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1 INTRODUCTION

Fast and efficient analytical tools in order to separate, quantify, and identify

unknown compounds are essential for biomedical and biotechnical research. Analytical

and bioanalytical chemical methods have to meet highest demands in industry and

sciences. Methodical developments for advanced rapid and quantitative evaluation of

analytical tasks encountered with genomics, proteomics, and metabolomics are

indispensable.

Depending on the analyte mixtures, one of the most common and powerful

separation techniques is reversed-phase high performance liquid chromatography (RP-

HPLC). Detection systems to identify the separated compounds vary from ultraviolet

(UV) detection, mass spectrometry, and nuclear magnetic resonance (NMR)

spectroscopy. Hyphenated techniques such as liquid chromatography-mass spectrometry

(LC-MS) and high performance liquid chromatography-nuclear magnetic resonance

(HPLC-NMR) provide the greatest potential for the generation of informative data to

elucidate the structure of unknown compounds.

Even though column technology in RP-HPLC advanced all along, it still mostly

relies on long alkyl chain stationary phases covalently immobilized on a pressure stable

silica gel core. In order to separate alike as well as highly complex analyte mixtures,

however, commercially available chromatographic sorbents (approximately 80 % of the

market share are C18 columns) not always yield the desired separation success. Also,

hyphenated instruments require highly efficient column materials to obtain pure and
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concentrated analytes in the respective detection systems. For this reason, the

development and characterization of novel stationary phases tailored for certain

separation tasks is of substantial importance for modern pharmaceutical and biomedical

research. Thereby, analytical tools to monitor the synthesis process and to characterize the

final chromatographic sorbents are indispensable. Here, solid-state NMR spectroscopy is

the method of choice as a non-destructive method to elucidate the stationary phase surface

morphology and dynamics in chromatographic sorbent materials. Furthermore,

suspended-state NMR spectroscopy allows to achieve a unique insight into the dynamics

of stationary phases in presence of the mobile phase. Direct comparison with the

chromatographic capability leads to a more complete picture of the separation

mechanism. Thus, NMR helps to understand the performance of recognition centers in

stationary phases and is therefore an outstanding characterization tool for further

developments.
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2 SCOPE

The objective of the on-hand work is the further development and application of

novel polymer based highly efficient and shape selective RP-HPLC sorbent materials.

Thereby, different poly(ethylene-co-acrylic acid) copolymers are covalently immobilized

on silica gel via different linker molecules.

The influence of parameters such as the composition of the polymer, the

immobilization technique (thus, the usage of different linker molecules), the surface

coverage but also experimental variables such as the mobile phase composition and the

temperature are of interest. Both, NMR as the most powerful spectroscopic tool to

investigate the morphology and structure of sorbent materials and also extensive

chromatographic studies are undertaken and compared with each other. Hereby, the shape

selectivity effects of stationary phases are examined. They crucially influence the

separation mechanism in RP-HPLC, that is mainly governed by hydrophobic interactions.

The separation of geometric carotenoid isomers and shape constrained polycyclic

aromatic hydrocarbons (PAHs) is a challenge. It depends on the conformation of the

stationary phase investigated by a direct comparison of solid- and suspended-state NMR

spectroscopic evidences with chromatographic experiments.

The polymer based sorbent materials are also investigated with respect to

overloading effects, and checked upon their loading capacity. Especially, when capillary

HPLC is hyphenated to NMR, a high analyte concentration in the detection probe is

desired resulting in a better signal-to-noise ratio (S/N). Therefore, the polymer based
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chromatographic sorbent was tested in the miniaturized capillary HPLC separation

system.

Many compounds can be separated and purified using RP-HPLC methods due to

their differences in polarity and shape. Other substances, however, exist as enantiomers

and differ drastically in bioactivity. For example, the (S)-enantiomer of (±)-N-(2,6-dioxo-

3-piperidyl)phthalimid is believed to be the cause of the teratogenic effect of thalidomide.

Therefore, the development of active ingredients for novel drugs requires chiral

separation materials which are unconditionally reliable. Most chiral separation methods in

HPLC rely either on covalently bound normal-phase (NP) selector molecules or on

polymers coated around a pressure stable inorganic core. In order to combine the shape

selectivity and loading capacity of the poly(ethylene-co-acrylic acid) copolymer with

chiral recognition, a chiral selector molecule is incorporated in the polymer based

chromatographic sorbent. This can be achieved by covalently attaching the copolymer and

also the chiral selector on the silica surface using different immobilization strategies. The

obtained novel chiral sorbent material is characterized by solid-state NMR spectroscopy

and chromatographically tested by separating enantiomers.
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3 CHEMISTRY IN INTERPHASES

3.1 The interphase concept

The interphase concept describes the sphere in which a mobile component

interpenetrates a stationary phase on a molecular level. Thereby, the stationary phase is

usually immobilized by a linker on a supporting substrate, usually an inorganic, an

organic or an organic/inorganic polymer. The stationary phase bears the

interaction/reaction centers that can either consist of organic molecules, organometallic

complexes but also enzymes functioning as bioactive catalysts to which the target

reactands/analytes are centripetal by the mobile phase. Even though no homogenous

phase is formed, however, due to existent swelling properties of the stationary phase

effective interplay between the immobilized and dissolved molecules is possible. The

concept can be applied to catalytic reactions, solid phase syntheses in organic chemistry

and also to gas and liquid chromatography. In the case of chemical reactions the concept

offers the advantage of easy and complete separation of the products from the stationary

phase.

3.2 Interphases in HPLC

With respect to HPLC the interphase concept is used to obtain a further

understanding of recognition effects on a molecular level, thus is used to advance the
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development of novel highly selective and effective stationary phases tailored for specific

separation problems. Figure 1 shows a visualization of the interphase concept in RP-

HPLC. The analyte, in this case a bend ß-carotene molecule, is interacting via

hydrophobic hydrogen bonds with the immobilized stationary phase.

recognition site matrix mobile phase 

Figure 1 Visualization of the interphase concept in reversed-phase high performance

liquid chromatography. The analyte molecule dissolved in the polar mobile phase

interacts with the hydrophobic stationary phase (recognition site), which is immobilized

on a pressure stable silica gel support (matrix)

Most separation problems in RP-HPLC are generally addressed employing silica

based C18 sorbent materials [1, 2]. Within the complex interplay between the analyte, the
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mobile phase, and the stationary phase the separation process in RP-HPLC, which is

primarily governed by hydrophobic interactions, is also influenced by the surface

modification chemistry used to immobilize the stationary phase on the silica gel support

[3]. The so-called slot model was proposed, in which the retention mechanism was

described to be affected by the existence of cavities in the alkyl chain turf on the silica

surface in which certain shape-suited analytes could penetrate better resulting in an

increase in hydrophobic interactions [4]. Non-planar polycyclic aromatic hydrocarbon

(PAH) solutes eluted before planar PAH solutes from certain columns even though these

molecules did not differ notably in polarity. The shape of the solute (length-to-breadth

ratio L/B) was found to be important for the separation process. These studies took place

employing both monomeric and polymeric C18 chromatographic sorbents. It was revealed

that the shape selectivity or shape recognition of chromatographic sorbents for solutes

with a defined rigid structure such as PAHs was enhanced when the sorbents were

synthesized according to a solution polymerization reaction [5-8]. The empirical slot

model is in agreement with the statistical mechanical interphase concept used to describe

retention of “blocklike” molecules [9-11].
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4 SYNTHESIS AND CHARACTERIZATION OF

POLY(ETHYLENE-CO-ACRYLIC ACID)

CHROMATOGRAPHIC SORBENTS

RP sorbents based on different polymers were introduced before [12-19].

Poly(ethylene-co-acrylic acid) chromatographic sorbents with copolymers differing in

chain lengths and polarity covalently bound via a spacer molecule on silica were

developed earlier. They revealed different chromatographic performances [20]. Among

three poly(ethylene-co-acrylic) copolymers, the longest and least polar copolymer with an

acrylic acid mass fraction of 5 % proved to have superior shape selective properties [21,

22]. Before presenting the materials investigated in this work, a short general disquisition

about the commonly employed strategies for the synthesis of chromatographic sorbents is

given in the following paragraph.

4.1 Synthesis

4.1.1 Immobilization of RP stationary phases on silica gel

Covalently modified substrates and their use as LC column material dates back to

the early 1970s [23-25]. The covalent bond ensures chemical stability in most organic

solvents and the (usually) inorganic substrate assures pressure resistance. The
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chromatographic capacity is dependent on the physical and chemical properties of both,

the substrate and the immobilized stationary phase. Usually, silica gel is employed as

support material with particle sizes ranging from 1 to 10 µm, and pore sizes from 60 Ǻ to

1000 Ǻ. Depending on the analyte mixtures, a careful selection of particle and pore sizes

must be carried out when synthesizing novel sorbents. In order to have sufficient

theoretical plates short diffusion pathways are necessary, therefore smaller particles are

preferable. The backpressure, however, increases with decreasing particle size. Also, the

smaller the pore size the greater the specific surface area leading to more interactions with

the analytes and therefore to a higher retention factor. In this work, most analytes

mixtures either consist of carotenoid isomers or PAHs for which a particle size of 3 µm

and a pore size of 300 Ǻ are best suited, see Figure 2 for a visualization of the silica gel.

Figure 2 Visualization of porous spherical silica gel employed for the immobilization of

stationary phases. The silica gel used in this work has a particle size of 3 µm and a pore

size of 300 Ǻ
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The possibility to modify the silica gel surface allows the synthesis of chromatographic

sorbent materials tailored for specific separation problems. Polar, nonpolar, aromatic,

chiral, and ionic sorbents can be prepared by appropriate modification reactions.

Numerous publication, reviews, and books dealt with synthesis strategies for alkyl chain

stationary phases modified silica gels [26]. Here the main and most commonly

silanization reactions for microparticulate silica shall be recited. The condensation

reaction of a monofunctional silane with silanol groups on the silica surface creates a

individual siloxane bond and is specified as “monomeric synthesis”. In this case, possible

undesired analyte silanol interactions can take place. By employing trifunctional silanes in

presence of water, however, polymerization occurs resulting in surfaces that differ from

monomeric sorbents in their chemical composition and their chromatographic features. If

a controlled amount of water is added and adsorbed onto the silica surface and this

humidified silica gel is then reacted with a trifunctional silane in a dry solvent,

polymerization occurs on the silica surface; thus a regular cross linked alkyl chain

network is created. This reaction procedure is described as “surface polymerization

synthesis”. If, however, a controlled amount of water is added to the solvent in which a

trifunctional silane is dissolved, a silane polymer is formed. Subsequently added silica gel

covalently binds these polymer clusters on the silica surface. This surface modification

reaction is denoted as “solution polymerization synthesis”. Interactions between an

analyte and silanol groups on the silica surface are less likely to occur when

chromatographic sorbents are synthesized according to a polymeric synthesis approach

since the crosslinking of the trifunctional silanes covers the non-reacted silanol groups.
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4.1.2 Immobilization of poly(ethylene-co-acrylic acid) on silica gel

Three poly(ethylene-co-acrylic acid) copolymers, see Figure 3, with different chain

lengths and different acrylic acid mass fractions were immobilized on porous silica gel

(Table 1, chromatographic sorbents A, B, C, and D).

COOH
YX

Figure 3 General structure of the poly(ethylene-co-acrylic acid) copolymer

Table 1 Properties of the chromatographic sorbents

sorbent spacer number of

polymer chain

moieties

x             y

acid

mass

fraction

(%)

molecular

weight

(Da)

degree of

immobilization*

polymer molarity

on silica surface

(µmol/m2)

A APS 119         2.4 5 3500 24 0.8

B APS 77           3.3 10 2400 12 0.44

C APS 33           2.3 15 1100 12 1.08

D GOPS 119         2.4 5 3500 7 0.18

*carbon mass fraction (%)

Within the copolymers an average number of co-acrylic acid moieties (y denotes their

number) are statistically incorporated in the ethylene backbone (x denotes the number of
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ethylene moieties). The synthesis strategy of the attachment of the polymers to the silica

support, that is the influence of different spacer molecules on the chromatographic

behavior, is of interest. Therefore the copolymers were attached via an

aminopropyltriethoxysilane (APS) linkage (sorbents A, B, and C), see Figure 4a;

additionally a glycidoxypropyltrimethoxysilane (GOPS) linkage was used to attach the

copolymer with the lowest acid mass fraction on the silica surfaces (sorbent D), see

Figure 4b.

 

OH + Si NH2

OEt

EtO O Si NH2

O

OOEt

toluene

reflux

24h
silica aminopropyltriethoxysilane aminopropylsilica

O Si

O

O

COOH

y1x1

COOH

y2x2

N

O

xylene

reflux

24h

COOH

YX

poly(ethylene-co-acrylic acid) immobilized on aminopropylsilica

H

Figure 4a Reaction scheme for the synthesis of chromatographic sorbents A, B, and C

The first reaction step, the attachment of the silane spacer molecules, was undertaken

using the surface polymerization reaction. This was done to obtain a preferably even

spacer molecule layer. The obtained degrees of immobilization and surface coverages are

given in Table 2, and are explained along with the results obtained from the 29Si solid-



Synthesis and Characterization 13

state NMR investigation in chapter 4.2.1.1. For the second reaction step, the acid groups

within the copolymers were reacted with the reactive functional groups in the spacer

molecules. Sorbents A, B, and C were synthesized via a peptide coupling reaction of the

amino group in 3-aminopropylsilica and the acid groups of the respective copolymer

 

OH + Si O

OMe

MeO O Si O

O

O

OO

OMe

toluene

reflux

24h
silica glycidoxypropyltrimethoxysilane glycidoxypropylsilica

O Si

O

O

COOH
y1x1

COOH

y2x2

O O

OH

O

xylene

reflux

24h

COOH
YX

poly(ethylene-co-acrylic acid) immobilized on glycidoxypropylsilica

Figure 4b Reaction scheme for the synthesis of chromatographic sorbent D

using diisopropylcarbodiimide and hydroxybenzotriazole as catalysts. Sorbent D was

synthesized by binding the copolymer with an acid mass fraction of 5 % to 3-

glycidoxypropylsilica via an esterification reaction. Thus, the only difference between

sorbent A and D in the synthesis is the use of a different spacer group. Elemental analysis

of the corresponding chromatographic separation materials gave the carbon mass fraction,

thus the degrees of immobilization. The employed silica gel with a particle size of 3 µm

and a pore size of 300 Ǻ possesses a specific surface area of 200 m2 per gram [27].
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Thereby, the molarity of immobilized polymer on the silica gel surfaces was calculated,

see Table 1. Sorbent D reveals the lowest immobilized polymer molarity, sorbent C the

highest.

4.2 Characterization

The prime property of chromatographic sorbents is percent carbon loading determined by

elemental analysis which allows for the calculation of surface coverages, and also helps to predict

possible chromatographic behaviors. Yet, by reasonable choosing and separating certain analyte

molecule systems one can surely provide direct experimental information about the behavior and

properties of novel sorbent materials. For example, nitrogen groups containing molecules might

interact with silanol groups, or analytes with the same polarity but different shapes are retarded

differently. Nevertheless, such experiments provide only indirect indications about the potential

morphology of chromatographic sorbents. The unambiguous elucidation and the profound

understanding of the structure, conformation, and organization of alkyl-modified silica gel

surfaces is requisite to, on the one hand a deeper understanding of the retention mechanism, on

the other hand also the design of improved novel chromatographic sorbents and their expedient

application. Lately, advances in modern analytical chemistry allowed for the establishment and

routine implementation of spectroscopic tools which admit to gain direct evidence and sound

insights into the molecular build-up and behavior of new materials. For example, Fourier

transform infrared spectroscopy, Raman spectroscopy,
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fluorescence spectroscopy, X-ray experiments, and neutron scattering studies yield

information about alkyl chain conformations, motions, and cooperative associations.

Certainly, results obtained from NMR spectroscopic experiments offer the richest and

most comprehensive picture of the morphology in chromatographic sorbent materials.

Therefore, a thorough 29Si and 13C solid-state NMR investigation was performed in order

to characterize the novel polymer based chromatographic sorbent materials. Also, the

results of another powerful spectroscopic method, ellipsometry, are presented which

revealed a supplementary insight into the surface morphology of these polymer based

sorbents. Also, contact angle measurements were performed to elucidate the surface

polarity of the polymeric modified silica surfaces.

4.2.1 Solid-state NMR spectroscopy

As explained above to understand the chromatographic properties of

chromatographic sorbents, an extensive investigation of the surface modification and

alkyl chain order and morphology is of significance. Among the most powerful methods

of investigating organic molecules bound to silica supports are solid-state 13C and 29Si

cross polarization/magic angle spinning (CP/MAS NMR) spectroscopy. Especially solid-

state 13C and 29Si CP/MAS NMR spectroscopy have earlier been used to obtain

information about the surface chemistry and the alkyl chain arrangement of the stationary

phase [28-30]. Molecular motion in alkylsilanes covalently bound to silica and different

mobilities in polyethylene chains were revealed by 13C solid-state NMR spectroscopy
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before [31]. Different mobilities in alkylsilanes were also observed when they were

covalently bound to different inorganic substrates than silica [32-34]. Besides NMR also

IR methods revealed different mobilities in alkyl chains [35]. The fact that the order and

mobility of alkyl chains in stationary phases play a major role in the retention mechanism

was proved by 13C NMR spectroscopy [36-45]. Two major types of alkyl chain

arrangements in C30 stationary phases arising from different methylene group

conformations were revealed by employing the 2D WISE NMR technique, mobile gauche

and rigid trans aligned alkyl chains [46]. Earlier it was observed that increased shape

selective properties were present in chromatographic sorbents when they were prepared

according to a polymeric surface modification chemistry, and also when increasing

bonding density and increasing alkyl chain lengths were employed [4, 7, 8]. When

correlating these findings with the chromatographic performance one can generally state

that the more rigid trans aligned alkyl chains are present the better the separation abilities

for shape constrained solutes [45].

4.2.1.1 29Si solid-state NMR spectroscopy

The distinct chemical shifts of silyl species makes their assignment in 29Si NMR spectra

facile. Bare silica consist of bulk siloxane units (Q4 group at -110 ppm), silanols (Q3

groups at -101 ppm), and also geminal silanols (Q2 groups at -92 ppm). Generally, the

more crosslinking oxygens are present the more the chemical shift is high-field shifted.

Covalently bound trifunctional silane species contain one oxygen atom less and are
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therefore down-field shifted. Fully crosslinked T3 groups appear at -65 ppm, T2 groups at

-56 ppm, and T1 groups at -48 ppm. Figure 5a shows the structures and chemical shifts of

the different silyl species. From a comparison of the solid-state 29Si CP/MAS NMR

spectra of bare silica and with 3-aminopropyltriethoxysilane respectively 3-

glycidoxypropyltrimethoxysilane modified silica (see Figure 5b) two significant signals at

-101 ppm and -110 ppm indicating the typical Q3 and Q4 groups were observed in all

spectra. However, the signal at -92 ppm, representing the Q2 groups, is significantly
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Figure 5a Nomenclature and chemical shifts of silyl species

reduced when the bare silica is modified with 3-aminopropyltriethoxysilane, respectively

3-glycidoxypropyltrimethoxysilane. Even though it is not possible to quantify the ratio of
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Figure 5b 29Si CP/MAS NMR spectra. i: Bare silica. ii: Glycidoxypropylsilica. iii:

Aminopropylsilica

Q3 and Q4 groups in a cross polarization NMR experiment, a quantification of the ratio of

Q2 and Q3 groups is possible [30]. The build-up of 29Si magnetization is carried out in a

definite contact period in which the energy levels of abundant 1H and rare 29Si spins are

ppm
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identical. The build-up of 29Si magnetization then occurs at a rate defined by the cross

relaxation constant TSiH whereas the fall-off is a result of the decrease in the spin-locked

1H magnetization which decays with the proton spin-lattice relaxation time in the rotating

frame T1ρH. The contact time for a maximum magnetization is dependent upon the

distance between protons and 29Si nuclei and their mobility. For 29Si species which are

likewise mobile and have the same distance to protons the same contact time (thus the

cross relaxation constant TSiH and the proton spin-lattice relaxation time in the rotating

frame T1ρH are in the same order) can be used to transfer magnetization. Consequently,

the signal intensity of similar 29Si species (Q2 and Q3 groups) can be quantitatively

compared. The absence of the most reactive Q2 groups in the 3-aminopropylsilica and the

3-glycidoxypropylsilica indicates a low degree of residual silanol activity of all

synthesized sorbents A, B, C, and D. Furthermore, from the solid-state 29Si CP/MAS

NMR spectra of the 3-aminopropylsilica eminent signals were observed at -56 ppm and -

65 ppm (T2 and T3 groups) whereas no signal was detected at -48 ppm (T1 group) pointing

out the absence of mono attached 3-aminopropylsilyl species to the silica. By simulating

Gaussian peaks over the T2 and T3 groups, a quantification of the corresponding signal

area was made, i.e. peak deconvolution, showing 30 % and 70 % for the T2 and T3 groups,

respectively. Here, similarities in contact times for T groups allow the quantitative

evaluation of 29Si CP/MAS NMR spectra. It is known that loss of stationary phase from a

chromatographic sorbent can take place due to hydrolysis of the T groups binding the

stationary phase to the support. Hence, in acidic and basic environment this would

diminish the chromatographic performance from a sorbent with high amounts of T1
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groups. Therefore, the absence of T1 groups present in the sorbents A, B, and C proves

the successful surface polymerization and furthermore implies a high stability of these

phases. The low intensity of T groups present in the 13C solid-state CP/MAS NMR

spectrum of the 3-glycidoxypropylsilica made a quantification of the T groups impossible.

However, it was clearly observed that an incomplete surface polymerization took place

due to the presence of T1 groups as well as the low concentration T3 groups. This data

confirmed the low surface coverage found in the elemental analysis. From the degrees of

immobilization along with the quantified silyl species the calculation of the surface

coverages is possible (see Table 2).

Table 2 Properties of the chromatographic sorbents

modified silica gel

degree of

immobilization

silyl species

content (%)

surface

coverage

(µmol/m2)

aminopropylsilica 2.9 T1      0 0

T2      30 1.66      7.02

T3      70 5.36

glycidoxypropylsilica 1.5 T1      25 0.44

T2      66 1.04      1.68

T3      9 0.2
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4.2.1.2 13C solid-state NMR spectroscopy

In the solid-state 13C CP/MAS NMR spectra (Figure 6a) one main signal at 30

ppm, corresponding to the methylene carbon units, is observed for sorbents B and C while

two signals at 30 ppm and 32.8 ppm can be found for sorbents A and D (Figure 6b).
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Figure 6a 13C CP/MAS NMR spectra of chromatographic sorbents B (i) and C (ii)
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Similar signal splitting occurs for the methylene moieties in C30 phases which were

assigned via the solid-state 2D WISE experiment to disordered gauche (30 ppm) and

more ordered trans (32.8 ppm) conformations [46]. A high degree of trans ordered

conformations benefits the selectivity of cis/trans analytes; i.e. stationary phases that

separate cis/trans analytes are shape selective in regard to shape constrained solutes [8].
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In the solid-state 13C CP/MAS NMR spectra of phases B and C only signals at 30 ppm

were observed, implying that mobile alkyl chains in gauche conformation dominated.

Figure 7 shows a visualization of the two different trans and gauche conformations. To

quantify the trans/gauche ratio in sorbents A and D, which differ only in the spacer

molecule used to attach the copolymer to the support, 13C HPDEC solid-state MAS NMR

spectra were recorded. Due to the magnetization transfer in a CP experiment, here from

1H to 13C, a general quantification of the carbon signals cannot be performed. In a

HPDEC experiment the 13C nuclei are directly excited and hence quantification is

possible. However, more scans as well as longer pulse repetition times are needed in

HPDEC measurements compared to the CP measurements due to the low abundance and

long T1 relaxation times of the 13C species. From the peak deconvolution a trans/gauche

ratio of 44/56 for sorbent A and of 48/52 for sorbent D, respectively, was calculated. Even

 

gauche trans 

Figure 7 Visualization of rigid trans and mobile gauche aligned alkyl chains   
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though sorbent D has a significantly lower carbon content than sorbent A, both sorbents

revealed similar amounts of mobile and rigid aligned alkyl chains. This proves that the

effect of ligand density does not influence the alkyl chain conformation of the

investigated copolymeric stationary phases. Previous studies, indeed, showed a

dependence of the methylene moiety conformations from surface coverage, alkyl chain

length, temperature and other conditions [7, 8, 44, 45]. The influence of various

experimental factors on the retention mechanism, however, will be discussed later in

chapter 5.

The distribution of the respective alkyl chain conformations trans and gauche on the

silica surface was proven before to follow a certain pattern. The method employed was

spin-diffusion, a solid-state NMR technique which has a large practical application for the

determination of the homogeneity of polymers and has mainly been conducted to

determine the phase structure of organic ligands [47-51]. When applied on C30 stationary

phases it was found that the two different conformations trans and gauche appear in

distinct domains of certain sizes [52]. It was investigated before if the same mobility

distribution, i.e. distinct domains, appeared in the polymer based stationary phase which

displayed similar peak splitting in the 13C chemical shift of the main alkyl chains [53]. A

strong fact also spoke for the existence of domains showing different mobilities on the

silica surface. Assuming the case that an exchange process between trans and gauche

conformations within one alkyl chain would take place, due to an NMR life time within

the NMR time scale of approximately 1/75 MHz which equals 13.3 ns, the 13C solid-state
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NMR spectrum would reveal only an averaged signal at 295 K. Thus the copolymeric

stationary phase with the lowest acid mass fraction which revealed rigid and mobile

aligned alkyl chains on the silica surface was investigated using 13C spin-diffusion NMR

spectroscopy to reveal whether the methylene moieties form distinct island clusters, as

found for C30 sorbents, or whether there is a homogeneous distribution of the rigid

respectively mobile aligned chains. To successfully perform this experiment, spheres of

different mobilities must be present in the polymer. A pulse which saturates the mobile

and rigid sphere is applied first, which is monitored in the spectrum where both parts are

visible. Then due to a suitable pulse sequence (which makes use of different relaxation

times), a selection of magnetization is conducted, which induces magnetization only in

the mobile part resulting in just one signal in the 13C NMR spectrum [54, 55]. However,

dipolar interactions cause a transfer of magnetization in between neighboring nuclei, thus

spin-diffusion is taking place. During a certain diffusion mixing time tm, an increase in

magnetization of the rigid component can be detected while the magnetization of the

mobile component is decreasing. This effect can be monitored in the NMR spectrum and

depending on tm the corresponding signal intensity is increasing, respectively decreasing.

At a certain mixing time an equilibrium state is reached. Depending on how fast the

equilibrium is attained, one can draw a conclusion about the size of the different spheres,

respectively domains. The smaller the spheres on the surface the faster spin-diffusion can

take place. From the intensity course of the corresponding signals one can calculate the

sizes of the domains making use of previously developed computer models [52]. A

computer program developed earlier by Raitza et al. for the simulation of results obtained



Synthesis and Characterization26

by 13C spin-diffusion solid-state NMR measurements was used. This program was also

successfully applied for C30 chromatographic sorbents [52]. The time dependent course of

the spin-diffusion effect which is subject to the size distribution of the domains and the

diffusion coefficient can be simulated and visualized. The declining magnetization of the

mobile component is compared with the experimental NMR parameters, then the relative

size ratio is assessed. In order to accurately apply the computer model the size of the

diffusion constant must be properly chosen. This issue was addressed earlier and diffusion

constants in the range of 10 - 100 Å2/ms were determined [56-58]. A diffusion constant of

15 Å2/ms for the mobile component and 80 Å2/ms for the rigid component were

employed. These values were applied before to determine the domain sizes in pure

polyethylene fibers [59].  Thereby, Wegmann et al. found a domain size of 16 (± 2) nm

for the mobile component and a domain size of 3.2 (± 0.4) nm for the rigid component

[53]. These results together with the ellipsometric measurements described in the

following paragraph 4.2.2 were used to derive a refined model of the surface morphology

of chromatographic sorbent D.

4.2.2. Ellipsometry

Ellipsometric spectroscopy is used to obtain information about the layer thickness of the

alkyl chains [60, 61]. For example, the in-situ characterization of thin polymer films for

applications in chemical sensing of volatile organic compounds is possible by

spectroscopic ellipsometry [62, 63]. However, spherical silica particles cannot be used for
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these measurements, therefore the copolymeric stationary phases were also immobilized

on planar silica wafers using the same chemistry as to immobilize them on silica particles.

The same nomenclature A, B, C, and D was used for the differently modified wafers. The

layer thickness and alkyl chain conformation on both the silica wafers and the silica

particles can be assumed to be similar [61]. The different copolymers were investigated

by null ellipsometry which is a precise method to determine the thickness of organic

polymeric layers on inorganic substrates. The thicknesses of the immobilized copolymers

on silica wafers were measured by null ellipsometry as this method is very sensitive and

highly accurate for the measurement of thin layers. The principle of ellipsometry is the

following: A change in the polarization state of light is measured in order to characterize

thin films. Therefore, a well defined polarization state of incident light is created. Then,

the Fresnel coefficients rp and rs are calculated according to that change. This allows for

the derivation of the optical constants of the surface. Figure 8 schematically shows the

  linearly polarized light 

elliptically polarized light reflect off sample 

Figure 8 Schematic principle of ellipsometry
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principle of ellipsometry.

The two ellipsometric angles Ψ and ∆ are determined during the measurement and

the changes upon reflection are described by these two parameters [62]. Thereby, tan Ψ

describes the the change of the amplitude during reflection, and ∆ is the difference of the

retardation of the parallel (p) and perpendicular (s) polarized light before and after

reflection. The thickness of polymeric layers can be determined by the evaluation of the

complex ellipsometric parameter ρ, which is defined according to the following equation

(1):

ρ = tan � ψ ei∆ = rp / rs (1)

where rp and rs denote the Fresnel reflection coefficients for the p- and s-polarized light.

For the determination of the layer thickness with the null ellipsometer the refractive index

of the polymeric layer must be fixed. A refractive index of 1.40 was estimated for the

polymeric layers and the model for thickness was fitted to the measured ellipsometric

angles. The layer thicknesses found by ellipsometry are plotted in Figure 9. The mean

value and the standard deviation are also plotted. The measured copolymeric layer

thicknesses on wafers B and C were in agreement with the empirical formula for the

chain lengths and the mobile gauche alkyl chain conformation of the immobilized

copolymers (Table 1, Figure 9). The mean value of the layer thickness on wafers B and C

was found to be 6.5 (± 0.5) nm and 4.3 (± 0.3) nm. The layer thickness on wafer A was

found to be 10.6 (± 0.3) nm, and on wafer D an average thickness of 9.9 (± 0.1) nm was

measured.
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Figure 9 Phase thickness on the silica surface as determined from ellipsometric

measurements on wafers A, B, C, and D. Mean value of thickness are plotted as bars and

standard deviation as error bars

The maximum chain lmax of an individual fiber, the contour length, corresponds to an

overall all-trans conformation, and can be calculated according to the following formula

(2) [46]:

lmax = N l sin (Θ/2) (2)

C-C bonds have a bonding length l of 0.154 nm, the complementary angle in alkane

chains in all-trans conformation is Θ = 111.5° [51]. N = 245 is the number of bonds

derived from the mean molecular weight of the copolymer with the lowest mass fraction
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 3.2 nm 16 nm

9.9 nm (99 Å) 

3.2 nm (32 Å)            16 nm (160 Å)

Figure 10 Visualization of the surface morphology of chromatographic sorbent D. Due to

the existence of domains, the ellipsometric measurements reveal just mean layer

thicknesses. The red circle visualizes the measuring spot; the incoming laser and the

outgoing elliptical polarized light after interacting with the copolymeric layer are shown

as red arrows

of acid. Thus, a contour length of lmax = 31.2 nm was calculated. The measured layer

thicknesses on wafers A and D, however, are threefold smaller than the calculated value

for an alkyl chain in all-trans conformation. Assuming that any carboxylic acid group

(which are randomly distributed along the copolymer) can bind to the

glycidoxypropyltrimethoxysilane modified silica surface respectively

aminopropyltriethoxysilane modified silica, still a fiber length of approximately 15 nm

can be expected. Therefore we presume that a coverage of at most 70 % is estimated as a

result of gaps between the alkyl chain clusters with different mobilities on the silica

surface. This confirms the results obtained from the 13C spin-diffusion experiments.
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Domains with only all-trans conformed chains and domains with more mobile gauche

aligned alkyl chains exist on the silica surface. Thus, a model of the surface morphology

can be derived. The ellipsometric measurements revealed a polymer layer thickness of 9.9

nm (99 Å) in sorbent D. Along with the above described results obtained from the spin-

diffusion measurements the surface morphology of chromatographic sorbent D is

visualized which is shown in Figure 10. The size of the rigid trans domain is the

predominant factor for superior separation abilities of the chromatographic sorbent D

towards complex mixtures of stereoisomers as proven before for C30 sorbents. The

similarity of the surface morphology of C30 sorbents and the investigated poly(ethylene-

co-acrylic acid) sorbent D is therewith proven.

4.2.3 Contact angle measurements

The shape and size of a sessile drop resting on a horizontal surface allows for the

determination of the surface polarity [64, 65]. Figure 11 shows a water droplet on a polar

and on a non-polar surface.

Contact angle measurements on all wafers A, B, C, and D were performed. Valuable

information about the surface polarity could be derived. A dependence of the surface

polarity on the acid mass fraction in the polymer was found. A reduced contact angle of

wafer B compared to wafer C, thus an increase in the surface polarity indicates the

influence of the acid mass fraction in the copolymer (Table 3). Both wafers A and D
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Figure 11 Deposition of a water droplet on a horizontal surface to measure the surface

polarity revealing a polar (i) and a non-polar (ii) surface

revealed, however, a contact angle between the angles measured for wafer B and C. The

rigid trans aligned alkyl chains in the copolymer with the lowest acid mass fraction must

therefore have an impact on the surface polarity. Due to the rigid conformation the water

droplet is in contact with the more nonpolar part of the polymer backbone resulting in an

intermediate contact angle for wafers A and D.

Table 3 Properties of the modified SiO2 species

chromatographic

sorbent

(respectively wafer)

spacer alkyl chain

conformation

contact angle

A APS trans/gauche 67.7 (± 1.0) °

B APS gauche 103.4 (± 8.1) °

C APS gauche 54.8 (± 2.6) °

D GOPS trans/gauche 80.0 (± 1.0) °
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5 APPLICATION IN HPLC AND DEPENDENCE OF THE 

SEPARATION MECHANISM 

 

Chromatography gives direct experimental proof of conclusions drawn by 

spectroscopic investigations on the stationary phase morphology. The interactions of 

various kinds of solutes with the stationary phases as foreseen by NMR and other 

techniques are confirmed. Early theoretic explanation in chromatography described 

retention to be caused by hydrophobic effects excluding solute shape effects [66-68]. 

Then, the United States Environmental Protection Agency (EPA) described method 610 

for the separation of priority pollutant PAHs by specifiying the use of a particular C18 

column with which one was able to achieve a separation of these in terms of 

hydrophobicity alike compounds [69]. Later the term “shape selectivity” was created  to 

describe the ability of chromatographic sorbents to differentiate between solutes based on 

their shape [3]. Numerous publications described the retention mechanism to be affected 

by the alkyl chain morphology [70]. An important group of compounds that was difficult 

to separate with RP chromatographic sorbents were provitamin A isomers which differ 

significantly in their biological activity [71]. For quantitative evaluation of these effects 

the development of an efficient separation method was a matter of great importance. The 

knowledge derived from the research on shape selectivity led to the development of a 

tailored chromatographic sorbent material for the separation of cis/trans ß-carotene 

isomers [72]. This “carotenoid column” contains long alkyl chains and has widely been 
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applied for the described separation problems [73, 74]. The successful separation 

mechanism was proven to be caused by a distinctive distribution of rigid and mobile 

aligned C30 alkyl chains on the silica surface. Extensive research regarding the influence 

of different variables on the retention mechanism of C30 based chromatographic sorbents 

was done [45].  

The results obtained from investigations on poly(ethylene-co-acrylic acid) 

copolymeric stationary phases are presented in this study. In addition to the 

characterization of the to C30 sorbents alike surface morphology obtained by using 

different spectroscopic methods, which was described in chapter 4, the influence of 

several factors on the retention mechanism was investigated. A direct correlation of 

spectroscopic evidence with practical chromatographic separations of analyte systems is 

given. 

 

5.1 Influence of different acrylic acid mass fractions in the 

copolymer 

 

Figure 12 shows the structure formulas of the xanthophylls isomers lutein and 

zeaxanthin and of the main geometric isomers of ß-carotene [75, 76]. The only difference 

between lutein and zeaxanthin is the position of the double bond in the cyclohexene rings, 

which, however, affects the polarity of the neighboring hydroxyl group making 

zeaxanthin more hydrophobic. 
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Figure 12 Schematic diagram of the structures of all-trans lutein (Lall-trans) and all-trans 

zeaxanthin (Zall-trans); and of  13-cis (C13-cis), 9-cis (C9-cis), and all-trans β-carotene (Call-

trans) 

 

Significant differences in the retention behavior are obvious comparing the 

chromatograms obtained from the sorbents A, B, and C from the elution of either the  
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Figure 13 Chromatograms of all-trans lutein (Lall-trans) and all-trans zeaxanthin (Zall-trans) 

as well as of 13-cis (C13-cis), 9-cis (C9-cis), and all-trans β-carotene (Call-trans) eluted from 

chromatographic sorbents A (i), B (ii), and C (iii) using a mobile phase composition of 

methanol/water 97.5/2.5 (v/v) 
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xanthophylls isomers lutein and zeaxanthin or the cis/trans ß-carotene isomers with a 

mobile phase composition of methanol/water (97.5/2.5, v/v), see Figure 13. The elution 

times were significantly longer when the ß-carotene cis/trans isomers C13-cis, Call-trans, and 

C9-cis were eluted from sorbent A compared to sorbents B and C. This is evident in view 

of the higher degree of immobilized stationary phase for phase A as well as the lower 

amounts of polar carboxylic acid residues, see Table 1. All the sorbents separated analytes 

C13-cis and Call-trans which is believed to be caused mainly by the differences in 

hydrophobic interactions between the analytes and the stationary phases. Sorbent C was 

not able to separate analytes Call-trans and C9-cis. From a comparison of the selectivity 

between analytes Call-trans and C9-cis obtained from sorbents A, B, and C the best 

selectivity was obtained from the sorbent A. Hence the best selectivities were obtained 

from the stationary phase with the lowest mass fraction of acrylic acid and the highest 

content of trans conformed alkyl chains in the copolymer, see chapter 4 for the 

characterization of the stationary phase alkyl chain conformation of the synthesized 

sorbents. Thus, the separation of the cis/trans analytes C13-cis, C9-cis and Call-trans is 

evidently dependent both on strong hydrophobic interactions as well as on a high degree 

of rigid trans conformed alkyl chains in the stationary phase. From a comparison of the 

separations of the structure analogues L and Z (see Figure 13) it can be seen that the 

analytes were separated when they were eluted with a mobile phase composition of 

methanol/water (97.5/2.5, v/v) from all the sorbents A, B, and C. These analytes were 

baseline separated when eluted from sorbent A (α = 1.35). The selectivity factors 
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obtained when the analytes were eluted from sorbents B and C were significantly lower, 

1.21 and 1.10, respectively. 

 

5.2 Influence of the spacer molecule 

 

5.2.1 Separation of carotenoid isomers 
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Figure 14 Chromatograms of all-trans lutein (Lall-trans) and all-trans zeaxanthin (Zall-trans) 

as well as of 13-cis (C13-cis), 9-cis (C9-cis), and all-trans β-carotene (Call-trans) eluted from 

sorbent A (i) and D (ii) using a mobile phase of methanol/water 97.5/2.5 (v/v) 
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From a comparison of the selectivity between analyte C13-cis and Call-trans obtained 

from sorbents A and D, it was observed that the selectivity obtained from sorbent D (α = 

1.41) was superior compared to sorbent A (α = 1.25), see Figure 14. This is most likely 

due to unfavorable interactions with the nonreacted amino groups present on the silica 

surface in sorbent A. These significant differences in selectivity between the analytes 

proved that the change of spacer caused a change of the retention mechanism as well. 

Both sorbents A (α = 1.35) and D (α = 1.33) baseline separated analytes L and Z. Even if 

the selectivity was slightly better from sorbent A, the resolution (RS) was significantly 

better for sorbent D, RS = 2.7 compared to RS = 1.9, see Figure 14. This is most likely due 

to the absence of the interactions taking place between the free amino groups present in 

the sorbent A and the analytes.  

 

5.2.2 Separation of SRM 869 

 

Standard reference material (SRM) 869 consists of three planar and non-planar 

polycyclic aromatic hydrocarbons (PAHs) and was developed to assess the shape 

selective properties of C18 chromatographic sorbents [77]. Figure 15 shows the structures 

of the three analyte molecules: SRM 869 is composed of phenanthro[3,4-c]phenanthrene 

(PhPh), tetrabenzonaphthalene (TBN), and benzo[α]pyrene (BaP). Non-planar PhPh 

elutes before non-planar TBN and planar BaP. If BaP is retarded longer than TBN a  
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 PhPh                              TBN                              BaP  
 

Figure 15 Schematic diagram of the structures of benzo[a]pyrene (BaP), 

phenanthro[3,4-c]phenanthrene (PhPh), and 1,2:3,4:5,6:7,8-tetrabenzonaphthalene 

(TBN) of SRM 869 

 

polymeric C18 sorbent with a higher shape selectivity than a monomeric C18 sorbent is 

indicated. Therefore low values for αTBN/BaP typically indicate “polymeric-like” retention  
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Figure 16 Chromatograms of SRM 869 consisting of phenanthro[3,4-c]phenanthrene 

(PhPh), 1,2:3,4:5,6:7,8-tetrabenzonaphtalene (TBN), and benzo[a]pyrene (BaP) eluted 

from the chromatographic sorbents D (i) and A (ii) using a mobile phase composition of 

methanol/water 95/5 (v/v)  
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behavior and high values of αTBN/BaP indicate “monomeric-like” retention behavior. The 

“polymeric-like” retention behavior was observed when SRM 869 was eluted from both 

sorbents A and D, see Figure 16. Also in this case, the influence of non-reacted amino-

groups is evident from the chromatograms. At comparable selectivities the resolution was 

better for sorbent D (α = 0.73) compared to sorbent A (α = 0.7). Since the degree of 

immobilization of both sorbents A and D differs, the retention times and thus the retention 

factors are higher in the case of sorbent A (kBaP´ = 1.91) compared to sorbent D (kBaP´ = 

1.1). The decrease in resolution of TBN and BaP in sorbent A (RS = 1.5) might be due to 

the higher surface coverage of this phase compared to sorbent D (RS = 2.8). However, the 

fact that this was also observed for the separation of carotenoids and xanthophylls, it is 

assumed that the nonreacted amino groups caused the loss of resolution. 

 

5.3 Influence of the mobile phase composition 

 

5.3.1 Separation of xanthophylls and geometric ß-carotene isomers  

 

When the analytes C13-cis, Call-trans, and C9-cis were eluted from sorbent D the 

selectivity of analyte C13-cis and Call-trans increased. The selectivity between analytes Call-

trans and C9-cis, on the other hand, decreased when the water content in the mobile phase 

was increased, see Tables 4a and 4b. For this reason analyte Call-trans is proportionally  
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Table 4a Retention factor of 13-cis and the corresponding selectivity vs. all-trans (ß-

carotene) eluting from chromatographic sorbents A, B, C, D, and the C18 based sorbent 

with different methanol/water mobile phase compositions 

chromatographic 

sorbent 

C18  A  B  C  D  

% MeOH in H2O k´ α k´ α k´ α k´ α k´ α 

100 10.2 1 6.4 1.25 2.6 1.15 2.4 1.1 3.04 1.38 

97.5 22.3 1.04 13.2 1.25 5 1.16 4.6 1.1 5.6 1.41 

95 53 1.06 28.5 1.25 10.1 1.17 9.23 1.09 10.7 1.46 

92.5   61.7 1.25 21.4 1.17 18.9 1.09 21.9 1.48 

90       40.3 1.09   

 

Table 4b Retention factor of all-trans and the corresponding selectivity vs. 9-cis (ß-

carotene) eluting from chromatographic sorbents A, B, C, D, and the C18 based sorbent 

with different methanol/water mobile phase compositions 

chromatographic 

sorbent 

C18  A  B  C  D  

% MeOH in H2O k´ α k´ α k´ α k´ α k´ α 

100 10.17 1 8 1.12 3 1.1 2.65 1 4.2 1.12 

97.5 23.2 1 16.5 1.11 5.8 1.1 5.1 1 7.9 1.11 

95 56.2 1 35.3 1.1 11.8 1.09 10.1 1 15.6 1.09 

92.5   77.3 1.08 24.95 1.08 20.7 1 32.5 1.08 

90       43.7 1   

 

more retarded than analyte C9-cis when the mobile phase strength is decreased resulting in 

a decrease in selectivity between analyte Call-trans and C9-cis. This proportionally higher 
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increased retention for analyte Call-trans will of course benefit the separation of analyte C13-

cis and Call-trans. This behavior was observed for sorbents A and D, which contained rigid 

domains, but not for B and C, which did not contain rigid domains. Therefore, this 

behavior was consistent with the slot model, earlier introduced [3], where the stationary 

phase alkyl chains can retain solutes in the space present between the alkyl chains. This 

space is more likely to be available if a high amount of ordered trans alkyl chain domains 

are present compared to the case in which domains with more flexible gauche conformed 

alkyl chains appear in the chromatographic sorbent. Thus, if a high amount of flexible 

gauche domains is present in the sorbent, they will hinder the analyte from penetrating 

between the alkyl chains. According to this model, linear solutes are more likely to 

penetrate deeper into the rigid trans alkyl domains of the stationary phase, thus having 

increased interactions, compared to the more bulky non linear solutes [3]. Hence, this 

shape discriminating effect is canceled if a low amount of rigid trans alkyl chain domains 

is present in the chromatographic sorbent, see the visualization in Figure 17. When the 

analytes C13-cis, Call-trans, and C9-cis were eluted from the sorbents A and D with different 

mobile phase compositions of methanol/TBME, however, a significant change in 

retention behavior was obtained. Here it was observed that the selectivity between analyte 

C13-cis and Call-trans increased as well as the selectivity between Call-trans, and C9-cis when 

the TBME content in the mobile phase was reduced. Hence, in the polar organic mode 

both phases A and D apparently have lost the shape selective effect to a certain extent. 

Also, the analytes C13-cis, Call-trans, and C9-cis were eluted from a C30 sorbent using the same 

mobile phase compositions of methanol/TBME. Here it was observed, however, that the 
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selectivity between analyte C13-cis and Call-trans increased while the selectivity decreased 

between analyte Call-trans, and C9-cis when the TBME content in the mobile phase was 

reduced. Consequently, the C30 sorbent showed shape selective properties in the polar 

organic mode. 

  

i ii

 

Figure 17 Visualization of the slot model; i: gauche conformed alkyl chains prevent the 

analytes to penetrate deeper between the alkyl chains, ii: trans conformed alkyl chains 

allow a deeper penetration thus a better interaction between the analytes and the 

stationary phase is possible (gauche kinks are marked in red, silica network oxygens are 

plotted as red balls) 

 

The retention behavior of analytes L and Z was compared when they were eluted 

with different methanol/water mobile phase compositions from sorbents A, B, C, D, a C18 

sorbent, and a C30 sorbent. Table 5 reveals that the selectivity factors for analytes L and Z 

eluting from sorbents A and D increased when the water content in the mobile phase was  
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Table 5 Retention factor of lutein and the corresponding selectivity vs. zeaxanthin eluting 

from chromatographic sorbents A, B, C, D, and the C18 based sorbent with different 

methanol/water mobile phase compositions 

chromatographic 

sorbent 

C30  C18  A  B  C  D  

% MeOH in H2O k´ α k´ α k´ α k´ α k´ α k´ α 

100 3.2 1.37 0.66 1 0.89 1.34 0.38 1.21 0.4 1 1.02 1.31

97.5 5.3 1.35 1.6 1 1.48 1.35 0.64 1.21 0.63 1.1 1.54 1.33

95 10.8 1.34 2 1 2.5 1.35 0.99 1.21 0.95 1.1 2.6 1.36

90 37.3 1.34 6.99 1 7.75 1.37 2.76 1.22 2.6 1.1 7.6 1.39

85   28.2 1 28.8 1.37 8.27 1.21 8.49 1.1 23.6 1.39

 

increased. This indicates that hydrophobic interactions contribute to their separation. The 

slightly better selectivity factors obtained from sorbent D compared to phase A must be 

due to the competing analyte amino interactions present when sorbent A instead of D is 

used. The selectivity factors did not change when the analytes L and Z were eluted from 

phases B, C, and the C18 sorbent when the water content in the mobile phase was 

increased. Furthermore, when the water content in the mobile phase was increased from 0 

% to 10 % a slight decrease in selectivity was observed when analytes L and Z were 

eluted from the C30 sorbent. This indicates that not only hydrophobic interactions are 

responsible for the separation of analytes L and Z but also the ratio of trans/gauche alkyl  
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chains in the stationary phase. Hence, from a comparison at likewise retention factors (k´ 

= 7-11) the selectivity obtained from phase D was superior to all the other sorbents, 

including the C18 and C30 sorbents, under these experimental conditions.  

 

5.3.2 13C suspended-state HPDEC NMR spectroscopy 

 

Suspended-state NMR allows one to gain an unique insight into the stationary 

phase conformational behavior in the presence of a mobile phase by mimicking the 

chromatographic system in the NMR rotor [78-80].  

A series of 13C suspended-state HPDEC MAS NMR spectra of sorbents A, D, and 

C30 suspended in mixtures of methanol/water was recorded in order to investigate if the 

trans/gauche ratio was affected by the mobile phase composition [81]. Different 

trans/gauche ratios were observed in the 13C suspended-state HPDEC MAS NMR 

spectra, and quantified by peak deconvolution, see Table 6. No differences in the  

 

Table 6 trans/gauche ratios of sorbents A, and D, and the C30 sorbent at 298 K  

% MeOH in H2O sorbent A sorbent D C30 sorbent 

100 40/60 38/62 59/41 

50 47/53 44/56 60/40 

 

trans/gauche ratio could be noticed between phase A and D when they were suspended in 

100% methanol. Yet, a significantly higher trans/gauche ratio was observed for the C30 

phase, 59/41, compared to the trans/gauche ratio obtained from phase A and D, 40/60 
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respectively 38/62. These results imply that the C30 sorbent has a better shape selectivity 

at a high organic content in the mobile phase compared to phase A and D. This was 

confirmed from the chromatographic evaluation of the analytes C13-cis, Call-trans, and C9-cis 

eluted from the sorbents A, D, and C30 using different mobile phase compositions of 

methanol/TBME.   

A significant increase in the trans/gauche ratios was observed for phase A and D in 

the 13C suspended-state HPDEC MAS NMR experiments when the sorbents were 

suspended in a mixture of methanol/water (50/50), compared to the trans/gauche ratios 

obtained in pure methanol. This is exemplified in Figure 18 for sorbent A. Therefore, a  
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Figure 18 Suspended-state 13C HPDEC NMR spectra of chromatographic sorbent A. i: In  

methanol/water 50/50 (v/v). ii: In methanol 
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greater amount of trans domains at a higher water content which was observed for phase 

A and D explains the retention behavior for the analytes C13-cis, Call-trans, and C9-cis. The 

increase in selectivity between analytes C13-cis, and Call-trans as well as the decrease in 

selectivity between analytes Call-trans and C9-cis, eluted from phase A or D, is most likely 

caused by a relative better fit between the hydrophobic chains of the rigid parts of the 

stationary phase. Hence, analyte Call-trans has a higher surface exposure to the stationary 

phase compared to analyte C9-cis which will foster the separation of analytes Call-trans and 

C9-cis. This effect is most pronounced in the case of the more linear analyte Call-trans 

compared to analyte C13-cis and C9-cis, in view of the differences in geometrical shape of 

the analytes. No change in the trans/gauche ratio, however, took place for the C30 sorbent 

when the solvent composition changed. Therefore, the increase in the trans/gauche ratio 

of the alkyl chains for phase A and D leads to an increase in selectivity between the 

analytes L and Z. So, the reduction of the selectivity between analytes L and Z obtained 

from the C30 sorbent is due to the fact that no increase in the trans/gauche ratio of the 

alkyl chains in the C30 sorbent was observed. Hence, the suspended-state 13C HPDEC 

MAS NMR experiments imply that an increase in water content in the mobile phase 

composition should increase the shape selectivity obtained from phase A and D to a larger 

extent compared to the C30 sorbent. A visualization of these effects is presented in Figure 

19. These results were confirmed from the chromatographic results shown in Table 5.   
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Figure 19 Visualization of alkyl-chain conformations in different solvents. a: C30 sorbent. 

b: Sorbents A and D. i: In  methanol/water (50/50 v/v). ii: In methanol (gauche kinks are 

marked in red, silica network oxygens are plotted as red balls) 

 

5.4 Influence of the surface coverage 

 

Surface coverages differ significantly for conventional alkyl stationary phases 

synthesized by either a monomeric or a polymeric covalent attachment of alkylsilanes on 
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silica gel. Mostly, C18 columns are prepared according to a monomeric modification with 

bonding densities of approximately 3 µmol/m2. Solution polymerized C18 columns reveal 

a bonding density of approximately 5 µmol/m2 and surface polymerized C18 column 

approach the limit of self-assembled monolayers (8 µmol/m2). Thereby it was proven that 

shape selectivity in C18 sorbent material is strongly correlated with surface density. Better 

shape discriminating effects were observed for more ordered stationary phases with a 

higher bonding density [26]. 

Here, three polymer based chromatographic sorbents were synthesized by 

immobilizing three different amounts of the poly(ethylene-co-acrylic acid) with the 

lowest co-acrylic acid mass fraction of 5 % and the longest alkyl chains on the same batch 

of glycidoxypropylsilica. This polymer revealed both rigid trans and mobile gauche 

aligned alkyl chains in the 13C solid-state CP/MAS NMR characterization described in 

chapter 4. The aim of this investigation was to figure out if the selectivity behavior in 

these kinds of sorbent materials is affected by surface density and also spectroscopic 

evidence was necessary to explain the obtained chromatographic results. Therefore, the 

three copolymeric stationary phases were also characterized by 13C solid-state NMR 

spectroscopy to reveal any polymer alkyl chain conformational differences which 

dependent on the bonding density. 

 

5.4.1 Separation of shape constrained solutes 

 

Three chromatographic sorbents with different degrees of immobilized polymer  
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were synthesized. Table 7 constitutes the degrees of immobilization (carbon mass 

fraction) and the calculated polymer bonding densities on the glycidoxypropylsilica 

surfaces (polymer molarity on the silica surface). The separation of SRM 869 and of the 

main cis/trans ß-carotene isomers is shown in the chromatograms of Figure 20. Along 

with decreasing carbon mass fraction, the hydrophobic interactions resulted in shorter 

retention times and retention factors. This holds true for all solutes. Interestingly, for 

analytes BaP and TBN, the selectivity is lowest for the intermediate chromatographic 

sorbent (α = 0.61). The selectivity behavior of these solutes is indicative for the shape 

selective properties. The smaller the selectivity the better the shape discriminating  

 

Table 7 Retention factors and selectivities of shape constrained solutes eluting from 

chromatographic sorbents D synthesized with different degrees of immobilization with a 

methanol/water mobile phase composition of 95/5 (v/v) 

 

degree of 

immobilizationi

polymer molarity 

on silica surface  

(µmol/m2) 

 

 

k´ii

 

 

α 

 

 

k´iii

 

 

α 

 

 

k´iv

 

 

α 

7 0.18 1.16 0.85 14.8 1.35 16.8 1.14 

4.5 0.084 2.88 0.61 12.6 1.39 15.1 1.19 

2 0.018 2.37 0.73 3 1.36 3.8 1.27 

i carbon mass fraction 

ii retention factor of BaP and selectivity vs. TBN 

iii retention factor of 13-cis and selectivity vs. all-trans (ß-carotene) 

iv retention factor of all-trans and selectivity vs. 9-cis (ß-carotene) 
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Figure 20 Chromatograms of SRM 869 consisting of phenanthro[3,4-c]phenanthrene 

(PhPh), 1,2:3,4:5,6:7,8-tetrabenzonaphthalene (TBN), and benzo[a]pyrene (BaP) as 

well as of 13-cis (C13-cis), 9-cis (C9-cis), and all-trans β-carotene (Call-trans) eluted from 

different chromatographic sorbents D synthesized either with a high (i), medium (ii), or 

low surface coverage (iii) using a mobile phase composition of methanol/water 95/5 (v/v) 
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properties of C18 columns [26]. Here, in the case of the polymer based sorbents, we found 

that an intermediate coverage resulted in better selectivities. This is most probably caused  

by the fact that a coverage that is too dense prevents the planar PAH BaP to penetrate 

deeper in between the cavities of the polymer alkyl chain turf on the silica surface. The 

hydrophobic interactions are thus reduced. This observation is substantiated by the longer 

retention factor (k´= 2.88) compared to the sorbent with a higher carbon content (k´= 

2.37). This proves the influence of the shape of BaP and thus the influence of the surface 

morphology. Another striking feature is the fact that even though the sorbent with the 

lowest surface coverage contains an extremely low amount of polymer (surface molarity 

of 0.018 µmol/m2) is still able to reveal the properties comparable to a polymeric 

chromatographic sorbent by eluting BaP after TBN. Furthermore, this sorbent still 

separated the three ß-carotene isomers C13-cis, Call-trans, and C9-cis. This separation was 

achieved in a timeframe of only 7 min. Even though the analytes are not baseline 

separated, this proves the influence of the stationary phase conformational behavior. Not 

only hydrophobic interactions are responsible for the separation of analytes Call-trans, and 

C9-cis which are not different in polarity. Therefore, the three sorbents were also 

investigated by 13C solid-state NMR spectroscopy. 

 

5.4.2 13C solid-state NMR spectroscopy 

 

Figure 21 shows the 13C CP/MAS NMR spectra of the polymer based 

chromatographic sorbents synthesized by immobilizing different amounts of  
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Figure 21 13C CP/MAS NMR spectra of different chromatographic sorbents D 

synthesized either with a high (i), medium (ii), or low surface coverage (iii) 

 

poly(ethylene-co-acrylic acid) on glycidoxypropylsilica from the same batch. Even 

though the carbon content, thus the surface coverage differed significantly, still a peak 

splitting in a chemical shift of 30 ppm and 32.8 ppm of the main alkyl chains of all 

sorbents could be observed. This proves that in the case of this copolymer the bonding 

density does not influence the conformational behavior. Both, rigid trans and mobile 

gauche conformed alkyl chains are present. This also explains the selectivity behavior 

towards shape constrained solutes as described in the previous paragraph. These results 

imply, that it is generally possible to synthesize extremely low density polymer based 

chromatographic sorbents with which highly selective separations of, in terms of polarity 
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alike compounds, can be achieved. The low carbon content reduces the hydrophobic 

interactions, whilst the shape selective properties of the polymeric stationary phases are 

still available. Thus rapid separations of such compounds are possible without losing 

selectivity. This will be very helpful for practical application in preparative 

chromatography, also because polymer based chromatographic sorbents generally have a 

higher loading capacity [20-22]. Rapid separations of large quantities of compounds are 

therefore achievable. 

 

5.5 Influence of the temperature 

 

The effect of temperature in RP-HPLC in terms of thermodynamics was studied in 

previous research work [82-85]. Compared to investigations concerning the influence of 

different stationary phases and different mobile phase compositions, the effect of 

temperature is underrated. The influence on the selectivity is ample [77]. IR spectroscopy 

on chromatographic sorbents contributed to the understanding of RP-HPLC at different 

temperature ranges [86]. The correlation of the retention behavior with the alkyl chain 

conformation at various temperatures was, however, most successfully done by 13C  NMR 

spectroscopy with the sorbent either in the solid-state or suspended in a mobile phase [78, 

87, 88]. Here, 13C solid- and suspended-state NMR was used to monitor the mobility 

behavior of the trans and gauche aligned alkyl chains of the polymer based sorbent at 

various temperatures. Furthermore, advanced solid-state NMR experiments to determine 

the residual dipolar couplings were applied to explore the mobility and molecular motion 
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of proteins. Torsion angles in peptides were ascertained by investigating heteronuclear 

dipolar couplings earlier [89-92]. Here, the application of a separated-local field NMR 

experiment (dipolar and chemical shift correlation experiment, DIPSHIFT) to analyze the 

molecular motion and dynamics in a chromatographic sorbent is reported. Quantitative 

information about the order degree in the alkyl chains of the polymer based 

chromatographic sorbent at different temperatures by the correlation of the C-H 

heteronuclear dipolar coupling with the carbon chemical shift was gained in collaboration 

with Dr. Detlef Reichert and Dr. Ovidiu Pascui (University of Halle, Germany).  

The temperature dependence of the retention behavior of both geometric 

carotenoid isomers and also SRM 869 on a variety of RP sorbents was previously 

investigated [93, 94]. The selectivity and retention of these two different analyte mixtures 

in regard to the molecular dynamics and alkyl chain conformational behavior in the 

copolymer based stationary phase at various temperatures was systematically 

investigated.  

 

5.5.1 Temperature dependent 13C NMR investigations 

 

5.5.1.1 13C solid- and suspended-state CP/MAS NMR spectroscopy 

 

From the solid-state 13C CP/MAS NMR spectra in Figure 21 one can observe that 

the signal intensity at 32.8 ppm increased with decreasing temperature, implying that rigid 

alkyl chain domains in trans conformation dominate at 298 K compared to 318 K. A  
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direct estimation of the trans versus gauche population could not be done because the 

applied CP technique does not provide quantitative spectra. It is clearly observable that 

with decreasing temperature, however, the resonances broaden, indicating a decrease in  
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Figure 22 13C CP/MAS NMR spectra of chromatographic sorbent D in the solid-state (i) 

and suspended in methanol/water (95/5, v/v) (ii) at various temperatures 

 

mobility. Here, the 13C CP/MAS spectra revealed an increasing fraction of gauche 

conformation with increasing temperature. Therefore, these data do not support the 
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existence of a sudden phase transition in the polymer based sorbent. Rather, the 

temperature dependence of trans versus gauche populations is a more gradual process, 

which proceeds during a wide temperature interval. This supports the review of Wheeler 

et al. on phase transitions where they concluded that this phenomena can be viewed as a 

diffuse change, going from a solid-like to a liquid-like state over a broad temperature 

range [95]. A series of 13C CP/MAS NMR spectra of the polymer based sorbent 

suspended in methanol/water (95/5, v/v) was also recorded in order to investigate if the 

trans/gauche ratio was affected by the mobile phase, see Figure 22. Previous reports 

proved a dependence of the alkyl chain conformation on the mobile phase composition 

[22]. The stationary phase of the polymer based sorbent in the suspended-state showed an 

increased mobility compared to the solid-state, however, the same trend of constantly 

increasing mobility with increasing temperature was observed.  

 

5.5.1.2 Solid- and suspended-state 13C DIPSHIFT NMR spectroscopy 

 

Using the DIPSHIFT experiment, that is the correlation of the 13C-1H heteronuclear 

dipolar coupling with the carbon chemical shift, further information about the alkyl chain 

mobility could be revealed. The strength of the 13C-1H dipolar couplings was measured 

using the DIPSHIFT pulse sequence, see Figure 23. The reduced dipolar coupling in the 

fast exchange limit (τc << T2 ) contains information about the geometry of motion, that is 

the ratio between the reduced versus the full coupling which can be interpreted as an 

order parameter S with values between 0 and 1. For a number of motional geometries,  
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Figure 23 Constant time dipolar and chemical shift (DIPSHIFT) pulse sequence  

 

relations of the order parameter S versus angles can be derived. Thereby, 0 means 

isotropic motion and 1 no motion. Values between 0 and 1 can be interpreted as an 

increasing opening angle of a motion with a decreasing order parameter. Figure 24 shows 

a visualization of models of internuclear vector reorienation. The order parameter S was 

derived in the work of Lipari and Szabo in 1982 [92]. Experimentally, this parameter can 

be obtained from the ratio of the reduced (fast anisotropic movement) dipolar coupling 

and the full coupling (no motion). Both, the sorbent in the solid-state as well as suspended 

in the mobile phase were measured, and the peak intensities at different temperatures and 

1H decoupling pulse lengths t1 of the resonances corresponding to trans and gauche 

conformed alkyl chains were determined. The results for the sorbent in the solid-state and 

the suspended-state are shown in Figure 25. The depicted lines are simulations and the  
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S 

 

Figure 24 Models of internuclear vector reorientation 

 

extracted dipolar couplings diverge slightly from the actual values since the theory used 

to obtain the data is for CH groups and not for CH2 groups. Here, the acquired values are 

compared with a rigid CH2 group, however, and discussed are only the relative ratio. The 

CH2 group of glycine, which does not exhibit any molecular motion, was used as a 

reference. Therefore, the presented results comprehend valuable information about the 

molecular motion behavior of the alkyl chains in the investigated chromatographic 

sorbent material. The fitting yields an apparent dipolar coupling and a spin-spin relaxation 

time T2 which stems from experimental parameters, as well as from exchange broadening. 

Consequently, by dividing the apparent dipolar coupling presented in Figure 25 by the 

glycine date we obtain a diagram of the order parameter S versus the temperature T  
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Figure 25 Peak intensities of the 13C chemical shifts corresponding to trans respectively 

gauche conformed alkyl chains of chromatographic sorbent D in the solid-state and in the 

suspended-state at various temperatures at different 1H decoupling pulse lengths t1  

 

displayed in Figure 26. It shows that there is not much dynamic in the trans aligned alkyl 

chains whereas there is dynamic for the gauche aligned alkyl chains. Furthermore, the 
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Figure 26 Plot of the order parameter S versus the temperature T (Kelvin)  

  

Table 8 Spin-spin relaxation time T2 (in ms) of the signals corresponding to trans 

respectively gauche aligned alkyl chains at different temperatures (in K) 

 288 298 318 

solid-state trans 0.4 0.4 0.4 

solid-state gauche 0.6 0.7 1 

suspended-state trans 0.45 0.45 0.45 

suspended-state gauche 0.75 1.1 1.5 

 

molecular motion becomes more intense at elevated temperatures with a decreasing order 

parameter S which stands for larger amplitude of motion. Also, the molecular motion in 
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the alkyl chains is more intense (the dynamics covers wider reorientation angles) for the 

sorbent in the suspended-state. Additional qualitative information can be extracted from 

the spin-spin relaxation time (T2) values (Table 8). While the T2 values of the trans 

resonances did not change with increasing temperature, the spin-spin relaxation time of 

the gauche resonance increased with increasing temperatures. Taking into consideration 

that with increasing temperature, not only the amplitude of a dynamic process but in 

particular the rate increases and that T2 might contain a contribution of exchange 

broadening, it is reasonable to assume that the increase of T2 with temperature is due to a 

decreasing of + δνexchange. Hence, this is a clear indication for an increased motional rate at 

elevated temperatures: 

 

1/T2* = 1/T2 + δνexchange     (3) 

 

5.5.2 Temperature dependent separation of shape constrained solutes 

 

The fact that temperature changes affect the gauche conformed alkyl chains to a 

greater extent compared to the trans conformed alkyl chains leads to the conclusion that 

the order degree of the gauche conformed alkyl chains contributes to the chromatographic 

properties besides the  overall trans/gauche ratio. Generally, the order degree is higher at 

decreased temperatures which should implicate better shape selective properties. It must 

be mentioned, however, that the retention mechanism for different classes of compounds 

is not the same because of different interaction sites due to structural differences. 
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Currently under discussion are retention mechanisms that involve partition theory, 

adsorption theory, and the solvophobic theory with their privileged area of validity 

depending on the operating conditions [96]. PAHs and carotenoids can be compared in 

view of their similar retention mechanism as both classes of compounds penetrate into 

cavities in the stationary phase by their cyclohexenic part [87]. All analytes could be 

separated from each other with selectivities comparable to highly shape selective C30 

sorbents, in agreement with the conformational behavior of the polymer based sorbent at 

ambient conditions as described above. Also, the chromatographic evaluation of the 

analytes C13-cis, Call-trans, and C9-cis eluted from the sorbent at different temperatures 

confirms the selectivity dependence for these analytes on the temperature and thus on the 

alkyl chain conformation in the stationary phase. A higher selectivity between analytes 

C13-cis and Call-trans compared to the selectivity between analytes Call-trans and C9-cis at 298 

K can be observed, thus Call-trans and C9-cis are both more interacting with the stationary 

phase compared to analyte C13-cis. This is most likely caused by a relative better fit of 

analytes Call-trans and C9-cis between the hydrophobic chains of the rigid parts in the 

stationary phase. With respect to the above described slot-model, we have to mention the 

following: Regarding the L/B ratio of analytes and the thereby derived model of retention 

with more linear analytes being retarded longer compared to “blocklike” analytes, and the 

fact that analyte Call-trans exhibits the highest L/B ratio, analyte C9-cis should be eluted 

before analyte Call-trans. From Figure 27, with some exceptions, however, which will be 

explained later, can be seen that the retention time of all analytes decreases with  
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Figure 27 Plot of the selectivity αTBN/BaP of SRM 869 consisting of phenanthro [3,4-c] 

phenanthrene (PhPh), 1,2:3,4:5,6:7,8-tetrabenzonaphtalene (TBN), and benzo[a]pyrene 

(BaP) (i) and plot of the selectivities αall-trans/13-cis and α9-cis/all-trans of 13-cis (C13-cis), 9-cis 

(C9-cis), and all-trans β-carotene (Call-trans) (ii) eluting from chromatographic sorbent D 

with a methanol/water mobile phase composition of 95/5 (v/v) at different temperatures  

 

increasing temperature; therefore, the interacting strength between the stationary phase 

and the analytes decreases. Also, it can be noticed that an increase in temperature comes 

along with a decrease in selectivity for both αall-trans/13-cis and α9-cis/all-trans. This correlated 

with the decreasing order parameter of the gauche population, as revealed by the 

DIPSHIFT experiments. The relative larger decrease in selectivity between analytes C13-

cis and Call-trans compared to the relative slighter decrease in selectivity between analytes 

Call-trans and C9-cis is most likely caused by the fact that analytes Call-trans and C9-cis are both 

equally affected by the conformational change in the stationary phase with changing 

temperature which impacts the retention  of analyte C13-cis to a lesser extent. The greater 

amount of gauche domains at higher temperatures explains the retention behavior for the 
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analytes C13-cis, Call-trans, and C9-cis. We assume that analytes Call-trans and C9-cis are likewise 

affected by an increase in mobility in the stationary phase thus preventing the penetration 

into cavities of the stationary phase, whereas the earlier eluting analyte C13-cis is less 

affected by the phenomena of increase in mobility. The similar trends in retention and 

selectivity behavior revealed for the geometric ß-carotene isomers were also observed for 

PAH isomers. SRM 869 was developed to evaluate the shape selective properties of C18 

sorbents and consists of planar and non-planar PAHs, see also paragraph 5.2.2 [77]. The 

“polymeric-like” retention behavior was observed when SRM 869 was eluted from the 

polymer based sorbent at 298 K, see Figure 27. By decreasing the temperature, αTBN/BaP 

decreased further. The more rigid conformation in the stationary phase were present the 

larger the retardation of BaP relative to TBN. Therefore, the hydrophobic interactions of 

BaP with the stationary phase increased to a relative larger extent in the case of BaP 

compared to TBN, thus BaP is able to penetrate into cavities of the stationary phase 

present at temperatures below 308 K. It must be mentioned that for the separation of 16 

priority pollutant PAHs of SRM 1647 a selectivity αTBN/BaP in the range of 0.65-0.9 is 

necessary when working with C18 sorbent material [97]. Nevertheless, the polymer based 

sorbent was not able to separate the benz[α]anthracen/chrysene critical pair in SRM 1647, 

also not at lower temperatures down to 263 K. When the temperature was increased 

compared to ambient conditions, a selectivity behavior resembling a monomeric C18 

phase was observed. From Figure 27 can be seen that TBN and BaP coelute at a 

temperature of 308 K, and at higher temperatures BaP eluted before TBN. The eminent 

impact of the temperature on the retention of BaP is a significant evidence for the 
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influence of the stationary phase alkyl chain conformation and thus for the applicability of 

the above described slot-model for the polymer based chromatographic sorbent. 

In order to further examine the temperature effect in view of thermodynamics, 

van´t Hoff plots of both separated analyte mixtures were derived. The van´t Hoff equation 

is the thermodynamic relationship between the retention factor k’ and the temperature (T): 

 

ln k’ = -∆H / RT +  ∆S/ R + ln Φ    (4) 

 

∆H is the enthalpy of transfer of the solute from the mobile phase to the stationary phase, 

∆S is the entropy of transfer of the solute from the mobile phase to the stationary phase, R 

is the ideal gas constant, and Φ is the volume phase ratio of the stationary and mobile 

phases. A plot of ln k’ versus 1/T gives a slope of -∆H/R and an intercept of ∆S/R + ln Φ. 

Enthalpies of transfer can thus be determined, however an exact calculation of the phase 

ratio is challenging as the volume of the stationary phase contributing to the retention of 

the analyte must be estimated. Therefore, the determination of the absolute entropies of 

transfer is difficult. A ∆H which is invariant with temperature gives a linear van´t Hoff 

plot [98-101]. A change in the nature of the interactions between the solute and the 

mobile phase or stationary phase, or both results in non-linear van´t Hoff plots. Both, the 

enthalpy and the entropy can be a function of temperature and thus the relative 

contribution of these factors to the retention may be changed. It was shown before that at 

low temperatures in highly aqueous systems where the retention mechanism is mainly 

governed by hydrophobic effects entropic forces are the general factor as both ∆H and ∆S 



                                       Application in HPLC  68 

are positive, however, at higher temperatures ∆H is negative and also the enthalpy 

contributes [102]. Changes in the retention mechanism are often ascribed to 

conformational changes in the stationary phase [103]. Generally, for C18 and C30 sorbents 

the rigidity in the alkyl chains increases, as described above. Also, from the NMR results 

of the poly(ethylene-co-acrylic acid) sorbent, a clear conformational change in the alkyl 

chains was observed, as expatiated above. In Figure 28 the derived van´t Hoff plots from 

the separations of geometric carotenoid isomers and SRM 869 are depicted. The van´t 

Hoff plots for the analytes C13-cis and Call-trans diverge when 308 K are reached while 

reducing the temperature. At this temperature also an inflection point for the slope of the 

enthalpy can be observed for all ß-carotene isomers to the region between 288 K and 293 

K, where the retention of all analytes stagnates. At 298 K the slope again upswings. In 

beween 288 K and 293 K the interaction with the stationary phase of analytes C13-cis and 

Call-trans increases whereas for the interaction with the stationary phase of analyte C9-cis 

decreases as the temperature increases. The difference of behavior between analyte C13-cis 

and Call-trans on the one side and analyte C9-cis on the other side was in agreement with the 

above described observation of similar retention behavior in regard to their retardation at 

different temperatures. For planar BaP the van´t Hoff plot is slightly non-linear with 

similarities to analyte 3. The non-planar TBN gave a van´t Hoff plot resembling analytes 

C13-cis and Call-trans. The slope for TBN indicates a lesser influence of the temperature on 

the retention. A greater slope can be observed for BaP. This is in agreement with a study 
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Figure 28 Van’t Hoff plots of SRM 869 (i) and of 13-cis (C13-cis), 9-cis (C9-cis), and all-

trans β-carotene (Call-trans) (ii) eluting from chromatographic sorbent D with a 

methanol/water mobile phase composition of 95/5 (v/v) at different temperatures  

 

conducted earlier, which proved that bulkier solutes gave increased retention (relative to 

other solutes) [104]. Here, however, this phenomenon was not observed in the case of the 

ß-carotene isomers. Interestingly, at a temperature range between 288 K and 293 K the 

retention of all analytes slightly decreased; this was more pronounced for analyte C9-cis, 

TBN and PhPh than for analytes C13-cis, Call-trans and BaP. This observation was found to 

be more pronounced in a study on a C30 sorbent of these analyte mixtures conducted by 

Bell et al. [73]. Thereby, they observed a decrease of retention at this temperature range 

of bulkier solutes and attributed this to the retention model of Dill and Sentell/Dorsey 

[105, 106]. 
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6 APPLICATION IN CAPILLARY HPLC-NMR

HYPHENATION

The increased demand of chromatographic materials that are able to achieve fast

and well-resolved separations of large quantities of structure analogues is a challenge.

Figure 29 shows the chromatographic triangle illustrating the most important criteria in

chromatography.

 

loadabilityresolution

speed

Figure 29 The chromatographic triangle

Polymer based chromatographic materials are known to have a high loadability,

compared to silica based sorbent materials [1]. Unfortunately these polymer materials

cannot be used under high pressure that is necessary in order to obtain a high flow, and

hence performing a separation takes a long time. By immobilizing a polymer on a

mechanically stable porous silica core this problem can be circumvented and it should be

possible to achieve a higher flow on these materials. Especially for capillary HPLC-NMR
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a high loadability is of great importance in order to obtain sharp, well-resolved, and

highly concentrated peaks, thus, to have a good signal to noise ratio in the subsequent

NMR experiment since NMR sensitivity is still an issue [107, 108]. Approaches like the

development of cryogenic flow-probes have been undertaken to achieve better signal-to-

noise ratios [109]. Also, a reduction in size of the radio frequency coil in order to be able

to measure mass-limited samples was achieved: These microcoils are well size-matched

to capillary HPLC columns [110]. The geometrical build-up of the probe is achieved

either in the saddle-type arrangement [111] or in the solenoidal-type with the radio

frequency coil directly wrapped around the capillary column [112] and placing this set-up

perpendicular to the magnetic field. A several times better sensitivity is achieved using

the microcoil solenoidal arrangement [113].

For the separation and analysis of mass limited, nanoliter-volume samples

miniaturized systems such as capillary HPLC have the advantage of higher efficiencies

resulting in a higher concentration at the eluting peak maxima. The low solvent

consumption makes the usage of fully deuterated solvents possible thus no solvent

suppression in the NMR experiments is needed. The capillary HPLC-NMR system was

applied, for example, for the detection of biologically active compounds like carotenoids

(provitamin A isomers) and retinyl acetate dimers [114, 115]. The shape selectivity of C30

sorbents accounted for the successful separation of tocopherol homologues, which is not

possible using C18 sorbents [116-118]. Recently, this engineered stationary phase was also

employed by Krucker et al. in capillary HPLC-NMR hyphenation experiments [107]. The

separation and on-line 1H NMR spectroscopic identification of tocopherol homologues
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was achieved. Thereby, the C30 sorbents prove to have the high loading capacity

described before. Tocopherol homologues are known to have antioxidative effects [119].

These antioxidant vitamins showed beneficial effects in the prevention of cardiovascular

diseases and the aging process in general [120]. Tocopherols, however, can be sensitive to

air in the presence of light [121]. The usage of a closed system build-up such as capillary

HPLC-NMR hyphenation prevents the degradation of tocopherol homologues during their

analysis.
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Figure 30 Chromatograms of a highly concentrated solution of all-trans lutein (Lall-trans)

and all-trans zeaxanthin (Zall-trans) eluting from a C30 sorbent (i) and sorbent D (ii) using

acetonitrile as mobile phase, [cL] = [cZ]= 100 µg/mL, injected 100 µL
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In addition to the commercially available C30 sorbent material, chromatographic

sorbent D was also successfully employed in the hyphenation of capillary HPLC to

microcoil 1H NMR spectroscopy by the separation and identification of a highly

concentrated solution of tocopherol homologues.

First, the suitability of this polymer based sorbent in regard to better loadability

was demonstrated by the separation of xanthophyll isomers compared to a C30 sorbent.

The xanthophyll isomers L and Z, refer to Figure 11 for the structure formulas, were

dissolved in acetonitrile to yield a concentration of 100 µg/mL of each analyte.

Acetonitrile was employed as mobile phase to elute these analyte molecules from the

polymer based chromatographic sorbent and the C30 sorbent. Depicted in Figure 30 are

the chromatograms from each sorbent material. Acetonitrile is an easy to evaporate

mobile phase. This is important in regard to possible applications of this polymer based

chromatographic sorbent in preparative chromatography, which requires highly loadable

sorbent materials to achieve fast separations of large sample amounts. Acetonitrile can be

removed rapidly from the separated target molecules. Therefore, we employed this

organic modifier without the addition of water (therefore the retention times are not the

same). Even though the selectivity of the C30 sorbent is higher, no baseline separation

could be achieved using these conditions; moreover the column lost resolution due to

column overloading. The polymer based sorbent, in contrast, still gave sharp, baseline

resolved, well-shaped peaks, even though the selectivity was lower, see also Table 9.
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Table 9 Selectivities, retention factors, and height equivalents of a theoretical plate of the

HPLC separation of xanthophyll isomers eluting from chromatographic sorbent D and a

C30 sorbent; [c] = 100 mg/mL, injected 100 µL; * = not baseline separated

α

D C30

k´

D C30

HETP

D

(10-5m)

C30

lutein 3.02 6.2 6.08 *
zeaxanthin 1.38 1.64 4.17 10.17 3.25 *

These results make the application of the polymer based sorbent D in capillary

HPLC-NMR apparent. Figure 31 shows the experimental set-up. The depicted
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Figure 31 Capillary HPLC-NMR system
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miniaturized chromatographic system allows flow rates of 1- 10 µL. The minimal amount

of 20 mg of sorbent D was slurry packed into the capillary. Generally, in capillary HPLC,

diffusion is minimized, thus the efficiency of separations is increasing. A transfer

capillary to the NMR detection system of 3 m length was employed to prevent possible

interference of the NMR magnetic stray field with the HPLC system. The NMR detection

cell needs a high analyte concentration as described above. Figure 32 shows a photograph

 

solenoidal coil

detection
capillary

Figure 32 Solenoidal microprobe for on-line NMR coupling

of the solenoidal microprobe for on-line NMR coupling which was developed by Klaus

Albert, Manfred Krucker, and Karsten Putzbach (University of Tuebingen) in cooperation
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with Professor Andrew Webb (Penn State University). In contrast to conventional double-

saddle-Helmholtz NMR probes, a perpendicular arrangement to the outside magnetic field

B0 is realized. The sending and detecting coil is wrapped directly around the capillary. To

prevent susceptibility broadening by the copper coil, the whole arrangement is placed in a

fluorocarbon solution, see Figure 33. This set-up generates a 3-

 

active detection 
volume: 1.5 µL!!!

Figure 33 Close-up of the assembly of the capillary column and the solenoidal coil

fold increase in 1H sensitivity compared to conventional NMR probes [122]. The

residence time of the analyte in the detection cell is limited when working in the

continuous flow mode. The active detection volume of this cell is extremely small, only

1.5 µL compared to 500 µL in conventional NMR tubes. Therefore, measurements in the
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low nanogramm range are possible. However, in order to obtain a good signal-to-noise

ratio in the NMR experiments, large concentrations are needed.

6.1 Capillary HPLC separation of tocopherol homologues

With respect to these findings and owing to the system requirements of the

hyphenation of capillary HPLC to NMR, described above, the polymer based sorbent was
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Figure 34 Chemical structure of the tocopherol homologues and α-tocopherol acetate; *

denotes chiral C-atoms

applied for the capillary HPLC separation and microcoil 1H NMR structure elucidation of

tocopherol homologues. Figure 34 shows the structures of the tocopherol homologues. It

mus be noted that each homologue contains three chiral centers resulting in 8
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stereoisomers which can not be separated when eluting them from the polymer based

sorbent. The separations of tocopherol homologues, depicted in the chromatograms in

Figure 35, present The loadability property of the polymer based sorbent material by

comparing the elution of a low concentrated with a highly concentrated solution of these

analytes. The

 

min0 10 20 30 40 50 60

mAU

0

5

10

15

20

25

30

35

min0 10 20 30 40 50 60

mAU

0

5

10

15

20

25

30

35

min0 10 20 30 40 50 60

mAU

0

5

10

15

20

25

30

35

α 
δ 

γ,β 

α-acetate 

i 

min0 10 20 30 40 50 60

mAU

0

5

10

15

20

25

30

35

min0 10 20 30 40 50 60

mAU

0

5

10

15

20

25

30

35

γ,β 
δ α α-acetate 

ii 

Figure 35 Chromatograms of the capillary LC separation of the tocopherol homologues

eluted from the polymer based chromatographic sorbent using a mobile phase

composition of methanol/water 85/15 (v/v) with a flow rate of 5 µL/min. i: [c1] = 1.6

mg/mL, injected 200 nL; ii: [c2] = 5.66 mg/mL, injected 500 nL
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injection volume was also increased when the high concentrated solution was injected.

Even then the widths of the peaks increased minimal, which means that the desired high

concentration in the NMR probe can indeed be achieved. Table 12 shows a comparison of

the HETP values proving the loadability capability of this sorbent.

Table 10 Selectivities, retention factors, and height equivalents of a theoretical plate of

the capillary LC separation of the tocopherol homologues eluting from chromatographic

sorbent D; [c1] = 1.6 mg/mL, injected 200 nL; [c2] = 5.66 mg/mL, injected 500 nL

α

[c1]

α

[c2]

k´

[c1]

k´

[c2]

HETP

[c1]

(10-5m)

[c2]
δ-tocopherol 7.4 13.29
γ-tocopherol 1.37 10.2 * *

β-tocopherol  1 10.2 * *

α-tocopherol 1.24 12.6 12.97

α-tocopherol 1.38 17.4 16.66

6.2 Identification of tocopherol homologues using on-line capillary

HPLC-NMR hyphenation

It must be stated that the sorbent was not able to separate β-tocopherol and γ-

tocopherol, therefore the UV-detection could not distinguish them. Mass spectrometry can

distinguish α-tocopherol, δ-tocopherol, and α-tocopherol acetate from each other and also

from β-tocopherol and γ-tocopherol; however the β- and γ- homologues have the same



Application in capillary LC-NMR hyphenation80

fragmentation pattern. The only method to differentiate between γ-tocopherol and β-

tocopherol is NMR spectroscopy. Despite the fact that these analytes co-eluted, the front

of the peak contained more of γ-tocopherol, whereas the end of the peak contained more

of β-tocopherol (the elution order of these tocopherol homologues on RP stationary

phases was revealed before [102]). Thus, by creating a pseudo 2D NMR contour plot of

the continuous-flow NMR spectra of the tocopherol homologues, it is possible to

distinguish between γ-tocopherol and β-tocopherol by their different chemical shifts. The

substitution of the aromatic ring of γ-tocopherol and β-tocopherol differs only in the

position of the methyl group either in position 2 (γ-tocopherol) or position 1 (β-

tocopherol). The contour
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Figure 36 Pseudo 2D plot of the continuous-flow capillary LC NMR measurement of

tocopherol homologues
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plot depicted in Figure 36 contains the 1H chemical shift axis and the retention time. As

can be seen in the aromatic chemical shift region the signal for the aromatic proton of γ-

tocopherol (δ = 6.4 ppm) overlaps with the one of β-tocopherol (δ = 6.5 ppm), displaying

the co-elution of these analytes. It is clearly visible, however, that the aromatic signal

corresponding to γ-tocopherol appears earlier than the one of β-tocopherol.
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Figure 37 Extracted 1H NMR spectra of the tocopherol homologues at the corresponding

peak maxima

In order to obtain a more detailed interpretation, conventional 1H NMR spectra of

these two analyte molecules were extracted at the peak maxima of the capillary HPLC-
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NMR separation, see Figure 37. Even though the signal-to-noise ratio is moderate (due to

the fact that only 16 scans account for each spectrum), all resonance signals can be

identified. The signal of proton 7 of β-tocopherol is superimposed with the shift at 6.4

ppm rising from the previously eluted γ-tocopherol. The same applies for γ-tocopherol

where the signal of proton 5 is superimposed from the signal arising from the later eluting

β-tocopherol. Furthermore, the signal of the proton at position 4 at 2.7 ppm experiences

an upfield shift in β-tocopherol due to the neighboring methyl group attached to the

aromatic ring in position 5.
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7 CHIRAL POLY(ETHYLENE-CO-ACRYLIC ACID) 

CHROMATOGRAPHIC SORBENTS 

 

The scope of the research described in this chapter was to unify the advantages of 

the highly shape selective and highly loadable poly(ethylene-co-acrylic acid) stationary 

phases with the enantiomeric selectivity of a Pirkle type chiral selector in a single sorbent 

material. The separation of geometric as well as enantiomeric carotenoid isomers (e.g. 

astaxanthin) by using only one column prompted this synthesis approach. Therefore, a 

Pirkle type chiral selector was immobilized on the silica support using the same linkage 

molecule as to attach the copolymeric poly(ethylene-co-acrylic acid) stationary phases.  

The first separations of the enantiomers of sulfoxides, amines, amino acids, 

alcohols, hydroxy acids, lactones, and mercapatans by means of chiral fluoroalcoholic 

stationary phases were reported by Pirkle et al. [123]. The development of the (S)-(+)-N-

(3,5-dinitrobenzoyl)-α-phenylglycine selector employed in this investigation is based on 

the fact that chiral recognition is a reciprocal event, thus fluoroalcohols could be 

separated using the previous separated analyte enantiomers as stationary phases 

immobilized on silica [124]. Early models of the chiral recognition mechanism describing 

face-to-edge π-π interactions were developed [125]. Other investigations were 

emphasizing on non-specific adsorption processes influencing the enantioselectivity, 

where the effect of polar groups either diminished or enhanced the chiral separation 

process [126]. A mechanistical rationalism for the separation of underivatized naproxen 
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was achieved by employing an improved chiral stationary phase [127]. The general 

principles of chiral recognition were also discussed in regard to the fact that chiral 

solvating agents cause non-equivalent NMR signals to arise from enantiomers [128]. 1H 

NMR was first employed to ascertain the preferential retention of a certain enantiomer 

[129].  

Pirkle type stationary phases were employed by Abu-Lafi et al. to achieve the 

separation of configurational isomers of astaxanthin [130]. Interestingly the same authors, 

two years later, also reported the fact that even columns packed from the same batch of 

produced sorbent material revealed different selectivity behavior towards enantiomers 

such as configurational isomers of astaxanthin [131]. A Pirkle type L-leucine column was 

also employed to separate the configurational astaxanthin isomers [132].  

Another approach to separate these kind of isomers was reported by Grewe et al. 

using a cellulose tris-(3,5-dimethylphenylcarbamate) column [133]. Another group 

reported on the separation of naturally derived enantiomers of astaxanthin as 

dicamphanates [134]. Also, an amylose tris-(3,5-dimethylcarbamate) column was 

successfully employed previously for the separation of the astaxanthin enantiomers [135].  

Here, the synthesis strategy followed to obtain the novel polymer based chiral 

chromatographic sorbents is presented, an elaborate characterization using solid-state 

NMR spectroscopy of the new material is described and prove the successful  
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Figure 38 Scheme of the structures of (S) and (R) 2,2,2-trifluoro-(9-anthryl)ethanol (i) 

and (3S, 3´S), (3R, 3´R), (3S, 3´R) and (3R, 3´S) all-trans astaxanthin (ii) 
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immobilization of the stationary phases. The separation of 2,2,2-trifluoro-(9- 

anthryl)ethanol enantiomers employing the novel chiral polymer based chromatographic 

sorbents in the NP, and also the separation of geometric ß-carotene isomers in the RP 

mode was successfully accomplished. The enantiomers and the meso forms of astaxanthin 

were slightly separated in the NP mode. Figure 38 shows the structures of the employed 

enatiomers. 

 

7.1 Synthesis strategy  

 

The chiral selector (S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine was covalently 

immobilized on silica, using either a 3-aminopropyltriethoxysilane or a 3-

glycidoxypropyltrimethoxysilane spacer molecule. Consecutively, also the copolymer 

poly(ethylene-co-acrylic acid) with an acrylic acid mass fraction of 5% (that featured 

highly shape selective properties) was covalently attached using the same immobilization 

chemistry. Sorbent E was synthesized by consecutively attaching the respective stationary 

phases (Figure 39a), whereas sorbent F was successfully synthesized by a joint 

immobilization reaction (Figure 39b). Numerous different reaction pathways were carried 

out in order to obtain the desired reaction products. It must be mentioned, that also a 

contiguous reaction would yield sorbent E, respectively a consecutive reaction would 

yield sorbent G. The results presented, however, indicate the synthesis strategies which 

gave the highest yields and highest stationary phase surface coverages. 
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Figure 39a Reaction scheme for the synthesis of the chiral polymer based sorbent E 
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Figure 39b Reaction scheme for the synthesis of the chiral polymer based sorbent F  

 

7.2 Characterization 

 

In order to characterize the synthesized materials, elemental analysis, 29Si and 13C 

solid-state NMR spectroscopy was performed. Table 11 shows the nitrogen and carbon 

content and the stationary phase surface coverages calculated therewith, or stationary 

phase surface molarities. Compared to the surface coverages obtained from the sorbents 

only containing the polymer (see chapter 4) a reduced polymer degree of immobilization  
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Table 11 Surface coverages of the chiral polymer based sorbents (µmol/m2) 

chiral 

polymer  

based sorbent  

carbon  

content 

(%) 

nitrogen 

content 

(%) 

selector molarity 

on silica surface  

(µmol/m2) 

polymer molarity 

on silica surface  

(µmol/m2) 

E 15.9 1.2 1.1 0.26                 

F 5.7 0.2 0.3 0.12       

 

is existent. This is due to steric effects since the chiral selector competes for available 

binding sites of the spacer molecules. These binding sites were available in a much higher 

concentration in the case of aminopropylsilica compared to glycidoxypropylsilica. To 

attach the silane spacer molecules, the surface polymerization reaction was carried out. 

The degree of immobilization for the aminopropyltriethoxysilane was higher compared to 

glycidoxypropylsilica (carbon mass fraction 2.9 % compared to 1.5 %). Therefore, also 

the amount of immobilized chiral selector molecule is lower in the case of sorbent F. 

Furthermore, the degree of cross-linking was higher in the case of aminopropylsilica (see 

also chapter 4 for the interpretation of the corresponding 29Si CP/MAS NMR spectra) 

compared to glycidoxypropylsilica. In the case of glycidoxypropylsilica, this retrieves the 

risk of unwanted analyte silanol interactions. Furthermore, loss of sorbent material due to 

hydrolysis must be worried about. The described drawbacks in this material are due to the 

fact that moderate conditions must be chosen in the attachment reaction of the 

glycidoxypropylsilane to prevent opening of the oxirane ring. Therefore, the temperature 

must be low which prevents the silane to completely polymerize at the silica surface. 

Nevertheless, the chromatographic results presented in paragraph 7.3 show the better  
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Figure 40a 13C CP/MAS NMR spectra of (S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine 
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Figure 40b 13C CP/MAS NMR spectra of (S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine 

3-aminopropylsilica 
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Figure 40c 13C CP/MAS NMR spectra of sorbent E  

 

chromatographic performance of sorbents synthesized using the glycidoxypropylsilane 

linkage strategy due to the absence of possible amino group analyte interactions. In Figure 

40a the 13C solid-state CP/MAS NMR spectrum of the free chiral selector molecule (S)-

(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine is given. The chemical shift of the acid group 

appears in the down-filed region at 175 ppm (C-8). The amide group signal C-9 is at 165 

ppm. High-field shifted therefrom are the carbon atoms of the aromatic ring. The 

chemical shift of the chiral carbon atom C-7 of the selector molecule appears at 57 ppm. 

Figure 40b shows the 13C solid-state CP/MAS NMR spectrum of the chiral selector 
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molecule (S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine immobilized on 

aminopropylsilica. In addition to the carbon chemical shifts of the  
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Figure 40d 13C CP/MAS NMR spectra of sorbent F 

 

selector molecule the three shifts of the immobilized linker molecule 

aminopropyltriethoxysilane appear in the high-field region between 0 and 50 ppm. The 

next step was the subsequent immobilization of the poly(ethylene-co-acrylic acid). Due to 

the huge molecular weight of this polymer (M = 3500 Da) compared to the chiral selector 

(M = 345 Da) the carbon mass fraction rose (see Table 11) and also the signal-to-noise 

ratio of the carbon chemical shift corresponding to the main alkyl chains is higher than 

the one of the chiral selector molecule. Also here, a signal splitting into a shift at 30 ppm 
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and 32.8 ppm, as expected, was observed indicating mobile gauche and rigid trans 

aligned alkyl chains. The combined immobilization of both stationary phases, the chiral 

selector and the polymer, on glycidoxypropylsilica yielded sorbent F. Due to the minor 

degree of immobilization, the signal intensity of the chiral selector is low. However, the 

elemental analysis clearly proved the successful immobilization with the existence of 

nitrogen that stems from the chiral selector. Also the carbon chemical shifts between 125 

ppm and 130 ppm correspond to the aromatic carbon atoms of the immobilized chiral 

selector. Clearly visible is the signal splitting in the carbon chemical shift corresponding 

to the main alkyl chain of the immobilized polymer. 

 

7.3 Application in the RP and NP mode 

 

In order to test the synthesized sorbents, the enatiomers R and S of 2,2,2-trifluoro-

(9-anthryl)ethanol were eluted from sorbent E. The enantiomers were separated with a 

selectivity αS/R = 1.28. Also sorbent F separated the isomers R and S of 2,2,2-trifluoro-(9-

anthryl)ethanol with a selectivity of αS/R = 1.1.  

Even though the enantioselectivity was found to be better when these solutes were 

eluted from sorbent E under these experimental conditions, the peak shape was better on 

sorbent F due to the absence of interfering analyte amino interactions. The influence of 

amino groups was observed before when sorbent D was compared to sorbent A (see  

chapter 5). Sorbent E was also employed to separate the enantiomers of all-trans 
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astaxanthin. The obtained selectivites were α3S, 3´S/3S, 3´R and 3R, 3´S = 1.1 and α3S, 3´R and 3R, 3´S 

/3R, 3´R = 1.1. All chiral separations were performed in the NP mode. By applying RP 
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Figure 41 Chromatograms of i: S and R 2,2,2-trifluoro-(9-anthryl)ethanol eluted from 

sorbent E using a mobile phase composition of n-heptane/2-propanol 95/5 (v/v); ii: S and 

R 2,2,2-trifluoro-(9-anthryl)ethanol eluted from sorbent F using a mobile phase 

composition of n-heptane/2-propanol 95/5 (v/v);  iii: (3S, 3´S), (3R, 3´R), (3S, 3´R) and 

(3R, 3´S) all-trans astaxanthin eluted from sorbent E using a mobile phase composition 

of n-heptane/methylene chloride/2-propanol 70/25/5 (v/v/v); iv: 13-cis (C13-cis), all-trans 

(Call-trans), and 9-cis (C9-cis) ß-carotene eluted from sorbent F using a mobile phase 

composition of methanol/water 95/5 (v/v) 
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conditions geometric ß-carotene isomers were separated on sorbent F with selectivites of 

α2/1 = 1.5 and α 3/2 = 1.1. 

 

7.4 Discussion 

 

Two novel chiral polymer based sorbents were synthesized and characterized by 

29Si and 13C solid-state NMR spectroscopy, and elemental analysis. Sorbent E separated 

2,2,2-trifluoro-(9-anthryl)ethanol and also slightly separated the enantiomers of all-trans 

astaxanthin in the NP mode. The chiral polymer based glycidoxypropylsilica  
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Figure 43 Sites of interactions in analyte enantiomers 

 

sorbent separated non-polar geometric ß-carotene isomers in the RP mode, due to the 

shape selective properties of the trans aligned alkyl chains in the copolymer. This sorbent 

separated 2,2,2-trifluoro-(9-anthryl)ethanol in the NP mode, due to the chiral recognition 

center in the immobilized (S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine selector 

molecule. These findings can be ascertained in a further analyte selector interaction study 



  Chiral chromatographic sorbents 96 

by employing 1H suspended-state HR/MAS NMR spectroscopy. Therefore, the rationale 

for the chiral recognition effect in the newly synthesized sorbents will be discussed here. 

A minimum of three interaction points are necessary in order for a chiral selector 

molecule to differentiate between two enantiomers [124]. NMR studies before proved, 

that interactions of chiral analyte molecules like fluoroalcohols (such as the (S)- and (R)-

enantiomers of 2,2,2-trifluoro-1-(9-anthryl)ethanol) form a two-point mode of interaction 

with an appropriate selector molecule (such as (S)-(+)-N-(3,5-dinitrobenzoyl)-α-

phenylglycine). Figure 43 and 44 show the corresponding sites of interactions of these 

molecules [129].   
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Figure 44 Sites of interactions in the chiral selector molecule 

 

Thereby, the primary interaction is a hydrogen bond interaction between the amide 

group in the selector molecule and the hydroxyl hydrogen of the fluoroalcohol, the 

secondary is a carbinyl interaction in between the phenyl group in the selector molecule 

and the carbinyl hydrogen in the fluoroalcohol. Thus, two diastereomeric solvates are 

formed, see Figure 45. These diastereomeric solvates differ in stability. This is due to the 
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fact that the remaining substituents of the fluoroalcohol analyte molecules interact 

differently with the chiral selector molecule, depending on their diastereomeric 

configuration  ((R) or (S) form). In case of the (R) form, the remaining anthryl group, an  
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Figure 45 Diastereomeric complexes formed upon the interactions between the 

immobilized chiral selector (S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine (chiral 

polymer based sorbent F) and the chiral (S) and (R) isomers of 2,2,2-trifluoro-1-(9-

anthryl)ethanol. The primary interaction is a hydrogen bond between the basic oxo group 

in the selector and the hydrogen of the hydroxyl group in the analyte molecules 

(continuous circle). The secondary interaction is between the carbinyl hydrogen and the 

basic aromatic ring (dotted circle). The π-π-interactions between the anthryl group and 

the dinitrobenzoyl group determine the chiral discrimination and are stronger in the case 

of the (R) enantiomer (ii) compared to the (S) enantiomer (i) 
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electron rich π- base, can interact stronger with the dinitrobenzoyl group, which is a 

electron deficient π-base, of the chiral selector molecule. This is simply caused by steric 

alignment of the remaining susbstituents in the analyte molecules. Therefore, the anthryl 

group, or the strength of the π-π-donor-acceptor interaction with the dinitrobenzoyl group 

govern the enantioselectivity. The other remaining substituent, the trifluoro group, mainly 

strengthens the primary and secondary interactions by conferring acidity upon the 

hydroxyl and carbinyl groups.  

In the case of the enantiomers of astaxanthin, basically the same applies as for the 

enantiomers of 2,2,2-trifluoro-1-(9-anthryl)ethanol. In this case, however, the π-base is 

the conjugated isoprenoic frame, which consists of 11 conjugated double bonds. From the 

results obtained in the chromatographic experiments, also here, the π-π-donor-acceptor 

interactions between the selector and the analyte are stronger in the case of the (3R, 3´R) 

isomer compared to the (3S, 3´S) astaxanthin enantiomer. Figure 46 shows a schematic 

visualization of these effects. The fact that the identical meso-forms elute between the two 

racemic forms shows that the π-π-donor-acceptor interactions are intermediate.  

In order to further elucidate the strength of interactions that take place and govern 

the chiral discrimination process, the novel chiral polymer based sorbent materials can be 

investigated by using 1H suspended-state NMR spectroscopy. Experiments such as 2D 

Nuclear Overhauser Effect Spectroscopy (NOESY) can give spectroscopic proof of 

interactions and their intensities under conditions similar to those used in HPLC [79, 80]. 

It has to be mentioned that the chiral recognition process is based on interactions taking 

place via the described three points of interactions in the NP mode; implying non-polar  
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Figure 46 Proposed diastereomeric complexes formed upon the interactions between the 

immobilized chiral selector (S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine (chiral 

polymer based sorbent E) and the (3S, 3´S) and (3R, 3´R) enantiomers of astaxanthin. 

The primary interaction is a hydrogen bonding between the basic oxo group in the 

selector and the hydrogen of the hydroxyl group in the analyte molecules (continuous 

circle). The secondary interaction is between the carbinyl hydrogen and the basic 

aromatic ring (dotted circle). The π-π-interactions between the anthryl group and the 

dinitrobenzoyl group determine the chiral discrimination and are stronger in the case of 

the (3R, 3´R) isomer (ii) compared to the (3S, 3´S) isomer (i) 

 

solvents like n-hexane or n-heptane being employed to elute the chiral analyte molecules 

from the stationary phases. By employing the non-polar solvents the three point chiral 
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interactions can take place. The polarity of an organic modifier in the RP mode would 

interfere with the three point chiral discrimination ability of a chiral selector molecule like 

(S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine, e.g. the necessary π-π-donor-acceptor 

interactions might not take place.  

The separation of shape constrained cis/trans carotenoid isomers was above all 

achieved in the RP mode using the chiral polymer based column E. By additionally 

covalently immobilizing the poly(ethylene-co-acrylic acid) copolymer with an acid mass 

fraction of 5 %, the highly shape selective properties of the polymer based sorbents, 

elaborately described and characterized in chapters 4 and 5, were incorporated in the 

chiral sorbent materials. This means in principle, that a column material was synthesized 

that works in both modes: In the NP mode separations of enantiomers can be obtained. In 

the RP mode separations of shape constrained enantiomers can be obtained. 

 



Summary and outlook 101

8 SUMMARY AND OUTLOOK

Several chromatographic sorbents were synthesized by immobilizing different

polymers on silica gel. The materials were characterized using 13C and 29Si solid- and

suspended-state NMR spectroscopy, ellipsometry, and contact angle measurements.

The influence of different factors on the retention mechanism such as different degrees of

immobilization, different mobile phase compositions, different temperatures, different

polymer chain lengths and polarities, and different strategies of immobilization were

investigated by comparing spectroscopic evidence with chromatographic experiments.

Thereby, the dependence of the retention mechanism from the alkyl chain morphology in

the stationary phases was approved. Only the stationary phases containing rigid trans

aligned copolymeric chains were able to fully separate shape constrained solutes which

did not differ in polarity.

Ideal separations of shape constrained solutes like ß-carotene cis/trans isomers or

PAHs were achieved with the poly(ethylene-co-acrylic acid) copolymer with an acid mass

fraction of 5 %, which contained the longest alkyl chain units, immobilized on silica gel

using a glycidoxypropyl linkage. For this sorbent, the surface coverage did not degrade

the selectivity. Lower degrees of immobilization actually allowed for faster separations,

thus by properly adjusting the synthesis conditions, tailored polymer based sorbents for

rapid separations can be achieved. Separations with high selectivities can also be achieved

with an isocratic mobile phase of either methanol but also acetonitrile. The temperature



 Summary and outlook102

range for maximum separation efficiencies of shape constrained solutes was between 288

K and 298 K.

Among the synthesized polymer based materials, the sorbent which showed the

highest selectivities towards shape constrained solutes was chosen to be applied in the

hyphenation of capillary HPLC to NMR spectroscopy. Therewith, an analyte mixture of

tocopherols isomers was separated and identified. Due to the high loadability of polymer

based chromatographic sorbents, a concentration of the tocopherol homologues higher

than usual (compared to C30 sorbents) could be injected which yielded a better signal-to-

noise-ratio in the 1H NMR spectroscopic detection of the separated compounds.

Therefore, the polymer based chromatographic sorbents will assure distinct improved

sensitivities in the hyphenation of capillary HPLC to 1H NMR spectroscopy. Beyond it,

the polymer based sorbents did not exhibit overloading effects compared to a C30 based

sorbent when acetonitrile was used as mobile phase. Sufficient selectivities were

achieved, thus disturbing solvent signals in the 1H NMR spectra will no longer have to be

suppressed. This also means, in principle, that possible applications of the novel

polymeric sorbents in preparative chromatography are evident.

Finally,  a chiral �Pirkle-type� selector molecule was incorporated in the polymer

based sorbents with the highest selectivities towards shape constrained solutes. This was

achieved by attaching the chiral selector with the same immobilization chemistry as to

immobilize the polymers on the silica surface. This �mixed-mode� sorbent functioned in

the reversed-phase mode as shape selective sorbent with comparable superior selectivities

as described above. In the normal-phase mode this polymer based chiral sorbent separated
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enantiomers such as the (R) and (S) form of 2,2,2-trifluoro-(9-anthryl)ethanol. In this

case, the underlying chiral separation mechanism was governed by π-π-acceptor-donor-

interactions. Since these interactions can also take place with the conjugated double bonds

of carotenoid molecules, a separation of astaxanthin enantiomers was also achieved

employing the polymer based chiral chromatographic sorbents. Thus, a step forward in

the analysis of chiral and geometric isomers of carotenoids was achieved.
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9 EXPERIMENTAL

9.1 Chemicals

3-Aminopropyltriethoxysilane (98.5 %) was obtained from ABCR (Karlsruhe, Germany).

3-Glycidoxypropyltrimethoxysilane (98 %), poly(ethylene-co-acrylic acid) copolymers

with acrylic acid mass fractions of 5, 10, and 15 %, and (S)-(+)-N-(3,5-dinitrobenzoyl)-α-

phenylglycine were obtained from Aldrich Chemical Company Inc. (Milwaukee, WI,

USA). ProntoSIL-300-3-SI silica (3 µm particle size, 300 Å pore size) with a surface area

of 150 m2/g was obtained from Bischoff Chromatography (Leonberg, Germany). 1-

Hydroxybenzotriazole (99 %), (S)- (98 %), and (R)- (98 %) 2,2,2-trifluoro-(9-

anthryl)ethanol, and N,N’-Diisopropylcarbodiimide (99 %) were obtained from Sigma-

Aldrich Chemie GmbH (Steinheim, Germany). All-trans ß-carotene was purchased from

Fluka (Buchs, Switzerland) and isomerized using the procedure described by Zechmeister

to obtain a mixture of 13-cis, all-trans, and 9-cis ß-carotene [75]. Lutein, zeaxanthin, and

astaxanthin were a kind gift from BASF Aktiengesellschaft (Ludwigshafen, Germany).

SRM 869 column selectivity test mixture for LC was obtained from the NIST standard

reference materials program (NIST, Gaithersburg, MD, USA) [77]. The tocopherols were

obtained from Calbiochem (San Diego, CA, USA). All solvents used in the HPLC

experiments were of HPLC grade (Solusorb, Mallinckrodt Baker Inc., Phillipsburg, PA,

USA and LiChrosolve, Merck, Darmstadt, Germany). The solvents used for the

suspended-state NMR experiments and the capillary HPLC-NMR experiments were
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methanol-d4 (Uvasol, 99.8 %), and D2O (Uvasol, 99.8 %) (Merck, Darmstadt, Germany).

The silica wafers were obtained from Wacker Chemitronic (Burghausen, Germany).

9.2 Synthesis of the poly(ethylene-co-acrylic acid) chromatographic

sorbents

Synthesis of 3-aminopropylsilica respectively 3-glycidoxypropylsilica

The silica was dried under vacuum at 453 K for 4 h in order to remove all adsorbed water

from the surface and then cooled to room temperature and stored under N2 atmosphere.

The silica (4 g) was suspended in dry toluene (20 mL) in a three necked round bottomed

flask equipped with a reflux condenser. Then, a three fold excess of 3-

aminopropyltriethoxysilane (3.0 mL) respectively 3-glycidoxypropyltrimethoxysilane

(2.5 mL) was added with a syringe and refluxed under nitrogen atmosphere for 12 h. The

hot slurry was filtered and washed with aliquots of toluene, acetone, and n-hexane. The 3-

aminopropylsilica and 3-glycidoxypropylsilica were dried at room temperature for 24 h.

Synthesis of chromatographic sorbents A, B, and C

1.6 g Poly(ethylene-co-acrylic acid) with a 5 % mass fraction of acrylic acid was

dissolved with hydroxybenzotriazole (80 mg) and dry N,N-dimethylformamide (50 mL)

in dry xylene (50 mL). Then after slowly stirring under nitrogen atmosphere at 273 K for

30 min diisopropylcarbodiimide (0.6 mL) was added, after another 30 min the 3-

aminopropylsilica (4.0 g) was suspended in the solution. Within 3 h the temperature was
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raised to room temperature. After refluxing for 44 h the hot slurry was filtered and

washed with aliquots of hot xylene/N,N-dimethylformamide, xylene, acetone, methanol,

methanol/water (50/50, v/v), methanol, acetone, and n-pentane. The resulting yellow-

brownish colored chromatographic sorbent A was dried for 24 h. The two other

chromatographic sorbents B and C were synthesized from poly(ethylene-co-acrylic acid)

with mass fractions of 10 % and 15 % respectively, using the same procedure.

Synthesis of chromatographic sorbent D

1.6 g of poly(ethylene-co-acrylic acid) with a 5 % mass fraction of acrylic acid was

dissolved in dry xylene (50 mL). After refluxing for 30 min under nitrogen atmosphere

the 3-glycidoxypropylsilica (4.0 g) was added and refluxed for 24 h. Then the slurry was

filtered hot and washed with aliquots of hot xylene (isomeric mixture of o-, m-, and p-

xylene), acetone, methanol, methanol/water (50/50, v/v), methanol, acetone, and n-

pentane. The resulting white colored chromatographic sorbent D was dried for 24 h.

Synthesis of the chiral polymer based chromatographic sorbent E

6 g Aminopropylsilica were added to a solution of 3 g (S)-(+)-N-(3,5-dinitrobenzoyl)-α-

phenylglycine in 80 mL tetrahydrofuran. 2.4 g of 2-ethoxy-1-ethoxycarbonyl-1,2-

dihydroquinoline was added and the solution was stirred for 24 h at ambient conditions.

Then the slurry was filtered and washed with aliquots of tetrahydrofuran, acetone, and n-

pentane. The resulting pinkish colored intermediate product was dried for 24 h. Then 1.6

g poly(ethylene-co-acrylic acid) with a 5 % mass fraction of acrylic acid was dissolved
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with hydroxybenzotriazole ( 80 mg) and dry N,N-dimethylformamide (50 mL) in dry

xylene (50 mL). Then after slowly stirring at 293 K for 30 min diisopropylcarbodiimide

(0.6 mL) was added, after another 30 min the intermediate product (2.0 g) was suspended

in the solution. After refluxing for 44 h the hot slurry was filtered and washed with

aliquots of hot xylene (isomeric mixture)/N,N-dimethylformamide, xylene (isomeric

mixture), acetone, methanol, methanol/water (50/50), methanol, acetone, and n-pentane.

The resulting pinkish colored chromatographic sorbent E was dried for 24 h.

Synthesis of the chiral polymer based sorbent F

0.8 g of poly(ethylene-co-acrylic acid) with a 5 % mass fraction of acrylic acid and 0.5 g

(S)-(+)-N-(3,5-dinitrobenzoyl)-α-phenylglycine was dissolved in 50 mL dry xylene

(isomeric mixture)/THF (v/v). After stirring for 30 min the 3-glycidoxypropylsilica (4.0

g) was added and stirred for 24 h. Then the slurry was filtered and washed with aliquots

of hot xylene (isomeric mixture), acetone, methanol, methanol/water (50/50), methanol,

acetone, and n-pentane. The resulting white colored chromatographic sorbent F was dried

for 24 h.

9.3 Synthesis of the poly(ethylene-co-acrylic acid) silica wafers

The modification of the silica wafers was carried out by cutting single-side polished

wafers with a natural SiO2 layer of about 2 nm into 15 mm2 pieces. The silicon pieces

were cleaned and activated for 15 min with a freshly prepared piranha solution
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(H2SO4/H2O2 = 2/1 (v/v)) in an ultrasonic bath. Afterwards the wafers were rinsed with

ultra clean water (>18 MΩ resistivity) and dried with nitrogen. In order to determine the

thickness of the natural SiO2 layer, the cleaned wafers were measured with the null

ellipsometer. The freshly cleaned wafers were deposited into a solution of 20 mL toluene

and 20 µL 3-aminopropyltriethoxysilane respectively 20 µL 3-

glycidoxypropyltrimethoxysilane for 1 h at room temperature. After removing the wafers

from the solution, they were rinsed with toluene and the surfaces were characterized with

ellipsometric measurements. The copolymers were immobilized corresponding to the

reaction procedures for the synthesis of chromatographic sorbents A, B, C, and D as

described above. The surfaces were characterized by ellipsometry and water contact angle

measurements.

9.4 NMR spectroscopy

The solid-state NMR spectra were recorded at 295 K on a Bruker ASX 300 (7.05 Tesla)

spectrometer (Bruker BioSpin, Rheinstetten, Germany). The minimum number of scans

recorded was 2048 in each experiment. To process the NMR spectra, 1D WINNMR

software (Bruker Biospin GmbH, Rheinstetten, Germany) was used. Zero filling up to 2K

data points and an exponential multiplication of the FID with a line broadening of 20 Hz

for 29Si CP/MAS NMR spectra and 10 Hz for the 13C CP/MAS NMR spectra respectively,

were performed before Fourier transformation. For the HPLC-NMR coupling experiments

a AMX 600 spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany) was
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employed. Suspended-state NMR experiments were carried out at 295 K on the Bruker

ASX 300 (7.05 Tesla) spectrometer (Bruker BioSpin, Rheinstetten, Germany).

29Si CP/MAS NMR spectroscopy

The spectra were recorded with the chromatographic sorbents packed into 7 mm double

bearing rotors of ZrO2 at a spinning rate of 3500 Hz. The proton 90° pulse length was 6.5

µs and the cross-polarization contact time 5 ms. The pulse intervals were 1 s. All

chemical shifts were referenced externally to TMS.

13C MAS NMR spectroscopy

For the 13C NMR experiments the chromatographic sorbents were packed into 4 mm

double bearing rotors of ZrO2.

The 13C CP/MAS experiments were carried out at a spinning rate of 4000 Hz, the proton

90° pulse length was 3 µs and the spectra were obtained with a cross-polarization contact

time of 3 ms. The pulse intervals were 1 s. Glycine was used as a reference and to adjust

the Hartmann-Hahn condition.

The 13C HPDEC/MAS NMR spectra were obtained with a 13C 90° pulse length of 6.5 µs

and a delay time of 5 s at a spinning rate of 3000 Hz.

The spin-diffusion MAS NMR measurements were recorded at 295 K. A dipolar filter

with ten repetition cycles (l0) and a delay time of 8 µs (d9) between the 1H pulses was

applied. A 7 mm probe was employed at a spinning rate of 4000 Hz and a sample

temperature of 295 K (90 ° pulse angle 5.9 µs, contact time 2 ms, delay time 1 s). The
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simulation of the spin-diffusion was performed with a self-developed computer program

(MR-SpinDiff) on a PC (Pentium, 200 MHz).

For the suspended-state NMR experiments two mobile phase compositions, methanol-d4

and methanol-d4/D2O (50/50, v/v), were added to the chromatographic sorbents with a

syringe in 4 mm double bearing rotors of ZrO2. The 13C MAS NMR spectra were

obtained with a 13C 90 ° pulse length of 6.5 µs and a delay time of 5 s at a spinning rate of

3000 Hz.

Temperature NMR experiments

The spectra were recorded in the group of Dr. Detlef Reichert in cooperation with Ovidiu

Pascui (Department of Physics, University of Halle). A Varian VT 7 mm MAS probe

(Jackobsen design) on a Varian Inova spectrometer operating at a resonance frequency of

100.54 MHz for 13C (Varian Inc., Palo Alto, USA) was used. The temperature was

calibrated using Pb(NO3) as standard [136]. For the line shape experiments 13C  CP/MAS

NMR spectroscopy at a spinning rate of 1200 Hz was used. The 90° pulse length was 5 µs

for 13C and 4.6 µs for 1H. The pulse interval time d1 was 3 s. For each experiment 512

transients were recorded with a CP contact time of 0.5 ms and an acquisition time of 20

ms. For each DIPSHIFT experiment to measure C-H dipolar couplings 1024 transients

were accumulated at a spinning rate of 4711 Hz and otherwise with the same

experimental parameters as described above. For the DIPSHIFT experiment, 1H-1H

homonuclear decoupling was achieved by the frequency switched Lee-Goldburg (FSLG)

sequence [89]. The 360 o 1H decoupling pulses had a duration of 15-17 µs with an
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effective decoupling field strength of 70-80 kHz. Since the dipolar-induced signal decay

is periodic with the MAS rotor period, it was only necessary to acquire the signal over

one rotor period in the indirect dimension. Therefore the DIPSHIFT spectra were only

Fourier transformed in the direct dimension, and the dipolar dephased signal was

extracted for each resolved peak. The one rotor period time domain data were fitted to

yield the coupling strength of interest. The time evolution under the C-H dipolar

couplings in 2D DIPSHIFT experiments was simulated for one rotor period with a self

written FORTRAN program. Simulations were performed for varying dipolar coupling

strengths. Powder averaging was performed in 2 o and 3 o increments for the α and β

Euler angles, respectively. Other input parameters included the number of t1 increments,

the dwell time and the spinning rate. For all experiments, the simulated curves were

multiplied by an exponential decay to account for T2 relaxation effects during the time

evolution. Best agreement between simulation and experiment was determined by the

smallest root-mean-square deviation values.

9.5 Ellipsometry

The ellipsometric measurements of the layer thickness were performed with a null

ellipsometer ELX-02-C (Dr. Riss Ellipsometerbau, Ratzeburg, Germany) in the group of

Prof. Dr. Günter Gauglitz in cooperation with Stefan Busche (Institute of Physical

Chemistry, University of Tübingen). Changes in the state of polarization caused by

reflection at the probe interfaces are measured with ellipsometry. All measurements were
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performed at least three times and the mean values and standard deviation are given in

Figure 10.

9.6 Contact angle measurements

The contact angle measurements were performed with an optical contact angle meter from

KSV (Finland). Measurements were repeated at least three times and mean values and

standard deviations are given in Table 3.

9.7 HPLC

All chromatographic sorbents were slurry packed into 125 x 4.6 mm stainless steel

columns at 40 MPa on a Knauer Pneumatic HPLC pump (Berlin, Germany) using

standard methods.

A stock solution of ß-carotene was prepared (1 mg/mL) in n-hexane and isomerized under

UV light for 30 min by adding 10 µL of a 100 µg/mL solution of iodine in n-hexane. The

isomerized stock solution was further diluted to 100 µg/mL with methanol, stored at 277

K and used for analysis; the peak identification is based on the literature [76]. Lutein and

zeaxanthin and also astaxanthin were dissolved in the corresponding mobile phase to

yield a concentration of 100 µg/mL and used for peak identification and analysis. The

different carotenoid standards were eluted using different mobile phase compositions of

methanol/water as well as acetonitrile. SRM 869 was eluted using a mobile phase
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composition of methanol/water (95/5, v/v). The stock solution of the (S) and (R) 2,2,2-

trifluoro-(9-anthryl)ethanol enantiomers with a concentration of 100 µg/mL in the mobile

phase was eluted from the chiral sorbents using n-heptane/2-propanol 95/5 (v/v). (3S,

3´S), (3R, 3´R), (3S, 3´R) and (3R, 3´S) all-trans astaxanthin (c = 100 µg/mL) were

eluted from the chiral sorbents using a mobile phase composition of n-heptane/methylene

chloride/2-propanol 70/25/5 (v/v/v). All analyte mixtures were either introduced via a

injector equipped with a 100 µL loop and isocratically separated on an Agilent Series

1100 instrument (Agilent, Waldbronn, Germany) or via a Dionex autoinjector ASI-100

(injection volume 10 µL) and separated on a Dionex P580 instrument (Dionex,

Sunnyvale, CA, USA) both with an UV-detector. Detection was adjusted to 455 nm for

the ß-carotene isomers as well as lutein and zeaxanthin, at 480 nm for the astaxanthin

isomers, and at 254 nm for SRM 869 as well as for the 2,2,2-trifluoro-(9-anthryl)ethanol

enantiomers. The flow rate was 1 mL/min for each elution. In order to confirm the

obtained retention factors and selectivities each chromatographic experiment was

performed at least twice. The void volume was determined from a void volume marker

molecule which was not retarded. The column temperature was controlled within ±0.1 K

by a circulating methanol jacket, and was 298 K, if not designated elsewise.

9.8 Capillary HPLC-NMR hyphenation

For packing capillaries, 20 mg of the polymer based chromatographic sorbent was

suspended in 300 µL of carbon tetrachloride and put in an ultrasonic bath for 10 min; then
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the slurry was transferred in a chamber and forced downward into a 250 µm (inner

diameter) x 150 mm fused-silica capillary using a Knauer Pneumatic HPLC pump

(Berlin, Germany). Hereby, initially a pressure of 400 bar was used and increased to 650

bar within 5 min. The capillary end fittings consisted of zero dead volume unions ZU1C,

steal screens 2SR1, and ferrules FS1.4-5 (Vici AG Valco Int., Schenkon, Switzerland). A

capillary HPLC system was utilized consisting of an Eldex MicroPro dual-syringe pump

(Eldex Laboratories, Napa, CA) equipped with on-column (100 µm inner diameter) UV

detection performed at 285 nm on a Knauer UV-detector K-2500 (Knauer, Berlin,

Germany) and a microinjection valve kit (Upchurch Scientific, Oak Harbor, WA) with a

200 nL fused-silica injection loop. The employed tocopherol standards were prepared by

dissolving the tocopherols in methanol-d4 to gain the desired concentration of either 1.6

mg/mL or 5.66 mg/mL (each tocopherol).

The capillary HPLC NMR system was set-up was as follows: The outlet of the UV

detector was connected with the 1.5 µL active volume 1H selective capillary NMR probe

(Protasis Corp., Marlboro, MA) inlet using a 3 m fused-silica transfer capillary (50 µm

inner diameter) in order to couple the capillary HPLC system to the NMR spectrometer

(AMX 600, Bruker Biosin GmbH, Rheinstetten, Germany). For stopped flow

measurements, an additional peak parking valve had to be inserted prior to the injection

valve.

An isocratic mixture of methanol-d4 and D2O (85/15, v/v) was applied for the continuous-

flow experiment which was performed using the pulse program lc2pnps. 16 transients

with 4 k complex data points and a spectral width of 7246 Hz were accumulated with a
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relaxation delay of 1 s. The pulse angle was set to 30°. During the separation, 128 rows

with an acquisition time of 72 s per row were recorded. Prior to Fourier transformation, a

square bell function was applied to the FID.
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