
Automated Support for Process
Assessment in Test-Driven

Development

Dissertation
der Fakulẗat für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Christian Wege

aus Porz am Rhein

Tübingen
2004

ii

Tag der m̈undlichen Pr̈ufung: 21. Juli 2004
Dekan Prof. Dr. Ulrich G̈untzer
1. Berichterstatter: Prof. Dr. Herbert Klaeren
2. Berichterstatter: Prof. Dr. Wolfgang Küchlin

iii

Abstract

Test-Driven Development (TDD) is a style of agile software development that has re-
ceived much attention recently in the software development community.

Agile software development methods stress the importance of software as the most
significantoutputof a development team, leading to a continuous flow of source code
changes. The view on past source code changes asinput for a better understanding of
how a team has produced the software is a topic that deserves much more attention than
it has received thus far.

In this dissertation, I claim that an analysis of past software changes can indicate
TDD process violations. I propose a tool to prepare and analyze software changes from
a source code repository. I propose process compliance indices (PCIs) to interpret the
analysis results in order to focus a manual process assessment effort.

This dissertation facilitates a better understanding of how TDD developers change
software, where they are lazy in following the process discipline, and to help them
improve their development practices.

Zusammenfassung

Testgetriebene Entwicklung (engl. Abk. TDD) ist ein Stil agiler Software-Entwicklung,
der in letzter Zeit viel Beachtung erfahren hat.

Agile Software-Entwicklungsmethoden betonen die Bedeutung von Software als
dem wichtigstenProdukteines Entwicklungs-Teams, was zu einer kontinuierlichen Ab-
folge von Quelltext-̈Anderungen f̈uhrt. Die Sicht auf vergangene Quelltext-Änderungen
alsQuellefür ein besseres Verstehen wie ein Team die Software erstellt hat, verdient viel
mehr Beachtung als sie bislang erfahren hat.

In dieser Dissertation stelle ich die These auf, dass die Analyse vergangener Soft-
ware-Änderungen auf TDD-Prozessverletzungen hinweisen kann. Ich schlage ein Werk-
zeug vor, das Software-Änderungen aus einem Quelltext-Versionsspeicher geeignet auf-
bereitet um sie anschließend zu analysieren. Ferner schlage ich Prozessbefolgungs-
Indices (engl. Abk. PCI) vor, um die Analyse-Resultate zu interpretieren und die
manuelle Prozess-Bewertung zu fokussieren.

Diese Dissertation erm̈oglicht ein besseres Verstehen, wie TDD-Entwickler Soft-
wareändern, wo es ihnen an Prozess-Disziplin mangelt und hilft, deren Entwicklungs-
Praktiken zu verbessern.

iv

Acknowledgements

I thank my supervisor, Prof. Dr. Herbert Klaeren, for his support, guidance and patience
during my studies at the University of Tübingen. I learned much from his feedback in
our bi-weekly meetings. I was amazed by both his insights and his stamina. He always
asked the right questions at the right time. And he invested his most valuable resource
on my behalf: his time.

I also thank my examiner, Prof. Dr. Wolfgang Küchlin. He inspired me to see the
value of my ideas for education and gave valuable feedback.

Being a TDD process mentor, Jens Uwe Pipka is one of the persons TddMentor aims
to support. I owe him thanks for his comments and valuable feedback on the dissertation
draft.

Frank Gerhardt was my thought catalyst on many of the ideas that came to my mind.
He helped me filter out the bad ones and keep the good ones. I also owe him thanks for
extensive feedback on my dissertation draft.

I thank Wilfried Reimann from DaimlerChrysler who enabled my sabbatical so that
I could concentrate on my research and writing. Without taking time off, this project
would not have been possible.

I also owe thanks to the participants of the doctoral symposium at OOPSLA. Doug
Lea, as the symposium chair, and his co-mentors, namely Brent Hailpern, James Noble,
Mary Beth Rosson, and Ron Goldman shared their tremendous experience. Especially
Richard Gabriel who gave “sparkling” motivation to follow my research direction.

Wim De Pauw opened the doors of the IBM Watson Research Center, where I pre-
sented my early research ideas and results. John Vlissides encouraged me to put the
rigor into my results that they now have.

I thank the participants of the “Tools I wished I had” open space during the “Dezem-
ber” meeting in Sonnenhausen — among others, Peter Roßbach and Bastiaan Harmsen.
Especially Tammo Freese who offered valuable input about refactorings and source
repositories.

Thanks to Erich Gamma, who allowed me to present my ideas and results to a
broader public at EclipseCon. Martin Aeschlimann, Keller Keller, and Michael Va-
lenta from the Eclipse development team who helped me to straighten out some issues
in my Eclipse plug-in.

Carsten Schulz-Key offered continuous encouragement. Being a doctoral candidate
as well, he provided much critical insight from a peer point of view.

Last but not least, I thank Susanne Kilian for sharing her insight into experimental
design in biology and being an invaluable source of inspiration.

v

To my brother.

vi

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Proposed Solution .2
1.3 Document Structure .3

1.3.1 Conventions . 5

2 Test-Driven Development and Agile Software Changes 7
2.1 Agile Software Development .7

2.1.1 Extreme Programming .8
2.2 Test-Driven Development .9

2.2.1 Basic Development Cycle .9
2.2.2 Interdependence of Test and Production Code11
2.2.3 Discipline and Feedback .12

2.3 Agile Software Changes .13
2.3.1 Taxonomy of Software Changes13
2.3.2 Agile Design .17
2.3.3 Evolution of Code Base .19
2.3.4 Safe Software Changes .19

2.4 Summary .25

3 Software Assessment 27
3.1 Software Process Assessment .28
3.2 Software Metrics .30

3.2.1 Software Process Metrics .32
3.2.2 Software Product Metrics .34
3.2.3 Goal-Question-Metric Approach37
3.2.4 Measurement over Time .38

3.3 Software Inspection .40
3.4 TDD Process Assessment .41

3.4.1 Retrospectives .42
3.4.2 TDD-Specific Measurements42

vii

viii CONTENTS

3.5 Summary .44

4 Thesis 47
4.1 Thesis Statement .47

4.1.1 Explanation of Keywords .47
4.2 Constraints .48

4.2.1 Constraints on the Problem .48
4.2.2 Constraints on the Solution .49

5 Detection Techniques 51
5.1 Reconstructing Integration Deltas .51

5.1.1 Fetching from Source Code Repository53
5.2 Differentiate Between Production and Test Code54
5.3 Finding Modified Methods .55
5.4 Finding Safe Software Changes .56

5.4.1 Selecting a Predecessor Method56
5.4.2 Finding Method Deltas .58
5.4.3 Identifying Refactorings .61
5.4.4 Finding Change and Refactoring Participants62
5.4.5 Discussion .63

5.5 Summary .64

6 Process Compliance Indices 65
6.1 Goal-Question-Metric Deduction .65
6.2 Test Coverage PCI .67

6.2.1 Details .68
6.2.2 Recipe for Interpretation .72
6.2.3 False Positives and Negatives73

6.3 Large Refactorings PCI .74
6.3.1 Details .74
6.3.2 Recipe for Interpretation .74
6.3.3 False Positives and Negatives74

6.4 Summary .75

7 TddMentor Architecture and Usage 77
7.1 Architecture .77

7.1.1 TddMentor as Eclipse Plug-in77
7.2 Usage .79

7.2.1 Analysis Descriptor .80
7.2.2 Calibration .81

7.3 Other Application Areas .82

CONTENTS ix

7.3.1 Teaching TDD .82
7.3.2 Refactoring Mining .83
7.3.3 Test Pattern Mining .83
7.3.4 Empirical Research .83

7.4 Future Implementation Improvements84
7.5 Summary .85

8 Case Studies and Hypothesis Validation 87
8.1 The Money Example .88

8.1.1 Analysis Setup .89
8.1.2 Analysis Results .90
8.1.3 Discussion of Results .91
8.1.4 Discussion of Case Study .91

8.2 QDox .92
8.2.1 Analysis Setup .92
8.2.2 Analysis Results .94
8.2.3 Discussion of Results .95
8.2.4 Discussion of Case Study .96

8.3 Ant .97
8.3.1 Analysis Setup .98
8.3.2 Analysis Results .98
8.3.3 Discussion of Results .99
8.3.4 Discussion of Case Study .101

8.4 Hypothesis Validation .101
8.4.1 Case Study Selection .101
8.4.2 Confounding Factors .102
8.4.3 Conclusion of Validity .103

9 Summary and Conclusions 105
9.1 Summary of Contributions .105
9.2 Limitations of Approach .106
9.3 Application Considerations .106
9.4 Areas of Future Research .107
9.5 Conclusions .108

A List of Detected Software Changes 109
A.1 Refactorings .109

A.1.1 Add Parameter [Fow99] .109
A.1.2 Collapse Hierarchy [Fow99]110
A.1.3 Expose Method .110
A.1.4 Extract Method [Fow99] [Bec03]110

x CONTENTS

A.1.5 Extract Superclass [Fow99]110
A.1.6 Move Method [Fow99] [Bec03]111
A.1.7 Reconcile Differences [Bec03]111
A.1.8 Remove Parameter [Fow99]111
A.1.9 Rename Method [Fow99] .112
A.1.10 Rename Parameter .112
A.1.11 Replace Constructor with Factory Method [Fow99]112
A.1.12 Replace Exception with Error Code112

A.2 Refactoring Participants .113
A.2.1 Add Argument .114
A.2.2 Add Leftmost Invocation .114
A.2.3 Delegate Constructor .114
A.2.4 Delegate Method .114
A.2.5 Remove Argument .114
A.2.6 Remove Leftmost Invocation115

A.3 Change Participants .115
A.3.1 Change Argument .115

A.4 Method Deltas .115
A.4.1 Add Argument .116
A.4.2 Add Leftmost Invocation .116
A.4.3 Add Parameter .116
A.4.4 Change Argument .116
A.4.5 Change Parameter Type .116
A.4.6 Change Return Type .117
A.4.7 Change Visibility .117
A.4.8 Delegate Constructor .117
A.4.9 Delegate Method .117
A.4.10 Extract Method .117
A.4.11 Move Method .117
A.4.12 Other Body .118
A.4.13 Remove Argument .118
A.4.14 Remove Leftmost Invocation118
A.4.15 Remove Parameter .118
A.4.16 Rename Parameter .118
A.4.17 Replace Constructor with Method Call119
A.4.18 Replace Throw with Assignment119
A.4.19 Replace Throw with Return119

CONTENTS xi

B List of Design Principles 121
B.1 Single–Responsibilty Principle (SRP)121
B.2 Open Closed Principle (OCP) .121

B.2.1 Closure-Preserving Changes122
B.2.2 Closure-Violating Changes .122
B.2.3 Closure-Extending Changes123

C Glossary 125

References 127

Online References 143

xii CONTENTS

Chapter 1

Introduction

Test-Driven Development (TDD) is a style of agile software development that has re-
ceived much attention recently in the software development community. A growing
number of development teams want to apply TDD in order to benefit from its advan-
tages.

1.1 Problem

TDD requires the execution of given practices with high discipline. An agile software
development team, in general, presupposes continuous feedback on many levels. Or-
ganizational tools, such as self-organizing teams and continuous delivery, are feedback
mechanisms that support a high process discipline. Some software tools (e.g. test cov-
erage monitors) serve the same purpose. Those software tools work in-process and
are typically applied by advanced TDD teams. They help a team to improve its TDD
practices alone or with external process mentoring.

An agile team also reflects about its development process at regular intervals in order
to tune and adjust its behaviour accordingly. Project retrospectives help a team reflect
over what has happened and how the work was done. TDD teams aim at improving
their TDD development practices.

The degree of discipline with which developers perform TDD practices impacts on
how the software (i.e. test and production source code in a source code repository) is
changed. This change history of a whole application contains a wealth of information
about what has happened in the past of a TDD project.

The problem is, that this information in past software changes is not leveraged for
process assessment. The picture of what has happened in the past of a development
project stays incomplete. To my knowledge, no prior work has tried to fill this gap.

It is the goal of this dissertation to show that a static analysis of these source code
changes can support TDD process assessment. I explain how to perform such an analy-

1

2 CHAPTER 1. INTRODUCTION

sis and provide tool support for this purpose.

1.2 Proposed Solution

In this dissertation I claim that an analysis of past software changes can indicate TDD
process violations. I propose (and have implemented) a tool to access such software
changes in a source code repository and have analyzed the data. This tool is called
TddMentor. I propose several process compliance indices (PCI) to interpret the analysis
results in order to focus a manual process assessment effort. Figure 1.1 shows the basic
activities and information flows.

Figure 1.1:Basic activities and information flows.The source code repository is the
primary information source. The analysis descriptor scopes the information for delta
analysis. The analysis results help focus a manual assessment effort.

The source repository contains the required source code revisions and other version
information (such as commit comments and time stamps). TddMentor recreates the
individual integration versions. An integration version is the result of a basic TDD cycle.
The difference between two consecutive integration versions is called an integration
delta. It contains the software changes that were applied during a basic development
cycle.

The analysis descriptor declares the scope of integration deltas to be analyzed and
some other information required for an automated analysis. It must be provided by the
user of TddMentor.

The delta analysis calculates and reports a number of PCIs that indicate TDD process
violations. It performs static source code analyses of the software changes in test and
production code.

1.3. DOCUMENT STRUCTURE 3

The results are provided as time series diagrams for every integration delta within
the analysis scope. For the prototypical implementation of TddMentor, some tool exten-
sions might be necessary to achieve better results. For example, at the time of writing,
the number of detectable refactoring types was biased towards the documented case
studies.

A TDD process assessor is an individual who performs a TDD process assessment.
This individual interprets the analysis results to focus the manual analysis effort of indi-
vidual integration deltas. The analysis results can indicate process violations. However,
although they can help to reduce the manual assessment effort dramatically, these in-
dications are of a heuristic nature and still require human expert judgement. When in
doubt, the process assessor discusses results with the developers.

A major advantage of this approach is that it can help development teams that did not
start with TDD process assessment in mind. It does not require any in-process support
except for the fact that the past software changes must be available and must conform to
some conventions that are described later. To some degree, this proposed approach can
emulate in-process support in retrospect.

Another advantage is that an analysis of past software changes deals with what really
happened. It is less dependent on what the developers think has happened in the past.
The developer’s remembrance could have been biased towards a misunderstanding of
the TDD development practices.

For TDD developers, the source code is the most important process output. It is also
the most important document for analysing the software design. This dissertation opens
up the source code history for reasoning with respect to the TDD process compliance.

TddMentor is a prototypical implementation of the approach proposed by this dis-
sertation. Several case studies show the validity of the research hypothesis.

1.3 Document Structure

This chapter sets the stage for what follows. It describes the problem and the proposed
solution of this dissertation.

Chapters 2 and 3 review the literature concerning TDD, agile software changes and
software assessment to motivate this dissertation’s approach. The goal of this disser-
tation is to support the assessment of TDD. The static analysis of past agile software
changes is the medium chosen to reach that goal. Software process assessments are
diagnostic studies concerning the state of a development process. Software measure-
ments of agile software changes feed the software process assessment. These software
measurements are performed on change data from software repositories.

The research hypothesis is detailed in Chapter 4.
In Chapters 5 through 7, I propose detection techniques, process compliance indices

(PCIs), and TddMentor — a tool that implements the proposed approach. Integration

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Dissertation structure.Chapters 1, 4, and 9 are the “fast track” through
this dissertation. Chapter 8 contains some case studies that demonstrate how to use the
proposed tool. Chapters depicted in parallel can be read in any order.

1.3. DOCUMENT STRUCTURE 5

deltas and safe software changes are reengineered from existing source code reposito-
ries. PCIs are software measurements over past integration deltas. They illustrate a
project’s process compliance over time. TddMentor is a plug-in for the tool integration
platform Eclipse.

The case studies in Chapter 8 validate the research hypothesis. Two case studies had
applied a TDD process. One case study serves as a counter-example.

Chapter 9 summarizes the contributions, gives a perspective on future work, and
concludes this dissertation.

Software changes which TddMentor can detect at the time of writing, are listed in
Appendix A. Appendix B lists agile design principles used in the text. A glossary of
technical terms which have not been defined elsewhere is given in Appendix C.

1.3.1 Conventions

Source code examples in this dissertation are written in Java. Most of the examples are
taken from the documented case studies. Source code, code snippets, and XML files are
rendered liketoString() .

The names of the refactorings are taken from literature where possible. If a refactor-
ing is not listed somewhere, an intention-revealing name was chosen. All refactorings,
refactoring participants, and change participants are explained in Appendix A. They are
rendered likeExtract Method.

The safe software changes are calculated from method deltas. Method deltas are
rendered likeRename Parameter. All detected method deltas are listed in Appendix A.

TddMentor program component and module names are rendered likeAST Matcher.
The names of the Java abstract syntax tree nodes correspond to the names inside the

Eclipse Java model. They are rendered in the same way as source code (e.g.Method-

Declaration).
In all UML diagrams that illustrate a source code change the following conventions

apply. The same components in different versions are distinguished via a quote char-
acter (’) which does not necessarily imply any change. Components that change are
coloured in light-grey, while new or removed components are coloured in dark-grey.

References to online resources or web sites are collected at the end of this document.
Throughout the text they are rendered like [URL:JUnit].

6 CHAPTER 1. INTRODUCTION

Chapter 2

Test-Driven Development and Agile
Software Changes

This chapter introduces agile software development and Extreme Programming as its
most prominent method (see Section 2.1). TDD (see Section 2.2) is a style of agile
software development that is an integral part of Extreme Programming but can also be
used in other development methods. Source code in TDD evolves by the continuous
application of agile software changes (see Section 2.3).

2.1 Agile Software Development

Agile software development has recently become popular.1 This agile methodology is
best exemplified by the Agile Manifesto [All01]:

We have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we value the items

on the left more.

Boehmet al. [BT03] contrast agile approaches to traditional plan-driven approaches
such as SW-CMM (see Section 3.2.1), SPICE, and Cleanroom [Cox90]. Agile method-
ologies have not yet found their way into the so-calledSoftware Engineering Body of
Knowledge[AM03], that is under development by the IEEE. The agile movement ad-
vocates more light-weight processes and encourages programmers to embrace change.

1See special issue of IEEE Computer, June 2003, Vol. 36, No. 6.

7

8 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

Instead of executing a constant plan, agile teams constantly plan their success in short
cycle times and keep an adaptive rather than a predictive mind-set.

Agile development methods have created a wealth of strategies to respond to change.
Some of the principles which help in this endeavour are “The best architectures, require-
ments, and designs emerge from self-organizing teams” and “At regular intervals, the
team reflects on how to become more effective, then tunes and adjusts its behaviour
accordingly” [All01]. Agile methods also address evolutionary delivery as one core
practice; an issue typically neglected by plan-driven approaches [Gil96].

The agile movement stresses the importance of the human side of software devel-
opment. While more traditional methods “try to remove the human factors of intuition,
emotion, creative struggle, and conflict from the software process” [CHK+97], agile
proponents promote people as non-linear, first-order components in software develop-
ment [Coc00]. Constant training is as important as regular reflections about their own
work (see Section 3.4.1).

The agile manifesto distinguishes between values (as cited above) and principles that
are based on this value system. The agile software community has explored techniques
to put those principles into practice.

2.1.1 Extreme Programming

Extreme Programming (XP) is the most prominent agile software development method.2

XP proponents see four variables to control a software development project: re-
sources, time, quality, and scope [Bec00]. An XP team tries to control resources, time,
and quality. The fourth variable depends on the other variables and cannot be controlled
directly. In practice, this means that an XP team does not have a fixed feature set at the
beginning of a project. New features are added incrementally and the customer regularly
reviews the application to refine the next incremental feature set.

XP teams share the values communication, simplicity, courage, and feedback. XP
developers communicate with the customers in the planning game; using index cards
to plan requirements as so called “user stories”. They communicate very much face-
to-face with each other in a co-located environment and through source code (in the
form of test and production code). Especially the application design but also all other
artifacts have to be as simple as possible. An XP project allows the team members to
courageously work on the application design to make it better and keep it simple. XP
developers seek constant feedback: from the automated tests, from the customer, and
from each other.

An XP team applies twelve practices that interact strongly with each other, e.g. pair
programming, continuous delivery, coding standards, sustainable pace, and Test-Driven

2See the special issue of IEEE Software, May/June 2003, Vol. 20, No. 3 or the IEEE Dynabook about
Extreme Programming [URL:Dynabook].

2.2. TEST-DRIVEN DEVELOPMENT 9

Development. While TDD is part of this development method, it can also be used in
other software development methods. It is, however, not considered to be a method in
its own right. Beck [Bec03, p. ix] categorizes TDD as a “style of development”. In the
context of XP, TDD plays an important role:

• The tests are executable specifications of the user requirements,

• they give regular feedback to the programmers,

• they communicate the intent and use of application features, and

• allow courageous refactoring of the code base.

• Each integration delta implements a new feature and

• adds to the running application as part of each integration version.

This dissertation concentrates on TDD, because the way it is performed by a team is
directly visible in the code base. Practices such as continuous delivery or pair program-
ming cannot be traced easily in the technical artifacts of a project. Also, TDD is applied
in many other agile software development methods, allowing this research to contribute
to a broader scope of projects.

2.2 Test-Driven Development

The basic development cycle of TDD (see Section 2.2.1) demands the creation of auto-
mated tests to drive the implementation of new features (see Section 2.2.2). Continuous
feedback helps the developers to hold up the process discipline (see Section 2.2.3).

2.2.1 Basic Development Cycle

Like other agile software development methods, TDD values “working software as a
primary measure of progress” [All01]. TDD also demands the creation of automated
tests as the primary driver for this working software [Bec03].

The automated tests work on the level of programming units such as methods,
classes and clusters of classes and are therefore calledunit tests. The sum of the tests
forms a test harness. Atest harness“is a system that supports effective and repeatable
automated testing” [Bin99, p. 957]. Creators of a test harness typically choose a testing
framework for the efficient creation and execution of the tests. For the Java program-
ming language, the JUnit [URL:JUnit] framework has become the de facto standard.
All case studies of this dissertation use JUnit (see Chapter 8).

10 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

In his comprehensive book about testing object-oriented systems, Binder [Bin99,
p. 41] states the classical definition ofsoftware testingas “the design and implementa-
tion of a special kind of software system: one that exercises another software system
with the intent of finding bugs.”

TDD extends the scope of software testing beyond system verification, as described
by Martin [Mar03, p. 23]: “The act of writing a unit test is more an act of design than of
verification. It is also more an act of documentation than of verification”. The evolution
of the name of the approach also reflects the extended scope of the unit tests. TDD was
formerly called “test-first programming”. That name reflected the order in which test
and production code is written in TDD. However, it neglected the most important role
of the tests to actuallydrive new functionality into the application under development
— hence the new name.

The importance of testing for application design has also been observed by oth-
ers. Eickelmannet al. [ER96] demand that “testing be initiated prior to development.”
Beizer [Bei93] observed that “the act of designing tests is one of the most effective error
prevention mechanisms known[. . .]. The thought process that must take place to create
useful tests can discover and eliminate problems at every stage of development.”

This driving of new functionality into the application goes along with its design
evolution. At any point in time the application design is only prepared for the features
that it already implements. It is not prepared for features that will be added in the future.
Moreover, TDD sets the goal to “always have the simplest design that runs the current
test suite” [Bec00]. This might require the evolution of the application design at the
end of every cycle. Martin [Mar03] lists a number of principles and patterns that are
regarded as good design (see Section 2.3.2). Refactorings can help to actually perform
the necessary design changes (see Section 2.3.4).

All the design changes are reflected directly in the source code. In the mind-set of
TDD, the “source code is the design” [Mar03, p. 87]. Design models such as UML
diagrams might help the programmers when they are designing a new feature into the
application. However, the only really accurate record of the design changes is found in
the source code.

This quest for simple design also implies that the developers “[D]on’t build for to-
morrow” [JAH00, p. 129]. The application only has to satisfy the test harness and the
design only has to be the simplest design for the current implementation and test har-
ness. This concept is known as “You Aren’t Going to Need It” [URL:YAGNI] or visible
in the desire to avoid the so-called design smell of “Needless Complexity”.3

The basic development cycle in TDD consists of the following steps [Bec03]:

3A design smells of “Needless Complexity” if “the design contains infrastructure that contains no
direct benefit” [Mar03]. If a developer anticipates future changes to the software, he/she is tempted to
introduce abstractions into the application which are meant to be used later. This adds complexity to the
application which is not needed at that time. The application is therefore harder to understand and more
difficult to change.

2.2. TEST-DRIVEN DEVELOPMENT 11

1. Red — Every development cycle starts with a new test. The objective of the test is
to drive the implementation of a new feature. After the implementation of a new
test, the developer executes the test harness to see if the new test fails (i.e. receive
a red light).

2. Green — Make tests succeed with the simplest and possibly dirty implementation.
Maybe duplicate code and violate existing abstractions. The goal of this step is to
make the test harness succeed as quickly as possible (i.e. receive a green light).
Perfective design changes are deferred to the next step.

3. Refactor — Remove duplication and clean the code. Create new abstractions
required by the new test-driven feature. The goal is to evolve the application
design into a good state for the features that have accumulated in the application.
An important observation is that the tests help to achieve a good design. In order
for the units under test to be testable individually, they must be decoupled from
the rest of the application. This is regarded as good design.

In summary, the important observation is the pivotal role of the tests. They trigger
the implementation of new functionality. Also, the application design may only evolve
as part of a basic development cycle because it needs to be driven by the tests.

2.2.2 Interdependence of Test and Production Code

The test and production code is highly interdependent. On the one hand, the tests drive
new implementations of the production code. On the other hand, new tests need to
build their fixtures by using the API of the production code. Also, refactorings of the
application design might also impact the test harness (see Section 2.3.4).

The relationship of automated tests and static analysis of program evolution has
become the subject of active research. The Echelon system can analyse the differences
between two versions in program binaries to help prioritize the automated tests [ST02].
Echelon works on the granularity of building block in binary files. It is part of the efforts
of the Microsoft Programmer Productivity Research Center (PPRC). Their mission is to
increase the programmer test effectiveness. For this, they collect information concerning
development processes and product cycles [Sta03].

A similar approach uses the program dependence graph to find differences between
two versions of a program and to select an adequate subset of the test suite [RH94]. To
compute this subset, it needs an execution trace of previous test runs. This approach,
however, assumes that the modified test suiteT ′ is a superset of the original test suiteT .
In TDD, test code evolves in the same manner as production code, and this can lead to
structural changes in the tests via refactoring.

12 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

Common to those approaches is the goal to increase the test effectiveness. How-
ever, the concern of this dissertation is to support the understanding of the development
process by leveraging the interdependence of test and production code.

2.2.3 Discipline and Feedback

The dictionary definition of discipline includes both “common compliance with estab-
lished processes” (external discipline) and “self-control” (internal discipline). Boehm
and Turner [BT03, p. 5] identified this multiple definition as a source of perplexity,
when comparing agile to plan-driven development approaches.

Typical agile methods require a high level of internal discipline [Coc02]. Even tra-
ditionalists such as Paulk assess that “agile methodologies imply disciplined processes”
[Pau02].

This internal discipline has to be applied by the ones who do the actual work in
the TDD project [BB03]. The developers have to perform the right activities without
being controlled by management. This contrasts with the external discipline applied by
more heavy-weight methods. For example, the Capability Maturity Model for Software
(SW-CMM) [Hum89] suggests the establishment of a process improvement group that
enforces the external process discipline by setting up project tracking mechanisms.

While agile approaches require a high level of internal discipline, people are very
bad at being disciplined, being consistent, and following instructions [Coc01] [Hig02].
TDD offers many areas that challenge personal discipline, e.g.:

• Every development cycle starts with a test. Not even small additions are allowed
without having completed a test first. This rule may be hard to follow, especially
in cases where a developer very clearly sees the solution but needs to invest much
more time for the creation of a test case first.

• The application may only implement what is needed to satisfy the tests and may
not contain duplication. It is hard to always perform the third basic development
step thoroughly. The tests are green and so why should one bother? Further,
developers might only be tempted to perform code reorganization in a burst if the
signs of decay have grown too big.

• Defect reports usually trigger an investigation for the defect’s reason. Being at
the spot of defect, a developer might be tempted to “fix the bug” directly. TDD,
however, demands the reproduction of the defect in the test harness. Jeffrieset al.
[JAH00, p. 161] suggest to talk about Incident Reports, or Customer Information
Requests instead of defects. They treat the defect resolution as regular develop-
ment activity, applying the basic development cycle which includes the writing of
a test first.

2.3. AGILE SOFTWARE CHANGES 13

Agile approaches apply a rich set of feedback mechanisms that help to maintain a
high level of discipline; they also help the developers learn from their own errors. TDD
can be used for Extreme Programming (see Section 2.1.1) that explicitly encourages
regular feedback on all activities. Section 3.4 discusses TDD process assessment that
provides feedback to prevent discipline decay.

2.3 Agile Software Changes

Changing software is perhaps one of the most fundamental activities in software engi-
neering [EGK+02]. Traditionally, software changes fall into one of several categories
(see Section 2.3.1) and are seen as part of a system’s maintenance phase. In agile soft-
ware development, design (see Section 2.3.2) is the result of an evolutionary process
(see Section 2.3.3) which applies unsafe and safe software changes (see Section 2.3.4).

2.3.1 Taxonomy of Software Changes

Traditionally, software changes during system maintenance fall into one of the follow-
ing categories [AGM87], [Swa76].Adaptive changesadapt a system to a new context
(e.g. operating system change).Perfective changesare intended to improve the design,
usability or non-functional characteristics of the system.Corrective changesfix faults
in the system. This taxonomy emphasises the intention of a software change.

Newer definitions extend this notion byExtending changesthat extend the function-
ality of an existing system andPreventive changesthat prepare a system for future needs
[Dum00].

The remainder of this section discusses these categories of software changes in the
light of TDD and discusses related work.

Adaptive changes

Making a software system available for end users requires roughly three steps: (1)de-
velopmentwhich creates the application software, (2)deploymentwhich moves the ap-
plication onto the production environment, and (3)productionwhich ensures the avail-
ability of the software system to the end user.

TDD, as a development style, does not deal with production and deployment. A
development method such as Extreme Programming (see Section 2.1.1) cares about the
continuous deployment of the application under development, however, TDD develop-
ers seek continuous feedback from production and deployment because their goal is
to produce a running application. This feedback contains changes of the production
environment that have to be respected in the development environment.

14 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

Perfective changes

Perfective changes are intended to improve the design, usability or non-functional char-
acteristics of a system.

Improving the design is clearly part of the third basic development step in TDD
(see Section 2.2.1). Such changes are constantly performed on the application under
development. They would not be performed without the prior introduction of some new
feature. In theory, after each basic development cycle, the application should have a very
good design and therefore such design-perfecting changes cannot occur in a stand-alone
like fashion.

Reports from practice, however, indicate that sometimes such phases are necessary.
In particular, inexperienced teams seem to have problems performing all the perfective
changes, along with the other change activities, as part of the basic development cycle
[BC01].

Improving the usability or non-functional characteristics of a system would be seen
as new feature requests. Such requests would have to run through the full basic develop-
ment cycle. In the TDD sense, such changes are seen as extending changes (see Section
2.3.1).

All new features have to be driven by tests. In practice, this point of view is not
always as easy. Testing some non-functional characteristics might be prohibitively ex-
pensive; for example, some errors in concurrent programs. Link and Fröhlich [LF03]
assess that sometimes a literature study adds more to error prevention in concurrent
programs than non-deterministic test suites.

Corrective changes

Corrective changes are meant to fix faults that have been documented in defect reports.
A TDD team takes such defect reports as regular feature requests that run through the
basic development cycle. Some TDD proponents even discourage the term “defect re-
port” in favour of descriptions such as “Incident Reports”, or “Customer Information
Requests” [JAH00, p. 161]. While this point of view has its own justification, TDD can-
not ensure an error-free application. A test-driven application has to “green-bar” against
the test suite only.

In practice, bug reports and feature requests are often stored in the same repository.
See, for example, the Eclipse bugzilla defect database [URL:EclipeBugs].

From the point of view of the analyses proposed by this dissertation, corrective
changes are indistinguishable from other changes. A new test reproduces the race con-
dition and drives the corrective changes into the system.

2.3. AGILE SOFTWARE CHANGES 15

Extending changes

Extending changes add new functionality to the system. The basic development cycle
(see Section 2.2.1) ensures that for every new functionality, new tests have to be created.
Those tests actually drive the new functionality into the application under development
and cause the extending changes in the production code. Occasionally, new or extended
abstractions (or design closure) result from these extending changes.

The termextendingis ambiguous with respect to the Open-Closed principle (OCP).
The OCP states that objects should be open for use but closed to further modification
(see a detailed discussion in Section B.2). Extensions, in the sense of this taxonomy,
can be either closure-preserving, closure-violating, or closure-extending. Note, that
closure-preserving changes extend software entities while staying inside the given de-
sign closure. Closure-violating changes modify existing software entities and violate
the existing design closure. Closure-extending changes extend the existing design clo-
sure so that future changes of the same kind can stay inside the design closure by simply
extending the existing software entities.

Extending changes have to be performed very carefully, in order not to cross the
border to preventive changes, as discussed next.

Preventive changes

Preventive changes prepare a system for future needs. To TDD developers, they are like
a “red rag”. TDD demands to have the simplest design that fulfills the current test har-
ness. Everything on top of this simplest design would smell of “Needless Complexity”.

For a TDD team, having the simplest design at any point in time is the best prepara-
tion for fulfilling future needs. Unless the customer explicitly specifies such preventive
changes, a TDD developer does not try to predict the future.

Related Work

The seminal empirical work in the area of software evolution is by Belady and Lehman
[BL76]. They studied 20 releases of the OS/390 operation system. Their observations
at that time and later [LP80], [MDJ+97] led to the postulation of “laws” of software
evolution dynamics: Continuing Change, Increasing Complexity, Self Regulation, Con-
servation of Organizational Stability, Conservation of Familiarity, Continuing Growth,
Declining Quality, and Feedback System (in order of publication). The authors and oth-
ers have provided data to validate these laws. The last law “Feedback System” stresses
the importance of feedback loops to achieve significant improvement over any reason-
able base. This observation of Lehman matches the aggregation of some agilists that
agile software development is “about feedback and change” [WC03]. Lehman’s more
recent FEAST project [MDJ+97] seeks to understand those feedback loops better in
order to improve existing software processes.

16 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

Basili et al. [BBC+96] examined 25 software system releases of 10 different sys-
tems at the NASA Goddard Space Flight Center. One focus of the study was to assess
the effort distribution for individual maintenance activities and for maintenance activi-
ties across the projects. The study used the taxonomy of Swanson, as described above,
to categorize the change types. The goal of the study was to estimate the cost of main-
tenance releases of the software system. The study argued against small releases in the
context of the software development environment. Methodologically, the authors as-
sessed that “the combination of qualitative understanding and quantitative understand-
ing has been invaluable.”

Eick et al. [EGK+01] assessed code decay in large software systems by analyzing
past change management data. In their conceptual model for code decay, a unit of
code is termed “decayed” if it was harder to change than it should have been. They
defined code decay indices (CDIs) which quantify symptoms or risk factors or predict
key responses. The process compliance indices (PCIs) of this dissertation (see Chapter
6) are similar to CDIs in the sense that they quantify symptoms found in past change
data. However, the PCIs support a TDD process assessment whereas the CDIs point to
code units that need rework.

Kemerer and Slaughter [KS99] extracted a large number of software change event
descriptions from histories or logs that were written by maintenance programmers each
time they updated a software module in the application. They proposed a classifica-
tion scheme similar to this taxonomy with more specific subcategories in each change
category. The objective of their research was to provide data for an evaluation of exist-
ing scientific theories regarding software evolution (e.g. Lehman’s “laws” of software
evolution). They envisaged, that an understanding of software changes over time could
inform current maintenance and development practice — however, they did not provide
concrete advice in that respect. Kemmerer and Slaughter and others [BR00] point out
difficulties in the collection of data concerning software evolution and the “lack of much
existing theory and models” [KS99].

Lanza [Lan03] proposes a polymetric-view called evolution matrix to visualize soft-
ware evolution. Lanza describes several specific patterns concerning how classes evolve
over time. This technique can provide a fast, high-level overview of an application’s
evolution history.

In summary, all presented approaches analyze types of software changes on different
levels of granularity in time. They all share the desire to improve understanding and
hence improve software development processes by providing general advice to software
developers. However, all described approaches fall short in giving specific technical
recommendations in sufficient detail, as proposed by this dissertation.

This revision of software maintenance activities, in the light of TDD, supports the
statement that “Software Maintenance Is Nothing More Than Another Form Of Devel-
opment” [SKN+99]. TDD is a development style of continuous maintenance; therefore

2.3. AGILE SOFTWARE CHANGES 17

the study of maintenance activities can support a TDD process assessment. The process
compliance indices proposed in this dissertation give specific quantitative guidance to
focus the qualitative work of a process assessor (see Section 3.1).

2.3.2 Agile Design

In the view of agile software developers, “the source code is the design” [Mar03, p. 87];
however, this thinking might not be shared by the broader software engineering commu-
nity. Jack Reeves [Ree92] has already explored this idea in 1992 in his article “What Is
Software Design?”. He concluded that “the only software documentation that actually
seems to satisfy the criteria of an engineering design is the source code listings”. For
the practice of agile software development, this means that (1) only the source code can
give definitive answers on any design question and (2) all design activities are directly
reflected in the source code. Software development is seen as “mainly a design activity”
[McB03, p. 96]. This attitude concerning design does not mean that more traditional
design approaches should be neglected. Agile developers just take a different view on
these approaches.

Design patterns solve common problems in object-oriented design [GHJV95]. They
capture good designs that have stood the test of time in solving problems that keep reap-
pearing, independent of the external context. Traditionally, design patterns are designed
into the system design. Design pattern collections, in the form of books [BMR+96]
[CS95b] or online catalogs [URL:J2EEPatterns] [URL:Hillside], provide a simple path
from problem to solution. The observation can be made that developers put design pat-
terns into the system’s design with a mind-set that these design patterns will anticipate
future needs automatically. This often leads to overly complex designs with too many
abstractions that will not be needed. If the future needs are not known for sure, needless
design pattern adoption complicates the design and constrains the ability of the appli-
cation under development. Another problem is that an initially well-factored design
pattern implementation might subsequently decay in response to future extensions or
bug fixes to the application. In other words, design patterns are often put into a sys-
tem design to solve a problem that does not initially exist and hence they then become
the problem. The design pattern community has addressed this issue4 by advocating
piecemeal architectural growth [Cop99].

In TDD, design patterns are the result of continuous refactoring [Ker04]. In that
sense, refactoring is seen as a type of design [Bec03]. An agile developer does not
put design patterns into the system in the same manner as design pattern snippets into
an UML diagram — calledup-front design[Wak03]. Instead, design patterns emerge
slowly from simple implementations which satisfy the test cases to abstractions that

4See special issue of IEEE Software about Architecture and Design, September/October 1999, Vol. 16,
No. 5

18 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

extract duplication from simplistic production code — calledemergent design[Wak03].
Also the TDD community regards design patterns as elements of good design. However,
they are only included in the system design if they solve a problem that is visible in the
code after the second basic development step.

The system design is the result of the application of a set of design principles that
are described for object-oriented software — possibly leading to design patterns. Those
design principles are the products of software engineering research and practice. Agile
software development adopted these principles for meeting the challenge to create the
simplest design that fulfils the current user requirements, which are manifested as tests.

One example is the Open-Closed principle (see Section B.2): “Software entities
(classes, modules, functions, etc.) should be open for extension but closed for modifi-
cation.” [Mey97] For developers that work test-driven, this means creating abstractions
in the system that allow the closure-preserving extension of software entities in the sys-
tem, as demanded by tests. The design closure should be closed against those kinds of
changes that have not yet been demanded by the test harness.

The application of the design principles is triggered by a set of design smells [Mar03,
p. 85]. Design smells are comparable to code smells [Fow99, p. 75] that trigger the
application of refactorings. In TDD, code and design smells are the result of a quick and
dirty implementation in the second basic development step (see Section 2.2.1). The third
step is concerned with cleaning code and design and therefore involves an evolution of
the system design.

In order to know which changes are likely as soon as possible, an agile development
team tries to simulate changes. One possible process looks like this [Mar03, p. 105]):

• Write tests first. Testing is one kind of usage of the system. By writing test first
we force the system to be testable. Therefore changes in testability will not come
as a surprise later.

• Develop using very short cycles — days instead of weeks.

• Develop features before infrastructure and frequently show those features to stake-
holders.

• Develop most important features first (which might be subject to change as well).

• Release early and often.

Strikingly, this process resembles the basic development cycle of TDD. The main
difference is that Martin proposed an order on the sequence of requirements. TDD does
not cover the area of requirements management. It is just a style of development to
implement a given sequence of requirements.

In summary, in agile development the design is always as good as possible to fulfil
the current requirements. The requirements are the sum of individual change requests

2.3. AGILE SOFTWARE CHANGES 19

that have accumulated over time. In other words, the design is closed to the changes
that have already occurred. The design cannot be closed to future changes. When these
occur, the agile developer extends the design closure to fulfil the changed requirements.
Typically, this means putting a new abstraction into the system that has not been there
previously. This view of software development as continuous design effort might pre-
vent a team from having to rebuild the system every few years, as recommended by Fred
Brooks [Bro95].

2.3.3 Evolution of Code Base

The code base constantly changes over time. Every basic development cycle results in
a set of changes on the local copy of the code base. Those changes are comprised as a
single integration delta. This integration delta is integrated into the common code base.
The result is the next integration version. This is the starting point for the subsequent
development cycle.

Definition 2.1
Integration delta is the summary of the code changes of one basic devel-

opment cycle to implement a feature.

Integration version is the state of the code base at the end of each basic
development cycle.

Figure 2.1 shows an example of the code base evolution of the Money Example case
study (see Section 8.1).

The Money Example is taken from [Bec03]; its integration deltas were entered man-
ually into a version control system. For the other case studies in Chapter 8, the integra-
tion deltas were reengineered directly from the commit log of the underlying version
control system. As the case studies show (see Section 8.4), this is a valid approach.

An integration delta is the implementation of a feature that is added to the code base
through a basic development cycle. Eisenbarthet al. [EKS03] also tried to find fea-
tures in source code; however, their approach was completely different. They combined
dynamic and static analyses in their calculations; this approach runs execution profiles
for usage scenarios of a program. Using concept analysis, they calculated the computa-
tional units that contributed to the implementation of a feature. It might be worthwhile
to compare their results to our more simple approach, which is based on a system’s
integration history.

2.3.4 Safe Software Changes

Safe software changes in the context of TDD are changes to an application under devel-
opment that do not need to be validated by tests. In general, refactorings are such safe

20 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

Figure 2.1:Evolution of Money Example code base.Integration deltas merge into in-
tegration versions over time. Each integration delta contains the changes of one basic
development cycle. The integration versions represent the developer’s view on the code
base between each cycle.

2.3. AGILE SOFTWARE CHANGES 21

software changes [Wak03, p. 7]. The discussion amongst TDD experts about when a
software change is regarded as safe and thus does not need a test has not yet come to an
end.5 The remainder of this section discusses a number of safe software change types.

Refactorings

A refactoring “is the process of changing a software system in such a way that it does
not alter the external behaviour of the code and yet it improves its internal structure”
[Fow99]. The key idea here is to redistribute classes, variables and methods in order
to facilitate future adaptations and extensions [MDB+03]. In essence, refactorings im-
prove the design of existing code [Wak03] [OJ90] [Opd92].

Refactorings are a very important tool in TDD because they provide a structured
way for the evolutionary design changes in the third step of the basic development cy-
cle. TDD extends the notion of refactoring in an important way. A refactoring in the
traditional sense “cannot change the semantics of the program under any circumstances.
In TDD, the circumstances we care about are the tests that are already passing” [Bec03,
p. 181]. In other words, in TDD a refactoring has to pass with respect to the existing
tests, whereas in general a refactoring has to pass with respect to all possible tests.

Definition 2.2
Refactoring is a semantic-preserving change with respect to the test har-

ness.

For example, theMove Methodrefactoring (see Section A.1.6) is triggered by the
smell that a method “is, or will be, using or used by more features of another class than
the class on which it is defined.” [Fow99, p. 142] Listings 2.1 and 2.2 are taken from the
QDox case study (see Section 8.2) and show a method before and after this refactoring.

Listing 2.1 (Method before refactoring)
public class JavaClass {

...
private boolean isPropertyAccessor(JavaMethod method) {
...

if (method.getName().startsWith("is")) {
String returnType = method.getReturns().getValue();
...

}
...

}
}

5For a lively discussion see for example [URL:WikiUT]

22 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

The isPropertyAccessor() method is moved from the source class (Java-

Class) to the target class (JavaMethod). References to entities of the source or target
class have to be adapted. Possibly a new parameter that references the source class in-
stance needs to be introduced. However, an existing parameter that references the target
class instance can be deleted.

Listing 2.2 (Method after refactoring)
public class JavaMethod {

...
public boolean isPropertyAccessor() {
...

if (getName().startsWith("is")) {
String returnType = getReturns().getValue();
...

}
...

}
}

Appendix A contains a list of refactorings referenced in this dissertation.
As discussed in Section 2.2.2, test code and production code are highly inter-depen-

dent. Therefore a refactoring of production code might require the refactoring of test
code as well, if the refactoring affects code that has been called from the tests. This
would invert the order of changes in terms of the production code driving test code.
Therefore some authors propose performing refactorings in the test code first [Pip02]
[Pip03] [DM02]. Either way, test code and production code have a strong relationship
which is sometimes visible within the refactorings. From a retrospective point of view,
it is not possible to decide what has changed first — in the context of this dissertation,
that order is irrelevant.

Refactoring participants

Sometimes, refactorings cause other methods to change as well. These other methods
might not count as refactorings but rather as refactoring participants.

An example should help clarify the concept. Listings 2.3 and 2.4 show a refactoring
participant before and after a change. The code is taken from the QDox case study (see
Section 8.2).

Listing 2.3 (Refactoring participant before method move)
public class JavaClass {

...
private void initialiseBeanProperties() {

...

2.3. AGILE SOFTWARE CHANGES 23

if (isPropertyAccessor(method)) {
String propertyName = getPropertyName(method);
...

}
}

}

Now the methodsisPropertyAccessor() andgetPropertyName() move to
the classJavaMethod — driven by a test in the current integration delta. This means
that all clients of these methods have to change. In this case, the two method calls need
an additional qualification to an instance ofJavaMethod .

Listing 2.4 (Refactoring participant after method move)
public class JavaClass {

...
private void initialiseBeanProperties() {

...
if (method.isPropertyAccessor()) {

String propertyName = method.getPropertyName();
...

}
}

}

Refactoring participants6 capture such changes; within this dissertation these are
regarded as safe changes.

Definition 2.3
Refactoring participant is a method that has to change, because a related7

method undergoes a refactoring.

Change participants

Not only refactorings can cause other methods to change. A test of an integration delta
can drive the signature change of an API method. The changed method is covered by
the test but not all clients of that changed method are necessarily covered by tests of the
current integration delta.

An example should help to clarify this concept. Listings 2.5 and 2.6 show a change
participant before and after a change. The code is taken from the QDox case study (see
Section 8.2).

6Eclipse provides an API for rename refactoring participants. Contributed plug-ins can register for
Java-like artifacts (e.g. Java Server Pages) to be informed when a related Java class undergoes a rename
refactoring. They can then apply this rename refactoring to the identifiers in the Java-like artifact.

7See definition of relationship in glossary.

24 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

Listing 2.5 (Change participant before change)
public boolean isA(String fullClassName) {

Type type = new Type(fullClassName, 0, getParentSource());
return asType().isA(type);

}

Now the third parameter type to the constructor ofType changes fromJavaSource

to JavaClassParent — driven by a test in the current integration delta. This means
that all clients of the constructor have to change. In this case fromgetParentSource()

to this .

Listing 2.6 (Change participant after change)
public boolean isA(String fullClassName) {

Type type = new Type(fullClassName, 0, this);
return asType().isA(type);

}

Change participants capture such changes. In general, change participants cannot
be regarded as safe. The change participant in this example is taken from practice and
was regarded as a safe software change by its developers, who are TDD experts. Only
the invocation argument changed — the remaining method stayed unchanged. Within
this dissertation, such a change participant is regarded as a safe change. It is actually
the only change participant type for which TddMentor implements detection code. It is
an open question if other types of safe change participants exist.

Definition 2.4
Change participant is a method that has to change, because a related method

changes and that related method is covered by tests.

A refactoring participant is some kind of change participant. It differs in the fact
that the inducing method itself was undergoing a refactoring — not only some change.

Accessors

Accessors are methods that get and set a specific instance variable. Listing 2.7 shows
an example of a pair of accessors for the variableamount .

Listing 2.7 (Accessor methods)
public int getAmount() {

return amount;
}

public void setAmount(int value) {
amount = value;

}

2.4. SUMMARY 25

In the context of this dissertation, I have assumed the creation and modification of
accessors to be safe. Accessors play an important role in the calculation of some process
compliance indices, as discussed in Section 6.2.

Technical Methods

Some Methods are needed for the sake of easier development. For example Beck
[Bec03, p. 47] writes atoString() method without a test. This method enables the
debugger in an IDE to print the value of a variable in a comfortable way. This method
does not need to be tested. However, he does note this as an exception.

I use the termtechnical methodsfor such methods.8 In the context of this disser-
tation, I have assumed the creation and modification of technical methods to be safe.
Technical methods play an important role in the calculation of some process compli-
ance indices as discussed in Section 6.2.

2.4 Summary

This chapter has presented Test-Driven Development as a style of agile software devel-
opment. TDD is an evolutionary process of applying agile software changes that are
driven by tests. The developers have to be very disciplined in performing given TDD
development practices. The next chapter introduces assessments that help keep up a
high process discipline.

8Some developers prefer the term “tool method”.

26 CHAPTER 2. TDD AND AGILE SOFTWARE CHANGES

Chapter 3

Software Assessment

Weinberg [Wei93] describes a cybernetic model of a software development project. For
Weinberg, cybernetics is the science of aiming, i.e. of how to best follow a running tar-
get. As shown in Figure 3.1, a software development system produces the software and
other outputs (e.g. greater competence with a specific technology, etc.). The controller
can change the incoming requirements and resources. This input can range from phys-
ical resources such as computers to training courses. The feedback mechanism allows
observation of the actual state of the software development system.

Figure 3.1: Cybernetic model of a software development project. Feedback allows to
control the software development system [Wei93].

The importance of feedback in order to allow control and thus to make orderly
progress is widely accepted [HSW91] [Bro95, p. 121] [Dem82b]. This chapter ex-
plains a number of techniques that have emerged over time that enable the retrieval of

27

28 CHAPTER 3. SOFTWARE ASSESSMENT

feedback from an actual software development system on the performed process and the
produced artifacts.

Software process assessment (see Section 3.1) is a structured approach for studying
the methods, tools, and practices used in a software development system. Software met-
rics (see Section 3.2) express process and product attributes in numbers. Methods and
techniques for software inspection (see Section 3.3) help understand and improve exist-
ing source code and development practices. All these disciplines find their application
in TDD process assessment (see Section 3.4).

3.1 Software Process Assessment

No matter how much a programmer is aware of the development process — he/she al-
ways executes a process to produce artifacts [McC93]. Software process assessments
study the methods, tools, and practices used by human beings for creating software
[Jon00, p. 21]. These assessments are normally carried out on-site by independent or
in-house process assessors. Process assessors normally gather the assessment data by
means of structured interviews with managers and technical personnel. Gathering as-
sessment data can also involve code inspections (see Section 3.3).

One goal of a process assessment is to identify an organization’s capability of pro-
ducing high-quality software or simply the current state of a development project.

The Capability Maturity Model for Software (SW-CMM) is one such approach at
the organizational level. It was defined by the Software Engineering Institute (SEI) to
evaluate software organizations with respect to their capability to produce high-quality
software1 [Hum89] [Hum98a] [PM90]. It defines five stages of process maturity: initial,
repeatable, defined, managed, and optimizing [PWC95]. A SW-CMM assessment by an
external assessor can lead to the certification of an organization’s SW-CMM level.

The Capability Maturity Model Integration (CMMI) extends the SW-CMM concept
for engineering processes in general [CMM02]. It has added several process areas that
encourage agility and customer collaboration [BT03].

Similar to SW-CMM is Software Process Improvement and Capability Determina-
tion [URL:SPICE]. It is a major international initiative to support the development of
an International Standard for Software Process Assessment [ISO98] [ISO03].

Process assessments for individual development projects often involve project re-
views or retrospectives [Ker01]. Such retrospectives can be part of a continuous learn-
ing experience [Ker04]. A different form of process assessment is applied by in-process
mentors that accompany a development team for some time. Their goal is to identify

1“The US Air Force asked the SEI to devise an improved method to select software vendors. [. . .]
A careful examination of failed projects shows that they often fail for non-technical reasons. The most
common problems concern poor scheduling and planning or uncontrolled requirements.” [Hum98a]

3.1. SOFTWARE PROCESS ASSESSMENT 29

weaknesses in the development practices and to improve the process.2

The objective of process assessments is to assess the quality of a development
process. The reason for performing process quality ensuring activities is the belief that
a high-quality process leads to a high-quality product [Som92, p. 592]. Assessing the
compliance to defined development practices is an important part of the quality ensuring
activities for TDD.

A process assessment is a diagnostic study and is therefore no therapy in itself. It
can identify and rank problems that need to be solved and hence can lead to a successful
therapy program. Assessing an organization’s software process before launching an
improvement effort is crucial [MPHN02, p. 185]. A process assessment is typically
embedded into a software process improvement effort as depicted in Figure 3.2. For
example, the Software Engineering Institute provides a handbook for software process
improvement with SW-CMM as assessment method [McF96]. The first step of any
process improvement effort is to diagnose the problems in the current set of practices
[Jon00, p. 38] [MPHN02, p. 185].

Figure 3.2:Basic Software Process Improvement cycle.Software process assessment
is typically embedded in a broader process improvement effort. Software Process Im-
provement should focus on problems that are perceived in the current process. (Adapted
from [MPHN02])

The diagnosed problems can either be driven by actual needs of the project’s stake-
holders or they can be driven by weaknesses within the performance of the development
practices.

2Companies such as ObjectMentor have built a business model on providing development teams with
Extreme Programming transition mentors and coaches.

30 CHAPTER 3. SOFTWARE ASSESSMENT

TDD defines a set of practices. Failure to comply with these practices can at least
limit the advantages of this development style. The approach proposed in this disserta-
tion has concentrated on this second type of problem — the identification of problems
in the performance of given practices.

Tool Support

Software process measurement tools support software process assessment. Most current
tools concentrate on process attributes that are not measurable automatically. Thus, to
a large extent, process measurement tools offer entry, calculation, storage and visual-
ization of process assessment data [Sim01, p. 38]. Even worse, most development or-
ganizations do not even bother to collect quantitative data during software development
[Jon00, p. 34]. This dissertation proposes a tool that measures, automatically, some
of the process attributes from past source code changes in order to support a process
assessment (see Chapter 7).

3.2 Software Metrics

DeMarco [DeM82a, p. 3] observed that “You can’t manage what you can’t control, and
you can’t control what you don’t measure.”

The term software metric refers to any measurement related to software development
[McC93]. Metrics are defined for measuring the software development process and the
software product [Bal98] [Pow98]. They are defined to map certain software properties
to numbers [DD99]. However, as Balzert [Bal98, p. 232] notes, software metrics can
only hint at possible anomalies (in a negative or positive sense). If used wrongly, metrics
can do more harm than good, such as when developers start to optimize the numbers
instead of following the goal for which the metrics provide the numbers.

Control and Predictor Metrics

Sommerville [Som92, p. 598] sees two kinds of metrics. Control metrics measure
process attributes to control the development process (e.g. effort expended and disk
usage). Predictor metrics measure product attributes in order to predict associated prod-
uct quality (e.g. complexity metrics for estimating the maintainability of a program).
Figure 3.3 shows those two metrics in the context of a development project.

Metrics Based on Kind of Entity

Another possible software metrics classification is the kind of measured entity. This
comprises conceptional entities (e.g. processes), material entities (e.g. persons), and

3.2. SOFTWARE METRICS 31

Figure 3.3:Predictor and control metrics.Control metrics measure process attributes to
control the development process. Predictor metrics measure product attributes to predict
associated product quality. [Som92]

ideal entities (e.g. programs) [FP96]. Accordingly, there are three kinds of software
metrics:

• process metrics — for software changing activities

• resource metrics — for process-supporting resources

• product metrics — for artifacts created by the development process

Connecting Measured to Controlled Entities

The two types of metric classifications suggest two dimensions of software metrics.
The vertical axis identifies the entities that aremeasured. The horizontal axis identifies
the entities that arecontrolled. The metrics of Fenton and Pfleeger cover the vertical
axis. The metrics of Sommerville connect entities on the vertical axis to entities on the
horizontal axis as shown in Table 3.1.

Control process Control product Control resources
Measure Process Control metrics “Conway’s law” Control metrics
Measure Product Process compli-

ance indices
Predictor metrics Predictor metrics

Measure Resources Control metrics Control metrics

Table 3.1:Measured versus controlled entities.Different metrics cover different aspects
in connecting measured entities to controlled entities, as explained below.

32 CHAPTER 3. SOFTWARE ASSESSMENT

Control metrics measure the development process and the resources needed to per-
form the process. Their goal is to optimize both the process and the resource con-
sumption. Predictor metrics measure the produced artifacts in order to predict their
behavioural attributes, possibly leading to product changes. One goal of such a product
optimization is to minimize future maintenance efforts; hence to control the resources
at a future point in time. Another goal of such product measures could be to quantify
developer expertise [MH02] and hence optimize the selection of development resources.
Conway’s Law states that a system’s architecture will mimic the organization that built
it. In other words — if you have three teams building a compiler, you will get a three-
pass-compiler [Con68] [Bro95]. Coplien [Cop99] observed that “[a]rchitecture is not
so much about the software, but about the people who write the software.”

This matrix that connects measured entities to controlled entities has two gaps.
Process compliance indices, as proposed in Chapter 6, fill one of these gaps. They pro-
vide the means to measure the product for the purpose of controlling the development
process.

In order for a metric to be useful, it must be derived from the development method.
For example, inappropriate use of software complexity measures (see Section 3.2.2) can
have large damaging effects by rewarding poor programming practices and demoraliz-
ing good programmers. Software complexity measures must be critically evaluated to
determine the ways in which they can best be used [KST+86]. The Goal-Question-
Metric paradigm (see Section 3.2.3) is a way to derive concrete metrics from the project
goals. The Orthogonal Defect Classification (ODC) paradigm [CBC+92] [BKS98]
[BMK02] provides a schema to capture the semantics of software defects. It aims at di-
agnosing various aspects of software development such as design, development process,
test and service.3

The remainder of this section reviews various software metrics and discusses their
relation to TDD.

3.2.1 Software Process Metrics

Every activity during software development can be seen as a process. The measure-
ment of such processes aims to provide a better understanding of the process efficiency
[Sim01, p. 21]. Typical process metrics include defect discovery rate, defect backlog,
test progress [BBS02], and communication metrics [DB98].

Most software process metrics (or software engineering metrics) were designed for
analyses on an organization-wide rather than an individual level [JKA+03]. The mea-
surement approaches focus on satisfying the information needs of project managers
[MC02] [EC02].

3For a current description of ODC see [URL:ODC].

3.2. SOFTWARE METRICS 33

SW-CMM sees 17 key process areas (KPAs) [PWC95]. During a SW-CMM cer-
tification, feedback is provided for each KPA, that evaluates the extent to which the
organization meets pre-established criteria in the areas of activities and infrastructure,
institutionalization, and goals. SW-CMM does not measure the development process
itself but rather provides a measure of the capability of a development organization to
perform a process.

Compared to Agile Software Development, SW-CMM puts more focus on organi-
zational maturity than on producing running and high-quality software [Orr02]. Where
SW-CMM sees quality as “following defined practices and plans”, agile methods see
quality as “essential customer satisfaction” [BT03, p. 5].

With the Personal Software Process (PSP)4, Humphrey [Hum95] [Hum98b] intro-
duced metrics on an individual level. The primary goals of the PSP are to improve
project estimation and quality assurance. The collected metrics include size, time and
defect data. However the collection of these metrics has to be performed by the de-
veloper in parallel with the regular development activities. The commonly observed
“natural resistance” [Wel93] of software developers compromises many measurement
efforts. The Team Software Process [Hum98c] and Collaborative Software Process
[Wil00] extend this approach to development teams.

Johnsonet al. [JKA+03] estimate that the adoption of continuous data gathering by
software developers, as suggested by PSP, is very low in practice. They ascribe this low
acceptance to the overhead and context switch associated with the data gathering, which
would require a very high level of personal discipline. The authors propose the use of
the Hackystat system which collects the required data automatically. In summary, their
message is that metrics collection on an individual level can only work properly if it is
not associated with overhead for the individual developers.

Weinberg [Wei93, p. 30] proposed an observational model to make sense of the
observed artifacts. This model guides the observation during the feedback process. In
detail, an observation model must tell:

• what to measure

• how to interpret this data

• how to find the significant observations

• which control actions to take

An effective observation model should be able to identify the state of a system. Knowing
this state allows a controller to take appropriate control actions.

TDD, by itself, does not define the software process metrics directly. If it is em-
bedded in a development method such as Extreme Programming (see Section 2.1.1), the

4Personal Software Process and PSP are registered service marks of Carneggie Mellon University.

34 CHAPTER 3. SOFTWARE ASSESSMENT

number of implemented user stories or task cards measure the progress of a development
team. “Team velocity” measures the productivity of a development team to implement
user stories. Elssamadisy and Schalliol [ES02] report a set of “process smells” for Ex-
treme Programming, ranging from organizational observations to technical issues. Their
smell of large refactorings is clearly due to a TDD process violation. Section 3.4.2 lists
some TDD-specific measurements.

3.2.2 Software Product Metrics

Software product metrics are calculated from the produced artifacts of a software devel-
opment process. Typically, their calculation can be performed completely automatically.
Within a development project, their goal is to predict attributes of the produced system,
such as maintainability and understandability (e.g. complexity metrics). Some metrics
try to rate the design quality (e.g. coupling metrics). Not only the production code, but
also the test harness can be the subject of software product metrics (e.g. test coverage
metrics).

Another use of metrics is in reengineering and research about software evolution
[DD99], where they support an understanding of existing systems. For example, change
metrics can be used to find refactorings [DDN00] (see also Section 5.4).

Complexity metrics

Complexity metrics try to rate the maintainability and understandability of a system
[HS96].

Lines Of Code (LOC) is perhaps the most basic metric. The size of software entities
can be seen as an indicator of their complexity. In practice, however, the calculation of
LOC bears many ambiguities. For example, LOC could be defined either as a physical
line of code or as a logical statement [Jon00, p. 69]. Humphrey [Hum97] provides a
comprehensive discussion of measurements based on LOC.

Weighted Method Count (WMC) is another complexity metric. This metric sums
up the complexity indices for all methods of a class. These complexity measures of
the individual methods are usually given by code complexity metrics such as LOC or
McCabe cyclomatic complexity [CK94] [CS95a].

The validity of such simple measurements, as indicators for actual program com-
plexity, is questionable. Therefore, some authors suggest complexity vectors which
combine several attributes [Ebe95].

Belady and Lehman [BL76] derived a “law of increasing software complexity” by
observing a number of software changes in an evolving system (see also Section 2.3.1).
Mattsson [Mat00] estimates the amount of change in future releases of a software system
based on the system’s change history.

3.2. SOFTWARE METRICS 35

Fenton [Fen94] shows that a search for general software complexity metrics is
doomed to fail. However, measurement theory helps to define and validate measures
for some specific complexity attributes.

One of the goals of TDD is to keep a program maintainable and understandable.
New features are added incrementally. The costs for adding new features must not
become prohibitively expensive. Therefore a TDD team must keep the complexity of the
application under development low. XP expresses this desire in its practices of “Simple
Design” and “You Aren’t Going to Need It”. This goal is achieved by driving the code
with tests and continuous refactoring. However, as of today, there is no comprehensive
empirical data available to support this claim.

Coupling and cohesion

Coupling and cohesion metrics try to rate the design quality of an application.
The focus of coupling models is to see how strongly components are tied together

[SMC74] [YC79]. Coupling models exist on different levels of granularity, such as
objects [CK94] and packages [Mar03]. It is seen as a good design if software entities
that implement separate concepts have few dependencies between each other.

Cohesion models describe how closely the elements of one component (typically a
class) are related to each other [CK94] [BK95]. It is seen as good design if software
entities that add to the implementation of the same concept have strong relationships
among each other.

TDD nearly automatically leads to a decoupled design [Mar03, p. 24]. In order for
the production code to be testable, it must be callable in isolation and decoupled from its
surroundings. The act of driving the production code using tests forces the developer to
decouple the application design. While TDD reduces the coupling of production code,
it introduces a coupling between test and production code. This coupling might impact
upon development and production. For example, in order to run the tests against some
test data, it must be possible to provide this data programmatically.

TDD also has an important effect on cohesion. The Single Responsibility Principle
(see Section B.1) directs a programmer to the separation of coupled responsibilities.
Robert Martin paraphrases this principle with: “A class should have only one reason to
change.” Each responsibility is an axis of change. Mixing responsibilities means mixing
axes of change. If the implementation of a new feature touches one such responsibility,
then — in theory — it will be extracted into a new abstraction by removing duplication
in the application (see Section 2.2.1). Separated responsibilities would be decoupled —
thus increasing the cohesion of the separated entities.

As of today, the literature does not provide comprehensive empirical evidence con-
cerning these two positive effects of TDD on coupling and cohesion.

36 CHAPTER 3. SOFTWARE ASSESSMENT

Test coverage

Test coverage5 is the percentage of elements required by a test strategy that have been
exercised by a given test harness [Bin99, p. 52]. Many different test coverage mod-
els have been proposed [KFN93] [Bei93] [ZHM97] [Mil88]. Test coverage is either
specification-based or code-based. Some of the most well-known code-based coverage
models are as follows:

Statement Coverageis the percentage of all source code statements that were touched
at least once during a run of the test harness. A statement coverage of 100% does
not guarantee the absence of errors.

Branch Coverage is the precentage of all prossible branches in a program that were
touched at least once. It is a stronger criterion than statement coverage but still
does not guarantee error free code.

Path Coverage is the percentage of all possible paths — combinations of branches —
that were touched at least once. Still a 100% path coverage does not guarantee
error-free code.

Commercial tools typically calculate statement coverage [LF03]. The capabilities of
more sophisticated test coverage tools are limited by polymorphism and dynamic class
loading. The use of test coverage tools is vigorously discussed in the TDD community.
On the one hand, a program emerging from a TDD process should have a very high test
coverage. On the other hand, if controlled by a tool, people tend to optimize the metric
rather than the goal [LF03]. And even worse, a high test coverage does not guarantee
that the unit tests really test the core of an application and express the intent of the user
stories appropriately. Low test coverage is, however, an indicator that the developers
did not work properly.

Code-based test coverage tools can either work dynamically or statically. Dynamic
tools observe a program while executing its test harness (e.g. Clover [URL:Clover],
Hansel [URL:Hansel], JXCL [URL:JXCL]). Some tools (such as Clover) instrument the
source code by weaving in coverage measuring aspects. Other possibilities (at least in
Java) are instrumentation of byte code or the use of the Java Virtual Machine debugging
interface. Static tools (e.g. NoUnit [URL:NoUnit]) calculate the test coverage by static
analysis of the source code only. They use models such as control flow graphs [FOW87],
program dependence graphs [BH93], or program slicing [Bin98].

5Test coverage is sometimes called test adequacy criteria since it expresses how adequately a test
harness tests entities of a program.

3.2. SOFTWARE METRICS 37

Other Software Product Metrics

Halstead [Hal77] was one of the first to describe source code metrics. His metrics work
on a very low level. They take into consideration operands and operations to calculate
some numbers which are meant to indicate the complexity of a software module. Be-
sides the critique they received from [HF82] they do not seem to be of great value for
finding potential process compliance indicators.

3.2.3 Goal-Question-Metric Approach

Organizational assessments such as SW-CMM (see Section 3.2.1) start with a set of
practices and issues that are considered to be critical in the production of software.
They then evaluate the extent to which interview and documentation evidence supports
the presence or absence of required criteria elements. Experiences with such criteria-
oriented assessments are mixed. For example, some software organizations aimed at
optimizing the assessment scores but did not achieve meaningful performance improve-
ments [WBP+02].

Basili and Weiss [BW84] [WB85] proposed the Goal-Question-Metric (GQM) ap-
proach for stepwise refinement of a quality model. “GQM is based upon the assumption
that for an organization to measure in a purposeful way, it must first specify goals for
itself and its projects; then it must trace these goals to the data that are intended to define
those goals operationally; and finally it must provide a framework for interpreting the
data with respect to the stated goals.” [BCR02]

The measurement model has the following three levels (see Figure 3.4):

Goal Goals are defined in terms of purpose, perspective and environment. The ob-
jects of measurement are products, processes, and resources (see classification of
metrics above).

Question For the objects of measurements, questions try to characterize these objects
in terms of selected quality issues.

Metric Each question is associated with a set of metrics which should answer the ques-
tion in a quantitative way. Metrics can be objective or subjective and can be shared
among questions.

GQM has found its application in practice and research. For example, Demeyeret
al. derive change metrics from the goal to detect refactorings [DDN00]. The Avaya
Software Assessment Process [WBP+02] is a goal-oriented process that borrows many
concepts from GQM. It combines structured interview with the analysis of change data,
combining aspects of SW-CMM assessments with quantitative analyses.

Over time, GQM has evolved into the Quality Improvement Paradigm (QIP). This
consists of a mechanism for feedback in a software development organization in order

38 CHAPTER 3. SOFTWARE ASSESSMENT

Figure 3.4: Goal-Question-Metric Hierarchy.For every goal, a number of questions
are derived. These questions are answered using a combination of software metrics.
[BCR02]

to ensure that results learnt from one project could be applied to future projects. The
next evolutionary step was the Experience Factory (EF). EF is a learning organization
model used in increasing the understanding of development problems, characterizing
the current environment, and developing and testing proposed alternatives to solve these
problems [BMPZ02].

Section 6.1 provides the GQM deduction for the metrics in this dissertation.

3.2.4 Measurement over Time

Some metrics only make sense if they are observed over time. For example, the plain
number of touched modules in a new release of a software system contains little valuable
information. However, if the fraction of touched modules continuously grows for suc-
cessive releases, then this observation can be taken as a sign for increasing complexity.
Based on this observation, Belady and Lehman [BL76] stated the “law” of increasing
complexity for evolving software systems (see also Section 2.3.1).

Other metrics change their meaning if they are depicted over time. For example,
Weinberg [Wei93, p. 67] observed that “One measurement of user satisfaction is, of
course, a product measure, but plotting the trend of several measurements of user satis-
faction over time or across different products creates a process measure.”

Biemannet al. [BSW+03] analyzed a large number of versions of some systems.
Their interest was to explore the relationship of software changes to design structures.
They provide insight into the actual use of design patterns over the course of a system’s
evolution.

Weisset al. [WBP+02] extract data from modification requests (MRs) that describe
software changes to a system. The MRs are held in a database, parallel to the source
code version control system. Examples of extracted data include time, effort, MR ex-
tent, developer experience, and history of files being changed. Some information is also

3.2. SOFTWARE METRICS 39

extracted from the source code version control system, however the authors do not per-
form any source code measurements. They perform statistical analyses on the raw data,
possibly over a time span of several years. The authors observed that it is critical to
discuss the interpretations of the data with those familiar with the project’s history. In
parallel to the analysis, the data are stored in a “data mart” for future comparisons. This
data mart is comparable to the Experience Factory paradigm (see Section 3.2.3).

Mockus and Herbsleb [MH02] analyzed change histories to quantify developer ex-
pertise. Similar to Weisset al. they extracted data from a modification request (MR)
database and the source code version control system. Data from the version control
system was only used to correlate source code deltas to the author of that delta.

Gall, Jazayeriet al. [GJKT97] [GHJ98] applied several kinds of analyses of change
data of a Telecommunications Switch System to find potential architectural inadequa-
cies.

Kan et al. [KPM01] collected in-process metrics over time which helped to decide
when a product could be shipped. However, they only collected process metrics that
could not be extracted from the source repository.

Axes of Aggregation

Eick et al. [EGK+01] pointed out the importance of positioning an empirical study on
the two axes of aggregation: the axis of module decomposition and the temporal axis of
change.

On the axis of module decomposition, you find entities such as line, type, file, pack-
age, subsystem, system. Most approaches to software product measurement work on
this axis for the most recent version of the system (see also [Sim01]).

Software evolution studies are positioned on the temporal axis. The entities on the
temporal axis range from simple file deltas, modification requests, initial modification
requests, feature requests [EGK+01] to product releases [BL76].

For this research on TDD, the interesting units of aggregation on the temporal axis
are the integration deltas. They contain the changes from one basic development cycle.
On the axis of module decomposition, this research deals with individual methods and
classes. At the time of writing, no higher-level abstractions were taken into account,
and no further distinction between regular feature/modification requests and production
releases was made.

Tool Support

A first set of generally available tools has appeared that allow the ongoing collection of
metrics over time.

For example, JMetra [URL:JMetra] can collect some simple metrics over time. It
can even be configured for metric continuity over package and class name changes.

40 CHAPTER 3. SOFTWARE ASSESSMENT

However, there are no heuristics implemented for an automatic mapping of changed
names and this has to be configured manually.

The tool support proposed by this dissertation allows the reconstruction of past inte-
gration versions and deltas from a CVS source code repository [URL:CVS]. Identifica-
tion of the integration deltas is the basis for the proposed process compliance index cal-
culations (see Chapter 6). TddMentor applies a heuristic, to connect renamed or moved
entities, across such changes. Furthermore, the reconstruction of integration deltas can
be used to calculate the completion rate of “todo pragmas” in the source code.

3.3 Software Inspection

Software inspections are peer reviews of a programmer’s work to find problems and
improve quality [Hum95, p. 171]. They are based on Weinberg’s [Wei71] concept of
egoless programming. Weinberg refers to cognitive dissonance as the human tendency
to self-justify actions. This tendency limits our ability to find errors in our own work.
Software inspections, by peers, help overcome this limitation.

Software inspections were originally introduced by Fagan [Fag76] as a method of
finding errors in design and code. In 1976, Fagan assessed the beneficial influence of
software inspections for a “constant process improvement” through removal of systemic
defects [Fag86]. This lead to the dual objectives of the inspection process [Fag01]:

• Find and fix all defects in the product, and

• Find and fix all defects in the development process that gives rise to defects in the
product (namely, remove the causes of defects in the product).

Fagan emphasised the importance of tool support for software inspections (like syntax
error compiler flags and LINT-type compiler tools) so that the human inspectors can
focus their efforts on the more intellectually challenging aspects.

Despite the dual objectives of the inspection process, recent empirical research has
focused mainly on detection of software defects of the product [PV94].

The types of software artifacts submitted to an inspection process typically includes
requirements documents, design, code, test cases and more [GG93] [Won02].

The discipline of code reading has established a number of techniques that help with
the understanding of large amounts of source code. See, for example Spinelli [Spi03],
who compares code reading with the way an engineer examines a machine. Code read-
ing not only enforces programming standards, but facilitates a quicker understanding of
the existing system. Understanding Open Source software is just one possible area of
application.

Basili et al. [BGL+96] propose to read artifacts from a specific perspective (e.g.
tester, developer, user). They evaluated their approach of perspective-based reading for

3.4. TDD PROCESS ASSESSMENT 41

defect detection in requirements documents. The authors see strong similarities to that
of reading source code.

Dunsmoreet al. [DRW02] extend reading techniques to object-oriented software.
Object-oriented software is inherently less accessible for reading techniques due to its
delocalized nature. The Famoos project [DD99] collected some patterns for object-
oriented software reverse engineering.

For a TDD developer, software inspections and reading techniques are tremendously
important, because in TDD the source code is the only reliable source of reference. In
the context of Extreme Programming, programming is performed by pairs of developers.
This so-called pair-programming [WK02] is a kind of continuous software inspection
or peer review. Another important XP practice is “collective code ownership”, which
leads to a continuous inspection of other team members’ code.

For a TDD process assessor, inspection techniques are even more important, because
he or she is confronted with all the source code as a whole, whereas a TDD developer
can build up knowledge of the source code incrementally. The tool proposed by this
dissertation helps a TDD process assessor focus the assessment effort on those areas in
the source code that are likely to be troublesome.

3.4 TDD Process Assessment

A team of developers might state that they work in a TDD manner while the process
actually performed proves to be different. As cited in [Pau02], Robert Martin reported
an incident of such method misuse at the 2001 XP Universe conference. Someone
from a software organization claimed they were doing Extreme Programming with the
argument that they did not document anything. Process assessment cannot only help
uncover such massive method misuse but can also help uncover more minor forms of
misunderstanding of a development method.

Maximilien and Williams [MW03] document the assessment of a TDD project. The
developers were inexperienced in TDD and needed an introduction to this style of de-
velopment. The project was closely monitored because it was the first TDD project in
this development’s organization. One experience of the authors was that the developers
needed continuous encouragement to add unit tests to the system, for new features and
bug fixes. Therefore, the process assessors set up a monitoring system that reported the
relative number of unit tests for every subsystem. The developers needed a third of the
overall project time until they appreciated the test harness.

The remainder of this section discusses retrospectives and measurements as concrete
techniques for performing a TDD process assessment.

42 CHAPTER 3. SOFTWARE ASSESSMENT

3.4.1 Retrospectives

One of the major contributions of agile methodologies is the emphasis on the team to
organize itself. This contrasts to most traditional development methodologies. Cock-
burn [Coc01] argues that the people involved in the development process are the most
important factor in guaranteeing the success of a project. Boehmet al. [BT03] empha-
sise that “agile retrospectives and reflections enable continuous process and technical
improvement.”

The self-organization can be driven by interviews, post-increment workshops, post-
morta, post-parta, project reviews, and study groups [Coc98] [Ker01] [Ker04] [Hig00].
They aim at harvesting the experiences made by the team members throughout the
project. Some agile methodologies advocatepair programmingas an extreme form
of such reviews where two programmers constantly review each other [WK02] andcol-
lective code ownershipwhere the developers review the other team members’ code con-
tinuously.

Such retrospectives typically concentrate on the established tracking mechanisms
and personal experiences of the team members [Ker01]. Usually, there are only a few
documents available describing the project’s evolution because agile methods, espe-
cially TDD, value running software over comprehensive documentation. The collected
assessment data are more qualitative than quantitative.

In this spirit, TDD retrospectives are comparable to traditional process assessments
which collect assessment data by interviewing project members. The agile manifesto
[All01] adds the principle of self-organization, where teams reflect at regular intervals
on how to become more effective.

3.4.2 TDD-Specific Measurements

The retrospective activities outlined above provide more qualitative observations about
the state of a development process. TDD-specific measurements allow the derivation of
more quantitative observations from the produced source code. Here is a list of some
TDD-specific measurements:

Test Coverage For Integration Deltas: Typically, current test coverage tools concen-
trate on determining the test coverage of the most current integration version.
Such tools neglect the process aspect of building a highly covering test harness,
piece by piece.

Every change in the production code is driven by tests. Hence every production
code change in every integration delta is covered comprehensively by the tests that
were added or changed in that integration delta. The only exception are refactor-
ings and other safe software changes (see Section 2.3.4). They do not have to be
covered by tests.

3.4. TDD PROCESS ASSESSMENT 43

Some advanced TDD developers regularly generate test coverage reports during
development [Ast03, p. 419], for example as part of the nightly build process.
Such regular reports would identify process-violating integration deltas very quickly.
However, such practice cannot be expected commonly. A retrospective analysis
of past integration deltas reveals similar insight as a continuous observation.

This metric is actually one of the PCIs discussed in Chapter 6.

Test Code Versus Production Code Ratio:Beck [Bec03, p. 78] observed that “You
will likely end up with about the same number of lines of test code as model code
when implementing TDD.” Astels [Ast03, p. 418] reports a typical ratio of test
code to production code between 1:1 to 2:1.

This test code must be available during daily development. Actually, one of the
regular requests in TDD process assessments is to show the tests.6 Occasionally, a
team fails to show the tests. Some modern project management tools like Maven
[URL:Maven] even have a separate tag for identifying test code.

Continuous Integration: The rule to check in only clean code leads to the attitude that
developers try to integrate and commit as soon as possible. They do not want their
tests to get broken by other programmers’ changes. In practice, this means that a
developer commits rather small amounts of changes. In TDD, the smallest amount
of cohesive changes is the implementation of a new feature because in order to
allow for a commit all tests must run and all duplications must be removed by
refactoring. Thus, an analysis of the commit log should show that the integration
deltas are neither too small nor too big.

Changes per refactoring: Beck [Bec03, p. 85] expects the number of changes per re-
factoring to follow a “fat tail” or leptocurtotic profile [Man97]. Such a profile
is similar to a standard bell curve but the distribution is different because more
extreme changes are predicted by this profile than would be predicted by a bell
curve. Beck does not provide proof for this statement but points to a possibly
fruitful area of research. This dissertation supports such a kind of research by
providing a way to identify the integration versions in real world TDD projects
and detect refactorings in past software changes.

Large refactorings stink: Elssamadisy and Schalliol [ES02] report a set of process
“smells” for Extreme Programming ranging from organizational observations to
technical issues. Relevant to this dissertation is the smell of large refactorings.
Elssamadisy and Schalliol describe this smell as follows: “Basically, the premise
here is that if you find yourself having to do large refactorings then you should

6Personal communication with Peter Roßbach, a professional TDD assessor.

44 CHAPTER 3. SOFTWARE ASSESSMENT

have done many smaller refactorings earlier and you got lazy.” There are, how-
ever, exceptions to this rule. Sometimes a big refactoring might be necessary due
to a customer request or a technical issue.

This dissertation covers that “smell” as a process compliance index in Section 6.3.

Low Coupling, High Cohesion: Low coupling and high cohesion (see Section 3.2.2)
is generally regarded as good object-oriented design [Boo94, p. 136]. It is, how-
ever, a goal which is hard to achieve. Writing tests first helps to reach that goal.
Being able to perform each test in isolation as good as possible requires the fea-
ture under test to be decoupled from the rest of the system. Also the desire to
minimize fixture code in the automated tests requires a high degree of cohesion
of a feature in production code [Bec03, p. 125] [Mar03, p. 24]. Elssamadisy and
Schalliol [ES02] report a similar smell of extensive setup and teardown functions
in test code.

Typically, high coupling and low cohesion indicates that the refactoring step was
not performed thoroughly enough.

Use Of Advanced Testing Techniques:Test-driving every single change to a system
requires advanced testing techniques in many cases. The literature contains a
number of advanced testing techniques such as Mock Objects, Crash Test Dum-
mies, Self Shunt, etc. [Bec03] [LF03].

The absence of advanced testing techniques might indicate that not all changes to
a system were actually driven by tests.

3.5 Summary

This chapter has presented a number of software assessment approaches.
Software process assessments are diagnostic studies that identify the current state of

the development process. While such assessments can be supported by software process
metrics, they tend to give a high-level qualitative picture of the development process
rather than providing concrete suggestions for improving the development practices.

Software product metrics try to quantify some product properties. However, they are
mainly used to predict product and resources attributes. They are not used for reflection
about the development process that has produced the product.

Section 3.4.2 lists some TDD-specific measurements. They have in common that
they (1) can be performed on the actually produced source code and (2) to a great extent
leverage the distinction between test and production code. That way an application’s
source code can become subject to TDD process assessment in addition to rather quali-
tative retrospectives.

3.5. SUMMARY 45

Some of the measurements become process metrics by measuring product attributes
over time. This means that, in order to be feasible, any analysis must identify the indi-
vidual integration deltas from a project’s past.

The analysis of past source code changes for process assessment has not yet been
subject to extensive research. Yet in TDD, the source code repository is one of the
best resources to find out what has happened in the past of a project because a TDD
team focuses on running software as the most important artifact that emerges from a
development process.

Such analyses require tool support to focus the assessment effort. Especially the
source code repository withstands a comprehensive manual inspection due to the vol-
ume of information.

This dissertation proposes a tool to support such assessments as outlined in the next
chapter and detailed in the remainder of this document.

46 CHAPTER 3. SOFTWARE ASSESSMENT

Chapter 4

Thesis

This chapter states the research hypothesis, explains the keywords, and lists the con-
straints of this dissertation. The subsequent chapters will detail the proposed approach
and validate the research hypothesis.

4.1 Thesis Statement

In a Test-Driven Development context, a software process assessment can
benefit from a static analysis of past source code changes. It is possible to
provide automated support for this analysis.

4.1.1 Explanation of Keywords

Test-Driven Development is a style of development that has recently become popu-
lar. Like other agile software development methods, it values “working software as a
primary measure of progress” [All01]. Test-Driven Development (see Section 2.2) also
demands the creation of automated tests as the primary driver for this working software
and continuous refactoring [Bec03].

Software Process Assessmentsare diagnostic studies that can identify and rank prob-
lems in a software development project that need to be cured. They are normally carried
out by on-site independent assessors that gather qualitative information about the prac-
tices, methods, tool suites, and organizational structures used for software development
(see Section 3.1).

Past Source Code Changesare software changes to an application that have hap-
pened in the past of a project. They are stored in a source code repository. An integra-
tion delta consists of a number of source code changes (in test and production code),

47

48 CHAPTER 4. THESIS

bundling a cohesive piece of functionality. Each integration delta is the result of a basic
development cycle (see Section 2.2.1). An integration version is the sum of all integra-
tion deltas that had been integrated into the application over time.

Static Analysis calculates some software product metrics on the integration deltas
(see Chapter 5). This static analysis does not require an executable application for
the individual integration versions. The calculated metrics are composed to process
compliance indices (see Chapter 6). The process compliance indices help find process
violations and focus the assessment effort during process assessment.

Automated Support is provided by the tool TddMentor (see Chapter 7) that was de-
veloped as part of this research. TddMentor is the vehicle with which a software process
assessor would perform the outlined analyses. In its prototypical state, TddMentor
helped to validate the research hypothesis using the analysis of a number of case studies
(see Chapter 8).

4.2 Constraints

This section discusses constraints on the problem and the proposed solution.

4.2.1 Constraints on the Problem

Lack of formalization. There are numerous publications about TDD, but there is cur-
rently no rigorously formal description of its techniques in detail, or their interaction
and impact on the created source code. Jackowski [Jac03] proposed a process descrip-
tion meta-model; however, it does not allow the required level of detail. Recent efforts
in the area of software development patterns [GMR+02] [Cop97] [HG04] are promis-
ing. The literature also contains approaches to describe a software development process
as interacting agents [PB02], finite state machines [BFL+95], or in terms of differential
equations [CDM02].

A process assessment supported by analysis of past source code changes will al-
ways require expert judgement. A completely automated assessment is not possible.
The calibration and interpretation steps are intrinsically manual steps. This dissertation
proposes an approach that should help process assessors focus their analytical effort on
the integration deltas that are potentially process-violating.

Experts’ dispute. Elements of TDD have been well-known for some time now (e.g.
unit tests, principles of good design, etc.). However, the comprehensive description of
TDD as a development style is relatively young. The expert debate concerning all the

4.2. CONSTRAINTS 49

details of TDD has not yet come to an end. For example, there is still no generally
accepted guideline for when tests can be omitted. Beck [Bec03, p. 194] discusses one
guideline that demands to “write tests until fear is transformed into boredom”. In the
discussion he becomes more specific about the issue but still leaves some questions
open. The QDox case study discusses one such incident (see Section 8.2.2).

Programming tasks that are hard to test. TDD generally assumes that new features
have to be driven by tests into the application under development. Then the tests can
demonstrate the availability of the new feature. This might be prohibitively expensive.
Examples are security software and concurrency, where such a demonstration can be
very hard to achieve within reasonable work effort. Some of the most important algo-
rithms in this dissertation rely on the fact that new features are actually test-driven. This
might restrict the applicability of the proposed approach or at least might impact on the
accuracy of the reported results.

4.2.2 Constraints on the Solution

Concentration on Test-Driven Development. This research explicitly concentrates
on TDD. Other agile software development methods might benefit from similar ana-
lytical approaches as those described here. TDD concentrates specifically on tests and
on how they drive new features into the system. This is very accessible for the pro-
posed analytical approach. Other development methods have a much broader spectrum
of activities that might not be as accessible.

Statistical bandwidth. This research does not carry out a broad statistical evaluation
of a large number of TDD projects. It concentrates on a few case studies to show the
validity of the research hypothesis. A broader evaluation might add to the knowledge
about TDD and other agile methods in general. TddMentor would enable future projects
to attempt such an undertaking.

Identification of integration versions. The analysis requires the identification of the
individual integration versions. The explicit declaration of such integration versions,
by the developers, is the exception rather than the rule. Some authors list examples
of stored change management data [EGK+01] [MEGK99]. I did not find any publicly
accessible TDD project that had stored change management information in sufficiently
fine detail required for this research. Therefore, TddMentor reengineers this data from
the information in the source code repository (see Section 5.1). The assumptions of the
reengineering algorithm for finding the integration versions are met by the documented
case studies and by a few more projects that have been screened during this research.
However, there is no guarantee that these assumptions apply in general.

50 CHAPTER 4. THESIS

Concentration on source code. The proposed solution concentrates on Java source
code and neglects all other produced artifacts (except from the version information of
the Java source files). For example, it ignores specification files from which source
code could be generated. It also ignores build information which would control the
processing of such specification files. These omissions lead to the introduction of new
concepts such as span claims (see Section 6.2). The QDox case study discusses one
such incident (see Section 8.2.2).

Static program analysis of source code only. TddMentor performs only static pro-
gram analysis. It does not have the capability to build and run the individual integration
versions. This prohibits assessment tools that hook into the program execution, such as
some test coverage calculation tools, and therefore it restricts the capability to calculate
the process compliance indices in terms of a theoretical respect. Also, many analysis
tools work on compiled binaries that TddMentor can not produce. This restricts the
analytical capabilities for the calculation of process compliance indices in a practical
respect.

Detection of safe software changes.The proposed algorithm for calculating test cov-
erage requires the detection of refactorings and other safe software changes in source
code (see Section 5.4). A detection algorithm had to be developed as part of this re-
search. It works well for the evaluated case studies but is not tested on a broader range
of safe software changes. The proposed algorithm can, however, facilitate further re-
search on the topic of detecting refactorings.

Chapter 5

Detection Techniques

This chapter describes a number of detection techniques that help find and understand
changes in source code on various levels of abstraction. This understanding of source
code changes is required for the calculation of the PCIs in Chapter 6.

At the most basic level, individual integration deltas are reconstructed from the
source repository (see Section 5.1). The PCI calculations require the distinction be-
tween test and production code (see Section 5.2). PCIs are calculated for added and
changed methods; they are not directly managed by the source repository (see Section
5.3). Safe software changes, such as refactorings, have to be detected in past software
changes (see Section 5.4).

5.1 Reconstructing Integration Deltas

The most basic level is to reconstruct the individual integration deltas and versions (see
Section 2.3.3) of a program. An integration delta is the sum of the increments that are
added together to the system in order to implement a new feature. An integration version
is the sum of all integration deltas from the beginning of the project. All the projects
in the scope of this research use CVS as their version management system. CVS stores
every individual revision of each file. Tags typically combine specified file revisions of
a baseline. Individual integration versions or deltas, however, are not tagged. Given the
agility of the development method, a record of integration deltas is very unlikely to exist
(for example, in Extreme Programming, task cards are typically physically destroyed
after their implementation).

This dissertation assumes that all commits of one integration delta

• use the same commit comment and

• are commited in close temporal proximity.

51

52 CHAPTER 5. DETECTION TECHNIQUES

This way it is possible to reconstruct each individual integration delta from the revi-
sion log of the underlying CVS. This assumption is supported by the documented case
studies (see Chapter 8).

Another proof for this assumption is provided by the version management system
Subversion [URL:SVC]. It aims at being a “a compelling replacement for CVS”. Com-
mits of a number of files are atomic, and revision numbers are per commit, not per file.
Subversion contains a tool that migrates CVS source code repositories to Subversion.
This migration needs to identify those CVS file revisions that were committed together
— operationalizing exactly the assumptions from above. Also, some TDD developers
use Subversion in combination with an XP project planning tool and link user stories to
the Subversion revision that contains their implementation.1

The proposed approach for reconstructing the integration deltas from the revision
log was inspired by StatCvs [URL:StatCvs]. StatCvs analyzes a given revision log and
constructs, what it calls, a commit log. Yet, this basic approach needed to be extended
in several ways.

In some cases, it is necessary to deal with several CVS modules at one time. An
application could consist of several Eclipse plug-ins (where each plug-in resides in a
separate CVS module). Also, a separate test plug-in resides in its own CVS module (see
Section 5.2). Hence, the first extension over StatCvs is to deal with multiple modules
at the same time and correlate the entries of multiple revision logs. The criteria for
analyzing a single module apply to this case as well. A different approach might be
the use of CVS aliases [Ced93, p. 129]. A CVS alias allows the combination of several
CVS modules to one combined module. The only remaining issue then might be the
identification of the test code (see Section 5.2).

The analysis also needs to access the actual source code of the individual integration
versions — it is not sufficient to use the names and revisions of the individual files only.
More specifically, it needs to have access to multiple integration versions because it
analyzes source code changes over time. In a way, this means running CVS backwards
stepwise and storing each of the steps at a specific location (see Section 5.1.1).

A program not only consists of source code but also of artifacts of other types.
Examples are images, libraries, grammar specifications for a compiler compiler, etc.
TddMentor concentrates solely on Java source code. It has to filter out the undesired
artifacts. However, the build process of the application under inspection might apply
some code generation techniques to create necessary source files. It does not have the
means to generate those source files because it does not run the program’s build process.
This policy leads to problems in the construction of the call graph (see Section 6.2).

1Personal communication with Jens Uwe Pipka, a professional TDD developer.

5.1. RECONSTRUCTING INTEGRATION DELTAS 53

5.1.1 Fetching from Source Code Repository

TddMentor contains a component calledIntegration Reducer which is responsible for
fetching the integration versions from a source code repository. It saves network band-
width by reducing the accesses to CVS to a minimum, as explained below.

TheIntegration Reducer computes the commit log from the CVS revision log. Each
commit log entry contains the file names that are different between the two integration
versions — which is basically the integration delta. To be able to fetch the whole inte-
gration version, theIntegration Reducer needs to know about all files and their revisions
— not only the changed ones.

The commit time stamp identifies each integration version as stated in its integration
delta. TheIntegration Reducer computes a data structure that contains all file names
and their revisions for a specified integration version. It starts with an empty set of files.
It then applies every integration delta up to the specified integration version. At this
stage, the integration deltas are only applied to the internal data structure — no files are
fetched from the source repository yet. TheIntegration Reducer scrolls forward in the
project history, up to the so called analysis head.

Definition 5.1
Analysis head: The most recent integration version in the analysis scope.

It is declared by the project-specific analysis descriptor.

This analysis head can be checked out from CVS using its standard API. TheIntegration
Reducer creates a separate Eclipse project for every integration version (called integra-
tion project). If the application under inspection consists of a number of modules, then
every integration version will consist of the same number of integration projects.

Each integration project is named uniquely by appending the commit time stamp to
the name of the application under inspection.

Now, the integration projects that precede the analysis head must be created. The
difference between two integration versions is located in a few files, as stated by the
integration delta. To save network bandwith, theIntegration Reducer copies the current
integration project’s contents and only fetches the changed files from CVS. It scrolls
backwards in the project’s history. Files that are added in the integration delta have to
be removed. Files that are deleted in the integration delta have to be added from CVS.
Changed files have to be reduced to their previous revision. These activities give this
TddMentor component the nameIntegration Reducer.

The motivation for the scroll forward — scroll backwards approach is that, typically,
a process assessor is most interested in the analysis head and its closest predecessors.
They are the most current integration versions and are therefore the most accurate ar-
tifacts of the current project reality. It is always possible to dig deeper into the project
history when needed.

54 CHAPTER 5. DETECTION TECHNIQUES

5.2 Differentiate Between Production and Test Code

Test code has a very important role in test-driven development. It is not part of the
production code2, but it drives modifications of the production code (see Section 2.2.2).
Thus, the capability to differentiate between production and test code is at the core of
the proposed approach. All the systems within the scope of this dissertation use JUnit
[URL:JUnit] for their regression unit test suite. JUnit demands the tests to be written in
Java and tests are encapsulated in individual methods [GB99].

TddMentor starts building the call hierarchy graph from the modified test methods
(see Section 6.2). It helps projects that are already running and therefore must be able
to deal with a variety of test code organization methods. The remainder of this section
discusses the different methods used to organize test code and its identification.

In the most basic and unstructured case, the test code is co-located with the pro-
duction code. With a bit more structure, the test code is encapsulated in separate Java
packages, closely related to the production code. In these cases, finding the test code
might rely on conventions for naming test code classes and extracting them from the
common code base. A more exact approach is to find all the classes that extend the
JUnit-provided test case class. However, this can still leave some test code undetected,
e.g. test suite, test setup, and test resource classes that are not structurally marked as
test code.

JUnit itself has its means to identify test code to enable it to run the test cases.
Ordinarily, the developer has to provide a test suite that compiles together a set of test
cases. Following this approach, TddMentor would need to know the starting test suite
for this specific integration version and then it would mimic the JUnit mechanism to
find all test cases (i.e. test methods).

A very common approach to organize the test code is to put it into a separate source
directory. This facilitates the test code identification dramatically because all code in
the specific directory is test code. Newer project management tools such as Maven
[URL:Maven] even introduced a JUnit test directory construct into their project de-
scriptor to organize test code more easily.

Eclipse knows yet another approach to organize test code. All test code for an
Eclipse plug-in is typically located in a separate test plug-in. PDE JUnit (which is an
extension to JUnit) starts a new Eclipse instance and invokes such test plug-ins. Since
such a separate test plug-in requires a separate Eclipse project, test code is again easily
identified. Given CVS as version control system, this test code resides in a CVS mod-
ule separate from the production code module. This requires dealing with two distinct
revision logs (see Section 5.1 for a discussion of this case).

Other test frameworks (such as Parasoft’s Jtest or SilverMark’s TestMentor) have
other mechanisms to organize unit tests. The documented and scanned case studies

2Test code might be used for the production environment for integration tests, though.

5.3. FINDING MODIFIED METHODS 55

did not use any test frameworks other than JUnit but as long as the individual tests are
located in Java methods that call production code, TddMentor is able to process it.

5.3 Finding Modified Methods

Most of the analysis of TddMentor is based on individual methods of test and production
code. More specifically, it is based on modifications of individual methods between two
integration versions (namely the integration deltas). For example, the test coverage is
defined in terms of method reachability within the call graph (see Section 6.2) from
modified test methods. This section explains how to find these modified methods. In
other words, it deals with how to get from modifications in the byte stream world on disc
to the corresponding modifications in the static structural analysis world of the Eclipse
Java model [SDF+03] [GB04]. In this model, every method is clearly identified by its
signature, class and project. This means, while a method has the same signature and is
located in the same class as its predecessor, it is still located in a different project and
hence can be uniquely identified.

Each modified method is either changed, added, deleted, or moved according to the
following definitions:

Definition 5.2
Changed Method: The method has changed, however, leaving the method

signature the same.

Added Method: There was no previous method.

Deleted Method: There is no successor method.

Moved Method: The method has moved to a different class or the class
has moved to a different package, leaving the method otherwise un-
changed.

The algorithm described here will not find any members of the Moved category. Rather,
it will find a lot of false positives for the Added and Deleted categories and it will find far
too few for the Changed category. Section 5.4 deals with how to adjust this mismatch.

The integration delta tells which files were added, deleted or just changed. File
changes occur far more often than additions or deletions. However, the recorded file
changes refer to textual changes in the managed files. CVS has no means for recording
structural file changes although newer version control systems can deal with structural
changes to some extent (see Section 5.4.5).

The TddMentor component calledPredecessor Finder marks all methods in added
or deleted files as added or deleted methods accordingly, because for now, no further
information is available. It uses the method abstraction of the Eclipse Java model.

56 CHAPTER 5. DETECTION TECHNIQUES

A major drawback is that CVS records classes that are renamed or moved to a differ-
ent Java package as deleted and added files. Thus, many of the marked methods should
be in the moved category; however, this correction must be left to later stages in the
analysis (see Section 5.4.1).

In practice, the majority of files are changed and recorded as such by the version con-
trol system. These files are eligible for calculating their structural changes at the level of
changed, added or deleted methods (see definition 5.2) between two given files. Miller
and Myers [MM85] describe an algorithm for exactly this kind of structural compari-
sion of two given files. Eclipse already implements this algorithm and provides structure
creators for Java.3 For the sake of simplicity, TddMentor ignores all modifications in
inner classes and non-public top level classes. This is an area for further improvement
of future versions of the tool.

Another improvement would be to find, rename and move modifications on class
level. In [WL01] we showed that this is possible, heuristically. The algorithm described
below finds rename and move modifications on method level.

5.4 Finding Safe Software Changes

Finding refactorings in existing code seems to be almost a blind spot in current research.
See Section 5.4.5 for the few existing approaches. TddMentor, however, needs to find
the refactorings and some other safe software changes for the PCI calculations in Chap-
ter 6.

This chapter explains a pragmatic approach to finding refactorings, refactoring par-
ticipants and change participants. The approach has three steps:

1. Select a predecessor for a given method.

2. Find the raw differences between the two methods (called method deltas).

3. Reason about those differences in order to identify refactorings, change partici-
pants, and refactoring participants.

5.4.1 Selecting a Predecessor Method

TddMentor needs to find the refactorings in the methods of a given integration delta.
A refactoring changes a given method — and sometimes creates a new method as in
Extract Method(see Section A.1.6). Because CVS does not record changes for methods,
it cannot return a method’s predecessor. So the first challenge is to find a predecessor for
a given method before the next step can start to calculate the exact differences between
a method and its predecessor. The two steps to select a predecessor are:

3Whitespace modifications are ignored.

5.4. FINDING SAFE SOFTWARE CHANGES 57

• Select the exact predecessor if possible.

• Select a predecessor heuristically.

Select Exact Predecessor

Some refactorings leave a method’s signature and location4 unchanged — likeRename
Parameter(see Section A.1.10). In the preceding integration version, such a method is
found easily, at exactly the same location with exactly the same signature. That method
is called the exact predecessor — assuming the developer did not change the intention
of that method while leaving its signature and location unchanged.

Having found a predecessor, the next algorithm step can begin to calculate the dif-
ferences between a method and its predecessor (see Section 5.4.2). If such an exact
predecessor is not found, TddMentor applies the heuristic below.

Select Predecessor Heuristically

Some refactorings change a method’s signature — likeRename Method(see Section
A.1.9) — or its location — likeMove Method(see Section A.1.6). Predecessors for
such methods are not easily found. A simple heuristic helps to find a good-enough
predecessor, given the following observations.

• Whenever a method signature changes between two integration versions, the al-
gorithm in Section 5.3 reports the preceding method as deleted and the successive
method as added.

• Whenever a method moves to a different class, the same algorithm reports the
preceding method as deleted and the successive method as added.

• Whenever a classes moves to a different package, CVS reports the preceding class
as deleted and the successive class as added. The above algorithm reports methods
in deleted classes as deleted and methods in added classes as added.

Thus, all methods that change signature or location are added and their predecessors
are deleted. This is the search space for the heuristic to find a good-enough predecessor.

The heuristic iterates through this search space and tries to match two methods by
calculating the raw differences (see Section 5.4.2) and then the refactorings (see Section
5.4.3). If it finds a match (i.e. the difference between two methods is identified as
refactoring), the heuristic stops and reports the matched method as predecessor. If it
does not find a match, no predecessor is reported.

4The location of a method is its declaring class and the location of that class. The location of a class
is its package. Therefore moving a method to a different class or moving its declaring class to a different
package would change its location.

58 CHAPTER 5. DETECTION TECHNIQUES

This heuristic has its limitations, though. For example, if a method is duplicated
from one integration version to the next, only one of these methods is found. Also, the
heuristic does not respect local proximity, if it has several choices — a method in a
different class of the same package would be more likely to be the predecessor than a
method in a package “far away”.

5.4.2 Finding Method Deltas

The changes of interest for finding refactorings are structural differences. An abstract
syntax tree (AST) models the structure of a programming language construct like a
method. To find the structural differences between two methods, TddMentor has to find
the differences of the ASTs of the two methods at hand. Those differences are called
method deltas.

Definition 5.3
Method delta: A structural difference between two given ASTs. It is an

instance of a number of known method delta types.

The Eclipse Java model has built-in support for Java ASTs. Moreover its AST
matcher can compute whether two given AST subtrees are structurally isomorphic or
not. It does this by visiting the two trees from their roots.5 Type-specific match meth-
ods (likeboolean match(Block node, Object other)) compare the nodes of
the two ASTs in each step. Every two pair of nodes has to match in order for the whole
subtree to match.

This AST matcher is an excellent basis for computing the method deltas. TDD
demands to go in small steps; doing one piece of change at a time. Method deltas
cannot change the structure dramatically. Thus the ASTs of interest are similar except
for incremental differences.

TddMentor provides anAST Differencer component, which is a specialized AST
matcher. It reports two ASTs to be structurally isomorphic if they have well-known
differences only and returns a list of these method deltas. The delta mapping algorithm
below only detects method delta types for the match methods which have been imple-
mented already. See later for some match method implementations in TddMentor.

The Delta Mapping Algorithm

TheAST Differencer visits the AST subtree just like an AST matcher. In every match
method, it tries to match the elements of the AST node at hand (the elements are AST
subtrees by themselves). Whenever it finds a difference, it tries to match it to one of the
known method delta types.

5The AST matcher is an implementation of the Visitor design pattern as described in [GHJV95].
However it visits two trees at the same time, not only one tree.

5.4. FINDING SAFE SOFTWARE CHANGES 59

This match might involve a direct comparison of attributes of the given nodes. In
many cases, it requires to walk deeper into the subtrees and collect the method deltas
found on the way. If such a subtree walk does not result in a match, the method deltas
found up to that point are invalid. They must be discarded. The next match attempts
provide another chance until the match method has attempted all possible method delta
types — in which case the match method returnsfalse . The following example hope-
fully clarifies this algorithm.

Listing 5.1 (match method for a Java block)
public boolean match(Block node, Object other) {

int saveResultSize = fDeltas.size();
boolean superMatch = super.match(node, other);
if (superMatch) return true;
restoreSavedResult(saveResultSize);
if (checkForDelegatingCtorDelta(node, other)) return true;
restoreSavedResult(saveResultSize);
if (checkForExtractMethodDelta(node, other)) return true;
restoreSavedResult(saveResultSize);
IDelta delta = new OtherBodyDelta(fSuccMethod);
fDeltas.add(delta);
return true; // Typically returns false. See text!

}

Listing 5.1 shows the match method for a JavaBlock . Before any match attempt
starts,saveResultSize points to the current end of the results list.super.match

(node, other) invokes the regular match method of the AST matcher. Be aware that
this might still indirectly invoke some otherAST Differencer-specific match methods. If
the regular match method did not find a match, all results collected so far are invalid.
restoreSavedResult(saveResultSize) discards all the invalid results.

This specific match method always returnstrue , because it reports anOther Body
method delta, if all other match attempts fail. This method delta type only makes sense
for the calculation of change participants, as detailed in Section 5.4.4.

Note the observations about how to implement a match method:

• No match method exists in isolation.

• The order of the attempted delta matches is important.

• An introduction of a new method delta type might impact the detection mecha-
nism for other method delta types.

• Clean up after a match attempt has failed.

60 CHAPTER 5. DETECTION TECHNIQUES

• Sometimes a match method higher in the subtree needs to prepare some informa-
tion for a match method deeper in the subtree. For an example seeChange Return
Type delta below.

In the following section, details of how to detect some specific method delta types
are shown. Only a selection of method deltas types that help explain the concepts of this
chapter are shown. Appendix A contains a comprehensive list of all method deltas that
are detected by TddMentor.

Rename Parameter Delta

Parameter names are found easily in theMethodDeclaration AST node. The match
method finds the corresponding parameters via their position in the parameter list. This
way, it is easy to detect if a parameter name has changed. The match method records
these changes asRename Parameterdeltas in the results list.

If parameter names change, then references to those parameters change as well.
This means the match method forSimpleName nodes will run into name changes. A
normal AST matcher would report such a name change as non-isomorphic. TheAST
Differencer however will not report it as mismatch, if it finds a correspondingRename
Parameterdelta in the list of results that have been found so far.

Extract Method Delta

An Extract Methodrefactoring (see Section A.1.4) replaces a subsequence ofState-

ment nodes with aMethodInvocation node and moves the replacedStatement s to
a new method.

The match method looks for a subsequence in the predecessorBlock ’s Statement s
that corresponds to theMethodInvocation in the successorBlock . TheStatement s
before and after the subsequence have to match theStatement s before and after the
MethodInvocation .

TheMethodInvocation refers to theMethodDeclaration of the newly created
method. ItsStatement s have to match the identified subsequence in the predecessor
Block . Then the predecessor and the successorBlock are reported as structurally
isomorphic modulo theExtract Methoddelta (see Section A.4.10).

Change Return Type Delta

The return type of a method is found in theMethodDeclaration . OnlySimpleType s
are allowed as return types.6 Thus a comparison of the identifiers of the twoSimple-

Type nodes detects a change.

6A SimpleType is aType node for a named class or interface type.

5.4. FINDING SAFE SOFTWARE CHANGES 61

However, to allow for a good interplay with other detection algorithms, the detec-
tion is left to the match method forSimpleType s. TheMethodDeclaration match
method simply saves the return typeSimpleType node. Then its match method knows
when to check for aChange Return Typedelta.

Other Body Delta

TheAST Differencer returnsOther Bodydelta (see Section A.4.12), if all other match
attempts for aBlock fail; as seen in listing 5.1. The purpose of this method delta is
to enable theAST Differencer to return a list of method deltas if it can match the two
method signatures but not the two method bodies. As seen in Section 5.4.3, this method
delta will never be reported as refactoring. However, to calculate change participants
(see Section 5.4.4) the detection mechanism needs a list of method deltas in the signa-
ture, even if the two method bodies do not match.Other Bodydelta somehow resembles
theNull Objectdesign pattern [MRB97].

5.4.3 Identifying Refactorings

The TddMentor componentRefactoring Finder gets the method deltas from theAST
Differencer. It analyses the method deltas to identify refactorings. As the raw method
deltas are already at hand, it is an easy procedure; sometimes as easy as directly ac-
cepting a method delta as refactoring such asRename Parameter. In other cases it has
to search the type hierarchy of affected types as forReconcile Differences, or do some
other checks.

The Refactoring Finder gets a list of method deltas. It only accepts a method as
refactored if it can resolve the whole list of method deltas to refactorings. Otherwise, it
will not accept the whole method. There are two reasons for rejecting a method delta
as refactoring. Firstly, some precondition has not been met (e.g. the new type cannot
be found in the type hierarchy of the old type). Secondly, some method deltas will
never resolve to refactorings. For example, theOther Bodywill always be rejected as
refactoring.

The details of when to accept some specific method deltas as refactoring have been
outlined below.

Rename Parameter Refactoring

Detecting theRename Parameterrefactoring (see Section A.1.10) is easy. TheRefactor-
ing Finder simply accepts everyRename Parameterdelta as refactoring. All reference
checks were already performed by theAST Differencer. There is nothing else to reason
about.

62 CHAPTER 5. DETECTION TECHNIQUES

Extract Method Refactoring

TheRefactoring Finder accepts anExtract Methoddelta (see Section A.4.10) asExtract
Methodrefactoring (see Section A.1.4), if the called method was added in this integra-
tion version. TheAST Differencer already has ensured that the extractedStatement s
have been moved to the newly created method. ThePredecessor Finder reports new
methods as added.

Reconcile Differences Refactoring

TheReconcile Differencesrefactoring (see Section A.1.7) tries to unify pieces of code
that look similar [Bec03, p. 181]. One type of this refactoring is to replace a type
with its supertype if the accessed functionality has moved to the supertype. For some
methods this means “return an object of a supertype of the type that it had declared in
its predecessor”. The following example is taken from [Bec03, p. 35].

Listing 5.2 (Before refactoring: Method returns Franc)
public Franc times(int multiplier) {

return new Franc(amount * multiplier);
}

As a small step in the process of unifying the typesFranc andDollar , thetimes

method returns the supertypeMoney instead ofFranc .

Listing 5.3 (After refactoring: Method returns supertype Money)
public Money times(int multiplier) {

return new Franc(amount * multiplier);
}

TheRefactoring Finder receives such changes asChange Return Typedelta. It has
to check whether the new type is a supertype of the old one. In the example,Money is
an ancestor ofFranc . This means the method delta is reported as refactoring.

5.4.4 Finding Change and Refactoring Participants

Change and refactoring participants (see Section 2.3.4) are method changes that also
need to be detected for the correct calculation of the test coverage PCI (see Section 6.2).
Again, theAST Differencer has to detect a raw method delta before theRefactoring
Finder can decide on the type of change.

For an example see listings 2.5 and 2.6. There theAST Differencer detects aChange
Argument delta. To see if this method delta was induced by a change in the called
method, TddMentor has to check the list of method deltas forsetLocation . If it finds

5.4. FINDING SAFE SOFTWARE CHANGES 63

aChange Parameter Typedelta for this parameter position, then it reportsgetCompile-

Classpath as change participant. This check is the raison d’être for theOther Body
delta. It allows checking for deltas in the method signature even if the two method
bodies do not match. The TddMentor componentCoverage Finder will report such a
change participant as covered if the method that induced the change is in the test span
(see definition 6.3).

A refactoring participant is some kind of change participant. It differs in the fact that
the inducing method itself was undergoing a refactoring — not only a change. Thus the
inducing method does not have to be spanned by tests. The method at hand is still within
the test coverage.

5.4.5 Discussion

The described approach for finding refactorings has some shortcomings, but they are
more than compensated for by its benefits.

Firstly, the proposed approach is not as stable against simple changes as one might
hope for. Malpohlet al. [MHT00] describe an algorithm for detecting renamed iden-
tifiers in existing code. Their intent is to support the merge of different branches in a
version control system. The algorithm is stable against some simple statement reorder-
ings. Yet they only detect renamed identifiers. The approach in this dissertation clearly
needed to detect more kinds of refactorings.

Secondly, the proposed approach may not scale well for big changes between two
compared versions. Demeyeret al. [DDN00] describe an algorithm that finds a small
number of refactorings via change metrics. They compare major releases of three OO
systems as case studies. However, most of their refactorings are too big in the sense
that such refactorings would not be possible without a test in TDD. Also, they mainly
find class reorganizing refactorings such asExtract Superclass(see Section A.1.5) and
Collapse Hierarchy(see Section A.1.2). The PCI calculation in Chapter 6 on the other
hand needs to find a large number of small refactorings — such asMove Method(see
Section A.1.6) andRename Parameter(see Section A.1.10).

Steiger [Ste01] takes the idea of Demeyeret al. [DDN00] a bit further by providing
a flexible query engine. This query engine helps to detect more refactorings. However,
the author still has the problem of identifying predecessors. He proposed to calculate a
fingerprint of software entities to identify predecessors but did not carry out this idea.

Antoniol et al. [ACL99] compare two versions of classes in an intermediary abstract
language. They present metrics to express the distance between the two versions of
the same class. Such metrics might help to find refactorings similar to the approach
described above.

A completely different approach records refactorings as meta information in the
source code repository. Existing version control systems traditionally support opera-
tions such as add, delete, change on a file or method level. They are not designed for

64 CHAPTER 5. DETECTION TECHNIQUES

huge amounts of structural changes such as refactorings. A new idea is to treat refac-
torings as basic operations. This extension facilitates more advanced operations such
as merging different program branches.7 Collard [Col03] describes several approaches
for attaching meta information to source code. For example, he plans to attach differ-
ence and refactoring information to changed code. However, such meta information is
currently not available for real world projects.

The proposed approach finds a large number of refactorings on a level of detail that
fits into the PCI calculations. It is stable against some identifier renamings and some
method movements, and it scales well for TDD code, which is the scope of this research.
The case studies support the adequacy of this approch.

I presume that the topic of finding refactorings will attract more research interest in
the near future. The software engineering research community starts to understand the
importance of refactorings [MDB+03]. When design patterns were first proposed, they
were seen as tools to help design computer programs [GHJV95]. Nowadays they are
reengineered from existing code to better understand program design [Bro96] [SS03].
It is my conviction that detection of refactorings and other safe software changes will
see a similar career to enable better understanding of source code evolution.

5.5 Summary

This chapter describes techniques for detecting software entities on several levels of
abstraction. The detection of those entities is required for the PCI calculations in the
next chapter.

Appendix A lists and describes the method deltas, refactorings, refactorings par-
ticipants and change participants that are found by TddMentor, which prototypically
implements the detection techniques of this chapter.

7For expośees that envision this research direction see [URL:CmEclipse] and [URL:Freese].

Chapter 6

Process Compliance Indices

This chapter defines a number of process compliance indices (PCIs).1 PCIs quantify
symptoms of TDD process violations based on an analysis of past source code changes.
Chapter 5 describes detection techniques for a number of software change entities that
are used for the PCI calculations. PCIs are calculated for a sequence of integration
deltas (see definition 2.1). They help focus the manual assessment effort in order to find
integration deltas that document a process violation.

These integration deltas that were found can be subject to a review with the devel-
opment team members to discuss the reasons and find ways to prevent such process
violations in the future. A PCI can only be an indicator for a process violation — it can-
not serve as proof. The process assessor has to judge based on his or her TDD process
expertise and when in doubt discuss a software change with its developers. Or, as Ar-
mour [Arm04] has put it, “Simply collecting one metric rarely gives us the answer —
on the contrary, it usually gives us the question.”

Section 6.1 below deduces the research assumptions and metrics criteria based on
the GQM paradigm. The test coverage PCI (see Section 6.2) is used in Chapter 8 to
validate the research hypothesis. Section 6.3 defines another possible PCI. More PCIs
could be derived from TDD-specific measurements easily (see Section 3.4.2).

6.1 Goal-Question-Metric Deduction

This chapter defines several process compliance indices that are based on software
product change metrics. The decision which metrics to apply is made using the Goal-
Question-Metric paradigm (see Section 3.2.3). The goal and the question are defined
first in Table 6.1.

1The notion of PCIs is inspired by Code Decay Indices of Eicket al. [EGK+01], who also analyze
past source code changes to estimate maintenance effort.

65

66 CHAPTER 6. PROCESS COMPLIANCE INDICES

Goal Identify those integration deltas that suggest a TDD process compliance
violation in order to focus the manual assessment effort.

Question When analyzing the software changes of one TDD integration delta,
what characteristics can be used as symptoms for a TDD process viola-
tion?

Table 6.1: Goal and question for the definition of the process compliance indices (PCI).
Each PCI is a specific answer to the question that was deduced from the goal.

The question “How to find symptoms of process violation in software changes” leads
to the following research assumptions:

• Source code reflects process violations.TDD is a very source code centered style
of development (see Section 2.2.1). All development activities are directly re-
flected in the sources. Process violations also directly impact the source code
(e.g. not having a test for some production code change would be a process vio-
lation). Some process violations are detectable — like a missing test. Clearly, not
all process violations are detectable (like creating the right design closure for the
problem domain).

• Integration deltas can be identified and integration version can be recreated.
Since TDD developers typically do not tag individual integration deltas, this re-
search assumes that all changes of one integration delta are submitted to the source
code repository as a whole. TddMentor allows to reconstruct the integration deltas
and hence the integration versions based on this assumption (see Section 5.1).

• Test code is distinguishable from production code.Test and production code have
different but very important roles. This dissertation describes a number of possi-
bilities to distinguish between the two types of source code (see Section 5.2). It is
becoming standard development practice to mark test code as such.

A PCI is a heuristic for indicating process violations. It is the combination of one
or more software product change metrics. Each PCI is one possible answer to the GQM
question from Table 6.1. The metrics used in a PCI have to satisfy the following criteria:

• The metrics must be derivable from the source code and/or the version control
information.

• The metrics should be cheap to collect because the process compliance indices
should be calculated for several integration deltas as part of two successive inte-
gration versions. Each of which can contain a lot of source code.

6.2. TEST COVERAGE PCI 67

• The metrics must be computable via static source code analysis. Every integration
version should have been executed by running the automated tests. But it is very
hard or might even be impossible to recreate the test execution context for every
single integration version.

Each PCI specifies a recipe that explains how to interpret whether the result indicates
a process violation or not. In other words, the interpretation gives a positive or negative
response to the question, whether a given integration delta contains a process violation
or not. This interpretation can also lead to false positives and false negatives. Afalse
positivefor a PCI is a case where the PCI indicates a process violation but should not
have reported one. Afalse negativefor a PCI is a case where the PCI does not indicate a
process violation where it should have reported one; thus where TddMentor would fail
to report a process violation.

A PCI fulfils the first three requirements of Weinberg’s observational model as intro-
duced in Section 3.2.1. Weinberg [Wei93, p. 30] also suggests to define a set of top tier
metrics for a quick overview of a development process and a set of second tier metrics
for more detailed root cause analysis. The PCIs can give an overview of what has hap-
pened in the past of a development project. Finding the root cause requires a detailed
inspection of the identified integration deltas and its discussion with the developer.

Each section below defines one PCI, containing a detailed description, a recipe for
its interpretation, and a discussion of false positives and false negatives.

6.2 Test Coverage PCI

As in Figure 2.1, an integration delta consists of both test code and production code.
As outlined in Section 3.4.2, all the software changes of an integration delta have to be
covered by the tests of the same integration delta. This PCI calculates the test coverage
for individual integration deltas. The PCI calculation is modelled along the basic TDD
development cycle, as outlined in Table 6.2.

Step Development Analysis
Red Write a test Start the call graph at the

modified test methods
Green Implement a new feature Mark all spanned methods as

covered
Refactor Clean the code structure Mark all safe method changes

as covered

Table 6.2: The Test Coverage PCI calculation is modeled along the TDD mantra
Red/Green/Refactor.

68 CHAPTER 6. PROCESS COMPLIANCE INDICES

The test coverage is calculated in terms of a call graph that starts at the test methods
of the integration delta. The algorithm marks all the production methods spanned by this
call graph as covered. This call graph might need to be extended artificially as detailed
below. Safe software changes (see Section 2.3.4) do not have to be tested explicitly and
therefore are also marked in the last step as covered.

The literature knows a lot of different test coverage types and calculation algorithms
(see Section 3.2.2). I chose the approach presented here, because it models the way
a developer test-drives new functionalities. The case studies (see Chapter 8) provide
empirical evidence that this simple algorithm works well.

Details of this test coverage calculation are described below.

6.2.1 Details

The test coverage has to be calculated for the changes in each integration delta within
the analysis time frame. This notion differs from the traditional view on test coverage
(see Section 3.2.2) where it is typically calculated for the whole system.

Definition 6.1
Test coveragedenotes to which degree methods of an integration delta are

covered by tests in the TDD sense.

Test coverage rate= # covered production methods in integration delta
all production methods in integration delta

TddMentor applies a very simple test coverage algorithm based on the method call
graph. Informally, a method call graph represents the calls between methods in a given
program. The quality of the call graphs computed by available static call graph extrac-
tors varies widely [MNGL98]. TddMentor uses the static call graph extractor found in
Eclipse.2

Definition 6.2
Method call graph: A directed graph with nodes representing individual

methods and edges from methodm1to m2 if m1callsm2.

The call graph extractor simply looks for all methods that are called somewhere from
within the method at hand. For the test coverage calculations, it starts at the test methods
of an integration delta. This includes methods that are not specifically marked by JUnit
as test cases (likesetup()). The algorithm marks all methods in the integration delta
that it reaches via the call graph as spanned.

2It is found in the packageorg.eclipse.jdt.internal.corext.callhierarchy
in Elipse 3.0.

6.2. TEST COVERAGE PCI 69

Definition 6.3
Test span: The set of all methods reached from a test method via the call

graph.

Spanned method: A method contained in the test span.

Test coverage is basically this test span of the call graph that starts in the test methods
of the integration delta.3 As described below, this algorithm needs some extensions to
provide realistic results. Chapter 8 documents some case studies where these extensions
were needed.

Implementors and Subclasses

In TDD code it is common to modify existing abstractions such as interfaces and su-
perclasses. Test-driving such modifications means to write a test case or to modify an
existing test case that executes the modified methods. Interfaces, however, have imple-
mentors, and superclasses have subclasses that implement or override methods. They
have to change if their ancestors change. Because the tests drive against the ancestor
types, the simple algorithm would leave modified descendants as not spanned.

Thus, the algorithm marks modified methods as spanned if they changed because of
a signature change of their ancestor method and the ancestor method is spanned.

Span Claims

TddMentor only analyzes Java source files (see Section 5.1). It leaves out other artifacts
(like grammar specifications) that a build process might use to generate Java source
code. TddMentor is missing those would-be-generated Java source files and thus it is
missing some links in the call graph if the generated Java source code calls manually
created code.

For an example see listing 6.1 from the QDox case study (see Section 8.2).

Listing 6.1 (Calling generated code)
public class JavaClass {

...
public JavaSource addSource(Reader reader) {

ModelBuilder builder =
new ModelBuilder(classLibrary, docletTagFactory);

Lexer lexer = new JFlexLexer(reader);
Parser parser = new Parser(lexer, builder);
parser.parse();
...

3This algorithm does not take into account more advanced test coverage techniques such as branch
reachability and the like.

70 CHAPTER 6. PROCESS COMPLIANCE INDICES

}
}

The classesJFlexLexer andParser would be generated from some specification
files. Theparser object would call theaddPackage(p) method in thebuilder

object as seen in Figure 6.1.

Figure 6.1: Rationale for span claims. The classParser cannot be generated
during the static analysis, thus it breaks the call graph. Therefore the call to
Builder.addPackage(p) has to be declared manually be a span claim.

Span claims make up for those missing links.

Definition 6.4
Span claim: A user-provided extension of the call graph. A span claim

consists of

• the method signature of a method that the call graph reaches from
a test method and

• a set of method signatures of the methods that would be called by
the generated code.

The tool user declares this information in a project-specific analysis descriptor. A
simple call graph detection algorithm stops when it does not find a method that is called
from within an existing call graph. In this case, the call graph has to continue at the
target methods declared by the span claim.

The QDox case study documents the span claim for the example above (see listing
8.3).

6.2. TEST COVERAGE PCI 71

Safe Software Changes

In TDD, every production code modification should be test-driven, except for safe soft-
ware changes. A refactoring is such a safe software change (see Section 2.3.4). Assum-
ing the code before the refactoring was developed in a test-driven way, there should be
tests that cover this piece of code. The semantic-preserving code modifications neither
change the coverage nor invalidate the the old test, so there will not be any new tests.

Modified code, due to a refactoring, is not spanned by tests in the current integration
version. It is, however, spanned by tests in an earlier integration version and as such
regarded as covered for the current integration version.

Refactoring participants, change participants, and accessor method are similar kinds
of safe software changes (see Section 2.3.4). TddMentor can detect some of those
safe software changes automatically (see Section 5.4). All automatically detected safe
changes are marked as covered.

Coverage Claims

TddMentor cannot detect all kinds of safe software changes, e.g. some accessors and
technical methods (see Section 2.3.4).

For an automatic analysis this means that TddMentor will report some methods as
uncovered because it does not find a test, even though the developer of this method did
not define a test on purpose. Reporting such methods would disrupt an analysis report.
To prevent them from reappearing, a TddMentor user can declare coverage claims.

Definition 6.5
Coverage claim: A user-provided extension of the test coverage. A cover-

age claim consists of

• a method signature of the method that should be added to the test
coverage.

The methods declared by a coverage claim are not reported as uncovered in any case.
Coverage claims can be applicable globally or specifically to an individual integration
version.

The Money Example case study shows an example of a coverage claim for the
toString() method (see listing 8.1).

Test Span Fix Point

A simple call graph algorithm does not compute the test span adequately, as described
above. The above extensions add to a test span that has been calculated so far. Data from
TDD projects show that the call graph algorithm has to continue after these additions.
Then again, the algorithm extensions need to determine whether they can add even

72 CHAPTER 6. PROCESS COMPLIANCE INDICES

more to the test span. This whole procedure needs to be performed until a fix point is
reached, where the call graph algorithm and its extensions find no further addition to the
test coverage.

6.2.2 Recipe for Interpretation

The source of interpretation is a time series diagram of the test coverage rates for the
individual integration deltas. This diagram also contains the number of detected safe
software changes, as exemplified in Chapter 8.

The analysis of fully TDD compliant projects should result in a test coverage rate
of 1.0 for every integration delta (e.g. see the Money Example in Section 8.1). The
analysis of a project that does not have any tests at all results in a test coverage rate of
0.0 for every integration delta. These two cases mark the extreme ends of the spectrum
for real world projects.

This PCI has two different recipes for interpretation according to the two ends of the
spectrum. One recipe is for cases that are close to an ideal TDD project (see QDox case
study is Section 8.2 for an example). For such projects, an interpretation of the numbers
can help find individual process violations. A review of such process violations supports
a TDD process optimization on an advanced level. The other recipe is for cases that have
hardly any TDD process elements (see Ant case study in Section 8.3 for an example).
For such projects, an interpretation can help the team members recognize first steps into
the right direction and encourage to build on initial success.

Nearly Ideal TDD Process

1. Find the integration deltas that have a poor test coverage rate and order those
candidates accordingly.

2. Manually review those integration deltas to find the reason for the poor test cov-
erage. Possible reasons are: no tests defined in this integration delta, refactorings
and other safe changes were not detected, changes were not driven by tests, or any
other process violation that reflects in the source code.

3. In the case of missing coverage claims or span claims, declare them in the analysis
descriptor and rerun the analysis. Coverage claims can also make up for refactor-
ings that were not detected by the tool.

4. Discuss the identified integration deltas with the developers to prevent misinter-
pretations.

6.2. TEST COVERAGE PCI 73

Hardly any TDD Process Elements

1. Find the integration deltas that have some reasonable test coverage rate.

2. Check the number of detected safe software changes to see if this non-zero test
coverage rate is the sole result of detecting safe changes. In this case, the integra-
tion delta does not provide insight into initial TDD steps.

3. Manually assess the remaining integration deltas to identify the TDD process el-
ements.

4. Discuss the results with the developers to learn more about their comprehension
of these TDD process elements.

6.2.3 False Positives and Negatives

False positives.A false positive scores a low test coverage rate while it is process-
compliant. Probably the most important reason for a low test coverage rate is the refac-
toring detection mechanism. It is limited in the number of refactoring types that it
can detect in software changes. A tool user would need to detect such cases manu-
ally. He/she can then declare a coverage claim for that integration delta to prevent the
refactored method from reappearing again in the analysis report.

Occasionally, the regular build process generates source code from some specifica-
tion. The presented approach does not run the build process, thus some source code
might be missing. Such missing source code might break the call graph and therefore
is another source for false positives. The declaration of span claims can alleviate such
problems.

Another reason for false positives is the static extraction of the call graph. This
extraction relies on the unit tests to invoke the production code via static method calls.
If those calls are made dynamically, the test coverage calculation would fail. TddMentor
does not offer a quick fix for such cases but they are rather rare.

False negatives.Some integration deltas could score a high test coverage rate but
in reality they are not TDD process compliant. They would be seen as false negatives.
The simplest example of such a case is an integration delta with a test coverage rate
that is explained only in terms of detected safe software changes. The Ant case study
(see Section 8.3) documents such integration deltas. For this reason, the results diagram
always shows the number of detected safe software changes so that the process assessor
gets an idea for such false negatives.

Another possibility to obtain a false negative is a wrong coverage claim declaration.
The user has to exercise the tool calibration with great care.

74 CHAPTER 6. PROCESS COMPLIANCE INDICES

6.3 Large Refactorings PCI

As outlined in Section 3.4.2, Elssamadisy and Schalliol [ES02] reported a process
“smell” for Extreme Programming named “Large refactorings stink”. They recommend
to put more effort into the refactoring step during every basic development cycle if the
refactoring activities become too large. They assess that, in this case, the developers
had become lazy with the continuous refactoring activities. As a result, the required
refactorings accumulate to a large amount of work at several discrete points in time as
opposed to a continuous refactoring effort during each integration delta.

6.3.1 Details

During the refactorings development step, not only refactorings happen, but in general,
all kinds of safe software changes can happen (see Section 2.3.4). Besides refactorings,
there can be changes in refactoring participants or change participants.

It is possible to detect a number of safe software changes in past integration deltas
(see Section 5.4.3). For the calculation of the test coverage PCI (see Section 6.2), only
the safe software changes that had not been covered by tests already were of interest.
The Large Refactorings PCI needs to find all safe software changes, irrespective of their
coverage by a test.

This PCI simply counts the number of safe software changes for every integration
delta within the analysis time frame. These numbers are depicted as time series diagram.

6.3.2 Recipe for Interpretation

1. Identify the integration deltas that have the highest numbers of safe software
changes and mark them as candidates for the manual assessment. As a first guess
for the control limit you might choose three times the standard deviation from the
arithmetic mean.

2. Manually assess the marked integration deltas in order to see if they indicate some
refactoring activities that should have been performed in an earlier integration
delta. Possibly adjust the control limit.

3. Discuss the identified integration deltas with the developers to prevent misinter-
pretations.

6.3.3 False Positives and Negatives

False positives.A false positive integration delta scores a PCI above the control limit
but does not contain any safe software changes that have been deferred from earlier
integration deltas due to programmer laziness.

6.4. SUMMARY 75

One reason might be that the new tests in this integration delta really require such a
massive refactoring activity. Another reason might be the size of the integration delta.
A big integration delta contains more safe software changes than a small one.

A more technical reason might be a wrong value for the control limit. It requires
some experience to find the right adjustment. Another technical reason could be the safe
software change detection mechanism itself. The detection algorithm is limited in the
number of different types of safe software changes that it can detect. This shortcoming
equally applies to all integration deltas. If, however, one integration delta has a much
higher rate of detectable safe software changes than all other integration deltas, it is
reported as a false positive.

False negatives.A false negative integration delta scores a PCI below the control
limit but shows an accumulation of many deferred safe software changes.

The control limit might just be too high for the detection of a process violating
integration delta.

Another technical reason is the limitation of the safe software change detection
mechanism to detect a large number of safe software change types. This would result in
a PCI that is too low.

6.4 Summary

This chapter introduces PCIs that indicate process violations for individual integration
deltas. It lists two specific PCIs. The test coverage PCI was implemented by TddMentor
to validate the research hypothesis. The TddMentor implementation and usage is dis-
cussed in the next chapter.

76 CHAPTER 6. PROCESS COMPLIANCE INDICES

Chapter 7

TddMentor Architecture and Usage

TddMentor is a prototypical implementation of the detection techniques of Chapter 5
and the test coverage PCI of Chapter 6. It supports the assessment approach proposed
by this dissertation. In the taxonomy of Demeyeret al. [DMW01], TddMentor provides
change-based retrospective evolution support. It is a semi-automated tool because it still
requires human assistance. In fact, it helps a process assessor focus the inspection effort
during TDD process assessment.

This chapter outlines the tool architecture and briefly describes its components (see
Section 7.1). It lists the configuration options and discusses the calibration process (see
Section 7.2). While TddMentor is mainly used for TDD process assessment, it could be
applied in other areas as well (see Section 7.3).

7.1 Architecture

TddMentor plugs into the Eclipse IDE. An integration of an analysis tool into the de-
velopment environment has many advantages. Separate tools would construct separate
models of the application under inspection and often need to omit details. “Omitting
those details often has the effect of producing spurious error reports.” [YTFB89]

Eclipse provides several types of tool integration: invocation, data integration, con-
trol integration, and GUI integration [WSP+02] [Ams01].

7.1.1 TddMentor as Eclipse Plug-in

Eclipse is a tool integration platform that has a built-in Java IDE [SDF+03] [GB04].
TddMentor uses several Eclipse components, namely the plug-in mechanism, the re-
source model, the Java model, and the CVS tooling as described below (see also Figure
7.1). It is integrated with Eclipse on the control and GUI levels.

77

78 CHAPTER 7. TDDMENTOR ARCHITECTURE AND USAGE

Figure 7.1:Architecture of TddMentor.TddMentor plugs into the Eclipse IDE. It ac-
cesses the CVS repository to reconstruct the integration deltas and versions. The ana-
lyzer produces PCI reports from those integration deltas. The analysis descriptor scopes
this analysis.

The Eclipse plug-in mechanism provides an easy integration into existing tools in
the platform. Extension points allow the reuse of core functionality or integration into
the GUI. TddMentor is one such external plug-in.

The Eclipse resource model organizes resources such as files, directories and proj-
ects. TddMentor reads the analysis descriptor for an application under inspection. It
generates PCI report files. TddMentor creates an Eclipse project for every integration
version extracted from the source code repository.

The Eclipse Java model parses Java files and provides handles to program elements
such as classes and methods. It provides a comprehensive library for program analysis.
TddMentor does not define its own program model or model database but rather com-
pletely integrates with the model in Eclipse. It uses the static analysis capabilities to
calculate the PCIs.

The Eclipse CVS tooling allows easy access to CVS source repositories from the
Eclipse GUI. TddMentor uses its internal core functionality to fetch individual source
files for reconstructing the integration versions.

In the current implementation, TddMentor requires the user to create the CVS log
file manually via the CVS command line. The location of this log file is declared in
the analysis descriptor. TddMentor uses the StatCvs library to parse this log file and
identify the individual integration deltas.

7.2. USAGE 79

7.2 Usage

TddMentor seamlessly integrates with the Eclipse GUI as seen in Figure 7.2. It is trig-
gered via the context menu of the analysis descriptor of an application under inspection.

Figure 7.2:Seamless GUI Integration.TddMentor plugs into the context menu of the
analysis descriptor file. This is located in the project directory of the application under
inspection. The projects below contain recreated integration versions.

The steps to perform an analysis are as follows:

1. Identify the application that should be inspected in the CVS browsing perspective
and check it out as project.

2. Open a command line on the project directory and create a CVS log file (e.g.cvs

log > cvslog produced the log file in Figure 7.2).

3. Create an analysis descriptor file as described below in Section 7.2.1.

4. Fill out thecvslog and theproject entries.

5. Generate the integration deltas report (TddMentorÀReport Log Deltas). This re-
port shows the identified integration deltas. Each integration delta has a unique
identifier.

6. Identify the analysis head and tail of the integration deltas and fill out the
analysis-scope entry of the analysis descriptor.

80 CHAPTER 7. TDDMENTOR ARCHITECTURE AND USAGE

7. Generate the analysis head (TddMentorÀGenerate Analysis Head Project). This
creates a new Eclipse project and fetches all revisions of the files in the latest
integration version.

8. Generate all remaining delta projects within the analysis scope (TddMentorÀ
Generate Deltas Projects). Figure 7.2 shows the result of this operation. For
every integration version within the analysis scope you see a separate Eclipse
project.

9. Generate the desired report (e.g.TddMentorÀReport uncovered methods reports
the Test Coverage PCI and the methods that are not covered in this integration
delta).

This first report might contain some inappropriate results because of some inappro-
priate configuration of span claims or coverage claims. TddMentor needs to be cali-
brated, as described below in Section 7.2.2.

7.2.1 Analysis Descriptor

The analysis descriptor scopes the integration deltas and provides some additional in-
formation for the analysis. Table 7.1 explains the analysis descriptor for the Money
Example case study (see Section 8.1).

In addition to the configuration elements in Table 7.1, there are some more configu-
ration options as follows.

Coverage claims can also be specified for individual integration deltas. Such a cov-
erage claim would look like:

<edition name="030828154711">
<method type="tddbook.Money" name="currency" paramsig="[]"/>

</edition>

It would declare the specified method as covered only in one single integration delta,
whereas the coverage claims in Table 7.1 apply to all integration deltas within the analy-
sis scope.

Span claims (see Section 6.2.1) are another possible extension to the above analysis
descriptor. Listing 8.3 shows the span claims from the QDox case study.

Theorigin-method entry is the starting point of a span claim. It denotes a method
that tries to call some source code that is not available (for example because it would
have been generated during a regular build). It containsmethod entries. They denote
methods that would have been called by the missing code. Declaring these call targets
fixes the broken call graph.

7.2. USAGE 81

tddmentor.xml Description
<cvslog file="cvslog"/> Path to CVS log file.
<project name="TDDBook"/> Name of the analyzed project.
<analysis-scope Scope of integration deltas.

head="030828154711" Latest in scope.
tail="030828110835"/> Last in scope.

<sources> Production sources list.
<dir path="src/java"/> Source directory path.

</sources>

<tests> Test sources list.
<dir path="src/test"/> Test directory path.

</tests>

<coverage-claims> List of coverage claims.
<edition name="global"> global applies for every in-

tegration delta in scope.
<method name="toString" paramsig="[]"/> Parameter signatures as
<method name="equals" paramsig="[QObject;]"/> used by Eclipse Java model.
<method name="hashCode" paramsig="[]"/>

</edition>

</coverage-claims>

Table 7.1: Analysis descriptor of the Money Example.

7.2.2 Calibration

Calibration is the process of tailoring the current analysis descriptor to the current ap-
plication under inspection.1 This step is necessary due to the diversity of projects that
are assessed.

After the generation of the first report, a tool user would interpret the results ac-
cording to the PCI descriptions (see Chapter 6). He or she would then manually inspect
the integration versions to check the validity of the suggested process violations. This
inspection either confirms a process violation or disproves it.

In case of disproval, the tool user calibrates TddMentor to prevent this method from
being reported again. This process repeats until the process assessor has enough confi-
dence in the reported PCIs.

TddMentor calibration uses two different approaches: configuration evolution and
tool extension.

1Porter and Selby [PS90] describe the calibration of classification trees to identify high-risk compo-
nents in evolving software systems.

82 CHAPTER 7. TDDMENTOR ARCHITECTURE AND USAGE

Configuration Evolution

Configuration evolution is the simplest case. It simply adds an entry to the analysis
descriptor (such as a span claim or coverage claim).

For example, technical methods (see Section 2.3.4) do not need to be covered by
tests but would be reported as uncovered by the test coverage PCI. A coverage claim pre-
vents such a method from reappearing. Similarly, span claims are added to the analysis
descriptor.

Tool Extension

The prototypical implementation of TddMentor still has some deficiencies in the auto-
matic detection of refactorings and other safe software changes. In order to produce
adequate results, the detection mechanism might need to be extended to further types of
refactorings, refactoring participants and change participants.

Such extensions change the Java source code of the existing tool. There is no plug-
gable extension mechanism available. It is unclear if it is feasible to create such an
extension mechanism for refactoring detection.

7.3 Other Application Areas

TddMentor was developed to support TDD process assessment and validate the research
hypothesis of this dissertation. Beside this use, TddMentor might be beneficial in a
number of further application areas which have been outlined below.

7.3.1 Teaching TDD

Extreme Programming and TDD have been taught at universities [Wil01] [WG01].
Mugridge [Mug03] identified two major challenges in teaching TDD to students:

• fast feedback during the learning process on how to incrementally evolve the de-
sign and

• building interdependent technical skills (like writing a test and refactoring source
code).

To answer such challenges, Edwards [Edw03b] [Edw03a] proposed a web-based
system for automatic grading in teaching TDD. Students submit their test and produc-
tion code to a grading server that performs a results-based assessment in terms of test
coverage and functional completeness.

TddMentor supports a change-based assessment and could also be used in a class-
room setting. Students would integrate their test and production code after each basic

7.3. OTHER APPLICATION AREAS 83

development cycle with the central source code repository. At the end of the day, the
trainer would assess the repository with the help of TddMentor. This assessment would
reveal good and bad performance of TDD practices. The next day of the course would
start with a discussion of the findings. The major advantage of this approach is that
the learning environment is closer to a real world development project and the students
learn to work as part of a team.

7.3.2 Refactoring Mining

Software system mining is the activity of finding valuable information in the source code
of a software system in order to make this information explicitly available to developers
[Moo02]. Refactoring mining is the activity of finding new types of refactorings in
existing source code changes in order to make them explicitly available.

TDD developers continuously refactor their application and possibly apply refactor-
ings that have not been documented. TddMentor could be used to assess source code
from advanced TDD teams. It is expected that an advanced TDD team should achieve
high scores for the test coverage PCI. Part of its calculation is the detection of refactor-
ings. A low test coverage for an individual integration delta can mean a shortcoming
of the refactoring detection mechanism or a new type of refactoring that has not been
documented (and implemented in TddMentor) before.

I applied this process for calibrating TddMentor (see Section 7.2.2) in the docu-
mented case studies. During that process I found some refactorings that were not doc-
umented in the literature. Appendix A lists those refactorings among others for which
TddMentor contains detection code.

7.3.3 Test Pattern Mining

Test pattern mining is the activity of finding test patterns in existing source code in order
to make them explicitely available.

Similar to refactoring mining, test pattern mining would work by assessing the
source code from advanced TDD teams. Again, a low test coverage score would be the
starting point. The test coverage algorithm calculates the call graph from the changed
unit tests. This call graph calculation requires the tests to call production code statically.

While scanning several projects as potential case studies, I found unit tests that per-
formed dynamic calls only, by providing an invocation target as a string. Further case
studies might reveal more types of test patterns.

7.3.4 Empirical Research

Abrahamssonet al. [AWSR03] assess that empirical evidence, based on rigorous re-
search, is scarce in the area of agile software development methods. They call for more

84 CHAPTER 7. TDDMENTOR ARCHITECTURE AND USAGE

empirical, situation-specific research and the publication of the results. A general prob-
lem of this endeavour is that TDD produces hardly any artifacts except source code,
while it puts a very strong focus on source code and design evolution.

To some extent TddMentor can support such empirical work by:

• reconstructing individual integration versions and making them available inside
an IDE,

• identifying all changes within an integration delta and making them accessible for
static program analysis,

• heuristically identifying renamed and moved methods to some extent which al-
lows to make observations across such changes, and

• detecting a number of refactorings and other safe software changes.

An analysis across several projects would try to find commonalities within several
projects that all use TDD as their style of development. These commonalities would
add to the body of knowledge about TDD.

7.4 Future Implementation Improvements

TddMentor exists only as a prototypical implementation. It still has some areas that
require improvement.

These limitations do not impact on the validation of the research hypothesis. How-
ever, before applying TddMentor in a broader context, these limiatations need to be
removed. Here is a list of such limitations:

• TddMentor ignores all modifications in inner classes and non-public top level
classes.

• It ignores instance variables completely. As seen in the Money Example case
study, this can result in missing data points.

• TddMentor needs to detect more types of refactorings and other safe software
changes than it does at the time of writing. The current set of detected safe soft-
ware changes is biased towards the documented case studies.

• TddMentor does not deal with refactorings in test code. Improving test code
requires some specific refactorings [DMBK01].

• TddMentor does not take into account the more advanced test structuring capabil-
ities of JUnit or of its extensions (like MockObjects).

7.5. SUMMARY 85

• Maven is a Java project management and project comprehension tool. Its project
object model (POM) contains an entry that specifies the locations of the unit tests
of a project. TddMentor could read that information to simplify the configuration
step.

• The current implementation supports CVS as version control system only. Sub-
version aims at being a “a compelling replacement for CVS”. Commits of a num-
ber of files are atomic and revision numbers are per commit, not per file. The
reconstruction of integration deltas would be a lot easier in Subversion. Also,
some TDD developers link user stories to their Subversion revision.

7.5 Summary

This chapter describes the architecture and usage of TddMentor — the prototypical
implementation to support the approach proposed by this dissertation. It is used to
validate the research hypothesis as documented in the next chapter.

86 CHAPTER 7. TDDMENTOR ARCHITECTURE AND USAGE

Chapter 8

Case Studies and Hypothesis
Validation

This chapter lists several case studies, each documenting the TddMentor-supported
analysis of a project. The goal of those case studies is “theory testing and experimen-
tation” [Tic98]. The case studies serve theory testing by providing real world data for
validating the research hypothesis. They were also experiments to refine the imple-
mented concepts; e.g. the original test coverage algorithm did not consider span claims
(see Section 6.2).

Zelkowitz and Wallace [ZW98] list several important aspects for experimental data
collection. For this research, these aspects are as follows:

Replication The chosen systems are open source systems and freely available (QDox,
Ant) or even published in a book (Money Example). This means the raw data
are available for repeated analysis. This work describes all relevant algorithms to
replicate such an analysis.

Local control The goal of this research is to provide automated support for process as-
sessment. For the sake of validating the research hypothesis, no control over the
project’s developers was necessary. Only in a future step of a process improve-
ment effort should such a local control be relevant.

Influence Experimental designs have to take their influence on the studied subjects into
consideration. I.e. active methods may suffer from the Hawthorne effect.1 The
data collection of this research is passive in the sense that it analyzed the source

1One problem of actually observing a project team is the Hawthorne effect [Boe81, p. 672] [May45].
In a classical experiment, Elton Mayo examined the effect of lighting and illumination on employee
productivity. In essence, the mere fact of observing and including the observed persons in the observation
process had an impact on the results.

87

88 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

code repositories of already existing software. Therefore, the analysis itself did
not have any influence on the project’s developers.

Temporal properties The data collection for the hypothesis validation is retrospective
(or archeological). A more current data collection might apply to a later applica-
tion of TddMentor (see Section 7.2) in a process mentoring or process improve-
ment context.

Given the retrospective nature of the data collection, Zelkowitz and Wallace might
call this a legacy analysis or historical lessons-learned study. The term “case study” is
justified by the fact that (1) the analysis has all necessary information available in the
source code repository, (2) it can calculate the necessary quantitative data, and (3) the
results can directly help an assessed team.

The scope of this thesis is to provide tool support for TDD process assessment.
It is outside the scope of this thesis to collect data from a large number of projects for
statistical evaluation. This would be a separate research project. TddMentor can support
such an endeavour. Therefore I selected two case studies that serve as typical examples
for TDD and one case study as a counter-example for TDD.

Each case study is documented in a separate section. The structure of those sections
is as follows:

1. Introduce the case study.

2. Outline the scope of the analysis. This might be the whole project history or
just a selected time frame. Document the performed calibration steps. The listed
refactorings, refactoring participants, and change participants, for which detection
mechanisms had to be implemented, are described in appendix A.

3. Document the raw results as reported by TddMentor. Chapter 6 introduces a
number of process compliance indices (PCI). The case studies focus on the Test
Coverage Rate PCI as reported by TddMentor.

4. Interpret the results and derive recommendations for the authors of the case stud-
ies where applicable. Their interpretations are examples for the use of TddMentor
in a process assessment context (see Section 7.2).

5. Discuss consequences of the case study for TddMentor and the underlying con-
cepts.

8.1 The Money Example

In his bookTest-Driven Development by Example, Beck [Bec03] introduces and dis-
cusses TDD. In Part I he demonstrates the development of typical production code

8.1. THE MONEY EXAMPLE 89

completely driven by tests. His goal is to illustrate the principles of TDD by working
through the Money Example in the book.

Every chapter introduces a small increment of functionality. For every increment,
Beck goes through the three basic TDD steps Red/Green/Refactor (see Section 2.2.1).
At the end of every chapter, he has an integration version (see definition 2.1) that is
working, fully driven by tests, and consisting of clean code that had undergone the
necessary refactorings. All code changes in one chapter form an integration delta. In
a real project, a developer would check-in such an integration delta into the revision
control system. For the purposes of this case study, I checked-in every such integration
delta to CVS in order to be able to use TddMentor for the analysis.

8.1.1 Analysis Setup

Scope

The Money Example consists of 16 individual integration versions. The number of
classes varies between 2 and 6. All tests had been merged into one test class for the sake
of simplicity of this scholarly example. The author restricted the example to show how
tests drive functionality into the system. It was out of the scope of the study to show
good testing techniques:

“One of the ironies of TDD is that it isn’t a testing technique. It’s an analysis
technique, a design technique, really a technique for structuring all activities
of development.” [Bec03, p. 204]

It is only a small example but it is ideal to study code changes over time in TDD. This
analysis covered the whole CVS history of the Money Example.

Calibration

The Money Example was the first case study used to calibrate TddMentor. TddMentor
needed to show perfect results for it because with this example Beck demonstrated the
concepts of TDD. Making TddMentor show perfect results here helped refine many of
the concepts discussed earlier in this work.

TddMentor needed to implement detection code for the refactoringsReconcile Dif-
ferences, Replace Constructor with Factory Methodand detection code for the refactor-
ing participantAdd Argument.

Some methods, however, were still reported as uncovered. A manual inspection
revealed that these methods had not been covered by tests intentionally because they had
been considered too trivial (see Section 6.2 for a discussion of those exceptions). The
project-specific analysis descriptor therefore declares coverage claims for the methods
as shown in listing 8.1. Section 7.2.1 explains the syntax of coverage claims.

90 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

Listing 8.1 (Coverage claims for the Money Example)
<coverage-claims>

<edition name="global">
<method name="toString" paramsig="[]"/>
<method name="equals" paramsig="[QObject;]"/>
<method name="hashCode" paramsig="[]"/>

</edition>
</coverage-claims>

Span claims (see Section 6.2) were not needed for the Money Example.

8.1.2 Analysis Results

Figure 8.1 shows the test coverage rate over time. One can see complete test coverage
for all integration deltas except for one missing data point in the third integration delta.

Figure 8.1:Test coverage rate and method deltas of the Money Example.All integration
deltas except number three had a test coverage rate of one. This exception was due to
a missing data point that revealed a limitation of TddMentor as discussed below. Some
integration deltas required the calculation of refactoring method deltas.

A manual inspection of the integration delta that missed the data point revealed
that (1) in the test code, a reference to an instance variable had been removed and that
(2) in the production code, the visibility of this instance variable had been changed
to private . TddMentor takes the number of changed production code methods as
divisor for calculating the test coverage rate. The set of production code methods in this
integration delta being empty lead to the missing data point.

TddMentor detected a number of method deltas that were not spanned by tests.
All those method deltas were identified as refactorings. TddMentor accepted all those
method deltas as covered (see Section 6.2). Figure 8.1 also shows the number of those
method deltas over time.

8.1. THE MONEY EXAMPLE 91

The figure only shows method deltas that were needed to calculate the test coverage
rate. TddMentor might have identified other method deltas between two integration
versions. They are not shown because they were irrelevant for the calculation of the
test coverage rate. The objective behind the method delta detection for this PCI is the
correct calculation of the test coverage rate.

8.1.3 Discussion of Results

The test coverage rate history in Figure 8.1 is not very surprising, as the Money Example
is a scholarly example for demonstrating TDD. Therefore, a complete test coverage for
every individual integration delta could have been expected.

The noted exception reveals a limitation of TddMentor. At the time of writing it has
only analyzed changes in methods. Therefore the change of an instance variable went
unnoticed. The manual inspection showed a full test coverage for this integration delta.

Even though the Money Example starts from scratch and in small steps, very soon
the code needs to be cleaned up by applying some refactorings. The detected refactoring
method deltas also shown in Figure 8.1 were essential for reaching a test coverage rate
of one for those integration deltas. Without the detection of those method deltas, the test
coverage rate would have been below one.

Clearly the production code had been refactored while the developer could rely on
the tests that had been written for the preceding integration deltas. A small amount of
production code changes could be explained by the application of refactorings. New
functionality had been driven into the system by new tests. This introduction of new
functionality had triggered the need to refactor the already existing code. Without this
new functionality, the refactorings would not have been appropriate in the TDD sense.
In TDD, a redesign is always the third of the three steps of a basic development cycle.

Summary and Recommendations

Unsurprisingly, I do not have any recommendations for Beck on how to improve his
TDD process compliance.

8.1.4 Discussion of Case Study

TddMentor produced results as expected. The example illustrates the basic TDD devel-
opment cycle. Therefore, it was expected that it would comply to this process.

The test coverage rate could only be calculated correctly because TddMentor de-
tected some refactorings in the source code. This shows the necessity of the refactoring
detection mechanism.

92 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

The missing data point in Figure 8.1 reveals a limitation of TddMentor; it ignores
instance variables completely. Dealing with instance variables will be left as future
work.

Another PCI is the distribution of all refactorings across a period of time as described
in Section 6.3. However, the test coverage algorithm only needs the method deltas of
those methods that were not spanned by tests already. In order to make a more extensive
analysis of refactorings, TddMentor needed to detect more types of refactorings than it
does at the time of writing.

8.2 QDox

QDox [URL:QDox] is a high speed, small footprint parser for extracting class, inter-
face, and method definitions from source files complemented with JavaDoc @tags. It
is designed to be used by active code generators or documentation tools. QDox imple-
ments a custom built parser using JFlex [URL:JFlex] and BYacc/J [URL:BYacc]. It is
open source.

According to its developers it is one of the best examples of a completely test-
driven application. Many of the developers of QDox are affiliated with ThoughtWorks
[URL:ThoughtWorks], a company well known for its leadership in agile methodologies
and TDD. At the time of writing, QDox had 5 developers and listed 6 contributors that
“have contributed to this project through the way of suggestions, patches or documen-
tation.”

8.2.1 Analysis Setup

Scope

From September 2002 to year end 2003, QDox summed up to over 120 individual inte-
gration deltas. At that time the system contained around 20 manually created production
code classes and around the same number of test code classes.

The classes that would have been generated from the lexer and parser specifications
were not taken into account for the analysis. TddMentor could not run build processes
for the individual integration versions, therefore it had no chance to generate classes
from the specifications.

This analysis covered 29 integration deltas from September 2003. The selected inte-
gration deltas contained mainly changes in Java code. Other integration deltas showed
changes in the lexer or parser specifications or in other non-Java artifacts.

8.2. QDOX 93

Calibration

QDox is used in practice. It is not an example project, and its developers claim that
QDox is a good example for applying TDD. Therefore, similar to the Money Exam-
ple, this case study was expected to show good results and help validate and refine the
concepts of TddMentor. Moreover, this case study provided numbers that are closer to
actual project reality than the Money Example.

TddMentor needed to implement detection code for the refactorings

• Extract Method,

• Expose Method,

• Move Method,

• Remove Parameter,

• Replace Exception with Error Code,

and detection code for the refactoring participants

• Add Argument,

• Remove Argument,

• Add Leftmost Invocation,

• Remove Leftmost Invocation,

• Delegate Constructor,

• Delegate Method,

and the change participantChange Argument.
Within the given scope, the QDox analysis did not require coverage Claims; how-

ever, it did require span claims (see Section 6.2).

Listing 8.2 (A method that called generated code.)
public JavaSource addSource(Reader reader) {

ModelBuilder builder =
new ModelBuilder(classLibrary, docletTagFactory);

Lexer lexer = new JFlexLexer(reader);
Parser parser = new Parser(lexer, builder);
parser.parse();
JavaSource source = builder.getSource();
sources.add(source);

94 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

addClasses(source);
return source;

}

For an example of span claims, see the method in listing 8.2 (section 7.2.1 explains
the syntax of span claims). In a regular build, the classesJFlexLexer andParser

would have been generated from the lexer and parser specifications. Calls to instances
of those classes would have been part of the method call graph. Their absence resulted
in an incomplete method call graph and thus in an incomplete test span. Span claims as
listed in listing 8.3 filled this gap.

Listing 8.3 (Span claims for the QDox analysis)
<span-claims>

<origin-method type="com.thoughtworks.qdox.JavaDocBuilder"
name="addSource" paramtype0="Reader">

<method type="com.thoughtworks.qdox.parser.Builder"
name="addPackage" paramtype0="String"/>

<method type="com.thoughtworks.qdox.parser.Builder"
name="addImport" paramtype0="String"/>

<method type="com.thoughtworks.qdox.parser.Builder"
name="addJavaDoc" paramtype0="String"/>

<method type="com.thoughtworks.qdox.parser.Builder"
name="addJavaDocTag" paramtype0="String"
paramtype1="String" paramtype2="int"/>

<method type="com.thoughtworks.qdox.parser.Builder"
name="beginClass" paramtype0="ClassDef"/>

<method type="com.thoughtworks.qdox.parser.Builder"
name="endClass"/>

<method type="com.thoughtworks.qdox.parser.Builder"
name="addMethod" paramtype0="MethodDef"/>

<method type="com.thoughtworks.qdox.parser.Builder"
name="addField" paramtype0="FieldDef"/>

</origin-method>
</span-claims>

8.2.2 Analysis Results

Figure 8.1 shows the test coverage rate over time and the method deltas that were de-
tected during the test coverage calculation.

The diagram shows complete test coverage except for four integration deltas.
A manual inspection revealed that at data pointA, the integration delta contained a

new convenience method. This method had been introduced without a test and it was

8.2. QDOX 95

Figure 8.2:Test coverage rate and method deltas of QDox.The test coverage rate was
one, except for a few integration deltas. Those exceptions are discussed in the text. A
number of integration deltas required the calculation of method deltas.

not referenced from anywhere within QDox. This resulted in a test coverage rate below
one.

At data pointB a new JUnit test class had been introduced. This class had been
stored, however, in the production code directory.

A new method in a public interface was responsible for the non-existing test cov-
erage in data pointC. No test and no implementation were found in the system during
manual inspection.

For data pointD the integration delta contained three new methods that had no tests.
One method contained some initialization code that relied on a new helper method.
These two methods called accessor methods of an other class and as such they were
not reported as uncovered (see Section 5.4.4). The third method had introduced a new
catch statement in the method’s body to discard some exception.

For the calculation of the test coverage, TddMentor needed to detect method deltas
of all three kinds (refactoring method deltas, refactoring participant method deltas and
change participant method deltas). The number of detected method deltas was mostly
similar to the money example. In integration delta 101, aMove Methodrefactoring for
several methods had resulted in some signature and many method body changes due to
the new context of the moved methods.

8.2.3 Discussion of Results

For nearly every new functionality, the repository contained a test as requested by the
TDD process. This is a strong indication that new functionality was really driven into
the system by tests.

96 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

The exceptional data points (A to D) in Figure 8.2 do not invalidate this result. For a
real world project a complete process compliance could not be expected — as opposed
to the scholarly Money Example.

The convenience method in data pointA is a public method and as such part of the
interface to the user. One could argue that it does not require a separate test case because
it only combines existing functionality. Yet the method is part of the public API and its
logic is complex enough that I would dedicate a separate test case to it.

Initialization logic in data pointD was important enough for requiring a dedicated
test. The additionalcatch statement in the third uncovered method in data pointD re-
vealed a general problem of TDD. Exception-handling code deals with situations where
something goes wrong. Some of those race conditions never occur during development
and occur only in a production environment. In such cases, a developer should write
a test that reproduces the race condition before changing the production code. That
means that in the integration delta for data pointD, there should have been a test case
that would have led to the exception. Such a test case might be very hard to write with
reasonable effort. For the case at hand, this means that a human process assessor would
have had to decide whether the missing test for thecatch statement was a TDD process
violation or not. A coverage claim (see Section 6.2) could have prevented the method
to be reported in subsequent runs of TddMentor.

The test code in the production code directory for data pointB seemed like a major
error. A final judgement however should only be made after a review with the developer
of that code.

The integration delta of data pointC contained a new method in a Java interface
without having either a test or an implementation. This was a TDD process violation
in several ways. First, it is clear that this new method had not been driven into the
application by tests. It also was not the result of a refactoring which would not have
needed a separate test — this new method is the only change in the whole integration
delta. Second, the new interface method extends an abstraction without providing an
implementation for that extension. This strongly smells of “Needless Complexity”.

Summary and Recommendations

The high reputation of the QDox developers had promised a good TDD process com-
pliance. The source code history of QDox was holding this promise.

However, the developers should review the discovered exceptions in order to avoid
such process violations in the future.

8.2.4 Discussion of Case Study

TddMentor produced results that met the expectations for the known TDD system. Still
it found some areas that require improvement and thus demonstrated the value of such
an analysis.

8.3. ANT 97

Method delta detection was necessary to produce correct results for the test cover-
age. The case study demonstrates that it is possible to detect those method deltas in
non-scholarly code.

The case study also demonstrated how to find potential TDD process violations. It
recommended that the developers should review those process violations.

The uncovered convenience method in the integration delta of data pointA could
fuel an expert discussion about when not to test (see Section 6.2).

8.3 Ant

Ant [URL:Ant] is a Java build tool hosted by the Apache [URL:Apache] software foun-
dation and was meant to replace the well-known “make” tool for building the Tomcat
servlet engine [URL:Tomcat]. The Ant project has around three dozens of “commit-
ters”. Within a few short years it has become the de facto standard for building open
source Java projects. It is also used in a large number of commercial projects and with
other languages like C++ and C# [HL03].

Ant’s source code is written in Java and is freely available as open source. It uses
CVS for keeping its revisions. The Ant developers use JUnit for writing unit tests. The
development process is incremental and most increments are directly integrated into the
system. Ant applies a nightly build process with fast feedback from its users by their
nightly builds for other open source Java projects.

Within the context of this research, Ant serves as a counter-example. The Ant project
has some aspects that would qualify for TDD (like incremental development and fast
integration). However, it is not developed in a test-driven way (at least not within the
scope of the analysis presented here). See the following quote from the Ant developer
mailing list.

“Testcases tend to be added to ant when problems have appeared, for in-
stance to demonstrate that a change fixes a bug report from Bugzilla. In
some instances, test cases are added proactively, to ensure that functional-
ity will be preserved after a change.

One of the problems with testcases is that a lot of tasks require specific
external resources (databases, application servers, version control systems,
SMTP mail server, ...) which do not always exist and do not exist under
the same name everywhere. These tasks are often very badly covered by
testcases.”2

This is clearly not a TDD process where new functionality would be driven by tests.
Also the testing techniques are not very elaborate in Ant. TDD typically applies a lot

2Posting from September, 21st 2003 in the ant-dev mailing list [URL:AntDev].

98 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

of highly sophisticated testing techniques (like mock objects) to get around limitations
such as mentioned in the posting. Link and Fröhlich [LF03] list a number of sophisti-
cated testing techniques for TDD.

At the time of the analysis scope, TDD had not been described as a method. Ele-
ments of it had been available and were partly described for example in [Bec00]. At
that time, the approach was named Test-First Programming.

8.3.1 Analysis Setup

Scope

This analysis comprised 34 individual integration deltas from July/August 2000. The
number of production classes was around 110. The number of test classes was around
7. It was not a big application but of reasonable size for a system in daily production
use.

During the chosen time frame, the use of JUnit was in the beginnings. First JUnit
test classes had appeared in the repository. Many integration deltas did not contain any
tests. The existing tests had a very simple structure that TddMentor could analyze easily.

At a later stage of the Ant development, the source repository contained unit tests
that extended the JUnit testing framework. These tests were still not very elaborate, as
witnessed in the posting above, but they were less accessible to analysis by TddMentor
than the tests at the early stage of JUnit usage within Ant. Therefore, this analysis was
scoped in the same way.

Calibration

Within the analysis scope, there was no need to apply span claims (see Section 6.2).
Also, I have not seen any possibility to apply coverage claims. TddMentor did not need
to implement any new detection code.

8.3.2 Analysis Results

Figure 8.3 shows the test coverage rate over time. Most integration deltas were not
covered by tests at all. The integration deltas simply did not contain any test class.

The integration delta for data pointA had a moderate test coverage rate. A manual
inspection revealed that this was the only integration delta within the analysis scope
that comprised changes in production code and in test code. That test code covered
some of the production code. The change participants of the same integration delta
(also depicted in the diagram) extended the coverage. The resulting test coverage rate,
however, was still below one.

8.3. ANT 99

Figure 8.3:Test coverage rate and method deltas of Ant.Most integration deltas were
not covered by tests at all. Some peaks show moderate or weak test coverage. Note the
missing data points. All marked data points are discussed in the text.

The integration deltasR1 to R4 showed a test coverage rate above zero. This was
exclusively due to the detected refactorings that are also depicted in the diagram. All
those integration deltas did not have any new or changed test.

B denotes a missing data point. A manual inspection showed that some existing
test cases had been refactored. No production code had been touched. This caused
TddMentor to divide by zero and thus resulted in the missing data point.

Integration deltaD also had no test coverage rate. A manual inspection showed that
this integration delta only contained the deletion of two files. The algorithm to calculate
the test coverage rate counted the touched methods that continued to stay in the system.
Methods of deleted classes did not add to the divisor which resulted in the missing data
point.

The missing data points denoted byC1 and C2 were caused by changes in inner
classes. As seen earlier, TddMentor could not deal with inner classes which resulted in
the two missing data points.

8.3.3 Discussion of Results

Even though Ant had a JUnit test suite during the analyzed period, new tests were only
added occasionally. New functionality had not been driven by tests. Even in the case
of data pointA, where new tests had been introduced, the test coverage was not com-
plete. This indicates that the production code changes were not driven by tests but rather
accompanied by tests. This observation matches the description of the development
process in the posting from the Ant developers’ mailing list above.

100 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

The test coverage rate peaksR1 to R4 give a false picture of the actual development
process. The test coverage algorithm (see Section 6.2) assumes that refactored methods
do not have to be spanned by tests, because they had been spanned in earlier integration
deltas. The test coverage rates of the surrounding integration deltas in Figure 8.3 clearly
indicate that this assumption does not hold here. The objective of the refactoring detec-
tion is to calculate a correct test coverage rate in the case of a TDD process as seen in
Figures 8.1 and 8.2. For the non-TDD process of Ant, the data pointsR1 to R4 should
have been zero. A human process mentor would identify such false test coverage rates
by the fact that they are solely induced by detected refactorings and that surrounding
integration deltas have a poor or not existing test coverage (as exemplified in Figure
8.3).

The refactoring of test code for data pointB in Figure 8.3 also shows that the devel-
opers were still working on their testing techniques. In TDD, refactoring is one step of
the basic development cycle. This applies to production code as well as to test code. A
refactoring of test code would not occur without the need to introduce new functionality
into the system.

The deletion of the production code for data pointD also reveals an understanding
of refactoring that is not compliant with TDD. In TDD, every development cycle ends
with a refactoring step. This is the time when dispensable code would have gone out. It
also would have required the deletion of the tests that had triggered the production code
to be in the system. No test code had been deleted inD. Hence the deleted production
code had obviously not been driven into the system by tests.

The missing data pointsC1 andC2 clearly show a limitation of TddMentor to deal
with inner Java classes at the time of the analysis.

Summary and Recommendations

The development process of Ant during the analyzed period was not TDD. Especially

• new functionality was occasionally accompanied by tests — not test-driven into
the system,

• the testing techniques were not elaborate enough, and

• refactorings were not performed as a mandatory step of the basic development
cycle.

The existence of a JUnit test suite and its occasional use as exemplified inA andB
can be a start for evolving a development process that is more test-driven. The devel-
opers who had already worked with the test suite can be an example for the other team
members. However, even those developers still needed to refine their testing techniques.

8.4. HYPOTHESIS VALIDATION 101

8.3.4 Discussion of Case Study

This case study shows how a process that did not conform to TDD could be discov-
ered. A manual inspection of the code confirmed the automatically calculated results.
The case study also demonstrates the deduction of concrete recommendations for the
project’s developers in getting closer to a TDD process.

The case study is a counter-example for a TDD process. It supports the relevance of
the data reported by TddMentor.

At the same time, it reveals some limitations of TddMentor. E.g., it does not deal
with refactorings in test code. The case study also shows some limitations of the under-
lying concepts. E.g., they do not cover inner Java classes at the time of writing. Such
cases can result in missing data points. Their solution, however, is left as future work
because those cases have only a minor impact on the results reported by TddMentor.

8.4 Hypothesis Validation

In their preliminary guidelines for empirical research in software engineering, Kitchen-
ham et al. [KPP+02] see two types of studies for validating a research hypothesis:
observational studies and formal experiments. The combination of the case studies of
this chapter takes the form of an observational study. More specifically, it resembles a
qualitative effects analysis which “provides a subjective assessment of the qualitative
effect of methods and tools” [Kit96]: TddMentor extracts quantitative information from
a source code history. However, a human subject still has to interpret the numbers for
translating them into concrete recommendations.

8.4.1 Case Study Selection

For a validation to be significant, the selected case studies should be representative for
the field of study [KPP95].

Sim et al. [SEH03] propose the use of benchmarks to advance software engineer-
ing research. They define benchmark as “a test or set of tests used to compare the
performance of alternative tools or techniques”. A traditional example of technical
benchmarks is TPC-A — the Transaction Processing Council (TPC) BenchmarkTMA
for Online Transaction Processing including a LAN or WAN network [Gre91]. De-
meyeret al. [DMW01] propose a benchmark for software evolution. For TDD there is
no benchmark available. It would consist of a set of typical test-driven programs.

In the absence of some form of benchmark for TDD, I had to select some case stud-
ies. Table 8.1 summarizes the state variables of the three case studies. All three projects
use Java as programming language and JUnit as unit testing framework. The Money Ex-
ample (see Section 8.1) is a scholarly example of how to apply TDD. Therefore, we can

102 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

have high confidence in its TDD process compliance. Also narrative evidence suggests
that QDox can be seen as exemplary demonstration of TDD. QDox (see Section 8.2) and
Ant (see Section 8.3) can be regarded as good examples of real world projects applied
in industry and with experienced software developers. They are not industrial projects.
As open source projects they are much more open than a closed industrial project and a
high commitment of the individual developers can be assumed.

State variable Money Example QDox Ant
TDD process compliance highest high accidential
Number of classes (prod/test) at
time of analysis scope

6(5/1) 40(20/20) 117(110/7)

Number of analyzed integration
deltas

16 29 34

Number of developers at time of
analysis scope

1 5 14

TDD experience of developers highest high poor

Table 8.1:State variables of the studied projects.The Money Example and QDox are
representative TDD projects. Ant is a representative counter example.

8.4.2 Confounding Factors

When the effect of one factor cannot be properly distinguished from the effects of an-
other factor, the two factors areconfounded[KPP95]. For avoiding a negative effect on
the internal validity, the case studies minimized the confounding factors.

TDD is not the only method that uses automated unit tests. Unit tests are probably
still more often written after the implementation of some production code. The appli-
cation of JUnit in Ant can be seen as a typical example for this. Even Beck [BG98]
had been working in that order before he developed TDD. Thus the mere presence of
unit tests does not suffice to identify a TDD process. It is rather the relentlessness of
unit testing and the very high test coverage rates that are a strong indication, together
with the iterative and incremental design changes if they are driven by tests. TddMentor
can only provide the raw numbers; they still have to be interpreted. The Ant case study
gives an example of the application of JUnit tests in a non-TDD way. As discussed in
the case study, a manual inspection can minimize the effect of this confounding factor.

Every basic development cycle of a TDD process has to leave with the design
being as good as possible by iteratively refactoring the new feature into the system
design. Some process compliance indices (see Chapter 6) incorporate those design
changes. However, TDD does not prevent non-TDD developers from creating good
designs and effectively applying refactorings. A TddMentor-based assessment takes the

8.4. HYPOTHESIS VALIDATION 103

test-coverage as the most important process compliance index. Not only new function-
ality but also design changes have to be driven by tests. A rejection of design changes
without tests minimizes this confounding effect.

Another possibly confounding factor is that the selected case studies are at both
ends of the spectrum. Two case studies are exemplary TDD projects. One case study
has some TDD elements more by accident rather than on purpose. Projects somewhere
in between might be more difficult to analyse correctly and therefore might produce
inaccurate results. The objective of TddMentor, however, is to support a TDD process
assessor. It is not meant to quantify the performance of a development team. The
TddMentor results give hints where the effort of a manual inspection might be invested
best. Therefore the analysis of a project within the spectrum might result in a higher
assessment effort but does not affect the internal validity of this research.

One might argue that the selection of the case studies was biased towards the capa-
bilities of TddMentor, which is still a prototype. This argument might hold in the sense
that other analytical contexts such as new types of refactorings, other types of source
code organization might have required more development effort for TddMentor. How-
ever, all detection mechanisms cover only well-known and well-documented concepts
(like agile design changes, refactorings, etc.). Those concepts are very likely to appear
in other case studies that could have been selected. Therefore such a selection bias as a
confounding factor can be neglected.

A similar confounding factor might be the limitations of TddMentor at the time of
the analyses as documented above. Some unhandled changes of inner classes caused
TddMentor to omit some data points. However, for the demonstration of a good TDD
process in the case of the Money Example and QDox, this limitation was not an obstacle.
In the case of Ant, only two data points were lost due to changes in inner classes and the
remaining data points provided enough evidence as to neglect the confounding influence
of TddMentor’s limitations.

The calibration phase of a TddMentor-supported assessment is another possibly
confounding factor. A false calibration could potentially invert the results reported by
TddMentor. For the three presented case studies, the calibration was manually checked
with great care.

8.4.3 Conclusion of Validity

Chapters 2 and 3 state the theory of Test-Driven Development, agile design changes and
process assessment. Chapter 4 describes the research hypothesis. Chapter 6 derives the
process compliance indices (PCIs) from the theory. Chapter 5 describes the algorithms
that allow the PCI calculations. Chapter 7 outlines TddMentor that implements the
described approach. This chapter discusses several case studies of the application of
TddMentor. The reported results match the expectations for the selected projects.

In summary, this discussion provides strong evidence for the validity of the research
hypothesis.

104 CHAPTER 8. CASE STUDIES AND HYPOTHESIS VALIDATION

Chapter 9

Summary and Conclusions

9.1 Summary of Contributions

This dissertation makes the following important contributions:

1. It shows how a better understanding of past software changes can support a TDD
process assessment.

2. It shows how the interdependence of test and production code can be leveraged
for better understanding of past software changes.

3. It introduces the concept of Process Compliance Indices (PCIs) as indicators for
TDD process violations. PCIs help focus a manual assessment effort. This dis-
sertation lists a number of specific PCIs, shows how to calculate them via a sta-
tic program analysis of source code changes, and how accurately they indicate
process violations in some case studies.

4. It explores the automatic detection of a number of safe software changes via delta
mapping of abstract syntax trees; namely refactorings, refactoring participants,
change participants and accessor methods. The detection of safe software changes
is required by some PCI calculations. A prototypical detection algorithm was
developed as part of this research.

5. It provides TddMentor, which is a prototypical implementation of the presented
concepts. TddMentor makes the past source code changes, that are buried in
a source code repository, accessible for static program analysis. Without this
extraction of integration deltas, an analysis of the software changes in the source
repository would not be manageable. Such analysis enables this dissertation’s
research but can also enable further research about source code evolution in TDD.

105

106 CHAPTER 9. SUMMARY AND CONCLUSIONS

9.2 Limitations of Approach

There are several limitations to the proposed approach:

1. TDD combines well-known software engineering practices (e.g. unit tests, prin-
ciples of good design, etc.) in a new way. The comprehensive description of the
interaction of those elements in TDD as a development style is relatively young.
The expert debate about all details in this respect has not come to an end yet.

2. The explicit declaration of integration deltas by the developers is rather the ex-
ception than the rule. The approach relies on a heuristic for the identification
of integration deltas. While this heuristic provides no proof for being correct, it
shows good results in the documented case studies.

3. This research concentrates on Java source code. It neglects all other source arti-
facts (like grammar specifications).

4. TddMentor performs only static program analysis. It has no capability to build
and run the individual integration versions. This prevents the use of some dynamic
analysis techniques.

5. The proposed algorithm for calculating test coverage requires to detect refactor-
ings and other safe software changes in source code. A detection of such safe
software changes might be complicated if developers mix refactoring activities
with corrective and extending changes (and thus violate the “two hats” principle).

9.3 Application Considerations

“Overreliance on tools and procedures, and underreliance on intelligence and experience
are recipes for disaster.” [Mar03, p. 202] The proposed approach only supports human
judgement, it does not replace it. TDD process assessors apply their human judge-
ment and process expertise during TDD process assessments. The proposed tool —
TddMentor — calculates some heuristics that indicate TDD process violations. These
indications still have to be judged by an individual. However, the use of TddMentor
helps focus the assessment effort and thus allows a process assessor spend his or her
time more effectively.

This dissertation does not impose a specific assessment approach on the expert. The
inspection of source code as output of a development process is part of process assess-
ment practice. TddMentor supports a process assessor during this activity by making
past source code changes accessible and manageable, that are normally buried in the
source code repository.

9.4. AREAS OF FUTURE RESEARCH 107

Today, a TDD process assessor still has to work in process mentoring sessions to
see how individual developers change software. By facilitating the assessment of past
source code changes, TddMentor allows to decouple this assessment activity from men-
toring actvities and thus gain a more comprehensive understanding of what happened in
the past of a development project. In that spirit, it is comparable to a refactoring tooling
inside an integrated development environment (IDE). The availability of such tools en-
abled refactorings to become common practice. Similarly the availability of tools like
TddMentor could increase the amount of inspections of source code changes.

Software developers might be tempted to learn TDD alone by applying TddMentor.
While TddMentor implements some TDD expertise as PCIs, it cannot replace human
TDD expertise. To a certain extent this expertise can be acquired by literature study,
insight and discussion with peer developers. TddMentor can facilitate the study of own
source code. Also it can facilitate the study of source code that was produced by others.
The study of source code from respected TDD teams (as in the case of QDox), can give
a wealth of insight into how source code is changed in a TDD world.

9.4 Areas of Future Research

“Empiricists in software engineering often complain about the lack of opportunities to
study software development and maintenance in real settings.” [Sea99] A TDD project
continuously creates a huge amount of data in the form of source code changes, that wait
for their exploration. A broader evaluation of a large number of TDD projects would
add to the knowledge about TDD and other agile methods in general. TddMentor could
enable such an undertaking.

New process compliance indices should be explored. For example, Beck [Bec03,
p. 85] expects the number of changes per refactoring to follow a “fat tail” or leptocurtotic
profile. Such a profile resembles a standard bell curve but with more extreme changes
than predicted by a standard bell curve [Man97]. Beck does not provide proof for this
statement but points to a possibly fruitful area of research. This dissertation facilitates
such a kind of research by providing a way to identify the integration versions in real
world TDD projects and detect refactorings in past software changes.

I expect that the topic of finding refactorings will attract more research interest in
the near future. The software engineering research community starts to understand
the importance of refactorings [MDB+03]. When design patterns were first proposed,
they were seen as tools to help design computer programs [GHJV95]. Nowadays they
are reverse engineered from existing code to better understand program design [Bro96]
[SS03]. It is my conviction that refactoring detection will see a similar career to better
understand source code evolution.

108 CHAPTER 9. SUMMARY AND CONCLUSIONS

9.5 Conclusions

The agile community stresses the importance of software as the most importantoutput
of a software development team, leading to a continuous flow of source code changes.
The view on past source code changes asinput for a better understanding of how a team
produces the software is a topic that deserves much more attention than it has received
thus far.

While there are still some problems to solve before the exploitation of source code
changes can become day to day practice, these problems need to be solved to gain a
better understanding of how TDD teams change software, where they had been lax in
following the process discipline, and to help them improve their development practices.

This thesis is a step towards their solution.

Appendix A

List of Detected Software Changes

This chapter lists and describes the refactorings, refactorings participants, change par-
ticipants, and method deltas that TddMentor can detect at the time of writing.

A.1 Refactorings

Most of the refactorings are taken from the literature. For each refactoring, the reference
is given after its name. Refactorings without reference have, to my knowledge, not been
documented elsewhere.

All refactorings in this chapter have the same format. They have four parts which
are as follows:

• The name identifies the refactoring. If available, followed by areference to
where it is described in more detail.

• The summary of thesituation in which you need the refactoring is rendered as
regular text.

• The summary of theaction you take to perform this refactoring isemphasised.

• A shortdescription containing just enough information to understand the refac-
toring in the context of this dissertation.

The refactorings in this list do not contain comprehensive motivations, mechanical
procedures or examples. Please refer to the existing literature for these details.

A.1.1 Add Parameter [Fow99]

A method needs more information from its caller.

Add a parameter for an object that can pass on this information.

109

110 APPENDIX A. LIST OF DETECTED SOFTWARE CHANGES

A very common refactoring. Authors regularly advise against this refactoring be-
cause it is so obvious. Several alternatives to this refactoring are possible (such as
deriving the needed information from the already available parameters). However, due
to the incremental nature of TDD, it is sometimes inevitable.

A.1.2 Collapse Hierarchy [Fow99]

A superclass and subclass are not very different.

Merge them together.

With all the refactorings during agile development, a class hierarchy can easily be-
come too tangled for its own good. It is often the result of pushing methods and fields
up and down the hierarchy.

A.1.3 Expose Method

A private method could reasonably be used by another class.

Make the method public.

Wake [Wak03] lists this refactoring as missing in Fowler’s catalog. Fowler [Fow99]
only documents how to restrict the visibility of a method because, as he argues, it is
easy to spot cases in which one needs to make a method more visible.

This refactoring is listed here because TddMentor needed to implement detection
code for this refactoring. It was observed in the QDox case study together withMove
Method.

A.1.4 Extract Method [Fow99] [Bec03]

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose of the
method.

It is one of the most common refactorings. This refactoring makes the code more
readable and saves comments in the source code. In TDD, it is often used to remove
duplication — left-overs of the second basic development step.

A.1.5 Extract Superclass [Fow99]

You have two classes with similar features.

Create a superclass and move the common features to the superclass.

A.1. REFACTORINGS 111

Another way to remove duplication. It creates a new abstraction and generalizes the
common functionality. The refactored object-oriented code uses the built-in mechanism
to simplify this situation with inheritance.

A.1.6 Move Method [Fow99] [Bec03]

A method is, or will be, using or used by more features of another class
than the class on which it is defined.

Create a new method with a similar body in the class it uses most. Either
turn the old method into a simple delegation or remove it altogether.

Fowler sees moving methods as the “bread and butter of refactoring”. It is good at
uncovering unwarranted preconceptions and helps to disentangle a design. Sometimes
only a part of a method needs to move. This part can be extracted byExtract Method.

A.1.7 Reconcile Differences [Bec03]

Two methods contain similar looking pieces of code.

Gradually bring them closer. Unify them only when they are absolutely
identical.

The second basic development step in TDD often leaves duplication in the source
code. This refactoring is one of the most common activities to remove duplication — as
described by Beck. It is not a classical refactoring since it relies strongly on the test suite
rather than being semantic-preserving under all circumstances. It also is not described
with as much rigor as, for example, the refactorings from Fowler. It works on several
levels of scale: similar loop structure, branches of a conditional, methods, and classes.

A.1.8 Remove Parameter [Fow99]

A parameter is no longer used by the method body.

Remove it.

Programmers often add parameters but are reluctant to remove them. Fowler advices
to remove not required parameters because they indicate a meaning which does not exist
and hence make the method harder to use.

112 APPENDIX A. LIST OF DETECTED SOFTWARE CHANGES

A.1.9 Rename Method [Fow99]

The name of a method does not reveal its purpose.

Change the name of the method.

Methods should be named in a way that communicates their intention. Due to the
evolutionary nature of the development style, a method might change its intention or it
may have been inappropriately named initially.

A.1.10 Rename Parameter

The name of a formal parameter does not reveal its purpose.

Change the name of the formal parameter.

This refactoring is so simple and basic that it is not described elsewhere. However,
for a refactoring-aware IDE like Eclipse, it is one of the most important to provide
support for. In the documented case studies, it is one of the most commonly detected
refactorings.

A.1.11 Replace Constructor with Factory Method [Fow99]

You want to do more than simple construction when you create an object.

Replace the constructor with a factory method.

The most obvious motivation comes from replacing a type code with subclassing.
You have an object that often has been created with a type code but now needs subclass-
ing. A constructor can only return an instance of its own type and thus the constructor
is replaced with a factory method [GHJV95].

A.1.12 Replace Exception with Error Code

A method throws an exception to indicate an error that should never
happen and the exception disrupts the method’s interface.

Return a special error code instead.

Fowler [Fow99] argues for the inverse refactoring because exceptions are a better
way to deal with race conditions. However, there are rare cases when this refactoring
might apply, such as that illustrated in the example below. The exception should never
occur as, after making the method public, it would disrupt the method’s interface.

The refactoring is applied at one’s sole discretion. While Fowler argues for the
inverse refactoring and it is arguable whether this refactoring makes sense or not, it
exists in practice (e.g. in the QDox case study). Therefore, TddMentor needs to be able
to detect this refactoring.

A.2. REFACTORING PARTICIPANTS 113

Example

// This method will fail if the method isn’t an accessor or mutator,
// but it will only be called with methods that are, so we’re safe.
private Type getPropertyType(JavaMethod method) {

Type result = null;
if (isPropertyAccessor(method)){

result = method.getReturns();
} else if(isPropertyMutator(method)){

result = method.getParameters()[0].getType();
} else {

throw new IllegalStateException("Shouldn’t happen");
}
return result;

}

⇓
/ **

* @return the type of the property this method represents,

* or null if this method

* is not a property mutator or property accessor.

* @since 1.3

* /
public Type getPropertyType() {

Type result = null;
if (isPropertyAccessor()){

result = getReturns();
} else if(isPropertyMutator()){

result = getParameters()[0].getType();
} else {

result = null;
}
return result;

}

A.2 Refactoring Participants

The format of refactoring participants resembles the format of refactorings (see Sec-
tion A.1). Instead of a description you find a reference to the refactoring in which it
participates.

114 APPENDIX A. LIST OF DETECTED SOFTWARE CHANGES

A.2.1 Add Argument

A method call misses an argument to the refactored method.

Add required argument to referencing call.

Participant to:Add Parameter

A.2.2 Add Leftmost Invocation

A referenced method is moved to a different class.

Prepend an instance of the target class to the referencing method call.

Participant to:Move Method

A.2.3 Delegate Constructor

A new parameter is added to a constructor but the old constructor interface
is still needed.

In the old constructor delegate to the new constructor, using a default
argument for the new parameter.

Participant to:Add Parameter

A.2.4 Delegate Method

A new parameter is added to a method but the old method interface is still
needed.

In the old method delegate to the new method, using a default argument for
the new parameter.

Participant to:Add Parameter

A.2.5 Remove Argument

A method call has too many arguments for the refactored method.

Remove the argument corresponding to the removed target method
parameter.

Participant to:Remove Parameter

A.3. CHANGE PARTICIPANTS 115

A.2.6 Remove Leftmost Invocation

A referenced method is moved to the same class from another class.

Remove the instance to the originating class from the referencing method
call.

Participant to:Move Method

A.3 Change Participants

The format is the same as for refactorings (see Section A.1).

A.3.1 Change Argument

A parameter type of a referenced method changes.

Change the argument in the referencing method call to match the new
parameter type.

Listings 2.5 and 2.6 give an example of this change participant. Such a change can
be assumed to be safe. In general, it is arguable to what extent change participants are
safe software changes. This change participant was the only one that was found during
the assessment of the case studies. The discovery and discussion of further types of
change participants might be an interesting subject for future research.

A.4 Method Deltas

A method delta is a difference between two methods’ abstract syntax trees. This section
lists and describes method deltas that TddMentor can detect. Section 5.4.2 documents
the detection conditions in detail for some selected method deltas.

Many of the method deltas listed here have the same name as the safe software
changes for which they are used. Within the text, the difference between method deltas
and safe software changes is made clear by the context in which they are used and they
are rendered differently, as declared in Section 1.3.1.

All method delta descriptions have the same format. They have four parts which are
outlined as follows:

• Thename identifies the method delta.

• The summary of thedifference between two AST nodes for which this method
delta is identified.

116 APPENDIX A. LIST OF DETECTED SOFTWARE CHANGES

• A Used forclause that lists the safe software changes for which this method delta
is used.

• If necessary, some furtherdescription of the method delta or the context in which
it is observed.

A.4.1 Add Argument

The argument list of aMethodInvocation node contains an additional
entry.

Used for:Add Argumentrefactoring participant.

A.4.2 Add Leftmost Invocation

A MethodInvocation node has an additional expression to qualify the
method invocation target.

Used for:Move Methodrefactoring participant.

This method delta is typically observed when the calling method had invoked a
method of its own class and that called method was moved away.

A.4.3 Add Parameter

The parameter list of aMethodDeclaration node contains an additional
parameter declaration.

Used for:Add Parameterrefactoring.

A.4.4 Change Argument

An entry of aMethodInvocation node’s argument list changes.

Used for:Change Argumentchange participant.

At the time of writing, this is the only method delta that can result in the identifica-
tion of a change participant. The way the argument changes is not further specified for
the detection of this method delta.

A.4.5 Change Parameter Type

A SingleVariableDeclaration of aMethodDeclaration node’s pa-
rameter list changes its type.

Used for:Reconcile Differencesrefactoring.

A.4. METHOD DELTAS 117

A.4.6 Change Return Type

The return type of aMethodDeclaration node changes.

Used for:Reconcile Differencesrefactoring.

A.4.7 Change Visibility

The visibility modifier of aMethodDeclaration node changes.

Used for:Expose Methodrefactoring.

This method delta could also be used forHide Method, which does not appear in
this dissertation.

A.4.8 Delegate Constructor

The statements of aBlock node that represents a constructor’s body are
replaced by aConstructorInvocation .

Used for:Delegate Constructorrefactoring participant.

A.4.9 Delegate Method

The statements in aBlock node that represents a method’s body are re-
placed by aMethodInvocation .

Used for:Delegate Methodrefactoring participant.

A.4.10 Extract Method

Some statements in a method’s body are replaced by aMethodInvocation .

Used for:Extract Methodrefactoring.

To identify this method delta, the delta mapping algorithm also checks if the replaced
statements are found in the called method.

A.4.11 Move Method

A MethodDeclaration is moved to a different location.

Used for:Move Methodrefactoring.

This method delta applies if the method is moved to a different class or if its defining
class is moved to another package. For detecting this delta, the method’s body is not
touched.

118 APPENDIX A. LIST OF DETECTED SOFTWARE CHANGES

A.4.12 Other Body

Any change in a method’s body that cannot be identified as one of the other
method deltas.

Used for:Change Argumentchange participant.

TheRefactoring Finder component must be able to see if a called method changes
in a way that allows the identification of a change participant. For such a called method,
the Other Bodydelta is reported together with other identified method deltas. This
method delta implements theNull Objectdesign pattern [MRB97].

A.4.13 Remove Argument

The argument list of aMethodInvocation node misses an former entry.

Used for:Remove Argumentrefactoring participant.

A.4.14 Remove Leftmost Invocation

A MethodInvocation node misses a former expression to qualify the
method invocation target.

Used for:Move Methodrefactoring participant.

Typically, this method delta is observed when the calling method has invoked a
method of its own class and that called method has moved to here from a different class.

A.4.15 Remove Parameter

The parameter list of aMethodDeclaration node misses a former para-
meter declaration.

Used for:Remove Parameterrefactoring.

A.4.16 Rename Parameter

A SingleVariableDeclaration of aMethodDeclaration node’s pa-
rameter list changes its name.

Used for:Rename Parameterrefactoring.

To identify this method delta, the delta mapping algorithm also checks if the para-
meter name is also changed throughout the method body.

A.4. METHOD DELTAS 119

A.4.17 Replace Constructor with Method Call

A ConstructorInvocation is replaced by aMethodInvocation .

Used for:Replace Constructor with Factory Methodrefactoring.

A.4.18 Replace Throw with Assignment

A ThrowStatement is replaced by anAssignment .

Used for:Replace Exception with Error Coderefactoring.

A.4.19 Replace Throw with Return

A ThrowStatement is replaced by aReturnStatement .

Used for:Replace Exception with Error Coderefactoring.

120 APPENDIX A. LIST OF DETECTED SOFTWARE CHANGES

Appendix B

List of Design Principles

This chapter lists some principles of object-oriented design that are used in the text.
These principles “help developers eliminate design smells and build the best designs for
the current set of features.” [Mar03, p. 86]

B.1 Single–Responsibilty Principle (SRP)

Also known ascohesion, which goes back to [DeM79] and [PJ88]. It is defined as
“the degree to which something models a single abstraction, localizing only features
and responsibilities related to that abstraction” [FE95]. Martin [Mar03] defines it as
follows: “A class should have only one reason to change.”

Despite its simplicity, the SRP is hard to get right. Martin’s view on responsibility
as “a reason for change” helps in the practical application of the principle. If a new test
drives a change in a class for which it was not intended then this might be a violation
of the SRP. The reason for the change might be a new responsibility that needs a new
abstraction (e.g. a class or interface) in the application design.

B.2 Open Closed Principle (OCP)

Bertrand Meyer [Mey97] coined the well-known Open-Closed principle. It says that
software entities (classes, modules, function, etc.) should be open for extension but
closed for modification.

A single change in production code might induce a cascade of changes in dependent
modules, which is a smell of bad design [Mar03, p. 99]. The OCP advices to redesign
the application so that future changes of the same kind do not have the same effect. To
achieve this goal, a programmer typically introduces a new abstraction.

The design closure determines against which changes a design is closed for mod-
ification but open for extension. In agile development, design evolves over time; it

121

122 APPENDIX B. LIST OF DESIGN PRINCIPLES

is not planned up-front. In other words, the design closure is extended each time the
implementation of a new feature does not fit into the existing design closure.

The remainder of this section discusses how software changes impact upon the de-
sign closure.

B.2.1 Closure-Preserving Changes

A closure-preserving change lies within the design closure of the existing system. This
means in some earlier point in time, a software change of the same kind was imple-
mented, which resulted in the creation of the appropriate abstractions.

Figure B.1 shows an example of a closure-preserving change. Interface IX is an
abstraction for some functionality in class V. Now the addition in class W can rely
completely on the already existing abstraction in interface IX.

Figure B.1: Example of a closure-preserving change.The new class W fits into the
already existing abstraction that is implemented by interface IX.

Closure-preserving changes are commonly observed in TDD. In fact the application
under development evolves to its own framework. Such closure-preserving changes
demonstrate the beneficial use of that framework.

B.2.2 Closure-Violating Changes

Closure-violating changes do not fit into the set of abstractions offered by the existing
application. The design closure consists of all the abstractions that were introduced to
implement new features in the application. Whenever a change of a new kind is imple-
mented, the programmer needs to add a new abstraction and thus extend the existing
design closure. Closure-violating changes implement a new feature but fail to introduce
a new abstraction by hacking a “solution” which does not fit the existing design.

B.2. OPEN CLOSED PRINCIPLE (OCP) 123

Figure B.2 shows an example of a closure-violating change. Interface IX is an ab-
straction for the functionality in class V. Now class W is part of some new functionality
for which no existing abstraction can be used. To implement the required functionality,
changes in existing classes are performed without creating an appropriate abstraction.

Figure B.2: Example of a closure-violating change.New functionality in class W
doesn’t fit into the existing abstractions. In order to integrate with the application, some
existing class V has to be modified.

Agile methodologies request that whenever a programmer introduces a change of a
new kind into the system, he/she has to create the appropriate abstractions at the same
time. Failing to do so introduces design smells in the design. The purpose of applying
design principles is to remove design smells. Deferring the removal of design smells to
a later point in time is not valid because it reduces the ability to be agile.

B.2.3 Closure-Extending Changes

In the same fashion as closure-violating changes, this kind of change does not fit into the
existing design closure. However, instead of just violating the existing design closure,
this change extends it.

Figure B.3 shows an example of a closure-extending change. Interface IX is an
abstraction for the functionality in class V. Class W is part of some new functionality for
which no existing abstraction can be used. Thus the new interface IY is the abstraction
necessary to implement the new functionality. Existing classes have to be changed as
well but now the new abstraction extends the design closure.

In a strict Test-Driven Design (TDD) sense, a developer would first implement the
new feature using the existing design closure. At first this looks like a closure-violating
change. As discussed above, this results in design smells because the additions do not
fit into the existing design closure. After detecting these smells, the developer applies
the design principles in order to return to a smell-free state.

124 APPENDIX B. LIST OF DESIGN PRINCIPLES

Figure B.3:Example of a closure-extending change.New functionality in class W fits
into a new abstraction implemented by interface IY. Some existing class V might need
to be adapted.

A developer which is not following TDD in the strict sense could apply the principles
first to prepare the system for the new feature. He simply has to ensure that there are no
smells left after having finished the software change.

Whether or not the software change goes through the closure-violating state, the ap-
plication of the design principles introduces new abstractions into the system that are
used by the newly implemented feature. It is important to note that the newly intro-
duced abstractions have to be used right away unless they are a smell for “Needless
Complexity”.

Closure-extending changes are commonly observed in TDD. In fact, as seen above,
an application under development evolves to its own framework. Such closure-extending
changes are the means for this framework evolution.

Appendix C

Glossary

This chapter describes some commonly used terms that are not defined elsewhere in the
document.

Abstract class A class whose primary purpose is to define an interface. An abstract
class defers some or all of its implementation to subclasses. An abstract class
cannot be instantiated. [GHJV95]

Ancestor (type of a given type)Any type from which the given type is directly or in-
directly derived via inheritance. [FE95]

Application Any collection of classes that work together to provide related functional-
ity to the end user.Synonym:Program. [FE95]

Committer A developer who has commit rights to a source repository (typically of an
Open Source project).

Delegation An implementation mechanism in which an object forwards ordelegatesa
request to another object. The delegate carries out the request on behalf of the
original object. [GHJV95]

Descendant (type of a given type)Any type that inherits, either directly or indirectly,
from the given type. [FE95]

Framework A set of cooperating classes that makes up a reusable design for a specific
class of software. A framework provides architectural guidance by partitioning
the design into abstract classes and defining their responsibilities and collabora-
tions. [GHJV95]

Implementor A concrete realization of the contract declared by an interface. [JBR99]

125

126 APPENDIX C. GLOSSARY

Interface A collection of operations that are used to specify a service of a class or
component. [JBR99]

Method call graph A graph representing calls between methods in a given program.
[MNGL98]

Program seeApplication.

Relationship A relationship is any logical static connection between two or more things.
[FE95]

Software SystemAny application consisting of software, hardware, documentation
(a.k.a. paperware), and roles played by people (a.k.a. wetware). [FE95]

Type The declaration of the interface of any set of instances that conform to this com-
mon protocol. [FE95]

References

[ACL99] G. Antoniol, G. Canfora, and A. de Lucia. Maintaining Traceability
During Object-Oriented Software Evolution: A Case Study. InProc.
IEEE Intl. Conf. on Software Maintenance (ICSM), Oxford, England, Au-
gust/September 1999.

[AGM87] K.H. An, D.A. Gustafson, and A.C Melton. A Model for Software Mainte-
nance. InProc. IEEE Intl. Conf. on Software Maintenance (ICSM), pages
57–62, 1987.

[All01] Agile Alliance. Agile Manifesto. Online at http://www.agilemanifesto.org,
2001.

[AM03] Alain Abran and James W. Moore, editors.Guide to the Software Engi-
neering Body of Knowledge - Trial Version (Version 1.0). IEEE Computer
Society, 2003. Online at http://www.swebok.org.

[Ams01] Jim Amsden. Levels of Integration — Five ways you can integrate with
the Eclipse Platform. Eclipse Corner Articles, March 2001. Online at
http://www.eclipse.org/articles.

[Arm04] Phillip G. Armour. Beware of Counting LOC.Communications of the ACM,
47(3):21–24, March 2004.

[Ast03] Dave Astels.Test-Driven Development: A Practical Guide. Prentice Hall,
Upper Saddle River, NJ, 2003.

[AWSR03] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi
Ronkainen. New Directions on Agile Methods: A Comparative Analysis.
In Proc. Intl. Conf. on Software Engineering (ICSE), pages 244–254, Port-
land, OR, May 2003.

[Bal98] Helmut Balzert.Lehrbuch der Software-Technik — Software-Management,
Software-Qualiẗatssicherung, Unternehmensmodellierung. Spektrum
Akademischer Verlag, Heidelberg, Germany, 1998.

127

128 REFERENCES

[BB03] Kent Beck and Barry Boehm. Agility through Discipline: A Debate.IEEE
Computer, 36(6):44–46, June 2003.

[BBC+96] Victor Basili, Lionel Briand, Steven Condon, Yong-Mi Kim, Walcélio L.
Melo, and Jon D. Valett. Understanding and Predicting the Process of Soft-
ware Maintenance Releases. InProc. Intl. Conf. on Software Engineering
(ICSE), Berlin, Germany, 1996.

[BBS02] K. Bassin, S. Biyani, and P. Santhanam. Metrics to Evaluate Vendor-
Developed Software Based on Test Case Execution Results.IBM Systems
Journal, 41(1):13–30, 2002.

[BC01] Piergiuliano Bossi and Francesco Cirillo. Repo Margining System: Ap-
plying XP in the Financial Industry. InProc. 2nd Intl. Conf. on eXtreme
Programming and Flexible Processes in Software Engineering (XP2001),
Cagliari, Italy, 2001.

[BCR02] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal
Question Metric Approach. In John J. Marciniak, editor,Encyclopedia of
Software Engineering, 2 Volume Set. Wiley, 2002.

[Bec00] Kent Beck.eXtreme Programming Explained: Embrace Change. Addison-
Wesley, 2000.

[Bec03] Kent Beck.Test-Driven Development by Example. Addison-Wesley, Boston,
MA, 2003.

[Bei93] Boris Beizer.Software Testing Techniques. Van Noshand, New York, 1993.

[BFL+95] Sergio Bandinelli, Alfonso Fuggetta, Luigi Lavazza, Maurizio Loi, and
Gian Pietro Picco. Modeling and Improving an Industrial Software Process.
IEEE Transactions on Software Engineering, 21(5):440–454, 1995.

[BG98] Kent Beck and Erich Gamma. Test-Infected: Programmers Love Writing
Tests.Java Report, 3(7), 1998. Online at http://www.junit.org.

[BGL+96] Victor R. Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest
Shull, Sivert Sørumg̊ard, and Marvin V. Zelkowitz. The Empirical Investi-
gation of Perspective- Based Reading.Empirical Software Engineering: An
International Journal, 1(2):133–164, 1996.

[BH93] Samuel Bates and Susan Horwitz. Incremental Program Testing Using Pro-
gram Dependence Graphs. InProc. ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 384–396, January 1993.

REFERENCES 129

[Bin98] David Binkley. The Application of Program Slicing to Regression Testing.
Information and Software Technology, 40(11–12):583–594, 1998.

[Bin99] Robert V. Binder.Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley, 1999.

[BK95] J. M. Bieman and B. K. Kang. Cohesion and Reuse in an Object-Oriented
System. InProc. ACM Symposium on Software Reusability, April 1995.

[BKS98] Kathryn A. Bassin, Theresa Kratschmer, and P. Santhanam. Evaluating
Software Development Objectively.IEEE Software, 15(6):66–74, Novem-
ber/December 1998.

[BL76] Laszlo A. Belady and M. M. Lehman. A Model of Large Program Develop-
ment. IBM Systems Journal, 15(1):225–252, 1976.

[BMK02] Mark Butcher, Hilora Munro, and Theresa Kratschmer. Improving Software
Testing via ODC: Three Case Studies.IBM Systems Journal, 41(1):31–44,
2002.

[BMPZ02] Victor R. Basili, Frank E. McGarry, Rose Pajerski, and Marvin V.
Zelkowitz. Lessons Learned from 25 Years of Process Improvement: The
Rise and Fall of the NASA Software Engineering Laboratory. InProc. Intl.
Conf. on Software Engineering (ICSE), May 2002.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture – A System of Pat-
terns. Wiley, West Sussex, England, 1996.

[Boe81] Barry W. Boehm.Software Engineering Economics. Prentice Hall, Upper
Saddle River, NJ, 1981.

[Boo94] Grady Booch.Object-Oriented Analysis and Design with Applications. Ben-
jamin Cummings, Redwood City, CA, second edition, 1994.

[BR00] Keith H. Bennett and Vaclav T. Rajlich. Software Maintenance and Evo-
lution: A Roadmap. InProc. Intl. Conf. on Software Engineering (ICSE),
pages 73–87, 2000.

[Bro95] Fred Brooks. The Mythical Man-Month. Addison-Wesley, Boston, 20th
anniversary edition, 1995.

[Bro96] Kyle Brown. Design Reverse-Engineering and Automated Design Pattern
Detection in Smalltalk. Master’s thesis, University of Illinois, 1996.

130 REFERENCES

[BSW+03] James M. Bieman, Greg Straw, Huxia Wang, P. Willard Munger, and
Roger T. Alexander. Design Patterns and Change Proneness: An Examina-
tion of Five Evolving Systems. InProc. Ninth International Software Met-
rics Symposium (METRICS’03), Sydney, Australia, September 2003. IEEE.

[BT03] Barry Boehm and Richard Turner.Balancing Agility and Discipline — A
Guide for the Perplexed. Addison-Wesley, Boston, MA, 2003.

[BW84] Victor R. Basili and David Weiss. A Methodology for Collecting Valid
Software Engineering Data.IEEE Transactions on Software Engineering,
10(3):728–738, November 1984.

[CBC+92] R. Chillarege, I. S. Bhandari, J. K. Chaar, D. S. Moebus M. J. Halliday,
B. K. Ray, and M.-Y. Wong. Orthogonal Defect Classification: A Concept
for In-Process Measurements.IEEE Transactions on Software Engineering,
18(11):943–956, 1992.

[CDM02] Jõao W. Cangussu, Raymond A. DeCarlo, and Aditya P. Mathur. A For-
mal Model of the Software Test Process.IEEE Transactions on Software
Engineering, 28(8):782–796, August 2002.

[Ced93] Per Cederqvist. Version Management with CVS, 1993. Online at
http://www.cvshome.org.

[CHK+97] Jim Coplien, Luke Hohmann, Norm Kerth, John Rae-Grant, and Eileen
Strider. Panel: Changing the Engine of the Car? While Driving 60 Miles
an Hour! InProc. Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 158–161. ACM Press, 1997.

[CK94] S. R. Chidamber and C.F. Kemerer. A metrics Suite for Object-Oriented
Design.IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[CMM02] CMMI Development Team.Capability Maturity Model Integration V1.1.
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh,
2002.

[Coc98] Alistair Cockburn. Surviving Object-Oriented Projects: A Manager’s
Guide. Addison-Wesley, Reading, MA, 1998.

[Coc00] Alistair Cockburn. Characterizing people as non-linear, first-order compo-
nents in software development. InProc. 4th Intl. Multi-Conference on Sys-
tems, Cybernetics and Informatics, Orlando, Florida, 2000.

[Coc01] Alistair Cockburn.Agile Software Development. Addison-Wesley, 2001.

REFERENCES 131

[Coc02] Alistair Cockburn. Learning from Agile Software Development.Crosstalk,
October 2002.

[Col03] Michael L. Collard. An Infrastructure to Support Meta-Differencing and
Refactoring of Source Code. InProc. Intl. Conf. on Automated Software
Engineering (ASE’03), Edinburgh, UK, September 2003. IEEE.

[Con68] Melvin E. Conway. How do Committees Invent.Datamation, 14, April
1968.

[Cop97] Jim O. Coplien. Idioms and Patterns as Architectural Literature.IEEE Soft-
ware, 14(1):36–42, January 1997.

[Cop99] James O. Coplien. Reevaluating the Architectural Metaphor: Toward Piece-
meal Growth.IEEE Software, 16(5):40–44, September/October 1999.

[Cox90] Brad Cox. There is a Silver Bullet.BYTE Magazine, Oktober 1990.

[CS95a] N. I. Churcher and M. J. Shepperd. A Metrics Suite for Object-Oriented De-
sign. IEEE Transactions on Software Engineering, 21(3):263–265, March
1995.

[CS95b] James O. Coplien and Douglas C. Schmidt.Patterns Languages of Program
Design. Addison-Wesley, 1995.

[DB98] Allen H. Dutoit and Bernd Bruegge. Communication Metrics for Software
Development.IEEE Transactions on Software Engineering, 24(8), August
1998.

[DD99] St́ephane Ducasse and Serge Demeyer, editors.The FAMOOS Object-
Oriented Reengineering Handbook. FAMOOS project, 1999.

[DDN00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding Refactor-
ings via Change Metrics. InProc. Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 166–177. ACM
Press, 2000.

[DeM79] Tom DeMarco. Structured Analysis and System Specification. Yourdon
Press, Prentice Hall, Englewood Cliff, NJ, 1979.

[DeM82a] Tom DeMarco. Controlling Software Projects. Yourdon Press, Prentice
Hall, Englewood Cliff, NJ, 1982.

[Dem82b] W.E. Deming.Out of the Crisis. MIT Center Advanced Eng. Study, Cam-
bridge, MA, 1982.

132 REFERENCES

[DM02] Arie van Deursen and Leon Moonen. The Video Store Revisited —
Thoughts on Refactoring and Testing. InProc. 3rd Intl. Conf. on eX-
treme Programming and Agile Processes in Software Engineering (XP2002),
pages 71–76, Alghero, Sardinia, Italy, 2002.

[DMBK01] Arie van Deursen, Leon Moonen, A. van den Bergh, and G. Kok. Refac-
toring Test Code. InProc. 2nd Intl. Conf. on eXtreme Programming and
Flexible Processes in Software Engineering (XP2001), 2001.

[DMW01] Serge Demeyer, Tom Mens, and Michel Wermelinger. Towards a Software
Evolution Benchmark. InProc. Intl. Workshop on Principles of Software
Evolution, Vienna, Austria, September 2001.

[DRW02] Alastair Dunsmore, Marc Roper, and Murray Wood. Further Investigations
into the Development and Evaluation of Reading Techniques for Object-
Oriented Code Inspection. InProc. Intl. Conf. on Software Engineering
(ICSE), Orlando, FL, May 2002.

[Dum00] Reiner Dumke.Software Engineering. Vieweg, Braunschweig, Germany, 2
edition, 2000.

[Ebe95] Christof Ebert. Complexity Traces: An Instrument for Software Project
Management. In Norman Fenton, Robin Whitty, and Yoshinori Iizuka, ed-
itors, Software Quality: Assurance and Measurement – A Worldwide Per-
spective, pages 166–176. Internation Thomson Computer Press, 1995.

[EC02] Khaled el Emam and D. Card, editors.ISO/IEC Standard 15939 — Software
Measurement Process. International Organization for Standardization, 2002.

[Edw03a] Stephen H. Edwards. Teaching Software Testing: Automatic Grading Meets
Test-First Coding. InAddendum to Proc. Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), 2003.

[Edw03b] Stephen H. Edwards. Using Test-Driven Development in the Classroom:
Providing Students with Concrete Feedback on Performance. InProc. Intl.
Conference on Education and Information Systems: Technologies and Ap-
plications (EISTA’03), August 2003.

[EGK+01] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron, and Audris
Mockus. Does Code Decay? Assessing the Evidence from Change Man-
agement Data.IEEE Transactions on Software Engineering, 27(1):1–12,
January 2001.

REFERENCES 133

[EGK+02] Stephen G. Eick, Todd L. Graves, Alan F. Karr, Audris Mockus, and
P. Schuster. Visualizing Software Changes.IEEE Transactions on Software
Engineering, 28(4):396–412, April 2002.

[EKS03] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating Features
in Source Code.IEEE Transactions on Software Engineering, 29(3):210–
224, March 2003.

[ER96] Nancy. S. Eickelmann and Debra. J. Richardson. What Makes One Soft-
ware Architecture More Testable Than Another? In Alexander L. Wolf,
editor,Proc. Second Intl. Software Architecture Workshop (ISAW-2) at SIG-
SOFT’96, San Francisco, CA, October 1996.

[ES02] Amr Elssamadisy and Gregory Schalliol. Recognizing and Responding to
”Bad Smells” in Extreme Programming. InProc. Intl. Conf. on Software
Engineering (ICSE), Orlando, FL, May 2002.

[Fag76] Michael E. Fagan. Design and Code Inspections to Reduce Errors in Pro-
gram Development.IBM Systems Journal, 15(3):182–210, 1976.

[Fag86] Michael E. Fagan. Advances in Software Inspections.IEEE Transactions
on Software Engineering, 12(7):744–751, July 1986.

[Fag01] Michael E. Fagan. A History of Software Inspections. In M. Broy and
E. Denert, editors,Proc. sd&m Conference 2001, Software Pioneers, pages
215–225. Springer, 2001.

[FE95] Donald G. Firesmith and Edward M. Eykholt.Dictionary of Object Tech-
nology — The Definitive Desk Reference. SIGS Books, New York, 1995.

[Fen94] Norman Fenton. Software Measurement: A Necessary Scientific Basis.
IEEE Transactions on Software Engineering, 20(3):199–206, March 1994.

[FOW87] J. Ferrante, K. Ottenstein, and J. Warren. The Program Dependence Graph
and its Use in Optimization.ACM Transactions on Programming Languages
and Systems, 9(3):319–349, July 1987.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[FP96] Norman E. Fenton and Shari Lawrence Pfleeger.Software Metrics: A Rig-
orous and Practical Approach. International Thomson Publishing, second
edition, 1996.

134 REFERENCES

[GB99] Erich Gamma and Kent Beck. Junit: A Cook’s Tour.Java Report, May
1999.

[GB04] Erich Gamma and Kent Beck.Contributing to Eclipse – Principles, Patterns,
and Plug-ins. Addison-Wesley, 2004.

[GG93] Tom Gilb and Dorothy Graham.Software Inspection. Addison-Wesley,
Boston, MA, 1993.

[GHJ98] H. Gall, K. Hajek, and M. Jazayeri. Detection of Logical Coupling Based on
Product Release History. InProc. IEEE Intl. Conf. on Software Maintenance
(ICSM), pages 190–198, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.De-
sign Patterns—Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

[Gil96] Tom Gilb. Level 6: Why We Can’t Get There From Here.IEEE Software,
13(1):97–98,103, January 1996.

[GJKT97] H. Gall, M. Jazayeri, R. R. Klösch, and G. Trausmuth. Software Evolution
Observations Based on Product Release History. InProc. IEEE Intl. Conf.
on Software Maintenance (ICSM), pages 160–166, 1997.

[GMR+02] Michael Gnatz, Frank Marschall, Gerhard Popp Andreas Rausch, Maura
Rodenberg-Ruiz, and Wolfgang Schwerin. Proc. 1st Workshop on Soft-
ware Development Patterns (sdpp’02) held at OOPSLA’02. Technical Re-
port TUM-I0213, Technical University of Munich, December 2002.

[Gre91] Jim Grey. The Benchmark Handbook: For Database and Transaction
Processing Systems. Morgan Kaufman, San Mateo, CA, 1991.

[Hal77] Maurice Halstead.Elements of Software Science. Elsevier, Amsterdam,
Netherlands, 1977.

[HF82] Peter G. Hamer and Gillian D. Frewin. M.H. Halstead’s Software Science
— A Critical Examination. InProc. Intl. Conf. on Software Engineering
(ICSE), pages 197–206, 1982.

[HG04] M. Hagen and V. Gruhn. PROPEL — Eine Sprache zur Beschreibung von
Process Patterns. InProc. of Modellierung’04, LNI. Gesellschaft f̈ur Infor-
matik, 2004.

[Hig00] Jim Highsmith.Adaptive Software Development - A Collaborative Approach
to Managing Complex Systems. Dorset House, 2000.

REFERENCES 135

[Hig02] Jim Highsmith.Agile Software Development Ecosystems. Addison-Wesley,
2002.

[HL03] Erik Hatcher and Steve Loughran.Java Development with Ant. Manning,
Greenwich, CT, 2003.

[HS96] Brian Henderson-Sellers.Object-Oriented Metrics: Measures of Complex-
ity. Prentice-Hall, 1996.

[HSW91] Watts S. Humphrey, Terry R. Snyder, and Ronald R. Willis. Software
Process Improvement at Hughes Aircraft.IEEE Software, 8(4):11–23,
July/August 1991.

[Hum89] Watts S. Humphrey.Managing the Software Process. SEI Series in Software
Engineering. Addison-Wesley, Reading MA, 1989.

[Hum95] Watts S. Humphrey. A Discipline for Software Engineering. Addison-
Wesley, Boston, MA, 1995.

[Hum97] Watts S. Humphrey.Introduction to the Personal Software Process. SEI
Series in Software Engineering. Addison-Wesley, 1997.

[Hum98a] Watts S. Humphrey. Three Dimensions of Process Improvement Part 1:
Process Maturity.Crosstalk, February 1998.

[Hum98b] Watts S. Humphrey. Three Dimensions of Process Improvement Part 2: The
Personal Process.Crosstalk, March 1998.

[Hum98c] Watts S. Humphrey. Three Dimensions of Process Improvement Part 3: The
Team Process.Crosstalk, April 1998.

[ISO98] Information Technology — Software Process Assessment, 1998. ISO/IEC
TR 15504:1998.

[ISO03] Information Technology — Process Assessment — Part 2: Performing an
Assessment, 2003. ISO/IEC 15504-2:2003.

[Jac03] Zygmunt Jackowski. Metamodel of a System Development Method. Agile
Alliance Articles, September 2003. Online at http://www.agilealliance.com.

[JAH00] Ron Jeffries, Ann Anderson, and Chet Hendrickson.Extreme Programming
Installed. Addison-Wesley, 2000.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh.The Unified Software
Development Process. Addison-Wesley, 1999.

136 REFERENCES

[JKA+03] Philip M. Johnson, Hongbing Kou, Joy Agustin, Christopher Chan, Carleton
Moore, Jitender Miglani, Shenyan Zhen, and William E.J. Doane. Beyond
the Personal Software Process: Metrics Collection and Analysis for the Dif-
ferently Disciplined. InProc. Intl. Conf. on Software Engineering (ICSE),
pages 641–646, Portland, OR, May 2003.

[Jon00] Capers Jones.Software Assessments, Benchmarks, and Best Practices.
Addison-Wesley, 2000.

[Ker01] Norman Kerth. Project Retrospectives — A Handbook for Team Reviews.
Dorset House, New York, 2001.

[Ker04] Joshua Kerievsky.Refactoring to Patterns. Addison-Wesley, 2004. To be
published.

[KFN93] Cem Kaner, Jack Falk, and Hung Quoc Nguyen.Testing Computer Software.
Van Nostrand Reinhold, New York, second edition, 1993.

[Kit96] Barbara Ann Kitchenham. Evaluating Software Engineering Methods and
Tool Part 1: The Evaluation Context and Evaluation Methods.ACM SIG-
SOFT Software Engineering Notes, 21(1):11–15, January 1996.

[KPM01] S. H. Kan, J. Parrish, and D. Manlove. In-Process Metrics for Software
Testing.IBM Systems Journal, 40(1):220–241, 2001.

[KPP95] Barbara Kitchenham, Lesley M. Pickard, and Shari Lawrence Pfleeger. Case
Studies for Method and Tool Evaluation.IEEE Software, 12(4):52–62, July
1995.

[KPP+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Pe-
ter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg.
Preliminary Guidelines for Empirical Research in Software Engineering.
IEEE Transactions on Software Engineering, 28(8):721–734, August 2002.

[KS99] Chris F. Kemerer and Sandra Slaughter. An Empirical Approach to Study-
ing Software Evolution. IEEE Transactions on Software Engineering,
25(4):493–509, July/August 1999.

[KST+86] Joseph K. Kearney, Robert L. Sedlmeyer, William B. Thompson, Michael A.
Gray, and Michael A. Adler. Software Complexity Measurement.Commu-
nications of the ACM, 29(11):1044–1050, November 1986.

[Lan03] Michele Lanza. Object-Oriented Reverse Engineering - Coarse-Grained,
Fine-Grained, and Evolutionary Software Visualization. PhD thesis, Uni-
versity of Berne, Switzerland, 2003.

REFERENCES 137

[LF03] Johannes Link and Peter Fröhlich. Unit Testing in Java: How Tests Drive
the Code. Morgan Kaufmann, 2003.

[LP80] M. M. Lehman and J. Patterson. Programs, Life Cycles and Laws of Soft-
ware Evolution. InProc. IEEE Special Issue on Software Engineering, vol-
ume 68, pages 1060–1076, September 1980.

[Man97] Benoit Mandelbrot, editor. Fractals and Scaling in Finance. Springer,
Berlin, 1997.

[Mar03] Robert Cecil Martin.Agile Software Development — Principles, Patterns,
and Pracitces. Prentice-Hall, Upper Saddle River, NJ, 2003.

[Mat00] Michael Mattsson.Evolution and Composition of Object–Oriented Frame-
works. PhD thesis, University of Karlskrona/Ronneby, 2000.

[May45] Elton Mayo. The Social Problems of an Industrial Civilization. Harvard
University Press, Cambridge, MA, 1945.

[MC02] J. McGarry and D. Card.Practical Software Measurement. Addison-Wesley,
Boston, MA, 2002.

[McB03] Pete McBreen. Questioning Extreme Programming. Addison-Wesley,
Boston, MA, 2003.

[McC93] Steve McConnell.Code Complete – A Practical Handbook of Software Con-
struction. Microsoft Press, 1993.

[McF96] Bob McFeeley. IDEAL: A User´s Guide for Software Process Improve-
ment. Technical Report CMU/SEI-96-HB-001, Software Engineering Insti-
tute, Carnegie-Mellon University, Pittsburgh, 1996.

[MDB+03] Tom Mens, Serge Demeyer, Bart Du Bois, Hans Stenten, and Pieter Van
Gorp. Refactoring: Current Research and Future Trends. InProc. 3rd
Workshop on Language Descriptions, Tools and Applications (LDTA’03),
Warsaw, Poland, April 2003. Elsevier. To be published in ENTCS.

[MDJ+97] Lehman M., Perry D., Ramil J., Turski W., and Wernick P. Metrics and
Laws of Software Evolution — The Nineties View. InProc. Metrics’97
Symposium, Albuquerque, NM, 1997.

[MEGK99] Audris Mockus, Stephen G. Eick, Todd L. Graves, and Alan F. Karr. On
Measurement and Analysis of Software Changes. Technical report, National
Institute of Statistical Science, 1999.

138 REFERENCES

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall
PTR, Upper Saddle River, NJ, second edition, 1997.

[MH02] Audris Mockus and James D. Herbsleb. Expertise Browser: A Quantitative
Approach to Identifying Expertise. InProc. Intl. Conf. on Software Engi-
neering (ICSE), May 2002.

[MHT00] Guido Malpohl, James J. Hunt, and Walter F. Tichy. Renaming Detection. In
Proc. Intl. Conf. on Automated Software Engineering (ASE’00), Grenoble,
France, September 2000. IEEE.

[Mil88] Harlan Mills. Software Productivity. Dorset House, New York, 1988.

[MM85] Webb Miller and Eugene W. Myers. A File Comparison Program.Software
Practice and Experience, 15(11):1025–1040, November 1985.

[MNGL98] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan.
An Empirical Study of Static Call Graph Extractors.ACM Transactions on
Software Engineering and Methodology, 7(2):158–191, April 1998.

[Moo02] Leon Moonen.Exploring Software Systems. PhD thesis, Faculty of Natural
Sciences, Mathematics, and Computer Science, University of Amsterdam,
Netherlands, December 2002.

[MPHN02] Lars Mathiassen, Jan Pries-Heje, and Ojelanki Ngwenyama.Improving
Software Organizations. Addison-Wesley, Boston, MA, 2002.

[MRB97] Robert C. Martin, Dirk Riehle, and Frank Buschmann.Pattern Languages
of Program Design 3. Addison-Wesley, 1997.

[Mug03] Rick Mugridge. Challenges in Teaching Test-Driven Development. InProc.
4th Intl. Conf. on eXtreme Programming and Agile Processes in Software
Engineering (XP2003), Genova, Italy, May 2003.

[MW03] E. Michael Maximilien and Laurie Williams. Assessing Test-Driven Devel-
opment at IBM. InProc. Intl. Conf. on Software Engineering (ICSE), pages
564–569, Portland, OR, May 2003.

[OJ90] William F. Opdyke and Ralph Johnson. Refactoring: An Aid in Design-
ing Application Frameworks and Evolving OO Systems. InProc. SOOPPA
Conference, September 1990. In SIGPLAN Notices.

[Opd92] William F. Opdyke.Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

REFERENCES 139

[Orr02] Ken Orr. CMM Versus Agile Development: Religious Wars and Software
Development.Agile Project Management, 3(7), 2002.

[Pau02] Mark C. Paulk. Agile Methodologies and Process Discipline.Crosstalk,
October 2002.

[PB02] Claudia Pons and Gabriel Baum. Reasoning About the Correctness of Soft-
ware Development Process. InProc. Intl. Conf. on Software Engineering
(ICSE), Orlando, FL, May 2002.

[Pip02] Jens Uwe Pipka. Refactoring in a Test First-World. InProc. 3rd Intl.
Conf. on eXtreme Programming and Agile Processes in Software Engineer-
ing (XP2002), Alghero, Sardinia, Italy, May 2002.

[Pip03] Jens Uwe Pipka. Development Upside Down: Following the Test
First Trail. Practitioners Report at ECOOP’03, 2003. Online at
http://www.daedalos.de/DE/DOWNLOAD/presentations/development
upsidedown.pdf.

[PJ88] Meilir Page-Jones.The Practical Guide to Structured Design. Yourdon
Press Computing Series, Englewood Cliff, NJ, second edition, 1988.

[PM90] Shari L. Pfleeger and C. L. McGowan. Software Metrics in a Process Matu-
rity Framework.Journal of Systems and Software, 12(3):255–261, 1990.

[Pow98] A.L. Powell. A Literature Review on the Quantification of Software Change.
Technical Report YCS-98-305, University of York, Department of Com-
puter Science, 1998.

[PS90] Adam A. Porter and Richard W. Selby. Empirically Guided Software Devel-
opment Using Metric-Based Classification Trees.IEEE Software, 7(2):46–
54, 1990.

[PV94] A.A. Porter and L.G. Votta. An Experiment to Assess Different Defect De-
tection Methods for Software Requirements Inspections. InProc. Intl. Conf.
on Software Engineering (ICSE), pages 103–112, 1994.

[PWC95] M.C. Paulk, C.V. Weber, and B. Curtis.The Capability Maturity Model:
Guidelines for Improving the Software Process. Addison-Wesley, Reading,
MA, 1995.

[Ree92] Jack Reeves. What is Software Design?C++ Journal, 2(2), 1992.

140 REFERENCES

[RH94] Gregg Rothermel and Mary Jean Harrold. Selecting Tests and Identifying
Test Coverage Requirements for Modified Software. InProc. Intl. Sympo-
sium on Software Testing and Analysis, pages 169–184. ACM Press, 1994.

[SDF+03] Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehm, John Kellerman,
and Pat McCarthy.The Java Developer’s Guide to Eclipse. Addison-Wesley,
2003.

[Sea99] Carolyn B. Seaman. Qualitative Methods in Empirical Studies of Software
Engineering.IEEE Transactions on Software Engineering, 25(4):557–572,
July/August 1999.

[SEH03] Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using Bench-
marking to Advance Research: A Challenge to Software Engineering. In
Proc. Intl. Conf. on Software Engineering (ICSE), pages 74–83, Portland,
OR, May 2003.

[Sim01] Frank Simon.Meßwertbasierte Qualitätssicherung. PhD thesis, Technische
Universiẗat Cottbus, Germany, 2001.

[SKN+99] Norman Schneidewind, Barbara Kitchenham, Frank Niessink, Janice
Singer, Anneliese von Mayrhauser, and Hongji Yang. Panel: Software Main-
tenance is Nothing More Than Another Form of Development. InProc.
IEEE Intl. Conf. on Software Maintenance (ICSM). IEEE Computer Soci-
ety, 1999.

[SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured Design.IBM
Systems Journal, 13(2), 1974.

[Som92] Ian Sommerville. Software Engineering. Addison-Wesley, fourth edition,
1992.

[Spi03] Diomidis Spinellis.Code Reading. Addison-Wesley, 2003.

[SS03] Jason McC. Smith and David Stotts. SPQR: Flexible Automated Design
Pattern Extraction from Source Code. Technical Report TR03-016, Depart-
ment of Computer Science, University of North Carolina, Chapel Hill, NC,
May 2003.

[ST02] Amitabh Srivastava and Jay Thiagarajan. Effectively Prioritizing Tests in
Development Environment. InProc. Intl. Symposium on Software Testing
and Analysis, pages 97–106. ACM Press, 2002.

[Sta03] Marne Staples. Test Effectivness. Microsoft Research Faculty Summit,
2003.

REFERENCES 141

[Ste01] Lukas Steiger. Recovering the Evolution of Object-Oriented Software Sys-
tems Using a Flexible Query Engine. Master’s thesis, Universität Bern,
Switzerland, 2001.

[Swa76] E.B. Swanson. The Dimensions of Maintenance. InProc. Intl. Conf. on
Software Engineering (ICSE), pages 492–497, 1976.

[Tic98] Walter F. Tichy. Should Computer Scientists Experiment More?IEEE
Computer, 31(5):32–40, May 1998.

[Wak03] William C. Wake. Refactoring Workbook. Addison-Wesley, Boston, MA,
2003.

[WB85] David M. Weiss and Victor R. Basili. Evaluating Software Development by
Analysis of Changes: Some Data from the Software Engineering Labora-
tory. IEEE Transactions on Software Engineering, 11(2):157–168, 1985.

[WBP+02] David M. Weiss, David Bennett, John Y. Payseur, Pat Tendick, and Ping
Zhang. Goal-Oriented Software Assessment. InProc. Intl. Conf. on Soft-
ware Engineering (ICSE), Orlando, FL, May 2002.

[WC03] Laurie Williams and Alistair Cockburn. Agile Software Development: It’s
about Feedback and Change.IEEE Computer, 36(6):39–43, June 2003.

[Wei71] Gerald M. Weinberg.The Psychology of Computer Programming. Van Nos-
trand Reinhold, 1971.

[Wei93] Gerald M. Weinberg.Quality Software Management — First-Order Mea-
surement, volume 2. Dorset House, New York, 1993.

[Wel93] E.F. Weller. Lessons Learned from Three Years of Inspecting Data.IEEE
Software, 10(5):38–45, September 1993.

[WG01] Christian Wege and Frank Gerhardt. Learn XP: Host a Boot Camp. In
Giancarlo Succi and Michele Marchesi, editors,Extreme Programming Ex-
amined, pages 489–500. Addison-Wesley, 2001. Proc. XP2000 Conference.

[Wil00] Laurie Williams. The Collaborative Software Process. PhD thesis, Univer-
sity of Utah, 2000.

[Wil01] Dwight Wilson. Teaching XP: A Case Study. InProc. XP Universe, Raleigh,
NC, July 2001.

[WK02] Laurie Williams and Robert Kessler. Pair Programming Illuminated.
Addison-Wesley, 2002.

142 REFERENCES

[WL01] Christian Wege and Martin Lippert. Diagnosing Evolution in Test-Infected
Code. InExtreme Programming Perspectives, pages 153–166. Addison-
Wesley, 2001. Proc. XP2001 Conference.

[Won02] Yuk Kuen Wong. Use of Software Inspection Inputs in Practice. InProc.
Intl. Conf. on Software Engineering (ICSE), Orlando, FL, May 2002.

[WSP+02] C. Williams, H. Sluiman, D. Pitcher, M. Slavescu, J. Spratley, M. Brodhun,
J. McLean, C. Rankin, and K. Rosengren. The STCL Test Tools Architec-
ture. IBM Systems Journal, 41(1):74–88, 2002.

[YC79] Ed Yourdon and Larry L. Constantine.Structured Design. Prentice Hall,
1979.

[YTFB89] M. Young, R. Taylor, K. Forester, and D. Brodbeck. Integrated Concur-
rency Analysis in a Software Development Environment. InProc. ACM
SIGSOFT’89 3rd Symposium on Software Testing, Analysis, and Verifica-
tion, pages 200–209. ACM Press, 1989.

[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software Unit Test
Coverage and Adequacy.ACM Computing Surveys (CSUR), 29(4):366–427,
December 1997.

[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental Models for
Validating Technology.IEEE Computer, 31(5):23–31, May 1998.

Online References

[URL:AntDev] http://marc.theaimsgroup.com/?l=ant-dev&m=
105880552631305&w=2

[URL:Ant] http://ant.apache.org

[URL:Apache] http://www.apache.org

[URL:BYacc] http://troi.lincom-asg.com/rjamison/byacc

[URL:CVS] http://www.cvshome.org

[URL:Clover] http://www.thecortex.net/clover

[URL:CmEclipse] http://www.lucas.lth.se/cm/cmeclipse.shtml

[URL:Dynabook] http://www.computer.org/SEweb/Dynabook

[URL:EclipeBugs] https://bugs.eclipse.org/bugs

[URL:Freese] http://tammofreese.de/Research.html

[URL:Hansel] http://hansel.sourceforge.net

[URL:Hillside] http://hillside.net/patterns/
onlinepatterncatalog.htm

[URL:J2EEPatterns]http://java.sun.com/blueprints/patterns/
catalog.html

[URL:JFlex] http://www.jflex.de

[URL:JMetra] http://www.jmetra.com

[URL:JUnit] http://www.junit.org

[URL:JXCL] http://jxcl.sourceforge.net

143

144 ONLINE REFERENCES

[URL:Maven] http://maven.apache.org

[URL:NoUnit] http://nounit.sourceforge.net

[URL:ODC] http://www.research.ibm.com/softeng

[URL:QDox] http://qdox.codehaus.org

[URL:SPICE] http://www.sqi.gu.edu.au/spice

[URL:SVC] http://subversion.tigris.org

[URL:StatCvs] http://statcvs.sourceforge.net

[URL:ThoughtWorks] http://www.thoughtworks.com

[URL:Tomcat] http://jakarta.apache.org/tomcat

[URL:WikiUT] http://c2.com/cgi/wiki?UnitTest

[URL:YAGNI] http://c2.com/cgi/wiki?YouArentGonnaNeedIt

