonical, hence reflexive polygon, so using
the classification in 3.4.1 it is a straightforward calculation to determine P .

Another typical argument can be explained in the case G =< σ >∼= Z/4Z

for σ =





0 1 0
−1 0 0
0 −1 −1



. Let v ∈ ∂P ∩M . Here σ2 is conjugated to the second

matrix above. We have m := v+vσ2

2 = (0, 0, v1+v2+2v3
2 ). Since P is canonical,

this implies

v1 + v2 + 2v3 ∈ {0,±1,±2}.
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On the other hand y := v+vσ

2 = ( v1+v22 , −v1+v22 , −v22 ) ∈ P0 := P ∩{x ∈MR :

〈(1, 1, 2), x〉 = 0}. Furthermore if (v1, v2) 6= (0, 0), then C := conv(y, yσ, yσ
2

=

−y, yσ3

= −yσ) is a two-dimensional centrally symmetric polytope contained in
P0 that does not contain interior lattice points. Now the lattice point theorem
of Minkowski implies that the volume of C (measured with respect to a Z-basis
of P0 ∩M) is at most 4. From this we can calculate

v2
1 + v2

2 ≤ 8.

Using these two equations we can put P in a (capped) cylinder. Now we have
to calculate the G-orbits of the lattice points in this container and check out in
a rather tedious calculation, how they can be united to get a reflexive polytope.

Most other cases are treated in an analogous manner.

5.5 Successive sums of lattice points

Here we continue the discussion on lattice points from section 1.5 and subsection
3.7.1 by looking not at the number of lattice points in multiples of a reflexive
polytope but at their sum. This leads to a variant of the Erhart-polynomial and
another condition for semisimplicity. The most part of this section was done in
collaboration with V. V. Batyrev and M. Kreuzer.

Let Q ⊆MR be an n-dimensional lattice polytope.

Definition 5.5.1. We define for k ∈ N the k-th lattice point sum sQ(k) of Q as

sQ(k) :=
∑

v∈kP∩M

v ∈M.

Furthermore the weighted barycenter of Q is defined as

wbQ := bQ rvol(Q) ∈MR.

There is now the following result, that must be seen in total similarity to
the theorem of Ehrhart 1.5.3:

Proposition 5.5.2 (Kreuzer, Nill). For any i ∈ {1, . . . , d} there exists a
unique polynomial si(X) ∈ Q[X] such that si(k) = sQ(k)i for all k ∈ N. Any si
has degree ≤ n+ 1.

We define sQ := (s1, . . . , sd), and let coeff l(sQ) := (coeff l(s1), . . . , coeff l(sd))
denote the (vector-)coefficient of degree l ∈ N. Then one has

coeffn+1(sQ) = wbQ,

coeffn(sQ) =
1

2

∑

F∈F(Q)

wbF ,

coeff0(sQ) = 0.

The following reciprocity law holds:
∑

v∈relint(kQ)∩M

v = (−1)n+1sQ(−k) ∀k ∈ N>0.
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This result shall be illustrated by the example of the standard smooth sim-
plex Cn := conv(0, e1, . . . , en). Calculations as explained in [Sta86] show that

G(X1, . . . , Xn+1) :=
∑

µ∈pos(Cn×{1})

Xµ =
1

1 −X1Xn+1
· · · 1

1 −XnXn+1

1

1 −Xn+1

Therefore one has
∑

k∈N

e(k)tk = G(1, . . . , 1, t) = 1
1−tn+1 . This gives

eCn
(k) =

(

k + n

n

)

Fix now i ∈ {1, . . . , n}. Now
∑

k∈N

si(k)t
k = (∂iG)(1, . . . , 1, t) = t

1−tn+2 . This

gives

sCn
(k)i =

(

k + n

n+ 1

)

Obviously bCn
= (1/(n+ 1))(e1 + . . .+ en). Hence

(wbCn
)i = (bCn

)irvol(Cn) =
1

n+ 1

1

n!
=

1

(n+ 1)!
= coeffn+1((sCn

)i)

And

1

2

∑

F∈F(Cn)

(wbF )i =
1

2



(wbconv(e1,...,en))i +

n
∑

j=1

(wbconv(0,el : l=1,...,n;l 6=j))i





=
1

2

(

1

n!
+ (n− 1)

1

n!

)

=
1

2(n− 1)!
= coeffn((sCn

)i)

Proof. The proof that si(k) gives a polynomial of degree ≤ n + 1 and the
reciprocity law follows analogously as the proof of the theorem of Ehrhart given
in the book of Stanley [Sta86], relying on the result that G(X1, . . . , Xn+1) :=

∑

µ∈pos(Q×{1})

Xµ is a special rational function satisfying a reciprocity law and the

observation
∑

k∈N

si(k)t
k = (∂iG(X1, . . . , Xn+1))(1, . . . , 1, t). This is explained in

detail by Kreuzer in the manuscript [Kre03b].
However this result can also be derived from the general result Thm. 1.5.4

due to Brion and Vergne (let φ be the identity map).
For calculating the highest coefficient we refine a covering of the relative

interior of Q by n-dimensional cubes of length 1/k (in the subspace aff(Q)∩MR)
centered at the points in Q ∩ 1

kM . This yields

wbQ =

∫

Q
x dx

det affQ
= lim
k→∞

∑

w∈Q∩ 1
k
M

w
1

kn
= lim
k→∞

sQ(k)

k

1

kn
= coeffn+1(sQ).

The formula for determining the second-highest coefficient was done by the
author (inspired by the proof of the original Erhart theorem due to Betke and
Kneser [BK85]).

It is straightforward to prove the following observation:
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Transformation formula: Let T := m 7→ Lm + v be an affine unimodular
transformation, so L ∈ GL(M) and v ∈M . Then

sT (Q)(x) = LsQ(x) + eQ(x)vx.

Now we define an auxiliary function where Q′ ⊆MR is a lattice polytope of
dimension ≤ n:

w(Q′) :=







1
2

∑

F∈F(Q′) wbF , if dim(Q′) = n

wbQ′ , if dim(Q′) = n− 1
0 , if dim(Q′) < n− 1

In the above example it was shown that w(Cj) = coeffn(sCj
) for the stan-

dard smooth simplex Cj := conv(0, e1, . . . , ej) for j = 1, . . . , n. Now take any
primitive lattice simplex C of dimension j, i.e., a lattice simplex where the
differences of its vertices generate the affine lattice, then there exists an affine
unimodular transformation from Cj to C. Using the above transformation rule
one verifys that also in this case w(C) = coeffn(sC) holds.

Now there is a well-known theorem [KKMS73] stating that there exists a nat-
ural number l ∈ N>0 such that lQ can be triangulated into primitive simplices
of dimension n.

If Q′, Q′′ are two lattice polytopes of the dimension n intersecting in a lattice
polytope contained in mutual facets, then obviously sQ′+Q′′ = sQ′ + sQ′′ −
sQ′∩Q′′ , so also coeffn(sQ′+Q′′) = coeffn(sQ′)+coeffn(sQ′′)−coeffn(sQ′∩Q′′). On
the other hand by looking at coeffn+1 one gets the formula wbQ′+Q′′ = wbQ′ +
wbQ′′ . Therefore it follows easily w(Q′ +Q′′) = w(Q′) + w(Q′′) − w(Q′ ∩Q′′).

Using these results we get ln1/2
∑

F∈F(Q) wbF = 1/2
∑

F∈F(Q) wblF =

w(lQ) = coeffn(slQ(x)) = coeffn(sQ(lx)) = lncoeffn(sQ).

Corollary 5.5.3 (Batyrev,Kreuzer). Let P ⊆ MR be a reflexive polytope.
Then the (vector-)polynomial sP is determined by the values for k = 1, . . . , b d+1

2 c.
Moreover

wbP =
1

d+ 1

∑

F∈F(P )

wbF , coeffd(sP ) =
d+ 1

2
coeffd+1(sP ).

Proof. By Proposition 3.7.2 we get

sP (k) =
∑

v∈relint((k+1)Q)∩M

v = (−1)d+1sP (−k − 1) ∀k ∈ N

Therefore sP (k) for k = 0, . . . , b d+1
2 c determines ≥ d+2 values of sP , hence the

(vector-)polynomial sP .
Also by 3.1.4(6) one can embed any facet F ∈ F(Q) in a hyperplane of lattice

distance one from the origin. Then one calculates the formula wbconv(0,F ) =
1
d+1wbF .
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Now back to the set of roots:
Here Condition (2b) of Theorem 5.3.1 leads one to consider sums of roots.

From the reciprocity law in Prop. 5.5.2 we get:

Corollary 5.5.4. Let Q be an n-dimensional lattice polytope in MR.
For any i ∈ {1, . . . , d} there exists a unique polynomial ri(X) ∈ Q[X] such

that
ri(k) =

∑

x∈R(kQ)

xi for all k ∈ N,

where R is the set of lattice points in the relative interior of facets.
For any i the polynomial ri(X) = (−1)n

∑

F∈F(Q)

(sF )i(−X) has degree ≤ n.

We define rQ := (r1, . . . , rd). Then

coeffn(rQ) =
∑

F∈F(Q)

wbF = 2 coeffn(sQ).

The following corollary gives a summary (use also 5.3.1, 5.5.3):

Corollary 5.5.5. Let P ⊆MR be a reflexive polytope.
Then coeffd(rP ) = (d+ 1)wbP .
In particular we get by 5.3.1 the following implications:

1. P centrally symmetric ⇒ P symmetric ⇒ sP = 0 and rP = 0

2. sP = 0 or rP = 0 ⇒ bP = 0 ⇒ P, P ∗ semisimple

3. sP = 0 ⇐⇒ sP (k) = 0 for k = 1, . . . , b d+1
2 c

4. sP (1) = 0 ⇒ P, P ∗ semisimple

5. P semisimple ⇐⇒ rP (1) = 0

5.6 Examples

We discuss possible implications among above observed conditions for a reflexive
polytope P ⊆MR by presenting several examples.

Here we are interested in the following seven conditions:

0: P symmetric

1: sP = 0

2: bP = 0

3: the sum of the lattice points of P is 0 (i.e., sP (1) = 0)

4: the sum of the vertices of P is 0

5: rP = 0

6: P is semisimple (i.e., rP (1) = 0)
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Together with the corresponding statements for P ∗ that will be enumerated
as 0∗, 1∗, . . . , 6∗ these are 14 conditions.

By Proposition 5.4.2 0 holds iff 0∗, and obviously 0 implies any other con-
dition 1, . . . , 6, 1∗, . . . , 6∗. No reverse implication holds as can be immediately
seen by below table (e.g., 1 does not imply 4, hence not 0).

The following tables summarize possible implications:

⇒ 1 2 3 4 5 6
1 y y y n4c n4a y
2 n3b y n3b n4b n3b y
3 n3a n3a y n3c n3a y
4 n3a n3a n2 y n3a n2
5 n4b y n4b n4b y y
6 n2 n2 n2 n2 n2 y

⇒ 1∗ 2∗ 3∗ 4∗ 5∗ 6∗

1 n4a n4a n4a n4a n4a y
2 n3b n4a n3b n4a n3b y
3 n3a n3a n3a n3c n3a y
4 n3a n3a n3a n2 n3a y
5 n4b n4b n4c n4b n4b y
6 n2 n2 n2 n3c n2 n2

Note that by duality, since P is reflexive, e.g., 3⇒ 6∗ holds iff 3∗ ⇒ 6 holds.
In the table ”y” means that the implication holds (see Theorem 5.3.1 and Corol-
lary 5.5.5), however ”n3a” for instance means that example 3a below gives a
counterexample of minimal dimension 3. ”n2” means that one finds a simple
example by looking at the 16 reflexive polygons in Proposition 3.4.1.

In particular we see that we have found all possible pairwise implications
among these conditions. Furthermore no condition ”dualizes”!

Moreover Kreuzer (and the author) observed that 0⇔ 1⇔ 2⇔ 5 for d = 2,
and 0⇔ 1⇔ 5 for d = 3. For a complete list of reflexive polytopes satisfying 0,
1 or 2 with d ≤ 4 we refer to [Kre03a].

Next we give all the examples. They were found using the classification of
d-dimensional reflexive polytopes for d ≤ 4 and the computer program PALP
due to Kreuzer and Skarke (see [KS04a, KS04b]).

Here the column vectors are the vertices of the reflexive polytope:

3a
1 −1 0 −2 0 2
0 0 1 1 0 −2
0 0 0 0 1 −1

3b
1 0 0 −1
0 1 1 −2
0 0 4 −4

3c
1 0 1 −2 0 1
0 1 −2 1 0 1
0 0 0 0 1 −1
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4a

1 0 0 −1 −1 0 1
0 1 0 0 −1 0 0
0 0 1 −1 0 0 0
0 0 0 0 0 1 −1

4b

−1 0 0 −1 −1 0 0 0 0
0 1 0 0 −1 1 −1 1 −1
−1 −1 −1 −1 −1 1 1 0 0
1 1 1 0 0 −1 −1 −1 −1

1 0 1 1 0 −1 −1 −1 0 0 −1 1
1 −1 −1 1 1 −1 −1 0 0 1 0 −1
1 1 1 −1 −1 0 0 0 1 1 0 −1
0 0 0 0 0 0 −1 −1 1 1 1 0

4c

1 0 0 1 1 0 −2
0 1 0 0 −1 0 0
0 0 1 −1 0 0 0
0 0 0 0 0 1 −1





Chapter 6

Centrally symmetric

reflexive polytopes

Introduction

In this chapter we give as a final application some insight in centrally symmetric
reflexive polytopes; they correspond to Gorenstein toric Fano varieties with a
toric morphism of order two fixing only the neutral element of the torus. Here
the set of roots and the maximal number of vertices and lattice points are
examined. It is further investigated, whether centrally symmetric polytopes can
be embedded into the unit lattice cube. Moreover a complete classification in the
simplicial case is given, even if only a centrally symmetric pair of facets exists.
This generalizes results of Ewald [Ewa88] and his students [Wag95, Wir97].

Summary of most important new results of this chapter:

· Two different proofs that a centrally symmetric d-dimensional reflexive
polytopes has at most 2d lattice points in interior of facets, with equality
only for [−1, 1]d (Thm. 6.1.1, p. 148; Prop. 6.1.4, p. 149)

· Proof of Conjecture 3.5.2 on the maximal number of vertices of a centrally
symmetric simple reflexive polytope (Thm. 6.2.2, p. 149)

· Characterization of cases of maximal number of vertices of a simplicial
reflexive polytope with a centrally symmetric pair of facets (Thm. 6.2.4,
p. 150)

· Classification of simplicial reflexive polytopes with a centrally symmetric
pair of facets (Thm. 6.3.1, p. 151; Cor. 6.3.3, p. 153)

· There are 4, 5, 15, 20 isomorphism classes of 2,3,4,5-dimensional simplicial
reflexive polytopes with a centrally symmetric pair of facets (Thm. 6.3.12,
p. 156)

· Any d-dimensional simplicial reflexive polytope with a centrally symmetric
pair of facets can be embedded into [−1, 1]d. (Cor. 6.4.2, p. 158)

· Any d-dimensional centrally symmetric simple reflexive polytope can be
embedded into bd/2c[−1, 1]d. (Cor. 6.4.3, p. 158)

147
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· A general result on embedding a reflexive polytope into a small multiple
of [−1, 1]d (Thm. 6.4.4, p. 159; Cor. 6.4.8, p. 160)

· A d-dimensional centrally symmetric reflexive polytope has at most 3d

lattice points, with equality only for [−1, 1]d (Thm. 6.5.1, p. 161)

· A d-dimensional simplicial reflexive polytope with a centrally symmetric
pair of facets has at most 2d2 + 1 lattice points, with uniqueness of the
equality case (Thm. 6.5.3, p. 163)

6.1 Roots

In this section the following result is going to be proved (recall the definition of
the lattice polytope E1 := [−1, 1]).

Theorem 6.1.1. Let P ⊆ MR be a centrally symmetric reflexive polytope with
XP the toric variety associated to NP .

1. P ∼= E
|R|
2

1 × G for a |R|
2 -codimensional face G of P that is a centrally

symmetric reflexive polytope (with respect to aff(G) ∩ M and a unique
lattice point in relintG) and has no roots itself.

2. Any facet has at most one root of P . P contains at most 2d roots. Hence

dim Aut◦(XP ) ≤ 3d.

3. The following statements are equivalent:

(a) P has 2d roots, i.e., dim Aut◦(XP ) = 3d

(b) Every facet of P contains a root of P

(c) P ∼= Ed1 , i.e., XP
∼= P1 × · · · × P1

The first property immediately implies (see 5.1.3):

Corollary 6.1.2. Let P be a centrally symmetric reflexive polytope with XP

the toric variety associated to NP .
If P contains no facet that is centrally symmetric with respect to a root of

P , or there are at most d − 1 facets of P that can be decomposed as a product
of lattice polytopes E1 × F ′, then P has no roots.

Hence if d ≥ 3 and P is simplicial, or d ≥ 4 and any facet of P is simplicial,
then

dim Aut◦(XP ) = d.

For the proof of Theorem 6.1.1 we need the following lemma that is an easy
corollary of 5.3.7 and 3.1.4(11):

Lemma 6.1.3. Let P be a centrally symmetric reflexive polytope.
Let F ∈ F(P ). Then

P ∼= E1 × F iff F contains a root x of P.

In this case F is a centrally symmetric reflexive polytope (with respect to the
lattice aff(F ) ∩M with origin x).
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Proof of Theorem 6.1.1. 1. Apply the previous lemma inductively.
2. Since as just seen any facet of P containing a root is reflexive, hence a

canonical Fano polytope, it contains only one root of P . Now we apply 5.1.3(2)
and 1.

3. Since P as a centrally symmetric polytope contains at least 2d facets, we
derive the equivalences from 1.

An alternative proof can be derived from the following algebraic-geometric
proposition that uses the results of the previous chapter:

Proposition 6.1.4. Let X = X(N,4) be a complete toric variety with centrally
symmetric 4(1). Then

dim Aut◦(X) ≤ 3d, with equality if and only if X ∼= (P1)d.

Proof. By 5.1.3 and 5.1.23(3) it remains to show that for τ ∈ 4(1) there is at
most one root m ∈ R such that ηm = τ . However central symmetry yields that
such a root is characterized by 〈±vτ ,m〉 = ∓1 and 〈vτ ′ ,m〉 = 0 for τ ′ 6= ±τ .
Since 4 is complete, this gives the uniqueness of such a root.

6.2 Vertices

Let P ⊆MR be a d-dimensional reflexive polytope.

By Conjecture 3.5.2 the maximal number of vertices P can have is obtained
only for the simple centrally symmetric reflexive polytope (Z2)

d
2 for d even. For

d = 2 a direct proof is given in 3.3.3, for d = 3 we have the following result:

Proposition 6.2.1. Any three-dimensional polytope with a centrally symmetric
pair of facets has at most 14 vertices.

Proof. By the classification of two-dimensional reflexive polytopes and Lemma
6.1.3 we can assume that there are no lattice points in the interior of facets.
However any two-dimensional lattice polytope with no interior points can have
at most four vertices as is easily seen. So we can assume there are two facets F
and −F with normal vector u having at most four vertices. Then the convex hull
Q of vertices in u⊥ has either no interior lattice points, so again there are only
at most four vertices of Q, or it has the origin of the lattice as its only interior
lattice point, so Q is a canonical, hence reflexive polygon and has therefore by
3.3.3 at most six vertices. So overall there are at most 4 + 4 + 6 = 14 vertices.

The only non-trivial result valid in higher dimensions is the following theo-
rem, it will be proven in the next section on page 155:

Theorem 6.2.2. Conjecture 3.5.2 holds for duals of simplicial reflexive poly-
topes having a centrally symmetric pair of facets. In particular it holds for
centrally symmetric simple reflexive polytopes.
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In the simplicial case we have a direct proof of Conjecture 3.5.9 in the case
of a centrally symmetric pair of facets.

For this we need the following important observation:

Lemma 6.2.3. Let P be a simplicial reflexive polytope. Let F ∈ F(P ) such
that also −F ∈ F(P ). We set u := ηF ∈ V(P ∗).

Let V(F ) = {e1, . . . , ed}, and e∗1, . . . , e
∗
d be the dual R-basis of NR. For

i = 1, . . . , d we denote by Fi the unique facet of P such that Fi ∩ F = conv(ej :
j 6= i).

Let v ∈ V(P )∩u⊥. We write v =
∑d
j=1 qjej as a rational linear combination.

Then for i = 1, . . . , d:

qi < 0 ⇐⇒ qi = −1 ⇐⇒ v ∈ Fi.

In particular there are I, J ⊆ {1, . . . , d} with I ∩ J = ∅ and |I | = |J | such that

v =
∑

j∈J

ej −
∑

i∈I

ei.

Moreover e∗i = ηFi
− u ∈ P ∗ ∩N for any i ∈ I.

Proof. As in the proof of Lemma 3.5.6 we have for i = 1, . . . , d that ηFi
=

u + αie
∗
i for a positive natural number αi. Moreover by 3.5.6(1) we already

know that qi = 〈e∗i ,m〉 < 0 ⇔ v ∈ Fi.
So let qi = 〈e∗i ,m〉 < 0, v ∈ Fi. Since therefore Fi ∩ (−F ) = ∅, by 3.3.1

ηFi
− u = αie

∗
i ∈ P ∗ ∩N . Hence −1 ≤ 〈αie∗i ,−ei〉 = −αi ≤ −1, so αi = 1 and

qi = 〈e∗i ,m〉 = 〈ηFi
− u,m〉 = −1.

Since v =
∑d
j=1(−qj)(−ej) and u =

∑d
j=1(−e∗j ), applying the previous

statement to −F finishes the proof.

As an immediate application we determine in any dimension, not only in
even dimension, the simplicial reflexive polytopes with the maximal number of
vertices in the case of a centrally symmetric pair of facets (an alternative proof
can be derived from the classification result Cor. 6.3.3):

Theorem 6.2.4. Let P ⊆MR be a simplicial reflexive polytope that contains a
centrally symmetric pair of facets, e.g., P is centrally symmetric.
Then |V(P ) | ≤ 3d. Moreover:

|V(P ) | = 3d if and only if d is even and P ∗ ∼= (Z2)
d
2 .

|V(P ) | = 3d− 1 if and only if d is odd and P ∗ ∼= [−1, 1] × (Z2)
d−1
2 .

Proof. By Theorem 3.5.11 we only have to consider the following situation:
Let d be odd and |V(P ) | = 3d−1. Let F ∈ F(P ) such that also −F ∈ F(P ).

We set u := ηF ∈ V(P ∗). Let {v1, . . . , vd} denote the set of vertices not in F
but in facets intersecting F in a codimension two face.

By Lemma 3.5.6 we get that V(P )\(V(F ) ∪ V(F ′)) = {v ∈ V(P ) : 〈u, v〉 =
0} ⊆ {v1, . . . , vd}. We may assume that

{v ∈ V(P ) : 〈u, v〉 = 0} = {v1, . . . , vd−1}

is a set of cardinality d − 1. We can enumerate the vertices of F as e1, . . . , ed
such that vi is a facet of Fi := conv(vi, ej : j 6= i) for i = 1, . . . , d− 1. We also



6.3. Classification theorem 151

define for i = 1, . . . , d in the same way F ′
i := conv(wi, ej : j 6= i) for a unique

vertex wi.
Let I := {i ∈ {1, . . . , d} : vi 6∈ Fj ∀ j ∈ {1, . . . , d}\{i}} and I ′ := {i′ ∈

{1, . . . , d} : wi
′ 6∈ F ′

j ∀ j ∈ {1, . . . , d}\{i′}}. Let i ∈ I, then 6.2.3 yields vi =

eσ(i) − ei = wσ(i) for σ(i) ∈ I ′. This defines a map σ : I → I ′. Moreover by

symmetry we have a map ψ : I ′ → I defined by wi
′

= ei′ − eψ(i′) = vψ(i′).
Obviously ψ = σ−1, so σ is a fixpointfree permutation. Assume σ were not an
involution. Then there exist i ∈ I, j := σ(i), k := σ(j) 6= i, so vi = ej − ei
and vj = ek − ej . Hence −ei 6∼ ej and vj 6∼ ej , so Lemma 3.5.15 yields a
contradiction.

Therefore σ is just a product of disjoint transpositions. In particular |I | is
even. Assume vd ∈ u⊥. Then we may assume vd = vd−1, hence I = {1, . . . , d−
2}, a contradiction to d odd. So vd ∈ −F . Therefore vd = −ed. Since by
3.5.6(3) e1, . . . , ed is a Z-basis, P is uniquely determined up to isomorphism.

6.3 Classification theorem

In the case of a smooth Fano polytope where the centrally symmetric pairs of
vertices span MR there exists a complete explicit classification that is due to
Casagrande (see [Cas03b]). However we cannot expect such a result for general
centrally symmetric reflexive polytopes, since by the classification of Kreuzer
and Skarke there are 150 centrally symmetric reflexive polytopes already in
dimension four. For d = 2 we have 3 (see 3.4.1) and for d = 3 there are 13 (see
[Wag95]) d-dimensional centrally symmetric reflexive polytopes.

However in [Wir97, Satz 3.3] there was a characterization of centrally sym-
metric reflexive polytopes presented that have the minimal number of 2d ver-
tices. It is the goal of this section to generalize this, the main result will be
presented in Corollary 6.3.3.

Theorem 6.3.1. Let P be a simplicial reflexive polytope with facets F,−F .
There exists a Z-basis m1, . . . ,md of M such that in this basis the ma-

trix A consisting of the vertices e1, . . . , ed of F as columns has the following

properties: A =

(

2idf 0
C idd−f

)

∈ Matd(N) where f ∈ {0, . . . , d − 1} and

C ∈ Mat(d−f)×f ({0, 1}) such that any column of C has an odd number of 1’s.
For i = 1, . . . , d we let vi denote the unique vertex of P contained in a facet

that intersects F in the codimension two face conv(ej : j 6= i); obviously vi 6∈ η⊥F
iff vi = −ei. Any vertex of P is in {±e1, . . . ,±ed, v1, . . . , vd}.

There exist pairwise disjoint subsets I1, . . . , Il ⊆ {1, . . . , d} and pairwise dis-
joint subsets J1, . . . , Jl ⊆ {1, . . . , d} with Ik ∩ Jk = ∅ and |Ik | = |Jk | for all
k = 1, . . . , l such that for i ∈ {1, . . . , d} we have

vi ∈ η⊥F ⇐⇒ i ∈
l
⋃

k=1

Ik ⇐⇒ vi =
∑

j∈Jk

ej −
∑

i′∈Ik

ei′ for i ∈ Ik.

In this case the ith row for i ∈ I1 ∪ · · · Il ∪ J1 ∪ · · · ∪ Jl is of the form
(0, . . . , 0, 1, 0, . . . , 0).

If for k, k′ ∈ {1, . . . , l} the sets Ik and Jk′ intersect, then k 6= k′, Ik = Jk′

and Jk = Ik′ .
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Proof. Let V(F ) = {e1, . . . , ed}, u, Fi defined as in 6.2.3. Consider the following
steps for the construction of A and m1, . . . ,md:

1. Let i ∈ {1, . . . , d}.
If vi ∈ u⊥, by 6.2.3 e∗i = ηFi

− u ∈ N .

If vi 6∈ u⊥, obviously vi = −ei, so e∗i =
ηFi

−u

2 ∈ 1
2N .

So in any case e∗1, . . . , e
∗
d ∈ 1

2N . In particular this yields

2M ⊆< e1, . . . , ed >Z⊆M.

2. We define for an arbitrary Z-basis of M the matrix B ∈ Matd(Z)∩GLd(Q)
consisting of the columns e1, . . . , ed in this basis. By Theorem 3.6.6 there is
an unimodular transformation L of M such that A := LB ∈ Matd(N) is a
lower triangular matrix with Ai,j ∈ {0, . . . , Aj,j−1} for i > j. Then there
is a Z-basis m1, . . . ,md of M such that the columns of A are e1, . . . , ed in
this basis.

3. The first point yields that 2mi is contained in the column space of A, any
diagonal element of A is contained in {1, 2}.

4. If Ai,j = 1 for i > j, then necessarily Aj,j = 2 and Ai,i = 1 (again since
2mj is a Z-linear combination of ej , . . . , ed.)

5. Using the previous point we can easily get by possibly permutating the
columns and the rows the desired form of A as a blockmatrix (since any
vertex of a reflexive polytope is primitive, obviously f 6= d). It remains
to show that any column has an odd number of 1’s: By the previous
point we get ej = 2mj +

∑s
k=1 eik , where ik > j. We get 2〈ηF ,mj〉 =

〈ηF , ej −
∑s
k=1 eik〉 = −1 + s, so s has to be odd.

Now using Cramer’s rule we can calculate that e∗i ∈ N if and only if the ith
row of A is of the form (0, . . . , 0, 1, 0, . . . , 0).

By this observation, Lemma 6.2.3 (applied to F and −F ) and the first point
in the proof we get that it only remains to show the last remark:

So let k, k′ ∈ {1, . . . , l} with Ik∩Jk′ 6= ∅. By construction Ik∩Jk = ∅, hence
k 6= k′.

Assume Ik′ 6⊆ Jk. Then there exists i ∈ Ik′ , i 6∈ Jk. Let j ∈ Ik ∩ Jk′ . Now
we define in the dual R-basis e∗1, . . . , e

∗
d of NR the vector w := e∗i −

∑

s6=i,j e
∗
s .

By construction it is easy to check that w is the inner normal of a face of P
containing as vertices es for s = 1, . . . , d with s 6= i, j, as well as −ei and vi and
vj . This is a contradiction to P being simplicial.

Hence Ik′ ⊆ Jk. In particular Ik′ ∩ Jk 6= ∅, so also Ik ⊆ Jk′ . Since therefore
|Ik′ | ≤ |Jk | = |Ik | ≤ |Jk′ | = |Ik′ |, we have Ik′ = Jk and Ik = Jk′ .

In [VK85] Voskresenskij and Klyachko completely classified centrally sym-
metric smooth Fano polytopes, this was extended by Ewald in [Ewa88] to
smooth Fano polytopes having a centrally symmetric pair of facets. For this
they defined two special classes of polytopes:
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Definition 6.3.2. Let e1, . . . , ed be a Z-basis of M . Let d be even.

1. Fd := conv(±e1, . . . ,±ed,±(e1 + · · · + ed)) is called a del Pezzo poly-
tope. It is a centrally symmetric smooth Fano polytope. The toric variety
X(M,ΣFd

) is denoted by Wd, it is (P1)d blown-up in two torus-invariant
points. We have F2 = Z2 and W2 = S3.

2. F̃d := conv(±e1, . . . ,±ed,−e1 − · · · − ed) is called a pseudo del Pezzo
polytope. It is smooth Fano polytope that is not centrally symmetric, but
has a centrally symmetric pair of facets. The toric variety X(M,ΣF̃d

) is

denoted by W̃d, it is (P1)d blown-up in only one torus-invariant point.

Now we get as a corollary of the previous theorem a further generalization
of the classification results of Ewald and his students:

Corollary 6.3.3. Let P ⊆MR be a simplicial reflexive polytope with a centrally
symmetric pair of facets. Then

X(M,ΣP ) ∼= X(M,ΣP ′) × (P1)r ×Wk1 × · · · ×Wks
× W̃p1 × · · · × W̃pt

,

where k1, . . . , ks, p1, . . . , pt are even, r is chosen to be maximal, and P ′ is an
n-dimensional centrally symmetric simplicial reflexive polytope with 2n vertices
for n := d− r − k1 − · · · − ks − p1 − · · · − pt.

Let f := log2[M :< V(P ) >Z]. P is a smooth Fano polytope iff P ′ = {0} iff
n = 0 iff f = 0.

Let P ′ 6= {0}, i.e., n ≥ 2, and V (P ′) = {±ei : i = 1, . . . , n}. Then there
exists a lattice basis of M such that the matrix A′ consisting of the columns

e1, . . . , en is of the form A′ =

(

2idf 0
C ′ idn−f

)

where f ∈ {0, . . . , n − 1} and

C ′ ∈ Mat(n−f)×f ({0, 1}) such that any column of C has an odd number of 1’s
and any row of C contains some 1.

We can say something about the uniqueness of this structure theorem:

Corollary 6.3.4. Let P be a simplicial reflexive polytope that has a centrally
symmetric pair of facets.

Then in any product representation as given in the previous corollary the
numbers k1, . . . , ks, p1, . . . , pt are uniquely determined by the combinatorial type
of the polytope P . The numbers f , n and r are uniquely determined by the
isomorphism class of the lattice polytope P .

Moreover the matrix A′ is independent (up to multiplication by a matrix in
GLn(Z) and permutation of columns) of the chosen pair of facets.

In particular any two facets of P are isomorphic as lattice polytopes, i.e.,
there is a lattice automorphism of M mapping one facet onto the other. Espe-
cially any two facets of P have the same number of lattice points.

Proof. First looking at the primitive collections (see section 4.1) of Fki
and F̃pj

as described in [Cas03b] it is easy to see that the numbers k1, . . . , ks, p1, . . . , pt
are combinatorial invariants.

Now let F1, F2 ∈ F(P ) with F1 6= F2; they define two isomorphic product
representations of P , where we denote P1 and P2 for the respective polytopes
defining X(M,ΣP ′) × (P1)r, where it is not a priori obvious that r is the same
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for P1 and P2. Again by looking at the primitive collections we see that nec-
essarily P1 and P2 have to be isomorphic. Let C1 be the matrix consisting of
the columns of P1. The facet of P1 corresponding to the (restriction of the)
facet F2 has as vertices just plus or minus the columns of C1. After possibly
permutating the columns we get a lower triangular matrix. Now we modify the
lattice basis by exchanging ei with −ei, if the corresponding column has −2 on
the diagonal; then we just have to add the ith row to any row that has −1 as
an entry in ith column. Now there has to be a unimodular matrix such that the
multiplication with this matrix yields the matrix C2. Finally it is easy to see
that by multiplicating a ”normal form matrix” C1 the number of rows having
only one 1 can at most decrease; especially it is left invariant, if the result is
again a normal form matrix, as here C2. Hence the number r (and therefore
also n) is an invariant of P .

Remark 6.3.5. Hence Corollary 6.3.3 gives a well-defined matrix normal form.
Furthermore one can check that any of these matrices indeed defines a centrally
symmetric simplicial reflexive polytope with the minimal number of vertices,
and there is an explicit criterion when two of these normal forms are equivalent,
this is examined and discussed in [Wir97, Satz 3.3, Satz 3.9].

We get the original result of Ewald in [Ewa88] under milder assumptions:

Corollary 6.3.6. Let P ⊆ MR be a simplicial reflexive polytope where the
vertices span the lattice M , and assume that P has a centrally symmetric pair
of facets.

Then the corresponding toric variety X(M,ΣP ) is just a product of projective
lines, del Pezzo varieties and pseudo del Pezzo varieties, in particular it is
nonsingular.

We also get the following result (we just have to apply [Oda88, Cor. 1.16]):

Corollary 6.3.7. Any Q-factorial Gorenstein toric Fano variety where the as-
sociated fan has a centrally symmetric pair of d-dimensional cones is the pro-
jection for the quotient of a product of projective lines, del Pezzo varieties and
pseudo del Pezzo varieties with respect to the action of a finite group isomorphic
to (Z/2Z)f for f ≤ d− 1.

The combinatorial statement sounds rather surprising:

Corollary 6.3.8. Any simplicial reflexive polytope that has a centrally sym-
metric pair of facets is combinatorially isomorphic to a smooth Fano polytope
having a centrally symmetric pair of facets.

One should not be misled by this result: Without the symmetry assumption
the combinatorics of simplicial reflexive polytopes can be much more compli-
cated than the one of smooth Fano polytopes.

Now we are going to prove Theorem 6.2.2. For this we need the following
remark:
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Remark 6.3.9. By setting e0 := −e1−· · ·−ed it is a straightforward calculation
(see also [VK85] or [Cas03b]) that the facets of Fd have as vertices precisely
{±ej : j = 0, . . . , d, j 6= i} for fixed i ∈ {0, . . . , d} where exactly half of the
signs are equal to +1 and the others are equal to −1. Hence we get:

|F(Fd) | = (d+ 1)

(

d
d
2

)

.

In just the same way (see [Cas03b]) we can calculate

|F(F̃d) | = d

(

d− 1
d
2

)

+

d
∑

i= d
2

(

d

i

)

.

Proof of Theorem 6.2.2. By Corollary 6.3.3 we can assume that the simple re-
flexive polytope P ⊆ MR is combinatorially isomorphic to [−1, 1]l × (Fk1)∗ ×
· · · × (Fks

)∗ × (F̃p1)∗ × · · · × (F̃pt
)∗, where l + k1 + · · · + ks + p1 + · · · + pt = d

for k1, . . . , ks, p1, . . . , pt even. Now a standard induction argument shows that

2n

(

2n− 1

n

)

+

2n
∑

i=n

(

2n

i

)

< (2n+ 1)

(

2n

n

)

≤ 6n

for n ∈ N≥1, with equality at the right only for n = 1. Hence the previ-
ous remark and the fact that also |V([−1, 1]) | = 2 < 61/2 yields |V(P ) | ≤
6l/26k1/2 · · · 6ks/26p1/2 · · · 6pt/2 = 6d/2, where equality implies that d is even

and P is combinatorially isomorphic to Zd/2
2 . In this case however P ∗ is a

simplicial reflexive polytope with 3d vertices and a centrally symmetric pair of

facets, hence P ∗ ∼= (Zd/2
2 )∗ by 6.2.4 (or again directly by Cor. 6.3.3 and Cor.

6.3.4).

There is one special centrally symmetric reflexive polytope that is extreme
with respect to the number of lattice points (see Theorem 6.5.3):

Definition 6.3.10. We define for a Z-basis m1, . . . ,md of M the reflexive poly-
tope Dd := conv(±(2m1 + md), . . . ,±(2md−1 + md),±md). The toric variety
X(M,ΣDd

) is denoted by Dd.
The polytopes Dd have the following basic properties that are straightfor-

ward to verify:

Remark 6.3.11. Dd is a centrally symmetric simplicial reflexive polytope. The
dual polytope D∗

d = {m∗
d − x : x ∈ ∑d−1

i=1 {0, 1}m∗
i } is a terminal reflexive

polytope (in the dual Z-basis of m1, . . . ,md).
If a centrally symmetric simplicial reflexive polytope P is given such that

A =

(

2idd−1 0
1 · · · 1 1

)

,

in the notation of Theorem 6.3.1, then P ∼= Dd.

The remainder of this section will apply Cor. 6.3.3 to lower dimensions.
Here we will prove:
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Theorem 6.3.12. For d = 2, 3, 4, 5 there are exactly 3, 4, 10, 14 isomorphism
classes of d-dimensional centrally symmetric simplicial reflexive polytopes, and
4, 5, 15, 20 isomorphism classes of d-dimensional simplicial reflexive polytopes
with a centrally symmetric pair of facets.

A rigorous proof of the previous result was in the centrally symmetric case
up to now only known for d ≤ 3. For d = 4 the centrally symmetric case of
up to 10 vertices was dealt with by rather complicated and long calculations in
[Wir97, Satz 5.11].

The proof is split in four parts (here we always denote X = X(M,ΣP )). It
is important to note that by Cor. 6.3.3 we actually only have to deal with the
minimal case of 2n vertices!

Example 6.3.13. We classify all two-dimensional reflexive polytopes P with a
centrally symmetric pair of facets, P is necessarily simplicial.

By Cor. 6.3.3 we have X ∼= W̃2 or X ∼= W2 or X ∼= P1 × P1, if n = 0.

Finally let n = 2 and A′ =

(

2 0
1 1

)

. By 6.3.11 we have P ∼= D2
∼= E2

1 , i.e.,

X ∼= D2.

Example 6.3.14. We classify all three-dimensional simplicial reflexive poly-
topes P with a centrally symmetric pair of facets.

By Cor. 6.3.3 we have X ∼= P1 × W̃2 or X ∼= P1 ×W2 or X ∼= P1 × P1 × P1,
if n = 0. If n = 2, then X ∼= D2 × P1 by 6.3.13.

Finally let n = 3. Then A′ =





2 0 0
0 2 0
1 1 1



. By 6.3.11 we have X ∼= D3.

Example 6.3.15. We classify all four-dimensional simplicial reflexive polytopes
P with a centrally symmetric pair of facets.

By Cor. 6.3.3 we have X ∼= W̃4 or X ∼= W4 or X ∼= (P1)2 × W̃2 or X ∼=
W2 × W̃2 or X ∼= W̃2 × W̃2 or X ∼= (P1)2 ×W2 or X ∼= W2 ×W2 or X ∼= (P1)4,
if n = 0. If n = 2, then X ∼= D2 × (P1)2 or X ∼= D2 ×W2 or X ∼= D2 × W̃2 by
6.3.13. If n = 3, then X ∼= D3 × P1 by 6.3.14.

Finally let n = 4 and A = A′, in particular |V(P ) | = 8. Here there are three
(non-unimodularly equivalent) possibilities corresponding to f = 1, 2, 3:

1. A′ =









2 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1









. We denote the toric variety X by X4.

2. A′ =









2 0 0 0
0 2 0 0
1 0 1 0
0 1 0 1









. We have X ∼= D2 ×D2.

3. A′ =









2 0 0 0
0 2 0 0
0 0 2 0
1 1 1 1









. By 6.3.11 we have X ∼= D4.



6.4. Embedding theorems 157

Example 6.3.16. We classify all five-dimensional centrally symmetric simpli-
cial reflexive polytopes P with a centrally symmetric pair of facets.

By Cor. 6.3.3 we have X ∼= P1 × W̃4 or X ∼= P1 ×W4 or X ∼= (P1)3 × W̃2 or
X ∼= P1×W2×W̃2 or X ∼= P1×W̃2×W̃2 or X ∼= (P1)3×W2 or X ∼= P1×W2×W2

or X ∼= (P1)5, if n = 0. If n = 2, then X ∼= D2 × (P1)3 or X ∼= D2 × P1 ×W2 or
X ∼= D2 × P1 × W̃2 by 6.3.13. If n = 3, then X ∼= D3 × (P1)2 or X ∼= D3 × W̃2

or X ∼= D3 ×W2 by 6.3.14. If n = 4, then X ∼= X4 × P1 or X ∼= D2 ×D2 × P1

or X ∼= D4 × P1 by 6.3.15.
Finally let n = 5 and A = A′, in particular |V(P ) | = 10. Here there are

three (non-unimodularly equivalent) possibilities corresponding to f = 2, 3, 4
(f = 1 is not possible due to 6.3.3, since there would be an even number of 1s
in the first column):

1. A′ =













2 0
0 2

0 0 0
0 0 0

C ′
1 0 0
0 1 0
0 0 1













. Up to permutation of rows and columns C ′ has

the following form:

(a) C ′ =





1 0
1 0
1 1



. We denote the toric variety X by X5.

(b) C ′ =





1 1
1 1
1 1



. As was observed in [Wir97, Bemerkung 3.8] this

matrix is equivalent to the previous one, so X ∼= X5.

2. A =













2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
1 0 0 1 0
0 1 1 0 1













. We have X ∼= D2 ×D3.

3. A =













2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1













. By 6.3.11 we have X ∼= D5.

6.4 Embedding theorems

We are interested in finding an embedding of a reflexive polytope P ⊆ MR into
kEd1 for k ∈ N small, i.e., in finding a lattice automorphism of M that maps
P in a lattice polytope isomorphic to [−k, k]d, or more simply put, in finding a
lattice basis of M such that any vertex of P has coordinates in [−k, k].

There is a conjecture due to Ewald (see [Ewa88]) that any d-dimensional
smooth Fano polytope can be embedded in the unit lattice cube [−1, 1]d. It is
proven for d ≤ 4 by the classification or under additional symmetries. It is
wrong for simplicial reflexive polytopes, e.g., type 9 in Prop. 3.4.1 contains 10
lattice points. However we still have the following well-known result:
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Proposition 6.4.1. For d ≤ 3 we can always embedd a centrally symmetric
reflexive polytope P into Ed1 .

Proof. For this we choose by 3.1.8(1,2) a Z-basis b1, . . . , bd of lattice points in
∂P ∗, so P ⊆ {∑λib

∗
i : λi ∈ {−1, 0, 1}} for the dual Z-basis b∗1, . . . , b

∗
d.

There is no such result for d ≥ 4. For instance let P be the 4-dimensional
centrally symmetric reflexive polytope P in Example 3.2.6 (this is also X4 in
6.3.15). Assume P ∗ could be embedded as a lattice polytope in [−1, 1]4. Then
([−1, 1]4)∗ would be a lattice subpolytope of P with the same number of vertices.
Since P is terminal, this would be an equality, a contradiction. This example
is taken from [Wir97, Kapitel 4] where this topic is thoroughly dicussed. There
it is shown in [Wir97, Satz 4.4] that centrally symmetric polytopes with the
minimal number of vertices can always be embedded in the unit lattice cube.

Using Theorem 6.3.1 we can prove a generalization:

Corollary 6.4.2. Let P be a simplicial reflexive polytope with a centrally sym-
metric pair of facets. Then P can be embedded into Ed1 .

Proof. Since the (pseudo) del Pezzo polytopes are by definition contained in Ed
1 ,

by Corollary 6.3.3 we just have to show that we get by row operations on A′ a
matrix containing only {−1, 0, 1}. For this we assume A′

j,j = 2, then there is a
i > j (minimal) such that A′

i,j = 1. Now we subtract the ith row from the jth.
We proceed by induction on j.

Due to the structure theorem of the last section we can also prove the fol-
lowing result (note that by 6.4.1 and the previous example this bound is sharp
for d ≤ 4):

Corollary 6.4.3. Let P be a simplicial reflexive polytope with a centrally sym-
metric pair of facets. Then P ∗ can be embedded into b d2cEd1 .

Proof. Since the duals of the (pseudo) del Pezzo polytopes are always con-
tained in Ed1 (for this use 6.3.9 and [Cas03b]), by Cor. 6.3.3 we can as-
sume that P = conv(±e1, . . . ,±ed) ⊆ MR. Let m1, . . . ,md be the Z-basis

of M in Theorem 6.3.1 such that A =

(

2idf 0
C idd−f

)

∈ Matd(N). Then

A−1 =

(

1/2idf 0
−C/2 idd−f

)

. Now the rows are precisely the coordinates of the

dual R-basis e∗1, . . . , e
∗
d (in the dual Z-basis m∗

1, . . . ,m
∗
d). Furthermore for any

facet F ∈ F(P ) we have ηF = ±e∗1 ± · · · ± e∗d ∈ N for some signs ±. Hence
the vertices of P ∗ have coordinates in [b−d/2c, bd/2c] with respect to the lattice
basis m∗

1, . . . ,m
∗
d.

The main result of this section is the following coarse but more general
embedding theorem:

Theorem 6.4.4. Let P be a reflexive polytope of dimension d ≥ 3 with a facet
F ∈ F(P ) having a vertex that is only contained in (d− 1) facets of F (e.g., F
is simple). We set

w := lcm{〈u, v〉 + 1 : u ∈ V(P ∗), v ∈ V(P )}.
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Then P can be embedded in cEd1 , where c ∈ O(dw2) is a constant that depends
only on d and w.

More precisely: c is a positive natural number with

c ≤ min{w((d− 2)(w − 1) + z),
⌈w

2

⌉

((d− 1)w − 1)},

where z denotes the greatest proper divisor of w.

Proof. Let ed ∈ V(F ) have the assumed property. There exist e1, . . . , ed−1 ∈
V(F ) such that for i = 1, . . . , d − 1 the set conv(ej : j 6= i) is contained in a
facet Hi of F . For i = 1, . . . , d− 1 we define Fi ∈ F(P ) such that Fi ∩ F = Hi.

Again as in the proof of Lemma 3.5.6 we have for i = 1, . . . , d − 1 that
ηFi

= u + αie
∗
i for a positive natural number αi; moreover αi = 〈ηFi

, ei〉 + 1,

this implies e∗i =
ηFi

−u

αi
∈ N

w . Since u = −∑d
i=1 e

∗
i this implies also e∗d ∈ N

w . In
particular wM ⊆< e1, . . . , ed >Z⊆M .

We define Mu := M ∩ u⊥, and for a fixed Z-basis m1, . . . ,md−1 of Mu the
matrix B′ ∈ Matd−1(Z)∩GLd−1(Q) consisting of the columns e1−ed, . . . , ed−1−
ed. By Theorem 3.6.6 there is an unimodular transformation L′ of Mu such that
A′ := L′B′ ∈ Matd−1(N) is a lower triangular matrix with A′

i,j ∈ {0, . . . , A′
j,j −

1} for i > j.
Moreover since wMu is contained in the column space of A′, any diagonal el-

ement of A′ is a positive divisor of w. Now we define the matrix A ∈ Matd(Z) as
the blockmatrix where in the upper left A′ is put and the dth row has ones every-
where. Since M = Mu⊕Zed obviously in the Z-basis m1, . . . ,md−1,md = ed of
M the columns a1, . . . , ad of A are the images of e1, . . . , ed under a unimodular
transformation of M leaving the sets Mu and {ed} invariant.

Without restriction we identify now P and L(P ), in particular u = −m∗
d.

Let v ∈ V(P ) and write v =
∑d
j=1 qjaj =

∑d
j=1 q

′
jmj as rational linear

combinations. We set t := 〈u, v〉 ∈ {−1, . . . , w − 1}.
For j = 1, . . . , d− 1 we have qj =

〈ηFj
,v〉−t

αj
∈ [−w,w].

We get the two inequalities for c in two different ways:

1. To bound the coefficients of vertices of P in the Z-basis m1, . . . ,md of M
we can assume that the coefficient q′j is either minimal or maximal among
q′1, . . . , q

′
d−1.

(a) Aj,j = w. Assume j > 1 and there is k < j maximal with Aj,k > 0.
Since wmk is contained in the column space, there exists n ∈ N such
that w

Ak,k
Aj,k = nw, hence 0 ≤ Aj,k = nAk,k < Ak,k, so n = 0 and

Aj,k = 0, a contradiction. This yields q′j = wqj ∈ [−w2, w2], hence
|q′j | ≤ w((d− 2)(w − 1) + z), since d ≥ 3.

(b) Aj,j < w, i.e., Aj,j ≤ z. We have q′j =
∑j
k=1Aj,kqk. When q′j is

maximal, we get q′j ≤ (d− 2)(w− 1)w+ zw = w((w− 1)(d− 2) + z).
When q′j is minimal, we get q′j ≥ (d − 2)(w − 1)(−w) + z(−w) =
(−w)((w − 1)(d− 2) + z). This gives the first bound.

2. First we subtract for i = 1, . . . , d − 1 from the ith row of A bAi,i

2 c-times
the dth row of A. This gives a matrix having as entries only integers in
{−
⌈

w
2

⌉

, . . . ,
⌈

w
2

⌉

}. By this procedure we find a Z-basis of M such that

a1, . . . , ad ∈
⌈

w
2

⌉

Ed1 .
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Second we can assume that qd = −t −∑d−1
j=1 qj is chosen to be maximal

or minimal. Then qd = −t−∑d−1
j=1

〈ηFj
,v〉−t

αj
. If qd is maximal, this yields

qd ≤ (d − 2)(w − 1) + (d − 1) = (d − 2)w + 1. If qd is minimal, we get
qd ≥ (d− 2)(−1) − (d− 1)(w − 1) = −((d− 1)w − 1).

In any case we obtain q1, . . . , qd ∈ [−((d − 1)w − 1), (d − 1)w − 1]. This
gives the second bound.

For w = 2 the second bound is always better than the first, it yields that
centrally symmetric reflexive polytopes having such a vertex can be embedded
into the (2d−3)th multiple of the unit lattice cube. We got significant improve-
ments of this result in the special cases of Propositions 6.4.1, 6.4.2, 6.4.3. Also
note that for w = 3 the first bound in the theorem is always better than the
second (c ≤ 6d− 9).

Usually one does not deal with the invariant w but with the so called width
w′ as defined in the following proposition:

Proposition 6.4.5 ([Deb03]). Let P be a canonical Fano polytope.
We set

w′ := max{〈u, v〉 + 1 : u ∈ V(P ∗), v ∈ V(P )}.
Then

vol(P ) ≤ (w′)d.

Especially we have a result, that would be trivial, if any centrally symmetric
canonical Fano polytope could be embedded into the unit lattice cube.

Corollary 6.4.6. Any centrally symmetric canonical Fano polytope has volume
at most 2d.

Hence Theorem 3.7.14 yields:

Corollary 6.4.7. Any d-dimensional canonical Fano polytope P can be embed-
ded in the lattice cube of side length at most dd!(w′)d, where w′ is defined as in
6.4.5.

Now this should be compared with the following corollary to Theorem 6.4.4:

Corollary 6.4.8. Any d-dimensional reflexive polytope with a facet F having a
vertex that is only contained in (d−1) facets of F can be embedded in the lattice
cube of side length at most d(w′!)2, where w′ is defined as in 6.4.5.

We see that especially for small values of w′ this bound is a sharpening of
the previous one.

6.5 Lattice points

By an embedding we trivially get that the number of lattice points in the poly-
tope is bounded by 3d with equality only in the case of the unit lattice cube.
However this is even true in general:
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Theorem 6.5.1. Let P ⊆MR be a centrally symmetric canonical Fano polytope.
Then

|P ∩M | ≤ 3d.

Any facet of P has at most 3d−1 lattice points.
If P is additionally reflexive, then the following statements are equivalent:

1. |P ∩M | = 3d

2. Every facet of P has 3d−1 lattice points

3. P ∼= Ed1 as lattice polytopes

We even have the following algebraic-geometric formulation:

Proposition 6.5.2. Let X = X(N,4) be a complete Gorenstein toric variety
with centrally symmetric 4(1). Then

h0(X,−KX) ≤ 3d.

The proofs of these bounds rely on the method of counting modulo 3. So we
define the map

α : P ∩M →M/3M ∼= (Z/3Z)d.

Proof of Proposition 6.5.2. Let h ∈ SF(N,4) define the Cartier divisor −KX ,
hence P := Ph := {x ∈ MR : 〈vτ , x〉 ≥ −1∀ τ ∈ 4(1)}. Since 4(1) is cen-
trally symmetric, we get that P is a centrally symmetric rational polytope and
|P ∩M | = h0(X,−KX) by (1.7). Hence we only have to show that α is injec-
tive. So suppose there are x, y ∈ P ∩M such that α(x) = α(y). This implies
(x− y)/3 ∈M . For arbitrary τ ∈ 4(1), we get

〈vτ , x〉 − 〈vτ , y〉
3

= 〈vτ , (x− y)/3〉 ∈ Z.

Since by assumption 〈vτ , x〉, 〈vτ , y〉 ∈ {−1, 0, 1}, this yields 〈vτ , x〉 = 〈vτ , y〉 for
any τ ∈ 4(1). Therefore x = y, because 4 is complete.

Proof of theorem 6.5.1. Let there be x, y ∈ P ∩M such that α(x) = α(y), hence
(x− y)/3 ∈ intP ∩M = {0}, so x = y. Therefore α is injective.

Let F ∈ F(P ) be arbitrary but fixed. Define u := ηF ∈ V(P ∗) and also
the Z/3Z-extended map α(u) : M/3M → Z/3Z. For m ∈ P ∩ M we have
〈u,m〉 ∈ {−1, 0, 1}, in particular

m ∈ F ⇐⇒ 〈α(u), α(m)〉 = −1 ∈ Z/3Z.

3. ⇒ 1.: Trivial.
1. ⇒ 2.: If P contains 3d lattice points, then α is a bijection, and therefore

|F ∩M | = |{z ∈M/3M : 〈α(ηF ), z〉 = −1}| = 3d−1.
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2. ⇒ 3.: The assumption implies that for any facet F ′ ∈ F(P ) the map

α |F ′ : F ′ ∩M → {z ∈M/3M : 〈α(ηF ′), z〉 = −1}

is a bijection. Define x := (1/3d−1)
∑

m∈F∩M m ∈ relintF .
By Theorem 6.1.1(3) it remains to prove that x is a root, i.e., x ∈M .
Choose a facet G ∈ F(P ∗) and an R-linearly independent family w1, . . . , wd

of vertices of G such that w1 = u and w2, . . . , wd are contained in a (d − 2)-
dimensional face of P ∗.

Denote the corresponding facets of P by F1, F2, . . . , Fd with ηFj
= wj for

j = 1, . . . , d, so F1 = F . Then Q := ∩dj=2Fj is a one-dimensional face of P .
Therefore also the affine span of α(Q∩M) is a one-dimensional affine subspace
of M/3M . Since |F ∩Q | = 1 there exists an element b ∈ M/3M such that
〈α(u), b〉 = 0 and 〈α(wj), b〉 = −1 for all j = 2, . . . , d. Applying the assumption
to F2 yields a lattice point v ∈ P ∩M with α(v) = b. Hence also 〈u, v〉 = 0 and
〈wj , v〉 = −1 for j = 2, . . . , d.

By 3.1.4(11) we find a Z-basis e∗1 = u, e∗2, . . . , e
∗
d of N such that for any

j = 2, . . . , d there exist λj,k ∈ R with e∗j = λj,2(w2 − u) + · · · + λj,d(wd − u).
· Fact 1: 〈wk,

∑

m∈F∩M m〉 = 0 for k = 2, . . . , d.
(Proof: Since F ∩ Fk 6= ∅, the assumption implies for i = −1, 0, 1 ∈ Z/3Z:
|{z ∈M/3M : 〈α(u), z〉 = −1, 〈α(wk), z〉 = i}| = 3d−2.)

· Fact 2:
∑d
k=2 λj,k ∈ Z for j = 2, . . . , d.

(Proof: 〈e∗j , v〉=(−∑d
k=2 λj,k)〈u, v〉 +

∑d
k=2 λj,k〈wk, v〉= −∑d

k=2 λj,k by the
choice of v.)

Using these two facts we can finish the proof:

〈e∗1, x〉 = 〈u, x〉 = −1 ∈ Z,

〈e∗j , x〉 = (1/3d−1)

(

(−
d
∑

k=2

λj,k)〈u,
∑

m∈F∩M

m〉 +

d
∑

k=2

λj,k〈wk,
∑

m∈F∩M

m〉
)

=

d
∑

k=2

λj,k ∈ Z for j = 2, . . . , d.

Hence x ∈M .

In the simplicial case the last theorem of this thesis shows that Dd has the
maximal number of lattice points among all simplicial reflexive polytopes that
have a centrally symmetric pair of facets:

Theorem 6.5.3. Let P ⊆MR be a simplicial reflexive polytope with a centrally
symmetric pair of facets. Then

|P ∩M | ≤ 2d2 + 1.

Any facet of P has at most (d+1)d
2 lattice points.

The following statements are equivalent:

1. |P ∩M | = 2d2 + 1

2. Some facet has (d+1)d
2 lattice points
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3. Any facet has (d+1)d
2 lattice points

4. P ∼= Dd as lattice polytopes

Proof. Let F,−F ∈ F(P ). Applying Theorem 6.3.1 to P and F we can assume
that V(F ) = {e1, . . . , ed} are the columns of a matrix A of the form given in
the theorem. Hence we get:

m ∈ (F ∩M)\V(P ) =⇒ m =
ei + ej

2
for (ei)i = 2. (6.1)

In particular

|F ∩M | ≤
(

d

2

)

+ d =
(d+ 1)d

2
,

where equality implies

A =

(

2idd−1 0
1 · · · 1 1

)

,

hence Remark 6.3.11 implies P ∼= Dd. In particular this proves 2.⇒ 3.⇒ 4.,
since by Cor. 6.3.4 all facets of P have the same number of lattice points.

Let u := ηF and m ∈ ∂P ∩ M ∩ u⊥. By 3.5.6 we get m ∈ Fi for some
i ∈ {1, . . . , d}. If m ∈ V(P ), then we have m ∈ {v1, . . . , vd}. So let m 6∈ V(P ).
In particular vi 6∈ u⊥, so vi = −ei. Since m is not away from vi, we easily
obtain only by looking at Q := lin(ei,m) ∩ P that Q ∼= E2

1 as lattice polytopes
(in the lattice < ei,m >Z= lin(ei,m) ∩M). Let z := z(m, ei) ∈ V(Q) ∩ F ∩M .
Since ei+z

2 ∈ F ∩M , equation (6.1) implies that z = ej for some j 6= i. Hence

m =
−ei+ej

2 .
In particular this yields

|∂P ∩M ∩ u⊥ | ≤ d(d− 1).

where equality holds for P ∼= Dd.
Hence we have

|P ∩M | ≤ 1 + 2|F ∩M | + d(d− 1) = 2d2 + 1,

where equality implies |F ∩M | to be maximal. This proves the implications
4.⇒ 1.⇒ 2..
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Simplex, 24
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94
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resolution of, 31
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Smooth
Fano polytope, 38
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Spanning lattice simplex, 69
Star set, 46
Steinitz’s theorem, 23
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Vardi constant, 77
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associated to polytope, 69
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Paris: Société Mathématique de France 2002

[Deb01] Debarre, O.: Higher-dimensional algebraic geometry. Universitext.
New York: Springer-Verlag 2001



Bibliography 171

[Deb03] Debarre, O.: Fano varieties. In: Higher dimensional varieties and
rational points (Budapest, 2001), 93-132, Bolyai Society Mathe-
matical Studies 12. Berlin: Springer-Verlag 2003

[DHZ01] Dais, D.I.; Haase, C.; Ziegler, G.M.: All toric l.c.i.-singularities
admit projective crepant resolutions. Preprint, math.AG/9812025
(1998)

[Eik92] Eikelberg, M.: The Picard group of a compact toric variety. Results
in Math. 22, 509-527 (1992)

[Eik93] Eikelberg, M.: Picard groups of compact toric varieties and com-
binatorial classes of fans. Results in Math. 23, 251-293 (1993)

[Eis94] Eisenbud, D.: Commutative algebra with a view toward alge-
braic geometry. Graduate Texts in Mathematics 150. New York:
Springer-Verlag 1994

[Epp04] Eppstein, D.: Egyptian fractions. Webpage,
http://www.ics.uci.edu/∼eppstein/numth/egypt/ (2004)

[Eve88] Evertz, S.: Zur Klassifikation 4-dimensionaler Fano-Varietäten.
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[Nam97] Namikawa, Y.: Smoothing Fano 3-folds. J. Alg. Geom. 6, 307-324
(1997)

[Nil04a] Nill, B.: Gorenstein toric Fano varieties. Preprint,
math.AG/0405448. To appear in: Manuscr. Math. 116, 183-
210 (2005)

[Nil04b] Nill, B.: Complete toric varieties with reductive automorphisms
group. Preprint, math.AG/0407491 (2004)

[Nil04c] Nill, B.: Volume and lattice points of reflexive simplices. Preprint,
math.AG/0412480 (2004)

[Oda78] Oda, T.: Lectures on torus embeddings and applications. (Based on
joint work with Katsuya Miyake.). Tata Institute of Fundamental
Research Lectures on Mathematics and Physics, Mathematics 57.
New York: Springer-Verlag 1978

[Oda88] Oda, T.: Convex bodies and algebraic geometry - An introduction
to the theory of toric varieties. Ergebnisse der Mathematik und
ihrer Grenzgebiete 15. Berlin: Springer-Verlag 1988

[Pay04] Payne, S.: Fujita’s very ampleness conjecture for singular toric
varieties. Preprint, math.AG/0402146 (2004)

[Pik00] Pikhurko, O.: Lattice points inside lattice polytopes. Preprint,
math.CO/0008028 (2000)



174 Bibliography

[PR00] Poonen, B.; Rodriguez-Villegas, F.: Lattice polygons and the num-
ber 12. Am. Math. Soc. Monthly 107, 238-250 (2000)

[Pro04] Prokhorov, Y.G.: On the degree of Fano threefolds with canonical
Gorenstein singularities. Preprint, math.AG/0405347 (2004)

[PSG99] Parshin, A.N.; Shafarevich, I.R.; Gamkrelidze, R.V.: Algebraic Ge-
ometry V: Fano Varieties. Encyclopaedia of Mathematical Sciences
47. Berlin: Springer-Verlag 1999

[PWZ82] Perles, M.; Wills, J.; Zaks, J.: On lattice polytopes having interior
lattice points. Elemente der Mathematik 37, 44-46 (1982)

[Rei83] Reid, M.: Decomposition of toric morphisms. In: Arithmetic and
geometry, Vol. II: Geometry. Progress in Mathematics 36. Boston:
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Appendix A -

Zusammenfassung in

deutscher Sprache

Diese Arbeit befasst sich mit torischen Gorenstein-Fano-Varietäten. Dabei han-
delt es sich um vollständige normale torische Varietäten, deren antikanonischer
Divisor ein ampler Cartierdivisor ist.

Diese algebraisch-geometrischen Objekte haben ihre Entsprechung in der
konvexen Geometrie in der Form so genannter reflexiver Polytope. Dabei ist
ein reflexives Polytop ein Gitterpolytop, das in seinem Inneren den Ursprung
enthält, mit der Eigenschaft, dass das duale Polytop wiederum ein Gitterpo-
lytop ist. Insbesondere treten reflexive Polytope immer in Paaren auf. Die-
se Begriffsbildung wurde erstmals von Batyrev in [Bat94] eingeführt, als er
zeigte, dass generische antikanonische Hyperflächen torischer Gorenstein-Fano-
Varietäten Calabi-Yau sind und sich nach Auflösung der Singularitäten aufgrund
der natürlichen Dualität reflexiver Polytope Kandidaten für Mirror-Symmetrie
ergeben. Daraufhin wurde angestrebt, sämtliche reflexive Polytope im physi-
kalisch relevanten vierdimensionalen Fall zu klassifizieren. Kreuzer und Skarke
fanden schließlich mit Hilfe ihres Computerprogramms PALP [KS04a] 16, 4319
bzw. 473800776 nichtisomorphe zwei-, drei- bzw. vierdimensionale reflexive Po-
lytope [KS98, KS00, KS04b]. Weiter ist bekannt, dass es in jeder Dimension nur
endlich viele Isomorphieklassen gibt. Auf der Suche nach allgemeineren Calabi-
Yau-Varietäten haben Kreuzer und Skarke in letzter Zeit auch begonnen, fünf
und sechs Dimensionen in Angriff zu nehmen [KS04b].

Während es schon einige mathematische Arbeiten gibt, die sich mit glatten
torischen Fano-Varietäten beschäftigen [WW82, Bat82a, Bat82b, Bat99, Sat00,
Deb03, Cas03a, Cas03b], wurde der singuläre Fall noch nicht so intensiv un-
tersucht, insbesondere in höheren Dimensionen. Dies hängt damit zusammen,
dass hier einige fundamentale Schwierigkeiten auftreten. Zunächst sind man-
che algebraisch-geometrische Methoden wie Riemann-Roch oder Schnitttheorie
nicht ohne Weiteres anwendbar, insbesondere da in höheren Dimensionen kei-
ne torische krepante Auflösung existieren muss. Zum Zweiten verwenden viele
konvex-geometrische Beweise die Voraussetzung, dass die Ecken einer Facette
im glatten Fall eine Gitterbasis bilden, wogegen reflexive Polytope im Allgemei-
nen sogar Gitterpunkte im Inneren einer Facette enthalten können. Schließlich
verhindert allein die extrem große Anzahl an Isomorphieklassen selbst in niedri-
gen Dimensionen in den meisten Fällen eine vollständige rigorose Klassifikation,
die ohne die Hilfe eines Computers auskommt.
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Das Ziel dieser Dissertation ist eine erste systematische Untersuchung tori-
scher Gorenstein-Fano-Varietäten. Hierfür werden zunächst Methoden und Re-
sultate über glatte torische Fano-Varietäten auf torische Fano-Varietäten mit
milden Singularitäten verallgemeinert. Dabei lässt die Konzentration auf Me-
thoden der konvexen Geometrie auch schon im glatten Fall bekannte Resultate
transparenter erscheinen. Überraschend ist in diesem Zusammenhang die Gut-
artigkeit Q-faktorieller torischer Gorenstein-Fano-Varietäten. Weiter ist es das
Ziel, in wichtigen Fällen vollständige Klassifikationsresultate auch in höheren Di-
mensionen zu gewinnen. Dabei stehen durchweg die kombinatorischen und geo-
metrischen Eigenschaften und Invarianten reflexiver Polytope im Vordergrund,
für welche Einschränkungen, Abschätzungen und Vermutungen bewiesen und
formuliert werden. Diese Ergebnisse liefern insbesondere auch Erklärungen für
interessante Beobachtungen in der Datenbank.

Diese Arbeit besteht aus einer Einleitung, einer Liste der verwendeten Nota-
tionen, sechs Kapiteln sowie einem Index und einer ausführlichen Bibliographie.
Jedes größere Kapitel besitzt eine eigene Einleitung, der eine Übersichtsliste mit
Referenzen auf die wichtigsten Ergebnisse angefügt ist.

Im Folgenden sollen nun die einzelnen Kapitel dieser Arbeit zusammenfas-
send beschrieben werden.

In den ersten beiden Kapiteln werden Grundlagen besprochen. Kapitel 1
enthält die fundamentalen Aussagen der torischen Geometrie. Kapitel 2 beschäf-
tigt sich zunächst mit der Auflösung und Hierarchie von Singularitäten und de-
ren Beschreibung im torischen Fall. Schließlich werden torische Fano-Varietäten
genauer untersucht. Diese algebraisch-geometrischen Objekte haben eine Eins-
zu-eins-Entsprechung in der konvexen Geometrie in Form so genannter Fano-
Polytope. Torische Fano-Varietäten mit kanonischen bzw. terminalen Singula-
ritäten korrespondieren dabei mit kanonischen bzw. terminalen Fano-Polytopen.
Glatte bzw. Q-faktorielle torische Fano-Varietäten entsprechen glatten bzw. sim-
plizialen torischen Fano-Varietäten.

Kapitel 3 ist das Herzstück dieser Arbeit. Hier werden reflexive Polytope de-
finiert und untersucht, also die konvex-geometrischen Gegenstücke zu torischen
Fano-Varietäten mit Gorenstein-Singularitäten, kurz, torischen Gorenstein-Fano-
Varietäten.

Das Kapitel beginnt mit der Verallgemeinerung zweier wichtiger Hilfsmittel,
die schon erfolgreich zur Untersuchung glatter torischer Fano-Varietäten ein-
gesetzt wurden. Zum Einen ist dies die Projektion reflexiver Polytope entlang
von Ecken oder, allgemeiner, entlang von Gitterpunkten auf dem Rand. Diese
Abbildung hat einige wichtige Einschränkungen, die in Proposition 3.2.2 ge-
nau beschrieben werden. Hier soll nur eine unmittelbare Anwendung erwähnt
werden: Batyrev bewies in [Bat99], dass die antikanonische Klasse eines Torus-
invarianten Primdivisors einer glatten torischen Fano-Varietät numerisch effek-
tiv ist. In konvex-geometrischer Sprache besagt dies, dass die Projektion eines
glatten Fano-Polytops reflexiv ist. Hier wird nun ein einfacherer Beweis dieser
Aussage angegeben (Korollar 3.2.8) und darüber hinaus verallgemeinernd in
Proposition 3.2.4 gezeigt, dass die Projektion eines terminalen reflexiven Poly-
tops entlang einer Ecke ein kanonisches Fano-Polytop ist.

Bei dem zweiten wichtigen Hilfsmittel handelt es sich um primitive Kollek-
tionen und Relationen. Dies sind spezielle Mengen und Relationen von Ecken,
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die von Batyrev in [Bat91] eingeführt wurden, um glatte Fano-Polytope eindeu-
tig zu beschreiben. Sie waren essentiell für seine Klassifikation vierdimensionaler
glatter torischer Fano-Varietäten in [Bat99]. Diese Begriffsbildung benötigt je-
doch die Existenz von Gitterbasen auf den Facetten, ist also im Allgemeinen
nicht auf reflexive Polytope anwendbar. Beschränkt man sich aber auf den Fall
einer primitiven Kollektion der Länge zwei, was einfach einem Paar von Ecken
entspricht, die nicht in einer gemeinsamen Facette liegen, so kann in Proposition
3.3.1 gezeigt werden, dass eine sinnvolle Verallgemeinerung des Begriffes einer
primitiven Relation existiert. Als eine direkte Anwendung ergibt sich in Korollar
3.3.2, dass je zwei Ecken eines simplizialen reflexiven Polytops durch maximal
drei Kanten verbunden werden können, wobei nur im Fall eines zentralsymmetri-
schen Paares möglicherweise nicht schon zwei oder weniger Kanten ausreichen.
Der Kantengraph hat also höchstens Durchmesser drei. Mit Hilfe dieser kom-
binatorischen Beschränkungen kann in den Korollaren 3.3.4 und 3.3.5 erklärt
werden, welche Platonischen Körper überhaupt als reflexive Polytope auftreten
können. Primitive Kollektionen und Relationen der Länge zwei sind in vieler-
lei Hinsicht fundamental und wurden daher im glatten Fall von Casagrande in
[Cas03a] genauer untersucht. Sie konnte dort zeigen, dass die Picardzahl einer
glatten torischen Fano-Varietät die Picardzahl eines Torusinvarianten Primdi-
visors höchstens um drei überschreiten kann. Mit Hilfe obiger Verallgemeine-
rungen kann nun in Korollar 3.5.17 bewiesen werden, dass die entsprechende
Aussage auch für Q-faktorielle torische Gorenstein-Fano-Varietäten gilt.

Der Hauptteil des dritten Kapitels beschäftigt sich damit, obere Schranken
für Invarianten reflexiver Polytope zu finden, für das Volumen, die Anzahl der
Ecken und der Gitterpunkte.

Für die Eckenanzahl eines reflexiven Polytops stellen wir, motiviert durch
Beobachtungen in der Datenbank, die Vermutung auf, dass ein d-dimensionales
reflexives Polytop höchstens 6d/2 Ecken hat, wobei der Maximalfall eindeu-
tig bestimmt ist. Diese Vermutung wird im letzten Kapitel dieser Arbeit für
zentralsymmetrische einfache reflexive Polytope beliebiger Dimension bewiesen.
Hier dagegen liegt der Schwerpunkt auf der maximalen Eckenanzahl simplizia-
ler reflexiver Polytope. Für glatte d-dimensionale Fano-Polytope wurde schon
seit längerer Zeit vermutet, dass diese höchstens 3d Ecken besitzen, wobei die
Gleichheit nur in geraden Dimensionen möglich sein sollte. In 3.5.7 wird nun
die Vermutung aufgestellt, dass dies auch für simpliziale reflexive Polytope gilt
und der Fall von 3d Ecken darüber hinaus eindeutig bestimmt ist. Unter der
Voraussetzung, dass das duale Polytop ein zentralsymmetrisches Eckenpaar be-
sitzt, wird diese Vermutung in Satz 3.5.11 erstmals bewiesen. Basierend auf der
Veröffentlichung dieser Ergebnisse als Preprint in [Nil04a] ist diese Vermutung
dann von Casagrande vollständig in [Cas04] gezeigt worden.

Des Weiteren wird in diesem Kapitel angestrebt, eine gute Abschätzung für
die Anzahl der Gitterpunkte eines reflexiven Polytops zu finden. Dies würde
durch eine obere Schranke für das Volumen erreicht. Da in der Datenbank die
reflexiven Polytope mit dem größten Volumen allesamt Simplexe sind, wurde in
dieser Arbeit versucht, eine scharfe Abschätzung für das Volumen eines reflexi-
ven Simplex zu finden. Dies ist der Inhalt von Satz 3.7.13. Die entsprechende
algebraisch-geometrische Aussage besagt, dass jede torische Gorenstein-Fano-
Varietät mit Klassenzahl eins, also z.B. jeder gewichtete projektive Raum mit
Gorenstein-Singularitäten, höchstens einen antikanonischen Grad von 9 in Di-
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mension zwei, 72 in Dimension drei und 2(yd−1 −1)2 ab Dimension vier besitzt,
wobei die Maximalfälle genau bestimmt werden können. Die hier auftretende
Zahlenfolge y0, y1, y2, . . . wird dabei durch y0 = 2 und yn = 1 + y0 · · · yn−1 de-
finiert. Es kann nun vermutet werden, dass diese obere Abschätzung auch für
sämtliche Fano-Varietäten mit kanonischen Gorenstein-Singularitäten gültig ist.
Im dreidimensionalen Fall ist eine solche Vermutung, bekannt unter dem Na-
men Fano-Iskovskikh-Vermutung, vor Kurzem in [Pro04] bewiesen worden. Die
in diesem Kapitel verwendeten Methoden gründen darauf, dass jedem reflexiven
Simplex eine Menge von Stammbrüchen der Summe eins (z.B. 1

2 + 1
3 + 1

6 = 1)
zugeordnet werden kann, siehe [Bat94] und [Con02]. Konvex-geometrische Fra-
gestellungen führen somit zu nicht-trivialen Problemen in der elementaren Zah-
lentheorie, die eng mit der Darstellung rationaler Zahlen als ägyptische Brüche
verwandt sind. Weiterhin wird in Satz 3.7.19 bewiesen, dass es in jeder Di-
mension einen eindeutigen reflexiven Simplex mit der maximalen Anzahl an
Gitterpunkten auf einer Kante gibt. Dies war zuvor in [HM04] von Haase und
Melnikov in der Datenbank beobachtet worden.

In Kapitel 4 klassifizieren wir dreidimensionale torische Fano-Varietäten mit
terminalen Gorenstein-Singularitäten. Diese Varietäten entsprechen dreidimen-
sionalen reflexiven Polytopen, die auf dem Rand außer den Ecken keine weiteren
Gitterpunkte besitzen. Im Hauptsatz 4.3.2 dieses Kapitels wird gezeigt, dass es
genau 100 Isomorphieklassen solcher so genannter quasi-glatter Fano-Polytope
gibt. Die Idee des Beweises ist, mit den Methoden des vorigen Kapitels zu zei-
gen, dass quasi-glatte Fano-Polytope schon durch so genannte quasi-primitive
Relationen bestimmt sind. Die Klassifikation selbst wird explizit ausgeführt.

In Kapitel 5 untersuchen wir eine spezielle Menge von Gitterpunkten, ge-
nannt Wurzelmenge, die zu einem vollständigen Fächer assoziiert werden kann.
Im Falle eines Fächers, der von den Normalen eines reflexiven Polytops auf-
gespannt wird, handelt es sich bei den Wurzeln gerade um die Gitterpunkte
im Inneren der Facetten des Polytops. Die Relevanz der Wurzelmenge rührt
daher, dass sie essentiell für die Bestimmung der Automorphismengruppe ei-
ner torischen Varietät ist. So bestimmt die Anzahl der Wurzeln die Dimension
der Automorphismengruppe. Besonders wichtig sind diejenigen Wurzeln, deren
Negative auch wieder Wurzeln sind; sie werden als halbeinfach bezeichnet. Die
Automorphismengruppe ist genau dann reduktiv, wenn jede Wurzel halbeinfach
ist.

In diesem Kapitel führen wir so genannte Facetten-Basen bzw. Wurzel-Basen
ein, die auf geometrisch befriedigende Weise die Menge der Facetten, die Wur-
zeln enthalten, bzw. die Menge der halbeinfachen Wurzeln parametrisieren. Für
den Beweis für deren Existenz ist im Fall reflexiver Polytope der im vorigen
Kapitel verallgemeinerte Begriff einer primitiven Relation der Länge zwei von
Nutzen. Wie sich im Nachhinein herausstellte, entsprach dieser in diesem spe-
ziellen Zusammenhang Überlegungen von Bruns und Gubeladze in [BG99]. Im
allgemeineren Fall vollständiger Varietäten werden Resultate von Cox über den
homogenen Koordinatenring in [Cox95] herangezogen. Als erste Anwendung
können wir in Proposition 5.1.19 Produkte projektiver Räume als genau die-
jenigen vollständigen torischen Varietäten charakterisieren, deren halbeinfache
Wurzeln den ganzen Raum aufspannen. Als weiteres konvex-geometrisches Er-
gebnis besagt Korollar 5.2.4, dass d-dimensionale reflexive Polytope höchstens
2d Facetten mit Wurzeln im Inneren besitzen, wobei Gleichheit nur für [−1, 1]d
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gilt. Das erste Hauptresultat dieses Kapitels, Satz 5.1.25, liefert eine Erklärung
für Beobachtungen in der Datenbank über die Anzahl an Wurzeln reflexiver
Polytope. Es wird gezeigt, dass die reduktive Automorphismengruppe einer d-
dimensionalen vollständigen torischen Varietät, die kein Produkt projektiver
Räume ist, höchstens Dimension 2 für d = 2 bzw. d2 − 2d+4 für d ≥ 3 besitzen
kann.

Eine entscheidende Motivation, sich mit der Wurzelmenge auseinanderzuset-
zen, rührt von einem Ergebnis von Batyrev und Selivanova in [BS99] her, wel-
ches besagt, dass eine glatte torische Fano-Varietät eine Einstein-Kähler-Metrik
besitzt, falls die linearen Automorphismen des Dualen des entsprechenden glat-
ten Fano-Polytops keinen gemeinsamen nicht-trivialen Fixpunkt besitzen. Da
nach einem bekannten Satz von Matsushima die Existenz einer Einstein-Kähler-
Metrik impliziert, dass die Automorphismengruppe der Varietät reduktiv ist, er-
gibt sich als unmittelbares Korollar, dass jedes reflexive Polytop, dessen Duales
ein glattes Fano-Polytop ist und dessen lineare Automorphismen keinen gemein-
samen nicht-trivialen Fixpunkt haben, nur halbeinfache Wurzeln besitzt. Die
Autoren fragten daher nach einem rein konvex-geometrischen Beweis für die-
ses Resultat. Darüber hinaus vermutete Batyrev, dass die Halbeinfachheit aller
Wurzeln eines reflexiven Polytops schon aus dem Verschwinden seines Schwer-
punktes folgt. Im eben beschriebenen glatten Fall ist kürzlich von Wang und Zhu
in [WZ04] sogar gezeigt worden, dass diese Bedingung äquivalent zur Existenz
einer Einstein-Kähler-Metrik ist.

Im zweiten Hauptsatz dieses Kapitels, Satz 5.3.1, geben wir nun eine Reihe
kombinatorischer Kriterien an, die hinreichend oder äquivalent zur Halbeinfach-
heit aller Wurzeln einer vollständigen torischen Varietät oder eines reflexiven
Polytops sind. Diese Bedingungen beinhalten obige Vermutungen; dabei sind
sämtliche Beweise rein konvex-geometrisch.

Kapitel 6 beschäftigt sich mit zentralsymmetrischen reflexiven Polytopen.
Ein Hauptresultat, Satz 6.5.1, besagt, dass [−1, 1]d bis auf Isomorphie das ein-
zige d-dimensionale zentralsymmetrische reflexive Polytop mit der Maximalzahl
von 3d Gitterpunkten ist. Im Beweis wird dabei benutzt, dass außer [−1, 1]d

jedes d-dimensionale zentralsymmetrische reflexive Polytop weniger als 2d Wur-
zeln hat. Was die maximale Anzahl der Ecken angeht, so können wir in Satz
6.2.2 die allgemeine Vermutung im Fall eines einfachen zentralsymmetrischen re-
flexiven Polytops beweisen. Dies ist eine Anwendung eines weiteren Hauptergeb-
nisses dieses Kapitels, Korollar 6.3.3 zu Satz 6.3.1, nämlich einer vollständigen
Klassifikation beliebigdimensionaler simplizialer reflexiver Polytope, die ein zen-
tralsymmetrisches Paar von Facetten besitzen. Mit Hilfe dieses Satzes, der eine
Verallgemeinerung und Vereinfachung von Resultaten von Ewald im glatten und
von Wirth im kombinatorisch einfachsten Fall darstellt, wird in Satz 6.3.12 die
explizite Klassifikation bis zu Dimension fünf durchgeführt. Weiter zeigen wir,
dass in jeder Dimension d ein solches Polytop die gleiche kombinatorische Struk-
tur wie im glatten Fall hat, höchstens 2d2 + 1 Gitterpunkte besitzt, in [−1, 1]d

einbettbar ist und dass dies für das Duale noch in bd/2c[−1, 1]d möglich ist. Ein
letztes Hauptresultat, Satz 6.4.4, gibt eine milde Bedingung an, unter der ein
allgemeines d-dimensionales reflexives Polytop in ein Vielfaches von [−1, 1]d ein-
gebettet werden kann. Besitzt demnach ein zentralsymmetrisches Polytop eine
einfache Facette, so ist eine Einbettung in ein (2d− 3)faches möglich.
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