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Zusammenfassung

Um deformierbare Materialien wie Textilien oder menschliches Gewebe physika-
lisch simulieren zu können, muss eine Reihe komplexer Probleme gelöst werden.
Diese Arbeit befasst sich dabei im Speziellen mit der Detektion und Behandlung
von auftretenden Kollisionen sowie der Nachbearbeitung simulierter Netze zur
Steigerung der visuellen Qualität. Dabei werden Anwendungen aus dem Bereich
simulierter Textilien und der virtuellen Anprobe von Kleidung vorgestellt. Insbe-
sondere wird auf das am WSI/GRIS entwickelte Textilsimulationssystem TüTex
eingegangen.

Zunächst wird der State of the Art zur Kollisionsdetektion deformierbarer Ob-
jekte vorgestellt, und es wird ausführlich diskutiert, welches Verfahren am be-
sten für welche Anwendung geeignet ist. Für die Anforderungen, die TüTex an
die Kollisionsdetektion stellt, wird gezeigt, dass sich dafür besonders Bounding-
Volume-Hierarchien eignen. Diese werden im Weiteren mit einem stochastischen
Sampling zu einer neuen Kollisionsdetektionsmethode kombiniert. Dieses neue
Verfahren erlaubt eine Abwägung zwischen Geschwindigkeit und Qualität der De-
tektion und erhöht damit auch deutlich ihre Performance. Im Folgenden wird eine
Impuls-basierte Methode zur Auflösung komplexer Kollisionen und Selbstkolli-
sionen vorgestellt, die sowohl für statische als auch dynamische Kollisionsobjekte
stabile Simulationen sicherstellt.

Da Textilsimulationen mit hoch aufgelösten Netzen nach wie vor sehr zeitin-
tensiv sind, wird vorgeschlagen, grobe Netze zu simulieren und diese anschlie-
ßend geometrisch nach zu bearbeiten. Dazu trägt diese Arbeit zwei Verfahren bei.
Um die sichtbare polygonale Struktur von groben Netzen zu beseitigen werden
Subdivisionmethoden benutzt. Dabei werden interpolierende und approximieren-
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de Verfahren in Bezug auf die Eignung bei virtuellen Textilien verglichen. Da der
Subdivisionschritt selbst auch wieder zu Kollisionen vor allem zwischen dem mo-
difizierten Textilnetz und seiner Umgebung führen kann, werden diese Verfahren
mit einer kontinuierlichen Kollisionsdetektion und Kollisionsantwort kombiniert.
Als zweites Verfahren zur Nachbehandlung virtueller Textilien werden Faltentex-
turen vorgeschlagen. Da grobe Netze keine feinen Falten modellieren können,
werden diese Details durch Texturen hinzugefügt. Diese Texturen werden da-
bei auf Basis der Deformation der Netze generiert und können als Bump- oder
Displacement-Map verwendet werden. Im Gegensatz zu früheren Verfahren wird
diese Faltentextur ohne Benutzerinteraktion generiert, was die Verwendung in au-
tomatischen Simulationssystemen wie TüTex ermöglicht. Des Weiteren werden
in dieser Arbeit erstmals diese Texturen mit der kontinuierlichen Kollisionsde-
tektion kombiniert, um ein kollisionsfreies Displacement-Mapping zu realisieren.
Beide Nachbearbeitungsverfahren führen zusammen mit groben Netzen zu visu-
ell vergleichbaren Ergebnissen wie die Simulation hoch aufgelöster Netze ohne
Nachbearbeitung, ermöglichen aber deutlich kürzere Simulationszeiten.

Die in dieser Arbeit entwickelten Konzepte wurden in mehrere Systeme zur
Kleidersimulation integriert. Mit Virtual Try-On wurde dabei das erste System
umgesetzt, welches die physikalisch-basierte Simulation von Kleidung basierend
auf CAD-Schnittmustern, physikalischen Materialparametern und 3D-Körpers-
cans ermöglicht. Außerdem wurde der Textilsimulator TüTex als Plugin für die
Modellierungssoftware Alias Maya weiter entwickelt, um über eine effiziente und
komfortable Test- und Visualisierungsumgebung zu verfügen.
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CHAPTER 1

Introduction

1.1 Cloth Simulation and Virtual Try-On

Clothing is part of everyone’s life and the subject of a huge industry of designers,
manufacturers and retailers. Everybody has an intuitive knowledge of the dynamic
behavior of cloth and can visually distinguish various fabrics. Consequently the
authentic and exact modeling of virtual clothing is a key aspect in the creation of
virtual humans, a major goal of computer graphics. In this context, the manual
modeling of virtual clothing is a very tedious process and becomes infeasible for
animated scenes. Hence, the physically-based simulation of clothing is used to
dress virtual humans with garments that show a realistic draping behavior with
natural folds and wrinkles. In combination with virtual humans, virtual cloth
is employed in a large scope for various purposes. While in the entertainment
industry cloth simulations are mainly used to increase the realism of movies or
video games, the application scenarios in the textile industry also yield in other
directions.

In recent years three main scenarios have evolved in this area. In the first ap-
plication, a virtual fitting room allows customers the selection, try-on and virtual
evaluation of clothing in combination with the customer’s virtual counterpart, the
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2 CHAPTER 1. INTRODUCTION

so-called avatar. This virtual fitting room clearly simplifies sales over the Inter-
net and also eases the sales in real boutiques. The second scenario where textile
simulations are applied is the design process of garment. With sophisticated cloth
simulation software it is possible to facilitate the design process, allow rapid-
prototyping, and even make interactive design and tailoring in 3D possible. The
third scenario is a combination between rapid-prototyping and the animation of
motions where the manufacturers of clothing, e.g. sports clothing, can test the fit
and dynamic behavior of newly designed garment with standardized test scenes
of typical motions.

In this thesis we address the physically-based simulation of cloth mainly in
the context of the first of the above scenarios. We present the work realized
throughout the BMBF1-funded research project Virtual Try-On. The cloth simu-
lator TüTex developed by the computer graphics group at the University Tübingen
(WSI/GRIS) was implemented during this project as part of a complete pipeline
for the virtual try-on of cloth. The physical simulation of cloth is a very com-
plex challenge with various facets. Hence, in our group several people worked
on TüTex focussing on the physical model, numerical solver, collision detection
and post-processing. The methods presented in this thesis focus on the two latter
aspects (Figure 1.1). Though we mainly present applications in the field of cloth
simulation, the proposed algorithms can also be employed for the simulation of
other deformable objects like human tissue or hair.

1.2 Preliminaries

The simulation of cloth is a demanding task which requires the solution of various
problems in the fields of computer science, mathematics, and physics. In the
following, we give an overview of the intertwined steps of the simulation pipeline.
The areas within the pipeline where this thesis contributes to are highlighted red
in Figure 1.2.

The cloth itself as well as the remaining geometric scene data like avatars
is represented geometrically as polygonal meshes. Due to their flexibility, com-
monly triangular meshes are used. To simulate the mechanical behavior of cloth
internal and external forces are considered. Physical material properties mapping
the internal forces within the cloth are therefore assigned to the meshes using dif-
ferent approaches. Until recently, discrete methods like mass-spring and particle
systems were widely used to model these internal forces, namely tension, shear-
ing, bending, and transversal contraction [31, 127, 48, 25]. Only within the last

1Bundesministerium für Bildung und Forschung



1.2. PRELIMINARIES 3

Figure 1.1: Detail of a simulation of a piece of cloth draped over a rotating sphere.
This image shows the complex collision and self-collision situation that is detected
and resolved using the algorithms presented in Chapter 2 and 3. The cloth is post-
processed using the collision-free subdivision detailed in Chapter 4.

years, models based on continuum mechanics using finite elements have been em-
ployed that yield a similarly high performance and map material parameters more
realistically [51]. Beside the internal forces, various external forces are taken into
account. Especially gravity as well as air resistance and wind effects are modeled.
Based on internal and external forces the equation of motion of cloth is set up
using Newton’s second law F = ma. To solve the emerging differential equation
and to obtain the discrete simulation steps, a wide range of numerical solvers has
been presented [64].

An essential task within the simulation process is the realization of interactions
between different objects. The most important interactions are collisions between
the scene objects. In nature collisions between solid objects are modeled and in-
terpenetrations are avoided by very short ranging repulsive forces2. When calcu-

2This force that avoids interpenetration of objects follows from the occurring overlap of the
electron clouds of the approaching atoms and the resulting quantum mechanical effects. In the
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Figure 1.2: Overview of the cloth simulation process. The areas where this thesis
contributes to, are shown in red.

lating the motion of objects with large time step sizes of up to some hundredths of
a second, which are necessary to achieve fast simulations, these potential fields are
easily tunneled. Hence, the repulsive forces are not included in the system and the
simulated objects only move based on the remaining internal and external forces.
This necessarily leads to interpenetrations after the numerical integration step has
calculated new positions. Highly deformable objects may even intersect them-
selves resulting in self-collisions. In computer graphics strategies have evolved

hypothetical case that the atomic nuclei were coincident the electrons of two atoms would have to
share the same orbital system. According to the Pauli Exclusion Principle no two electrons can
share the same state so that in effect half the electrons of the system would have to go into orbits
with an energy higher than the valence state. The resulting repulsive force F is modeled using a
Lennard-Jones potential and is a function of the distance r of the two atoms: F ∼ r−12.
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that solve these problems by detecting close features of the virtual objects and
responding to these collisions or proximities (objects closer than some minimum
distance to each other) by separating the objects. Numerous approaches have been
proposed for this purpose in applications such as robotics, games, surgery simula-
tion, and cloth simulation [30, 24, 127, 89]. As it is necessary to detect collisions
between all involved primitives this collision detection step is a bottle neck in the
simulation pipeline. While many of the original collision detection methods pri-
marily address the problem of rigid body collisions, the approaches presented in
this work focus on deformable objects. There are various aspects that complicate
the collision problem for deformable objects like the higher number of potential
collisions and the need for more complex collision response schemes. Collision
response is the second step in collision handling, which resolves emerged colli-
sions or proximities. These methods separate the colliding objects e.g. by altering
their positions or velocities.

In order to obtain visually pleasing cloth simulations usually a high resolution
of the underlying meshes is necessary. If coarse meshes were used, the polygonal
structure would become visible or it might be impossible to model fine wrinkles
or folds. However, though the performance of numerical solvers and collision de-
tection methods has increased rapidly over the recent years, a high resolution of
the underlying cloth meshes still requires too much computation time, especially
for real time or interactive applications. Therefore it is often necessary to simulate
clothing with only a few thousand triangles. To nevertheless obtain results with
high quality, post-processing methods are used to either smooth the simulated
meshes using a refinement or enhance them geometrically with folds and wrin-
kles. As this procedure does not influence the simulation itself, only the specific
time steps of the simulation passed to the rendering may be post-processed. In the
rendering step, the cloth is visualized together with its environment taking the
specific surface properties and lighting conditions into account. Therefore mate-
rial properties like refraction and reflection parameters can be applied to obtain a
realistic look and feel of textiles.

1.3 Overview and Contributions

This thesis makes substantial contributions to all the fields highlighted in Fig-
ure 1.2. New approaches and methods are presented for collision detection, colli-
sion response, and post-processing of virtual garment. Additionally, the integra-
tion of all these methods into the simulation framework TüTex was realized and is
described in this thesis. All contributions are detailed in the remainder of this the-
sis that is organized as follows. Chapter 2 covers collision detection methods used
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in the simulation of virtual textiles. Foremost, we detail the current state of the
art of the relevant collision detection approaches for deformable objects. These
methods range from bounding volume hierarchies and distance fields to image-
space techniques. We then give a comprehensive answer to the question, which of
these collision detection methods best meets the demands of our specific problem
of textile simulation. Therefore, we expose the specific advantages and disadvan-
tages of these methods when applying them to highly deformable objects. We
focus on the special requirements for dynamic scenes and self-collisions as well
as the possibility to balance quality versus speed of the detection process. It turns
out that bounding volume hierarchies fit best to detect collisions in our context.
However, because they do not allow to balance speed versus quality, we introduce
a new approach that uses a stochastic sampling of the colliding primitives to over-
come this limitation in this chapter. Furthermore it yields a higher performance
of both collision and self-collision detection. Finally, to detect collisions not only
at a definite time, we present a continuous collision detection method. Using this
method for deforming triangle meshes, it is possible to find the exact point in
time at which the mesh primitives collide. Here we remark that later in this thesis
continuous collision detection is primarily used to detect collisions introduced by
post-processing methods.

Collision response schemes employed for textile simulation are discussed in
Chapter 3. These methods are used to compute a collision-free state of the sim-
ulated cloth after collisions have occurred and were detected with the presented
detection schemes. As any collision response scheme is only a limited model to
reality, it is necessary to find an algorithm to alter positions and velocities of the
mesh vertices or to constrain their motion in such a way that all collisions are re-
solved. First, we detail how such a geometric collision response has to be applied
to a triangle mesh. Then, we present a collision response method that constrains
the possible directions of motion in order to avoid further interpenetrations. As
this method is not able to reliably resolve collisions for animated rigid objects,
we detail a new method that alters positions and velocities while considering im-
pulse conservation laws. This impulse-based collision response stably resolves all
collisions and self-collisions in TüTex both for static and dynamic environment
scenes.

As simulating cloth with high resolution meshes still results in long compu-
tation times and coarse meshes show an unsightly polygonal silhouette, we pro-
pose a post-processing method based on different subdivision schemes used to
smooth coarse meshes (Chapter 4). Performing the physically-based simulation
on coarse meshes followed by a subdivision step significantly accelerates the sim-
ulation process. In this regard, this thesis is the first to compare interpolating and
approximating subdivision methods with respect to their results and practicability
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in cloth simulation. Due to position alterations, the subdivision step may intro-
duce intersections. To resolve them, we combine this step with the continuous
collision detection and a collision response heuristic. The collision-free subdivi-
sion yields a substantial quality improvement without the necessity to simulate
high resolution meshes.

While the collision-free subdivision only smoothes meshes, in Chapter 5 a
heuristic is presented that enhances a coarse cloth representation with very real-
istic folds and fine wrinkles using textures. Our main contribution in this context
is the automatic generation of the textures based on the deformation tensor of the
physical simulation considering area conservation. While previous approaches
depend on tedious user interaction, we present a new method that fully automa-
tizes the generation of these textures. To obtain a high resolution cloth mesh we
present an innovative method to combine these wrinkle textures with the collision-
free subdivision described in the preceding chapter.

The application of the previously described methods is shown in Chapter 6.
Here we detail the cloth simulation engine TüTex and show how the presented
methods are implemented in this software framework. The application of the
TüTex system as part of the automatic simulation pipeline of the research project
Virtual Try-On is shown. Moreover, to facilitate the set up process of simula-
tion scenes we developed the Maya plugin tcCloth based on TüTex. It combines
the simulation engine with a powerful modeling environment to design and sew
clothes and render the achieved results. To conclude this thesis, Chapter 7 sum-
marizes the results of this work and gives an outlook where further research in the
area of collision detection and post-processing of virtual textiles may be directed
to.
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CHAPTER 2

Collision Detection

2.1 Introduction

The detection of collisions is one of the most important tasks in the simulation of
garment. Beside the physical simulation engine and numerical solver which com-
pute the behavior of the cloth due to internal and external forces, a sophisticated
collision detection scheme is necessary to yield convincing simulation results.
Such a scheme detects collisions of the simulated cloth with its environment or
with itself. Since cloth is extremely flexible and shows a very low bending re-
sistance there are various aspects that complicate the collision detection problem
compared to rigid bodies:

• In order to realistically simulate interactions between deformable objects,
all contact points including those due to self-collisions have to be consid-
ered. For rigid body collision detection self-collisions usually do not occur.

• Efficient collision detection algorithms often use different spatial data struc-
tures including bounding volume hierarchies, distance fields, or alternative
ways of spatial partitioning in order to accelerate the detection process.

9
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These object representations are commonly built in a pre-processing step
and perform very well for rigid objects, as the time spent in this step can be
neglected and the spatial data structures can be kept for further simulation
steps. For deforming objects, however, it is necessary to update or rebuild
these data structures after each deformation step what primarily results in a
reduced overall efficiency.

• Collision response for deformable objects is very complex and particularly
for thin collision objects like cloth a complete through passing is possible.
Hence, to yield a stable response the collision detection algorithms need to
deliver detailed information such as penetration depth or direction of the
collision objects.

The methods presented in this chapter are not restricted to collision detection
between cloth objects. They can also be used to other applications such as surgery
simulation, where collisions occur between deformable organs or between sur-
gical tools and deformable tissue. In this case also topological changes due to
cutting have to be taken into account.

After this introduction, the remainder of this chapter is organized as follows:
As many different collision detection methods exist and have already been applied
for cloth simulations, it is no simple task to select the method that matches best
the needs of a specific problem or application. Hence, in Section 2.2 our contri-
bution is to compare and classify the currently used collision detection methods
for deformable objects with respect to applications in cloth simulation. Therefore,
we present the state of the art of these approaches and identify their respective
advantages and disadvantages to give the potential user a decision guidance for
choosing the right method. Since most currently used collision detection methods
do not allow to trade quality for speed, in Section 2.3 we detail on a new ap-
proach to stochastic collision detection. The presented stochastic method finds
local proximities or interpenetrations by iteratively calculating the distance of
sampled primitive pairs. We combine this technique with a bounding volume
hierarchy to further accelerate the local distance minima search by restricting the
primitive sampling to already close object parts. Subsequently, we demonstrate
the high performance of this method and how it is possible to further speed up
the detection process while reducing the detection quality. As collisions cannot
only occur at the discrete time steps of a simulation but also in-between, contin-
uous collision detection methods are employed. If such methods are not utilized,
collisions may be missed or two objects may pass each other completely. In Sec-
tion 2.4 we present such a continuous collision detection method that is used in a
second collision detection phase, after close triangles have been detected by em-
ploying bounding volume hierarchies. This continuous collision detection scheme
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is the basis for the collision-free post-processing methods presented in Chapter 4
and 5.

2.2 Detection Methods for Deformable Objects

In this section the prevalent, previously used methods for collision detection of de-
formable objects are analyzed. First, we present the state of the art and point out
the specific characteristics of each approach. In Section 2.2.5 we then compare all
detection methods by opposing the specific advantages and disadvantages espe-
cially in the context of cloth simulation. To decide which detection method suits
best the specific needs of an application or problem, we summarize our results in
a decision matrix.

This section is based on our survey articles [10, 11, 15]. Our work on bounding
volume hierarchies has been published in [9, 8].

2.2.1 Bounding Volume Hierarchies

The idea of bounding volume hierarchies (BVHs) is to partition each object into
a set of primitives enclosed by BVs. BVHs speed up the collision detection in
two ways: First, a collision detection between BVs is much faster than a collision
check between the objects enclosed by the BVs. Second, the hierarchy is used
to efficiently prune unnecessary collision tests in areas where no collisions occur.
BVHs have been applied for rigid body collision detection since the mid 1980s.
For the collision detection of deformable objects they have proven to be a very
efficient data structure as well.

In general, BVHs are defined as follows: Each node in the tree is associated
with a subset of the primitives of the object, together with a BV that encloses this
subset with a smallest containing instance of some specified class of shapes. A
simple example for a triangle mesh with a hierarchy over spheres is illustrated
in Figure 2.1. The bounding volumes that have been used for BVHs range from
spheres [107, 73, 100], oriented bounding boxes (OBBs) [58], discrete oriented
polytopes (DOPs) [81, 137], Boxtrees [138, 18], axis aligned bounding boxes
(AABBs) [38, 124, 87], spherical shells [84, 83], to convex hulls [49]. Although
this wealth of BVs has been proposed (Figure 2.2), two types deserve a special
consideration: OBBs and k-DOPs. k-DOPs are convex polyhedra defined by k
half-spaces. In order to turn the intersection test for the polyhedrons into simple
interval tests, the hyper-planes have to form k/2 parallel pairs. A special case
of k-DOPs with k = 6 are AABBs. k-DOPs are built and updated by enlarg-
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Figure 2.1: Four levels of a binary tree of bounding spheres over a triangle mesh.

ing all k/2 intervals, so that all points lie within the two half-spaces. OBBs are
rotated AABBs, so that they are aligned with the enclosed object. To align the
OBBs the convex hull of the object is calculated. The covariance matrix and the
corresponding eigenvectors to this convex hull then define the orientation of the
OBB. The update of OBBs is only efficient for translations or rotations of the
complete enclosed object. For the intersection test projections on up to 15 axes
are necessary [58]. OBBs have the nice property that, under certain assumptions,
their tightness increases linearly as the number of polygons decreases. k-DOPs,
on the other hand, can be made to approximate the convex hull arbitrarily exact
by increasing k.

Using these BVs, in a pre-processing step before the actual detection step,
for each of the possibly colliding objects a BVH is constructed. The object is
partitioned until some leaf criterion in the hierarchy is met. Most often, each leaf
contains a single primitive, but one could as well stop when a node contains less
than a fixed number of primitives. Here, primitives are the entities which make up
the graphical objects, which can be polygons, polyhedra, etc.

2.2.1.1 Hierarchy Traversal

For the collision test of two objects or the self-collision test of one object the
BVHs are traversed top-down and pairs of tree nodes are recursively tested for
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AABB sphere DOP

OBB spherical shell convex hull

Figure 2.2: A variety of bounding volumes used for hierarchy-based collision
detection.

overlap. If the overlapping nodes are leaves, then, in a further collision detection
step, all enclosed primitives are tested for intersection. If one node is a leaf while
the other one is an internal node, the leaf node is tested against each of the children
of the internal node. If, however, both of the nodes are internal nodes, it is tried
to minimize the probability of intersection as fast as possible. Therefore, van den
Bergen [124] tests the node with the smaller enclosed volume against the children
of the node with the larger enclosed volume.

For two given objects with the BVHs A and B, most collision detection algo-
rithms implement the following general algorithm scheme:

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives enclosed by A and B
else

for all children A[i] and B[j] do
traverse(A[i],B[j])

end for



14 CHAPTER 2. COLLISION DETECTION

end if

This algorithm quickly zooms in on pairs of nearby polygons. Note that mixed
cases where one node is a leaf and the other is an inner node are omitted. The
characteristics of different hierarchical collision detection algorithms lie in the
type of BV used, the overlap test for a pair of nodes, and the algorithm for the
construction of the BV trees.

2.2.1.2 Construction of Bounding Volume Hierarchies

For rigid bodies, the goal is to construct BVHs such that all subsequent collision
detection queries can be answered as fast as possible on average. Such BVHs are
called “good” in the context of collision detection. With deformable objects, the
main goal is to develop algorithms that can quickly update or refit the BVHs after
a deformation has taken place. At the beginning of a simulation, a good BVH
is constructed for the undeformed object just like for rigid bodies. Then, during
the simulation, the structure of the tree is usually kept, and only the extents of
the BVs are updated. Since for deformable objects, where not only rotations or
translations of the enclosed objects occur, DOPs are generally faster to update
and are preferred over OBBs. Since the construction of a good initial BVH is
important for deformable collision detection, we will discuss some of the issues
in the following, while efficient ways of updating the hierarchy are discussed in
Section 2.2.1.3.

There are three different strategies to build BVHs, namely top-down [81, 8],
bottom-up [111], and insertion [57]. However, the top-down strategy is most com-
monly used for collision detection and therefore here described in more detail.
The idea of a top-down construction is to recursively split a set of object primi-
tives until a threshold, e.g. a minimum number of enclosed primitives, is reached.
The splitting is guided by a user-specified criterion or heuristic that yields good
BVHs with respect to the chosen criterion. A very simple splitting heuristic was
proposed by Gottschalk et al. [58]. First, each polygon is approximated by its
center. Then, for a given set B of such points, its principal components (the eigen-
vectors of the covariance matrix) are computed and the largest of them, i.e. the
one exhibiting the largest variance, is chosen. Subsequently, a plane orthogonal
to that principal axis is placed through the barycenter of all points in B that splits
B into two subsets. Alternatively, the splitting plane can be placed through the
median of all points. This leads to a balanced tree. However, it is unclear, whether
balanced trees provide improved efficiency of collision queries. Also the k-DOP
hierarchy used in TüTex employs a top-down splitting to build the hierarchy. Each
k-DOP is split according to its longest axis. The longest axis is determined by the
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Figure 2.3: Three levels of an 18-DOP-hierarchy created top-down by splitting
the parent DOPs along the longest axis.

triangle pair with the largest distance. Then the k-DOP is split parallel to this
triangle pair through its center [9, 8]. Figure 2.3 shows three hierarchy levels of a
corresponding 18-DOP-hierarchy over an avatar.

Volino and Magnenat-Thalmann [128, 129] as well as Provot [106] use a
fairly different approach for deformable objects. In their methods, the hierar-
chy is strictly oriented on the mesh topology of the object, assuming that topol-
ogy does not change during the simulation. Volino and Magnenat-Thalmann use
a region-merge algorithm to build the hierarchy bottom-up, while Provot uses a
top-down algorithm that recursively divides the object in zones imbricating each
other. These approaches have the advantage that they avoid clustering of faces in
the hierarchy that are very close in the initial state, although they are not close
at all based on the connectivity. This connectivity-based approach also yields
advantages in speeding-up self-collision detection as described in Section 2.2.1.4.

Another crucial point is the arity of the BVH, i.e. the number of children per
node. For rigid objects, binary trees are commonly chosen. In contrast thereto
it has been shown that 4-ary trees or 8-ary trees give a higher performance for
deformable objects [87, 8]. This is mainly due to the fact that fewer nodes need to
be updated and the total update costs are lower. Additionally, the recursion depth
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during overlap tests is lower and therefore the memory requirements on the stack
are not as high.

2.2.1.3 Hierarchy Update

In contrast to hierarchies for rigid objects, where the complete object undergoes
a transformation, hierarchies for deformable objects need to be updated in each
time step. Principally, there are two possibilities: refitting or rebuilding. Refitting
adapts the BVs to the new positions of the enclosed primitives while rebuilding
completely reconstructs the BVH. Refitting is much faster than rebuilding, but for
large deformations, this leads to less tight fitting BVs and therefore to larger over-
lap volumes. For an AABB hierarchy of deformable objects, van den Bergen [124]
has found that overall refitting is nevertheless faster compared to a complete re-
build.

Different strategies have been proposed not only for building a hierarchy but
also for the hierarchy update by refitting. Larsson and Akenine-Möller [87] com-
pared bottom-up and top-down strategies. They found that if in a collision detec-
tion process many deep nodes are reached, the bottom-up strategy performs bet-
ter, while if only some deep nodes are reached, the top-down approach is faster.
Therefore they proposed a hybrid method that first only updates the top half of
the hierarchy bottom-up. If, during the hierarchy traversal, non-updated nodes are
reached these are updated top-down. Using this method, they reduce the number
of unnecessarily updated nodes with the drawback of higher memory requirements
because they have to store the leaf information about vertices or faces also in the
internal nodes.

2.2.1.4 Self-Collision Detection with BVHs

BVHs can be easily employed to accelerate self-collisions, which is particularly
important for deformable objects. In general, collisions and self-collisions are
performed by the same algorithm using BVHs. If several objects are tested for
collisions, the respective BVHs are checked against each other. Analogously,
self-collisions of an object are detected by testing one BVH against itself.

However, it has to be noted that BVs of neighboring regions can overlap, even
though there are no self-collisions. To eliminate such cases efficiently, different
heuristics have been presented. Volino and Magnenat-Thalmann [128] proposed
an exact method to avoid unnecessary self-intersection tests between certain BVs.
The idea is based on the fact that connected regions with sufficiently low curvature
cannot self-intersect, assuming that their contour is convex. Therefore, a vector
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with positive dot product with all face normals of the region is searched. If such a
vector exists and the projection of the region onto a plane in direction of the vector
does not self-intersect, the region cannot self-intersect. A very similar approach is
used by Provot [106] who uses normal cones representing a superset of the normal
directions, which are calculated for each convex region. The cone’s apex angle α
represents the curvature, indicating possible intersections if α ≥ π.

2.2.2 Distance Fields

Another collision detection method widely used to find intersection between cloth
and rigid objects are distance fields. Originally distance fields were not employed
for collision detection but were used in computer graphics for volume render-
ing [56] and to create offset surfaces [101]. A distance field is a scalar field that
specifies the minimum distance to a surface. If the surface is closed, the distance
may be signed in order to distinguish between the inside and outside of the shape.
The collision detection between points and the object is performed by evaluating
the signed distance. Representing a closed surface by a distance field has the ad-
vantage that there are no restrictions on the topology. Additionally, the described
evaluation of distances and the evaluation of normals needed for the collision de-
tection and response process is very fast and independent of the complexity of the
object.

Mathematically, a distance field D : R3 → R defines a surface S as a zero
level set, i.e. S = {p|D(p) = 0}. Contrary to other implicit representations, a
distance field evaluation not only yields information about interior and exterior,
but also the distance to the closed surface. The distance can be specified using
different metrics, for collision detection usually the Euclidian distance metric is
used. The set-up of the distance field is usually done in a pre-processing step as
the collection of this information may be very time consuming. In the following
we present the different object representations used for distance fields and the
corresponding techniques for the distance field computation. Then we address the
collision detection process between deformable and rigid objects using distance
fields.

2.2.2.1 Distance Field Representations

To represent distance fields different data structures for space partitioning like
uniform 3D grids, octrees and binary space partitioning (BSP) trees have been
proposed. The simplest distance field representation are uniform grids, where the
distance values are computed for each grid point. In-between values can be com-
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puted by trilinear interpolation. The major advantages of these uniform grids are
the simplicity to implement them and the constant time necessary for distance
queries at any of the grid points. The normals of the surface necessary for most
collision response methods can easily be computed from the analytic gradient of
the trilinear interpolation. Beside these advantages, however, uniform grids have
drawbacks, resulting from their constant sampling rate. As fine details, e.g. sharp
features, require dense sampling, immense volumes are needed to accurately rep-
resent the distance fields with uniform grids, even when these fine details occupy
only a small fraction of the volume.

A possibility to overcome these problems are the adaptively sampled distance
fields (ADFs) presented by Frisken et al. [53], where a “detail-directed” sampling
is used. High sampling rates are used in regions where the distance field contains
fine detail and low sampling rates where the field varies smoothly. This sam-
pling strategy permits arbitrary accuracy in the reconstructed field together with
efficient memory usage. The distance data of ADFs is organized in a hierarchy
for fast localization. Although various spatial data structures are suitable for this
purpose in general, ADFs are usually stored at cell vertices of an octree. The
construction of the ADF uses the following strategy. Each cell of the octree is
further subdivided as long as the result of the used reconstruction scheme, i.e. the
trilinear interpolation, does not properly approximate the original distance field.
Contrary to a standard 3-color octrees where each cell, which is not completely
inside or outside, is subdivided, for ADFs the subdivision stops when a maximum
tree depth is reached. The major advantage of ADFs is their good compression
ratio, however, for collision detection purposes, special care has to be taken in
order to guarantee continuity between different levels of the tree. Whenever a cell
is adjacent to a coarser cell, its corner values have to be altered to match those of
the interpolated values at the coarser cell [34, 134].

Using BSP-trees as distance field representation, the memory consumption
can be reduced even further. Wu and Kobbelt [135] achieve this using a piecewise
linear approximation of the distance field, which is not necessarily continuous. In
their work, also several algorithms for selecting appropriate splitting planes of the
tree are proposed. The drawback of the BSP-tree representation are the high costs
for the construction and the problems arising from discontinuities between cells,
since they cannot be resolved as easily as for ADFs.

2.2.2.2 Distance Field Computation

After showing different representations for distance fields, we discuss its actual
computation. In the applications considered in this thesis, the surface of the collid-
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ing objects is given as deforming triangular meshes. In this context it is sufficient
to compute the distance values only in a small band near the surface that can be
traversed by the colliding objects within one time step. For this computation step
there are three different approaches: methods based on Voronoi diagrams, prop-
agation methods, and methods using trees. A tree data structure can be used to
calculate the distance of each grid point independently. Remote triangles, not in-
fluencing the distance calculation can easily be culled. For this process, Payne and
Toga used BVHs [101]. Also octrees have been applied for this step, but all these
approaches have shown not to be competitive compared to other methods. Propa-
gation methods start with a narrow band of distances computed near the triangu-
lar surface. This contour is then propagated over the whole volume to compute
the distance transformation from the neighbors. The level set method presented
by Sethian [113] and distance transforms [74] are two examples of propagation
methods.

Hoff et al. [69] accelerate the computation of distance fields using graphics
hardware. They render a polygonal approximation of the distance function on
the depth-buffer hardware and compute the generalized 2D and 3D Voronoi di-
agrams. This approach builds distance meshes for each Voronoi site and works
on any polygonized geometric model. A scan-conversion algorithm to compute
the Euclidean distance in a narrow band around triangle meshes has been pro-
posed by Mauch et al. [32, 92]. They use the connectivity of the mesh to compute
polyhedral bounding volumes for the Voronoi cells. The polyhedrons are cut into
slices along grid rows and the resulting polygons are scan-converted in order to
determine which grid points lie inside. The distance for inner grid points is easily
computed as the distance to the Voronoi site. Sigg et al. [116] improved this algo-
rithm by evaluating fragment programs of the graphics hardware to scan-convert
the polyhedrons. They also reduced the number of polyhedra which have to be
scan-converted. The drawback of algorithms based on graphics hardware is that
collision queries usually require reading back the distance field to the CPU. These
readbacks are still very slow on current graphics boards [118]. For triangular
meshes without any adjacency information, Fuhrmann et al. [54] proposed an al-
gorithm which computes distance values independently for each triangle without
using Voronoi cells. For finely tesselated triangle meshes, they have shown that
except for some sign errors, this technique is able to efficiently compute distance
fields.

2.2.2.3 Collision Detection with Distance Fields

When using distance fields, the collision detection process between different ob-
jects is carried out pointwise. Vertices of one object are checked against the dis-
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Figure 2.4: Three slices through the color-coded distance field of the Happy Bud-
dha. The distance field is only evaluated within a close band near the surface.
Image courtesy of A. Fuhrmann, IGD Darmstadt.

tance field of the other object and vice versa. A collision has occurred if D(p) < 0.
In the case of cloth simulation, only vertices of the cloth mesh are tested for col-
lisions. As collisions are not only caused by vertices interpenetrating the other
object, but also by colliding edges it is necessary to offset the vertices from the
zero isosurface by a predefined distance ε (Figure 2.5). This offset depends on
the mesh resolution. Fuhrmann et al. [54] additionally apply a subdivision-like
approach by additionally testing the center of each edge in the deforming mesh in
order to improve the precision of collision detection (Figure 2.6).

As for BVHs, when applying distance fields to deformable bodies, an update
of the distance field representation is necessary after each deformation, i.e. after
each time step. The update of the distance field is a common bottleneck of all
methods described above. For volumetric bodies with only small deformations,
Fisher and Lin [52] proposed an efficient update algorithm that is, however, not
intended for real-time use. They employ an internal distance field created by a
fast marching level set method to propagate distance information only inside the
objects. The actual collision detection is carried out by a hierarchical method.
During collision response the distance fields are deformed due to the geometry
and used for an approximation of the penetration depth. This method is able to
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ε

(a) (b)

Figure 2.5: When resolving collisions based on distance fields, an offset is nec-
essary, as only vertices are checked against the distance field while collisions be-
tween edges are neglected. Without offsetting the vertices inter-penetration arti-
facts may occur during collision detection (a). Introducing an ε-offset can solve
this problem (b). Image courtesy of A. Fuhrmann, IGD Darmstadt.

handle both collisions and self-collisions. However, their approach is only well-
suited for volumetric objects. Thin objects like cloth cannot be represented by in-
ternal distance fields and therefore no self-collision detection is possible. Bridson
et al. [34] employ ADFs for detecting collisions between clothing and animated
characters. These animated characters deform over time based on the underlying
skin and muscle simulation. The corresponding distance fields for each time step
are pre-calculated using a fast marching method. For computing distance fields
and to accelerate distance field updates, Vassilev et al. [125] proposed an image-
space approach. They use rendering hardware for the construction of two depth
and normal maps of the object, one map for the back of the object and one map
for its front. These maps are used for distance calculations and collision response.
However, this algorithm is very inexact and is restricted to convex shapes or ap-
propriate mapping directions in the case of animated characters. The approach
is a mixture between distance fields and image-space techniques and is therefore
further addressed in Section 2.2.4.

2.2.3 Spatial Subdivision

The idea behind spatial subdivision is that only the primitives of the object are
tested for collision which belong to the same cell of a space partitioning. Hence,
spatial subdivision algorithms usually proceed in several steps. In a first step, the
primitives of the objects are assigned to the cells of a space partitioning. Then,
in the second step, it is checked which primitives of the different collision objects
are in the same cell. If these primitives are intersecting, a collision is detected. If
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Figure 2.6: Interactive animation of cloth using the distance field of the Happy
Buddha (Figure 2.4 for collision detection). Image courtesy of A. Fuhrmann, IGD
Darmstadt.

both colliding primitives belong to the same object, a self collision is found. Like
the previous presented collision detection methods, spatial subdivision also needs
an update step if the objects move or deform. The assignment of the primitives to
the grid cells has to be renewed in each time step.

Already in the 1960s and 1970s [88, 108] spatial subdivision has been pro-
posed for neighborhood queries. Later, for the collision detection process of rigid
objects various approaches have been presented that employ different representa-
tions for the space partitioning. Similar to the space partitioning used for distance
fields uniform grids [122, 55, 139], octrees [23] or BSP-trees [93] are employed.
Turk [122] was the first using spatial hashing for collision detection. Mirtich [95]
used a hierarchical spatial hashing approach as part of a robot motion planning al-
gorithm, which, however, is restricted to rigid bodies. Contrary to BSP-trees and
octrees that are object-dependent, spatial subdivisions using uniform grids are in-
dependent of the objects and are therefore well suited for objects that deform with
respect to the simulation time.

An approach combining spatial hashing and uniform grids for the detection of
collisions and self-collisions of deformable tetrahedral meshes has been employed
by Teschner et al. [120] (Figure 2.7). Their algorithm implicitly subdivides R3

into small grid cells and utilizes a hash function to map these 3D grid cells to a
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hash table. This approach is memory efficient and additionally provides flexibil-
ity, since it allows to handle potentially infinite regular spatial grids. A further
advantage is that no complex data structures like octrees or BSPs are required.

Figure 2.7: Interactive environment with dynamically deforming objects. For
collision detection, a spatial hashing algorithm is used. Both, the surface with
high geometric complexity and the underlying tetrahedral mesh are shown. Image
courtesy of M. Teschner, University of Freiburg.

2.2.4 Image-Space Techniques

Another class of collision detection methods are image-space techniques. These
algorithms render the objects by projecting them in various directions and then
use the depth maps of the images to find intersections. To accelerate the detec-
tion process, these projections can be obtained using graphics hardware. Since
image-space techniques do not require any pre-processing, they are especially ap-
propriate for environments with dynamically deforming objects. In recent years a
wide variety of publications have been presented in this field of research [99, 22,
20, 79, 65, 82, 59, 21].

One of the earliest approaches to image-space collision detection of convex
objects has been presented by Shinya and Forgue [115]. They render the two
depth layers of convex objects (front and back layer) into two depth buffers. The
interval between the smaller and the larger depth value at each pixel then approx-
imately represents the object and is efficiently used for interference checking. A
similar approach has been presented by Baciu et al. [22], however, both meth-
ods are restricted to convex objects and do not take self-collisions into account.
Myskzokwski et al. [99] presented an image-space technique that lifted the re-
striction to convex objects and can detect collisions for arbitrarily-shaped objects.
However, the maximum depth complexity remains limited and self-collision de-
tection is not supported. Additionally, in a pre-processing step object primitives
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need to be sorted. Therefore, this method cannot efficiently work with deforming
objects, where the shape changes in each time step.

The first application of image-space collision detection to dynamic cloth sim-
ulation was published by Vassilev et al. [125]. As detailed in Section 2.2.2, they
render an avatar from a front and a back view to generate a depth map. Using this
depth map they can detect intersecting cloth vertices. Their approach, however,
is restricted to convex objects what cannot be assured for deforming animated
avatars. Hence, the simulation can show artifacts due to undetected collisions.
In medical applications image-space techniques were employed by Lombardo et
al. [89]. They detect intersections of a surgical tool with the simulated deformable
tissue by rendering the interior of the tool.

Only recently, Baciu and Wong [21] presented a new image-space approach
that extends the approach of Vassilev et al. to non-convex objects. They decom-
pose the object’s surface depending on the curvature and render these patches into
the frame buffer. Then, however, they do not directly perform the collision detec-
tion process based on this information, but collect the potentially colliding triangle
pairs for further processing. So this approach is a combination between image-
space techniques and spatial subdivision. This configuration allows to detect both
collisions and self-collisions. The algorithm of Kim et al. [79] combines BVHs
with a multipass rendering approach to perform closest-point queries. Another
approach able to detect collisions between arbitrarily-shaped objects is presented
by Heidelberger et al. [65]. Similarly to Shinya and Forgue [115] they compute
the layered depth image [114] for an object to approximately represent its volume.
Heidelberger et al. are, however, not restricted to convex objects but only need a
closed surface in order to have a defined object volume. In [66] they extend their
work by combining the image-space object representation with information on
face orientation to allow self-collision detection.

2.2.5 Comparison and Discussion

After the presentation of the state of the art for collisions detection between de-
formable objects, in this section we compare the advantages and disadvantages
of the various methods and detail which choices influence the performance of
the collision detection process. Furthermore, we provide the potential user with
a decision guidance for choosing the detection algorithm out of this variety that
matches best the specific needs of an application. For the application in the cloth
simulator TüTex we identify the requirements and show which method should be
used to detect collision and self-collision particularly for cloth simulations with
animated avatars.
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2.2.5.1 Bounding Volume Hierarchies

Regarding BVH methods, one of the most important choice that strongly influ-
ences the efficiency of the collision process is the used BV. In contrast to rigid
body collision detection, the collision detection of deforming objects with BVHs
requires frequent updates of the hierarchy. It has been shown that for these cases
DOPs, and especially AABBs, should be preferred to other BVs, such as OBBs,
because AABBs can be updated or refit more efficiently. OBBs approximate the
objects tighter than AABBs but require more time to rebuild or update. Addition-
ally, 4-ary or 8-ary trees have shown a better overall performance compared to
binary trees. For applications where frequent topology changes occur, it is neces-
sary to carefully choose the method to build and update the hierarchy.

Although deformable objects require frequent updates of BVHs, BVHs are
nevertheless well-suited for animations or interactive applications, since updating
or refitting of these hierarchies can be done very efficiently. Furthermore, BVHs
can be employed to detect self-collisions while applying additional heuristics to
accelerate this process. BVHs also work with triangles and tetrahedrons as object
primitives, which allows for a more sophisticated collision response compared to a
pure vertex-based response. For cloth simulation, the hierarchy can be built upon
the cloth objects, taking neighborhood and curvature information into account. A
major advantage of BVHs is their independence of a underlying grid or image
resolution. Therefore they easily adapt to all collision configurations and do not
miss any collision. Also BVHs can easily be adopted to allow continuous collision
detection. A trade-off between quality and detection performance is, however, not
possible.

2.2.5.2 Distance Fields

Distance fields can be employed to detect collisions in real time and even to detect
self-collisions in non-interactive applications. The bottleneck of all distance field
methods is the time needed for their generation and update. Recently, faster algo-
rithms have been proposed but they are still not fast enough for real-time applica-
tions. Especially for deformable objects this poses a major problem. Therefore,
distance fields are also not well suited for self-collision detection. For rigid, closed
objects, however, distance fields provide efficient and robust collision detection,
since they divide the space around them into inside and outside.

When only collisions between a piece of cloth and a static rigid object have
to be detected, distance fields are very effective as the distance fields can be
pre-computed. Distance fields efficiently deliver penetration depth and normals
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needed for collision response. In order to decrease memory requirements or gen-
eration time, it is possible to reduce the resolution of the distance field, which
results in lower accuracy. Hence, a balance between performance and accuracy
is possible. Distance fields also have no problems with topology changes of the
deformable object, as the collision detection is carried out pointwise. On the other
hand there exists no effective strategy for continuous collision detection with dis-
tance fields.

2.2.5.3 Spatial Subdivision

The major advantage of spatial subdivision is its simplicity. The principal de-
sign choice is the used data structure to represent and subdivide the 3D space.
This data structure strongly influences the efficiency of pre-processing and colli-
sion detection. Furthermore, the memory requirements have to be considered as
they vary significantly between the various data structures and with the chosen
subdivision level. Spatial subdivision can be employed to detect both collisions
and self-collisions. Collision detection algorithms using spatial subdivision are
independent of topology changes and are well suited for deformable or moving
objects. The underlying primitives are not restricted to triangles if an appropriate
intersection test is implemented for them. However, by these methods no balance
between speed and detection quality is possible.

2.2.5.4 Image-Space techniques

As image-space techniques do not require time-consuming pre-processing they
are especially well suited for dynamically deforming objects. They can be em-
ployed both for the detection of collisions and self-collisions. Furthermore, topol-
ogy changes pose no problems. While image-space techniques usually are based
on triangulated surfaces, they can also be extended to other object primitives as
long as these primitives can be rendered.

Contrary to the other methods, image-space techniques rasterize the objects
to detect collisions. Hence, they cannot provide exact collision information as
long as they are not combined with one of the other detection methods. Ad-
ditionally, the given information used for collision response is limited or needs
further post-processing. As the accuracy of image-space techniques depends on
the resolution of the underlying dicretization during the rendering process, per-
formance and accuracy may be balanced. Using graphics hardware the rendering
process and therefore the collision detection can further be accelerated. However,
as buffer read-backs are still very slow and the flexibility of programmable graph-
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Collision detection meth. BVHs Dist. fields Sp. subd. Image-sp. techn.
Topology changes +/- + + +
Balance speed/quality - + - +/-
Self-collision detection + - + +
Continuous coll. det. + - +/- +/-
Animated avatars +/- - +/- +
Coll. response inform. + +/- +/- -

Table 2.1: Comparison between different collision detection methods

ics hardware is limited, there are applications, where software implementation are
faster than solutions in hardware.

2.2.5.5 Conclusion for TüTex

After this overview of advantages and disadvantages of the various presented col-
lision detection methods, which is summarized in Table 2.1, we discuss which
method should be used for TüTex. The application in TüTex requires the follow-
ing properties:

• detect collisions and self-collisions

• work with animated avatars

• deliver collision response information

• compatible with continuous collision detection

Comparing these requirements with Table 2.1 we see that especially a bound-
ing volume based approach is well suited for a cloth simulation system like TüTex.
Additionally, as cloth can both span over a huge volume as well as being folded
together to a very narrow area, for the collision detection process it is necessary to
be independent of the resolution of underlying grids or depth buffer resolutions.
A drawback of BVHs, however, is their lack of balancing performance and accu-
racy that is necessary in interactive applications. To deliver a BVH method that
allows this balancing, we developed the hierarchy accelerated stochastic collision
detection presented in the following section.
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2.3 Hierarchy Accelerated Stochastic Collision De-
tection

Additionally to the collision detection methods presented in Section 2.2, recently
a new class of collision detection approaches have emerged, so called “inexact”
methods. Using these approaches it is possible to balance performance and detec-
tion quality. This is motivated by several observations. First, polygonal models
are always just an approximation of the true geometry and the perceived qual-
ity of most interactive 3D applications does not depend on exact simulation, but
rather on real time response to collisions [123]. At the same time, humans cannot
distinguish between physically-correct and physically-plausible behavior of ob-
jects [27]. This leads to the conclusion that a degraded precision can be tolerated
in order to improve the performance of the collision detection step.

In literature, currently two different stochastic approaches can be found. The
first method proposed by Klein and Zachmann [80] uses probabilistic methods to
estimate the possibility of collision with respect to a given quality criterion. With
this method the quality of the collision detection can be specified by the user di-
rectly and ensures more control over the detection performance. This approach
can be used to accelerate collision detection with BVHs but is restricted to rigid
objects. The second method presented in the work of Guy and Debunne [61] as
well as in Raghupathi et al. [109] initially “guesses” colliding pairs by a stochas-
tic sampling within the colliding bodies. The exact colliding regions are then
narrowed down by iteratively converging the sample pairs to local distance min-
ima. As in most cloth simulation systems within two time steps of some hundredth
of a second the objects only move a very small distance and also the relative po-
sition between the colliding object primitives mostly remains the same, also the
spatial and temporal coherence is exploited. For rigid objects the use of temporal
coherence between consecutive time steps has also been analyzed [38, 60].

As we want to develop a collision detection for deformable objects being ap-
plicable both for collisions and self-collisions, we build on a stochastic approach
similar to the method presented by Raghupathi et al. The major disadvantage of
this stochastic sampling is the generation of sample pairs on the complete ob-
jects. As many of these sample pairs are generated in areas laying far away from
each other, most of them do not converge to a local distance minima relevant
for the collision detection. To overcome this limitation, in the following we pro-
pose a new stochastical collision detection framework combining two detection
algorithms. The first algorithm is an extension of the above shortly described sto-
chastic collision detection method which will be detailed in Section 2.3.1. The
second algorithm is based on a hierarchy of bounding volumes which helps us to
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Figure 2.8: Self-collisions of a deformable object. The active pairs of points are
shown in black; for clarity only vertex-vertex pairs are shown. An active pair
has converged iteratively to a local distance minimum (a). A collision has been
detected and the associated collision cluster is encircled (b). No active pair is
present yet (c). A collision has been detected too late and an intersection already
occurred (d).

pick appropriate random pairs. An overview of the design choices for this bound-
ing volume hierarchy and the combination of the two algorithms to the Hierarchy
Accelerated Stochastic Collision Detection is detailed in Section 2.3.2. Finally
the obtained results and the validity of our approach is discussed.

The work presented in this section has been published in [5].

2.3.1 Active Pairs

The idea of the stochastic collision detection algorithm is to efficiently detect col-
lision and self-collisions by tracking pairs of primitives (vertices, edges, triangles,
etc.). These pairs of primitives are called active pairs. By choosing the num-
ber of newly generated active pairs, it is furthermore possible to trade detection
completeness for computation speed. Using the active pairs method, the collision
detection proceeds as follows: At first a set of active pairs is chosen randomly
(Figure 2.8). Each of these pairs then iteratively converges to a local distance
minimum by repeatedly replacing each element by its topological neighbor if their
distance is smaller than the previous minimum (Figure 2.8(a)). If the distance falls
below a given proximity threshold ε, a collision is detected. Particularly for cloth
simulation, where large areas of the garment are in contact with the body, colli-
sions are not isolated but are grouped in collision clusters (Figure 2.8(b)). If one
initial collision within a cluster has been detected, the active pair method rapidly
finds all nearby collision pairs during the described convergence process. For the
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case that such an initial active pair is not present in a close area, as in Figure 2.8(c),
this might eventually lead to an undetected collision (Figure 2.8(d)).

At each step of the animation loop, we update each active pair by iterating it
until convergence is reached and the new local minimum is found. Due to tem-
poral coherence in the animation, the number of necessary iterations is generally
small. At each iteration of one pair, the neighboring pairs are visited for possible
consecutive collisions, and detected collisions are added to a list. The possibly
new closest pair replaces the current active pair. We actually store the visited
pairs in a hash table and look for the closest not already visited neighboring pair
to avoid tracking the same local minimum twice. Collision clusters are progres-
sively detected either by growth around the currently detected collisions, or by the
convergence of new pairs. If after the convergence the elements of an active pair
are far from each other it is expected that the probability of detecting a collision
by this active pair in the near future is very low. The active pair is thus considered
useless and is discarded. The number of new active pairs per time step as well as
the criteria used to discard useless pairs is tunable.

The active pair algorithm can be summarized as follows:

Active Pairs method
add colliding primitives of previous step to list of active pairs
generate new sample pairs and add to list of active pairs
for all active pairs do

search in neighborhood for local minimum
while local minimum not reached do

calculate distance and add pair to hash table
if distance < ε then

add pair to list of colliding primitives
end if

end while
if distance at local minimum > ε then

remove pair from active pairs list
end if

end for

By design, this method does not guarantee to find all the collisions unless all
possible pairs are tried. We denote the detection ratio the number of detected
collisions divided by the number of actual collisions. This ratio as well as the
computation time devoted to collision detection depends on the number of active
pairs we use. By tuning the number of active pairs the trade-off between detection
ratio (quality) and computation time (speed) is possible.

In order to further accelerate the detection process, we start the converging



2.3. STOCHASTIC COLLISION DETECTION 31

process by using pairs of points representing the primitives, since this results in
faster distance computations. When the points are closer than twice the average
primitive size, we switch to the calculation of the exact distances of the two prim-
itives as this yields a higher accuracy and delivers more relevant information for
the collision response process.

2.3.2 Combination with k-DOP Hierarchy

Using only a stochastic method to find new close regions between two meshes
has a major drawback. The candidate pairs, where the iterative search for the
close regions begins, are, by the design of the method, randomly distributed over
the complete mesh. Nevertheless, often the close regions between two meshes
are restricted to a rather small area of the complete mesh. Hence, most random
sample pairs may be generated in areas without any collision.

To overcome this drawback of the pure stochastic collisions detection we
combine it with a bounding volume hierarchy of k-DOPs. After presenting an
overview of BVHs in Section 2.2.1 we now detail the design choices for the used
BVH. We have chosen k-DOPs as bounding volumes, because they usually fit
more tightly around meshes than spheres, while being much faster to update than
OBBs. In order to detect all k-DOP proximities within a distance ε, we enlarge
each k-DOP by an offset of ε/2 in each of its k directions. We efficiently built
the hierarchy over these k-DOPs by using a top-down splitting method. In our
implementation, first the longest side of a k-DOP is determined by the face pair
with the maximum distance. Subsequently, the k-DOP is split parallel to this face
pair through its center. As some polygons are generally cut by the splitting plane,
they are assigned to that child node which would contain the smaller number of
polygons. In the lower hierarchy levels, if all polygons happen to be cut, each of
them is assigned to its own node. Finally, as the corresponding vertices for the
node are known, the k-DOPs can be optimally fitted to the underlying faces. Al-
though this method is simple, it turned out to be efficient on the one hand and to
produce well balanced trees on the other hand. Previous approaches employed bi-
nary trees to store the hierarchy since they require the smallest number of overlap
tests. However for the collision detection between deformable objects we have
chosen 4-ary trees or 8-ary trees as they show a much better performance [8].

Generally, the hierarchy update re-inserts the vertices into the leaf k-DOPs
and builds the inner k-DOPs by unifying the k/2 intervals of the child bounding
volumes. Because this hierarchy update can be costly we developed a lazy hier-
archy update. As described above, the bounding volumes are inflated by a certain
distance ε/2. Then the hierarchy update is not needed as long as the enclosed
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primitives did not move farther than the distance ε. Thus, the hierarchy update is
accelerated for slow parts of the scene and for small time step sizes. As detailed in
the following subsection this lazy update perfectly fits to our stochastic approach.
A more detailed description of this k-DOP hierarchy also employed in TüTex can
be found in [8].

Bounding volume hierarchies have been shown to be very efficient for col-
lision detection of deformable objects. Nevertheless they have two major draw-
backs. First, even with the lazy hierarchy update, the hierarchy needs to be up-
dated frequently due to the deformations of the objects, which is very time con-
suming. Second, bounding volume hierarchies are usually built around triangles
or tetrahedrons, and return colliding or nearby pairs of these, although an effi-
cient and physically-based collision response is based on vertices. Therefore, in
a second collision detection step, all close triangle pairs are checked for proxim-
ities between two edges, or a vertex and a triangle, where the necessary collision
response can be easily applied.

Our new approach now combines the active pairs with the presented k-DOP
hierarchy. In this combination, the drawbacks of both methods can be minimized.
The process involves two steps: first a collision detection on the k-DOP hierarchy
is performed, returning all colliding leaves of the hierarchy tree. Each leaf can
contain a specified number of triangles or other primitives. Then in the second
step the stochastic collision detection is performed, where the random sample
pairs are created only on the colliding leaves (Figure 2.9).

Figure 2.9: The creation of random samples is restricted to colliding leaves of the
BVH.

The algorithm for the collision detection process between two objects with the
corresponding BVHs A and B is then:
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update(A and B) buttom-up as detailed in section 2.3.2
traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersecting leaves (DOPs)
else

for all children A[i] and B[j] do
traverse(A[i],B[j])

end for
end if
Active Pairs method as detailed in section 2.3.1, while picking the active pairs out of
the intersecting leaves of A and B.

2.3.3 Results

In order to motivate the trade-off between detection quality and speed, we first ex-
perimentally show that a detection ratio below 100% is sufficient to ensure a stable
simulation. Therefore, we use the bounding volume hierarchy method (100% de-
tection ratio) and carried out the collision response only for randomly selected
collisions. Even for the very challenging simulation of cloth we experimentally
found that a response (detection) ratio as low as 20% can be enough (Figure 2.10)
to get good visual results. If the detection ratio is further reduced artifacts become
visible.

Please note, as not all collisions are detected, robustness is a major question
for stochastic collision detection schemes. It is important to ensure that the col-
lision response does not suddenly react by inducing a high amount of potential
energy which would make the system unstable. When computing the reaction
to a collision we thus consider edges and triangles as inelastic rigid bodies with
non-zero thickness as will be detailed in Chapter 3. The velocities are handled us-
ing the impulse-based collision response, while intersections are solved using the
same method extended to positions. Due to object stiffness and damping, position
and velocity corrections are then partly propagated to neighboring elements. A
sound collision response is thus obtained in areas where a significant number of
collisions is detected. Additionally, to handle intersections we are able to apply
recent methods for untangling cloth [26].

In order to show that for a static scene the detection ratio of our presented
method rapidly converges to 100% we plotted it over the number of the time step
(Figure 2.11). Our new method converges much faster than the pure stochastic
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Figure 2.10: Dressed woman (avatar 53000 faces, dress 3800 faces) with 100%,
20% and 10% collision response ratio.

method, because all randomly picked sample pairs are already close to local min-
ima. To achieve the same speed of convergence with the pure stochastic method,
many more random pairs are necessary.

To measure the performance of the hierarchy accelerated stochastic collision
detection, we compared our method to two other approaches: to a simple stochas-
tic approach as described in Section 2.3.1 without hierarchy acceleration and to
an efficient hierarchical bounding box method based on k-DOPs as described in
Section 2.3.2. As a test framework the TüTex cloth simulation system was used.
For a dressed woman (Figure 2.10) and a dressed man the combined hierarchy
accelerated stochastic collision detection is much faster than the pure bounding
volume hierarchy or the stochastic method (Table 2.2 and 2.3). This is because it
is not necessary to recompute all collisions in every time step. Instead, we obtain
temporal coherence by keeping a list of collisions from step to step. Beyond that,
the stochastic method is directly employed on the colliding primitives (vertices,
edges, triangles) and no further computation is needed as for the pure hierarchi-
cal method. Additionally, as detailed in Section 2.3.2, the lazy hierarchy update
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Figure 2.11: Detection ratio plotted against time step for the collisions between a
static torus and ellipsoid. With the same number of randomly created candidate
pairs per time step, the hierarchy accelerated stochastic method converges much
faster than the pure stochastic method.

is faster and the detection of colliding DOPs can be faster as more faces are put
into a DOP and therefore fewer DOPs are in the hierarchy. Compared to the pure
stochastic method the combined framework achieves a much higher detection ra-
tio with the same number of random samples, because they are only generated
in “definitely close” areas. We found out that in our set-up the pure stochastic
method needs about three times as much random samples to achieve the same
detection ratio.

In order to test the stability of our method, we challenged it with a complex
catwalk animation. We computed the dynamic scene with two different settings
of our method, once with 100 new active pairs per time step and once with 50 new
active pairs per time step. During the animation we achieved collision detection
ratios between 40% and 80% (Figure 2.12(b)) respectively 20% and 70% (Fig-
ure 2.12(c)). For both settings the catwalk simulation remains stable during the
complete 16 animation seconds (25 frames per second, time step 0.01s). Single
frames of this simulation are compared to the results of a collision detection with
a pure BVH (Figure 2.12(a)) and a detection ratio of 100%. The corresponding
calculation times are compared in Table 2.4 and show that without a significant
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loss of quality a speed-up of a factor two is possible. With a loss in quality an even
larger speed-up was achieved while the animation still remains stable. A complex
collision and self-collision situation showing a piece of cloth gliding through a
torus is presented in Figure 2.13. The collision detection ratio for this stable sim-
ulation lies between 30% and 70%. All measurements of computation times in
this section were made on a 2.4 GHz Pentium IV with 1GB RAM.

(a) (b) (c)

Figure 2.12: Comparison of different collision detection approaches for catwalk
animation (avatar 53000 faces, dress 3800 faces, 1600 time steps): calculated with
a bounding volume hierarchy and 100% detection ratio (a), hierarchy accelerated
stochastic collision detection with 100 new active pairs per time step resulting in
detection ratios between 40% and 80% (b) and with 50 new active pairs per time
step resulting in detection ratios between 20% and 70% (c).

Collision detection setup k-dops active pair method combined method
Total Collision Detection 31.8 91.5 16.2
Hierarchy Update 6.8 0 0.9
Detection of colliding DOPs 11.1 0 5.3

Table 2.2: Collision detection times for the dressed woman (avatar 53000 faces,
dress 3800 faces) measured in seconds for the simulation of 100 time steps.

Compared to the approach of Raghupathi et al. [109], where only pairs of
edges are considered, we generalize the detection to a variety of geometric prim-
itives: combinations of vertices, edges and triangles. The only requirement is
that there exists a metric for a distance between the two primitives as e.g. edge-
edge or vertex-triangle distances. In addition, voxels could also be used for col-
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Figure 2.13: Piece of cloth gliding through a torus. The complex collisions and
self-collisions were detected using the hierarchy accelerated collision detection.

lision detection between volumetric objects. Furthermore, the presented method
significantly speeds up simulations and can, for example, be employed in a rapid-
prototyping environment for cloth or in a real time simulation of tissue. The active
pairs approach allows tuning of the computation time by limiting the number of
geometric elements processed at each time step. A significant speed-up has been
obtained with respect to an efficient method based on bounding volume hierar-
chies. Conversely, the bounding volume hierarchy approach provides us with a
convenient way to initialize relevant active pairs.

Though this framework has always shown to be faster than pure hierarchical
methods and yielded stable collision results for all tested examples, we have to
mention that there is no guarantee that the simulation is always stable for a certain
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Collision detection setup k-dops active pair method combined method
Total Collision Detection 16.5 21.3 5.8
Hierarchy Update 1.9 0 1.3
Detection of colliding DOPs 4.4 0 2.3

Table 2.3: Collision detection times for the dressed man (avatar 25000 faces, shirt
4400 faces, trousers 4000 faces) measured in seconds for the simulation of 50 time
steps.

Collision detection setup k-dops 100 active pairs 50 active pairs
Total Collision Detection 395 198 165
Hierarchy Update 73 35 35
Detection of colliding DOPs 110 61 61

Table 2.4: Collision detection times for the catwalk animation (avatar 53000 faces,
dress 3800 faces) measured in seconds for the simulation of 1600 time steps.

collision ratio, and there is no absolute guarantee to obtain a certain collision ratio
for a specified number of active pairs (as with any other non-exact method). It
is therefore particularly suited for interactive applications like rapid-prototyping
environments.

2.4 Continuous Collision Detection

Particularly for large time steps or rapid movements it is necessary to assure a
stable collision response or to maintain a collision-free state. If collisions are only
detected at discrete time steps they can easily be missed and intersections may
occur. The continuous collision detection not only allows to detect a collision
between two consecutive steps, but also to calculate the exact time of collision.
Hence, the presented approach detects collisions independently of the temporal
resolution of the simulation. Furthermore, it can be employed for collision and
self-collision detection of any triangular mesh. To accelerate the continuous colli-
sion detection it is combined with a bounding volume hierarchy. In a first collision
detection step the bounding volume hierarchy is employed to sort out collision
candidates and only returns primitive pairs that might collide between two con-
secutive time steps. Therefore, the bounding volumes enclose both the positions
at the beginning and at the end of the time step [72, 33, 110].

In this thesis we mainly employ continuous collision detection to calculate
contact points and avoid intersections caused by subdivision and wrinkles simula-
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(a) (b)

Figure 2.14: The two possible collision types between triangles: vertex-triangle
collision (a) and edge-edge collision (b).

tions (Chapter 4 and 5). This section partially follows our work in [6, 70].

2.4.1 Configurations of Colliding Triangles

As triangle meshes are the preferred representation of cloth simulations, we con-
fine ourself to the continuous collision detection between triangle-triangle pairs.
The candidate pairs are returned by a bounding volume hierarchy that is used as
a first step of the collision detection process. Let ti be the initial time, where
two corresponding triangle meshes are collision-free. During the time interval
[ti, ti + ∆t], representing one time step, the vertices of these two meshes move
and collisions between the triangles of the meshes may occur. We suppose that
for each vertex the initial position and velocity at time ti is given. The new posi-
tions of the vertices at time ti + ∆t can easily be calculated by assuming uniform
motion, i.e. all vertices move with a constant velocity [97, 106].

In general, two triangles can collide in two different ways. Either a triangle
vertex of the first triangle collides with the other triangle (Figure 2.14 (a)) or two
edges of the different triangles intersect (Figure 2.14 (b)). To detect all possi-
ble collisions between two triangles it is therefore necessary to check six vertex-
triangle combinations und nine edge-edge combinations for intersection. Each of
the two triangles has to be tested against all vertices of the other triangles and all
edges of one triangle have to be checked against all edges of the other triangle.
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2.4.2 Time of Collision

To detect collisions between a vertex and a triangle or between two edges in mo-
tion, it is necessary to find the time within the interval [ti, ti+∆t] at which all four
involved vertices are coplanar. For a collision between the two primitives, this
is a necessary condition. We focus on the sufficient conditions in Section 2.4.3
and 2.4.4.

For the necessary condition of coplanarity, let ~v1, ~v2, ~v3, ~v4 be the constant
velocities during the interval [ti, ti +4t] of the four moving points P1, P2, P3 and
P4. Their respective position vectors are given by:

~x1(t) = ~x1(ti) + (t− ti)~v1

~x2(t) = ~x2(ti) + (t− ti)~v2

~x3(t) = ~x3(ti) + (t− ti)~v3

~x4(t) = ~x4(ti) + (t− ti)~v4

The difference vectors−−→x1x2(t),
−−→x1x3(t) and−−→x1x4(t) build a parallelepiped volume.

At the time t ∈ [ti, ti + ∆t] for which this volume is zero, all four points are
coplanar. This results in finding the roots of the following cubic equation:

(−−→x1x2(t)×−−→x1x3(t)) · −−→x1x4(t) = 0 (2.1)

Equation (2.1) gives a maximum of three real roots. Any root outside [ti, ti + ∆t]
is discarded, the remaining roots are checked if they fulfill the sufficient condition
to result in a collision. If collisions at several times t are found, only the first one
is handled, the others are discarded.

2.4.3 Vertex-Triangle Collision

For a collision between a vertex and a triangle (Figure 2.15 (a)) the sufficient
condition is that the vertex lies within the triangle. Hence, first it is checked if
the vertex P4 is closer than a tolerance value ε to the plane containing the triangle
P1P2P3 with the normal ~n: |−−→x1x2(t) · ~n| < ε. Then the vertex P4 is projected
onto that plane and the barycentric coordinates w1, w2, w3 relative to the triangle
are calculated using Equation (2.2). If all barycentric coordinates lie within the
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(a) (b) (c)

Figure 2.15: Different collision configurations: vertex-triangle collisions (a),
warped edges with closest point within both edges (b) or at the endpoint of an
edge (c).

interval [0, 1] and if w1 + w2 + w3 = 1, then a collision occurs.

(−−→x1x3(t) · −−→x1x3(t)
−−→x1x3(t) · −−→x2x3(t)−−→x1x3(t) · −−→x2x3(t)
−−→x2x3(t) · −−→x2x3(t)

)(
w1

w2

)
=

(−−→x1x3(t) · −−→x4x3(t)−−→x2x3(t) · −−→x4x3(t)

)
(2.2)

The tolerance value ε can be used to account for rounding errors or to take
the cloth thickness into account. Bridson et al. [33] therefore assume a collision
if all barycentric coordinates lie within the interval [−ε, 1 + ε]. They choose the
constant ε as the cloth thickness divided by the average edge length.

2.4.4 Edge-Edge-Collision

To detect colliding edge-edge pairs that fulfill Equation (2.1) at a specific time
t the two points, one on each of the two edges P1P2 and P3P4 that are closest
are found and their euclidian distance is checked. Is this distance smaller than a
specified tolerance value δ the two edges collide at time t.

The search for the two closest points starts by checking for the degenerate
case of parallel edges, i.e. the cross product |−−→x1x2(t)×−−→x3x4(t)| is smaller than a
round-off tolerance. If not, the points lying on the skewed infinite lines that are
closest to each other are found by solving Equation (2.3).

( −−→x1x2(t) · −−→x1x2(t) −−−→x1x2(t) · −−→x3x4(t)
−−−→x1x2(t) · −−→x3x4(t)

−−→x3x4(t) · −−→x3x4(t)

)(
a

b

)
=

( −−→x1x2(t) · −−→x1x3(t)
−−−→x3x4(t) · −−→x1x3(t)

)
(2.3)
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If the resulting points with the position vectors x1(t) + a−−→x1x2(t) and x3(t) +
b−−→x3x4(t) are on the finite edges, the points with the smallest distance are found
and the process is finished (Figure 2.15 (b)). If these two points are not on the
finite edges, they are moved to the closest endpoints of the edges. The point that
moved the most during this process is one of the two points with the smallest
distance. The second point is found by projecting the first onto the second infinite
line and if this point is not lying on the finite edge moving it to the closest endpoint
(Figure 2.15 (c)).

2.5 Summary

As collision detection is a substantial part in the simulation of virtual cloth, in this
chapter we presented the state of the art of collision detection in this context. We
particularly exposed the advantages and disadvantages with respect to topology
changes, balance between speed and quality, self-collision detection and animated
avatars. In this regard, we are the first who gave the developers of cloth simulation
systems a decision matrix in order to ease the process of choosing the best method
for a specific application. For the use in our cloth simulation system TüTex we
showed that bounding volume hierarchies are the best choice, which, however, do
not allow to balance speed and quality of the collision detection process.

To overcome this drawback, we presented a new collision detection method,
the combination between bounding volume hierarchies and a stochastic collision
detection approach. As with this approach the sample pairs for the stochastic colli-
sion detection are only generated in areas that were found close by the hierarchical
collision detection, the hierarchy accelerated stochastic collision detection shows
a much better performance than both other approaches on their own. To motivate
the use of stochastical collision detection approaches, we have shown that in order
to obtain stable cloth simulations no detection ratio of 100% is necessary. To ac-
celerate the collision detection we exploit temporal coherence between time steps
and reduce the update costs of the bounding volume hierarchy by a lazy hierarchy
update. We see the strength of these methods particularly in rapid-prototyping or
real time applications.

To detect collisions that occur between the single time steps, we presented an
algorithm for continuous collision detection. Particularly for the post-processing
methods of cloth meshes detailed in Chapter 4 and 5 continuous collision detection
is used in order to find penetrations caused by subdivision or geometric wrinkle
generation.



CHAPTER 3

Collision Response

3.1 Introduction

As soon as a simulated piece of cloth is close enough to another object or to parts
of itself, an interaction takes place that has to be treated in order to maintain a
realistic simulation. This response to detected collisions or proximities is used to
avoid interpenetrations of the objects and to model kinetic and static friction.

Not only for collision detection there is a great difference between algorithms
for rigid and deformable objects. Also for collision response the special properties
of highly deformable objects like cloth have to be taken into account. The main
difference to collision response for rigid objects is the number of collisions that
occur at a time. While rigid objects usually collide only at a few points (apart from
resting contacts), deformable materials might be in contact in huge areas leading
to a large number of collisions. The best example for this scenario is a garment
worn by a person, which is very close to the body at almost any region. The second
reason complicating collision response for cloth is the extremely small thickness.
Even marginal interpenetrations can therefore cause visually disturbing artifacts
and lead to difficulties in resolving the collisions as the order and orientation of
the objects is violated. As deformable surfaces often are represented by polygonal
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meshes, and collisions are detected between the mesh primitives, another problem
is the distribution of the collision response to the individual vertices of the mesh.

For the collision response step in the simulation pipeline, several methods
were proposed in literature. They can be classified as physical and geometrical
approaches. Collision response schemes that model the repulsive force field be-
tween the objects are called physical methods. Approaches which constrain the
degrees of freedom of the body motion, or which directly modify positions, ve-
locities or even accelerations are referred to as geometric response schemes. In
the following, we first discuss these two classes of collision response approaches
employed in cloth simulation. Then, we detail the requirements for the collision
response schemes utilized in TüTex (Section 3.2). We explain the realization of
a constraint based collision response in our simulator. As this response scheme
alone is not capable of resolving collisions for dynamic rigid objects and has dif-
ficulties with the resolution of self-collisions we introduce a scheme that changes
the position and velocity of the animated vertices in order to perform a stable col-
lision response. The problem of distributing the collision response for polygonal
meshes on the individual vertices while respecting physical conservation laws is
also examined in this section. Our results using these collision response schemes
are presented and discussed in Section 3.3.

3.1.1 Physical Collision Response

The idea behind physical collision response is to model the repulsive potential
force field F between solid objects of distance r with F ∼ r−12, which avoids
intersection in reality. As forces can directly be integrated into the mechanical
model and the arising differential equations can be solved accordingly, physical
response schemes are the more formal approach to collision handling. Though
force field based collision response schemes have the advantage of being very
close to the underlying physical laws, they suffer from a couple of major disad-
vantages. The most important challenge when employing force fields is to model
the contact between the colliding objects, i.e. to assure a minimal collision dis-
tance. Modeling the very short-ranging force fields directly is infeasible using
the large time steps of 10−3s to 10−1s usually used in numerical solvers for cloth
simulations. For this case, the very strong and rapidly declining potential cannot
model the collision interaction as it may completely be passed between two time
steps. Hence, it is necessary to model the force field with longer ranging poten-
tial fields. This, however, can cause unrealistic simulation results, as the assured
minimal distance between colliding objects is too large. Additionally, force fields
always induce stiffness into the differential equations reducing the performance
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and stability of the numerical integrators [25, 50]. Despite these disadvantages
force fields are used for collision response situations where small time steps are
employed or where the minimal distance between the colliding objects is not that
important like for self-collisions in dynamic scenes. To avoid an unnatural sliding
of objects over each other, forces can easily be used to model Coulombian friction.

Moore and Wilhelms [97] proposed the use of repulsive springs for separating
simulated rigid objects when they get too close. Terzopoulos and Fleischer [119]
keep a continuous formulation by using a deflective force field around deformable
collision objects. For cloth simulations Lafleur et al. [85] proposed a force field
around each colliding triangle in which the strength of the force field depends
on the velocity, the normals and the distance of the colliding objects. Baraff
et al. [25] use strong spring forces to avoid self-collisions by pushing cloth ob-
jects apart while damping the movement to avoid bouncing. A hybrid approach
combining a controlled force field with a geometric collision response method is
proposed by Bridson et al. [33]. They limit the strength of the collision forces to
avoid inducing stiffness into the differential equation. In order to resolve compli-
cated self-collision situations, Baraff et al. [26] use forces between the involved
particles. Areas of the cloth that have intersected other areas and are located on
the wrong side are separated using attractive forces, while close particles that are
still on the correct side repel each other.

3.1.2 Geometric Collision Response

Geometric collision response tries to simulate the effect of the underlying physi-
cal principles without explicitly using repulsive forces. The proposed algorithms
directly change the geometrical state, i.e. position, velocity or acceleration, of the
simulated cloth or constrain the movement of the object into certain directions.
The main advantage of this approach is the separation of collision response and
numerical integration. Hence, the performance of the differential equation solvers
is not reduced due to induced stiffness. Volino and Magnenat-Thalmann [133]
point out that this separation is also the biggest drawback, because nothing en-
sures the compatibility between the change of the geometric state and the correct
result of a repulsive force field. Also the conservation of energy and momentum
should be respected when manually manipulating the system state. Furthermore,
the geometric response to several interacting collisions has to be compatible, i.e. it
has to be assured that the response to one collision does not cause new collisions.

Eberhardt et al. [48] proposed a method to alter positions and velocities based
on a ray intersection test. If the ray from the initial position to the new position
after the time step intersects an obstacle, the surface normal at the intersection
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point is calculated. Using this surface normal they move the cloth particle to a
point laying a minimum distance above the obstacle. Additionally, the velocity is
altered, preventing the particle from moving any further in direction of the obsta-
cle. Using this velocity modification the friction and elasticity of the contact are
also modeled. Provot [106] used a similar approach of modifying the velocities of
the simulated particles to model friction and repulsion forces.

An early realization of constraints in the simulation of deformable objects was
presented by Platt and Barr [104]. They use “reaction constraints” for allowing
animators to control the motion and to avoid interpenetration between the simu-
lated objects. In the work of Baraff et al. [25, 71] small position changes are fed
back to the differential equations while enforcing constraints in the direction of
the position change by using a modified conjugate gradient method. They state
that this approach avoids visible artifacts due to position alterations, e.g. a jumpy
behavior, by using the implicit Euler method as a filter. Volino and Magnenat-
Thalmann [131, 132, 133] propose an algorithm to alter positions, velocities and
accelerations depending on the distance of the colliding objects. Additionally,
strategies are given how the orientation of the objects relative to each other can
be maintained without using a continuous collision detection scheme. Bridson et
al. [33] employ a combined approach using repulsive forces as well as velocity
changes due to added impulses. Objects closer to each other than a certain thresh-
old are separated using the force field while objects intersecting each other during
a time step are handled using the impulses. Using this approach they claim to
significantly reduce the total number of collisions that need to be treated.

In the context of the geometrical methods, strategies to respond to interacting
collisions have been proposed. Provot [106] came up with the idea of clustering
self-collisions together into “zones of impact” in order to treat them as a whole.
Provot motivates this idea with the observation that these multiple collisions can
hardly move relative to each other. Bridson et al. [33] build on this idea and in-
clude it into an iterative solving strategy. They have shown that a simultaneous
correction scheme that combines all calculated collision responses and adds them
to the particles using weighting factors can give convincing results. Volino and
Magnenat-Thalmann [131] propose to use a linear equation system in order to
treat all collisions globally. In order to avoid discontinuities of the collision re-
sponse due to the discretization of the objects, Heidelberger et al. [67] compute
the direction of the response forces based not only based on a pair of primitives
but on a larger set of surface features.
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3.2 Collision Response Schemes for TüTex

After giving this general overview of collision response schemes, we now discuss
the methods employed within TüTex. To yield a sophisticated response for our
system, these methods need to meet the following requirements:

• Provide a stable collision response for both dynamic and static scenes, e.g.
standing or walking avatars, even for large time steps.

• Resolve self-collisions and collisions with environment objects.

• Respond to collisions between different layers of cloth.

• Distribute the collision response to the mesh vertices.

For performance reasons large time steps are employed in TüTex. Therefore
geometric collision response schemes are preferred. Physical schemes would re-
quire long ranging force fields leading to visually disturbing gaps between cloth
and body.

In the remainder of this chapter we first discuss how the effects of the proposed
geometric collision response between cloth meshes can be distributed to the indi-
vidual vertices. Then, in Section 3.2.2 a constraint-based collision response will
be presented. This scheme is a modification of the method proposed by Baraff
and Witkin [25]. As this response method shows problems in combination with
dynamic rigid objects, we present a collision response approach which modifies
the system velocities by exerting impulses on the cloth in Section 3.2.3. Using this
method both collisions and self-collisions can be treated correctly, which yields a
stable response for static and dynamic scenes.

3.2.1 Geometric Response for Triangular Meshes

Geometric collision response schemes for triangular meshes often calculate the
response, i.e. alteration of position or velocity, for two points of the corresponding
cloth with a minimum distance to each other. For colliding edges and triangles,
however, the closest distance is not necessarily at the vertices of the primitives.
Because the collision response, e.g. an impulse, cannot be applied directly to
internal points, it has to be distributed to the corners of triangles or the endpoints
of edges.

In addition, to calculate the collision response it is often necessary to compute
the velocity of a internal point of a triangle or an edge. To accomplish this, we use
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linear interpolation between the corner points of edges or triangles. The velocity
~v of the inner point P4 of a triangle P1P2P3 is calculated by using its barycentric
coordinates w1, w2 and w3 as ~v = w1~v1 + w2~v2 + w3~v3. Here, we denote as ~v1, ~v2

and ~v3 the velocities of the three corner points. For a point laying on a fraction a
of an edge P1P2 the interpolated velocity is ~v = (1− a)~v1 + a~v2.

The collision response applied to the colliding objects has to fulfill basic me-
chanical laws. The most important ones are Newton’s axioms and the conse-
quential conservation of impulses. Additionally, for the collision response, the
continuity across borders of the mesh elements is necessary. Based on these prin-
ciples, we can deduce the velocity changes for the corner points of triangles or the
endpoints of edges. First we show how the velocities of a vertex-triangle collision
between point P4 and triangle P1P2P3 need to be corrected. To counteract the col-
lision, we want to apply an impulse I in direction ~n (usually the normal direction
of the triangle) to the two cloth points of a vertex-triangle collision (i.e. I~n to the
vertex, −I~n to the point within the triangle). For the collision response, we want
the relative velocity ~vrelN in normal direction to vanish:

~vrelN = 0 = ~v4 − ω1~v1 − ω2~v2 − ω3~v3. (3.1)

As we want to assure continuity when a collision moves from one triangle to a
neighboring one, we distribute the impulses by weighting them with the barycen-
tric coordinates. The resulting velocity changes are then given by:

∆~v1 = − ω1

m1

I∗~n; ∆~v2 = − ω2

m2

I∗~n; ∆~v3 = − ω3

m3

I∗~n; ∆~v4 =
1

m4

I∗~n (3.2)

where mi is the mass of the corresponding vertex.

By inserting Equation (3.2) in (3.1) we get the impulse I∗ that needs to be
applied:

I∗~n =
~vrelN

1
m4

+
ω2

1

m1
+

ω2
2

m2
+

ω2
3

m3

.

For the edge-edge collision, where a point with relative position a along the
edge P1P2 interacts with a point with relative position b along the edge P3P4, the
velocity corrections are given by:

∆~v1 =
a

m1

I∗~n; ∆~v2 =
1− a

m2

I∗~n; ∆~v3 = − b

m3

I∗~n; ∆~v4 = −1− b

m4

I∗~n

(3.3)
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with the impulse

I∗~n =
~vrelN

a2

m1
+ (1−a)2

m2
+ b2

m3
+ (1−b)2

m4

If the mesh points should be set apart, we alter the vertex positions by distrib-
uting the displacements according to the proposed method for velocity changes.

3.2.2 Constraint-based Collision Response

Constraint-based collision response schemes restrict the possible movement of
cloth vertices to directions orthogonal to a constraint vector. We realize the veloc-
ity constraints by projecting the state vector of the velocities into the allowed sub-
space after each matrix operation [50]. This projection is done by using the matrix
P := Id−

∑
cic

T
i , where Id is the identity matrix and c is the state vector of the

normalized constrained direction. The constrained directions are derived from the
collision situations between vertices and triangles, or edges and other edges, re-
spectively. For vertex-triangle collisions, the vertices are constrained in direction
of the triangle normal, for edge-edge collision, the vertices are constrained in the
direction of the shortest distance.

While the constraints prevent a further interpenetration between the colliding
objects, it is also necessary to reset the vertices to a target position in order to
resolve the interpenetration completely. This target position is chosen to assure a
minimum distance between all colliding objects. If a vertex of a cloth mesh gets
closer than this minimum distance to the collision object, the vertex velocity is set
to move it away from the collision object until this distance is assured. As soon
as the vertex departs from the collision object or when it is dragged away from it
by internal or external forces, the constraint must be released. To avoid bouncing
effects due to repeated enforcing and releasing of constraints, it is our experience
that it is better to gradually move the vertex towards the minimum distance instead
of doing this in one simulation step.

Using constraints for collision response is successful as long as only collisions
between the cloth and a static rigid object are considered. When the rigid object
moves or when more self-collisions need to be treated correctly, the limitations
of this method become apparent. The main disadvantage is the necessity to ex-
plicitly release the constraints after the collision has been resolved and the objects
move away from each other, which proves to be infeasible in connection with ani-
mated rigid objects or complicated self-collision situations and results in sticking
between different layers of cloth. To overcome these limitations we propose a
collision response using a direct alteration of velocities and positions based on the



50 CHAPTER 3. COLLISION RESPONSE

laws of impulse conservation.

3.2.3 Impulse-based Collision Response

The idea behind impulse-based collision response methods is to regard the colli-
sion between colliding objects as impact, where impulses in opposite directions
are applied on the involved mesh points in order to prevent interpenetration. An
approximation of the complex behavior during the collision of objects with de-
formation and restitution is given by Poisson’s hypothesis [96]. Using Poisson’s
hypothesis for collisions of cloth, the material parameter for the restitution usu-
ally is assumed to be zero [33], stating that no energy is stored in the deformation
during the collision process. So, interactions of cloth objects are usually modeled
assuming completely inelastic collisions [106, 33, 43].

In our cloth response model we also model completely inelastic collisions.
Therefore, if two points inside the colliding mesh primitives are approaching each
other with the relative velocity in normal direction ~vrelN and are closer than the
collision distance, an impulse is applied to avoid the interpenetration. The re-
quired impulse as well as the velocity of points inside primitives is calculated
using the relations given in Section 3.2.1. Also, the respective relations are used
to distribute the impulse to the vertices of the mesh primitives. If the two colliding
points are already closer than a use- defined threshold, e.g. the cloth thickness,
the two primitives are additionally set to this minimum distance to resolve the
collision.

To avoid the visually disturbing sliding of cloth on static objects we model
friction forces using Coulombs law. The relative velocity of the two objects in
contact as ~vrel. Its component in tangential direction is denoted with ~vrelT . Let
~FN and ~FT be the normal and tangential frictional force. Then the laws of friction
are given by:

|~vrelT | 6= 0 ⇒ ~FT = −µ|~FN |
~vrelT

|~vrelT |
(3.4)

|~vrelT | = 0 ⇒ |~FT | < µ|~FN | (3.5)

Here, we denote the friction coefficient as µ. While Equation (3.4) models
a sliding contact with friction, Equation (3.5) models a sticking contact without
relative motion. Hence, for µ = 0 there is sliding without friction, while for µ =
∞ there is no sliding at all. To adapt these macroscopic laws to the situation of
colliding primitives, simplifications concerning the normal and tangential forces
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have to be made. For constant time steps, we state that the forces ~FN and ~FT are
proportional to the respective relative velocities. In this way friction is modeled
using micro-collisions as discussed by Bridson et al. [33] and Provot [106].

3.3 Results

We first implemented the constraint-based collision response into TüTex and tested
it with various collision situations. In Figure 3.1, a piece of cloth (4000 triangles)
is falling on a plane, which leads to collisions between the textile and the static
rigid object as well as to self-collisions. In this scene the constraint-based colli-
sion response resolves both kinds of occurring collisions.

Figure 3.1: Different frames of an animation of a ribbon (4000 triangles) falling
on a table resulting in complex collisions and self-collisions. The collisions and
self-collisions in this scene were resolved using the constraint-based response.

For dynamic rigid objects, however, where the piece of cloth is entrained, the
constraints cannot be released correctly and the cloth gets entangled. Therefore,
for these scenes we employ the impulse-based collision response. Using this re-
sponse scheme, we are able to resolve collisions and self-collisions. Additionally,
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static and kinetic friction are modeled, as demonstrated in Figure 3.2. In this an-
imated scene, a piece of cloth is draped over a rotating sphere, which drags the
cloth causing complex folds and numerous collisions and self-collisions.

Figure 3.2: Simulation of a piece of cloth draped over a rotating sphere. The
collisions and self-collisions in this animation were resolved using the impulse-
based response.

3.4 Summary

To resolve collisions in cloth simulations a collision response scheme needs to
be applied. This collision response scheme has to provide a stable response for
dynamic and static scenes, has to resolve both collisions and self-collisions, and
should be able to distribute the collision response to the mesh vertices belong-
ing to the colliding primitives. After giving an overview of physical and geo-
metric collision response, we have presented two sophisticated methods to re-
solve detected collisions in TüTex in this chapter. The constraint-based method
restricts the possible movement of cloth vertices to directions orthogonal to a con-
straint vector. Using this method, we obtained convincing results and are even
able to treat complex self-collisions correctly. Constrained vertices must however
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be released manually when they depart from the collision object. This manual
release becomes infeasible for animated rigid objects. To overcome this limita-
tion, for TüTex we have implemented an impulse-based response scheme that is
able to smoothly resolve collisions and self-collisions. To conserve the impulses
and assure continuity across the borders of mesh elements, we have presented a
physically-based approach to distribute the impulses to the corners of triangles
and the end points of edges. Using the impulse-based method we are able to get
stable results of dynamic scenes, where collisions and self collisions as well as
friction are simulated correctly.
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CHAPTER 4

Collision-free Subdivision

4.1 Introduction and Related Work

In the physically-based simulation of cloth, the objects, i.e. avatars but also the
garment, are usually represented as polygonal meshes. Besides many advantages,
like the simple modeling of different cloth patterns this also creates a difficult
dilemma. In order to obtain visually pleasing animations, high resolution meshes
are needed. If coarse meshes were used, the disturbing polygonal structure of the
mesh would be visible. However, when these high resolution cloth meshes are
simulated, the performance of numerical solvers as well as of collision detection
methods decreases significantly.

This dilemma can be addressed by directly simulating smooth surfaces in-
stead of polygonal meshes. Thingvold et al. [121] used dynamic B-splines to
refine the used meshes in regions of interest. They associated the control points
of the splines with the nodes of the simulation. In the paper about “Geri’s Game”
from Pixar, DeRose et al. [42] utilized subdivision surfaces for a physical cloth
simulation including the necessary collision detection. The drawback of directly
simulating smooth surfaces is, however, that simulation and representation are
no longer independent causing collisions depending on the level of detail of the
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underlying object. Therefore for each subdivision step a collision detection is
necessary. Additionally, many simulation techniques like finite element methods
need special adaptations when used with these surface representations. Hence,
as the direct simulation on smooth surfaces is not applicable, we expand an idea
from Bridson et al. [33] who propose the simulation of coarse meshes, which are
refined in a post-processing step. While this chapter focusses on the smoothing of
the triangular meshes using different subdivision schemes, the following chapter
introduces a method that allows the enhancement of the meshes with folds and
wrinkles.

We start by giving a introducing to interpolating and approximating subdivi-
sion schemes (Section 4.2). As the subdivision process not only refines the mesh
but also alters the position of mesh vertices, collisions of the cloth mesh with
other objects or with itself may occur. This is particularly true as cloth is a very
thin object and mostly lies very close to the body. How these collisions can be
detected and handled based on the continuous collision method will be detailed in
Section 4.3. In Section 4.4 we evaluate which of the presented subdivision meth-
ods fits best to the needs of a cloth simulation. As a test scenario, we compare
simulations of high resolution cloth meshes without subdivision to simulations of
low resolution meshes with post-processing by subdivision. Parts of this chapter
follow our work in [6, 70].

4.2 Subdivision Methods

Subdivision has become a major field in computer graphics. The idea of sub-
division is to define a smooth surface as the limit of a sequence of successive
refinements [112]. Practically, new vertices are added to an initial mesh and de-
fined as affine combination of neighboring vertices. Subdivision goes back to the
late 1940s when G. de Rahm used “corner cutting” to describe smooth curves.
In the area of surface modeling the publications of Catmull and Clark [35] and
Doo and Sabin [45] in 1978 marked the beginning of subdivision. They proposed
the generalization of spline-patch methods to meshes of arbitrary topology. The
importance of subdivision in computer graphics is caused by the need for mul-
tiresolution techniques. This possibility to implement level-of-detail into meshes
is the major reason why subdivision is used in our work to accelerate cloth simu-
lation.

To classify the vast variety of subdivision methods that have been proposed in
the last three decades there can be given three main criteria [112]:

• Mesh topology: There exist subdivision schemes for all kinds of mesh
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topologies, but only for regular quadrilateral, triangular and hexagonal mesh-
es there are regular subdivision schemes. As all the cloth simulation algo-
rithms in our simulator, both particle or finite element methods, work on
triangular meshes, we will confine ourself to the corresponding subdivision
methods.

• Refinement rule: Different refinement rules have been proposed: vertex
insertion and corner cutting. Vertex insertion methods split each edge into
two new ones, old vertices are kept, and new vertices inserted on edges
are connected among each other. Corner cutting methods create for each
old face a new face inside of it. This results in two new vertices for each
old edge, and a new face for each old edge and vertex. All old vertices are
discarded. For triangular meshes only regular vertex insertion methods have
been described.

• Interpolating or approximating (Figure 4.1): For interpolating subdivision
schemes all points of the control mesh are also points of the subdivision
surface. Hence, at each recursive step, the position of the existing points is
kept, a smoothing of the surface is only achieved by the insertion of new
points. Using this class of subdivision schemes, it is more obvious to es-
timate how the limit surface will look like. Therefore, these methods are
often used for modeling with subdivision surfaces. However, due to the sta-
tic control points, interpolating subdivision meshes may show bulges and
bumpy behavior for unsteady initial meshes. For approximating subdivision
schemes the points of the controlling mesh are not part of the subdivision
surface. In each subdivision step the existing vertices are moved in direc-
tion to the limit surface. The major advantage of approximating schemes is
that the resulting subdivision surface tends to be very unruffled, having few
undulations and ripples. Even for unsteady initial meshes these schemes
yield smooth results as the sharpest points move the furthest in direction to
the limit surface. If it is the intention to maintain these surface features this
behavior can also be disadvantageous.

As the characteristics of interpolating and approximating subdivision schemes
are very different we compare their applicability for the refinement of cloth meshes.
To choose suitable candidates for the post-processing of cloth simulations, only
methods at least producing C1-continuous surfaces around regular and irregular
vertices, i.e. vertices in a triangular mesh with a valence unequal six, are consid-
ered. This is important as it is not always possible to tessellate the cloth meshes
in the TüTex simulator regularly, particularly under the constraint of special seam
points where different cloth patterns are sewed together. Therefore, it is also im-
portant that the subdivision scheme works for any triangulations, including the
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Figure 4.1: Subdivided tetrahedron: With the approximating Loop method (top
row) and with the interpolating Butterfly method (bottom row).

proper handling of boundaries. Additionally, in order to obtain fast subdivision
algorithms only methods that need a small neighborhood to define the new ver-
tex positions are considered. Two of the most prominent and fast representa-
tives of interpolating and approximating schemes producing C1-continuous sur-
faces around irregular vertices are the modified Butterfly and the modified Loop
method, respectively. Based on the unmodified Butterfly and Loop scheme, in the
following we detail the modified methods and compare them with respect to the
post-processing of cloth meshes.

4.2.1 Butterfly Subdivision

The interpolating Butterfly scheme was originally proposed by Dyn et al. [46].
It got its name by the shape of its edge mask (Figure 4.3 (a)), the rule to de-
termine new edge points. Though this scheme is defined on arbitrary triangular
meshes, for extraordinary points of valence k = 3 and k > 7 the limit surface
is not C1-continuous and therefore it can show undesirable bulges and rills for
irregular meshes. By adding special subdivision rules for these extraordinary ver-
tices, Zorin et al. [140] enhanced the Butterfly scheme to produce C1-continuous
surfaces for arbitrary meshes. As cloth meshes often contain such vertices, the
modified Butterfly scheme is better suited for the application in cloth simulation
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Figure 4.2: Subdivision of triangle by 1-to-4 split.

and will be detailed in the following.

Subdivision Rules: The scheme divides each face of the triangular mesh by
carrying out a 1-to-4 split of the triangles (Figure 4.2). All newly created vertices
are called odd vertices, the existing ones even vertices. As the Butterfly scheme is
an interpolating subdivision method all even vertices stay at their positions while
the odd vertices (points on edges in the original mesh) are moved corresponding
to subdivision masks. Figure 4.3 shows the modified Butterfly masks for regular
and irregular internal vertices with the weights given in equations (4.1) to (4.3),
where k is the valence of the internal vertex.

For k = 3 the weights are given by:

α =
3

4
; β0 =

5

12
; β1 = − 1

12
; β2 = − 1

12
(4.1)

for k = 4 by:

α =
3

4
; β0 =

3

8
; β1 = 0; β2 = −1

8
; β3 = 0 (4.2)

and for k ≥ 5 by:

α =
3

4
; βi =

1

k

[
1

4
+ cos

(
2πi

k

)
+

1

2
cos

(
4πi

k

)]
(4.3)

Using this scheme, the following heuristic is used to calculate the position of
the odd vertex: If both vertices of an edge are regular vertices, the weights of the
original Butterfly scheme are used (Figure 4.3 (a)). If the edge connects a regular
and an irregular vertex, the modified mask (Figure 4.3 (b)) is used to calculate
the position by the weighted sum of the irregular vertex and its neighbors. If
both vertices adjacent to the new vertex are irregular, Zorin et al. [140] propose to
evaluate the new mask for both of them and calculate the position by building the
arithmetic average out of the two results. The position of odd boundary vertices
is calculated using the 1-dimensional four-point scheme in Figure 4.4.
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Figure 4.3: Masks of Butterfly scheme. (a) Mask for interior odd vertices with
regular neighbors. (b) Mask for interior odd vertices with extraordinary neighbor.
k is the valence of the adjacent extraordinary vertex with weight α.

Figure 4.4: Mask for odd boundary vertices.
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(a) (b)

Figure 4.5: Edge (a) and vertex mask (b) of the Loop scheme for the calculation
of odd and even vertices.

4.2.2 Loop Subdivision

The Loop scheme, proposed by Charles Loop [90], is a simple representative
of the approximating subdivision schemes. It is derived from the quartic three-
directional box spline, which produces C2-continuous surfaces on regular meshes.
At extraordinary vertices only C1-continuous surfaces are generated.

Subdivision Rules: Similar to the Butterfly subdivision scheme each face of
the mesh is split 1-to-4. However, as the Loop scheme is approximating both odd
and even vertices are moved. The new positions of odd and even points are deter-
mined by an affine combination of the neighboring vertices with the weights given
in the edge mask (Figure 4.5 (a)) and the vertex mask (Figure 4.5 (b)) respectively.
The weights in the vertex mask depend on the valence k of the vertex and are

β =
1

k

[
5

8
−
(

3

8
+

1

4
cos

2π

k

)2
]

.

The new positions of boundary vertices are calculated using special edge and
vertex masks (Figure 4.6), which produce cubic spline curves along the boundary.
Equally to the Butterfly scheme, the boundary masks only take points along the
edge into account.

As Loop’s original subdivision scheme only yields C1-continuity around ir-
regular vertices, Prautzsch et al. [105] proposed modifications of the method that
yield C2-continuity also around irregular vertices. These modifications, however,
also had major disadvantages like negative weights in the masks leading to the
violation of the convex hull property. Additionally, zero curvature at irregular
vertices, and therefore flat areas on the surface resulted. To overcome these lim-
itations, Loop [91] presented an enhancement of his subdivision scheme which
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Figure 4.6: Boundary mask of the Loop scheme: (a) edge mask; (b) vertex mask.
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Figure 4.7: Edge mask of the modified Loop scheme.

conserves the convex hull property and results in surfaces with bounded curva-
ture. This is achieved by a new edge mask (Figure 4.7) derived from a cubic
polynomial with a larger support than the original edge mask. For vertices with
valence k ≥ 6 the weights β are calculated as follows:

βi = Mk

(
cos

2πi

k

)
.

with

Mk(u) = a(1 + u)(b + u)2

a =
2λ3

k(1− λ)

b =
1

λ
− 3

2

λ =
3

8
+

1

4
cos

2π

k

The weight for vertices with valence k < 6 can be calculated using the following
table. Note, for k = 3 this corresponds to the original Loop subdivision scheme.
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Figure 4.8: The subdivision scheme displaces the vertices of a mesh. Here the
effect of an approximating subdivision scheme is shown schematically, hence, all
vertices are set to new positions.
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Similar to the modified Butterfly scheme, the edge mask is asymmetric with
respect to the incident vertices. To handle this ambiguity, Loop proposes to apply
the same heuristic using the arithmetic average as in Section 4.2.1.

4.3 Collision Detection during the Subdivision step

As the subdivisions of a mesh alters the vertex position, collisions and self-colli-
sions between the simulated objects may occur. Especially for meshes close to
other objects, as cloth meshes often are, the probability for collisions may be
high. In this section we detail how continuous collision detection can be utilized
in order to resolve these collisions after each subdivision step.

4.3.1 Collision Detection

To detect the collisions created by the subdivision step we use the two step ap-
proach using a k-DOP hierarchy and the continuous collision detection presented
in Section 2.4. First, the initial vertex position ~pinitial as well as the vertex po-
sition in the subdivided mesh ~psubdivided is added to the BVs of the BVH. This
assures that any collision between these two positions can be detected. After the
BVH reports collision candidates, the continuous collision detection needs the
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(a) (b)

Figure 4.9: Collisions are caused by the movement of the vertices in subdivi-
sion step (a); all collisions are resolved by repositioning the vertices along the
displacement vectors (b).

displacement vector ~s of all involved vertices:

~s = ~psubdivided − ~pinitial.

For even vertices this is the vector between their position in the control mesh
and the new positions calculated by the corresponding vertex mask. Note that
for even vertices in interpolating schemes there is no displacement and therefore
~s = 0. For odd vertices newly generated in the subdivided mesh, the old position
is set to the center of the corresponding edge. The new position is calculated with
the edge mask of the subdivision scheme. In Figure 4.8 the displacement vectors
are visualized for an approximating subdivision method.

The continuous collision detection then reports the exact point of collision of
two primitives (Figure 4.9 (a)) between the initial position and the position of the
subdivided mesh. To this point a collision time t is assigned, assuming t = 0 for
the initial mesh and t = 1 for the subdivided mesh. In-between these two states a
linear movement is supposed. For vertices that are involved in multiple collisions
only the earliest time of collision is kept.

4.3.2 Collision Response

In order to resolve the occurred collisions during subdivision, we start with the
finer mesh and sequentially move concerned vertices in direction toward their
initial collision-free position just before the point of collision. This new position
~pcorrected can be calculated for the vertices as follows:

~pcorrected = ~pinitial + (~s · (t− ε)) (4.4)

where a tolerance value ε is considered. On the one hand this value is needed
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by subdivision
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Figure 4.10: In (a) the initial mesh together with the designated displacement
vectors of the vertices is shown. The collision detection finds a collision between
edge QR due to the displacement (b). Hence, Q and R are only moved a small
distance. As in the initial collision detection no collisions were found for the edge
PQ (or for any primitive the vertex P is part of) the vertex P is moved to its
designated position (c). This movement now causes a subsequent collision, which
is treated by another iteration of the collision detection and response (d).

to account for rounding errors, on the other hand it also allows to model the cloth
thickness by assuring a minimal distance between the cloth and other objects.

Since each vertex of a mesh belongs to different edges and faces the collision
response at this vertex can cause new collisions of the neighboring elements (Fig-
ure 4.10 (a)-(c)). Hence, to resolve all collisions several iterations of the collision
detection algorithm with the new positions may be necessary (Figure 4.10 (d)). In
all of our simulated examples, however, we found that two iterations are enough
to obtain a collision-free mesh. Note that it can be assured to find a collision-free
state, as in the worst case, all vertices can be reset to their initial positions before
the subdivision step. As the displacements due to the collision response usually
remain small, also no artifacts in combination with textures appear.

4.4 Results

Using TüTex, we compared both the visual results and the performance of the two
described subdivision methods, namely the modified Butterfly and the modified
Loop method. Therefore, different clothing was simulated in a dynamic scene
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(a) (b) (c)

Figure 4.11: Comparison between the presented subdivision methods applied to
a shirt and the initial mesh (a): two steps of the modified Loop scheme (b); two
steps of the modified Butterfly scheme (c).

with the TüTex system and multiply subdivided with the presented methods. We
used a shirt (3414 vertices and 6712 triangles) and a pair of trousers (3219 vertices
and 6362 faces) to dress a walking avatar. Though both meshes have a fairly high
resolution, without subdivision it is still possible to see the polygonal nature of
the models (Figure 4.11 (a) and 4.12 (a)). Especially in areas with small wrinkles
or at the edges this becomes apparent and is disturbing.

In Figure 4.11 (b) and (c) respectively in Figure 4.12 (b) and (c) the garment
meshes are shown after two subdivision steps with the modified Loop and the
modified Butterfly method. The according data of the subdivided meshes is found
in Table 4.2. For both models, shirt and trousers, the differences between inter-
polating Butterfly method and approximating Loop method are obvious. For the
Butterfly method, all vertices of the initial mesh are also part of the subdivided
mesh. Therefore sharp irregularities remain in the mesh and are not smoothed
out. They are rather intensified for coarse meshes with many wrinkles. The ap-
proximating Loop method, however, nicely smoothes out these irregularities and
yields a more natural appearance of the subdivided meshes. The implemented sub-
division methods rapidly converge to the limit surface as visualized in Figure 4.13
for the shirt subdivided with the modified Loop scheme. After two subdivision
iterations almost no further improvements of the smoothness are visible.

To test the collision-free subdivision, we simulated a piece of cloth draped
over a table. The coarse cloth mesh with 255 triangles (Figure 4.14 (a)) is sub-
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(a) (b) (c)

Figure 4.12: Comparison between the presented subdivision methods applied
to a pair of trousers and the initial mesh (a): two steps of the modified Loop
scheme (b); two steps of the modified Butterfly scheme (c).

(a) Initial mesh (b) 1 level (c) 2 levels (d) 3 levels

Figure 4.13: Different number of levels of the modified Loop subdivision applied
to a shirt.
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Subdivision steps 0 1 2 3
Shirt mesh
vertices 3414 13542 53934 215261
irregular vertices 1637 1637 1637 1637
% of irregular vertices 48% 12% 3% < 1%
faces 6712 26848 107392 429568
Trousers mesh
vertices 3219 12801 51051 203895
irregular vertices 1480 1480 1480 1480
% of irregular vertices 46% 12% 3% < 1%
faces 6362 25448 101792 407168

Table 4.2: Data of subdivided meshes after 0, 1, 2 and 3 subdivision steps.

divided twice with the modified Loop scheme. Due to the displacement of the
vertices, collisions between table and cloth appear (Figure 4.14 (b)). These col-
lisions are corrected after each subdivision step using the presented approach. In
each step, one iteration of the collision detection and response was enough to
obtain a collision-free subdivided cloth mesh (Figure 4.14 (c)).

Another test scene closer to the application in a garment simulator is the an-
imation of a walking avatar (28784 triangles) dressed with a shirt and a pair of
trousers (Figure 4.15). To achieve fast cloth simulations, low resolution cloth
meshes are chosen (shirt 1918 triangles, trousers 1962 triangles). As an example,
out of the 60 simulated frames, the frames 4, 48 and 59 are shown in the illustra-
tions. After the physically-based simulation, the frames are subdivided three times
by using the modified Loop subdivision (Figure 4.15). The resulting collisions are
then corrected using the described approach. For these meshes also one iteration
of the detection and response algorithm yields a collision-free mesh. Close-ups
of the shoulder region, where the collisions are very apparent, are shown in Fig-
ure 4.16.

The mesh data and the corresponding performance measurements are shown in
Table 4.3. Though only a small number of vertices collide, this yields noticeable
artifacts. The maximum displacement in the vertex position reduces with more
and more subdivision steps. Hence, the number of collisions also gets smaller.
In contrast, the run-time of the first step of the collision detection, the collision
detection using k-DOPs, strongly increases from one subdivision step to the next
with increasing number of triangles. The run-time of the second step of the colli-
sion detection, the continuous collision detection, stays almost constant with the
reducing maximum displacement of the vertices. Hence, in this example the num-
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(a) (b) (c)

Figure 4.14: Table cloth simulated using collision-free subdivision. The table
cloth is first simulated using a coarse mesh (a). The subsequent Loop subdivi-
sion causes collisions between the cloth and the table (b). These collisions are
corrected using the continuous collision detection and the presented collision res-
olution (c).

ber of triangle pairs within the maximum displacement distance stays constant
leading to the nearly constant computation time of the continuous collision detec-
tion. All the run-time measurements were performed on a PC with AMD Athlon
2800+ processor and 1024 MB DDR-SDRAM main memory.

4.5 Summary

In order to obtain visually appealing simulation results with smooth cloth sur-
faces high resolution meshes are required. They either can be obtained by simu-
lating them directly or by simulating coarse meshes that are post-processed after
the simulation. Since cloth simulation with high resolution meshes is very time
consuming, the latter is often preferred, especially since post-processing is not
necessary for each time step but only for frames that are rendered. In this chap-
ter, we therefore presented an approach for the post-processing of simulated cloth
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frame 4 frame 48 frame 59
shirt trous. shirt trous. shirt trous.

subdivision step 1
vertices 3910 3965 3910 3965 3910 3965
faces 7672 7845 7672 7845 7672 7845
maximum displacement [mm] 12.7 10.9 12.5 14.9 12.9 12.4
close faces 10177 20349 11037 18146 10148 17668
corrected vertices 12 2 45 14 20 9
continuous collision det. [ms] 336 676 366 603 345 588
edge-edge tests [ms] 10 16 12 15 10 16
vertex-triangle tests [ms] 3 4 4 3 3 4
k-DOP collision det. [ms] 572 638 558 934 766 766
subdivision step 2
vertices 15494 15779 15494 15779 15494 15779
faces 30668 31392 30668 31392 30668 31392
maximum displacement [mm] 2.9 3.2 3.6 4.1 3.5 3.5
close faces 9801 13479 12783 12535 11885 12161
corrected vertices 9 0 20 5 10 2
continuous collision det. [ms] 320 442 418 410 390 399
edge-edge tests [ms] 3 4 5 4 4 4
vertex-triangle tests [ms] 1 1 1 1 1 1
k-DOP collision det. [ms] 880 918 972 954 1213 1310
subdivision step 3
vertices 61687 62951 61687 62951 61687 62951
faces 122752 125568 122752 125568 122752 125568
maximum displacement [mm] 1.4 1.4 1.9 1.4 1.5 1.5
close faces 16742 15970 24561 18008 21219 18317
corrected vertices 0 1 5 0 2 1
continuous collision det. [ms] 543 520 798 586 705 597
edge-edge tests [ms] 2 2 3 2 2 3
vertex-triangle tests [ms] 1 1 1 1 1 1
k-DOP collision det. [ms] 5261 6226 5874 6411 5054 5404
total
for 1 step [s] 0.92 1.33 0.94 1.56 1.12 1.38
for 2 steps [s] 2.13 2.70 2.34 2.92 2.73 3.10
for 3 steps [s] 7.93 9.45 9.01 9.92 8.49 9.10

Table 4.3: Mesh data and run-time of collision detection for three subdivision
steps at the different animation frames.
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(a) (b) (c)

Figure 4.15: Animation of walking avatar with three subsequent steps of the modi-
fied Loop subdivision causing collisions. The following three frames are analyzed
in detail: frame 4 (a); frame 48 (b); frame 59 (c)

meshes using different subdivision methods. We are the first who compared ap-
proximating and interpolating subdivision schemes represented by the modified
Loop and the modified Butterfly scheme with respect to their practicability in
this context. Experimentally, we were able to show that the approximating Loop
scheme yields the nicest results when subdividing low resolution cloth meshes.
If subdivision schemes are applied to the cloth meshes, old and new vertices are
moved and therefore collisions may be caused. We resolve these collisions after
detecting them using a bounding volume hierarchy in combination with a con-
tinuous collision detection as detailed in Chapter 2. The presented methods for
collision-free subdivision can also be applied in combination with automatically
generated wrinkle maps as shown in the following chapter.
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Close-up of animated shirt subdivided with the modified Loop
scheme in Figure 4.15. The frames 4, 48 and 59 are shown without collision
detection and response (a)-(c) and with collision detection and response (d)-(f).



CHAPTER 5

Texture-based Wrinkle Simulation

5.1 Introduction and Related Work

For virtual clothing, wrinkles are the essential part of the simulation and make
them look realistic. The occurrence of wrinkles in textiles is a complex phenom-
enon caused by the interaction of inner material forces and friction forces. It is
very challenging to model them correctly even for high resolution meshes. As the
simulation of high resolution meshes still yields very long simulation times, in the
last chapter we proposed the collision-free subdivision method to post-process
coarse meshes. This approach, however, only smoothes the virtual textiles and
does not add fine details like realistic folds and wrinkles. To achieve similar good
visual results using low resolution meshes as can be obtained by simulating high
resolution meshes we propose a post-processing method that generates wrinkle
textures based on the deformation of the underlying triangles. These textures are
used to visualize fine wrinkles on the cloth and are combined with the collision-
free subdivision. This yields smooth, high resolution meshes with realistic folds
and wrinkles.

Due to the inner material forces, tissue rather tends to buckle than to com-
press. For the post-processing method presented here, we therefore assume that

73
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cloth conserves its area and calculate the height of wrinkles that would result for
triangle deformed in-plane. This height field of a triangle is generated based on
procedurally generated textures with different orientations and stored as wrinkle
texture. By interpolating these wrinkle textures over the complete cloth mesh a
bump or displacement map is obtained.

In previous work on geometric wrinkle generation by Hadap et al. and Volino
et al. [62, 130] the use of modulated wrinkle textures has already been proposed
in order to enhance the simulation of coarse cloth meshes. The main drawback
of their method, however, is the need for much user interaction in the creation of
the underlying wrinkle textures. Further methods have been proposed for geomet-
ric wrinkle generation for human skin [86, 39], whereas other publications focus
on the correct buckling behavior of cloth to model physical reality [36, 37, 34].
For their methods, however, high resolution meshes are necessary to obtain vi-
sually good results. All methods creating wrinkles geometrically do not resolve
collisions that are caused by the added wrinkles.

In this chapter we extend the ideas of Hadap et al. without the necessity of user
interaction and address the problem of occurring collisions. First, we describe
how wrinkles can be calculated from the inner strain of the mesh. Contrary to
earlier, purely geometric approaches, this method is based on physical principles
(Section 5.2) as we reuse the deformation tensor that can easily be calculated dur-
ing the finite element cloth simulation [51] in TüTex. In Section 5.3 we describe
how the wrinkle textures can be generated procedurally, which are then applied
to the mesh by bump or displacement mapping (Section 5.4). Since for the latter
method new collisions for the simulated meshes may occur we use the adaptive
subdivision algorithm coupled with continuous collision detection as described in
Section 4.3. For the displacement mapping, two software implementations are
proposed. Either the subdivision methods presented in the previous chapter may
be used, or an alternative approach suggested by Moule and McCool [98] is ap-
plied. To show the validity of the presented approach, in Section 5.5 we discuss
our results. Several pieces of cloth simulated with TüTex and post-processed with
the described methods are presented. Furthermore, we compare the quality and
runtime of high resolution cloth simulations without added wrinkle textures to
cloth simulations based on coarse meshes and subsequent post-processing as pro-
posed in this chapter (Section 5.5). The results presented in this chapter were
published in [6].
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5.2 Wrinkle Coefficients from Strain

Regarding the inner material force, textiles have very high compression stiffness
and relatively low bending and shearing stiffness which results in immediate buck-
ling. If we use a coarse mesh to represent a tissue, this buckling effect cannot be
modeled correctly due to lack of degrees of freedom. Additionally, if we use the
corresponding material parameters for the coarse mesh this would result in very
high compression forces. Hence, we use slightly lower material parameters for
compression stiffness and couple the deformation of the mesh to the generation of
wrinkle textures. With this model, we calculate the rough movement of the cloth
by the simulation of the mesh whereas fine detail is added by textures depending
on the inner deformation state of the mesh. For deformable objects several defor-
mation measures have been introduced to determine the inner strain of the object.
Let ϕ be the configuration mapping of a parameterized surface with respect to the
local coordinate system (u, v), then J = (∂ϕ

∂u
, ∂ϕ

∂v
) is called the deformation gradi-

ent. The displacement δ is defined as δ = ϕ− Id, where Id is the identity matrix.
The most common deformation measures are the symmetric Green’s strain tensor

εG =
1

2
(JJ t − Id)

and its linear approximation, the Cauchy strain tensor εC . The Cauchy strain
tensor, however, is not rotational invariant [29]. Etzmuß et al. [51] introduced a
rotationally invariant linear deformation tensor due to corotational finite elements.
By this approach, the deformation gradient can be locally decomposed into a rota-
tion R and a pure deformation U , i.e. J = R ·U and Green’s tensor can be written
as

εG =
1

2
(U2 − Id) .

Due to the large in-plane tension stiffness of cloth which creates wrinkles we
couple our wrinkle texture to the deformation U of the simulated mesh. Pure
rotations have no influence on the deformation and the formation of wrinkles. For
every triangle in the simulated mesh we obtain a pure deformation transformation
as

U :

(
x′

y′

)
=

(
a b
b d

)(
x
y

)
(5.1)

with respect to the local coordinate systems of the triangle with the inverse

U−1 :

(
x
y

)
=

(
a′ b′

b′ d′

)(
x′

y′

)
.
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Additionally to this deformation measure, we briefly present the measure for
the deformation of the underlying material that has been introduced by Hadap et
al. [62]. Usually in simulation modules for textiles, an initial plain mesh, i.e. gar-
ment pattern, is given to determine the rest state of the textile. Each triangle of
the simulated, deformed mesh can then be described by a deformation transfor-
mation with respect to a local two-dimensional in-plane coordinate system, where
the axes of each local coordinate system are chosen such that the x-axis, respec-
tively x′-axis is given by one edge of the triangle and the y-, respectively y′-axis,
is chosen such that we obtain a right-handed coordinate system which lies in the
plane of the triangle. This results in the following deformation transformation

Ũ :

(
x′

y′

)
=

(
ã 0

b̃ c̃

)(
x
y

)
(5.2)

with the corresponding inverse.

We want to point out that this measure is easy to implement for an existing
cloth simulation module but gives only a heuristic measure for the deformation of
the underlying textile. Since in our simulation module [4, 51] we get the deforma-
tion gradient from the finite-element calculations, we use it to obtain the wrinkle
textures as well.

To map wrinkles on the underlying triangles of our simulated mesh we start
with a continuous differentiable wrinkle function

f : ∆ ∈ R2 → R

for the initial mesh, respectively for an initial triangle ∆. Hence, we can map the
initial wrinkle function on the deformed triangle ∆′ = U(∆) by

f ′(x′, y′) : ∆′ → R : (x′, y′) 7→ f(U−1(x′, y′)).

The area of the undeformed triangle ∆ is given by

A(∆, f(x, y)) =

∫
∆′

√√√√1 +

((
∂f

∂x

)2

+

(
∂f

∂y

)2
)

dxdy. (5.3)

Since we use the deformation of the underlying triangle of the simulated mesh
to determine the wrinkling behavior, we have to conserve the area of the wrinkle
function f over the triangle. In our case, this is done by scaling the function f by
the modulation factor h.

By a series expansion of the parameterized surface area A given by
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A(∆′, hf ′(x′, y′)) =

∫
∆′

√√√√1 + h2

((
∂f ′

∂x′

)2

+

(
∂f ′

∂y′

)2
)

dx′dy′

=

∫
∆

1

a′d′ − b′2

(
1 + h2

(
a′

∂f

∂x
+ b′

∂f

∂y

)2

+ h2

(
b′

∂f

∂x
+ d′

∂f

∂x

)2
)1/2

dxdy

=:

∫
∆

I(h, a′, b′, d′) dxdy (5.4)

we obtain as linear approximation

A(∆′, hf ′(x′, y′)) =

∫
∆

(I(1, 1, 0, 1) +
∂I

∂h
· (h− 1)

+
∂I

∂a′
· (a′ − 1) +

∂I

∂b′
· b′

+
∂I

∂d′
· (d′ − 1)) dxdy . (5.5)

The area conservation then yields

A(∆, f(x, y)) = A(∆′, hf ′(x′, y′)) . (5.6)

By inserting Equation (5.5) into Equation (5.6), we get

A(h, ∆, f(x, y)) = C0 + C1(h− 1) + C2a
′

+ C3(b
′ − 1) + C4(d

′ − 1) (5.7)

with the coefficients
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C0 =

∫
∆

I(1, 1, 0, 1) dxdy

C1 =

∫
∆

∂I

∂h
dxdy , C2 =

∫
∆

∂I

∂a′
dxdy ,

C3 =

∫
∆

∂I

∂b′
dxdy , C4 =

∫
∆

∂I

∂d′
dxdy .

The coefficient C0 corresponds to A(∆, f(x, y)), thus, the modulation factor
h is calculated as

h =

{
1 for C1 = 0,

1− 1
C1

(C2(a
′ − 1) + C3b

′ + C4(d
′ − 1)) else.

(5.8)

The modulation factor for the alternative deformation transformation in Equa-
tion (5.2) is calculated analogously.

While the wrinkle coefficients C1 to C4 are computationally expensive but
can be calculated in a pre-computation step, the modulation factor h is easily
computed for every triangle during the simulation. Analyzing this algorithm it
turns out that the modulation factor favors special wrinkle functions f , where the
wrinkling is orthogonal to the strain. Hence, the modulation factor is high if the
wrinkle pattern fits the underlying deformation well. This leads us to the idea of
multilayered textures in the next section. Since we obtain one modulation factor
per triangle we linearly interpolate the factors across the triangles to end up with
a smooth modulation map. Note that by our linear approximation of the area
function and the linear smoothing of the scaling, area conservation is no longer
preserved exactly.

5.3 Multilayered Textures

As real wrinkles do not appear only in one direction within garments, the use of
multiple textures is necessary. Already Hadap et al. [62] presented the concept
of multifold wrinkling, i.e. the combination of different wrinkle textures was
presented but they use two user defined wrinkle patterns for the garment which
have to be orthogonal and require much interaction and knowledge of the user.
Here, we extend the idea of switching between wrinkle patterns by generating
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(a) (b)

Figure 5.1: Multilayered wrinkle textures with visualization of the simulated piece
of cloth (ω = 10, n = 2).

multilayered wrinkle patterns procedurally and blending them according to the
deformation of the mesh.

The multilayered textures are built using a simple sine-function, where the
intensity of the ith texture is defined by

li(x, y) =
1

2
(sin(2π · ω · xi,n) + 1) ,

xi,n = x · cos

(
π · i
n

)
− y · sin

(
π · i
n

)
,

where ω is the parameter defining the number of folds per texture and n the num-
ber of textures we want to provide per triangle (Figure 5.2).

To enhance the effect of natural-looking folds, we add Perlin noise [102] to
the wrinkle textures (Figure 5.3). Persistency and variance v should be kept low
in order to avoid too many high frequencies in the textures. The noise function
noise(x, y) is steady and returns values between −1 and 1.

li(x, y) =
1

2
(sin(2π · ω · xr + noise(x, y) · v) + 1) .

Though the textures are very simple, by a combination of them we obtain
a large variety of different naturally looking folds. To determine the choice of
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Figure 5.2: Procedural wrinkle textures in eight directions (ω = 10, n = 8).

Figure 5.3: Procedural wrinkle textures with different Perlin noise variations (v =
0, 4, 8).

wrinkle textures the modulation factors are used as they are very sensitive to the
orientation of the wrinkles. If, for example, we apply the wrinkle textures Fig-
ure 5.1 (a) and (b) on the quadratic mesh, then a deformation of the mesh in the
x-direction results in a higher modulation factor of the texture (a) whereas a defor-
mation in the y-axis leads to a larger factor of texture (b). Hence, in the simulation
we employ a linear combination of different wrinkle functions li depending on the
modulation factor h.

The use of a combination of too many different wrinkles textures to model
the wrinkles belonging to a specific deformation, results in high frequencies of
the wrinkles. For this reason we restrict ourselves to a combination of at most
two wrinkle textures per triangle. Therefore, we first scale all modulation factors
belonging to different wrinkle textures per triangle to the interval [0, 1]. Then,
we choose the textures with the two highest modulation factors. Between these
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textures the user may define a transition, hence, only in cases where both modu-
lation factors are almost equal, a linear combination of the textures is calculated.
Outside of this zone, only one texture per triangle is considered.

5.4 Wrinkle Texture Rendering

After generating the strain based wrinkle textures we use them in order to enhance
and visualize the simulated coarse meshes. Therefore, the textures are applied to
the meshes with two commonly used methods. First we implemented a bump
mapping technique, which is ideal for a fast visualization during the rendering
process. Second, we realized the more intricate method of displacement mapping.

5.4.1 Bump Mapping

Bump mapping was originally presented by Blinn [28]. Instead of modifying the
surface directly, the normals are altered corresponding to the given texture and
the texture coordinates. Then for each point of the surface the illumination is
calculated depending on these normals. This technique is simple, implemented
on most current graphic cards and is especially suited for small perturbations of
the surface. Bump mapping allows to obtain visual effects of folds, wrinkles and
other surface structures and has therefore been used in the simulation of facial
folds [136] as well as in cloth wrinkles [62]. The main drawback of bump map-
ping is that the vertices are not moved and therefore the surface is not deformed.
This becomes apparent when the camera is close to the object or the silhouette is
regarded.

5.4.2 Displacement Mapping

Displacement mapping was first introduced by Cook [40] as a technique for adding
detail to surfaces. Contrary to bump mapping, where only the normals of rendered
surface points are altered, displacement mapping modifies also the geometry of
the underlying mesh. Hence, also the silhouettes look realistic even for close-
ups. Before discussing the problem of collisions and self-collisions caused by
displacement mapping, we will give a short overview over this technique and how
we adapted it for our purposes.

In displacement mapping a texture is used in order to add its offset coefficients
d(u, v) to the vertices ~p(u, v) of the underlying parameterized mesh in normal
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direction ~np. The new vertex position ~pnew is calculated as follows

~pnew(u, v) = ~p(u, v) + d(u, v) · ~np.

To show fine details, for this approach a starting mesh with high resolution is
needed. However, this contradicts the requisites for our wrinkle simulation: Since
high resolution meshes yield high computation times for the physical simulation,
we use coarse meshes. To obtain high resolution meshes in spite of this require-
ment the simulated mesh may be refined after the simulation using subdivision
methods. Several software implemented subdivision schemes that are suitable for
this purpose have been presented in Chapter 4. Recently algorithms for the sub-
division and displacement mapping process were developed, which can also be
realized in hardware [44, 68].

Because software implementations are more flexible and current graphic cards
still do not support displacement mapping in a comfortable way, we apply the al-
gorithm of Moule and McCool [98], which has also be shown to deliver real time
displacement mapping. We use their adaptive subdivision method together with
the obtained wrinkle textures to get a wrinkled mesh with finer details. In this
method, the triangles are subdivided until they meet a certain criterion. To decide
if we have to proceed with the subdivision or to stop, we evaluate an oracle. It
analyzes the displacement map in the region spanned by the edges of a triangle
(Figure 5.4) and yields the maximum and minimum displacement dmax, respec-
tively dmin of the displacement map in this area. If the difference dmax − dmin is
smaller than a user defined threshold we stop the subdivision. Otherwise depend-
ing on the result of the oracle for the different edges we apply further refinement
steps according to Figure 5.5.

Figure 5.4: Oracle to decide on further subdivision steps: The displacement map is
evaluated in the regions spanned by the triangle edges. If the difference between
maximum and minimum displacement is smaller than a specified threshold the
subdivision is stopped for the corresponding edge. This yields seven different
schemes for the triangle subdivision (Figure 5.5)
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Figure 5.5: After using the oracle in Figure 5.4 to decide which edge needs to be
further subdivided, these schemes are used to refine the triangles.

Additionally to the method of Moule and McCool, we are able to use the
subdivision methods presented in Chapter 4 to get a high resolution mesh. These
methods, however, are view point independent and not adaptive. On the other
side, the subdivision methods yield a smoothing of the mesh increasing the visual
quality even in areas without displacement.

Due to the displacement mapping and the resulting change of the vertex po-
sitions, collisions between the cloth mesh with other objects or with itself may
be caused. In previous approaches this was completely ignored, leading to un-
pleasing visual artifacts. To detect these collisions we propose to use a technique
similar to the method presented in Section 4.3 for subdivision. First, the point
of collision is detected for each displaced vertex. Then the colliding vertices are
set to points just before the collisions occur. Using this new approach, combin-
ing collision-free subdivision and strain-based wrinkles textures, the problem of
induced collisions is corrected and visually pleasing results are obtained.

5.5 Results

To show the validity of the presented approach, first, the correct choice of the
wrinkle textures by our algorithm described in Section 5.2 and 5.3 is visualized
by applying strain forces in different directions on a mesh consisting of 32 trian-
gles. The results obtained using eight wrinkle textures are shown in Figure 5.1
and 5.6, where we note realistic wrinkles corresponding to the deformation of the
underlying mesh.

For the generated bump or displacement maps of the wrinkle texture we used
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Figure 5.6: Pieces of cloth deformed in different directions with added wrinkle
textures.

a resolution of 256x256 pixels. For our purposes, higher resolutions do not im-
prove considerably the quality of the simulation while leading to higher calcu-
lation times. Whereas very few wrinkle textures do not model the deformation
convincingly on the mesh, much initialization time to calculate the wrinkle coef-
ficients is needed if many wrinkle textures are used. Our simulations have shown
that already six wrinkle textures yield satisfying results and more than eight tex-
tures do not visibly improve the simulation (Table 5.1). We compare the meshes
post-processed with our method to the plain subdivided mesh for a shirt and a skirt
in Figure 5.7 and 5.8. In all given examples the post-processing using strain-based
wrinkles textures increases the realism of the visualization by adding fine wrin-
kles (Figure 5.7 (c)-(d) and 5.8 (d)-(f)). The clothes without the added wrinkle
textures are only smoothed using the collision-free subdivision.

In the final example we combine our results of Chapter 4 and 5 by comparing
a coarse mesh simulation of a pair of trousers (1962 triangles) with subsequent
wrinkle animation to a simulation of a high resolution mesh (6212 triangles) to
evaluate the quality and the calculation times. Though we have no physically cor-
rect folds in the low resolution case we obtain visually pleasing and physically
plausible results (Figure 5.9). The result obtained by the wrinkle animation of a
coarse mesh is of the same visual quality as the one simulated using a high reso-
lution mesh with TüTex. The total computation time, however, is less than a third
(Table 5.2). Additionally, the collision-free wrinkle animation is only necessary
for frames that are rendered and not for every time step. All calculations presented
in this section were done on a PC with AMD Athlon 2800+ processor and 1024
MB DDR-SDRAM main memory.
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scene trousers shirt skirt
vertices 1001 917 508
faces 1962 1764 969
wrinkle texture generation
wrinkle texture 6 6 8
wrinkles per texture 18 18 12
persistency 0.3 0.4 0.3
variation 6.0 6.0 5.0
total wrinkle generation time [s] 2.1 2.1 2.8
initialization
wrinkle coefficients [s] 5.91 6.29 11.07
total initialization [s] 5.93 6.31 11.09
wrinkle simulation per frame [ms]
modulation per face 1.8 1.5 1.2
modulation per vertex 1.3 1.2 1.0
generation of wrinkle textures 19.6 19.3 26.6
generation of displacement map 10.7 10.7 14.5
total calculation time per frame 35.7 33.6 44.0

Table 5.1: Calculation times and data for wrinkle animation of trousers, shirt
(Figure 5.7) and skirt (Figure 5.8).

low resolution high resolution
faces 1962 6212
faces after subdivision 31392 -
average calculation time per simulated second [min.]
simulation 2.33 12.20
collision free subdivision 1.4 -
wrinkle simulation 0.01 -
total calculation time 3.48 12.20

Table 5.2: Calculation times for the pair of trousers using a low resolution meshes
with subsequent wrinkle simulation and for the same pair of trousers directly sim-
ulated using a high resolution mesh (Figure 5.9).
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5.6 Summary

Wrinkles are the essential part of the simulation of virtual garment and make
it look realistic. As in the post-processing of coarse meshes a pure subdivision
only yields a smoothing, in this chapter, we have presented a new strain-based
method to simulate wrinkles for cloth simulation. Our main contribution is that
the underlying wrinkle textures are generated procedurally without the need for
user interaction. Furthermore, we are the first who directly reuse the calculated
strain tensor of the finite element simulation in order to determine the wrinkle
textures. In addition, this approach combines wrinkle textures with collision-free
subdivision step in order to realize displacement mapping. Thereby, we achieved
very fine details in the final mesh while simulating a rather coarse mesh. Since the
method is physically-based the results are visually similar to the simulation of a
high resolution mesh without post-processing but can be computed in a significant
shorter simulation time.
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(a) (b)

(c) (d)

Figure 5.7: Simulated shirt during a walk animation: Without wrinkle simulation
(a)-(b) and with wrinkle animation combined with collision-free subdivision (c)-
(d).
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Simulated skirt during a walk animation: Without wrinkle simulation
(a)-(c) and with wrinkle animation combined with collision-free subdivision (d)-
(f).
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: A pair of trousers simulated using a high resolution mesh (a)-(c), and
the same pair of trousers simulated using a low resolution mesh with subsequent
wrinkle simulation and collision-free subdivision (d)-(f).
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CHAPTER 6

Integration into TüTex

6.1 Introduction and Related Work

Since collision detection, collision response and post-processing are an essential
part of any cloth simulation system, all the techniques presented in the previous
chapters of this thesis were implemented in the cloth simulation system TüTex.
This system was developed over the past years [1, 12, 4, 13] at the computer
graphics group WSI/GRIS at the University of Tübingen. TüTex is a further de-
velopment of work done at WSI/GRIS since almost a decade [48, 47].

In addition, due to the increasing power of modern computers the physically
correct simulation of cloth became interesting for a wider range of applications.
Hence, commercial animation packages like Maya by Alias [19] or XSI by Sof-
timage [117] nowadays not only include modules for the simulation of hair and
fluids, but also modules for the simulation of cloth. The applications for these an-
imation packages are usually restricted to entertainment and illustration purposes.
Only recently the more conservative textile industry was attracted by the simula-
tion of textiles, since many appealing applications exist in their domain. These
range from the virtual try-on of garments on avatars of real people [41, 13, 14, 7]
to rapid prototyping and systems supporting the design process of clothing [78].

91
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The idea of virtual try-on systems is to support the customer’s decision making
by a realistic simulation and visualization of virtual garments, before the real gar-
ments are actually manufactured or, in the case of internet shopping, sent to the
customer. This yields reduced stock keeping or shipping costs for clothing retail-
ers and also can support automatic manufacturing of made-to-measure garments
based on the customer’s personal preferences and needs. In this context, TüTex
became an integral part of the research project Virtual Try-On, in which textile
industry, textile research institutes and computer graphics groups worked together
in order to realize these visions.

In the following, we first discuss how the collision detection and post-proces-
sing methods presented in this thesis are integrated into the TüTex cloth simula-
tion system (Section 6.2). In Section 6.3 we present the objectives of the Virtual
Try-On project and detail which of them were realized during the project. The
integration of the TüTex system into the 3D modeling software Maya by Alias is
described in Section 6.4.

6.2 TüTex

All the techniques previously described in this thesis have been incorporated into
the cloth simulation software TüTex. An overview of all the components is shown
in Figure 6.1. It mainly consists of the underlying physical model, algorithms for
numerical time integration, the presented collision detection and response meth-
ods, and the post-processing unit. Additionally, interfaces for the input of avatars,
cloth models, and material parameters are provided as well as for rendering and
user interface components. The complete system was implemented in C++, and
the object oriented architecture helped to support the design demands. For the
design of this simulation system both flexibility and a comfortable programming
interface were major objectives. On the one hand, the flexibility allows future ex-
tensions, like alternative collision detection and response methods. On the other
hand, a clear and flexible programming interface was especially necessary as the
TüTex software is an integral part of the Virtual Try-On project (Section 6.3) and
the interoperability of the various components from all project partners was a pre-
requisite for a stable system. In the following we give a summary of the different
parts of TüTex and describe their specific purposes.

The physical cloth dynamics in TüTex are calculated by a rotated finite ele-
ment model using linear elasticity. To simulate cloth as realistically as possible
it is also necessary to use the correct material parameters. However, the material
parameters for woven textiles show different values in the two orthogonal direc-
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Figure 6.1: Overview of the cloth simulation pipeline in TüTex.

tions, weft and warp, of the threads. Hence, we employ separate parameters that
are obtained using a Kawabata measurement system [75]. We used measurements
for the two Young moduli that are a measure for the tension resistance. Addi-
tionally the shear and bending moduli, the Poisson coefficient, a measure for the
transversal contraction, and the mass density control our simulation. All these
textile parameters are read into the simulator using XML files. In addition to the
internal forces, external forces like gravity and air resistance need to be included
into the physical model. While gravity is easy to implement, wind and lee effects
as well as the air resistance are incorporated by two aerodynamic models based
on particle tracing and the Navier-Stokes equations [3]. Different explicit and im-
plicit numerical solvers were implemented into our system [64, 63, 50]. As high
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dimensional linear equation systems have to be solved in this context, the sparsity
of the corresponding matrices is exploited in order to yield acceptable computa-
tion times. A parallelized time integration scheme for TüTex has been developed
by Keckeisen et al. [77].

The collision detection used in TüTex is based on k-DOP hierarchies and is ex-
tended by stochastic methods as detailed in Section 2.3. Impulses and constraint-
based methods are used to resolve occurred collisions in the system (Chapter 3).
All the post-processing methods presented in Chapter 4 and 5 are used to im-
prove the simulated meshes. These methods are only applied for the time steps
that are either passed to the rendering or exported as geometry files. The post-
processing uses the geometric scene data, i.e. avatars or other rigid collision ob-
jects, to allow a collision-free output. Animations of avatars can therefore be
imported into TüTex as a keyframed mesh sequence that is linearly interpolated in
order to generate in-between frames depending on the simulation time step size.
The cloth itself is also part of the geometric scene data and is provided as planar
patterns, given as triangulated meshes, together with the corresponding patterns
pre-positioned around the avatar. These planar patterns are used as a reference to
compute the internal forces based on the rest state of the textiles. Different cloth
patterns belonging to the same garment can be sewed together based on sewing
information provided in XML files [76]. After a simulation step is finished, the
result of the simulation engine can directly be passed to a rendering engine or
exported as a sequence of triangulated meshes. Further examples of garment sim-
ulations of different clothes are presented in the following sections. As previously
shown in this thesis, TüTex is not only restricted to clothing, but also allows the
simulations of other cloth objects like table cloths or ribbons (Figure 3.1 and 3.2).

6.3 Virtual Try-On

Over the last years one main focus in the development of TüTex was its integra-
tion into the research project Virtual Try-On [4]. The idea behind this project was
the realization of two different scenarios. First, for customers both in an Internet
shop or in a real boutique it should be possible to try-on garments in a virtual
environment. Therefore, the customer is represented by a three-dimensional vir-
tual counterpart, an avatar. Then the customer should be able to choose pieces of
clothing, variable both in design and material. If he is convinced by the look and
fit he should then be able to buy or order it. This strategy might lead to a more
comfortable shopping experience and to smaller return rates for mail order com-
panies. The second scenario is the sale of made-to-measure garments supported
by a virtual try-on system. This scenario can be realized by an avatar in com-



6.3. VIRTUAL TRY-ON 95

bination with adaptable garments represented by cloth patterns. Especially for
made-to-measure clothing a reduction of the return rates is of substantial interest,
as this clothing cannot be sold to other people.

For both presented scenarios it was necessary to realize different tasks:

• acquire a virtual counterpart of the customer,

• support a interface to CAD software for garment design and pattern con-
struction,

• compute the realistic draping behavior for various materials and give feed-
back of the fitting of different sizes and cuts,

• visualize the achieved cloth simulation with the correct materials.

In the following we give an overview of this simulation pipeline. A more de-
tailed description of the project and the tasks accomplished by our project partners
can be found in [17, 126].

Figure 6.2: The pre-positioning and simulation steps of the pipeline realized in
the bmb+f project Virtual Try-On.

The customer’s three-dimensional avatar is acquired using a laser scanner.
Therefore, the customer has to stand into a kind of dressing room, and within
seconds the scan is completed. Textures of the customer’s skin are obtained using
cameras. For the cloth simulation, first the CAD data of the garments needs to be
enriched by information about the seams to assure the correct sewing of the cloth
patterns. The exact material parameters for different types of cloth are acquired
using a Kawabata measurement system. As starting position for the draping sim-
ulation, TüTex utilizes the cloth patterns automatically placed around the avatar
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(Figure 6.2). This pre-positioning process is necessary to allow a complete au-
tomatization of the simulation pipeline without user interaction. It mimics human
knowledge about where to place e.g. trousers or shirts on the body. Based on
all the above input data TüTex calculates the correct draping with specific folds
and wrinkles. The calculated triangular meshes are then passed to the render-
ing module, which visualizes the cloth using bidirectional texture functions and
self-shadowing.

With this simulation pipeline we were able to realize the ambitious goals of
the Virtual Try-On project [12, 13, 14, 16, 17]. We can simulate various types of
garment based on CAD data and physical material parameters (Figure 6.3). Us-
ing the physically-based simulation, we obtain a realistic prediction of the fit and
draping of the garment, as shown in Figure 6.4, where two women with different
body size are wearing the same dress. The deformation of the textile and therefore
also the forces acting on the body are color-coded from blue to red, representing
low to high tension forces. This visualization can be used to evaluate the fit of vir-
tual clothing or to select the best-fitting cloth size out of different alternatives. To
realize made-to-measure clothing, it is possible to change the size of the garment
patterns, e.g. the length of sleeves or legs, individually. This makes the manufac-
turing of custom-made clothing possible after the garment has been simulated on
the computer. A more complex example is the try-on of different layers of cloth
over each other. In Figure 6.5 a blouse is worn over a pair of trousers. This simu-
lation was calculated using a sequential approach for the simulation, i.e. first the
underlying layer, here the pair of trousers, and then the layer on top is simulated.

6.4 TüTex Maya Plugin - tcCloth

The TüTex simulation software cannot only be used as stand-alone software or
as part of the Virtual Try-On simulation pipeline, it has also been integrated into
Alias Maya as a plugin named tcCloth [2]. Maya provides a comfortable interface
to set up the scenes for the cloth simulation and to use the integrated renderers
to rapidly visualize the achieved results. The generation of cloth objects within
tcCloth is very intuitive, since the user can easily design planar cloth patterns by
drawing closed boundary curves. Thereafter, several patterns can be sewed to-
gether by defining seam-lines in between them. A single cloth pattern or multiple
connected cloth patterns can then be transformed into a piece of garment. The
necessary pre-positioning of the patterns around an avatar is done interactively
using the provided moving, bending and rotating tools in Maya (Figure 6.6 (a)).

The implementation of the plugin as well as the software interfaces to TüTex
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Figure 6.3: Physically-based simulations of a dress and a blouse using TüTex
based on CAD data and the corresponding material parameters.

are implemented in C++. User interfaces, like the panels to set material proper-
ties or simulation parameters, are realized using the Maya Embedded Language
(MEL). This design allows to set all relevant input parameters of TüTex using
the associated Maya user interface. For instance, it is possible to set the time
step size or to choose a collision detection and response method (Figure 6.6 (b)).
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Figure 6.4: A dress tried-on by two women with different body proportions. The
internal forces are visualized with colors from red to blue representing high to low
tension forces. For the woman in the upper row, low tension forces result, i.e. the
dress fits well. It is however to small for the woman in the lower row.

The post-processing methods presented in this thesis are also part of the plugin.
Hence, tcCloth is a very powerful tool to test the presented or newly developed
algorithms and to generate demo scenes and videos (Figure 6.7). In addition to
our post-processing methods, tools included in Maya like mesh extrusion can also
be used to enhance the three-dimensional impression of cloth. The simulation
results can then be rendered with any renderer running in Maya like Pixar’s Ren-
derMan [103] or mental ray of mental images [94].

6.5 Summary

In this chapter, we have given an overview of the TüTex cloth simulation system,
its application in the bmb+f research project Virtual Try-On and its integration
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Figure 6.5: Different garment layers are simulated sequentially. First, the under-
lying layer, here the pair of trousers, then the layer on top is simulated.

into the Maya plugin tcCloth. Beside numerical solvers and physical models,
collision detection and post-processing methods are an essential part of cloth sim-
ulation software. Therefore, all the algorithms presented in this thesis were inte-
grated into the versatile and fast simulation framework system TüTex. Because
for custom-made clothing physically-based simulations of cloth based on the real
material parameters are required, TüTex became an integral part of the pipeline
for Virtual Try-On. With Virtual Try-On, we were the first who realized a cloth
simulation system that automatically simulates garment given the CAD data of
the cloth patterns, the physical material parameters and a body scan of a cus-
tomer. The results achieved within this project are very promising, as positive
feedback of textile industry and possible customers at the Cebit 2004 [16] has
shown, where the complete system was presented. To be further able to efficiently
create animations and test scenes, we integrated Tütex with all collision detec-
tion and post-processing algorithms into an Alias Maya plugin. This software is
currently being prepared to be made freely available to the public.
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(a) (b)

Figure 6.6: Interactive design, sewing, and simulation of cloth in the Maya plugin
tcCloth. First, the patterns are designed and seam lines are defined (a), then the
garment can be simulated and post-processed (b).

Figure 6.7: TüTex cloth simulations computed with the Maya plugin tcCloth.



CHAPTER 7

Conclusions and Future Work

The objective of this thesis was to develop collision detection, collision response
and post-processing algorithms for the cloth simulation system TüTex. In the
following we first summarize our specific contributions to these fields, before we
address possible research directions for the future.

Collision Detection and Response: For collision detection methods employed
for deformable objects we presented the state of the art and extensively discussed
the respective advantages and disadvantages. We gave a decision matrix that al-
lows to choose the method that fits best to the specific needs of a problem or
an application. Using this decision matrix, we motivated the choice of bounding
volume hierarchies for the cloth simulation system TüTex. As bounding volume
hierarchies per se do not allow a balancing of speed and quality during the colli-
sion detection process, we developed an innovative stochastic collision detection
method. This hierarchy accelerated stochastic collision detection shows a sig-
nificantly better performance than a pure stochastic or a pure bounding volume
hierarchy approach. To motivate the balancing of speed and quality, we showed
that it is not necessary to detect all collisions in order to obtain stable cloth sim-
ulations. To resolve emerged collisions we developed an impulse-based response
method that is able to handle complex collision and self-collision situations both

101



102 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

for static and for dynamic collision objects. Additionally, we showed how the ap-
plied impulses of this method are distributed on the single mesh vertices in order
to obtain continuity across mesh elements.

Post-Processing: Since cloth simulation with high resolution meshes is very
time consuming, we proposed the simulation of low resolution meshes combined
with a subsequent post-procession. To the field of post-processing of virtual tex-
tiles we contributed two different approaches. To overcome the problem of the
visible polygonal structure of coarse meshes, we proposed to use subdivision
methods for triangular meshes and compared the approximating modified Loop
and the interpolating modified Butterfly method with respect to their applicability
for virtual cloth. As the refinement of the mesh using subdivision methods may
cause collisions between the altered cloth mesh and its environment, we combined
the subdivision methods with a continuous collision detection and response. The
second post-processing approach we introduced in this thesis are the strain-based
wrinkle textures. Since coarse meshes cannot model fine folds and wrinkles, these
details are added by textures. Based on the assumption of area conservation within
a triangle and the strain tensor as a deformation measure, a texture representing
a height field over the triangles is generated. Contrary to earlier approaches we
are able to automatically generate these wrinkle textures without user interaction,
making it applicable for automatic simulation systems like TüTex. Furthermore,
we are the first who combined these textures with a collision-free subdivision step
in order to realize displacement mapping.

TüTex and Virtual Try-On: All the collision detection and post-processing
methods presented in this thesis were included into the cloth simulation engine
TüTex. With Virtual Try-On the first system was realized that allows the physically-
based simulation of garment based on CAD cloth patterns, physical material pa-
rameters and 3D body scans. To be able to easily set up scenes for cloth simula-
tion and to rapidly visualize the achieved results, TüTex was integrated into Alias
Maya by converting it to a plugin.

Although the collision detection and post-processing in TüTex was strongly
improved using the presented methods, many interesting research directions re-
main for the future. In the field of collision detection it might be interesting
to further develop bounding volume hierarchies so that they efficiently support
topology changes. These topology changes arise for example in the design of vir-
tual garments when cloth is cut by scissors. Another important task might be the
combination of the presented hierarchy accelerated stochastic collision detection
with continuous collision detection in order to avoid tunneling effects. Addition-
ally, the design of collision response methods more suited for detection ratios
smaller than 100% seems promising. A very challenging task is the development
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of algorithms that allow the detection of collisions on parallel computer systems.
Since in these systems, the simulation of virtual cloth is distributed to different
computers particularly the detection of self-collisions is complicated because not
all necessary data might be present on each of them. An interesting task in the
simulation of textiles is the development of a rapid prototyping system for the de-
sign of clothing. As the simulation of garment in TüTex is physically-based and
thus very realistic, for the textile industry it might be advantageous if expensive
prototypes can be replaced by computer simulations. In the context of virtual try-
on systems another attractive direction of research, possibly not only in computer
graphics, might be the development of systems where the simulated textile is not
only perceived visually but also using tactile interfaces.
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