
Compression and
Visualization of Large and

Animated Volume Data

Dissertation
der Fakulẗat für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Stefan Guthe

aus Castrop-Rauxel

Tübingen
2004

Tag der m̈undlichen Qualifikation: 12.05.2004
Dekan: Prof. Dr. U. Güntzer
1. Berichterstatter: Prof. Dr. W. Straßer
2. Berichterstatter: Prof. Dr. E. Gröller

(Technische Universität Wien)
3. Berichterstatter: Prof. Dr. A. Schilling

Zusammenfassung

Die Volumenvisualisierung beschäftigt sich mit der Darstellung von skalaren Feldern,
die als Funktion des Raumes gegeben sind, in einer Weise, dass sie vom Benutzer inter-
pretiert werden k̈onnen. Bei der Visualisierung dieser Felder gibt es drei zentrale Pro-
bleme, die alle in dieser Arbeit behandelt werden. Das erste Problem ist eine adäquate
Darstellung des Volumens zu erhalten um alle interessanten Details so schnell wie
möglich finden und analysieren zu können. Das zweite Problem ist die Repräsentation
der Daten und damit auch die Datenmenge, die schnell die Größe des Arbeitsspeichers
überschreiten kann. Das dritte Problem tritt bei zeitveränderlichen oder animierten Da-
ten auf, da hier oftmals nur sehr wenige oder sogar nur ein einzelner Zeitschritt im
Arbeitsspeicher gehalten werden kann.

Die interaktive Visualisierung großer und animierter Volumen-Datensätze ist, vor
allem im Bereich der medizinischen und physikalischen Anwendungen, ein sehr wich-
tiges Problem, das sich nur durch speziell angepasste Algorithmen lösen l̈asst. Ẅahrend
die Daten in der Medizin f̈ur geẅohnlich als regul̈are Gitter gegeben sind, werden bei
physikalischen Simulationen oft strukturierte oder unstrukturierte Gitter verwendet um
sich besser an die Problemstellung anzupassen.

Bei der Darstellung von Volumendaten auf regulären Gittern gab es in den vergan-
genen Jahren große Fortschritte, vor allem im Bereich der Bildqualität. Ein zentrales
Problem bleibt allerdings weiterhin die große Datenmenge, die für jedes einzelne Bild
bearbeitet werden muss. Als Lösungsans̈atze bieten sich zum einen Mehrfachgitterver-
fahren an, die Teile des Datensatzes nicht oder nur in geringer Auflösung betrachten,
und Kompressionsverfahren, die die Datenmenge an sich reduzieren. Auf beide Ver-
fahren wird in dieser Arbeit eingegangen und es wird untersucht, wie sie sich effizient
kombinieren lassen.

Im Fall von strukturierten oder unstrukturierten Gittern kommt noch ein weiteres
Problem bei der Darstellung hinzu. Im Gegensatz zu der festen Reihenfolge, in der
die Daten zur Darstellung von regulären Gittern behandelt werden, muss hier vorab
entschieden werden, in welcher Reihenfolge die Daten zu bearbeiten sind. Die kann,
je nachdem, ob das Gitter konvex oder konkav ist, bzw. ob zyklischeÜberdeckung
zwischen Zellen besteht, zusätzliche Zellen zum Datensatz hinzu fügen, die f̈ur jedes
Bild neu berechnet werden m̈ussen, da sie von der Position des Betrachters abhängen.
Nachdem die Sortierung der Zellen fest steht, muss nun jede Zelle einzeln dargestellt
werden. Diese Darstellung kann dabeiähnlich wie bei regul̈aren Gittern erfolgen, um
eine gleich hohe Qualität zu geẅahrleisten. Ein weiterer Punkt bei strukturierten oder
unstrukturierten Gittern ist die Kompression, da die Datenmengen hier auch sehr große
Ausmaße annehmen können.

Eine weitere Anwendung der Darstellung unstrukturierter Gitter ist das so genann-
te Displacement Mapping, bei dem ein Höhenfeldüber einem beliebigen Dreiecksnetz
dargestellt wird. Um eine gute Bildqualität zu erhalten, muss der bestehende Algorith-

ii

mus allerdings an einigen Stellen modifiziert werden. Diese Modifikationen sind zum
Teil Vereinfachungen, da man im allgemeinen nur an einer einzigen Iso-Fläche inter-
essiert ist, aber auch neue Fähigkeiten, denn Beleuchtung und Farbgebung sind beim
Displacement Mapping wesentlich komplexer.

Abstract

Volume visualization is the rendering of scalar fields in a way that it can be interpreted.
The scalar field is given as a function of space. Visualizing these fields, three common
problems are faced that will be discussed in this work. The first problem is to find a
representation that allows for fast access and analysis of interesting parts within the
volume. The second problem is to reduce the size of this representation since it can
easily exceed the size of the main memory. The third problem is that for time dependent
or animated volume data only very few or even a single time step can be held in main
memory.

Interactive visualization of large and animated volume data is, especially in the area
of medical and physical applications, a very important problem. This problem has to
be solved with special algorithms. While the data in medical applications is usually
sampled on a regular grid, physical simulations use structured or unstructured grids to
better adapt to the details within the volume.

There have been a lot of publications on very good research for rendering volume
data sampled on regular grids. The main focus of the research was to improve the
image quality of the final renderings. Reducing the amount of data to be processed
for each image still remains as a very important problem that has to be solved. There
are two existing solutions to this problem. One is to use multi-resolution algorithms in
order to process parts of the volume data at lower resolutions or not to process them
at all. The other one is to use compression in order to reduce the size of the data set
in the first place. Both approaches will be discussed and it will be investigated how to
combine them efficiently.

For rendering structured or unstructured grids an additional problem arises. In
contrast to the fixed rendering order of regular grids, the visibility order of all cells has
to be determined prior to rendering. This can also introduce new cells depending on
whether the grid is convex or concave or if it contains visibility cycles. These additional
cells have to be computed for each image since they depend on the location of the
viewer. After the visibility order has been determined each cell is rendered individually.
The rendering works similar to the rendering of regular grids in order to achieve the
same high quality results. Finally, compression for structured and unstructured grids is
considered since the amount of data can also be very high for this representation.

A further application of rendering unstructured grids is displacement mapping.
Here a simple height field over any kind of triangle mesh is rendered. To achieve a
good image quality however, the previous rendering approaches need to be modified.
These modifications include simplifications since the rendering is only interested in
a single iso-surface but also new features since lighting and coloring are much more
complex for displacement mapping.

iv

Acknowledgements

This work would not have been possible without the help and support of a lot of people.
Special thanks to my advisor, Prof. Dr.-Ing. Dr.-Ing. E.h. Wolfgang Straßer, for his
support and confidence in my ideas. Only his connections to researchers in industry
and academia enabled me to always work with both, the cutting edge graphics hardware
and to communicate with those who know how to handle its capabilities.

I would like to thank David Kirk, Paul Heckbert and Jonah Alben at NVIDIA for an
invaluable 3 month Internship in 2003. Thanks must also go to David Kirk at NVIDIA
and Michael Dogget at ATI for always supplying me with the latest graphics hardware,
drivers and bug fixes.

Since working alone is impossible nowadays, I would like to thank my colleagues
and other people I had the opportunity to work with. Stefan Gumhold for suggesting
wavelet compression for animated volume data and his support at the very beginning of
my work, Michael Meissner for asking me if I would like to do volume rendering on the
graphics card (a GeForce3 at that time), Michael Wand for helping me with the ideas
of multiresolution rendering and writing the paper together with me, Martin Kraus
for his ideas on rendering of tetrahedral meshes, Stefan Roettger for further ideas on
that topic, Johannes Hirche for his displacement mapping algorithm and other valuable
discussions, Armin Kanitsar for the Christmas Tree data set, the Christmas Tree case
study and the best case study award, and Gunter Knittel for always telling me what I
still can’t do on the graphics card. I would also like to thank two students that did some
work on this thesis. Thanks to Julius Gonser for his efficient cache implementation
for multiresolution volume rendering and Andreas Schieber for his tetrahedral sorting
algorithm.

Most of this work was funded by the Sonderforschungsbereich (SFB) 382 of the
German Research Council (DFG). During the last time period, this work was sponsored
by the NVIDIA Fellowship Program 2003-2004.

I would like to thank Melanie K̈unzel for always believing in me, Stefan Kimmerle,
Sven Fleck and Johannes Hirche for proof reading, and finally my friends and my
family for their never ending support.

vi

Contents

1 Introduction 1
1.1 Volume Representation . 2

1.1.1 Cartesian Grids . 2
1.1.2 Regular Grids . 2
1.1.3 Rectangular Grids . 3
1.1.4 Structured Grids . 3
1.1.5 Unstructured Grids . 4

1.2 Optical Model . 5
1.2.1 Absorption . 5
1.2.2 Emission . 6
1.2.3 Emission & Absorption . 8
1.2.4 Lighting, Scattering & General Light Transportation 9
1.2.5 Numeric Integration .10

1.3 Transfer Functions .13
1.3.1 Gradient Magnitude Modulation14
1.3.2 Multi-Dimensional Transfer Functions15
1.3.3 Pre-Integration Technique16
1.3.4 Pre-Integrated Lighting .18

2 Regular Grids 23
2.1 Hardware Accelerated Rendering .23

2.1.1 Simple Shading .24
2.1.2 Pre-Classification .26
2.1.3 Post-Classification .28
2.1.4 Pre-Integration .31
2.1.5 Pre-Integrated Lighting .37
2.1.6 Ray-casting .41
2.1.7 Results .50

2.2 Compression .51
2.2.1 Wavelet Transformation .51
2.2.2 Entropy Coding . 51
2.2.3 Animated Volume Data .52
2.2.4 Large Volume Data .55
2.2.5 Results .55

2.3 Multi-Resolution Rendering .58
2.3.1 Multi-Resolution Hierarchy 59
2.3.2 Projective Classification .61
2.3.3 View-dependent Priority Schedule61

vii

viii CONTENTS

2.3.4 Error Estimation . 62
2.3.5 Visibility Testing . 63
2.3.6 Rendering of Blocks .65
2.3.7 Caching Strategy .66
2.3.8 Results .66

2.4 Conclusion & Future Work .71

3 Unstructured Grids 73
3.1 Visibility Sorting . 75

3.1.1 Tetrahedral Convexification76
3.1.2 Handling Cycles .80

3.2 Hardware Accelerated Rendering .81
3.2.1 Simple Shading .81
3.2.2 Pre-Integration .82
3.2.3 Pre-Integrated Lighting .86
3.2.4 Results .94

3.3 Compression .95
3.3.1 Cut-Border Machine .99
3.3.2 Results .107

3.4 Conclusion & Future Work .109

4 Displacement Mapping 111
4.1 General Purpose Algorithm .112
4.2 Hardware Acceleration .113

4.2.1 Single pass prism Renderer113
4.2.2 Tetrahedral Renderer .115
4.2.3 Mesh Construction .115
4.2.4 Rendering .116
4.2.5 Performance Optimizations123
4.2.6 Results .124

4.3 Conclusion & Future Work .125

List of Figures

1.1 Visualization of ultrasonic data set in the 25.th week of pregnancy (left)
and photograph taken 24 hours after birth (right) [SW95].1

1.2 Slices of a regular sampled volume.3
1.3 Data sampled on a structured grid.4
1.4 Data sampled on an unstructured grid.4
1.5 Positive (a) and negative (b) absorption-only rendering of aneurism

data set. 6
1.6 Emission-only rendering of aneurism data set with saturation (a) and

re-normalization (b). 7
1.7 Maximum intensity projection of aneurism data set7
1.8 Uniform (a) and non-uniform (b) emissionκ and absorptionτ render-

ing of aneurism data set. 8
1.9 Local lighting (a) and global lighting (b) of aneurism data set.9
1.10 Approximation of an integral (grey) using Riemann-sums (dashed). .10
1.11 Simple transfer function used for rendering the lobster data set in Fig-

ure 1.12. The two color bars representκ (top) andτ (bottom). 13
1.12 Rendering of lobster data set without (a) and with (b) transfer function

applied. 14
1.13 Engine data set rendered with normal transfer function (a) and gradient

magnitude modulation (b). .15
1.14 Tooth data set (a) and head of visible human data set (b) rendered with

multi-dimensional transfer function [KKH01]. 16
1.15 High frequency transfer function applied to Neghip data set rendered

without (a) and with pre-integration (b).17
1.16 High frequency transfer function and Phong lighting applied to Neghip

data set rendered without (a) and with pre-integrated lighting (b) com-
pared against ray-casting using 5 times more samples (c) (negative dif-
ference image (d) 8 times amplified).19

2.1 Slices for shear-warp (a) and 3D texture mapping based algorithm (b).24
2.2 Simple shading using two-dimensional textures and object aligned sli-

ces without (a) or with lighting (b). 25
2.3 Rendering pipeline for simple shading with (red, green and grey) and

without (green and grey only) lighting. The green portion is the ren-
dering itself. 25

2.4 Comparison of simple shading (a) and pre-classified rendering with
three-dimensional textures (b). .27

ix

x LIST OF FIGURES

2.5 Rendering pipeline for pre-classification rendering with lighting. The
green portion is the rendering itself.27

2.6 Comparison of pre-classified (a) and slice based post-classified (b) ren-
dering on the graphics card. .28

2.7 Rendering pipeline for post-classification rendering with lighting. The
green portion is the rendering itself.29

2.8 Comparison of simple post-classified (a) and slab based pre-integrated
rendering (b). 31

2.9 Rendering pipeline for pre-integrated rendering with lighting. The
green portion is the rendering itself.32

2.10 Comparison of pre-integrated (a) with material pre-integrated render-
ing (b) for higher quality lighting of the volume. 37

2.11 Rendering pipeline for material pre-integrated rendering with lighting.
The green portion is the rendering itself.38

2.12 Comparison of pre-integrated rendering (a) with pre-integrated ray-
casting (b) for highest quality images.41

2.13 Rendering pipeline for ray-casting with pre-integration and lighting.
The green portion is the rendering itself.42

2.14 Previous image and current image (upper row). Differential image,
standard motion compensation and windowed motion compensation
(lower row). 53

2.15 Scaling function used for the cosine windowed motion compensation
with neighboring windows. 54

2.16 Reconstruction and storage order for different types of volumes and
sequences, similar to MPEG. a) motion compensated differences b)
motion compensation only, c) popular MPEG order54

2.17 Original engine data set (a) and compressed data set at ratio 200:1 using
the Haar wavelet (b) and a CDF wavelet (c).56

2.18 Original lobster data set (a) and compressed data set at ratio 100:1 us-
ing the CDF wavelet (b). 56

2.19 Average PSNR of each different kind of volume against bits per voxel
(CDF wavelet with support 2/6 and popular MPEG like sequence). . .57

2.20 PSNR of each kind of volume of the first 500 volumes of a 2000 vol-
ume animation (CDF wavelet with support 2/6, maximum quality and
popular MPEG like sequence). .58

2.21 Original volume 1000 of an animation of 2000 volumes (a). I-only
sequence, quality 63, compression ratio 31:1, I-Volume (b); P-only se-
quence, quality 63, compression ratio 50:1, P-Volume (c); MPEG se-
quence, quality 63, compression ratio 110:1, B-Volume(d) of the same
animation . 58

2.22 Representation of a large volume data set as a wavelet tree.59
2.23 Analysis of the projective classification strategy.60
2.24 Depth complexity for a given image (a) without optimizations (b), with

block based empty space leaping (c), alpha test (d) and occlusion culling
(e) with corresponding occlusion map (f). About30% of all sample
points have been removed with each optimization.64

2.25 Copying data from neighbors for the 3D-texture blocks.65
2.26 Texture interpolation, the blocks overlap each other by half a voxel. .66
2.27 PSNR for Christmas tree data set, and the visible human data set. . . .68
2.28 SNR for Christmas tree data set, and the visible human data set. . . .68

LIST OF FIGURES xi

2.29 Quality comparison for different compression ratios for the Christmas
Tree data set. .69

2.30 Christmas Tree data set (a) and visible human male data set (b) ren-
dered at interactive frame rates. .69

2.31 Visible human female data set (a) and visible human female RGB data
set (b) rendered at interactive frame rates.70

3.1 Classification of non-degenerated projected tetrahedra (top row) and
the corresponding decomposition (bottom row) according to [ST90]. .74

3.2 Artifacts produced by incorrect visibility sorting using the MPVO al-
gorithm. Correct image (a) and difference image (b).76

3.3 Determining the exterior volume (depicted in light green).Left : mini-
mal volume using convex hull.Right: easy setup with bounding box. 77

3.4 Selection of cutting plane.Left : bad BSP strategy (no concavity cut
away). Center: elimination of one concavity.Right: elimination of
two concavities (but total number of auxiliary cells is the same, since
the bottom sub-volume is disconnected and needs to be split by another
cut). 79

3.5 2D convexification example with resulting sorting graph. The light red
balls depict cells with multiple dependencies for a face.80

3.6 To convexify the BluntFin data set (a) only one auxiliary cell needs to
be added (b). .81

3.7 a) A cycle generated by three cuts (A > B > C > D > A with >
meaning ”in front of”). b) A different cut selection resolves the cycle
(A > B > C < D > A). 81

3.8 Simple shading using no textures and per vertex coloring.82
3.9 Rendering pipeline for simple shading. The green portion is the ren-

dering itself. 82
3.10 Pre-integrated rendering of the Blunt Fin (a) and Bucky Ball (b) data

sets. 83
3.11 Rendering pipeline for pre-integrated rendering. The green portion is

the rendering itself. .84
3.12 Blunt Fin (a, b) and Bucky Ball (c, d) data set using per-ray lighting.

With ambient only (a, c) and diffuse lighting (b, d).87
3.13 Specular highlight on different iso-surfaces within a single tetrahedron

(a), approximation for non-iso-surface setting (b) and correct solution
(c). 88

3.14 Specular highlight on different iso-surfaces for a data set containing 60
tetrahedra (a) and highlights for non-iso-surface setting (b).88

3.15 Rendering pipeline for pre-integrated rendering. The green portion is
the rendering itself. .89

3.16 Convexification of two interleaving gears. The top row (a, b) shows
the data set from the side and from above. For the final convexified
mesh (f) a total of 42 cuts are necessary for a data set consisting of 202
tetrahedra. .96

3.17 tetrahedral meshes with a) minimum and b) maximum vertex tetrahedron-
order 4t

v . 97
3.18 The different manifold cut-border situations. The gate is shown as

green triangle and the newly added tetrahedron with green edges and
blue transparent faces. .101

xii LIST OF FIGURES

3.19 The different types of non manifold cut-border situations.102
3.20 Vertex enumeration. .103
3.21 Edge-adjacency of cut-border triangles around non manifold edge. . .105
3.22 The measured tetrahedral meshes Random (a), Proto (b), Bubble (c),

Torso I (d), Torso II (e) and Blunt Fin (f). The transparent meshes were
rendered with projected tetrahedra. To the tetrahedra of the ”Torso
I”-mesh a material identifier is attached. The ”Blunt Fin”-mesh was
rendered with false colors. .108

4.1 The prism with its resulting triangles used for rendering.112
4.2 The vectors used to define the second local coordinate system for sim-

pler calculation of the ray exit point.114
4.3 Sampling within the extruded prism with a slice of the displacement

map shown. .115
4.4 Subdivision of prism into three tetrahedra (v0-v1-v2-v5, v0-v1-v4-v5,

v0-v3-v4-v5). .116
4.5 One possible decomposition of tetrahedron into triangles. Intersection

of front and back edge at point S in the viewplane.117
4.6 Optimized base mesh. .123
4.7 Flat base mesh with a half donut shape applied to it (a). The base

mesh in red is translated away for better visibility. Same shape with a
different texture applied (b). .124

4.8 Displacement Map of Crater Lake applied to a flat base mesh (a). The
head of Volker Blanz displaced from a cylindrical mesh, tetrahedral
mesh show (b). .124

4.9 Sphere shaped base mesh with a earth displacement map and texture
applied to it. Additionally the wire-frame of the tetrahedral mesh is
shown (a). Different angle, this time showing Europe with slightly
exaggerated displacements (b). .125

List of Tables

1.1 Comparison of memory footprints in kB for1283 voxel volume and
different representations. 5

2.1 Comparison of memory footprints in kB for1283 voxel volume for
rendering with simple shading. .26

2.2 Memory footprints in kB for1283 voxel volume for rendering with
pre-classification. .28

2.3 Memory footprints in kB for1283 voxel volume for rendering with
post-classification. .29

2.4 Memory footprints in kB for1283 voxel volume for rendering with
pre-integration. 32

2.5 Memory footprints in kB for1283 voxel volume for rendering with
material pre-integration. .38

2.6 Memory footprints in kB for1283 voxel volume for rendering with ray
casting onto a5122 screen. 42

2.7 Performance for rendering a643 data set (neghip64) onto a5122 screen
with all possible rendering algorithms.1 Some of the possibilities were
not implemented because DirectX 9 hardware supports at least post-
classified rendering.2 Needed hardware feature not supported under
DirectX 9. 3 Ray-casting was not implemented under OpenGL.50

2.8 Performance for rendering a1283 data set (neghip128) onto a5122

screen with all possible rendering algorithms.1 Some of the possi-
bilities were not implemented because DirectX 9 hardware supports
at least post-classified rendering.2 Needed hardware feature not sup-
ported under DirectX 9.3 Ray-casting was not implemented under
OpenGL. 50

2.9 PSNR comparison between different wavelets using maximum quality,
the popular MPEG like sequence and arithmetic compression.55

2.10 Comparison regarding compression ratio and frames per second (using
2d textures on system 1 and 2) between different encoders using var-
ious qualities, the popular MPEG like sequence and the CFD wavelet
with support 2/6. 57

2.11 Comparison between different sequences using CDF wavelet with sup-
port 2/6, arithmetic encoding and maximum (intermediate) quality. . .57

3.1 Memory footprints in kB for a volume consisting of2, 097, 152 vertices
(original and intermediate vertices) during rendering with simple shading.83

xiii

xiv LIST OF TABLES

3.2 Memory footprints in kB for a volume consisting of2, 097, 152 vertices
(original and intermediate vertices) during rendering with simple shading.84

3.3 Memory footprints in kB for a volume consisting of2, 097, 152 vertices
(original and intermediate vertices) during rendering with simple shading.88

3.4 Sorting times for the SPX data set with 12936 tetrahedra (Coolant sim-
ulation in a part of the Super Phoenix Reactor). The first line shows the
results of using the plain MPVO algorithm which is fastest but does not
render the SPX correctly. With an increasing number of tested cutting
planes the total number of auxiliary cells decreases significantly and so
does sorting time. .94

3.5 Basic quantities of the measured meshes.109
3.6 Total number of encoded operations; relative frequencies of cut-border

operations; relative frequency of non-manifold situations.109
3.7 Cut-border machine: consumed storage for connectivity, border and

quantized vertex coordinates. Running time for connectivity alone and
together with vertex coordinates in tetrahedra per second on a Pentium
II 350MHz. .109

3.8 Comparison of the different approaches.110

LIST OF TABLES xv

xvi LIST OF TABLES

Chapter 1

Introduction

Volume visualization in general is the art to visualize a function given in three-dimen-
sional space in a single image. But a single image is not always sufficient. Most of
the time interactive exploration of the volume or even play back time dependent data is
desired. In order to clearly see the requirements for the algorithms to be implemented,
the different settings and application areas to be encounter need closer examination.

Visualization of volumetric data is a very common task in many areas in medicine
(see Figure 1.1), computational physics and various other disciplines. Besides being
acquired, analyzed and stored for further processing, these data sets also require an ade-
quate visualization. Since the acquiring and analysis of the data will not be investigated
in this thesis, only storing and visualization will be discussed.

Figure 1.1: Visualization of ultrasonic data set in the 25.th week of pregnancy (left)
and photograph taken 24 hours after birth (right) [SW95].

An important technique in interactively exploring these data sets is direct volume
rendering. To achieve interactive frame rates, general purpose graphics hardware is
used nowadays. This approach has two advantages. First, the central processing unit
(CPU) is free for other processing, such as on the fly decompression. Second, the
graphics processing unit (GPU) is a lot faster by now when it comes to volume render-
ing.

To store volume data on disc usually either the raw data or a simply compressed

2 Introduction

data (using the gzip [Deu96] library zlib) is used. In order to handle extremely large
data sets a different compression approach has to be used [NH92, NH93, Wes94,
CHF96, GLDH97, IP98, KS99, Rod99, GGS99, BIKP99, GS01, NS01, GWGS02,
GS04]. However, a good compression scheme heavily depends on the structure of
the data to be compressed.

1.1 Volume Representation

Depending on the source and application area of the volume data many different repre-
sentations are possible. However, all these representations have one thing in common;
they all represent a continuous function in space. Therefore not only the sample po-
sitions, i.e. the locations in space that have actual data attached to them, but also the
space in between has to be represented correctly. Therefore the structure of the volume
between these points, i.e. the grid, is very important.

1.1.1 Cartesian Grids

The simplest distribution of sample points is the cartesian grid. All sample points are
evenly spaced along the three axes. The connectivity of the grid is regular, i.e. it only
consists of cubes. Therefore only the number of sample points in each direction and
the distance between the sample points has to be stored. This results in the minimal
memory consumption, where only the data values at the sample point locations need
to be stored. This representation can be seen as a three-dimensional image. These
sample points are then called voxel (short for volume element), similar to pixel (picture
element). The total amount of memory needed for this representation isn3 for a volume
with n voxel in each direction. Yet, this very simple volume representation is rarely
used because the resolution is fixed for the whole volume and the same for all three
axes, thus wasting a lot of memory in more or less constant regions.

During visualization only the voxel values are of interest and the volume data is
treated as a three-dimensional array of sample points. Therefore the rendering can
be done with a simple ray-casting approach [KH84, MJC02] or with a slicing ap-
proach [FGR85, Sab88] that can also be run on the GPU [Ake93, RSEB+00]. The re-
sulting frame rates are interactive to real-time1 on todays graphics hardware [RSEB+00,
EKE01, MGS02] for volume data sets of a size of up to2563 voxel.

1.1.2 Regular Grids

In contrast to cartesian grids, regular grids don’t have the same sample distance for all
three axes. However, the sampling distance is still fixed for each axis. This type of
grid is usually encountered in medical data sets (see Figure 1.2). If a medical data set
is created using computed tomography (CT) or magnet resonance (MR), the distance
along the w-axis is usually longer than along the u- and v-axis. This is due to the slice
based construction of these apertures.

Since all voxel have the same extend, this representation is also as easy to handle as
the cartesian grid, even with the different scaling for all the axis. Even if a rendering ap-
proach needs some modifications, the algorithm itself remains untouched. The amount

1Interactive frame rates are usually defined as 1 to 10 frames per second, whereas real-time is defined as
more than 10 frames per second.

1.1 Volume Representation 3

u

v

w

Figure 1.2: Slices of a regular sampled volume.

of memory needed is stilln3 for a volume withn voxel in each direction. There-
fore, especially larger data sets, such as the Visible Human [Nat86] or the Christmas
Tree [KTM+02], are using this kind of representation. Again the resulting frame rates
are interactive to real-time on todays graphics hardware, even with the slight modifica-
tions to the rendering algorithm. Ray-casting on the other hand needs no modifications
to handle regular grids.

1.1.3 Rectangular Grids

The difference between a regular and a rectangular grid is that the size of the voxel
varies within the data set. Yet, each voxel still has a rectangular shape. Therefore
the only thing that varies is the distance between the sample points along the u-, v-
and w-axis. One can easily see that each slice has to be treated differently with this
setting. Since the adaptation to local details in a simulation environment is very poor,
this representation is rarely encountered and can always be treated as a structured grid
instead. The amount of memory needed for this representation is nown3 for the voxel
data and3× (n− 1) for the spacing between the slices in each direction for a volume
with n voxel in each direction.

As for the rendering, a software based ray-casting approach and a modified shear-
warp algorithm [LL94] that may also run on the GPU, are the only two correct ways
for rendering this representation directly.

1.1.4 Structured Grids

Structured grids are usually encountered in physical simulations where both, a regular
connectivity and adaptation to local details, are necessary. While physical simulations
mostly use curvilinear grids (see Figure 1.3), i.e. regular grids that have been deformed
with a continuous function, structured grids can always be described as regular grids
with arbitrary sample point positions.

In order to render these grids using graphics hardware, the grid cells have to be
traversed in either a front-to-back or back-to-front order and will be processed in-
dividually. Since the structure is regular and the data set only consists of hexahe-
dral cells, the sorting can be done very efficiently. The rendering of a single cell
can either be done directly or by splitting each hexahedron into 5 or 6 tetrahedra.

4 Introduction

Figure 1.3: Data sampled on a structured grid.

These tetrahedra can then be rendered using any projection approaches running on
the GPU [ST90, WMS98, Wit99, GRS+02] or in software [FMS00].

For a structured grid the memory footprint containsn3 voxel andn3 three-dimen-
sional coordinates. If 8 bits are used for the voxel data and floating point numbers (32
bits) for the coordinates, the voxel data is only1

13 of all the data.

1.1.5 Unstructured Grids

Unstructured grids (see Figure 1.4) do not only consist of arbitrary connectivity but
also of arbitrary cell types. In order to render these grids they are usually decomposed
into tetrahedral meshes. Unstructured grids are used in physical simulations whenever
structured grids do not adapt enough to local details within a certain limit of sample
points.

Figure 1.4: Data sampled on an unstructured grid.

In contrast to rendering structured grids, the sorting becomes much more of an
issue [KE01, RSG+04]. The rendering of individual cells on the other hand is the
same as for structured grids, since the rendering algorithms were not created using
the structure of the volume in the first place. Although order-independent rendering
schemes, such as ray-casting, exist, they can hardly be mapped to graphics hardware if
one wants to achieve a decent frame rate. For an unstructured grid the memory footprint
containsn3 voxel,n3 three-dimensional coordinates and up ton3−2 tetrahedra with4
indices to the corresponding sample points. If 8 bits are used for the voxel data, floating
point numbers (32 bits) for the coordinates and 32 bit integers for the indices, the voxel
data is only about129 of all the data. A comparison between the memory footprints2

for a volume containing1283 voxel is given in Table 1.1.

2The memory footprint is maximum amount of memory used by the rendering algorithm.

1.2 Optical Model 5

representation voxel data coordinate data connectivity data
cartesian grid 2,048 kB < 0.1 kB 0 kB
regular grid 2,048 kB < 0.1 kB 0 kB
rectangular grid 2,048 kB ≈ 1.5 kB 0 kB
structured grid 2,048 kB 24,576 kB 0 kB
unstructured grid 2,048 kB 24,576 kB 8,192 kB - 32,768 kB

Table 1.1: Comparison of memory footprints in kB for1283 voxel volume and different
representations.

1.2 Optical Model

After being able to represent a continuous function in space, the light interactions with
the volume have to be defined. The interaction between light and volume is called
optical model [Max95]. This model consists of a combination of emission, absorption
and scattering or even more general light transportation equations. In order to set up
these models, the volume is seen as a cloud of particles where the scalar voxel value
represents the particle densityρ.

1.2.1 Absorption

The most simple particle medium is a black cloud, thus the optical model is a pure
absorption model. For simplicity the particles are assumed to be identical spheres of
radiusr and projected areaA = πr2. With ρ being the number of particles per unit
volume a small cylindrical slab with baseB of areaE and thickness∆s is considered.
The slab has volumeE∆s and containsN = ρE∆s particles. With the light flowing
perpendicular to∆s and∆s being small enough, the probability of particles to overlap
is low, so the total area they occlude can be approximated byNA = ρAE∆s. Thus
the fraction of light being occluded isρAE∆s

E = ρA∆s. In the limit case where∆s
approaches zero and the probability of overlap also approaches zero, the differential
equation is

dI

ds
= −ρ (s) AI (s) = −τ (s) I (s) (1.1)

wheres is the length parameter along the ray in the direction of the light flow andI (s)
is the light intensity at distances. The quantityτ (s) = ρ (s) A is called extinction co-
efficient and defines the rate at which light is occluded. The solution to the differential
equation is

I (s) = I0 exp
(
−
∫ s

0

τ (t) dt

)
(1.2)

whereI0 is the intensity ats = 0 where the ray enters the volume. The transparency
between0 ands is defined as

T (s) = exp
(
−
∫ s

0

τ (t) dt

)
(1.3)

while the opacity of a voxel viewed parallel to one edge can be written as

α = 1− T (l) = 1− exp

(
−
∫ l

0

τ (t) dt

)
. (1.4)

6 Introduction

Rendering with this model produces images similar to x-ray photos. However the
x-ray itself is the negative of this image (see Figure 1.5). The main drawback of this
approach is that it is order independent, i.e. there is no visual cue for the depth where a
certain detail is to be found within the data set. Also the values along the viewing ray
all approach zero very fast.

a) b)

Figure 1.5: Positive (a) and negative (b) absorption-only rendering of aneurism data
set.

1.2.2 Emission

In addition to extinction, the medium may also add light to the ray by emission or
reflection. If the particles uniformly glow with the intensityκ per unit projected area,
the projected areaρAE∆s will contribute a glow fluxκρAE∆s to the base areaE.
Therefore the added flux per unit isκρA∆s. Thus the equation forI (s) is

dI

ds
= κ (s) ρ (s) A = κ (s) τ (s) = g (s) . (1.5)

The termg (s) is called source term and includes all light that is emitted. The solution
to this differential equation is

I (s) = I0 +
∫ s

0

g (t) dt. (1.6)

As can clearly be seen in Equation 1.6, this model is also order independent. How-
ever, there are a couple of shortcomings in this model. Again the order independence
turns out to be a major drawback instead of an advantage. The second problem is that
if all values along a certain viewing ray are added up an overflow might occur, thus
parts of the volume will saturate to white in the final image, even if the original values
were different. This can be circumvented by re-normalizing the final pixel values to the
valid range after summing up (see Figure 1.6). The images produced with this model
will look like some kind of neon light since this kind of volume also only consists of
emitting particles.

1.2 Optical Model 7

a) b)

Figure 1.6: Emission-only rendering of aneurism data set with saturation (a) and re-
normalization (b).

Instead of adding up the values along the viewing ray, the maximum value can be
used instead and the intensity will be

I (s) = I0 + sup
t=0..s

(g (t)) . (1.7)

Rendering with this model is then called MIP (maximum intensity projection). This
approach is mainly used for CT angiography (see Figure 1.7) where vessels have been
enhanced using a contrast agent. The idea is that even small vessels will have high
values but these values might be lost along the viewing ray if there are a lot of small
values in front of them. While this behavior is expected by the viewer most of the time,
these small vessels are very important for medical diagnosis and need to be visible for
this kind of application.

Figure 1.7: Maximum intensity projection of aneurism data set

8 Introduction

1.2.3 Emission & Absorption

In a more realistic setting, both emission and absorption are present. So the differential
equation should look like this:

dI

ds
= g (s)− τ (s) I (s) . (1.8)

According to Max [Max95] this equation can be solved as

I (u) = I0 exp
(
−
∫ u

0

τ (t) dt

)
+
∫ u

0

g (s) exp
(
−
∫ u

s

τ (t) dt

)
ds. (1.9)

For a uniform emission, i.e.g (s) = κτ (s), the differential intensity is

dI

ds
= κτ (s)− τ (s) I (s) = τ (s) (κ− I (s)) . (1.10)

The solution to this is

I (s) = κ− (κ− I0) exp
(
−
∫ s

0

τ (t) dt

)
. (1.11)

Emission and absorption together not only solve the overflow problem of the emis-
sion-only setting, but also provide a bit more flexibility. However, a uniform emission
results in exactly the same image as for the negative absorption-only setting (compare
Equation 1.2 and Equation 1.11). So if a uniform emission was used, the same draw-
backs as for the absorption-only approach will be present.

Instead of using the same value for emission and absorption, i.e. uniformly emitting
particles, the emission can for example be scaled with the particle density. The resulting
images in Figure 1.8 show that, with this scaling, the rendering is no longer order
independent. This enables the algorithm to see which parts of the volume are facing to
the viewer and which parts are backward facing. It also enables the user to better see
the structure of the volume itself.

a) b)

Figure 1.8: Uniform (a) and non-uniform (b) emissionκ and absorptionτ rendering of
aneurism data set.

1.2 Optical Model 9

1.2.4 Lighting, Scattering & General Light Transportation

So far only self emitting particles were discussed. In order to see more small details
within a data set, the way how light interacts with particles has to be defined. This
includes shading and light transportation. Even if shading was originally supposed to
work only for geometry, all that is needed to shade a voxel is a normal. Taking a look
at surface extraction algorithms [LC87, Lev88, SW95], it can easily be seen that the
normal of the extracted iso-surface is pointing in the opposite direction as the gradient
of the volume data. For−→n (s) being the gradient at position s and

−→
l the direction to

the light source the following equation forg (s) can be found:

g (s) = κ (s) τ (s)−→n (s) · −→l . (1.12)

Shading the volume with these gradients and a local lighting model already unveils
most of the finer structures contained within the volume (see Figure 1.9a).

a) b)

Figure 1.9: Local lighting (a) and global lighting (b) of aneurism data set.

For additional depth cues the lighting model can be changed to a global model, e.g.
one that traces back to the light source in order to produce shadows (see Figure 1.9b).
With l being the position of a directional light source, the resulting equation then looks
like this:

g (s) = κ (s) τ (s)−→n (s) · −→l exp

(
−
∫ l

s

τ (t) dt

)
. (1.13)

For a point light source, an attenuation that increases with the distance to the light
source is also encountered. Thusg can be written as:

g (s) = κ (s) τ (s)−→n (s) · −→l
exp

(
−
∫ l

s
τ (t) dt

)
|s− l|

. (1.14)

Introducing higher order lighting terms, i.e. scattering, increases the realism of the
resulting images but also dramatically increases the rendering costs. Besides the in-
creased realism there are very few additional details to be discovered so that most
rendering schemes will only use a local light source for shading the voxel.

10 Introduction

Max [Max95] also discusses a more general approach for scattering, but even the
simple shadow calculation is too slow for interactive rendering. Therefore only a local
lighting model will be used throughout this thesis.

1.2.5 Numeric Integration

Since an analytical evaluation of the volume rendering integrals is scarcely possible,
a numeric integration needs to be carried out. The most common numeric integration
used for volume rendering is Riemann-sums (see Figure 1.10) forn ray segments of
equal length. This is the same numeric integration as used by Max [Max95]. However,
the resulting equations can easily be adapted to segments of varying length as needed
for adaptive sample of the volume data along each ray (see Section 2.1.6).

Figure 1.10: Approximation of an integral (grey) using Riemann-sums (dashed).

The absorption-only volume rendering integral in Equation 1.2 can be approxi-
mated by a Riemann-sum sampling at a distanced = s/N :

I (s) = I0 exp
(
−
∫ s

0

τ (t) dt

)
(1.15)

≈ I0 exp

− s/d∑
i=1

dτ (id)

= I0

s/d∏
i=1

exp (−dτ (id))

In contrast to the integral, the approximation can be computed very efficiently. Even if
the notation using a sum may be faster to compute, the approximation using a product
is much more accurate and should therefore be used.

The volume rendering integral of emission-only rendering (Equation 1.6) is even
easier to approximate since it contains only a single integral and no exponential func-
tion. Again a sampling distance ofd = s/N is used.

I (s) = I0 +
∫ s

0

g (t) dt (1.16)

≈ I0 +
s/d∑
i=1

dg (id)

= I0 + d

s/d∑
i=1

g (id)

1.2 Optical Model 11

The rendering now only sums up all densities along the viewing ray, multiplies this
sum with the sampling distance and adds it to the background intensity.

The general emission and absorption model usingτ (s) andg (s) as stated in Equa-
tion 1.9 is a bit more complicated to approximate. In order to achieve a good ap-
proximation, the self-occlusion within each sampling interval of sized has to be ac-
counted for. The emission colorg and opacityα are defined asg (s) = C (s) τ (s)
andα (s) = 1 − exp (−dτ (s)) . With C (s) being the emissive term. At a sampling
distanced = u/N the intensity is:

I (u) = I0 exp
(
−
∫ u

0

τ (t) dt

)
+
∫ u

0

g (s) exp
(
−
∫ u

s

τ (t) dt

)
ds (1.17)

≈ I0 exp

− u/d∑
i=1

dτ (id)

+
∫ u

0

g (s) exp

− u/d∑
i=s/d+1

dτ (id)

ds

= I0

u/d∏
i=1

exp (−dτ (id)) +
∫ u

0

g (s)
u/d∏

i=s/d+1

exp (−dτ (id)) ds

≈ I0

u/d∏
i=1

exp (−dτ (id)) +
u/d∑
j=1

α (jd) C (jd)
u/d∏

i=j+1

exp (−dτ (id)) .

As can easily be seen, Equation 1.17 is still very costly to evaluate since a sum needs
to be calculated for every sample point. However, if this equation is written with∆Ti

as the transparency of the current sample, the following recursive definition can easily
be found.

∆Tn = exp (−dτ (nd)) (1.18)

= 1− α (dn)
I (0) = I0

I (u) = IN

In = I0

n∏
i=1

exp (−τ (id) d) +
n∑

j=1

α (jd)C (jd)
n∏

i=j+1

exp (−dτ (id))

= I0

n∏
i=1

∆Ti +
n∑

j=1

α (jd) C (jd)
n∏

i=j+1

∆Ti

= I0

n∏
i=1

∆Ti +
n−1∑
j=1

α (jd)C (jd)
n∏

i=j+1

∆Ti + dα (jd) C (jd)

=

I0

n−1∏
i=1

∆Ti +
n−1∑
j=1

α (jd)C (jd)
n−1∏

i=j+1

∆Ti

∆Tn + dα (nd) C (nd)

= In−1∆Tn + α (nd) C (nd)
= (1− α (nd)) In−1 + α (nd) C (nd)

In order to calculateI (u) = IN there are two possible approaches. Starting withI0,
In can be calculated usingIn − 1. This results in the so called back-to-front rendering
order since the evaluation starts with the background color and ends the calculation at
the closest sampling point. The opacityα of each sample point at distanced is then

12 Introduction

defined asα = 1−t = 1−exp (−τd). According to Wilhelms and van Gelder [WG91]
this can be approximated for smalld by α ≈ min (1, td). Additionally Max [Max86]
also proposes to use a quadratic approximation forα that meetsα = 1 smoothly for
d = 2/τ .

The simplest way to calculateIN directly is using recursion. However, taking a
closer look at the total transparencyTn in front, i.e. the visibility, of the sample point
n and its emission∆In, IN can be calculated as follows:

TN = 1 (1.19)

Tn = Tn+1∆Tn+1

∆In = α (nd) C (nd)
∆I0 = I0

I (u) = I0

N∏
i=1

exp (−τ (id) d) +
N∑

j=1

α (jd) C (jd)
N∏

i=j+1

exp (−dτ (id))

= ∆I0T0 +
N∑

j=1

∆IjTj

=
N∑

j=0

∆IjTj

The resulting rendering order is called front-to-back since the evaluation starts with the
closest sample and ends at the background color.

For emission and absorption rendering with uniform emission (see Equation 1.11),
the approximation is a lot easier again.

I (s) = κ− (κ− I0) exp
(
−
∫ s

0

τ (t) dt

)
(1.20)

≈ κ− (κ− I0) exp

− s/d∑
i=1

dτ (id)

= κ− (κ− I0)

s/d∏
i=1

exp (−dτ (id))

Again, the resulting colorI (s) can be calculated directly. This special case produces
a negative version of an absorption-only rendering if the inverted background color
In
0 = 1 − I0 was used for the absorption-only rendering andκ = 1 for the uniform

emission.
The shadow calculation for a direction light source in Equation 1.13 can also be

approximated using Riemann-sums.

C (s) = κ (s)−→n (s) · −→l exp

(
−
∫ l

s

τ (t) dt

)
(1.21)

≈ κ (s)−→n (s) · −→l exp

− l/d∑
t=s/d+1

dτ (td)

= κ (s)−→n (s) · −→l

l/d∏
t=s/d+1

exp (−dτ (td))

1.3 Transfer Functions 13

As in Equation 1.15, the version containing only a single exponential evaluation is
faster but less accurate than the version using a product of exponential functions.

Similar to directional lighting, the shadow calculation for point light source (see
Equation 1.14) can be approximated the same way.

C (s) = κ (s)−→n (s) · −→l
exp

(
−
∫ l

s
τ (t) dt

)
|s− l|

(1.22)

≈ κ (s)−→n (s) · −→l
exp

(
−
∑l/d

t=s/d+1 dτ (td)
)

|s− l|

= κ (s)−→n (s) · −→l
∏l/d

t=s/d+1 exp (−dτ (td))

|s− l|

Note that the result only needs to be divided by the distance to the light source once
since the distance between shadow sample point and light source does not influence the
amount of light that is absorbed.

1.3 Transfer Functions

So far only a representation for a continuous function in space was defined. This func-
tion only has one optical property attached to it; the optical densityτ (s). Also this
function only returns the density of the volume at the sampling position. This is why
the images produced so far were all black and white.

For a more general rendering of the given volume data a so called transfer function
is defined. This function adds optical properties to the voxel values. The optical den-
sity τ (s) does not reflect the voxel value directly but applies any possible mapping to it
(see Figure 1.11). In order to better distinguish between different voxel values (see Fig-
ure 1.12) the emission colorκ (s) can also be modified with the transfer function. Since
a lighting equation has already been defined for volume rendering in Section 1.2.4, dif-
ferent ambientκambient (s) and diffuse colorsκdiffuse (s) for the emission color can
also be defined. Using the Phong lighting model [Pho75], an additional specular color
κspecular (s) and a specular powerκpower (s) has to be defined within the transfer
function.

Figure 1.11: Simple transfer function used for rendering the lobster data set in Fig-
ure 1.12. The two color bars representκ (top) andτ (bottom).

14 Introduction

a) b)

Figure 1.12: Rendering of lobster data set without (a) and with (b) transfer function
applied.

With different shading models the number of output values of the transfer function
may increase even more. In Section 1.3.1 and 1.3.2 the voxel value is not necessarily
the only input to the transfer function but may contain additional information.

Besides the transfer function, there are two different shading paradigms. Pre-
classification applies the transfer function only to the original voxel values and in-
terpolates these lookups in order to get visual properties for each sample point. Post-
classification first interpolates the sample point and then applies the transfer function to
the interpolated value. While both of these rendering paradigms are being used, post-
classification is usually considered to produce higher quality images but is also more
computational complex as can be seen in the following sections. This is due to the fact,
that the frequency spectrum of the transfer function and thus the frequency spectrum
of the classified volume is unbound for post-classification rendering.

1.3.1 Gradient Magnitude Modulation

With the definition of a transfer function that only depends on the voxel value only
materials that have different absorption coefficients can be distinguished. Also the
problem that because of partial volume effects and interpolation there will always be a
medium absorption coefficient between a low and a high absorption coefficient is en-
countered. Thus the rendering cannot distinguish between a material with a medium
absorption coefficient and the boundary between a low and high absorption material.
Therefore an additional input to the transfer function is needed that enables the render-
ing to separate those two cases.

For scalar volume data sets, the first derivative (the gradient) gives the direction of
fastest change. This motivates its use as the ”surface normal” in shaded volume ren-
dering as already mentioned in Section 1.2.4. The gradient magnitude itself is another
fundamental local property of a scalar field, since it characterizes how fast values are
changing. Using gradient magnitude as the second dimension in a transfer functions
allows to vary opacity or color according to the magnitude of change within the voxel
values. With this a large region of medium absorption coefficients and a partial volume
effect resulting in the same coefficient can be distinguished.

1.3 Transfer Functions 15

In order to enhance the boundary between different sample values within the vol-
ume and to suppress homogeneous regions, the opacity can be scaled with the magni-
tude of the local gradient. This can simply be done by usingα′ = α (−→n · −→n) with −→n
being the un-normalized gradient. Even if the resulting images look rather like surface
rendering instead of volume rendering, the amount of detail they uncover (compare
Figure 1.13a and b) is increased.

a) b)

Figure 1.13: Engine data set rendered with normal transfer function (a) and gradient
magnitude modulation (b).

The resulting transfer function now depends on two parameters but everything ex-
cept the opacity only depends on one of these values. So this is the first simple multi-
dimensional transfer function. However, this transfer function still has the problem,
that it cannot differentiate between a boundary going froms0 to s3 and a boundary
going froms1 to s2 with s0 < s1 < s2 < s3. In order to distinguish different set-
tings within a volume even more, or to render data sets with more than one or two
parameters, additional axes need to be introduced into the transfer function.

1.3.2 Multi-Dimensional Transfer Functions

A general approach for this kind of transfer functions is to define a multi-dimensional
transfer function [KKH01] (see Figure 1.14). This allows for using not only the first
derivative but also higher order derivatives or even multi-dimensional volumes. Trans-
fer functions can better discriminate between various structures in the volume data
when they have more variables - a larger vocabulary – with which to express the dif-
ferences between them. These variables are the axes of the multi-dimensional transfer
function.

Kniss et al. [KKH01] choose the third axis of the transfer function directly based
on principles of edge detection. It is best suited for application areas concerned with
the boundaries or interfaces between relatively homogeneous materials. Some edge
detection algorithms (such as Marr-Hildreth [MH79]) locate the middle of an edge by
detecting a zero-crossing in a second derivative measure, such as the Laplacian. In
practice, a more accurate but computationally expensive measure, the second direc-
tional derivative along the gradient direction, which involves the Hessian, a matrix of
second partial derivatives, is used. Details on these measurements can be found in

16 Introduction

a) b)

Figure 1.14: Tooth data set (a) and head of visible human data set (b) rendered with
multi-dimensional transfer function [KKH01].

work on semi-automatic transfer function generation [KD98]. The usefulness of hav-
ing a second derivative measure in the transfer function is that it enables more precise
disambiguation of complex boundary configurations. Since 2D transfer functions are
unable to accurately and selectively render the different material boundaries present,
higher dimensional transfer functions are needed. A 3D transfer function can easily
accomplish this.

Also multi-dimensional volumes are very interesting for medical application in or-
der to combine CT and MR scans. Another medical application is the visualization of
the visual human data set that consists of color images [Nat86]. Biological application
such as confocal laser microscopy also produces multi-dimensional volume data.

1.3.3 Pre-Integration Technique

Pre-integrated classification is a technique used in volume rendering when classifi-
cation is applied after interpolation [MHC90, EKE01]. Following the Nyquist theo-
rem [Nyq28], one can generally ensure that the reconstruction of the volumetric func-
tion along the rays is accurate. However, a non continuous transfer function, e.g. bi-
nary classification with infinite frequencies, introduces well-known slicing artifacts, as
shown in Figure 1.15a.

To circumvent this, pre-integration assumes a certain behavior of the volumetric
function along the cast ray, i.e. linearity. Based on the conventional 1D classification
table, each interval between two samples can be pre-integrated and stored in a 2D table.
During rendering, two consecutive sample values are used as indices for the 2D table,
instead of classifying each individual sample assuming the color to be constant for the
distance to the next sample along the ray. The advantage of pre-integrated volume

1.3 Transfer Functions 17

a) b)

Figure 1.15: High frequency transfer function applied to Neghip data set rendered
without (a) and with pre-integration (b).

rendering is that even precise iso-surfaces can be rendered without any additional cost
during ray casting, see Figure1.15b. While Max et al. [MHC90] pre-integrated opacity
only, Engel et al. [EKE01] extended this to the color informationτ (s) of the transfer
function.

Instead of using a mappingτ (s) for each ray that takes the ray parameter and
returns the optical density,τ (s (x (λ))) with the ray parameterλ is used.x (λ) maps
the ray parameter to the actual sampling position.s (x) returns the scalar voxel value
at positionx. The one dimensional transfer function is now defined inτ (s) and is the
same for every ray. This is a restriction to the more general notation of Section 1.2.
Using a given sampling distanced = λ/N , Equation 1.2 can be written as:

I (λ) = I0 exp

(
−
∫ λ

0

τ (s (x (ϕ))) dϕ

)
(1.23)

= I0 exp

− λ/d−1∑
i=0

∫ (i+1)d

id

τ (s (x (ϕ))) dϕ

Assuming thats varies linearly betweenx (id) andx ((i + 1) d), s (x (ϕ)) can be sub-
stituted forid ≤ ϕ ≤ (i + 1) d with a linear interpolation between the first voxel value

sf = s (x (id)) (1.24)

and the second voxel value

sb = s (x ((i + 1) d)) . (1.25)

With this approximation the following volume rendering equation is produced.

I (λ) ≈ I0 exp

− λ/d−1∑
i=0

d

∫ 1

0

τ ((1− ω) sf + ωsb) dω

 (1.26)

= I0

λ/d−1∏
i=0

exp
(
−d

∫ 1

0

τ ((1− ω) sf + ωsb) dω

)

18 Introduction

This approximation is a lot closer to the actual solution of the volume rendering equa-
tion since it de-couples the frequencies of the transfer function and the volume itself.
Thus the Nyquist theorem allows the rendering algorithm to sample the volume at a
sampling distance half as large as the highest frequency within the volume again. Also
one has to keep in mind that for a slicing the volume with axis aligned slicesd is nearly
constant. To get a constantd one has to use concentric shells around the viewer or
a parallel projection instead of a perspective one. In order to evaluate this simplified
equation, the transparency

∆Ti = exp
(
−d

∫ 1

0

τ ((1− ω) sf + ωsb) dω

)
(1.27)

is pre-computed for the constantd and each possible combination ofsf andsb. For the
emission and absorption model and back-to-front rendering the following approxima-
tion to the volume rendering equation is produced.

∆In = d

∫ 1

0

g ((1− ω) sf + ωsb) (1.28)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

In = In−1∆Tn + ∆In

I (u) = IN

Changing the rendering order to front-to-back in order to implement ray-casting, the
equation can be solved as follows.

TN = 1 (1.29)

Tn = Tn+1ti

∆I0 = I0

I (u) =
N∑

j=0

∆IjTj

One of the main drawbacks of pre-integrated volume rendering is its incompati-
bility with gradient magnitude modulation. Since the color is pre-integrated based on
the voxel value only, no gradient magnitude modulation is possible, unless using a 4D
or even higher dimensional function which would prevent interactivity. Solving this is
still topic of research.

1.3.4 Pre-Integrated Lighting

In order to implement accurate lighting, the different changing gradients in addition to
the two sample valuessf andsb for each interval between two sample points have to
be handled. Meissner et al. [MGS02] extended the pre-integration approach to han-
dle material properties and lighting since pre-integration suffers from shading artifacts
when using more than one iso-surface or semi-transparent rendering in the original
implementation [EKE01] (see Figure 1.16).

To handle the changing gradients,g (s) is split into three parts, the ambient term
ga (s) that does not depend on the gradient, the diffuse termgd (s) that roughly depends
in a linear way on the dot product between gradient−→n and the light vector

−→
l , and

1.3 Transfer Functions 19

a) b)

c) d)

Figure 1.16: High frequency transfer function and Phong lighting applied to Neghip
data set rendered without (a) and with pre-integrated lighting (b) compared against
ray-casting using 5 times more samples (c) (negative difference image (d) 8 times am-
plified).

gs (s) that depends on the gradient in any non-linear way. It is also assumed that the
gradient−→n , just as the sample valuess, only changes linearly between the two sample
points. It can therefore be expressed as−→n = (1− ω)−→n f + ω−→n b.

ga (s) = κa (s) τ (s) (1.30)

gd (s) = κd (s) τ (s)
gs (s) = κs (s) τ (s)

ld (−→n) = max
(
−→n · −→l , 0

)
ls (−→n) = max

(
−→r · −→l , 0

)κp

g (s,−→n) = ga (s) + gd (s) ld (−→n) + gs (s) ls (−→n)

The dependency betweengd (s) and−→n can also depend on any other nearly linear
mapping, i.e. fake-shading or even a very smooth cube map or light map. The only

20 Introduction

restriction is thatgd has to depend nearly linear onω for each sample interval. The
dependency betweengs (s) and−→n can be defined in any way, including a reflection
or environment map, or even a noise texture. Therefore any non-linear term should be
handled ings while any linear term can be handled bygd.

Then∆In is split in a way that each resulting∆Ix
n only depends ongx, so that the

total emission can be split into three parts.

∆In = ∆Ia
n + ∆Id

n + ∆Is
n (1.31)

Since the ambient emission∆Ia
n does not depend on the gradient in any way, it can

simply be pre-computed with the normal pre-integration table for this portion of the
emission.

∆Ia
n = d

∫ 1

0

ga ((1− ω) sf + ωsb) (1.32)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

Assuming a linear change of the diffuse termgd betweensf andsb, the diffuse emission
Id
n is split into two separate terms. WhileIdf

n only depends on the first gradient−→n f ,
Inb
n only depends on the second gradient−→n b.

∆Id
n = d

∫ 1

0

gd ((1− ω) sf + ωsb) ld ((1− ω)−→n f + ω−→n b) (1.33)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

≈ d

∫ 1

0

gd ((1− ω) sf + ωsb) ((1− ω) ld (−→n f) + ωld (−→n b))

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

= dld (−→n f)
∫ 1

0

(1− ω) gd ((1− ω) sf + ωsb)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω +

dld (−→n b)
∫ 1

0

ωgd ((1− ω) sf + ωsb)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

∆Idf
n = d

∫ 1

0

(1− ω) gd ((1− ω) sf + ωsb)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

∆Idb
n = d

∫ 1

0

ωgd ((1− ω) sf + ωsb)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

1.3 Transfer Functions 21

In order to approximatels however, something else needs to be done. If no as-
sumptions are made on the relation betweenls and−→n , a linear combination between
ls (nf) andls (nb) can not be used. Instead of using an interpolation, all the normals
betweenid and(i + 1) d are weighted with their maximum emission intensity to get a
single gradient−→n (x (ω∗)) that represents the whole interval.

T (ω) = gs ((1− ω) sf + ωsb) (1.34)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

ω∗ =

∫ 1

0
ωT (ω) dω∫ 1

0
T (ω) dω

∆Is
n = d

∫ 1

0

gs ((1− ω) sf + ωsb) ls ((1− ω)−→n f + ω−→n b)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

≈ d

∫ 1

0

gs ((1− ω) sf + ωsb) ls ((1− ω∗)−→n f + ω∗−→n b)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

= dls ((1− ω∗)−→n f + ω∗−→n b)
∫ 1

0

gs ((1− ω) sf + ωsb)

exp
(
−d

∫ ω

0

τ ((1− ω′) sf + ω′sb) dω′
)

dω

For the Phong lighting model used in Equation 1.30 the following resulting exponent
can be calculated.

κ∗p =

∫ 1

0
κp ((1− ω) sf + ωsb) T (ω) dω∫ 1

0
T (ω) dω

(1.35)

Instead of using the maximum emission intensity, the average intensity withκp > 0
over all reflected angles could also be used. This results in a slightly different formula-
tion of the approximation stated in Equations 1.34 and 1.35.

τ̂ (s) =
τ (s)

κp (s) + 1
(1.36)

ĝs (s) = κ (s) τ̂ (s)
T̂ (ω) = ĝs ((1− ω) sf + ωsb)

exp
(
−d

∫ ω

0

τ̂ ((1− ω′) sf + ω′sb) dω′
)

ω̂∗ =

∫ 1

0
ωT̂ (ω) dω∫ 1

0
T̂ (ω) dω

κ̂∗p =

∫ 1

0
κp ((1− ω) sf + ωsb) T̂ (ω) dω∫ 1

0
T̂ (ω) dω

Note that average and maximum intensity produce the same result ifκp is constant or
if a single cube-map has been used as reflection or environment map.

22 Introduction

Chapter 2

Regular Grids

For a closer look at how to visualize volume data, to compress and render large data
sets, the most simple volume representation, the regular grid, is investigated first. Most
of the data sets to be encountered in this chapter originate in medical applications and
are the results of CT or MR scans. These scanners were built in a way, that their output
resolution ranges from1mm down to 1

3mm. The size is usually a power-of-two value
ranging from32 to 512 per slice with a variable, possibly non-power-of-two, number
of slices. Also some data sets originated in physical simulations or even photographs of
a cryosection of a human body [Nat86]. Regardless of the size and origin of each data
set, they have to be rendered at interactive to real-time frame rates in order to allow for
an interactive exploration of the data.

In order to guarantee these frame rates different rendering approaches will be ex-
plored in Section 2.1 that all run on graphics hardware. After that compression schemes
for large and animated data sets will be investigated in Section 2.2. In order to render
large data sets at interactive frame rates a multi-resolution rendering scheme will be
presented in Section 2.3. Then some results for rendering and compressing volume
data stored on a regular grid will be shown and some conclusions for this type of rep-
resentation will be drawn.

2.1 Hardware Accelerated Rendering

In order to get the rendering load off the CPU, there are three possible solutions. One
could use special volume rendering hardware [KS97, PHK+99], special purpose pro-
grammable graphics hardware that has been designed for volume rendering [MKS98,
MKW+02, KWHM02], or general purpose graphics hardware, that has become pro-
grammable during the last couple of years. The three basic rendering approaches that
allow for porting to general purpose graphics hardware are shear-warp [LL94] algo-
rithms, simple algorithms designed for fast evaluation [Ake93] and full featured ray-
casting [KH84, Kni00, RGW+03].

The simplest rendering approach is the GPU based adaptation of the shear-warp
algorithm. Since it doesn’t make any sense to split the transformation into the shear-
warp factorization on graphics hardware, the algorithm is reduced to rendering a stack
of 2D textures along the main axis of the volume that is most perpendicular to the
viewing plane (see Figure 2.1a). This approach will be used for the simple shading
in Section 2.1.1. The main problem of this approach is that the distance between the

24 Regular Grids

slices changes when rotating the volume and for the cases where the rendering switches
between different stacks.

a) b)

Figure 2.1: Slices for shear-warp (a) and 3D texture mapping based algorithm (b).

Since 3D textures are available on all of today’s graphics hardware, the rendering
approach proposed by Akeley [Ake93] (see Figure 2.1) can also be used. For this
approach, slices that are aligned to the viewing plane are cut through the volume. The
distance between these planes stays constant during rotation and no stack switches will
happen. However, for perspective projection, the distance between each pair of slices
depends on the angle between the view direction and the viewing ray. 3D textures will
be used for the high quality shading algorithms in Section 2.1.2 to Section 2.1.5.

To fix the problem of non-constant sampling distances and to correctly render very
high frequencies within the data sets, adaptive ray-casting will be used in Section 2.1.6
for highest quality results at the cost of lower frame rates.

2.1.1 Simple Shading

Rendering with a stack of 2D texture (see Figure 2.1) is both the fastest and most sim-
ple rendering approach for volume visualization. Applying only the classification to
the volume data allows the rendering algorithm to use an index texture [WNDS99] and
a color map so that the volume texture does not need to be changed whenever the clas-
sification changes. With this approach the 2D textures are just blended over each other
and the first simple volume rendering algorithm (see Figure 2.2a) can be implemented.
On current graphics hardware however index textures are no longer supported. What
actually happens is that the graphics driver applies the classification to the texture slices
before uploading. In order to increase the performance of this rendering approach, an
RGBα texture to which the classification has already been applied is uploaded. Thus
the texture will only be uploaded whenever the classification changes, whereas the in-
dex texture may force the graphics hardware to upload the texture every frame.

However, there are two drawbacks with this approach. First, if shading is to be
incorporated a second texture or special extensions [MHS99] are used. The rendering
pipeline then consists of two parts. The preprocessing and texture upload portion, that
applies the classification to the original volume data and uploads the RGBα texture
slices to the graphics hardware, and the rendering portion that blends the slices over

2.1 Hardware Accelerated Rendering 25

a) b)

Figure 2.2: Simple shading using two-dimensional textures and object aligned slices
without (a) or with lighting (b).

each other using alpha blending to produce the final image. Another approach also
incorporates the lighting calculations into the pre-processing step. Additionally, the
gradients have to be calculated after loading the volume. This computation however
has to be carried out only once. Although this seems to increase the amount of graphics
memory being used, index textures end up as RGBα textures on any current graphics
hardware, as previously mentioned. A comparison between a rendering without and
with lighting can be seen in Figure 2.2. The complete rendering pipeline for the simple
shading approach can be seen in Figure 2.3.

calculate
gradients

create
2D textures

render axis-
aligned slices

calculate
lighting

initialization classification change every frame

load
volume

Figure 2.3: Rendering pipeline for simple shading with (red, green and grey) and with-
out (green and grey only) lighting. The green portion is the rendering itself.

The memory consumption during rendering with lighting is four bytes per voxel
in main memory and three times four bytes per voxel in texture memory. However,
only one slice with four bytes per voxel needs to be present in graphics memory at the
same time (minimal rendering footprint). In order to speed up the rendering however,
the whole volume needs to be stored into a single 2D texture. Therefore the com-

26 Regular Grids

plete classified volume will be present in texture memory at a time (maximal rendering
footprint). Table 2.1 shows a comparison of the two simple shading approaches. This
approach uses only one texture unit in 2D texture mode at a time and the so called
legacy OpenGL rendering mode [WNDS99]. It also runs on all graphics hardware that
supports DirectX 9 [Mic03] in hardware rendering mode.

data type memory locations without lighting with lighting
voxel data system 2,048 kB 2,048 kB
gradients system 0 kB 6,144 kB
classification system 1 kB 1 kB
texture stacks system/graphics 24,576 kB 24,576 kB
min. rendering footprint graphics 256 kB 256 kB
max. rendering footprint graphics 8,192 kB 8,192 kB

Table 2.1: Comparison of memory footprints in kB for1283 voxel volume for rendering
with simple shading.

2.1.2 Pre-Classification

As already mentioned, 2D textures and axis aligned slices have three major drawbacks.
First, the distance between the slices along the viewing ray is not constant during rota-
tion. Second, there are three texture stacks containing the whole volume, one for each
axis to be created. Third, whenever switching between different texture stacks occurs,
popping artifact become visible. Even with the compensation approaches to these prob-
lems [EKE01, GS01], 3D textures and view plane aligned slices are the easiest way to
circumvent all three of these problems. Axis aligned slices produce a near constant
distance between the sample points along each viewing ray. The distance at the corner
of the image may be larger due to the perspective used for generating the image. For
a moderate perspective setting however, these artifacts are hardly visible and could be
fixed easily with a short fragment program. Comparing the 2D texture rendering with
the 3D texture rendering in Figure 2.4, it can clearly be seen that the transparency in
the simple shading approach is too high. This is even more visible when the data set is
explored interactively.

The rendering pipeline of pre-classified shading with 3D textures (see Figure 2.5) is
very similar to the one for simple shading with 2D textures. The rendering itself blends
each slice cut through the 3D texture into the frame buffer using alpha blending. The
texture has still to be updated every time the classification or the lighting changes since
the RGBα texture used for rendering contains the classified and lit voxel. However,
there is only one 3D texture to be created instead of three 2D texture stacks packed into
three separate textures. But therefore the geometry changes every frame, increasing
the traffic between the CPU and the GPU. To circumvent this, one could use a fixed
geometry that has to be transformed in world and texture space according to the current
camera position. On the other hand, this would require a larger geometry in order to fit
every possible rotation within this so called proxy-geometry and 6 user defined clipping
planes to cut back the size of this geometry. Besides that, the approach with changing
proxy-geometry is very similar to the one proposed by Akeley [Ake93], but without the
lookup into the color table. This lookup has been removed since the standard OpenGL
index texture will be changed into an RGBα texture whenever the texture is uploaded
and no post-interpolative lookup is supported in standard OpenGL or in the legacy

2.1 Hardware Accelerated Rendering 27

a) b)

Figure 2.4: Comparison of simple shading (a) and pre-classified rendering with three-
dimensional textures (b).

pipeline of DirectX 9. Rendering with this post-interpolative lookup is called post-
classification. This approach uses OpenGL 1.3 extensions and only runs on hardware
that supports these extensions or on hardware that supports DirectX 9 pixel shader. The
rendering itself will be discussed in Section 2.1.3.

calculate
gradients

create
3D texture

render view-
plane slices

calculate
lighting

initialization classification change every frame

load
volume

Figure 2.5: Rendering pipeline for pre-classification rendering with lighting. The green
portion is the rendering itself.

The memory consumption during rendering is four bytes per voxel in main memory
and four bytes per voxel in texture memory. In contrast to the simple shading approach,
the complete classified volume has to be present in texture memory at a time since it is
represented by a single texture. Table 2.2 shows the memory footprint during rendering
and the location where the data is stored. This approach uses only one texture unit in 3D
texture mode at a time and the so called legacy OpenGL rendering mode of OpenGL
1.3 or the legacy pipeline of DirectX 9. It also runs on all graphics hardware that
supports DirectX 9 in hardware rendering mode.

28 Regular Grids

data type memory locations pre-classification
voxel data system 2,048 kB
gradients system 6,144 kB
classification system 1 kB
3D texture graphics 8,192 kB
rendering footprint graphics 8,192 kB

Table 2.2: Memory footprints in kB for1283 voxel volume for rendering with pre-
classification.

2.1.3 Post-Classification

Using the post-classification paradigm, the rendering is somewhat more complicated.
In addition to the post-interpolative lookup into the transfer function, the shading also
has to happen based on interpolated gradients. Theoretically these interpolated gra-
dients have to be normalized in order to evaluate the diffuse lighting correctly. In
practice however, it turns out that the resulting image is only slightly darker than the
correct solution so that the normalization is usually skipped. Also the visual quality of
post-classified rendering turns out to be a lot higher than the quality of pre-classified
rendering (see Figure 2.6).

a) b)

Figure 2.6: Comparison of pre-classified (a) and slice based post-classified (b) render-
ing on the graphics card.

The rendering pipeline of post-classified shading with 3D textures (see Figure 2.7)
is still very similar to the previous ones. The main change is that a 1D texture now
contains a lookup table that stores the transfer function. Therefore the 3D texture needs
not to be changed if the transfer function changes. Also none of the textures needs to be
changed if the light position is updated since the shading itself now takes place during
rendering. Even if this rendering paradigm seems to result in a higher performance
because of the reduced traffic between the CPU and the GPU for changing the transfer
function, the actual performance is a lot lower than for pre-classified rendering. This is
because of the dependent texture lookup and the per-pixel shading.

The memory consumption during rendering is four bytes per voxel in main memory
and four bytes per voxel in texture memory. In addition to this the transfer function is

2.1 Hardware Accelerated Rendering 29

calculate
gradients

create 1D
lookup texture

render view-
plane slices

create
3D texture

initialization every frame

load
volume

classification change

Figure 2.7: Rendering pipeline for post-classification rendering with lighting. The
green portion is the rendering itself.

stored in main and texture memory with four bytes per entry. Table 2.3 shows the
memory footprint during rendering and the location where the data is stored. This
approach uses two texture units, one in 3D texture mode and one in 1D dependent
mode.

data type memory locations post-classification
voxel data system 2,048 kB
gradients system 6,144 kB
classification system 1 kB
3D texture graphics 8,192 kB
1D lookup texture graphics 1 kB
rendering footprint graphics 8,193 kB

Table 2.3: Memory footprints in kB for1283 voxel volume for rendering with post-
classification.

OpenGL fragment program

While the geometry transformation uses the legacy pipeline of both, OpenGL 1.3 and
DirectX 9, a fragment program or pixel shader is used for the per-pixel computations.
The OpenGL fragment program uses shader code version 1.0 while the DirectX pixel
shader requires version 1.1. The per pixel computations can be expressed in these five
steps.

1. Sample volume datas (x (ω)) and gradient−→n (x (ω)).

2. Get opacityα (s (x (ω))) = 1− exp (−dτ (s (x (ω)))) and emission color
κ (s (x (ω))).

3. Calculate diffuse emission intensityld (x (ω)) = max(−→n (x (ω)) · −→l , 0).

4. Calculate emissionC (x (ω)) =
(

1
2 ld (x (ω)) + 1

2

)
κ (x (ω)).

30 Regular Grids

5. Write emissive color∆Iω = C (x (ω))α (s (x (ω))).

For back-to-front rendering the blending is set to multiply1 − α with the previously
stored color values. For front-to-back rendering, the output color is multiplied by1−α∗

with α∗ being the transparency of all previously rendered pixels.

!!ARBfp1.0

ATTRIB texPos = fragment.texcoord[0] ;
ATTRIB lightDir = fragment.texcoord[1] ;

TEMP voxel;
TEMP color;
PARAM const = { 0.5 , 1.0 , 2.0 , 0.0 };

sample volume data at given position 1
TEX voxel, texPos, texture[0] , 3D;

©

use sample value to lookup into classification 2
TEX color, voxel.a, texture[1] , 2D;

©

calculate diffuse emission intensity l d 3
MAD voxel, voxel, const.b, -const.g;

©

DP3 SAT voxel, voxel, lightDir;

50% diffuse and 50% ambient light 4
MAD voxel, voxel, const.r, const.r;

©

MUL color.rgb, color, voxel;

write pre-multiplied color 5
MUL color.rgb, color, color.a;

©

MOV result.color , color;

END

DirectX 9 pixel shader

Even if the order of the computations is different for the DirectX 9 pixel shader, the
functionality remains the same. Furthermore, the hardware requirements for the Di-
rectX 9 implementation are lower.

ps 1 1

// sample volume data at given position 1
TEX t0;

©

// pass light direction
TEXCOORD t1;

2.1 Hardware Accelerated Rendering 31

// use sample value to lookup into classification 2
TEXREG2ARt2, t0;

©

// calculate diffuse emission intensity l d 3
DP3 SAT r0.rgb, t1 bx2, t0 bx2;

©

// 50% diffuse and 50% ambient light 4
MAD D2 r0.rgb, r0, t2, t2;

©

// write pre-multiplied color 5
+ MOV r0.a, t2.a;

©

MUL r0.rgb, r0, r0.a;

2.1.4 Pre-Integration

As already mentioned, the post-classification introduces very high frequencies into
the volume data. To reduce the sampling rate for post-classified rendering Engel et
al. [EKE01] presented a pre-integrated rendering approach using graphics hardware.
The resulting image quality is greatly increased with this rendering scheme, especially
for iso-surface-like transfer functions (see Figure 2.8).

a) b)

Figure 2.8: Comparison of simple post-classified (a) and slab based pre-integrated
rendering (b).

The rendering pipeline of pre-integrated rendering with 3D textures (see Figure 2.9)
is the same as the previous one with only one exception. The transfer function is now
residing within a 2D texture to implement the pre-integrated lookup. The rest of the
pipeline has the same advantages and limitations as post-classified shading.

The memory consumption during rendering is four bytes per voxel in main memory
and four bytes per voxel in texture memory. In addition to this the transfer function is
stored in main and texture memory with four bytes per entry. Table 2.4 shows the
memory footprint during rendering and the location where the data is stored. This
approach uses two texture units, one in 3D texture mode and one in 2D dependent

32 Regular Grids

calculate
gradients

create 2D
lookup texture

render view-
plane slabs

create
3D texture

initialization every frame

load
volume

classification change

Figure 2.9: Rendering pipeline for pre-integrated rendering with lighting. The green
portion is the rendering itself.

mode. With certain hardware limitations two texture units may be used for sampling
the 3D texture, but both units will sample the same texture memory.

data type memory locations pre-integration
voxel data system 2,048 kB
gradients system 6,144 kB
classification system 1 kB
3D texture graphics 8,192 kB
2D lookup texture graphics 256 kB
rendering footprint graphics 8,448 kB

Table 2.4: Memory footprints in kB for1283 voxel volume for rendering with pre-
integration.

OpenGL vertex program

The OpenGL or DirectX 9 vertex program is very close to part of the legacy pipeline.
The only difference is the calculation of the texture coordinates for sampling the 3D
texture containing the volume data. The functionality can be described with the fol-
lowing six steps.

1. Transform the vertex coordinates with the model-view-projection matrix (just
like the legacy pipeline).

2. Calculate the sampling distance for the slicesx (d) for each vertex and interpo-
late in between.

3. Rotate the reciprocal of the scaling factors between world and texture space, and
the eye direction into texture space.

4. Calculate front and back offset for texture coordinates.

5. Write texture coordinates to the output.

2.1 Hardware Accelerated Rendering 33

6. Write rotated eye direction and light direction to output.

After the vertex shader, the per-fragment computations sample the volume textures and
calculate the per-fragment lighting.

!!ARBvp1.0

ATTRIB iPos = vertex.position ;
ATTRIB iTex0 = vertex.texcoord[0] ;
ATTRIB iTex1 = vertex.texcoord[1] ;

PARAM mvp[4] = { state.matrix.mvp };
PARAM lightDir = program.env[0] ;
PARAM location = program.env[1] ;
PARAM viewDir = program.env[2] ;
PARAM iScale = program.env[3] ;
PARAM rotation = program.env[4] ;

TEMP eyeDir;
TEMP offsetFront;
TEMP offsetBack;
TEMP iScaleTex;
TEMP eyeDirTex;

OUTPUT oPos = result.position ;
OUTPUT oTex0 = result.texcoord[0] ;
OUTPUT oTex1 = result.texcoord[1] ;
OUTPUT oTex2 = result.texcoord[2] ;
OUTPUT oTex3 = result.texcoord[3] ;

transform vertex 1
DP4 oPos.x, mvp[0], iPos;

©

DP4 oPos.y, mvp[1], iPos;
DP4 oPos.z, mvp[2], iPos;
DP4 oPos.w, mvp[3], iPos;

calculate texture coordinate offsets 2
SUB eyeDir, iPos, location;

©

DP3 eyeDir.w, eyeDir, viewDir;
RCP eyeDir.w, eyeDir.w;
MUL eyeDir, eyeDir, eyeDir.w;

rotate inverse scaling factors and eye direction 3
into texture space

©

MUL iScaleTex, rotation.x, iScale.xyzw;
MAD iScaleTex, rotation.y, iScale.yzxw, iScaleTex;
MAD iScaleTex, rotation.z, iScale.zxyw, iScaleTex;
MUL eyeDirTex, rotation.x, eyeDir.xyzw;
MAD eyeDirTex, rotation.y, eyeDir.yzxw, eyeDirTex;
MAD eyeDirTex, rotation.z, eyeDir.zxyw, eyeDirTex;

34 Regular Grids

calculate front and back offset with correct scaling 4
MUL offsetFront, iScaleTex, iTex1.x;

©

MUL offsetBack, iScaleTex, iTex1.y;

write texture coordinates 5
MAD oTex0, offsetFront, eyeDirTex, iTex0;

©

MAD oTex1, offsetBack, eyeDirTex, iTex0;

write eye direction and light direction for lighting 6
MOV oTex2, eyeDir;

©

MOV oTex3, lightDir;

END

OpenGL fragment program

While the geometry transformation mainly implements the legacy pipeline for both,
OpenGL 1.3 and DirectX 9, a more complex fragment program or pixel shader is used
for the per-pixel computations. The OpenGL fragment program uses shader code ver-
sion 1.0 while the DirectX pixel shader requires version 1.4. The per pixel computa-
tions can be expressed in these seven steps.

1. Sample volume datasf = s (x (ω)), sb = s (x (ω + d)) and gradient
−→n f = −→n (x (ω)),−→n b = −→n (x (ω + d)).

2. Combinesf andsb into a single texture coordinate(sf , sb)

3. Get opacityα (sf , sb) and emission colorκ (sf , sb).

4. Calculate diffuse emission intensitiesldf (x (ω)) = max(−→n f ·
−→
l , 0) and

ldb (x (ω)) = max(−→n b ·
−→
l , 0).

5. Weightldf andldb based onα and combine them intold.

6. Calculate emissionC (x (ω)) =
(

1
2 ld + 1

2

)
κ (sf , sb).

7. Write emissive color∆Iω = C (x (ω))α (sf , sb).

For back-to-front rendering the blending is set to multiply1 − α with the previously
stored color values. For front-to-back rendering, the output color is multiplied by1−α∗

with α∗ being the transparency of all previously rendered pixels.

!!ARBfp1.0

ATTRIB frontPos = fragment.texcoord[0] ;
ATTRIB backPos = fragment.texcoord[1] ;
ATTRIB eyeDir = fragment.texcoord[2] ;
ATTRIB lightDir = fragment.texcoord[3] ;

TEMP frontVoxel;
TEMP backVoxel;
TEMP color;
PARAM const = { 0.5 , 1.0 , 2.0 , 0.0 };

2.1 Hardware Accelerated Rendering 35

sample volume data at given position 1
TEX frontVoxel, frontPos, texture[0] , 3D;

©

TEX backVoxel, backPos, texture[0] , 3D;

calculate texture coordinate 2
LRP color, const.aggg, frontVoxel.a, backVoxel.a;

©

use sample values to lookup into classification 3
TEX color, color, texture[1] , 2D;

©

calculate diffuse emission intensities l df and l db 4
MAD frontVoxel, frontVoxel, const.b, -const.g;

©

DP3 SAT frontVoxel, frontVoxel, lightDir;
MAD backVoxel, backVoxel, const.b, -const.g;
DP3 SAT backVoxel, backVoxel, lightDir;

weight l df and l db to get l d 5
LRP frontVoxel, color.a, frontVoxel, backVoxel;

©

50% diffuse and 50% ambient light 6
MAD frontVoxel, frontVoxel, const.r, const.r;

©

MUL color.rgb, color, frontVoxel;

write pre-multiplied color 7
MUL color.rgb, color, color.a;

©

MOV result.color , color;

END

DirectX 9 vertex shader

The DirectX 9 vertex program basically looks like the OpenGL vertex program except
for the usage of the macro commands that are not available in OpenGL.

vs 1 1

// vertex position (xyz1)
DCL POSITION0 v0

// texcoord at slice location (xyz)
DCL TEXCOORD0v1

// thickness of slice -d/2,d/2(xy)
DCL TEXCOORD1v2

DEF c8, 0.5 , 0.0 , 0.0 , 0.0 ;

// transform vertex 1
M4X4 oPos, v0, c0;

©

36 Regular Grids

// calculate texture coordinate offsets 2
SUB r3.xyz, v0.xyz, c7.xyz;

©

DP3 r3.w, r3.xyz, c10.xyz;
RCP r3.w, r3.w;
MUL r3.xyz, r3.xyz, r3.www;

// rotate inverse scaling factors and eye direction 3
// into texture space

©

MOV r4.xyz, c8.xyz;
MUL r5.xyz, c11.x, r4.xyz;
MAD r5.xyz, c11.y, r4.yzx, r5.xyz;
MAD r5.xyz, c11.z, r4.zxy, r5.xyz;
MUL r4.xyz, c11.x, r3.xyz;
MAD r4.xyz, c11.y, r3.yzx, r4.xyz;
MAD r4.xyz, c11.z, r3.zxy, r4.xyz;

// calculate front and back offset with correct 4
// scaling

©

MUL r1.xyz, r5.xyz, v2.xxx;
MUL r2.xyz, r5.xyz, v2.yyy;

// write texture coordinates 5
MAD oT0.xyz, r1.xyz, r4.xyz, v1.xyz;

©

MAD oT1.xyz, r2.xyz, r4.xyz, v1.xyz;

// write eye direction and light direction for 6
// lighting

©

MOV oT2.xyz, r3.xyz;
MOV oT3.xyz, c4.xyz;

DirectX 9 pixel shader

The DirectX 9 pixel shader looks a lot different from the OpenGL implementation. The
eye and light vectors have to be passed to the second stage (a) and the first and second
stage need to be separated with thephasecommand (b). The functionality however is
the same, even if the hardware requirements of the DirectX 9 implementation are lower.

ps 1 4

DEF c0, 0.0 , 1.0 , 1.0 , 0.5 ;

// sample volume data at given position 1
TEXLD r0, t0;

©

TEXLD r1, t1;

// pass eye and light vector a
TEXCRD r2.rgb, t2.xyz;

©

TEXCRD r3.rgb, t3.xyz;

2.1 Hardware Accelerated Rendering 37

// calculate diffuse emission intensities l df and 4
// l db

©

DP3 SAT r0.rgb, r0 bx2, r3;
DP3 SAT r1.rgb, r1 bx2, r3;

// calculate texture coordinate 2
LRP r3.rgb, c0, r1.a, r0.a;

©

PHASE b©

// use sample values to lookup into classification 3
TEXLD r2, r3;

©

// weight l df and l db to get l d 5
LRP r0.rgb, r2.a, r0, r1;

©

// 50% diffuse and 50% ambient light 6
MAD D2 r0.rgb, r0, r2, r2;

©

// write pre-multiplied color 7
+ MOV r0.a, r2.a;

©

MUL r0.rgb, r0, r0.a;

2.1.5 Pre-Integrated Lighting

To further increase the image quality, the lighting equations are also pre-integrated
as proposed by Meissner et al. [MGS02]. A comparison between pre-integration and
pre-integrated lighting can be seen in Figure 2.10.

a) b)

Figure 2.10: Comparison of pre-integrated (a) with material pre-integrated rendering
(b) for higher quality lighting of the volume.

The rendering pipeline of pre-integrated lighting Figure 2.11 is again the same as
the previous one, except that more than one 2D texture is used for the transfer function.

38 Regular Grids

calculate
gradients

create 2D
lookup textures

render view-
plane slabs

create
3D texture

initialization every frame

load
volume

classification change

Figure 2.11: Rendering pipeline for material pre-integrated rendering with lighting.
The green portion is the rendering itself.

The memory consumption during rendering is four bytes per voxel in main memory
and four bytes per voxel in texture memory. In addition to this the transfer function is
stored in main and texture memory with four bytes per entry. Table 2.5 shows the
memory footprint during rendering and the location where the data is stored. This
approach uses four texture units, one in 3D texture mode and three in 2D dependent
mode. With certain hardware limitations two texture units may be used for sampling
the 3D texture, but both units will sample the same texture memory.

data type memory locations mat. pre-integration
voxel data system 2,048 kB
gradients system 6,144 kB
classification system 2 kB
3D texture graphics 8,192 kB
2D lookup textures graphics 768 kB
rendering footprint graphics 8,960 kB

Table 2.5: Memory footprints in kB for1283 voxel volume for rendering with material
pre-integration.

The vertex program remains, for both OpenGL and DirectX 9, exactly the same
since only the dependent texture lookups and the shading changed.

OpenGL fragment program

The OpenGL fragment program for pre-integrated lighting uses shader code version
1.0 while the DirectX pixel shader requires version 1.4. The per pixel computations
can be expressed in these six steps.

1. Sample volume datasf = s (x (ω)), sb = s (x (ω + d)) and gradient
−→n f = −→n (x (ω)),−→n b = −→n (x (ω + d)).

2. Combinesf andsb into a single texture coordinate(sf , sb)

2.1 Hardware Accelerated Rendering 39

3. Get opacityα (sf , sb) and emission colorsκa (sf , sb), κdf (sf , sb) and
κdb (sf , sb).

4. Calculate diffuse emission intensitiesldf (x (ω)) = max(−→n f ·
−→
l , 0) and

ldb (x (ω)) = max(−→n b ·
−→
l , 0).

5. Calculate emissionC (x (ω)) = κa + ldf (x (ω))κdf (sf , sb) +
ldb (x (ω))κdb (sf , sb).

6. Write emissive color∆Iω = C (x (ω))α (sf , sb).

For back-to-front rendering the blending is set to multiply1 − α with the previously
stored color values. For front-to-back rendering, the output color is multiplied by1−α∗

with α∗ being the transparency of all previously rendered pixels.

!!ARBfp1.0

ATTRIB frontPos = fragment.texcoord[0] ;
ATTRIB backPos = fragment.texcoord[1] ;
ATTRIB eyeDir = fragment.texcoord[2] ;
ATTRIB lightDir = fragment.texcoord[3] ;

TEMP frontVoxel;
TEMP backVoxel;
TEMP color;
TEMP front;
TEMP back;
TEMP coord;
PARAM const = { 0.5 , 1.0 , 2.0 , 0.0 };

sample volume data at given position 1
TEX frontVoxel, frontPos, texture[0] , 3D;

©

TEX backVoxel, backPos, texture[0] , 3D;

calculate texture coordinate 2
LRP coord, const.aggg, frontVoxel.a, backVoxel.a;

©

use sample values to lookup into classification 3
TEX color, coord, texture[1] , 2D;

©

TEX front, coord, texture[2] , 2D;
TEX back, coord, texture[3] , 2D;

calculate diffuse emission intensities l df and l db 4
MAD frontVoxel, frontVoxel, const.b, -const.g;

©

DP3 SAT frontVoxel, frontVoxel, lightDir;
MAD backVoxel, backVoxel, const.b, -const.g;
DP3 SAT backVoxel, backVoxel, lightDir;

calculate final color with l df, l db and l a 5
MAD color.rgb, frontVoxel, front, color;

©

MAD color.rgb, backVoxel, back, color;

40 Regular Grids

write pre-multiplied color 6
MUL color.rgb, color, color.a;

©

MOV result.color , color;

END

DirectX 9 pixel shader

The DirectX 9 pixel shader looks a lot different from the OpenGL implementation.
Again the eye and light vectors are passed to the second stage (a) and the first and
second stage need to be separated with thephasecommand (b). The functionality
however is the same, even if the hardware requirements of the DirectX 9 implementa-
tion are lower.

ps 1 4

DEF c0, 0.0 , 1.0 , 1.0 , 0.5 ;

// sample volume data at given position 1
TEXLD r0, t0;

©

TEXLD r1, t1;

// pass eye and light vector a
TEXCRD r2.rgb, t2.xyz;

©

TEXCRD r3.rgb, t3.xyz;

// calculate diffuse emission intensities l df and 4
// l db

©

DP3 SAT r0.rgb, r0 bx2, r3;
DP3 SAT r1.rgb, r1 bx2, r3;

// calculate texture coordinate 2
LRP r4.rgb, c0, r1.a, r0.a;

©

PHASE b©

// use sample values to lookup into classification 3
TEXLD r2, r4;

©

TEXLD r3, r4;
TEXLD r4, r4;

// calculate final color with l df, l db and l a 5
MAD r0.rgb, r0, r3, r2;

©

MAD r0.rgb, r1, r4, r0;

// write pre-multiplied color 6
+ MOV r0.a, r2.a;

©

MUL r0.rgb, r0, r0.a;

2.1 Hardware Accelerated Rendering 41

2.1.6 Ray-casting

Ray-casting can be used as a different rendering approach that is able to better adapt to
the data set and the transfer function to both increase image quality and performance.
The main advantage of ray-casting is that the sampling distance can be changed dynam-
ically for each ray. For this another volume is used that holds the maximum sampling
distance from a certain point in any possible direction. Combined with pre-integrated
rendering, a dramatic increase in image quality can again be seen (see Figure 2.12).

a) b)

Figure 2.12: Comparison of pre-integrated rendering (a) with pre-integrated ray-
casting (b) for highest quality images.

In contrast to the previous rendering pipelines, the ray-casting pipeline (see Fig-
ure 2.13) has more than one stage running on the GPU and also implements a loop-
back on the GPU. To efficiently implement the loop-back and thus the termination of
completed rays, the z-buffer is used in combination with early z-test to skip any termi-
nated ray. Also the rendering consists of a combined termination & copy pass to keep
the buffers used for rendering consistent.

The memory consumption during rendering is five bytes per voxel in main memory
and five bytes per voxel in texture memory. In addition to this the transfer function is
stored in main and texture memory with four bytes per entry. Additionally ten bytes
per output pixel are needed for the loop-back textures. Table 2.6 shows the memory
footprint during rendering and the location where the data is stored. This approach
uses four texture units, one in 3D texture mode and three in 2D with one in dependent
mode.

Since both the OpenGL and DirectX 9 vertex and fragment calculations are exactly
the same, only the DirectX 9 vertex and pixel shader are presented because of their
higher portability between different graphics cards.

DirectX 9 vertex shader

The vertex shader basically performs the ray setup and starts the per-fragment compu-
tations. The shader can be described as four steps.

1. Transform the vertex coordinates with the model-view-projection matrix (just
like the legacy pipeline).

42 Regular Grids

calculate
gradients

create 2D
lookup textures

render with
setup shader

create
3D texture

initialization every frame

load
volume

classification change

create 3D
leaping texture

render w. term.
& tracing shader

render with
copy shader

Figure 2.13: Rendering pipeline for ray-casting with pre-integration and lighting. The
green portion is the rendering itself.

data type memory locations pre-integration
voxel data system 2,048 kB
gradients system 6,144 kB
classification system 1 kB
3D texture graphics 8,192 kB
3D acceleration texture graphics 2,048 kB
2D lookup texture graphics 256 kB
2D loop-back textures graphics 2,560 kB
rendering footprint graphics 13,056 kB

Table 2.6: Memory footprints in kB for1283 voxel volume for rendering with ray
casting onto a5122 screen.

2. Calculate the ray incrementx (d) for each vertex and interpolate in between.

3. Calculate the scaling factors between world and texture space.

4. Write everything to the output.

Since the vertex shader is used to start the per-fragment computations, the same vertex
shader is used for all rendering passes.

vs 1 1

// vertex position (xyz1)
DCL POSITION0 v0
// texture coordinate at start position
DCL TEXCOORD0v1

2.1 Hardware Accelerated Rendering 43

DEF c12, 0.5 , 1.0 , 0.002 , 63.75 ;
DEF c13, 0.25 , 0.25 , 0.25 , 0.25 ;

// transform vertex 1
M4X4 r0, v0, c0;

©

// calculate increment for ray 2
MOV r1, c8;

©

MUL r1.xyz, r1, c12.w;
ADD r2.xyz, v0.xyz, -c7.xyz;
MOV r3, r0;
MOV r3.y, -r3.y;
ADD r3.xyz, r3, r3.w;
MAD r3.xyz, r3.w, c12.z, r3;
MUL r3.xyz, r3, c12.x;

// calculate scaling factor 3
RCP r4.x, c8.x;

©

RCP r4.y, c8.y;
RCP r4.z, c8.z;

// write position, ... 4
MOV oPos.xyzw, r0.xyzw;

©

// ... texture coordinate, ...
MOV oT0.xyz, v1.xyz;
// ... tracing direction, ...
MOV oT1.xyz, r2.xyz;
// ... stepping distance, ...
MUL oT2.xyz, r1.xyz, r1.w;
// ... light direction, ...
MOV oT3.xyz, c4.xyz;
// ... pixel position, ...
MOV oT4.xyzw, r3.xyzw;
// ... scaling factor and ...
MOV oT5.xyz, r4;

// ... inverse scaling factor
MUL oT6.xyz, c8, c8.w;
MOV r5, c8;
MUL oT6.w, r5.w, c13.x;

DirectX 9 pixel shader

The rendering is started with thesetup pass. Here the following computations are
carried out.

1. Sample the volume data at the starting location, get the first sampling distance
multiplier ∆ω and calculate the ray parameters for the lower and upper bound of
the volume data.

2. Store the current and maximum sampling distance, i.e. ray parameterω.

44 Regular Grids

3. Save old sampling valuesf and normal−→n f and update ray parameterω.

4. Get new sample valuesb, normalize−→n f and combinesf , sb, and∆ω into a
single texture coordinate.

5. Lookupκ (sf , sb,∆ω) andτ (sf , sb,∆ω).

6. Calculateα (sf , sb,∆ω) = τ (sf , sb,∆ω)∆ω.

7. Calculate light intensityld = max(−→n f ·
−→
l , 0) and pre-multiplied emission color

C = α (sf , sb,∆ω) κ (sf , sb,∆ω)
(

1
2 ld + 1

2

)
. Also split color for output.

8. Output RGBα, current and maximum ray parameter as half-float values.

This rendering pass is only used once to initialize the maximum ray parameters. Any
consecutive rendering pass will use the value stored in the third output texture.

Setup pass

ps 2 0

DEF c0, 0.0 , 2.0 , 63.75 , 1.0 ;
DEF c1, 1.0 , 0.0 , 0.0 , 0.5 ;
DEF c4, 0.002 , 0.3333333333 , 0.0 , 0.0 ;

DCL t0.xyz;
DCL t1.xyz;
DCL t2.xyz;
DCL t3.xyz;

// volume
DCL VOLUMEs0;
// leap map
DCL VOLUMEs1;
// pre-int table with correct self attenuation
DCL VOLUMEs2;

// ---- setup ---- 1
// scalar value at starting point

©

TEXLD r2, t0, s0;
// multiplier for sampling distance
TEXLD r5, t0, s1;
NRM r0.xyz, t1;
// scaled distance
MUL r0.xyz, r0, t2;
// signed distance to lower bound of volume
ADD r4.xyz, c2, -t0;
// signed distance to upper bound of volume
ADD r3.xyz, c3, -t0;

2.1 Hardware Accelerated Rendering 45

// calculate maximum ray length
RCP r6.x, r0.x;
RCP r6.y, r0.y;
RCP r6.z, r0.z;
MUL r3.xyz, r3, r6;
MUL r4.xyz, r4, r6;
MAX r6.xyz, r3, r4;
MIN r4.x, r6.x, r6.y;
MIN r1.y, r4.x, r6.z;

// store distance, maximum distance and previous 2
// distance

©

MOV r1.xzw, c0.x;

// ---- stepping ---- 3
// save old position and add sampling distance to new

©

// one
MAD r1.xz, r5.x, c1, r1.x;
// clamp to maximum sampling position
MIN r1.x, r1.x, r1.y;
// new sampling position
MAD r3.xyz, r1.x, r0, t0;

// ---- pre-integration ---- 4
// scalar value at end point

©

TEXLD r4, r3, s0;
MAD r2.xyz, r2, c0.y, -c0.w;
// normalize gradient
NRM r8.xyz, r2;
// include sampling distance for pre-integration
ADD r6.w, r1.x, -r1.z;
LRP r6.xy, c1, r2.w, r4.w;
MAD r6.z, r6.w, c4.y, -c4.y;

// lookup into pre-integration table 5
TEXLD r7, r6, s2;

©

// correct opacity for sampling distance 6
MUL r6.x, c0.z, r6.w;

©

ADD r7.w, c0.w, -r7.w;
POW r10.w, r7.w, r6.x;
ADD r7.w, c0.w, -r10.w;

// do lighting 7
DP3 SAT r8.w, r8, t3;

©

MUL r7.xyz, c1.w, r7;
MAD r7.xyz, r8.w, r7, r7;
MUL r7.xyz, r7, r7.w;

46 Regular Grids

// write pre-multiplied color
MOV r0, r7.z;
MOV r0.y, r7.w;

// ---- final ---- 8
MOV oC0, r7;

©

MOV oC1, r0;
MOV oC2, r1;

Thetermination passitself is rather simple. The idea behind this pass is to keep the
two ping-pong buffers containing the color information consistent if a ray terminates
and to write a z-value in the case of a termination. The shader does the following.
Terminate if theα value exceeds a certain threshold (early ray termination) or if the
volume is left. The termination itself is skipped withtexkill if neither of these condi-
tions is fulfilled.

Termination pass

ps 2 0

DEF c0, -1.0 , -1.0 , 0.0 , 0.0 ;
DEF c1, 0.995 , 0.0 , 0.0 , 0.0 ;

// pixel position
DCL t4.xyzw;

// frame buffer (red and green)
DCL 2D s3;
// frame buffer (blue and alpha)
DCL 2D s4;
// distance buffer (current and maximum)
DCL 2D s5;

// ---- copy terminated ---- 1
// load old distances

©

TEXLDP r1, t4, s5;
MOV r1.zw, c0.z;
// load alpha of old color
TEXLDP r8, t4, s4;
// calculate distance to end
ADD r0, r1.x, -r1.y;
// distance -1 means done
MOV r2, c0;
// remaining transparency
ADD r3, c1.x, -r8.y;
// ray left volume
CMP r1, r0, r2, r1;
// do early ray termination
CMP r1, r3, r1, r2;

2.1 Hardware Accelerated Rendering 47

// invert texkill instruction
MOV r0, -r1;
// only copy terminated pixels!
TEXKILL r0;
// load red and green of old color
TEXLDP r7, t4, s3;
// don’t care for distances, termination uses z-buffer
MOV oC0, r7;
MOV oC1, r8;

Thetracing passdoes the same as thesetup pass, except that it reads the maximum
and current ray parameter.

1. Sample the volume data at the current location, get the current sampling distance
multiplier ∆ω and load the maximum ray parameter.

2. Save old sampling valuesf and normal−→n f , combine the colors of the previous
pass and update ray parameterω.

3. Get new sample valuesb, normalize−→n f and combinesf , sb, and∆ω into a
single texture coordinate.

4. Lookupκ (sf , sb,∆ω) andτ (sf , sb,∆ω).

5. Calculateα (sf , sb,∆ω) = τ (sf , sb,∆ω)∆ω.

6. Calculate light intensityld = max(−→n f ·
−→
l , 0) and pre-multiplied emission color

C = α (sf , sb,∆ω) κ (sf , sb,∆ω)
(

1
2 ld + 1

2

)
.

7. Sinceα blending for floating point buffer is not available, the blending is calcu-
lated in the shader.

8. Split the color again for output.

9. Output RGBα, current and maximum ray parameter as half-float values.

This rendering pass is carried out with the asynchronous occlusion culling test acti-
vated in order to check if there are any fragments still being processed.

Tracing pass

ps 2 0

DEF c0, 0.0 , 2.0 , 63.75 , 1.0 ;
DEF c1, 1.0 , 0.0 , 0.0 , 0.5 ;
DEF c4, 0.002 , 0.3333333333 , 0.0 , 0.0 ;

DCL t0.xyz;
DCL t1.xyz;
DCL t2.xyz;
DCL t3.xyz;
DCL t4.xyzw;

48 Regular Grids

// volume
DCL VOLUMEs0;
// leap map
DCL VOLUMEs1;
// pre-int table with correct self attenuation
DCL VOLUMEs2;
// frame buffer (red and green)
DCL 2D s3;
// frame buffer (blue and alpha)
DCL 2D s4;
// distance buffer
DCL 2D s5;

// ---- setup ---- 1
// load old distances

©

TEXLDP r1, t4, s5;
// load old color
TEXLDP r7, t4, s3;
TEXLDP r8, t4, s4;
NRM r0.xyz, t1;
// scaled distance
MUL r0.xyz, r0, t2;
// reconstruct previous sampling position
MAD r3.xyz, r1.x, r0, t0;
// scalar value at starting point
TEXLD r2, r3, s0;
// multiplier for sampling distance
TEXLD r5, r3, s1;

// ---- stepping ---- 2
// save old position and add sampling distance to new

©

// one
MAD r1.xz, r5.x, c1, r1.x;
// clamp to maximum sampling position
MIN r1.x, r1.x, r1.y;
// new sampling position
MAD r3.xyz, r1.x, r0, t0;
// combine old color
MOV r7.z, r8.x;
MOV r7.w, r8.y;

// ---- pre-integration ---- 3
// scalar value at end point

©

TEXLD r4, r3, s0;
MAD r2.xyz, r2, c0.y, -c0.w;
// normalize gradient
NRM r8.xyz, r2;

2.1 Hardware Accelerated Rendering 49

// include sampling distance for pre-integration
ADD r6.w, r1.x, -r1.z;
LRP r6.xy, c1, r2.w, r4.w;
MAD r6.z, r6.w, c4.y, -c4.y;

// lookup into pre-integration table 4
TEXLD r9, r6, s2;

©

// correct opacity for sampling distance 5
MUL r6.x, c0.z, r6.w;

©

ADD r9.w, c0.w, -r9.w;
POW r10.w, r9.w, r6.x;
ADD r9.w, c0.w, -r10.w;

// do lighting 6
DP3 SAT r8.w, r8, t3;

©

MUL r9.xyz, c1.w, r9;
MAD r9.xyz, r8.w, r9, r9;
MUL r9.xyz, r9, r9.w;

// do alpha blending 7
ADD r8.w, c0.w, -r7.w;

©

MAD r7, r9, r8.w, r7;

// write pre-multiplied color 8
MOV r0, r7.z;

©

MOV r0.y, r7.w;

// ---- final ---- 9
MOV oC0, r7;

©

MOV oC1, r0;
MOV oC2, r1;

Thefinal passis used to copy the floating point values from the two color buffers
into the frame buffer after all rays, i.e. fragments, have been terminated. Like thesetup
passthis pass is only used once.

Final pass

ps 2 0

DCL t4.xyzw;

DCL 2D s0;
DCL 2D s1;

// load old color (red and green) 1
TEXLDP r0, t4, s0;

©

50 Regular Grids

// load old color (blue and alpha)
TEXLDP r1, t4, s1;
// combine color and write to frame buffer
MOV r0.z, r1.x;
MOV r0.w, r1.y;
MOV oC0, r0;

2.1.7 Results

While all of these approaches run on the GPU they greatly differ in both image quality
and rendering performance. The Table 2.7 and 2.8 give an overview of all rendering
algorithms running under different configurations.

Radeon 9700 pro GeForceFX 5600
DirectX 9 OpenGL DirectX 9 OpenGL

simple shading –1 242.42 fps –1 84.10 fps
emulated 3D textures –1 82.16 fps –1 48.34 fps
pre-classified –1 49.96 fps –1 42.53 fps
post-classified 36.20 fps 41.13 fps 15.71 fps 13.43 fps
pre-integrated 30.68 fps 22.86 fps 7.90 fps 7.98 fps
pre-int. lighting 14.51 fps 16.00 fps 5.58 fps 5.99 fps
ray-casting 0.98 fps –3 –2 –3

Table 2.7: Performance for rendering a643 data set (neghip64) onto a5122 screen with
all possible rendering algorithms.1 Some of the possibilities were not implemented
because DirectX 9 hardware supports at least post-classified rendering.2 Needed hard-
ware feature not supported under DirectX 9.3 Ray-casting was not implemented under
OpenGL.

Radeon 9700 pro GeForceFX 5600
DirectX 9 OpenGL DirectX 9 OpenGL

simple shading –1 97.13 fps –1 55.75 fps
emulated 3D textures –1 36.22 fps –1 32.36 fps
pre-classified –1 16.22 fps –1 26.52 fps
post-classified 15.68 fps 14.46 fps 7.86 fps 7.84 fps
pre-integrated 10.80 fps 8.74 fps 3.67 fps 5.40 fps
pre-int. lighting 5.15 fps 6.74 fps 2.69 fps 4.19 fps
ray-casting 0.67 fps –3 –2 –3

Table 2.8: Performance for rendering a1283 data set (neghip128) onto a5122 screen
with all possible rendering algorithms.1 Some of the possibilities were not imple-
mented because DirectX 9 hardware supports at least post-classified rendering.2

Needed hardware feature not supported under DirectX 9.3 Ray-casting was not imple-
mented under OpenGL.

Even if the performance seems worse for the GeForceFX 5600, the image quality is
a lot higher than for the Radeon 9700. The main difference seems to be theα-blending

2.2 Compression 51

of the GeForceFX 5600 that produces images of a quality comparable to the ray-casting
images of the Radeon 9700.

2.2 Compression

As already mentioned in the introduction, a representation of the volume data that
allows for fast and random access to every voxel has to be used. However, it has also
been mentioned that this representation should consume as few memory as possible.
In order to fulfill both requirements, a suitable compression scheme has to be used. In
image and video compression wavelets are known to produce not only the best image
quality/bits per pixel ratio, but also to allow for fast decompression. Therefore this
compression will be used in this thesis.

2.2.1 Wavelet Transformation

As basis functions, symmetric biorthogonal spline wavelets [Dau92] are a good choice,
as they lead to good compression results (they are also used in the JPEG 2000 standard).
The tensor product construction (non standard decomposition [SDS96]) is used to ob-
tain a three-dimensional basis of these functions. This means that the three-dimensional
filtering is performed by applying the one dimensional filter in all three dimensions
successively. The filtering was implemented to use the integer wavelet transformation
algorithm by Calderbank et al. [CDSY96] based on lifting steps. It provides some
performance benefits: Firstly, all calculations can be performed using 16 bit integer
arithmetic [SS96], saving memory and bandwidth in comparison with the floating point
algorithm. The operations can be implemented efficiently using SIMD instructions like
MMX. The Intel C++ compiler that applies some of these optimizations automatically
has been used. Secondly, the algorithm needs only about half the number of operations
of the normal wavelet transformation algorithm.

Throughout this thesis a linearly interpolating spline wavelet will mainly be used.
This wavelet basis already allows for a very good compression ratio but it has still
a small filter support (5/3 for the lowpass/highpass filter). A small support is desir-
able as the running time of the (de-)compression algorithm is linear in the number
of non-zero entries in the (reconstruction) filter matrix. However, the strongest argu-
ment for choosing this wavelet is the property that an increase of the resolution with
zero wavelet coefficients leads to a linear interpolation of the low resolution function,
which is consistent with the interpolation performed by the texturing hardware used for
rendering. For multi-resolution rendering, this results in fewer popping artifacts when
the resolution changes.

Symmetric extension [Dau92] is used in this thesis. This means the original data
is just mirrored at the border. This allows for a reconstruction without storing addi-
tional wavelet coefficients for values outside the block because the basis functions are
symmetric.

2.2.2 Entropy Coding

The compression consists of two steps: Firstly, wavelet coefficients of low importance
are discarded and secondly, the wavelet coefficients must be encoded in a compact bit
stream.

52 Regular Grids

The number of wavelet coefficients to be stored is reduced by defining a threshold
below which all coefficients are mapped to zero. Setting the threshold to zero leads
to lossless compression: Due to the integer wavelet transform, there is no quantization
error [CDSY96]. The fully lossless setting already permits compression ratios of up to
4:1 for typical data sets.

After choosing the relevant wavelet coefficients, they must be encoded efficiently.
Code book based approaches such as LZW (Lemple Ziv Welsh) or LZH (Lemple Ziv
Huffman) are only useful if the code book is also compressed. Progressive and embed-
ded encoding schemes [EWG99, FF01, MZFM98] on the other hand are not suitable
for the difference images of the animated volumes of the multi-resolution hierarchy. To
circumvent this, entropy coding with a suitable encoding model is used:

The coefficients are first mapped to positive values: even values represent posi-
tive coefficients (c → c × 2) while odd values represent negative coefficients (c →
c × (−2) − 1). For compression of these values, two different algorithms have been
implemented. Storing non-zero values with a significance-map combined with arith-
metic coding, using the same model as Guthe and Straßer [GS04], is the best choice
for maximum compression at a lossless or nearly lossless setting.

A significance-map combined with a fixed Huffman encoder on the other hand
results in a very fast decompression, about ten times faster than arithmetic coding. The
fixed model for the Huffman coder is defined as follows. Any coefficient is converted
into a positive value and stored by using n 1 bits, with n being the minimum number of
bits needed to represent the coefficient. After a 0 bit the coefficient is stored using n-1
bits without the first bit.

The compression ratio for significance-map Huffman coding at a lossless setting is
lower (in practice about 5-10%) than for arithmetic coding. For a very lossy setting,
the run-length Huffman coder is sometimes even able to outperform the arithmetic
coder in terms of compression ratio since the adaptive model of the arithmetic coder
is optimized for a large number of non-zero coefficients. To obtain higher compres-
sion ratios, sub-trees of the hierarchy containing only zero coefficients are completely
stripped away. This stripping has more influence on the compression ratio than the cod-
ing of the blocks itself. For the compression setting used in the example walkthroughs,
the increase of compression ratio is about 3%. This gain increases dramatically if the
compression becomes lossier.

2.2.3 Animated Volume Data

To store animated volumes rather than single volumes effectively requires exploiting
the temporal coherency between consecutive volumes. The simplest way to do this is
storing the difference between the current and the previous volume rather than the cur-
rent volume. Although this already reduces the compressed data significantly, it is not
sufficient for storing large volumetric animations; therefore the motion compensation
used for video encoding has to be adapted.

Motion Compensation

The easiest way is to store differential volumes only, as seen in Figure 2.14 (shown for
2D images for clarification). As this is not very effective for the wavelet compression
scheme, a simple motion prediction and compensation has been implemented. The
motion prediction is done by simple block matching of83 blocks between the two
volumes. The motion compensation is done before the differential encoding to reduce

2.2 Compression 53

the differential content. A block of high similarity, i.e. minimum mean square error,
in the previous image is computed by searching this minimum starting from a motion
vector of length0 using15 steps in all three directions. This is similar to finding the
correct motion vector using optical flow methods. This results in313 possible motion
vectors that have to be stored using some kind of encoding. The search for the local
minimum mean-square error guarantees that most of the resulting motion vectors will
be of zero length or at least close to zero length making an arithmetic encoding with a
simple adaptive model the best choice as encoder.

Figure 2.14: Previous image and current image (upper row). Differential image, stan-
dard motion compensation and windowed motion compensation (lower row).

The usual, i.e. MPEG, method for computing a motion compensated image is to
map each block of the to be constructed volume onto a block of the previous volume as
seen in Figure 2.14 for two dimensional images. However in combination with wavelet
transformation, this results in severe problems if the motion vectors of two neighboring
blocks are different, i.e. regions of high contrast are present. Using wavelet transforma-
tion, these high contrasts result in large wavelet coefficients in regions that correspond
to high frequencies and therefore low compression ratios. There is another drawback
using this simple approach. Due to the nature of the quantization scheme applied to
the differential images these wavelet coefficients will be quantized very strongly and
therefore result in a large error.

The solution to this problem is the windowed motion compensation introduced by
Watanabe and Singhal [WS91]. The blocks are extended to123 overlapping blocks
and filtered by a function with a cosine falloff at both ends (see Figure 2.15) in all three
directions as the sum of all neighboring window scaling functions and therefore the
sum of all voxel weights with the window is already one. Although the computational
overhead introduced by these overlapping blocks is with a theoretical value of2.375
very high, it shows up that this has no severe impact on the performance in practice, due
to the higher number of cache hits if the volume is reconstructed voxel by voxel, rather
than block by block. The volume that has to be encoded using wavelet transforms
does no longer have regions of high contrast, as seen in Figure 2.14 and therefore less
wavelet coefficients differ from zero.

Similar to the naming conventions of the MPEG compression [ISO93, ISO96], a
wavelet compressed volume is called I-volume (see Figure 2.16). Two different ways to
reconstruct an individual volume using motion compensation were implemented. The

54 Regular Grids

0

1

0 1 2 3 4 5 6 7 8 9 10 11
position

sc
al

in
g

fa
ct

o
r

Figure 2.15: Scaling function used for the cosine windowed motion compensation with
neighboring windows.

P-volume is reconstructed by using a motion compensated version of the previous I-
or P-volume and wavelet compression of the difference between this predicted and the
actual volume. The B-volume is reconstructed by using a weighted average between
a motion compensated version of the last and the next I- or P-volume similar to the
compression scheme used in MPEG compression as seen in Figure 2.16. There is no
fixed sequence of I-, P- and B-volumes but any sequence of P- or B-volumes between
two I-volumes can be defined. Note that the volumes are not stored in their original
order, but in the order of their first usage, i.e. the B-volumes are stored after the next
P- or I-volume. In the experiments, various sequences for compression ratio and vi-
sual impression were analyzed. It turned out that using the popular MPEG sequence
(Figure 2.16c) delivers the best results.

I P P Ia)

0 1 2 3

I I

0 1 2 3

B B…

I B B B B B B IP P

…

…

0 1 2 3 4 5 6 7 8 9

b)

c)

Figure 2.16: Reconstruction and storage order for different types of volumes and se-
quences, similar to MPEG. a) motion compensated differences b) motion compensation
only, c) popular MPEG order

Playback

The single volumes of the animation are decompressed in their storage order rather
than in the order of playback. To compensate for the different times needed for the
decompression of an individual volume, the decompression of the volumes for each
new time step has to be investigated. For this the third sequence in Figure 2.16 has been
chosen. In a setup step, the first I-volume and the first P-volume are decoded to make
sure that all the volumes for interpolation of the next volume (a B-volume) are present.
The second and the third volume are decoded without any special treatment. Reaching

2.2 Compression 55

the fourth volume, the already decoded P-volume, the next P-volume is decoded as
this one is needed for the next B-volume. After decoding the next two B-volumes, the
next sequence is being decoded starting with its I-volume. Before displaying the first
volume of this new sequence, the next P-volume is decoded and the same state as at
the beginning of the decoding is reached. Thus only one volume at a time needs to be
decoded, resulting in smoother playback of the volumetric animation.

To achieve an on the fly decompression in real time, further optimizations need to
be applied to the decompression. Using LZH coding the bottleneck of the algorithm
is writing the decoded wavelet coefficients into their correct position, therefore the
compression is restricted to storing the coefficients line by line rather than in the octree
depth-first order. Most of the time this reduced the compression ratio slightly but makes
better usage of the write cache and thus speeds up the decompression significantly.
Using the arithmetic coding, there is an integer multiplication and an integer division
as part of the main interval coder and therefore no need to optimize the writing of the
wavelet coefficients in terms of cache hits, as this does not result in any noticeable
speedup.

2.2.4 Large Volume Data

So far the decompression order and the data to be decompressed were defined by the
frame numbering. For large volume data however, there is a different access scheme.

Assuming that all parts of the volume that are needed for producing the final image
need to be decompressed, only a subset of the complete volume is needed. Further-
more, the voxel will be processed in a certain order, either front-to-back or back-to-
front on a per ray or per slice basis.

Combined with the properties of the wavelet compression, the resulting data struc-
ture is more like a tree of wavelet coefficients than a monolithic compressed block.
Therefore the compression scheme used for animated volume data has to be modified
in order to allow for better support of large volume data.

2.2.5 Results

All tests have been carried out on an AMD K7 running at 800 MHz using a GeForce 2
graphics adapter (first configuration) or on an AMD K7 running at 1000 MHz using a
Radeon graphics adapter (second configuration).

As expected the usage of higher order wavelets does not only reduce the size of the
compressed volumes while enlarging the Peak-Signal to Noise Ratio (PSNR) as seen
in table 2.9, but does also significantly improve the visual impression (see Figure 2.17
and 2.18) and better preserves features. The original volume can be seen in the color
plates.

wavelet I-vol. P-vol. B-vol. ratio

Haar 47.363 47.022 40.613 1:27.30
Daubechies 4 48.673 47.784 40.756 1:30.96
Coiflets 6 48.615 47.751 40.750 1:33.27
CDF 2/6 49.015 47.990 40.787 1:34.28

Table 2.9: PSNR comparison between different wavelets using maximum quality, the
popular MPEG like sequence and arithmetic compression.

56 Regular Grids

a) b) c)

Figure 2.17: Original engine data set (a) and compressed data set at ratio 200:1 using
the Haar wavelet (b) and a CDF wavelet (c).

a) b)

Figure 2.18: Original lobster data set (a) and compressed data set at ratio 100:1 using
the CDF wavelet (b).

The PSNR of I- and P-volumes also depends on the compression ratio as seen in
Figure 2.19. The quality of the B-volumes on the other hand does only roughly depend
on this quality setting (see Figure 2.19), as these volumes are not reconstructed using
wavelet transforms but using motion compensation only.

As already mentioned, the decompression times achieved using arithmetic encod-
ing depend on the quantization used, as both the number of zeros increases and the
depth of the tree that has to be updated dynamically decreases. Using LZH encoding,
neither of these two properties does have any effect on the decompression times as seen
in Table 2.10. The LZH encoding performs a lot better than the arithmetic encoding in
terms of speed (up to two times faster using high quality settings) but worse in terms
of compression ratio (about 30% more compressed data at moderate to high quality).
This allows for about 4 frames per second regardless of the chosen quality. Note that
the speed on the second configuration is not limited by the decompression time, but
rather by the memory bandwidth during the 3d wavelet transform.

As seen in Figure 2.20 the PSNR of the B-volumes (the dotted line) is significantly
lower for high quality volume animations. Removing the motion compensation at these
high quality settings results in an improvement of the PSNR but also increases the
size of the compressed data, as seen in Table 2.11. At a lower quality setting, the

2.2 Compression 57

20

25

30

35

40

45

50

55

bpv

P
S

N
R I-Volumes

P-Volumes

B-Volumes

0.04 0.08 0.16 0.32

Figure 2.19: Average PSNR of each different kind of volume against bits per voxel
(CDF wavelet with support 2/6 and popular MPEG like sequence).

quality arithmetic fps1 fps2 LZH fps1 fps2

255 34.28:1 1.58 1.77 25.89:1 3.23 3.62
127 77.28:1 2.06 2.34 56.10:1 3.25 3.62
63 109.69:1 2.35 2.74 82.32:1 3.25 3.62
31 150.34:1 2.64 3.01 134.59:1 3.27 3.62
15 173.64:1 2.80 3.17 171.15:1 3.28 3.62

Table 2.10: Comparison regarding compression ratio and frames per second (using 2d
textures on system 1 and 2) between different encoders using various qualities, the
popular MPEG like sequence and the CFD wavelet with support 2/6.

PSNR increases if motion compensation is used again while also decreasing the size of
the compressed data. Testing different qualities and sequences demonstrated that the
popular MPEG sequence (the first sequence in Table 2.11) should always be used with
only one exception. If a nearly lossless compression of every volume is desired, rather
than every third volume, only I-volumes or I-volumes and P-volumes should be used
as this will result in the highest possible PSNR.

sequence ratio (255) PSNR ratio (15) PSNR

IBBPBBPPB 34.28:1 43.308 173.64:1 26.159
IBB 28.84:1 43.702 160.70:1 26.040
IPP 13.77:1 48.408 168.85:1 20.396
I 10.09:1 49.004 153.43:1 20.089

Table 2.11: Comparison between different sequences using CDF wavelet with support
2/6, arithmetic encoding and maximum (intermediate) quality.

If the compression of a volume animation without generating too many noticeable
visual artifacts is wanted that will playback at interactive frame rates of about 4 frames
per second on the testing configurations, compression ratios of about 50:1 are achieved
using CDF wavelets, a quality setting of about 127, the popular MPEG sequence and
LZH encoding. If high compression ratios are needed rather than fast visualization,
a ratio of about 75:1 can be reached by replacing the LZH encoding by arithmetic
encoding without any additional loss of data. Using a transfer function of high contrast
will emphasize visual artifacts. The example animation (Figure 2.21) has an absolute

58 Regular Grids

30

35

40

45

50

55

0 100 200 300 400

volume

P
S

N
R I-Volumes

P-Volumes

B-Volumes

Figure 2.20: PSNR of each kind of volume of the first 500 volumes of a 2000 volume
animation (CDF wavelet with support 2/6, maximum quality and popular MPEG like
sequence).

derivative of 5 in the alpha component of the transfer function. A transfer functions of
lower contrast will allow for a compression ratio of 100:1 and beyond without visual
artifacts.

a) b) c) d)

Figure 2.21: Original volume 1000 of an animation of 2000 volumes (a). I-only se-
quence, quality 63, compression ratio 31:1, I-Volume (b); P-only sequence, quality 63,
compression ratio 50:1, P-Volume (c); MPEG sequence, quality 63, compression ratio
110:1, B-Volume(d) of the same animation

2.3 Multi-Resolution Rendering

Firstly, the data set is divided into cubic blocks of(2k)3 voxel (in practice,k = 16
is a good choice). Then, the wavelet filters are applied to each block. This results in
a lowpass filtered block ofk3 voxel and(2k)3 − k3 wavelet coefficients representing
different high frequency components that are no longer present in the lowpass filtered
block (see Figure 2.22). This scheme is carried on hierarchically: A cube of 8 adjacent
lowpass filtered blocks is grouped to again obtain a block of(2k)3 voxel. Then the
filtering algorithm is applied to this block recursively until only a single block is left.
The result of this procedure is an octree (see Figure 2.22): Each node of the octree
describes a volume ofk3 voxel and contains a set of high frequency coefficients that
allow for the reconstruction of the child nodes from the current node. The resolution of
a child node is twice as high (in each dimension) as that of a parent node. The lowpass
filter of the specific wavelets that is used assures that the downsampled data in the inner
nodes does not show relevant aliasing artifacts.

From the perspective of the rendering algorithm, a representation of the volume

2.3 Multi-Resolution Rendering 59

root
(lowpass
filtered)

wavelet
coefficients

(highpass filtered)

(2) -
wavelet
coefficients

k k
3 3

Figure 2.22: Representation of a large volume data set as a wavelet tree.

data in form of a multi-resolution octree has been constructed: The root node in the tree
contains a very rough approximation of the data set and the resolution can be increased
by a factor of 2 (in each dimension simultaneously) by going downwards the hierarchy
to a child node. The task is to extract the information relevant for a certain point of
view. This is done in two steps: Firstly, a projective classification step is performed to
adjust the resolution of the data set to the screen resolution. Secondly, a consideration
of the approximation error is incorporated into the classification algorithm to further
reduce the amount of data to be processed in each frame. After extracting a suitable
level of detail from the wavelet tree, the volume data is rendered using hardware texture
mapping. Rendering of walkthrough animations can be accelerated substantially by
applying a suitable caching scheme.

2.3.1 Multi-Resolution Hierarchy

The first step of the algorithm is to convert the volume data, which is given as a three-
dimensional array of integers with fixed precision (usually 8-16 bits), into a compressed
wavelet representation during preprocessing. This representation is much more com-
pact and allows for an efficient extraction of different levels of detail of the data set,
since the wavelet transformation is equivalent to applying a series of lowpass and high-
pass filters to the original data. To be able to decompress parts of the data set efficiently,
a blockwise wavelet compression strategy is applied.

How efficient is octree-based projective classification? To answer this question it
is assumed that the volume is discretized into voxel of arbitrary size (see Figure 2.23).
Parameters to the algorithm are a camera position and a constant vertical viewing angle
of α. It is also assumed w.l.o.g.1 that the original resolution of the voxel grid exactly
matches the display resolution ofw × h pixel at the near clipping planeznear. To
cover the whole volume,m layers of resampled cube-shaped voxel are added with
side lengthvoxelsize (i), i = 1..m, so that the projected size of the larger voxel still
matches the display resolution. Letzi be the depth of voxel layeri. Then obviously
zi+1 = zi + voxelsize (i) and

voxelsize (i) =
tanα

2
h
2

zi = q · zi with q =
tanα

2
h
2

. (2.1)

1There is no problem if the near clipping plane is closer to the viewer: As the discretization in voxel is
never finer than the original resolution of the data set, there are always less thanw · h · cotα ∈ O (1) voxel
in front of znear .

60 Regular Grids

This recurrence leads tozi = znear (1 + q)i. Let z + far be the largest depth of a
voxel in the volume. Then the number of layers of resampled voxel is bound to:

m =
log zfar

znear

log (q + 1)
(2.2)

Thus, the number of resampled voxel ism · w · h. Note that the ratioznear

zfar
is always

bounded by the maximum diameter of the data set (measured in voxel). For a volume
of n3 voxel the diameter is at most3n ∈ O(n). Therefore, a total amount ofO(logn)
resampled voxel is obtained.

w h
pixel

×

�

z
near

z1

voxelsize z()
i

Figure 2.23: Analysis of the projective classification strategy.

Up to now, the analysis still neglects the fact that access to resampled voxel of
arbitrary size is not possible but only octree nodes. This leads to two different kinds
of overhead: Firstly, this enforces the use of blocks withk3 voxel (typicallyk = 16)
of the same, fixed resolution. Secondly, the resolution can only be chosen in powers
of 2 (in each dimension). Considering the overhead due to the blocking first produces:
Using some elementary trigonometry, it can be seen that the number of voxel per unit
length does not increase by more than a factor of

ρmax = 1 +
√

3
2ktanα

2

h
(2.3)

between the foremost and the most distant voxel in each block. The bound can be
derived by considering blocks diagonal to the viewing direction and comparing the
number of voxel per unit length. The voxel density per unit area is given by the den-
sity per unit length squared. Thus, the average factor of increase of voxel due to the
blocking in blocks ofk3 voxel is given by:

overheadblock =

∫ ρmax

1
x2dx

ρmax − 1
=

ρ3
max − 1

3 (ρmax − 1)
(2.4)

2.3 Multi-Resolution Rendering 61

For typical block sizesk, this leads only to a small overhead (h = 256, α = 45◦):

k 8 16 32 64 128
overhead 4.6% 9.2% 19.0% 40.2% 88.9%

However, the overhead is increased due to the fact that the resolution can be changed
only in powers of two. This is easy to quantify: Assuming that all scales of resolution
between13 and23 voxel are needed with equal probability, the average oversampling
factor is

∫ 2

1
x3dx = 3.75. This factor usually dominates due to the blocking. Example:

For a resolution of2562 pixel, 90◦ vertical viewing angle, and a depth of 2048 voxel
858 layers containing 56 million resampled voxel are obtained. The approximation
with an octree with blocks of163 voxel increases the amount of voxel to at most 230
million voxel. A 20483 data set contains 8.6 billion voxel. In conclusion, it can be seen
that projective classification using an octree leads to a running time logarithmic in the
size of the input data. However, the constants hidden in the O-notation are fairly high.
Thus, the algorithm scales very good but additional techniques are necessary to obtain
interactive performance.

2.3.2 Projective Classification

Firstly, nodes from the octree need to be extracted so that the resolution of these nodes
matches the display resolution. Nodes outside the view frustum should be excluded
from rendering. The task can be done using a straightforward algorithm originally pro-
posed by Chamberlain et al. [CDL+96]: The hierarchy is traversed recursively, starting
from the root node. Each node is tested whether it is located completely outside the
view frustum. In this case, the traversal is stopped, ignoring the current node. Other-
wise, the spacing between the voxel grid and its projection to the screen is determined.
If it is equal to or below the screen resolution, the node is passed to the renderer. Other-
wise, if the voxel resolution is still too coarse, the node is subdivided and the algorithm
is applied recursively to all 8 children.

This technique was already applied to volume data by LaMar et al. [LHJ99]. It has
already been proven that the technique reduces the rendering time for ann3 voxel grid
from O

(
n3
)

to O(logn). However, the analysis also shows that the constants hidden
in the O-notation are very high. For a close-up of a volume with a depth of 2048
voxel, still more than 230 million voxel are obtained after projective classification.
This is about 4 times more than the texture memory of a typical contemporary graphics
board (230MB versus 64MB). Therefore, a refined classification criterion for a further
reduction is needed.

2.3.3 View-dependent Priority Schedule

In most data sets, only a few regions contain high frequency details (e.g. due to sharp
borders). Most regions can be sampled at a low sampling rate without sacrificing detail
resolution. This observation is utilized to reduce the amount of voxel that has to be
processed by the renderer: For each node in the wavelet tree, the L2 error compared to
the original data is measured during compression. During rendering this error is used
as weight for the selection of nodes: LetE (i) be theL2 error of the normalized basis
functions for the wavelets in the subtree below the nodei. For leaf nodes,E (i) = 0.
To each nodei a priorityP (i) = E(i)

z(i) , with z (i) being the minimum depth of a voxel
in the node is assigned. Dividing byz (i) accounts for the projection on the screen:

62 Regular Grids

The priority of nodes near the viewer should be higher than that of nodes far away. If
z (i) = 0, the priority is set to infinity.

Using this priority function, a generalized projective classification is performed:
A maximum amount of voxel that the rendering is able to process is chosen. This is
usually determined by the texture memory of the graphics board. A priority queue is
created and the root node r of the hierarchy is inserted into the queue with priority
P (r). Then the node with the highest priority is successively fetched from the queue,
its high frequency wavelet coefficients are decompressed and the child with the highest
priority is inserted into the queue. A flag is set for the node to indicate that the child
node has been added to the queue (all other children would still be drawn using the low
resolution representation from the parent node). If all children are in the priority queue,
the parent node is removed from the queue. Nodes with a projected voxel distance that
is already equal to or below the screen resolution are not subdivided. The algorithm
stops if the maximum amount of voxel for the nodes in the queue is reached.

2.3.4 Error Estimation

To increase the rendering quality without any further impact on the performance of
the algorithm, it will first be discussed how to choose the optimal working set for
rendering. To find this set the simple greedy strategy is extended by finding the block
that produces the most error and replace it with higher resolution blocks. Therefore the
rendered image using the current set against the image rendered using the blocks that
map one voxel to a single pixel need to be compared. As can easily be seen this is even
slower than rendering the image in full resolution in the first place, so the screen-space
error needs to be estimated in some way.

For estimating the screen-space error, an appropriate error metric has to be defined.
The screen-space error used in this thesis is defined as the difference between the final
color of a pixel using a low resolution block compared against the final color using the
highest applicable resolution. This difference is the sum of the three color channels and
the remaining transparency of each block. This error therefore depends on the current
transfer function (color C and density D) in a natural way. In order to reduce the
error, only the maximum error produced by each block multiplied by its importance,
i.e. size in screen-space, is of interest. Since the maximum error per blockerr is the
difference between the colorerrC plus the difference between the opacityerrO, it can
be calculated by

errO =
∣∣∣∣e−∫ d

0
D
(
Vl(x)

)
dx − e

−
∫ d

0
D
(
Vh(x)

)
dx

∣∣∣∣ , (2.5)

errC =
∣∣∣∣ ∫ d

0

D
(
Vl(x)

)
C
(
Vl(x)

)
e
−
∫ x

0
D
(
Vl(x)

)
dt

−D
(
Vh(x)

)
C
(
Vh(x)

)
e
−
∫ x

0
D
(
Vh(x)

)
dtdx

∣∣∣∣,
err = errO + errC .

To calculate this error, both integrations have to be carried out for each pixel in
the final image. Since this is equivalent to render the complete image twice using
ray-casting, a conservative estimation has to be used. Assume that each voxel in the
high resolution blocks is known and the corresponding voxel value in the low resolu-
tion block. Since, the integral is a linear operation, the error can be estimated as the

2.3 Multi-Resolution Rendering 63

maximum over all possible color and opacity combinations given by

err′O =
∣∣e−d Dl − e−d Dh

∣∣ , (2.6)

err′C =
∣∣Cl

(
1− e−d Dl

)
− Ch

(
1− e−d Dh

)∣∣ ,
err ≤ err′O + err′C .

However, the corresponding child block would still have to be decompressed. Stor-
ing the maximum deviation of each voxel value in the low resolution block, the high
resolution data is no longer needed and the estimation can be simplified even more.
With Cmin, Cmax, Omin andOmax as the component wise minimum and maximum
of the transfer function within the deviation results in:

err′′O = e−d Dmin − e−d Dmax (2.7)

err′′C = (Cmax − Cmin)
(
1− e−d Dmax

)
+ Cmin err′′O

err ≤ err′′O + err′′C

With the maximum oferr′′O atd =
ln Dmax

Dmin

Dmax−Dmin
and the maximum oferr′′C atd being

the diagonal of the block. If the value ofd for the calculation oferr′′O is larger than
the diagonal of the block, eg.Dmin = 0, the diagonal is also used for calculating this
error.

Storing the valuesCmin, Cmax, Omin andOmax into a two-dimensional table,
the maximum error for all voxel values present in the low resolution block can now
be calculated, but the amount of memory needed for this is still twice the size of the
decompressed voxel. To store the deviation of all voxel values efficiently, a small his-
togram that contains the maximum positive and negative deviation for a small range
of values is build. In practice a histogram with a fixed number of 8 entries showed up
to be very efficient. The calculation of the estimated screen-space error is very costly
since all possible combinations for each voxel value in the given range have to be con-
sidered. To speed up the calculation, another two-dimensional table is used that stores
the minimum and maximum colors and opacities for a given range. Therefore only a
single calculation has to be done for each interval in the given range of voxel values.
On the other hand this again leads to a certain overestimation. Since the errors for a
given resolution only change whenever the transfer function changes, the calculation
can be sped up by storing the error produced by each octant prior to the multiplication
with its size in screen-space with the decompressed block. The resulting space usage
of all additional data is only 68 bytes per compressed block and an additional 40 bytes
for each uncompressed block.

2.3.5 Visibility Testing

After selecting the appropriate resolution for each block, the visible blocks have to be
rendered in a front-to-back or back-to-front order. During this traversal each block can
be tested whether it is completely transparent under the current transfer function. If so,
it is skipped completely without any further processing. The reduced depth complexity
can be seen in Figure 2.24. Using this technique, the rendering performance increases
by about 35%. A per sample alpha test after applying the transfer function can be used
to skip the alpha blending, however this only delivers a speedup of another 1%.

Up to now, the rendering is still waiting more than80% of the time for the graphics
hardware, so more invisible blocks, in this case the occluded ones, need to be removed.

64 Regular Grids

Taking occlusion into account on a per block basis is a bit more complicated than
detecting transparency, especially if a back-to-front rendering order is used. Therefore
the occlusion calculation is done prior to the rendering. Calculating the exact occlusion
of each block is similar to render a complete image using ray-casting. Although no
shading of any kind has to be taken into account, this step is too slow to gain a speedup.
However exact occlusion information is not needed, but rather a number of blocks that
are not visible. In order to approximate the occlusion, a uniform opacity for each block
is assumed, i.e. to be on the safe side, its minimum opacity is used. Then a software
ray-caster based on cell projection, similar to the one presented by Mora et al. [MJC02],
is used to calculate an occlusion map at a fixed resolution. During the cell projection
there are some cases to consider. Blocks that have a minimum opacity below a certain
threshold only have to be tested for their visibility since they don’t change the occlusion
map. This test can also be skipped until the first block with opacity above this threshold
has been processed. If a block is found to be occluded, the occlusion map also does
not need to be updated. Therefore only very few updates of the occlusion map are
typically necessary. With the current implementation based on optimized SSE2 code,
an occlusion map of2562 pixel showed up to be a good value for all possible cases,
ranging from no occlusion to very high occlusion.

Although this is a very rough approximation, the depth complexity can be reduced,
as seen in Figure 2.24. To reduce the traversal costs the block based empty space
skipping is done during the selection of the level-of-detail. Each of these optimizations
reduces the number of shaded samples by about30%. The transfer function used for
the example in Figure 2.24 is not an iso-surface transfer function, but rather a linear
ramp.

a) b) c)

d) e) f)

Figure 2.24: Depth complexity for a given image (a) without optimizations (b), with
block based empty space leaping (c), alpha test (d) and occlusion culling (e) with cor-
responding occlusion map (f). About30% of all sample points have been removed with
each optimization.

2.3 Multi-Resolution Rendering 65

2.3.6 Rendering of Blocks

Up to now, a set of tree nodes was chosen, each containingk3 voxel (on a regular
grid) that provide a suitable approximation to the original volume for the current view
point. To render these voxel, hardware texture mapping is used: All blocks are drawn
in back-to-front order. The order can be established easily by enforcing a back-to-front
traversal order of the octree. For each block, a 3D-texture is created and loaded onto
the graphics hardware. Each block is rendered using one of the previously discussed
shading approaches.

As hierarchy blocks of different resolution also have different slice spacing, a dif-
ferent transfer function, i.e. pre-integration table, is stored for each possible slice spac-
ing. The tri-linear interpolation performed by the texturing hardware needs special at-
tention: The hardware is not able to interpolate across the borders of the octree blocks.
This can lead to objectionable artifacts that reveal the underlying block structure. The
solution to this problem is straightforward: For each block to be rendered, the algo-
rithm also fetches its 7 neighbors with the next higher x-, y- and z-coordinates from
the octree (Figure 2.25). If these nodes are not present in the rendering set, the corre-
sponding node is also decompressed and cached, but the neighbor’s neighbors are of
course not reconstructed.

block

upper
neighbor

upper
right

neighbor

right
neighbor

Figure 2.25: Copying data from neighbors for the 3D-texture blocks.

This lookup is not very expensive as a neighbor search in an octree can be done in
expected time ofO(1). The block to be rendered is enlarged by one voxel in x-, y-
and z-direction and we store the neighboring values there2. Using the additional voxel,
the rendering can perform a continuous linear interpolation (Figure 2.26). The texture
memory necessary for rendering is increased by this technique because adjacent blocks
overlap each other by one voxel. The overhead isk3 − (k − 1)3 for k3 voxel. For163

voxel blocks an overhead of 21% is obtained. For323 voxel blocks, the overhead is
only 10%. In addition to this, the gradient information necessary is computed on-the-fly
after the decompression of the volume data using a three-dimensional Sobel operator.

2As textures must have extents of a power of two, blocks of size2n − 1 in the wavelet tree (e.g.153

voxel) have to be used.

66 Regular Grids

voxeltexture block

drawn to screen

Figure 2.26: Texture interpolation, the blocks overlap each other by half a voxel.

2.3.7 Caching Strategy

Although the wavelet decompression algorithm already achieves a very high perfor-
mance, it would not be able to perform an interactive walkthrough if it decompresses
the wavelet representation for each frame from scratch. It is not possible to perform
a decompression and texture upload at a similar speed as the 3d texturing is done by
the graphics card on current hardware architectures. Fortunately, this is not necessary
either, as the algorithm may anticipate reusing most of the decompressed data for sub-
sequent frames. Therefore, three cache areas are used to store blocks for reuse:

Firstly, decompressed volume blocks from the octree are cached. To obtain a node
in the octree, its parent node needs to be accessed, the high frequency coefficients
stored in the node have to be decompressed and the reconstruction filter to obtain all
8 child nodes has to be applied. The nodes consist of blocks ofk3 16 bit integers.
The decompressed wavelet coefficients are not cached as these are only needed once
to obtain the child nodes which are already cached. Caching is done according to an
LRU-scheme. To maximize the performance of the algorithm, the user defines a fixed
amount of cache memory. If the algorithm runs short of memory, it always deletes the
decompressed leaf node in tree that was not accessed by the renderer for the longest
time.

Secondly, the algorithm has to create 3D-textures from the cache. The texture con-
tains the scalar values and optionally the corresponding gradient field for advanced
shading effects3. Using again an LRU scheme, the most recently used subset of de-
compressed blocks is fetched and converted into OpenGL texture objects. Gradient
maps are computed at this point, if necessary.

Thirdly, the texture objects must be uploaded to the texture memory of the graphics
adapter before rendering. This is done automatically by the OpenGL driver, again using
an LRU caching scheme. By setting corresponding memory restrictions, the renderer
assures that it does not use more texture objects per frame as fit into a given amount of
video memory, thus avoiding cache thrashing.

2.3.8 Results

In this section, the results obtained with a prototype implementation of the proposed
algorithm are discussed. The algorithm was implemented in C++ using OpenGL with

3The gradients are stored as 8 bit RGB values and the scalars are stored in the alpha channel of the RGBα
texture. The shading is done using pixel shaders similar to the approach of Meissner et al. [MGS02].

2.3 Multi-Resolution Rendering 67

extensions or DirectX 9 for rendering. All benchmarks were performed on a 3Ghz
Pentium 4 PC with 1GB of Ram and an nVidia GeForce FX 5800 Ultra or an ATI
Radeon 9700 graphics board with 128MB of local video memory. This section starts
with a description of three example data sets that were used to evaluate the algorithm.
Then, the influence of the compression efficiency on the running time and image quality
is discussed. After that, the results for interactive examination of the three example data
sets are presented.

Example Data Sets

Three different data sets were used for the evaluation of the algorithm. All three are
too large to be visualized at interactive frame rates using conventional brute-force ren-
dering approaches.

The first data set is a computer tomography scan of a Christmas tree [KTM+02]
at a resolution of512 × 512 × 999 voxel with 12 bits per voxel. The data set was
acquired at the Technical University of Vienna to provide a large benchmark scene for
volume rendering algorithms. The other two data sets are the visible human male and
female data sets [Nat86]. Both are computer tomography scans of a male and a female
human body. The variants of the data sets that are registered against the cryosection
RGB images were used in this thesis. The visible human male data set has a resolution
of 2048 × 1216 × 1877 voxel and the visible human female data set has a resolution
of 2048 × 1216 × 1734 voxel. The example renderings were made using gradient
based lighting and a classification function with several semi-transparent iso-surfaces.
The iso-surfaces correspond to high derivatives in the classification function. These
settings are very sensitive to noise and other reconstruction errors in the volume data
and thus allow a good evaluation of the errors introduced by the rendering technique.

Compression Efficiency

In the compression algorithm, different encoding algorithms can be used for the wavelet
coefficients. Two alternatives haven been implemented here: arithmetic coding and
run-length Huffman coding. The decompression speed heavily depends on the com-
pression algorithm. Using arithmetic coding, a decompression speed of 4.5 MB/s can
be achieved, including the wavelet reconstruction. The run-length Huffman codec is
able to decompress 50 MB/s (including the wavelet reconstruction). The compression
ratio of the arithmetic coding is typically only about 10% to 15% higher than that of
the run-length Huffman coding. Therefore, the run-length Huffman coding has been
used for all examples in this thesis.

A second parameter of the compression algorithm is the threshold for removing
small wavelet coefficients prior to encoding. If all coefficients are kept, a lossless
compression scheme is obtained. Using lossless compression, a compression ratio of
3.9:1 (arithmetic coding) and 3.4:1 (RLE-Huffman coding) can be achieved for the
Christmas tree data set. The visible human data sets could not be compressed using
the lossless settings because the compressed data and the caches would exceed the
2GB address space. For higher compression ratios, a lossy compression needs to be
applied: Figure 2.27 and 2.28 show the dependency between compression ratio and
reconstructed signal quality for the three different test data sets: A peak signal-to-noise
ratio (PSNR) of 60 dB for a compression ratio4 of about 12:1 (1 bit per voxel) were
obtained, while a PSNR of 50 allows a compression ratio of roughly 50:1 (0.25 bits

4All compression ratio measurements are based on 12 or3× 8 bit data sets.

68 Regular Grids

per voxel). Figure 2.29 shows a visual comparison of the rendering results for the
Christmas tree data set. The compression ratios obtained by the algorithm at a given
PSNR are close to the results of Nguyen and Saupe [NS01]. These results show that
it is possible to achieve good compression results although only linear interpolating
wavelets and blockwise compression were used.

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5

Bits per Voxel & Component

P
S

N
R

XMas-Tree Visible Female

Visible Male Female RGB

Figure 2.27: PSNR for Christmas tree data set, and the visible human data set.

0

10

20

30

40

50

60

0 0.5 1 1.5

Bits per Voxel & Component

S
N

R

XMas-Tree Visible Female

Visible Male Female RGB

Figure 2.28: SNR for Christmas tree data set, and the visible human data set.

Another important parameter is the block size used for the construction of the
wavelet hierarchy. If small blocks are used, the algorithm is able to classify the data
according to local frequency spectra and projected size very accurately. However, the
algorithm has high hierarchy traversal costs. If larger blocks are used, the traversal
costs decrease but the algorithm must process more voxel for the same image quality
because the classification is less accurate. Additionally, the block size must be a power

2.3 Multi-Resolution Rendering 69

a) b) c) d)

Figure 2.29: Quality comparison for different compression ratios for the Christmas
Tree data set.

of two (minus one, for neighboring voxel) due to OpenGL restrictions. In practice,313

blocks are not adaptive enough and73 blocks introduce too much overhead.153 blocks
are a good compromise. This block size is used in all examples in this thesis.

Interactive Walkthroughs

The algorithm was used to render an interactive walkthrough of the three test data
sets. The results are shown in Figure 2.30 and 2.31. The resolution of the output
image is5122 pixel for all tests. The Christmas tree data set was compressed using
lossless compression (3.4:1), the visible human data sets were compressed using lossy
compression. (40:1 for the female and 30:1 for the male data set). The preprocessing
time was 1 hour for the Christmas tree and about 5 hours for each of the two visible
human data sets. The preprocessing times are dominated by hard disk access (seek
times). The CPU-utilization was only 6-7% during compression.

a) b)

Figure 2.30: Christmas Tree data set (a) and visible human male data set (b) rendered
at interactive frame rates.

During the walkthrough, the quality parameter can be adjusted to trade off im-
age quality for rendering speed. The quality parameter is given as the maximum pro-
jected error value for the rendered hierarchy nodes. Three different settings with high,
medium and lower image quality have been used. The high quality settings uses up
to 2048 blocks and a maximum projective error of1

128 (an average error of1128 of the

70 Regular Grids

a) b)

Figure 2.31: Visible human female data set (a) and visible human female RGB data set
(b) rendered at interactive frame rates.

peak signal per pixel for each block) and therefore shows only very little artifacts due
to a reduced resolution. Nevertheless, an average frame rate of 3-4 frames per second
is obtained during the walkthrough. The low quality settings uses only 512 blocks and
a maximum projective error of132 thus permitting frame rates of about 10 frames per
second at an acceptable image quality. The medium quality setting is a good compro-
mise with 1024 blocks and a maximum projective error of1

64 : The image quality is
still high at a rendering speed of about 7 frames per second. The rendering speed for
the visible human male data set is lower than that of the other test data sets, because
the data set contains more noise. Thus, a higher voxel resolution is necessary to obtain
the same projected error as in the other example scenes.

The cache efficiency for the walkthrough settings is very high. During the high
quality rendering of the test data set, only 40-60 blocks have to be decompressed per
frame and 20-30 textures have to be constructed on the average. If the caching is
deactivated, i.e. the algorithm performs wavelet decompression, gradient calculation,
and transfer to graphics memory from scratch for each frame, an average frame rate of
0.3 fps can be obtained for all of the test scenes. This is also the limit frame rate if there
was no temporal coherence, i.e. a turn of 180 degrees or moving to a random position
within the data set. For this test, the renderer was configured for highest quality, i.e.
to use exactly 2048 volume blocks. Thus, the frame rate corresponds to a processing
speed of 614 blocks per second or 10 MB of texture data per second.

To measure the exact timing of each part of the visualization is not an easy task in
itself. This is due to the concurrent execution, i.e. decompression and gradient calcu-
lation are already executed while waiting for the last frame to complete rendering. For
the example walkthrough animations about 6% of the time are spend for decompress-
ing blocks and an additional 5% are spend for the gradient calculations. Transferring
the textures onto the graphics board consumes another 1% of the time (part of this al-
ready runs in parallel), while the vast majority of the time with 88% is spend for the
actual rendering, i.e. the processor is waiting for the graphics hardware.

The animation still shows some popping and discontinuity artifacts due to differ-
ent resolutions in the rendered blocks. This is only a minor problem for high quality
settings, but clearly visible for the low resolution settings. It should be quite straight-

2.4 Conclusion & Future Work 71

forward to reduce these artifacts by employing mip mapping and techniques similar to
the one proposed by Weiler at al. [WWH+00].

2.4 Conclusion & Future Work

A novel approach for accomplishing artifact free shading of volumetric data using
shading and pre-integration was presented. Additionally, the presented approach al-
lows to specify material properties on a per sample base. Furthermore, it was also
shown that pre-integrated classification can be combined with shading by additionally
pre-integrating an interpolation weight used to interpolate the two respective gradients
at sample location. It was also shown how to implement ray-casting to further increase
the image quality.

A very efficient approach to decompress and visualize animated volume data sets
in real time on standard PC hardware was presented. The favored compression scheme
uses a quality setting of 63 and the popular MPEG sequence with a significance map
and then either arithmetic or Huffman coding. The presented algorithm does not exploit
the possibility for parallelization of the wavelet transform or the motion compensation
and therefore leaves a lot of room for further optimization using a single processor
(3DNow or SSE2 instructions) and multiple processors. Although the sole visualiza-
tion of each volume is quite fast, this part can also be split up into several sub-volumes
that are to be rendered using a cluster of standard PCs.

A rendering algorithm for the visualization of very large data sets was implemented.
The algorithm uses a hierarchical wavelet representation to store very large data sets in
main memory. The algorithm extracts the levels of detail necessary for the current view
point on-the-fly. An error metric that minimized the loss of high frequency information
in the projected image is used to determine a suitable level of detail. This technique
allows interactive walkthroughs of large volume data sets like the visible human data
set on a single commodity PC. This algorithm is the first that achieves an interactive
visualization of data set of this size on a single PC. The rendering algorithm scales
provably good. Therefore even much larger data sets than the visible human data set
can be processed. To overcome the storage problems if even the compressed data set
does not fit into main memory any longer, the caching technique should be general-
ized to swapping to hard disk. The compressed representation will also be useful in an
out-of-core scenario, as it can significantly reduce the necessary bandwidth. A special
problem of out-of-core rendering is latency due to hard disk seek times. To circum-
vent this problem, the data must be transferred in large blocks and stored in caches in
main memory. Other future directions should include improved rendering techniques
to minimize discontinuity artifacts between different resolutions [WWH+00] and a
generalization to full RGBα volume data without classification, for example for ren-
dering the cryosection visible human data, too. It would also be interesting to examine
whether the wavelet coefficients in each block can be used more effectively to obtain a
better adaptation of the rendering resolution to the local frequency spectrum.

72 Regular Grids

Chapter 3

Unstructured Grids

Unstructured tetrahedral grids are a common data representation for three-dimensional
scalar fields. The most efficient method to visualize these fields is the so called pro-
jected tetrahedra algorithm which takes a sorted list of tetrahedra and composes the
pre-integrated foot-print of each tetrahedron in a back to front fashion. With the up-
coming of programmable graphics hardware the computationally expensive determi-
nation of the footprints can be performed by the graphics hardware, so that the con-
struction of the visibility ordering has become the main bottle-neck of unstructured
volume rendering. Currently known visibility sorting algorithms can only handle well-
shaped meshes efficiently and have a significant performance penalty for ill shaped
meshes or may even produce sorting errors for more complex mesh topologies. A new
sorting method is developed which is guaranteed to work for arbitrary mesh topolo-
gies including cyclic meshes. Moreover the method has no performance penalty and
therefore outruns the previously known general sorting strategies. Additionally it is
demonstrated that tetrahedra can be lit according to their ambient, diffuse, and specu-
lar material properties. This significantly improves visual appearance of the volumetric
data and can be thought of as the three-dimensional counter part of the shading step in
the OpenGL rendering pipeline.

In 1990 Shirley and Tuchman invented a popular method for the direct volume
visualization of unstructured tetrahedral grids [ST90]. These grids are encountered in
finite element simulations, where they are the natural simulation domain. In general,
unstructured tetrahedral grids are utilized whenever complex three-dimensional data
must be represented with a minimum of volumetric elements.

The algorithm of Shirley and Tuchman is commonly called the projected tetrahedra
(PT) algorithm. It takes a scalar volume constructed from tetrahedra as input, and
composes the projected tetrahedral cells in a back to front fashion. The footprint of a
projected tetrahedron either consists of three or four triangles centered around the thick
vertex of the tetrahedron as illustrated in Figure 3.1 (not counting degenerate cases).
In this way the volumetric primitive of a tetrahedron is transferred into a triangular
representation that can be rendered efficiently by the graphics hardware. This explains
the popularity of the algorithm, since its performance directly relates to the number
of cells in the data set and is almost independent of the size of the viewing window.
Another advantage is that for the purpose of visualization the volume does not have to
be converted into intermediate data representations.

In recent years the original approach has been extended in numerous ways and de-
spite its simplicity is still under active research. The first improvement was presented

74 Unstructured Grids

Class 1a Class 1b Class 2

thick vertex

Figure 3.1: Classification of non-degenerated projected tetrahedra (top row) and the
corresponding decomposition (bottom row) according to [ST90].

by Stein et al. [SBM94]. They used a more accurate exponential interpolation of opac-
ities inside the tetrahedra instead of the linear approximation of the original approach.
In principle, the colors and opacities assigned to each triangle of the tetrahedral decom-
position correspond to the line integral along the intersection of each viewing ray with
the tetrahedron. Using the volume density optical model of Williams [WM92, Max95],
the complexity of the line integral depends on the transfer functions of the optical
model. The integral can be solved analytically for the special case of a linear trans-
fer function as proposed by Stein et al. Later this was extended for piecewise linear
transfer functions in the HIAC system [WMS98]. For arbitrary transfer functions, how-
ever, a numerical integration of the transfer function is necessary. While the numerical
integration cannot be performed in real-time, the line integral can be pre-computed
and stored in a three-dimensional table. This approach is called pre-integrated cell-
projection [MHC90, RKE00].

Most recently the upcoming of programmable graphics hardware has lead to further
improvements: The large size of the three-dimensional pre-integration table prevented
the use of high-resolution transfer functions. This drawback was resolved by a polyno-
mial reconstruction of the pre-integration table in the pixel shader of modern graphics
accelerators [GRS+02]. Using this approach only the polynomial coefficients for the
approximation of the line integral need to be stored instead of the memory consuming
numerical integral itself.

Using the increasing capabilities of graphics accelerators the decomposition of the
tetrahedra into triangles can also be performed in the vertex shader. This is called
hardware-accelerated cell-projection [WKE02, WMFC02]. Although this approach not
yet leads to a significant performance bump it is expected that graphics accelerators of
the next generation will be much more efficient. Then the rendering speed primarily
does not depend on the performance of the tetrahedral decomposition, but rather on the
speed by which the CPU feeds the GPU over the AGP bus (also compare Wittenbrink
et al. [Wit99]). Since the tetrahedra must be processed in a sorted order that is usually
in a back to front fashion the overall system performance will be determined by the

3.1 Visibility Sorting 75

efficiency of the visibility sorting algorithm. As a consequence, the goal of this section
is to devise a visibility sorting algorithm that keeps pace with the growing speed of the
graphics accelerators. For this purpose first a brief survey of existing visibility sorting
methods is given and their advantages and their limitations are discussed.

3.1 Visibility Sorting

By definition an unstructured tetrahedral grid is a collection of tetrahedra, where it is
assumed that the intersection of two tetrahedra is either empty or a common face. An
unstructured grid is said to be convex, if the faces which are not shared between two
tetrahedra form the convex hull of the data set. This definition includes the connectivity
of all parts and excludes interior holes. The task of visibility sorting is closely related
to graph theory: For a convex grid the set of tetrahedral pairs with a common face
define the edges of a graph. For a specific point of view the edges of the graph point
to the occluded neighbors of a tetrahedron. The direction can be determined quickly
by computing the dot product of the normal of the common face with the viewing
direction. This directed graph imposes an ordering on the set of tetrahedra which is
said to be the visibility ordering. If the graph contains no cycles the ordering is total
but does not need to be unique. The well known MPVO algorithm of Williams et
al. [Wil92] constructs this directed graph for each point of view and traverses it in
depth-first fashion. Whenever the algorithm encounters a cell which does not occlude
unvisited neighbors it outputs the cell. In this fashion a depth sorted list of tetrahedra
is constructed for each specific point of view.

Note that in the majority of cases the graph does not contain a cycle. However, a cy-
cle can occur much easier than one may think in the first place. For example think of a
synchronized gear with slanted teeth. When looking along the axis of the gear the teeth
may occlude each other in a cyclic way. In such a case any sorting algorithm will pro-
duce rendering artifacts because of improper sorting (for other examples see [Wil92]).
This case can be resolved in two ways: Either the cycle is cut apart by the selection of
an appropriate cutting plane or the cycle is treated differently by using a rendering al-
gorithm that can handle cycles. The selection of an appropriate cutting plane is a very
difficult task even for simple cycles, and is not well understood in the general case.
A better solution to this problem is to use the so called MPVOC algorithm of Kraus
et al. [KE01]. This algorithm can handle arbitrary cyclic meshes without the need of
sorting, but has quadratic runtime in contrast to the linear run time of the MPVO algo-
rithm. Although the run time is quadratic it is affordable to use MPVOC, since cycles
occur seldom and usually only make up for a tiny fraction of the whole data set. As
a summary, one has to keep in mind that cycles may naturally occur in unstructured
tetrahedral grids and have to be accounted for to guarantee artifact-free rendering.

For unstructured grids with a concave hull (or data sets with partial connectivity)
the MPVO algorithm still produces a sorted list of tetrahedra, but this list cannot be
guaranteed to be totally sorted. This fact is illustrated in Figure 3.2 which shows a gear
rendered with correct ordering and a difference image showing the artifacts produced
by the MPVO algorithm. The incorrect sorting is due to missing relations between the
boundary faces of the tetrahedral grid. The straightforward solution to this problem is
thus to add complementary edges to the directed graph.

Several algorithms are known which compute the missing relations: First, the
MPVONC algorithm is an extension presented by Williams in the original MPVO pa-
per. It uses an easy to compute heuristic for the determination of the additional face

76 Unstructured Grids

relations, but this heuristic is only a first guess of the correct set of relations. The
XMPVO algorithm presented by Silva et al. [SMW98], utilizes a sweep plane parallel
to the viewing plane to process the faces in correct order and thus is able to find the
correct relations. Because of the expensive sweep plane calculations this method was
later improved by Comba et al. [CKM+99] who introduced a BSP tree for the efficient
computation of the boundary face relations. Hence, it is called BSP-XMPVO. Note that
these sorting algorithms for concave meshes assume that the mesh is acyclic, otherwise
rendering artifacts occur.

a) b)

Figure 3.2: Artifacts produced by incorrect visibility sorting using the MPVO algo-
rithm. Correct image (a) and difference image (b).

3.1.1 Tetrahedral Convexification

An analysis of the presented visibility sorting algorithms shows that BSP-XMPVO on
the one hand produces correct results for all types of meshes excluding cyclic meshes.
On the other hand it is significantly slower than MPVONC, which is guaranteed to pro-
duce correct results for convex meshes only. One naive idea to combine the advantages
of both methods would be to fill out the concavities of a data set with additional tetrahe-
dra so that it could be handled by the MPVO algorithm. The two-dimensional analogue
to this approach is the convexification of a concave polygon. While in two-dimensions
this is a well understood problem, in three dimensions the situation is completely dif-
ferent. Here, the addition of complementary tetrahedra to a given concave or even
unconnected data set requires the specification of auxiliary vertices. The placement of
these vertices is a very difficult task even for simple configurations and up to now is an
unsolved problem in the general case.

In the following a solution for the convexification problem will be presented. The
key idea is not to add tetrahedra in the first place but rather to break up the concavi-
ties into convex polyhedra. Then these convex polyhedra can be filled with auxiliary
tetrahedra easily. Both the auxiliary and the original tetrahedra are fed into the MPVO
algorithm which is now able to construct the correct visibility ordering. If the mesh
contains cycles the MPVOC algorithm is used to take care of the cycles.

Since the runtime of the MPVO algorithm is linear in terms of the processed cells,
the performance decreases with the number of auxiliary tetrahedra. However, it turns

3.1 Visibility Sorting 77

out that for the special purpose of sorting it is not necessary to break up the convex
polyhedra into tetrahedra at all. This is due to the fact that the MPVO algorithm works
with all types of convex cells. So just the set of auxiliary convex polyhedra is added to
the original set of tetrahedra and a generalized MPVO algorithm is used to sort both. In
practice the number of auxiliary polyhedra is small in comparison to the total number
of tetrahedra so that sorting performance is decreased only slightly. This is analyzed
in more detail in the results section. In the following a detailed description of the
proposed tetrahedral convexification algorithm will be given.

Basic Algorithm

Let S be a set of triangles that form the closed boundary surface of a volume. The only
assumption being made is that the normals of such a triangle set uniquely determine
the exterior of the volume that is that the normals point outwards. Then the volume is
said to be concave if the opening angle at the common edge of two triangles is less than
180◦. The volume is said to be connected if all triangles can be reached by traveling
along the edges of the boundary. With these definitions the tetrahedral convexification
algorithm can be described as follows:

P1) S0 is set to the boundary surface of the tetrahedral mesh

P2) flip the normals of all triangles inS0

P3) add the convex hull of the tetrahedral mesh toS0 with normals pointing outwards

P4) remove triangles fromS0 which are part of both the boundary surface and the
convex hull

Now S0 contains the boundary description of the smallest exterior volume which
needs to be added to form a convex mesh (compare left side of Figure 3.3). IfS0 is
empty, the tetrahedral mesh is already convex and can be fed directly into the MPVO
or MPVOC sorting algorithm. Alternatively, one could replace Steps P3) and P4) by
just adding the faces of the bounding box (see right side of Figure 3.3).

exterior
volume

tetrahedral
mesh

boundary
normals

Figure 3.3: Determining the exterior volume (depicted in light green).Left : minimal
volume using convex hull.Right: easy setup with bounding box.

As mentioned above, the exterior volume will not be filled with tetrahedra but it
will be broken up into a set ofn convex polyhedraSi, i = 1..n. This is achieved
by cutting away one concavity after another. For each detected concavity the exterior
volume is split into two sub-volumes similar to binary space partition:

C1) n = 1, S1 = S0

78 Unstructured Grids

C2) while Si is concave or disconnected for anyi = 1..n do

C3) choose triangleT ∈ Si so that the plane throughT cutsSi into two non-empty
sub-volumesS′i andS′′i

C4) triangulate the intersection of the cutting plane withSi and add the resulting
triangles to bothS′i andS′′i

C5) Si = S′i, Sn = S′′i , n = n + 1

C6) optional: discard sub-volumes that are entirely separated from the tetrahedral
mesh by the cutting plane

C7) endwhile

The triangles of a sub-volume that intersect with the cutting plane have to be split
and the resulting sub-triangles have to be moved into the corresponding triangle subset.
Note that the tetrahedral mesh is not split at all. Only a triangle of the boundary surface
may be split so that the directed graph has multiple dependencies for the corresponding
face of the attached tetrahedron (compare bottom right of Figure 3.5). The intersection
of the cutting plane with a sub-volume is a polygon which may be concave or even
disconnected. This polygon has to be triangulated and added to both subsets, since
otherwise the sub-volumes are not valid closed surfaces. Triangles which lie in the
cutting plane are a special case and must be added to only one sub-volume. Step C6)
is an optimization for the bounding box setup.

The described convexification algorithm does not introduce complex volumetric
operations but rather is a combination of well known algorithms working on surfaces
alone. In this way the seemingly intractable goal of filling an arbitrarily complex vol-
ume with tetrahedra is broken down to a number of well analyzed operations on trian-
gular meshes. In the worst case one iteration of the cutting algorithm is needed for each
face of the boundary. For each cut the triangulation in Step 4) is the most expensive
operation withO(b log b) runtime andb being the number of boundary triangles. There-
fore, the total runtime for the preprocessing of the tetrahedral mesh isO(b2 log b). In
practice, however, the number of necessary cuts is much less, so that total preprocess-
ing time is nearly linear in terms of the number of tetrahedra.

Cutting Plane Selection

The runtime of the MPVO sorting algorithm for the convexified mesh is directly related
to the number of auxiliary cells. Since each cut produces at least one additional cell,
the goal is to keep the number of cuts as low as possible to reduce both preprocessing
and sorting times. The correct selection of the cutting plane is critical to minimize the
number of necessary cuts.

A naive approach would be to select the cutting plane which halves each sub-
volume best. This is the analogue strategy to the construction of BSP trees in computer
games. Here the BSP performance relies on equal sized nodes, for which the halving
strategy works well. In this case, however, the size of the nodes is not relevant, since
they won’t be rendered. Instead the total number of cuts needs to be minimized.

In principle, the cutting plane should be chosen so that the corresponding triangleT
has at least one neighbor with an opening angle less than 180◦. This ensures that at least
one concavity is cut away from the sub-volume. Since there are usually many triangles
that fulfill this condition (see center and right case in Figure 3.4), a different selection

3.1 Visibility Sorting 79

Figure 3.4: Selection of cutting plane.Left : bad BSP strategy (no concavity cut away).
Center: elimination of one concavity.Right: elimination of two concavities (but total
number of auxiliary cells is the same, since the bottom sub-volume is disconnected and
needs to be split by another cut).

criterion is introduced: The criterion is based on the fundamental observation that the
number of generated auxiliary cells depends on the number of cut surface elements.
For each cut at least one additional auxiliary cell is generated. In the best case each
sub-volume is divided into two cells. If the cutting plane intersects the sub-volume
boundary multiple times the number of generated cells is usually higher.

This behavior is illustrated in Figure 3.5 which shows the process of convexification
for a simple two-dimensional object. Since cuts with as few as possible intersections
with the boundary are preferred, the triangles on the convex hull of the data set are
processed first (top left of Figure 3.5). The generated sub-volumes outside the convex
hull are redundant, hence they are discarded by Step C6) of the cutting algorithm. After
processing all possible cuts on the convex hull the algorithm could vote for the hori-
zontal cut on the top right of Figure 3.5. But then the small cell depicted in bright red
would be generated. This cell is redundant, since it does not eliminate any concavity.
So the algorithm votes for the vertical cut. The left sub-volume is convexified easily by
one additional vertical cut, which is preferred over the horizontal cut because it does
not intersect with the boundary. The right sub-volume requires two cuts because it is
more complex. The algorithm can choose any of the three possible cutting planes, since
all have the same intersection count. Finally the algorithm has found a convexification
consisting of a total of five auxiliary cells (bottom right of Figure 3.5).

In three dimensions the mesh topology can be more complex than in two dimen-
sions, for example cycles can only occur in three dimensions. But the tendency that
cuts with few intersections produce less auxiliary cells is basically the same. As a
consequence, the triangle for which the cutting plane has the smallest number of in-
tersections with the boundary of each sub-volume is selected. Since it is infeasible
to calculate the number of cuts for every triangle, the algorithm randomly selects a
small set of triangles and chooses the best of this group. This strategy is also used by
the BSP-XMPVO sorting algorithm. It usually will not find the global minimum, but
experimental tests have shown that the results are pretty close to the optimum.

Using the described bounding box setup for tetrahedral convexification Figure 3.6
shows the convexified Blunt Fin data set. For this data set a single auxiliary cell is gen-
erated. Only this cell, which is depicted below the wire-frame representation, needs to
be added, to yield a convex mesh. Usually the data sets encountered in practice cannot
be handled as easy as this, but the Blunt Fin example illustrates that automatic convex-
ification can be achieved very easily for a wide variety of grid types such as curvilinear
grids. The sorting performance for the convexified Blunt Fin unsurprisingly is the same
as for using MPVO on the original Blunt Fin. A more complex convexification example

80 Unstructured Grids

a)

Cut 3

b)

c) d)

Figure 3.5: 2D convexification example with resulting sorting graph. The light red
balls depict cells with multiple dependencies for a face.

with timings is given in Section 3.2.4.

3.1.2 Handling Cycles

Although the tetrahedral convexification as outlined above seems to be a straightfor-
ward extension to the MPVO algorithm, there is one issue which needs further expla-
nation. Besides the observation that a tetrahedral mesh can naturally contain cycles,
the convexification process can produce cycles as well. This fact is demonstrated in
Figure 3.7 a) showing a simple setup which after three cuts generates a cycle. The or-
der in which the cuts are performed has a main influence whether cycles occur or not.
For example, a reordering the three cuts as shown in Figure 3.7 b) easily eliminates
the cycle. Conceptually, the generation of cycles should be an additional criterion for
cutting plane selection. However, it is not yet well understood how to detect cycles
during convexification and it is also not well understood whether or not cycles can be
prevented in general by proper cutting plane selection. As can be seen in the above
example the strategy to select the cutting plane with the least number of boundary in-
tersections also prevents the cycle. Therefore the cutting strategy is also suited for cycle
avoidance, but one cannot guarantee acyclicity. So for now the algorithm has to deal
with the appearance of cycles. The solution for data sets that already contain cycles is
to use the MPVOC algorithm. The solution for cycles generated by convexification is
fortunately as simple as this: By definition the cycles are generated by the addition of
auxiliary cells. Since these cells need not be rendered the detected cycle can be broken
up by deleting one ore more auxiliary cells from the cycle.

In the easiest case the cycle is a simple loop containing one strand of auxiliary cells.

3.2 Hardware Accelerated Rendering 81

a)

b)

Figure 3.6: To convexify the BluntFin data set (a) only one auxiliary cell needs to be
added (b).

Then the algorithm breaks up the cycle by deleting one of the auxiliary cells. After that
all elements of the cycle are still connected. This means that the cycle does not break
up into several parts, which cannot be sorted using the plain MPVO algorithm. For
more complex cycle graphs the deletion of a single auxiliary cell usually also works
well, but in rare cases two or more cells have to be deleted. From this experience the
most frequent cases are cycles which contain up to two strands of auxiliary cells. In
the tests all detected cycles could be eliminated by deleting either a single or at most
two auxiliary cells. So the strategy is as follows: If a cycle is detected, the algorithm
first subsequently checks if the deletion of a single auxiliary cell resolves the problem.
In practice this works for the vast majority of cases. Otherwise the algorithm checks
all combinations of deleting two cells. If this still doesn’t work the algorithm triggers
the MPVOC algorithm for this cycle. In practice it shows up that the latter is triggered
only if the tetrahedral mesh itself contains a cycle.

a)

Cut 1

Cut 2
Cut 3

A

B

C

D

b)
Cut 2

Cut 3

Cut 1

A

B

C

D

Figure 3.7: a) A cycle generated by three cuts (A > B > C > D > A with > meaning
”in front of”). b) A different cut selection resolves the cycle (A > B > C < D > A).

3.2 Hardware Accelerated Rendering

3.2.1 Simple Shading

Rendering a tetrahedral data set without any textures or shading enabled already pro-
duces a quick preview of the final rendering. However, assigning only a single color
and opacity for each vertex of the tetrahedral mesh and each vertex constructed for the
PT algorithm produces some severe artifacts (see Figure 3.8).

82 Unstructured Grids

a) b)

Figure 3.8: Simple shading using no textures and per vertex coloring.

The complete rendering pipeline for the simple shading approach can be seen in
Figure 3.9. The only thing that has to change whenever the transfer function is modified
are the attributes assigned for each vertex. During rendering, the additional vertices
are constructed and their attributes are interpolated from the attributes of the original
vertices.

create connec-
tivity graph

assign
attributes

render
tetrahedra

sort
tetrahedra

initialization classification change every frame

load
volume

Figure 3.9: Rendering pipeline for simple shading. The green portion is the rendering
itself.

The memory consumption during rendering is 3 floats and 1 byte per vertex in
system memory and 3 floats and 4 bytes of graphics memory during rendering. The
number of vertices also includes the vertices introduced by the projected tetrahedra
algorithm. Table 3.1 shows the rendering footprint of this approach.

3.2.2 Pre-Integration

There are a lot of different algorithms for rendering tetrahedral meshes with pre-inte-
grations. While most approaches need large 3D or 2D textures in order to store the pre-

3.2 Hardware Accelerated Rendering 83

data type memory locations simple shading
vertex location system/graphics 24,576 kB
scalar vertex values system 2,048 kB
attribute data graphics 8,192 kB
rendering footprint graphics 32,768 kB

Table 3.1: Memory footprints in kB for a volume consisting of2, 097, 152 vertices
(original and intermediate vertices) during rendering with simple shading.

integration table, these tables can also be approximated while shading [GRS+02]. All
of these approaches have one thing in common, to work correctly the rendering needs
to interpolate texture coordinates and other attributes on the front and back face of each
spat. Thus the rendering has to use homogeneous coordinates and need to implement a
per-fragment perspective divide or a dependent projective texture lookup1 in the shader.
The resulting image quality can be seen in Figure 3.10. For this approach, a 3D texture
is used and nolmax as maximum ray segment length is fixed. Insteadl′ = 1 − 2−l is
used rather thanl as third texture coordinate.

a) b)

Figure 3.10: Pre-integrated rendering of the Blunt Fin (a) and Bucky Ball (b) data sets.

The complete rendering pipeline for the pre-integration approach can be seen in
Figure 3.11. The 3D textures now have to change whenever the transfer function is
modified. During rendering, only texture coordinates for the additional vertices need
to be interpolated.

The memory consumption during rendering is 3 floats and 1 byte per vertex in sys-
tem memory and the same amount of graphics memory during rendering. The number
of vertices also includes the vertices introduced by the projected tetrahedra algorithm.
Additionally a 3D texture is needed for storing the pre-integration table. A size of
2562× 128 with 128 entries for the ray segment lengthl′ was chosen. Table 3.2 shows
the rendering footprint of this approach.

OpenGL vertex program

The vertex program converts all texture coordinates to homogenous texture coordinates
with a w-value and then divides them by thew-value of the transformed front vertex.

1Since the rendering also needs to calculate the correct length of the ray segment within the spat, it has
to divide anyway. It therefore will not use the projective texture lookup.

84 Unstructured Grids

create connec-
tivity graph

render
tetrahedra

sort
tetrahedra

initialization every frame

load
volume

classification change

create 3D
lookup texture

Figure 3.11: Rendering pipeline for pre-integrated rendering. The green portion is the
rendering itself.

data type memory locations simple shading
vertex location system/graphics 24,576 kB
scalar vertex values system/graphics 2,048 kB
pre-integration table graphics 32,768 kB
rendering footprint graphics 59,392 kB

Table 3.2: Memory footprints in kB for a volume consisting of2, 097, 152 vertices
(original and intermediate vertices) during rendering with simple shading.

This is because the hardware will interpolate on the front face but homogenous coor-
dinates that are interpolated in screen-space are needed. The vertex program can be
summarized to implement the following steps.

1. Transform the front vertex coordinates with the model-view-projection matrix
(just like the legacy pipeline).

2. Transform the homogenous partw of the back vertex coordinates with the model-
view-projection matrix and calculate the scaling between thew parts of both
transformed vertices.

3. Calculate the scalar front and homogenous back values.

4. Calculate the distance vector between eye point and front vertex.

5. Calculate the distance vector between eye point and back vertex in homogeneous
coordinates.

The shader now has the correctly interpolated values on both the front and back face of
each spat.

!!ARBvp1.0

ATTRIB iPosF = vertex.position;
ATTRIB iPosB = vertex.texcoord[0] ;
ATTRIB iTex = vertex.texcoord[1] ;

3.2 Hardware Accelerated Rendering 85

TEMP fPos;
TEMP tmp;
TEMP rPos;

PARAM mvp[4] = { state.matrix.mvp };
PARAM iEye = state.matrix.modelview[0].

invtrans.row[3] ;

OUTPUT oPos = result.position ;
OUTPUT oTex = result.texcoord[0] ;
OUTPUT oPosF = result.texcoord[1] ;
OUTPUT oPosB = result.texcoord[2] ;

transform front vertex 1
DP4 fPos.x, mvp[0], iPosF;

©

DP4 fPos.y, mvp[1], iPosF;
DP4 fPos.z, mvp[2], iPosF;
DP4 fPos.w, mvp[3], iPosF;
MOV oPos, fPos;

transform homogeneous part of back vertex 2
DP4 rPos, mvp[3], iPosB;

©

RCP rPos, rPos;
MUL rPos, fPos.w, rPos;

texture 0 contains correct scalar front value and 3
homogeneous back value
MOV oTex.x, iTex.x;

©

MUL oTex.y, iTex.y, rPos;
MOV oTex.zw, rPos;

texture 1 contains correct front (homogeneous) 4
ADD tmp, iPosF, -iEye;

©

MUL oPosF.xyz, tmp, iTex.w;
MOV oPosF.w, 1.0 ;

texture 2 contains correct back (homogeneous) 5
ADD tmp, iPosB, -iEye;

©

MUL tmp, tmp, rPos;
MUL oPosB.xyz, tmp, iTex.w;
MOV oPosB.w, rPos;

END

OpenGL fragment program

The fragment program now treats all input coordinates as homogeneous coordinates
and does the required texture coordinate calculations and lookups.

1. Calculate the texture coordinates for accessing the pre-integration table. The

86 Unstructured Grids

texture coordinates consist of: front valuesf , back valuesb (needs to be divided)
and distancel between front and back vertex (also needs to be divided by the
same number). The third coordinate is actually2−l instead of the distance itself.

2. Lookup into pre-integration table.

3. Convert the opacity from distance 1 to distancel.

4. Write final pre-multiplied color.

The resulting fragment program then looks like this.

!!ARBfp1.0

ATTRIB iTex = fragment.texcoord[0] ;
ATTRIB iPosF = fragment.texcoord[1] ;
ATTRIB iPosB = fragment.texcoord[2] ;

TEMP texcoord;
TEMP color;
TEMP length;

calculate texture coordinate for lookup 1
MOV texcoord.r, iTex;

©

RCP texcoord.a, iPosB.a;
MAD length, texcoord.a, iPosB, -iPosF;
DP3 length, length, length;
RSQ length, length.r;
RCP length, length.r;
EX2 texcoord.b, -length.r;
MAD texcoord.b, texcoord.b, -1.0 , 1.0 ;

look up pre-integrated value 2
TEX color, texcoord, texture[1], 3D;

©

convert optical density into transparency 3
ADD color.a, 1.0 , -color.a;

©

POW color.a, color.a, length.r;

write final color 4
MOV result.color.rgb, color;

©

ADD result.color.a, 1.0 , -color.a;

END

3.2.3 Pre-Integrated Lighting

Since the rendering performance only depends on the sorting time and the vertex
performance, quite long fragment programs can be used to improve the visual qual-
ity compared to simple pre-integrated rendering or the rendering used by Guthe et

3.2 Hardware Accelerated Rendering 87

al. [GRS+02]. Meissner et al. [MGS02] already proposed the pre-integration of not
only one emissive color but also lighting properties like ambient, diffuse and specular
coefficient. This has already been explained in the pre-integrated lighting section for
regular grids.

Since the scalar values and the gradients are interpolated linearly within each tetra-
hedra, they are also linear along each viewing ray. Therefore most of the approxima-
tions used for regular grids are actually much more accurate for irregular grids. Again,
to allow for pre-integration of the diffuse color, the assumption that the intensity of
the light varies linearly is used. Therefore the light intensity∆In for each segmentn
can be split into the ambient intensity∆Ia

n, the diffuse intensities∆Idf
n , ∆Idb

n and the
specular intensity∆Is

n.
Figure 3.12 shows the improved visual perception of the surfaces while increasing

the diffuse coefficient within the transfer function. Up to now, no specular highlight
has been used.

a) b)

c) d)

Figure 3.12: Blunt Fin (a, b) and Bucky Ball (c, d) data set using per-ray lighting. With
ambient only (a, c) and diffuse lighting (b, d).

With this approach a highlight is rendered correctly over multiple opaque iso-
surfaces within a single tetrahedra and is approximated efficiently for semi-transparent
transfer functions as seen in Figure 3.13 and Figure 3.14.

In order to further increase the accuracy of both diffuse lighting and the specular
highlight, additional samples along each ray can be used. Although the resulting image
quickly converges to the correct solution, the increasing number of samples into the
pre-integration tables may introduce the fill rate as the limiting performance factor
again.

88 Unstructured Grids

a) b) c)

Figure 3.13: Specular highlight on different iso-surfaces within a single tetrahedron
(a), approximation for non-iso-surface setting (b) and correct solution (c).

a) b)

Figure 3.14: Specular highlight on different iso-surfaces for a data set containing 60
tetrahedra (a) and highlights for non-iso-surface setting (b).

The rendering pipeline seen in Figure 3.15 is again very similar to the one used
for pre-integrated rendering. The only difference is the calculation of normals per
vertex. This operation has to be carried out only once, after loading the volume data
and constructing the connectivity graph.

The memory consumption during rendering is 3 floats and 1 byte per vertex in sys-
tem memory and the same amount of graphics memory during rendering. The number
of vertices also includes the vertices introduced by the projected tetrahedra algorithm.
Additionally three 3D textures are needed for storing the pre-integration table. A size
of 2562 × 128 with 128 entries for the ray segment lengthl′ was chosen. Table 3.3
shows the rendering footprint of this approach.

data type memory locations simple shading
vertex location system/graphics 24,576 kB
scalar vertex values system/graphics 2,048 kB
pre-integration tables graphics 98,304 kB
rendering footprint graphics 124,928 kB

Table 3.3: Memory footprints in kB for a volume consisting of2, 097, 152 vertices
(original and intermediate vertices) during rendering with simple shading.

3.2 Hardware Accelerated Rendering 89

create connec-
tivity graph

render
tetrahedra

sort
tetrahedra

initialization classification change every frame

load
volume

calculate
normals

create 3D
lookup texture

Figure 3.15: Rendering pipeline for pre-integrated rendering. The green portion is the
rendering itself.

OpenGL vertex program

The vertex program converts all texture coordinates to homogenous texture coordinates
with a w-value and then divides them by thew-value of the transformed front vertex.
This is because the hardware will interpolate on the front face but homogenous coor-
dinates that are interpolated in screen-space are needed. The vertex program can be
summarized to implement the following steps.

1. Transform the front vertex coordinates with the model-view-projection matrix
(just like the legacy pipeline).

2. Transform the homogenous partw of the back vertex coordinates with the model-
view-projection matrix and calculate the scaling between thew parts of both
transformed vertices.

3. Calculate the scalar front and homogenous back values.

4. Calculate the distance vector between eye point and front vertex.

5. Calculate the distance vector between eye point and back vertex in homogeneous
coordinates.

6. Store front gradient.

7. Calculate and store back gradient in homogeneous coordinates.

8. Calculate the distance vector between light source and front vertex.

9. Calculate the distance vector between light source and back vertex in homoge-
neous coordinates.

The shader now has the correctly interpolated values on both the front and back face of
each spat.

90 Unstructured Grids

!!ARBvp1.0

ATTRIB iPosF = vertex.position;
ATTRIB iPosB = vertex.texcoord[0] ;
ATTRIB iTex = vertex.texcoord[1] ;
ATTRIB iGradientF = vertex.texcoord[2] ;
ATTRIB iGradientB = vertex.texcoord[3] ;

TEMP fPos;
TEMP tmp;
TEMP rPos;
TEMP light;
TEMP eye;

PARAM mvp[4] = { state.matrix.mvp };
PARAM iEye = state.matrix.modelview[0].

invtrans.row[3] ;
PARAM iLight = state.light[0].position ;

OUTPUT oPos = result.position ;
OUTPUT oTex = result.texcoord[0] ;
OUTPUT oPosF = result.texcoord[1] ;
OUTPUT oPosB = result.texcoord[2] ;
OUTPUT oGradientF = result.texcoord[3] ;
OUTPUT oGradientB = result.texcoord[4] ;
OUTPUT oLightF = result.texcoord[5] ;
OUTPUT oLightB = result.texcoord[6] ;

transform front vertex 1
DP4 fPos.x, mvp[0], iPosF;

©

DP4 fPos.y, mvp[1], iPosF;
DP4 fPos.z, mvp[2], iPosF;
DP4 fPos.w, mvp[3], iPosF;
MOV oPos, fPos;

transform homogeneous part of back vertex 2
DP4 rPos, mvp[3], iPosB;

©

RCP rPos, rPos;
MUL rPos, fPos.w, rPos;

texture 0 contains correct scalar front value and 3
homogeneous back value
MOV oTex.x, iTex.x;

©

MUL oTex.y, iTex.y, rPos;
MOV oTex.zw, rPos;

texture 1 contains correct front (homogeneous) 4
ADD tmp, iPosF, -iEye;

©

MUL oPosF.xyz, tmp, iTex.w;

3.2 Hardware Accelerated Rendering 91

MOV oPosF.w, 1.0 ;

texture 2 contains correct back (homogeneous) 5
ADD tmp, iPosB, -iEye;

©

MUL tmp, tmp, rPos;
MUL oPosB.xyz, tmp, iTex.w;
MOV oPosB.w, rPos;

texture 3 contains correct front gradient 6
(homogeneous)

©

MOV oGradientF.xyz, iGradientF;
MOV oGradientF.w, 1.0 ;

texture 4 contains correct back gradient 7
(homogeneous)

©

MUL oGradientB.xyz, iGradientB, rPos;
MOV oGradientB.w, rPos;

texture 5 contains correct front light direction 8
(homogeneous)

©

ADD light, -iPosF, iLight;
DP3 light.w, light, light;
RSQ light.w, light.w;
MUL oLightF.xyz, light, light.w;
MOV oLightF.w, 1.0 ;

texture 6 contains correct back light direction 9
(homogeneous)

©

ADD light, -iPosB, iLight;
DP3 light.w, light, light;
RSQ light.w, light.w;
MUL light, light, light.w;
MUL oLightB.xyz, light, rPos;
MOV oLightB.w, rPos;

END

OpenGL fragment program

The fragment program now treats all input coordinates as homogeneous coordinates
and does the required texture coordinate calculations and lookups.

1. Calculate the texture coordinates for accessing the pre-integration table. The
texture coordinates consist of: front valuesf , back valuesb (needs to be divided)
and distancel between front and back vertex (also needs to be divided by the
same number). The third coordinate is actually2−l instead of the distance itself.

2. Lookup into pre-integration tables.

3. Convert the opacity from distance 1 to distancel and weight ambient color with
ambient light intensity.

92 Unstructured Grids

4. Calculate diffuse term of front samplesf .

5. Calculate diffuse term of back samplesb.

6. Calculate and normalize the representing gradient.

7. Calculate and normalize the eye vector at the same location.

8. Calculate reflected vector.

9. Calculate and normalize the light vector at the same location.

10. Calculate specular highlight.

11. Write final pre-multiplied color.

The resulting fragment program then looks like this.

!!ARBfp1.0

ATTRIB iTex = fragment.texcoord[0] ;
ATTRIB iPosF = fragment.texcoord[1] ;
ATTRIB iPosB = fragment.texcoord[2] ;
ATTRIB iGradientF = fragment.texcoord[3] ;
ATTRIB iGradientB = fragment.texcoord[4] ;
ATTRIB iLightF = fragment.texcoord[5] ;
ATTRIB iLightB = fragment.texcoord[6] ;

PARAM lAmbient = state.light[0].ambient ;
PARAM lDiffuse = state.light[0].diffuse ;
PARAM lSpecular = state.light[0].specular ;

TEMP texcoord;
TEMP color;
TEMP front;
TEMP back;
TEMP eye;
TEMP tmp;
TEMP length;

calculate texture coordinate for lookup 1
MOV texcoord.r, iTex;

©

RCP texcoord.a, iPosB.a;
MAD length, texcoord.a, iPosB, -iPosF;
DP3 length, length, length;
RSQ length, length.r;
RCP length, length.r;
EX2 texcoord.b, -length.r;
MAD texcoord.b, texcoord.b, -1.0 , 1.0 ;

look up pre-integrated value 2
TEX color, texcoord, texture[1], 3D;

©

TEX front, texcoord, texture[2], 3D;
TEX back, texcoord, texture[3], 3D;

3.2 Hardware Accelerated Rendering 93

convert optical density into transparency 3
ADD color.a, 1.0 , -color.a;

©

POW color.a, color.a, length.r;
MUL color.rgb, color, lAmbient;

diffuse lighting front 4
DP3 tmp.r, iGradientF, iGradientF;

©

DP3 tmp.g, iLightF, iLightF;
DP3 tmp.b, iGradientF, iLightF;
MUL tmp.r, tmp.r, tmp.g;
RSQ tmp.r, tmp.r;
MUL SAT tmp.r, tmp.r, tmp.b;
MUL tmp, tmp.r, lDiffuse;
MAD color.rgb, tmp, front, color;

diffuse lighting back 5
DP3 tmp.r, iGradientB, iGradientB;

©

DP3 tmp.g, iLightF, iLightF;
DP3 tmp.b, iGradientB, iLightF;
MUL tmp.r, tmp.r, tmp.g;
RSQ tmp.r, tmp.r;
MUL SAT tmp.r, tmp.r, tmp.b;
MUL tmp, tmp.r, lDiffuse;
MAD color.rgb, tmp, back, color;

Calculate and normalize representing gradient 6
MUL tmp, back.a, iGradientB;

©

MUL tmp, tmp, texcoord.a;
MAD tmp, front.a, iGradientF, tmp;
DP3 tmp.a, tmp, tmp;
RSQ tmp.a, tmp.a;
MUL tmp.rgb, tmp, tmp.a;

Calculate and normalize eye vector 7
MUL eye, back.a, iGradientB;

©

MUL eye, eye, texcoord.a;
MAD eye, front.a, iGradientF, eye;
DP3 eye.a, eye, eye;
RSQ eye.a, eye.a;
MUL eye.rgb, eye, eye.a;

Calculate reflected vector 8
MAD eye, tmp.a, tmp, -eye;

©

MAD eye, tmp.a, tmp, eye;

Calculate and normalize representing light vector 9
MUL tmp, back.a, iLightB;

©

MUL tmp, tmp, texcoord.a;
MAD tmp, front.a, iLightF, tmp;

94 Unstructured Grids

DP3 tmp.a, tmp, tmp;
RSQ tmp.a, tmp.a;
MUL tmp.rgb, tmp, tmp.a;

Calculate specular highlight 10

DP3 SAT tmp.rgb, tmp, eye;
©

LG2 tmp.rgb, tmp.r;
MUL tmp.rgb, tmp, 128.0 ;
EX2 tmp.rgb, tmp.r;
ADD tmp.a, front.a, back.a;
MUL tmp.rgb, tmp, tmp.a;
MUL tmp, tmp, lSpecular;

write final color 11

ADD SAT result.color.rgb, color, tmp;
©

ADD result.color.a, 1.0 , -color.a;

END

3.2.4 Results

The current implementation of the described convexification algorithm is not yet de-
signed for speed but rather is a proof of concept. Right now the algorithm processes
roughly 1,000 tetrahedra per second, but there is plenty of room for improvement. Be-
sides the convexification, which is only a preprocessing step, an implementation of
the MPVO algorithm with a performance of about 1,2 million tetrahedra per second
on an AMD Athlon 1.33 GHz processor was used. At such clock-speeds the sorting
algorithm is already memory bound. To overcome the limitations of the memory bus
a simple trick was applied. By not only using an indexed vertex but also an indexed
normal data structure the traffic on the memory bus was reduced by about 20-50% de-
pending on the regularity of the data set. Together with a hand-tweaked cell-projection
algorithm written in SSE2 an overall rendering performance of about 880,000 tetra-
hedra per second was achieved on an NVIDIA GeForce4 Ti4200 graphics accelerator.
For example the Blunt Fin Data set in Figure 3.6 with 224,874 tetrahedra renders at
approximately 3.9 frames per second. The performance for the complex SPX data set
is given in Table 3.4.

tested cuts auxiliary cells sorting time total time

0 0 7.2 ms 15.4 ms
1 1562 17.9 ms
5 1115 13.7 ms
10 1000 12.9 ms
20 836 12.2 ms 20.4 ms

Table 3.4: Sorting times for the SPX data set with 12936 tetrahedra (Coolant simulation
in a part of the Super Phoenix Reactor). The first line shows the results of using the
plain MPVO algorithm which is fastest but does not render the SPX correctly. With an
increasing number of tested cutting planes the total number of auxiliary cells decreases
significantly and so does sorting time.

3.3 Compression 95

Taking the number of generated auxiliary cells into account the total number of
cells is increased by only 13% but sorting time increases by 69% and total rendering
time by 32%. The reason for this overproportinal progression are the memory latencies
for the irregular auxiliary cells. In comparison with Guthe et al. [GRS+02] this algo-
rithm achieves about the same performance although it uses a slower test platform. This
is mainly due to the optimizations of the original algorithm, that is the indexed normals
and the hand-crafted cell projection algorithm. This algorithm is also faster in compari-
son to the hardware-accelerated cell projection algorithms [WKE02, WMFC02] which
achieve only approximately 500,000 tetrahedra per second excluding times for sorting.

In a direct comparison with BSP-XMPVO the algorithm has the same average run-
time behavior but the sorting stage is much faster since the space partitioning calcula-
tions have been swapped into the preprocessing step. During runtime only very simple
graph operations as in the original MPVO are required. An additional advantage is that
the explicit representation of the exterior volume in contrast to the implicit BSP-tree
eases postprocessing and storage of the convexified mesh. However the main advan-
tage of the presented algorithm is that all types of meshes including cyclic meshes can
be handled correctly and at the same time almost the same performance as the MPVO
algorithm is achieved.

In Figure 3.16 an additional convexification example of a more complex mesh is
given: It shows two interleaving gears with many concavities and a complex structure
in between the gears.

3.3 Compression

Tetrahedral meshes have been around in finite element simulations on volumetric do-
mains for a long time. With the growing need of visualizing simulation data, tetrahedral
meshes established themselves also in volume visualization. There are several beautiful
properties of tetrahedral meshes which make them the natural choice for volume data
representation. The flexibility of a tetrahedral mesh is ideally suited for irregular sam-
plings and multiresolution analysis. The convex nature of a single tetrahedron allows
for a simple visibility sorting algorithm, which is essential in volume visualization.

In most application areas of tetrahedral meshes some data is attached to the mesh
elements. The data can be attached to the vertices, edges, the faces, the border faces
or the tetrahedra. A density might be attached to the vertices, the intensity of a flow to
the edges or material identifiers to the tetrahedra. The tetrahedral mesh serves several
different purposes. It can be used to store nearest neighbors, to subdivide a volume into
convex primitives or to sample and, by using the barycentric coordinates, to parameter-
ize the domain of a function. The function can be scalar, a vector field or even a tensor
field as for example the stress tensor of an inhomogeneous material. The compression
algorithm can be extended in a natural way to support compression of all three types of
data functions defined on all different types of mesh elements.

Basic Definitions and Notations

This section deals with tetrahedral meshes in the three-dimensional Euclidean space
given by a set of tetrahedra such that any two tetrahedra either are disjunctive or share
a face, an edge or a vertex. The number of vertices, edges, faces, border faces and
tetrahedra is denoted withv, e, f , b andt respectively.

96 Unstructured Grids

a) b)

c) d)

e) f)

Figure 3.16: Convexification of two interleaving gears. The top row (a, b) shows the
data set from the side and from above. For the final convexified mesh (f) a total of 42
cuts are necessary for a data set consisting of 202 tetrahedra.

The total amount of bits consumed by a tetrahedral mesh is denoted withS, where
a right subscript is used to express a special representation type.Sstd denotes for
example the standard representation with a list of vertex coordinate triples, a list of
vertex index quadruples representing the tetrahedra and additional lists for the attached
data. The storage spaceS is split into the bitsL consumed by the locations of the
vertices,C consumed by the connectivity andD consumed by the data attached to
the mesh elements. If no data is present only the geometry consisting of connectivity
and vertex locations has to be encoded inG bits. For reasonable representations the
following approximation can be used:

S ≤ G +D G ≤ C + L (3.1)

The combined representation of two and more components of the tetrahedral mesh
can be more efficient since better predictions might improve delta coding or just be-
cause the coding mechanism can combine some fractional bits.

3.3 Compression 97

Basic Equations and Approximations

The basic equation for a tetrahedral mesh as defined in the previous section is the Euler
equation:

v − e + f − t = χ (3.2)

whereχ is the Euler characteristic of the mesh and in most cases negligibly small.
If the tetrahedron-face instances are counted once for each tetrahedron and once for
each face a second equation including the number of border facesb can be set up:

f = 2t +
b

2
(3.3)

In the case of triangle meshes the corresponding equations are sufficient to deter-
mine the average face-order of a vertex and the number of triangles per vertex in a
mesh with small Euler characteristic and few boundary edges, but not in the tetrahedral
case as Figure 3.17 illustrates. The tetrahedron-order of a vertex might vary between
one as in Figure 3.17 a) and v for the mesh in b)2. Thus for the number of tetrahedra in
an arbitrary tetrahedral mesh only the following is known:

v

4
≤ t ∈ Ω

(
v2
)

(3.4)

a)

z

y

x

2
v

v
2

b)

Figure 3.17: tetrahedral meshes with a) minimum and b) maximum vertex tetrahedron-
order 4t

v .

None of the tetrahedral meshes of Figure 3.17 are used to sample volumetric func-
tions for volume visualization or finite element analysis. The tetrahedral meshes of
interest normally have a limited edge-order of the vertices, a small border portion and
low Euler characteristics of the mesh and of the border mesh, respectively. Therefore,
the fraction betweent and v is expressed in terms of the average number of edges
around a vertexov→e = 2e

v , the number of border verticesvb, χ andχb the Euler
characteristic of the border. As the border is closed the relation3b = 2eb, whereeb

is the number of border edges, can be expressed. Using the Euler equation for trian-
gular meshesvb + b = eb + χb, producesvb = χb − b

2 . This equation together with
equations 3.2 and 3.3 yields

t

v
=

ov→e

2
− 1− vb

v
+

χ + χb

v
. (3.5)

To find a basic approximation for the relation betweent andv in a typical tetra-
hedral mesh with small border portion and low Euler characteristics the estimation of

2The mesh is one of the delaunay tetrahedrizations of the shown set of points.

98 Unstructured Grids

ov→e for a regular tetrahedral mesh is left. Unfortunately, the Euclidean space can not
be tetrahedralized with equilateral tetrahedra. But the fraction of4π over the steradian
occupied by an equilateral tetrahedron yields3 with 11.64 a good approximation of the
average vertex edge-order. The tetrahedralization of a cubic grid yieldsov→e −→

v→∞
12

for a 1 : 5 zoning4 andov→e −→
v→∞

14 for a 1 : 6 zoning. Considering this and the mea-
sured average edge-orders in Table 3.5, we assume in the following an average vertex
order of thirteen. For tetrahedral meshes with small Euler characteristic and border
portion the following equation in agreement with Table 3.5 is produced.

v : e : f : t ≈ 1 : 6.5 : 11 : 5.5. (3.6)

The algorithm uses this approximation to estimate the storage consumption of a
tetrahedral mesh in the standard representation, where each vertex is given by three
32bit floating point coordinates and each tetrahedron by four vertex indices:

Lstd = 96v, Cstd = 4t · dlog2 ve =
v≈105

374v. (3.7)

For a typically sized tetrahedral mesh with a hundred thousand vertices the connec-
tivity consumes about four times more storage space than the vertex coordinates. The
algorithm can reduce the connectivity to about eleven bits per vertex (see Table 3.7).
This reduces the storage requirements to a quarter without loosing information.

Entropy and Arithmetic Coding

Let A = {a1, ..., am} be an alphabet withm different symbols andS = s1s2...sn a
sequence ofn symbolssi ∈ A. Then the relative frequencyνai

of the symbolai is
defined by

νai
(S) =

|{j|sj = ai}|
n

. (3.8)

If besides the relative frequencies no further information about the sequenceS is
known, it can be shown that at least

E (S) = E (n, νa1 , ..., νam
) = −n ·

∑
a∈A

νa (S) log2 νa (S) (3.9)

bits are needed to encode the sequenceS. The quantityE is called binary entropy.
Arithmetic coding (see [WNC87] for an introduction) allows to encode a sequence with
only slightly more bits than the binary entropy.

Related Work

As shown in the previous section tetrahedral meshes consume disproportional storage
space in comparison to the data functions they sample. There are two approaches to re-
duce the size of tetrahedral meshes. The first one is mesh simplification as described for
tetrahedral meshes in [CPS97, PH97, SG98, VV98, ZCK97]. Most methods are based
on the edge collapse operation introduced by Hoppe [Hop96] which is easily general-
ized from the triangular case. All these methods are lossy compression schemes. In
the area of lossless compression previously only the Grow&Fold method proposed by

3The Euler equation for spherical triangle meshes has been applied.
4Each cube is split into five tetrahedra.

3.3 Compression 99

Szymczak [SR99] was available. The compressed representation consists of a tetrahe-
dra spanning tree and a folding string. The spanning tree is rooted at an arbitrary tetra-
hedron and grown by attaching all other tetrahedra to external triangles of the current
spanning tree. For each added tetrahedron three bits encode whether further tetrahedra
are attached to the three external triangles of this tetrahedron or not. The folding string
contains for each external triangle of the spanning tree a 2-bit code defining one of the
three edges or no edge. If an edge is specified, this external triangle is folded together
with the triangle adjacent through the specified edge. As the spanning tree containst
tetrahedra and2t + 1 external faces the storage requirements so far are7t + O (1) bits.
External triangles of the spanning tree without folding edge are either border trian-
gles of the tetrahedral mesh or must be glued to a triangle which is not edge-adjacent.
The glue operations consume over two bits but appear in reasonable meshes seldom
enough such that the total storage space increases only slightly to more than seven bits
per tetrahedron. This thesis will also compare the storage space consumed by the com-
pressed representation of the cut-border machine to the lower bound of seven bits per
tetrahedron for the Grow&Fold representation:

CG&F = 7t. (3.10)

The limitation of the Grow&Fold approach is that it cannot handle non manifold
borders.

Grow&Fold combines ideas from the triangle mesh compression techniques ”geom-
etry compression through topological surgery” introduced by Taubin [TR98] and ”edge-
breaker” proposed by Rossignac [Ros99]. The compression scheme generalizes the
cut-border machine proposed by Gumhold and Straßer [GS98] which is similar to the
edgebreaker approach. But the cut-border machine is much easier to generalize to the
tetrahedral case than the edgebreaker. The ideas of the triangular cut-border machine
are briefly repeated in section 3.3.1. Basically, the cut-border machine traverses the
mesh in a region filling way, which is determined by the connectivity of the mesh, and
encodes for each newly added triangle one operation, which describes how the triangle
is formed upon the current border edge of the growing region.

Toumas [TG98] triangle mesh connectivity compression scheme allows the encod-
ing of regular triangle meshes with better space efficiency. This method is in a way
similar to the cut-border machine. By encoding the vertex triangle-orders with a run-
length encoding scheme half of the operations encoded by the cut-border machine can
be saved. For regular triangle meshes the vertex triangle-orders can be encoded very
space efficiently such that the compressed representation may only consume half the
storage space of the cut-border representation. Touma also proposes a simple predic-
tion for the vertex coordinates. The coordinates are estimated as the fourth vertex of
a parallelogram which is formed from the triangle inside the growing region and ad-
jacent to the current border edge of the growing region. The crease angle at this edge
is estimated from the other crease angles at the interior triangle. Encoded is only the
difference between the estimation and the actual location of the vertex.

3.3.1 Cut-Border Machine

The connectivity compression is based on the generalization of the cut-border machine
described in [GS98]. In the triangular case the cut-border machine is very simple to
implement and also extremely fast. The generalization to the tetrahedral case requires
a more sophisticated data structure for non manifold triangle meshes.

100 Unstructured Grids

Triangle Connectivity Compression with the Cut-Border Machine

The cut-border machine compresses triangle meshes which consist of a list of vertices
and a list of triangles, each triangle containing the three vertex indices and the indices
of the three edge-adjacent triangles. If the latter adjacency information is not known it
can be easily computed through hashing.

The cut-border machine is based on a region growing traversal of the triangle mesh
starting with an arbitrary triangle. The border of the growing region is called the cut-
border. It divides the mesh into the inner and the outer part, which contain the already
compressed and the remaining triangles respectively. Triangles are added to the inner
part at a distinguished current cut-border edge which will be called the gate as proposed
in [Ros99]. After each addition of a triangle the gate moves on to another cut-border
edge, until all triangles of an edge-connected component of the triangle mesh have been
compressed. This is done for each edge-connected component.

The compressed representation contains for each triangle a bit code of an opera-
tion identifier which tells how the triangle was formed upon the gate. There are three
cases: the gate is an edge of the mesh border, the gate forms a triangle with a vertex
on the cut-border or the triangle is formed with a new vertex. The different opera-
tions are called ”border”, ”new vertex” and ”connect”. The ”connect”-operations take
one parameter which specifies the offset of the third vertex relative to the gate. The
”connect”-operations with offset one and minus one are also called ”connect forward”
and ”connect backward”. All other ”connect”-operations split the cut-border into two
loops. As the triangle meshes describe two dimensional surfaces in three-dimensional
space, two cut-border loops can grow together again, actually once for each handle
and each hole of the triangle mesh. The operation which unifies two loops is called
”union” and takes two parameters, the index of the second loop and the offset of the
third triangle vertex within this loop.

The cut-border data structure basically consists of a stack of doubly linked lists
containing the vertices or their indices , which are adjacent to triangles of the inner
and the outer part at the same time. Data at the faces, edges or vertices such as their co-
ordinates are included in the compressed representation each time a new mesh element
is added to the cut-border for example the vertex coordinates of vertexvi are encoded
after the ”new vertex”-operation which introducesvi into the cut-border.

The decompression algorithm builds the mesh in the same order as the compres-
sion algorithm traverses the original mesh. With the help of the indices attached to
the ”connect”-operations the original connectivity can be reconstructed with permuted
vertices and triangles. During decompression the edge-adjacency information can be
reconstructed with no additional cost.

The success of the method results from the high frequency of the ”new vertex”- and
the ”connect forward”-operations. Together they constitute in most meshes over 95%
of all operations. The high frequency of the ”connect forward”-operation and the low
frequency of ”connect”-operations with large offsets depends in a high degree on the
traversal order, which is determined by the choice of the gate after each operation.

From Triangle Connectivity to Tetrahedral Connectivity Compression

As in the triangular case the uncompressed tetrahedral mesh is stored as a list of ver-
tices and a list of tetrahedra, each tetrahedron containing the indices of the incident
vertices and the face adjacent tetrahedra. The inner and the outer part consist of a set
of tetrahedra. The cut-border is the triangular surface between the inner and the outer

3.3 Compression 101

part and the gate is a triangle of the cut-border. For each face-connected component of
the mesh the traversal begins with an arbitrary tetrahedron and successively adds face-
adjacent tetrahedra at the gate to the inner part. The different cut-border operations
are described in the next section. The cut-border may become the surface of an arbi-
trary face-connected tetrahedral mesh and therefore contain non manifold vertices and
edges. We assume that the tetrahedral mesh is embedded in three-dimensional space
and that the tetrahedra do not penetrate each other. As in the triangular case the traver-
sal order highly influences the distribution of the ”connect”-operations with different
offsets.

Cut-Border Operations and Situations

There are three possibilities for the fourth vertex of a newly added tetrahedron at the
gate: the gate is a border triangle of the tetrahedral mesh, the gate forms a tetrahedron
with a new vertex or the gate is connected through a tetrahedron to another cut-border
vertex. The corresponding cut-border operations will again be called ”border”, ”new
vertex” and ”connect” and are abbreviated with the symbols∆ ∗ and∞i.

Although only three different types of cut-border operations exist, ten different
situations are distinguished which describe the surrounding of the cut-border around
the gate for the different cut-border operations. All the situations are illustrated in
Figures 3.18 and 3.19. Figure 3.18 shows the situations which do not introduce non
manifold vertices or edges. For the ”border”- and the ”new vertex”- operation only one
situation exists which is depicted in Figure 3.18 c) and b), respectively. The ”connect”
operation comes along with a whole variety of situations. The most frequent of these
is the ”flip” operation shown in Figure 3.18 a). Here the newly added tetrahedron
connects the gate to an adjacent triangle of the cut-border. The common edge of these
two cut-border triangles is kind of flipped if the two former cut-border triangles are
replaced by the two new cut-border triangles introduced by the new tetrahedron. The
”top” and the ”close” operations are very similar to the ”flip” operation. The only
difference is that not only two faces of the newly added tetrahedron are part of the
cut-border but three of them in the case of the ”top” operation or even all in the case of
the ”close” operation. The ”close”-operation eliminates or closes an edge-connected
component of the cut-border triangle mesh. The ”close”-situation cannot be seen from
the outside of the cut-border. Therefore, in Figure 3.18 e) the cut-border is rendered
with transparent triangles. In the front long edges of outer triangles are visible.

a) flip b) new vertex c) border d) top e) close

Figure 3.18: The different manifold cut-border situations. The gate is shown as green
triangle and the newly added tetrahedron with green edges and blue transparent faces.

As mentioned earlier, the cut-border can be a non manifold triangle mesh. Fig-
ure 3.19 portrays all types of situations which introduce a non manifold vertex or edge.

102 Unstructured Grids

In Figure 3.19 a) the non manifold counterpart of the ”flip” situation is shown. Here
the free edge of the ”flip” situation is touched by the cut-border and therefore already
belongs to the cut-border. The touched edge becomes non manifold after application
of the ”connect” operation. The ”join” situation in Figure 3.19 b) is the non manifold
counterpart of the ”new vertex” operation. The fourth vertex of the newly added tetra-
hedron is part of a region of the cut-border triangle mesh which is further apart from
the gate. This vertex becomes non manifold. Finally, in the ”join” situations depicted
in Figures 3.19 c), d) and e) not only the fourth vertex of the newly added tetrahedron
belongs to the cut-border but also one two or all three free edges of the ”join” situation.
Thus one, two or three non manifold edges are introduced.

a) nm flip b) join c) j. 1 nm edge d) j. 2 nm edgese) j. 3 nm edges

Figure 3.19: The different types of non manifold cut-border situations.

The situations depicted in Figures 3.18 and 3.19 constitute all possible situations,
which can be easily verified by considering a newly added tetrahedron: the three trian-
gles of the tetrahedron which are unequal to the gate may all be part of the cut-border
or not be part. The same holds true for the fourth vertex and the three edges not inci-
dent to the gate. All of these seven mesh elements might be present in the cut-border or
not. The presence of one of the three triangles implies the presence of the fourth vertex
and the two incident edges. If such implications are taken into account each possible
assignment of presence to the three triangles, three edges and the fourth vertex yields
exactly one of the discussed situations. Thus each face-connected component of the
tetrahedral mesh can be compressed without any vertex repetitions. Only if two com-
ponents of the tetrahedral mesh are exclusively connected through edge-adjacency and
vertex-adjacency the involved non manifold vertices are repeated. In a simple way the
”border”-operation allows for the encoding of all possible border surfaces of tetrahedral
meshes including non manifold borders.

The ”connect” operation takes one index as parameter, which specifies the fourth
vertex in the cut-border. The fourth vertex is with high probability near to the gate. This
fact can be exploited for a more efficient encoding by mapping near fourth vertices to
small connect indices. This is achieved by a breadth-first traversal through the triangles
of the cut-border starting at the gate as shown in the illustration of Figure 3.20. The
enumeration is not uniquely defined before one edge of the gate is specified at which
the enumeration with the zero connect index will begin. This edge will be called the
zero edge and is specified by the traversal strategy. Figure 3.20 gives pseudo code for
the vertex enumeration. The algorithm is similar to the cut-border traversal in the case
of a triangle mesh. In a fifo these edges of the cut-border are stored which are adjacent
both to a visited triangle and to a not visited triangle at the same time. The zero edge is
firstly placed into the fifo. Triangles are visited by extracting the next edge from the fifo
and addressing the adjacent triangle which has not been visited yet. If the third vertex
of the newly visited triangle is reached the first time, the next available connect index

3.3 Compression 103

is assigned to it. In this way the vertices obtain the indices illustrated in Figure 3.20.

fifo.pushback(gate.zeroEdge())
fifo.pushback(gate.oneEdge())
fifo.pushback(gate.twoEdge())
while not fifo.empty do

edge = fifo.popfront()
tgl = edge.rightTriangle()
if not marked(tgl) then

mark(tgl)
vtx = tgl.oppositeVtx(edge)
if not marked(vtx) then

mark(vtx)
enumerate(vtx)

fifo.pushback(tgl.nextEdge(edge))
fifo.pushback(tgl.prevEdge(edge))

Figure 3.20: Vertex enumeration.

The ”flip” situation can arise for the operations∞0,∞1 and∞2, the ”top” situation
for ∞0 and∞1 and ”close” only for∞0. The different ”join” situations correspond to
”connect” operations with larger index and are less frequent. The traversal strategy has
to optimize the choice of the zero edge in a way that most ”flip” and ”top” situations
are encoded with∞0.

Compressed Representation

In the triangular case the ”new vertex”-operation∗ is performed in about half the cases
and is most frequent. In the tetrahedral case the relative frequency of∗ is only about
1

5.5 , whereas the connect operations with small index are most frequent. For optimal
encoding of the operation symbols arithmetic coding was used since the relative fre-
quencies are unequal to2−k and therefore Huffman-coding is not appropriate.

The connectivity of the tetrahedral mesh is given by the sequence of cut-border
operations. As each operation adds one tetrahedron or specifies one border face,t + b
operations are encoded. The binary entropy defined in Equation 3.9 gives a good lower
bound

CCB = E (n, ν∆, ν∗, ν∞0 , ν∞1 , ...) < Cadapt
CB (3.11)

for the storage spaceCadapt
CB consumed by the arithmetic coder with adaptive rel-

ative frequencies, which are initialized to the average values given in the last row of
Table 3.6. Table 3.7 shows that the arithmetic coder almost achieves the optimum.

The vertex coordinates and the data at the vertices, edges, faces and tetrahedra are
incorporated in the arithmetic coding stream with separate coding models. Each time a
cut-border operation produces a new mesh element, the corresponding data is added to
the stream. The representation of a 1:6 zoning of a cube with vertex datav0, v1, ..., v7

and tetrahedral datat0, t1, ..., t5 might look as follows:
t0x0y0z0v0x1y1z1v1x2y2z2v2x3y3z3v3∆∆
∗t1x4y4z4v4∆ ∗ t2x5y5z5v5∆
∗t3x6y6z6v6∞0t4∆∆ ∗ t5x7y7z7v7∆∆∆∆∆∆.

104 Unstructured Grids

Traversal Order

The traversal strategy chooses after each cut-border operation the next gate and zero
edge. The aim is to favor a small number of different kinds of operations. To avoid
most connect operations with large indices it turned out that a good strategy is to stay
at one cut-border vertex until all adjacent tetrahedra have been visited. The cut-border
vertices are processed in a fifo order. For the choice of the zero edge and the order
in which the triangles around a cut-border vertex are added, two heuristics were tried
that favor the∞0-operation. The first one cycles around edges and tries to close up
with a ∞0-operation by setting the zero edge of the gate to the edge around which
the cut-border machine cycles. The second strategy defines the zero edge of each cut-
border triangle at the time when the triangle is created. The zero edge is set to the edge
which is shared by the gate and the new triangle. In case of a new vertex operation
it is obvious that with this choice the zero edge is the edge with the smallest angle in
the outer part. This still holds true to some extent for the other operations. The first
heuristic increased the frequency of the∞0-operation to 45% and the second heuristic
even to 60%. Thus the second strategy was chosen, which is documented in Table 3.6.

Mesh-Border Encoding

In order to allow for a non manifold mesh border, the border operations are encoded
explicitly. The border symbol can be avoided when an edge-adjacent triangle of the
gate has already been encoded as border triangle. In this case the corresponding con-
nect symbol can be used. This optimization helped to decrease the additional amount
of storage for the mesh border to one bit per border triangle as tabulated in Table 3.7.
The same optimization improves the border encoding in the triangular case of the cut-
border machine.

Cut-Border Data Structure

Data Structure 1 Cut-Border

CutBorder
CutBorderTriangle triangles[]
Fifo<CutBorderVertex> vertices
TriangleIndex gate

CutBorderTriangle
VertexIndex vertexIndices[3]
TriangleIndex adjacentTriangles[3]
TetraIndex innerTetra
Boolean meshBorder
Integer zeroEdge

CutBorderVertex
VertexIndex meshVertexIndex
Set<TriangleIndex> adjacentTriangles

Data structure 1 shows the cut-border data structure. Three relations between the
cut-border vertices and the cut-border triangles are stored: for each triangle the three
incident vertices and three edge-adjacent triangles; for each vertex all incident trian-
gles. The latter relation is stored in a set data structure which allows insertion and

3.3 Compression 105

elimination of elements and the intersection of two sets. This relation allows for the
handling of non manifold vertices and edges. For each cut-border triangle the incident
tetrahedron of the inner part is stored in order to find the new tetrahedron if the triangle
becomes the gate. The meshBorder-flag tells the algorithm if the cut-border triangle
has already been encoded as border triangle of the mesh and therefore does not have to
be visited again. With the help of this flag the optimized border encoding is realized.
As the traversal order defines the zero edge for each triangle at creation time, an index
between zero and two is stored for each cut-border triangle defining the zero edge. The
cut-border vertices are organized in a fifo as demanded by the chosen traversal strategy.

For each vertex of the tetrahedral mesh a field which stores the index of the cut-
border vertex is generated and initialized before compression to minus one. In this
way the algorithm can not only map a tetrahedral mesh vertex index to a cut-border
vertex index but does also know which of the tetrahedral mesh vertices are part of the
cut-border.

Why is it sufficient to keep for each triangle only three edge-adjacent neighbors
even at non manifold edges? At any time the cut-border describes the surface of a
tetrahedral mesh. Thus the faces around a non manifold edge divide the space into
regions alternately belonging to the inner and the outer part. These regions around a
non manifold edge are called inner/outer regions. The faces bounding the same outer
region can be set to be edge-adjacent as illustrated in Figure 3.21. This definition
correctly reflects the proximity needed in enumerating the vertices relative to the gate.
Faces of different outer regions can not be connected through a tetrahedron without
intersecting an inner region.

Figure 3.21: Edge-adjacency of cut-border triangles around non manifold edge.

Finally, the updates of the cut-border data structure are described for the different
situations depicted in Figures 3.18 and 3.19. During the ”connect” operation of a man-
ifold ”flip” situation (see Figure 3.18 a)) the two present triangles in the cut-border
are replaced with two new ones where the common edge is flipped. The vertices and
face-adjacent triangles of the two new triangles can be easily determined from the old
triangles. For each new triangle the zero edge is set to the edge, which is incident to
the gate. The innerTetra index of the newly added triangles is set to the newly added
tetrahedron, as in all other situations of all operations. Finally, the old triangles are
removed from the triangle sets of the vertices and the new triangles are added.

The first step during the update of the ”new vertex” operation is to create a new cut-
border vertex for the fourth vertex of the newly added tetrahedron and store its vertex
index of the tetrahedral mesh in the corresponding field. Conversely, the index of the

106 Unstructured Grids

new cut-border vertex is stored within the corresponding field of the tetrahedral mesh
vertex. Next the gate triangle is removed and three new triangles are inserted. Again
their zero edges are set to the edges incident to the gate. The ”border” operation just
sets the border flag of the gate triangle. For the border optimization the border flags of
the three edge-adjacent cut-border triangles are checked and if one of them is set, the
operation is encoded with the corresponding ”connect” operation. The ”top” situation
is similar to the ”flip” situation except that three triangles are removed and only one is
added. As last manifold situation the ”close” operation eliminates all involved triangles
and these vertices for which the set of adjacent triangles becomes empty. If a cut-border
vertex is removed the index stored with the corresponding tetrahedral mesh vertex is
set to minus one again.

In order to distinguish between manifold and non manifold situations the algorithm
has to clear up how to decide whether an edge of the newly added tetrahedron belongs
to the cut-border or not. The question is trivially answered positively if an incident
triangle of the newly added tetrahedron already belongs to the cut-border. Otherwise
the answer can be determined by intersecting the set of adjacent triangles of the inci-
dent vertices of the edge in question. If the intersection is empty no cut-border triangle
contains the edge and therefore the edge cannot belong to the cut-border. The intersec-
tion test must be performed for all edges of the non manifold situations in Figure 3.19
which are not incident to a cut-border triangle. In case of the ”nm flip” situation this
is one edge and in case of the four ”join” situations these are three edges. Only if
the non manifold edges are detected, the face-adjacency can be updated according to
Figure 3.21. And this is the only difference in the update process between the ”nm
flip” and ”flip” situations and between the four different ”join” situations and the ”new
vertex” operation.

The ”nm flip” operation is distinguished from the ”flip” situation by checking if
the edge connecting the two newly added triangles belongs to the cut-border or not.
This check can be done after the update performed for the ”flip” situation, such that
the face-adjacency of the two new triangles can be corrected if necessary. This is only
possible if the vertex coordinates are known and given in three-dimensional space. For
more general tetrahedral meshes the neighbors of the newly added triangles must be ex-
plicitly encoded. This can be done with few bits and as the non manifold situations are
much less frequent as the manifold situations, the total storage space will not increase
significantly for typical meshes.

The family of ”join” situations is detected whenever the three triangles of the newly
added tetrahedron, which are not equal to the gate, are not part of the cut-border but
the fourth vertex is part of the cut-border. The latter condition is checked with the help
of the cut-border index field attached to the tetrahedral mesh vertices. The update of
the ”join” situations is the same as in the case of the ”new vertex” operation except that
the three newly added triangles must also be inserted to the triangle set of the fourth
vertex. Finally, the three potential non manifold edges are checked for their presence
in the cut-border and the face-adjacency of the corresponding triangles are corrected if
necessary as in the case of the ”nm flip” situation.

Coordinate Compression

In a first step each vertex coordinate is quantized to 16 bits according to the diagonal
of the bounding box of all vertices. Thus the compression is lossy and for some appli-
cations not appropriate. All the meshes were in ASCII format with six to eight valid
digits which is equivalent to 19-26 bits. The quantization step will loose some infor-

3.3 Compression 107

mation and the shape of small tetrahedra changed slightly, but no tetrahedron changed
its orientation.

To encode the 16 bit coordinates arithmetically it turned out to be economical to
split each coordinate into four packages of four bits. For each package a different set
of adaptive frequencies was used for the arithmetic coder. This strategy dramatically
reduced the storage space consumed by the arithmetic coder and increased the com-
pression speed.

The next step in coordinate compression is delta coding. The vertex coordinates
are encoded during the compression of the connectivity. After each new vertex op-
eration the difference vector from the center of the gate triangle to the new vertex is
encoded. Thus the proximity information given by the tetrahedralization of the ver-
tices was used. The number of bits saved through delta coding can be estimated with
the following simple argument. Suppose the vertices are uniformly distributed. Then
there are approximately3

√
v vertices per coordinate axis and it should be possible to

savelog2
3
√

v bits per coordinate. Thus the storage space consumed per vertex can be
estimated with48 − log2 v bits, which is about three bits above the actually achieved
storage space.

A final improvement of two bits less storage space per vertex could be achieved by
rotating the coordinate system such that the z-axis is the normal of the gate and the x-
axis parallel to the zero edge. Quantization is done after changing to the new coordinate
system. To avoid accumulation of rounding errors it is very important that during
compression the center of the gate is computed with the same quantized coordinates
which are available to the decompression algorithm. The change of the coordinate
system saved two bits in the x- and y-axis. The final storage space consumed per

vertex by the coordinates is tabulated in Table 3.7 in the column labeledL16Bit
CB

v .

3.3.2 Results

The Tetrahedral Meshes

Figure 3.22 shows the six tetrahedral meshes which were used for the measurements.
They differ in their sizes and their origin. The ”Random” mesh was generated by de-
launay tetrahedralization of a cloud of randomly distributed points. In order to show
that the interior of this mesh is more complex than the surface, a cut through the mesh
was blended with its surface. The ”Proto” mesh is a quite regular tetrahedralization
of an object with non trivial boundary. The ”Bubble” is the output of a simplification
algorithm applied to a spherical symmetric scalar function. Again the blending tech-
nique shows part of the interior. The ”Torso” meshes are regularly tetrahedralized real
world meshes and the ”Blunt Fin” is a curvilinear grid.

Measurements

Table 3.5 shows the basic quantities of the different meshes and average values which
confirm Equation 3.6.

In Table 3.6 the distribution of the cut-border symbols is analyzed. The first column
shows for each mesh the total numbert + b of encoded operations. In the following
columns the relative frequencies of the different cut-border symbols are shown.∞0 is
with 60% the most frequent operation, followed by∗, ∞1 and∞2. With the border
optimization the frequency of the border symbol became negligibly small. The last
column shows the fraction of the non-manifold situations in Figure 3.19 which arose

108 Unstructured Grids

a) b) c)

d) e) f)

Figure 3.22: The measured tetrahedral meshes Random (a), Proto (b), Bubble (c),
Torso I (d), Torso II (e) and Blunt Fin (f). The transparent meshes were rendered with
projected tetrahedra. To the tetrahedra of the ”Torso I”-mesh a material identifier is
attached. The ”Blunt Fin”-mesh was rendered with false colors.

during compression. This number is important for the optimal running time of the
compression and decompression algorithms as the non-manifold operations consume
more computing power.

Table 3.7 illustrates different aspects of the consumed storage space and running
time for the cut-border machine. The first column shows the storage space consumed
by the arithmetic coder for the connectivity. The second and third columns tabulate the
binary entropy of the cut-border operations in bits per vertex and bits per tetrahedra.
Comparison of the first two columns shows that the arithmetic coder is near the opti-
mum. The cut-border machine consumes on average about two bits per tetrahedron,
even for the randomly generated mesh which forces more connect operations with a
high index. CCB,∆ is the binary entropy of the sequence of cut-border operations
which were used to encode the border faces. The fourth column of Table 3.7 shows
that the border could be encoded with about one bit per triangle. As the best triangle
mesh compression methods consume also about one bit per triangle, the initializing
of the cut-border machine with the border of the tetrahedral mesh would not improve
the border encoding. The fifth column of Table 3.7 documents the compression speed
in tetrahedra per second for connectivity alone. The decompression speed is approx-
imately the same. The speed does not depend on the size but more on the frequency
of non-manifold operations (compare the last column of Table 3.6). The last but one
column contains the storage space consumed by the vertex coordinates. Finally, the
last column shows that the vertex compression doesn’t decrease the compression speed
significantly.

3.4 Conclusion & Future Work 109

mesh v v: e: f: t vb

v b ov→e oe→t

Random 2000 1:7.39:12.67:6.29 0.101 400 14.77 5.11
Proto 2896 1:5.94: 9.41:4.47 0.477 2760 11.89 4.51
Bubble 5715 1:6.89:11.64:5.74 0.150 1710 13.78 5.00
Torso I 11140 1:6.55:10.91:5.35 0.197 4380 13.10 4.90
Torso II 15164 1:6.61:11.04:5.43 0.180 5454 13.22 4.93
Blunt Fin 40960 1:5.74: 9.32:4.58 0.165 13516 11.48 4.78
average 1:6.52:10.83:5.31 0.212 13.04 4.87

Table 3.5: Basic quantities of the measured meshes.

mesh t+b ν∆ ν∗ ν∞0 ν∞1 ν∞2 ν∞i>2 νnm
Random 12971 0.001 0.154 0.519 0.118 0.108 0.101 0.116
Proto 15695 0.001 0.184 0.631 0.073 0.067 0.044 0.046
Bubble 34526 0.001 0.165 0.549 0.106 0.091 0.088 0.109
Torso I 64028 0.002 0.174 0.607 0.080 0.072 0.064 0.069
Torso II 87788 0.001 0.173 0.603 0.083 0.075 0.065 0.069
Blunt Fin 200910 0.000 0.204 0.707 0.045 0.044 0.000 0.000
average 0.001 0.176 0.602 0.084 0.076 0.060 0.068

Table 3.6: Total number of encoded operations; relative frequencies of cut-border op-
erations; relative frequency of non-manifold situations.

Table 3.8 compares the cut-border machine to the standard representation and the
Grow&Fold compression of Szymczak [SR99]. The results of the cut-border machine
are convincing and improve the standard representation by a factor of 20 to 50 depend-
ing primarily on the size of the tetrahedral mesh but also on the regularity.

3.4 Conclusion & Future Work

The sorting algorithm presented here is capable of sorting any convex or concave tetra-
hedral mesh with or without cycles, or even a number of disconnected meshes. The
number of auxiliary cells and thus additional sorting time is so low, that these meshes
can now be sorted correctly and rendered interactively.

The rendering quality is comparable to the quality of structured volume rendering.

mesh
Cadapt

CB

v
CCB

v

Cadapt
CB

t
CCB,∆

b

(
t

sec

)
C

L16Bit
CB

v

(
t

sec

)
G

Random 15.12 15.02 2.39 1.37 84831 34.40 73866
Proto 9.55 9.48 2.12 0.90 93603 30.86 74259
Bubble 13.52 13.43 2.34 1.11 85774 30.09 74146
Torso I 11.02 10.99 2.05 1.29 92508 30.41 76749
Torso II 11.15 11.14 2.05 1.20 92574 29.64 76992
Blunt Fin 6.00 5.99 1.31 0.54 98587 26.36 78493
average 11.06 11.01 2.04 1.07 91313 30.29 75751

Table 3.7: Cut-border machine: consumed storage for connectivity, border and quan-
tized vertex coordinates. Running time for connectivity alone and together with vertex
coordinates in tetrahedra per second on a Pentium II 350MHz.

110 Unstructured Grids

mesh Cstd

Cadapt
CB

Cadapt
CB

v
CG&F

v

Random 18.39 15.12 44.03
Proto 22.61 9.55 31.29
Bubble 22.22 13.52 40.18
Torso I 27.27 11.02 37.45
Torso II 27.29 11.15 38.01
Blunt Fin 48.90 6.00 32.06

Table 3.8: Comparison of the different approaches.

Additionally the performance only depends on the number of tetrahedra so, if the orig-
inal data is unstructured, there is no further need to resample the data for rendering.
Thus unstructured volumes can be rendered directly in real-time at very high quality.
Making this adaptive representation ideal for rendering extended volumes.

The lossless connectivity compression scheme for tetrahedral meshes can handle
non manifold borders. The implementation of the cut-border machine showed that it
achieves very high compression rates and is able to compress tetrahedral connectivity
to about two bits per tetrahedron, which is between three and four times better than
previously reported results. Lossy compression of vertex coordinates turned out to be
not as efficient as in the triangular case but still valuable for most applications. Future
work must concentrate on more sophisticated compression techniques for the vertex
coordinates and further data attached to the tetrahedral mesh.

Chapter 4

Displacement Mapping

Displacement mapping adds real surface detail to objects in three-dimensional scenes
by using two dimensional maps containing height data. Displacement mapping can
be used for generating large scale objects such as terrain and for adding smaller scale
detail such as bumps. Displacement mapping is used in offline cinematic content cre-
ation packages to add this surface detail and as the capabilities of graphics hardware
increases it can also be used in real time applications.

Displacement mapping is performed by displacing the position of a surface along
the normal to the surface by a distance sampled from a map of scalar values associated
with the surface. The displacement can be applied to vertices that make up the mesh of
the base surface with displacement values associated with each vertex. Alternatively
many algorithms insert new vertices into the surface to increase the base mesh detail
either using a fixed tessellation factor or by inserting vertices adaptively based on the
detail in the displacement map. The displacement map is typically a two dimensional
area used in a similar manner to a texture map with the base mesh containing coordi-
nates that indicate where the displacement map is to be sampled.

Displacement mapping was first mentioned by Cook [Coo84] in the context of soft-
ware based rendering. Techniques for ray tracing displacement maps have been pre-
sented previously by Heidrich et al.[HS98] and Pharr et al.[PH96]. But they are still
more complex than can be implemented on the current generation of programmable
graphics hardware.

In recent years several proposals for dedicated hardware have been proposed for
displacement mapping. Doggett et al. [DK99, DKS01] presented a level of detail driven
rasterization approach that inserts new vertices into the base mesh. A similar technique
is presented by Gumhold et al. [GH99]. Doggett and Hirche [DH00] presented an
adaptive tessellation scheme that inserts new vertices dependent on the average dis-
placement within the displacement map and the variance of the surface. Moule and
McCool [MM02] improved upon the area coverage for detecting change in the dis-
placement map to drive a similar adaptive scheme. Hirche and Ehlert [HE02] use a
pre-computed decision to drive tessellation eliminating the need for computing tessel-
lation decisions. All of these approaches require the creation of new vertices in the
vertex shader stage of existing graphics hardware, a feature which has only recently
been exposed in a limited fashion through the concept of output from the vertex shader
being sent to vertex arrays. This requires that the target vertex arrays are sized correctly
for a CPU calculated number of vertices.

Recently introduced hardware by Matrox [Mat02] allows fetching from a displace-

112 Displacement Mapping

ment map within the vertex shader, a feature not available on other hardware. But
like DirectX 9 displacement mapping tessellation is done at a pre set tessellation level
which is not controllable from within the vertex shader.

Using a similar approach to that presented in this chapter, Kautz et al. [KS01] ex-
trude the base mesh to enclose the entire displaced surface and then composite together
slices through the extruded volume using a technique similar to volume rendering.
Since all slices through the volume are rendered whether visible or not this technique
requires high fill rates and a high texture bandwidth.

Hirche et al. [HEG+04] presents an approach to displacement mapping using cur-
rently available programmable graphics hardware that creates the appearance of a dis-
placed surface on a per pixel basis. Unlike previous techniques it doesn’t require any
insertion of vertices to re-tessellate the mesh. Displacement map sampling occurs in
the pixel shader so all texture filtering modes can be applied. Many of the schemes
above include level of detail control tied to triangle size computed in screen space, this
step is not required using this technique since the sampling of the displacement map is
relative to the number of pixels contained within the bounding prisms of each displaced
triangle.

4.1 General Purpose Algorithm

Most approaches to displacement mapping require that the geometry of a given base
mesh can be modified, especially in the sense of adding more detail in the form of
re-tessellated triangles. Currently available hardware, at which this algorithm is tar-
geted, does not allow vertices to be added once the geometry has been transferred to
the graphics card. To work with this restriction this algorithm does not generate geom-
etry on the card, but instead creates triangles that cover the area on the screen that could
be affected by the displaced base mesh triangle. When the covering triangles are ras-
terized a per pixel calculation is performed to detect an intersection with the displaced
surface. The number of covered triangles should be kept to a minimum to reduce the
geometry transfer overhead. The bounding volume of the surface with a displacement
map applied to it is given by a prism obtained by displacing the base triangle along the
vertex normals to the maximum displacement height.

Figure 4.1: The prism with its resulting triangles used for rendering.

At each pixel of the prism’s triangles a non-trivial intersection of the ray with the
prism has to be performed, placing a very high burden on the pixel shader pipeline.

4.2 Hardware Acceleration 113

Since back-facing triangles can be culled, the amount of used pixels to be drawn
is relatively limited. The resulting triangles are shown in Figure 4.1. The sides of the
prism are quads and have to be split into two triangles, the bottom and top of the prism
remain unchanged resulting in eight triangles to be rendered per base triangle.

The fundamental problem with the prism rendering is, that the faces of the prism
cannot be interpolated linearly but are bi-linear. Thus the shader may intersect a ray
with the displacement map at two different positions. Thus the prism have to be split
into tetrahedra to avoid any disambiguates.

4.2 Hardware Acceleration

4.2.1 Single pass prism Renderer

The first approach renders the displacement prism by splitting it up into eight triangles
and casting rays into the prism from every rendered pixel. The rays are cast in the
viewing direction from each pixel position. To find out whether the ray intersects the
displacement map, the height of the sampling position is compared to the height of
the displacement map at the interpolated texture coordinate of the sampling position.
The height ranges from zero at the base mesh level to one on the top of the prism.
The 3D texture coordinates need to be interpolated inside the prism, along the viewing
direction. The texture coordinates are local to the prism and a base transform has to
be made at all vertex positions to obtain the viewing direction in local texture space.
Given a triangle with verticesVi = (xi, yi, zi) with normalsNi and texture coordinates
Ui = (ui, vi) for i = 1,2,3, the first step is to add a third coordinate defined by the height
of the vertex in the prism:

U ′
i := (ui, vi, 0) for vertices of the base triangle andU ′

i := (ui, vi, 1) for vertices
of the displaced triangle. To calculate the transformation for vertexV1 for example,
on the base triangle, we define a local baseBTexturewith the texture directionse1, e2

along the triangle edges:

e1 := U ′
2 − U ′

1 (4.1)

e2 := U ′
3 − U ′

1

BTexture := (e1, e2, 1)

In the same manner we define a local baseBWorld with the world coordinates of the
vertices:

f1 := V2 − V1 (4.2)

f2 := V3 − V1

BWorld := (f1, f2, N1)

The basis transformation fromBWorld to BTexturecan be used to move the viewing
direction at the vertex positionV1 to local texture space.

To avoid sampling outside of the prism, the exit point of the viewing ray has to be
determined. In texture space the edges of the prism are not straightforward to detect and
a 2D intersection calculation has to be performed. This can be overcome by defining a
second local coordinates system which has its axes aligned with the prism edges. For
this we assign 3D coordinates to the vertices as shown in Figure 4.2. The respective
name for the new coordinate for a vertexVi is Oi.

114 Displacement Mapping

(1,0,1)

(0,1,1)

(0,1,0)

(0,0,0)

(0,0,1)
(1,0,0)

Figure 4.2: The vectors used to define the second local coordinate system for simpler
calculation of the ray exit point.

Then the the viewing direction can be transformed in exactly the same manner to
the local coordinate system defined by the edges between theOi vectors:

g1 := O2 −O1 (4.3)

g2 := O3 −O1

BLocal := (g1, g2, 1).

Again this is the example for the vertexV1. In the following the local viewing di-
rection in texture space is calledViewT , and in theBLocal base representationViewL.
We assume that the viewing direction changes linearly over the face of a prism triangle
and put the local viewing direction in both coordinate systems in 3D texture coordi-
nates and use them as input to the fragment shader pipeline in order to get linearly
interpolated local viewing directions. The interpolatedViewL allows us to very easily
calculate the distance to the backside of the prism from the given pixel position as it
is either the difference of the vector coordinates to 0 or 1 depending which side of the
prism we are rendering. With this Euclidean distance we can define the sampling dis-
tance in a sensible way which is important as the number of samples that can be read
in one pass is limited, and samples should be evenly distributed over the distance. An
example of this algorithm is shown in Figure 4.3. In this case four samples are taken
inside the prism. The height of the displacement map is also drawn for the vertical
slice hit by the viewing ray. The height of the third sample which is equal to the third
coordinate of its texture coordinate as explained earlier, is less than the displacement
map value and thus a hit with the displaced surface is detected.

Although the pixel position on the displaced surface is now calculated, the normal
at this position is still the interpolated normal of the base mesh triangle, it has to be per-
turbed for correct shading, in this case standard bump mapping using a pre-calculated
bump map derived from the used displacement map is used. The bump map can be
stored together with the displacement map in one texture, with the displacement stored
in the alpha channel.

There is a fundamental problem in this approach. The surface of the prism is not
planar, but bi-linear for the sides or even a bezier patch on the top. Therefore the
calculation of the sampling positions is very complex and we have to ensure that we
always render the outer surface of the prism. In order to solve this correctly, we would

4.2 Hardware Acceleration 115

Figure 4.3: Sampling within the extruded prism with a slice of the displacement map
shown.

have to solve an equation with 3 unknowns that is only partly linear and therefore
not solvable in general. If we restrict the prisms to have flat sides, we still run into
numerical problems with this approach.

4.2.2 Tetrahedral Renderer

Numerical problems can be reduced by simplifying the shape used that the rays are cast
through. The prism is geometrically complex for performing intersection calculations.
Obviously the prism can be split into three tetrahedra as shown in Figure 4.4. This also
reduces the bi-linear surface into two triangles. The main difference in using tetrahedra
instead of the prism is that the texture space coordinates of the entry and exit point can
be interpolated at the same time by the rasterization units. The sampling points between
the entry and exit point can then be obtained by just linearly interpolating in between
them. The tetrahedra can be rendered using an adaptation of the projected tetrahedra
(PT) Algorithm by Shirley and Tuchman[ST90].

4.2.3 Mesh Construction

Using tetrahedra requires the construction of a tetrahedral mesh from the given triangle
base mesh. When this is done we have to ensure that neighboring tetrahedral edges are
aligned in a consistent way to avoid aliasing between adjacent triangles. This can be
achieved without using any knowledge of connectivity in the tetrahedral mesh. All that
is needed is a consistent numbering of the vertices in the mesh which is usually just
given by the vertex indices in a given array. The algorithm iterates over all faces in the
triangle mesh folding up a prism by displacing every vertex of the base triangle along
the vertex normal direction. To adjust the amount of displacement you can multiply
the normal with a user defined scalar. Every prism is then split into three tetrahedra
following the ordering scheme as schematically shown in Figure 4.4. We assign the
indices v0, v1, v2 to the lower vertices and v3, v4, v5 to the upper base vertices. Now

116 Displacement Mapping

every prism is tiled into the three tetrahedra v0-v1-v2-v5, v0-v1-v4-v5 and v0-v3-v4-
v5. An additional requirement is that v0< v1 < v2 with respect to the consistent
numbering scheme of the mesh as noted before. Hence the algorithm simply works
this way:

FOR_EVERY_TRIANGLE_FACE(f)

IF(v0 > v1)
SWAP(v0, v1)
SWAP(v3, v4)

IF(v0 > v2)
SWAP(v0, v2)
SWAP(v3, v5)

IF(v1 > v2)
SWAP(v1, v2)
SWAP(v4, v5)

CREATE_TETRA(v0, v1, v2, v5)
CREATE_TETRA(v0, v1, v4, v5)
CREATE_TETRA(v0, v3, v4, v5)

v5

v4

v1

v0

v3v2

Figure 4.4: Subdivision of prism into three tetrahedra (v0-v1-v2-v5, v0-v1-v4-v5, v0-
v3-v4-v5).

4.2.4 Rendering

To adapt the PT-algorithm to displacement mapping only a few modifications have to
be applied. In contrast to the standard algorithm where each vertex needs color and
opacity, each vertex is attributed with its respective tangent space consisting of normal,
tangent and bi-normal, each a 3d-vector. Additionally two texture coordinates, one
for the bump-/displacement map, the other for a freely usable texture, are assigned to
each vertex. Before the geometry is sent down the rendering pipeline a view-dependent
preprocessing step has to be performed where the tetrahedra are decomposed into tri-
angles according to the PT-algorithm. This way one tetrahedron is decomposed into

4.2 Hardware Acceleration 117

four to six triangles, a possible decomposition of one tetrahedron is depicted in Fig-
ure 4.5. The point S marks the intersection between a front side and a backside edge
in the view-plane. The intersection point on the backside edge in world coordinates is
referred to as secondary vertex later in the text. So far all the processing has to be done
on the driver side by the host computer’s CPU.

t2 t3

t4
t1

s

Figure 4.5: One possible decomposition of tetrahedron into triangles. Intersection of
front and back edge at point S in the viewplane.

Every triangle vertex (primary vertex) sent into the first stage is attributed with
texture coordinates and tangent space vectors. Likewise the vertex on the backside
(secondary vertex) of the decomposed tetrahedron is transferred as attribute including
its texture coordinates and tangent space vectors. With these parameters the vertex
shader computes homogeneous texture coordinates for the primary and secondary ver-
tex. It also computes the model-view-projection transformation of the vertices and
finally transforms per vertex viewing and light direction into tangent space.

In the second stage of this pipeline the pixel shader performs the intersection calcu-
lation between eye vector and the displacement map. To achieve this the pixel shader
performs four lookups in the displacement map given by the interpolated texture coor-
dinates of the primary and secondary vertex and two interpolated positions in between.
The intersection between eyevector and displaced surface is then calculated by sub-
traction of the sampled displacement value from the interpolated texture coordinates.
A sign change indicates the interval where the eye-vector hits the displaced surface. In
case no surface was hit the pixel is killed. Otherwise the pixel can now undergo a final
shading step. In our case bump mapping was used to perturb the interpolated normal
and Phong shading performed using the fragment shader stage.

OpenGL vertex program

The vertex program of the displacement mapping is very similar to the tetrahedral
renderer. However, the number of attributes to be passed to the fragment program has
increased. The functionality can be explained as follows.

1. Transform the front vertex coordinates with the model-view-projection matrix
(just like the legacy pipeline).

2. Project the transformed vertex into camera space.

118 Displacement Mapping

3. Project back vertex coordinates with the model-view-projection matrix.

4. Write homogeneous texture coordinates (front and back).

5. Write eye vectors (front and back) in homogeneous coordinates.

6. Write light vectors (front and back) in homogeneous coordinates.

Again, the shader now has the correctly interpolated values on both the front and back
face of each spat.

!!ARBvp1.0

ATTRIB iPos0 = vertex.attrib[0] ;
ATTRIB iNormal0 = vertex.attrib[1] ;
ATTRIB iDisp0 = vertex.attrib[2] ;
ATTRIB iTex0 = vertex.attrib[3] ;
ATTRIB iTang0 = vertex.attrib[4] ;
ATTRIB iBinorm0 = vertex.attrib[5] ;
ATTRIB iPos1 = vertex.attrib[6] ;
ATTRIB iNormal1 = vertex.attrib[7] ;
ATTRIB iDisp1 = vertex.attrib[8] ;
ATTRIB iTex1 = vertex.attrib[9] ;
ATTRIB iTang1 = vertex.attrib[10] ;
ATTRIB iBinorm1 = vertex.attrib[11] ;

PARAM mvp[4] = { state.matrix.mvp };
PARAM iEye = state.matrix.modelview[0].

invtrans.row[3] ;
PARAM iLight = state.light[0].position ;

TEMP bPos;
TEMP fPos;
TEMP tmp;
TEMP rPos;
TEMP light;
TEMP eye;

OUTPUT oPos = result.position ;
OUTPUT oDisp0 = result.texcoord[0] ;
OUTPUT oDisp1 = result.texcoord[1] ;
OUTPUT oLight0 = result.texcoord[2] ;
OUTPUT oLight1 = result.texcoord[3] ;
OUTPUT oEye0 = result.texcoord[4] ;
OUTPUT oEye1 = result.texcoord[5] ;
OUTPUT oTex0 = result.texcoord[6] ;
OUTPUT oTex1 = result.texcoord[7] ;

transform front vertex 1
DP4 fPos.x, mvp[0], iPos0;

©

DP4 fPos.y, mvp[1], iPos0;
DP4 fPos.z, mvp[2], iPos0;

4.2 Hardware Acceleration 119

DP4 fPos.w, mvp[3], iPos0;
MOV oPos, fPos;

make un-homogeneous 2
MOV rPos, fPos.w;

©

RCP tmp, fPos.w;
MUL fPos, fPos, tmp;

transform back vertex 3
DP4 bPos.x, mvp[0], iPos1;

©

DP4 bPos.y, mvp[1], iPos1;
DP4 bPos.z, mvp[2], iPos1;
DP4 bPos.w, mvp[3], iPos1;
RCP tmp, bPos.w;
MUL rPos, rPos, tmp;
MUL bPos, bPos, tmp;

write homogeneous texture coordinates and z-values 4
MOV oDisp0.xyz, iDisp0;

©

MOV oDisp0.w, fPos.z;
MOV oTex0.xyz, iTex0;
MOV oTex0.w, 1.0 ;
MUL oDisp1.xyz, iDisp1, rPos;
MUL oDisp1.w, bPos.z, rPos;
MUL oTex1.xyz, iTex1, rPos;
MOV oTex1.w, rPos;

write homogeneous eye vectors 5
ADD eye, -iPos0, iEye;

©

DP3 eye.w, eye, eye;
RSQ eye.w, eye.w;
MUL eye, eye, eye.w;

DP3 oEye0.x, eye, iTang0;
DP3 oEye0.y, eye, iBinorm0;
DP3 oEye0.z, eye, iNormal0;
MOV oEye0.w, 1.0 ;

DP3 tmp.x, eye, iTang1;
DP3 tmp.y, eye, iBinorm1;
DP3 tmp.z, eye, iNormal1;
MOV tmp.w, 1.0 ;
MUL oEye1, tmp, rPos;

write homogeneous light vectors 6
ADD light, -iPos0, iLight;

©

DP3 light.w, light, light;
RSQ light.w, light.w;
MUL light, light, light.w;

120 Displacement Mapping

DP3 oLight0.x, light, iTang0;
DP3 oLight0.y, light, iBinorm0;
DP3 oLight0.z, light, iNormal0;
MOV oLight0.w, 1.0 ;

ADD light, -iPos1, iLight;
DP3 light.w, light, light;
RSQ light.w, light.w;
MUL light, light, light.w;

DP3 tmp.x, light, iTang1;
DP3 tmp.y, light, iBinorm1;
DP3 tmp.z, light, iNormal1;
MOV tmp.w, 1.0 ;
MUL oLight1, tmp, rPos;

END

OpenGL Fragment Program

The main tasks of the fragment program are to determine if and where the viewing ray
intersects the displaced surface and to shade the fragment according to the location of
the intersection. These tasks are implemented in the following way.

1. Project the back vertex position into 3D space.

2. Compute the sample positions for the displacement map.

3. Sample the displacement map.

4. Calculate the position of the intersection.

5. Exit if the ray did not hit the surface or continue calculating the exact position.

6. Project the remaining homogeneous coordinates into 3D space. Then interpolate
front and back values for the sample position.

7. Calculate the final color using bump mapping.

8. Lit the fragment with Phong shading.

The final fragments are then drawn into the frame buffer with the z-buffer enabled in
order to find the closest intersections for all tetrahedra.

!!ARBfp1.0

ATTRIB iDisp0 = fragment.texcoord[0];
ATTRIB iDisp1 = fragment.texcoord[1];
ATTRIB iLight0 = fragment.texcoord[2];
ATTRIB iLight1 = fragment.texcoord[3];
ATTRIB iEye0 = fragment.texcoord[4];
ATTRIB iEye1 = fragment.texcoord[5];
ATTRIB iTex0 = fragment.texcoord[6];
ATTRIB iTex1 = fragment.texcoord[7];

4.2 Hardware Acceleration 121

PARAM lAmbient = state.light[0].ambient;
PARAM lDiffuse = state.light[0].diffuse;
PARAM lSpecular = state.light[0].specular;

TEMP disp1;
TEMP smp0;
TEMP smp1;
TEMP signs;
TEMP persp;
TEMP tmp;
TEMP loc;
TEMP tmp1;
TEMP tmp2;
TEMP tmp3;

ALIAS light1 = smp0;
ALIAS eye1 = smp1;
ALIAS tex1 = signs;
ALIAS color = loc;

project disp1 1
RCP persp, iTex1.w;

©

MUL disp1, iDisp1, persp;

compute sample positions 2
ADD tmp, -iDisp0, disp1;

©

MAD smp0, 0.333 , tmp, iDisp0;
MAD smp1, 0.667 , tmp, iDisp0;

sample displacement map 3
TEX tmp, iDisp0, texture[0], 2D;

©

TEX tmp1, smp0, texture[0], 2D;
TEX tmp2, smp1, texture[0], 2D;
TEX tmp3, disp1, texture[0], 2D;
ADD loc.r, -tmp.a, iDisp0.b;
ADD loc.g, -tmp1.a, smp0.b;
ADD loc.b, -tmp2.a, smp1.b;
ADD loc.a, -tmp3.a, disp1.b;
ADD loc, loc, {0.001 , 0.0 , 0.0 , -0.001 };

calculate hit location 4
SWZ signs, loc, g, b, a, r;

©

MUL signs, loc, signs;
CMP tmp, -signs, 2.0 , {0.0 , 0.333 , 0.667 , 2.0 };
MIN tmp1, tmp, tmp.abgr;
MIN tmp, tmp1.r, tmp1.g;
ADD tmp1, 1.0 , -tmp.r;

122 Displacement Mapping

kill if surface was not hit 5
KIL tmp1;

©

ADD tmp2, tmp, {0.167 , -0.167 , -0.5 , -0.833 };
CMP loc.r, tmp2.g, loc.r, loc.g;
CMP loc.g, tmp2.g, loc.g, loc.b;
CMP loc.r, tmp2.b, loc.r, loc.b;
CMP loc.g, tmp2.b, loc.g, loc.a;
ADD tmp2, loc.r, -loc.g;
MUL tmp2, tmp2, 3.0 ;
RCP tmp2, tmp2.r;
MAD tmp2, tmp2, loc.r, tmp;

project light1, eye1 and tex1 the interpolate 6
ADD disp1, -iDisp0, disp1;

©

MAD disp1, tmp2, disp1, iDisp0;
MAD tex1, persp, iTex1, -iTex0;
MAD tex1, tmp2, tex1, iTex0;
MAD light1, persp, iLight1, -iLight0;
MAD light1, tmp2, light1, iLight0;
MAD eye1, persp, iEye1, -iEye0;
MAD eye1, tmp2, eye1, iEye0;

calculate final color using bump mapping 7
TEX color, tex1, texture[1], 2D;

©

TEX tmp, disp1, texture[0], 2D;
MAD tmp, tmp, 2.0 , -1.0 ;
DP3 tmp.a, tmp, tmp;
RSQ tmp.a, tmp.a;
MUL tmp.rgb, tmp, tmp.a;
DP3 tmp1.a, light1, light1;
RSQ tmp1.a, tmp1.a;
MUL tmp1.rgb, light1, tmp1.a;
DP3 tmp2.a, eye1, eye1;
RSQ tmp2.a, tmp2.a;
MUL tmp2.rgb, eye1, tmp2.a;

lit fragment with Phong shading 8
DP3 tmp2.a, tmp2, tmp;

©

MAD tmp2.rgb, tmp, tmp2.a, -tmp2;
MAD tmp2.rgb, tmp, tmp2.a, tmp2;
DP3 SAT tmp, tmp, tmp1;
MUL tmp, tmp, lDiffuse;
ADD tmp, tmp, lAmbient;
DP3 SAT tmp1, tmp2, tmp1;
LG2 tmp1, tmp1.r;
MUL tmp1, tmp1, 128.0 ;
EX2 tmp1, tmp1.r;
MUL tmp1, tmp1, lSpecular;
MAD result.color.rgb, color, tmp, tmp1;

4.2 Hardware Acceleration 123

MOV result.color.a, 1.0 ;

END

4.2.5 Performance Optimizations

Up to now, the performance is still limited by the fill rate of the graphics card, i.e. the
fragments that are processed during rendering. There are two possibilities to reduce
the number of fragments that pass through the pixel shader.

The most commonly used fill rate optimization is to use the early-z-test in order to
terminate fragments before they reach the fragment shader. This can easily be imple-
mented by roughly sorting the tetrahedra into a front-to-back order. Since we are not
interested in the exact visibility order of the tetrahedra, we can use the center of each
tetrahedra and a simple bucket sort algorithm.

But even with this optimization, the rendering is still very slow since most of the
fragments are terminated within the fragment program. This is especially true for the
silhouette of the displaced surface. So the second optimization is to adapt the height of
the tetrahedra above the base surface.

Since each prism above a triangle is the bounding box of the displaced triangle, we
can simply shrink the prism using the values stored in the displacement map. For each
triangle we now sample the displacement map on the CPU, storing only minimum and
maximum displacement value. After that we update the minimum and maximum values
for each vertex. The minimum value of the vertex is the lowest minimum value of
all adjacent triangles, while the maximum value corresponds to the highest maximum
value of all adjacent triangles. The optimized mesh can be seen in Figure 4.6.

Figure 4.6: Optimized base mesh.

These optimizations together reduce the fill rate in a way, that real-time rendering
with displacement mapping becomes feasible.

124 Displacement Mapping

4.2.6 Results

The tetrahedral renderer was implemented using OpenGL vertex and fragment pro-
grams. The problems of using tetrahedra as primitives are of course the amount of
additional geometry that has to be transformed and rendered. The pixel shader needs a
single rendering pass on an nVidia GeForceFX 5800 or ATI RADEON 9700.

In our implementation four samples along a ray inside a tetrahedra are taken and
compared with the displacement map. To avoid sampling artifacts by missing a surface
completely the size of the tetrahedra and thus the size of the used base triangle mesh
has to be chosen appropriately. Longer pixel shader programs will allow more samples
to be taken improving the sampling quality. Figure 4.7 a) and b) shows a flat base
triangle meshes with half donut as a displacement map. Figure 4.8 a) shows the crater
lake displacement map applied to the same base mesh.

a) b)

Figure 4.7: Flat base mesh with a half donut shape applied to it (a). The base mesh in
red is translated away for better visibility. Same shape with a different texture applied
(b).

In Figure 4.8 b) we used a cylinder shaped mesh and applied the displacement map
of a laser range scan of a human head.

a) b)

Figure 4.8: Displacement Map of Crater Lake applied to a flat base mesh (a). The head
of Volker Blanz displaced from a cylindrical mesh, tetrahedral mesh show (b).

We then used a sphere shaped mesh and applied the displacement map of an earth
height field (see Figure 4.9). It is possible to add a texture additionally to displacement

4.3 Conclusion & Future Work 125

mapping, even with different texture coordinates than the displacement maps, allowing
for light maps, etc.

a) b)

Figure 4.9: Sphere shaped base mesh with a earth displacement map and texture ap-
plied to it. Additionally the wire-frame of the tetrahedral mesh is shown (a). Different
angle, this time showing Europe with slightly exaggerated displacements (b).

Frame rates for the shown examples were clearly pixel shader limited. Our im-
plementation is capable of rendering at 20fps at 500x500 pixels resolution without the
optimizations and about 40fps with the silhouette optimizations in place. As all render-
ing was done in immediate mode, there is certainly an opportunity for optimizations as
soon as we are no longer fill rate limited.

4.3 Conclusion & Future Work

Displacement mapping can be used to reduce the bandwidth from CPU to GPU by only
requiring displacement maps to be sent to the GPU’s memory to generate more com-
plex geometry without sending large vertex arrays. This also reduces the constraints of
limited GPU memory.

The pixel based algorithm presented in this paper performs at interactive rates on
currently available hardware. Sampling of the displacement map is driven by visible
pixels unlike most previous displacement mapping approaches that are driven by re-
tessellation of the base mesh using various schemes.

The approach does not require the use of render to vertex and does not require any
modifications to existing programmable graphics hardware. But could be improved by
increased pixel shader lengths which would allow more samples of the displacement
map to be taken avoiding undersampling. Also control flow in the pixel shader could
allow loops to increment along the ray until the intersection with the surface is found.
This approach could be improved using many existing ray tracing techniques that im-
prove intersection calculations with surfaces, for example octrees and space leaping.

The availability of displacement mapping for real time rendering can be used to
raise the level of realism in applications that generate three-dimensional worlds.

126 Displacement Mapping

Bibliography

[Ake93] K. Akeley. RealityEngine Graphics. InComputer Graphics, Proceedings
of ACM SIGGRAPH, pages 109–116, August 1993.

[BIKP99] C. Bajaj, I. Ihm, G. Koo, and S. Park. Parallel Ray Casting of Visi-
ble Human on Distributed Memory Architectures. InData Visualization,
Eurographics, pages 269–276, May 1999.

[CDL+96] B. Chamberlain, T. DeRose, D. Lischinski, D. Salesin, and J. Snyder.
Fast Rendering of Complex Environments Using a Spatial Hierarchy. In
Graphics Interface, pages 132–141, May 1996.

[CDSY96] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. Wavelet
Transforms that Map Integers to Integers. Technical report, Department
of Mathematics, Princeton University, 1996.

[CHF96] W. O. Cochran, J. C. Hart, and P. J. Flynn. Fractal Volume Compression.
IEEE Transactions on Visualization and Computer Graphics, 2(4):313–
322, December 1996.

[CKM+99] J. Comba, J. T. Klosowski, N. L. Max, J. S. B. Mitchell, C. T. Silva, and
P. L. Williams. Fast Polyhedral Cell Sorting for Interactive Rendering of
Unstructured Grids.Computer Graphics Forum (Proceedings of Euro-
graphics ’99), 18(3):369–376, 1999.

[Coo84] R. L. Cook. Shade Trees. InComputer Graphics, Proceedings of ACM
SIGGRAPH, pages 223–231, July 1984.

[CPS97] P. Cignoni, E. Puppo, and R. Scopigno. Multiresolution Representation
and Visualization of Volume Data.IEEE Transactions on Visualization
and Computer Graphics, 3(4):352–369, October 1997.

[Dau92] I. Daubechies.Ten Lectures on Wavelets, volume 61 ofCBMS-NSF Re-
gional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics, Philadelphia, 1992.

[Deu96] L. P. Deutsch. RFC 1952: GZIP file format specification version 4.3,
May 1996.

[DH00] M. Doggett and J. Hirche. Adaptive View Dependent Tessellation of
Displacement Maps. InProc. of Eurographics/SIGGRAPH Workshop on
Graphics Hardware 2000, pages 59–66, 2000.

127

128 BIBLIOGRAPHY

[DK99] M. Doggett and A. Kugler. A Hardware Architecture for Displace-
ment Mapping using Scan Conversion. Technical Report WSI–99–12,
Wilhelm-Schickard-Institut f̈ur Informatik, University of T̈ubingen, Ger-
many, 1999.

[DKS01] M. Doggett, A. Kugler, and W. Straßer. Displacement Mapping using
Scan Conversion Hardware Architectures.Computer Graphics Forum,
20(1):13–26, March 2001.

[EKE01] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated Volume
Rendering Using Hardware-Accelerated Pixel Shading. InEurograph-
ics/SIGGRAPH Workshop on Graphics Hardware, pages 9–16, August
2001.

[EWG99] T. Ertl, R. Westermann, and R. Grosso. Multiresolution and hierarchical
methods for the visualization of volume data.Future Generation Com-
puter Systems, 15(1):31–42, February 1999.

[FF01] J. E. Fowler and D. N. Fox. Embedded Wavelet-Based Coding of Three-
Dimensional Oceanographic Images with Land Masses.IEEE Transac-
tions on Geoscience and Remote Sensing, pages 284–290, February 2001.

[FGR85] G. Frieder, D. Gordon, and R. A. Reynolds. Back-to-Front Display
of Voxel-Based Objects. IEEE Computer Graphics & Applications,
5(1):52–60, January 1985.

[FMS00] R. Farias, J. S. B. Mitchell, and C. T. Silva. ZSWEEP: An Efficient and
Exact Projection Algorithm for Unstructured Volume Rendering. InIEEE
Symposium on Volume Visualization, pages 91–99, 2000.

[GGS99] S. Gumhold, S. Guthe, and W. Straßer. Tetrahedral Mesh Compression
with the Cut-Border Machine. InIEEE Visualization, pages 51–58, Oc-
tober 1999.

[GGS01] S. Guthe, S. Gumhold, and W. Straßer. Texture Particles: Interactive
Visualization of Volumetric Vector Fields. InWorkshop̈uber Trends und
Höhepunkte der Graphischen Datenverarbeitung, pages 13–23, 2001.

[GGS02] S. Guthe, S. Gumhold, and W. Straßer. Interactive Visualization of Vol-
umetric Vector Fields Using Texture Based Particles. InProceedings of
WSCG, 2002.

[GH99] S. Gumhold and T. Ḧuttner. Multiresolution Rendering with Displace-
ment Mapping. InEurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 55–66, August 1999.

[GLDH97] M. H. Gross, L. Lippert, R. Dittrich, and S. Ḧaring. Two Methods for
Wavelet-Based Volume Rendering.Computers & Graphics, 21(2):237–
252, 1997.

[GRS+02] S. Guthe, S. Roettger, A. Schieber, W. Straßer, and T. Ertl. High-
Quality Unstructured Volume Rendering on the PC Platform. InACM
Siggraph/Eurographics Hardware Workshop, 2002.

BIBLIOGRAPHY 129

[GS98] S. Gumhold and W. Straßer. Real Time Compression of Triangle Mesh
Connectivity. InSIGGRAPH 98 Conference Proceedings, Annual Con-
ference Series, pages 133–140, July 1998.

[GS01] S. Guthe and W. Straßer. Real-time Dekompression and Visualization of
Animated Volume Data. InIEEE Visualization, pages 349–356, October
2001.

[GS04] S. Guthe and W. Straßer. Advanced Techniques for High-Quality Multi-
Resolution Volume Rendering.Computers & Graphics, 28(1):51–58,
February 2004.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interactive Rendering of
Large Volume Data Sets. InIEEE Visualization, pages 53–60, October
2002.

[HE02] J. Hirche and A. Ehlert. Curvature-Driven Sampling of Displacement
Maps. presented at ACM SIGGRAPH 2002 as a Technical Sketch, July
2002.

[HEG+04] J. Hirche, A. Ehlert, S. Guthe, M. Dogget, and W. Straßer. Hardware
Accelerated Per-Pixel Displacement Mapping. InGraphics Ingterface,
May 2004. to be published.

[Hop96] H. Hoppe. Progressive meshes. InACM SIGGRAPH 96 Conference
Proceedings, pages 99–108, August 1996.

[HS98] W. Heidrich and H.-P. Seidel. Ray-tracing Procedural Displacement
Shaders. InGraphics Interface, pages 8–16, 1998.

[IP98] I. Ihm and S. Park. Wavelet-Based 3D Compression Scheme for Very
Large Volume Data. InGraphics Interface, pages 107–116, June 1998.

[ISO93] ISO/IEC. MPEG-1 Coding of Moving Pictures and Associated Audio for
Digital Storage Media at Up to About 1,5 Mbit/s.ISO/IEC 11172, 1993.

[ISO96] ISO/IEC. MPEG-2 Generic coding of moving pictures and associated
audio information.ISO/IEC 13818, 1996.

[KD98] G. Kindlmann and J. W. Durkin. Semi-Automatic Generation of Trans-
fer Functions for Direct Volume Rendering. InSymposium on Volume
Visualization (VOLVIS-98), pages 79–86, October 1998.

[KE01] M. Kraus and T. Ertl. Cell-Projection of Cyclic Meshes. InIEEE Visual-
ization, pages 215–222, October 2001.

[KH84] J. T. Kajiya and T. Von Herzen. Ray Tracing Volume Densities.Computer
Graphics, 18(3):165–173, July 1984.

[KKH01] J. Kniss, G. Kindelmann, and C. Hansen. Interactive Volume Rendering
Using Multi-Dimensional Transfer Functions and Direct Manipulation
Widgets. InIEEE Visualization, pages 255–262, October 2001.

[Kni00] G. Knittel. The UltraVis System. Technical Report HPL-2000-100,
Hewlett Packard Laboratories, August 2000.

130 BIBLIOGRAPHY

[KS97] G. Knittel and W. Straßer. VIZARD: Visualization Accelerator for Real-
time Display. In1997 SIGGRAPH / Eurographics Workshop on Graph-
ics Hardware, pages 139–147. ACM SIGGRAPH / Eurographics, August
1997.

[KS99] T. Kim and Y. Shin. An Efficient Wavelet-based Compression Method for
Volume Rendering. InPacific Graphics, pages 147–157, October 1999.

[KS01] J. Kautz and H.-P. Seidel. Hardware Accelerated Displacement Mapping
for Image Based Rendering. InGraphics Interface, pages 61–70, June
2001.

[KTM +02] A. Kanitsar, T. Theußl, L. Mroz, M.̌Sŕamek, A. V. Bartroĺı, B. Cśebfalvi,
J. Hlad̊uvka, D. Fleischmann, M. Knapp, R. Wegenkittl, P. Felkel,
S. R̈ottger, S. Guthe, W. Purgathofer, and E. Gröller. Christmas Tree
Case Study: Computed Tomography as a Tool for Mastering Real World
Objects with Applications in Computer Graphics. InIEEE Visualization,
pages 489–492, October 2002.

[KWHM02] U. Kanus, G. Wetekam, J. Hirche, and M. Meißner. VIZARDII:
An FPGA-based Interactive Volume Rendering System. InField-
Programmable Logic and Applications, Proceedings of the 12th Inter-
national Conference on Field-Programmable Logic, pages 1114–1117,
September 2002.

[LC87] W. E. Lorensen and H. E. Cline. Marching–Cubes: A High Resolution
3D Surface Construction Algorithm. InComputer Graphics, Proceedings
of ACM SIGGRAPH, pages 163–169, July 1987.

[Lev88] M. Levoy. Display of Surfaces From Volume Data.IEEE Computer
Graphics & Applications, 8(5):29–37, May 1988.

[LHJ99] E. C. LaMar, B. Hamann, and K. I. Joy. Multiresolution Techniques for
Interactive Texture-Based Volume Visualization. InIEEE Visualization,
pages 355–362, October 1999.

[LL94] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp
factorization of the Viewing Transform. InComputer Graphics, Proceed-
ings of ACM SIGGRAPH, pages 451–457, July 1994.

[Mat02] Matrox. Parhelia. Features presented at http://www.matrox.com/mga/
products/parhelia512/technology/dispmap.cfm, 2002.

[Max86] N. Max. Light Diffusion Through Clouds and Haze.Computer Vision,
Graphics, and Image Processing, 33(3):280–292, March 1986.

[Max95] N. Max. Optical Models for Direct Volume Rendering.IEEE Transac-
tions on Visualization and Computer Graphics, 1(2):99–108, June 1995.

[MGS01] M. Meißner, S. Guthe, and W. Straßer. Higher Quality Volume Rendering
on PC Graphics Hardware. Technical Report WSI-2001-12, Wilhelm
Schickard Institute for Computer Science, Graphical-Interactive Systems
(WSI/GRIS), University of T̈ubingen, April 2001.

BIBLIOGRAPHY 131

[MGS02] M. Meißner, S. Guthe, and W. Straßer. Interactive Lighting Models and
Pre-Integration for Volume Rendering on PC Graphics Accelerators. In
Graphics Interface, pages 209–218, May 2002.

[MH79] D. Marr and E. Hildreth. Theory of Edge Detection. Technical Report
AIM-518, MIT Artificial Intelligence Laboratory, April 1979.

[MHC90] N. Max, P. Hanrahan, and R. Crawfis. Area and Volume Coherence for
Efficient Visualization of 3D Scalar Functions.San Diego Workshop on
Volume Visualization, Computer Graphics, 24(5):27–33, 1990.

[MHS99] M. Meißner, U. Hoffmann, and W. Straßer. Enabling Classification
and Shading for 3D Texture Mapping Based Volume Rendering using
OpenGL and Extensions. InIEEE Visualization, pages 207–214, Octo-
ber 1999.

[Mic03] Microsoft. DirectX 9 Documentation. Technical documentation, avail-
able at http://msdn.microsoft.com, 2003.

[MJC02] B. Mora, J.-P. Jessel, and R. Caubet. A New Object-Order Ray-Casting
Algorithm. In IEEE Visualization, pages 203–210, October 2002.

[MKS98] M. Meißner, U. Kanus, and W. Straßer. VIZARD II: A PCI-card for Real-
Time Volume Rendering. InProceedings of the Eurographics / Siggraph
Workshop on Graphics Hardware (EUROGRAPHICS-98), pages 61–68,
August 1998.

[MKW +02] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer,
M. Doggett, P. Forthmann, and R. Proksa. VIZARDII: A Reconfigurable
Interactive Volume Rendering System. InEurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 137–146, September 2002.

[MM02] K. Moule and M. D. McCool. Efficient Bounded Adaptive Tessellation
of Displacement Maps. InGraphics Interface, May 2002.

[MZFM98] R. Machiraju, Z. Zhu, B. Fry, and R. Moorhead. Structure Significant
Representation of Computational Field Simulation Datasets.IEEE Trans-
actions on Visualization and Computer Graphics, April-June 1998.

[Nat86] National Library of Medicine. The Visible Human Project. Data set
download and documentation, available at http://www.nlm.nih.gov/re-
search/visible/visiblehuman.html, 1986.

[NH92] P. Ning and L. Hesselink. Vector Quantization for Volume Rendering. In
Workshop on Volume Visualization, pages 69–74, October 1992.

[NH93] P. Ning and L. Hesselink. Fast Volume Rendering of Compressed Data.
In IEEE Visualization, pages 11–18, October 1993.

[NS01] K. G. Nguyen and D. Saupe. Rapid High Quality Compression of Volume
Data for Visualization.Computer Graphics Forum, 20(3), 2001.

[Nyq28] H. Nyquist. Certain Topics in Telegraph Transmission Theory.Transac-
tions on A.I.E.E., pages 617–644, February 1928.

132 BIBLIOGRAPHY

[PH96] M. Pharr and P. Hanrahan. Geometry Caching for Ray-Tracing Displace-
ment Maps. InEurographics Workshop on Rendering, June 1996.

[PH97] J. Popovíc and H. Hoppe. Progressive Simplicial Complexes.Computer
Graphics, 31(Annual Conference Series):217–224, August 1997.

[PHK+99] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The Vol-
umePro Real-Time Ray-Casting System. InComputer Graphics, Pro-
ceedings of ACM SIGGRAPH, pages 251–260, August 1999.

[Pho75] B. T. Phong. Illumination for Computer Generated Pictures.Communi-
cations of the ACM, 18(6):311—317, June 1975.

[RGW+03] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Straßer. Smart
Hardware-Accelerated Volume Rendering. InJoint EUROGRAPHICS
- IEEE TCVG Symposium on Visualization, pages 231–238, May 2003.

[RKE00] S. Roettger, M. Kraus, and T. Ertl. Hardware-Accelerated Volume and
Isosurface Rendering Based on Cell-Projection. InIEEE Visualization,
pages 109–116, 2000.

[Rod99] F. Rodler. Wavelet based 3D Compression with Fast Random Access for
Very Large Volume Data. InPacific Graphics, pages 108–117, October
1999.

[Ros99] J. Rossignac. Edgebreaker: Connectivity Compression for Triangle
Meshes. InIEEE Transactions on Visualization and Computer Graph-
ics, volume 5 (1), pages 47–61. IEEE Computer Society, 1999.

[RSEB+00] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interac-
tive Volume Rendering on Standard PC Graphics Hardware Using Multi-
Texturing and Multi-Stage Rasterization. InEurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 109–118, August 2000.

[RSG+04] S. Roettger, A. Schieber, S. Guthe, W. Straßer, T. Ertl, and M. Stam-
minger. Tetrahedral Convexification and Lighting. InIEEE Visualization,
2004. submitted for publication.

[Sab88] P. Sabella. A Rendering Algorithm for Visualizing 3D Scalar Fields.
In Computer Graphics, Proceedings of ACM SIGGRAPH, pages 59–64,
August 1988.

[SBM94] C. M. Stein, B. G. Becker, and N. L. Max. Sorting and Hardware Assisted
Rendering for Volume Visualization. InIEEE Symposium on Volume
Visualization ’94, pages 83–89, 1994.

[SDS96] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin.Wavelets for Computer
Graphics: Theory and Applications. Morgann Kaufmann, 1996.

[SG98] O. G. Staadt and M. H. Gross. Progressive Tetrahedralizations. InIEEE
Visualization, pages 397–402, 1998.

[SMW98] Claudio T. S., Joseph S. B. M., and Peter L. W. An Exact Interactive
Time Visibility Ordering Algorithm for Polyhedral Cell Complexes. In
IEEE Symposium on Volume Visualization, pages 87–94, 1998.

BIBLIOGRAPHY 133

[SMW+04] M. Strengert, M. Magalĺon, D. Weiskopf, S. Guthe, and T. Ertl. Hierar-
chical Visualization and Compression of Large Volume Datasets Using
GPU Clusters. InEurographics Symposium on Parallel Graphics and
Visualization, 2004. submitted for publication.

[SR99] A. Szymczak and J. Rossignac. Grow & Fold: Compression of Tetrahe-
dral Meshes. InProceedings of the Fifth Symposium on Solid Modeling
and Applications, pages 54–64, June 9–11 1999.

[SS96] W. Sweldens and P. Schröder. Building Your Own Wavelets at Home.
In “Wavelets in Computer Graphics”, ACM SIGGRAPH Course Notes,
1996.

[ST90] P. Shirley and A. Tuchman. A Polygonal Approximation for Direct Scalar
Volume Rendering. InProceedings of San Diego Workshop on Volume
Visualization SIGGRAPH, November 1990.

[SW95] G. Sakas and S. Walter. Extracting Surfaces from Fuzzy 3D Ultrasonic
Data. InComputer Graphics, Proceedings of ACM SIGGRAPH, pages
465–474, August 1995.

[TG98] C. Touma and C. Gotsman. Triangle Mesh Compression. InGraphics
Interface, pages 26–34, June 1998.

[TR98] G. Taubin and J. Rossignac. Geometric Compression Through Topologi-
cal Surgery.ACM Transactions on Graphics, 17(2):84–115, April 1998.

[VV98] V. Verma and A. VanGelder. Decimation of Tetrahedral Grids with Error
Control. Technical Report UCSC-CRL-97-25, University of California,
Santa Cruz, Jack Baskin School of Engineering, June 23, 1998.

[Wes94] R. Westermann. A Multiresolution Framework for Volume Rendering.
In IEEE/SIGGRAPH Symposium on Volume Visualization, pages 51–58,
October 1994.

[WG91] J. Wilhelms and A. Van Gelder. A Coherent Projection Approach for
Direct Volume Rendering. InComputer Graphics, Proceedings of ACM
SIGGRAPH, pages 275–284, August 1991.

[Wil92] P. L. Williams. Visibility Ordering Meshed Polyhedra.ACM Transac-
tions on Graphics, 11(2):103–126, 1992.

[Wit99] C. M. Wittenbrink. CellFast: Interactive Unstructured Volume Render-
ing. Technical Report HPL-1999-81R1, Hewlett Packard Laboratories,
September 1999.

[WKE02] M. Weiler, M. Kraus, and T. Ertl. Hardware-Based View-Independent
Cell Projection. InIEEE Symposium on Volume Visualization, pages 13–
22, 2002.

[WKG+03] M. Weiler, M. Kraus, S. Guthe, T. Ertl, and W Straßer. Ray Casting with
Programmable Graphics Hardware. InScientific Visualization: Extract-
ing Information and Knowledge from Scientific Data Sets (DAGSTUHL
2003), October 2003.

134 BIBLIOGRAPHY

[WM92] P. L. Williams and N. L. Max. A Volume Density Optical Model. InACM
Computer Graphics (Workshop on Volume Visualization ’92), pages 61–
68, 1992.

[WMFC02] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahedral Projec-
tion using Vertex Shaders. InIEEE Symposium on Volume Visualization,
pages 7–12, 2002.

[WMS98] P. L. Williams, N. L. Max, and C. M. Stein. A High Accuracy Volume
Renderer for Unstructured Data.IEEE Transactions on Visualization and
Computer Graphics, 4(1):37–54, January/March 1998.

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic Coding for Data
Compression.Communications of the ACM, 30(6), June 1987.

[WNDS99] M. Woo, J. Neider, T. Davis, and D. Shreiner.OpenGL programming
guide: the official guide to learning OpenGL, version 1.2. Addison-Wes-
ley, Third edition, 1999.

[WS91] H. Watanabe and S. Singhal. Windowed Motion Compensation. InProc.
SPIE’s Visual Comm. and Image Proc., volume 1605, pages 582–589,
1991.

[WWH+00] M. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and T. Ertl.
Level-of-Detail Volume Rendering via 3D Textures. InIEEE/SIGGRAPH
Symposium on Volume Visualization, pages 7–13, October 2000.

[ZCK97] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution Tetrahedral Frame-
work for Visualizing Regular Volume Data. InIEEE Visualization, pages
135–142, October 1997.

Lebens- und Bildungsgang

7. Juni 1976 geboren in Castrop-Rauxel

1982 - 1986 Grundschule, Henrichenburg (Castrop-Rauxel)
1986 - 1995 Jugenddorf Christophorus Gymnasium, Altensteig

Abschluss Abitur
1995 Teilnahme am 13. Bundeswettbewerb Informatik und erfüllen

der Teilnahmebedingungen für die zweite Runde.
1995 Preis des Jugenddorf Christophorus Gymnasiums für heraus-

ragende Leistungen in den Fächern Mathematik, Physik und
Informatik

1995 - 2000 Studium der Informatik an der Eberhard-Karls-Universität Tü-
bingen

seit 2000 Wissenschaftlicher Mitarbeiter am Lehrstuhl für Graphisch In-
teraktive Systeme am Wilhelm-Schickard-Institut für Informatik
der Eberhard-Karls-Universität Tübingen (Prof. Straßer)

2003 NVIDIA Internship, September bis November
2003 - 2004 NVIDIA Graduate Research Fellowship

