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Zusammenfassung 

Die vorliegende Arbeit beschreibt ein neues Paradigma für die effiziente Darstellung komplexer 
dreidimensionaler Szenen: die Verwendung von punktbasierten Multiskalenmodellen. Die Grund-
idee besteht darin, das Erscheinungsbild einer komplexen Szene aus einer (im Vergleich zur po-
tentiellen Szenenkomplexität) kleinen Stichprobe von Oberflächenpunkten zu rekonstruieren. 
Hierarchische Datenstrukturen erlauben es, solche Stichproben effizient zu bestimmen, d.h. mit 
einer Laufzeit, die weitgehend unabhängig von der Komplexität der Szene ist. Dies ermöglicht es, 
Szenen mit sehr großer Komplexität effizient zu behandeln. 

Es werden verschiedene Varianten von Datenstrukturen beschrieben, die eine solche effi-
ziente Stichprobennahme erlauben, darunter auch eine Variante, die erlaubt, animierte Szenen 
(Keyframeanimationen) zu behandeln. Die Datenstrukturen dienen als Basis für verschiedene 
Darstellungsalgorithmen. Dabei werden zwei wesentliche Strategien behandelt: Die erste Klasse 
(„forward mapping“) bildet die Szene unter einer einfachen perspektivischen Projektion ab. Eine 
Tiefenpuffertechnik rekonstruiert dann das Bild aus den Stichprobenpunkten. Der Rechenauf-
wand wächst dabei nur schwach mit der Szenenkomplexität, so daß Szenen mit enormen Mengen 
von Primitiva (Billiarden Dreiecke und mehr) in Echtzeit dargestellt werden können. Die erreich-
te Qualität entspricht dabei in etwa der von gewöhnlichen Tiefenpuffer-Algorithmen. Die zweite 
Klasse von Darstellungsalgorithmen („backward mapping“) verallgemeinert die Darstellungs-
technik so, daß ein Raytracing auf punktbasierten Multiskalenmodellen durchgeführt werden 
kann. Dies erlaubt die Berechnung von Schatten, Spiegelungen und Brechung. Der Algorithmus 
benutzt eine Multiskalenhierarchie von vorgefilterten Stichprobenpunkten (also Stichproben ei-
nes jeweils entsprechend der Stichprobendichte bandbeschränkten Signals). Damit können Bilder 
ohne Aliasingprobleme erzeugt werden. Außerdem sind auch Approximationen von Effekten des 
klassischen „distributed raytracing“ wie etwa weiche Schatten, verschwommene Reflektionen 
oder Tiefenunschärfe mit geringen Kosten (ein Primärstrahl pro Pixel) möglich. Im Vergleich zum 
klassischen „distributed raytracing“ erzeugt der Algorithmus die Bilder effizienter, insbesondere 
wenn die Bildsignale eine hohe Farbvarianz aufweisen und Rauschartefakte vermieden werden 
müssen. Die Bildqualität ist grob vergleichbar mit der klassischen (korrekten) Lösung, die appro-
ximative Multiskalenstrategie führt nur zu kleineren systematischen Abweichungen. 

Die vorliegende Arbeit führt eine theoretische Analyse der Stichprobenbestimmungs- und 
Darstellungsalgorithmen durch. Es werden obere Schranken für die Laufzeit des Darstellungs-
prozesses bewiesen, so daß eine Effizienz des Verfahrens unter relativ allgemeinen Bedingungen 
sichergestellt ist. Einzelne Schritte benutzen randomisierte Algorithmen. Hier wird gezeigt, daß 
die Wahrscheinlichkeit dafür, daß der Algorithmus zufällig nicht das gewünschte Ergebnis be-
stimmt, mit geringem Aufwand sehr klein (beliebig klein bei schwachem Aufwandswachstum) 
gehalten werden kann. Die verschiedenen Verfahren zur Stichprobenentnahme werden auch hin-
sichtlich des „oversampling“ verglichen, d.h. dem Verhältnis der Zahl der Stichprobenpunkte zur 
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tatsächlich notwendigen Anzahl bei einer optimalen Auswahl. Die besten vorgestellten Verfahren 
sind dabei nur um einen kleinen Faktor vom Optimum entfernt. 

Weiterhin werden experimentelle Ergebnisse vorgestellt, die auf einer prototypischen Im-
plementation der vorgeschlagenen Algorithmen beruhen. Damit wird der Einfluß verschiedener 
Parameter der Algorithmen auf Laufzeit und Bildqualität in der Praxis untersucht und mit den 
theoretischen Voraussagen verglichen. Außerdem werden Beispielanwendungen beschrieben, in 
denen Szenen mit sehr großer Komplexität in Echtzeit dargestellt werden können. Dabei wird 
auch gezeigt, daß effiziente dynamische Modifikationen der Datenstrukturen möglich sind, die 
für interaktives Editieren komplexer Szenen benötigt werden. Die Darstellungsalgorithmen wer-
den zudem auf animierte Szenen angewandt, hier am Beispiel von Massenanimationen (z.B. Dar-
stellungen großer Menschenmassen oder Tierherden mit dynamischem Verhalten). 

Abschließend wird noch kurz auf Verallgemeinerungen eingegangen. Diese betreffen die 
Echtzeitdarstellung sehr großer Volumendatensätze, eine effiziente Darstellung von Datensätzen, 
die aufgrund ihrer Größe auf Hintergrundspeichermedien (Festplatte) gehalten werden müssen, 
sowie eine Anwendung auf die Berechnung von Geräuschkulissen, die ein interaktiver Beobach-
ter in Szenen mit einer großen Anzahl von Schallquellen wahrnimmt. Ein weiterer kurzer Exkurs 
diskutiert eine Echtzeitberechnung von Kaustiken von ausgedehnten Lichtquellen, die ebenfalls 
auf punktbasierten Diskretisierungen von Oberflächen beruht. 

Insgesamt erweitern die neu vorgeschlagenen punktbasierten Multiskalenansätze deutlich 
die bisherigen Möglichkeiten, Abbildungen komplexer dreidimensionaler Szenen effizient zu be-
rechnen. 
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Abstract 

This thesis describes a new rendering paradigm for handling complex scenes, point-based multi-
resolution rendering. The basic idea is to approximate the appearance of complex scenes using a 
small set of surface sample points. Using hierarchical data structures, the sampling process can 
be performed in time mostly independent of the scene complexity. This allows an efficient display 
of highly complex scenes. 

The thesis proposes different variants of sampling data structures that are useful in differ-
ent application scenarios, including a variant for handling animated scenes (general keyframe 
animations). Two different rendering approaches are described: The first approach is a real-time 
forward mapping algorithm, being a point-based generalization of z-buffer rendering. In contrast 
to conventional z-buffer rendering, the point-based multi-resolution algorithm can render scenes 
consisting of trillions of primitives at real-time frame rates while maintaining a comparable ren-
dering quality. The second approach is a backward mapping (i.e. raytracing) algorithm that aims 
at offline rendering. It is able to compute shadows, reflections, and refractions. It uses a hierarchy 
of prefiltered sample points to provide efficient antialiasing. Additionally, classic distributed ray-
tracing effects such as soft shadows, depth-of-field, or blurry reflections can be approximated effi-
ciently. In comparison with classic stochastic raytracing techniques, the new algorithm provides 
noise-free renderings at lower costs than stochastic oversampling for scenes of high variance. The 
image quality is roughly comparable to that of the classic approach; only a small bias is observed. 

The thesis provides a theoretical analysis of the sampling and rendering process. Upper 
bounds for the rendering time are established. For the randomized components of some of the 
algorithms, analytical lower bounds for the failure probability are derived, showing that arbitrar-
ily high confidence probabilities can be achieved at a small increase of computational costs. An 
analysis of oversampling properties of different sampling and stratification strategies allows a 
quantitative comparison, needed to choose the best technique for a certain application. 

A prototype implementation is presented. The influence of different algorithmic parameters 
is evaluated empirically and compared to theoretical predictions. Practical applications of the 
proposed algorithms comprise real-time walkthroughs of highly complex static scenes as well as 
real-time visualizations of large crowd animations such as a herd of animals or a football stadium 
with ten thousands of animated football fans. In addition, dynamic modifications of the data 
structure as needed for interactive editing is examined. 

Finally, extensions to volume rendering, out-of-core rendering, sound rendering, and simu-
lation of caustics from area light sources are discussed briefly. 

Overall, the presented techniques extend the possibilities for rendering of highly complex 
scenes to areas that could not be treated before with comparable efficiency. 
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Preface 

This thesis describes a novel output-sensitive approach to rendering of highly complex scenes: 
point-based multi-resolution rendering. The work on this topic has been started in mid 1999. At 
that time, the goal was to develop a rendering algorithm that permits rendering of highly complex 
scenes such as landscape scenes with natural vegetation at interactive framerates. The initial 
idea was to use a random sample of surface points, distributed according to perspective foreshort-
ening, in order to reconstruct images independent of the actual scene complexity. It turned out 
that this rendering paradigm was able to render images of extremely complex scenes with good 
image quality and within reasonably short rendering times. The approach, the randomized z-
buffer (which has been subject of the diploma thesis of the author of this thesis [Wand 2000a]), is 
the basis of this thesis. 

The usage of sample points as rendering primitives has not been a completely new idea: 
Point-based rendering techniques have already been used earlier. In the 1980s, different authors 
proposed point-based rendering and simulation techniques (“particle systems”) for rendering spe-
cial effects (fire, clouds, smoke) and vegetation [Reeves 83, Reeves and Blau 85]). In the 1990s, 
point-based multi-resolution techniques have for example been used for the special case of real-
time terrain rendering in computer games ([Novalogic 92, Freeman 96]).  

Concurrently with the work on the randomized-z-buffer approach, other authors have also 
worked on the usage of point-based multi-resolution techniques for more general rendering prob-
lems. [Pfister et al. 2000] and [Rusinkiewicz and Levoy 2000] have proposed two deterministic 
point-based multi-resolution rendering techniques dubbed “Surfels” and “QSplat”, respectively. 
These approaches have certain advantages and disadvantages in comparison to the randomized z-
buffer approach. In consequence, for later work described in this thesis, both approaches have 
been combined in order to optimize rendering time and results. 

Point-based multi-resolution techniques have just recently been recognized as general tool 
in computer graphics. Nevertheless, they have already been applied to treat a variety of problems 
and are still a hot topic of current research. This thesis should show that point-based multi-
resolution approaches allow the rendering of general, highly complex scenes at real-time framer-
ates with good image quality. Additionally, their applicability to several rendering problems rang-
ing from raytracing to sound rendering should be demonstrated. 
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Introduction 

Rendering and Complexity 
Today, interactive computer graphics has to deal with data sets of increasing complexity. This 
trend can be observed in many application areas: In scientific visualization, the complexity of 
data sets has grown enormously due to improvements in sensor and simulation technology. In the 
area of computer aided design (CAD), three-dimensional virtual prototypes of complex projects 
should be visualized and edited interactively. The entertainment industry has to deal with com-
plexity problems, too: Recent computer generated feature films [Square 2001] already come close 
to photo-realistic simulations of reality, thus requiring highly detailed three-dimensional models. 
Special effects for feature films (for instance the large crowd animations in the recent Lord of the 
Rings trilogy [New Line 2003]) also depict highly complex scenes. Interactive entertainment ap-
plications, such as computer games, aim at a photo-realistic simulation of virtual worlds. Such 
interactive applications pose especially high demands on graphics algorithms: As the user is free 
to move interactively in a virtual world, a large amount of detail has to be modeled. Different 
scales, ranging from leaves of grass to complete mountains must be included to sustain a realistic 
impression for different view positions. This leads to scene data bases of huge complexity. Addi-
tionally, all computations must be handled in real-time. All these developments lead to the some-
how paradox fact that handling of complexity is today still one of the major problems in computer 
graphics, despite the enormous advances in graphics hardware and algorithms. 

In this thesis, we propose a new approach to render highly complex scenes: point-based 
multi-resolution rendering. The main idea of this technique is to reconstruct images from surface 
sample points: Instead of processing all primitives that describe a potentially highly complex 
three-dimensional scene, we only pick a small set of sample points from the surfaces. Sampling is 
done using a sampling distribution that facilitates the reconstruction of an image later on. Such a 
generation of the sample sets can be done efficiently, in time mostly independent of the scene 
complexity. Hence, it is possible to apply the rendering algorithm to scenes of very high complex-
ity while maintaining acceptably low rendering costs. The paradigm of reconstruction from point 
sample sets is a very general technique that can be applied to a large class of scenes, being more 
general than many former approaches. 

Related Work 
A lot of work has been done in order to enable an efficient rendering of highly complex scenes. In 
general, two approaches should be distinguished: Forward mapping algorithms create images by 
projecting rendering primitives onto the screen, then resolving their visibility. The most wide-
spread forward mapping technique (which is used predominantly in interactive applications to-
day) is the z-buffer algorithm [Catmull 74, Straßer 74]. Backward mapping algorithms create 
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images by searching the object that is seen for each pixel, leading to the well-known raytracing 
algorithm [Appel 68, Whitted 80]. 

In order to apply forward mapping to highly complex scenes, two problems have to be 
solved: First, the level-of-detail of the projected objects has to be adapted to their on-screen size, 
demanding for automatic simplification algorithms. Second, occluded objects should be excluded 
from rendering by the use of occlusion culling algorithms [Cohen-Or et al. 2001]. Simplification is 
typically achieved by the use of mesh simplification algorithms [Garland and Heckbert 97, Puppo 
and Scopigno 97, Garland 99, Klein 99] that automatically adapt the level-of-detail of triangle 
meshes to the demanded level. Point-based multi-resolution rendering is essentially also a simpli-
fication technique, however, using point primitives instead of triangles as simplified representa-
tion. The advantage of the point-based approach is that it does not have to deal with topological 
constraints. Thus, it is often easier to implement and applicable to a wider range of scenes. Even 
highly irregular objects such as three-dimensional models of a forest or a large crowd of people 
can be handled effectively. Additionally, a generalization to animated scenes is straightforward 
while being more involved for mesh-based techniques. 

Another option for a rapid display of complex scenes is image-based rendering: The scene or 
parts of it are replaced by prerendered images that can be displayed rapidly [Maciel and Shirley 
95, Gortler et al. 96, Levoy and Hanrahan 96, Shade et al. 96]. Prerendered images are of course 
the most efficient way of displaying complex scenes. However, these techniques usually have to 
deal with issues concerning large memory and preprocessing demands as well as parallax errors 
in the rendering results. As a result, many advanced image-based rendering techniques use geo-
metric information such as a per-pixel depth to compensate for parallax errors. This reduces the 
needed number of precomputed images, but still artifacts occur at borders: Holes may become 
visible due to missing information. As a consequence, multiple depth samples are stored at every 
pixel location, providing an approximate three-dimensional representation of the model [Shade et 
al. 98, Grossman and Dally 98]. This development naturally leads to point-based rendering, i.e. 
representing and simplifying geometry by the use of point clouds as representation primitive. 

Point primitives have been used in computer graphics before, especially to model and simu-
late irregular phenomena such as smoke or fire [Csuri et al. 79, Reeves 83] or to render outdoor 
vegetation efficiently [Reeves and Blau 85]. In order to use point-based representations for inter-
active walkthroughs of complex scenes, multiple levels-of-detail have to be provided for all parts 
of the scene. In the early 1990s, computer games appeared that used point-based multi-resolution 
techniques for the efficient rendering of terrains [Novalogic 92, Freeman 96]. Hierarchical ap-
proximation of volume data sets has been investigated by [Laur and Hanrahan 91]. [Max 96] uses 
scene graph hierarchies of point clouds to render tree models efficiently. The work described in 
this thesis has been motivated especially by the work of [Chamberlain et al. 95, Chamberlain et 
al. 96]: An octree hierarchy is used to facilitate a display with different level-of-detail. The cube 
sides of the tree nodes are colored according to average color and alpha attributes. However, this 
still leads to some rendering artifacts; a save coverage of continuous surfaces cannot be guaran-
teed. These issues can be circumvented by replacing colored boxes with point clouds that ensure a 
certain sampling density. This strategy, which is the key idea described in this thesis, permits 
analytical guarantees for save surface coverage. 

The same approach has been followed by other researches, too. In parallel to the initial 
point-based multi-resolution rendering technique described in this thesis (the randomized z-
buffer algorithm [Wand 2000a]), the “Surfels” approach [Pfister et al. 2000] and the “QSplat” ren-
dering system [Rusinkiewicz and Levoy 2000] have been developed. These two proposals also rely 
on point-based multi-resolution representations to render complex scenes. In contrast to the ran-
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domized z-buffer technique, they employ deterministic, precomputed sample sets. Many ideas 
from the “Surfels” and “QSplat” system have been integrated with the initial randomized sam-
pling approach for later work on point-based multi-resolution rendering described in this thesis. 

Today, point-based techniques are a “hot topic” in computer graphics research. Point-based 
representations are now used to solve many non-rendering problems such as modeling [Zwicker et 
al. 2002a, Pauly et al. 2003a] or 3d photography [Matusik et al. 2002]. 

Overview 
The thesis is structured as follows: First we describe the general background (Chapter 1). We 
discuss the rendering problem and related problems such as modeling of three-dimensional 
scenes. Additionally, we briefly discuss some background from literature on sampling techniques, 
especially stochastic sampling. Chapter 2 and 3 describe related work in the area of rendering 
complex scenes and point-based computer graphics, respectively. The description of the novel 
proposals starts at Chapter 4: Here, the different data structures employed for sampling are dis-
cussed. Later, different algorithms are applied to these data structures to extract suitable sample 
sets for rendering applications. Two main rendering strategies are considered: Chapter 5 de-
scribes forward mapping algorithms that aim at real-time rendering. They use variants of the z-
buffer technique to rapidly construct images of complex scenes for perspective mappings. Chapter 
6 discusses backward mapping, i.e. raytracing techniques. These techniques are more expensive. 
They have to be used offline but yield a higher image quality. The main goal is to create antiali-
ased images of raytracing-based global illumination effects (including effects such as soft shad-
ows) at reduced costs. In Chapter 7, we discuss the implementation of the different algorithms 
and data structures and empirical results. Chapter 8 describes some generalizations of the pro-
posed techniques to volume rendering, out-of-core storage, sound rendering and rapid rendering 
of certain global illumination effects (caustics). Finally, in Chapter 9, we conclude with some 
ideas for future research. In the remainder of the introduction, we will summarize the main re-
sults of the different chapters and conclude with a statement of the main contributions of this 
thesis. 

Data Structures 
We will discuss two different basic data structures: The first is a dynamic sampling data struc-
ture that creates sample points on-the-fly by randomized sampling. This data structure is the 
basis of the randomized z-buffer algorithm [Wand 2000a, Wand et al. 2000b, Wand et al. 2001]. 
The second variant is a static sampling data structure, which uses precomputed sample sets. This 
data structure combines ideas of the randomized z-buffer technique and “Surfels” and “QSplat” 
[Pfister et al. 2000, Rusinkiewicz and Levoy 2000]. It can be extended to support animated scenes 
[Wand and Straßer 2002]. 

The dynamic data structure consists of a spatial hierarchy (an octree) of the scene. Each hi-
erarchy node points to a piece of a nested distribution list (a list with summed area values of the 
primitives). The data structure is used to find groups of objects with similar spatial location. Then 
random sample points are chosen that are uniformly distributed on the area of the objects, ac-
cording to the sampling density necessary at the spatial location of each group. Additional classi-
fication by similar orientation and similar area allows taking into account the orientation of 
surface fragments towards the viewer and to identify primitives (here: triangles) that receive 
many sample points. Such primitives can be excluded from point sampling and treated differ-
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ently, typically by a more efficient standard rasterization algorithm. The data structure can be 
constructed in O(n log n) time for n triangles, using O(n) space. Dynamic modifications (adding / 
removing primitives) can be performed in O(h) time, with h being the height of the octree. 

The static sampling data structure also employs an octree; it contains precomputed sample 
sets in its nodes. Large triangles are detected during preprocessing and stored at different hierar-
chy levels to be recognized during traversal. For the creation of sample sets, different methods are 
proposed. In addition to simple random sampling, different stratification algorithms can be em-
ployed that create sample sets of varying uniformity, leading to a different oversampling and thus 
to different rendering costs. We will perform a worst case analysis to determine upper bounds for 
oversampling. The average case is examined empirically. We will also derive confidence bounds, 
showing that the randomized sampling algorithms produce valid sample sets with high probabil-
ity at low costs. Overall, static sampling data structures can be constructed in O(h n) time. Using 
a nested sampling storage, O(n) memory demands can be ensured. A full sampling approach 
(similar to the “Surfels” data structure), might yield superlinear memory demands, but in prac-
tice, the difference is usually not significant. The advantage of the latter organization is that one 
sample point will only be used at one resolution level, hence allowing for employing a prefiltering 
approach to point attributes in order to fight noise and aliasing artifacts [Pfister et al. 2000]. 

Forward Mapping Algorithms 
Given a sampling data structure, real-time rendering of highly complex scenes can be performed 
using a forward mapping approach: The sampling data structures are used to extract sample sets 
with a maximum on-screen sample spacing. This means, the perspective projection factor is used 
as sampling density function. 

The proposed data structures allow a conservative approximation of this specification: 
Sample sets are computed with an on-screen sample spacing that does not exceed the needed 
maximum (e.g. 1 pixel). A formal analysis shows that this sampling can be done efficiently: The 
depth component of the projection factor (“depth factor”, i.e. perspective foreshortening of the pro-
jected area by 1/z2) can be approximated up to a factor of (1 + ε ) in O(log τ  + h) time. τ  denotes the 
maximum relative depth range of the scene, i.e. the ratio between the scene diameter and the near 
clipping plane of the viewer. Approximation means, that groups of objects are extracted from the 
spatial hierarchy so that the depth factor does not vary by more than (1 + ε ). To obtain a full ε-
approximation of the desired sampling density, two more effects have to be regarded: A (slight) 
increase of projected area towards the corners of the image and the influence of the surface orien-
tation on the projected area. For the first factor, an efficient ε-approximation is possible. How-
ever, the second (orientation) factor cannot be handled strictly. Even using orientation classes, we 
cannot ensure a strict ε-approximation. However, this is not too problematic in practice: If we 
assume random normals with uniform distribution (on the unit sphere), only a small average 
overestimation is obtained. An additional issue is view frustum culling. As we do not need sample 
points for parts of the scene outside the view frustum, the approximation algorithm also performs 
approximate view frustum culling. Again, we cannot guarantee a formal ε-approximation of the 
visible projected area, but we can make sure that the cross-sectional area of the view frustum is 
overestimated by at most a user defined constant ε. 

The analysis is valid for all variants of the sampling data structures. Thus, we obtain ren-
dering costs of O(sc + log τ  + h), with sc being the costs for creating the sample points. The sample 
costs depend on the estimated projected area (this means that a coarse approximation causes 
more rendering costs) and on the employed sampling strategy. Stratified sampling pattern need 



 

 xvii 

O(a
_
) sample points to cover an estimated projected area of a

_
. Random sampling patterns need 

O(a
_

 log a
_
 + log f-1) sample points, with f being the probability that the sample sets fail to cover the 

image with sufficient sampling density. Additionally, sampling using dynamic sample selection 
causes costs of O(log n) per sample point while static sampling needs  O(1) time per point. 

After a suitable set of sample points has been determined, an image has to be recon-
structed. This process consists of two logical steps: First, the occlusion in the scene has to be re-
solved from the point set. Second, a continuous image has to be reconstructed from the visible 
points. To reconstruct the occlusion, we establish a bound for the on-screen sample spacing. Then, 
invisible points can be removed using a z-buffer technique. One option is to use a regular grid of 
z-values in screen space, project all points and keep only the closest in each grid cell. However, 
this leads to aliasing issues as the oversampled point clouds interfere with the regular resampling 
grid. A better option is to perform neighborhood splatting: Neighboring points are deleted if they 
are located within the sampling distance of another point with smaller depth. A small tolerance 
interval avoids depth dominance and cascaded deletion effects. 

After determining the visible portion of the point set, a scattered data interpolation prob-
lem has to be solved to reconstruct a continuous image. Different options can be applied: simple 
pixel-filling, splatting, or local filtering. The latter option yields the best image quality. Alterna-
tively, alpha-blended splats can be used with a radial Gaussian function in the alpha channel 
[Rusinkiewicz and Levoy 2000]. The opacity is modulated by a heuristic density estimate based on 
the local area around sample points. In terms of aliasing, this technique leads to suboptimal re-
sults. However, it yields good reconstructions for unstructured scenes showing subtle subpixel 
occlusion effects, such as a forest of trees. 

Backward Mapping Algorithms 
A point-based multi-resolution point hierarchy can also be used in the context of raytracing algo-
rithms [Wand and Straßer 2003a]. Here, the goal is different from forward mapping. A multi-
resolution approach only provides minor potential performance advantages as raytracing using 
hierarchical acceleration data structures (usually) already shows a strongly output-sensitive ren-
dering time. The goal of the point-based multi-resolution raytracing algorithm is to devise a more 
efficient antialiasing scheme. 

The algorithm uses extended ray cones corresponding to the area of one pixel each (modeled 
by screen space derivatives of ray parameters [Igehy 99]). The cross-section of the ray cones con-
sists of ellipses with limited anisotropy. These ray cones are intersected with a point hierarchy, 
storing a multi-resolution point representation with prefiltered attributes. The algorithm uses 
points with a sampling distance corresponding to the smallest ray cone diameter. Footprint as-
sembly [Schilling et al. 96] is performed to reconstruct a local piece of surface. For local recon-
struction and compositing of multiple interactions between surface fragments and the ray cone, a 
modified per-ray variant of surface splatting [Zwicker et al. 2001a] is employed. The compositing 
quality can be improved by employing subpixel masks [Carpenter 84]. 

At the cost of one ray cone per pixel, the algorithm provides antialiasing as well as ap-
proximations of classic distributed ray tracing effects such as soft shadows, blurry reflections, and 
depth-of-field. In contrast to stochastic raytracing approaches, no noise artifacts are introduced 
into the images. However, this comes at the costs of being a slightly biased technique, as the 
point-based multi-resolution hierarchy only provides an approximation of the exact scene. 
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Implementation and Results 
The different rendering algorithms proposed in this thesis have been implemented in the context 
of a rendering system for complex scenes, providing an extendible scene graph library. Special 
nodes allow for the integration of precomputed data structures into the scene graph, supporting 
hierarchical instantiation of these data structures in order to encode highly complex scenes. 

Examining the implementations of the proposed techniques, we will discuss the influence of 
various rendering and precomputation parameters on rendering results and efficiency, allowing 
for optimizing these parameters empirically. In addition, we compare theoretical predictions (e.g. 
concerning the oversampling of different stratification techniques) with empirical measurements. 

Different variants of forward mapping rendering are implemented: Reconstruction based on 
splatting is implemented using graphics hardware. This approach allows the visualization of 
highly complex scenes at real-time framerates with an image quality roughly comparable to con-
ventional z-buffer rendering. Additionally, we will also examine more involved reconstruction 
techniques: Local filtering techniques yield the best antialiasing quality; alpha blending based 
techniques offer the best visual impression for unstructured scenes with complex occlusion. Pre-
filtering allows noise-free renderings even in real-time settings. 

As a general result, we observe that point-based multi-resolution techniques cannot repro-
duce subpixel occlusion effects faithfully. Usually, the opacity is overestimated (for examples the 
opacity of a set of leafs of a tree mapped to a single pixel). This is the main restriction of the tech-
nique in terms of image quality. Apart from this effect, the rendering quality is comparable to 
conventional rendering approaches that do not employ a multi-resolution strategy. 

The evaluation of the proposed backward mapping technique shows that images of highly 
complex scenes can be constructed with little aliasing and almost no noise artifacts. Similar to 
forward mapping rendering, good rendering results are obtained up to the reproduction of sub-
pixel occlusion details. Again, the coverage is usually overestimated, leading to thickened silhou-
ettes. Using subpixel masks, this effect can be reduced at the cost of increased rendering times. 

 Comparing the rendering performance with classic cone tracing, the multi-resolution ap-
proach yields a significant improvement. Point-based multi-resolution raytracing can handle 
highly complex scenes at moderate costs while classic cone tracing does not even terminate within 
measurable time (at least not if reflected or refracted cones are used). We will also compare the 
rendering performance with distributed raytracing, using a reference implementation based on 
the same code basis. It uses an adaptive sampling approach and subpixel stratification. Its ren-
dering quality can be controlled by oversampling parameters, allowing a trade-off between noise 
removal and rendering speed. We examine two different scenes: A low complexity scene contain-
ing only a few sharp features and a high complexity scene showing large unstructured areas of 
high variance in the image. For the low complexity benchmark, the rendering times of the point-
based technique are comparable to distributed raytracing, configured for a similar rendering 
quality (i.e. low noise level). For high variance images, the point-based rendering technique is 
more efficient. If the image does not contain complex silhouettes, no subpixel-masks are neces-
sary. In this case, the performance advantage is significant. At least ten times more rendering 
time is needed to obtain an image with a sufficiently low noise level. If subpixel-masks are used, 
the performance advantage is smaller. Nevertheless, in applications where noise free rendering is 
more important than avoiding slightly biased images (e.g. rendering of animation sequences), the 
new technique may provide advantages in terms of performance. The concrete comparison de-
pends of course heavily on the implementation and optimization. Thus, the results are only a first 
indicate of the relative performance. 
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For rendering special effects (such as soft shadows), subpixel masks have to be used in or-
der to avoid silhouette overestimations. Then, the point-based rendering algorithm yields ap-
proximations that are qualitatively similar to distributed raytracing results, but with no noise 
artifacts. 

Extensions 
In addition to the main results, we will also discuss some extensions and applications of the point-
based rendering framework. The first is multi-resolution volume rendering. This technique aims 
at a real-time visualization of large, regularly sampled volume data sets. The algorithmic struc-
ture is similar to point-based forward mapping rendering, but uses a slightly modified error crite-
rion and a textured slices based renderer instead of point clouds. We will prove logarithmic 
running time (O(log n) time for n3 voxels). Experiments show that very large data sets such as the 
well-known multi-gigabyte visible human data set [National Library of Medicine 2002] can be 
rendered in real-time on a conventional PC. The algorithm has been designed in cooperation with 
Stefan Guthe, who did also the implementation and evaluation. Thus, it is described only briefly 
in this thesis. For details, please refer to [Guthe et al. 2002, Guthe 2004]. 

The second extension is a modification to the static sampling data structure to support effi-
cient out-of-core storage. We will discuss an externally efficient construction algorithm for large 
data sets and modifications to the point hierarchy to minimize external operations. A prototype 
implementation demonstrates the applicability of the proposed extension in practice. The tech-
nique has been designed in cooperation with Matthias Fischer, Jan Klein and Jens Krokowski 
from University of Paderborn, who also did the implementation and evaluation, in cooperation 
with coworkers. For details, see [Klein et al. 2002]. 

The third extension is an application to sound rendering. A similar point hierarchy as used 
for visual rendering of surface models can also be applied to approximate the sound caused by a 
large number of sound sources [Wand and Straßer 2003c]. This extension shows that the point-
based multi-resolution paradigm is of use for other application areas than visual rendering. 

The last extension discussed in this thesis is a real-time algorithm for rendering caustics of 
extended light sources. It is no multi-resolution algorithm, but it uses a dynamic discretization 
into surface sample points as intermediate representation for computing the global illumination 
effect. The idea is to compute caustics of extended light sources as an overlay of images projected 
by infinitesimally small surface fragments. An implementation using programmable graphics 
hardware allows real-time rendering of these effects, which is not possible using standard tech-
niques such as photon tracing. Similar to all other extensions, this technique is also described 
only briefly, more details can be found in [Wand and Straßer 2003b]. 

Contributions of This Thesis 
Concluding the introduction, we discuss the improvements upon the state-of-the-art (at the time 
of first publication) by the techniques described in this thesis: 

• The randomized z-buffer algorithm (i.e. the dynamic sampling data structure de-
scribed in Section 4.1 and the reconstruction techniques discussed in Chapter 5) en-
ables rendering of highly detailed scenes with logarithmic costs (concerning the 
number of primitives in the scene). It allows handling of scenes with complexities 
such as 1015 triangles and more at interactive frame rates. At the time it has been 
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presented [Wand 2000a, Wand et al. 2000b], it has been the first algorithm that per-
mitted an interactive visualization of such scenes with the corresponding provable 
guarantees for image quality and rendering time. 

• The extended version of the algorithm published in [Wand et al. 2001] includes a 
caching strategy that allows real-time rendering. This extension has been inspired by 
[Pfister et al. 2000, Rusinkiewicz and Levoy 2000]. The algorithm improves on these 
two proposals in several ways: It provides very short preprocessing times and allows 
for efficient dynamic updates of the data structures. It can represent the input model 
at its original precision, not being limited to a maximum sampling resolution being 
fixed during preprocessing. The data structure has been generalized to support hier-
archical instantiation, allowing an application of the algorithm to highly complex 
scenes. 

• The main drawback of the randomized z-buffer is that it causes relatively large sam-
pling costs. This is especially due to the fact that random sampling needs large sam-
ple sets to fight noise artifacts. This problem is circumvented in the static sampling 
data structure [Wand and Straßer 2002], which combines ideas of [Pfister et al. 2000, 
Rusinkiewicz and Levoy 2000] with the prior approach. The data structure can be 
generalized to support animated scenes. At the time of publication, the implementa-
tion of this approach has been the first system being able to render animated scenes 
such as highly complex crowd animations in real-time with the corresponding guar-
antees for image quality and efficiency. 

• A formal analysis of the rendering costs is given, for both dynamic and static sam-
pling, proving the efficiency of the approach for a large class of scenes. Different sam-
pling and stratification options are analyzed, too. This includes proofs of confidence 
bounds for the randomized techniques to compute correct results and upper bounds 
for oversampling. Average oversampling is examined empirically. 

• The different parameters for constructing point hierarchies are examined empirically. 
The observations are used to optimize the rendering time for different application 
scenarios (such as dynamic sampling, raytracing, hardware accelerated forward map-
ping). 

• The point-based multi-resolution raytracing algorithm [Wand and Straßer 2003a] in-
troduces an efficient method for creating sample sets with a sampling density corre-
sponding to general ray densities. The algorithm is able to render images roughly 
comparable with images obtained by classic distributed raytracing while ensuring to 
avoid aliasing and noise artifacts. The performance is at least comparable to distrib-
uted raytracing, in adverse cases (high variance) it is faster than distributed raytrac-
ing if a similar noise level is demanded. 

• The volume rendering system devised in cooperation with Stefan Guthe has been the 
first to permit real-time visualizations of highly complex data sets (such as the visible 
human data sets) using a conventional PC [Guthe et al. 2002]. 

• An efficient point-based multi-resolution rendering strategy for data sets that do not 
fit into main memory is proposed [Klein et al. 2002, Klein et al. 2004]. 

• The sound rendering algorithm [Wand and Straßer 2003c] is the first algorithm that 
permits real-time auralization of scenes containing a vast number of sound sources. 

• The caustic rendering algorithm [Wand and Straßer 2003b] is the first algorithm 
permitting real-time rendering of caustics from extended area light sources. 



 1 

1 Background 

Chapter 1 

Background 

In this chapter, we describe the background for this thesis. We start with a discussion of prerequi-
sites for rendering three-dimensional scenes: Modeling of geometry, materials, and projection. Sub-
sequently, we discuss our goal, an output-sensitive solution to the rendering problem. And finally, 
we summarize basic tools from literature for sampling and discretization, which are fundamental 
for rendering. 

1.1 Rendering 
The goal of this thesis is to improve the efficiency of image synthesis for highly complex three-
dimensional scenes. Thus, the first thing to be discussed is the rendering task itself. In order to 
generate images of three-dimensional scenes, we need to define three components: First, we need 
a mathematical description of the scene geometry. Second, we must define the interaction of light 
with the elements of the scene. And third, we have to define a projection operation that maps the 
three-dimensional data set to a two-dimensional image that can be output to a display device. In 
the following, we will discuss all three topics, starting with the geometrical scene description: 

1.1.1 Geometric Scene Description 
The mathematical modeling of three-dimensional scenes is one of the fundamental problems in 
computer graphics. Thus, the last thirty years of research have led to a multitude of different 
approaches. A survey can be found in most textbooks on computer graphics such as [Foley et al. 
96, Encarnação et al. 96, Encarnação et al. 97]. The different modeling techniques can be catego-
rized according to several aspects. Some important aspects are: 

Volume vs. surface models: Many modeling techniques restrict themselves to describing 
infinitesimally thin surfaces only. These are called surface models. This approach is often suffi-
cient because in many scenes the relevant optical effects for image generation occur only at the 
surfaces of the objects in the scene. Solid modeling systems additionally describe the volume en-
closed by a surface model. This is often needed in mechanical engineering, e.g. for simulations or 
computer aided manufacturing. However, usually only the surface of the objects is used for ren-
dering. Fully volumetric modeling allows interaction between light and the scene at any point in 
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space, not only at specific surfaces. The problem of these techniques is often a large memory con-
sumption and thus a limited precision. 

Primitives: All modeling techniques use instances of a restricted class of primitive objects 
to describe the scene. One of the simplest surface primitives is a triangle. More elaborate primi-
tives are for example parametric patches (such as Bezier patches), lathe objects or subdivision 
surfaces. There are also non-parametric techniques such as the isosurface of an implicit function. 
Volumetric modeling techniques frequently use basic primitives such as voxels (i.e. a grid discre-
tization of the optical properties of space), tetrahedra, or particles to describe the scene. 

Encoding: To describe a certain scene, the primitives must be encoded in a computer-
readable form. The simplest encoding is a list of parameters of primitive instances. A very com-
mon technique is e.g. the “triangle soup”, i.e. one large list of individual triangles. The drawback 
of explicit lists of primitive parameters is the large (linear) memory demand. The constants in 
such a linear representation can be optimized using compression techniques [Gotsman et al. 
2002], usually also enforcing a restriction of the possible data access patterns. To describe large 
primitive sets with sublinear memory, more implicit encoding schemes can be used such as fractal 
models or L-systems. Such techniques are also often categorized as procedural models: The primi-
tive instances are created by the execution of an algorithm. If we allow general algorithms, we 
will not be able to analyze the scene for some kind of preprocessing without executing the algo-
rithm and creating all the primitives. The reason for this is that it is not possible to analyze any 
non-trivial property of a general algorithm a priori using any systematic algorithmic procedure 
(Rice’s theorem, see e.g. [Papadimitriou 94]). Thus, many techniques restrict themselves to cer-
tain predefined structures that do not offer full programmability. 

Static vs. dynamic models: Up to now, we have not yet taken into account that the scene 
may change over time. To model dynamic scenes, several different approaches are possible: The 
simplest approach is to specify the evolution over time in advance. This can be done explicitly 
(analogous to primitive lists) by specifying a sequence of keyframes and interpolation rules or by 
more general procedural approaches, such as differential equations. The model may also depend 
on user interaction, i.e. the user can influence the evolution of the scene over time unpredictably 
(e.g. interactive editing). 

Before devising a new rendering technique, we have to choose a suitable geometric repre-
sentation, which will be used as input to our new algorithm. This is an important decision as the 
design and the efficiency of a rendering technique depend strongly on the underlying scene repre-
sentation. In this thesis, our goal is to design general-purpose rendering techniques for common 
applications, targeting at scenes of high geometric complexity. To meet these constraints, we em-
ploy a scene graph based encoding of triangle lists. 

The geometry of objects is described by lists of triangles. This simplifies the discussion and 
implementation of the proposed algorithms without loss of generality: All relevant surfaces in 
computer graphics can be approximated with arbitrary precision using triangle meshes. In addi-
tion, rendering of triangle-based models is efficiently supported by current graphics hardware. 
Thus, numerous applications in practice rely on triangle sets as geometric scene representations, 
making them a good candidate for a general purpose model description. Nevertheless, a generali-
zation of the algorithms proposed in this thesis to other types of primitives should be straightfor-
ward in most cases. As an example, we will briefly discuss the generalization to volumetric 
models in Chapter 8. 

An explicit encoding alone is not suitable for highly complex scenes: If the parameters of all 
triangles were stored explicitly in main memory (one large list), the size of the scene would be 
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restricted due to memory consumption1. In order to encode scenes of very high geometric complex-
ity, we apply scene graph based encoding [Wernecke 94, Foley et al. 96]: Sets of primitives can be 
grouped and instantiated in the scene by specifying a pointer to the group along with transforma-
tion information describing the difference to the original instance. This technique can be carried 
on hierarchically: Sets of instances can again be instantiated at a higher level in the hierarchy. 
The references form an acyclic directed graph with transformation information in the inner nodes 
and primitive sets in the leave nodes. The transformations that distinguish the instances can be 
very general operations such as geometrical transformations and deformations or material map-
pings. To simplify the discussion, we will restrict ourselves to simple affine transformations de-
scribed by homogeneous 4 ×4 matrices. Figure 1 shows an example for scene graph based 
encoding. A car is composed of its body and 4 instances of a wheel. Then, four cars are created by 
four instances of the base car, using a second (hierarchical) instantiation layer. 

Scene graph based encoding provides an efficient representation for scenes that contain a 
certain amount of redundancy. It is possible to create a scene that encodes an exponential number 
of primitives with linear memory. For example, if we add another instantiation layer to the group 
of four cars in Figure 1c, we quadruple the scene complexity at constant memory costs. Adding 
more quadrupling instantiation layers creates a sequence of scenes with exponentially increasing 
complexity at linear memory demands. This example is of course somehow artificial. However, a 
reduction of memory demands is also often possible in practice: CAD models e.g. tend to use a set 

                                                      
1 Note that contemporary graphics hardware is able to render up to some hundred million triangles per second [ATI 2004, 
nVidia 2004a]. This means that we might already expect interactive rendering times for models if a simple explicit repre-
sentation of them just fits completely into main memory. 
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Figure 1: Scene graph based instantiation.  
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of standard components to build complex designs. In general, the large effort that is necessary to 
create models of three-dimensional objects from scratch usually also forces the modeler to employ 
some kind of instantiation to build complex scenes. However, there are cases where instantiation 
cannot be used efficiently. Therefore, we will also briefly consider a modification of our techniques 
to support out-of-core storage as an alternative in Chapter 8. 

1.1.2 Shading 
Up to now, we have encoded only the geometry of a scene. In addition, we also need a description 
of the surface appearance to render images. Thus, we need a lighting model (or shading model) 
that determines the color of the objects in the scene. Again, the computer graphics literature of-
fers a wide variety of different techniques (see e.g. [Foley et al. 96, Encarnação et al. 96, 
Encarnação et al. 97]) ranging from simple ad-hoc solutions to photo-realistic simulations of light 
transport. Lighting models can be divided roughly into two groups: Local lighting models describe 
the interaction of a piece of surface (or volume) with light sources, independent of other elements 
in the scene. This excludes effects such as shadows, interreflection or scattering. In contrast, 
global lighting models also account for the influence of other objects in the scene to determine the 
lighting conditions at a point of the scene. The global propagation of light in a three-dimensional 
scene can be described by the “rendering equation” [Kajiya 86]: This integral equation states that 
the radiance exiting a point on a surface can be expressed (recursively) as the radiance emitted at 
that point plus the integral over all incoming radiance weighted by a function describing the re-
flectivity of the surface point in dependence on the incident and outgoing angles of reflection 
(BRDF, bidirectional reflectance distribution function). This model considers surface models only 
but it can also be extended to volumetric light transport. See e.g. [Glassner 95] for more details on 
global lighting models. 

This thesis mainly deals with geometric multi-resolution techniques. Thus, there are no 
special requirements on lighting models and shading. In order to simplify the discussion, we just 
assume that every point on a surface has an associated shading function. It determines the color 
of the surface point depending on the observer position (and possibly some constant global set-
tings such as light sources). For complexity evaluations, we assume that the shading function can 
be evaluated in O(1), independent of all the complexity parameters of the scene. Usually this is 
only possible for local shading techniques. However, some global illumination techniques such as 
shadow maps also fulfill these requirements. 

1.1.3 Projection 
The last ingredient of a rendering system is a projection operation: In order to present a three-
dimensional scene, the model usually has to be projected onto a two-dimensional image2. Again, 
there are lots of choices for mapping functions, such as fish-eye rendering or orthographic projec-
tion [Foley et al. 96]. In this thesis, we always assume a perspective projection: The projection is 
described by specifying a center of projection, a camera coordinate system, a viewing angle and 
the aspect ratio of the image. The projection is then defined as follows (see Figure 2): A projection 
screen (a planar rectangle) is placed in front of the projection center, orthogonal to the viewing 
direction of the camera coordinate system, matching the specified viewing angle. The projection of 
a point in space onto the image is defined as the coordinates on the projection screen where a ray 

                                                      
2 There are also three-dimensional projection techniques, such as holographic projections [Lucente and Galyean 95], but 
these are not commonly in use. 
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from the projection center to the point intersects the screen. This setup mimics the properties of 
an ideal physical pin-hole camera and thus is commonly used for image generation. It can be de-
scribed by a homogeneous transformation matrix. The volume that is potentially projected to the 
screen is called the view frustum. In order to avoid singularities in the projection, the view frus-
tum is usually limited by a near clipping plane, orthogonal to the viewing direction, that excludes 
all objects from rendering that are closer to the viewer (in viewing direction) than a user defined 
value znear.  

1.1.4 The Rendering Task 
All these things taken into consideration, the complete rendering problem now can be tackled: 
The perspective projection defines a view ray for each coordinate on the projection screen. In the 
case of a surface model, we can assign a color to this point on the screen by evaluating the shad-
ing function on the first piece of surface (defined by the geometric scene description) that is inter-
sected by the viewing ray. In the case of volume models, we have to consider the outcome of the 
shading function at all visible points along the viewing ray that are described by the geometric 
model. The corresponding radiance values have to be combined by (a numerical evaluation of) a 
compositing integral [Max 95a]. In either case we end up with a continuous image function that 
assigns a color value to each (real-valued) coordinate on the projection screen. The last (concep-
tual) step is to discretize the continuous image function into a set of pixels on a regular grid. This 
step is not trivial either: An inadequate discretization strategy can easily lead to artifacts such as 
noise or aliasing (structured moiré patterns in the image). We will discuss this aspect more in 
detail in section 1.3 in the more general context of sampling and discretization techniques. 

1.2 Output-Sensitive Rendering 
The goal of this thesis is to provide new techniques for rendering scenes of high geometric com-
plexity. According to our geometric scene model, we define the geometric complexity n as the 
number of triangles in the scene S. These are encoded in a scene graph, using memory enc(S). 
Usually, enc(S) << n (many artificial test scenes employed in our evaluation use hierarchical in-

 

Figure 2: Perspective projection.  
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stantiation patterns with memory enc(S) ∈ O(log n), similar to the example described in section 
1.1.1). 

Rendering often has to fight complexity problems: On the one hand, there is a strong desire 
to display scenes of high geometric complexity, for example in order to provide a photo-realistic 
impression of natural scenes that contain a lot of details. On the other hand, the time for render-
ing should be as short as possible. In interactive and real-time applications, we even often have to 
deal with hard time constraints. In order to sustain a fluid interaction, a minimum frame rate 
(typically ≥ 20 Hz) is required. As the rendering time of many rendering algorithms depends 
strongly on the input complexity, the complexity of scenes that can be displayed in real-time is 
limited. 

However, the output device for a rendered picture is usually a raster display (CRT/LCD-
screen, video projector, printer). Such devices provide only a limited amount of information. That 
means that the output complexity of the rendering algorithm is fixed in advance. This naturally 
leads to the question whether it is possible to construct output-sensitive rendering algorithms 
[Sudarsky and Gotsman 96]. In general, output-sensitive algorithms are algorithms with a run 
time complexity that is not fully characterized by the input complexity but could also depend on 
the output complexity. For a rendering algorithm, we would of course like to have a running time 
that depends only very weakly on the input (scene) complexity because the output complexity is 
constant as soon as we have chosen the output device. Such algorithms could solve our complexity 
problems: If the dependence on the input complexity was weak enough, it would allow us to use 
input scenes of any complexity without a significant increase in rendering time. A lot of output-
sensitive rendering approaches are known in computer graphics literature, providing varying 
compromises of efficiency, flexibility and output quality. 

Output-sensitive rendering algorithms usually operate in two steps: First, an auxiliary data 
structure is precomputed. Second, images for different viewing conditions are generated (more 
efficiently) using the precomputed information. If the scene changes, e.g. due to editing opera-
tions, the data structure describing the scene must be updated dynamically. This leads to multi-
ple performance criteria for the evaluation of such a rendering algorithm: The time and memory 
demands for preprocessing, the running time for dynamic updates and the running time for ren-
dering an image. Output-sensitive rendering techniques are also frequently referred to as ap-
proximation algorithms: We are willing to accept inaccurate results as long as the approximation 
errors are small enough for a certain output resolution. The approximation error should converge 
to zero if we are willing to spend more and more system resources on rendering. The dependence 
of the running time on the output accuracy determines the convergence rate of the algorithm and 
thus determines the maximum resolution we will be able to achieve within a fixed amount of 
time. 

An ideal rendering algorithm should be able to render images in O(1) time, using O(enc(S)) 
time to precompute the scene data base using O(enc(S)) memory, and should allow dynamic up-
dates in O(1) time. Unfortunately, such an algorithm is not known today and there is evidence 
leading to the conjecture that it might not even exist (see e.g. [de Berg et al. 94]). However, we 
might try to come close to these idealized properties: For example, rendering and update times of 
O~(1) might be sufficient for many applications, and preprocessing time of O~(enc(S)) is also often 
acceptable. Additionally, we might be willing to accept minor errors in the output image (ap-
proximation errors) or restrictions to special types of scenes in order to allow a more efficient ren-
dering algorithm. 

In the next chapter (Chapter 2), we will discuss related work on rendering complex scenes 
efficiently. The survey will show that a lot of specialized techniques are known that achieve 
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strong output-sensitivity for a multitude of special cases. This thesis will not provide the (proba-
bly) impossible ideal rendering algorithm either. However, we will develop techniques that can 
handle a range of cases that could not have been handled efficiently before. Before the discussion 
of related work, we first discuss basic discretization techniques and problems that are relevant for 
all rendering techniques: 

1.3 Sampling and Aliasing 

1.3.1 Uniform Sampling 
The generation of raster images requires the discretization of a continuous image function by a 
regular grid of pixels. This means that an image function with potentially infinite resolution is 
projected on a finite-dimensional subspace. For most image functions, the discrete representation 
is only an approximation, thus leading to a loss of information. The approximation error is inevi-
table, but it can become visible in the image in different forms: A typical problem is aliasing: 
Structured, regular patterns in the image function interfere with the regular sampling grid of the 
display and lead to low frequency moiré pattern in the image called aliasing. Figure 3 shows an 
example: An image of a chessboard is discretized on a low resolution pixel grid. In the area where 
the frequency of the chessboard pattern exceeds the raster frequency, low frequency moiré pat-
terns become visible. These artifacts are undesirable because they distract the observer’s visual 
system: Due to the low frequency structures, they are perceived as distinct shapes although they 
are not contained in the original image but are a mere artifact of the rasterization process. There-
fore, we need antialiasing strategies to avoid the artifacts. Aliasing is a well understood problem 
in computer graphics. An analysis of the rasterization process in frequency space explains the 
reasons for the phenomenon and leads to a counter strategy. We will summarize the main results 
here following the exposition in [Foley et al. 96, Glassner 95]: 

Let us consider an image function u. To model the rasterization process mathematically, we 
multiply the function by an impulse train function s consisting of equally spaced Dirac impulses 
(see Figure 5 for a schematic representation). This removes certain information from the original 
signal. In order to understand what kind of information is lost, we consider the Fourier transform 
of the resulting signal3: The Fourier transform of the impulse train is also an impulse train with 
spacing inversely proportional to the spacing in the spatial domain, i.e. the spacing is given by the 
frequencyνs in the spatial domain. The Fourier transform of the image signal is a function that is 
symmetric to the y-axis and converging to zero for increasing frequencies. The multiplication of 
the two functions in the spatial domain corresponds to a convolution of their Fourier transforma-
tions in frequency space. This means that the spectra are replicated along the frequency axis with 
a spacing ofνs, thus having a first overlap at the Nyquest frequency νs/2 (Figure 5c). This has two 
implications: First, all frequencies in the image signal beyond the Nyquest frequency will be “mir-
rored” at νs/2 and appear falsely as low frequency patterns in the image (i.e. as “aliasing”). Sec-
ond, this means that an arbitrary image functions can be reconstructed exactly from a set of 
uniformly spaced samples if and only if the Fourier spectrum of the function does not contain any 
frequency components beyond the Nyquest frequency. 

                                                      
3 Of course, we must assume that the Fourier integrals for the image function and the resampled function exist, but this is 
no restriction for computer graphics applications. 
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How can the reconstruction be performed? The sampled signal corresponds to a set of repli-
cated spectra of the original function in frequency space. Therefore, we must remove the super-
fluous high frequency components in order to reconstruct the original spectrum and thus the 
original signal. This means we must apply a low pass filter that cancels all frequencies beyond [-
νs/2, νs/2]. Thus, we have to multiply the function in frequency space by a suitable frequency at-
tenuation function R. In the spatial domain, such a filter corresponds to a convolution operation. 
The convolution kernel is given by the inverse Fourier transform of the desired frequency at-
tenuation function (Figure 5d). 

What is a good choice for sampling and reconstruction filters? The obvious choice would be 
to use a box filter in frequency space that does not attenuate any frequencies below νs/2 and does 
completely attenuate all frequencies above νs/2. However, this does not lead to satisfactory re-
sults. The inverse Fourier transform of a box filter is a sinc function (i.e. a function sin(ϖ x)/(ϖ x)) 
in the spatial domain. Thus, this “ideal” filter leads to ringing artifacts in the image. As an exam-
ple, we regard sampling and reconstruction of a single Dirac impulse: The Fourier transform of a 
Dirac impulse is a constant spectrum. The ideal sampling filter restricts this spectrum to a box 
function. The sampling process creates again a constant spectrum by replicating the box function 
along the frequency axis. The resampling filter truncates the spectrum again to a box function. In 
the end, we have to consider the inverse Fourier transform of this spectrum, which is a sinc. 
Thus, after sampling and reconstruction with box filters in frequency space, the impulse is con-
verted to a sinc function, which leads to ringing around the original impulse (Figure 4a). In more 
complex images, ringing artifacts occur similarly at all sharp borders of the image [Mitchell and 
Netravali 88]. An interpretation is that this filter tends to smear out the information in the spa-
tial domain in order to preserve as much information in frequency space as possible, which leads 
to visual artifacts. As a consequence, we should use a filter with a better shape in the spatial do-
main. A typical choice in computer graphics is a Gaussian filter (Figure 4b): The Fourier trans-
form of a Gaussian function is again a Gaussian with a support inversely proportional to the 
support in the spatial domain. By adjusting the support in the frequency domain, it is possible to 
cancel most of the aliasing while still preserving most low frequency content. This leads to image 
reconstructions that are a bit more blurry (“base band attenuation”), but do not show ringing arti-
facts. This is usually more desirable for visual rendering purposes than the behavior of the “ideal” 
box/sinc filter. Therefore, it is often used as a general purpose solution and we will also use this 
filter for sampling and reconstruction tasks in this thesis. However, it is possible to design better 
filters that are more optimized in respect to several characteristics for different applications, see 
e.g. [Mitchell and Netravali 88]. 

    
(a) rasterization of a 
chessboard showing 

aliasing artifacts 

(b) rendering with 
antialiasing 

(a) sinc 
(ideal low-pass filter) 

(b) Gaussian (more base 
band attenuation, better 
shape in spatial domain) 

Figure 3: Aliasing artifacts Figure 4: Convolution kernels for different low-pass 
filters 
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1.3.2 Non-Uniform Sampling 
Regular sampling is not always possible or desirable: It is often not possible to obtain data sam-
ples from a function on a perfectly uniform regular grid. In this thesis, we will follow the ap-
proach of reconstructing images from surface sample points of irregular structure, independent of 
the screen grid. Another possible drawback of regular sampling are performance penalties: Regu-
lar sampling for example does not permit adapting the sampling density to the characteristics of 
the sampled function, such as taking more samples in regions of larger variation. Thus, we should 
also consider techniques for non-uniform sampling and reconstruction. In the following, we will 
summarize results from literature on two tightly related topics: Monte Carlo integration and non-
uniform sampling and reconstruction of functions. The theory of Monte Carlo integration deals 
with the estimation of integrals from irregular, stochastically chosen samples. In more general 
settings, our goal is to reconstruct a function from a set of irregular sample points. In addition to 
numerical sampling errors, we have to deal with additional problems such as noise and aliasing 
artifacts in this case, too. We will summarize the main results here, for a more extensive over-
view, see e.g. [Glassner 95]. 

1.3.2.1 Monte Carlo Integration 

Monte Carlo integration techniques try to evaluate the integral of a function f over a domain Ω 
using stochastic samples of f in Ω. The basic Monte Carlo integration technique chooses n points 
xi in Ω with equal probability and estimates the integral as: 

∫ ∑
Ω =

Ω≈
n
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To analyze the error of this basic Monte Carlo estimator, we can employ the central limit theorem 
[Snedecor and Cochran 67]. It states that the average of n random variables that are identically 
distributed and stochastically independent with expected value µ and standard deviation σ  is 
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Figure 5: Explanation of the aliasing phenomenon in frequency space [Foley et al. 96]. 
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asymptotically normal distributed with expected value µ and standard deviation σ n/ . Thus, we 
can expect an error (i.e. a standard deviation of the estimator) of the Monte Carlo estimation of 
the integrand of 

( )nferrorn /)(O σ∈  

where σ ( f ) denotes the standard deviation of the random variable of making a random function 
evaluation in the domain Ω. 

Monte Carlo integration is especially useful for high-dimensional domains: Conventional 
quadrature techniques such as Newton-Cotes or Gaussian quadrature [Köckler 94, Press et al. 95] 
use sampling grids of a fixed structure. This means that the computational costs increase expo-
nentially with the dimension of the domain Ω. Thus, the quadrature becomes prohibitively expen-
sive for high-dimensional domains even for well behaved functions f. The randomized quadrature 
algorithm ensures a stochastic convergence of O(

1−
n ), independent of the dimension of the base 

domain. Thus, Monte Carlo techniques are often used for high-dimensional integration tasks such 
as distributed ray-tracing [Cook et al. 84a]. The efficiency of Monte Carlo integration depends on 
the standard deviation of the function to be sampled. This can be illustrated by an example (see 
Figure 6): Imagine our task is to integrate an image function over a pixel of an image. If the func-
tion is more or less constant, the standard deviation σ ( f ) will be small and the Monte Carlo esti-
mation will deliver good results with little effort (Figure 6a). If half of the pixel is black and the 
other half is white (Figure 6b), we will need several sample function evaluations to converge but 
the Monte Carlo approach is still applicable, independent of the concrete distribution of black and 
white in the integration domain. However, if a small fraction of the pixel area (say 1/10,000) is 
very bright (say 10,000 times as bright as in the second example), we face a problem: The stan-

  

"Bright spot":
brightness
5000 on
1/10000 area  

(a) zero variance 

(µ  = 0.5, σ  = 0) 

Monte Carlo estimation 
always computes exact results. 

(b) small variance 

(µ  = 0.5, σ  ≈ 0.6) 

Several samples needed for a good 
estimate. 

(c) large variance 

(µ  = 0.5, σ  ≈ 70) 

Monte Carlo estimation becomes 
inefficient. 

Figure 6: Monte Carlo integration is only efficient for functions with small variance. 

bright 
portion p 1.0 0.5 0.1 0.01 0.001 0.0001

standard 
deviation 

σ ( f ) 
0 0.612 2.07 7.02 22.3 70.7 

average 
over 100 
samples 

for multi-
ple pixels      

 # samples Result 

1  

10  

100  

1000  

10000   
Figure 7: Monte Carlo integration (n = 100) over mul-

tiple pixels in which a portion p of the pixel has a 
brightness of 1/(2p) (i.e. the correct result is µµµµ  = 0.5). 
As the non-uniformity increases, the simple Monte 

Carlo approach becomes less efficient. 

 Figure 8: Monte Carlo integration over multiple 
pixels with varying sample size. Each pixel is 
half white and half black (p = 0.5, Figure 6b). 

Large sample sizes are needed to obtain a noise 
level below the level of perception. 
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dard deviation of the estimator is now very high (Figure 6c). Most samples will miss the bright 
spot so that we need a very large sample set to attain an acceptable sampling error. Figure 7 
shows an experiment: We integrate over several pixels (using n = 100 sample points) and reduce 
the bright area in each pixel while increasing its brightness correspondingly. Thus, the expected 
value stays constant and we should obtain a neutral grey image in all cases. However, as the per-
centage p of bright area decreases, the noise artifacts increase. To reduce the noise in the image, 
we are forced to increase the number of sample points used for integration. Figure 8 shows the 
stochastic convergence for an increasing sample size. As the expected error decreases only with 
O(

1−
n ), we need a large sample size to reduce the noise artifacts to an acceptable level. Even 

with 1000 sample points and a small variance of the sampled function (σ  ≈ 0.6), we still obtain 
visible noise artifacts (i.e. ≥ 1 bit deviation for an 8 bit image). 

These experiments show two rules of thumb: First, we should note that Monte Carlo inte-
gration is not efficient if the relevant information (here: high function values) is not discovered by 
a random sample with sufficiently high probability. This is a general property of random sam-
pling techniques: Randomized sampling allows us to obtain a good estimate of the correct result 
efficiently if the relevant information can be observed by a stochastic sampling process with suffi-
ciently high probability. Second, the O(

1−
n ) stochastic convergence leads to the effect that we 

are usually able to rapidly obtain a rough impression of the solution, but need a lot of additional 
effort to obtain a good, noise-free solution. The drawbacks that stem from these observations can 
be reduced by improving the basic Monte Carlo algorithm, as described in the following two sub-
sections. 

Importance Sampling 

The first improvement, importance sampling, aims at a reduction of the standard deviation of the 
function used for sampling, thus reducing the error in the final result according to the central 
limit theorem. A big problem for Monte Carlo integration is that in many integration tasks it is 
highly unlikely to be able to observe the relevant regions of the integration domain by uniform 
probabilistic guessing. A typical example is lighting calculation: To evaluate a local illumination 
model, we have to integrate the incoming radiance over a hemisphere. A scene is often illumi-
nated by a few small light sources (maybe even point lights) only. In such cases, a naive Monte 
Carlo integration approach will lead to unacceptable errors. To deal with such cases, we have to 
incorporate a priori knowledge of the problem: In the case of hemisphere sampling we know for 
example in which portions of the hemisphere the light sources are located. We just do not know 
whether they are visible and need to determine the integral value of the transported light. Thus, 
we would rather not perform a stochastic sampling of the complete hemisphere but concentrate 
the sampling on the light source area only. The generalization of this idea is known as importance 
sampling: The integration domain is not sampled with uniform probability but the probability for 
the sample generation is increased in important regions. To compensate for this bias of taking 
samples non-uniformly, the samples have to be weighted by the inverse of the sampling probabil-
ity. This leads to the following strategy: We draw samples xi from Ω according to a probability 
distribution function p: Ω → R>0 and estimate the integral as: 

∫ ∑
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This modification changes the standard deviation from that of a uniformly sampled f to that of f/p 
sampled with probability density p. As a rule of thumb, the sampling density should be similar to 
f in order to decrease deviation: In the ideal case of p being proportional to (a positive) f, we would 
obtain an exact estimate at any sample size n. However, this would require computing the inte-
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gral (at least for normalization) and is thus not applicable in practice. Consequently, usually a 
function similar to f is used: The integrand often consists of a product of two functions f = g·h and 
one of the factors is known analytically. Typical examples of such factors are BRDFs in lighting 
calculations or perspective foreshortening in rendering. Typical unknown parts are the surface 
color of a sample direction or visibility information. For many applications, importance sampling 
is the key to an efficient random sampling algorithm. In this thesis, we will use importance sam-
pling by perspective foreshortening in order to obtain suitable surface sample sets for efficient 
rendering. 

Stratification 

A second improvement to basic Monte Carlo integration is stratification. This technique is usually 
orthogonal to importance sampling and aims at an improvement of the convergence speed. Up to 
now, we have chosen sample points independently from one another. This leads to a random clus-
tering of sample points: Although the distribution of sample points will match the employed prob-
ability distribution well on a large scale, the placement of points on a micro scale will be random 
and non-uniform. In some cases, the convergence rate of the Monte Carlo integration can be im-
proved by enforcing a more uniform placement of sample points in the base domain. A typical 
approach is “jittered sampling”: The domain is divided into evenly sized and spaced areas 
(“strata”, typically a regular grid) and one random sample point is taken from each. This leads to 
sample sets that are not stochastically independent any longer and thus void the prerequisites of 
the central limit theorem. This can improve the convergence rate, as analyzed in [Lee et al. 85], 
[Mitchell 96]: If the function f is Lipschitz-smooth within Ω, the standard deviation of the estima-
tor is improved to O(n-(1+2/d)/2) for a d-dimensional integration domain, using n samples created by 
jittering a d-dimensional regular grid. In the case of integrating over a pixel of a smooth portion 
of an image this leads to an O(n-1) convergence rate instead of O(n-1/2) for simple Monte Carlo. For 
functions with a k-dimensional discontinuity in a d-dimensional integration domain, Mitchell 
shows a standard deviation of O(n(k/d-d)/2). For sampling discontinuity edges in images this means 
for example a convergence rate of O(n-3/4), which is still a substantial improvement. These im-
provements can be explained by expressing the variance of the stratified estimator as a sum of 
the variances in the sub-strata (which are independent random variables). In the case of a single 
discontinuity line in two dimensions, only n  of n samples contribute a high variance. In the case 
of a Lipschitz-smooth function, the variance in each strata is bounded by a constant, resulting in 
an O(n-2) overall variance and thus an O(n-1) standard deviation. The benefits of stratification 
vanish with increasing dimension. Stratification is not effective in the case of functions with 
quasi-randomly varying values in the integration domain either. In such cases, the placement of 
sample points does not improve the convergence: In the worst case of a purely random function f 
with stochastically independent values at each location in the domain, the sequence of sampled 
values is purely random, independent of the set of sample points it has been taken from. Thus, 
the convergence rate is determined by the central limit theorem again, leading to a standard de-
viation of O(n-1/2). 

As a rule of thumb, we can note that stratification is useful for integrating functions with 
little variation (smooth functions, functions with a single discontinuity). For sampling complexly 
structured, quasi-random functions, stratification does not improve accuracy. Additionally, we 
should note that the efficiency of stratification decreases with the dimension of the base domain. 
This is also an intuitive result: As the costs of constructing a regular base grid increase exponen-
tially with the dimension d, the benefits of the stratification of a fixed sized sample set should 
vanish with increasing dimensionality. 
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Jittered grids are a popular but not an optimal stratification technique. It is possible to re-
duce the constants for the standard deviation of the Monte Carlo integrator by designing sample 
sets with special uniformity properties (e.g. low discrepancy patterns [Zaremba 68]). However, 
this does not improve the asymptotic behavior [Mitchell 96]. 

Other Improvements 

The efficiency of Monte Carlo integration can be improved by other techniques, too: An alterna-
tive to stratification is to weight the sample points by their distance to neighboring points (i.e. the 
volume of the Voronoi-cells in higher dimensions). This technique can be combined with a higher 
order interpolation of the sample values to improve the integration accuracy for smooth functions. 
The technique is efficient in low dimensions of Ω only. Other improvements are adaptive sam-
pling strategies: There are techniques that try to identify important regions of the function auto-
matically without a priori knowledge. Other approaches can be employed to perform an adaptive 
sample size control that tries to estimate the quality of the current estimation and increase the 
sample size adaptively in case of uncertainty [Lee et al. 85]. In both cases, special care must be 
taken to avoid a systematic bias in the estimate. A complete discussion of Monte Carlo integration 
techniques is beyond the scope of this brief survey. An extended discussion of Monte Carlo tech-
niques in the context of computer graphics can e.g. be found in [Glassner 95]. 

1.3.2.2 Non-Uniform Sampling and Reconstruction of Functions 

Similar techniques as used for Monte Carlo integration can also be applied to estimate functions 
based on stochastic samples. The process consists of two conceptual steps: First, a set of sample 
values of a function f within a domain Ω is created. Second, an approximation to the original func-
tion f has to be reconstructed from the samples. We will now discuss these two steps more in de-
tail. 

Sampling 

To provide sample values, we have to choose sample positions xi within the domain Ω. If we use a 
regular sampling pattern, we may obtain aliasing in the reconstruction if the sampled function is 
not band limited to the Nyquest frequency of the sampling pattern (see Section 1.3.1). If we use 
an irregular, random sampling pattern, the approximation error will appear in the form of noise 
instead of structured moiré patterns ([Cook 86], [Glassner 95]). Although this does not necessarily 
improve the numerical approximation quality, the results from irregular sampling are often visu-
ally more pleasing. The reason for this is that low frequency aliasing structures are more likely to 
be perceived as distinct structures than pure noise, thus being often more distractive to the 
viewer. 

To place the sample points, several strategies are possible. Similar to the Monte Carlo inte-
gration problem, we can use importance sampling and adaptive sampling to increase the sam-
pling density in problematic regions of the function such as areas of high variation or large 
curvature. Stratification can also be used to improve the quality of the reconstruction. In contrast 
to simple Monte Carlo integration, where only a single value has to be computed, we must pay 
special attention to noise and aliasing artifacts if a complete function is to be reconstructed. We 
must avoid regular structures in the sampling pattern that may correlate with the structure of 
the sampled function, thus leading to moiré artifacts. Such problems may arise for example if a 
small pattern with a favorable sample point distribution is precomputed and replicated over the 
domain Ω on a regular grid. A second important topic is the structure of the noise that is induced 
by the sampling pattern itself. To analyze the structure of this noise, [Cook 86] considers the Fou-
rier transform of the sampling pattern. For a completely random pattern, the spectrum contains 
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both low frequency and high frequency components. Sampling according to the sampling pattern 
is equivalent to a convolution in the frequency domain: Thus, noise artifacts in all frequency 
bands are obtained. This behavior can be changed by constraining the sampling pattern. If we 
avoid clusters of nearby samples, for example by requiring a minimum distance among adjacent 
sample points (“Poisson disc sampling”), we obtain a Fourier spectrum that contains only high 
frequency components (besides the DC value at frequency zero). Thus, we usually obtain recon-
structions of higher quality because high frequency noise artifacts are less disturbing than low 
frequency artifacts. The effect is even more drastic as the reconstruction process performs a low 
pass filtering to band limit the reconstruction to the pixel grid and to remove the noise. If the 
sampled signal still contains considerable low-frequency noise, it will even be emphasized, lead-
ing to very undesirable results. In the case of Poisson disc sampling, most of the noise will occur 
in the high frequency band and this will be attenuated during the reconstruction, leading to a 
higher reconstruction quality. 

Poisson disc sampling patterns can be constructed using a variety of techniques [Glassner 
95]. A classic approach is to generate random points and reject a new point if it is too close to a 
former point. Other methods are e.g. number theoretic techniques that directly produce equidis-
tributed patterns [Zaremba 68, Warnock 72] or point repulsion methods [Turk 92]. 

Again, it should be noted that stratified sampling can only remove noise artifacts induced 
by the sampling grid. As described in the context of Monte Carlo integration, noise contained in 
the original function to be sampled cannot be reduced by choosing an optimized sampling pattern. 
If we choose sample points from an unstructured, quasi-random function, the resulting sample 
values will be random values, independent of the structure of the sampling grid. However, in the 
case of reconstructing smooth functions or functions with only a few discontinuities, the recon-
struction quality can be greatly improved by using an optimized sample point placement. 

Reconstruction 

Now we assume that we are given the values f(xi) of a function f at a set of sample positions xi in a 
base domain Ω. Our task is now to reconstruct an approximation to the original function f from 
the sample. We can distinguish several variants of the reconstruction task: First, we can try to 
find a function that interpolates the sample values (“scattered data interpolation”). Second, if the 
samples are noisy, we are often interested in fitting a function with reduced degrees of freedom to 
the data points (“scattered data approximation”). Noise removal is also necessary if the sample 
values are exact measurements (which is typically the case in image synthesis) as the irregular 
sampling process itself also (usually) leads to noise artifacts. A special case of scattered data ap-
proximation is low-pass filtering: In computer graphics, we are often not interested in the func-
tion f itself but rather in a band limited version f ⊗ h that has been convolved with a low-pass 
filter h (thus also being an approximation technique). This is for example necessary to avoid alias-
ing if the reconstructed function should be displayed using a raster display. Low pass filtering can 
also be desirable to remove noise induced by the sampling process. 

To perform scattered data interpolation / approximation, several algorithms are known. 
Some of the most common are ([Glassner 95], [Köckler 94]): 

Warping: A straightforward idea for the reconstruction from non-uniform sample sets is to 
warp the domain by a suitable warping function to obtain a regular grid of sample points. Then, a 
reconstruction technique for regular sample patterns can be used to obtain the reconstructed 
function (as described in section 1.3.1). This yields a formal criterion for the ability of a perfect 
reconstruction from non-uniform sample points: If we know a warping function so that the con-
catenation of the original function and the inverse warping function is band limited according to 
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the regular grid, we can perfectly reconstruct the original function from the irregular sample 
points by convolution with an optimal low-pass filter on the regular sample points and subse-
quent inverse warping. Note that we must know the warping function in addition to the sample 
points as it is not apparent from the sample itself but a suitable choice depends on the spectral 
properties of the original function. The practical application of warping reconstruction leads to 
several problems: The problem of determining a suitable warping function while preserving the 
spectral requirements for sampling is a non-trivial problem and requires control over the sam-
pling process along with a priori knowledge of the sampled function. For more than one-
dimensional base domains Ω, the construction of a warping function becomes especially problem-
atic: The sample points must be transformed into a multi-dimensional regular grid, which might 
not always be possible without violating the local topology of the original sample points. Thus, 
warping techniques are not commonly used in computer graphics applications. 

Least-squares fit: A well known technique for approximating functions from irregular 
samples is least-squares fitting according to a set of basis functions. The approach of minimizing 
the squared distances between the approximation and the sample points leads to a linear system 
of equations. Weights can be used to control the fitting results, e.g. to compensate for an irregular 
spacing of sample points in the base domain. The problem of this approach is that the basis func-
tions are determined independently of the sample points. This global approximation approach is 
often not flexible enough. To improve on this, finite element methods can be used: 

Finite element methods: Instead of using a fixed function basis for the fitting, a more 
elaborate approach uses basis functions defined on a suitable finite element mesh in the base 
domain (e.g. a spline basis). The mesh can be constructed with regard to the sample points and 
the desired reconstruction task, thus providing more degrees of freedom. Using the functional 
basis on the mesh, several variational problems can be considered and solved numerically to ob-
tain the desired approximation. Typically, a function is constructed that minimizes the distance 
to the sample points and the deformation energy of the resulting surface (“thin-plate splines”). 
The drawback of this technique is the large effort it takes to build an appropriate mesh and to 
solve the variational problem. Elaborate numerical techniques are needed to perform this effi-
ciently for large numbers of input sample points. 

Local filtering: Approximations with minimal deformation energy are not an optimal ap-
proach to image reconstruction problems. In this area, it is not important to guarantee smooth-
ness properties but we must assure a band limited reconstruction of the original function from the 
sample set according to e.g. the pixel spacing on the screen. The most common technique for a 
band limited reconstruction is local filtering: We convolve the sample points with a suitable low 
pass filter4. However, this approach will produce brighter images in areas of higher sampling 
density. We can circumvent this problem by employing a renormalization step. We modify the 
filtering process by taking a weighted average: The value of each pixel is computed as the sum of 
the sample values multiplied by the weights of the filter kernel, divided by the sum of the filter 
weights [Cook 86]. A typical choice for the filter kernel is a truncated Gaussian (parts of the ker-
nel with low contribution, say < 1%, are set to zero). More sophisticated filters can be used, too 
[Mitchell and Netravali 88]. The local filtering method with normalization works well as long as 
the sampling density is roughly uniform over the reconstruction domain. However, if the sam-
pling density varies, this can lead to problems: First, we must adapt the filter size to the sampling 
density in order to avoid noise artifacts in sparsely sampled regions (or even singularities in the 
normalization term if the filter support is too small). This can for example be done by determining 

                                                      
4 Note that this technique is equivalent to performing a Monte Carlo integration of the product of the function and the 
filter kernel for each reconstructed function value. 
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the radius in which the k-nearest neighbors (for a small k ∈ N) are located.  Second, as [Mitchell 
87] points out, the reconstruction is biased at borders between different sampling densities: Areas 
with higher sampling density have more influence on the resulting color. To avoid this artifact, 
we could enforce a uniform sampling density by inserting additional sample points with average 
function values in low density areas. A more efficient technique is proposed in [Mitchell 87]: The 
signal is reconstructed on a hierarchy of grids, starting with a fine granular grid with a spacing 
according to the sample spacing in high density regions. First, each grid cell that contains sample 
points is set to the average of the contained sample points. Then the resolution is decreased suc-
cessively. At each grid resolution, the reconstructed value at the grid cell is obtained by averaging 
higher resolution grid cells with uniform weighting. For performance reason, the usage of a sim-
ple box filter in the hierarchical process is proposed. 

Hierarchical pull-push interpolation: A generalization of Mitchell’s algorithm leads to 
the hierarchical pull-push algorithm [Gortler et al. 96]: First, the sample points are projected onto 
a fine granular regular grid, filling some of the grid cells with averages of sample values. These 
are obtained by approximating the samples using an appropriate set of basis functions for each 
grid cell. Then, in a second “pull” step, grids of lower granularity are filled by approximating the 
sample values using a lower-dimensional basis. In the third “push” step, the holes in the fine 
granular grids are filled with values from the coarser grids until all holes are closed. To avoid 
discontinuities, the values from different approximation levels are blended according to their 
“weight”. The weights are given by the sum of the basis functions at the sample points for each 
grid cell. This algorithm is especially attractive for reconstructing functions from very large sam-
ple sets with highly irregular sampling density. 

In addition to these techniques, many more methods for reconstruction from irregular sam-
ple sets are known. Again, we refer the reader to [Glassner 95] for a broader discussion of tech-
niques for computer graphics applications. 

1.3.3 Sampling Statistics 
Up to now, we have discussed numerical problems of stochastic sampling techniques such as 
aliasing, noise and optimized sampling techniques to avoid these problems. In this thesis, we will 
also have to deal with discrete problems such as the question whether a random sample set will 
probably leave holes after a discretization to a pixel grid. To answer these questions, we need 
some combinatorial results that should be summarized in this section. The overall question of this 
section can also be posed as “How uniform are the results of a uniformly random sampling proc-
ess?”. The answer to this question will be crucial for the efficiency of the randomized sampling 
techniques proposed in this thesis. 

A simple, abstract model is the bins-and-balls-model: Assume that we are given n bins and 
throw k balls into the bins with uniform probability. The so-called “coupon collector’s problem” 
poses the question: How many balls must be thrown until every bin has received at least one ball? 
The expected ratio between thrown balls and the number of bins characterizes the expected non-
uniformity of a uniform random distribution. [Motwani and Raghavan 95] show the following 
properties to answer this question: 

Expected Value: The expected value for the number of balls k that have to be thrown in-
dependently with equal probability at n bins until every bin received at least one ball is 

 E(k) = n·Hn  (1) 

where Hn )1O(ln1:
1
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k
 is the nth harmonic number. 
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Asymptotically sharp threshold: Let X denote the random variable that yields the num-
ber of balls that have to be thrown to obtain at least one ball into every bin. Then, for every c ∈ R, 
we obtain: 
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These results explain the difference between filling n bins deterministically and stochastically: 
The expected value for the number of balls that has to be thrown randomly until each bin has 
received a ball is about n·ln n. This means that we expect a logarithmic overhead for filling all 
bins by random selection. This overhead grows only slowly with an increasing number of bins. 
Thus, it might be acceptable for many applications. However, a small expected value would be of 
little use if we had to expect a large variation. The second result shows that this is very unlikely, 
at least for a large number of bins. The probability for a larger relative deviation c n drops rapidly 
(see Figure 9 for a plot of the bound). 

As a rule of thumb, we can note that a random uniform distribution among n entities leads 
to some uniformity that grows weakly with the number of entities. The factor by which a random 
visit of all entities is more expensive than a deterministic visit is about ln n. 

In many applications, we are interested in ensuring to fill all bins with a given confidence: 
We want to compute the number of balls that are necessary to fill all bins with at least a given 
probability s. An upper bound for the minimum number of balls can be established by an elemen-
tary analysis. We will make assumptions that are slightly more general, as needed later in the 
thesis: 

We assume that the n bins Bi are subsets of a base set Ω, not necessarily disjoint (later, Ω 
will typically be a subset of R2 or R3). Then, we draw points p ∈ Ω, independently of one another. 
We assume that the probability pi for p ∈ Bi is larger than a global constant p for all i = 1…n 
(Figure 10). Now, we want to determine a bound for the number k of points that have to be drawn 
until each bin Bi has received at least one point. 

Let Ei,j be the event that bin Bi receives a point in the j-th round (i.e. when the j-th point is 
drawn). Then obviously Prob(Ei,j) ≥ p and )Prob( , jiE  ≤ 1 – p. Now let Ni be the event of Bi not re-
ceiving any point after k rounds. As all points are drawn independently of one another in each 
round, we obtain: 

k
ji

k

i
i pEN )1()Prob()Prob( ,

1

−≤= Π
=

 

 

 

Figure 9: Plot of 1 - e- e 
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c
 Figure 10: Overlapping bins. p is a lower bound for 

the probability of each bin receiving a sample point. 
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Now let N := i
n
i N1=∪  be the event that at least one of the bins does not receive a point. This 

is the event we are trying to avoid. The events Ni are not independent of one another. However, 
we can still give an upper bound for the probability Prob(N). For the union of any sets of events, 
not necessarily independent, we know that the probability cannot exceed the sum of the individ-
ual probabilities, thus we obtain: 
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If we want to ensure that Prob(N) ≤ 1  – s (i.e. all bins receive a point with at least a prob-
ability of s), we can solve for k and obtain: 
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In our applications, the bins Bi usually form a roughly uniform partition of Ω into n bins, 
possibly with a small overlap. In that situation we have p ∈ O(n-1) so that we can express p as p = 
c/n. Additionally, n is usually very large (such as the number of pixels on the screen). Therefore, 
1  – p is very close to 1 and we can approximate the logarithm in the denominator by the Taylor 
expansion ln(x) ≈ x  – 1. Using these assumptions we obtain the estimate 

 ( ))1ln(ln sn
c
n

k −−≥  (4) 
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c
n

 (5) 

for large n with f := (1  – s)-1 being the probability that we fail to fill all bins. The oversam-
pling factor, i.e. the ratio between the number of bins and the number of rounds, is at most the 
natural logarithm of the number of bins n plus the natural logarithm of the inverse of the prob-
ability to fail filling all bins (divided by the average overlap factor c in case of overlapping bins). 
Therefore, the number k of points that have to be drawn from Ω to fill all n bins is in O(n log n) for 
any given constant confidence level s. In conclusion, we see that random sampling for visit-
ing/filling a partition of uniformly sized bins is still efficient if we require a fixed probability for 
the success of the procedure. 
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Chapter 2 

Rendering Techniques 

In this chapter, we summarize the main algorithmic approaches known from literature to obtain 
output-sensitive running times for rendering complex scenes. The rendering techniques are divided 
into two conceptual approaches: Forward mapping (projection) and backward mapping (raytrac-
ing) algorithms, which both need different algorithms and data structures for an efficient imple-
mentation. 

2.1 Classification 
To create projections of three-dimensional scenes, two different basic strategies are known: for-
ward mapping and backward mapping. Forward mapping strategies take primitives from the 
scene data base and project them onto the screen. Then, visibility is resolved and invisible por-
tions are discarded while visible portions are drawn. Backward mapping strategies start in the 
image plane and directly search for the objects that are visible within each pixel. Thus, they per-
form visibility calculation and projection in one step. In this thesis, we will discuss both forward 
and backward mapping techniques that make use of point-based multi-resolution data structures 
to accelerate the computation. The techniques are variants of the two predominant implementa-
tions of the mapping techniques: z-buffer rendering and raytracing. A basic implementation of 
one of these two techniques is not output-sensitive and thus not suitable for handling complex 
scenes. However, a lot of improvements are possible to accelerate the rendering. The following 
subsection summarizes these techniques for forward mapping algorithms, the next one those for 
backward mapping. 
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2.2 Forward Mapping 

2.2.1 The z-Buffer Algorithm 
The most popular 

5 forward mapping algorithm is the z-buffer algorithm [Catmull 74, Straßer 74]: 
It uses two buffers: A color buffer that will contain the rendered image afterwards and an auxil-
iary z-buffer that stores scalar depth values. It is initialized with the largest representable depth 
value. The algorithm projects all primitives onto the screen and rasterizes them, i.e. it determines 
the pixels covered by the primitive. For each such pixel the depth of the primitive at that point is 
determined and compared to the depth buffer entry of the pixel. If the point on the primitive is 
closer than the depth buffer entry, the color and the depth buffer entries for the pixel are over-
written with the values of the primitive. In the other case, the corresponding portion of the primi-
tive is invisible and will be ignored. 

The z-buffer algorithm is simple to implement and very efficient for scenes of moderate 
complexity: Obviously, the rendering time is O(n + a) [Heckbert and Garland 94], where n is the 
number of primitives (usually triangles) and a is the projected area (number of pixels) of the 
primitives on the screen, including hidden areas. The algorithm can be implemented very effi-
ciently in hardware: Current graphics accelerator boards for PCs are capable of processing up to 
3·108 triangles per second (accounting for the complexity parameter n) and up to 2·109 pixels per 
second (accounting for parameter a) [ATI 2004, nVidia 2004a]. Due to this enormous processing 
power, the algorithm is currently the predominant rendering technique in interactive applica-
tions. 

An important variant of the z-buffer algorithm is the a-buffer algorithm [Carpenter 84], 
which adds support for transparency and edge antialiasing to the original z-buffer method: For 
each pixel, the a-buffer stores a list of surface fragments that provide a color and z values along 
with a subpixel mask and an optional transparency value. The subpixel mask is a simple bitmask 
that represents the subpixel coverage of the fragment within the pixel. To obtain the final image, 
each fragment list has to be sorted. Then, the color values are determined by compositing the 
fragments according to their transparency values and subpixel coverage. Theoretically, the algo-
rithm is similarly efficient as the z-buffer algorithm (we may lose a logarithmic factor due to sort-
ing). Nevertheless, it is currently rarely used in real-time applications. The problem is that 
hardware implementations of this technique are much more involved due to the need of sorting 
and dynamic memory management for the fragment lists. Thus, no commodity hardware imple-
mentations are currently available6. A typical workaround implemented in current applications is 
the use of z-buffer hardware with brute-force oversampling for antialiasing and, in a second step, 
alpha-blending of depth sorted primitives for rendering partially transparent objects. 

2.2.2 Limitations 
Despite the efficient implementation, the z-buffer algorithm is still a linear time algorithm. This 
means that scenes with very large complexity parameters n or a cannot be handled in real-time. 
In such cases, the algorithm has to be modified: One or more filtering algorithms can be employed 
prior to z-buffer rendering to reduce the complexity of the original scene description. Two differ-
                                                      
5 There are many other forward mapping algorithms, which are mostly based on depth sorting, see e.g. [Foley et al. 96] for 
a survey. However, due to the high performance hardware implementations of the z-buffer algorithm, they are nowadays 
of minor importance. 
6 There are some implementations in research systems, see e.g. [Schilling and Straßer 93], [Winner et al. 97]. 
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ent, orthogonal strategies can be identified: simplification algorithms try to reduce the geometric 
complexity n of the scene, for example by reducing the amount of detail for portions of the scene 
that are far away from the viewer. Occlusion culling algorithms try to exclude all primitives from 
the rendering process that are invisible because they are occluded by other objects in the scene (or 
outside the view frustum, "view frustum culling"). A third direction for speeding up the rendering 
process is image-based rendering: These techniques replace parts of the scene by precomputed 
images. This solves both occlusion and simplification problems. However, we now need a strategy 
to provide suitable images that act as replacements.  

The basic architecture for a hierarchical filter strategy has already been described by 
[Clark 76]:  Clark proposes describing the scene using a hierarchical tree structure. The leaf 
nodes contain the geometry while the inner nodes e.g. might contain successively simplified ver-
sions or image-based replacements. The hierarchical structure also allows for efficient culling of 
invisible parts of the scene. Whole subtrees can be removed by checking whether a bounding box 
of the geometry intersects with the view frustum. Similarly, hierarchical occlusion culling can be 
implemented. This hierarchical architecture is still found today in most systems for visualizing 
complex scenes. Since Clark’s rather abstract architectural proposal, a lot of algorithms have 
been developed to perform simplification, culling and image-based replacements. In the following, 
we will discuss related work from all three directions. 

2.2.3 Simplification 
The basic idea of simplification algorithms is to reduce the accuracy (and thus the costs) of the 
representation in situations where this reduction is not (or only slightly) visible. For example, it 
might not be necessary to display a model with a million triangles when it covers only 5 pixels on 
the screen. In that situation, a rough approximation of the original model with a lower geometric 
complexity should be sufficient. A lot of different strategies have been published that automati-
cally adapt the level-of-detail to the presentation requirements. Good surveys of level-of-detail 
techniques can be found e.g. in [Heckbert and Garland 97, Puppo and Scopigno 97, Garland 99, 
Luebke et al. 2003]. In this section, we will summarize the basic concepts. 

2.2.3.1 Manual Level-Of-Detail 

An obvious simplification strategy is to model multiple versions of the same object and switch 
among them according to the distance to the viewer. However, this approach has several draw-
backs: First, the manual preparation of models of different level-of-detail is expensive as it means 
a lot of extra work for the human modeler. Second, switching among different discrete levels of 
detail can lead to “popping artifacts” at the point of transition. These artifacts can be reduced by 
blending between adjacent levels-of-detail, either in image space (transparency) or geometrically 
(mesh-morphing, see e.g. [Alexa 2002]). Additionally, the simple level-of-detail technique only 
permits replacing entire objects globally. It is not possible to use different levels of detail within 
one and the same object, e.g. for a large terrain model that is seen at strongly varying viewing 
distances at the same time. 

2.2.3.2 Mesh Simplification 

In the early days of computer graphics, the capabilities of real-time 3d-rendering hardware were 
very limited. Thus, the extra work of manual level-of-detail generation was acceptable. Nowa-
days, it is not unusual to employ highly-detailed models with some hundred thousand primitives 
in real-time rendering applications. Besides the increased capabilities of rendering hardware, the 
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development of automatic 3d-scanning devices (see e.g. [Levoy et al. 2000]) has also motivated the 
development of automatic mesh simplification methods. These scanning devices usually produce 
regularly sampled data that is often highly oversampled in smooth regions of the scanned object. 
Given these developments, a manual preparation of levels-of-detail has definitively become too 
expensive. Thus, automatic simplification strategies have been developed during about the last 
ten years, providing a large variety of algorithms. 

Strategies that construct optimal approximations in a strict sense are not feasible in prac-
tice (see [Heckbert and Garland 97] for details): While the optimal approximation of curves can be 
done in polynomial time, it can be shown that the problem of approximating convex surfaces us-
ing polygons in an L∞-optimal sense is NP-hard. This renders an optimal approximation of more 
general shapes like arbitrary triangle meshes also impractical. There are no efficient optimal 
algorithms known for other error metrics either. Thus, all practical algorithms in computer 
graphics rely on heuristics to optimize the appearance of an object using a small number of primi-
tives. The techniques can be roughly divided into two classes, depending on the input they are 
able to handle: parametric techniques and techniques for more general meshes. In addition, both 
classes of techniques need an appropriate error criterion to guide the simplification process. 

Error Measurement 

The goal of an error measure for simplification is to quantify the deviation between an original 
model and its approximation. Most error measures describe the distance between the original and 
the simplified surface. Choosing a suitable error measure is usually a trade-off between accuracy 
and speed. Rigorous geometric error measures such as the Hausdorff distance [Klein et al. 96] or 
the integral L1, L2 or L∞ distance between the original and the simplified surface are expensive to 
compute. Thus, heuristic error criteria are often employed, such as a nearest neighbor distance 
between a point on the surface and the original surface. An important heuristic error criterion 
that is often used in practice is the “quadric error metrics” technique [Ronfard and Rossignac 96, 
Garland and Heckbert 97]: It measures the deviation of a vertex in a simplified triangle mesh 
from the original surface by summing the quadric distances to the planes of the original triangles. 
This technique is especially efficient for estimating the cumulative effect of multiple simplifica-
tion operations and offers good results for smooth surfaces. However, for rough surfaces, the error 
is usually strongly overestimated. 

In addition to measuring the geometric distortion, it is often also necessary to take into ac-
count surface attributes such as color, surface parameterizations (e.g. texture coordinates 
[Schilling and Klein 98]), normals, appearance under lighting [Klein et al. 98b], or discontinuity 
edges. Again, several strategies can be implemented. A common technique is to incorporate at-
tribute differences in the geometric error measure by applying the geometric measure to a higher-
dimensional attribute space that contains additional dimensions for various surface attributes, in 
addition to spatial information [Garland and Heckbert 97]. However, more involved criteria have 
also been proposed in order to allow a stricter control, e.g. to penalize distortions at sharp fea-
tures and attribute discontinuities [Hoppe 96]. 

Parametric Techniques 

The first class of simplification methods is that of parametric level-of-detail techniques. These 
methods require a parameterization of the surface to be simplified. In the simplest case, the pa-
rameter domain must be a square in R2. More elaborate techniques also allow a more general 
parameter domain, e.g. a base mesh of triangular or rectangular patches. Parametric techniques 
are usually employed to display surfaces that are described by parametric functions (e.g. spline 
patches, subdivision surfaces, fractals, or regularly sampled data such as height fields or dis-
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placement maps). In order to apply parametric techniques to general triangle meshes, a parame-
terization has to be computed before the simplification procedure. 

Parametric simplification subdivides the parameter space into elements (usually triangles) 
according to some tessellation strategy. The granularity of the tessellation is guided by some er-
ror criterion that enforces a denser tessellation in regions of higher importance (i.e. for example 
closer to the viewer, larger surface curvature or roughness). Common tessellation strategies are 
regular grids, subdivision connectivity meshes and unstructured meshes: 

Regular grids: The subdivision of the parameter domain into a regular grid is a very sim-
ple technique that does not allow a local adaptation of the sampling density. Nevertheless, such 
techniques are frequently used due to the ease of implementation. 

Subdivision connectivity meshes: These meshes offer more flexibility: They start with a 
parameter domain that is composed of a base mesh of polygonal elements (usually triangles or 
rectangles). Then, each element is divided into subelements of similar shape (Figure 11). This 
process can be carried on recursively, yielding a subdivision hierarchy. The main problem is now 
to ensure continuity on the borders of elements that have different subdivision depth. This is ful-
filled by constructing a conformal mesh, i.e. a mesh where no vertices are adjacent to (non-
subdivided) edges. Several strategies are known to construct conformal meshes: One possibility is 
to design a subdivision scheme that always ensures the construction of conformal meshes, such as 
the Rivara bisection scheme [Rivara 84]. Another possibility is the construction of an uncon-
strained subdivision hierarchy followed by a balancing step [de Berg et al. 97]. In the balanced 
hierarchy, sibling nodes in the hierarchy are forced to differ only by one hierarchy level in their 
subdivision depth. This is enforced by subdividing nodes adjacent to more deeply subdivided sib-
lings. It can be shown that this increases the number of nodes only by at most a constant factor 
[de Berg et al. 97.]. In the balanced hierarchy, each edge may be adjacent to a subdivision element 
of the same depth or with one more subdivision level. Thus, only a small number of cases are pos-
sible for the tessellation of each cell (8 for triangle meshes, 16 for quadrilateral meshes) so that 
the cases can be handled explicitly. 

Unstructured meshes: Unstructured meshes are computed by performing a more general 
subdivision of the base domain. Typical examples are techniques based on Delaunay triangula-
tions. For example [Klein et al. 98a] insert and remove points into and from the base domain dy-
namically to sustain a point density according to the accuracy requirements. A tessellation into 
triangles is then obtained using an incremental Delaunay triangulation. Unstructured mesh 
techniques overcome the main drawback of subdivision connectivity meshes where the parameter 
domain is always subdivided equally in all dimensions. This leads to isotropic mesh structures 
that do not always allow an optimal adaptation, as e.g. in the case of a cylindrical object that 

  
 

(a) triangular subdivision (b) quadrilateral subdivision (c) heightfield simplified with 
quadrilateral subdivision connec-

tivity meshes (right: original) 

Figure 11: Subdivision connectivity meshes.
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shows a large curvature in one direction only. However, the implementation of unstructured 
techniques is usually more involved and the runtime costs may be larger. 

More General Input Meshes 

The second class of simplification strategies comprises those that directly operate on meshes of 
primitives and do not require an a priori parameterization. This is convenient as many models in 
practical applications are given as a collection of primitives (“triangle soups”) rather than para-
metric functions. On the one hand, this is due to software interface problems: Modeling software 
is often not able to interoperate at a high level of description. Thus, models consisting of higher 
order geometric primitives such as NURB-patches are nevertheless interchanged as simple trian-
gle soups. On the other hand, there are a lot of models that are inherently non-parametric, such 
as implicit surfaces or models from certain types of 3d-scanning devices. The general mesh simpli-
fication algorithms can be categorized roughly into three subclasses: clustering, decimation and 
parameterization algorithms: 

Clustering: A very simple simplification strategy is vertex clustering [Rossignac and Bor-
rel 93]: A regular grid is superimposed on the mesh and all vertices that fall into the same grid 
cell are collapsed to one vertex. Afterwards, degenerated triangles are deleted. The method usu-
ally provides only a crude approximation quality in comparison to more involved simplification 
strategies. However, it is very fast, easy to implement and allows for topological simplification. 
The algorithm has also been used for an efficient out-of-core simplification of large data sets that 
do not fit into main memory [Lindstrom 2000]. A similar idea is used by [He et al. 95]: They voxel-
ize the geometry into a regular grid, using low-pass filters to avoid aliasing. Then, a marching 
cubes algorithm [Lorensen and Cline 87] is used to extract a simplified model. 

Decimation: A more flexible mesh simplification can be achieved by repeatedly applying 
local decimation operations to the mesh. [Heckbert and Garland 97] distinguish vertex, edge, tri-
angle, and patch decimation techniques that repeatedly delete the corresponding primitive type 
from the mesh. Most decimation algorithms follow the same greedy approach: The mesh elements 
are tested for whether they can be removed without violating the topology. Then, all candidates 
for removal are inserted into a priority queue sorted by the error the removal would introduce. 
Finally, the candidates causing the least error are removed from the queue iteratively and the 
error estimates of neighboring candidates are updated if necessary. 

The first decimation technique was proposed by [Schroeder et al. 92]. The algorithm per-
forms a greedy vertex removal and tries to re-triangulate the holes caused by the removal. If this 
is not possible without using an additional vertex, it is excluded from simplification. The error of 

  
(a) original model (5,804 triangles) (b) simplified mesh (500 triangles) 

Figure 12: Example of mesh simplification using edge collapses and quadric error metrics. 
Simplified using QSlim 2.0 [Garland and Heckbert 97]. Model from [Garland 2003]. 
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a vertex removal is quantified by the distance to an average plane. [Hoppe et al. 93] propose a 
mesh simplification based on a heuristic optimization of an “energy function” that describes the 
deviation from the original mesh. Three different local mesh modifications (edge collapse and 
split, and edge swap) are applied to the mesh in a random descent search algorithm. After mesh 
modifications, the vertex positions are optimized using an iterative optimization technique. These 
two steps are iterated until a satisfactory minimum for the energy function is found. As the tech-
nique permits more complex simplification procedures than the simple greedy algorithms, it pro-
duces results of high quality. However, the runtime costs are very high, too. In later work, Hoppe 
proposes using only greedy edge collapse operations as this provides a better quality/runtime 
trade-off [Hoppe 96]. The proposed “progressive mesh” technique uses a complex error criterion 
accounting for sharp features and a variety of surface attributes in addition to geometric error 
measurement. Hoppe also proposes using the history of edge collapses in inverse direction (“ver-
tex splits”) to provide progressive transmission. Applying the operations in both directions allows 
a dynamic adaptation of the level-of-detail. The technique has been extended to topological sim-
plification by allowing the collapse of vertices that are close but not connected by an edge [Popovic 
and Hoppe 97, Garland and Heckbert 97]. Today, most simplification techniques are based on 
greedy edge collapses as this technique has proven to produce good results while being quite sim-
ple to implement. 

Parameterization: Parametric techniques can also be applied to general meshes if a 
parameterization is computed for the mesh. [Eck et al. 95] construct approximate triangular sub-
division connectivity meshes for triangle meshes of arbitrary topology. They propose a wavelet-
based encoding of the displacements to the base mesh. This allows the usage of wavelet-based 
approximation techniques, as known from image compression, to be applied to simplification. A 
drawback of this approach is that the subdivision connectivity mesh can only approximate the 
original mesh, thus retaining a small error even at high resolutions. Additionally, the approxima-
tion using a wavelet basis aims at the reproduction of smooth functions and thus does not opti-
mally preserve sharp features. Since the paper of Eck et al., many other parameterization 
algorithms have been published that can (also) be used for surface simplification. See e.g. the 
recent papers of [Gu et al. 2002, Khodakovsky et al. 2003, Praun et al. 2003] for a survey. 

Other techniques: In addition to decimation and parameterization techniques, there are 
also some approaches based on different paradigms. [Varshney 94] proposes a method with guar-
anteed L∞ error bounds: The algorithm constructs two enveloping offset surfaces and uses a heu-
ristic technique to construct an approximating mesh within the envelope (the construction of an 
optimal solution is shown to be NP-hard). However, the algorithm has high computational costs 
[Heckbert and Garland 97]. Thus, it is not well-suited for larger meshes. A different idea is pro-
posed by [Turk 92]: His algorithm uses repulsive forces on the surface to compute an equidistribu-
tion of vertices that is then triangulated to obtain the simplified surface. This technique is 
especially interesting for point-based computer graphics as it can also be applied to compute well-
distributed sample point sets for surface models [Pauly et al. 2002]. Another option for improving 
the quality of simplified meshes is the application of bump maps or normal maps [Cohen et al. 98] 
that improve the shading of the simplified surfaces. 

2.2.3.3 Multi-Resolution Representations 

Mesh simplification algorithms allow the automatic creation of discrete levels-of-detail. This can 
be used to create simplified models and to switch among them according to some metric such as 
the viewing distance. However, this is not flexible enough for many applications: We would like to 
adapt the level-of-detail in a fine granular way, especially using multiple levels-of-detail within 
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one and the same object, e.g. to display objects that are seen under a large depth range, such as 
terrain models. 

Many simplification techniques can be extended to construct multi-resolution representa-
tions that support these requirements. A multi-resolution representation allows the dynamic ex-
traction of different levels-of-detail from a single data structure. The proposed techniques vary in 
generality and flexibility. Some techniques support only the extraction of discrete levels of detail 
while others support a more or less arbitrary specification of the complexity of the representation 
(“continuous level-of-detail”). Many techniques also allow the extraction of varying levels-of-detail 
for different parts of the model. Some techniques permit a very general adaptation (e.g. [Klein et 
al. 98a]) while others are restricted to predefined regions (e.g. octree cells) or isotropic subdivision 
patterns. 

Most parametric simplification techniques provide multi-resolution inherently. Subdivision-
based techniques (such as [Eck et al. 95]) can easily be implemented dynamically: The subdivision 
depth in different regions is adapted dynamically to the application requirements. The Delaunay-
triangulation-based technique of [Klein et al. 98a] has also been constructed explicitly to provide 
dynamic control over the level-of-detail in different regions. The simple grid-based techniques 
allow a trivial multi-resolution usage. However, they do not support the extraction of non-uniform 
levels-of-detail. 

Mesh simplification techniques based on mesh element decimation also allow for flexible 
multi-resolution usage: First, the subsequent removal of the mesh elements (vertices, edges, tri-
angles) is recorded. For every removal operation, we can also consider the inverse re-insertion 
operation. Thus, after preprocessing, we can apply these removal and re-insertion operations dy-
namically to obtain a fine-granular control over the current level-of-detail. This technique has 
been proposed by Hoppe (“progressive meshes”, [Hoppe 96]) in the context of edge-collapse/vertex-
split operations. To obtain different levels-of-detail in different regions of one and the same mesh, 
we could basically just choose the refinement operations for the corresponding regions. However, 
there is a pitfall: The decimation operations are not independent of one another. For example, a 
vertex split can only be performed if the corresponding vertex already exists in the mesh, which 
might require a series of additional vertex splits. [Puppo and Scopigno 97] analyze this problem in 
a general framework (a solution for progressive meshes is also given in [Hoppe 97]): They show 
that the repeated application of decimation operations leads to a hierarchy (more precisely to an 
acyclic directed graph) of decimation operations. The edges in the graph correspond to the vertex 
dependencies and the total order (for the acyclic graph) is due to the order of decimation opera-
tions. Levels-of-detail can be extracted from this graph by extracting an upper set of the graph, 
performing all refinement operations starting from the root node until the desired accuracy is 
met. The paper also gives several formal criteria concerning the adaptivity and efficiency of this 
process that can be used for guiding the construction process. 

For an efficient implementation of multi-resolution mesh simplification data structures, 
some additional problems have to be solved: For efficient rendering, the fine granular level-of-
detail control of decimation hierarchies is not always desirable. The overhead for managing the 
decimation and refinement operations can easily annihilate the gains in rendering speed. Similar 
problems occur if very large meshes should be processed that have to be stored in secondary 
memory (hard disc). In these settings, the execution speed is dominated by latency times for ran-
dom access. Thus, it is not efficient to perform only little work (e.g. only one edge split) at each 
random access operation. Instead, it is desirable to batch mesh modification operations. Recently, 
this has been done by decomposing the mesh into parts using an octree hierarchy. Then each node 
in the octree contains a similar amount of geometry. For inner nodes, representations of constant 
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complexity are constructed using mesh simplification. Continuity at the borders between octree 
cells can be guaranteed by generalizations of subdivision connectivity techniques [de Berg et al. 
97] or suitable rendering techniques at the borders [Guthe et al. 2003]. 

2.2.3.4 Animated Scenes 

Only a few mesh simplification and multi-resolution rendering techniques are able to handle 
animated scenes. [Friedrich et al. 98] propose the generalization of a parametric simplification 
technique: They describe an algorithm for the interpolation of keyframe hierarchies based on the 
Rivara bisection scheme. [Shamir et al. 2000] propose a general technique to modify multi-
resolution mesh data structures to handle animated data sets. Only a few mesh simplification 
algorithms for animated data sets have been proposed yet. This is probably due to the complexity 
of retaining topological constraints over both time and scale. In this thesis, we will present a 
point-based multi-resolution approach to simplify animated meshes. Point clouds put fewer con-
straints on the simplification procedure than meshes. Thus, it is easier to devise a stable simplifi-
cation technique based on point representations. 

2.2.4 Image-Based Rendering 
A different approach to dealing with complexity is image-based rendering. Instead of using sets of 
geometric primitives at different levels-of-detail, the appearance of three-dimensional models is 
represented by images of the object. 

2.2.4.1 Purely Image-Based Rendering Techniques 

Image-based rendering techniques rely on a sampled representation of the “plenoptic function” 
[Adelson and Bergen 91, McMillan and Bishop 95]. The plenoptic function assigns a color value to 
each viewing ray in a certain domain. The base domain of this function is five-dimensional (some-
times higher dimensions are given if time or wavelength dependence is modeled explicitly). Thus, 
a systematic sampling of this function poses a considerable challenge for a space-efficient repre-
sentation. 

The (probably) most image-centered rendering technique is the technique known as light-
field [Levoy and Hanrahan 96] or lumigraph [Gortler et al. 96] rendering: Both variants of the 
data structures represent the radiance along rays emanating from an object under fixed lighting 
conditions. The observer is assumed to be located outside the convex hull of the object. Thus, the 
position of the viewer along each ray is not relevant. This reduces the dimensionality of the data 
to four dimensions. The rays are parameterized by their intersection with two parallel planes (for 
a full view from all directions, multiple planes are used). The radiance values are then stored in a 
(large) four-dimensional array indexed by the intersection coordinates with the two planes. The 
drawback of lightfield/lumigraph approaches is the large storage overhead resulting from the 
high-dimensional base domain and the regular discretization. Thus, compression techniques must 
be used to reduce the space requirements. [Levoy and Hanrahan 96] use vector quantization 
techniques. Other methods known from image compression (such as wavelet-based compression, 
see e.g. [Peter and Straßer 2001]) can be applied, too. 

2.2.4.2 Hybrid Techniques 

The high dimensionality and the resulting large memory requirements restrict the usage of 
purely image-based representations. For a fixed image and parallax resolution of O(1/n), we ob-
tain storage requirements of at least Ω(n4). Thus, it is impossible to represent complex scenes at a 



28 2 Rendering Techniques 

 

high level-of-detail that would allow a strong variation of the viewing distance. To overcome these 
limitations, a lot of methods employ a hybrid approach that uses both geometric and image in-
formation. 

The classic example of such a combination is texture mapping: Images are mapped onto 
surfaces (via a surface parameterization) to provide additional details [Catmull 74, Heckbert 86, 
Heckbert 89]. Textures can supply various information, such as color values, material parameters 
(glossiness, reflectivity etc.), transparency, surface roughness or even surface displacements that 
augment the local geometry [Blinn 78a, Blinn 78b, Cook 84b, Gardner 85]. 

A variant of texture maps is the environment map [Blinn and Newell 76]: All radiance val-
ues from different direction incident at a point of the scene are stored in a texture map: The tex-
ture map usually consists of a parameterization of a simple, closed, convex surface such as a 
sphere or cube. Each point on the surface represents a possible incident direction, and a color 
sample is stored at the parameter coordinates of that point. Environment maps are used to simu-
late global lighting effects such as reflection or refraction. Various surface characteristics can be 
simulated by prefiltering the environment map [Heidrich and Seidel 99]. Environment maps can 
also be used to integrate synthesized objects into real world scenes [Debevec 98]. An environment 
map constructed from photographs serves as an (approximate) light source to illuminate the 
scene with natural light. These techniques are for example used for computer generated special 
effects in movie productions where a close match of the lighting conditions is vital for a plausible 
effect. 

Modern texture mapping systems permit the specification of procedural shader scripts that 
can combine several texture mapping strategies to define the surface appearance of objects [Cook 
84b, Cook et al. 87]. These techniques are nowadays also supported in graphics hardware for tri-
angle rasterization [Lindholm et al. 2001, ATI 2004, nVidia 2004a]. 

The idea of texture mapping can also be combined with the concepts from lightfield render-
ing: Surface lightfields [Wood et al. 2000] store the outgoing radiance at discrete sample positions 
on the surface of an object to describe the appearance under fixed lighting conditions. A similar 
approach is view-dependent texture mapping [Debevec et al. 96]: A rough geometry model is 
augmented with detail textures that are picked from several photographs of a scene, selecting the 
best matching ones for each textured surface. There are also techniques that try to acquire the 
surface reflectance properties from images of a scene in order to allow a display under arbitrary 
lighting conditions [Yu et al. 99, Matusik et al. 2002]. However, this is in general a hard inverse 
problem. 

Another class of hybrid geometry and image-based rendering techniques are image warping 
approaches [Chen and Williams 93, McMillan and Bishop 95, Shade et al. 98]: Each pixel in a set 
of input images is assigned a position in space. This can be done for example by estimating the 
depth from stereo parallax information in natural scenes or z-buffer readbacks in synthetic 
scenes. Then, new views of the scene from different viewpoints can be generated by reprojecting 
(“warping”) the sample points from the images according to the new view position. These tech-
niques rely on a sample point discretization of the scene and were among the predecessors of 
point-based rendering techniques similar to those described in this thesis (see Section 3.2.1 for a 
more detailed discussion). 

2.2.4.3 Rendering of Complex Scenes 

Image-based rendering techniques can be applied to speed up the rendering of complex scenes. 
The most obvious application is the usage of texture mapping techniques already in the modeling 
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phase in order to avoid the construction of complex geometry. This approach is very commonly 
used and is the key to high-quality rendering both in real-time (e.g. computer games) and offline 
rendering applications. However, hand-crafted textures and shader scripts do not help if we al-
ready have a very complex model that should be simplified in order to allow a real-time display. 

Automatic image-based simplification strategies have been proposed by many authors. The 
general idea is to substitute rendered image information (“imposters”) for geometric objects to 
reduce rendering costs. [Regan and Pose 94] propose substituting far field geometry with envi-
ronment maps: Objects with a distance larger than r are rendered onto a cube that is displayed in 
subsequent frames using texture mapping. This technique is extended by using multiple cube 
maps with exponentially increasing spacing around the current view position. Transparency in-
formation in the texture maps is used for compositing. The cube maps are updated when the 
viewer moves with a frequency inversely proportional to their diameter. This allows avoiding ren-
dering of far off geometry at every frame as its depiction probably will not change significantly for 
small relative movements. A similar idea is proposed by [Torborg and Kajiya 96]: They describe 
the “Talisman” rendering architecture that allows a user-controlled replacement of geometry by 
warped images. [Shade et al. 96] propose a hierarchical replacement scheme that replaces nodes 
in a BSP-tree of the scene by warped textures that are updated dynamically depending on an 
error metric. A hierarchical scheme with precomputed textured imposters is proposed in [Maciel 
and Shirley 95]. 

In order to understand the potential benefits of dynamic image-based replacements, it is 
useful to do a formal analysis of the costs in a simplified model [Wand 2000a]: We assume that 
the scene is a flat disc with radius R, containing Θ(n) uniformly distributed objects. This is a 
rough model of a typical situation in many applications where cities or landscapes are to be dis-
played. We also assume a very simple error metric for our replacement strategy: An image of an 
object can be reused as long as neither the parallax nor the scaling factor under which it is seen 
exceeds a certain threshold. This criterion means that we must update any image containing the 
object when we have made a relative movement of more than a constant ε. The relative movement 
is defined as a movement of the viewpoint by a certain distance divided by its proximity d to the 
object. Thus, we obtain an update frequency of O(1/d) for the objects with a distance d. Now, we 
assume that the viewer performs a small movement in the center of the scene. Then we can esti-
mate an average update frequency for the objects in the scene: 
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The average update rate (and thus the rendering costs of a linear time rendering algorithm) 
grows proportionally to the square root of the number of objects in the scene (for objects uniformly 
distributed in a disc-like scene). The constant depends on the parallax errors that we are willing 
to tolerate. As parallax errors are the main artifact of image-based replacement strategies, this 
result can be considered a lower bound for the asymptotic runtime gains. Note that image-based 
replacement algorithms also cause additional compositing costs for displaying the “cached” con-
tent that is not accounted for in this consideration. 

The strategy of [Regan and Pose 94] already achieves the lower bound: It rerenders all ob-
jects located between two cube maps if the parallax error of these objects becomes too large. Thus, 
we obtain average rerendering costs of 
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Additionally, we have O(log n) costs for every frame (independent of the viewer’s motion) due to 
compositing the cube maps. Thus, this strategy is already (nearly) asymptotically optimal in 
terms of our simple cost model. However, the later approaches such as the technique of [Shade et 
al. 96] allow a more adaptive placement of replacement textures. Therefore, we can expect a 
strong reduction of actual compositing costs in practice. 

The main problems of texture mapping based imposters are parallax errors: The update 
costs could be reduced drastically if we were able to use the same image-based replacement for a 
larger range of viewing angles. Therefore, a lot of techniques have been proposed in order to com-
pensate for the parallax errors of image-based imposters: [Sillion et al. 97] use textured meshes 
created from depth images as far field imposters in urban scenes. [Mark et al. 97] propose using 
image warping to recalculate views after small movements of the viewpoint to speed up rendering 
of complex scenes. The warped images may contain holes in regions not visible in the reference 
image. Therefore, the authors warp multiple nearby reference images to fill the holes. [Rafferty et 
al. 98] apply a similar technique to replace far field geometry behind portals in architectural 
scenes. The hole-filling problem can be circumvented by storing multiple depth values for every 
pixel [Max and Ohsaki 95b, Shade et al. 96], leading to a point-based rendering approach (see 
Section 3.2.2 for an in-depth discussion). In addition to point clouds, stacks of partially transpar-
ent textures can also be used as imposters (“layered imposters”, [Schaufler 98]). This leads to 
similar effects and may be more efficient on hardware platforms with low point reprojection but 
high texture rendering speed. 

2.2.4.4 Animated Scenes 

Image-based replacements have also been used to speed up the rendering of complex animated 
scenes. [Tecchia and Chrysanthou 2001] describe a rendering technique for complex crowd anima-
tions such as a large group of humans walking through a virtual city. In a preprocessing step, 
images of the animated entities are rendered into textures from several viewing directions and for 
several timesteps of the animation. During rendering, the closest time step and viewing direction 
is determined and the corresponding texture is rendered. The method leads to very fast rendering 
times. However, the discretization of time and viewing angle causes parallax and continuity er-
rors. This does not matter for a far field approximation, but the method cannot be used to simplify 
single, large animated objects of high complexity. [Aubel et al. 2000] describe a dynamic image 
caching algorithm for crowd animations. The image of a rendered person is reused as texture over 
several frames. The speed-up of this method is limited as coarsening the time discretization too 
much will result in jerky motion.  

2.2.5 Occlusion Culling 
A forward mapping rendering algorithm such as the z-buffer technique has to process all objects 
in the scene independently of whether they are visible or not. The basic algorithm is not capable 
of excluding hidden objects by itself, although they have no influence on the output image. Thus, 
in order to display scenes with much occlusion efficiently, a filter algorithm needs to be applied 
before rendering to exclude invisible objects. This occlusion culling problem is orthogonal to the 
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simplification problem described in the preceding sections: Simplified objects with little geometric 
detail might still cover large areas in the image plane that have to be rasterized and lead to con-
siderable costs. Occlusion culling algorithms can be roughly classified into two groups of tech-
niques: From-point visibility techniques and from-area visibility techniques. In the following, we 
will give a brief overview of published techniques, for a more detailed discussion, see a survey 
paper such as [Cohen-Or et al. 2001]. 

2.2.5.1 From-Point Visibility 

From-point visibility algorithms are given camera parameters and a scene data base. Their task 
is to exclude invisible objects from rendering. Usually, this is done in a conservative manner, i.e. 
the algorithm potentially returns a superset of the visible (PVS, potentially visible set) objects and 
a final z-buffer rendering step (or a similar technique) is used to resolve the exact per-pixel visi-
bility. It is possible to do exact, analytical from-point visibility computation. However, this is an 
Ω(n2) problem and thus not suitable for complex scenes [Foley et al. 96]. The z-buffer algorithm 
computes a solution to the discretized from point-visibility problem (visibility is resolved up to a 
pixel) in linear time. Therefore, an occlusion filtering algorithm should have output-sensitive, 
sub-linear run-time requirements to be able to speed up the computation. Most output-sensitive 
from-point visibility algorithms follow the same algorithmic paradigm, front-to-back rendering: 

The scene data base is traversed in front-to-back direction, picking groups of objects with 
smaller z-distance earlier. The objects are projected onto the screen and dropped if the corre-
sponding space is already occupied. The algorithms vary in the implementation of this paradigm: 
How is the depth-sorting achieved? How are groups of objects identified that are potentially oc-
cluded? (Grouping is important for sub-linear running time.) How is the occupation of the screen-
space represented? 

One subclass of strategies consists of portal rendering algorithms [Luebke and Georges 95]: 
The scene is divided into cells that are connected to each other via portals. This connection is rep-
resented as an adjacency graph (see e.g. [Haumont et al. 2003] for an automatic construction al-
gorithm). The rendering algorithm traverses this graph starting from the cell that contains the 
viewpoint. During traversal, the set of visited portals is projected to the screen and the intersec-
tion of the portal area is calculated incrementally. When the intersection becomes empty, the 
traversal is stopped. To perform these intersection calculations efficiently and numerically stable, 
the portals are usually approximated by a simple representation such as screen-axis-aligned 
bounding boxes. Portal rendering algorithms show two main drawbacks: First, the subdivision 
into cells and portals is not feasible for arbitrary scenes. Usually, portal rendering is applied to 
architectural models. Second, the efficiency of the culling algorithm can be bad in adverse cases: 
Depending on the traversal strategy, the algorithm might need time superlinear in the number of 
visible cells: A depth-first traversal could visit one and the same cell multiple times (via different 
portal sequences). A breadth-first traversal visits every cell only once. However, it must store sets 
of portals and intersect them with new sets of portals so that the complexity of the intersection 
calculations can grow during traversal. 

A second subclass consists of hierarchical front-to-back rendering strategies [Greene et al. 
93]: The scene is organized in a spatial hierarchy such as an octree. This hierarchy is traversed 
top-down and front-to-back. At each visited node, a test is performed against the screen content 
that has been drawn so far. If the node is occluded, the traversal is stopped and the complete sub-
tree is culled. If the node is visible, the traversal is continued. In the case of leave nodes, the asso-
ciated geometry is drawn on the screen. The main issue is again the representation of the occlud-
ing geometry that has already been drawn on the screen: [Greene et al. 93] suggest the usage of a 
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multi-resolution pyramid of z-values that allows testing the visibility of a bounding box of a node 
in the hierarchy without always rasterizing all of its pixels. The drawback of this approach is that 
of the update costs for the z-pyramid after drawing a set of primitives. An alternative is a brute-
force testing of all z-values in the frame buffer [Bartz et al. 99]. As this technique is supported by 
modern graphics cards in hardware with enormous rasterization speed, it is a viable alternative 
to a software implementation of a hierarchical z-buffer. Additionally, several optimizations are 
possible to reduce the costs of the brute-force approach [Staneker et al. 2003]. Recent graphics 
cards even optimize the rasterization internally by employing a hardware implementation of 
Greene’s z-pyramid (see e.g. ATI’s “Hyper-z” technique, [ATI 2004]). Thus, the different ap-
proaches are probably converging. 

2.2.5.2 From-Region Visibility 

From-region algorithms are based on the determination of the parts of the scene that are invisible 
from extended regions. Usually, this information is computed during a preprocessing stage: 
[Teller and Séquin 91] precompute the visibility for all cells in a cell and portal graph. During 
rendering, a simple access to a list of visible cells is sufficient to obtain a potentially visible set. A 
portal rendering approach is then applied to this PVS in order to further reduce the set of objects 
to be rendered. A similar approach is used in the “Quake” rendering engine, which is the basis of 
several popular computer games [Abrash 97]. The technique is refined by using a general BSP-
tree for the automatic generation of cells instead of the k-d-tree proposed by Teller and Séquin. 
From-region visibility can also be used dynamically: A potentially visible set for a small neighbor-
hood of the current viewpoint is estimated and can be reused over several frames. 

The major technical problem is the computation of cell-to-cell visibility information. A con-
servative solution is equivalent to determining whether a single ray between to cells exists that is 
not occluded by a geometric primitive in between the two cells. The space of all rays connecting 
two regions in three-space is four-dimensional. This makes a discretization of the problem much 
harder than for the two-dimensional from-point visibility problem. An exact solution is possible 
[Teller and Hohmeyer 93, Nirenstein et al. 2002], but leads to considerable computational costs. A 
stochastic solution using random raytracing can also be applied [Gotsman et al. 99]. However, 
this approach cannot ensure to compute a correct solution. With a certain probability, visible cells 
may be missed and not included in the PVS. Current research focuses on approximation algo-
rithms that guarantee a conservative estimate of the PVS [Durand et al. 2000, Schaufler et al. 
2000, Leyvand et al. 2003]. 

2.3 Backward Mapping 
In comparison with forward mapping rendering strategies, backward mapping solves the visibil-
ity problem just in the opposite direction: Instead of processing all primitives and depth-sorting 
them in screen space after projection, backward mapping performs a search in the scene database 
to find the objects that are visible in each pixel of the image. 

2.3.1 The Raytracing Algorithm 
The backward mapping paradigm directly leads to the raytracing algorithm: A ray from the cen-
ter of projection through the center of every pixel is created and the scene data base is searched 
for the first intersection with a primitive [Appel 68]. The technique can be generalized to handle 
ideally reflective or transparent objects by applying the algorithm recursively [Kay 79, Whitted 
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80]: At intersection points, secondary rays are shot into the scene to calculate the light contribu-
tion due to reflection or refraction. Shadows are calculated by shooting a ray towards a light 
source and testing for any intersection on the way. It is also possible to simulate more complex 
effects using stochastic ray sampling: The distributed raytracing algorithm [Cook 86] shoots mul-
tiple rays through each pixel stochastically and computes the average color to obtain an antiali-
ased image. To simulate glossy reflections or transmissions, the outgoing directions of secondary 
rays are altered randomly. Soft shadows can be computed by jittering the ray position on an area 
light source stochastically, and even depth-of-field effects can be obtained by a stochastic modifi-
cation of the parameters of the primary rays. 

An important advantage of the raytracing algorithm is its flexibility: In contrast to forward 
mapping algorithms, raytracing is able to simulate global lighting phenomena such as shadows or 
reflections easily. Especially stochastic raytracing techniques can be generalized further to obtain 
fully featured simulations of global light propagation; see e.g. [Jensen et al. 2003] for a survey. A 
general drawback of backward mapping algorithms is a performance penalty: In contrast to for-
ward mapping techniques, the algorithm is forced to search the visible primitives for each pixel. A 
naive implementation (test all primitives for each pixel) without recursive tracing leads to a time 
complexity of O(v·n) for n primitives and v pixels on the screen, which is always worse than the 
complexity of a z-buffer renderer. However, a raytracer usually uses spatial data structures to 
accelerate the ray queries. This changes the run-time behavior of raytracing drastically and 
makes a performance comparison with forward-mapping techniques less obvious, as discussed in 
the next subsection. 

2.3.2 Data Structures for Efficient Ray Queries 
The acceleration of raytracing is a classic computer science problem: We are given a large data 
base of geometric objects and we rapidly want to find an object that meets a certain formal re-
quirement. In this case, we need to find that primitive (if there exists one) that leads to the first 
intersection with a query ray. 

The classic solution to this problem is the usage of spatial subdivision structures: The sim-
plest solution is to use a regular grid in space and store a list of all primitives that intersect a grid 
cell in each such cell [Fujimoto et al. 1986]. Then, only the grid cells intersecting with the ray 
have to be searched for primitives. This technique is quite efficient in many cases. However, it is 
not well-suited for general scenes. If the distribution of the objects in space is very uneven (which 
is very likely to be the case; note that we are usually dealing with hollow surface models), the 
method wastes storage and computation time by handling empty boxes. Thus, the subdivision 
techniques are usually applied hierarchically: The scene is divided into a hierarchy of bounding 
volumes such as an octree [Glassner 84] or more general bounding volume hierarchies [Rubin and 
Whitted 80]. Then, a ray query is performed using hierarchical tests against the bounding volume 
hierarchy. There are also other approaches such as 5-dimensional ray-space subdivision (see 
[Arvo and Kirk 91] for a broad survey of raytracing acceleration techniques). Ray query efficiency 
has also been investigated in computational geometry literature: [de Berg et al. 94] construct a 
ray query data structure that ensures to answer ray queries in O(log n) time. However, they need 
O(n 

4 + 
ε

 ) space and precomputation time. [Szirmay-Kalos and Márton 98] show a lower bound of 
Ω(log n) for any ray query algorithm and Ω(n4) space requirement bounds for any O(log n) ray 
query data structure within the algebraic decision tree model. Therefore, such raytracing accel-
eration techniques with optimal query time are not suitable for practical applications. 
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In practice, the predominant acceleration techniques today are variants of hierarchical spa-
tial subdivision methods (octree, k-d tree etc.). How efficient are these acceleration techniques? It 
is easy to see that hierarchical spatial subdivision methods have a worst case Ω(n) bound for 
scenes of n primitives (Figure 13a). However, these worst case scenarios are not commonly found 
in practice. Thus, we must make assumptions about the expected input model to find a more real-
istic complexity characterization. [Szirmay-Kalos and Márton 98] assume a scene with uniformly 
distributed objects and show an O(1) expected ray query time for octrees (after a O(log n) location 
of the viewpoint). Their argument is quite intuitive: They assume a scene populated with objects 
of similar size, with uniform density (Figure 13c). Now the scene is enlarged (more objects are 
added, the diameter increases) without changing the object density and the complexity is consid-
ered in dependence on the number of objects. They show that the expected free length on a ray 
before it hits an object is finite for infinitely growing scenes. If the ray queries are implemented 
by a neighborhood search in an octree, the costs are (at most) proportional to the free length of 
the ray divided by the leave node size (which is constant in this model). Thus, they obtain O(1) 
costs. 

However, this analysis is based on a very restricted scene model. [Wald et al. 2001] report 
an empirical O(log n) complexity measured for a terrain height field with different sampling reso-
lutions. This observation can be explained by a simple model: First, we assume that our scene 
consists of a flat square, tessellated uniformly into primitives. The employed hierarchical decom-
position of the scene will result in a tree with a structure comparable to a quadtree on the object: 
On each hierarchy level, the number of objects in the subtree will be reduced by a constant factor 
on the average. Thus, the localization of an intersection with a ray orthogonal to the surface will 
require O(log n) time (see Figure 13b). A similar running time can be expected for many scenes 
that consist of tessellated surfaces seen under a normal angle that is not too large. 

In conclusion, we can note that a quantification of the efficiency of raytracing techniques 
strongly depends on the scene model. The worst case bound is linear (leading to a non-output-
sensitive rendering algorithm). However, there are strongly sub-linear bounds for certain scene 
models that may come closer to practical applications. In addition to the asymptotic costs, it is 
also important to consider the absolute costs of raytracing. The traversal of a spatial hierarchy 
and the corresponding intersection tests need a considerable number of computations. A highly 

 
(a) worst case linear running time: 
a ray passes nearby a set of trian-
gles, intersecting all their bound-

ing boxes 

(b) regular tessellations of smooth 
patches: logarithmic running time 

(c) dense scenes: expected run-
ning time is constant 

Figure 13: Different scene models lead to different performance characterizations for 
raytracing with spatial hierarchies as acceleration data structure. 
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optimized implementation can yield interactive framerates even for complex models [Wald et al. 
2001]. However, a distributed implementation using a cluster of several high-end PCs is neces-
sary to provide real-time frame rates at high image resolutions or for rendering complex secon-
dary ray effects [Wald et al. 2003]. 

2.3.3 Antialiasing 
The classic raytracing algorithm performs point sampling in image space. Thus, we have to deal 
with aliasing issues (see Section 1.3). The rendering literature provides two classes of approaches 
to solve the aliasing problems: Supersampling and extended rays. 

2.3.3.1 Supersampling 

As described in Section 1.3.2.2, the reconstruction of an aliasing-free image leads to a numerical 
integration problem: For each pixel, we have to compute a weighted average of the continuous 
image function in its neighborhood. This can be done elegantly using Monte Carlo integration 
techniques that shoot multiple random rays for each pixel and determine the pixel color as a 
weighted average [Cook 86]. There are also regular supersampling techniques [Whitted 80]; how-
ever, they are more susceptible to structured aliasing. In the worst case, stochastic integration 
techniques (as well as deterministic techniques applied to a worst case quasi-random image sig-
nal) have a convergence speed of only O(n-1/2), n being the number of rays evaluated for each pixel. 
Thus, supersampling techniques can be quite expensive in adverse cases. However, improvements 
such as adaptive sampling and stratification techniques can improve the convergence rate in 
many cases (see Section 1.3.2 for details). A big advantage is the flexibility of the stochastic ap-
proach: It is easy to incorporate advanced global illumination effects into the stochastic raytrac-
ing framework [Cook 86]. 

2.3.3.2 Extended Rays 

A conceptual alternative to point sampling techniques are methods that use extended ray vol-
umes for intersection calculations: The cone tracing algorithm [Amanatides 84] uses cones with 
circular cross-section. It starts with cones with the apex at the viewpoint and a cross-section cor-
responding to a pixel in the image plane. Then the algorithm determines all objects that are in-
tersected by the cones and uses an area based compositing strategy to blend together the color 
contributions of the intersected object fragments. As the algorithm is carried on recursively, the 
shape of the cones is adjusted according to surface curvature, surface roughness and light source 
size in order to perform antialiasing of secondary rays and to approximate soft shadows and 
glossy reflections. A similar idea, the beam tracing algorithm, has been proposed by [Heckbert 
and Hanrahan 84]: The algorithm starts with a pyramid (“beam”) corresponding to the whole 
screen and successively clips it to planar surfaces. At reflecting and refracting surfaces, secondary 
“beams” are sent into the scene to calculate the corresponding global illumination effects. These 
techniques have been refined by other authors later on [Kirk 87, Ghanzanfarpour and Hasenfratz 
98]. However, ray tracing with extended ray volumes is used only rarely today. The main draw-
back of these techniques is the complexity of the intersection calculations: In complex scenes, it is 
very likely that the extended ray volumes (especially secondary rays) intersect with a large num-
ber of primitives, leading to prohibitively large running times. 

As a compromise, hybrid techniques have been suggested that employ extended ray vol-
umes only to guide the evaluation of a traditional raytracer: Extended ray volumes can for exam-
ple be used to estimate the variance in the image by detecting borders or regions with large color 
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variation [Amanatides 96, Genetti et al. 98]. Then, a traditional stochastic integration approach is 
used to determine the pixel color. [Igehy 99] introduces the concept of ray differentials: The first 
order derivative of the ray position and direction in respect to the screen coordinates are consid-
ered to estimate the ray footprint. This is a first order approximation to the volume covered by all 
rays through a single pixel. The ray footprint can then be used to (for example) guide mipmap 
selection for anti-aliased texture mapping. The technique is especially appealing due to its con-
ceptual simplicity, improving on previous proposals such as [Shinya et al. 87, Collins 92]. A simi-
lar technique is used in [Schilling 2001] in the context of antialiased environment mapping. The 
application of hybrid techniques to improve conventional stochastic ray tracing techniques is still 
an active area of research. Ray differentials techniques have for example been used recently to 
guide an on-demand tessellation strategy for highly complex scenes consisting of higher order 
primitives [Christensen et al. 2003]. A further recent proposal is the usage of polygonal multi-
resolution models to speed up raytracing [Karabassi et al. 2003]. A “ray disparity”, corresponding 
to the ray spacing, is computed for the rays intersecting objects of the scene. According to this 
measure, different levels-of-detail are selected. The “ray disparity” is computed analytically for 
primary rays only. For secondary rays, a heuristic degradation measure is used, taking into ac-
count attenuation and recursion depth. 
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Chapter 3 

Point-Based Multi-Resolution 
Rendering 

In this chapter, we will give an overview of point-based multi-resolution rendering techniques. We 
will start with a motivation, arguing that the point-based rendering paradigm can complement 
shortcomings of former output-sensitive rendering techniques. In the second subsection, we will 
describe related work in point-based rendering, including many recent developments that were 
published concurrently with the techniques that are subject of this thesis. The third subsection 
concludes with an overview of the methods proposed in this thesis and the structure of their exposi-
tion. 

3.1 Limitations of Previous Techniques 
The rendering techniques discussed in the preceding section are able to render many classes of 
highly complex scenes at interactive framerates. However, there are still problematic cases that 
cannot be handled efficiently. Important examples are natural scenes like trees, grass, forests or 
entire landscapes. When the work on the methods proposed in this thesis was started, an interac-
tive rendering of such outdoor scenes at high quality was not possible (at least with reasonable 
efforts in hardware, such as a current PC) without strong simplifications such as e.g. simple tex-
tured imposters for trees or using non-interactive rendering times. One of our main motivations 
was to devise techniques to render such scenes efficiently. 

The problem of natural landscape scenes is that they consist of a large number of individual 
objects, forming the scene by their assembly. This creates surfaces of highly irregular structure 
and complex topology of the corresponding primitive meshes. The same problems also occur in 
related cases, such as crowd scenes with large crowds of humans or animals. Mesh simplification 
algorithms have problems to simplify such scenes efficiently. Mesh simplification algorithms try 
to approximate the surface with flat primitives. This works well for smooth surfaces that are lo-
cally flat. Even rough surfaces with small “bumps” can be modeled using normal maps [Cohen et 
al. 98]. However, highly irregular objects such as a complex tree with thousands of individual 
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unconnected leaves and subbranches or a field of grass cannot be approximated well with flat 
triangles. 

An alternative is the usage of image-based rendering techniques. Image-based imposters 
such as billboards [Rohlf and Helman 94] have been used extensively to render landscapes and 
outdoor scenes [Maciel and Shirley 95, Deussen et al. 98]. However, image-based replacements 
have to deal with parallax issues that lead to artifacts, especially in interactive walkthrough an-
imations. To fight parallax problems, large numbers of images have to be used to represent ob-
jects faithfully. However, this leads to considerable processing and storage costs. 

Another possible alternative is raytracing techniques. They can display scenes of arbitrary 
structure and topology and provide highly output-sensitive rendering times for many classes of 
scenes. Nevertheless, raytracing techniques still require considerable hardware (and implementa-
tion) effort to achieve real-time frame rates [Wald et al. 2001]. Thus, they are not always an al-
ternative in interactive settings. 

As none of the classic rendering approaches is fully satisfactory for an interactive display of 
natural scenes, we need a new rendering paradigm. In this thesis, we propose a new approach to 
the simplification of highly complex scenes: Instead of trying to fit triangular primitives to the 
surface, our approach is to reconstruct images from a set of sample points taken from the object 
surfaces. Conceptually, such a multi-resolution point-sample rendering algorithm works in two 
steps: First, a set of sample points is chosen from the surfaces of the scene objects. Second, an 
image is reconstructed out of the sample points. The distribution of the sample points is chosen in 
order to support an efficient image reconstruction later on. This usually means that the sampling 
density should be roughly proportional to the projected size of the objects in the image. 

 

original mesh 
(70 000 vertices) 

 15 000 points / vertices 5 000 points / vertices 1 000 points / vertices 

Figure 14: Comparison of triangle-based and point-based simplification. 
Top row: triangle mesh simplification (QSlim 2.0, [Garland and Heckbert 97], default parameters) 
Bottom row: point-based simplification (same number of points as vertices in the triangle mesh) 
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The usage of points as rendering primitives allows a more general approach to the simplifi-
cation of complex objects. Point primitives are symmetric while triangles are oriented primitives. 
Thus, it is much easier to create strongly simplified representations of objects that are not locally 
flat without introducing a directional bias by specifying artificial surface orientations of the tri-
angles. Additionally, traditional triangle meshes that are handled by automatic simplification 
algorithms always have to maintain the local connectivity of the primitives. However, a strongly 
simplified, highly irregular surface has to change its topology drastically in order to allow a 
lightweight representation. Thus, the topology of the simplified mesh will have little in common 
with that of the original mesh. Nevertheless, traditional mesh simplification algorithms enforce a 
smooth transition of the original topology into the simplified one. At every step during the simpli-
fication, correct local connectivity information has to be maintained. In addition to complicating 
the algorithm, this can lead to an additional bias as the algorithm tries to keep things connected 
in cases where it does not make sense. In connection with an error metric that tries to minimize 
geometric distances, this can lead to inappropriate results. Figure 14 shows an example of a sim-
plification of a complex tree model7 using the QSlim simplification package that is available 
online [Garland and Heckbert 97]. The original 70,000 faces model was simplified to 15K, 5K and 
1K vertices. In comparison, a point-based simplification using the same number of points is given, 
too. Two observations can be made: First, some of the main features of the object such as the main 
branch get lost at a strong level of simplification. The point-based simplification is not able to 
produce fully correct results either. However, it is able to preserve the overall shape of the object 
much better (see the smaller images for a “distant view”).  Second, the simplification of the foliage 
of the tree somehow converges towards a point cloud consisting of triangles, but at higher costs (3 
vertices per primitive, maintaining topological information). This also indicates that a point-
based representation is better suited for such cases. It is important to note that the quadric error 
metrics used by the QSlim simplification package might be not well suited for rough and irregular 
surfaces. Thus, another error metric would probably have avoided some of the artifacts. However, 
a point-based representation still seems to be more efficient to represent the large set of smaller 
branches and leaves at a strong level of simplification. 

The point-based rendering approach also avoids problems of classic image-based rendering 
approaches. As every sample point stores a three-dimensional position in space, parallax errors 
are avoided. The idea is very similar to image warping techniques; the connection will be dis-
cussed more in detail in the next section. Rendering of scenes from sample points has also a con-
nection to raytracing. In some sense, it is a kind of inverse raytracing: Instead of systematically 
choosing sample points for each pixel on the screen, we choose sample points directly in object 
space with a sampling density that assures sufficient accuracy for each pixel of the image. This 
can be done more efficiently, as no complex inverse problem has to be solved. 

Point-based rendering is another building block for handling complex scenes in real-time. It 
is a geometric simplification technique. The remainder of this thesis is supposed to prove that 
point-based multi-resolution rendering is a valuable supplement to the current state-of-the-art for 
handling complex scenes. 

3.2 Related Work in Point-Based Rendering 
The idea of using sample points for rendering purposes is not new. Many techniques such as par-
ticle simulations and certain image-based and volume rendering techniques have also employed 

                                                      
7 The tree model was generated using the freeware L-system parser “lparser” [Lapré 2002], example file “tree11”. 
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point primitives for efficient rendering. However, in contrast to the techniques presented in this 
thesis, most of them did not make extensive use of multi-resolution techniques in order to support 
handling of large scenes. We will discuss previous point-based techniques in computer graphics in 
the next subsection (Section 3.2.1). A good survey paper of related techniques is also provided by 
[Zwicker et al. 2000]. 

In addition, several new point-based rendering and modeling techniques have been pro-
posed in the last three years, being developed in parallel to the work presented in this thesis. In 
order to clarify the influence of the recent developments on the techniques described in this the-
sis, we will discuss the corresponding literature in an extra subsection (Section 3.2.2). 

3.2.1 The History of Point-Based Computer Graphics 

3.2.1.1 Early Work and Particle Systems 

Point primitives first appeared in the rendering literature to model volumetric phenomena with-
out distinct surface such as clouds or smoke. In 1979, Csuri et al. propose a general purpose ren-
dering architecture for complex scenes [Csuri et al. 79]. They use large point sets (300,000 points 
in an example scene) to render clouds of smoke. Additionally, they note that points can be used as 
universal modeling primitive (also for opaque surfaces and volumetric models), especially for 
highly complex scenes. In [Blinn 82], a shading model for clouds of dust is derived using a sto-
chastic particle model. However, no point primitives are used for display but the particle ap-
proach is only used for mathematical modeling. 

The idea of using point clouds to simulate gaseous and fluid phenomena was extended by 
Reeves [Reeves 83]: A point-based representation is combined with a dynamic model to create 
realistic animations of such phenomena. The method was used to create the “Genesis” explosion 
sequence in the movie Star Trek II [Paramount 82]. The particle system technique is very general 
and can also be extended to render phenomena such as flowing water, spray, smoke and fire. The 
basic idea is very general: Each particle stores a set of attributes such as position, velocity, color, 
lifetime, opacity etc. The trajectory of the particles is calculated by solving ordinary differential 
equations based on these attributes. The particles are generated by stochastic rules and deleted 
after their lifetime expires. Additionally, a hierarchical generation is often useful: High level par-
ticles generate secondary particle systems stochastically (e.g. think of fireworks rockets and glow 
after explosion of the rockets). 

In [Reeves and Blau 85], the idea of particle systems is extended to rendering of static, pro-
cedurally defined objects: Trajectories of particles are drawn into a single image to depict objects 
such as trees, leafs or flowers. A heuristic illumination model and shadow mapping is employed to 
create realistic images. The approach also allows for a simple level-of-detail control: By adjusting 
the initial particle density, the complexity of the representation can be adapted. The techniques 
are used to render the impressive background landscapes of the animated short movie “The ad-
ventures of André and Wally B.” [Lucasfilm 84]. The goal of this technique (efficient rendering of 
irregular objects such as landscapes) is similar to ours. The two main restrictions in comparison 
with the techniques described in this thesis are: First, the method works on procedural models, 
i.e. a particle system has to be devised manually for each type of object to be rendered. Second, 
the level-of-detail control is not a true multi-resolution technique: Reducing the number of parti-
cles alters the shape of the object and it is not possible to perform a level-of-detail control within 
one and the same object. 
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The idea of particles systems has been extended in several directions: Flocks and Herds of 
animals and humans can be simulated by implementing behavioral rules for each particle based 
on its local neighborhood [Reynolds 87]. The addition of topological elements like springs allows 
the approximation of continuum mechanical models for the simulation of deformable plates and 
solids. An alternative approach is the class of SPH methods (smoothed particles hydrodynamics) 
that have been developed originally in computational physics: Radial basis functions around the 
particles are used as a basis for a discretization of differential equations of a physical model of 
motion. For a survey of physically-based modeling and simulation techniques, including particle 
system approaches, see e.g. [Baraff et al. 2003]. Today, particle systems are a standard simula-
tion technique used in real-time applications such as computer games as well as in photo realistic 
rendering for special effects [Trojansky 2001]. 

3.2.1.2 The REYES architecture 

Another concept related to point-based rendering is rendering with micropolygons: A parametric 
surface is subdivided recursively in parameter space until the resulting fragments are smaller 
than a pixel [Catmull 74]. Afterwards, the resulting “micropolygons” are shaded and rasterized 
using z-buffering, a-buffering [Cook et al. 87] or a scan-line approach [Lane et al. 80]. This ap-
proach is the basis of the “REYES image rendering architecture“ [Cook et al. 87]. The REYES-
architecture is implemented in the well-known “Renderman” software package [Apodaca and 
Gritz 99], which has been used extensively in the production of computer generated movies and 
special effects. The main advantage of the approach is a high output quality at moderate costs: A 
hierarchical subdivision up to the subpixel level ensures smooth rendering of higher order sur-
faces. Additionally, the forward mapping approach is computational less intensive than raytrac-
ing techniques. In contrast to raytracing techniques, it especially allows a “stream” processing of 
the geometry and the resulting micropolygons. Thus, large scenes that do not need to fit into main 
memory can be handled by “streaming” from disc. The idea of an object space sampling up to the 
pixel level is the same as in point-based multi-resolution rendering. However, the approach has 
still restrictions: The subdivision hierarchy is only build for individual high level primitives. 
Therefore, the approach is not efficient for highly complex scenes in which even the high level 
description is too complex for a linear time rendering strategy. 

3.2.1.3 Point-Based Surface Modeling and Rendering 

In 1985, Levoy and Whitted proposed using point-based representations as universal rendering 
primitive [Levoy and Whitted 85]. They argue that a point-based representation is the greatest 
common divisor of all rendering primitives. They describe a technique to convert parametric 
smooth surfaces into a point-based representation. During rendering, several problems have to be 
solved: First, holes within renderings of continuous surfaces have to be avoided. Second, aliasing 
has to be avoided in the image reconstruction. And third, transparency and edge antialiasing has 
to be handled. The rendering technique reconstructs the image by associating a Gaussian splat in 
image space with each point. The size is adjusted according to the partial derivatives of the 
parameterization. Additionally, the radius of the Gaussian is restricted to one pixel in order to 
avoid aliasing. An a-buffer algorithm is used for visibility determination, allowing for transpar-
ency effects. A depth threshold around each sample point is used to distinguish between points on 
the same surface that should be merged by weighted averaging and points on different surfaces 
that should be combined by back-to-front alpha blending. The weighted averaging uses the values 
of the Gaussian and a normalization term based on a point density estimation using the partial 
derivatives. Small weight sums are interpreted as object borders and thus reduce the alpha val-
ues during blending. 
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This technique is similar to that which we employ for image reconstruction in Section 
5.3.2.5. It is also the basis of other recent proposals for high-quality image reconstruction from 
point clouds [Zwicker et al. 2001a]. 

Point-based techniques have also been used to model three-dimensional objects: In [Szeliski 
and Tonnesen 92], surfaces are described by “oriented particles” that are called “surfels” by the 
authors. The particles are attached to one another by forces that are designed to yield locally flat 
surfaces. The surface can be edited by cutting, welding and free form deformations. A local modi-
fication of the force functions (removing the smoothness conditions) is employed to model creases. 
To account for stretch during editing, the point density is adapted automatically by inserting new 
points dynamically. An important advantage of such a point-based modeling technique is that it 
allows modifications of the topology of the objects without having to deal with base meshes or 
patch boundaries (as in the case of subdivision surfaces or NURBS). 

Another application of point-based techniques for surface modeling is the extraction of im-
plicit surfaces: [Figueiredo et al. 92] propose sampling implicit surfaces using particle systems: 
The algorithm is initialized with random particles that are attracted to the implicit surface by 
forces based on the gradient field of the implicit function. Repulsive forces are used to obtain a 
uniform point distribution. Finally, a triangulation is determined to create a polygon mesh. The 
technique has been refined by [Witkin and Heckbert 94]. They improve the base technique and 
propose a generalization to dynamically changing implicit surfaces. 

Point-based rendering techniques have also been used to render complex terrains: The 
“voxel space” technique [Freeman 96] renders a regularly sampled grid of surface evaluations by 
picking sample points with a spacing according to the perspective projection. Solid bars from the 
ground are rendered in back to front order to resolve visibility. The technique has first been used 
in the computer game “Comanche” [Novalogic 92], which is a helicopter flight simulator for the 
PC platform. The game appeared already in 1992 and was the first PC flight simulator that al-
lowed real-time rendering of fairly detailed landscapes. At that time, the target platform was a 
simple Intel 80386 based PC system with 4 MB of system memory. Thus, the complexity of the 
rendered landscapes was quite impressive. The technique has been refined and used for terrain 
rendering in several subsequent computer games (such as the action adventure “Outcast” 
[Infogrames 99], in addition to several sequels to the original “Comanche” game). 

3.2.1.4 Image-Based Rendering 

Another thread of publications leading to a point-based rendering paradigm can be found in the 
image-based rendering literature (see also Section 2.2.4). The main problem of purely image-
based rendering is the large memory consumption. Thus, it soon became obvious that geometric 
information should be incorporated (if available) to improve the expressiveness of the description. 
This was first implemented in image warping techniques that deform depth images to new views. 
However, these had to deal with hole-filling problems. Thus, a straightforward generalization is 
to store multiple depth samples for each image point. This effectively creates a point cloud repre-
sentation of the object that can be rendered from arbitrary view directions without the risk of 
displaying holes. The approach is described by Shade et al. as “Layered Depth Image” (LDI) 
[Shade et al. 98]. Their data structure uses a two-dimensional image array that stores a list of 
sorted depth samples for each pixel, allowing for fast incremental rendering. The paper describes 
techniques for the creation of the data structure from images and from synthetic objects. The lat-
ter are discretized using a modified raytracer. A similar technique was also proposed by Max and 
Ohsaki [Max and Ohsaki 95b] to render trees efficiently. In contrast to Shade et al., they use a 
multi-layer z-buffer approach instead of a raytracer to create the data structure: The objects are 
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rasterized and all fragments are recorded as sample points. A hierarchical version that uses LDIs 
with different resolution and a fallback to the original geometry for close-ups is described in [Max 
96]. This approach is already quite similar to our proposal. However, a procedural hierarchy is 
used that has to be specified manually by a hierarchy of rendering scripts. It does not yet allow 
processing arbitrary scenes automatically. 

In [Lischinski and Rappoport 98], layered depth images are used for rendering global illu-
mination effects. The proposal consists of two parts: First, a number of low resolution LDIs from 
different directions is computed in addition to a high resolution main LDI. These directional LDIs 
store precomputed secondary illumination and can be used to approximate glossy interreflection. 
Second, a raytracing technique is employed on the main LDI to render highly specular effects. The 
raytracer uses the base grid of the LDI as acceleration data structure and an interval search on 
the depth samples. The paper also proposes layered depth cubes (LDCs) that are a set of LDIs re-
corded from three orthogonal directions in order to ensure a regular sampling. 

[Grossman and Dally 98] propose a “point sample rendering” technique: Point clouds are 
created from multiple orthogonal projections. A hierarchical z-buffer technique is used to resolve 
visibility: The point sample spacing is determined during the construction, guaranteeing a maxi-
mum point spacing on continuous surfaces. During rendering, a resolution in the z-buffer pyra-
mid is chosen that matches the projected point spacing. For image reconstruction, a subsequent 
hierarchical push-pull algorithm is employed. In addition, backface culling is performed using 
normal cones for blocks of sample points. The approach aims at rendering of complex scenes. 
However, it does not employ a multi-resolution approach but only a constant sampling density. 
Thus, it is only efficient for a limited range of viewing distances. 

3.2.1.5 Volume Rendering 

Volume data sets are representations of functions that assign optical properties to locations in 
space. Typically, they are represented as regularly sampled three-dimensional arrays that are the 
outcome of techniques such as finite differencing simulations or tomography scanners. Alterna-
tively, volumetric data sets can also be represented as a mesh of volumetric primitives such as 
tetrahedra. A point cloud representation also represents a volumetric function that is somewhere 
in between these two approaches: It can be considered a sparse representation of regularly sam-
pled volumetric data [Lischinski and Rappoport 98] as well as a set of one-dimensional primitives. 
Regularly sampled data is usually rendered by alpha-blending of textured slices [Akeley 93, 
Lacroute 94, Rezk-Salama 2000]. Mesh-based representations can be rendered efficiently by 
blending projections of the primitives [Shirley and Tuchman 91]. Alternatively, raytracing algo-
rithms can be used [Kajiya 84] that allow for more flexibility (but usually at higher costs). 

Westover suggests a rendering technique coined “splatting” that uses point primitives for 
rendering [Westover 90]: The volume is discretized into single sample points (in the paper, the 
technique is applied to regularly sampled data sets). A radial low pass filter function is associated 
with each sample point. The algorithm constructs the image by compositing several sheets in 
front to back order. For each sheet, the basis functions intersecting the sheet are rendered as 
“splats” and a continuous signal is reconstructed by additive blending. When a complete sheet has 
been reconstructed, it is combined with the image rendered so far by alpha blending. The usage of 
sheets allows a proper reconstruction of the volumetric function with basis functions with over-
lapping support. The splats can also be rendered directly into the image by alpha blending in 
depth sorted rendering order, omitting the sheet reconstruction. This technique runs faster but 
does not provide a properly antialiased reconstruction. A generalization of splatting to elliptical 
kernels is given in [Mao 96]: A generalized Poisson-disc sampling procedure is used to approxi-
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mate a curve-linear volume with elliptical splats. Volume splatting has also been extended to 
hierarchical multi-resolution rendering in [Laur and Hanrahan 91]: An octree decomposition is 
used to adapt the splat density locally, allowing for the display of different levels of detail. A simi-
lar approach is used in [LaMar et al. 99]. LaMar's technique stores cubes of n3 regularly sampled 
voxels in each node of the octree and renders them using textured slices instead of splats. 

Volumetric representations can also be used to speed up the rendering of surface models. 
Chamberlain et al. propose the use of an octree hierarchy with each face of an octree node colored 
with the average color and opacity (as alpha-value) of an image of the contained geometry under 
orthogonal projection [Chamberlain et al. 95, Chamberlain et al. 96]. They prove a logarithmic 
running time for the case of equidistributed objects in the scene. The method works well for un-
structured scenes such as landscapes, but the orthogonal projection approach leads to occlusion 
artifacts (false transparency) at continuous surfaces. [Neyret 96] uses volumetric representations 
to speed up raycasting of complex geometry. A parametric shading model based on normal distri-
butions is fitted to the original geometry in each voxel to improve the display quality. 

3.2.2 Recent Developments 

3.2.2.1 Point-Based Multi-Resolution Rendering 

Point-based multi-resolution rendering was introduced in 2000 by multiple authors: 
[Rusinkiewicz and Levoy 2000] describe a rendering system for large models from 3d-scanners 
dubbed “QSplat” (see Figure 15a). The algorithm uses a precomputed bounding sphere hierarchy 
that performs a hierarchical clustering of points that represent the original model. The inner 
nodes in the hierarchy store attributes (position, normal, color) that are averages of the children 
that have been collapsed into the cluster. A quantization scheme is used for a memory efficient 
encoding of the point hierarchy. The rendering algorithm traverses the hierarchy until the size of 
the bounding spheres (and thus the point spacing) is below a given splat size. Then, fixed size 
splats are drawn into a z-buffer to obtain a hole-free image. 

[Pfister et al. 2000] describe a data structure coined “Surfels” (see Figure 15b): The scene is 
represented as a hierarchy of layered-depth-cubes (LDC) [Lischinski and Rappoport 98]. Each 
layered depth cube stores a point cloud approximation with fixed maximum sample spacing: The 

 
 

(a) QSplat: Compressed bounding sphere hierarchy 
with averaged surface attributes in each node. 

(b) Surfels: Hierarchy of LDCs. Prefiltering and 
mipmapping for antialiasing. 

Figure 15: Schematic visualization of the QSplat and Surfels data structure. 
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original geometry is discretized by raytracing from three orthogonal directions and recording all 
intersection points. For textured surfaces, the surface attributes (especially surface color) are 
prefiltered by integrating over the texture footprint during preprocessing. The hierarchy is 
formed by an octree: Each node in the octree stores one LDC with a sample spacing that is a fixed 
fraction of the side length of the bounding box of the node. Thus, we obtain a hierarchy in which 
each child node represents the geometry with an increased precision (half sample spacing), lead-
ing to a multi-resolution representation. The rendering algorithm again traverses the tree until 
the projected sample spacing on the screen is below a certain splat size and draws points into the 
z-buffer. To delete occluded points that are visible through holes, a parallelogram approximating 
a tangent disc (with varying depth) is rasterized. It deletes all points with a larger depth. To fill 
the holes in the image, the authors propose simple splatting, hierarchical push-pull [Grossman 
and Dally 98] and Gaussian interpolation (see Section 1.3.2.2), leading to a trade-off between effi-
ciency and image quality. For shading, the surface attributes from two adjacent levels in the hi-
erarchy are interpolated linearly to avoid popping artifacts. 

The randomized z-buffer algorithm, which is the basis of the techniques described in this 
thesis, was developed in parallel to the Surfels and QSplat approach [Wand 2000a]. It uses a hi-
erarchy of summed area lists to perform a dynamic, randomized sampling of the scene geometry. 
Image reconstruction is performed by splatting, Voronoi diagrams or Gaussian interpolation, 
similar to the Surfels technique. The advantage of the randomized z-buffer approach is that it can 
render the original geometry with arbitrary precision, not limited by the initial, precomputed 
sampling. However, the dynamic sampling is more expensive in terms of rendering times than 
using precomputed sample sets. Thus, the two approaches can be combined, using a Surfels-like 
data structure to cache dynamic point sets [Wand et al. 2001]. The randomized z-buffer technique 
will be discussed in detail in Section 4.1 and Chapter 5. 

3.2.2.2 Representation 

Point-based representations are not always efficient: Large, flat areas of a scene can be processed 
much faster using a rasterization approach. Thus, the randomized z-buffer algorithm rasterizes 
the original triangles whenever the rendering costs of the point-based representation exceed the 
rasterization costs [Wand et al. 2001]. A similar technique was proposed concurrently by [Chen 
and Nguyen 2001] in the context of the QSplat system. In [Cohen et al. 2001], the idea is carried 
on one step further: The approximation hierarchy uses both triangle mesh simplification and 
point-based simplification techniques, depending on the local structure of the model. [Dey and 
Hudson 2002] propose a similar approach using a feature-based metric. Another option is the use 
of line primitives for simplification: [Deussen et al. 2002] use progressive sets of points, lines and 
triangles to display visualizations of complex plant ecosystems. The approach is based on 
[Stamminger and Drettakis 2001]: Here, a set of random points is rendered progressively (i.e. a 
prefix of the point list is rendered until no holes are visible anymore) to display complex objects. 
The progressive random point cloud technique lacks a hierarchical multi-resolution approach. 
Thus, [Stamminger and Drettakis 2001] use a second technique for extended parametric objects 
such as height fields. They perform a hierarchical subdivision in parameter space, similar to 
[Cook et al. 87, Freeman 96] but using an irregular “sqrt-5” subdivision pattern. Then, instances 
of the progressive point clouds are placed non-hierarchically in the scene, determining the sam-
pling density on a per-object basis. The authors also apply their technique to speed up the display 
of animated scenes: The parametric sampling technique is efficient enough to perform resampling 
from scratch at every frame, thus allowing for animations of parametric objects. Non-parametric 
animated objects are rendered by moving the random point sets according to the dynamic defor-
mation. However, the sampling density is not adapted to the deformations. Thus, only small de-
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formations can be handled without creating holes on the surfaces. Another alternative to point 
clouds are clouds of billboards, i.e. small textured, partially transparent rectangles [Décoret et al. 
2003]. Texture mapped primitives are usually rendered faster than unstructured point clouds as 
the rendering algorithm can utilize more coherence in terms of memory access and address calcu-
lations. 

The expressive power of point-based representations can be improved by storing additional 
attributes at each sample point: [Kalaiah and Varshney 2001] use the second order surface curva-
ture information along with point normals and positions to improve shading and to control the 
sampling density. Alternatively, statistical approximations based on a covariance analysis can be 
used [Kalaiah and Varshney 2003], similar to the technique proposed by [Schilling 2001] for the 
case of bump maps. 

3.2.2.3 Improving Rendering Quality and Speed 

The display of point clouds on raster graphics devices is subject to aliasing issues as this is the 
case for all discrete rendering techniques. [Zwicker et al. 2001a] propose a framework for anti-
aliased rendering coined “Surface Splatting”. The technique is an extension of [Levoy and Whit-
ted 85]: Elliptical Gaussian splats around each sample point are projected to the screen and con-
volved with a unit Gaussian to restrict the splat size to one pixel. Occluded sample points are 
removed by visibility splatting [Pfister et al. 2000] with a small z-threshold to avoid deleting 
sample points from the same surface. The attributes in the image are reconstructed by a weighted 
sum of the attributes, which are re-normalized by dividing by the sum of weights (i.e. the pro-
jected Gaussians). Small weight values are interpreted as object borders. They are translated into 
alpha-values that are used during compositing. An a-buffer algorithm is used as rendering 
backend to support transparency and edge antialiasing. The surface splatting technique can also 
be adapted to volume rendering, as described in [Zwicker et al. 2001b]. 

To improve the rendering speed, surface splatting can be implemented using programmable 
graphics hardware [Ren et al. 2002, Botch et al. 2003]. Alternatively, splatting with a radial basis 
function controlling alpha blended compositing can be used, as proposed in [Rusinkiewicz and 
Levoy 2000, Coconu et al. 2002]. [Botsch et al. 2002] describe a hierarchical encoding scheme for 
software rendering that needs only 2 Bits to encode the position of a point in the hierarchy and 
allows efficient rendering from this representation. In [Dachsbacher et al. 2003] a multi-
resolution rendering technique is proposed that runs completely on a contemporary programma-
ble graphics processor: A QSplat-like hierarchy is stored in a linear list and the first and the last 
node needed for rendering are determined. Then, the corresponding interval in the linearized 
data structure is processed by the GPU. The drawback of this approach is the restricted adaptiv-
ity: Rendering a complete subinterval does not allow an efficient culling of subtrees in the hierar-
chy, effectively leading to a progressive rendering approach with a uniform sampling density (up 
to a constant factor) for the complete scene. As in [Stamminger and Drettakis 2001], the authors 
use instantiation of multiple objects to compensate for the restriction to progressive level-of-
detail. An alternative to GPU-based implementations is to devise a specialized hardware for point-
based rendering [Popescu et al. 2000, Amor et al. 2003]. However, the enormous computational 
resources offered by contemporary commodity graphics accelerators reduce the demands for a 
custom hardware solution. 

3.2.2.4 Raytracing 

Another direction for improving the image quality is a generalization of the rendering technique 
to global illumination techniques. [Agrawala et al. 2000] propose the usage of a LDI representa-
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tion and raytracing for efficient soft shadow calculation, similar to [Lischinski and Rappoport 98]. 
[Schaufler and Jensen 2000] describe a technique for directly raytracing arbitrary point clouds 
based on a local surface reconstruction, allowing for full global illumination calculations. 
[Adamson and Alexa 2003] point out that the surface reconstruction is not necessarily unique, 
leading to artifacts when the surface is viewed under magnification. They propose an improved 
technique based on moving least square surfaces ([Alexa et al. 2001], see also next section) that 
circumvents this problem, but also needs larger computation times. 

3.2.2.5 Points as Modeling Primitives 

As already pointed out by [Szeliski and Tonnesen 92], the simplicity of point clouds (avoiding to-
pology and connectivity issues) makes them a desirable representation not only for rendering but 
also for modeling. An additional motivation for point-based modeling techniques is the growing 
importance of three-dimensional surface scanners that create point clouds as native output for-
mat. Editing of such models directly based on point clouds is potentially more efficient and less 
prone to conversion inaccuracies than editing a primitive mesh created from the point cloud. 

[Pauly and Gross 2001] propose a technique for surface filtering based on a patch-wise local 
parameterization and Fourier transformation. More general surface editing techniques based on 
global and local parameterization and resampling are presented in [Zwicker et al. 2002a]. To de-
vise general surface editing algorithms, it is first necessary to define a unique surface described 
by a point cloud. [Alexa et al. 2001] propose a moving least squares (MLS) approach: The surface 
is given implicitly by defining a projection operator that projects nearby points in space to the 
uniquely defined surface: First, a local coordinate frame is created by a non-linear optimization 
process, according to the point to be projected. Second, the surface is reconstructed locally by fit-
ting a polynomial height field using a weighted least squares approach with Gaussian radial basis 
functions around the point primitives as weights. The technique is extended to a progressive 
multi-resolution approach in [Fleishman et al. 2003]. [Pauly et al. 2003a] use the MLS technique 
to design algorithms for Boolean operations (such as union, difference, intersection) and local 
mesh deformations on surfaces defined by point clouds. A similar technique for Boolean opera-
tions is described concurrently by [Adams and Dutré 2003]. To optimize a point cloud, point cloud 
simplification techniques can be used similarly to mesh simplification techniques. [Pauly et al. 
2002] suggest hierarchical clustering based on covariance matrices, point repulsion techniques 
[Turk 92] and point pair contraction with quadric error metrics [Garland and Heckbert 97]. An 
analysis of covariance matrices for point clouds can also be used for a feature extraction on point 
sampled surfaces [Pauly et al. 2003b]. 

3.2.2.6 Image-Based Rendering 

Point cloud representations have also been used as data structures for the acquisition of three-
dimensional models from photographs: [Matusik et al. 2002] capture geometry and reflectance 
behavior of objects using a visual hull algorithm and controlled lighting settings. The objects are 
represented as surface sample points with directionally varying reflectance properties. [Poulin et 
al. 2003] reconstruct three-dimensional scenes by matching random candidate points against 
multiple images. A three-dimensional real-time video transmission system based on sample 
points is described in [Würmlin et al. 2003]. Sample points with directional emission have also 
been used to build imposters in walkthrough applications [Wimmer et al. 2001]. 
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3.2.2.7 Volume Rendering 

The recent advances in point-based surface rendering have also led to an increasing interest in 
point-based multi-resolution volume rendering techniques. [Hopf and Ertl 2003] use a cluster 
hierarchy created by a hierarchical principal component analysis (PCA) to display large point 
clouds from particle-based numerical simulations. [Welsh and Mueller 2003] resample regularly 
sampled grids using elliptical basis functions for a set of sample points. They propose a Gabor 
wavelet decomposition to guide the resampling process. [Csébfalvi and Szirmay-Kalos 2003] com-
pute x-ray projection images of large volume data sets by quasi-random importance sampling. 
The recent work on point-based surface and volume rendering might lead to the conjecture that 
both disciplines might eventually converge, employing point cloud representations associated 
with varying basis functions as uniform representation. 

3.3 Components of the Point-Based Rendering 
Framework 

3.3.1 Overview 
In this thesis, we propose a set of novel approaches for rendering complex scenes. These ap-
proaches all utilize different point-based multi-resolution data structures to achieve output-
sensitive running times. The following exposition is divided into three main parts: First, we de-
scribe data structures that provide different point-based multi-resolution representations of com-
plex scenes. Second, we discuss different rendering strategies that make use of these data 
structures. Finally, an empirical evaluation is performed. 

Two main data structures are proposed: The dynamic sampling data structures originally 
used in the randomized z-buffer approach [Wand 2000a, Wand et al. 2000b, Wand et al. 2001] 
allows a dynamic creation of random sample points in the scene according to an importance func-
tion based on the position and orientation of primitives in the scene. The approach has been de-
veloped independently, in parallel to the QSplat/Surfels approaches [Rusinkiewicz and Levoy 
2000, Pfister et al. 2000] that are based on precomputed sample sets. It offers more flexibility, 
strongly reduced precomputation times and a better memory efficiency than the precomputed 
data structures. However, this comes at the expense of some computational efficiency. A combina-
tion of the two different approaches leads to a more efficient static sampling data structure. The 
data structure can also be extended to handle animated scenes (keyframe animations) [Wand and 
Straßer 2002]. The different data structures will be described in Chapter 4. 

Based on these data structures, we will employ different rendering strategies: First, we will 
describe forward mapping algorithms that allow an interactive, real-time visualization of complex 
scenes (Chapter 5). Second, we describe a backward mapping (raytracing) algorithm [Wand and 
Straßer 2003a] that uses the multi-resolution representation to speed up the ray sampling proc-
ess (Chapter 6). 

Chapter 7 describes the implementation of our rendering strategies and provides an em-
pirical evaluation. 

In order to show the general applicability of the proposed techniques, we will also discuss 
briefly generalizations to other application areas in Chapter 8. We will consider the problem of 
rendering highly complex volumetric data sets, which can be solved using a similar multi-
resolution approach as in the surface rendering case [Guthe et al. 2002]. We will also describe an 
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extension of the static sampling data structure to support out-of-core storage [Klein et al. 2002, 
Klein et al. 2004]. Additionally, we also describe how sample hierarchies can be employed for 
sound rendering in scenes with many sound emitters [Wand and Straßer 2003c] and how surface 
sampling can be used for real-time rendering of caustic effects in a global illumination system 
[Wand and Straßer 2003b]. We will conclude our discussion of point-based multi-resolution tech-
niques in Chapter 9 with some ideas for future work. 
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Chapter 4 

Data Structures 

In this chapter, we describe different data structures for surface sample set extraction from com-
plex scenes. We will present two alternative approaches: The first technique generates sample 
points dynamically; the second one performs sampling already during preprocessing. In order to 
understand the consequences of different sampling strategies, we will perform a theoretical analy-
sis of different strategies, proving upper bounds for the sample size and deriving confidence prob-
abilities for the randomized parts of the algorithms. 

Our goal is to reconstruct images of complex scenes from a small set of surface sample points. The 
key for doing this efficiently is importance sampling (see also Section 1.3.2.1): We should use a 
sampling density for regions of the scene according to their relevance for the image to be ren-
dered.  Additionally, a stratification of the sample sets can increase rendering efficiency. Never-
theless, the asymptotic efficiency mainly depends on the sampling probability distribution. Figure 
16 shows an example: A complex crowd scene consisting of 575 million triangles is approximated 
by a sample set. A uniform sampling density fails to reproduce objects in the foreground faithfully 
and oversamples objects in the background. A sample set with a sampling density proportional to 
the perspective scaling factor allows an image reconstruction with uniform detail resolution 
throughout the image. If we tried to achieve the same quality with uniform sampling, a sample 
set with a size in the same range as the original scene description would be necessary, leading to 
non-output-sensitive running times. 

In this chapter, we will present different data structures for the extraction of sample point 
sets according to viewpoint-dependent sampling density functions. The actual density function 
depends on the application: For simple perspective mappings (Chapter 5), a sampling density 
according to the perspective scaling in the image seems appropriate8. In the case of recursive ray-
tracing with reflections and refraction, more general density functions have to be applied. In our 
case, we will use the ray density to control the sampling density (see Chapter 6). In order to unify 
the discussion of sampling data structures, we will assume that we are given a sampling density 
function for all parts of the scene. To create sample sets, we assume that it is possible to deter-
mine efficiently the maximum value of the density function for subsets of the scene geometry. 

                                                      
8 Additionally, object features such as surface curvature or variation of texture can be considered to control the sampling 
density [Kalaiah and Varshney 2001, Dachsbacher et al. 2003]. This extension can be included easily in our data struc-
tures, as described later in the discussion. 
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Using this information, we will extract sample sets with a sampling density that approximates 
the given density function in a conservative sense, i.e. the sampling density is guaranteed not to 
fall below the required density. 

4.1 Dynamic Sampling  

4.1.1 Overview 
The goal of our first data structure is to extract random sample points from a collection of trian-
gles with a probability density proportional to the given sampling density function. Three compo-
nents will be used to provide this sampling mechanism: First, we use distribution functions 
according to the triangle areas. Second, we will arrange them in a spatial hierarchy in order to 
control the sampling density for different parts of the scene. Third, an additional global classifica-
tion data structure will be employed to account for the orientation of the triangles and / or to ex-
clude triangles from sampling that require too many sampling points. 

4.1.2 Area-Based Sampling 
First, we assume that the specified sampling density function is constant. Then, obviously, larger 
triangles should receive sample points with a higher probability than smaller triangles. Thus, the 
first step is to choose sample points with a probability according to the area of the triangles. To do 
so, we precompute distribution lists that allow an output-sensitive selection of sample points ac-
cording to the triangle area: 

A distribution list is a one-dimensional array. Each array element stores a reference to a 
triangle and a summed area value (Figure 17). The construction is straightforward: We initialize 

   

   

(a) original image 
(crowd of walking people) 

(b) uniform sample set / recon-
structed image 

(c) perspective importance sam-
pling / reconstructed image 

Figure 16: Sampling strategies. The first sample set (middle column) uses uniform sampling; the second sam-
ple set (right column) was created using importance sampling with perspective scaling as importance func-

tion. Sample sizes: upper row (overview images): 30K sample points, lower row (close-ups): 600K sample 
points, original scene: 575M triangles.
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the current summed area value with zero and then iterate over all triangles in arbitrary order. In 
each iteration step, we add the area of the current triangle to the current summed area value and 
store this value in the array element along with a reference to the triangle. Obviously, this takes 
O(n) time for n triangles. Using a precomputed distribution list, we can choose random triangles 
with probability proportional to the triangle area by binary searching [Press et al. 95]: First, we 
choose a random number from the interval [0, 1] with uniform probability. Then, we multiply the 
value by the total summed area of all triangles. Then we perform a binary search for the first 
triangle with a summed area value above the random value. This procedure is equivalent to ap-
plying the inverse of the probability distribution function to a uniform random variable. This 
leads to random choices with probability proportional to the given probability distribution (see 
Figure 17). After we have obtained a triangle, we choose a random point on this triangle as a ran-
dom linear combination of two of its sides. This yields a random point on a parallelogram. In or-
der to obtain points on the triangle only, we mirror points located above the diagonal of the 
parallelogram. The whole sampling procedure takes O(log n) time per sample point. 

At this point, we can incorporate a feature-based importance function. In order to increase 
the sampling density in areas of high surface curvature [Kalaiah and Varshney 2001], we can 
multiply the area values of triangles by a measure of surface curvature [Meyer et al. 2002] before 
constructing the distribution lists. Similarly, areas of high color variation can be assigned a 
higher sampling probability. It is also possible to support more general rendering primitives than 
triangles. The only requirement is that we are able to fetch a random point with (at least ap-
proximately) uniform probability from the surface of the primitive. 

4.1.3 Spatial Adaptivity 
Distribution lists can incorporate arbitrary importance functions. However, they are static. View-
dependent sampling densities cannot be handled efficiently. If we included a view-dependent 
sampling density into the distribution lists, we would have to recompute the complete list every 
time the observer moves. This means that we lose the output-sensitivity of the approach, as the 
recomputation takes linear time. Thus, we need additional data structures to account for dynami-
cally changing sampling densities. 

 
Figure 17: Distribution lists. A distribution function is computed by summing up the triangle 
areas. Then, triangles are chosen according to this distribution function by searching for the 
first triangle with a cumulative area value that exceeds a uniformly distributed random num-

ber. Each sample triangle is determined in O(log n) time for n triangles. 
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4.1.3.1 The Spatial Hierarchy 

Usually, the desired sampling density for a certain viewpoint depends strongly on the spatial 
location. This dependence usually shows some coherency, i.e. we can expect the sampling density 
to be similar in neighboring areas of the scene. Thus, we can establish groups of triangles in close 
proximity and assign a similar sampling density (per unit area) to all triangles in such a group. 
The size (spatial extends) of the group should also be adapted to the desired importance function. 
For example, we can expect a stronger variation of the sampling density in close proximity to a 
viewer than for triangles that are farer away. In order to allow for groups of varying size, we em-
ploy a spatial hierarchy of groups. We use an octree [Samet 89] to define the spatial hierarchy of 
groups of triangles. First, we define some notation (Figure 18): 

A d-dimensional quadtree (octree in case of d = 3) for a scene S ⊆ Rd is a 2d-ary tree that di-
vides Rd into axis aligned bounding boxes as follows: We associate a d-dimensional bounding cube 
C(ν ) with every node ν  of the tree. The root node is given by a cube of minimal side length that 
contains all objects of the scene S. The cubes of child nodes are obtained by dividing the parent 
node into 2d subcubes by splitting the parent cube in its middle in all dimensions. 

Additionally, a set of geometric objects obj(ν ) is associated with every node ν of the hierar-
chy. The smallest axis-aligned bounding box enclosing all objects associated with the current node 
and with all direct and indirect child nodes in the subtree below is denoted by B(ν ). 

To build an octree for the triangles t1,…,tn in our scene S, we first calculate a bounding cube 
for the scene. This will serve as cube C(ν r)  for the root node ν r. Then we apply the following recur-
sive construction procedure: If the current set of triangles contains less than a constant number of 
nmax triangles, we associate the set with the current node and end the recursion. Otherwise, we 
split the cube C(ν ) of the current node ν  into 8 subcubes. We go through the current triangle set 
and put each triangle in the construction list of that subcube that contains the center (arithmetic 
average of the vertices) of the triangle. Then the construction procedure is called recursively for 
all non-empty construction lists of the child nodes. 

The data structure can now be used to speed up the identification of triangles from a cer-
tain region R ⊆ R3 (range queries, see also [de Berg et al. 97]): We recursively traverse the tree. If 
the bounding box B(ν ) of the current node ν  intersects with R, we report those triangles from 

  

Figure 18: Definition of bounding boxes for octrees. C(νννν ) de-
notes the cube associated with a box due to splitting the root 

box, B(νννν ) is the bounding box of the associated triangles obj(νννν ). 

Figure 19: Limiting the octree bounding 
box overlap using tolerance regions. Tri-
angles exceeding the tolerance region are 
stored in the corresponding parent node. 
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obj(ν ) that intersect with R and continue the traversal for all child nodes. Otherwise, we stop the 
recursion. 

4.1.3.2 Improvements 

Our triangle hierarchy still has some flaws: The first problem is overlapping of the nodes: As tri-
angles are sorted into subcubes according to their center, they are allowed to exceed the octree 
cubes C. Thus, the bounding boxes B of the nodes in the tree can overlap. This can lead to per-
formance penalties in geometric range queries because multiple octree nodes have to be visited to 
find objects lying in the same geometric range. In order to limit this effect, we modify the triangle 
selection procedure: Our goal is to limit the overlapping to a constant factor, i.e. the volume cov-
ered by bounding boxes B at each level in the hierarchy in the tree should only exceed the volume 
of the octree boxes C by at most a constant factor. This can be ensured by enforcing that the 
maximum side length of B-boxes must not be larger than a constant factor (1 + δ ) times the side 
length of the corresponding octree cube C. Typically, we allow a factor of 1.25, leading to at most 
an increase of volume of 1.253 ≈ 2. If the extends of a triangle exceed the extends of a child cube 
by more than δ /2, it is not passed to the child node but stored in the parent node (see Figure 19). 

This modification of the data structure is important in practice. Otherwise, the triangle hi-
erarchy can easily degenerate and offer only a bad spatial classification. Besides this problem, 
there are two additional issues concerning memory requirements and construction time. How-
ever, these are more of theoretical interest: 

The second problem is the limitation of memory requirements: Theoretically, the data 
structure might consume an arbitrary amount of memory. In order to guarantee that the con-
struction procedure terminates, we have to assume that all centers of the triangles are disjoint. 
Otherwise, the recursive subdivision could continue endlessly. This is no severe restriction as it is 
obviously always fulfilled for non-degenerated (non-zero-area) triangles that are disjoint except of 
their edges. If we assume that every leave node contains only 1 triangle (nmax = 1), the depth of 
the octree is given by the logarithm in base 2 of the ratio of the side length of the root bounding 
cube to the smallest distance of two triangle centers in the scene [de Berg et al. 97]. However, this 
still means potentially unlimited memory requirements of the data structure. In order to enforce 
linear memory consumption, we have to introduce shortcuts [Bern et al. 90, Fischer et al. 98]: The 
large memory consumption is due to useless splits. A split into child nodes is useless if it does not 
divide triangles from one another but all triangles are stored in the subtree of one child node only. 
In this case, we do not store the split explicitly but shrink the subcube C. We calculate the bound-
ing box of a subcube that enforces a split by calculating the bounding box of the child geometry 
and round the coordinates: Rounding means that we calculate the next-larger power of two corre-
sponding to the side length of the box and then move the coordinates of the box outwards to the 
closest position in a grid of this power of two in the parent box. Then this box is subdivided and 
the corresponding child nodes are created. This data structure provides the same information as 
the full tree (the missing useless splits can be inferred) but needs only linear memory. This is 
easy to see: Every split divides the current list of triangles into (at most 8) non-empty pieces. In 
the worst case, the split divides at least two triangles from one another. This means that the data 
structure cannot contain more splits (i.e. octree nodes) than triangles. Thus, it will use linear 
memory. 

The third issue is construction time: The algorithm presented above has a worst case Θ(n2) 
running time. In the worst case, every node splits only one triangle from the others. Nevertheless, 
it needs linear time to inspect all triangles and sort them into the lists for the child nodes, leading 
to quadratic construction time. To avoid this behavior, we can employ a technique proposed by 
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[Callahan 95]: The problem is that one child node might contain most of the triangles while the 
others contain only a constant number of triangles. To avoid this situation, we continue to divide 
child lists into child nodes until each list contains less than n/2 triangles. Then we apply the algo-
rithm recursively to all child lists that still contain more than nmax triangles (Figure 20). If we can 
perform this divide step in linear time, we will obtain O(n log n) construction time: The length of 
the remaining lists will be less than half the size of the input so that O(log n) steps with O(n) 
running time each are necessary. How can we perform a linear time division step? To divide a 
point set (i.e. the centers of the triangles) into small sublists according to octree boxes, we first 
interpret an octree node as a binary tree of splits in the three coordinate directions (1 in x-, 2 in 
y-, and 4 in z-direction). In order to perform one such binary split efficiently, we start with three 
sorted doubly-linked lists, containing the triangles sorted by the x-, y-, and z-coordinates of their 
centers. For the root node, the lists are sorted explicitly in O(n log n) time. For the recursive calls 
to the divide algorithm, they will be constructed on the fly. To perform one split in one of the 
three possible directions we first copy all three lists. Then, we go through the corresponding list 
in alternating front and back order. Thus, we can find the first entry that exceeds the splitting 
plane in the middle in time proportional to the size of the smaller of the two sets. The triangles 
corresponding to the smaller of the two sets are deleted from the lists. In the copy of the lists, the 
triangles are not deleted but a pointer to the corresponding child node is stored at the list entry. 
The remaining lists are still sorted and contain all triangles for the larger of the two halfs. Thus, 
we can apply the technique recursively until the remaining child list contains less than half the 
triangles of the original list. Afterwards, we must sort the constructed child lists. We do this by 
going through the three copies of the original triangle lists and follow the pointers to the child 
nodes in order to append the triangle to the corresponding child list. Then, we have the same 
situation at each unfinished child node as at the beginning and we can call the construction pro-
cedure recursively for each unfinished child. 

Care must be taken to integrate the short-cut technique into this scheme. To do a short-cut, 
we must augment the splitting planes: Instead of using the middle of the current node, we have to 
calculate a potentially shrunk child node and use the middle of this node for splitting. The corre-
sponding calculations can be done easily every time we start a new node: As we have sorted lists 
for the triangles in this node, we can determine the bounding box of the triangles in all three-
dimensions and do the short-cut calculations as described above. 

Using this technique, we can construct an octree with short-cuts in optimal O(n log n) time 
using optimal O(n) space. The construction time is optimal because the data structure can be used 
to output a sorted list of triangle centers in one of the three coordinate directions. Sorting of a set 
of arbitrary real numbers is an Ω(n log n) problem. Hence, the construction time cannot be im-
proved asymptotically. The optimality of the space requirements is obvious. 
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Figure 20: Asymptotically optimal octree 

construction in O(nlog n) time. 
Figure 21: Nested storage of the distribution 

lists for the octree nodes. 
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The last two improvements cause a considerable implementation overhead. In practice, 
they are usually not necessary: Typically, the triangle sets are distributed fairly uniformly. Note 
that we need an exponentially decreasing spacing of triangle centers to run into problems with 
the size or the construction time of the data structure. Restricted irregularities do not matter as 
the size of the octree boxes shrinks exponentially even without short-cuts. Thus, the proposed 
improvements have not been implemented. They are just given to show theoretically optimal con-
struction time and space of the proposed data structure. 

4.1.3.3 Integrating Distribution Lists 

In order to use the spatial hierarchy to control the sampling density, we have to incorporate dis-
tribution lists into our spatial hierarchy. A naïve approach would be to build a distribution list for 
each node in the octree, containing all triangles in the corresponding subtree. However, this 
would lead to best case Ω(n log n) and worst case Θ(n2) space requirements. To maintain linear 
memory complexity, we use nested distribution lists: A depth-first traversal of the octree yields a 
linear enumeration of the octree nodes and the stored triangles. The enumeration has the prop-
erty that every subtree in the hierarchy appears as subinterval in the linearized list. Thus, we 
can use one distribution list for all octree nodes. We build this global distribution list by perform-
ing a depth-first traversal. At each node ν, we first insert the triangles obj(ν ), which are assigned 
to the node itself, into the distribution list. Then we perform the procedure recursively for all 
child nodes. Lastly, we store two indices in node ν  that mark the interval of the triangles of that 
node and the corresponding subtree. Using this information, we can chose sample points with 
uniform probability from all triangles contained in a node ν  using the same strategy as described 
in Section 4.1.2. The only difference is that we have to restrict the search to the interval defined 
by the two indices stored in ν  and that we have to scale the random numbers used for triangle 
selection to the according area interval. 

4.1.3.4 The General Sampling Algorithm 

Using this data structure, we can choose surface sample points according to general importance 
functions. We require two operations on the importance function: First, we must be able to de-

Algorithm ε -sampling(Node ν ): 

 If maxSamplingDensity(B(ν )) > 0 Then 

  If maxSamplingDensity in B(ν ) is sufficiently uniform 
  or ν  is a leave node Then 

   numberOfSamplePoints := maxSamplingDensity(B(ν )) · area(ν ) 
   For i:=1 To numberOfSamplePoints Do 
    chooseRandomPoint(ν ) 
   End For 

  Else 

   For each children c of ν  Do 
    ε -sampling(c) 
   End For 

  End If 

 End If 

Algorithm 1: Conservative sampling of an importance function using a spatial hierarchy. 
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termine whether the sampling density is sufficiently uniform within a given axis aligned bound-
ing box B. The choice of this criterion is a trade-off between approximation accuracy and running 
time. Second, we must be able to calculate the maximum sampling density that is found within 
such a bounding box in order to determine a conservative sample size. Using this information, we 
can employ the following algorithm to obtain a sample set with a sampling density that is a con-
servative approximation of the original one (Algorithm 1): We perform a depth-first traversal of 
the hierarchy and measure the ratio between the maximum and the minimum sampling density 
within the current node. If the sampling density does not vary significantly within the current 
node, a set of random sample points according to the area of the triangles is generated and the 
recursion is stopped (the area of the triangles in the box can be determined using the distribution 
list). Otherwise, the algorithm is applied recursively to the child nodes until the desired accuracy 
is met. The running time of the algorithm depends on the specified importance function and the 
approximation criterion. A detailed analysis for different perspective importance functions will be 
given in Section 5.2.3. 

4.1.4 Orientational Adaptivity 
For perspective projections, the sampling density depends mainly on the distance of a group of 
objects to the viewer and on the angle under which a viewing ray meets the surface of an object. 
Up to now, we have only performed a classification concerning the spatial location, i.e. we can 
only incorporate the distance into our importance function efficiently. To improve the sampling 
accuracy, we can augment our data structure in order to account for orientational properties of 
the sampled objects. The space of all surface orientations of a triangle can be represented as the 
unit sphere, containing all possible normal directions. Thus, we have a two-dimensional domain 
of possible surface orientations. A problem of importance functions depending on the orientation 
is that the surface orientation is independent of the spatial location of a triangle. For the spatial 
classification we have usually coherence among the three spatial coordinates: Surface points in 
close proximity have usually a similar importance (at least for simple perspective projections). If 
we include the orientation into our importance measure, the orientation of the triangles can be 
arbitrary, independent of the spatial location9. Thus, it is probably not efficient to incorporate the 
orientation as two additional axes into our spatial subdivision scheme, leading to a 5D-
subdivision. 

                                                      
9 unless we have to deal with simple smooth surfaces, which are not our primary target as they are handled well with 
mesh simplification techniques 

  
Figure 22: Classification by normal orientation 

 using normal classes in polar coordinates. 
Figure 23: Theoretical alternative: two-level tree. 
For each spatial node, a quadtree in the orienta-
tional domain is stored, containing all triangles 

from the subtree of its node. 
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Instead, we just do a simple preclassification: We divide the domain of all orientations into 
classes of similar normals. In our implementation, we use a simple regular grid in polar coordi-
nates. However, this might be improved by employing e.g. a regular subdivision of a Platonic solid 
to define the classes of similar normals. Afterwards, we build a spatial subdivision structure for 
each of the obtained normal classes (see Figure 22). The sampling algorithm is then applied to 
each of the classes, effectively multiplying the spatial classification effort by the number of nor-
mal classes. The calculation of the number of sample points in Algorithm 1 can use the additional 
orientational information to improve the estimation of the necessary sampling density. 

An alternative to the preclassification approach could be a multi-level tree, similar to range 
trees [de Berg et al. 97]. In this data structure, a quadtree in the domain of all normal vectors is 
build for all triangles in the subtree of each node in the spatial hierarchy (Figure 23). This ap-
proach would allow a more adaptive classification by surface orientation than a simple regular 
preclassification. However, the data structure would consume O(hn) memory for n triangles and h 
being the height of the spatial tree10. This is probably much too much for large scenes. Addition-
ally, this data structure does not allow for instantiation in order to encode complex scenes more 
efficiently. Thus, we have not examined this option more in detail. 

4.1.5 Identifying “Large Triangles” 
Sample points are only an efficient representation for rendering if the ratio between the number 
of triangles and sample points is large. Rendering of low-detail models with many sample points 
wastes computational resources. A criterion for efficient sampling is the number of sample points 
per triangle. If this number is larger than a small constant (say at most 1-3 points per triangle) 
sampling becomes inefficient. We call triangles that receive more sample points than the specified 
constant bound large triangles. To identify large triangles, we have to consider both the view-
dependent sampling density and the actual size (more precisely the area) of the triangles. During 
the execution of the sampling algorithm (Algorithm 1), the actual sampling density employed for 
creating sample points is known exactly but the area of the triangles may be arbitrary. 

In order to provide the missing information, we can employ preclassification by triangle 
area (area classes, see Figure 24): We consider the area values of all triangles in the scene and 
divide the corresponding area interval on the real line into classes of constant relative error, i.e. 
by an exponentially increasing spacing. If amin is the minimum11 and amax the maximum area of a 
triangle in the scene and we employ a factor c to construct the classes, we need logc (amax/amin) 
different area classes. For each class, we construct a spatial data structure (possibly including 
normal classes, as described above). In the sampling algorithm, we multiply the sampling density 

                                                      
10 In each of the h levels of the spatial tree, ≤ n triangles are stored in the orientational quadtrees. 
11 To employ the exponential spacing, we must assume amin > 0. 

  

Figure 24: Classification by triangle area. The area 
value of the classes increases exponentially. 

Figure 25: Using the octree as distribution tree. 
Local distribution lists are used to choose child 

nodes. 
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by the minimum area of the triangles. If this value exceeds a certain threshold, we report all tri-
angles of the subtree instead of generating sample points. The effort for the classification is mul-
tiplied by the number of area classes. Due to the exponential spacing, the number of area classes 
is usually fairly low. 

The overhead of the introduction of area classes can be avoided in special cases: For certain 
sampling density functions and approximation criteria, the size of the bounding box and the sam-
pling density are in a fixed relation if we fix the approximation accuracy a priori (see Section 
5.2.3.2). Thus, we can directly store the large triangles in the octree node at which the sampling 
density becomes too large, creating too many sample points on the triangle. 

4.1.6 Instantiation 
As described in the Section 1.1.1, we would like to encode our scenes as scene graphs. This allows 
the specification of large amounts of geometry that would not fit into memory in an explicit repre-
sentation. This scheme should also be adapted to the sampling data structure in order to allow 
processing large scenes. 

The idea used for integrating instantiation is fairly simple: We extend our data structure to 
allow references to complete data structures to be handled in addition to simple triangles. When-
ever a part of the scene is instantiated multiple times, a separate sampling data structure is build 
for that part of the scene. Then, pointers to this data structure are inserted into a global data 
structure along with a transformation matrix that describes the differences among the instances. 
This scheme can also be applied hierarchically, allowing for encoding arbitrary scene graphs (see 
Figure 26). The sampling algorithm can be easily modified to account for this instantiation tech-
nique: Whenever the sampling algorithm tries to step into an instantiated part of the tree during 

       compound object

       compound object

transf

triangles

triangles

       compound object

transf

 

Figure 26: Scene graph based instantiation combined with spatial data structures for efficient sample point 
extraction. Spatial data structures can be assigned to groups of objects. A complete data structure is treated 
as compound object and inserted into a parent data structure. During traversal, the instantiation transforms 

have to be considered to retain the impression of one “large” octree. 
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recursive descent, the camera is just transformed by the inverse of the instantiation transforma-
tion12 and the traversal is continued in the instantiated tree. The transformation matrix is re-
corded on a transformation stack. If sample points (or “large” triangles) are generated, these are 
transformed by all matrices on the transformation stack (last transformation first) in order to 
place them in the correct spatial position. The other case is that sample points are drawn from 
instances but the sampling algorithm did not descend into the corresponding tree. To deal with 
this case, we also insert a reference to the sub-data structure into the distribution lists, side-by-
side with triangles. If the random sampling algorithm (Section 4.1.2) selects a data structure, the 
sampling is called recursively for the sub-data structure. Again, the sample points have to be 
transformed by the instantiation transform in order to put them at their correct place. 

This scheme also works with preclassification by area and/or orientation: The instantiated 
data structures consist of different classes (by normal/area) that have to be inserted into the cor-
responding classes of the parent data structure. The only necessary restriction is that all classifi-
cations of all data structures must use the same classes (i.e. identical area intervals and identical 
normal sets). For a multi-level tree (Section 4.1.4), instantiation does not seem to be possible. 

4.1.7 Dynamic Updates 
So far, our data structure allows a rapid extraction of sample sets (and large triangles) for a given 
importance function, i.e. for given viewing settings. Thus, we can render walkthrough animations 
in which the user moves through a static scene efficiently. However, it is not possible to change 
the scene dynamically. Thus, we are neither able to edit the scene interactively nor is it possible 
to incorporate moving or deforming objects without rebuilding the data structures completely and 
invalidating the output-sensitivity. 

In order to allow for dynamic changes, we need update operations that perform an efficient 
local modification of the scene. At least, this would permit handling small modifications of the 
scene efficiently. If large parts of a scene change dynamically, we need a priori knowledge of the 
future behavior to be able to construct a sampling data structure during preprocessing (see Sec-
tion 4.3). Otherwise, an output-sensitive rendering strategy based on precomputed data struc-
tures does not seem to be feasible. 

A dynamic version of our sampling data structure should support two operations: insert() 
adds a triangle (or a complete instance along with its individual transformation) into the data 
structure. delete() removes a triangle (or an instance) from the data structure. An update() 
operation that changes the shape of a triangle or the transformation of an instance can be easily 
constructed using a sequence of a delete() and an insert() operation.  

Two tasks have to be performed for a dynamic modification: First, the spatial hierarchy has 
to be updated. Second, the distribution lists must be updated. For the delete operation, an addi-
tional location step might be necessary if no pointer to the object to be removed is known but only 
its geometry. The update of the spatial hierarchy is a standard task. For the insert operation, we 
first have to locate the node in which the object has to be inserted by descending the tree in O(h) 
time (h = maximum depth of the tree). Then we check whether the new node is a leaf node. And if 
so, we check if it will contain more than the maximum of nmax objects allowed. If this is the case, 
all triangles are removed from the leave node and a new subtree is constructed by recursive split-

                                                      
12 This is only possible for transformation matrices that can be mapped to a movement of the camera position. Thus, we 
allow only orthogonal transformations (rotations, mirroring), uniform scaling, translations, and combinations of these 
transformations as instantiation transformations. 



62 4 Data Structures 

 

ting using the same recursion as during the static construction of the tree. Otherwise, the new 
object is inserted into the object list of the node. 

Deleting objects from the tree is done similarly: After (if necessary) locating the node of the 
object in O(h) time, we remove the object from the node list. Then, we check if the subtree of the 
parent node will contain no more than nmax triangles. This can be done efficiently by maintaining 
a counter of the number of contained objects in each tree node. The update of this counter can be 
done in O(h) time during the traversal of the tree. If the number of triangles in the subtree of the 
parent node is small enough, the subtree is collapsed into the parent node to avoid nodes with 
small sets of triangles. 

After the update of the spatial hierarchy has been devised, we must now consider the up-
date of the distribution list. The problem is that the distribution lists storing the accumulated 
area values in the static case cannot be updated efficiently. Therefore, we substitute a dynami-
cally balanced search tree for the distribution list, e.g. a binary AVL-tree [22]: The leaf nodes of 
the AVL-tree store the area values of the triangles and the inner nodes store the sum of their child 
nodes. The entries in the tree are ordered by a depth-first traversal of the octree. Therefore, each 
octree node can mark up its region in the tree by two pointers to leaf nodes in the search tree, 
similar to the subintervals of the original distribution list. 

When a dynamic insertion or deletion takes place, a leaf node is added or removed from the 
AVL-tree. The summed area values of the parent nodes must be corrected, taking O(log n) time 
and the tree must be rebalanced. The balancing operations of an AVL-tree preserve the order of 
the tree, so the intervals of the octree nodes are not affected by this step. The summed area val-
ues must be corrected for all nodes that are rotated during balancing, but this can be done locally 
in O(1) time per node. O(log n) balancing operations are necessary, so the overall update time  is 
O(log n + h), the sample selection time remains O(log n) as in the static case. 

To choose sample points, a similar search algorithm as in the static case can be used with 
the AVL-tree: The search algorithm that selects a sample point now first runs upwards in the 
AVL-tree from the leaf nodes marked by the pointers in the spatial hierarchy, summing up all 
area to the left and to the right of the search interval. This information is used to determine the 
area in the subinterval. A random number from the range [0,1] is taken and it is scaled to the 
computed interval. Then, the search algorithm starts from the root searching the leaf node: At 
each inner node the first child is chosen, if its area value is not smaller than the search value. 
Otherwise, the second child is chosen and the search value is decremented by the area value of 
the first child. Overall, we maintain a guaranteed O(log n) sample point selection time. 

The implementation of a separated balance search tree can be avoided if the scene consists 
of objects that are uniformly distributed in at least one dimension. Then the octree itself is rela-
tively well balanced and it can be used as distribution tree: In each leaf node, the area values of 
the triangles are stored (Figure 25). In each inner node, a list with the eight summed area values 
for the children is stored. The sample selection algorithm now starts at the octree node that was 
selected by the box selection algorithm and generates a random number between zero and the 
summed area value of the last child node. Then it descends in the tree, choosing the last child 
node with a summed area value below the current search value. The summed area value of the 
child node directly before that node is subtracted from the current search value. So the correct 
leaf node can be found in O(h) time. Dynamic updates can be done in O(h) time, too: After adding 
or deleting a node from the octree in O(h) time an additional traversal from the leaf affected to 
the root node is necessary to correct the summed area values. 
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For practical applications, the second variant is probably the more interesting one, because 
although the first variant is asymptotically faster, it introduces a considerable overhead. Fur-
thermore, the implementation of the second variant is much simpler and as the height of the oc-
tree is often not very large for practical scenes, the increase of the running time of the sample 
selection algorithm to O(h) may be acceptable. Our implementation uses only the second variant. 
In practice, we encountered only a moderate performance penalty for the sampling algorithm. 

4.2 Static Sampling 

4.2.1 Overview 
In this section, we propose a modification of the dynamic sampling data structure to trade off 
flexibility for speed. Motivated by the Surfels/QSplat approach [Pfister et al. 2000, Rusinkiewicz 
and Levoy 2000], we will use precomputed sample sets. This allows us to improve upon draw-
backs of the original dynamic sampling data structure: Dynamic sampling is less efficient as pre-
computed sample sets for several reasons: First, it is of course faster to lookup precomputed 
values than generating them dynamically. The generation procedure uses a binary search for 
random values. This leads to a second problem: The sampling algorithm does not show memory 
locality but potentially accesses the complete scene data base. This leads to performance penalties 
on modern microprocessor architectures that use a cache-based memory hierarchy that provides 
at least an order of magnitude speedup for localized memory accesses. The situation is even worse 
for out-of-core storage: If we have to deal with scenes that do not fit into main memory, we will 
observe a fatal performance penalty as random accesses are very expensive for secondary memory 
such as harddiscs. The third, important problem is the structure of the sample sets. The dynamic 
sampling data structure always produces random sample sets. In order to avoid noise artifacts (or 
even holes in the images), we are forced to oversample (see Section 4.2.3 and 5.3.1 for a detailed 
analysis). The convergence speed for random sampling is only O(

1−
n ) (see Section 1.3.2.1). Thus, 

we need a considerable number of sample points to construct high-quality images. Using precom-
puted sample sets, the sampling pattern can be optimized. This reduces the sampling overhead 
considerably. Furthermore, for certain illumination models, prefiltering as proposed by [Pfister et 
al. 2000] can be applied to avoid the noise problems completely. 

However, using precomputed sample points means that we must limit the resolution of the 
point representation a priori. In order to avoid approximating the original geometry, we include 
the original geometry in cases where a sampled representation becomes inefficient. Thus, we are 
able to retain linear memory consumption. 

In the following, we will describe two variants of the data structure: The first one yields 
sample points similar to the dynamic data structure described in the preceding section. However, 
it allows for more optimized, stratified sampling pattern and strongly reduced random memory 
access. A nested sample storage scheme ensures linear memory consumption. The second variant 
stores sample points without hierarchical nesting, which could lead to slightly increased memory 
demands. However, this allows more involved preprocessing strategies for the sample sets such as 
prefiltering of color attributes. A detailed comparison of all the data structures proposed in this 
thesis will be given in Section 4.4, concluding this chapter. 
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4.2.2 Precomputed Sample Sets 
The main modification in comparison to the previous data structure is the usage of precomputed 
sample point sets instead of distribution lists. As proposed for the Surfels data structure [Pfister 
et al. 2000], we store precomputed sample sets in the nodes of the tree. Following [Pfister et al. 
2000], we fix the ratio between the size of the octree boxes (side length of C(ν )) and the sampling 
density. For each box, the spacing among sample points will be set to a constant fraction (typi-
cally 8 - 64) of the side length of the octree box. In each box, we store point clouds according to this 
sampling density. To extract sample points according to a given density function, we can employ 
Algorithm 1 with small modifications: Instead of stopping the traversal if the desired accuracy is 
met (i.e. the density function varies only by 1 + ε  the current bounding box), we stop the traversal 
if the demanded sampling density is reached (or exceeded). This strategy offers less flexibility 
than the dynamic data structure, which decouples the choice of regions of constant sampling den-
sity and their actual sampling density. However, we will show in Section 5.2.3 that this approach 
is equivalent to using a fixed approximation accuracy for perspective importance functions that 
demand a sampling density proportional to the squared inverse z-distance. In other words: We do 
not lose performance for perspective mappings, which is the most important case. 

To construct the hierarchy, we build an octree similar to that described in Section 4.1.3: 
The octree splits triangle centers from one another until each node contains no more than a con-
stant number of nmax triangles. Triangles that exceed the cubes of the octree nodes by more than a 
constant factor of the corresponding box side length are not propagated to child nodes but stored 
in the corresponding inner node. Additionally, we compute the expected number of sample points 
a triangle will receive at each hierarchy level. Triangles that exceed a small number pmax (usually 
1-3) are stored in the current node and not propagated to child nodes. In the subtree below the 
current node, they are not considered during sample point generation. Only in nodes above they 
are represented by sample points. For the construction, we employ a simple divide-and-conquer 
algorithm that runs in O(n h) time (h ∈ O(n) being the height of the octree). The asymptotically 
optimal O(n log n) algorithm described in Section 4.1.3 cannot be employed because it does not 
permit sorting out large triangles efficiently. However, in usual computer graphics applications, 
the height h of the octree is a very small (typically O(log n)) value so that precomputation effi-
ciency is no issue in practice. 

We start with a list of triangles and a bounding cube for the set of all triangles. If the list 
contains less than nmax triangles, we return a child node and terminate the recursive construction. 
Otherwise, we check whether the bounding cube can be shrunk in order to create a short-cut. 
Afterwards, the cube is split into 8 subcubes. Then we go through the list and look for large trian-
gles. These are triangles with an area value that leads to an expected sample count of more than 
pmax points or triangles that exceed the tolerance zone of the child nodes (i.e. exceed the child 
cubes by more than a factor δ, see Figure 19). Finally, the remaining triangles are assigned to the 
subcubes according to their center (average of the three vertices) and the algorithm is called re-
cursively to construct the subtrees. 

After the octree has been constructed, sample points have to be generated (see Figure 27). 
To do this, we can employ two different strategies. The first is “nested sampling”. It tries to opti-
mize memory requirements and guarantees linear storage demands: First, sets of random sample 
points are created that cover the stored triangles with a sampling density as specified for the 
boxes in which the triangles are stored. Note that every triangle is stored in exactly one octree 
box with a depth in the tree corresponding to its area value. Next, a stratification algorithm is 
used that optimizes the positions of the sample points and removes superfluous points. Subse-
quently, sample points have to be created for the inner nodes. To do this, we do not compute addi-
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tional points but propagate points from child nodes to the parent nodes (depicted in Figure 27b,c). 
During hierarchy traversal, these points will be found by the traversal down from the root node 
and included in the output of the algorithm. This means that the points for parent nodes have to 
be subsets of the points used for the child nodes. We determine these subsets by just calling the 
stratification algorithm again for child point sample sets. The subset selected by the stratification 
technique is then moved to the parent node. This technique can also only be employed if the sam-
ple points are not modified during stratification. Some simple modifications like quantizing the 
point positions to a regular grid (see Section 4.2.3.3) can be applied on the fly, during hierarchy 
traversal. However, techniques like prefiltering of color attributes by averaging neighboring sam-
ple points cannot be used with nested sampling. 

The nested sampling strategy obviously leads to linear memory requirements: For each tri-
angle, only a fixed number of sample points are created and placed somewhere in the hierarchy. 
The hierarchy itself also needs only linear storage due to the shortcuts. To store points for differ-
ent approximation accuracies even at shortcuts, we can use a simple progressive encoding: We 
run the stratification algorithm multiple times for the different inner nodes that have been left 
out and store the resulting sample sets in order of increasing density13. The resulting point sets 
are stored in order of increasing density so that the fraction necessary for approximating a left 
out inner node can be extracted efficiently. 

The second variant of the data structure uses a “full sampling” strategy: It does not try to 
nest the sample sets but creates a completely new sample set at each node, independent of the 
child nodes (Figure 27d). This also means that we cannot use short-cuts, as we need all inner 
nodes to store point sets with a sampling density corresponding to the node size. Without nesting 
(i.e. reuse of sample points at different hierarchy levels), a progressive encoding at short-cuts in 
the tree is not possible. This leads to a (slightly) increased memory overhead: An octree without 
shortcuts can theoretically use arbitrary amounts of memory. However, this is only the case if the 
height of the tree is very large: Each “useless” split that would have been skipped by short-cuts in 
the tree shrinks the extends of the bounding box by a constant factor. An input scene can only 
lead to a large number of such useless splits if the scene consists of objects with very different 
scale (i.e. small objects with very small distance in a scene of large extends). The scale differences 
must grow exponentially to yield a linear increase of memory. Thus, this is rarely a problem in 
practice. The same arguments also apply to the number of sample points: The number of sample 

                                                      
13 This increases the computation time from O(hn) to O(h′n), with h′ being the height of the encoded tree rather than that 
of the short-cut tree. 

    

(a) Creating the octree 
from a set of triangles. 

(b) Creating sample point 
for triangles. 

(c) Then: Propaga-
tion of sample points 

to higher octree 
levels. 

(d) Alternative to (b), (c): 
full sampling at all octree 

levels. 

Figure 27: Construction of a “static sampling” data structure: First, an octree is constructed for the triangles 
of the scene. Second, two different sampling strategies can be employed to create point sample representa-
tions. The first strategy creates sample points for the triangles in the octree and propagates them upwards 

in the hierarchy (“nested sampling”), creating a progressive point set. The second strategy creates new sam-
ple sets at every hierarchy level (“full sampling”).
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points is proportional to a/d2 with a being the area of the objects and d a constant fraction of the 
side length of the node bounding box C(ν ) (in some cases also to Θ(a/d2 log a/d2), see next section). 
Thus, the number of sample points again shrinks exponentially with decreasing depth in the tree, 
starting at a constant number of points per triangle. This does not guarantee linear memory de-
mands in a strict sense but again it is very unlikely to observe problems in practice. 

4.2.3 Sampling and Stratification 
For creating the sample sets in the nodes of the spatial hierarchy, different sampling and stratifi-
cation strategies can be applied. We will discuss different options in this subsection: 

4.2.3.1 Random Sampling 

The first sampling strategy is purely random sampling as already used for the dynamic sampling 
data structure (Section 4.1). The sampling technique is very simple: In order to create a sample 
set for a given sampling density, a set of surface points is chosen with uniform probability density 
on the surfaces of the triangles, independent of one another. In order to propagate a low resolu-
tion version to a parent node for nested sampling, a sufficiently large portion of the sample points 
is chosen randomly and moved from the child nodes to the parent. To perform random sampling 
successfully, we have to answer one question: How many sample points are necessary to satisfy a 
given sampling density? In the next subsection, we will analyze how many random samples must 
be taken from a given area fragment to guarantee a given sample point spacing. Using these re-
sults, we can decide how many points have to be included in the sample set and how many must 
be propagated to higher levels in order to ensure coverage of the surface. 

Definition of d-sampling 

The sampling density is informally given as maximum spacing among “adjacent” sample points 
on a continuous surface. To analyze different sampling approaches, we first have to make the 
notion of sampling density more precise. First, we denote a solid sphere of radius r around a point 
x by Br,x, i.e. Br,x := {y | ||y – x|| ≤ r}. Next, we define the notion of an interior point within a piece 
of geometry: A point is called rmax-interior, if all spheres Br,x around point x with radius r contain 
at least a surface area of πr2 for 0 ≤ r ≤ rmax, i.e. the area measure area(Br,x ∩ S) exists for all 0 ≤ r 
≤ rmax and is no smaller than πr2. Now, we define the notion of d-sampling: Let us assume we are 
given a surface S ⊆ R3 consisting of a finite set of triangles and a finite set P ⊆ S of sample points 
from S. Then P shows a sample spacing d (d-sampling for short) if there is a sample point pi ∈ P 
within a distance d/2 from every d/2-interior point x ∈ S. This definition enforces a sampling with 
maximum sample spacing d on continuous surfaces (“interior points”) within S. A coarser point 
spacing is only allowed at borders or if the surface contains holes so that the area condition is not 
fulfilled (see Figure 28). This is desirable because it is not necessary to cover regions in the scene 
that are fragmented or containing holes with the same sampling density as continuous surfaces. 
A reduced sampling density in such regions can lead to holes in the image reconstruction later on. 
This is acceptable as the original model itself also shows holes. It is also acceptable at borders, 
which cover a pixel (or a similar reconstruction area) only partially. However, at interior points, 
located within a continuous surface, this is not acceptable and avoided by our definition. 

Formal Analysis: Sufficient Conditions for d-Sampling 

Our question is now: How many random, uniform, independent sample points are necessary until 
we can be sure that a surface is sampled with sample spacing d? To answer this question, we per-
form in a rough sketch the following steps: In order to cover the surfaces with a maximum sample 
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spacing of d, we divide the surface into symmetric cells of area of Θ(d2). Then we make sure that 
every cell receives at least one sample point. This reduces our question to an occupancy problem 
(Section 1.3.3): For n equally sized cells, the expected number of random points that has to be 
chosen is approximately n·ln n. 

The main problem is the definition of symmetric cells on an arbitrary surface. To do so, we 
start with a regular grid with spacing d)12( 3  that divides space into cubes with diagonal d/4. 
Then we make sure that every grid cell v that intersects with a piece of surface will receive at 
least one sample point in its d/4 neighborhood if the surface fragment comes from the interior of a 
closed piece of surface. Formally, if a d/4-interior point x ∈ S ∩ v exists, we guarantee a sample 
point in distance of at most d/4 to x (Figure 29). We will now first show that this enforces a sam-
ple spacing of d on S. Second, we will analyze the necessary sample size to satisfy these require-
ments. 

To show that the conditions above yield a sample spacing of d on S, we consider an arbi-
trary d/2-interior point x ∈ S. To prove d-sampling, we must show that a sample point exists 
within a distance of d/2: The point x obviously lies within one of the grid cells constructed above. 
In this grid cell, there is at least one d/4 interior point x′: As every rmax-interior point is also rmax/2-
interior, at least x itself fulfills the requirements. By our prerequisites, we know that there is a 
sample point p in distance of at most d/4 to x′. Thus, in at most a distance of d/4 + d/4 = d/2 to x 
we find a sample point p, as required. 

Next, we have to determine how many random sample points are sufficient to guarantee 
that every grid cell containing a d/4-interior point receives a sample point in distance of at most 
d/4 to such a point. To do so, we use an urn model, as discussed in Section 1.3.3. For each grid cell 
containing a d/4-interiour point, we form one “bin” that has to be hit by a randomly thrown “ball”, 
i.e. it must receive a sample point. To estimate the sample size that fills all bins with at least one 
ball with a given probability, we have to count the number of bins and then determine the mini-
mum probability of receiving a ball: We fix an arbitrary d/4-interior point xi for each grid i cell 
that contains such a point. If no d/4-interior point exists, we also need no sample point for the 
grid cell, by definition. The “bin” of the grid cell is hit by a “ball” if a sample point from the area 
fragment Bd/4,xi ∩ S is chosen. This area fragment has at least an area measure of (πd2/16). Con-
sequently, a sample point is obtained with probability of at least (πd2/16) / A = πd2

 / (16A) where A 
denotes the area of the surface to be sampled. To count the number of bins, we allocate an area 
fragment to each bin. Thus, we would obtain at most 16A / (πd2) bins if all bins were disjoint. In 
fact, the bins can overlap so that we obtain a larger number. This increases the potential number 
of bins. Nevertheless, it is easy to see that the maximum overlap factor is bounded. Consider the 
area located in one voxel cell of the grid (see Figure 30). We now determine the maximum number 

  
Figure 28: Definition of d-sampling. A 

sample point must be found within d/2 of 
each surface point if the area within d/2 
around the point amounts to at least ππππr2 

for all 0 ≤≤≤≤ r ≤≤≤≤ d/2. 

Figure 29: Dividing Geometry into bins. A grid divides the sur-
face into fragments. Each fragment that contains a d/4-interior 

point corresponds to a bin, i.e. it should receive at least one 
sample point. The right image shows the overlapping bins sche-

matically in 2d. 
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of bins from other cells that overlap with area in that cell. This yields an area overlap factor that 
is a conservative upper bound for the factor by which the number of bins can be increased. The 
surface area located in the considered cell can only overlap with bins from adjacent cells in which 
a point with a distance of at most d/4 to a point of the inner cell exists. In the three-dimensional 
case, these are at most 80 additional cells. Thus, we cannot have more than an overlap factor of 
81, and thus, we cannot have more than 81·16A/(πd2) = 1296 A/(πd2) bins. 

We want to make sure that we obtain a sample set with sample spacing d with a confidence 
probability of at least s (say s = 99%). According to equation (3) from Section 1.3.3, this means 
that it is sufficient to draw 

 









−−

−−
≥

A
d

s
d

A

k

16
1ln

)1ln(
1296

ln

2

2

π
π  (6) 

random sample points, independent of one another, with uniform probability to guarantee a 
d-sampling with at least probability s. To obtain an asymptotic bound for small d, we replace ln x 
in the denominator by its first order Taylor expansion ln x ≈ x  – 1, valid for values x approaching 
1. Hence, we obtain a sample size of 
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with f := 1 – s denoting the probability for the sampling procedure to fail, i.e. not to yield a 
d-sampling. 

Sampling for Multiple Octree Nodes 

For our “full sampling” data structure, we have to build sample sets for multiple nodes with dif-
ferent sampling densities. However, we want to make sure that we obtain a d-sampling in all 
nodes with a given confidence probability s. In order to guarantee this, we consider all nodes at 
once: Assume that we have given n nodes containing surface areas Ai that should be sampled with 
sampling distances di, i = 1…n. Then we obtain 

 
 

(a) 2d-case: at most 21 bins can overlap (b) 3d-case: at most 81 bins can overlap 

Figure 30: Limiting the overlap factor for the bins. Area contained in the innermost voxel cell (blue) can be 
overlapped by bins belonging to adjacent cells. In the 3d-case, an overlap factor of 81 is a conservative 

bound. 
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different bins. Each bin should receive sample points with (roughly) the same probability. 
Therefore, we perform a two step random selection process: First, we select the node ν i for which 
sample points have to be generated with a probability proportional to the area divided by the 
sample spacing squared (i.e. proportional to the required number of sample points), i.e.  
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In this formula, N is proportional to the number of “required” sample points, disregarding 
oversampling. After selecting the octree node, we choose surface sample points with uniform prob-
ability, as described in Section 4.1.2. Hence, each “bin” receives sample points with a probability 
of at least Prob(ν i)·(minimum probability per bin) = πdi2/(16Ai)·Ai/(Ndi2) = π/16N, which is a con-
stant lower bound for all bins. Thus, we need 
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sample points to obtain a di-sampling in each node ν i, i = 1…n. For a large number of re-
quired samples N, we obtain an asymptotic sufficient sample size of 

( ))log(logO 1−+∈ fNNk  

with f denoting the global probability that the sampling fails (i.e. any octree box does not 
obtain a di-sampling). 

For nested sampling, the analysis above works with a small modification: We sum all area 
values of the inner nodes as in full sampling to calculate the oversampling factor and then place 
all of these points on the levels of the stored triangles only. Afterwards, a constant fraction is 
moved to nodes above in the hierarchy according to the area value and coverage is guaranteed as 
for full sampling. However, this strategy leads to a large number of sample points, violating lin-
ear memory requirements. Thus, it is not favorable to use purely random sampling with nested 
sampling. Instead, we should use the stratification techniques described in the next section (Sec-
tion 4.2.3.2) to generate sample sets: We first create a random candidate set that covers the tri-
angles in the hierarchy safely, disregarding upper levels in the hierarchy. Obviously, this set has 
size O(n log n) for n triangles: As every triangle receives O(1) sample points, we have N ∈ O(n) in 
Equation 9. Then, the stratification algorithm is applied repeatedly to extract sample sets of 
coarser sample spacing. The stratification will work as long as we retain a safe coverage of the 
base triangles, which is ensured by our analysis. 

A Bound for Flat Surfaces 

A lower bound for the sample size can also be derived using heuristic arguments: We divide the 
surface to be sampled into equally sized cells of area c·d2 with regular structure, as depicted in 
Figure 31a. The constant c depends on the shape of the grid. The problem is that these cells can-
not be easily constructed in a formally strict sense for arbitrary surfaces. Therefore, we assume 
that the area is flat so that a simple regular lattice can be used. We assume that each cell re-
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ceives at least one sample point. Then, the constant c can be determined by measuring the area of 
the cells if the maximum distance to a point in the plane is d/2. For a regular square grid, we ob-
tain c = 1/8 = 0.125 (Figure 31b). The resulting bound can be improved slightly by assuming a 
hexagonal grid, yielding c = 3)323( ≈ 0.162 (Figure 31c). In order to make sure that every cell 
receives at least one sample point, we again employ the statistical arguments from Section 1.3.3: 
As we have A/cd2 cells that obtain a sample point with probability of cd2/A, we need to choose 
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sample points in order to guarantee a d-sampling with probability of at least s. For sampling mul-
tiple octree nodes containing surface areas Ai and requiring sampling distances di, i = 1…n, we 
obtain 
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Implementation Notes 

To implement the random sampling procedure, we must choose triangles and octree nodes with 
probability according to their area value. This can be done in logarithmic time per sample using 
distribution lists, as described in Section 4.1.2. However, this procedure is rather involved. In 
practice, a simpler and more efficient algorithm can be used: For each node in which sample 
points have to be generated, we go through all triangles and compute the expected number z of 
sample points for each triangle: We compute the number of sample points according to Equation 
(10) and multiply this number by the ratio between triangle area and the area of all triangles to 
be sampled. This yields the expected number of sample points for the triangle. According to the 
integer part zint := floor(z) of this number, we choose zint random points from the triangle. Then, 
we choose an additional point with probability proportional to the fractional part zfract = z – zint. 
This procedure is not exactly equivalent to random sampling. It tends to distribute the sample 
points more evenly among triangles of similar area, as each triangle will always obtain the non-
fractional part of its expected number of sample points. In practice, this does not lead to prob-
lems, as this tends to yield a more uniform sample point distribution, which is desirable. Addi-

bin

 

area

 

area

 
(a) “bins” on locally 

flat geometry 
(square grid) 

(b) counting the number of bins 
assuming a square grid – each bin 

has an area of 0.125d2 

(c) counting the number of bins assuming a 
hexagonal grid – each bin has an area of 

about 0.162d2 

Figure 31: Constructing bins on flat surfaces to obtain a tighter (heuristic) bound on the sample size 



4.2 Static Sampling 71 

 

tionally, the modified sampling scheme does not ensure to obtain exactly the desired number of 
random points. The desired number of sample points is only the expected value of the procedure. 
However, as the number of sample points is very large, the deviation can be neglected: Obviously, 
only the randomly chosen fractional parts can lead to a deviation to the desired sample size. Let 
Zi denote the random variable that is one if a sample point is chosen with probability pi and zero 
otherwise. Additionally, let k := ∑ =

n
i ip0  be the desired number of sample points. Then, the expected 

value is E(∑ =
n
i iZ0 ) = ∑ =

n
i iZ0 )E( = k. The variance can be computed similarly: Var(Zi) = pi(1 – pi). As 

all Zi are stochastically independent, we obtain Var(∑ =
n
i iZ0 ) = ∑ =

n
i iZ0 )Var( = k – ∑ =

n
i ip0

2 ≤ k. Hence, 
we obtain a standard deviation of no more than k  and thus a declining relative error of O(k-1/2). 
Therefore, the deviation vanishes for large k. As we use the algorithm only for very large k (typi-
cally several million sample points), it is save to use the modified sampling strategy in practice. 

The runtime of the modified sampling algorithm is O(n + k) for n triangles and k resulting 
sample points. This is more efficient than the O(n + k log n) procedure using distribution lists. 

4.2.3.2 Stratification 

Random sampling leads to considerable oversampling. As shown in the previous section, we ob-
tain an oversampling factor proportional to ln n + ln f -1 to guarantee a sample point in each of n 
cells with similar area on a surface with a failure probability below f. In practice, this often leads 
to oversampling factors of about 15-20 (say e.g. ln 1,000,000 + ln 0.01-1 ≈ 18.5). This means that 
only every 15th to 20th sample point would be necessary if the sample points were chosen opti-
mally. Thus, it is not favorable to use random sample sets directly for rendering. Instead, we 
should consider the random point cloud as a “candidate” set and employ a further stratification 
algorithm to remove superfluous points. 

Our postprocessing approaches fall into two different categories: The first are grid stratifi-
cation techniques that detect superfluous sample points by identifying sample points that are 
located in the same cell of a regular grid. The second conceptual approach is neighborhood-based 
point removal: Points can be deleted if their neighborhood contains enough points to satisfy the 
sampling requirements. Figure 35 illustrates the different possibilities. 

4.2.3.3 Grid Stratification 

A simple and effective stratification technique is grid stratification. We superimpose a three-
dimensional grid and assign the sample points to the grid cells in which the points are located. If 
multiple points are found in one and the same grid cell, all points except one are deleted. Option-
ally, we can modify the position of the point in the cell. There are several options such as quantiz-
ing the points to the centers of the cells, computing the average of all points, choosing the point 
closest to the center, or just keep one of the random points (Figure 35b-e). 

One Point per Cell 

The simplest grid stratification strategy deletes all points in each grid cell except one. To obtain a 
d-sampling, we start with a random point set that guarantees an ε -sampling, 0 > ε  > d/2 (see pre-
ceding section). Then we superimpose a three-dimensional grid with diagonal d/2 – ε  on the point 
set. For each cell that receives more than one sample point, the additional sample points are de-
leted. It is easy to see that this procedure yields a d-sampling (Figure 32): Assume we are given a 
d/2-interior point x on the surface. Now, we have to show that a sample point exists in distance of 
at most d/2 to x. The random sample set originally contained a sample point in a distance of at 
most ε. This sample point is contained in one of the grid cells. If it was deleted by the stratifica-
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tion algorithm, another point in the same grid cell was retained instead in a distance of at most 
the diagonal of the grid, i.e. d/2 – ε. Overall, the distance is no more than d/2. 

Quantization 

The variation in point spacing can be reduced by quantizing the point set to the centers of each 
grid cell, leading to a more uniform point distribution (Figure 33): We use a grid with diagonal d/2 
– 2ε  and perform the same procedure as before. Afterwards, all remaining sample points are 
moved to the center of the grid cell in which they are located. This guarantees that a sample point 
is found in at most a distance of d/4 of a deleted point and thus yields a sample set with sample 
distance d/2, i.e. half the sample distance of that computed by the previous technique. If we use 
the same grid size as before (i.e. we must use half the sample spacing ε  for the random candidate 
set), this means that we obtain a sample set with half the sample spacing using the same number 
of sample points. If we apply the sampling procedure to flat surfaces, this effectively reduces the 
number of necessary sample points by a factor of 4 (and thus usually increases the rendering per-
formance by the same factor). 

Averaging / Closest To Center 

The drawback of the quantization technique is that points are moved to an arbitrary position in 
space, potentially away from the original surface. This leads to visible artifacts unless the projec-
tions of the sample points are no larger than a single pixel in the rendered image later on. To 
reduce these artifacts, we can employ a heuristic approximation: Instead of quantizing the points, 
we take the point that is closest to the center of the grid cell. Alternatively, we can also compute 
the average of all sample points in a grid cell to determine the sample point position. If we do this 
with a high density candidate set, we obtain representative point positions for each grid cell that 
resemble the original surface more closely than quantized points (see Figure 35 for a comparison). 
Nevertheless, the points still tend to lie close to the center of each grid cell. Thus, we obtain a 
sample set with roughly a sample spacing of d/2. Note that this is only a heuristic: Formally, we 
can only prove a sample spacing of d, not d/2. Nevertheless, the strategy works well in practice. If 
we apply the strategy but assume a sample spacing slightly below that of quantized points during 
rendering, we obtain images without holes but still have smaller sample sets than those obtained 
by simple grid stratification. 

Implementation 

We have several options for implementing the grid stratification techniques: The simplest, 
straightforward implementation uses a three-dimensional array of k3 entries that represent the 
cells. Each entry in the array stores a list of sample points. The lists are filled by going through 
the sample set, calculating the array address and storing the point in the corresponding list. Af-
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≤  d/2 d/2

deleted point

 

x

≤  d/4

Figure 32: Grid stratification of 
random εεεε -sampling. 

Figure 33: Quantization reduces 
the sample spacing by a factor of 

two. 

Figure 34: Stratification by removing 
points that are still covered by 

neighboring points. 
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terwards, the points in the list can be processed to choose a representative point for each grid cell. 
This techniques needs Θ(n + k3) time and space for n sample points. Often, we have to deal with 
flat surfaces, leading to n ∈ O(k2) sample points. Thus, the technique is not optimal. It should 
only be used for grids with small k. 

We can improve upon this technique by replacing the array with a hash table [Fischer et al. 
98]: We use the concatenation of the sample point coordinates quantized to grid cell centers as 
hash keys to simulate a large three-dimensional array. This techniques only needs linear Θ(n) 
space and can theoretically run in expected amortized O(n) time using randomized perfect hash-
ing (in practice, conventional heuristic hashing schemes are usually employed). 

A third implementation technique is based on successive sorting and yields optimal time 
complexity for k ∈ O(n). We start by sorting the point list by x-coordinates and form lists of sam-
ple points with the same quantized x-coordinate. This can be implemented efficiently using 
bucket sorting with k buckets for the k different quantized x-coordinates. Then, the process is 
repeated of the y-coordinates for each of the obtained sublists. The resulting sublists are proc-
essed again, now sorting by quantized z-coordinates. This algorithm computes lists of points that 
lie in the same grid cell in Θ(n + k) time (Θ(n log n) with conventional sorting, as needed for large 
k). 

We have implemented the first and the third strategy: The first strategy is simpler to im-
plement and avoids the overhead of handling lists of lists. Additionally, it allows for more flexibil-
ity when computing point attributes (see Section 4.2.4) Thus, we think it is favorable for small k. 
For larger k, the third strategy can be used. Replacing the array by hash tables would only be 
necessary for very large grid sizes k. In our applications, we always have to deal with multi-
resolution hierarchies that contain a large number of different quantized point sets. Therefore, 
each of those point sets has to be relatively small. Thus, we did not encounter cases in which the 
grid size k became too large to be handled with either the first or the third strategy. 

It should also be noted that it is possible to generate grid-based sample sets without using 
randomized sampling. [Pfister et al. 2000] perform raycasting from three orthogonal directions 
with a 2d-grid of rays to create sample points. Afterwards, the points are quantized by storing 
them in a single LDI. This technique creates similar results as our quantized grid stratification 
technique. However, the costs of raytracing are unnecessarily high if a conventional raytracing 
algorithm is employed. Thus, a more effective way is voxelization: A three-dimensional triangle 
rasterizer can be used to create quantized sample points directly from the triangles [Max 96, 
Coconu et al. 2002]. This creates a lot of intermediate sample points that have to be removed af-
terwards: Our goal is to create only a few sample points per triangle (usually not more that 1-3). 
Thus, we have mostly to deal with triangles that are much smaller than a single voxel. Neverthe-
less, sample points are created for all of these triangles and double points have to be removed 
afterwards by an additional grid stratification step. The algorithm uses optimal O(n + t) time and 
space (n sample points, t triangles). Hence, it is slightly better than our O(n log n + t) technique 
based on a random candidate set. The advantage of the random sampling strategy is its general-
ity: It can be generalized easily to cases such as animated scenes (see Section 4.3). This cannot be 
done straightforwardly using voxelization techniques. 

4.2.3.4 Point Removal Stratification 

Grid stratification is easy to implement and reduces the number of sample points necessary for a 
given d-sampling considerably. However, it still has some drawbacks: The regular grid structure 
can lead to aliasing problems during rendering unless involved image reconstruction techniques 
are applied. The ratio of point density and guaranteed point spacing is not yet optimal either (see 
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next section for a detailed analysis). Additionally, it is not easy to generalize the technique to 
more general cases such as animated geometry. 

As an alternative, we can use a grid-free approach to stratification. The basic idea is very 
simple: The random candidate set contains a lot of “unnecessary” points that can be removed 
without violating the conditions of d-sampling. A criterion for unnecessary points is neighborhood 

random sampling grid-based stratification 

   

   

(a) random sampling 
(candidate set) 

(b) keep one random sample 
per voxel (half grid size) 

(c) quantized samples 

 
 

grid-based stratification neighborhood-based 

  
 

   

(d) averaged samples (e) closest to center (f) greedy point removal 

Figure 35: Comparison of sampling and stratification techniques: Random sampling causes the largest over-
sampling. Different stratification techniques can be employed to optimize random sample sets. The first row 

shows a schematic 2d illustration of the sample sets. The second row shows an example sample set on the 
surface of a 3d-model for a fixed sample spacing. Please note that the strategy (b) has to be employed with 

half the grid spacing (in comparison with c, d, e) in order to obtain the same maximum sample spacing.
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coverage. A point can be removed if a neighbor in close proximity exists that preserves the sam-
pling requirements14. More formally, we assume that we want to construct a sample set with d-
sampling. We start with a random candidate set with sample spacing ε, 0 < ε  < d/2. Then we 
think of a sphere of radius d/2 – ε  around each sample point in the candidate set. We say that a 
point is covered by a neighboring point if it is contained in its (d/2 – ε )-sphere. Now we can delete 
all points that are (1) covered by a neighboring point and (2) are not the only point to cover a 
neighbor that has already been deleted. This condition assures a d-sampling (Figure 34): If we are 
given a point x in the interior of a sampled surface, we find a sample point in the original sample 
set within a distance of at most ε  < d/2. If this point has been deleted, a neighbor in distance d/2 – 
ε  must exist that still covers the point because otherwise it would not have been deleted. Addi-
tionally, the neighbor would not have been deleted if it was the last point that covers the deleted 
point. Thus, we find a sample point in distance of at most d/2, proving d-sampling. 

The implementation of neighborhood-based point-removal stratification is a bit more in-
volved than that of simple grid stratification: First, we need a data structure that quickly re-
trieves all neighbors of a point of the candidate set within a distance of d/2 – ε. Our 
implementation uses a regular grid (a three-dimensional array of lists of points) with a grid spac-
ing of about d/2 to accelerate the proximity query. We go through all sample points once in ran-
dom order. For each point, we check our criterion and delete the point if possible. The 
performance of the stratification algorithm depends on the distribution of the sample points. The 
worst case bound is obviously O(nc2) for nc random candidate points if all points lie in close prox-
imity to one another. However, this is not typically observed in practice. For a (locally) flat sur-
face, we can expect O(nc/ns) sample points to be reported by the proximity query algorithm where 
ns denotes the size of the resulting, stratified sample set. With ρ := nc/ns ∈ O(log ns) denoting the 
oversampling factor of the random candidate set, we obtain a runtime of O(ρ nc) = O( ρ 2 ns) = 
O(ns·log2 ns). Therefore, the technique is more expensive than grid stratification (which needs 
O(nc) = O(ns·log ns) time) but it leads to better results, as shown in the next subsection. 

4.2.3.5 Oversampling 

In order to compare the quality of the stratification algorithms, we try to quantify the oversam-
pling, i.e. the number of “unnecessary” points that remain after stratification. In general, it is a 
non-trivial problem to quantify the oversampling. It might depend strongly on the concrete shape 
of the sampled surface. To simplify things, we measure oversampling using a simple model con-
figuration: We assume that a flat surface of arbitrary orientation is sampled. This serves as an 
approximation for applications with locally flat surfaces (which are often found in practice). To 
quantify the oversampling, we assign a disc of diameter d (i.e. radius d/2) to each sample point 
that “covers” the surface around the sample point, i.e. fills the area of the (flat) test surface with-
out holes. d should be as small as possible as long as coverage of the surface can be guaranteed 
(at least with sufficient probability). Obviously, a point sample set with sample spacing d will 
cover the surface completely15. Thus, we can use discs of diameter d for measuring the oversam-
pling of sample sets with sample spacing d. Then, the ratio between the sum of the areas of the 
discs and the area of the surface to be sampled defines the oversampling factor. Ideally, this factor 
should be one. However, it is not possible to find a configuration in which circles cover a flat sur-
face without overlap. The theoretically optimal configuration for a flat surface is a hexagonal grid 

                                                      
14 Note that this approach is similar to Poisson-disc sampling [Glassner 95], in which a minimum distance between sample 
points should be retained. 
15 d-sampling means that a sample point will be found in distance of at most d/2 to each point in the interior of the sur-
face. As this point is assigned a disc with radius d/2, this point (and thus all points in the interior of the surface) will be 
covered by such a disc. 



76 4 Data Structures 

 

(see Figure 36), leading to an oversampling factor of 3π92  ≈ 1.21 [Williams 79]. To quantify the 
performance of stratification techniques, the oversampling factor should be compared with this 
optimal value. 

For our evaluation, we determine bounds for the worst case oversampling analytically. Ad-
ditionally we measure the average oversampling empirically: We create a high density sample set 
on a sphere. For small sample spacing d, the sphere appears to be locally flat and thus we obtain 
an approximate estimate for the estimated oversampling of a plane with random orientation. 
Table 1 summarizes the results. 

Grid Stratification 

To determine the worst case oversampling of the grid stratification method, we have to determine 
the configuration that leads to the largest density of sample points on a planar object. Obviously, 
the grid cells that intersect with the sampled object can receive one sample point each. In the 
worst case, it might be possible that every grid cell that intersects with the object receives a sam-
ple point. Thus, the question for the worst case oversampling is equivalent to finding the configu-
ration under which a plane intersects with a maximum number of cells of a cube grid (per unit 
area). To construct an upper bound for this number, we consider the unit normal vector n = (dx, 
dy, dz) of a plane that intersects the stratification grid: Without loss of generality, we assume that 
the z-coordinate has the largest absolute value of all coordinate entries and that the grid cells 
have a side length of 1. Now we can express the height z of the plane as linear function z(x, y) = ax 
+ by + c of the x and y-coordinates. As |dz| > |dx| and |dz| > |dy|, we also know that the slopes 
a and b have an absolute value of at most 1. Now we consider one grid cell in the x-y-plane: 
Within one such cell [xc, xc + 1] × [yc, yc + 1] × R, the z value can vary by at most 1·1 + 1·1 = 2. This 
means that the plane cannot intersect with more than three different cells in z-direction while 
staying in the same x-y-cell. Next, we have to find a lower bound for the area “used” for intersect-
ing with these cells. As we cover a complete x-y-cell, we will have to use at least 1 × 1 area units, 
i.e. an area value of one16. Thus, it is impossible to obtain more than 3 sample points for 1 area 
unit. 

For simple grid stratification, the worst case sample spacing d is given by twice the diago-
nal of the grid. Thus the diagonal 3  of the grid corresponds to d/2 – ε  (see Section 4.2.3.3). Using 
this scale factor, the side length of the grid corresponds to (d/2 – ε ) / 3  and we obtain an upper 
bound of at most 3 sample points per (d/2 – ε )2 / 3 area, i.e. 9 / (d/2 – ε )2 points per unit area. Each 
point is assigned a disc of area πd2/4. Hence, we obtain an oversampling factor of 
                                                      
16 Of course, our bound is not tight: If we want to intersect with more than 1 cell in z-direction, we are forced to use slopes 
of absolute value greater than zero, which increases the “used” area value. 

 
 

 

Figure 36: Optimal (hexagonal) sam-
pling pattern for flat surfaces: a circle 
covering with minimum overlap. Over-

sampling factor 39/2ππππ ≈≈≈≈ 1.21 

Figure 37: A (hexagonal) tightest 
packing of circles without overlap 
is the worst case configuration for 
neighborhood-based stratification. 

Figure 38: Venetian blind 
example [Chamberlain et 
al. 95]. Occlusion can be 

highly direction-dependent. 
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For quantized grid stratification, the maximum sample spacing is only half as large. This means 
that the maximum oversampling factor is only a quarter of that value, i.e. 7.07 for ε  → 0. 

The oversampling depends strongly on the orientation of the surface in respect to the quan-
tization grid. An empirical measurement of the average oversampling on a spherical object 
(measured using a 323 quantization grid of the bounding box of the sphere) yields 13.4 and 3.45 
for grid stratification without and with quantization, respectively. Thus, the average values are 
about halve as large as our upper bounds. 

Point Removal Stratification 

The next strategy that we have to analyze is neighborhood-based point removal. The algorithm 
deletes all points that are still covered by neighbors (and are not needed themselves to cover de-
leted neighbors). Therefore, the worst case configuration consists of a tightest packing of points 
that cannot be deleted, i.e. that are not within the (d/2 – ε )-disc of one another. Equivalently, we 
can form a (d/2 – ε ) / 2-disc around each sample point and demand that these discs are all disjoint. 
This means, that we are looking for a tightest packing of circles with radius r := (d/2 – ε ) / 2 + δ  
(with arbitrarily small δ  > 0), which is a well known problem. The solution is (again) a hexagonal 
grid [Williams 79] (see Figure 37). To calculate the number of sample points per unit area, we 
consider a single triangle in Figure 37 that connects three adjacent sample points. This triangle 
has an area of 23r  and accounts for half a sample point. In other words, we obtain )3/()2/1( 2r  = 

)6/(3 2r  = ))2/)2((6/(3 2δε +−d sample points per unit area. Letting δ  → 0 to establish an 
upper bound, we obtain ))2(3(/32 2ε−d  sample points per unit area, which are assigned discs of 
area πd2/4. Overall, we obtain an oversampling factor of 
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This value is considerably smaller than the bounds for the grid stratification techniques. How-
ever, these are only conservative estimates while the bound for neighborhood-based stratification 
is tight. To compare the oversampling under realistic conditions, we have also measured the av-
erage oversampling on a sphere (a unit sphere and d = 1/32). The measurements yield an average 

sampling strategy construction time worst case oversampling average oversam-
pling (empirical) 

random sampling: O(n) ⊆ O(N log N) ( )1ln16.6ln4.84 −+≤ fN  ≈ 20-100 
(depending on f) 

grid stratification: 
one point per cell 

O(ε -2n log ε -2n) 
[n ∈ Θ(N)] 
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grid stratification: 
quantized 
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point removal stratification: O(ε -2n log2 ε -2n) 
[n ∈ Θ(N)] 
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2  1.61 

Table 1: Comparison of sampling strategies for a large, flat surface of area A, neglecting borders. n denotes 
the resulting number of sample points, including oversampling. d is the sample spacing of the resulting 

sample point set. f is the failure probability for the random sampling step. To make the construction times 
more comparable, we also consider N := A/d2 as complexity parameter, which is proportional to the minimum 

required number of sample points. 
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oversampling of 1.61, which is about half the value of that for quantized grid stratification. It 
already comes close to the theoretically optimal value of 1.21. As the outcome of random order 
point deletion is not deterministic, we repeated the measurements several times. The deviation 
from the average value was very small: For an average 6600 points sample set, we obtained a 
standard deviation below 1% after 10 trials. This outcome could have been expected: As a large 
number of points are handled mostly independent of one another, different point densities due to 
bad sample deletion orders should cancel out for large point sets. 

Other Reasons for Oversampling 

Another source of oversampling is the fixed factor between adjacent sample spacings in the hier-
archy. Due to the octree structure, the sample spacing is always decreased by a factor of two be-
tween a node and its child node. This means that the sampling density on a flat surface is 
increased by a factor of 4 between hierarchy levels. Thus, in the worst case, we obtain an addi-
tional oversampling factor of up to a factor of 4 if we need a sample spacing of d but the closest 
node only provides d + ε  so that we are forced to use the child nodes. Even on the average, assum-
ing that all sample spacings are needed with similar probability, we still obtain an expected over-
sampling factor of 

3
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In order to reduce the oversampling due to discrete resolution steps, we must reduce the factors 
between levels of resolution in the hierarchy. However, the regular subdivision structure of the 
octree enforces a stepping of at least a factor of 2 between sampling distances (larger steps could 
be created by increasing the branching factor of the tree). Thus, we store multiple point sets per 
octree node17. For k different point sets, a factor of r = k 2  between the sample spacing is em-
ployed, leading to a worst case oversampling (due to resolution mismatch) of 22/k. Obviously, this 
leads to a trade-off between storage costs and performance. For a single flat surface, we expect 
storage costs of 
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In practice, values of k = 2 or 3 lead to a significant performance enhancement at moderate addi-
tional storage costs (the number of sample points is increased by an expected factor of 1.5 and 
2.02, respectively). Please note that the problem of discrete resolution steps does not apply to the 
dynamic sampling data structure but only to precomputed sample sets. 

4.2.4 Point Representations and Point Properties 
Up to now, we have created a hierarchy of triangles and surface sample points. In this hierarchy, 
each sample point represents a piece of geometry, ranging from a fragment of a single triangle to 
a large set of triangles. Now we have to decide which properties should be stored for every sample 
point to represent the substituted geometry. 

                                                      
17  The technique can only be used for full sampling, not nested sampling. 



4.2 Static Sampling 79 

 

4.2.4.1 Point Samples 

A straightforward option is to use point samples in a strict sense: Each point primitive represents 
a single point of the sampled surface and thus reports only the local properties at that point. Be-
sides the position in space, these are also the properties necessary to perform lighting calculation 
(material identifier, probably also a normal vector or texture colors). The dynamic sampling data 
structure (Section 4.1) always yields simple point samples. For static sampling (Section 4.2), we 
have the option to prepare and store additional and/or enhanced attributes for each sample point 
during preprocessing. 

4.2.4.2 Prefiltered Samples 

Obviously, simple discrete point samples can easily lead to aliasing (regular sample patterns) and 
noise (in case of irregular sampling) issues. [Pfister et al. 2000] propose employing a prefiltering 
approach during preprocessing to avoid these problems: A point cloud is a discretely sampled rep-
resentation of a continuous function defined on a surface. Thus, the function has to be band lim-
ited with a suitable low-pass filter in order to avoid aliasing artifacts (see Section 1.3). For 
regular sampling patterns, such as those created by the quantized grid stratification technique, 
we can directly employ the well-known signal processing framework to derive a suitable filter 
kernel. A typical choice is a Gaussian function with a standard deviation in the range of half the 
grid spacing. For irregular sample patterns, we just substitute the maximum sampling distance 
for the grid spacing and use again a corresponding three-dimensional Gaussian filter kernel. 
Color properties on the surface are now not point sampled but a weighted average of adjacent 
colors is stored instead, using the Gaussian as weighting function. To determine this convolution 
integral numerically, we use a simple Monte Carlo integration approach: We increase the density 
of our random candidate set prior to stratification. Then, we select a subset of “representative” 
points with one of the stratification techniques. For each of those representative points, we de-
termine all of the original points within the support of the Gaussian around the representative 
point using a grid search structure, as described in Section 4.2.3.4. The color attributes of these 
points are averaged and the result is stored for the representative point. In the case of grid strati-
fication, the process can be speed up significantly: Instead of creating intermediate points and 
then searching for them later on, we directly write the color information (weighted by the Gaus-
sian) into the cells of the stratification grid. In both cases, an additional sum of the weights is 
used to renormalize the calculated values later on. The Monte Carlo integration is not optimal; we 
need a relatively large sample set to avoid noise artifacts (oversampling factors of 100-300 yield 
good results). However, as this is done during preprocessing, the performance is not a critical 
issue. The technique could perhaps be improved by using more elaborate numerical integration 
techniques, applied directly to the underlying triangles. However, due to the possibly highly ir-
regular structure of the represented geometry, these techniques can not easily provide a better 
convergence than stochastic sampling either. 

4.2.4.3 Higher Order Surface Approximations 

In addition to color attributes, we also often need to represent local geometric properties: For 
lighting calculations, we need e.g. at least a normal vector to compute the light reflected from 
light sources to the viewer. Of course, we would also like to do prefiltering for such attributes in 
order to avoid aliasing of surface properties as well. However, simple averaging does not work for 
higher order geometric properties. For example, the average of the normal vectors of surface with 
rough microstructure (such as waves on a water surface) yields a uniform normal vector, remov-
ing the roughness of the original surface [Schilling 2001]. The problem is that we need to repre-
sent the distribution of the normal vectors rather than an average direction. As the 
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representation of the exact surface normal distribution is usually too costly, we need a simple 
model: The simplest variant is just the average direction, which works well surfaces that are lo-
cally smooth on the corresponding scale. Even if this is not the case, missing roughness might still 
be better than aliasing artifacts. An improved representation was proposed by [Kalaiah and 
Varshney 2001]: A second order surface is fitted to the surface in a local coordinate frame and the 
directions of minimum and maximum curvature as well as the curvature values are stored. This 
allows the reconstruction of local curvature information during rendering, which can be used e.g. 
for improved shading [Kalaiah and Varshney 2001]. We use these differential properties to con-
trol the size of secondary ray cones in our point-based multi-resolution raytracing approach de-
scribed in Chapter 6. However, second order surface representations are also just able to 
represent locally smooth surfaces. A more general model is described by [Schilling 2001] in the 
context of environment mapped bump mapping: In addition to surface curvature, roughness pa-
rameters are stored at each sample point. The roughness parameters are the two main axis of a 
two-dimensional Gaussian distribution that has been fitted to (a planar projection of) the normal 
vectors in the neighborhood of a sample point. 

4.2.4.4 The Visibility Problem 

An important aspect of a sample point is its occlusion: During rendering, the visibility of sample 
points has to be resolved by examining other sample points in front potentially occluding them. In 
general, the occlusion of a complex set of geometric objects can depend strongly on the viewing 
direction, which makes a representation by a simple set of point attributes infeasible: A simple 
example to illustrate the problem is a Venetian blind ([Chamberlain et al. 95], see also Figure 38): 
The structure is opaque for all angles but a very small angle interval in which it rapidly becomes 
transparent. Thus, [Chamberlain et al. 95] conjecture that no fixed size representation exists that 
represents the occlusion properties of an arbitrary piece of geometry exactly. Note that as long as 
no exact representation of occlusion is known, it is not possible to guarantee correct rendering 
results for point-based simplifications of complex models either. Therefore, we always have to 
deal in general with heuristic approximations of potentially unknown quality if complex geometry 
is substituted with constant sized pieces of information (i.e. “points” with attributes). All proposed 
solutions with bounded memory costs are just such heuristics. Nevertheless, good images can be 
rendered in practice as often the errors concerning micro-occlusion effects are not important to a 
human observer. 

An elementary representation of occlusion could be to assume a solid sphere with the di-
ameter of the maximum sample spacing around each sample point. If the surface is locally flat, a 
tangent disc can be used instead as a first order approximation, delivering more accurate results 
[Pfister et al. 2000, Rusinkiewicz and Levoy 2000, Zwicker et al. 2001a]. For more general sur-
faces (such as a set of small branches of a tree, now represented by a single sample point), this 
technique is not well-suited. For such cases, we use a conservative transparency heuristic: We 
assign an alpha value to each sample point that measures the percentage of occluded area. This 
value is view-dependent but as we want to avoid holes in the image later on, we use a conserva-
tive upper bound: For d-sampling, we compute the area in the d/2-neighborhood of the sample 
point and compare it to the minimum value of πd2/4 for a closed surface. The fraction of measured 
and minimal surface area (clamped to 1) is treated as alpha (opaqueness) value. This ensures that 
closed surfaces never show holes, which is important as such artifacts are easily noticeable (this 
was an open issue of the technique proposed by [Chamberlain et al. 96]). During compositing, we 
do not know anymore the positions of the occluding surfaces. Thus, we should use the sum of al-
pha values (rather than alpha blending) to determine the occlusion of multiple sample points on 
one line of sight to retain a conservative visibility bound. However, it turns out in practice that 
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simple alpha blending is also satisfactory because our criterion always guarantees opaqueness for 
every single sample point belonging to a closed surface. An underestimation of opaqueness can 
only occur if multiple, disjoint layers of geometry interact at a micro-occlusion level. These cases 
are hard to distinguish for practical scenes so that alpha blending also yields good results (al-
though neither being correct nor at least strictly conservative). 

The computation of the alpha values can be integrated easily in our sampling framework: 
We use the same high density random sample set that was used for estimating color and curva-
ture properties and count the neighboring points in the neighborhood in order to estimate the 
local area. 

4.2.4.5 More Complex Representations 

We could of course employ more complex representations than simple attributes like alpha or 
curvature values. An option for more sophisticated representations could be for example the us-
age of small light fields (storing view-dependent transparency, color, normal vector and depth 
information). This would allow the reconstruction of images at lower costs, using less sample 
points than those that are necessary with simple attributes. However, the storage costs also in-
crease correspondingly. Obviously, choosing the point attributes is a trade-off between precompu-
tation time and space and the number of sample points necessary for a certain image quality, i.e. 
the rendering time. Our goal was to create representations with low memory overhead. Therefore, 
we opt for not using expensive point representations beyond simple models with few parameters. 
Other techniques could be subject of future work. 

4.2.5 Instantiation 
Instantiation of static sampling data structures can be performed similarly as for the dynamic 
sampling data structure (Section 4.1.6): A complete octree with triangles and precomputed sam-
ple points is treated as an individual object and inserted into a higher level data structure. In-
stead the extends of triangles, the root bounding boxes of instantiated octrees are considered for 
sorting the object into the data structure. The depth at which the instance has to be stored is de-
termined by comparing the sampling distance of the root node with that of the nodes in the hier-
archy. If a leaf node is reached before the sampling distance is short enough, the sub-octree is 
inserted into that leaf node (similarly to a short-cut) in case of nested sampling. For full sampling, 
the intermediate nodes are generated until the sampling density matches, i.e. the sampling dis-
tance is not smaller than two times that of the leaf node. In order to limit the branching factor of 
the instantiated tree, it is also beneficial to limit the number of instances that are stored in one 
leaf node. Thus, beside the parameter nmax that controls the maximum number of triangles, a 
second parameter instmax is introduced to control the maximum number of instances in a leaf node 
until it has to be split. Typically, this value is much smaller than nmax (nmax ~ 50-5000, instmax ~1-
8). 

To generate sample points from instances, two techniques can be used: First, new sample 
points can be generated using a precomputed distribution list of all triangles in the instance. 
However, it is more convenient to just use the sample points from the root node (or the first few 
levels) in the hierarchy and use them for resampling. 

If the precomputed sample points use prefiltered color attributes (or similar precomputed 
surface attributes), the set of applicable instantiation operators is more restricted than for simple 
points samples: It is still possible to perform geometric transformations, e.g. affine mappings. 
However, operations that change the appearance of the surface, such as exchanging materials by 
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identifiers to create differently colored objects from one base model, might lead to problems as the 
instantiation transformation cannot be applied any longer after averaging samples from multiple 
surface points. Thus, the increased image quality comes at the cost of less flexibility in modeling. 

4.2.6 Caching 
Dynamic sampling and static sampling both have certain advantages and disadvantages (see 
Section 4.4). For rendering real-time animations, the two techniques and their advantages can be 
combined by using a static data structure as cache for dynamically generated sample points. The 
same concept is also useful for other applications such as rendering from data stored out-of-core 
or rendering compressed volume data18. 

The idea is fairly simple: As the generation of sample points using dynamic sampling and 
distribution lists is rather expensive, it makes no sense to recreate all sample points from scratch 
during an animation. Instead, we can expect that the majority of the created sample points from 
one frame is still adequate for rendering the next frame. Only some points have to be recomputed. 
The validity depends on the relative movement: If the projected size on the screen has not 
changed by more than a small constant, we will usually still accept the point set. This change of 
the projected size depends on the movement of the viewer and on the position of the objects in the 
scene: Parts of the scene that are far away usually change less frequently than parts of the scene 
in close proximity to the viewer. Therefore, we need an adaptive caching strategy. This is 
achieved by associating the caches with the nodes of the octree: Each node in the dynamic sam-
pling data structure carries a list of cached point clouds. If a point cloud with sample spacing d is 
requested, we first make a look up in the cache whether we already have an old point cloud with a 
sampling distance not larger than d and not smaller than ε ·d (with ε  > 0, typically ε  = 1/2). If a 
cached version is found, it is returned to the rendering algorithm. Otherwise, a new sample set is 
created and stored in the cache prior to reporting it to the rendering algorithm. Note that this 
scheme also works with instantiation as we allow multiple resolutions to be stored for each node. 
To avoid memory overflows, we have to limit the size of the cached data. We do this using a sim-
ple least-recently-used (LRU) heuristic to delete cache entries that have not been used for the 
longest time. 

In addition to just caching the sample sets, we can also process them further in order to in-
crease the rendering performance. For example, we can apply a stratification algorithm to the 
random sample set. Grid stratification techniques are fast enough to be performed on the fly. We 
could also do prefiltering. However, we need fairly large sample sets to obtain low noise results so 
that this might be out of scope for real-time applications. Another processing option is optimiza-
tion for the rendering process. This includes e.g. the creation of display lists for hardware acceler-
ated graphic systems or the creation of incremental structures such as LDIs for efficient software 
rendering. Decompression from a more compact encoding is also an option, improving the memory 
efficiency of the data structure. 

Caching makes even sense for precomputed sample sets: If hardware accelerated rendering 
is used, only a working set of recently used point and triangle data is downloaded as display list 
or vertex buffer to the graphics card. This is necessary as such graphics devices usually only have 
limited memory resources Often, this virtualization is already done in the graphics driver. How-
ever, we then still have duplicates of non-downloaded buffers in main memory, which can be 
avoided by manually controlled caching. An additional option is sorting: If we render alpha-

                                                      
18 The idea of hierarchical multi-resolution caching is not new, see e.g. [Shade et al. 96]. 
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blended points (as proposed in Section 4.2.4.4), we have to sort the points in depth order. How-
ever, small deviations of the viewing direction usually do not demand for an immediate reorder-
ing but are invisible. Thus, we can cache sorted point lists until the viewing angle changes by 
more than a fixed value, e.g. by more than 20°. A (multi-level) caching concept will also be used 
for the volume rendering technique and the out-of-core data structure discussed in Chapter 8. 

4.3 Animated Geometry  
The data structures presented up to now can handle static scenes only. In many applications we 
have to deal with animated content, not only static scenes. Typical examples are crowd anima-
tions: Large crowds of animated humans or animals are moving dynamically within a static 
scene. Our goal is to speed up the rendering of the animated content as well so that complex 
scenes such as large crowds can be displayed in output-sensitive time. 

4.3.1 Input Model 
To devise a general technique for multi-resolution rendering of animated content, we first need a 
model for the input. A lot of different modeling techniques for animations are known in literature, 
often highly specialized for certain tasks such as facial animations, smoke effects and others. A 
general technique to specify animated surface models is the usage of keyframes: A keyframe ani-
mation consists of a sequence of triangle meshes of arbitrary topology and connectivity. For each 
pair of consecutive keyframes, correspondences between the vertices of the triangles must be 
specified, i.e. every vertex of a keyframe must be assigned a matching vertex in the other key-
frame. During animation, the positions (and all other vertex attributes, like normal or color) are 
interpolated between the keyframe values. In our case, we will restrict the discussion to linear 
interpolation; a generalization to higher order interpolation should be unproblematic. Triangles 
can be created or deleted by blending from one vertex position to three different positions and vice 
versa. The specification of vertex correspondences is part of the input to the algorithm, i.e. they 
are not established automatically but they must be specified by the user during modeling. Usu-
ally, these correspondences are known to the modeling algorithm that creates the input scene. 

4.3.2 Hierarchy Creation 

4.3.2.1 Organization 

To define a multi-resolution hierarchy, we consider pairs of adjacent keyframes in the animation 
sequence. For each such pair, we construct one “interpolating hierarchy” that represents all possi-

keyframe #1 keyframe #2 keyframe #3 keyframe #1

hierarchy #1

keyframe #2 keyframe #3

hierarchy #2 

Figure 39: Input model for animated scenes: a 
sequence of keyframe meshes; the vertices are 

connected via correspondences.

Figure 40: An “interpolating hierarchy” is placed between 
each pair of adjacent keyframes. 
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ble configurations for timesteps in between the two keyframes. If each such interpolating hierar-
chy uses O(n) space (n being the number of triangles in the two keyframes), we obtain linear 
memory usage for a simple linear sequence of keyframes19. 

This organization reduces the problem: Our task is now to provide a multi-resolution hier-
archy for sets of triangles with vertices moving on a linear path. Topological changes happen im-
plicitly at keyframe transitions by dropping or introducing zero area triangles for the next 
keyframe pair, respectively. 

4.3.2.2 Interpolating Hierarchies 

To create a spatial hierarchy for these deforming triangle sets, we use a simple heuristic: We cre-
ate a conventional octree for the triangles at the start of the time interval, as described before. We 
keep this partition of the input scene over the time interval of the keyframe pair and compute the 
bounding box of the corresponding triangle groups at the end time. The bounding box at any time 
in between the two keyframes is then constructed by interpolation: 

4.3.2.3 Bounding Box Interpolation 

To determine the extends of a set of triangle moving over time, we use a simple conservative es-
timate: Due to the linear paths, we can just interpolate the bounding boxes linearly and obtain 
and upper bound of the volume in which the triangles may be located at any position in time. This 
interpolated bounding box is used as bounding box of the interpolated octree at any time in be-
tween the two keyframes. The proof of this property is simple: We consider a set of points moving 
on linear path (the bounding box of a set of triangles is the same as the bounding box of their ver-
tices). Without loss of generality, we consider only the lower bound of the x-coordinate of the ver-
tex set. Let xmin(t) be the minimum of all x-coordinates at time step t and xi(t) be the coordinate of 
point i (i = 1…n) at time t. Now we have to show that xmin(t)  ≥  (1 – t) · xmin(0) + t · xmin(1). This can 
be shown by considering the definition of the xmin(t): 
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Every x-coordinate in the minimum function is a convex combination of the keyframe coordinates. 
By substituting these by lower bounds xmin(0), xmin(1), the sum can at least become smaller. Thus, 
it is always not larger than the original minimum. 

Similar arguments can be applied to the other coordinate directions and to the upper 
bounds. This shows that the interpolated axis aligned bounding box (which is the Cartesian prod-
uct of three real intervals, i.e. six bounds) is always a conservative bounding volume for the com-
plete time interval. 

4.3.2.4 Limitations 

The interpolated hierarchies rely on a heuristic. They only work if we have some temporal coher-
ence. If all vertices were moved to random positions between two keyframes, the hierarchy would 

                                                      
19 If a more complex graph of keyframe transitions is used, up to O(k2) hierarchies can be necessary for k keyframes. 
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be destroyed soon after the start time. However, such a situation is rarely found in applications. 
Typically, triangles that are located in close proximity to one another will probably move in a 
similar direction. If this is not the case because the group is too large, we can perform subdivision 
to improve the spatial locality. In practice, the worst case is that groups of triangles move in op-
posite directions, for example parts of the two legs of a walking human. In this case, the bounding 
volume grows if we move forward in time. If it becomes too large, the box will be subdivided dur-
ing rendering. The spatial subdivision will then (perhaps in one or two steps) divide the moving 
parts from each other. The coherence could be improved by a preclassification by motion vector, 
similar to area groups or orientational groups (Section 4.1.4/4.1.5). However, to our experience, 
the simple hierarchy interpolation heuristic works well in practice, such classification techniques 
do not seem to be necessary. The most important reason for that is probably that the hierarchy 
interpolation is only applied in between two adjacent keyframes. Each keyframe interval usually 
represents only a small portion of the complete movement sequence. At every keyframe position, 
the hierarchy is rebuild so that distorting developments can only evolve within small time steps. 

4.3.3 Sampling 
For handling animated geometry, we generalize the static sampling data structure. The construc-
tion of the point hierarchy is analogous to the static case, just substituting interpolated hierar-
chies for static hierarchies. Two modifications of the static hierarchy creation algorithm are 
necessary: First, we should determine large triangles during octree creation. These are triangles 
with either an area corresponding to more than pmax sample points or triangles exceeding the 
node tolerance zone. To do so, we compute the maximum area and bounding box of each triangle 
during the animation and the minimum extends of the node bounding box. If the x-, y-, or z-
interval of a triangle exceeds the minimum size of the start and end intervals of the nodes bound-
ing boxes by more than a factor δ, the triangle is stored at the parent node. The maximum num-
ber of sample points is determined by dividing the maximum area by the sampling spacing 
squared, multiplied with a constant accounting for the expected oversampling of the stratification 
technique. The sample spacing is always determined by the start bounding box (a constant frac-
tion of the side length of the cube of the octree node). This assures that the sample spacing is de-
creasing by a constant factor of two between two octree levels20. 

The second addition we need is a sampling strategy for animated geometry. It has to create 
point sets that cover the surfaces safely over time, i.e. provide a d-sampling for a given sample 
spacing d, although the geometry is deforming. Considering the sampling strategies discussed in 
Section 4.2.3, we see that grid-based sampling strategies are not suitable for processing animated 
scenes: The geometry would move independently of the spatial grid so that the sample sets would 
not be well defined anymore (unless we do a steady resampling, creating large numbers of redun-
dant sample points over time). A suitable strategy is random sampling supplemented by 
neighborhood-based point removal stratification. In the following, we discuss how to adapt this 
stratification strategy for use in animated sampling. 

4.3.3.1 Candidate Set 

Again, we first have to create a candidate set that can be processed by the stratification algo-
rithm. We use the same random sampling technique as described before in Section 4.2.3, with 
minor modifications: The original sampling algorithm uses the area of a triangle to determine the 

                                                      
20 We can of course also use multiple sample spacings with a factor 2-k per node to improve oversampling properties, as 
discussed in Section 4.2.3.5. 
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number of sample points to be placed on each triangle. More precisely, the ratio of the triangle 
area and the sum of all triangle areas is the probability for receiving a sample point. For ani-
mated scenes, the area changes dynamically over time. In order to be conservative, we compute 
the maximum area value for each triangle during the animation. We then use this value to com-
pute the number of random sample points the triangle should obtain. This leads to two questions: 
First, we need an algorithm for computing the maximum area. Second, we need to assure that the 
strategy guarantees a save coverage of all triangle area through the keyframe period. 

Area Computation 

To perform the sampling algorithm, we first need to determine the maximum area of a triangle 
during a time interval. For linear interpolation, this can be done analytically: Let a(t), b(t), c(t) be 
the vertices of a triangle over time. At any time t, we can express the square of the area of the 
triangle by the scalar of the cross products of two side vectors with itself: 
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This expression obviously yields a 4th degree polynomial in t (the cross product creates quadric 
terms, which are squared again by the scalar product). As the resulting function of t is C∞ differ-
entiable, a global maximum is either found at the interval limits t = 0, t = 1 or at a local maxi-
mum with a derivation dA2(t)/dt of zero. The values at the interval borders are easy to compute, 
all potential local minima can be found by computing the derivative (which is a 3rd order polyno-
mial) and solving analytically for dA2(t)/dt = 0. This can still be done with a closed formula. This 
yields the time with maximum area. 

Coverage 

To analyze the coverage properties of the sampling algorithm, we first fix an arbitrary position in 
time t. As we now have a static triangle mesh, we can apply our analysis from Section 4.2.3.1: The 
conservative area estimate can only increase the probability of receiving sample points for each 
triangle. Thus, the probabilities for the “bins” receiving “balls” in the proof of Section 4.2.3.1 can 
only increase and thus the proof still holds, for any static frame from the animation. 

The problem is that the mesh is potentially deforming over time. It is still uncertain how 
we can obtain the same failure probability throughout the complete animation sequence. To en-
sure save coverage, we make a very conservative estimate: We subdivide the time interval into k 
small time steps ∆t. We demand that the vertices of the triangles are not moving by more than ε, 
with ε  being a small fraction of the sample spacing d. If we can guarantee a d-sampling some-
where in each time interval, we are sure to retain a (d + ε )-sampling overall. The number N of 
time intervals depends on the movement of the triangles. This number is typically not very large: 
For the following analysis, it is sufficient to consider only movements relative to the center of the 
interpolated bounding box. Then, the maximum movement is bounded by the maximum diagonal 
extend of the bounding box divided by ε  (typically being a constant fraction of d). The maximum 
extends usually differ from the extends of the start bounding box only by a small factor. If the 
ratio is very large, we probably lose the spatial locality of our hierarchy, which is a much more 



4.3 Animated Geometry 87 

 

serious problem than local coverage problems. Thus, limited movement relative to the scale of the 
octree node might be a realistic assumption for practical applications. 

This consideration defines N different frames with potentially slightly different geometry. 
Now we make the very conservative assumption that all frames show a totally different geometry, 
such as moving all triangle vertices to random positions, independent of one another but still con-
serving the computed area values for the triangles. If this was the case, each submesh will still 
show a d-sampling with probability s (i.e. failure probability f = 1 – s). As the computed point set 
is a random one, independent of the mesh, it will cover any triangle mesh obeying to the assumed 
area constraints with probability s, even if it was chosen randomly. If all submeshes were chosen 
stochastically independently of one another, we would obtain a failure probability of f ′ = Nf. How-
ever, the meshes at the different time steps are not independent of one another. Indeed, they are 
highly correlated. Nevertheless, the sum of probabilities is still a conservative bound for the prob-
ability of the union of the events (i.e. at least one failure in time) [Motwani and Raghavan 95]. 
Thus, we have f ′ ≤ Nf. This means, we must choose f := f ′/N in order to retain a maximum prob-
ability of f ′ for the sampling process to fail. This increases the oversampling factor: The oversam-
pling factor according to Equation 10 is ln 6.16n + ln f ′-1 for n “bins” (i.e. Θ(n) sample points after 
stratification). This factor is now enlarged: Instead of ln f ′-1, we have to add ln Nf ′-1 = ln N + ln f ′-1 
to the ln n term in the oversampling. Thus, the oversampling is increased by the logarithm of the 
number of time steps. Even for very large numbers of N (say several million), the logarithm is 
still in the range of the logarithm of the target number of sample points ln n and thus the per-
formance of the sampling algorithm is not severely effected (even in that exaggerated case it just 
doubles). We can also measure N during sampling according to a user defined ε  and control the 
sampling process in order to obtain an upper bound for the sample size. 

The consideration above is of course very conservative. Due to the strong stochastic de-
pendence of coverage probability of the different submeshes on one another, we do not expect to 
need a strong additional oversampling for animations in practice. 

4.3.3.2 Stratification 

Now that we have a candidate set of sample points that guarantees a d-sampling over time for 
any given d > 0, we can employ a stratification algorithm to improve on the oversampling factor of 
the sample points. Neighborhood-based point removal can be extended easily to animated scenes: 
The algorithm deletes points that are still covered by neighbors and that are not needed as being 
the last to cover a previously deleted neighbor. In the static case, covering means being located in 
a (d/2 – ε )-sphere. For the animated case, we just have to extend the notion of coverage: An ani-
mated point is covered by its neighbor if it is located within its (d/2 – ε )-sphere during the whole 
time interval. 

To compute this extended coverage information, we consider the distance between two ani-
mated sample points. We will show that two points cover each other if (and obviously only if) they 
cover each other at the start and at the end of the time interval. To do so, we first consider a sin-
gle sample point on a triangle and show that it will move on a linear path: Let again the triangle t 
consist of vertices vi (i = 1, 2, 3) with coordinates vi(t) = vi(0) + t·(vi(1) – vi(0)). The sample point 
p(t) can be expressed as linear combination of the vertices with constant weights λi: 
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Hence, p(t) is a linear function with base and direction vectors being weighted averages of those of 
the vertex trajectories. Next, we consider the squared distance d2(t) of two points p(t), q(t): 
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The result is a quadric function in t, with positive coefficient for the t2 term. Thus, the distance is 
a convex parabola21. Thus, the distance within the time interval cannot exceed the value at the 
endpoints. Hence, it is sufficient to compute the distances at start and end time to determine 
whether animated points cover one another throughout the time interval. 

Using this technique, we can employ the stratification algorithm from Section 4.2.3.4 and 
just modify the computation of the coverage information. This yields a stratified sample set with 
guaranteed sample spacing. 

4.3.3.3 Time Subintervals 

The oversampling of the animated version of the sampling algorithm can be larger than that of 
the static version. It is possible for the triangles to change their area strongly over time. In a bad 
input scene, the area can grow by O(t2) (square root of a 4th degree polynomial), e.g. by scaling 
the object linearly over time, thus increasing the area quadratically. This means that the average 
area 
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is three times smaller than the maximum area c. In that case, we obtain an average oversampling 
factor of 3. To reduce this effect, we can employ time subintervals: We divide the time between 
two keyframes into k time subintervals and apply the stratification algorithm to each subinterval 
separately, using the same candidate set. For each time interval, unnecessary points can be 
marked and excluded from rendering. For efficient rendering, we maintain a list of point indices 
for each subinterval. This increases the memory demands. However, for small k, the additional 
storage costs might be acceptable, especially if expensive attribute sets are used for the points. 
For small k and a large number of points, it is also possible to store 2k-1 different lists for points 

                                                      
21 In case of ∆d = 0, the distance is constant so that our claim is trivially true. 
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that are present in each possible combination of time subintervals. During rendering, only those 
groups of triangles are rendered that are visible at the current time. For small k, this is the most 
efficient technique both in terms of rendering time (O(n+2k) for n visible points) and storage costs 
(O(n′) for n′ overall sample points). For storage (e.g. on harddisc, not during rendering), a simple 
k-bit bitfield per point can also be employed as compact representation. 

4.3.4 Instantiation 
To build large scenes, we can again use instantiation, as before. In addition to a local coordinate 
system, we can also assign each instance a local time. In addition, all instantiation operations 
(affine transformations, change of materials, deformation etc…) can be made time-dependent. 

For hierarchical instantiation, there are some issues that have to be taken care of: We must 
precompute the higher level hierarchy. Thus, the global animation has a fixed complexity, as 
every possible global motion must be known in advance and split into keyframes in order to com-
pute the higher levels in the hierarchy. If we control the instantiation manually for each instance, 
we can handle all instantiation parameters dynamically without being forced to precompute. This 
leads to more freedom for the design of the global behavior of the animation. However, in this 
case, the complexity of the scene is limited. Every entity that is controlled manually can be a 
complex model (also using hierarchical instantiation, without dynamic control of the instantiation 
parameters). However, the total number of entities being controlled is limited by the at least lin-
ear run time of the global control algorithm. 

4.4 Comparing the Data Structures 
In this chapter, we have proposed three different data structures for a point-based multi-
resolution representation of three-dimensional surface models: Dynamic sampling and static 
sampling with a nested and a full sampling strategy. In this concluding subsection, we are going 
to examine the differences of these proposals and their consequences. 

An important aspect is the type of sample points that is obtained from the different data 
structures: Dynamic sampling and nested sampling data structures always use point samples in a 
strict sense: Every sample point represents the properties of an infinitesimally small surface 
point. Full sampling data structures can also provide prefiltered sample points (beside strict point 
samples) that contain information about the neighborhood of the sample point, such as prefiltered 
colors, estimates for the transparency, surface curvature or the distribution of normal vectors. 
Both approaches are useful in certain applications: Prefiltering eliminates noise and aliasing arti-
facts without requiring many sample points per pixel. Thus, the strategy provides the best ratio of 
image quality and rendering times. However, the application of prefiltering techniques is also 
restricted: For general illumination models, we often have to deal with large sets of varying sur-
face attributes such as multiple texture layers or procedural shaders. In general, it is not clear 
how general attribute sets can be processed during prefiltering. Solutions are only known for spe-
cial cases (normals, color). Often, these are only approximations: For example, it does not seem to 
be possible to represent the normal distribution or the transparency under different viewing an-
gles faithfully using a fixed amount of information (Section 4.2.4). Thus, the usage of strict point 
samples may be an option if real-time performance is not the primary goal but flexibility in shad-
ing is mandatory. 
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A second, related aspect is the flexibility in modeling: Point-based rendering is useful for 
highly detailed scenes. Usually, a scene in which point-based rendering leads to a significant 
speed up does not fit into main memory as a plain set of triangles with simple, linear, uncom-
pressed encoding. In this thesis, we consider hierarchical instantiation techniques to encode com-
plex scenes. The degree of freedom for an instantiation operation also depends on the data 
structure: All data structures allow geometric transformations such as affine transformations. In 
addition, we could also handle some more general transformations that do not lead to a non-
constant scaling of surface area or destroy the locality of the spatial hierarchy. Changing the sur-
face properties is only possible with simple point samples that consist only of surface position, 
orientation, and a material identifier at the sample point. Here we could think of exchanging ma-
terial identifiers by id-numbers or applying procedural shader scripts to the surface. For prefil-
tered samples, discrete attributes on the surface such as material ids are lost and thus cannot be 
used for instantiation. 

Besides flexible instantiation, we could also think of extending point-based rendering to 
more general procedural modeling techniques. We expect that randomized dynamic sampling 
could be generalized more easily than static sampling techniques as these require the precompu-
tation of all sample points in advance. This probably abandons the advantages in terms of mem-
ory efficiency of procedural modeling techniques. 

In terms of performance, full sampling provides the least run-time costs as this technique 
allows the usage of all stratification techniques and only uses precomputed sample points. The 
drawback is memory usage: We cannot strictly prove linear memory costs. However, this is of 
little relevance in practice (as discussed before). Nested sampling is second best in terms of ren-
dering costs. Prefiltering cannot be used. This usually increases the necessary sample size for 
rendering low-noise images significantly. In addition, only some stratification techniques can be 
employed. However, in terms of memory usage, the approach yields an optimal, linear behavior. 
The least efficient technique is dynamic sampling. It computes an unstratified sample set of sim-
ple sample points dynamically, during rendering. Thus, the size of a sample set that is sufficient 
for high image quality is fairly high. However, this technique offers the most flexibility for model-
ing. It also needs linear storage only. The construction time of O(n log n) is optimal, better than 
O(h n) for static sampling (h being the height of the octree). 

A subtle advantage of the dynamic sampling strategy is sampling accuracy (Figure 41): The 
technique can always ensure a strict ε-approximation of a given sampling density function: Each 

density: 4 pts/unit²

density: 256 pts/unit²

   
(a) specified sampling density 

(strongly varying) 
(b) piecewise constant approxi-
mation using dynamic sampling 

(after stratification) 

(c) piecewise constant approxi-
mation using precomputed sam-

ple sets 

Figure 41: Comparison of the approximation accuracy of dynamic and static sampling. 
(Note that this is a schematic figure, the sample points are only depicted to visualize the sampling density. 

Usually, they are not stratified on a regular grid, at least not in case b.) 
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bounding box is subdivided until the density function does not vary by more than a constant 
within the bounding box. This is not the case for static sampling: If a box is subdivided, the sam-
pling density of all sibling boxes is increased, too, possibly without need. This leads to increased 
oversampling. However, to our experience, the general performance advantages of static sampling 
dominate such effects in most applications. 
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5 Forward Mapping 

Chapter 5 

Forward Mapping 

In this chapter, we describe an efficient forward mapping rendering algorithm that makes use of 
the data structures of the preceding chapter. The algorithm provides interactive to real-time frame 
rates for highly detailed scenes. It relies on z-buffering, similarly to real-time rendering techniques 
for conventional, triangle-based models. The rendering algorithm consists of two steps: First, we 
perform a hierarchy traversal to collect a set of sample points for all objects in the view frustum. 
Second, we reconstruct an image from the sample points. This process again consists of two logical 
steps: First, all invisible sample points have to be removed from the sample set. Second, the re-
maining points are fed into a scattered data interpolation algorithm that reconstructs a continuous 
image. The chapter consists of three sections: First, we examine properties of the perspective projec-
tion. Then we use these observations to devise an efficient rendering algorithm and analyze its cost. 
The third section describes several techniques for image reconstruction. 

5.1 Perspective Projection 
We use the point-based multi-resolution data structure to implement an importance sampling 
approach: Our goal is to cover the on-screen projections of the objects of the scene uniformly with 
sample points. This allows a reconstruction of an image with uniform resolution all over the 
screen. Put in other words, we need a sampling density for each surface fragment that is propor-
tional to the projection factor under a given (dynamically changing) perspective projection. The 
projection factor is defined as the scaling factor that is applied to an infinitesimally small surface 
fragment when it is projected onto the screen. To derive the projection factor, we consider an in-
finitesimally small surface fragment f. First, we assume that the fragment f is parallel to the im-
age plane. With g denoting the projected size of f, z being the orthogonal distance from f to the 
center of projection and d being the distance of the image plane (i.e. a constant that describes the 
scaling factor of the rendered image), we obtain (Figure 42): 
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For two-dimensional surface fragments, the scaling factor has to be squared so that we obtain 
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Next, we derive the projection factor for surface fragments that are orthogonal to the vector v that 
connects the center of f and the center of projection. As f is assumed to be infinitesimally small, 
the choice of a “center” point for f has no influence on the result. We can assume that the center of 
projection is infinitely far away. To compute the projected area, we rotate f so that it is parallel to 
the image plane, yielding a fragment f ′. With α  denoting the angle between view direction rn and 
vector v, we obtain (Figure 43): 
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Lastly, we allow an arbitrary orientation of the surface fragment (fragment g2 in Figure 44). We 
first rotate this fragment until it is perpendicular to the view vector v, the we apply the preceding 
formula, yielding 
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Figure 42: Projection of surface fragments parallel to the image plane. 
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f f

 

Figure 43: Projection of surface fragments orthogo-
nal to the vector to the center of projection. 

Figure 44: The general case. 
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with β  denoting the angle between surface normal n and v. If we assume backface culling (i.e. 
invisible back sides), we also have to clamp the cosine of β  to the range [0, 1]. Overall we obtain 
the following formula for the projection factor that scales the area of a surface fragment f: 
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In vector notation, with v denoting the difference vector between the center of projection and (the 
center of) f, vn the normalized version of vector v, and rn the normalized view direction (i.e. normal 
of the image plane), we obtain: 
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The projection factor consists of three distinct terms: the depth factor z 
-2, the orientation factor 

cos β  and the distortion factor cos α. An additional constant factor d2 describes the scaling to pixel 
coordinates. The depth factor accounts for perspective foreshortening with increasing distance of 
the object. The distance is measured orthogonal to the image plane (i.e. as scalar product with the 
normalized view direction vector rn) because the image is created as projection on a plane. The 
orientation factor accounts for the fact that the projected area of an object is reduced if it is seen 
under a small angle. The distortion factor accounts for a slight increase in projected area if an 
object is projected onto an outer area of the screen instead of its center. 

Our goal is to create sample points that are distributed uniformly on the projections of the 
objects in the image plane. Thus, an optimal sampling density function would be proportional to 
the projection factor within the view frustum and zero outside. However, this ideal sampling den-
sity cannot be used efficiently in practice. Even a strict ε -approximation of the sampling density 
usually voids output-sensitive rendering times, as discussed in the next section more in detail. 
Consequently, we use a simplified projection factor to determine the sampling density. The most 
dominant factor is the depth factor. For scenes with larger extends and close viewpoints, it varies 
strongly and usually should not be neglected. The orientation factor is only a factor between zero 
and one. However, if it is close to zero, neglecting the orientation factor can still lead to strong 
overestimations of the projection factor. The third factor, the distortion factor is always in the 
interval [cos-1 αmax, 1] with αmax being the maximum angle between an object on the screen and 
the central viewing direction. This factor is usually quite small and can only lead to a constant 
overestimation if being neglected. For example, a diagonal view angle of 90° leads to a maximum 
deviation of 45° and thus to cos-1 αmax of 1.41. In the case of 45° diagonal view angle, we obtain 
1.08. 

It is also interesting to see how the different factors can be bound: The depth factor and the 
distortion factor can be bound by restricting the location of potentially projected objects: The 
depth factor requires a restriction of the depth interval and the distortion factor a restriction of 
the angle to the central view direction. In the following, we are going to use octree subdivision for 
spatial localization. Thus, both factors are bound at the same time. In contrast, the orientation 
factor is independent of the spatial location. It depends only on the orientation of the surface. 
This means that any spatial group of triangles can potentially contain a large number of different 
orientations that require a separate classification, orthogonal to spatial classification. In addition, 
an oriented surface also demands for anisotropic sampling patterns for an optimally uniform dis-
tribution of the sample points in the image plane. To avoid this additional effort, we usually ne-
glect the orientation factor and consider only the depth and distortion factor during rendering. 
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5.2 Hierarchy Traversal 

5.2.1 The Rendering Algorithm for Dynamic Sampling 
To render the scene, we first fix an on-screen sampling spacing d′, which is a user defined con-
stant. Then we define an object space sampling density that guarantees the specified on-screen 
sample spacing. We employ an object space sampling density proportional to the depth factor of 
the projection factor with a constant that leads to a sample spacing of d′ pixels on the screen. 
Then we apply an algorithm similar to the ε -approximation algorithm (Algorithm 1, Section 4.1.3) 
to this sampling density function. In order to consider the other two factors (orientation, distor-
tion) as well as the view frustum as well as in order to perform the detection of large triangles, we 
need to modify the basic algorithm slightly: 

We start traversing our data structures by examining the preclassification lists (Section 
4.1.4 and 4.1.5) with orientation and area classes, if applicable: If preclassification is used, we 
have to deal with separate spatial hierarchies that only contain triangles of similar area (area 
classes) or triangles with similar orientation (orientation classes) or a combination of both. The 

Algorithm dynamicPerspectiveSampling(Node ν , Camera c) 

 result := ∅ 
 If B(ν ) ∩ viewFrustum(c) ≠ ∅ Then 
  If (ν  is a leave node) Then 
   result := all triangles in ν  
  Else  
   If (depth factor in B(ν ) varies by at most 1 + ε ) Then 
    A   := areaOfTriangles(ν ) 
    df  := maxDepthFactor(ν ,c) 
    of  := maxOrientationFactor(ν ,c) 
    xf  := maxDistortionFactor(ν ,c) 
    prj := df · of · xf · oversampling · screenScaling 
    n   := A · prj 
    If (averageTriangleArea · prj > pmax) Then 
     result := all triangles in subtree(ν ) 
    Else 
     result := n random sample points from ν  
    End If 
   Else 
    For each (child k of ν ) Do 
     result := result ∪ dynamicPerspectiveSampling(k) 
    End For 
   End If 
  End If 
 End If 
 Return result 

Algorithm 2: Conservative perspective sampling using a dynamic sampling data structure. 
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latter case means that the list of area classes again contains lists of orientation classes22. For each 
spatial hierarchy found in this lists, we store the maximum and minimum area values as well as 
the average normal direction along with the maximum angle by which a normal from that class 
can deviate from the average. These values are used later on to refine the sampling decisions. 

Then we start with the traversal of the spatial hierarchy (see Algorithm 2 for a pseudocode 
description): For each node, we first check whether it is contained in the view frustum. If this is 
not the case, the recursion is stopped. Otherwise, we check whether the spatial extends of the 
current octree node (i.e. its bounding box) already allow an ε-approximation of the depth factor. If 
this is not the case, the algorithm is applied recursively to the child nodes. If the approximation is 
already good enough, we compute an upper bound for the projection factor and use this bound to 
determine the number of sample points necessary for conservative sampling. If the average num-
ber of sample points per triangle exceeds the predefined constant pmax, we do not perform sam-
pling but report all triangles of the node instead. The average area per triangle used in this 
computation is obtained from the area classes23. Otherwise, the sample points are generated as 
described in Section 4.1.2. To determine the number of sample points, the stored normal cone of 
the current orientation class is considered. In conjunction with a bounding sphere of the current 
octree node, we can determine the minimum angle β  between a surface normal and the view di-
rection and reduce the sampling density accordingly. 

                                                      
22 Due to the strong increase of classification efforts, this strategy is not used in practice.  
23 It seems that we could also use A/#triangles as average triangle area, not needing area classes. It is possible to use the 
value as alternative method for computing the number of sample points per triangle. However, we would still need a 
classification by triangle area. Otherwise, the size of the triangles could vary strongly so that we would also report large 
numbers of small triangles once a few sufficiently large triangles are contained in the same node. This is of course less 
efficient than treating triangles of similar size only. 

Algorithm staticPerspectiveSampling(Node ν , Camera c): 

 result := ∅ 
 If B(ν ) ∩ viewFrustum(c) ≠ ∅ Then 
  df  := maxDepthFactor(ν ,c) 
  of  := maxOrientationFactor(ν ,c) 
  xf  := maxDistortionFactor(ν ,c) 
  prj := df · of · xf · oversampling · screenScaling 
  If (samplingDensity(ν ) ≥ prj) Then 
   Return (triangles and sample points in ν ) 
  Else 
   For each (child k of ν ) Do 
    result := result ∪ staticPerspectiveSampling(k) 
   End For 
   result := result ∪ triangles in ν 
   If (nestedSampling) Then 
    result := result ∪ sample points in ν 
   End If 
  End If 
 End If 
 Return result 

Algorithm 3: Conservative perspective sampling using a static sampling data structure. 
In case of stratified sampling, maxOrientationFactor has always to be set to 1. 
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5.2.2 The Rendering Algorithm for Static Sampling 
The rendering algorithm for static sampling data structures (Algorithm 3) is very similar to that 
for dynamic sampling. The algorithm performs a hierarchy traversal until the sampling density 
reaches or exceeds the specified on-screen sampling density. It also stops if a node is outside the 
view frustum. When the desired sampling density is found, the precomputed sample points are 
reported. All triangles that are found on the way down the hierarchy are reported, too. In case of 
nested sampling, we also have to report all sample points in the inner nodes of the traversal tree. 
The algorithm computes an estimate for all three factors in the projection factor. In case of the 
orientation factor, we need again a preclassification by orientation to estimate the factor. In addi-
tion, it can only be used for random sampling. If stratification is used, we cannot decrease the 
sample pattern any longer for triangles seen under a small angle. In that case, the on-screen 
sampling pattern would become anisotropic and would not cover the area safely. 

5.2.3 Analysis 
The two algorithms given above obviously return a conservative sample set for the scene under a 
given perspective projection. The question is now: How efficient are these sampling approaches? 
Two different aspects determine the overall efficiency: First, we need to find out how many nodes 
of the hierarchy are traversed by the algorithm. Second, we need to determine the approximation 
accuracy. The better the conservative sample sets match the target sampling density necessary 
for image reconstruction, the shorter will be the rendering times. Obviously, these two questions 
are intervened. A better approximation accuracy will probably also cause a larger traversal effort, 
leading to a trade-off between traversal and oversampling overhead. 

In this section, we will perform a formal analysis to determine the efficiency of our pro-
posal. We will start with an analysis of the traversal costs for an ε -approximation of the depth 
factor using dynamic sampling (Algorithm 2). It will turn out that the costs depend only weakly 
on the scene so that even large scenes can be handled efficiently. Second, we will show that a 
similar result also holds for static sampling. The next topic to consider is view frustum culling. 
Here we will show that our algorithm performs an approximate culling with sufficient accuracy 
for average cases. As we have already bounded the influence of the distortion factor a priori, it 
then remains two consider the influence of the orientation factor. It will turn out that our tech-
niques do not allow a strict ε -approximation of the sampling density for arbitrary scenes. How-
ever, we will show that we obtain only a constant oversampling on for “average” scenes so that 
this is no restriction in practice. 

5.2.3.1 Traversal Costs for an εεεε-Approximation of the Depth Factor with Dynamic 
Sampling 

Algorithm 2 determines a set of octree boxes from our spatial hierarchy so that the projection 
factor varies only by a factor of ε  in every box. In addition, all boxes in the set intersect with the 
viewing frustum; boxes outside are skipped. How expensive is this traversal? This question is 
essential for the performance of the whole rendering approach.  

To answer this question, we first need some notation: For given camera settings and an ob-
server position p, let znear(p) > 0 denote the minimum and zfar(p) > znear(p) denote the maximum 
depth of an object in the view frustum. The depth of the near clipping plane is always a lower 
bound for znear(p). We use znear (without dependency of the observer position p) to denote the depth 
of the near clipping plane. Let τ (p) := zfar(p) / znear(p) denote the current relative depth range of the 
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scene for the observer position. In general, τ (p) cannot be larger than the diameter of the scene 
(e.g. measured as the diagonal of the smallest axis aligned bounding box of the scene) divided by 
the z-value of the near clipping plane. We use τ  to denote this maximum value, which we refer to 
as maximum relative depth range. 

Now we will show that Algorithm 2 will chose O(log τ ) octree boxes using O(h + log τ ) time 
(h denoting the height of the octree) if we neglect the orientation factor and the distortion factor 
(setting them to one) and do not account for the sampling costs (which depend on the surface area 
and thus are potentially unbound). The proof consists of several steps: First, we divide the view 
frustum into regions of similar depth factor. Then, we show that each region can be covered with 
a constant number of octree boxes and that the number of regions is in O(log τ ). Afterwards, we 
show that all regions can be covered with O(log τ ) boxes from a single octree by considering tran-
sition effects at the borders of the regions. Lastly, we will bound the traversal costs to proof O(h + 
log τ ) running time. The general approach of the proof is similar to that of [Chamberlain et al. 
96]. In that paper, the authors show an O(log n) running time for their approximate rendering 
strategy (which is also based on a spatial hierarchy) under the assumption that n objects are uni-
formly distributed in the scene. 

We start the proof by dividing the scene into regions of similar depth factor. To do so, we 
need a condition to bound the deviation of the depth factor. Our goal is to retain an ε -
approximation of the depth factor, i.e. the depth factor may not vary by more than (1 + ε ) within a 
group of objects. With zmin denoting the minimum and zmax the maximum depth of a surface point 
within a group of objects, we obtain the condition 
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In the following, we write γ  for ε+1  to simplify the notation. We start the division of the view 
frustum into regions of similar depth factor at the near clipping plane z0 := znear. The first region 
(region 0) ends at z1 := znear·γ . The second (region 1) starts at that depth, reaching up to z2 := 

z 0
 =

 z
n

ea
r

z 1
z 2

z 3

z 4

z 5

z 6

z n
ea

r· 
 1

z n
ea

r· 
 2

z n
ea

r· 
 3

z n
ea

r· 
 4 z n

ea
r· 

 5

z n
ea

r· 
 6

z n
ea

r· 
 0

r.
 0

r.
 1

re
gi

on
 2

re
gi

on
 3

re
gi

on
 4

re
gi

on
 5

 

z k
-1

z k

z k
+1

z k
+

2

z n
ea

r· 
 k-

1

z n
ea

r· 
 k z n

ea
r· 

 k+
1

z n
ea

r· 
 k+

2

dk-1 dk dk+1  
Figure 45: Dividing the view frustum into depth 

regions. 
Figure 46: Covering one region with boxes with a 

diameter not larger than that of the previous region. 
 



100 5 Forward Mapping 

 

znear·γ 2. The k-th region rk starts at zk-1 := znear·γ k and ends at zk := znear·γ k+1 (see Figure 46). This 
procedure defines kmax := logγ τ ∈ O(log τ ) different regions. Within each region, the depth factor 
obviously varies by at most (1 + ε ). 

Next, we show that each of these regions can be covered by a constant number of octree 
boxes without violating the conditions for the ε -approximation. The octree consists of a hierarchy 
of non-overlapping cubes C(ν ). Each cube is associated with a bounding box B(ν ) for the geometry 
stored in the corresponding subtree. The bounding box B(ν ) of the node ν  might be larger than the 
cube C(ν ) by a constant factor of (1 + δ ). For simplicity, we first only consider the non-overlapping 
cubes and account for the overlapping bounding boxes B later. This means that (for now) the oc-
tree nodes correspond to a hierarchy of three-dimensional, regular cube grids with side lengths 
shrinking by a factor of two at each hierarchy level. Within each level, the different cubes of the 
grid are disjoint. To cover a region rk safely, without violating the conditions for the ε -
approximation, we use cubes with a diagonal smaller than the depth interval dk-1 := zk – zk-1 = 
znear·(γ  – 1)·γ k-1 of the previous region (Figure 46). If we use cubes with a diagonal not larger than 
dk-1, we can safely cover region k: Each cube that intersects with region k cannot intersect with 
region k – 2 or lower. The largest cube diagonal found in the hierarchy that fulfills these require-
ments is always in the interval [dk-1 / 2, dk-1] because the cubes are available with side length vary-
ing by a factor of two. 

The idea for counting the number of such cubes is to compare the volume of the region and 
the minimum volume of a cube. As we also have to deal with cubes that intersect only partially 
with the depth region, we cannot directly argue based on the volume of the region but we use an 
extended region as conservative estimate: 

Figure 47 shows depth region k, extended by dk-1 in all orthogonal directions. Any set of 
boxes with diameter dk-1 that intersects with region k must lie completely within the extended 
region. If a part of the box was located outside the extended region, it would not be able to reach 
the inner region itself and thus would be superfluous. Hence, the number of disjoint boxes cover-
ing the inner region is bounded by the volume of the extended region divided by the minimum 
volume of the covering cubes, which is Vcube(k-1) := (dk-1/(2 3 ))3 = 3 dk-13 / 72. To determine the 
volume of the extended region, we first compute the cross-sectional area of the extended view 
frustum at a given depth z: The cross-sectional area of the view frustum at depth z is given by 

Ab

dk-1

dk-1

dk-1

region kAf

 

 

Figure 47: Depth region k, extended by the diameter 
dk-1 of a covering box. 

Figure 48: Cross section of the (extended) view frus-
tum at depth z. 
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with α v being the vertical and α h the horizontal view angle of the view frustum and R being the 
aspect ration, i.e. the ratio between height and width of the view frustum. The cross-sectional 
area of the extended view frustum is given by (see Figure 48): 
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We substitute symbolic names A, B for the constant terms in this formula so that the cross-
sectional area can be expressed as: 
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Substituting  znear·(γ  – 1)·γ k-1  for  dk-1, this can be expressed as: 
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The volume of a frustum with start area of Af, end area Ab and depth d is 1/2 (Af +  Ab) d. Thus, we 
obtain a volume of the extended region of: 
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Now we substitute  znear·(γ  – 1)·γ k-1  for  dk-1  and  znear·γ k  for  zk  and obtain: 
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and applying the formula for Aex yields: 
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Now we determine the ratio between Vk and Vcube(k-1) = 3 dk-13 / 72 to obtain an upper bound for 
the number of octree boxes necessary to cover region k. First, we can express Vcube(k-1) as: 
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Overall, the ratio between the volume of the extended region k and the volume of an octree box of 
maximum size that allow a save coverage of region k is a constant that only depends on the ap-
proximation accuracy ε  and the parameters of the perspective projection. Thus, every region can 
be covered with a constant number of boxes. Please note that we are considering an upper bound. 
The result above does not mean that the traversal effort will increase with increasing ε  (indeed, 
they are decreasing in practice). Only the conservative upper bound increases. The reason for this 
is that we using boxes fitting into region k-1 to cover region k. As the ratio between these two 
regions increases with γ , we also obtain an upper bound that increases with γ . 

Our next task is to show that not only a single region can be covered with a constant num-
ber of cubes from the octree but that this is also true for all regions if they have to be covered si-
multaneously with a selection of cubes from the tree. If we want to cover a region with boxes of 
uniform size and adjacent regions with boxes of smaller size, it can happen that the large boxes 
used for large regions have to be subdivided in order to obtain the smaller boxes that are needed 
for smaller regions. This leads to more boxes of intermediate size that also have to be counted 
(Figure 49). We consider a box for a region k that has to be subdivided because it also overlaps 
with smaller regions k-1, …, j (j < k). Note that it is impossible to overlap a region k and j and not 
the regions k -1, …, j + 1 in between. To bound the number of additional nodes that are output by 

box for
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boxesbox for
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Figure 49: Bounding the number of “superfluous” 
splits for boxes taken from an octree grid. 

Figure 50: Cumulative depth regions 
 Fk := ∪∪∪∪i=1..k (region k), extended by dk+1. 
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the algorithm, we count the number of additional nodes caused by cubes overlapping with region 
k-1, which causes boxes of region k to be split. This also counts further splits: the boxes in region 
k-2 account for splits of boxes from k-1 and so on. Thus, it is sufficient to consider only the costs 
caused by one box from region k-1 that leads to splitting boxes from region k. First, we already 
know that only a constant number of boxes are needed to cover region k-1. Additionally, the costs 
for each box are bounded, too: As boxes needed to cover region k are only larger by a factor of γ  
than boxes covering region k-1, we need at most log2 γ ∈ O(1) splits within the corresponding 
node from region k to shrink the node accordingly, leading to only O(1) additional boxes output by 
the algorithm. 

Up to now, we have only considered the cubes of the octree for covering the regions. Indeed, 
we are forced to use the (extended) bounding boxes. These boxes might have side lengths that are 
larger by a factor of (1 + δ ) (for a user defined constant δ  > 0), i.e. their volume can be larger by a 
factor of at most (1 + δ )3. This increases the number of boxes needed for covering the volume be-
cause a deeper subdivision level is necessary for larger boxes. However, as the volume is in-
creased by a constant factor only, the number of boxes is also increased by a constant factor only. 
In the worst case, log2 (1 + δ ) additional splits are needed for every box. 

Overall, this shows that the algorithm outputs at most O(log τ ) octree nodes: We have con-
structed a set of nodes of size O(log τ ) at which the traversal will stop in any case. If the algorithm 
terminates the recursion earlier for some subtrees, this does not increase the number of output 
nodes as the potential output is monotonically increasing with the recursion depth. 

Now it remains to show, that the traversal costs are also small. We prove a bound of O(h + 
log τ ) for an octree height of h. It is obvious that the traversal costs are O(log τ ) if the bounding 
box of the scene lies completely within the view frustum. In this case, the all children of inner 
nodes in the traversal tree are forced to be traversed. The branching factor is at least two as they 
would be short-cut otherwise. Therefore, the number of nodes in the tree at increasing levels 
forms a geometric sum with an exponent of at least two, which means that the tree contains O(L) 
nodes if L is the number of leafs of the recursion tree, which is in O(log τ ). 

Problems can only occur if only a part of the tree is located inside the view frustum. Then it 
is possible that only one child node is visited during traversal for some of the nodes. To bound the 
number of processed nodes in this case, we consider cumulative regions Fk that are the union of 
regions 1…k. Then, we consider all nodes from the tree that have a diagonal in the interval 
(dk, dk+1]. These nodes are only subdivided if they intersect with Fk. Nodes that are smaller than 
d0 are never subdivided due to the ε -approximation of the depth factor. Nodes with a diameter 
larger than dkmax + 1 are accounted for later; for now we only consider nodes with a diagonal below 
this size. Now we show that at most O(1) boxes exists that intersect with Fk and have a diagonal 
in the given interval. To do so, we again form an extended region by increasing Fk by dk+1 in all 
orthogonal directions. All nodes of the given size that intersect with Fk must lie completely within 
this region. Thus, the ratio of its volume and the minimum volume of an octree cube bounds the 
number of such nodes. Again, we consider only the disjoint cubes. Using overlapping cubes 
enlarged by at most (1 + δ ) will increase the number of boxes by at most a constant factor. 

The volume of the extended regions is no larger than 
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with constants A, B as defined above. This leads to a volume of: 
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The minimum volume of a box with a diagonal in the interval (dk, …, dk+1] is 
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which is a constant value, independent of k and znear. Up to now, we have shown, that only a con-
stant number of octree boxes are visited during traversal with a diagonal in the interval (dk, dk+1] 
for each k from 0 to kmax, with kmax ∈ O(log τ ). Boxes with a diagonal smaller than d0 are not used 
in the traversal. It remains to bound the number of larger boxes. A box with side length larger 
than dk+1 cannot be used to cover a view frustum region. Thus, it is subdivided because an indi-
rect child node with side length (dkmax -1, …, dkmax] is used for covering Fkmax.  As shown before, only 
O(1) such nodes can exist. Thus, they cannot have more than O(h) parent nodes. This leads to an 
overall bound for the runtime of O(log τ  + h). 

These costs are rather small. They depend only logarithmically on the maximum depth 
range and linearly on the height of the tree. In practice, we can expect that these two values are 
quite small. Note that the costs also depend on the approximation accuracy ε  and the viewing 
parameters. Intuitively (omitting a formal proof), we could expect a growth of the number of se-
lected octree boxes of Θ((γ  – 1)-3) for γ  → 1 because the initial box size in the first region shrinks 
with (γ  – 1)3. Therefore, all boxes, which have a size that is a multiple of this size, also grow and 
shrink by this factor. Additionally, the cross section of the view frustum is proportional to 
R tan2 αv. Thus, we conjecture that we have a dependence of Θ( ε+1(  – 1)-3

 R tan2 αv) on the re-
maining parameters. 

5.2.3.2 Static Sampling 

In the previous subsection, we have derived an asymptotic bound for the traversal cost of the dy-
namic sampling algorithm. In this subsection, we will show that the same bound also applies to 
static sampling. To proof this bound, we could perform a similar proof as outlined in the previous 
subsection. However, this is not necessary. Instead, we show that the sample spacing of octree 
boxes used in dynamic sampling is a constant fraction of the boxes side length. Thus, the results 
of the preceding section can be applied directly and we obtain the same bound. Additionally, we 
also get a connection between the number of sample points per octree box and the approximation 
accuracy for the depth factor. 
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The dynamic sampling algorithm performs a depth-first search that terminates when the 
depth-factor of the perspective projection varies by no more than (1 + ε ) in the bounding box of the 
octree node. Let zmin be the minimum and zmax be the maximum depth of a point in such a bound-
ing box. Then, we know24 that 

εγγ +=∈⋅= 1],1,[   with   
2
1

11 czcz minmax  

as the octree boxes match up the desired size up to a factor of 2. This means, that the depth of the 
octree box is zmax – zmin = (c1γ  – 1)zmin. The orientation of the box in respect to the z-axis of the 
viewing coordinate system may vary arbitrarily (Figure 51). Thus, the side length size(z) of such a 
box is given by: 

 ( ) ]1,3[   with   1)(
3212
1∈⋅−= czcczsize γ  (13) 

Thus, the size of the octree boxes is (roughly) proportional to z. We compare this size with the 
sample spacing d(z) required in a distance of z. Our goal is to create sample sets with a uniform 
spacing d0 in the image plane. If we consider the depth factor only, this means that we need a 
sample spacing of d0·z in distance z to the image plane. Usually, d0 corresponds to the size of a 
pixel. If we assume a vertical viewing angle of αv and a display resolution of h pixels vertically, we 
obtain (Figure 52): 
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The required sample spacing at distance z and the size of the approximating boxes of the dynamic 
sampling algorithm at distance z are both proportional to z; only a small variation due to uncer-
tain orientation and quantization to powers of two is possible25. Thus, the hierarchy traversal will 
use the same asymptotic running time if we search for nodes in a static sampling data structure. 
In these nodes, the sample spacing is a fixed proportion 1/k of the box side length. This yields a 
sample spacing of size(z)/k. Comparing the constants in the proportionality with z, we obtain a 
relation between the approximation accuracy and the number of samples per box side length: 
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24 It is also possible that the recursion stops earlier because a leaf node is reached before the desired accuracy is met. 
However, in this case we obtain fewer nodes in our selection. Thus, we do not need to account for such cases. It is also 
possible that the criterion is not met if the root bounding box is already smaller than necessary to fulfill the requirements 
of the approximation. In this case, our bounds are also fulfilled trivially so that we do not need to consider it either. 
25 An additional variation by a factor of (1 + δ ) can be caused by the node tolerance zones: The sampling distance is deter-
mined according to the side length C(ν ) while the box B(ν ) might be slightly larger. However, this also increases the uncer-
tainty by a small constant factor. 
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Figure 51: Octree boxes with different orientations 
in respect to the z-axis of the viewing coordinate 

system. 

Figure 52: Relationship between sampling distance 
and screen resolution. 
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The oversampling due to the quantization of the sampling density in powers of two can be re-
duced by storing multiple resolutions per node (cf. Section 4.2.3), reducing the variation of c1. c2 is 

331  in the worst case. Hence, the approximation accuracy of static sampling is given by: 
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Table 2 shows examples for typical viewing conditions. It can be seen that moderate numbers of 
sample points per box side length only lead to a quite small maximum deviation of the depth fac-
tor. Thus, it is no problem in practice to use nodes with a quite large number of sample points 
(say 16-64 points per box side length). This is favorable as a block-wise processing of sample 
points can often increase the performance of rendering algorithms (cache coherence, burst trans-
fers, swapping from secondary storage devices etc…). 

In summary, we should note that static sampling and dynamic sampling are equivalent in 
terms of asymptotic hierarchy traversal costs necessary to achieve a fixed approximation accuracy 
of the depth factor. The approximation accuracy depends on the number of sample points per box 
side length (relative to screen resolution and viewing angle). For moderate numbers of sample 
points per box side length, good approximation accuracies are achieved. 

5.2.3.3 View Frustum Overestimation 

Another source of overhead is the overestimation of the extends of the view frustum. Obviously, 
our hierarchy traversal strategies are not able to extract an exact set of objects located in the view 
frustum but they compute a superset (Figure 53). 

This means that the worst case overhead can be very large: In an unfavorable case, no ge-
ometry could be located in the view frustum but only in the invisible region border region that is 
also reported by the hierarchy traversal. This can lead to an overestimation of the sample size by 
an infinite factor. However, such a worst case analysis is not very meaningful for practical appli-
cations where the viewer moves around steadily. It is very unlikely that large parts of the geome-
try fall into the border region for many frames in such a situation. In practice, an average case 
analysis is more relevant: We assume that geometry falls in all regions of the view frustum and 
its border region with similar probability. Then, the performance degradation is given by the in-

points per box side k 2 4 8 16 32 64 128 256 

depth-fact accuracy  εεεε 1.67% 3.36% 6.8% 13.8% 28.4% 60.4% 135% 327% 

view frust. overest. VF 2.54% 5.11% 10.3% 21.2% 44.4% 96.8% 225% 579% 

dist-fact accuracy DF 0.42% 0.84% 1.68% 3.39% 6.89% 14.2% 29.6% 63.0% 

Table 2: Overestimation of the depth factor, the projected view frustum area and the distortion factor in 
dependence of the number of sample points per box side length. We assume typical rendering settings: a 

resolution of 640 ×××× 480 pixels and 60° vertical viewing angle. The table shows upper bounds, on the average, 
the values are smaller.
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crease of the cross-sectional area of the view frustum projected onto the screen. As shown in the 
previous subsection, the size of octree boxes in an ε -approximation of the depth factor is not lar-
ger than (γ  – 1)·z at a depth of z. At the same depth, the view frustum has a cross-sectional area 
of z2·R·tan2 αv/2 with αv  being the vertical viewing angle and R being the aspect ratio of the image 
(width / height). The overestimated area is z·R·tan2 αv/2 + 2(R+1)(γ  – 1)·z2·tan αv/2 + 4z2·(γ  – 1)2. 
The projected area is obtained by dividing the cross-sectional area by z2. We do this for both the 
cross-section of the view frustum and the overestimated area and obtain a constant ratio of: 
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For static sampling, the overestimation of the view frustum in terms of projected area can be 
bound more easily using a simple observation: The projected size of the sample spacing is always 
no larger than the on-screen sample spacing (typically the pixel size). Thus, the border of around 
the visible portion of the screen is not larger than ⋅3 k times the on-screen sample spacing (i.e. 
typically k pixels). This yields a bound of 
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for a screen height of h samples and aspect ratio (width / height) of R. Table 2 shows example 
values for typical parameters. Note that this is an upper bound. On the average, we can expect 
smaller values. For dynamic sampling, we can also improve the approximation of the view frus-
tum by enforcing a deeper subdivision level at the border of the view frustum. For static sam-
pling, this also leads to an increased sampling density so that we do not obtain savings in terms 
of the expected number of sample points. 

5.2.3.4 Bounds for the Distortion Factor 

As it limits the spatial extends of groups of objects, our spatial subdivision strategy also bounds 
the distortion factor. An upper bound for the deviation of the distortion factor can easily be 
deduced by considering the projection of the boxes in the image plane. Again, we place the image 
plane in a distance of 1 to the center of projection so that we obtain a screen height of tan(αv/2) 
and width of R tan(αv/2) (see Figure 52). This leads to a diagonal angle of arctan( 21 R+ tan(αv/2)) 
for the image. The strongest variation of the distortion factor is found at the borders of the image 
(the derivative of cos-1 α increases with α  for α  < π/2). Thus, the worst case is an octree box that 
exceeds one of the diagonal corners of the image by its projected size of γ  – 1. This leads to an 

octree boxes

viewing frustum
viewpoint

 

area

 

Figure 53: Covering the view frustum with octree 
boxes. The cross sectional area is overestimated by a 

constant factor. 

Figure 54: Area on the unit sphere in dependence 
of the angle ϕϕϕϕ. 
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angle α of not more than arctan( 21 R+ tan(αv/2) + γ  – 1). This yields a worst case bound for the 
overestimation of the projection factor of 
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Some example values are again given in Table 2. The deviation is relatively small in comparison 
with the other factors. For moderate viewing angles (in this example: vertical viewing angle 60°), 
the approximation of the distortion factor is only a minor problem. 

5.2.3.5 The Influence of the Orientation Factor 

The last factor in the projection factor that we have not yet considered is the orientation factor. 
We have two options for dealing with this factor. First, we can just ignore the orientation of the 
triangles and always use sample patterns that would be dense enough for covering the surfaces 
even for orthogonal viewing. For stratified, static sampling, this option is always employed be-
cause otherwise, we were forced to use anisotropic stratification patterns, which are currently not 
supported by our algorithms26 (Section 4.2.3). Second, we can employ orientation classes that 
group triangles with similar orientation to obtain an estimate of the orientation factor. We will 
consider both alternatives in the following subsections. It turns out that the first, rather simplis-
tic, is usually sufficient. Orientation classes only yield at most moderate performance improve-
ments. The reason for this result is that ignoring the orientation leads only to small oversampling 
in average cases while the additional effort for an effective adaptation to the orientation factor is 
quite high. 

Ignoring Orientation: Average Overestimation 

If we ignore the influence or the orientation, we obtain a larger projected area and thus a larger 
sample size. In the worst case, the overestimation can result in an arbitrarily large factor: Think 
for example of a set of triangles parallel to the viewing direction. The required sample size is zero 
but the algorithm nevertheless employs several sample points, leading to an infinite approxima-
tion factor. Again, the worst case behavior is not very relevant in practice: Usually, the viewer 
moves around and examines objects from different viewing directions. Additionally, we can expect 
varying orientations of objects in the scene. Therefore, worst case configurations are usually only 
found for small subsets of the scene over time. 

As a simple, abstract model for a “typical” scene, we assume that the orientations of the 
normals (as seen from the viewer) are distributed randomly, uniformly on a unit sphere. Then we 
compute the expected value for the orientation factor for that normal distribution: A uniform dis-
tribution on the unit sphere means that the probability that a normal falls into a surface frag-
ment of area A is A /4π. Now let the random variable ϕ  denote the angle between view vector and 
a random normal. The probability for ϕ  being in the interval between 0 and ϕ 0 is thus given by 

( )
2
cos12

0
ϕϕϕ −==≤

4π
πh

P  

                                                      
26 Our experiments with orientation classes for dynamic sampling showed that the technique usually provides only limited 
performance benefits. Therefore, we did not consider the usage of this technique for the (more recent) static sampling 
techniques anymore. 



5.2 Hierarchy Traversal 109 

 

with h denoting the height of the cap of the sphere (Figure 54, the area formula is taken from 
[Bronstein et al. 97]). The probability density function is given by the derivative of the distribu-
tion function so that we obtain: 
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Hence, we obtain an expected value for the orientation factor of 
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if we account for backface-culling by setting the orientation factor to 0 for angles β  of more than 
π/2. If we do not employ backface culling but display backfaces of triangles in the scene as well, 
we obtain an expected value of E(|cos β|) = 1/2. This means that the average overestimation for 
ignoring the depth factor (i.e. assuming a constant value of one) is a factor of two or four, respec-
tively. 

Orientation Classes 

To improve the accuracy of the sampling density estimation in respect to the orientation factor, 
we can use orientation classes: triangles of similar normal direction are grouped together and a 
separate spatial data structure is build for each group of such triangles (Section 4.1.4). To analyze 
this strategy, we should first note that the angle between a surface normal and a vector to the 
viewer also depends on the spatial location of the corresponding piece of surface and not only on 
the normal direction. Within a spatial bounding box of projected size γ  – 1, the angle to a normal 
may vary by 2 arctan ((γ  – 1)/2) (Figure 55). Therefore, we should restrict the resolution of the 
normal classes to a maximum angular deviation of that size. Otherwise, the accuracy of the esti-
mate of the orientation factor is dominated by the spatial deviation. 

 This observation shows that the effort for restricting the deviation of the view angle to a 
value of ±ε  leads to runtime costs of typically Ω(ε -4): To decrease the normal deviation we have to 
decrease the maximum angular deviation in the orientation classes as well as the spatial extends 
of the selected octree boxes. Both must be decreased proportional to ε : For the orientation classes, 
this is obvious. For the spatial bounding boxes, this can be seen by employing the Taylor ap-

 

view point

pile of n triangles, parallel
to the view direction

one triangle with a slightly
different angle ( )±ε  

Figure 55: Orientational deviation due 
to spatial deviation. 

Figure 56: Worst case example for estimating the orientation fac-
tor. The projected area is overestimated by an arbitrary factor.
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proximation arctan(x) ≈ x for x → 0. Decreasing the size of the orientation classes to a fraction of ε  
leads to costs of Ω(ε -2). Decreasing the diameter of the spatial bounding boxes to a fraction of ε  
also leads to an effort of Ω(ε -2) for locally flat scenes (Ω(ε -3) for volume filling scenes). The two 
factors have to be multiplied, leading to a large effort for bounding the orientation factor. 

Even after restricting the deviation of the orientation factor to a value of less than ±ε , we 
still do not achieve a strict approximation of the orientation factor by a constant factor: For values 
of β  ≥ π/2, the orientation factor is zero. This means that we cannot guarantee a constant worst 
case overestimation factor for all groups of triangles with an interval of viewing angles overlap-
ping π/2. In this case it is possible to obtain a arbitrary large overestimation even for arbitrarily 
small ε . Figure 56 shows an example: By adding triangles parallel to the view direction into a 
group of triangles with a maximum orientation factor > 0, we can generate arbitrarily large over-
estimations of the projected area. 

As a consequence, we do not attempt to perform a strict ε -approximation of the orientation 
factor. Instead, we have to rely on a good average behavior for scenes with average normal distri-
bution. 

5.3 Image Reconstruction 
The traversal algorithms described in the last section compute sample sets with fixed maximum 
point spacing in the image plane. Now, the next task is to reconstruct an image from the set of 
sample points. This process consists of two conceptual steps: First, we have to delete all invisible 
sample points; second, we have to fill the empty space among the remaining visible points using a 
scattered data interpolation technique. 

5.3.1 Reconstruction of Occlusion 
The reconstruction of occlusion, i.e. the removal of invisible points, is based on the z-buffer algo-
rithm: We process all sample points linearly and points close to the viewer discard other points in 
their neighborhood that are farer away. 

5.3.1.1 Grid Reconstruction 

A simple implementation of this technique uses a regular grid of pixels. As in conventional z-
buffer rendering, we use two arrays storing color and depth values. The values are initialized to 
background color and maximum depth. Then all points are projected onto the screen and written 
into the corresponding pixel if the stored depth value is larger than the new one. Triangles are 
handled analogously: They are projected and rasterized similar to conventional z-buffer render-
ing. 

To avoid holes, we need sample sets that cover surfaces with sufficient density to avoid 
holes in the pixel grid. For static sampling, we demand a projected sample spacing of at most ds = 
1 pixel: For a z-buffer grid with a height of h pixels and vertical viewing angle of αv, this corre-
sponds to an object space sample spacing of (Figure 52): 

z
h

d v ⋅= 2tan2 α
. 

This approach ensures a safe coverage of continuous surfaces: The projected sample set shows a 
ds-spacing on the screen, i.e. we will find a projected sample point in distance of at most ds/2 to 
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every point in the interior of a closed surface. This means that a projected sample point is found 
in distance of at most 1/2 to the center of each pixel, thus falling onto its area and covering the 
surface (Figure 57). 

For dynamic sampling, we can calculate the necessary sample spacing d in object space ac-
cording to Section 4.2.3.1. However, we can derive a tighter27 bound by considering directly the 
projections of the random samples in objects space. Let a

_
 denote the projected area of the objects 

on the screen as computed by the hierarchy traversal algorithm (i.e. including overestimations). 
We measure a

_
 in pixels. Additionally, let k denote the number of sample points. If the image con-

tains no occlusion, this means that we have to fill p ≤ a
_
 pixels by randomly choosing one of a

_
 pix-

els by k trials. p may be smaller than a
_
 because of the overestimation of the projection factor. 

However, the probability for choosing pixel p is always no less than 1/a
_
 due to the conservative 

approximation. For filling these p pixels with probability of at least s, it is sufficient to use a sam-
ple size of 

( ) ( ))1ln(ln)1ln(ln saaspak −−≤−−=  

sample points (according to Equation 4, Section 1.3.3). In the case of occlusion, we can think of 
additional “hidden” pixels contained within the a

_
 pixels of projected area that are also filled but 

do not appear on the screen. Thus, a sample size of a
_

 (ln a
_
 – ln(1 – s)) ∈ O( a

_
 log a

_
 ) is sufficient for 

filling all pixels with probability of at least s. As a
_
 is known during rendering, we can compute the 

necessary oversampling factor (for a given security parameter s) and use it to control the sam-
pling process. For stratified static sampling, the logarithmic factor disappears because the super-
fluous points created by the randomized sampling approach are already removed during 
preprocessing. Thus, the sample size is in O( a

_
 ) in this case. 

Up to now, we know that pixels of continuous surfaces will be safely covered by sample 
points with any given probability. Now we must examine whether this is sufficient to generate 
correct results, i.e. the visibility reconstruction algorithm outputs only sample points that are 
visible from the current viewpoint. To answer this question, we consider the geometry and the 
sample points for a single pixel in the image. We can distinguish two cases: 

Non-overlapping depth: If we assume that a pixel is completely covered by foreground 
geometry and that the depth interval containing the depth values of the visible foreground is dis-
joint from the depth interval of the occluded background, we always obtain correct results (with 
high probability, according to s). As the foreground covers the complete pixel, at least one sample 
point must be located within the pixel area (with high probability). As the foreground sample 

                                                      
27 In Section 4.2.3.1, we first divide the surface into cells in object space that are then again projected to pixel cells in 
image space. This leads to an overestimation of the necessary sample space by a constant factor. 
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Figure 57: An on-screen sample spacing of ds 
guarantees a safe coverage of closed surfaces. 

Figure 58: Different subpixel occlusion situations: (a) non-
overlapping depth, (b) overlapping depth at object 

boundaries, (c) overlapping depth at parallel surfaces. 
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points all have a smaller depth value than the background points, one of them will be selected by 
the z-buffer algorithm. This case is illustrated in Figure 58(a). 

Overlapping depth: If the depth intervals of foreground and background are not disjoint, 
or the foreground does not cover the pixel completely, it can happen that a background sample 
point exists with a larger depth than all foreground points. In this case, the background point is 
falsely classified as visible. Figure 58(b) shows a typical example: a small foreground fragment 
occludes a sample point that is falsely output as visible. Such errors are usually hardly noticeable 
in practice. An example that is more likely to cause problems in practice is a configuration with 
two parallel surfaces at very small distance. If the distance is small in respect to the pixel size 
scaled by the depth, the occluded surface might shine through with up to 50% probability. If static 
sampling with prefiltering is used, we obtain a similar problem: Typically, we obtain a mixture of 
both colors instead of the color of the visible surface. A simple heuristic to overcome such prob-
lems is to use a tangent plane (based on the normal vector) instead of a constant depth for depth 
comparison (as suggested by [Pfister et al. 2000]). During prefiltering, a similar effect could be 
achieved by projecting all geometry fragments on a plane in average normal direction and dis-
carding fragments with a larger depth in normal direction. Such heuristics can improve the accu-
racy of the image reconstruction. However, they do not generally yield correct results. Point-based 
representations only reveal the properties of the geometry up to the sample spacing. Everything 
on a sub-sample sized level is uncertain. If occlusion effects on that level are crucial for correct 
rendering, we cannot expect correct results in general (see also Section 4.2.4). In such cases, we 
only have the option to increase the sampling resolution until the missing details are represented 
faithfully. Two examples of artifacts observed in practice are shown in Figure 59 and Figure 60: 
The first figure shows incorrect reconstructions of occlusion due to surfaces with very small depth 
offsets. The second figure shows leakage of backsides for thin objects (the leaves of the tree). In 
this case, simple backface culling can be applied to avoid the problem. 

5.3.1.2 Neighborhood Reconstruction 

In some cases, the simple pixel grid reconstruction technique is too slow for real-time applica-
tions. To obtain reconstructions at reduced sampling densities, we can process a complete 
neighborhood (“splat”) of pixels for each sample point: For every pixel of the neighborhood, we 
perform the z-test to determine its visibility. The neighborhood is a square of d2 pixels in the sim-
plest case. However, more general neighborhoods are possible, such as a sphere of fixed diameter 
or a projection of a tangential disc, yielding an ellipsoid [Rusinkiewicz and Levoy 2000, Zwicker et 
al. 2001a]. It is also possible to use a varying sample spacing (i.e. varying neighborhood shapes), 
e.g. according to the surface curvature [Kalaiah and Varshney 2001]. 

 

 
(a) small offset to the 

ground 
(b) larger offset 

 

  
(a) dark backsides 
leaking through 

(b) heuristic solution: 
backface culling  

Figure 59: Incorrect reconstruction of occlusion for 
polygons with small depth offset (cf. Figure 58b)

Figure 60: A second example for small depth offset 
problems and a heuristic solution. 
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We have two options for an implementation: A simple option is to use a z-buffer and per-
form the calculations on a per-pixel basis. Another option is to use a two-dimensional search 
structure containing the sample points in a continuous domain (usually a 2d-grid of lists of sam-
ple points). We store all points in that data structure. Then we determine all sample points in the 
neighborhood of each sample point and delete those sample points that are farer away than the 
current point. To make optimal use of the sample set, we can also use a small tolerance region in 
which sample points “behind” a new point are not deleted28. The second approach is usually 
slower than the first but offers a bit more flexibility. It is for example possible to use very large 
sample sets, allowing visibility computations at a subpixel level without being forced to use a high 
display resolution. 

The sample spacing can be determined as before: If we use neighborhoods (“splats”) of di-
ameter ds in screen space, we have to employ a sampling distance in object space that corresponds 
to a screen space sample spacing of ds. For the correctness of the output, similar considerations 
hold as for grid reconstruction: In areas where foreground and background fall in different depth 
intervals, correct reconstructions are obtained. In other cases, problems can occur. If a depth tol-
erance zone is employed, special care must be taken to avoid leakage of background points. A good 
(heuristic) choice is to use a tolerance zone proportional to the sample spacing in object space. 
Additionally, backface culling should be used to delete background sample points at transitions 
between background and foreground areas. This avoids artifacts due to the simple depth toler-
ance interval. 

Figure 61 compares the two options for a reconstruction of occlusion: grid-based and 
neighborhood-based reconstruction. The neighborhood-based technique is able to reconstruct 
more precise contours from the same data set while the grid-based technique suffers from quanti-
zation artifacts. However, this problem is only visible under magnification, as shown in our ex-
ample scene. For a sampling density according to the pixel spacing, the artifacts are not relevant. 

5.3.2 Scattered Data Interpolation 
After we have determined the visible portion of the sample set, we reconstruct an image by inter-
polating the color values that are obtained by shading the sample points according to the given 
material and lighting model. To do the interpolation, we have again several options (Figure 62): 

                                                      
28 This also prevents cascaded deletion effects: Without tolerance region, it might happen that a sequence of sample points 
with close depth and slowly varying position on the screen is completely deleted (except the foremost point). 

  
(a) grid reconstruction (b) neighborhood reconstruction 

Figure 61: Two options for reconstructing occlusion for sample sets with fixed on-screen sample spacing. 
 The image shows how a random sample set is distinguished from the background. The neighborhood-based 

technique provides a better utilization of the available information. 
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5.3.2.1 Per-Pixel Reconstruction 

The most elementary technique is to just color every pixel according to one of the sample points 
located within the pixel on the screen. This technique is usually used in conjunction with grid-
based visibility reconstruction: Both steps are performed at once by just “painting” the projected 
points into a color buffer with additional z-buffer test (Figure 62a). 

5.3.2.2 Splatting 

To speed up the process, we can also draw larger “splats”, e.g. small squares of d × d pixels or cir-
cles with d pixels diameter. If we use sample sets with on screen sample spacing not larger than 
d, we obtain a hole-free, piecewise constant image reconstruction (Figure 62b). 

5.3.2.3 Voronoi Regions 

An alternative to splatting is the use of Voronoi regions. Instead of drawing fixed-sized splats, the 
Voronoi region of each sample point is determined and filled with the color of the sample point. 
The computation of Voronoi regions in 1-norm can be performed efficiently by a region growing 
algorithm: Each pixel is inserted in a queue. Then the first element of the queue is picked repeat-
edly and the pixel is filled with the color of the sample point. Then, its 4 direct neighbors are con-
sidered. If the neighbor is still empty, it is inserted into the queue and marked as filled. This 
procedure computes the discrete 1-norm Voronoi regions in linear O(p) time. However, the image 
quality is only improved slightly in comparison to simple splatting. Thus, the technique is proba-
bly not worth the additional effort (Figure 62c). 

5.3.2.4 Averaging 

Whenever we use sample sets without prefiltering, we have to deal with noise and aliasing issues. 
In the case of dynamically generated random sample sets, we mostly obtain noise artifacts. These 
can be eliminated by calculating several images, independent of one another and compute their 
arithmetic average. This technique can strongly improve the image quality. However, due to the 
O(

1−
n ) convergence speed, several images are necessary to obtain noise free solutions. As a rule 

of thumb, 10 images yield an acceptable quality while several hundred are necessary for a truly 
noise-free solution (cf. Section 1.3.2). For static sampling without prefiltering, we also need an-
tialiasing but cannot perform independent renderings for averaging. Instead, we can use higher 
resolution sample sets (deeper hierarchy levels). This yields multiple sample points per pixel, 
which can be used for averaging. 

 
(a) per pixel reconstr. (b) splatting (c) Voronoi regions (d) Gaussian filtering 

Figure 62: Comparison of interpolation techniques at a constant on-screen sampling density. 
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5.3.2.5 Gaussian Reconstruction 

Averaging several images is only a heuristic. We can still obtain aliasing effects. One reason for 
this is the “depth-dominance” of the z-buffer-based reconstruction. Whenever several sample 
points fall onto one pixel, only the foremost is taken. Usually, a lot of points fall onto one pixel: 
Random sampling with safe coverage needs e.g. about 20 sample points per pixel on the average. 
This leads to aliasing effects very similar to those known from conventional z-buffer rendering. 
The problem can be avoided by using neighborhood-based visibility reconstruction with continu-
ous point sets (as described in Section 5.3.1.2). The depth tolerance of the enhanced visibility re-
construction avoids depth dominance and thus z-buffer aliasing. After all occluded points have 
been deleted, an image grid is defined and a reconstruction low-pass filter kernel is placed at 
every sample pixel of the image grid. The search structure of the visibility reconstruction step is 
then queried to determine all remaining, visible points that overlap with the reconstruction ker-
nel. Then, the weighted average of the corresponding color values, using the function value of the 
reconstruction filter as weights, is computed to determine the color values for the pixels. This 
technique is of course more expensive than simple z-buffer-based image reconstruction but it 
yields a superior image quality with little aliasing effects. 

5.3.2.6 Advanced Splatting Techniques 

It is possible to modify the simple splatting algorithm to produce images with low aliasing. Two 
options have been published in literature that are useful for different applications: 

“Surface Splatting” [Zwicker et al. 2001a] 

[Zwicker et al. 2001a] propose an implementation of reconstruction with Gaussian filter kernels 
using splatting: For each sample point, a Gaussian splat with a standard deviation proportional 
to the pixel spacing is drawn into the framebuffer using additive blending. In addition to the color 
buffer, a weight buffer is also used in which the weight sums of the kernel functions are stored, 
too, for later renormalization. The technique can be modified to support more general elliptical 
splat primitive: A two-dimensional Gaussian splat is associated with each sample point and pro-
jected to the screen. By limiting the main axes of the projected ellipse to 1 pixel, aliasing is 
avoided. A depth buffer and a depth test with a small depth tolerance can be used to perform visi-
bility reconstruction in one pass. The technique is superior to our Gaussian reconstruction algo-
rithm [Wand 2000a] described before both in terms of performance and generality. 

Alpha-Blending [Rusinkiewicz and Levoy 2000] 

Another reconstruction technique from literature is using alpha-blended Gaussian splats. The 
splats are drawn in front-to-back order, performing occlusion and image reconstruction in one 
step. This technique does not perform correct antialiasing for surface objects. However, it yields 
better results for volume filling scenes, such as point sampled trees with many small leaves and 
branches. We have implemented the technique and modulated the Gaussian splats with a conser-
vative opacity estimation computed from the number of sample points per unit area, as described 
in Section 4.2.4.4. For unstructured scenes such as a forest of trees and bushes, the technique 
yields good results. For surfaces with structured patterns, aliasing artifacts occur as alpha blend-
ing does not compute a correct averaging of the color values. Probably, both approaches (additive 
reconstruction with basis functions and alpha blending) could be combined in future work: First a 
volume of attributes (transparency, normals, color) is reconstructed at a subpixel scale by adding 
radial basis functions around sample points. Then the volume rendering integral for the “ray vol-
ume” is computed using successive alpha blending. 
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5.4 Overall Efficiency 
In this subsection, we summarize the results concerning performance of forward mapping render-
ing: We distinguish three cases: Dynamic sampling, static sampling with random sample sets and 
static sampling with stratified sampling. 

In all three cases, we need O(h + log τ ) time for hierarchy traversal with h denoting the 
height of the octree and τ  the maximum relative depth range of the scene. Then, we have to 
choose sample points from the nodes. Let a

_
 denote the projected area as estimated by the hierar-

chy traversal algorithm. We assume that the scene shows uniform normal distribution and a uni-
form probability for geometry to be located anywhere within the extended view frustum, as 
reported by the traversal algorithm. Then, on the average, a

_
 is proportional to the exact projected 

area a of the scene on the screen: The depth factor is approximated up to a constant factor 1 + ε , 
the distortion factor is bound by a constant, the view frustum is overestimated by a constant fac-
tor, and the average orientation factor is also overestimated by at most a constant factor. Thus, 
we have a

_
 ∈ O(a). 

The sample size depends on the sampling pattern: For random sampling, we need O(a log a) 
sample points, for stratified sampling we need only O(a) sample points. The costs of determining 
the sample points also depend on the data structure: For static sampling, each sample point can 
be chosen in O(1) time, for dynamic sampling we need O(log n) time where n is the number of 
triangles in the scene. Overall, we obtain the following performance characterization: 

The dynamic sampling algorithm needs O(h + log τ  + a·log a·log n) rendering time. The 
static sampling algorithm with random sample sets needs O(h + log τ  + a·log a) time. And the 
static sampling algorithm with stratified sample sets needs O(h + log τ  + a) time to render a scene. 
Note, that the projected area a also contains occluded geometry, it is not bound by the screen 
resolution. In order to reduce the dependence of the running time on the occlusion density in the 
scene, we have to combine the rendering technique with an occlusion culling algorithm. Most 
techniques described in Section 2.2.5 could be employed. However, this is beyond the scope of this 
thesis. 

An interesting special case is “disc-like” scenes. Here we assume that the geometry is dis-
tributed uniformly on a disc of Radius R within a small constant height H above the disc. Such 
scenes are often found in applications. For example, scenes of cities or landscapes roughly fit into 
this model. In this case, we have n ∈ O(R2) primitives in the scene. The projected area (again as-
suming uniform distribution of normals) can be estimated by integrating the depth factor over the 
disc (assuming the viewer to be located in the middle, which is the worst case): 
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This means that we expect a rendering time of O(h + log τ  + log2 n·log log n) for dynamic sampling, 
O(h + log τ  + log n·log log n) for static random sampling and O(h + log τ  + log n) for stratified static 
sampling, without any occlusion culling. Of course, the constants in the O-notation depend on the 
occlusion density in the scene. 
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Chapter 6 

Backward Mapping 

In this chapter, we examine the usage of point-based multi-resolution rendering techniques in the 
context of backward mapping (raytracing) algorithms. We describe a multi-resolution raytracing 
algorithm that makes use of point hierarchies. In contrast to the forward mapping techniques that 
usually run at interactive framerates, the raytracing algorithm targets at offline-rendering appli-
cations. The algorithm supports rendering of more general global illumination phenomena, specifi-
cally classic distributed raytracing effects such as depth-of-field, blurry reflections, soft shadows 
with full antialiasing. In contrast to conventional raytracing algorithms, the point-based multi-
resolution algorithm permits an approximation of these effects at the cost of one primary ray per 
pixel. 

6.1 Motivation 
In the last chapter, we have shown that using a point-based multi-resolution hierarchy can dras-
tically speed up the rendering of complex scenes with forward mapping (z-buffer) rendering tech-
niques. Hence, it is an obvious question whether point-base multi-resolution data structure can 
also be applied to accelerate backward mapping (raytracing) rendering techniques. In this chap-
ter, we are going to examine this topic more in detail. First, we should note that the performance 
characteristics of raytracing are different to that of simple forward mapping: Raytracing is usu-
ally implemented using a spatial hierarchy as auxiliary data structure to speed up the ray que-
ries. Thus, the algorithm already shows a strong output-sensitive time complexity for most scenes 
in practice (cf. Section 2.3.2). A typical configuration is a ray hitting a locally flat surface that is 
composed of many small triangles. If the ray hits the surface at a large (orthogonal) angle, the 
search time is usually logarithmic in respect to the number of fragments the surface is composed 
of (see Figure 13b in Section 2.3.2). If we use a multi-resolution hierarchy, we can stop the search 
at a higher level, when the point spacing is small enough, i.e. about as large as the distance of 
neighboring rays. 

This technique could potentially reduce the query costs. However, we cannot expect large 
savings: Pruning the depth of a search tree that has already a logarithmic depth will typically not 
have a strong effect on the running time. Hence, the level-of-detail control will not lead to per-
formance gains comparable to those observed in forward mapping algorithms. Nevertheless, the 
multi-resolution approach can still improve the efficiency, but for more subtle reasons: A key 
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problem in raytracing is aliasing: Each ray that has been shot through a pixel only yields a single 
sample point of a ray surface interaction, prone to aliasing artifacts. Using a multi-resolution 
hierarchy allows us to use prefiltered sample points to reconstruct local surface properties, simi-
lar to mipmapping in texture mapping. This can potentially eliminated most aliasing artifacts. 

The classic solution to the aliasing problem in raytracing is stochastic supersampling: Mul-
tiple rays are shot through each pixel and the results are averaged using a suitable filter kernel. 
The central limit theorem guarantees that this average will converge to the integral over the pixel 
(weighted by the filter kernel) stochastically. The problem of this approach is slow convergence: 
In the worst case, the convergence rate (standard deviation of the error) is O(σ /√

_
n ) for n sample 

rays and a standard deviation σ  of the color estimator  (see Section 1.3). As summarized in Sec-
tion 1.3, the convergence speed can be improved using importance sampling and stratified sam-
pling. However, in adverse cases, no improvement can be achieved. If the image signal is highly 
irregular, with large variance, neither stratified sampling patterns nor adaptive sampling strate-
gies accelerate the convergence. Such adverse cases of highly irregular image signals can often be 
expected for images of highly detailed scenes showing complex geometry. 

An alternative are methods that trace extended ray volumes such as cone tracing or beam 
tracing [Amanatides 84, Heckbert and Hanrahan 84, Kirk 87, Shinya et al. 87, Ghanzanfarpour 
and Hasenfratz 98]. These methods do not shoot infinitesimally small rays into the scene but lar-
ger cones with a cross-section corresponding to a pixel in the image. These techniques render 
anti-aliased images using only one ray per pixel. However, they suffer from a different kind of 
complexity problem: In a highly detailed scene, the cross-section of a ray cone may intersect with 
an arbitrarily large set of primitives. Thus, the intersection computations become prohibitively 
expensive. For this reason, methods following this paradigm are usually only applied to models of 
low complexity. 

A possible solution is to use a hybrid approach [Amanatides 96, Genetti et al. 98]: Extended 
ray cones are used to detect boundaries in objects space. Then, super-sampling is used to inte-
grate over the cross-section of the ray. These techniques allow a good control of the sampling den-
sity used for oversampling. Nevertheless, in regions of high variance, they suffer from the same 
convergence problems as the purely stochastic methods. 

Using a point-based multi-resolution data structure, we can devise a raytracing technique 
with extended ray volumes that does not have the complexity problems of the classic cone/beam-
tracing approach. Instead of intersecting the extended ray volume with potentially millions of 
geometric primitives we use only a few sample points with a spacing matching the ray footprint 
(i.e. cross-section of the ray cones). We use sample points with prefiltered attributes (precomputed 
average color attributes and differential properties such as an average normal and curvature in-
formation). Analogous to mipmapping in texture mapping, we can estimate the integral over the 
ray cross-section using a few of such prefiltered sample points in a footprint-assembly [Schilling 
et al. 96]. To determine the shape of secondary rays, a technique similar to ray differentials 
[Igehy 99, Schilling 2001] is used: The broadening or shrinking of the ray volumes is computed 
depending on the local surface curvature and the incoming ray directions. 

This technique allows an approximate rendering of antialiased images. Additionally, we can 
also approximate effects such as soft shadows, depth-of-field, or blurry reflections by modifying 
the shape of the ray volumes. In either case, only one (primary) ray per pixel has to be used in-
stead of several rays for a stochastic approximation. 
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6.2 The Raytracing Algorithm 
In this subsection, we describe the multi-resolution raytracing strategy more in detail. We start 
with a conceptual overview of the new algorithm: 

6.2.1 Overview 
To perform point-based multi-resolution raytracing, we need four ingredients: First, we need a 
suitable point-based multi-resolution representation. The point clouds substituting more complex 
geometry must especially provide enough information to estimate the shape of secondary rays.  
Second, we need a ray model that describes ray volumes with few parameters. It should approxi-

Algorithm MRRaytracing(Image i, PointHierarchy H) 

 For each Pixel p in i Do 

  color(p) := recursiveTracing(primaryRay(p), root(H)); 

 End For 

Algorithm 4: Multi-resolution point-sample raytracing (main procedure). 

Algorithm recursiveTracing(RayVolume r, Node ν ) 

  // empty list of intersections 
  Intersections f = ∅; 

  // compute intersections using multi-resolution hierarchy 
  traceRay(primaryRay(p), root(H), f); 

  // merge adjacent intersections to compute continuous surfaces 
  computeSurfaceFragments(f); 

  For each resulting surface fragment s in f Do 

   color(s) = shading(s,r) 

   If not maximum recursion depth reached Then 

    // shoot secondary rays for resulting surface fragments  
    If reflective(s) Then 

     color(s) += recursiveTracing(reflectedRay(r,s), ν ); 

    End If 

    If transparent(s) Then 

     color(s) += recursiveTracing(refractedRay(r,s), ν ); 

    End If 

   End If 

  End For 

  // compute resulting ray color from colored fragments 
  Color c := compositing(f); 

  Return c; 

Algorithm 5: Recursive tracing of secondary rays: Intersections between ray and geometry are computed, 
the intersections are merged to surface fragments and secondary rays are shot for each intersected surface 

if necessary. In the end, all resulting color values are combined by a compositing algorithm. 
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mate the volume filled by all rays passing through a pixel and the corresponding secondary ray 
volumes. We also need a technique to derive the parameters of secondary rays from surface prop-
erties and the parameters of an incoming ray.  Third, we need intersection tests between the ele-
ments of our hierarchy (points, triangles, bounding volumes) and the extended rays. Lastly, we 
need a compositing algorithm that computes the integral color returned by a ray after several 
intersections with pieces of geometry. Note that a ray volume usually intersects multiple ele-
ments of the hierarchy (points, triangles) until it is fully occluded and the search can be termi-
nated. 

Using these ingredients, we can describe the high-level algorithm: It consists of three parts, 
analogous to a conventional raytracing algorithm. The first (trivial) part, the main procedure 
(Algorithm 4), iterates over all pixels of the image, creates a primary ray and calls the recursive 
raytracing procedure (Algorithm 5) to compute colors for each pixel. The recursive raytracing al-
gorithm first calls the hierarchy traversal algorithm (Algorithm 6) to compute all intersections of 
the extended ray with the scene. The algorithm returns a list of all intersections with points of 
matching size and triangles for parts of the scene that are too large for an efficient point-based 
representation. Afterwards, the list of intersections is post-processed: Intersections with multiple 
points or triangles belonging to the same surface are merged into single surface fragments. A 

Algorithm traceRay(RayVolume r, Node ν , Intersections f) 

 // check for intersection with current node 
 If intersection(B(ν ), r) Then 

  // first: check for intersections with “large” triangles 
  For each Triangle t in ν  Do 

   hit := intersection(t, r); 

   If hit.intersection() Then f.addIntersection(hit); 

  End For 

  // second: check for appropriate point spacing 
  If minRayDiameter(r, ν ) ≥≥≥≥ pointSpacing(ν ) Then 

   // spacing ok -> compute point intersections 
   For each PointSample p in ν  Do 

    hit := intersection(p, r); 

    If hit.intersection() Then f.addIntersection(hit); 

   End For 

  Else 

   // otherwise -> recusive descent 
   For each child c of ν  in front-to-back order Do 

    // inspect node only if it is still visible along the ray 
    If not occluded(r, c) Then 

     traceRay(r, ν , f); 

    End If 

   End For 

 End If 

Algorithm 6: Procedure for tracing a single ray and reporting all intersections. The algorithm descends into 
the hierarchy to find all intersections with point primitives of adequate sampling distance. If “large trian-

gles” are found on the way down the hierarchy, they are also tested for intersection. 
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suitable low-pass filter kernel is used to avoid aliasing in this resampling step. For each of the 
detected surface fragment, the material properties are evaluated. If necessary, secondary (ex-
tended) rays are computed and traced recursively. In the end, after the final colors of all surface 
fragments have been determined, a compositing algorithm is called that combines the color values 
into a single resulting color. 

The multi-resolution ray query is performed within Algorithm 6, which is called for the in-
tersection calculation. This algorithm performs a depth-first descent into the hierarchy, travers-
ing the octree nodes in front-to-back order. It recursively checks each node for intersection. If no 
intersection is detected, the traversal is stopped. Otherwise, the triangles in the node are tested 
for intersection (again, during preprocessing, large triangles have been stored on the way down 
the hierarchy to avoid point sampling of low-resolution portions of the scene). Then, the algorithm 
estimates the minimum diameter of the extended ray volume. If this value is in the same range 
as the point spacing, the traversal is stopped and all point primitives of the node are tested for 
intersection. If the resolution of the current node is still too coarse, the hierarchy traversal is con-
tinued. Before any child node is entered, the algorithm checks whether the bounding box of the 
node is potentially visible. If the node is already occluded due to former intersections, the tra-
versal is also stopped. 

In order to describe the algorithm more in detail, we now consider the different building 
blocks one after another. 

6.2.2 Data Structure 
First of all, we need a multi-resolution point hierarchy. Theoretically, we could use all data struc-
tures proposed in Chapter 4. As our goal is efficient antialiasing, it makes sense to employ prefil-
tered sample points. Thus, we also have to use static sampling. It also makes sense to employ a 
stratified sampling pattern, such as neighborhood-based stratification or quantized grid stratifi-
cation, as this causes the least overhead. It would also be possible to use non-prefiltered samples 
or even random dynamic samples. In this case we would have to perform supersampling in object 
space on the fly in order to fight noise artifacts. However, filtering during preprocessing simplifies 
the algorithm and leads to a higher raytracing performance. 

Note, that the construction of prefiltered sample points according to our technique proposed 
in Section 4.2.4.2 also requires stochastic integration using several sample points. Nonetheless, 
this is much faster than stochastic sampling in the image plane. In the first case, only a set of 
sample point in object space have to be generated and averaged, which typically is a linear time 
problem. For sampling in the image plane, a ray query has to be answered for every sample point, 
which is much more expensive. In addition, the prefiltering is precomputed, which is advanta-
geous if multiple frames of an animation with moving observer have to be rendered. 

Special care must be taken considering the attributes stored with each sample point. Later, 
we will use the point representation to estimate the shape of secondary rays, which are focused or 
broadened by curved reflectors or refractors. Thus, we must be able to reconstruct both the sur-
face orientation and curvature from the point-based representation. We account for these needs 
by computing differential sample points [Kalaiah and Varshney 2001] during preprocessing. This 
means, we store the normal and derivative information in two tangent directions for each sample 
point. 

To compute prefiltered surface attributes, we use two point sample sets: As described in 
Section 4.2.4.2, a low density, stratified point set is stored in each octree node as “representative” 
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points and an additional high density sample set is computed to perform prefiltering: A Gaussian 
radial basis function is placed around each representative sample point. All points of the high 
density set are determined and a weighted average of their color attributes and normal vectors is 
computed to obtain an average normal and color. 

To obtain the derivatives of the normal, we fix an (arbitrary) tangential coordinate system 
(ur, vr) orthogonal to the average normal nr of the representative sample point. Then we project all 
neighboring points into this coordinate system, yielding points (ui,vi) with normals n(ui,vi). For 
each point, we calculate a two-dimensional normal deviation ∆n(ui,vi): The two components are 
the deviation to the original normal in ur and vr coordinates for a fixed third component nr = 1 in 
normal direction (see Figure 63). This means, we measure the normal deviation as projection in a 
plane parallel to the tangential plane with distance one, as proposed by [Schilling 2001]. This 
reduces the amount of data to be stored for the derivatives (4 instead of 6 values). 

To describe the surface curvature, we fit a bilinear function n(u,v) = n(0,0) + u·∂ n/∂ u + 
v·∂ n/∂ v to the normal deviations ∆n(ui,vi) by solving a weighted least square problem, using the 
radial Gaussian filter function to determine the weights. The derivatives of this function (∂ n/∂ u, 
∂ n/∂ v) = ∇n are stored in the representative point along with the orientation of the tangential 
coordinate system (one vector is sufficient, the second can be computed via cross-product). Note 
that we fit a function to the normal vectors rather than fitting a height field to the positions of the 
sample points. This is necessary because we have to deal with normal interpolated triangles as 
input (the point hierarchy is build for a triangle model with per-vertex normals as input). Thus, 
the spatial deviation of the sample points might not match the specified normals. Subsequently, 
all point properties are quantized to small integer values (8 bit for color and material properties 
and position, 16 bit for differential properties) so that they can be stored compactly in the hierar-
chy. 

6.2.3 Ray Representation 
Next, we need a model that describes the ray footprint along a ray with few parameters and suffi-
cient accuracy. Generally, ray footprints are obtained by approximating the propagation of the set 
of all rays through a single pixel through the scene. For primary rays, this is easy. Dealing with 
secondary rays is more involved: There are two different basic approaches: First, one can estimate 
the ray footprint by considering the differences between adjacent rays in image space [Genetti et 
al. 98]. This approach leads to problems at the boundary of objects, where special processing is 
necessary. The second option is to use differential information at the point of intersection, i.e. 
derivatives of the normal, to estimate the broadening or focusing effect of the surface on the in-
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Figure 63: Differential sample points. 
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Figure 64: Ray coordinates.

 

Figure 65: Principal 
component analysis. 
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coming ray. We use the second strategy in a similar way as [Igehy 99]. This approach fits espe-
cially well in the context of a multi-resolution renderer where differential properties can be pre-
computed for different levels of resolution. 

Our ray model is based on a linear approximation: Every ray r defines a local coordinate 
system, consisting of its origin sr, its normalized direction nr, and two tangential directions ur, vr 
(see Figure 64). The footprint is now described in the local ur and vr coordinates: Each ray stores 
two 2×2 matrices startDev and incrDev. The columns of startDev contain two vectors (in ur,vr co-
ordinates) defining the footprint coordinate system at the ray parameter t = 0. The footprint at 
larger values of t is defined as 

 fp(t) = startDev + t·incrDev. (14) 

The footprint is a matrix consisting of two column vectors describing a parallelogram correspond-
ing to the extends of the ray volume at parameter t. The footprint can also be interpreted as a 
coordinate system. This coordinate system is used to associate a filter kernel with each ray pa-
rameter t. We use an elliptical Gaussian filter [Zwicker et al. 2001a] defined by: 
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The columns of fp(t) can be interpreted as a new coordinate system in which the coordinates from 
the (ur, vr) coordinate system have to be transformed before evaluating a unit Gaussian filter. 
Thus, the exponential decay of the filter weight is given by a quadric form of the coordinates of a 
point in local ray coordinates (u,v) using the matrix fp(t)-2. This matrix is real and symmetric (be-
cause it has been squared before). Therefore, it can be decomposed into an eigensystem represen-
tation 
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with an orthogonal Matrix U (see Figure 65). The eigenvectors point into the direction of the main 
axes of the Gaussian ellipse and the square roots (λ1, λ2) of the eigenvalues (λ12, λ22) are the 
length of the principal axes. We will use this decomposition for several purposes, e.g. to enhance 
the numeric stability of triangle intersection calculations or to estimate the minimum diameter of 
the ray footprint. 

6.2.4 Ray-Surface Interaction 
After defining the ray model, we discuss how we obtain ray parameters for primary and secon-
dary rays as well as for shadow rays: 

Primary Rays: Primary rays are constructed by specifying zero deviation at the ray origin 
and an increment matrix that broadens the ray so that it matches the extents of the pixels in the 
image plane (Figure 66a). This also allows depth of field effects: The lens model used by [Cook et 
al. 84a] leads to a diameter of the ray footprint that increases linearly to both sides of the focal 
plane (Figure 66b). This effect can be modeled by setting values for the deviation matrices such 
that the footprint coordinates are zero in the focal plane. To avoid aliasing in the focal plane, we 
must additionally compare the ray diameter (i.e. the eigenvalues of the fp(t)) with that of a con-
ventional primary ray and take the maximum of both. 
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Shadow Rays: We allow arbitrary ellipses in three-space as light sources. The footprint of 
the shadow ray consists of two parts: First, an elliptical cone with the cross-section of the light 
source at the source and zero at the current surface intersection point, and second, an elliptical 
cone with the cross-section of the footprint of the intersection at the surface and diameter zero at 
the light source (Figure 66c). The footprint at the surface intersection point (needed for the first 
part) is calculated by projecting the incoming ray footprint onto the tangent plane of the surface 
intersection point. 

Projecting a ray onto an intersection surface is illustrated in Figure 66d: We determine the 
ray parameter t for the intersection point, compute fp(t), and transform fp(t) into three-
dimensional world coordinates by multiplying with the matrix of local ray coordinates. Then, we 
project the resulting two vectors onto the plane of the intersected surface fragment. In order to 
form a secondary shadow ray, we use the projected ray to compute startDev of the outgoing ray: 
The projected ray vectors are transformed into ray coordinates of the outgoing shadow ray by 
computing all scalar products of projected vectors with the local ray coordinates of the outgoing 
ray. incrDev is chosen to yield a zero footprint at the light source (i.e. -startDev/∆t). 

The footprint at the light source (needed for the second part of the shadow ray) is obtained 
by transforming the two axes of the light source ellipse in ray coordinates. Then again, startDev 
is chosen to yield a zero footprint at the (other) end of the ray (i.e., again incrDev = -startDev/∆t). 
After forming two ray cones according to our linear model (Equation 14), the footprint at any ray 
parameter t is given by the convolution of the two footprint matrices of the two rays. The convolu-
tion can be computed by simply adding the squared footprint matrices [Zwicker et al. 2001a] be-

  

 

(a) primary rays (b) depth of field  

incoming
ray

light source

shadow
ray

   
(c) shadow rays (d) footprint projection (e) reflected rays      

Figure 66: Ray parameter setup for primary and secondary rays 
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fore the evaluation of Equation 15. Another possibility is to use only one ray and interpolate be-
tween the start and the end coordinate system by matching (also by possibly mirroring) the foot-
print coordinate axes with similar direction. This is less exact because the linear interpolation 
cannot capture a potentially rotating, asymmetric footprint without distortion. However, the re-
sults in practice are satisfactory (this option is employed in the implementation). 

Reflected Rays: First, we reflect the center ray of the incoming ray cone at the normal of 
the intersection point. This yields a center ray for the reflected ray cone. It remains to calculate 
the ray footprint parameters startDev and incrDev of the reflected ray cone. To calculate startDev, 
we project the footprint of the incoming ray in ray direction onto the local tangent plane of the 
intersection point p, as described before (Figure 66d). This yields two vectors ufp, vfp that describe 
a footprint ellipse on the surface. Then we express the two vectors ufp, vfp in local ray coordinates 
ur, vr of the outgoing ray to obtain the columns of startDev. 

To calculate incrDev, we estimate the normal directions at the points p + ufp, p + vfp using the 
first order approximation matrix ∇n for the normals at the point of intersection. For each of the 
two points, we compute a direction of reflection, as shown in Figure 66e. Then the differences 
between the central direction of reflection and the directions at the two points are expressed in 
the local ray coordinates ur, vr to obtain the columns of incrDev. 

Transmitted / Refracted Rays: Transmitted rays are handled the same way as reflected 
rays. The only difference is that the incoming vectors are refracted instead of reflected to calcu-
late the outgoing directions. A small problem arises with total reflection: It is possible that a part 
of the rays in the footprint is reflected while others are refracted. In this case, we just decide for 
refraction or total reflection based on the direction of the center ray. However, this can lead to 
aliasing at the border of reflection and refraction. To remove this (subtle) source of aliasing, we 
could also send two ray cones and blend together the results of the two rays. 

6.2.5 Intersection Calculations 
We need three types of intersection calculations: Extended ray volumes must be tested for inter-
section with points, triangles and bounding volumes of the hierarchy. First, we need a criterion 
for an intersection with the ray volume. The ray volume is given by a varying elliptic Gaussian 
filter kernel around the central ray. Theoretically, this filter kernel has infinite support. How-
ever, the exponential function drops very quickly and we can safely truncate the filter for larger 
values. Usually, we set the filter value to zero for regions in which the filter value is below 2% of 
the maximum (i.e. ||x|| > 2 in e 

-x2, 2.8× the standard deviation), which is a good trade-off between 
efficiency and quality. 

 
Figure 67: Intersection calculations with general primitives. 
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To determine intersections, we use two different strategies: Intersections with points can be 
handled directly by projecting the point into the footprint coordinate system and evaluating the 
filter function. Intersections with extended primitives (triangles, different types of bounding vol-
umes) can be handled in a uniform way by projecting all vertices of the primitive into the (vary-
ing) footprint coordinate system and then computing the minimum distance to the object. 

6.2.5.1 Ray-Point Intersection 

To compute the intersection between a surface sample point p and an extended ray r, we first 
express the point in ray coordinates: Let d be the difference vector between the point p and the 
ray origin. The scalar product between d and the (orthogonal) ray coordinates nr, ur and vr (Figure 
64) expresses the point coordinates in ray coordinates. The nr component is the ray parameter t at 
the point of the ray that is closest to the sample point. Thus, we can evaluate fp(t) (Equation 14) 
and calculate a weight for the point p (Equation 15). If the weight is below the given threshold 
(usually 2% of the maximum), no intersection is reported. 

6.2.5.2 Ray-Triangle Intersection 

Our multi-resolution hierarchy uses the original triangles to represent the highest resolution of 
the model. Thus, we must also compute anti-aliased intersections of extended rays and triangles. 

This is done in three steps: First, we transform the vertices of the triangle in ray coordi-
nates. Then we evaluate the footprint matrices at the nr-components. These matrices define a 
coordinate system in which the reconstruction filter is just a unit Gaussian. Therefore, in the 
second step, we transform the coordinates of the three vertices of the triangle in the footprint 
coordinate systems at the three points. We end up with a two-dimensional triangle and a unit 
Gaussian around the center of the coordinate system (Figure 67). In the last step, we calculate 
the distance d of the closest point of the triangle to the origin and set the weight of the intersec-
tion to exp(-(d – 0.5)2). This leads to triangles with a border blurred by the ray footprint (see 
Figure 68). The shift of 0.5 creates a shift of one in the arguments of the exponential function 
between the filter kernels of triangles adjacent to the same edge. This leads to a uniform weight 
sum (the Gaussian kernels approximately sum to one, [Zwicker et al. 2001a]). The interpolation of 
the footprint along the edges of the triangle is done implicitly as we use three different matrices 
for the transformation of the three vertices. 

 
 

(a) Computing the distance to the closest point of the triangle. Two cases are 
distinguished: Points closest to an edge (also within the triangle) and points 
closest to a vertex. Afterwards a Gaussian filter is applied, shifted by ∆∆∆∆x = 0.5. 

(b) rendering result 

Figure 68: Intersection and weight calculation for triangles 
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A further issue is the computation of the attributes of the “intersection point” that is stored 
in the list of intersections. In addition to the weight, we also have to interpolate the normals, col-
ors and material attributes stored at the vertices. We use a linear interpolation based on barycen-
tric coordinates, which are evaluated at the intersection point where (the center of) the ray hits 
the triangle. It is possible that this point is located outside the triangle, leading to negative inter-
polation values. We detect this special case and project the intersection point onto the closest edge 
of the triangle to determine the barycentric coordinates for the interpolation. The derivative of 
the normal is determined analytically: For each triangle, we precompute the normal derivative in 
the direction of one edge and orthogonal to this edge and project the result to a plane with dis-
tance 1 in normal direction. This coordinate system in conjunction with the two derivative vectors 
is reported in case of an intersection, being consistent with the information reported for sample 
points. 

6.2.5.3 Ray-Bounding Volume Intersection 

To perform the hierarchy traversal, we also need to compute intersections of extended rays with 
bounding volumes. A conservative intersection test can be performed using the same basic tech-
nique as for the intersection with triangles: The vertices of the bounding volume (e.g. axis aligned 
bounding boxes) are transformed into ray-footprint coordinates. We obtain a 2-dimensional poly-
gon and we must determine whether it intersects a circle around the origin, representing the 
drop-off radius of the Gaussian filter. 

However, this test is quite expensive (e.g. 8 transformations for bounding boxes). Thus, we 
use a cheaper test in the current implementation: Bounding spheres are used as bounding vol-
umes in the hierarchy. The center of a bounding sphere is projected into the orthogonal coordi-
nates of the filter (Equation 16: matrix U multiplied by the eigenvalues, see also Figure 69). The 
eigenvalues of the filter coordinates form an axis aligned rectangle around the center of the pro-
jected sphere. The support of the filter kernel is located within a circle around the origin with a 
diameter according to the cut-off radius. It is approximated by a bounding box, too. To test for 
intersection, the two bounding boxes are tested for overlap. For the performance of the algorithm, 

 

Figure 69: Simplified bounding sphere hierarchy intersection test. The center of the bounding sphere is 
transformed into the eigensystem of the ray (in which the filter kernel is a unit Gaussian). The a bounding 
box is formed by scaling the radius of the bounding sphere by the eigenvalues and a simple bounding box 

overlap test with a bounding square at the origin is used as conservative estimate for intersection. 

 

Figure 70: Identifying sample point intersections from the same surface by merging depth intervals: Over-
lapping depth intervals are merged, others are blended (alpha blending or subpixel mask compositing). 
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it is important to do the intersection test with elliptical ray cones (no circular approximation). 
Otherwise, queries with highly anisotropic ray cones become expensive. The simple test accounts 
for this using the main axis transformation. 

6.2.6 Compositing 
After we have found all intersections of a ray cone, three tasks remain: First, we have to identify 
intersection events belonging to the same surface. Typically, multiple intersections are detected 
for one surface, which are caused by multiple sample points. Second, the different properties de-
tected at the intersection events have to be combined, which is essentially a resampling step. 
Third, after recursively computing color and shading of the reconstructed surface fragments, we 
have to combine the colors of the individual fragments to obtain the resulting color of the ray. 

We deal with all three topics using a per-ray A-buffer approach, similar to that proposed by 
[Zwicker et al. 2001a]. Each detected intersection is inserted into a single pixel a-buffer that 
stores surface fragments sorted by depth. To decide whether a new intersection belongs to a sur-
face fragment that already has been found, we assign a depth interval to each sample point, pro-
portional to the sample spacing in object space. If the depth interval does not overlap with the 
depth interval of a surface fragment in the buffer, a new surface fragment is created by just in-
serting the intersection into the buffer. We store the attributes at the intersection point together 
with the depth, the filter weight and the depth interval of the intersection. If the depth interval of 
an intersection overlaps with one or more depth intervals already present in the buffer, the frag-
ments are merged [Zwicker 2002b] (Figure 70). 

Merging the fragments corresponds to a reconstruction of the surface attributes at the point 
of intersection with the center of the ray volume. We do this by adding together the attributes of 
the points multiplied with their weight. After all fragments are processed, the attribute values 
are divided by the weight sum for normalization. This works well for surface attributes such as 
color, normal, transparency or shading parameters. However, special care must be taken with 
differential properties: The matrices with the two derivative vectors of the normal in up and vp 
direction cannot be averaged directly because the reference directions (up, vp) vary with each 
point. Therefore, a coordinate system transformation from the coordinate system of the point to a 
common coordinate system must be performed. A cheaper alternative is to neglect aliasing of the 
surface derivatives and to use nearest neighbor sampling for these properties, as aliasing arti-
facts in normal derivatives are often not visible (this is done in the current implementation). 

After all intersections have been found and the corresponding surface fragments have been 
reconstructed, we compute colors using a local illumination model according to the reconstructed 
parameters. Additionally, secondary rays are computed and traced recursively, if necessary. Then 
a compositing step is performed to determine the final color of the ray. The simplest compositing 
technique is alpha-blending [Zwicker et al. 2001a]: The point hierarchy is constructed to guaran-
tee that any fragment in the interior of any surface has at least a weight of one. Therefore, we can 
interpret weight sums of less than one as alpha values to blend edges. We track the alpha values 
(i.e. min(weight, 1)) already during the intersection calculation process together with the maxi-
mum depth value encountered. If the ray is fully opaque, we do not descend into nodes of the hi-
erarchy that are farer away than the maximum depth value (Algorithm 6, condition “if not 
occluded(r, c)”). This leads to an early ray termination, avoiding inspecting occluded regions of 
the scene. 
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6.2.7 Subpixel-Masks 
Compositing using alpha-values derived from weight sums is conceptually simple and computa-
tionally efficient. However, it has an important drawback: Typically, the extends of the objects are 
strongly overestimated at the borders of objects on the screen. As shown in the previous chapters, 
point-based representations come with unavoidable oversampling. Thus, the weight sum has to be 
much larger than one in most areas of the image in order to guarantee safe coverage anywhere 
within a closed surface. This leads to artifacts such as thickened borders or varying border opac-
ity in regions of varying primitive density (for example in an area where two large triangles meet, 
see Figure 72). Those effects are especially unfavorable for rays with extends larger than a single 
pixel (e.g. for depth-of-field or shadow rays for extended light sources) where the false reconstruc-
tions cover a portion of the screen larger than a single pixel. 

The main problem is that a single alpha value cannot express correctly the occlusion prop-
erties of a piece of geometry. It describes only the percentage of coverage, not the spatial location. 
Figure 73 illustrates the problem: It shows two fragments within a ray volume with 50% opacity. 
Depending on the overlap of the fragments, we can obtain between 50% and 100% overall opacity. 
In general, we can obtain any opacity ranging from the maximum single alpha value up to the 
sum of all alpha values (clamped to 100%). For a conservative estimate, we have to use the latter 
value, although, in the worst case, the composite opacity could be much smaller. 

To solve the problem, we need information about the spatial location of the occluding sur-
face fragments. A standard solution is the usage of subpixel-masks [Carpenter 84]: Subpixel-
masks are bitmaps of k2 bits in which set bits mark occlusions. We use a modified implementation 
for our purposes. First, we need a coordinate system to parameterize the bitmap. We use the (or-
thogonal) main axes of the current ray coordinate system multiplied by the main axis diameters 
(ES in Figure 67) as coordinates of the subpixel bitmaps: The center of the ray is located in the 
middle and the grid of k2 bits covers the support of the unit Gaussian (which results after the 
coordinate transformation). It is possible that this coordinate system rotates around the center of 
the ray when the shape of the filter kernel varies. To our experience, this is no problem; the occlu-
sion effects are still captured adequately. 

 bit-masks alpha-value-masks 

 4 ×××× 4 8 ×××× 8 4 ×××× 4 8 ×××× 8  

sampling 
 pattern 

     

original regular sampling  

      

 

    
 importance sampling  

Figure 71: Comparison of different subpixel mask implementation and sampling densities (the test scene 
is the same as in Figure 72). Importance sampling with a subpixel alpha-blending heuristic strongly im-

proves the rendering quality.
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To compute the coverage of the subpixel masks, we perform a rasterization of the corre-
sponding primitive: In case of triangles, we rasterize the triangles to the subpixel grid. For point 
primitives, we rasterize a tangential ellipse [Zwicker et al. 2001a] to enhance the resolution at 
borders (i.e. in areas where the ellipse becomes parallel to the view direction). As our data struc-
ture guarantees a d-sampling in object space (with d being the radius of the unprojected circle 
around the sample point in object space), we still ensure safe coverage of all surfaces. 

To improve the approximation in terms of antialiasing, we use subpixel-masks in combina-
tion with alpha-blending: In contrast to the approach of [Carpenter 84], we store alpha values in 
each entry of the subpixel masks29. For each subpixel, we compute an alpha value according to 
our weight sum heuristic, employing a smaller filter kernel corresponding to the spacing of the 
subpixels (the unit Gaussian is scaled by the grid spacing). If we merge two fragments, we now 
add the corresponding alpha values of the subpixels, clamping the results to one (being a conser-
vative estimate). This is also done to compute the composite occlusion of multiple fragments along 
a ray. To determine the visibility of a fragment, we subtract all alpha values of the (composite) 
occluding fragment from the occluded fragment (clamping to zero). Then the remaining subpixel 
masks is evaluated by multiplying all entries by the weight of the unit Gaussian filter in ray co-
ordinates and dividing by the maximum possible sum for normalization. For compositing, the 
resulting value between zero and one is multiplied with the color of the fragment and the result is 
added to the color of the ray. 

The efficiency of subpixel masks can be improved further by employing importance sam-
pling: Instead of using a regular grid, we use a grid spacing adapted to the weights of the Gaus-
sian filter. We use subpixel sample points with a spacing according to the integral of the filter 
function in between: Each interval between two adjacent sample points should have the same 
integral weight. For a one-dimensional filter e-x2, we compute the inverse of the distribution func-
tion invDist(x) being the solution to 

 0
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solved for y ∈ [0, 1]. Then, we take a one-dimensional regular grid of n values xi = (i+0.5)/n, 
i = -n…n-1 and place the sample points at sign(xi)·invDist(|xi|). For the two-dimensional sample 

                                                      
29 Alpha-subpixel masks are too expensive for use with a complete framebuffer, as this is the case in [Carpenter 84]. How-
ever, for a single ray, the additional memory overhead is no problem. 

 
 

(a) test scene: 
two triangles 

(b) compositing us-
ing alpha blending 

(b) compositing 
with subpixel 

masks 

Coverage (alpha) values for a single ray 
covered by opaque fragments: 

 
Figure 72: The compositing quality is strongly improved by 
employing subpixel masks to represent fragment occlusion. 
The test scene consists of two triangles that are rendered 

with rays with large ray footprint. 

Figure 73: Compositing with alpha values 
is inherently ambiguous: the composite 

coverage can vary between the sum of all 
alpha values (conservative estimate) and 
the maximum single value (“worst case”). 
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pattern, the same transformation is applied independently for the x- and the y-coordinates. The 
resulting sampling pattern is shown in Figure 71 (lower right). 

Importance sampling in combination with the weight-based alpha-blending heuristic no-
ticeably improves the rendering quality: Figure 71 shows a comparison. Using both improve-
ments, we obtain results with very low aliasing and a good approximation of occlusion for 8 × 8 
subpixel masks. Even for 4 × 4 masks, the results are also already acceptable (some aliasing re-
mains because of the non-optimal filtering of inner regions of triangles; this could probably be 
improved by an enhanced triangle filtering algorithm). Without the improvements, the aliasing 
problems are significantly worse. In practice, we usually employ 4 × 4 subpixel masks for perform-
ance reasons. 

6.2.8 Adaptive Resolution 
To control the resolution of the point cloud used for surface reconstruction, the algorithm trav-
erses the hierarchy downwards until the spacing of the sample points is no larger than the mini-
mum ray footprint. To decide whether the sample spacing matches the ray footprint within a 
bounding box of a hierarchy node, we have to determine the minimum eigenvalue of the ray foot-
print matrix at any parameter value inside the bounding box. The eigenvalues of the footprint 
matrix can be determined analytically by computing the roots of the characteristic polynomial of 
the matrix in Equation 14. Then, we could compute the derivative and solve numerically to de-
termine the local minima. However, this procedure is involved and would considerably slow down 
the hierarchy traversal. This is not necessary; in practice it is sufficient to calculate the minimum 
eigenvalue just once (e.g. for the center of the bounding box) to control the resolution of the point 
cloud approximation: In practice, we can expect long thin rays with a footprint varying only 
slowly in respect to their current diameter. Only a few rays (e.g. reflected at a strongly curved 
object) might not fulfill this assumption. However, in this case, determining their color according 
to a footprint-sized point representation is already a rough approximation so that some additional 
inaccuracies in determining the ray footprint are of minor importance. Additionally, we will use 
octree nodes with only very few points per box for performance reasons (such as based on a 23 
quantization grid, see Section 7.2.2.6). Hence, the size of the boxes is small in comparison to the 
ray diameter at their center. 

Hierarchy traversal is controlled by the minimum eigenvalue of the footprint matrix in or-
der to account for anisotropic ray intersections (such as a ray reflected from a cylinder). This ap-
proach can lead to performance problems. It might happen that the aspect ratio of a ray is 
strongly distorted so that a lot of points (with a spacing of the smaller main axis) have to be used 
to cover the ray footprint. Even if only a few such rays occur during rendering, they can consume 
a considerable amount of rendering time. Therefore, we have to limit the degree of anisotropy: 
Analogous to footprint assembly for texture mapping [Schilling et al. 96], we limit the number of 
sample points by limiting the anisotropy of the rays: After computing the eigenvalues, we check 
whether the minimum value is smaller than a constant fraction (typically 1/4) of the maximum. If 
this is the case, the minimum value is just set to that lower bound and the computation is contin-
ued using the modified filter kernel. 

Another problem of the multi-resolution approach occurs at the transitions of different reso-
lutions: Borders become visible between two adjacent resolution levels. As proposed by [Pfister et 
al. 2000] for the case of forward mapping, we use linear interpolation between two adjacent reso-
lution levels to remove these artifacts. The interpolation is done by traversing the hierarchy one 
step deeper after the matching resolution is found and then linearly blending together the result. 
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The blending weights are given by the distance of the two point spacings of the two hierarchy 
levels to the required value. Blending is performed automatically by the fragment compositing 
step; it suffices to compute the corresponding weights, multiply them by the weight values of the 
filter kernel and insert the result into the ray a-buffer. 

6.2.9 Implementation Notes 
All intersection tests need an eigenvalue decomposition of the 2 × 2 ray footprint matrix (Equation 
16), which is quite an expensive operation. The decomposition is needed to limit the spectral radii 
of the footprint and for the bounding sphere intersection tests as described above. Some steps of 
the algorithm like the triangle intersection test could theoretically be performed using the origi-
nal footprint matrices. However, especially for the triangle test, this leads to wrong results in 
some cases. This is due to numerical stability issues: If the two footprint coordinates are nearly 
colinear, the projection into footprint coordinates and evaluation of the edge-ray distances is nu-
merically unstable. The eigenspace transformation allows us to perform the test using orthogonal 
coordinates, avoiding the stability problems. 

For this reason, we perform all intersection tests in orthogonal ray coordinates. In order to 
reduce the number of expensive eigenvalue decompositions, one can perform the decomposition 
only once per octree box and use the result for all intersection tests in the box (and to decide on 
further hierarchy traversal). For most test scenes, no visible difference was observed in compari-
son to the exact version of the algorithm that performs the eigenspace transformation for every 
vertex using the exact footprint matrix at that point. This optimization yields a speedup factor of 
2-3. 

Another issue is intersections of the ray with the originating surface: Unlike infinitesimally 
thin rays used in conventional raytracing, extended ray volumes cause more problems with inter-
section calculations: For secondary rays, it can easily happen that intersections with the surface 
the ray originates from are detected. This yields false occlusions and in the worst case terminates 
a ray before it enters the scene. Typically, the problem is worse for rays that are emitted at a 
small angle to the surface. In order to circumvent these problems, we need a criterion to detect 
such false intersections. We use a simple heuristic: Within a “no-intersection” zone around the 
point of intersection, intersections are ignored. The zone is a sphere with a radius proportional to 
the point spacing (minimum ray footprint) at the point of intersection. In addition, we also check 
the surface normals at intersection points. If the normals deviate by more than a constant angle 
from the normal at the intersection point, the intersection is accepted as we can assume that it 
detects a different surface. Another possible criterion to avoid self-intersections is to exclude all 
intersection points in a half-space defined by the tangent plane of the intersection point. 
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Chapter 7 

Implementation and Results 

In this chapter, we evaluate the proposed algorithms and data structures empirically. The chapter 
is divided into three parts: First, we describe the implementation our evaluation is based on. In the 
second section, the behavior of the algorithms in dependence on the different rendering parameters 
is examined. This includes parameters for the construction of the data structures (such as the 
number of sample points per octree node) as well as complexity parameters (such as the number of 
triangles in the scene). In the third part (Sections 7.3, 7.4, 7.5), we apply the proposed rendering 
algorithms and data structures to several benchmark scenes that could be typical applications for 
our techniques, comparing image quality and performance. 

7.1 Implementation 
We have implemented a prototype rendering system as test bed for our algorithms. The system 
has been implemented in C++ and tested on a conventional PC system. In this Section, we de-
scribe the most important aspects of the implementation. It is divided into three subsections: We 
start with a discussion of the underlying software architecture. Then we discuss some implemen-
tation decisions for algorithms and data structures that are specific to our implementation and 
have not yet been discussed in the general description. The last subsection discusses some techni-
cal aspects of the employed platform and consequences for our algorithms (such as issues with 
hardware accelerated rendering). 

7.1.1 Software Architecture 
The design of a suitable software architecture a crucial step for every non-trivial software project. 
In research projects, we have to deal with special constraints. Typically, we do not know the de-
mands and characteristics of novel data structures and algorithms in advance. Thus, modularity 
and flexibility are especially important. The software framework must allow an easy integration 
of different approaches to a problem. An additional issue is evaluation and reproducibility: Unlike 
applications designed for end-users, a research application should allow the user to inspect low-
level properties of the implementation at runtime and modify parameters and constants effi-
ciently. The performed tests and measurements must be reproducible: We should be able to re-
cord all settings that have been made interactively and reload the same settings at any time. In 
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order to fulfill these requirements, a layered system design has been devised that provides infra-
structure at different levels of generality and abstraction. Our rendering system is coined XRT 
(eXperimental Rendering Toolkit, see Figure 74). It consists of three main layers. The first is the 
foundation layer, providing object handling, inspection and serialization. The second layer is the 
scene graph library, which has been designed to model and render highly complex scenes. Third, a 
point-based rendering layer is used that contains several libraries that implement several point-
based rendering techniques. We will now discuss briefly the different layers of the system.  

7.1.1.1 The Foundation Layer 

An important design goal was to provide an interactive application that allows for interactive 
construction, rendering and evaluation. Thus, we need a basic infrastructure for inspecting data 
structures and triggering actions, i.e. applying algorithms. Traditionally, this is done by manually 
designing custom user interfaces for each task a user should be able to perform with the system. 
However, this causes a large implementation effort that is not practicable for a steadily changing 
research system. In order to simplify the construction of interactive applications, we have em-
ployed techniques from rapid application development [Borland 95, Sun 97]. The key idea is the 
use of structural reflection [Demers and Malenfant 95]: The system is implemented using object-
oriented techniques, i.e. it is a collection of classes. All data structures are instances (objects) of 
these classes and the algorithms are methods of the classes. Structural reflection means to pro-
vide the structural information about the system design to the program at runtime: The program 
is able to query information about all classes, their inheritance relationship, the member vari-
ables, and to invoke methods dynamically. This technique is a standard technique that is pro-
vided by the run time system of many modern programming languages such as Small Talk or 
Java. In these languages, meta-classes are used to describe the structure of classes. A meta-class 
is itself an instance of a class that has been designed for describing classes (this technique of re-
flecting structural elements of a program is referred to as reification [Demers and Malenfant 95]). 
The meta-class provides lists of class properties and methods, which are objects that describe the 
corresponding class components and allow access to these components. 

 
Figure 74: Screenshot of the XRT rendering system. The image shows automatically generated class selectors 
(left), automatically generated object editors (right), and a custom editor (scene view editor, middle), which 
itself consists of manual and automatically generated sub editors (e.g. the automatically generated hierar-

chy view, middle right).
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Unfortunately, C++ does not provide a full structural reflection mechanism. Thus, the first 
task was to design a library for handling such meta-information (Figure 75): All classes in the 
system (except simple value types such as vectors) are derived from a common base class “Ob-
ject”. This class is associated with an instance of “MetaClass” or a descendant of this class. The 
meta-class describes the structure of the class type such as properties (member variables) and 
methods. This description is extendible. It is for example possible to define member variables 
directly or via access methods (getX() / setX(), similar to JavaBeans [Sun 97]). 

Each structural element is associated with a set of editors (one being the default) that allow 
interactive editing. A standard editor is provided for each case: The standard class instance editor 
creates itself by examining the properties of the class of an instance and creating editors of all 
properties [Borland 95, Sun 97]. In addition to this standard class editor, other generic editors are 
provided such as a hierarchy view (see Figure 74) that displays hierarchies of objects of certain 
base classes in a tree view widget. For class properties, the standard property editor displays a 
text box with a string describing the value of the property. The standard editors do not work in all 
cases. For example, an automatic editor is not useful for editing images or sound files. In these 
cases, a custom editor has to be implemented. However, in many cases, this is not necessary (at 
least for a prototype application) and thus saves a lot of work. In addition to class editors and 

Array
Class Property

Object
Meta Class

Creation 
Dialog

Class Property
+ bool persistent value
+ name
+ typeName
+ description
+ version
+ read / write (streaming)

Elementary 
Class Property

Object
Class Property

Numerical
Class Property

String
Class Property

EditorsClass Properties

1
n

+ Class Name
+ Instance Size
+ Description
+ Unique Identifier
+ New Instance()
+ Abstract
+ Parent, Descand.

GUI
Descriptor

object

class

cl
as

s

cl
as

s

Float Edit Bool EditDefault Edit

1

n

Property Editor
+ construct(ClassProperty, Object)
+ update
 

Persistent
+ write(ObjectStream)
+ read (ObjectStream)

cl
as

s

ob
je

ct

editors

Class Editor

Property 
Browser

Custom Class 
Editor

object

class

editors creators

Class Method
(+ parameters)
+ invoke()

1
n

 
Figure 75: Schematic class diagram for the foundation layer. All classes are derived from “Object”. Instances 
of “Meta Class” (or descendants) are used to describe the objects by specifying methods and properties. For 
each piece of meta-information (class, property), an editor class is provided that allows interactive editing. 

The base editor (“Property Browser”) is constructed automatically from the meta-information.  
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property editors, we can also declare a construction dialog that assists in the interactive construc-
tion of new class instances. This is useful for classes that cannot be initialized with meaningful 
default properties. 

The structural reflection mechanism also allows for automatic serialization of objects, simi-
lar to the mechanism provided by the Java runtime library [Arnold and Gosling 96] or the Delphi 
interface designer framework [Borland 95]: Serializable objects are derived from the base class 
“Persistent”, which is a direct descendant of “Object”. This class contains predefined read() 
and write() methods that create a serialized byte stream that can be used for storage on hard 
disc or network transmission. The predefined methods inspect the properties of the class and 
store them in linear order automatically. A version number is used to allow for incremental ver-
sioning: All properties are written into the stream. If a stream of older version is to read again, all 
properties that have not been defined at the time of writing are replaced by default values. This 
allows for adding properties incrementally, but not for deleting properties. In this case, as well as 
in cases were automatic serialization is not efficient (e.g. if compressed image storage is de-
manded), a manual implementation of read() and/or write() is needed. Again, this is only 
needed for a small fraction of the classes, thus saving much implementation effort. 

In addition to the reflection system, the foundation layer also contains other basic infra-
structure libraries such as vector algebra and geometric primitives. 

7.1.1.2 The Scene Graph Library 

The second layer on top of the foundation layer is a library for handling large scenes. As discussed 
in the introduction, we use a scene graph based modeling approach [Rohlf and Helman 94, 
Wernecke 94, Foley et al. 96]. Two main goals have been motivating for the design of this part of 
the system: First, we should be able to model highly complex scenes using hierarchical instantia-
tion. The system should provide sufficient flexibility and extensibility for integration a variety of 
different modeling techniques. Second, we must be able to integrate data structures necessary for 
output-sensitive rendering seamlessly into the system. 

A scene object consists of two components (Figure 76): a directed acyclic graph of scene 
graph nodes and a scene graph state. The scene graph state is a general collection of state vari-
ables. Some of them (local attributes) can be changed by nodes of the scene graph during tra-
versal (such as the current transformation). Others are global parameters, such as the camera 
settings. The scene graph state can easily be extended by declaring additional types of state vari-
ables. Similarly, new types of objects (describing geometry) and operators (grouping, instantiating 
and modifying objects or state variables) can be added by implementing additional subclasses. 

The scene graph is purely descriptive, it does not provide rendering techniques by itself. 
This means that we do not attach “renderMe()” methods to each node, as often done in other 
scene graph libraries. Instead, any scene graph node reports a description of the subgraph it 
represents. This is done using a two step approach: First, each node provides a method to describe 
its subgraph by reporting a set of sub scene graph nodes, each associated with a current state. In 
addition, every (reported) node that describes a concrete object is also able to provide a list of geo-
metric primitives (given the current scene graph state). This scheme is very general: A list opera-
tor for example describes itself by just delegating the description query to all nodes contained in 
the list. A replication object, that creates e.g. multiple instances along a path, calls the report 
method of the replicated object multiple times but with different scene graph state for each in-
stance. A very general modeling operator, such as a Boolean operation, could determine a triangle 
mesh of the subgraph and create a completely new (virtual) scene graph node that is presented if 
a description of its subgraph is demanded. 
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To incorporate data structures for point sampling and other accelerated rendering tech-
niques, we define a cache node: This scene graph node comprises precomputed information. A 
corresponding rendering technique can detect the cache node during hierarchy traversal and stop 
the traversal at that node to employ the precomputed information rather than the original geome-
try. 

To allow for instantiation of cache nodes, we place multiple cache nodes into the hierarchy. 
Each cache node performs a scene graph traversal of its subgraph (i.e. reporting all nodes below 
it). If cache nodes of the same types are encountered during this traversal, it is not continued 
below those nodes. Instead, the changes to the scene graph state are recorded (the state object 
comprises a local state difference stack that records all state changes since the beginning of the 
traversal). The state change information together with a pointer to the instantiated cache are 
recorded and stored as instance object in the according data structure to be precomputed. Please 
note that this mechanism requires a descriptive rather than a self-rendering (“renderMe()”) 
scene graph design. 

 
Figure 76: Architecture of the scene graph library in a rough sketch. A scene consists of a state and an 

acyclic directed graph of nodes. Nodes can specify geometry, change the current state or group and instanti-
ate other nodes. Precomputed data structures for accelerated rendering are stored in “Cache Nodes”. Each 
cache node represents the subgraph of all nodes below, excluding those nodes stored in further cache nodes 

of the same type.
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7.1.1.3 Point-Based Rendering 

Using the scene graph library, we can easily integrate point-based rendering by providing corre-
sponding cache and rendering classes30. The cache node collects geometry and instances as de-
scribed before. The rendering object traverses the scene graph, looking for point-sample caches. If 
such a cache is found, the traversal of the subgraph is canceled and the data structure is evalu-
ated to render the point-based representation. Additionally, we have also implemented a meta-
renderer that searches in depth-first manner for cache nodes and automatically selects a render-
ing strategy associated with each cache. This allows us to combine multiple rendering techniques 
in one scene graph, such as e.g. display lists for coarse geometry and point-based caches for highly 
detailed objects. This is important in practice where we usually need to combine multiple render-
ing techniques for different parts of the scene in order to obtain a good performance. 

Different point-based rendering algorithms (nested sampling, animated sampling, hierar-
chies with prefiltering for raytracing) have been implemented as different cache objects. Despite 
the separate implementation, we were able to reuse much of the underlying code. An interesting 
example is the rendering module for forward mapping, which is used with minimal change for all 
data structures. The design of the rendering module has been inspired by the design of the Jupi-
ter scene graph library [Bartz et al. 2001]. In this library, a set of “agents” is used that control the 

                                                      
30 Only static sampling has been implemented within the XRT system. The dynamic sampling technique, being the oldest 
variant, has been implemented in a different program, but using the same compiler and mostly the same base libraries 
(for math, graphics). Thus, the resulting performance measurements are (roughly) comparable. 
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Figure 77: General rendering architecture for displaying spatial hierarchies. A collection of filter and dis-
play agents controls the hierarchy traversal, based on a current traversal state. The hierarchy nodes are 

accessed via a general, abstract interface. A concrete rendering strategy is specified by plugging in a collec-
tion of filters/actions. Different rendering strategies can be implemented while reusing most of the code.
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traversal of the scene graph. We use a similar paradigm for traversing the spatial hierarchy: A 
general traversal algorithm processes a spatial hierarchy, accessing the nodes of the hierarchy via 
a general interface. The general hierarchy node interface allows navigation in the hierarchy and 
access to point and triangle primitives as well as access to instances. (This interface class has to 
be reimplemented for each separate data structure.) To control the traversal, two different kinds 
of “agents” are called: Filters prune the hierarchy based on information about the current node 
(bounding box etc.) and the current traversal state (camera settings etc.). View frustum culling 
and point sampling density adaptation is performed using filter agents. Action nodes trigger ren-
der actions such as drawing the current nodes triangles or splatting point primitives. 

The main advantage of this architecture is that most of the code can be reused for different 
tasks and rendering problems. In order to support both OpenGL- and DirectX-based rendering, 
we only need to rewrite the render action agents. To perform a simple hierarchy visualization, we 
just replace the triangle and point rendering nodes with bounding box rendering nodes. Occlusion 
culling can be added by providing an additional filter node. The drawback of the general render-
ing approach is its moderate performance. Due to the many virtual function calls, the general 
implementation is not as efficient as a highly optimized implementation. 

7.1.2 Implementation of Algorithms and Data Structures 
After describing the software architecture in a rough sketch, we now discuss some subtleties of 
the implementation of the proposed algorithms that have not been treated in detail in the previ-
ous chapters: 

The implementation of the dynamic sampling data structure differs slightly from the 
scheme proposed in Section 4.1: Instead of an octree, we use a fair-split tree [Callahan 95] as base 
data structure. A fair-split tree is a binary tree. It is constructed by starting with a bounding box 
of the scene. Then, subsequently, the box is split into two equally sized halfs in the dimension of 
the largest box side length by an axis aligned cutting plane31. After each split, the two new bound-
ing boxes of the two resulting primitive set are computed (“shrink-to-fit”-step). The scheme is 
carried on recursively until a minimum number of triangles are contained in a node, which then 
becomes a leaf node. Figure 78 shows an example. For the modified data structure, we still apply 
the same rules for dealing with triangles exceeding the bounding box of a node. We just substitute 
the maximum side length for the (symmetric) octree box side length. 

                                                      
31 [Callahan 95] gives a slightly more general definition that is needed for an efficient parallel construction of the data 
structure. 

 

Figure 78: Example of a fair-split tree.
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A fair-split tree leads to a similar hierarchy as an octree if the volume of the root bounding 
box is fully covered with geometry. The only difference in this case is that the 1:8 split of an octree 
is replaced by three subsequent binary splits in the three spatial dimensions. Consequently, the 
theoretical upper bounds for the running time derived in Chapter 5 still hold for the modified 
data structure as it behaves like an octree in the worst case. If the scene is not volume-filling, a 
fair-split tree yields potentially a better performance, as it is able to adapt to the distribution of 
the primitives more tightly. In practice, we need about half the number of tree nodes to approxi-
mate the depth-factor up to the same accuracy for a typical input scene than with a conventional 
octree. For static sampling, we have used conventional octrees as we need symmetric cubes as 
nodal boxes in order to define the sample spacing. Similarly, the variant of the dynamic sampling 
data structure that allows for dynamic updates of its content (insert(), delete()) also uses an 
octree because updates of an octree are much easier to implement than updates of a fair split tree 
[Callahan 95]. 

Note that a fair-split tree does not need shortcuts to achieve guaranteed linear memory 
consumption as it never performs useless splits. It can also be computed in O(n log n) time, using a 
similar procedure as described in 4.1.3.2 for octrees (see [Callahan 95] for details). However, our 
implementation uses the simple, worst case quadratic construction procedure in both cases (oc-
trees and fair-split trees). For the octrees, the implementation of short-cuts also has been omitted. 
These two improvements are only necessary from a theoretical point of view. As discussed in Sec-
tion 4.1.3.2, they are usually not important for computer graphics applications. Problems could 
only occur if scenes of extremely varying scale were processed, which are rarely encountered in 
practice. 

7.1.3 Technical Aspects 
In this section, we discuss some aspects of our implementation related to technical aspects of the 
employed hardware. This comprises a description of the reference platform used for all bench-
marks and in how far platform specific optimization techniques have been employed. 

7.1.3.1 Software and Hardware Platform 

The XRT system (as well as the older dynamic sampling system) has been implemented in C++. 

Fragment processing speed 
[106 pixels/sec] OpenGL 

visible triangles 640 MPix/s 

occluded triangles 2,000 MPix/s 

Table 3: Measured fragment processing performance  
of our reference platform (nVidia GeForce FX Go5650) 

 

Vertex processing speed 
[106 vertices/sec] 

OpenGL (inter-
mediate mode) 

OpenGL 
(display Lists) 

OpenGL (std. 
vertex arrays) 

DirectX (managed
vertex buffers) 

triangle vertices / points 7.2 MVert/s 8.6 MVert/s 21.5 MVert/s 28.5 MVert/s 

animated tri.-vert. / points 4.5 Mvert/s 7.1 MVert/s 15.6 MVert/s 32.7 MVert/s 

Table 4: Vertex processing performance of our reference platform (nVidia GeForce FX Go5650, driver ver-
sion 6.14.10.4581) for different APIs. In the “animated” case, a vertex program has been used that interpo-

lates between two vertices (position and color) linearly. The OpenGL implementation for rendering 
animated geometry uses the NV_VERTEX_PROGRAM extension [SGI 2004]. 
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The source code has been compiled using Borland C++ Builder 6.0. All benchmarks have been 
performed on a Dell Inspiron 8600 Notebook PC running Windows XP Professional. The system 
had been equipped with a 1.5 GHz Pentium-M processor, 1 GB of RAM and an nVidia GeForce FX 
5650 graphics processor. The overall performance of this PC system corresponds to a mid-range 
system at the time of writing (both in terms of processor and graphics performance). 

As already expressed during the exposition of the software architecture, the main goal of 
our implementation was flexibility and modularity, not maximum performance. The code has not 
been optimized strictly. Arithmetic for geometric computations is mostly done using simple stan-
dard techniques; no assembly code, cache optimizations or low-level hardware extensions were 
exploited. Therefore, our measurements can only give a rough overview of the possible perform-
ance and allow a relative comparison of different techniques. In terms of absolute values, a hand 
tuned implementation would probably yield some performance improvements in many cases. 
Nevertheless, some details of the hardware characteristics should be considered for a meaningful 
interpretation of the results. This is especially important for an implementation of forward map-
ping techniques using graphics hardware: 

7.1.3.2 Hardware Accelerated Forward Mapping 

Rendering using forward mapping consists of two main steps in terms of running time: Hierarchy 
traversal and rendering of the collected primitives. The first step is always performed in software. 
For static sampling data structures (and caching in dynamic sampling), the second step can be 
implemented using programmable graphics hardware, which is usually more efficient than even 
an optimized software implementation. The traversal step typically has to deal with only a small 
number of data structure nodes (usually some thousand in contrast to many million primitives 
per frame). Thus, the costs for hierarchy traversal are usually dominated by the point projection 
costs. Unfortunately, modern graphics hardware imposes some subtle constraints on the primi-
tive processing process for achieving a high performance. Thus, we first have to take a brief look 
at the architecture of current PC-based rendering hardware. 

Current programmable graphics hardware (as contained in our reference PC platform) pro-
vides a coprocessor (GPU, graphics processing unit) to accelerate typical rendering tasks32. In 
most cases, the graphics coprocessor resides on a separate graphics board. It contains separate 
local video memory that is connected to the GPU with a high bandwidth interface. The graphics 
subsystem communicates with the CPU via the accelerated graphics port (AGP). The bandwidth of 
this interconnect is usually an order of magnitude smaller than the bandwidth of the local graph-
ics memory. 

Current graphics processors are programmable according to a programming model specifi-
cally targeted at forward mapping rendering purposes. Rendering is organized as a pipeline with 
three separate stages: The first stage is a programmable vertex processor. It can perform arith-
metic calculations on each vertex of a primitive (point, triangle). A vertex consists of a set of at-
tributes that are transformed by a vertex program. A vertex program is a batch script of a few 
arithmetic and vector instructions. At this stage, the perspective transformation is done and addi-
tional tasks such as blending between different vertex sets of a keyframe animation can be per-
formed. The second step of the pipeline is the rasterizer, which generates all pixels within a 
primitive (triangle, line, point splat). This step is not programmable but it is only possible to 
choose from a fixed set of primitives. The third step is a pixel/fragment program. Again, a small 
                                                      
32 We provide only a rough description to highlight the main implementation concerns. A more detailed description of 
current programmable graphics hardware can be found for example on the web pages of the respective hardware vendors 
[ATI 2004, nVidia 2004a]. 
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batch script can be uploaded to the graphics hardware that performs arithmetic calculations for 
each pixel that is written into the framebuffer. The script can use interpolated attributes, global 
constants, and access texture maps to compute the color of the pixels. 

The throughput of the different stages varies. We can identify roughly two different values: 
the throughput of the vertex processing stage and the throughput of the fragment processing 
stage (rasterization and pixel shading). The throughput depends of course strongly on the em-
ployed vertex and pixel programs. The vertex processing rate is additionally dependent on the 
number of attributes that are input for every vertex. For all current architectures, the processing 
speed of the pixel pipeline segment is larger than the vertex processing speed by at least an order 
of magnitude (in terms of instructions per second). For our reference platform we have measured 
up to 30 million vertices per second (transformation only, no lighting, position and color for each 
vertex) and 640 million fragments (2,000 million in the case of occlusion33) per second. See Table 3 
/ Table 4 for details. For point-based rendering, we have to process rapidly large sets of vertices. 
Thus, a good utilization of the vertex processing capabilities is crucial for a high rendering per-
formance. 

An important problem of both vertex and fragment processing is bandwidth: If the graphics 
board processes 30 million vertices per second (3 × 32Bit float values for the position, 4 bytes color 
= 16 Bytes), this already corresponds to a bandwidth of 480 megabytes per second. Thus, an opti-
mal performance can only be achieved if the vertices are stored in local video memory of the 
graphics board or at least in “AGP-memory”, i.e. in a memory region that can be accessed by the 
GPU via fast DMA (direct memory access) operations. Thus, the location and transfer mode for 
geometry has a strong effect on the obtained rendering performance. We have tested four differ-
ent alternatives: The OpenGL programming interface offers a variety of transfer modes. We have 
tested the intermediate mode (one function call for every vertex attribute), display lists (precom-
piled batches of intermediate mode calls) and standard vertex arrays (non AGP-memory blocks 
that are copied to the graphics board for every rendering call. In addition, we have also used 
managed DirectX vertex buffers that automatically determine the most efficient memory location. 
In either case, we have measured the vertex throughput by sending unconnected triangles or 
point primitives down the graphics pipeline (which both lead to similar values). For optimized 
triangle mesh rendering, topological optimizations concerning the rendering order (triangle 
strips, indexed primitives, optimized index order [Hoppe 99]) have to be considered for optimal 
results. As this is of minor importance for point-based rendering, we have not examined this topic 
further. If our implementation has to render triangles, it always just uses lists of single triangles 
without optimized topological order. 

The results of a synthetic benchmark are summarized in Table 3. Usually, the DirectX im-
plementation yields the best performance while the OpenGL implementation is slower. This is 
due to problems with the standard interface. For example, the vertices stored in standard vertex 
arrays have to be copied to the graphics memory during each rendering path. This is necessary to 
provide the correct rendering semantic as defined by the interface. Intermediate mode rendering 
is always quite slow by design and display lists are not always fully optimized in current drivers. 
The performance deficits of OpenGL can be compensated by employing vendor extensions for a 
more efficient memory management (such as NV_VERTEX_RANGE, EXT_VERTEX_ARRAY_OBJECT 
[SGI 2004]). These optimizations are often platform-dependent so that we prefer to use DirectX 
for optimized rendering. Nevertheless, it is possible to obtain similar rendering speeds with both 
interfaces if all options for optimization are employed. 

                                                      
33 Due to z-compression and early hierarchical rejection techniques, the processing rate is different for visible and occluded 
fragments. See [nVidia 2004a] for details. 
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A further problem is due to latencies: Every call to the graphics API for specifying a new set 
of primitives to be processed causes a fixed amount of costs. Using DirectX vertex buffers, it is not 
possible to send more than about 100-200 thousand rendering commands (“batches”) to the graph-
ics processor per second on a typical PC platform, even if they contain only a small number of 
primitives [Wloka and Huddy 2003]. OpenGL is usually faster than DirectX for small batch sizes 
(about 2 times, depending on the vertex transfer mode) but still shows the similar problems 
[Wloka and Huddy 2003]. As a consequence, we have to design the rendering system for process-
ing large batches. For the multi-resolution algorithms this means that we will prefer using rather 
large numbers of sample points in each hierarchy node as every node corresponds to one (or two, 
if triangles are present) batches. 

7.1.3.3 Raytracing 

The point-based multi-resolution raytracing technique has been implemented in software only. 
We have not employed special low-level optimizations but only straightforward C++ code. There-
fore, the performance is not comparable with highly optimized raytracing packages such as the 
technique proposed by [Wald et al. 2001], which uses involved cache, coherency, and SIMD optimi-
zations for a significant performance advantage. 

To allow at least a rough performance characterization, we have implemented a conven-
tional triangle-based raytracer using the same code basis (for linear algebra operations, intersec-
tion calculations, hierarchy construction etc.). To evaluate the performance, we compare our 
implementation with this reference implementation. This does not allow a precise prediction of 
the performance of a highly optimized implementation but can at least provide some qualitative 
hints. 

7.2 Preprocessing and Rendering Parameters 
In this section, we examine the influence of different parameters on rendering time, memory de-
mands and image quality of our rendering techniques. Our goal is to identify the complexity 
characteristics and to find suitable trade-offs for practical applications. The section is divided into 
two parts, dynamic and static sampling, because these two approaches show a different behavior 
concerning algorithmic parameters. In addition to the diagrams shown in this section, all meas-
ured running times and parameters are also given numerically in Appendix A, Table 12 - Table 
27. 

7.2.1 Dynamic Sampling 
The dynamic sampling data structure provides several parameters that can be tuned for optimal 
performance: The most important is the accuracy of the spatial adaptivity ε. A good choice of this 
parameter is crucial for optimal performance. In addition, we can also decide to employ orienta-
tion classes to improve the sampling adaptivity. In this case, we are looking for the number of 
classes that delivers the best performance. In addition, we can also vary the settings for area 
classes that are used to identify large triangles that are not included in sampling. Beside these 
algorithmic parameters, we are also interested in the dependence of the rendering complexity on 
the scene complexity. We will examine this behavior in this section, too. 

In our measurements, we use an example scene consisting of a forest of trees. The forest 
consists of instances of four prototype trees that are replicated 10,000 times (using two layers of 
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10 × 10 instances for hierarchical instantiation). The four trees consist of 93,180 triangles, leading 
to an overall scene complexity of 931,800,000 triangles. We measure the rendering time for a 
camera path with strongly varying distance to the scene (see Figure 79). This leads to a varying 
number of hierarchy nodes to be traversed at the same approximation accuracy. This permits 
examining the influence of this parameter on the choice of the approximation accuracy. The forest 
scene has been chosen because it is a typical input to our rendering algorithms. Additionally, it 
provides a distribution of geometry and orientations that is typical for a large class of scenes such 
as landscapes or extended urban scenery. We will examine other scenes in Section 7.3. 

7.2.1.1 Preprocessing 

The dynamic sampling data structure requires only few parameters to control the preprocessing 
process itself (such as number of triangles per leaf node, maximum node overlap). For realistic 
values, these parameters have only little effect on the running time. Thus, we do not examine the 
influence of these parameters in detail but just use standard values (≤ 64 triangles and ≤ 1 in-
stance per leaf node, max. overlap factor 2) for the forthcoming experiments. The resulting pre-
processing time is short (in comparison to static sampling, as described later on): Building the 
distribution tree for our benchmark scene (Figure 79) took 8 seconds and required 22.8 MB of 
main memory. Please note, that the implementation has been optimized for neither efficient pre-
processing nor memory demands. 

7.2.1.2 Spatial Adaptivity 

The most important rendering parameter is the accuracy of the spatial adaptivity: Our rendering 
algorithms use a spatial hierarchy to extract point sets with a sampling density according to a 
given importance function. In the case of forward mapping using dynamic sampling, the impor-
tance function is proportional to the depth factor 1/z2 of the corresponding surface fragments. The 
approximation accuracy is explicitly given as a factor (1 + ε ). The rendering algorithm collects 
boxes from the spatial hierarchy in which the depth factor of the given projection does not vary by 
more than (1 + ε ). Triangles that are too large to be classified correctly (i.e. exceeding the toler-
ance zones of the corresponding hierarchy nodes) are reported as is and rendered using triangle 
rasterization. The same is also done for triangles that are so large that they would obtain several 
sample points if rendered with point-based rendering. 

Choosing an optimal value of ε  is a trade-off: A good approximation leads to increased tra-
versal costs while a bad approximation leads to more sample points (and thus also to higher ren-
dering costs, too, due to the conservative nature of the approximation approach). Usually, we 

  
(a) near view  (b) medium distance  (c) far view 

Figure 79: Test scene for examining the influence of the accuracy of  
the spatial adaptivity on the rendering time 
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expect an optimal running time for medium values. The location of the optimum depends on the 
rendering technique: The larger the processing costs for a sample point, the more we expect to 
profit from a good approximation accuracy. 

We have rendered our test scene for three different viewing positions, as depicted in Figure 
79. The resulting timings are shown in Figure 80 as a plot of the running time (for the three view-
ing points) in dependence of the approximation parameter ε. As expected, we obtain one distinct 
optimum. For the example scene, the optimum value is found in the range of ε  ≈ 0.03…0.04. This 
value is the same for all three viewing settings. This observation can be explained by a simple 
model: If we assign costs for sampling (proportional to the oversampling factor) and for box proc-
essing (triangle rendering, hierarchy traversal) to each box, we would expect the best rendering 
times when the two costs are balanced. The viewpoint independence is only given for one scene 
and only as long as these average costs do not change. If the either the average sampling costs or 
the per-node processing costs change, the point for the best trade-off shifts according to this costs. 
To show this effect, we have repeated the measurements for different sampling costs per box 
(Figure 83): In the experiment, we have varied the sampling density for one and the same scene. 
The result is a strongly varying value ε  at which the minimum of the rendering time is reached. 
However, we still obtain a distinctive optimum. The same effect can be expected if the average 
surface average area of the geometry in the hierarchy nodes changes. This value depends on the 
scene. Additionally, a similar effect can be expected if the viewer moves within one and the same 
scene and turns his field of view towards a part of the scene with increased projected area. 

In order to examine the trade-off between node and sample processing costs more in detail, 
we have also measured the number of objects (hierarchy nodes, points, triangles) that are proc-
essed by the algorithm (Figure 81). It turns out that three effects are responsible for the overall 
rendering time: First, the number of hierarchy nodes that have to be processed increases with 
decreasing ε. Conversely, the number of sample points increases with growing ε. Third, the num-
ber of triangles also increases with decreasing ε. The last effect is caused by the strategy for han-
dling of triangles that exceed the bounding box of the spatial hierarchy: The smaller the selected 
boxes are, the more triangles do not fit into the boxes and are reported “as is”. Therefore, the 
number of triangles increases strongly for very small values of ε . The latter effect is only observed 
for closer views, in which large triangles are seen in the projected image. For the far view of the 
same scene (Figure 82), no sample points are replaced by triangles for the measured values of ε 

  
Figure 80: Rendering time for the scene depicted in Figure 79 in dependence of the approximation 

accuracy εεεε. The right diagram shows a close-up of the optimal region (marked in blue in the left diagram). 
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because hierarchy nodes are much larger (in absolute units) in this case. Nevertheless, a similar 
increase of the running time is observed due to the increased number of hierarchy nodes to be 
processed. 

The increased number of processed bounding boxes (and in certain cases additionally the 
increased number of processed triangles) leads to a strong increase of the rendering time for very 
small values of ε. The approximation inaccuracies lead to an increase of the rendering time for 
larger ε ; thus, we obtain one minimum for the sum of the two monotonic cost functions. Overall, it 
is not possible to determine one absolute optimum valid for all scenes and viewing conditions. 
Actually, we have to determine the optimal value dynamically, according to the current sampling 
and node processing costs. For our experiments, we have determined ε  manually. However, we 
could imagine a fully automatic scheme that performs a numerical optimization algorithm on 

  

Figure 81: The number of processed primitives for 
varying approximation accuracies εεεε (near view). For 

small εεεε, processing the boxes and box-exceeding trian-
gles dominates the rendering costs, for large εεεε, the costs 

are dominated by processing sample points. 

Figure 82: Number of processed primitives for 
varying approximation accuracies εεεε (far view). In 
the far view, no triangles are used (in contrast to 

the near view). Even for small values of εεεε   (i.e. 
deep subdivision) no triangles are introduced. 

  

Figure 83: Trade-off between the rendering cost com-
ponents for varying εεεε  and different sampling densities. 

The larger the number of sample points per box, the 
smaller is the optimal approximation accuracy εεεε .  

Figure 84: Effect of orientation classes on the 
rendering performance. The x-axis shows the 

number of binary subdivisions of the domain of 
normal directions in polar coordinates. The y-axis 

shows the relative rendering time. 
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measured rendering times in order to adapt the parameter dynamically during the rendering of 
an animation. As we have always observed a distinct optimum, a stable automatic adaptation 
scheme could probably be implemented easily. 

7.2.1.3 Orientational Adaptivity for Dynamic Sampling 

In addition to the depth, we can also consider the relative orientation in respect to the current 
viewpoint in order to determine the sampling density. For random sampling, we should scale the 
probability of receiving sample points proportionally to the cosine of the angle between view vec-
tor and triangle normal34. To determine the angle, we have the option to build classes of triangles 
with similar orientation, as detailed in Section 4.1.4. 

We have measured the running time for our example scene with different numbers of orien-
tation classes using the dynamic (random) sampling technique. To create the orientation classes, 
we have extended the construction of the spatial hierarchy (the fair-split tree). Instead of starting 
with spatial subdivision, we first perform dn splits in the orientational domain: We compute the 
normal directions of the triangles and express them in polar coordinates. The resulting two-
dimensional domain is then subsequently split in its largest extend, similar to the spatial subdi-
vision and the resulting sets of triangles are assigned accordingly to the child nodes. After the 
maximum orientational subdivision depth is reached, the subdivision is continued in the spatial 
domain, as usual. 

 Figure 84 shows the results for our test scenes. The x-axis shows the number of binary 
subdivisions and the y-axis shows the resulting relative performance for the three views of our 
test scene. The performance has been determined by rendering using the same set of different ε -
values as in the previous examples and picking the minimum of the resulting rendering times. 
Then, the optimal value is divided by the value for using no orientation classes35. 

The resulting curves show a minimum rendering time for a split depth of 1, i.e. for two ori-
entation classes. For a larger number of orientation classes, the benefits of reducing the sample 
size are (over-)compensated by the requirement of much more spatial boxes to be processed. Even 
in the optimal case (dn = 1), we only obtain moderate savings (up to about 20%). The measure-
ments have been performed without using area classes to identify large triangles. In combination 
with area classes, we expect less benefit from orientational classification. As the identification of 
large triangles is more important and the potential savings of orientation classes are small, we 
will not use orientation classes in remaining rendering examples. 

7.2.1.4 Large Triangles 

For the identification of large triangles, we use classes of triangles with similar area and build a 
spatial data structure for each class. Two parameters control the efficiency of this scheme: the 
area class spacing and the point of transition between sampling and triangle rasterization. The 
area class spacing is the factor by which two triangles should differ to be placed into different 
area classes. The choice of this factor has only a minor influence on the rendering time (see 
Figure 85). Within a range of sensible values of 1.5-64 we obtain similar rendering times (again, 
we have optimized the ε  parameter separately for each area class spacing). The observed small 

                                                      
34 For stratified sampling, we would need view angle dependent stratification patterns. Thus, we do not consider it here. 
We have only implemented and tested orientation classes for dynamic sampling, as we could expect the largest benefits in 
this case (in which sampling is most expensive). 
35  This experiment requires the measurement of a large number of rendering times for different parameters. In order to 
reduce the overall measurement time, we have used only half the resolution (0.25 × the sampling density) as in the previ-
ous examples. 
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deviations are rather unpredictable. This is probably due to the discrete nature of the classifica-
tion and subdivision process. For very small factors, the number of boxes to be extracted from the 
multiple spatial hierarchies grows and the running time increases, too. For all subsequent meas-
urements, we have used an area class spacing factor of 8, which leads to satisfactory results. 

A more critical choice is the transition value at which we switch between triangle rendering 
and point-based rendering: We have rendered the near view of our test scene (Figure 79) using 
different transition values. First, we have employed the optimal ε -value of 0.04, yielding the pur-
ple curve in Figure 86. The x-axis shows the area value of transition: A value of 1 corresponds to 
the unprojected size of a single pixel (i.e. the area of a pixel reprojected into object space). For 
small values, i.e. more triangle-based rendering, the rendering time grows strongly due to the 
high scene complexity. For large values, the rendering time converges towards the time needed 
for rendering with sampling only, which is a bit longer. For an optimum ε  value, the second effect 
cannot be seen clearly because at this ε  value a lot of geometry is already rendered by triangle 
rasterization due to the deep subdivision of the spatial hierarchy. The effect becomes more obvi-
ous for larger values of ε : The blue curve shows the same experiment for ε  = 1.5, at which all ge-
ometry can be potentially rendered using sample points. For our implementation, the optimum 
transition point is at about 1/16 of an unprojected pixel (for a sample spacing of 1 pixel). It is rea-
sonable to conjecture that this value is not an absolute value but rather a fixed fraction of the on-
screen sampling density. To verify this, we have repeated the measurements using 1/16 of the 
previous sampling density, which indeed led to a transition point of about 1. 

7.2.1.5 Scene Complexity 

The running time of the dynamic sampling data structure depends weakly on the scene complex-
ity36. Theoretically, we expect a logarithmic dependence on the number of triangles in the scene. 
To verify this experimentally, we have made benchmarks using a synthetic test scene: The scene 
consists of a flat chessboard of k × k squares, which are subdivided recursively in order to increase 
the scene complexity without affecting other parameters. Hierarchical instantiation with an in-

                                                      
36 In contrast to static sampling: Static sampling uses precomputed sample sets so that the underlying number of triangles 
does not matter. 

  
Figure 85: Choice of the area class spacing factor. 
The dependence of the running time on this pa-
rameter is rather weak within a wide range of 

values.

Figure 86: Transition between point and triangle 
rendering. The optimum depends on the on-screen 
sampling density. We obtain an optimum at about 

1/16 of the on-screen density. 
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creasing number of instantiation levels is employed to overcome the limitations of main memory. 
Figure 87 shows the timing results for rendering the test scene consisting of n = 2k2 triangles. 
The diagram shows a linear increase of the running time of the dynamic sampling algorithm for 
an exponentially increasing scene complexity, confirming a logarithmic time complexity. For com-
parison, we have also plotted the running time of a conventional z-buffer renderer without a 
multi-resolution approach. The blue curve shows the estimated running time assuming a peak 
triangle throughput of 60 million triangles per second (corresponding to 30 million vertices per 
second with optimal vertex caching). For small scene complexities, the simple rasterization ap-
proach is much faster than sampling. Please note that we have deactivated the rasterization of 
“large triangles” as the goal of this experiment was to measure the sampling performance. For 
larger numbers of triangles the running time increases linearly and soon exceeds the range of 
interactive rendering. For the most complex benchmark scene (1.7·1015 triangles), we would ex-
pect a (best case) rasterization time of about one year while the sampling based rendering proc-
esses the scene in 3.5 seconds. 

The details of the rendering time are also interesting: The red curve describing the render-
ing time of the sampling renderer consist of several segments, corresponding to 0-5 levels of in-
stantiation. Each additional instantiation level adds an additional (roughly constant) overhead to 
the processing costs of each sample point (400ms overall per instantiation layer). This corre-
sponds to sampling the higher level distribution tree and processing the instantiation transforma-
tion. Within one instance, the curve consists of two roughly linear parts with different slope (in 
logarithmic scale). We assume that the first curve segment corresponds to triangle sets that fit 
into the second level cache, while the second curve segment with larger slope corresponds to main 
memory access. For the random sampling algorithm, the latency times of accessing a random 
memory address are an important issue determining the performance so that we obtain a speedup 
for data fitting into the cache. The data structure size (of the triangles within the leaf instance) at 
the end of the first part (subdivision level 5) is 480KB and 1850KB at the start of the second seg-
ment (subdivision level 6). This corresponds well to the second level cache size of 1MB provided 
by the Pentium-M processor of our test platform. 

  
Figure 87: Runtime complexity of the dynamic sam-

pling algorithm. The running time is logarithmic 
while conventional rasterization is linear. Please 

note the logarithmic scale of the x-axis (#triangles). 

Figure 88: Dynamic updates for varying scene and 
update complexities. For typical update tasks 

(change some 1000 triangles in a 10-100 thousand 
triangle scene) we obtain roughly constant update 

time of about 50-60 µµµµsec / triangle.
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7.2.1.6 Dynamic Updates 

We have also implemented the dynamic update algorithms that allow insertion and removal of 
objects into/from the hierarchy without rebuilding it from scratch. In order to quantify the per-
formance, we have measured the time to insert and remove objects of different complexity 
into/from scenes of different complexity (see Figure 88). The test scenes were built without using 
instantiation. The dynamic updates always operate within one spatial hierarchy. Inserting or 
deleting a triangle requires the same operations (and thus similar costs) as changing an instance 
entry (which has not been implemented but the results would be similar). The test scene con-
sisted of replications of a variant of the city model depicted in Figure 107. We did not use the tree 
test scene as the city model consists of fewer triangles, enabling a more fine granular control of 
the scene complexity. For the dynamic updates, we have inserted different variants of the Stan-
ford Buddha model (Figure 102b, [Stanford 2004]) that have been simplified using QSlim 
[Garland and Heckbert 97] to obtain models of varying complexity. Figure 88 shows the resulting 
update times: The update time is mostly independent of the scene complexity and roughly linear 
in the number of changed triangles. We obtain average update costs of 50-60 µsec per triangle. 
The theoretical analysis predicts worst case costs of O(n log h) with n being the number of updated 
triangles and h being the height of the tree. In our test cases, we have examined scenes with 30-
850 thousand triangles. Thus, the height of the octree (usually h ∈ O(log n)) does not change 
strongly so that we obtain roughly constant costs per triangle. The performance is sufficient for 
typical interactive local modifications of the scene. Please note that the code has not been opti-
mized for performance in any way. Thus, it is probably possible to improve the constants signifi-
cantly if an application requires more efficient dynamic updates. 

Providing dynamic update capabilities also affects the rendering time, as we need to im-
plement a dynamic data structure for the distribution lists. We have implemented the variant of 
the dynamic data structure that uses the spatial tree itself as dynamic distribution lists (see Sec-
tion 4.1.7). For our implementation, the time for choosing a sample point was increased by about 
50% for the dynamic data structure (factor 1.41 for the city scene and 1.48 for the tree scene used 
in the other benchmarks). In addition, the version of the dynamic sampling data structure sup-
porting dynamic update operations uses an octree rather than a fair split tree because dynamic 
update operations for octrees are much simpler to implement than for fair split trees (see 
[Callahan 95]). Using an octree instead of the fair-split tree led to an increase of the number of 
bounding boxes by a factor of about 2.2 (averaged for a camera path). Overall, the performance of 
the dynamic data structure is at least roughly comparable to the static version. 

7.2.2 Static Sampling 
In this section, we evaluate the effect of different preprocessing parameters on rendering and 
preprocessing costs of the static sampling technique. We examine the influence of the depth ap-
proximation accuracy ε, the prefiltering costs, and the transition to large triangles. Additionally, 
we will also study the dependency on preprocessing parameters of raytracing and animated point 
sampling. An additional, important parameter is the employed stratification technique. We will 
examine the different options more closely in Section 7.3.1.2. Up to then, we will always use 
greedy neighborhood-based point removal, which appears to be the best choice according to our 
simplified analytical model (see Section 4.2.3). The empirical results will later confirm this prop-
erty. 
 



7.2 Preprocessing and Rendering Parameters 151 

 

7.2.2.1 Spatial Adaptivity 

In this first subsection, we examine the influence of the spatial approximation accuracy on the 
running time for static sampling (cf. Section 4.2). Using static data structures, the approximation 
accuracy is fixed during preprocessing by specifying a relative sampling density for the hierarchy 
nodes (given as sample points per side length of an octree box). As it is not possible to change this 
preprocessing parameter during rendering, the determination of a suitable approximation accu-
racy is especially important. 

Structurally, we expect roughly similar results for static sampling as for the dynamic sam-
pling data structure. However, point and hierarchy node processing costs differ strongly from the 
dynamic case. Thus, we will expect a different ε -values for an optimal trade-off. We repeat the 
same measurements as for dynamic sampling, starting with a comparison of the rendering time 

  

Figure 89: Rendering time (static sampling) for the 
scene depicted in Figure 79 in dependence of the 
approximation accuracy εεεε. For static sampling, 

much larger values of εεεε  are favorable due to smaller 
point processing costs. 

Figure 90: Number of processed primitives for vary-
ing approximation accuracies εεεε  (scene: Figure 79, 

near view). Again, the number of sample points 
grows for larger εεεε  while the number of hierarchy 

nodes and triangles grows for small εεεε. 

 

 

Figure 91: Trade-off between the rendering cost 
components for varying εεεε  and different sampling 

densities. For static sampling, the optimal approxi-
mation accuracy is (roughly) the same for the dif-

ferent rendering resolutions (in contrast to dynamic 
sampling, see Figure 83) 
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for different sampling accuracies and different views of our test scene (Figure 79a-c). Figure 89 
shows the results: For a small number of sampling points per hierarchy box, the rendering costs 
are quite high. For larger box sizes, the rendering time drops rapidly. An optimal rendering time 
is achieved for k ≥ 48..64 points / box side length (ε  ≥ 0.2…0.3). For moderate box sizes of up to 
128 points per box side length, the rendering time remains roughly constant. 

The behavior is caused by the same mechanisms as in the dynamic case but shifted due to 
the reduced primitive processing costs: Figure 90 shows a plot of the different processing cost 
components (points, triangles, hierarchy nodes). For small box sizes, both the number of proc-
essed triangles and boxes increase strongly, leading to a sub-optimal rendering time. For larger 
boxes, the loss of approximation accuracy leads to an increased number of sample points to be 
processed. This effect is not as critical as in the dynamic case because of two facts: First, we have 
used a smaller maximum value of ε  in our tests. This is a limitation of the implementation: It 
uses a simple three-dimensional array for stratification and filtering of sample points that does 
not allow processing very large numbers of sample points per box side length due to the memory 
demands37. Second, the processing costs for sample points are much lower due to the precom-
puted, stratified sample sets and hardware accelerated rendering. Thus, an increase of sample 
points is less critical. 

Again, we should examine if the trade-off is stable for different rendering conditions (differ-
ent sampling densities, different scenes). Figure 91 shows the relative rendering time for different 
sampling densities (i.e. different splat sizes at a fixed resolution of 640 × 480). The rendering time 
has been normalized by dividing by the minimal rendering time. The x-axis showing the ε -values 
has been scaled logarithmically to display the result more clearly. For static sampling, we always 
obtain an optimal rendering performance for k = 48 points per box size, independent of the sam-
pling density. This has been expected as we have used a fixed data structure: In contrast to dy-
namic sampling, the number of points in each hierarchy node remains constant, only the 
traversal depth changes for varying sampling resolutions. This means that the ratio of box proc-

                                                      
37 The implementation could be improved by substituting hash tables for arrays (see Section 4.2.3). However, as the meas-
ured running times show, this is not necessary because it would not reduce the rendering time (at least for our test scenes 
and image resolutions). 

  

Figure 92: Average rendering time (camera path 
near to far) for different rendering APIs. The 

DirectX-based implementation achieves a higher 
throughput of primitives so that box processing 

costs become more dominant. 

Figure 93: Comparison of the vertex throughputs of 
the two rendering implementations. The DirectX 
version is much more sensitive to the box size be-
cause of a higher overall throughput and larger 

per-batch time penalties. 



7.2 Preprocessing and Rendering Parameters 153 

 

essing costs and primitive processing costs remains fixed, keeping an optimal trade-off. Neverthe-
less, we still expect a shift of the optimal trade-off for different geometry. The more area we have 
in each octree box on the average, the smaller we can choose the number of points per box side 
length to balance box and primitive processing costs. 

We can also observe that the increase of rendering time due to inaccurate approximation of 
the depth factor is worse for larger on-screen sample spacing. This is probably caused by the fact 
that fewer triangles but more sample points are used at coarser resolutions so that oversampling 
becomes more visible. Please note also that all curves in Figure 91 have been normalized to the 
minimum rendering time. Thus, the absolute rendering time is quite small for large sample spac-
ings. Thus, although the relative increase is significant, the absolute increase is not as critical as 
suggested by the figure. 

Trading-off box processing and point processing costs also depends on the employed render-
ing API: We have tested two variants: rendering with standard OpenGL 1.1 vertex arrays38 
(stored in client memory) and DirectX 9.0 managed vertex buffers (transferred automatically to 
local video memory). The second rendering technique achieves a higher primitive throughput 
(Table 4). Therefore, the box processing costs are more critical. In addition, the DirectX interface 
shows larger costs for submitting a single “batch” of primitives (points, triangles) to the graphics 
hardware than the OpenGL variant [Wloka and Huddy 2003]. Figure 92 shows a comparison of 
the rendering times for different approximation accuracies: Although the number of primitives 
(points and triangles) is the same for both implementations, the two plots are not proportional to 
each other (see dotted line). For the rendering technique with a higher primitive throughput, the 
hierarchy processing costs are more dominant. This shows that the increase of the rendering time 
is not only caused by the increase of triangles stored in inner nodes. This observation becomes 
more obvious in Figure 93: In this diagram, we have computed the vertex throughput ((points + 
3 × triangles) / time) for the different rendering settings. For the renderer that uses standard 
OpenGL 1.1 client side vertex arrays, the throughput remains roughly constant. The overhead 
due to box processing has only a minor effect. For the more efficient DirectX (managed vertex 
buffers) renderer, the choice of the box size is much more critical: It achieves an optimal through-
put only for a box size of k ≥ 48, corresponding to about 1000 vertices per box. This number is 
probably even larger for more powerful graphics hardware than our test system [Wloka and 
Huddy 2003].  

Overall, we see that static sampling yields the best rendering performance for larger values 
of ε  than dynamic sampling. This is mostly a result of faster point processing performance. For 
values of k ≥ 48 points per box side length, we have observed satisfactory rendering times. In gen-
eral, it is less critical to use hierarchy boxes with a bit too many points than using boxes that are 
too small as this affects the performance more severely. Especially for high-end graphics hard-
ware, large boxes are mandatory in order to achieve an optimal utilization of the graphics hard-
ware. 

7.2.2.2 Preprocessing Costs for Different Approximation Accuracies, Handling Large 
Triangles 

After examining the relevance of the depth approximation accuracy for the rendering time, we 
also have to consider its effect on the preprocessing costs. At first sight, this parameter does not 
seem to affect the preprocessing costs. However, as Figure 94 shows, this is not the case. Indeed, 
the preprocessing costs (time and memory demands) grow with increasing parameter k (number 

                                                      
38 If not noted otherwise, all results in this section have been measured using the OpenGL renderer. 
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of sample points per box side length). The reason for this behavior is easy to explain. Figure 94 
shows that the number of points in the hierarchy also increases with increasing k but the number 
of hierarchy nodes (boxes) remains roughly constant. More specifically, the number of sample 
points in the hierarchy grows approximately quadratically with k. If we fix the hierarchy and only 
increase k, we expect that the number of sample points grow quadratically with k as we sample 
the same surfaces with more sample points per unit area. 

The only effect that works against this is the termination criterion for the hierarchy: We 
stop sampling triangles in child nodes that have already received more than pmax (in our test case 
pmax = 1) points. In addition, we also terminate the recursive subdivision if the number of trian-
gles in a node falls below nmax triangles (we have used constantly nmax = 1024 for the measure-
ments). In practice, the second criterion (batching triangles in the leaf nodes) dominates as 
termination criterion. This means that the number of hierarchy boxes remains roughly constant 

 

 

Figure 94: Preprocessing costs for varying approxi-
mation accuracies (static sampling), including the 
numbers of primitives the hierarchies consist of. 

Figure 95: Increasing the maximum number of tri-
angles in leaf nodes proportional to k2 in order to 

keep the number of point in the hierarchy constant. 

  

Figure 96: Rendering time and data structure size 
for a varying number of triangles per leaf node (for 

k = 48 pts / box side length). A good trade-off is to 
use as many triangle vertices per leaf node as points 
in the inner nodes on the average (here: about 1000). 

Figure 97: The influence of time discretization for 
preprocessing animated geometry. The diagram 
shows the average number of sample points for a 

complete time interval. The first model is a sphere, 
shrinking to a 1/10 of its original size; the second 

model is a model of a walking human. 
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(as confirmed by Figure 94), leading to a quadratic growth of the number of points (and thus also 
of preprocessing costs in terms of time and memory) with the parameter k. 

We have two options to fight this behavior: First, we can omit the parameter nmax so that a 
higher sampling density always leads to a hierarchy of reduced depth. However, this would lead 
to leaf nodes with few triangles, which is not optimal for efficient rendering using graphics hard-
ware. Second, we can increase nmax proportionally to k2. In our experiments, this technique kept 
roughly constant memory and preprocessing time demands and ensures to process geometry in 
large batches: As a rule of thumb, it makes sense to keep the average number of triangle vertices 
per leaf node in the same range as the number of points in inner nodes to balance the processing 
costs. Figure 96 gives empirical evidence on this: We have varied nmax for the preprocessed static 
sampling data structure of our forest benchmark scene and compared the rendering times (near 
view, Figure 79a). For large values of nmax, the rendering time increases because the adaptivity of 
the multi-resolution approach is reduced. For values of about 250-500 triangles (i.e. 750-1500 
vertices) and below, we obtain the best rendering times. This corresponds to about 1000 sample 
points per inner node. For our test scene, a value of about nmax = 500 triangles per leaf node pro-
vides probably a good trade-off between preprocessing costs and rendering time. 

The second parameter for controlling the handling of large triangles is the maximum num-
ber of sample points a single triangle may receive until it is stored “as is” in an inner node. As 
most triangles are excluded from sampling by the nmax leaf node criterion, this parameter has only 
a minor effect on the running time. For artificially small values of nmax (nmax = 2), we have deter-
mined the best rendering times for pmax ≥ 3 points per triangle. 

7.2.2.3 Intermediate Sampling Levels 

A further option during the construction of static sampling hierarchies is the usage of intermedi-
ate sampling levels. Instead of binding the resolution steps to the octree levels, which causes 
sampling spacings to vary in powers of two, we can store multiple point sets with varying spac-
ings in each node. This reduces the oversampling due to the discrete steps in the sampling den-
sity of the spatial hierarchy. 

For a test scene consisting of replicated trees, we have obtained a reduction of the number 
of points for a rendered image by 24% for one additional point cloud in each node, corresponding 
to a resolution (sample spacing) stepping of .2  For two additional point sets in each node (reso-
lution stepping 3 2 ), we obtain a reduction of 30% relative to a simple octree. Using 5 point 
clouds (4+1, stepping 5 2 ), we can reduce the number of rendered points by 46%. The rendering 
time decreases by the same factor. The memory requirements are increased by a factor of 1.3 (one 
additional point set), 1.6 (two additional point sets), and 2.1 (four additional sets), respectively. In 
practice, at least one layer of points might be a good choice, delivering some improvement in ren-
dering efficiency at moderate storage costs. 

7.2.2.4 Prefiltering 

Another preprocessing parameter of static sampling is the oversampling for creating prefiltered 
sample points. This is a trade-off between noise artifacts and precomputation time. In order to 
find satisfactory settings, we have rendered a worst case test scene with different oversampling 
and compared the image quality. Our worst case scene is a large chess board consisting of black 
and white squares. We have positioned the camera so that multiple squares are represented by a 
single sample point. The resulting point cloud has then been rendered using the raytracing tech-
nique described in Chapter 6, applying effectively a Gaussian reconstruction filter (with renor-
malization by the sample weights) to the sample points. The results are shown in Figure 98. As 
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expected for a Monte Carlo integration technique, the image quality converges quickly for small 
sample sizes but more slowly for larger sample sizes, due to the O(n-1/2) error behavior (see Sec-
tion 1.3.2.1). 

We obtain an acceptable image quality for 100 ×  - 200 ×  oversampling, but even at the high-
est level (1000 ×) we still obtain deviations by  ±1 bit (for 8 bit color values). This is a general prob-
lem. Even enhanced numerical integration techniques such as Gaussian quadrature do not yield a 
better convergence rate for high variance, quasi random functions such as our test scene. How-
ever, they could speed up convergence in less adverse, smoother cases. 

7.2.2.5 Animation 

We have implemented a variant of the static sampling data structure for handling keyframe an-
imations, as described in Section 4.3.3. This data structure uses the same construction parame-
ters as the static version. Thus, the results from the preceding section apply also to the animated 
variant. In addition, the animated data structure provides an additional parameter to control 
time quantization, i.e. to use multiple sample sets within the time interval between two key-
frames in order to adapt more tightly to the required sampling density at a certain time. 

In order to examine the effect of this parameter, we have examined two test scenes: The 
first is a sphere shrinking linearly to a tenth of its original size. The second scene shows a walk-
ing human character (exported from the Poser animation package [Curious Labs 2001], see 
Figure 109). For the shrinking sphere, the average number of sample points can be reduced by a 
factor of 2.48, employing 20 time subintervals within the two keyframes (the theoretical maxi-
mum for shrinking to zero size is 3, cf. Section 4.3.3.3). A good approximation is already obtained 
using 3-5 time intervals, yielding already a reduction factor of 1.8-2. For the animated human, we 
do not achieve substantial savings using time discretization because the surface area does not 
change significantly; the maximum deviation of the number of sample points was below 4%. This 
means that we will not need time discretization for typical applications such as rendering ani-
mated humans, animals or machinery as their surface area usually does not change significantly 
over time. We have also measured the preprocessing time. As sample point generation is the most 
expensive preprocessing step in static sampling, the preprocessing time grows approximately 
linearly with the number of time intervals employed. The storage overhead is fairly small (a few 
percent only). In our implementation, it is dominated by storage costs for point attributes, hierar-
chy nodes and the original scene graph. 

        
 5 ××××    10 ××××  20 ××××  50 ××××  100 ××××  250 ××××  500 ××××  1000 ×××× 

1 sec. 3 sec. 4 sec. 8 sec. 16 sec. 40 sec. 80 sec. 159 sec. 

Figure 98: Convergence of the prefiltering algorithm for an increasing oversampling factor. The image 
shows a portion of a large chess board consisting of a grid of black and white squares with a side length 

below the pixel level. The images have been rendered by reconstruction from an approximating point cloud 
using a Gaussian reconstruction kernel (using the raytracing technique described in Chapter 6). The first 

row shows the results (please note that the regular structure of the noise artifacts reflects the instantiation 
grid). The second row contains the oversampling factors; the third row gives the required preprocessing 

time. 
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7.2.2.6 Raytracing 

We have implemented a point-based multi-resolution raytracer based on the static sampling data 
structure with prefiltered sample points. The most important preprocessing parameter is again 
the spatial approximation accuracy. In the case of general raytracing, we cannot specify an ap-
proximation accuracy ε  as this depends on the ray density and its variation due to light propaga-
tion. Therefore, we plot the (following) measured running times as depending on the number k of 
points per box side length. 

For point-based raytracing, two effects affect the trade-off for the rendering time: First, we 
obtain a better adaptation to the ray density if we use smaller point clouds in each node. Second, 
the hierarchy is also used as acceleration data structure for the ray queries. This means that we 
also have to test more points probably not intersecting a ray if we increase the number of points 
in each octree box. We expect that the second effect affects the rendering time severely, shifting 
the optimal rendering time closer to a very small number of sampling points per octree box. 

Figure 99 shows the measured rendering time for the near view of our test scene (Figure 
79a). As expected, the optimal rendering time is achieved for a small number k of points per box 
side length, in our case for k = 2. We have repeated the measurements with different maximum 
numbers of triangles in the leaf nodes of the octree (this is the termination criterion for the recur-
sive construction). For a larger number of triangles, the performance drops slightly, but, overall, 
the parameter has only a limited effect on the running time. Figure 100 shows the composition of 
the rendering costs, i.e. the number of points, triangles and octree nodes that have been tested for 
intersection. Again, the number of triangles and boxes increases for smaller k while the number 
of tested points increases with a larger k. As expected, the increase is much stronger than in the 
forward mapping case because we have to test all points in a box for intersection if it is inter-
sected. 

  

Figure 99: Rendering time for point-based multi-
resolution raytracing (scene depicted in Figure 79a, 
near view) for a varying number of points per octree 

node and different numbers of triangles in leaf 
nodes. An optimal rendering time is achieved for 

k = 2 points per box side length. The number of leaf 
node triangles has only a weak effect on the render-

ing time. 

Figure 100: The number of points, triangles and 
boxes that have been tested for intersection by the 
point-based multi-resolution raytracing algorithm, 
in dependence of the number of points per octree 
box side length. Please note that the number of 

points is scaled differently (right caption) from the 
number of boxes and triangles (left caption). 
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7.3 Comparing Forward Mapping Techniques 
After determining suitable parameter sets for using our algorithms and data structures, we com-
pare the performance and image quality of our different rendering approaches. In this section, we 
compare different forward-mapping rendering techniques. 

7.3.1 Performance 
We can choose between several variants of sampling data structures: Dynamic sampling and 
static sampling. Dynamic sampling can be speed up using sample caching, static sampling can be 
implemented with hierarchically nested sample sets or full resampling at each level. In this sec-
tion, we examine the consequences of different strategies concerning the rendering performance. 
We use the different data structures to render our benchmark scene (Figure 79) and compare the 
resulting performance. 

7.3.1.1 Comparing Dynamic and Static Sampling 

First, we compare the performance of dynamic and static sampling for our test scene (Figure 79, 
near view). Table 5 - Table 7 summarize the results. Employing optimized rendering parameters, 
dynamic sampling of a near view of our example scene takes 5.7 seconds. Static sampling (k = 48 
points/box side length, neighborhood-based stratification) displays the same image within 
279/88ms (OpenGL/DirectX renderer). In order to enhance the performance of dynamic sampling, 
we can employ sample caching. Instead of performing a full resampling for each image, sample 
sets are cached (being stored in an OpenGL display list) and reused for subsequent frames. This 
approach is able to provide a considerable speedup: Once the sample sets are cached, rendering 
can be performed in 517ms (using rendering parameters optimized for rendering form caches). 
Performing grid stratification by quantization on-the-fly, we can reduce the rendering time fur-
ther to 390ms. Neglecting the implementation specifics of using different rendering APIs, this is 
roughly comparable to static rendering. This result has been expected, as cached dynamic sam-

 

  
(a) replicated trees (b) Happy Buddha  

Figure 101: Speeding up dynamic sampling for 
walkthrough animations using sample caching. 

For moderate walking speed, the rendering 
time comes close to static sampling. 

Figure 102: Test scenes for measuring 
 stratification efficiency. 
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pling uses a similar data structure for rendering as static sampling. The numbers of sample 
points and triangles used for stratified rendering are comparable in both cases. 

However, rendering from precomputed caches is not realistic for typical applications. Usu-
ally, the caches are created dynamically on demand during a walkthrough of the scene. In such a 
situation, the rendering performance can vary between full resampling and rendering from cache. 
To examine the performance for a typical case, we have recorded a camera path with typical walk-
ing speed and recorded the resulting rendering speeds. Figure 101 shows the results: In contrast 
to precomputed caching, dynamic caching leads to a varying frame rate. The average rendering 
time is increased to 0.731 seconds for random sample caches and 0.759 seconds for quantized 
caching. This is 1.5-2 times slower than precomputed caches but still 8 times faster than a full 
resampling at every frame. Interestingly, our implementation of quantized caching is slightly 
slower than random sample sets on the average due to higher processing costs (the sample cache 
uses quantization by successive bucket-sorting in all three-dimensions, which is general but fairly 
expensive, see Section 4.2.3.3). Of course, in general, the outcome depends on the walking speed, 
scene characteristics and on implementation details of the quantization algorithm. 

The static sampling algorithm renders the camera path with 261ms (OpenGL) and 90ms 
(DirectX), respectively, with near-constant framerates. Therefore, in conclusion, the static sam-
pling strategy is superior concerning rendering performance. Using a comparable rendering API, 
it is typically about 2 times faster. The only performance advantage of dynamic sampling is the 
small precomputation time (8 seconds in comparison to several minutes, see Section 7.2.2.2). 

7.3.1.2 Stratification 

Using static sampling, we have the choice of different stratification techniques that also affect 
performance. In order to examine the influence, we apply the four main techniques (purely ran-
dom sampling, grid stratification, quantized grid stratification, neighborhood-based point re-
moval) to two example scenes (Figure 102) and compare the resulting number of primitives. The 
first example scene is the replicated-trees scene from the previous sections. The second is a 
smooth mesh, the well known Stanford “Happy Buddha” mesh ([Stanford 2004], data taken from 
[Garland 2003]). The resulting preprocessing and rendering costs are summarized in Table 8 and 
Table 9. 

Random sampling: According to Section 5.3.1.1, the expected value for covering all pixels 

 full resampling caching quantized caching precomp. quant. cache

near view 5.725 sec 0.517 sec 0.390 sec – 

fly over (average) 5.598 sec 0.731 sec 0.759 sec 0.357 sec 

Table 5: Performance of dynamic sampling for our test scene (Figure 79). 

 OpenGL (std. vertex arrays) DirectX (managed vert. buffers) 

near view 0.279 sec 0.088 sec 

fly over (average) 0.261 sec 0.090 sec 

Table 6: Performance of static sampling. 

 dynamic random cached random cached quantized static sampling 

rendered points 4,170,910 4,670,691 1,979,219 2,019,438 

rendered triangles 367,116 367,116 367,116 374,732 

Table 7: Rendering primitives used for display. 
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of the image by random sampling is ln a. For our benchmarks, this means that we need an over-
sampling factor of about ln (640 × 480) ≈ 12 (due to the logarithmic behavior, the exact value of a 
is of minor importance). Oversampling means that we first divide the surface area within an oc-
tree box by the size of an unprojected pixel and count the number of resulting “pixels”. Then, we 
multiply this value by the oversampling factor to determine the necessary number of random 
points. Using this oversampling factor, the example scenes need 13M (trees) / 630K (Buddha) 
points for display. Alternatively, we have also tried different oversampling factors and examined 
the resulting images manually. Especially for the smooth mesh model, holes and missing pixels 
are easily visible. Using this approach, we have determined oversampling factor of 8 leading to an 
acceptable image quality (for the mesh model). At this sampling density, only a few single pixel-
sized holes become visible for certain viewpoints. This reduces the size of the sample set by one 
third39. For the forthcoming examples using post-processing of a random sample set for further 
stratification, we have used an oversampling factor of 20, providing sufficiently save coverage at 
moderate costs. 

Grid stratification: Applying simple grid stratification (i.e. deleting all points except one 
in a regular grid) to a high density random sample set (oversampling factor 20), we obtain sample 
sets of similar size than reduced random sampling (with oversampling factor 8). However, this 
technique provides safe coverage with much higher probability. (If we apply grid stratification to 
the smaller random sample set, we still obtain a reduction of the sample size to about 70% of the 
original size). Quantized grid stratification is more efficient. It allows a reduction of the sample 
size to less than 30% of the random sample set. Additionally, the quantized grid stratification 
technique is the most efficient technique. It needs only slightly more computation time than the 
random sampling itself. 
                                                      
39 We have used a similarly reduced sampling density for the dynamic (random) sampling examples, too. 

“Replicated Trees” random-12 random-8 grid-20 grid-8 quant. grid neigh. rem. 

  oversampling 12 8 20 8 20 20 

  prepr. size [MB] 110 75 79 49 41 21

  prepr. time [sec] 20 16 150 140 36 125

  rendering points 13,365,786 8,910,580 9,675,980 5,875,439 3,923,541 1,713,152

  reduction [%] 100,0% 66.7% 72.4% 44.0% 29.4% 12.8%

  rendering triangles 188,811 188,811 188,811 188,811 188,811 188,811

  rendering time [sec] 2.480 1.675 1.813 1.142 0.770 0.425

Table 8: Efficiency of different stratification techniques (scene: replicated trees, 8 ×××× 8, 2 instantiation layers, 
near view). The rendering times have been determined using unoptimized OpenGL immediate mode render-

ing (cf. Table 4). 

“Happy Buddha” random-12 random-8 grid-20 grid-8 quant. grid neigh. rem. 

  oversampling 12 8 20 8 20 20 

  prepr. size [MB] 226 187 190 171 144 129

  prepr. time [sec] 39 35 79 76 40 143

  rendering points 630,106 419,468 443,763 334,965 181,806 96,549

  reduction [%] 100.0% 66.6% 70.4% 53.2% 28.9% 15.3%

  rendering triangles 0 0 0 0 0 0

  rendering time [sec] 0.117 0,076 0.080 0,061 0.034 0.022

Table 9: Efficiency of different stratification techniques (scene: “Happy-Buddha” mesh). The rendering times 
have been determined using unoptimized OpenGL immediate mode rendering (cf. Table 4). 
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Neighborhood-based point removal: The neighborhood-based point removal strategy is 
more expensive in terms of precomputation time (about 4 times slower than quantized grid strati-
fication, both including the initial random sampling). However, it yields the best results: The re-
sulting sample sets contain only 13-15% of the number of sample points of the random sampling 
technique, still guaranteeing the same sample spacing. 

7.3.1.3 Nested Sampling and Full Sampling 

The static sampling data structure can be implemented in two variants: Full sampling and nested 
sampling. The first variant (used so far) stores a new sample set at each hierarchy level. The sec-
ond propagates subsets of higher density sample sets to parent nodes in order to create lower 
density sample sets. Comparing the number of sample points within the hierarchy (employing 
grid stratification), the full sampling data structure uses 1.6 (the 4 trees from the replicated trees 
scene) to 2.1 (Buddha) times more sample points than nested sampling. Hence, nested sampling 
can save some memory if prefiltering is not needed (which does not work for nested sampling). 
However, in comparison with current point cloud compression techniques [Botsch et al. 2002], the 
savings in practice are moderate. Thus, the technique is more of theoretical interest: it allows the 
usage of a deterministic rendering algorithm with a precomputed data structure using optimal 
(i.e. linear) asymptotic memory demands. 

7.3.2 Image Reconstruction 
After examining the performance implications of the different rendering techniques, we now take 
a look at the image quality obtained using different rendering techniques. We have combined 
different sampling and reconstruction techniques described previously. The resulting set of ren-
dering techniques has been applied to a set of benchmark scenes. Please note that the implemen-
tation used in this section has not been optimized specifically for rendering performance 
(rendering has been mostly done in OpenGL immediate mode) as this is not the topic of this ex-
periment. Though, timings are given for the example scenes to give an impression of the relative 
performance. Examples with maximum rendering performance are discussed in Section 7.3.3. The 
following rendering techniques have been used in the forthcoming comparison: dynamic random 
sampling is combined with per-pixel reconstruction, averaging, and Gaussian reconstruction. 
Static sampling is used with and without prefiltering, both with per-pixel reconstruction. Addi-
tionally, screen space oversampling and alpha blending are considered to improve the image qual-
ity. For a comparison, we have also included images rendered with point-based multi-resolution 
raytracing and a reference solution rendered with adaptive distribution raytracing. We have ap-
plied the techniques to 4 example scenes: Figure 103 shows the rendering results for a forest 
scene consisting of 65536 trees (6.1 billion triangles), seen from far apart. This scene demon-
strates noise and aliasing problems as well as overestimation of subpixel occlusion. A closer view 
of the same scene is shown in Figure 104. Figure 105 shows a landscape scene consisting of a 
fractal heightfield and several instances of tree models, similar to the previous scene (400 million 
triangles). This scene demonstrates the consequences for a more realistic scene (especially con-
cerning overestimation of occlusion and prefiltering artifacts). Figure 106 shows the results for 
the (classic) chess board benchmark. This scene reveals aliasing artifacts more clearly than the 
previous models. Lastly, Figure 107 shows a city scene consisting of a large collection of simple 
building, car and street models (leading to a scene complexity of 1.9 billion triangles). The scene 
reveals aliasing problems as well as the behavior for complex occlusion effects. 
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The rendering techniques use different shading models, leading to some variation in the 
output: The forward mapping algorithms use precomputed diffuse lighting. Due to a slightly dif-
ferent implementation, the scenes computed with dynamic sampling appear a bit brighter. To 
compensate for this effect, we have increased the contrast in the static sampling images in Figure 
105 and Figure 107. The raytracing algorithms use a Phong lighting model, again showing some 
color differences. Besides this implementation specific issues, some general effects can be ob-
served. In the following, we will discuss the observations for the different techniques: 

 

   

(a) dynamic random sampling, 
per pixel reconstruction 
(3.9 sec., 0.44 sec. cached) 

(b) image (a), average over 10 
independent renderings 

(44 sec.) 

(c) dynamic random sampling, 
Gaussian reconstruction 

(81 sec.) 

   

(d) static sampling, quantized 
grid stratification, no prefilter-

ing, per pixel reconstruction 
(0.20 sec.) 

(e) static sampling, quantized 
grid stratification, prefiltering, 

per pixel reconstruction 
(0.37 sec.) 

(f) static sampling, quantized grid 
stratification, no prefiltering, 

3 ×××× 3 supersampling 
(1.3 sec., without rescaling) 

   

(g) static sampling, quantized 
grid stratification, prefiltering, 
Gaussian splats / alpha blending 

with area weight heuristic 
(0.91 sec.) 

(h) static sampling, quantized 
grid stratification, prefiltering, 

point-based multi-resolution 
raytracing, 4 ×××× 4 subpixel masks 

(396 sec.) 

(i) reference image: 
distributed raytracing 

(850 sec.) 

Figure 103: Image quality / antialiasing comparison for different image reconstruction techniques (640 ×××× 480 
pixels). Scene: replicated trees, far view (16 ×××× 16, 2 hierarchy layers, cf. Figure 79) 
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Per-pixel reconstruction, no prefiltering: We have used this reconstruction technique 
with dynamic (images with letter (a)) and static (images (d)) sampling. Dynamic sampling uses 
random sample sets; the static technique uses a quantized version of a random candidate set. No 
prefiltering is performed. 

The rendering technique leads to noise and aliasing artifacts for two reasons: First, the 
random selection of sample points creates noise. Second, the display on screen creates aliasing. 
Two effects are relevant: The oversampling factor leads to a depth dominance effect, i.e. only the 

   

(a) dynamic random sampling, 
per pixel reconstruction 
(8.3 sec., 1.0 sec. cached) 

(b) image (a), average over 10 
independent renderings 

(44 sec.) 

(c) dynamic random sampling, 
Gaussian reconstruction 

(81 sec.) 

   

(d) static sampling, quantized 
grid stratification, no prefilter-

ing, per pixel reconstruction 
(0.20 sec.) 

(e) static sampling, quantized 
grid stratification, prefiltering, 

per pixel reconstruction 
(0.37 sec.) 

(f) static sampling, quantized grid 
stratification, no prefiltering, 

3 ×××× 3 supersampling 
(1.3 sec., without rescaling) 

   

(g) static sampling, quantized 
grid stratification, prefiltering, 
Gaussian splats / alpha blending 

with area weight heuristic 
(0.91 sec.) 

(h) static sampling, quantized 
grid stratification, prefiltering, 

point-based multi-resolution 
raytracing, 4 ×××× 4 subpixel masks 

(396 sec.) 

(i) reference image: 
distributed raytracing 

(850 sec.) 

Figure 104: Image quality / antialiasing comparison for different image reconstruction techniques (640 ×××× 480 
pixels). Scene: replicated trees, near view (16 ×××× 16, 2 hierarchy layers, cf. Figure 79) 
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foremost pixel is selected by the underlying z-buffer process, creating structured aliasing pattern. 
Second, the quantization to a pixel grid itself also creates aliasing, as no prefiltering is performed. 

The effects can be seen nicely in the chess board example scene (Figure 106). The noise arti-
facts are visible in the other scenes, too (whereas structured aliasing is not as noticeable due to 
the irregular scene structure). A closer look at Figure 103d also reveals an additional property of 
static sampling: The noise patterns are repeated in different regions of the scene, according to the 
instantiation pattern. This does not occur for dynamic sampling. Additionally, the transitions 

   

(a) dynamic random sampling, 
per pixel reconstruction 
(3,9 sec., 0.8 sec. cached) 

(b) image (a), average over 10 
independent renderings 

(28 sec.) 

(c) image (a), average over 100 
independent renderings 

(340 sec.) 

   

(d) static sampling, quantized 
grid stratification, no prefilter-

ing, per pixel reconstruction 
(1.5 sec.) 

(e) static sampling, quantized 
grid stratification, prefiltering, 

per pixel reconstruction 
(0.71 sec.) 

(f) static sampling, quantized grid 
stratification, no prefiltering, 

3 ×××× 3 supersampling 
(6.8 sec., without rescaling) 

   

(g) static sampling, quantized 
grid stratification, prefiltering, 
Gaussian splats / alpha blending 

with area weight heuristic 
(1.7 sec.) 

(h) static sampling, quantized 
grid stratification, prefiltering, 

point-based multi-resolution 
raytracing, 4 ×××× 4 subpixel masks 
(missing color interpolation for 

the terrain, 215 sec.) 

(i) reference image: 
distributed raytracing 

(missing color interpolation 
for the terrain model, 760 sec.) 

Figure 105: Image quality / antialiasing comparison for different image reconstruction techniques (640 ×××× 480 
pixels). Scene: replicated trees, near view (16 ×××× 16, 2 hierarchy layers, cf. Figure 79) 
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between different hierarchy levels are clearly visible, as we do not perform an interpolation be-
tween different hierarchy levels for this rendering technique. 

Averaging: To overcome the problem of noise artifacts, we have the option to increase the 
sampling density and compute an average color for every pixel. The simplest implementation is 
averaging with dynamic sampling: For the rendering examples (images (b)), we have computed 10 
images independently and computed the average image using the OpenGL accumulation buffer. 
This already leads to a considerable noise reduction, but still some noise artifacts are still visible. 
This is especially a problem for animations. For a higher rendering quality, more sample images 

   

(a) dynamic random sampling, 
per pixel reconstruction 
(36 sec., 0.56 sec. cached) 

(b) image (a), average over 10 
independent renderings 

(184 sec.) 

(c) dynamic random sampling, 
Gaussian reconstruction 

(113 sec.) 

   

(d) static sampling, quantized 
grid stratification, no prefilter-

ing, per pixel reconstruction 
(0.59 sec.) 

(e) static sampling, quantized 
grid stratification, prefiltering, 

per pixel reconstruction 
(1.2 sec.) 

(f) static sampling, quantized grid 
stratification, no prefiltering, 

3 ×××× 3 supersampling 
(3.2 sec., without rescaling) 

   

(g) static sampling, quantized 
grid stratification, prefiltering, 
Gaussian splats / alpha blending 

with area weight heuristic 
(2.9 sec.) 

(h) static sampling, quantized 
grid stratification, prefiltering, 

point-based multi-resolution 
raytracing, no subpixel masks 

(470 sec.) 

(i) reference image: 
distributed raytracing 

(1170 sec.) 

Figure 106: Image quality / antialiasing comparison for different image reconstruction techniques(640 ×××× 480 
pixels). Scene: chess board with 8 ×××× 8 black and white quads, replicated on two instantiation layers of 16 ××××16 

instances each.
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are needed: Figure 105c shows an image created by averaging 100 images, leading to an improved 
quality in comparison with Figure 105b. Even in conjunction with random sampling, averaging 
does not avoid aliasing artifacts. The phenomenon of depth dominance in conjunction with the 
simple box filter (which averaging corresponds to) can still create considerable structured aliasing 
artifacts.  

This is clearly visible in the chess board example (Figure 106). For scenes structured less 
regularly, structured aliasing artifacts pose only a minor problem but they are still visible. This 

   

(a) dynamic random sampling, 
per pixel reconstruction 
(4.3 sec., 0,20 sec. cached) 

(b) image (a), average over 10 
independent renderings 

(49 sec.) 

(c) dynamic random sampling, 
Gaussian reconstruction 

(85 sec.) 

   

(d) static sampling, quantized 
grid stratification, no prefilter-

ing, per pixel reconstruction 
(1.1 sec.) 

(e) static sampling, quantized 
grid stratification, prefiltering, 

per pixel reconstruction 
(0.9 sec.) 

(f) static sampling, quantized grid 
stratification, no prefiltering, 

3 ×××× 3 supersampling 
(3.0 sec., without rescaling) 

   

(g) static sampling, quantized 
grid stratification, prefiltering, 
Gaussian splats / alpha blending 

with area weight heuristic 
(2.5 sec.) 

(h) static sampling, quantized 
grid stratification, prefiltering, 

point-based multi-resolution 
raytracing, 4 ×××× 4 subpixel masks, 

no mipmapping (887 sec.) 

(i) reference image: 
distributed raytracing 

(996 sec.) 

Figure 107: Image quality / antialiasing comparison for different image reconstruction techniques (640 ×××× 480 
pixels). Scene: a city scene consisting of 192,431 triangles, replicated on two instantiation layers of 10 ××××10 

instances each.
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can be seen for example in the far view of the tree scene (Figure 103), especially in comparison 
with better reconstruction techniques as used in image (c). 

The idea of averaging can also be used with static sampling. However, here it is not possible 
to create a temporal sequence of independent images. Instead, we have to create a larger number 
of sample points by increasing the resolution, i.e. performing a deeper traversal of the point hier-
archy. The simplest implementation is supersampling: We compute an image at a higher resolu-
tion and perform downsampling using a suitable lowpass filter later on. The images with letter (f) 
show the results for 3 × 3 oversampling. In this case, downsampling was done using image proc-
essing software and is not accounted for in the reported rendering time: Again, noise and aliasing 
artifacts are reduced. For unstructured scenes, less aliasing artifacts are observed than for simple 
averaging because the image processing software uses a better downsampling filter than a simple 
box filter. Additionally, occlusion is resolved at a higher resolution due to the supersampling ap-
proach. Nonetheless, critical scenes such as depicted in Figure 106 still cause aliasing artifacts 
due to depth dominance and the simple oversampling grid (see also Figure 107f). 

Gaussian reconstruction: In order to avoid the remaining aliasing problems, we need an 
image reconstruction technique that does not rely on quantization grids. The images with letter 
(c) show results of the Gaussian reconstruction technique described in Section 5.3.2.5. For each 
pixel, neighboring pixels are deleted if they are farer away (after subtracting a constant depth 
tolerance value in projective z-coordinates). Additionally, backface culling is used to avoid arti-
facts at silhouettes. A weighted average using a Gaussian filter is then computed for the visible 
pixels. The resulting images show very little aliasing artifacts. Some noise artifacts are still pre-
sent as we have used only a moderately sized sample size (corresponding to approx. 5 times over-
sampling). The implementation is fairly slow (it has been implemented using OpenGL 
framebuffer readbacks on a high resolution version of the rendering). Therefore, the resulting 
rendering times give only a rough indicate of the necessary effort. The simple depth tolerance 
heuristic for merging adjacent points is not always applicable: For the landscape scene in Figure 
105, no single tolerance interval could be determined that resolves local occlusion correctly. Thus, 
no image has been included. In contrast, the improved depth interval heuristic (Section 6.2.6) 
employed in the backward mapping renderer works well in all example scenes (see below). 

Prefiltering: In order to avoid aliasing artifacts in static sampling, we have the option to 
perform prefiltering: Point attributes are computed by suitably averaging over the local 
neighborhood. We have implemented this technique for color attributes: Diffuse lighting is pre-
computed and the resulting color is used to build the hierarchy, prefiltered using a Gaussian filter 
kernel. The results (in conjunction with simple per-pixel reconstruction) are shown in the images 
(e): Prefiltering effectively removes noise and aliasing artifacts for strongly minified regions. 
However, for regions where the frequency of the image details is in the range of the pixel fre-
quency, we still obtain aliasing due to the simple per-pixel reconstruction. Prefiltering also has 
some drawbacks: If complex geometry is substituted with a constant parameter set, inevitable 
errors are introduced. The usage of a fixed prefiltering algorithm (especially the usage of a simple 
averaging scheme, as done here) can easily lead to a systematic bias. The problem can be seen for 
example by comparing images (d) and (e) (static sampling with and without prefiltering) in Figure 
104 and Figure 105: The leafs the small branches of the trees have varying color, especially due to 
the darker back sides. Thus, the average is too dark. The problem becomes especially visible in 
comparison with the foremost trees in the images, which have been (automatically) rendered us-
ing z-buffer rendering. For pure point samples (no prefiltering), this problem is not as critical. We 
still cannot resolve subpixel occlusions with guaranteed precision. However, it is easier to recon-
struct believable images. Leakage of back sides can for example be avoided by applying backface 
culling based on the normals of the sample points (this has been done in images (a)-(c)). 
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Splatting with alpha blending: An alternative to reconstruction by weighted averaging 
of visible sample points is the alpha-blending technique proposed by different authors 
[Rusinkiewicz and Levoy 2000, Coconu et al. 2002]. Splats with a unit Gaussian in the alpha 
channel are drawn in back to front order. Additionally, we multiply the alpha values (during pre-
filtering) with estimated opacity values derived from the area-based weight heuristic described in 
Section 4.2.4.4: The transparency is estimated by the ratio of the local area around a sample point 
and the minimum area needed for completely covering a pixel. This approach is combined with 
prefiltering of color attributes. Additionally, attributes and opacities are interpolated between two 
adjacent hierarchy levels. The results are shown in images (g). For distinguishable, complex oc-
clusion effects (Figure 103, forest far view) the reconstruction quality of alpha blending is better 
than simple splatting and even slightly better than Gaussian reconstruction, which overestimates 
the opacity more strongly. This is due to the area-based opacity heuristic. For the reconstruction 
of regularly structured continuous surfaces, alpha blending does not provide significant advan-
tages. As expected, alpha blending fails to reconstruct the local surface attributes faithfully for 
the chess board scene Figure 106g. The foremost sample points on each pixel are dominant, creat-
ing again aliasing artifacts. The artifacts are comparable to those obtained by simple splatting. 

Point-based multi-resolution raytracing: Better antialiasing properties can be 
achieved using surface splatting [Zwicker et al. 2001a]. We use a modified variant of surface 
splatting for the point-based multi-resolution raytracer described in Chapter 6. A more detailed 
evaluation will be given in the next subsection. However, we include some examples here for a 
comparison (images (h)). The example renderings use primary rays only. Thus, the same images 
could also have been created using a forward mapping algorithm based on an a-buffer implemen-
tation [Zwicker et al. 2001a], which would be substantially faster. In general, the compositing 
strategy of the multi-resolution raytracing approach yields the best image quality in our compari-
son. The technique does not show strong prefiltering artifacts for our test scenes because it uses 
average surface properties (normal, curvature, material properties) rather than average precom-
puted colors. For strongly varying properties (e.g. a set of leafs of a tree collapsed into a single 
sample point), this is also only a crude approximation but the artifacts do not become similarly 
apparent: We obtain a somehow random shading instead of darkened colors which represents the 
features in the test scenes more faithfully. Structured aliasing artifacts are avoided, even in prob-
lematic scenes (see Figure 106h). Lastly, it should be noted that two different reconstruction 
techniques have been applied: For the forest scene (Figure 103), the depth tolerance region has 
been set to zero, effectively performing compositing by subpixel masks only (no surface merging). 
The other scenes have been rendered using merging of adjacent point and triangle intersection 
events. Non-merging compositing yields better results for complex, irregularly structured occlu-
sion. However, the current implementation does not yet allow interpolation between adjacent 
hierarchy levels for non-merging compositing, leading to visible borders in Figure 103h. Using 
linear interpolation, such artifacts are avoided (Figure 106h). More details on point-based multi-
resolution raytracing will be discussed in the next Section (7.5). 

Reference Images: The last set of images (letter (i)) show reference solutions (rendered 
using the same shading parameters as images (h)). They have been created using distributed 
raytracing with high oversampling. Except for noise artifacts, this technique creates images that 
could be considered “correct” solutions to the rendering problem. The most apparent difference to 
all point-based multi-resolution rendering results is the reproduction of subpixel occlusion: Espe-
cially for the landscape scenes, the branches and leafs are much more transparent in the refer-
ence solution than in the multi-resolution renderings. Alpha blending reconstruction with area-
based opacity estimates creates the least opacity overestimation of all examined techniques. 
Though, it still creates a strong overestimation in comparison to the reference images. Apart from 
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this issue, the different point-based multi-resolution renderings (especially using Gaussian recon-
struction or raytracing) already come close to the reference solution. 

7.3.3 Comparison with Conventional Rendering Techniques 
In this subsection, we compare rendering time and quality of point-based forward mapping with 
conventional z-buffering (no multi-resolution) and raytracing techniques. In practice, simple z-
buffer rendering is still the predominant technique in interactive computer graphics. Raytracing 
(using spatial hierarchies) is an output-sensitive technique, thus being often used to handle com-
plex scenes in offline applications. 

As examples, we have picked three scenes from the image quality test section (7.3.2): the 
replicated trees scene, the mountain sea scene, and the city scene (Figure 108). Again, contrast 

point sample rendering conventional  z-buffer rendering raytracing (primary rays) 
 

   

left: per pixel rec., 9.3 fps 
right: prefiltered, 5.5 fps  

z-buffer rendering: 1h 18min 
(1/64 of the scene only) 

raytracing: 22.4 sec 

   

per pixel rec.: 3.8fps z-buffer rendering: 224 sec raytracing: 18.5 sec 

   

per pixel rec.: 9.7 fps z-buffer rendering: 821 sec raytracing: 30.6 sec 

Figure 108: Visualization of complex scenes – comparing image quality and rendering performance 
to conventional z-buffering and raytracing (640 ×××× 480 pixels). 
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and brightness have been adjusted to compensate for the effect of slightly different shading algo-
rithms. The replicated trees scene has been extended, now containing 4.2 million instances. This 
yields 390 billion triangles. Using the DirectX splatting renderer, drawing one pixel sized opaque 
splats, we can render the scene at 5-9 frames per second. A z-buffer rasterization of the foremost 
1/64 of the scene already needs more than an hour (using OpenGL display lists). For the full 
scene, we would expect more than 11 hours of rendering time, even if the full throughput of 30 
million vertices per second could be reached (the display lists renderer is slower). Raytracing is 
much more efficient. Using our simple implementation (see Section 7.5), an image can be com-
puted in 22 seconds. Of course, our raytracing implementation has not been optimized and is far 
from reaching the performance of implementations such as [Wald et al. 2001]. Nevertheless, there 
are more than two orders of magnitude between raytracing and point-based rendering; and point-
based rendering also leaves still some room for improvement40. 

For the other two example scenes we obtain similar results: Point-based rendering runs at 
real-time framerates while z-buffer rendering is very expensive. Raytracing achieves reasonable 
run times, but still being roughly two orders of magnitude slower than point-based multi-
resolution rendering. Concerning image quality, we observe again an overestimation of silhouette 
opacity of the point-based technique. Raytracing and z-buffer rendering show strong aliasing arti-
facts, demanding for additional supersampling to remove these artifacts. By using prefiltered 
point attributes, these problems are reduced for the point-based approach. For fully antialiased 
rendering, screen-space filtering would have to be used. Currently, no sufficiently efficient im-
plementation is available within our system (see last section). However, this is no general prob-
lem; the corresponding techniques have already been discussed in literature [Ren et al. 2002, 
Botsch et al. 2002]. 

7.4 Animated Scenes 
The point-based multi-resolution data structure proposed in this thesis allows efficient rendering 
of complex keyframe animations. In order to employ the technique, a set of keyframe transitions 
has to be specified and corresponding point hierarchies are precomputed. This is possible for both 
animated triangle meshes and for instances of such models already providing a local point hierar-
chy. Within a precomputed hierarchy, motion has to be fixed in advance, only a set of keyframe 
transitions is possible. This includes precomputed hierarchies of instances. However, each top 
level instance (not being included in another hierarchy), can be instantiated freely, e.g. using 
geometric transformations or varying local time. Thus, we have to deal with two aspects in appli-
cations of the technique: First, we have to identify object groups and keyframes for which a multi-
resolution hierarchy is precomputed. It is possible that these groups are also composed of in-
stances of lower level hierarchies, especially if the model is fairly complex. Second, we have to 
design an algorithm for global control, i.e. for the dynamic instantiation of root level instances. 
The rendering of each point hierarchy itself is output-sensitive; the rendering time depends 
(mostly) on the projected area, not on the geometric complexity. If we place multiple instances in 
a scene, e.g. for a dynamic crowd simulation, the rendering time will be always at least linear in 
the number of root instances used. This still allows for a considerable scene complexity, but not 
for the virtually unlimited complexity that is possible within the precomputed instances. 

                                                      
40 Probably not as much as the raytracing renderer. However, our implementation achieves only a throughput of 31 mil-
lion points per second for this scene. The latest graphics hardware announced promises more than 300 million vertices per 
second [nVidia 2004b]. 
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In order to demonstrate the different aspects and to show the achievable performance, we 
will consider two different types of application examples: The first uses hierarchical instantiation 
only. The second uses dynamic placement of instances in order to create a dynamic crowd simula-
tion. The preprocessing costs for all example scenes are summarized in Table 10. 

7.4.1.1 Static Hierarchical Instantiation 

The first example shows a crowd of walking humans, modeled using the Poser animation package 
[Curious Labs 2001]. Each of the four models consists of 6400 triangles and 9 keyframes. The 
scene consists of 3 layers of 10 × 10 instances, leading to 1 million instances. Overall, 6.4 billion 
triangles are encoded. Precomputation took 628 seconds, creating a precomputed data structure 
of 153 MB. The rendering results are shown in Figure 109: Using the DirectX implementation 
(using k = 64 points per octree box side), we can render an overview of the scene at about 8 frames 
per second, corresponding to a vertex throughput of about 24 million vertices per second. This is 
about 70% of the measured maximum performance of the graphics hardware (see Table 4). Ren-
dering is done using 1-pixel sized opaque splats and prefiltered color attributes. As a result, alias-
ing and noise artifacts are reduced but not avoided completely. The transition between different 
resolution levels is also visible, as no interpolation between adjacent hierarchy levels is performed 
(see e.g. the darker area near the horizon in Figure 109a). As the implementation is mostly ge-
ometry limited, not fill-rate limited, we can activate hardware supersampling at small costs (10% 
less performance). The images in Figure 109 have been rendered using 4× supersampling, remov-
ing staircasing artifacts from the triangles rendered in the near field. 

  
(a) far view (2.6M points, 0.30M triangles, 6500 

nodes, 8.5/7.7fps w./w.o. supersampling) 
(b) near view (2.6M points, 0.35Mtriangles, 6753 

8.0/7.6fps w.o./w. supersampling) 

Figure 109: A crowd of one million walking humans modeled using hierarchical instantiation. Rendering 
using per-pixel reconstruction and prefiltered point attributes (DirectX renderer), 640 ×××× 480 pixel, 4×××× hard-

ware oversampling. The framerates are averages over one animation period. 

 walking crowd football stadium landscape with horses 

scene complexity 6.4 billion triangles 105 million triangles 42 million triangles  

base models 6400 triangles 6400 triangles 18K / 96K triangles 

instances 1000 × 1000 (3 layers) 16416 (2 layers) 1292 / 194 (dynamic control) 

keyframes 9 9 15 

preproc. time [sec] 628 sec. 1631 sec. 405 sec. 

memory [MB] 153 MB 273 MB 166 MB 

Table 10: Complexity and preprocessing costs for the benchmark scenes 
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A large crowd of uniformly walking human models is a rather artificial example. As more 
realistic application example, we have modeled a football stadium with animated football fans. 
Such a scene could e.g. serve as background in a computer sports game. The scene consists of 
16,416 football fans (again modeled using Poser) with 6,400 triangles each. Neglecting the few 
triangles of the stadium model, we obtain 105 million encoded triangles. Again, we render the 
scene using sample points with prefiltered color attributes and per-pixel reconstruction. The re-
sulting animation can be rendered at frame rates of about 6-20 frames per second, depending on 
the viewpoint. The framerates are near to constant over the complete time interval of the anima-
tion. 

7.4.1.2 Dynamic Instantiation 

A more complex crowd animation can be modeled using dynamic instantiation. Typical applica-
tions are herds of animals or large crowds of people with a dynamic behavior. Renderings of algo-
rithmically simulated crowd dynamics have recently appeared in many movie productions. One of 
the first computer generated large scale crowd animation has appeared in the carton movie “The 
Lion king” [Disney 94]: It features a sequence in which a large herd of buffalos runs through a 
narrow valley, which would have been to expensive to animate using traditional hand draw cell 
animation. Later, even feature films such as “The Mummy Returns” [Universal 2001] or the re-
cent “Lord of the Rings” trilogy [New Line 2003] have used computer generated crowd animations 
to depict the behavior of large crowds (in these examples to depict large scale battle scenes). 

  

(a) overview (881K points, 223K triangles, 1224 
nodes, 20.5fps) 

(b) near view (1.7M points, 585K triangles, 3641 
nodes, 9.3fps) 

  

(c) close-up (2.6M points, 884K triangles, 5510 nodes, 
6.0fps) 

(d) view with large relative depth range (2.1M 
points, 681K triangles, 4272 nodes, 8.5fps) 

Figure 110: Football stadium with 16,416 fans. Rendering using per-pixel reconstruction and prefiltered 
point attributes (DirectX renderer), 640 ×××× 480 pixels. The framerates are averages over one animation period. 
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These animations have been computed offline, using sophisticated simulation and render-
ing techniques, aiming at high-quality results. However, similar techniques could also be of inter-
est for interactive applications, such as computer games. The point-based multi-resolution 
rendering technique proposed in this thesis could be a first step to enable the usage of such tech-
niques in real-time applications. In order to examine the potential results and performance, we 
have implemented a simple behavioral simulation for a herd of horses. 

The foundation of most contemporary crowd simulations is the “boids” approach proposed 
by [Reynolds 87]: The behavior of the crowd is computed by assigning local rules to each of its 
members. The entities in the crowd, which are called “boids”, derived from “bird objects”, have 
three aims: First, they try to follow the other boids in their neighborhood. Second, they try to 
avoid collisions with other boids and obstacles. Third, they have a global aim, such as “follow the 
leader” or “reach that mountain”. These three goals define local forces at each object, leading to a 
system of ordinary differential equations that has to be solved numerically. The example anima-
tion depicted in Figure 111 has been created using a simple version of such a “boids” simulator. It 
assigns a small local force field to each boid and each obstacle. Additionally, the gradient of a user 
defined terrain model is considered to penalize climbing of steep hills. To avoid a quadratic run-
time complexity for computing the forces, we use a two-dimensional regular grid with lists of ob-
jects as search data structure to retrieve the local objects quickly. Numerical integration is 
performed using a simple Euler rule [Press et al. 95], which is sufficient for this purpose. 

  

(a) overview (prefiltered, per-pixel reconstruction, 
485K points, 101K triangles, 4.5K nodes, 8.8fps) 

(b) near view (prefiltered, 2 ×××× 2 splatting, 488K 
points, 175K triangles, 5.1K nodes, 8.2fps) 

 

 

(c) close-up (prefiltered, 2 ×××× 2 splatting, 425K points, 
172K triangles, 6.4K nodes, 7.5fps) 

 

Figure 111: Dynamic simulation of a herd of 1292 horses. DirectX renderer, 640 ×××× 480 pixels. The framerates 
are averages over 200 frames, including simulation and rendering. 
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The example scene consists of 1292 horses and 194 tree models serving as obstacles, located 
on top of a fractal landscape. Each horse consists of 18,000 triangles and 15 keyframes, each tree 
adds 96,196 triangles and the landscape mesh consists of 131.072 triangles, leading to 42 million 
triangles overall. All elements are rendered using point-based multi-resolution rendering. 

Figure 111 shows some example screenshots from the animation. The scene can be ren-
dered at average framerates of about 8 frames per second, depending on the viewpoint. Simula-
tion and scene graph traversal take about half of the overall computation time (46%, measured 
for the overview viewpoint). The simulation could probably be optimized, allowing for more in-
stances to be controlled in real-time. Rendering performance is currently limited by two issues: 
First, the hierarchy starts at a resolution of k points per box side length (in our case k = 16 for the 
horses and 48 for the other objects). For instances seen under strong minification, this can lead to 
oversampling even for the root node. The problem can be solved by adding some additional point 
clouds with reduced sampling density to the root node. However, this has not yet been imple-
mented for animated rendering. The second problem is the per-batch rendering overhead (this 
second issue currently even prevents to take advantage of the proposed optimization if it would 
have been implemented). The submission of a set of point or triangle primitives with the same 
transformation causes a considerable base overhead per batch. This overhead is a significant limi-
tation of the number of dynamically placed instances in a complex scene. Note that this is an in-
terface problem of current generation graphics hardware [Wloka and Huddy 2003]. At the time of 
writing, the next generation of graphics hardware (DirectX 9 shader model 3.0) is being an-
nounced, which should offer hardware support for instantiation operations: It allows vertex 
shader registers to be updated at varying frequencies [nVidia 2004b] so that one data stream with 
instantiation information and one vertex stream with geometry can be used. This enhancement 
will probably solve our performance problems, as soon as the corresponding hardware becomes 
available. 

7.5 Evaluation of Backward-Mapping Techniques 
In this Section, we discuss empirical results of the point-based multi-resolution raytracing tech-
nique described in Chapter 6. We try to characterize performance and image quality of the new 
proposal. We will do so by comparison with the current standard technique, distributed raytrac-
ing. We have implemented a distributed raytracing algorithm [Cook et al. 84a] using the same 
code basis. It uses the same octree (the point-based variant is a subclass) for retrieving triangles 
and the same basic math routines. Thus, the results are roughly comparable: We cannot defini-
tively judge on the performance relation of highly optimized versions of the algorithms, but at 
least we obtain an indication for the relative performance. 

Some details of the distributed raytracing technique are important for the evaluation: The 
algorithm uses adaptive oversampling: In a first path, a few rays per pixel (according to a user 
defined parameter) are shot into the scene, creating an approximate image. This image is used to 
estimate the variance in an n × n neighborhood and shot additional rays. The rays are stratified 
using jittered sampling on a regular subpixel grid. In the end, the set of all ray colors is consid-
ered; for each pixel, a weighted average of the neighboring ray colors is computed using a Gaus-
sian filter kernel. This implementation is of course still a bit simplistic (we could use quasi-
random grids for stratification, care should be taken to avoid bias in adaptive oversampling, and 
the user chosen parameters are somehow arbitrary). However, it models the main techniques 
used in current raytracing approaches and thus should allow a rough comparative performance 
characterization. 
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In addition to distributed raytracing, we also compare the algorithm with classic cone trac-
ing. For this comparison, we just use the point-based multi-resolution algorithm and deactivate 
the usage of point primitives. This creates a cone-tracing implementation for anisotropic ray 
cones as described by our linear ray model. 

In addition to these comparisons, we also take a look at the rendering results for approxi-
mate rendering effects supported by our technique such as soft shadows and blurry reflections. 

7.5.1 Performance and Image Quality 
In order to compare the raytracing techniques with former, well known techniques, we employ 
two test scenes: The first test scene is a low resolution image, containing only few areas with high 
frequency details. The scene consists of a low resolution chess board and two spheres (one reflec-
tive, one refractive). The second test case is a worst case scenario for conventional raytracing 
techniques: It contains large areas with structured and unstructured high resolution, high con-
trast content. The scene shows a large, high frequency chessboard with highly detailed vegetation 
models placed on it [Lapré 2002]. Additionally, some well known meshes (the Stanford bunny 
[Stanford 2004] and the well-known cow model; data taken from [Garland 2003]) consisting of 
reflective and refractive material are placed on the chess board to create complex secondary and 
higher order rays. All scene details are modeled as geometry, no textures are used. This scene is 
hard to handle for a distributed raytracing algorithm because the unstructured high frequency 
content cannot be integrated efficiently using stratification or quasi-random sampling techniques. 
The outcome of ray samples is mostly random for large areas of the scene, voiding the benefits of 
stratified sampling techniques. Therefore, we obtain (slow) convergence according to the central 
limit theorem. Additionally, importance sampling and adaptive oversampling do not help much as 
the problematic areas cover large regions of the image. The scene is also bad for conventional ray 
tracing techniques that use extended rays (cone tracing, beam tracing): As the scene consists of 
highly complex geometry, intersection calculations of large ray cones with the geometry become 
very expensive, underlining the need for a multi-resolution approach. 

7.5.1.1 Low Complexity Benchmark 

We start with the low complexity benchmark. We apply the following candidate algorithms to the 
scene: Conventional raytracing, point-based multi-resolution raytracing (denoted by PBMR in the 
following), point-based multi-resolution raytracing with subpixel mask compositing instead of 
alpha blending (SPM), adaptive distributed raytracing (DRT), and cone tracing. The results are 
shown in Figure 112. Table 11 shows the required preprocessing times. 

The conventional raytracing image (a) (computed in 30 seconds) contains some aliasing ar-
tifacts at borders and in the images obtained by reflection/refraction. Applying the PBMR algo-
rithm removes most artifacts safely, increasing the computation time by a factor of 2.6. Using 
subpixel masks does not improve the image quality but leads to a longer rendering time. 2 × 2 
subpixel masks create some artifacts at the borders between different objects, for 4 × 4 masks, the 
quality is acceptable. 

 
low complexity scene

point hierarchy 
high complexity scene

point hierarchy 
low complexity scene 

triangle hierarchy 
high complexity scene

triangle hierarchy 

preproc. time [sec] 3 sec. 558 sec. 1 sec. 9 sec. 

memory [MB] 0.93 MB 96 MB 0.65 MB 143 MB 

Table 11: Preprocessing costs for the benchmark scenes 
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(a) conventional raytracing 
(30 sec.) 

 

(b) cone tracing 
(82 sec.) 

  

(c) point-based multi-resolution raytracing, 
alpha compositing 

(79 sec.) 

(d) point-based multi-resolution raytracing, 
2 ×××× 2 subpixel masks compositing 

(97 sec.) 

  

(e) point-based multi-resolution raytracing, 
4 ×××× 4 subpixel masks compositing 

(104 sec.) 

(f) distributed raytracing 
(94 sec.) 

Figure 112: Performance and rendering quality comparison for different raytracing techniques, 
low complexity benchmark scene (512 ×××× 512 pixels). 
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(a) conventional raytracing 
(215 sec.) 

(b) point-based multi-resolution raytracing, 
alpha compositing 

(1332 sec.) 

  

(c) point-based multi-resolution raytracing, 
2 ×××× 2 subpixel masks compositing 

(4062 sec.) 

(d) point-based multi-resolution raytracing, 
4 ×××× 4 subpixel masks compositing 

(7244 sec.) 

  

(e) distributed raytracing, parameters adjusted for 
rendering time similar to image (b) 

(1334 sec.) 

(f) distributed raytracing, parameters adjusted for 
rendering time similar to image (d) 

(6961 sec.) 

Figure 113: Performance and rendering quality comparison for different raytracing techniques 
(640 ×××× 480 pixels).
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Using the PBMR algorithm without a point hierarchy (i.e. performing cone tracing) leads to 
a slightly increased rendering time. However, for low complexity scenes, the advantage of the 
multi-resolution technique is rather small. The distributed raytracing algorithm produces a refer-
ence solution that is mostly identical to the PBMR solution; only some minor noise artifacts in the 
DRT solution remain visible. We have chosen the oversampling parameters to obtain a rendering 
time similar to that of the PBMR and SPM renderings. 

As a result, the different antialiasing techniques lead to similar results for a low complexity 
scene, both in terms of image quality and rendering time. 

7.5.1.2 High Complexity Benchmark 

Figure 113 shows the rendering results for the high complexity benchmark scene. As expected, 
the conventional raytracing rendering shows severe aliasing artifacts. Point-based multi-
resolution raytracing takes 6 times longer but removes most aliasing artifacts41. We have also 
computed a distributed raytracing image using oversampling parameters to match the rendering 
time of the PBMR image as close as possible (it has not been possible to find a perfect match due 
to the large running times, making parameter experiments quite expensive). Comparing the two 
results (image (b) and (e)), two differences are apparent: First, the PBMR-solution leads to a 
strong overestimation of the silhouette opacities of the objects. In contrast to the previous low 
complexity example, this scene contains many fine granular silhouette details so that the effect 
predicted in Section 6.2.7 now becomes obvious. This effect does not only exaggerate the opacity of 
object borders. It is especially unpleasant for secondary rays: The shadows from the area light 
source are strongly overestimated. The second observation is the remaining noise in the DRT-
solution: Using roughly the same amount of computation time as the PBMR-algorithm, the adap-
tive DRT-algorithm is not capable of removing the noise artifacts from the image. In the previous 
example, only a few border regions contained high frequency details so that adaptive ray sam-
pling permitted a sufficient oversampling in problematic regions. For the high complexity bench-
mark scene, this is not possible to the same extend. The PBMR technique with alpha compositing 
offers good antialiasing of inner regions of a complexly structure objects. Secondary rays are han-
dled correctly. However, in border regions, the foremost object borders are overestimated and the 
reproduction of distribution raytracing effects such as soft shadows is not yet satisfactory. An 
additional artifact of the PBMR technique becomes visible at the bottom of the foremost bunny 
model: In the point-based images, a hole appears in regions where the transparent bunny and the 
floor meet. This is a problem of the surface merging strategy: A front-facing and a back-facing 
surface are close to each other so that they are merged to one fragment with wrong normal direc-
tion so that it is culled42. Such artifacts could be avoided by a refined merging criterion, e.g. tak-
ing into account the normal directions of the fragments. Additionally, the PBMR-image also 
shows some black spots at the border of the reflective cow object which are due to early intersec-
tions of the outgoing ray with the emitting surface. 

To overcome the silhouette overestimation problems, we have combined the alpha-blending 
heuristic [Zwicker et al. 2001a] with subpixel masks [Carpenter 84], as described in Section 6.2.7. 
The results for 2 × 2 and 4 × 4 subpixel masks are shown in Figure 113(c) and (d), respectively. The 
results are not equivalent to the reference DRT-solution (Figure 113f) but the image quality is 
acceptable, at least for the 4 × 4 version. The early-intersection artifacts are also reduced (compare 
the back of the reflective cow in image b and d) as the coverage of the ray is determined more 

                                                      
41 Some minor artifacts are still visible, especially on the floor, because the performed band-limiting is always a compro-
mise between base-band attenuation and remaining aliasing. 
42 Inside refractive objects, the orientation for backface-culling is reversed. 
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accurately. The subpixel masks technique also has some drawbacks: First, some aliasing artifacts 
are reintroduced, although being rather weak for the 4 × 4 version. The remaining aliasing arti-
facts could be reduced by adjusting the filter support of the sub-pixels. Choosing this value is a 
trade-off between silhouette overestimation and aliasing. Additionally, the rendering time is in-
creased due to the overhead of the subpixel computations (3× for the smaller and 5.4× for the lar-
ger subpixel masks). 

Please note that using subpixel masks is still much cheaper than brute-force supersampling 
at a higher resolution (i.e. 4×/16× more sample rays) as a repeated search for intersections is 
avoided. Nonetheless, the additional costs are significant. Thus, we have computed a second DRT-
solution, now allowing (roughly) the same rendering time as used for the SPM-4 solution. As ex-
pected, this solution is much better in terms of remaining noise artifacts than the version that 
used a fifth of the sampling rays. However, the image still contains visible noise artifacts. For a 
still image this may be of minor importance, but in animations, such artifacts are still distracting. 
Therefore, an application of the point-based raytracing technique with subpixel masks may be 
useful in such cases. 

  

(a) Cone tracing, primary and shadow rays only. 
(640 ×××× 480: 1427 sec., 256 ×××× 192: 709 sec.) 

(b) Point-based multi-resolution raytracing, 
primary and shadow rays only. 

(640 ×××× 480: 478 sec., 256 ×××× 192: 86 sec.) 

Figure 114: Comparison with classic cone tracing, primary and shadow rays only. Handling reflections and 
refractions using classic cone tracing is practically infeasible for this scene. 

  

Figure 115: Variance map used to control the over-
sampling in Figure 113e, f. 

Figure 116: Raytracing costs (Figure 114, primary 
rays only). Red = triangle intersection tests, 

blue = point intersection tests. Full intensity corre-
sponds to 2000 test. 



180 7 Implementation and Results 

 

In conclusion, the proposed novel raytracing technique is able to render images of accept-
able quality. Even in adverse scenes, it yields scenes with little noise and aliasing artifacts. For a 
faithful reproduction of border regions, subpixel masks must be employed. The costs are then 
rather high so that the performance advantage over distribution raytracing techniques is not that 
large. However, a lot of optimizations seem to be possible to avoid the cost penalties. First, the 
subpixel mask rendering code itself could be optimized more thoroughly. Additionally, we can 
think of using it adaptively, i.e. increasing the number of subpixels if borders are detected. Using 
such optimizations, the rendering costs probably become more competitive. 

After comparing the novel technique with distribution raytracing, we compare it with clas-
sic cone tracing. Here, the results are obvious: When trying to render the scene using classic cone 
tracing, the algorithm spend several minutes at the first few pixels of the refractive bunny. Even 
after waiting a considerable amount of time, no progress was visible so that the computation had 
to be interrupted. The secondary rays created by reflection and refraction are typically broaden-
ing rapidly so that an enormous number of triangle intersection tests becomes necessary. As a 
result, cone tracing of reflections and refractions in complex scenes is practically infeasible. Thus, 
we have restricted the comparison to primary rays only. In this case, the algorithm is able to fin-
ish rendering an image; however, the rendering time is much longer (Figure 114a,b). The ratio 
becomes worse if the resolution is reduced: The PBMR technique shows an output-sensitive ren-
dering time due to the multi-resolution approach; the rendering time is roughly proportional to 
the image resolution. For classic cone tracing, the rendering time does not decrease as strongly as 

  
(a) alpha blending compositing 

(65 sec.) 
(b) 2 ×××× 2 subpixel masks 

(109 sec.) 
(c) 4 ×××× 4 subpixel masks 

(131 sec.) 

  

 

(e) 8 ×××× 8 subpixel masks 
(204 sec.) 

(f) reference solution: distributed 
raytracing (259 sec.) 

 

Figure 117: Soft shadows (512 ×××× 512 pixels).
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the number of triangle intersection tests remains roughly constant. The speed-up for using a 
point hierarchy is a factor of about 3 at 640 × 480. At 256 × 192, the speedup factor is already more 
than 8. Correspondingly, we expect larger speedups for more detailed scenes. For our benchmark 
scene, rendering using primary rays only at 640 × 480 pixels still uses mostly triangles, only a few 
highly detailed areas employ point based replacements (see Figure 116). 

7.5.2 Special Effects 
The extended ray volumes of the multi-resolution raytracing approach also allow for an approxi-
mation of typical distributed raytracing effects such as soft shadows, blurry reflections, and 
depth-of-field. In this section, we will examine the rendering quality obtained in practice. 

7.5.2.1 Soft Shadows 

Soft shadows are an important rendering effect for realistic image synthesis: In natural scenes, 
usually no sharp shadow boundaries are observed. The extended ray cone model allows an ap-
proximation of soft shadow effects by shooting rays with increasing footprint diameter towards 

  
(a) ideally specular reflections 

(148 sec.) 
(b) blurry reflections (176 sec.) (c) more blurring (186 sec.) 

Figure 118: Blurry Reflections (512 ×××× 512 pixels). 

  

(a) ideal specular reflection (2652 sec.) (b) blurry reflection (2814 sec.) 

Figure 119: Blurry Reflections in a more complex scene (cf. Figure 113, 640 ×××× 480 pixels). In the left image, it 
can be seen nicely that linearly interpolated normals lead to piecewise constant second derivatives, i.e. con-
stant footprint increments and thus a constant resampling filter on each triangle. In the right image, the ray 

footprint increments have been increased to simulate blurry reflections. 
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the light sources. Figure 117 shows the results: Using the PBMR algorithm with alpha composit-
ing creates images with strongly overestimated shadow bounds. Thus, subpixel masks are man-
datory for a good image quality. The same effect can also be seen in Figure 113; the scene also 
contains soft shadows. Using subpixel masks with 2 × 2 subpixels, the overestimation can be re-
duced. However, now, discretization artifacts are visible. Using 4 × 4 subpixel masks already 
yields a good image quality and 8 × 8 subpixels create an image with very little artifacts. In com-
parison to distributed raytracing (Figure 117f), the shadow region is still overestimated a bit but 
this should be no problem for most applications. The distributed raytracing solution takes more 
computation time than the subpixel mask rendering, but still shows substantial noise artifacts43. 

7.5.2.2 Blurry Reflections 

A second effect is blurry reflections: By increasing the increments of the reflected ray cones, semi-
diffuse surfaces with blurry reflections can be simulated. Figure 118 shows an example of a test 
scene: Figure 118a shows the original ideally specular reflections, without additional blurring. 
Figure 118b and c show the results for increasing the ray increments. Figure 119 shows the same 
method applied to the more complex scene of Figure 113. The results appear qualitatively correct 
(some aliasing is left on the floor; again, the sub-pixel filter radius for the 4 × 4 subpixel masks 
has not been adjusted optimally). The rendering time does not decrease for increasing blurriness 
but increases slightly: This is behavior by design, as the multi-resolution algorithm tries to keep 
the number of primitives that are tested for each ray constant. In low resolution areas, this can 
even increase the rendering time, as a single triangle is less expensive than an (at most fixed 
sized) approximating point set of a larger ray cone. The blurring technique also has limits: If the 
increase of the rays become too large (more than 30% per unit length, which is already very 
blurry), the algorithm tends to yield self-intersections with the emitting surfaces, leading to arti-
facts in the image. To prevent theses issues, better heuristics to avoid self intersections are neces-
sary. 

In Figure 119a, an interesting observation (apart from blurry reflections) can be made: For 
ideal specular reflections, the ray increments are only determined by the local surface curvature. 
As we use normal interpolated triangles with linearly interpolated normals, the normal deriva-
tives are constant for each triangle. Thus, we obtain discontinuities in the “blurriness” of the re-

                                                      
43 It should be noted that pure random sampling has been used for distributed raytracing of area light sources. The con-
vergence rate could be enhanced by using stratification. 

  
(a) alpha blending compositing (263 sec.) (b) 8 ×××× 8 subpixel masks (793 sec.) 

Figure 120: Depth of field (512 ×××× 512 pixels).
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flections at triangle edges as well as first order discontinuities in the mirrored images. In order to 
obtain a better quality for the reflections, a higher order normal interpolation scheme should be 
used. This is a modeling problem rather than a restriction of the raytracing approach. 

7.5.2.3 Depth-of-Field 

Extended ray cones can also be augmented to approximate depth-of-field effects (Section 6.2.4). 
Figure 120 shows the result: Rendering such partially blurred images with alpha blending com-
positing leads to unacceptable images. The silhouettes are strongly overestimated. Thus, the ob-
jects appear geometrically thickened instead of out-of-focus. With subpixel masks, this artifact 
can be avoided. However, a large number of subpixels are necessary to obtain acceptable results. 
Accordingly, the rendering times are rather long. 

7.5.2.4 Varying Level-of-Detail / Visual Convergence 

An additional operation provided by point-based multi-resolution raytracing is simplification of 
objects by controlling the level-of-detail used for rendering. This feature is unlikely to be used as 

   
(a) rendering with pixel resolu-

tion (23 sec.) 
(b) simplified to 10 pixels sized 

sample points (64 sec.) 
(c) simplified to 20 pixels sized 

sample points (60 sec.) 

   
(d) simplified to 50 pixels sized 

sample points (52 sec.) 
(e) blurred rendering with ray 
footprint according to 20 pixels 

(703 sec) 

(f) blurred rendering with ray 
footprint according to 20 pixels, 
but using data at 1 pixel resolu-

tion (3961 sec.) 

Figure 121: Point-based simplification – rendering results for varying parameters for the ratio between ray 
diameter and point spacing (512 ×××× 512 pixels). The small pictures at the lower right show the underlying 

point cloud representation (rendering with shrunk local filter support). 
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rendering effect. Nevertheless, it is interesting to examine the simplification results as they show 
how the algorithm adapts the resolution during rendering. 

Figure 121 shows rendering results for different ratios between point spacing and (mini-
mum) ray diameter. As the model shows a smooth mesh (the Stanford bunny [Stanford 2004]), we 
can perform quite strong simplification (increasing the sample spacing by a factor of 10) while 
obtaining only moderate artifacts. Most artifacts occur at sharp edges (the ears) that cannot be 
modeled adequately using flat (differential) sample points. The rendering time does not decrease 
significantly for the simplified renderings; indeed, rendering becomes slower when starting to 
simplify the mesh. Again, this is due to the fact that the algorithm tries to use a similar number 
of primitives for each ray, independent of its diameter. For high resolutions, the number of acces-
sible primitives is bound by the leaf node triangles, yielding shorter rendering times. The motiva-
tion for simplifying models is not to speed up rendering. Instead, we use lower resolution versions 
to represent renderings with larger ray footprint. Thus, usually not the simplified model itself 
(such as Figure 121c) is shown but a version blurred due to a larger ray footprint (Figure 121e). 
Rendering the blurred version is more expensive than rendering the simplified model. As the ray 
footprint is enlarged additionally, more primitives have to be tested per ray. Nevertheless, using 
a simplified model is much faster than rendering at the original level-of-detail (Figure 121f). Al-
though both renderings look mostly similar, the rendering at the original resolution takes consid-
erably more time. 
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Chapter 8 

Extensions 

In this chapter, we describe some extensions to the basic rendering techniques described before. The 
first two subsections describe techniques that have been developed in cooperation with colleagues 
from University of Tübingen and University of Paderborn. The author of this thesis was only in-
volved in the design of the algorithms and data structures but not in the implementation. There-
fore, only a brief overview of the main ideas is given here. For details, please refer to the 
corresponding publications [Guthe et al. 2002, Klein et al. 2002]. The next two subsections describe 
techniques developed by the author of this thesis, but which do not deal with multi-resolution im-
age rendering techniques. These topics are included to show the applicability of the developed con-
cepts to other problems in computer graphics, not dealing with multi-resolution rendering of 
surface models. Again, please refer to the corresponding publications [Wand and Straßer 2003b, 
Wand and Straßer 2003c] for details. 

8.1 Volume Rendering 

8.1.1 Overview 
Efficient rendering of complex surface models, as discussed up to now, is an important issue in 
computer graphics. However, there are several disciplines that have to deal with large three-
dimensional data sets with different characteristics. An important problem in scientific visualiza-
tion is the visualization of volumetric data sets. In this section, we will focus on scalar data sets 
sampled on a regular grid, i.e. large three-dimensional arrays of scalar values. Such data sets 
occur for example frequently in medical imaging (tomography scanners, CT/MRT/PET) or as a re-
sult of physical simulations (e.g. using finite differencing approaches). 

The problem of regularly sampled volume data sets is their sheer size: For example, modern 
computer tomography scanners offer resolutions of more than some thousand voxels squared, 
creating data sets of several gigabytes. Using traditional visualization techniques that inspect the 
complete data set for rendering, it is not possible to display such scenes in real-time. A multi-
resolution rendering strategy similar to the techniques proposed for surface rendering can poten-
tially avoid the complexity problems. Multi-resolution rendering has been applied to volume ren-
dering by several authors, see Section 3.2.1.5 for details. The technique proposed in this section 
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combines an efficient texture mapping-based multi-resolution approach [LaMar et al. 99, Weiler 
et al. 2000] with an object space error metric [Boada et al. 2001]. 

The first problem for rendering large volume data sets is the efficient representation of the 
data set. Of course, a multi-gigabyte data set does not fit into the main memory of conventional 
PCs. In order to represent the data more efficiently, a lossy wavelet compression is employed. 
This encoding scheme offers both a strong reduction of the memory requirements (about 1:30 
without visible artifacts) and a spatial hierarchy needed for multi-resolution rendering. The 
wavelet hierarchy is constructed as follows: First, the data set is divided into cubes of k3 voxels 
(usually k = 16). Then, groups of 8 adjacent blocks become siblings: A parent node for these 8 
nodes is constructed by applying a wavelet lowpass and highpass filter to the group of 8 blocks. 
The lowpass filtered data is represented again by k3 voxels, the additional (2k)3-k3 values of the 
children are represented by wavelet coefficients obtained by applying the highpass filter to the 
original data. This scheme (Figure 122) is carried on hierarchically until only one root node is left, 
yielding an octree representation (null-pointers are used in areas where not all 8 children are 
covered with data). Each block of highpass coefficients is encoded using entropy and redundancy 
coding, creating a very compact representation. Even large data sets, like one of the well-known 
visible human data sets [National Library of Medicine 2002], can be stored completely in the 
main memory of a conventional PC. 

This data structure is used by the rendering algorithm similarly to static point-based multi-
resolution rendering [Algorithm 3]: The algorithm traverses the hierarchy downwards, starting at 
the root node. At each node, it checks whether the node is contained in the view frustum. If not, 
the node is skipped. Otherwise, the algorithm checks the projected size of the contained voxels. If 
it is still larger than a single pixel, the traversal is continued at the children in order to search for 
a more detailed representation. After all octree nodes with matching resolution are determined, 
their content is converted to OpenGL texture slices and rendered by drawing alpha blended slices 
in back to front order. 

Whenever the algorithm wishes to access the children of a node, a wavelet decompression is 
necessary. Additionally, a texture object has to be created for each node to be drawn on the 
screen. Performing these computations from scratch for every frame is quite expensive. Thus, a 
caching scheme, as discussed in Section 4.2.6 is employed: Both decompressed data and textures 
are stored in separate LRU-caches. Additionally, the graphics driver decides to upload a working 
set of recently used textures to the graphics board, creating a third caching level. For data sets 
that do not fit into main memory, this scheme could easily be extended by caching nodes that 
have been swapped in from harddisc. However, this has not yet been implemented. 

 
 

Figure 122: Constructing a volume octree analogous 
to point hierarchies using wavelet filters. 

Figure 123: Analysis of the rendering costs (similar 
to Figure 45) 
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8.1.2 Analysis and Consequences 
How efficient is this rendering procedure? In order to find out whether the proposed technique 
will be capable of rendering large data sets on conventional PCs, we perform a formal analysis of 
the costs of the algorithm. It will turn out that the technique described so far already shows a 
good asymptotical behavior; however, it must still be augmented to be applicable to real-time ren-
dering on the desired platform. 

The structure of the proposed algorithm is similar to that used for point-based multi-
resolution rendering (forward mapping). Therefore, the same analysis can be applied (Section 
5.2.3): The view frustum is covered with O(log τ ) boxes where each box leads to constant costs 
(with τ  being the maximum relative depth range of the scene). Thus, we expect rendering costs of 
O(log τ ) for a data set with an arbitrary number of voxels, being output-sensitive. For the case of 
regularly sampled volume data sets, the (worst case) costs can also be expressed in terms of vox-
els (similar to [Chamberlain et al. 96]). Additionally, we can also count the voxels used by the 
rendering algorithm in order to predict its performance: 

For the quantitative analysis, we chose a z-distance of the image plane so that the voxel 
resolution of the original data set and the pixel size match up (Figure 123). We fix an image reso-
lution of w × h pixels and a vertical viewing angle of α. At first, we assume that the volume can be 
resampled to arbitrary voxel spacing, always allowing an exact voxel spacing of a single pixel. We 
cover the image plane at depth z0 with w × h resampled voxels (these voxels have the same spac-
ing as in the original data set). Then, we subsequently add more layers of (resampled) voxels at 
depths zi, with a voxel spacing projecting to the pixel spacing on the screen. The depth zi of voxel 
layer i is given by the recurrence: 
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With zfar denoting the largest depth in the data set relative to the viewer, we obtain a bound for 
the number of voxel layers of 
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Currently, we have only considered the voxels behind the plane at which the voxel resolution 
matches the display resolution. Voxels in front of that plane cannot be adapted to the screen reso-
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lution as the maximum level of resolution is already reached44. Therefore, we do not find more 
than w·h·cot(α /2) ∈ O(1) voxels in this area (using z0 = cot(α /2)). 

In order to limit the ratio zfar/z0 by the size of the data set, we consider the ratio 
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with ∆z denoting the depth of the data set in world coordinates. It describes the relative depth 
range for varying distance to the data set. In case of z ≥ z0, we obtain a derivative of 
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being strictly negative. Thus, the largest ratio is found at z = z0. For z < z0, choosing z = z0 obvi-
ously maximizes the ratio R(z). This means that the maximum relative depth range is obtained if 
the data set is located at a distance of z0 and oriented to yield a maximum depth difference ∆z. If 
we assume a cube voxel data set of n3 voxels, we know that ∆z (and thus also zfar) cannot be larger 
than n3  voxels. The size of a voxel in world coordinates is voxelsize(0), i.e. 
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Hence, the number of voxels in the view frustum cannot exceed: 
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Overall, we obtain a number of voxels of O(log n) for a cube voxel grid of n3 voxels. This estimation 
does not yet consider the underlying octree structure. The octree has three side effects: First, we 
can choose the resolution only in powers of two. Second, at each resolution level, boxes must be 
aligned at a grid of powers of two (corresponding to the root cube). Third, each box contains a grid 
of k3 voxels, leading to an approximation of the ideal sampling density. These are the same effects 
as discussed for point-based multi-resolution rendering: As described in Section 4.2.3.5, choosing 
the resolution in powers of two only leads to an average oversampling of 
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in the volumetric case. The alignment of boxes to a grid in powers of two does not change the as-
ymptotic complexity (see Section 5.2.3). The quantitative overhead cannot easily be quantified. 
However, for small values of k (the number of voxels per octree box), the octree boxes are small in 
respect to the size of the regions of constant resolution (created by a voxel spacing that can only 
change in powers of two). Therefore, we expect only a small overhead. The overestimation of the 
projection factor45 leads to the same maximum overestimation as analyzed in Section 5.2.3.2, and 

                                                      
44 In contrast to surface rendering, we do not need a near clipping plane to limit the rendering efforts (due the finite voxel 
resolution). 
45 Please note that the approach described here again tries to approximate the depth factor of the perspective projection. 
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the bounds for view frustum overestimation (Section 5.2.3.3) and overestimation of the distortion 
factor (Section 5.2.3.4) hold, too. 

Putting these results together, we can estimate the number of voxels from the multi-
resolution hierarchy that is needed for rendering a typical data set. According to our applications, 
we assume a view port size of 640 × 480 pixels, 60° viewing angle and a data set of 20483 voxels. 
Rendering the original data set would require processing 8 billion of voxels. The example case 
leads to a maximum relative depth range z0/zfar of 8.53, yielding 892 voxel layers behind z0. Ac-
cording to equation 17, we obtain 275 million voxels. For a smaller viewport of 320 × 200 pixels, 
we still obtain 46 million voxels. Now we take into account that we can only perform an approxi-
mate resampling using octree boxes of k = 163 voxels. The bounds for the overhead of the octree-
based multi-resolution approach (see Table 2) yield an additional oversampling factor of about 1.1 
(depth)  × 1.2 (view frustum)  ×  1.03 (distortion)  ×  3.75 (discrete resolution levels) = 5.1 (factor 7.4 
for the 320  ×  240 view port), creating up to 1.4 billion (340 million for the small view port) vox-
els47. 

This brief analysis shows two important aspects: First, the multi-resolution algorithm will 
scale very well, the rendering time grows only very weakly for larger data sets. However, the con-
stants in the “O(log n)”-behavior are considerable: Even for small display resolutions, the algo-
rithm will not be able to run in real-time on conventional PC-hardware. Note that contemporary 
PC graphics boards offer local video memory of up to 256MB, which is less than the demanded 
number of voxels to process. Even with enough memory, the processing costs for alpha blending 
some hundred million voxels are too large. 

Due to this analysis, the design of the algorithm has been augmented: Instead of perform-
ing simple depth-based multi-resolution rendering only, an object space error metric has been 
included. Many data sets contain large regions of empty space or at least regions with little varia-
tion, i.e. low frequency content. Thus, we adapt the resolution to the frequency spectrum of the 
volume in addition to the projected size: In the precomputed wavelet-hierarchy, the average dif-
ference (according to a suitable norm) between the values in an inner node and the values at 
                                                      
46  “The CT-dataset XMasTree was generated from a real world Christmas Tree by the Department of Radiology, University 
of Vienna and the Institute of Computer Graphics and Algorithms, Vienna University of Technology.”  The data set is avail-
able at: http://ringlotte.cg.tuwien.ac.at/datasets/XMasTree/XMasTree.html 
47 The estimated overhead factors for the projection factor and view frustum are only conservative bounds (see Section 
5.2.3). Nevertheless, the overhead is dominated by the large factor due to the discrete (power of two) resolution levels 
anyway. This factor could be reduced by creating intermediate resolution levels, e.g. by resampling decompressed data on-
the-fly to one or two coarser levels of resolution. This has not yet been implemented. 

   
(a) Images from a walkthrough of the “Christmas-

tree” data set46 (5122 ×××× 999 voxels, 12bit). The average 
frame rate is 9.1 fps (viewport size 2562). 

(b) Image from a walkthrough of the “visible human 
female” CT data set (2048 ×××× 1216  ×××× 1877 voxels, 12bit) 

[National Library of Medicine 2002]. The average 
frame rate is 4 fps at a viewport size of 8002 pixels. 

Figure 124: Example renderings of the multi-resolution volume rendering system. 
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maximum resolution indicate the amount of high-frequency content that has not been repre-
sented faithfully. Thus, we form a composite metric of projective foreshortening and frequency 
content by multiplying both error estimates. The hierarchy traversal is then guided by this error 
metric. Instead of the simple depth-first search, we employ a greed algorithm that collects subse-
quently nodes with the worst error from the hierarchy using a priority queue. When the (user 
defined) maximum number of voxels is reached, the traversal is stopped. This modification leads 
to a considerable reduction of processed voxels while maintaining a comparable image quality. As 
the distribution of high frequency regions throughout the volume is very uneven in most data sets 
(only a few regions contain highly detailed data), we are able to cut the rendering costs substan-
tially, allowing an interactive visualization on conventional PC hardware. 

8.1.3 Implementation and Results 
Using the modified multi-resolution algorithm, we were able to render large data sets such as the 
visible human data sets (6.5 GB) or the Christmas tree data set (375MB) at interactive framer-
ates. Figure 124 shows two examples rendered using a 2.6GHz Pentium 4 PC equipped with 2GB 
Rambus memory and a Radeon 9700Pro graphics board. The data sets have been rendered apply-
ing a classification function [0, 1] → RGBA to the scalar data. The classification has been taken 
into account for weighting the frequency content. A 30% performance gain is obtained by addi-
tionally applying an occlusion culling heuristic. For more details, see [Guthe et al. 2002, Guthe 
and Straßer 2004] or Stefan Guthe’s PhD thesis [Guthe 2004]. 

8.2 Out-of-Core Storage 

8.2.1 Overview 
Up to now, we have used hierarchical instantiation to encode scenes of high complexity for point-
based surface rendering. This is not possible in all applications. Often, no instantiation structure 
is known, in some cases the data is irregular so that no redundancy can be exploited (at least not 
easily). This is a typical problem in scientific visualization, where we have to deal with measured 
data. In such cases, we need an alternative strategy to cope with the restrictions of main memory. 
One option is to store the data set on an external memory device such as a harddisc or probably 
even an array of such devices. In this section, we discuss how the data structure for point-based 
multi-resolution rendering can be generalized to support our-of-core storage. 

The main problem of out-of-core storage is due to latency times for random access. Typi-
cally, accessing a random position in a file of data is more expensive than sequential access by 
several orders of magnitude. In addition, a sequential transfer of data is (usually) still substan-
tially slower than performing the same operation in main memory. Therefore, it is common to use 
an augmented cost model to analyze the performance of external-memory algorithms (see e.g. 
[Silva et al. 2002] for a detailed survey). First, we have to count the number of random access 
operations an algorithm has to perform; second, we consider the amount of data that is trans-
ferred from the external device. In many cases, processing costs in main memory are of minor 
importance. 
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8.2.2 Modifications to the Static Sampling Data Structure 
Given these problems, we immediately see that the dynamic sampling data structure is not well-
suited for external storage: The algorithm mostly performs nothing but random access operations, 
degrading the performance seriously in external settings. However, we can generalize the static 
sampling approach. To do this, we first need an augmented construction algorithm with sufficient 
external efficiency. 

The construction algorithm reads the data linearly but it uses multiple passes in which the 
complete input data is re-read. Thus, the number of these passes is decisive for its performance. 
The idea of the algorithm is based on spatial partitioning, which is a well known paradigm for 
out-of-core processing [Silva et al. 2002]. We assume that the input triangles are given as one 
large file with randomly ordered triangles. In a first pass, the algorithm reads all triangles, 
counts them and computes a bounding box for them. If the number of triangles is small enough to 
be processed in-core, we use the conventional construction algorithm as discussed in Section 4.2.2. 
Otherwise, we create a map in main memory that describes the distribution of the primitives in 
the scene in a second pass. This map is a three-dimensional array of cells within the bounding box 
of the scene. Each cell stores an integer counter for the number of primitives that intersect with 
that cell. The map should be made as large as possible, using as much main memory as possible. 
If we know a priori that the primitives are not randomly distributed within the bounding box but 
e.g. only on a surface, we can also replace the array with a hash table. For a surface like struc-
ture, only O(k2) of the potential k3 cells are occupied. Thus, a much larger map can be fit into 
main memory. 

After the distribution of the primitives has been determined, the corresponding cells are 
sorted into an octree. Leaf nodes of this octree are sequentially merged into inner nodes. Using a 
priority queue, we ensure that children that contain the least number of primitives are merged 
first. Afterwards, we have groups of primitives with roughly an equal number of primitives in 
each group. Then we create a set of files, according to the created number of groups. For each file, 
we also create a write buffer in main memory (this limits the number of groups that can be cre-
ated in one pass). We go through the input data again and place each triangle in the write buffer 
of the region it belongs to. If a write buffer is full, we write it to disc in one linear write operation, 
thus avoiding costly seeks. 

After this procedure, we call the construction algorithm recursively for the created files. 
Then we take the returned file handles that point to complete data structures and build the top of 
the tree in-core. To do this, we can use exactly the same algorithm as used for instantiation: 
Whole subtrees are treated as single primitives and inserted in the higher level tree (see Section 
4.2.5 for details). Then, we write the data to disc and return the file handle for the created data 
structure to be included in higher level data structures. If we want to obtain one single file, we 
can gather all created files afterwards and copy them for concatenation if desired. 

   

(a) original tree (b) local subtrees (c) neighbors 

Figure 125: Blocking schemes for out-of-core storage. 
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The number of seeks for this algorithm mostly depends on the size of the write buffer for 
partitioning the data. If we use large write buffers, we obtain only very few seeks in one pass. 
However, the adaptivity of the division process is reduced so that additional passes might be nec-
essary. In addition, the distribution of the primitives in the scene is important: If the geometry is 
concentrated in a few very small spots, multiple passes are also necessary. However, at each pass, 
the resolution of the map is increased by a large constant (a grid size of 1283 is no problem, even 
with simple arrays). Thus, we rapidly increase the map resolution. The number of passes depends 
only on the logarithm of the ratio between the size of a local cluster of geometry and the scene 
size to a very large basis. In practice, we can expect to handle most scenes with only one mapping 
pass unless they are really very large or ill formed. 

The rendering algorithm uses a caching approach to access the external data structure: We 
can employ the same rendering algorithm as before but replace the in-core pointers by proxy ob-
jects that load the nodes from file if they are not present in main memory. LRU-scheduling is used 
to replace cached nodes if they have not been used for some time. To speed up this swapping algo-
rithm, we can perform suitable blocking of the data structure. Instead of swapping in one node at 
a time, several nodes could be fetched in order to minimize random access. In order to group adja-
cent nodes, typical options are to group local subtrees (a node and children up to a certain level) 
or to group subsequently siblings in the octree (Figure 125). To analyze the cost implications of 
these options, we determine an oversampling factor, similar to Sections 4.2.3.5 and 5.2.3.2: We 
assume that we want to render a single image and determine the overhead of being forced to 
swap in more data than necessary. Grouping local subtrees increases the branching factor of the 
hierarchy. Effectively, multiple resolution steps are swapped in at once. Grouping siblings corre-
sponds to enlarging the number of sample points per hierarchy node (points per box side length 
k). For forward mapping, this leads to a larger constant ε  describing the spatial approximation 
accuracy. Typically, the average oversampling due to large resolution steps in the hierarchy is 
worse than the oversampling due to inaccurate spatial adaptation. Therefore, it is grouping sib-
lings in the hierarchy is probably the more promising strategy. 

8.2.3 Preliminary Results 
The out-of core rendering strategy depicted above has been evaluated using a prototype imple-
mentation. Using the external construction procedure, large scenes could be processed efficiently 
(examples up to 30GB have been tested). The data structure allowed rendering at interactive 
frame rates. The results show that the strategy proposed theoretically can be used in practice. 
However, the quantitative results are still preliminary. Aspects like blocking, stratification, and 
prefiltering still have to be examined more in detail. For more details, please refer to [Klein et al. 
2002, Klein et al. 2004]. 

8.3 Sound Rendering 

8.3.1 Overview 
Multi-resolution point hierarchies cannot only be used for visualizing complex scenes. An inter-
esting option is to apply the strategy to sound rendering [Funkhouser et al. 2002]: We are given a 
three-dimensional scene containing a large number of sound sources. The task of the rendering 
algorithm is to reproduce the resulting sound at a given observer position. This problem is of 
some relevance for virtual reality and gaming applications. Consider for example the football sta-
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dium scene from Section 7.3.3, which could appear in a sports computer game. For a realistic im-
pression, we could whish to render the sound created by the crowd of shouting and singing foot-
ball fans. If we want to auralize (the acoustic equivalent to visualize) the soundscape, we have to 
combine the sound waves emitted by the numerous sound sources (football fans). Additionally, 
“phantom” sound sources can be computed that approximate the effect of indirect, global sound 
propagation. The sound rendering algorithm then has to determine the sum of all sound waves as 
they arrive at the observer. An approximation can be determined using a hierarchical sampling 
approach, similar to visual point-based rendering. 

8.3.2 The Sound Rendering Algorithm 
We build a hierarchy of sound sources similar to the nested sampling data structure described in 
Section 4.2. Each sound source is characterized by its position and volume and optionally with a 
directional emission characteristic. The sound sources are first sorted into the octree according to 
their position. Then, the inner nodes obtain one representative sound source each. They are cho-
sen by choosing a random sound source from the children with probability proportional to their 
volume. 

The sound rendering algorithm descends into the hierarchy searching for the most impor-
tant sound sources, i.e. it subsequently fetches the loudest representative sources according to the 
current observer position. This is done using a priority queue of nodes weighted by the received 
volume (similar to the volume rendering algorithm of Section 8.1). This strategy performs an im-
portance sampling similar to the visual rendering algorithms, choosing nodes that appear louder 
at the receiver with higher probability. It accounts for volume and position of the sound sources 
as well as for “view frustum culling”, i.e. the source selection can be weighted by a directional 
characteristic of the receiver (e.g. higher received volume for sources in front of the observer). 
However, the algorithm cannot account for directional characteristics of the sound sources. Sound 
emitters that send sound waves with a pronounced directional characteristic (such as phantom 
sound sources that approximate specular reflections) will still lead to a high variance in the sto-
chastic estimate. Therefore, we perform a two step sampling: First, we collect sound sources from 
the hierarchy, but fetching more than necessary (typically 10 times more sound sources). Next, a 
linear time selection algorithm is run on the candidate set, selecting sources that emit in the di-
rection of the observer with higher probability. This technique works quite well for moderately 
directional emission characteristics. 

  
(a) observer in a complex scenes, containing many 

sound sources (football stadium) 
(b) rendering strategy: white: sound sources (pri-
mary and phantom sources) red: selected sample 

sources 

Figure 126: Visualization of the sound rendering strategy. 
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After selecting sample sound sources, they are handed over to a mixer thread, which dis-
plays the result by mixing the corresponding sound data in real-time, typically at a sampling rate 
of 44.1 KHz. The mixer parameters are updated periodically by the hierarchical sampling algo-
rithm, but at a much slower sampling rate of typically 20 Hz. The mixer receives “key frames” 
that describe volume and phase information and interpolates smoothly between these parameters 
to avoid discontinuity artifacts. The sound rendering quality depends on the number of sound 
sources the mixer thread is able to handle in real-time. In practice, about 2000 instances of a 
smaller set of prototype sound sources can be handled on a Pentium 4 2GHz (44.1 KHz, mono 
output, i.e. 1000 sources for stereo reproduction). 

8.3.3 Results 
We have implemented a prototype sound rendering algorithm and integrated it into the frame-
work for point-based visual rendering. As test case, we have used the football stadium scene from 
Section 7.3.3 (Figure 126). Each football fan has been assigned one of a set of prototype sound 
files with slightly varying phase. Additionally, phantom sound sources were placed automatically 
by a “photon tracing” algorithm simulating global reverberations. Using a dual processor Xeon 2.2 
GHz system, we were able to render both sound and images in real-time during interactive walk-
throughs. Using 2000 sound sources, the sound rendering quality was acceptable, at least for 
gaming oriented applications. For more details, see [Wand and Straßer 2003c]. 

8.4 Caustics Rendering 

8.4.1 Overview 
The last example in this “extensions” chapter does not describe a multi-resolution rendering tech-
nique. However, it shows that dynamic surface sampling algorithms are useful for other render-
ing problems, too. 

The problem that we want to solve here is rendering caustics of extended light sources in 
real-time. Caustics (in computer graphics terminology) are lighting effects that occur if light is 
transported via one or more specular patches (reflective, refractive) and received by a diffuse (or 
glossy diffuse) receiver surface. The specular patches potentially focus the light, creating struc-
tured patterns on the receiving surface. The traditional technique for rendering these effects is 
photon tracing [Arvo 86] (see also [Jensen et al. 2001, Jensen et al. 2003] for a recent survey of 
related rendering techniques). These techniques require a lot of ray queries and an expensive 
density estimation step. Often, they are not applicable in real-time. 

In this section, we propose an alternative technique that can render single bounce caustics 
(i.e. one specular interaction along the light path) of extended light emitters efficiently. The basic 
idea is fairly simple and can be explained by considering an analogy, a disco ball: A disco ball is a 
small facetted sphere that is lit by a spot light, creating several small light spots on the walls of a 
room (typically a discotheque). A closer look at the spots on the wall reveals that these are just 
projections of the light source. The facets of the disco ball act as reflecting pinhole cameras, pro-
jecting images of the light source at the receiving surfaces. 

This is a single bounce caustic effect. The same idea can also be used to render caustics 
from more complex objects: We discretize the surface of the reflecting (or refracting) object into 
sample points, using one of the sampling techniques discussed before (Section 4.2.3). Then, an 
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image of the light sources is projected onto the receiving surfaces where each sample points act as 
a pinhole camera. 

8.4.2 Problems and Solutions 
To implement the proposed method efficiently, we assume that the light sources are far away so 
that the incoming light at the reflector can be represented as an environment map (the imple-
mentation uses a cube map). Then we rasterize the receiver once for each reflector sample point. 
For each rasterized fragment, a texture lookup in the cube map is computed based according to 
the projection of the virtual pinhole camera (Figure 127). The texture mapping process is imple-
mented as a DirectX 9 pixel shader. 

If we apply this algorithm to different application scenes (Figure 128a, Figure 129a,b), we 
obtain renderings that converge towards the correct solution. However, the visual convergence is 
bad for light environments with high frequency details (such as the point light source in Figure 
128). Therefore, we need an antialiasing strategy. Obviously, the difference between a smooth 
surface, which creates continuous caustics, and a facetted surface, which creates spots like a disco 
ball, is the local surface curvature. Hence, we compute differential sample points instead of sim-
ple sample points [Kalaiah and Varshney 2001]. Then, we compute reflected ray frustums at the 
sample points instead of sample rays, similar to computing reflected rays for point-based raytrac-

   
(a) no antialiasing (b) filtering according to surface 

curvature and point spacing 
Figure 127: Implementing caus-

tics rendering using texture map-
ping. 

Figure 128: Aliasing and Antialiasing (1000 sample points).
 

   
(a) Dynamic scene, the light source 
and the reflector are moved inter-

actively (200 sample, 400 ×××× 400 
pixels, points, no AA, / 9.6 fps). 

(b) real-time rendering 
(154 sample points, 400 ×××× 400 

pixels, no AA, 6.4fps) 

(c) antialiased rendering  
(330 sample points, 400 ×××× 400 
pixels, software rendering) 

Figure 129: Rendering examples (ATI Radeon 9700Pro, Pentium 4 2GHz). The high dynamic range natural 
light environment map in (b), (c) is taken from [Debevec 98]. 
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ing described in Section 6.2.4. As a result, we obtain not only a lookup direction for the cube map 
but additionally two derivative vectors that describe a first-order approximation of the footprint of 
all lookup vectors for the area around the sample point. These three vectors are then used to per-
form an anisotropic texture lookup offered by programmable graphics hardware (according to the 
DirectX 9 pixel shader 2.x model). The hardware estimates the integral over the given region us-
ing a footprint assembly technique [Schilling et al. 96]. 

8.4.3 Results 
The implementation of the algorithm has been tested on a Pentium 4 PC equipped with an ATI 
Radeon 9700Pro graphics board. Using this configuration, non-antialiased renderings were possi-
ble at interactive frame rates (see Figure 129). For antialiased rendering, a pixel shader 2.x com-
pliant hardware is necessary. At the time of writing, only nVidia boards of the GeForceFX 
architecture offered these capabilities. However, we were not able yet to use programmable ani-
sotropic texture lookup instructions for cube maps, probably due to restrictions of the current 
drivers. Therefore, the results show in Figure 128b and Figure 129c are still non-interactive soft-
ware renderings. For more details on the caustics rendering technique, see [Wand and Straßer 
2003b]. 
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Chapter 9 

Conclusions and Future Work 

This last chapter of the thesis summarizes the main results and concludes with some ideas for fu-
ture work. 

9.1 Conclusions 

9.1.1 Summary 
In this thesis, different point-based multi-resolution rendering strategies have been presented. 
Two alternative data structures have been proposed: Dynamic and static sampling. Different 
variants of the data structure are possible: Dynamic sampling can be modified to allow for dy-
namic modification, area classes can be used to identify large triangles. Static sampling can be 
implemented as nested or full sampling data structure. Additionally, different sampling and 
stratification techniques can be chosen. A further important choice is the representation of sam-
ple points: Pure point sample representations yield infinitesimally small sample points from the 
surfaces. Static (full) sampling additionally allows for prefiltering, storing average, band limited 
color and differential surface properties [Pfister et al. 2000, Kalaiah and Varshney 2001]. 

Two main rendering algorithms have been used to generate images from these data struc-
tures: forward mapping and backward mapping. Forward mapping techniques aim at real-time 
applications. Reconstruction techniques varying from simple opaque splatting to band-limited 
filtered reconstructions can be employed to generated images. The point-based backward mapping 
techniques described in this thesis are not interactive. Instead they offer rendering of antialiased 
images and classic distributed raytracing effects at moderate costs. 

In addition to these two rendering techniques, the concepts of point-based multi-resolution 
rendering can also be generalized to visualize large volume data sets interactively, visualize data 
sets that do not fit into main memory, and might be even useful for sound rendering of complex 
soundscapes. We have also employed surface sampling techniques to speed up rendering of caus-
tics for interactive global illumination. 
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9.1.2 Main Results 
The sampling data structures can be constructed efficiently with little memory overhead: The 
dynamic sampling data structure can be constructed in O(n log n) time for n triangles. It uses O(n) 
memory. In practice, the construction is very efficient: Typically, preprocessing takes only a few 
seconds for models consisting of a hundred thousand triangles and instances in the underlying 
scene graph. 

Nested static sampling can be constructed within the same time and memory bounds. For 
static sampling with full sampling, we obtain O(n h) construction time (with h denoting the height 
of the octree). The memory demands are theoretically unbound, but in practice, no superlinear 
behavior is expected in most relevant cases. The preprocessing times are significantly larger than 
for dynamic sampling, especially if prefiltering is employed. 

Rendering using forward mapping consists of three steps: Approximation of the projection 
factor (that scales area in a perspective projection), sampling and image reconstruction. To ap-
proximate the projection factor, the spatial hierarchy constructed during preprocessing is trav-
ersed. The process takes O(h + log τ ) time, τ  being the maximum relative depth range, i.e. the 
ratio between near and far clipping plane. The selection process also performs an approximate 
view frustum culling, enlarging the cross-sectional area of the view frustum at most by a constant 
factor. If we assume that the orientation of the triangles of the scene is random, with normals 
distributed uniformly on the unit sphere and geometry distributed evenly within the (extended) 
view frustum, we are able to approximate the integral projection factor up to a constant value. 
Orientation classes can be used to improve the approximation of the orientations of the triangles. 
However, in adverse cases, they cannot guarantee a constant overestimation. In practice, only 
moderate benefits are observed when orientation classes are employed (20% performance im-
provement). 

The sampling step determines a number of sample points according to the projected area. 
The number of sample points is determined by the product of the actual area of the geometry and 
the estimated (approximated) projection factor. Thus, the rendering costs increase with the over-
estimation of this factor. Dynamic sampling leads to costs of O(log n) for each selected sample 
point, static sampling needs O(1) time. Sample caching can be used in order to reduce the addi-
tional costs of dynamic sampling. The concrete number of sample points that have to be processed 
depends on the structure of the point sets: Stratified sampling patterns yield a number of sample 
points linear in the estimated projected area. Random sampling patterns are larger by a loga-
rithmic factor, i.e. O(a

_
 log a

_
) with a

_
 denoting the estimated projected area. 

Different sampling and stratification techniques lead to different rendering costs: random 
sampling needs the largest sample sizes. Grid stratification and quantized grid stratification can 
reduce these costs, removing the logarithmic factor and improving the constants. Neighborhood-
based point removal is the most efficient of the proposed techniques, both by theoretical analysis 
and empirical evidence. 

Using static stratified sampling, we obtain a rendering time linear in the estimated pro-
jected area and logarithmic in the relative depth range, i.e. demanding overall O(a

_
 + h + log τ ) 

time. For average scenes, this means especially a rendering time linear in the actual projected 
area. For dynamic sampling, the costs increase by two logarithmic factors, yielding O(a

_
 log a

_
 log n + 

h + log τ) rendering time. 

Different image reconstruction techniques offer a trade-off between quality and rendering 
time. Although all approaches are linear time algorithms, the rendering time can vary substan-
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tially in practice. Per-pixel reconstruction and opaque splatting are the most efficient techniques. 
Using an implementation accelerated by contemporary graphics hardware, walkthroughs of 
highly complex scenes are possible at real-time frame rates. A Gaussian filtering technique can be 
employed to render images with little noise and aliasing artifacts but at non-interactive framer-
ates. The best trade-off is probably obtained using splatting techniques: Alpha-blended splats 
with an area based transparency heuristic yield good results for displaying vegetation scenes, but 
still have to deal with aliasing issues for regularly structured image content. Surface splatting as 
proposed by [Zwicker et al. 2001a] (which has been examined here only in an extended variant 
based on raytracing) yields better antialiasing properties. A subpixel-mask heuristic can be em-
ployed to increase the resolution of occlusion in problematic regions such as complex boarders at 
additional run-time costs. 

The static sampling technique can be applied to animated scenes (keyframe animations), 
too. Assuming some coherency in the input animations, the good rendering times can be retained. 
In practice, large cloud animations such as a football stadium or a flock of animals with several 
thousand individuals can be displayed at real-time framerates. 

The backward mapping (raytracing) techniques, also relying on a variant of the static sam-
pling data structure, yield anti-aliased images and can approximate classic distributed raytracing 
effects such as soft shadows, blurry reflection and depth-of-field. The image quality is quite close 
to reference solutions obtained from real distributed raytracing but still distinguishable. The 
main problem is an overestimation of silhouette opacities in complex situations. Even with sub-
pixel masks, this effect cannot be avoided completely. This is a general property of all examined 
point-based multi-resolution rendering techniques: As we resample the scene to the pixels of the 
screen prior to rendering, complex subpixel occlusion effects (which cannot be modeled by tangent 
discs or an area-based opacity estimate) cannot be resolved faithfully. This is an inherent restric-
tion of the approach itself. However, for many scenes in practice (such as most of those showed in 
this thesis), the artifacts are of minor relevance. 

The performance of the point-based multi-resolution raytracing algorithm is much better 
than that of classic cone tracing. In contrast to the classic approach, highly complex scenes can be 
handled, due to the output-sensitive running time. In comparison with distributed raytracing, the 
novel approach still provides a performance benefit for scenes showing large areas of high vari-
ance in the image. If no complex silhouettes are contained in the image, the performance advan-
tage is substantial: The algorithm yields virtually noise free solutions. At the same rendering 
time, distribution raytracing still leads to considerable noise artifacts. For scenes with complex 
silhouettes, subpixel masks have to be employed. Using the current implementation, this reduces 
the performance. Distributed raytracing is then able to render images with reduced, but still visi-
ble, noise artifacts within the same time. The drawback of the multi-resolution approach is bias: 
The estimated value of the result is not the correct image but only an approximation. 

Some extensions to the basic multi-resolution rendering framework have been proposed: A 
multi-resolution volume rendering approach is able to render approximate images of very large 
data sets at interactive framerates on a conventional PC. The formal analysis of the multi-
resolution approach for point-based rendering of surface models is applicable to volume render-
ing, too. The theoretical costs predictions have been crucial for the design of an efficient volume 
rendering technique. Further results also show that the proposed point-based rendering tech-
niques can also be used in out-of-core settings, for data sets not fitting into main memory. The 
same hierarchical data structure that is used for visual rendering can also be used for sound ren-
dering. Approximate renderings of scenes with a large number of sound emitters are possible in 
real-time. The rendering quality is (subjectively) sufficient, at least for VR and entertainment 
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applications. In addition, a real-time rendering technique for anti-aliased, single-bounce specular 
to diffuse light transport (caustics) has been discussed that relies on surface sampling and pro-
grammable texture mapping. 

9.1.3 Discussion 
It has been shown that point-based multi-resolution techniques can increase the efficiency for 
rendering complex scenes. The forward mapping techniques are able to display highly complex 
scenes in real-time. In contrast to many former mesh simplification techniques, the point-based 
techniques are applicable independently of the topological structure of the scene. In contrast to 
image-based techniques, the precomputation demands are small and no problems with parallax 
errors are observed. The rendering time depends (mostly) on the projected area, including oc-
cluded area. Therefore, a combination with an occlusion culling technique might be necessary in 
some cases to sustain real-time performance. 

Several algorithms and data structures have been proposed. Which one should be chosen 
for a given application? In most cases, static sampling with full sampling sample sets and 
neighborhood-based stratification is the most efficient choice. Scene and lighting model permit-
ting, prefiltering should be employed as it reduces aliasing and noise problems drastically. How-
ever, in some situations, prefiltering can lead to artifacts (as for the forest scenes). In this case, 
one can either design a suitable heuristic to avoid the artifacts, or rely on simple point samples, 
which are often less problematic. In the latter case, a suitable supersampling technique (Gaus-
sian reconstruction, surface splatting, averaging) should be employed to remove noise artifacts 
from the image. Static nested sampling is more of theoretical interest, allowing for optimal pre-
processing costs. In practice, it provides only minor advantages. 

Rendering with dynamic sampling is slower than rendering with static sampling for several 
reasons: First, random dynamic sampling itself is more expensive. Second, prefiltering cannot be 
employed so that expensive oversampling is necessary for a high image quality. However, the 
technique also provides some advantages. A major advantage is moderate preprocessing costs: 
The preprocessing time is much shorter than for stratified, prefiltered static point sample hierar-
chies. Additionally, interactive dynamic modifications are possible. Dynamic updates could 
probably also be devised for the static case but presumably at higher costs, especially if prefilter-
ing is demanded. Additionally, the concept of dynamic, hierarchical random sampling is quite 
general. Probably, the technique could be generalized more easily to more general modeling tech-
niques such as procedural models. 

The backward mapping rendering algorithm, point-based multi-resolution raytracing, 
should be compared with distributed raytracing (cone tracing, the second alternative, is of minor 
importance today): The major advantage of the point-based technique is the avoidance of noise 
artifacts: As filtering is already done during preprocessing, low-noise images can be obtained at 
smaller costs than in the distributed raytracing case. For some applications, such as rendering of 
animations, this might be an important aspect. The drawback is the approximate representation. 
Images rendered with distributed raytracing converge towards an accurate solution while the 
point-based technique may produce artifacts (overestimated silhouette opacities, prefiltering arti-
facts etc.). Please note that the performance relation between the two techniques depend strongly 
on optimizations of the implementation. Therefore, our current conclusions concerning perform-
ance can only be preliminary as optimization of a point-based multi-resolution raytracing tech-
nique has not yet been studied extensively. 



9.2 Future Work 201 

 

For rendering complex keyframe animations, especially crowd animations, the proposed 
point-based multi-resolution technique is an interesting option: Mesh simplification techniques 
for animated scenes are rather involved and image-based simplification techniques suffer particu-
larly from discretization problems in the animated case. For this reason, only few alternative 
techniques for rendering complex animated scenes have been published yet. The point-based tech-
nique is easy to implement and quite effective, allowing for real-time applications. Thus, it may 
be an interesting result of this thesis for use in practical applications. 

9.1.4 Conclusions 
In conclusion, point-based multi-resolution rendering is not a perfect rendering technique, solving 
all rendering problems: The most important problem concerning image quality is probably the 
heuristic nature of the representation of subpixel details. This appears to be an inherent restric-
tion of the approach and presumably of any efficient hierarchical approximation technique 
[Chamberlain et al. 96]. In terms of performance, we have at least three problems: First, point-
based multi-resolution rendering is only a simplification technique. This means, that we need an 
additional occlusion culling strategy for efficient forward mapping rendering in densely occluded 
environments. Second, we cannot guarantee linear O(a) (or O~(a) for dynamic/random sampling) 
running time in terms of the exact projected area a. We still need some additional assumptions 
such as a uniform distribution of normals and restricted relative depth range. However, this is 
mostly a theoretical issue and only a minor problem in practice. The third problem is the large 
base costs: In contrast to mesh simplification, point-based simplification starts to accelerate ren-
dering only at the point where the scene contains subpixel details. Therefore, a high geometry 
processing rate is necessary for efficient rendering. For low complexity scenes, the technique does 
not provide significant advantages (neither for forward nor for backward mapping). However, 
current graphics hardware is fast enough to permit real-time rendering (forward mapping) at 
least at moderate image resolutions. 

Despite these inherent problems, point-based multi-resolution rendering is an important 
complement to current rendering techniques for large scenes, substantially extending the range of 
scenes that can be rendered efficiently: Complex scenes such as landscapes or animated crowds 
consisting of billions of primitives and more can now be rendered in real-time. Even for simple, 
real-time reconstruction techniques, the image quality is not worse than that of conventional z-
buffer rendering, which would have taken years to finish a single image, in extreme cases. The 
underlying techniques are also applicable to other approximation problems such as antialiasing 
in raytracing, volume rendering, and sound rendering. Whether the advantages or the drawbacks 
of the technique are dominant depends on the target application. This thesis should facilitate this 
decision by the presented analytical and empirical facts. 

9.2 Future Work 
Point-based multi-resolution techniques offer a new approach to many problems. Only recently, 
the capabilities of widely available hardware systems have become powerful enough to allow for 
an elementary, lightweight data representation such as sample point clouds. Therefore, it is likely 
that similar representations and techniques will receive growing attention in the near future. In 
the following, we will discuss some ideas for future work in the area of point-based multi-
resolution techniques, derived from the experience with the techniques described in this thesis. 
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Modeling: The most important problem left to be solved in the area of rendering complex 
scenes is probably a modeling problem. As shown in this thesis (and by many other authors, too), 
it is nowadays possible to render many highly complex models in real-time. The main problem is 
now a representation problem. We can render approximations of complex landscape with moun-
tains, trees, grass if we were are able to provide a suitable model of such a scene. Currently, this 
is done using simple instantiation of a few base models. Using such a technique, some remarkable 
results are possible [Deussen et al. 98], but it might not be sufficient in general: The visual com-
plexity of the scene is fixed in advance and the redundant structure of the scene may be visible, 
even if more sophisticated instantiation techniques were used. Alternatively, out-of-core storage 
can be employed. However, this approach only shifts the limits from the limits of main memory to 
the storage limits of an external storage device. 

Therefore, an interesting direction for future research could be the integration of modeling 
with rendering. Hierarchical modeling techniques such as fractal subdivision could probably be 
combined with point-based multi-resolution rendering in order to generate details on-the-fly (e.g. 
based on hierarchical subdivision, similar to the REYES architecture [Cook et al. 87]). Another 
option to obtain more realistic models is the use of measured real-world data. Point-based repre-
sentations have been shown to be useful for 3D-photography, i.e. as representation of the appear-
ance of real-world objects [Matusik et al. 2002, Poulin et al. 2003]. Probably, both techniques 
could even be combined. A generalization of current texture synthesis techniques [Wei and Levoy 
2000] to three-dimensional point clouds in addition to a suitable acquisition method for three-
dimensional real-world objects could probably be used to synthesize photo-realistic objects on-the-
fly, during rendering. 

Besides this, the usage of points as modeling primitive (without focus to complex scenes) 
has gained some attention recently [Zwicker et al. 2002a, Pauly et al. 2003a].  

Rendering efficiency and image quality: The efficiency of the techniques proposed in 
this thesis could be improved further in future work. For forward mapping, a high geometry proc-
essing rate is essential. This can currently only be achieved by utilizing programmable graphics 
hardware for geometry processing. This leads to several optimization problems, such as compact 
storage and transfer of geometry data and the problem of hiding hardware latencies. In addition, 
the mixture of triangle-based and point-based rendering could be improved. For locally flat re-
gions, triangles could be used more efficiently for approximating the surface. Some first steps in 
investigation such dual simplification strategies have already been made [Cohen et al. 2001, 
Guthe et al. 2003]. 

To improve the image quality of the current techniques, two main problems have to be con-
sidered: The first problem is the representation problem for sample points. It is still not clear 
which kind of attribute sets (assuming a prefiltering approach) are best to use for different appli-
cations. Although an optimal solution with fixed costs and guaranteed quality may be impossible, 
there is probably still some room for improvements. The second problem is the reconstruction 
problem. Current techniques work well for smooth surfaces. However, better techniques are nec-
essary to deal with general cases. A combination of volume rendering and splatting techniques 
(such as reconstructing subpixel ray volumes using volume splats, as a generalization of subpixel 
masks) seems to be promising. 

Global illumination: The raytracing techniques described in this thesis are only a first 
step into the direction of using point-based multi-resolution techniques for global illumination 
problems. The current technique is still rather expensive, but there are several options to speed 
up the rendering process: First, the technique itself could be optimized by approximating expen-
sive operations such as eigenvalue computations by more lightweight techniques based on inter-
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polations or precomputed tables. Second, the algorithm itself could be altered. One idea could be 
to avoid the expensive cone queries. Instead, infinitesimal rays could be shot and interpolation 
due to local information at the sample points (color gradients, normals, curvature) could be used 
for generating high-quality images. We could also combine distributed raytracing and prefilter-
ing: Shooting multiple infinitesimal rays at prefiltered, pixel sized points we could avoid noise 
and aliasing in the color channel and only use stochastic integration to estimate the opacity. An-
other option could be to perform only a rough raytracing with a few rays and compute the image 
by projecting larger point clouds that intersect with the rays. For secondary rays, the mapping 
between adjacent point cloud intersections could be interpolated smoothly. Adaptive sampling 
could control the image quality. 

Aside from point-based raytracing, it would also be interesting to apply point-based multi-
resolution techniques to speed up other global illumination calculations such as radiosity tech-
niques. 

Software architecture: A predominant problem in all areas of computer science is the de-
sign of a suitable software architecture for employing new techniques in practice. At least two 
important aspects need further attention: First, we have to consider the modeling problem. Even 
for the current instantiation-based technique, more flexibility and orthogonality would be desir-
able. More involved procedural modeling techniques would also pose architectural problems: 
What is a good abstraction for general hierarchical modeling? Which framework should be pro-
vided to facilitate the development of application specific modeling modules? A second problem is 
modeling of surface appearance. In this thesis, we have only used simple shading models such as 
Phong shading or even constant color shading. This might be sufficient to demonstrate the effects 
of geometric simplification. However, for practical use, more advanced shading and lighting mod-
els are mandatory. Multi-texturing and programmable shader scripts are state-of-the art both in 
real-time and offline rendering. The integration of a general shading architecture with point-
based rendering is a complex problem. Aspects such as hardware requirements (batch processing, 
minimizing state changes) have to be considered as well as approaches for generalizing point at-
tributes for different, programmable material models to allow for general prefiltering. 
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Appendix A: Tables / Measurements 

Dynamic Sampling 
epsilon 0.0025 0.005 0.01 0.02 0.03 0.04 0.05 0.1

near view 25.0 9.99 5.52 4.10 3.72 3.69 3.72 3.94

medium distance 22.4 8.17 4.35 2.97 2.54 2.49 2.46 2.59

far view 7.76 3.46 2.10 0.90 0.8 0.77 0.76 0.76

 
epsilon 0.19 0.41 0.68 1.00 1.83 2.36 3.00 7.00

near view 4.39 5.47 6.74 7.99 11.4 13.8 16.3 16.3

medium distance 2.84 3.36 3.94 4.50 5.92 6.56 7.15 7.23

far view 0.80 0.99 1.09 1.18 1.39 1.49 1.67 1.67

Table 12: Rendering time [sec] in dependence of the approximation accuracy εεεε  (Figure 80). 

epsilon 0.0025 0.005 0.01 0.02 0.03 0.04 0.05 0.10

rendering time [sec] 25.01 9.99 5.52 4.10 3.72 3.69 3.72 3.94

points 1,008,000 1,428,700 1,845,000 2,270,900 2,496,600 2,633,380 2,703,800 2,842,150

boxes 3,940,003 1,633,461 679,863 269,946 141,700 90,787 64,676 23,650

triangles 13,328,332 3,351,266 849,685 224,845 115,067 75,836 60,457 48,516
 

epsilon 0.19 0.41 0.68 1.00 1.83 2.36 3.00 7.00

rendering time [sec] 4.39 5.47 6.74 7.99 11.36 13.77 16.33 16.34

points 3,032,630 3,495,300 4,037,600 4,675,240 6,206,500 7,498,900 8,780,000 8,780,000

boxes 10,447 3,977 2,062 1,285 690 593 461 461

triangles 52,026 59,036 61,511 62,238 71,725 75,695 47,492 47,492

Table 13: Number of processed primitives for varying approximation accuracies εεεε (near view, Figure 81).  

epsilon 0.0025 0.005 0.01 0.02 0.03 0.04 0.05 0.10

rendering time [sec] 7.76 3.46 2.10 0.90 0.80 0.77 0.76 0.76

points 393,026 393,972 394,560 395,856 397,251 398,957 400,673 408,770

boxes 2,071,217 742,986 363,331 78,063 38,524 26,001 18,985 8,027

triangles 0 0 0 0 0 0 0 0
 

epsilon 0.19 0.41 0.68 1.00 1.83 2.36 3.00 7.00

rendering time [sec] 0.99 1.09 1.18 1.39 1.49 1.67 1.67 0.99

points 453,954 491,660 531,094 623,079 663,561 745,460 745,461 453,954

boxes 628 213 121 54 40 30 30 628

triangles 0 0 0 0 0 0 0 0

Table 14: Number of processed primitives for varying approximation accuracies εεεε (far view, Figure 82).  
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epsilon / 
rel. sampl. density 

0.0025 0.005 0.01 0.02 0.03 0.04 0.05 

2² pts / pixel 341.89 113.07 41.07 15.00 7.82 5.11 3.79 

1 pts / pixel 153.72 50.87 18.40 6.84 3.78 2.56 2.01 

(1/2)² pts / pixel 55.71 18.47 6.79 2.83 1.76 1.37 1.19 

(1/4)² pts / pixel 19.10 6.31 2.65 1.43 1.14 1.04 1.00 

(1/8)² pts / pixel 6.09 2.35 1.33 1.04 1.00 1.01 1.03 

(1/16)² pts / pixel 2.25 1.22 1.00 1.02 1.07 1.12 1.17 

boxes 3,940,565 1,634,023 680,312 267,385 138,525 88,312 62,676 

points (max dens.) 191,953 999,841 1,668,320 2,207,950 2,472,930 2,661,150 2,814,790 
 

epsilon / 
rel. sampl. density 

0.19 0.41 0.68 1.00 1.83 2.36 3.00 

2² pts / pixel 1.68 1.17 1.00 1.03 1.10 1.29 1.57 

1 pts / pixel 1.18 1.00 1.02 1.16 1.33 1.68 2.19 

(1/2)² pts / pixel 1.00 1.02 1.16 1.37 1.62 2.17 2.94 

(1/4)² pts / pixel 1.06 1.18 1.42 1.70 2.05 2.84 3.83 

(1/8)² pts / pixel 1.20 1.39 1.72 2.10 2.55 3.54 4.82 

(1/16)² pts / pixel 1.43 1.71 2.15 2.64 3.22 4.50 6.12 

boxes 21,913 8,991 3,189 1,607 987 514 337 

points (max dens.) 3,588,190 4,120,030 4,766,190 5,480,680 6,417,200 8,234,580 10,471,900 

Table 15: Trade-off between the rendering cost components for varying εεεε  and 
different sampling densities (Figure 83). Rendering time in [sec]. 

subdivision depth 0 1 2 3 4 5 6 

#orientation classes 1 2 4 8 16 32 64 

near view 1,00 0,81 0,95 0,91 0,96 1,03 1,18 

medium distance 1,00 0,77 0,89 0,84 0,87 1,04 1,14 

far view 1,00 0,93 1,03 1,10 1,12 1,22 1,30 

Table 16: Relative rendering time [factor in respect to rendering time with no orientation classes] 
in dependence of the number of orientation classes (Figure 84). 

area factor 1.09 1.19 1.41 1.7 1.8 1.9 1.95 2 

rendering time [sec] 4.101 3.899 3.516 3.351 3.399 3.381 3.300 3.722 

opt. εεεε  value 0.18 0.125 0.08 0.08 0.08 0.08 0.08 0.08 
 

area factor 2.25 2.5 3 4 8 16 32 64 

rendering time [sec] 3.413 3.550 3.508 3.503 3.364 3.411 3.516 3.719 

opt. εεεε  value 0.08 0.08 0.07 0.06 0.04 0.04 0.04 0.04 

Table 17: Rendering time for differently sized area classes (Figure 85). 
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max. sampled area 0.00195 0.0039 0.0078 0.0156 0.0313 0.0625 0.125 0.25

εεεε  = 1.04, density = 1 15.663 8.946 5.640 4.231 3.656 3.480 3.488 3.588

εεεε  = 1.5, density = 1 17.715 10.540 7.189 5.536 5.182 5.012 5.259 5.483

εεεε  = 1.5, dens. = 1/16 15.778 8.271 4.366 2.213 1.317 0.808 0.582 0.492
 

max. sampled area 0,5 1 2 4 8 16 32 64

εεεε  = 1.04, density = 1 3.733 3.837 3.856 3.883 3.904 3.889 3.897 3.889

εεεε  = 1.5, density = 1 5.679 6.033 6.216 6.689 7.168 7.436 7.439 7.456

εεεε  = 1.5, dens. = 1/16 0.465 0.458 0.463 0.506 0.507 0.523 0.520 0.523

Table 18: Transition between triangle rendering and point-based rendering (Figure 86). 

inst. level subdivision 1 2 3 4 5 6 7 8 

#triangles 2 24 130 600 2,562 10,584 43,010 173,400
0 

time [sec] 0.712 0.768 0.809 0.838 0.877 1.042 1.220 1.505

#triangles 200 2,400 13,000 60,000 256,200 1,058,400 4,301,000 1.73E+7
1 

time [sec] 1.088 1.136 1.162 1.206 1.234 1.409 1.613 1.912

#triangles 20,000 240,000 1,300,000 6,000,000 2.56E+7 1.06E+08 4.30E+08 1.73E+09
2 

time [sec] 1.483 1.539 1.542 1.610 1.631 1.824 2.004 2.300

#triangles 2,000,000 2.40E+7 1.30E+08 6.00E+08 2.56E+09 1.06E+10 4.30E+10 1.73E+11
3 

time [sec] 1.866 1.917 1.920 1.962 2.001 2.184 2.410 2.738

#triangles 2.00E+08 2.40E+09 1.30E+10 6.00E+10 2.56E+11 1.05E+12 4.30E+12 1.73E+13
4 

time [sec] 2.218 2.281 2.341 2.380 2.445 2.636 2.879 3.268

#triangles 2.00E+10 2.40E+11 1.30E+12 6.00E+12 2.56E+13 1.06E+14 4.30E+14 1.73E+15
5 

time [sec] 2.675 2.726 2.724 2.806 2.836 3.030 3.295 3.528

Table 19: Rendering time of dynamic sampling for varying scene complexities (Figure 87). 

update compl. [triangles] 500 1,000 2,000 5,000 10,000 20,000 50,000 100,000

time [sec] 0.050 0.080 0.135 0.300 0.581 1.170 2.947 5.999

time/triangle  [µµµµsec] 100 80 68 60 58 59 59 60
 

scene compl. [triangles] 33,950 135,800 305,550 543,200 848,750

time [sec] 1.035 1.079 1.127 1.123 1.170

time/triangle [µµµµsec] 52 54 56 56 59

Table 20: Update times for dynamic modifications of the dynamic sampling data structure (Figure 88). The 
first table shows update times for a varying number of changed triangles in a 848,750 triangle scene. The 
second table shows update times for a varying scene complexity, updating 20,000 triangles in each case. 
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Static Sampling 
k = pts / box side length 8 12 16 32 48 64 96 128 

epsilon(k ) 0.048 0.073 0.098 0.149 0.200 0.308 0.419 0.656 

near view 2.49 1.19 0.74 0.43 0.31 0.25 0.23 0.25 

medium distance 1.94 0.72 0.35 0.18 0.13 0.12 0.11 0.11 

far view 0.071 0.05 0.041 0.03 0.03 0.02 0.03 0.02 

Table 21: Rendering time [sec] in dependence of the approximation accuracy, given implicitly by 
the number of points per side of an octree box (Figure 89). 

k = pts / box side length 8 12 16 32 48 64 96 128

epsilon(k ) 0.048 0.073 0.098 0.149 0.200 0.308 0.419 0.656

rendering time [sec] 2.49 1.19 0.74 0.43 0.31 0.25 0.23 0.25

Points 1,134,270 1,292,855 1,443,502 1,664,067 1,797,372 2,006,868 2,111,018 2,249,912

Boxes 9,850,741 4,441,097 2,509,804 1,174,450 675,757 375,339 285,649 280,042

Triangles 90,077 46,783 30,326 16,602 10,515 5,774 3,650 2,036

Table 22: Number of processed primitives for varying approximation accuracies (near view, Figure 90). 

k = pts / box side length 8 12 16 32 48 64 96 128

epsilon(k ) 0.048 0.073 0.098 0.149 0.200 0.308 0.419 0.656

1 pts / pixel 2.606 1.247 0.771 0.458 0.310 0.268 0.251 0.264

(1/2)² pts / pixel 0.698 0.363 0.231 0.151 0.105 0.098 0.089 0.103

(1/4)² pts / pixel 0.209 0.118 0.086 0.061 0.050 0.048 0.051 0.052

(1/8)² pts / pixel 0.079 0.053 0.045 0.031 0.023 0.019 0.021 0.026

(1/16)² pts / pixel 0.035 0.025 0.015 0.009 0.007 0.007 0.010 0.015

Table 23: Trade-off between the rendering cost components for varying approximation accuracies and 
different sampling densities (Figure 91). The sample spacing has been chosen proportionally to the inverse 

splat diameter. Rendering time in [sec]. 

k = pts / box side length 8 12 16 32 48 64 96 128

epsilon(k ) 0.048 0.073 0.098 0.149 0.200 0.308 0.419 0.656

OpenGL std. v.arr. [sec] 2,070 0,775 0,433 0,262 0,216 0,185 0,175 0,165

DirectX man. v.b. [sec] 0,876 0,328 0,183 0,111 0,091 0,078 0,074 0,070

Table 24: Average rendering time (camera path near to far) for different rendering APIs (Figure 92). The 
OpenGL implementation uses OpenGL 1.1 standard vertex buffers (client memory) while the DirectX version 

uses managed vertex buffers (uploaded automatically to local video memory). This leads to a higher primi-
tive throughput. However, the fixed costs per rendering call are higher for the DirectX-based technique. 
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k = pts / b.s.l. 8 12 16 24 32 48 64 96 128

time [sec] 3.4 6.6 12.0 31.6 66.2 171.5 296.8 466.7 743.6

memory [MB] 28 29 30 32 34 40 48 67 90

boxes 706 706 706 706 706 686 668 600 550

points 7,433 18,750 33,048 70,086 118,049 235,283 379,044 730,062 1,165,057

Table 25: Preprocessing costs for varying approximation accuracies 
(static sampling, Figure 94). 

tri / leaf 64 128 256 512 1024 2048 4096 8192

rendering time 0.223 0.217 0.216 0.216 0.232 0.267 0.372 0.758

data struct. size (points) 489,560 403,908 337.208 276,382 230,450 197,663 189,113 174,228

data struct. size (boxes) 2,690 1,965 1.414 978 686 504 413 337

points / inner node 1,256 985 962 975 816 721 608 975

Table 26: Rendering time and data structure size for a varying number of triangles per leaf node (for k = 48 
pts / box side length, Figure 96). The number of points per inner node is an average for all inner nodes of the 

octree of the lowest instantiation level (i.e. the octree containing the triangles, no instances). 

time intervals 1 2 3 4 5 7 10 20

shrinking sphere: av. #points 10,064 6,588 5,820 5,316 4,968 4,612 4,315 4,060

reduction 0% -53% -73% -89% -103% -118% -133% -148%

walking man: av. #points 5,345 5,224 5,259 5,157 5,251 5,181 5,231 5,139

reduction 0,0% -2,3% -1,6% -3,6% -1,8% -3,2% -2,2% -4,0%

Table 27: The influence of time discretization for preprocessing animated geometry (Figure 97). 

k = pts / b.s.l. 1 2 3 4 5 6 7 8 10 12 14 16

1 tri/leaf 21.4 16.3 18.1 20.6 21.1 19.7 22.5 21.8 24.5 24.0 29.0 29.4

2 tri/leaf 21.4 16.6 18.4 19.9 21.3 20.1 23.3 21.1 24.7 24.6 29.5 28.9

4 tri/leaf 21.5 16.4 18.2 19.8 19.9 19.8 23.6 21.9 24.5 24.4 29.0 29.0

8 tri/leaf 24.3 16.4 18.5 19.3 21.5 20.4 23.7 22.3 24.8 24.4 29.7 29.4
 

Table 28: Rendering time for point-based multi-resolution raytracing for a varying number of points per 
octree node and different numbers of triangles in leaf nodes (near view, Figure 99).  
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k = pts / b.s.l. 1 2 3 4 5 6 

time 21.5 17.0 18.2 19.8 19.9 19.8 

Boxes 4,977,869 2,612,269 2,076,975 1,732,979 1,516,659 1,376,813 

triangles 3,226,238 1,341,287 784,107 316,475 274,027 164,419 

Points 1,672,718 2,602,813 4,319,492 6,516,030 8,232,991 9,959,157 
 

k = pts / b.s.l. 7 8 10 12 14 16 

Time 23.6 21.9 24.5 24.4 29.0 29.0 

boxes 1,284,482 1,189,630 877,366 796,987 739,874 678,828 

triangles 17,262 11,404 9,035 243,252 6,572 1,638 

points 14,370,714 15,780,875 22,699,226 29,012,277 43,001,024 51,612,532 

Table 29: The number of points, triangles and boxes that have been tested for intersection by the point-based 
multi-resolution raytracing algorithm, in dependence of the number of points per octree box side length 

(Figure 100).  
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