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Abstract

Computer animations are an essential part of today’s visual production pipeline, for feature an-
imated films and video games. By moving from static to dynamic scenes, immersion in virtual
environments is greatly enhanced. Most of these animations however are concerning rigid or ar-
ticulated bodies, and are generated manually by an artist or off-line. The interactive animation of
deformable objects still is a challenging task, requiring high computational resources. Moreover,
interactive environments for dressing up with virtual clothing or training surgeons on unaccus-
tomed procedures pose higher requirements on fidelity as simple plausibility, which we denote
by visual simulation.

This thesis presents a framework for the visual simulation of deformable objects, which is
fast enough to be integrated into virtual environments. The modelling of these objects is based on
continuum mechanics, yielding a better accuracy than the techniques commonly used in graphics.
An important aspect of modelling are material laws. Measurements have shown viscoelasticity
to be a distinctive characteristic of biological soft tissue, the hysteresis of cloth is a well known
observation in standard Kawabata experiments. We introduce the modelling of viscoelasticity to
graphics, which integrates smoothly into the continuum dynamical setting, and present the first
interactive implementation of a viscoelastic model.

Chapter 2 introduces the basic concepts of this approach, which results in a partial differential
equation; the following chapter discusses the numerical methods we employ for its solution. We
use the method of lines to solve this equation. Hence, as a first step the equation is discretised in
space using finite elements on a tetrahedral mesh of the object. This reduces the problem to the
solution of an ordinary differential equation. The efficient time integration of this equation is vital
for the performance of the application. The implicit methods we introduce for this task are well
suited for two-dimensional structures such as cloth as well as for three-dimensional soft objects.
Implicit integration requires the solution of large systems of equations. Hence, the efficiency of
these schemes again critically depends on the linear solver; we propose to use several methods
new to the field.

Two applications are presented in chapter 4 and 5 respectively, a core for cloth simulation
using a simpler space discretization method, and a soft object simulator, assembling all the tech-
niques we described in a set of flexible building blocks. The latter application allows the real-time
simulation of soft objects composed of up to several thousand tetrahedral elements; the blocks
can be configured to trade execution speed for approximation accuracy and hence to match the
requirements of the actual area of usage.
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Zusammenfassung

In der Produktion von computer-generierten Filmen und Videospielen spielen Animationen heut-
zutage eine tragende Rolle. Virtuelle Umgebungen gewinnen durch den Übergang von statis-
chen zu dynamischen Szenarien an Tiefe, realistische Dynamik erleichtert dem Benutzer das
Eintauchen in die virtuelle Realität. Animationen betreffen jedoch überwiegend starre Körper
oder gekoppelte Starrkörpersysteme, Bewegungen werden häufig manuell erzeugt. Die inter-
aktive Deformation weicher Objekte, zugeschnitten auf die Bedürfnisse der Computergraphik,
ist noch immer eine Herausforderung, insbesondere aufgrund des hohen Rechenaufwandes, den
sie benötigt. Zudem stellen spezielle Anwendungen wie beispielsweise eine virtuelle Schnei-
derstube oder ein virtuelles Operationsfeld zum Training minimal invasiver Eingriffe höhere An-
forderungen an die Genauigkeit der Rechnung. Diese gehen über die simple Plausibilität von tra-
ditioneller Animation hinaus, die letztendlich einem Animator lediglich eine sinnvolle Steuerung
der Bewegung ermöglichen muss. Dies prägte den Begriff visuelle Simulation. Visuelle Simu-
lationen haben die optische, haptische oder akustische Ausgabe und die Interaktion mit einem
Anwender als primäres Ziel, während die Simulationen der klassischen Ingenieurwissenschaften
vor allem technische Entwurfsentscheidungen erleichtern sollen.

In dieser Arbeit stellen wir die wichtigsten Komponenten für die visuelle Simulation von de-
formierbaren Körpern vor. Die resultierende, interaktive Anwendung ist schnell genug, um eine
Integration in eine virtuelle Umgebung zu erlauben. Deformierbare Materialien werden nach den
Grundsätzen der Kontinuumsmechanik modelliert, dies ermöglicht, wie wir sehen werden, eine
wesentlich bessere Näherung als die sonst in der Grafik üblichen Verfahren. Ein wichtiger As-
pekt der Modellierung ist die Abbildung von viskoelastischen Parametern, da Messungen gezeigt
haben, dass Viskoelastizität eine grundlegende Charakteristik von biologischem Weichgewebe
ist. Ebenso sind Hysterese-Schleifen, Resultat einer Kombination aus viskosen und elastischen
Eigenschaften, typisch für die Kawabata Messungen von Textilien. Viskoelastizität lässt sich
nahtlos in die kontinuumsmechanische Beschreibung einfügen. Diese Arbeit führt die Model-
lierung von Viskoelastizität in die Computergraphik ein, und präsentiert die erste Implemen-
tierung eines viskoelastischen Materials im Rahmen einer interaktiven Anwendung.

Zunächst werden die wichtigsten physikalischen und mathematischen Grundlagen vorgestellt.
Als Ergebnis der Modellierung erhalten wir eine partielle Differentialgleichung, die numerisch
gelöst werden muss. Dazu wird die „method of lines“ verwendet, das heißt die Gleichung wird
zunächst im Raum und anschließend in der Zeit diskretisiert. Zur Raumdiskretisierung wird die
Methode der Finiten Elemente genutzt, die es erlaubt, die Lösung durch eine gewöhnliche Dif-
ferentialgleichung auf einem Tetraedernetz anzunähern. Die effiziente numerische Lösung dieser
Gleichung ist ein wichtiger Bestandteil eines schnellen Simulators. Zu diesem Zweck werden
implizite Integrationsverfahren verwendet, die sich für die interaktive Simulation sowohl von
zweidimensionalen Textilmodellen, als auch von deformierbaren, volumenbehafteten Objekten
besonders eignen, allerdings vor allem für letztere Anwendung (noch) nicht verbreitet sind. Die
Effizienz eines solchen Verfahrens wird vor allem durch einen schnellen Lösungsalgorithmus für
lineare Gleichungen bestimmt. Aus diesem Grund adaptieren wir eine Reihe von direkten und it-
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erativen Methoden, die innerhalb dieses Forschungsgebietes bisher noch nicht eingesetzt worden
sind.

Die letzen beiden Kapitel stellen zwei Anwendungen vor, ein numerisches Kernmodul zur
Simulation von Kleidung und einen interaktiven Simulator für weiche Objekte. Der Textilsim-
ulator verwendet einen einfacheren Ansatz zur Raumdiskretisierung, die Applikation für dreidi-
mensionale Modelle baut auf allen hier vorgestellten Techniken auf. Sie gestattet es, Netze mit
bis zu mehren tausend Tetraedern in Echtzeit zu simulieren. Eine flexible Architektur erlaubt
es, verschienende Module zu einem für den jeweiligen Anwendungsfall optimalen Kompromiss
zwischen Schnelligkeit und Genauigkeit zu kombinieren.
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Chapter 1

Introduction

We hope that, since the endless complexity and variety of
natural phenomenon are caused by few basic elements and
laws, their visual simulation can be achieved using few
basic primitives and algorithms. We are still far from that
goal, but then again we do not have as many processors or
as much time as nature does.

A. Fournier and W. T. Reeves,
Guest Editors’ Introduction: Special Issue on the Modeling

of Natural Phenomena, ACM Transactions on Graphics,
July 1987.

1.1 Motivation and Problem Setting

Deformable materials are ubiquitous, being an inherent part of our body and our environment.
Consequently, their simulation is a key aspect in the creation of a digital mock-up of our everyday
world, one of the ultimate goals of computer graphics. Soft objects find their application in
virtual textiles and biological materials for virtual surgery, in the animation of virtual creatures
and facial expressions. The goal of visual simulation is to provide the basis for visual, haptic, or
even sound rendering of the results, usually at interactive rates. This is a fundamental distinction
from a technical simulation, which aims at providing information to aid constructions or to gain
insight into processes.

Two of the applications will be considered in more detail: simulation of cloth and of biologi-
cal soft tissue. The simulation of cloth, introduced to graphics in 1986 by Weil using a geometric
method [Wei86], today serves for dressing up virtual characters [CYMTT92] and virtual cus-
tomers for e-commerce and made-to-measure wear [CSMT03, WKK+04]. The real-time simu-
lation of visco-elastic soft tissue is a central issue and a major difficulty in developing a training
platform for endoscopic surgery [SBD+00]. Minimal invasive interventions pose high and un-
accustomed demands to the hand-eye coordination of the surgeon, which is currently trained by
Pelvi-trainers using plastic or animal tissues, and, due to ethical reasons very rarely, by animal
experiments. These trainers fail to provide the realism of the real-world situation, which the
surgeon faces, sooner or later. Hence, there is a considerable interest in virtual-reality training
systems, which at the moment however do not satisfy the expectations of the professional user.

Computer graphics is not the only discipline that is concerned with the investigation of de-
formable materials. In fact, mathematics, physics, and engineering have a substantially longer
tradition of examining and modelling the nature of deformation, reaching back to Galileo Galilei
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Figure 1.1: Disciplines contributing to computational mechanics.

in the sixteenth century. Today computational mechanics is located at the intersection of com-
puter sciences, applied mathematics, numerical analysis, finite element methods, and classical
mechanics. In contrast to these disciplines, graphics has always put a special emphasis on in-
teractivity and speed, willing to trade it for the fidelity of the simulation. Therefore, besides
adopting the work of computational mechanics, computer graphics has developed its own fast
and approximative techniques to deform solid models, i.e. geometrical and global deformations,
finite automata, and mass-spring systems.

Based on the goal to develop a soft tissue kernel, which poses a stricter emphasis on fidelity
than usual, a decision about the modelling of the soft objects had to be made at a very early stage.
In computational mechanics, ‘engineering accuracy’ usually is defined to be 1% in displacements
and 10% in stress. We rate the requirements of visual simulation at a 10% displacement error,
which also seems to be acceptable for interactive medical training simulations. O’Sullivan et.
al. [ODGK03] even proposed to use perceptual metrics to assess the quality of simulations and
animations. While we essentially agree with the authors that animations are acceptable as long
as the user does not notice a difference, for medical applications eventually liability will be ques-
tioned, hence medical simulations are explicitly excluded in their study and we rather keep a
more classic error metric. From the traditional portfolio of graphics, these considerations leave
mass-spring systems only, as they at least have a physical basis. Indeed several soft tissue ker-
nels have been built upon masses and springs. After some experiments though, we made the
experience, that mass-spring systems are not only quantitatively, but also qualitatively different
to a continuum, which will be demonstrated, and hence could not meet our requirements. This
is caused by the central weakness of mass-spring systems, that they provide only one constant
to describe the material of a deformable solid. However even the most simple continuum me-
chanical description of a linear elastic, isotropic and homogeneous solid provides two constants,
Young’s modulus and Poisson’s ratio1. For other animation tasks, this is less of an argument,

1Interestingly, exactly this point, the ‘multi-constant’ vs. ‘rari-constant’ question split the field for several decades
(cf. [Lov27]). Advances in experiments and measurement devices slowly calmed the battle towards the multi-constant
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as these are usually not focused on exact material properties but on meaningful parameters that
allow an animator to control the result in a predictable manner. On the other hand, there are
effects like volume preservation and visco-elasticity that mass-spring systems cannot model, so
even for certain animation problems, they might prove to be insufficient. As a result, we chose
to employ the toolbox provided by computational mechanics.

This choice is not without precedent. Some of the work on facial animation, also concerned
with exact modelling, already used a continuum mechanical approach, though for non-interactive
applications. In addition, interactive soft tissue modules based on linear, small strain elasticity
have been presented, however this approach does not accommodate the deformations that arise
during a typical operation. A notable exception is given by the framework developed in the Lasso
research project [SBD+00], which yielded an interactive simulator based on non-linear finite
elements. To achieve real-time performance however, a large parallel computer was needed,
providing a sustained performance of 20 GFLOPS2. Nevertheless, this project proved the long-
term feasibility of the method, though several more years will pass for this to be practicable
on a single processor, assuming Moore’s law will hold. In order to built a system for a single
workstation, providing 1 GFLOP peak, different techniques had to be used.

The general structure of our approach is similar and typical for computational mechanics
[Fun93]. In a first step, the object’s mechanics is studied by measurements, which for biological
tissue meant the development of new measurement devices, as done in the companion project
ElastoMedTrain [GHEB01]. The focus of the project has been on the liver, because the tissue is
comparably isotropic and cholecystectomy is the most common minimal invasive intervention.
The continuum then is modelled as a partial differential equation. For its solution, we chose
to apply the method of lines: to discretise the PDE in space using finite elements, and then to
integrate the ordinary differential equation in time. Throughout this process, interactivity as a
primary objective has always influenced our design decisions.

For cloth simulation, we directly started with an ordinary differential equation and only con-
sidered efficient time integration. Up to now, finite elements [EDC96] play only a minor role in
this application, mass-spring systems, and particle systems dominate the field. As for soft tissue,
fast and stable time integration plays a crucial role in building a fast simulator.

Why didn’t we simply employ a commercial simulator for finite element mechanics? As
the simulation should perform at interactive rates, the direct use of a commercial package is
not feasible. We employ a commercial package for the computation of gold standards, which
typically uses several hundred megabytes of memory, compared to a few dozen with our package,
and is about one to two orders of magnitudes slower. The main reason for this is, that commercial
packages are targeted at engineering requirements, providing a wide variety of easy exchangeable
material laws and element types, whereas our application is optimised around a single element
type and only a few materials. The implementation of a new material law takes a coding effort
of several days; the change of the element type presumably would take several weeks.

The reason, finite elements are not so common in graphics, is the belief that they are more
than an order of magnitude slower than mass-spring systems. We found, that with a proper
implementation a mere factor of two to three remains, which should be weighted against the
sound derivation that finite elements provide. Moreover, techniques like co-rotated strain allow
even faster implementations of finite elements on the expense of a lower approximation order.
Hence, we even consider the presented approach to be an alternative for animation tasks.

theory, however experiments concerning the issue were performed until the late 1960s.
2FLOP: floating point operations per second
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1.2 Previous Work

Motivated by the goal to reproduce soft objects in a virtual environment, the subject has attracted
considerable attention in computer graphics. Nowadays, the field is divided into several major
working areas, among them are garment simulation, deformable tissue for facial animation and
simulation, soft tissue for virtual surgery, and unspecific soft objects for animation purposes. As
a result many of the components of our system, laid out in detail below, have some connections
to previous published work that we will refer to in the appropriate sections. In this section, we
describe the larger frame of prior and related work.

As our contribution concerns the modelling and simulation of deformable solids, applied in
animation and virtual surgery, as well as efficient time integration for textile simulation, we will
concentrate on these areas. For a survey addressing all aspects, we refer to the current books
on cloth simulation by Volino and Thalmann [VMT00b], and Breen and House[HB00], as well
as to the articles by Gibson and Mirtich [GM97], Delingette [Del98], Bro-Nielsen [BN98] and
Szekely et al. [SBD+00] covering animation and medical solid simulation.

1.2.1 Direct Modelling of Elastic Objects

The first step in the assembly of a soft object simulator is the choice of a representation for the
elastic object. In the last two decades, several approaches have been considered.
Free Form Deformation (FFD) and Extensions Very early work, seeking for cheap and fast
methods focused on geometric approaches. FFD is built upon free-form shapes, defined using
Bezier-patches or splines. Barr [Bar84] presented the idea to apply transformation matrices like
stretch, bend, or twist to geometric shapes. This idea has been extended to free form defor-
mation models [SP86], now defining the transformation using a tensor product Bernstein basis.
In its pure form the concept lacks a strict physical justification, which on the other hand is not
necessary for applications like virtual sculpturing, where it received further attention [Coq90].
An important extension to unstructured lattices has been made by MacCracken and Joy [MJ96].
Faloutsos et al. [FvT97] provide more physical realism, introducing dynamics by employing a
mass-spring network as a control mesh. Recently this has been generalised using a finite element
model on the control lattice of objects generated by subdivision [CGC+02].
Precomputed Global Response Another technique for fast global deformations is the use of a
precomputed reduced representation of the dynamics of the object. This representation is com-
monly created from a modal analysis of the linear small strain problem, first presented by Pent-
land and Williams [PW89]. For special problems, where only small motions with very particular
characteristics are present, this gives good results. It has been used for the animation of trees
[Sta97], and can be assisted by modern graphics hardware [JP02]. Recently, the basic idea of
precomputing dynamics has been enhanced considerably by employing precomputed impulse re-
sponses to a reduced phase space model [JF03]. This also allows nonlinear dynamics, but further
restricts the possible interactions to the precomputed response tables.
Finite automata If the volumetric model is structured into voxel cells, it is possible to model
deformations by cellular automata. The basic concept is to perform simple calculations on a
very large number of elements, instead of complex computations on a small number of ele-
ments as in scientific computing. Examples are the sphere filled models used by Suzuki et al.
[SHT+98] or the 3D chainmail algorithm proposed by Gibson [FG99]. The latter algorithm adds
an elastic relaxation step to smooth the output after each ’chain mail propagation’ of local de-
formation through the element grid. The algorithm can be extended to integrate inhomogeneous
and anisotropic behaviour, proposed by Schill et al. [SGBM98] for a surgical intervention at the
eye. Although these techniques allow the animation of a very high number of nodes, they are
limited in their ability to reproduce physical material properties.
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Mass-spring-damper systems The next step towards a more physically based approach are
mass-spring-damper systems. To our best knowledge, they have been introduced by Platt and
Badler [PB81] for facial animation and ever since are one of the most favoured modelling tech-
niques in computer graphics. Numerous extensions have been proposed. Lee, Terzopoulos, and
Waters [TW90] use multiple layers of meshes connected by springs to simulate the different tis-
sue layers of the face. For cloth animation, Provot [Pro95] proposed to use bi-phasic springs and
an iterative process to correct super-elongated edges to reduce the spring stiffness necessary for
cloth-like objects. Kuhn, Kühnapfel, and Krumm [KKK96] used mass-spring-damper systems
to build the KISMET simulator for virtual surgery. For the ‘Spring’-framework [MBB+02] used
for example in the virtual rat trainer [BO02] ‘nomen est omen’. Mass-spring networks allow
the use of physical constants like spring-stiffness. The identification of spring-parameters to
reflect the physical properties of a given material is a tedious task, and has been tackled by simu-
lated annealing [DKT95], evolutionary algorithms [LPC95], and heuristics inspired by quantum
mechanics [MBT03]. A complete solution to the problem cannot be expected, as van Gelder
[VG98] showed the inability of mass-spring systems to model homogeneous materials. Also,
incompressibility or transverse contraction can not be modelled without additional ’non-spring’
penalty forces.
Particle systems A more general concept than mass-spring-systems are particle based ap-
proaches. They conserve the idea of discretising the object into mass points, but besides springs,
allow arbitrarily shaped forces between these particles. Strictly spoken, the force should be a
function of the distance between points only, but there are systems that define forces on other
topological structures, sometimes referred to as generalised particle systems. For example Lee
et al. [LTW95] add a volume preserving force to their mass-spring nets. Breen et al. [BHW94]
used forces defined by polynomials fitted to Kawabata data to simulate woven cloth. The work
has been extended by Eberhardt et al. [EWS96], now directly using measured forces from the
Kawabata measurement system, and later to knitted textiles by the same authors [EW99]. Parti-
cle systems are not restricted to a fixed topology as mass-spring systems are, in fact their main
application is for phenomena without a fixed neighbourhood, like fire and smoke, introduced by
Reeves [Ree83]. They are popular, because of their direct geometrical interpretation, which is
more accessible than the weak integral formulations of finite elements.

Particle systems are easy to implement and use. However, the defining forces have to be de-
rived with special care, in order to obtain properties like independency of the discretisation and
scaling of the object. Several approaches have been used in graphics: the smoothed-particle hy-
drodynamics (SPH) methodology, originating from astrophysics, has been employed by Desbrun
and Cani [DG96]. As the name already states, it is restricted to highly deformable substances.
Etzmuss et. al. [EGS03] proposed to use finite differences to derive particle system forces for
cloth simulation. Finally, finite-volume methods, recently employed by Teran et al. [TBHF03]
for muscle animation, can be used to derive well-defined forces between mass-points from a
continuum mechanical description.

1.2.2 Modelling based on Continuum Mechanics

As soon as a continuum is considered as the underlying description of an elastic object, the
field of scientific computing provides a large set of tools for the problem. The advantage of
this approach is that it is based on a solid mathematical and physical foundation, and can be cus-
tomised to most requirements. Therefore techniques from numerical engineering [ZT00, HW96],
namely finite element and finite difference methods continue to be the most versatile and accu-
rate methods. The drawback is, that they usually require high computational expenses, so some
modifications are needed, trading interactivity for accuracy.
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Finite Element Methods in Graphics The use of these techniques was pioneered by Terzopou-
los et al. [TPBF87, TF88a] for simulations of elastic deformations, in this case off-line due to
the high computational costs. The authors, deriving their concept from differential geometry,
already used a nonlinear, rotationally invariant description for strain, namely the metric tensor or
first fundamental form, which is a scalar multiple of Green’s strain.
Linear Finite Elements Although Terzopoulos used the metric tensor, which is a large dis-
placement measure, later on small displacement measures like Cauchy’s tensor were common.
Combined with a linear elastic material, this leads to a linear system of partial differential equa-
tions, which is easier to solve than a nonlinear one. This property coined the sloppy term ‘linear
finite elements’, which does not necessarily imply linear shape functions. Commonly this is per-
ceived as ‘the finite element method’, as for most engineering applications, where the technique
dominates the field, materials like metal and concrete do not show large deformations, which
qualifies the linear method as sufficient.

Perhaps the first appearance of linear finite elements in graphics was the simulation of a
skinned human hand, grasping a squeezable ball by Gourret, N. Thalmann, and D. Thalmann
[GTT89]. This paper also introduced the condensation technique, unnoticed by most and later
advertised by Bro-Nielsen, into the field. Condensation reduces the numbers of variables by only
considering surface nodes. The degrees of freedom corresponding to inner nodes are eliminated
by applying block-substitution techniques to the linear system. The disadvantage of this approach
is that the system matrix looses sparsity due to this block-substitution, so that we did not consider
this trick in the present work. One of the next applications, now using higher order elements, but
still with a geometrical- and material-linear model, was the animation of a biomechanical muscle
model [CZ92].

An interactive medical application has been presented by Bro-Nielsen [BN98], who used lin-
ear tetrahedral finite-elements together with Cauchy’s small strain tensor and condensation for
interactive simulations. The work was continued by Cotin et al. [CDA99], who proposed a pre-
computation of elementary deformations exploiting the superposition principle. James and Pai
[JP99] used boundary element techniques to formulate a linear system defined only on the sur-
face. An update technique based on the one-dimensional Sherman-Morrison-Woodbury formula
ensured a fast simulation. Later Pai et al. [PvdDJ+01] presented an automatic measurement
facility to acquire data for their model.

The drawback of using a linear elastic model is, that it is only accurate for small displace-
ments of about ten percent of the mesh size, and, more seriously for animation tasks, produces
ghost forces under rotations larger than a few degrees.
Nonlinear Finite Elements For this reason, the use of nonlinear elasticity has been consid-
ered already very early, however mainly for non-interactive applications. Several systems for
computer-aided craniofacial surgery, more dependent on accuracy than facial animation, use
nonlinear 2D and 3D elastic models discretised by finite elements for static and quasi-static sim-
ulations [KGC+96, KGKG98, GZDH02]. Later, also facial animation took up finite elements
[KGB98]. Large strain measures were brought back to non-medical animations by O’Brien and
Hodgins [OH99], who apply a model based on Green’s tensor to simulate brittle and fracture,
computed off-line by an explicit integration method.

Real-time animation based on explicit finite elements, i.e. finite elements combined with
explicit time integration, using Green’s tensor has been presented by Debunne et al.[DDCB01].
To achieve interactive frame-rates they use a non-nested hierarchy of tetrahedral meshes. Similar
to these publications one of the strain measures we will employ is Green’s tensor as a nonlinear,
large deformation measure.

Multi-resolution meshes recently became very popular in animation. Wu et al.[WDGT01]
employ a precomputed hierarchy based on vertex-splitting combined with a forward Euler me-
thod. Capell et al. [CGC+02] use a hierarchical basis on a hexahedral control lattice to animate
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an enclosed solid, which is then deformed with an FFD technique. They also use a linearised
implicit Euler method. To avoid nonlinear systems, they linearise around a floating reference
frame. This idea is also exploited in the work of Müller et al. [MMD+02]. Instead of lin-
earising Green’s tensor, they introduce a technique named warping to extrapolate this frame and
use Cauchy’s tensor around this warped coordinate system. This idea was previously used in
engineering, introduced in the analysis of orbiting space and aircraft structures [dV76].

Instead of the heuristical warping technique we proposed [HS03] to use the polar decompo-
sition for extracting rotations, an approach that now has been adopted by Müller in an upcoming
publication [MG04]. The computer graphics community has been relatively unaware of this ma-
trix decomposition technique. The only reference in graphics literature we were able to find
was by Showmake and Duff [SD92], who used the polar decomposition for keyframe matrix
animation. Their problem shows some similarities, as they also needed to separate strain and
rigid body descriptions. A similar application than the one presented here, also using the polar
decomposition, is currently evaluated for cloth simulations [EKS03]. The methods are related,
although we discuss the general 3D case.

Hierarchical finite element based on nested meshes have been introduced into numerical anal-
ysis during the 80’s [Ban96], the central idea itself has been traced back by Yserentant [Yse92]
to the work of Faber [Fab09] at the beginning of the last century. CHARMS [GKS02, KGS01]
extended the concept to a quasi-hierarchical basis and presented a rule-set guaranteeing consis-
tency. We will use a similar rule-set, but only a standard hierarchical basis.
Elastic materials Concerning material laws for deformable solids, the linear Hooke law defines
the standard, although it has been generalised to anisotropic linear elasticity [PDA01]. Viscous
forces are usually treated by a lumped damping force proportional to the velocity. O’Brien et
al. [OH99] use a better model for viscosity, based on the strain rate tensor. In addition, they
propose a formulation for plasticity. Non-reversible deformations have also been considered by
Terzopoulos and Fleischer [TF88b, TW88]. In this paper, the authors also discuss the importance
of viscous forces and utilise a more complex viscoelastic material law. In fact, this model can
be shown to be a special case of the Prony series model we employ, using only a single memory
parameter.

1.2.3 Identification of Tissue Parameters

Finding stiffness and damping parameters that let medical simulations look realistic is also a
problem that has been previously addressed. Maaß et al. [MK99] and Szekely et al. [SBHR98]
were among the first to try and measure tissue stiffness with various methods in order to im-
prove the realism of simulations. Ottensmeyer [Ott02] built a indentation measurement device
that can be employed during a laparoscopic intervention. Brown et al. [BRM+02] equipped an
endoscopic grasper with a motor and a force sensor. All those groups agree on the importance
of viscous properties for soft tissue. Most of them use different constitutive laws, however. Nei-
ther of these groups implemented their viscoelastic model into a simulation. In the ElastoMed
project, we chose to adopt the constant-Q hypothesis of Fung [Fun93] about the shape of the hys-
teresis loop for soft tissue. Ex-vivo measurements, fortifying this hypothesis, were performed by
Gross [GHEB01]. The acquired data has been validated by comparative in-vivo measurements
[OKG02, KOGD03]. We base the material model for soft tissue on these measurements.

In the future, non-invasive methods such as elastography based on NMR or ultrasound imag-
ing introduced, among others, by Sinkus [SLS+00] are promising for the purpose of gather-
ing viscoelastic data of human tissue in-vivo. A tentative ex-vivo test has already been made
[KHM04]. Currently, a joint initiative to establish physical standards [KCO+03] to validate and
improve in-vivo measurement devices has been started.
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Measuring parameters for cloth is already standardized [Kaw80], but only elastic parameters
are determined. Several current research initiatives include the measurement of viscous con-
stants, but close to nothing has been published. Preliminary results [WG], performed by the
Hohenstein Institute for Clothing Physiology, confirm the constant Q model as a good first order
approximation.

1.2.4 Time Integration Methods

Concerning time integration methods, more advanced work has been presented in the publica-
tions about cloth simulation, which therefore is the primary focus of this section. We already
mentioned some of the integration techniques used in prior work, from those only the most rele-
vant contributions will be repeated.

For the ordinary differential equation resulting from their finite element formulation, Ter-
zopoulos et. al. [TPBF87] used a simple semi-implicit Euler scheme. Later publications focused
on explicit integration methods, e.g. Eberhardt et al. [EWS96] preferred RK4 and the Burlisch-
Stoer extrapolation method as suggested in Press et al. [PTVF88]. Courshesnes, Volino and
Thalmann [CVT95] used an explicit midpoint rule. The biphasic spring model of Provot [Pro95]
has been introduced to allow weaker springs in order to alleviate the stability problem, and hence
permit larger time steps with explicit time integration.

Implicit methods again became popular with the work of Baraff and Witkin [BW98]. They
used a linearised implicit Euler method and achieved simulations about an order of magnitude
faster than explicit methods. Although nonlinear constraints are formulated in the model, they
only use a linear approximation to obtain a linear system of equations. This way the system
that needs to be solved in each time step also becomes linear and can be solved efficiently by a
conjugate gradient (cg) method. This method corresponds to the solution of a nonlinear system
with only one Newton iteration. Because the nonlinear part is not integrated, with high stiffness
one may encounter slowed down dynamics, observed by Volino et al. [VMT01] and Eberhardt et
al. [EEH00]. In the latter work, we proposed to partition the differential equation into a stiff and
non-stiff part, which permits the combination of an implicit method for the stiff and an explicit
method for the non-stiff part yielding a more efficient time integrator.

Provot’s spring model was combined with a linearised implicit method by Desbrun et. al.
[DSB99]. Instead of linearising the whole system they split it in a linear and nonlinear part and
use a precomputed inverse of the linearised system matrix for solving the linear part of the equa-
tions. They don’t aim at solving the equation completely, as they don’t integrate the nonlinear
term explicitly. Instead, the angular momentum is corrected to account for the nonlinear part.
With this algorithm one can neither change the time step size nor deal with a time dependent
system.

Based on this work Kang et al. [KCC+00] did some further simplification to avoid solving
the linear system. In order to update the solution vector during a time step they divide by the
diagonal entry of the matrix of the linear system. Therefore, they just do a single iteration of a
Jacobi-like scheme for solving the linear equations. Again, this may lead to artificial slowdowns.

Recently, more advanced methods gain importance. In 2001, we proposed to use BDF (back-
ward differentiation formulas) and the implicit midpoint rule. The BDF method has also been
used by Choi and Ko [CK02].

For the simulation of deformable solids, the evolution of time integration shows some paral-
lels. Most of the work concerning off-line simulation, e.g. for facial animation, used implicit inte-
gration, probably a result of the transition from static finite element calculations to dynamic ones.
Picinbono, Lombardo, Delingette and Ayache [PLDA02] combined their anisotropic tensor-mass
model with an explicit integration method. Because the incompressibility poses severe restric-
tions to the step size, Picinbono et al. [PDA00] used additional penalty forces, that permits less
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strict material properties and thus larger time steps. Debunne et al. [DDCB01] also advertised the
use of explicit finite elements. We promoted the use of an explicit integration method, because
of the simpler implementation [HGS03a], but chose a stabilised one, which is better suited for
stiff equations. As our framework now is maturing, implicit methods are showing their benefits.

1.3 Overview and Contributions

This thesis achieved an efficient and accurate framework for the visual simulation of 2D and 3D
deformable models. For 2D deformable models, we focus on the construction and implementa-
tion of an efficient time integration method for virtual textiles. 3D deformable models, finding
their application in general animation and virtual surgery simulation, are less developed in graph-
ics; here we propose to transfer the toolbox of scientific computing, in order to guarantee a valid
and meaningful spatial model. For the implementation of an interactive simulator, special atten-
tion has to be paid to linear algebra, as for 3D topologies the dimension rises very fast, so that
we propose and adopt several methods that have not been considered for this kind of application
type yet.

In particular, we were among the first to customise and apply higher order implicit numerical
time integration methods in cloth simulation [HE01, HES03], for example the second order BDF
method, later also used by other authors. To our best knowledge, this thesis is the first one in this
field to exploit the benefits of these methods for volumetric objects.

An implicit numerical time integrator is not a single algorithm, but a careful combination of
an integration formula, a non-linear and a linear solver. For the latter, the method of conjugate
gradients is preferred in graphics. To allow a unified treatment, we proposed the concept of a
layered solver [HE01], with an inexact Newton method as a central part. This allows for the
description and classification of several existing methods, for example the widely used semi-
implicit or linearised implicit Euler method.

Implicit integration methods spend most of their time solving linear systems. We introduce an
implementation of the preconditioned conjugate gradient method that provides preconditioning
for free. In addition, we present direct methods for sparse linear systems that are superior for the
‘small’ dimensions typically used in interactive graphical applications. Both linear solvers need
to be customised to be compatible with the collision handling methods used in graphics, which
requires a new formulation of the problem to maintain efficiency.

For deformable solids, the field has not settled on a modelling technique. We employ non-
linear finite elements, which until recently have been considered as not feasible for interactive
applications, but now start to be more and more accepted. Whereas the first interactive im-
plementation needed a large parallel computer, we achieve interactivity on a single processor
workstation.

Medical simulations require a higher accuracy than the usual animations used in graphics.
As measurements indicate, that viscosity is an important characteristic of biological soft tissue,
we present the first interactive simulator using a viscoelastic material law [HGS03a] that permits
a fit to measured data [HGS03b].

In order to use finite elements also with a larger number of elements, we improved the re-
cently proposed technique by Müller et al. [MMD+02] that allows the system to stay linear, by
replacing a heuristic by the theoretically optimal technique [HS03, HS04]. This helps to reduce
the error that is introduced by this approximation, as a comparison will show. To maximise the
benefit of a limited number of elements we evaluated the use of a hierarchical basis that permits
the addition of detail where necessary. Though the numerical basic technique proved valuable,
the subdivision technique used to generate the adapted grid requires further attention.

9



CHAPTER 1. INTRODUCTION

We will evaluate the resulting application, to establish an agreement between the theoretical
considerations and the practical problem, and to investigate the capabilities and also the limits
of the approach. We compare to more traditional methods of computer graphics as mass-spring
systems, and to a commercial finite element package.

The following chapters of the thesis pick up these issues as follows. The first chapter will
introduce the most important concepts from the continuum mechanical modelling of deformable
objects, as this is not standard in computer graphics. The next chapter presents the numerical
techniques we selected to implement our solution of the problem. A short chapter will demon-
strate the numerical core developed for clothing simulation. Finally, the last chapter discusses
the interactive application for 3D solid dynamics.

10



Chapter 2

Physical and Mathematical
Modelling

At the end of the year 1820 the fruit of all the ingenuity
expended on elastic problems might be summed up as–an
inadequate theory of flexure, an erroneous theory of torsion,
an unproved theory of vibrations of bars and plates, and the
definition of Young’s modulus.

A Treatise on the Mathematical Theory of Elasticity,
A.E.H. Love, 1927.

In this chapter we will report briefly on relevant portions of continuum mechanics of solids, in
order to provide the necessary tools for the following discussion. Partly, the concepts have been
presented at the Symposium for Computer Animation [HGS03a] and at MICCAI [HGS03b]. For
further details we refer to the textbooks of Brandt and Dahmen [BD96], Ciarlet [Cia92], Gurtin
[Gur81], Atanackovic and Guran [AG00], or Bonet and Wood [BW00].

The overall structure of the approach is depicted in figure 2.1. In this chapter the mathe-
matical and physical part is discussed, the numerical part will follow in the next chapter. The
first section covers the mathematical description of a deformable solid, which leads to strain, de-
scribing the geometry of deformation. The following section covers stress, which characterises
the force distribution in a body and allows the derivation of the equations of equilibrium. Elas-
tic material laws link stress and strain, visco-elastic materials extend this concept to solids with
memory. The only way to select a visco-elastic model for a special application is by measure-
ments, which will be discussed next. A summary of the most important aspects concludes the
chapter.

2.1 Deformable Objects

A common object in graphics is a parameterized surface (fig. 2.2(a)). Analogously, a rigid ob-
ject with volumetric properties (fig. 2.2(b)) is described by its configuration mapping ϕ, now
possessing a subset Ω of IR3 as parameter domain. For a deformable solid D (fig. 2.2(c)) the
mapping in addition depends on time,

ϕ : Ω × [0,∞] → IR3.

It is convenient to treat this as a family of deformed rigids indexed by time and to write ϕt as an
abbreviation, or if time does not play a role, even to drop the index t. We refer to the parameter

11
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Material Law
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Figure 2.1: Modelling and solution of elastic problems.

domain Ω as the space of material coordinates. It is common to parameterize a deformable object
over itself at rest, and to assume that the rest state is taken at t = 0, thus

ϕ0 = ϕ(·, 0) = id.

Therefore Ω = ϕ0(Ω) and an alternative description for the state of D is given by the displace-
ment field

ut : Ω → IR3, ut = ϕt − id.

Although both formulations are equivalent, the displacement field u is used predominantly.

2.2 Strain - A Measure of Deformation

A rigid body movement of D induces no strain, but of course changes ϕ and u, hence the direct
use of the configuration or displacement field is not suitable as a measure for strain.

To derive a measure, we consider the length changes of a segment dx in rest and deformed
state (Figure 2.3). Using a Taylor expansion, it holds

dxt = ϕt(x+ dx) − ϕt(x) = ϕt(x) + ∇ϕt(x)dx+O(dx2) − ϕt(x)
≈ ∇ϕt(x)dx = (∇ut(x) − id)dx,

for both above mentioned formulations. Within first order, the length change now becomes

‖dxt‖ − ‖dx‖ = 〈dxt, dxt〉 − 〈dx, dx〉 = 〈∇ϕtdx,∇ϕtdx〉 − 〈dx, dx〉
= 〈(∇ϕT

t ∇ϕt − id)dx, dx〉 = 〈(∇ut + ∇uT
t + ∇uT

t ∇ut)dx, dx〉. (2.2.1)

12



2.2. STRAIN - A MEASURE OF DEFORMATION

(a) A parameterized surface.

(b) A parameterized solid. (c) A deformable object.

Figure 2.2: Parameterized objects.
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=ö x+dx0( )

öt( )x ö öt t t( ( )x +dxx+dx)=

Figure 2.3: Length changes in a deforming body. Without loss of generality we assume ϕ0 = id.

We therefore define the symmetric matrix1, first introduced by Green and St.Venant,

εGt :=
1

2
(∇ϕT

t ∇ϕt − id) =
1

2
(∇ut + ∇uT

t + ∇ut∇uT
t ), (2.2.2)

usually referred as Green’s strain tensor and its linearisation

εCt :=
1

2
(∇ut + ∇uT

t ),

Cauchy’s strain tensor, which are governing the length change. The sub-term

C := ∇ϕT
t ∇ϕt (2.2.3)

in the definition of Green’s tensor is called Cauchy’s deformation tensor. Cauchy’s strain tensor
is used for small deformations, e.g. for metal or concrete. Both strain tensors coincide in the
small displacement limit. The individual components of Green’s tensor are given by

εGij =
1
2

(
∂ϕi

∂xj

∂ϕj

∂xi
− δij

)
=

1
2

(
∂ui

∂xj
+
∂uj

∂xi
+
∑

k

∂uk

∂xi

∂uk

∂xj

)
.

1The factor 1
2

takes care, that the diagonal entries reduce to ∂ui/∂xi in the small strain limit.
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CHAPTER 2. PHYSICAL AND MATHEMATICAL MODELLING

Figure 2.4: Separating rotation and deforma-
tion by a rotating reference frame.

Figure 2.5: Non-moving bar with large rota-
tions.

Using Cauchy’s tensor leads to more efficient algorithms, as its evaluation is cheaper and it is a
linear function of the displacements. However, it has the serious drawback that it is not invariant
under rotations, which makes it inaccurate in the presence of finite rotations. Green’s tensor is

2.1 rotationally invariant, because for any rotation R applied to the configuration ϕ we obtain

εG(Rϕ) =
1
2
(∇ϕTRTR∇ϕ− id

)
= εG(ϕ),

exploiting the linearity of the gradient and the orthogonality of R.
The geometrical meaning of the entries of ε is as follows: the εii determine the relative

elongation of the line elements along the coordinate axes, the offdiagonal entries are related to
the shear angles [AG00, pp.52-57].

Being symmetric, the strain tensor can be diagonalised over IR, yielding the principal direc-
tions of strain as eigenvectors. They determine the volume change. In this coordinate frame there
are no shear deformations. The mean volume distortion e := 1

3 tr(ε) gives this volume change
and is invariant under a changing reference frame. This leads to a decomposition of ε as

ε = e · id + εDev, (2.2.4)

where εDev is called the deviatoric part of ε. It has a vanishing trace, thus inflicts no volume
change. Therefore the strain is decomposed into a volume conserving distortion (or pure shear
deformation) and a symmetrical dilatation (or stretch). This is the basis for two field formula-
tions, where e · id leads to the definition of a hydrostatic pressure.

The last strain measure, that will be presented, is the corotated Cauchy strain. The corota-
tional formulation aims at the elimination of the geometrical nonlinearity in strain. The idea is to
keep track of a rotated coordinate system of the body (fig. 2.4). It has first been employed with
a single reference frame for the entire structure, when the analysis of orbiting space and aircraft
structures made such techniques obviously necessary [dV76]. Unfortunately a single frame per
body is not enough in the deformable case. Considering a long bar (figure 2.5) fixed at one end
and bent at the other shows, that it is not sufficient to keep track of a single rigid body movement
in general. The attached part is not rotated whereas the other end may undergo arbitrarily large
rotations.

For the moment, we suppose that, at each point we know the local rigid body rotation R(x).
Then the corotational Cauchy stress

εCR(ϕ) := εC(RTϕ)

is a trivially rotationally invariant strain description and still linear. So it unites two important
features of εC and εG. Later the forces arising from this description need to be transformed back
by R into their original frame.
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2.3. STRESS - A DESCRIPTION OF INNER FORCES
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Figure 2.6: Derivation of stress.
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Figure 2.7: Geometrical interpretation of stress
as traction.

2.3 Stress - A Description of Inner Forces

En développant cette idée, je suis parvenu à reconnaître que
la pression ou tension excercée contre un plan quelconque
en un point donné d’un corps solide se déduit très aisément,
tant en grandeur qu’en direction, des pressions ou tensions
exercées contre trois plans rectangulaires menés par le
même point.

De la pression ou tension dans un corps solide,
A.-L. Cauchy, 1827.

Although stress will appear as a dependent variable only, being the result of strain and a material
law, it has a justification of its own and will allow the derivation of the equilibrium conditions of
a deformable body. Note that all concepts depend on the current configuration of the body and
are derived in its current frame, which is emphasized by the ϕ superscript.

To derive the concept of stress, we decompose a deformable body Dϕ into small volume ele-
ments dV ϕ (figure 2.6). Traction forces are acting on each differential surface element nϕ|dAϕ|,
with normal nϕ and area |dAϕ|. The force magnitude |dFϕ| is proportional to the area |dAϕ| but
dFϕ needs not to be aligned with nϕ. Therefore dFϕ can be written as

dFϕ = σϕ(nϕ)nϕ|dAϕ|,
but σϕ(nϕ) must be a tensor, not a simple scalar. Cauchy’s fundamental theorem of stress (The-
orem A.1) states, that σϕ does not depend on the normal direction nϕ, so it suffices to specify
it as a 3 by 3 matrix per material point. Furthermore the resulting Cauchy stress tensor σϕ is
symmetric2, a fact that can be derived from the axiom of angular moment balance for dV ϕ → 0
[AG00, Ch.1.3]. If we normalise the force vector dFϕ by |dAϕ| we arrive at the traction or
Cauchy stress vector

tϕnϕ = σϕnϕ, (2.3.1)

which has the unit of pressure, i.e. force per surface unit. Tractions give a geometrical meaning
to σϕ. The diagonal terms σϕ

ii are called normal stresses, σϕ
12, σ

ϕ
13, σ

ϕ
23 shearing stresses. Like

strain, the tensor can be diagonalised, yielding the principal directions of stress. The diagonal
tensor has normal components only, describing tension (σϕ

ii > 0) or pressure (σϕ
ii < 0). The

mean pressure

p = −1

3
tr(σϕ) (2.3.2)

2This is sometimes called Boltzmann’s axiom and does not hold for materials with assigned couples.
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Rest State

Deformed
state

(a) Cauchy stress: Forces and reference configura-
tion are in the deformed state.

Rest State

Deformed
state

(b) First Piola-Kirchhoff stress: Forces are in the de-
formed, and the reference configuration is the rest
state.

Rest State

Deformed
state

(c) Second Piola-Kirchhoff stress: Forces and refer-
ence configuration are in the rest state.

Figure 2.8: Stresses and configurations.

is frame independent and in two-field, mixed formulations added as a dependent variable, cou-
pled by Lagrangian multipliers. The remaining no-pressure part σϕDev = σϕ + p · id is again
called the deviatoric part of stress.

2.4 Equilibrium and Elastic Energy

A body is in equilibrium if the forces acting on every volume element V ϕ ⊂ Ωϕ cancel the
imposed body forces fϕ and surface loads gϕ, i.e. with the Cauchy stress vector tϕnϕ∫

∂V ϕ

tϕnϕ(xϕ) dAϕ −
∫

V ϕ

fϕ(xϕ) dxϕ −
∫

∂V ϕ

gϕ(xϕ) dAϕ = 0.

Using the definition of the Cauchy stress tensor and the divergence theorem, this transforms to∫
V ϕ

divϕ σϕ(xϕ) − fϕ(xϕ) dxϕ −
∫

∂V ϕ

gϕ(xϕ) dAϕ = 0 for all V ϕ ⊂ Ωϕ, (2.4.1)

16



2.4. EQUILIBRIUM AND ELASTIC ENERGY

and for V ϕ → 0 gives the famous equilibrium equations of continuum mechanics

divϕ σϕ(xϕ) − fϕ(xϕ) = 0 for all xϕ ∈ Ωϕ,

σϕ(xϕ)nϕ − gϕ(xϕ) = 0 for all xϕ ∈ ∂Ωϕ. (2.4.2)

Using a variant of Green’s formula, the equilibrium equation can be stated in a weak form∫
Ωϕ

σϕ(xϕ) : ∇θϕ dxϕ =
∫

Ωϕ

fϕ(xϕ)θϕ dxϕ +
∫

∂Ωϕ

gϕ(xϕ)θϕ dAϕ (2.4.3)

for all smooth enough vector fields θϕ that satisfy the boundary conditions. This equation con-
stitutes the principle of virtual work in the deformed configuration.

Because the deformed configuration is not known, (2.4.3) should be transformed back to the
reference configuration. This is achieved by transforming all integration domains and the tensor
divergence operator by the Piola transformation [Cia92]∫

Ω

(det(∇ϕ)σϕ ∇ϕ−T ) : ∇θ dx =:
∫

Ω

σ1 : ∇θ dx =
∫

Ω

fθ dx+
∫

∂Ω

gθ dA,

where f(x) = det(∇ϕ) fϕ(xϕ) with xϕ = ϕ(x) and g is transformed likewise.
This leaves two issues open. First the first Piola-Kirchhoff stress σ1 is not symmetric any-

more and the external force densities f and g still depend on the configuration ϕ via the determi-
nant and the identification of the arguments3. This is due to the fact, that the Cauchy stress vector
tϕ is still balanced against the external body forces in the deformed geometry. Therefore we take
an additional step and map the force dFϕ to the undeformed state obtaining dF = ∇ϕ−1dFϕ.
The forces are now balanced in the reference configuration. Therefore the tractions (2.3.1) trans-
form to dF/|dA| = ∇ϕ−1σϕ∇ϕn. After again applying the Piola push-forward/pull-back trans-
formation, the resulting second Piola-Kirchhoff stress tensor, given by

σ = det(∇ϕ)∇ϕ−1σϕ∇ϕ,
now is symmetric and the resulting equilibrium equations are

− div
(∇ϕ(x)σ(x)

)
= f(x) and

∫
Ω

∇ϕσ : ∇θ dx =
∫

Ω

fθ dx+
∫

∂Ω

gθ dA (2.4.4)

for all smooth enough vector fields θ, fulfilling the boundary conditions.
As so often in variational principles, there is an energy behind the weak equation. The first

law of thermodynamics states that the rate of work done equals the change of kinematic and
internal energy U per mass unit

d

dt

∫
Ωϕ

1

2
ρϕvϕvϕ + ρϕU dxϕ =

∫
Ωϕ

fϕvϕ dxϕ +
∫

∂Ωϕ

gϕvϕ dAϕ

Replacing the surface traction gϕ by the balanced surface stress σϕnϕ and applying Gauss’s
theorem leaves

d

dt

∫
Ωϕ

1

2
ρϕvϕvϕ + ρϕU dxϕ =

∫
Ωϕ

(divϕ σϕ + fϕ)vϕ + σϕ : ε̇ϕ dxϕ

with the rate of deformation tensor ε̇ϕ := D := 1
2 (∇ϕvϕ + ∇ϕvϕ T ) in spatial coordinates.

Combining the equilibrium conditions (2.4.2) with Newton’s third law of motion

divϕ σϕ + fϕ = ρϕ d

dt
vϕ

3Force densities that are, by their specification, independent of ϕ, i.e. f = fϕ, are called dead loads. Contrarily, for
example pressure forces depend on the surface normal and therefore on ϕ.
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allows the identification of the rate of the internal energy in spatial coordinates as

ρϕ d

dt
U = σϕ : D. (2.4.5)

To transform the equation into material coordinates, we exploit the fact, that the rate of Green’s
tensor can be written as (Appendix A, Prop. A.2)

ε̇G =
∂

∂t
∇ϕT∇ϕ+ ∇ϕT ∂

∂t
∇ϕ = ∇ϕTD∇ϕ

which gives

ρϕ d

dt
U = σϕ : ∇ϕ−T ε̇G∇ϕ−1 = ∇ϕ−1σϕ∇ϕ−T : ε̇G = σ : ε̇G. (2.4.6)

Stress and strain measures fulfilling such an equation are called energetically or work conju-
gate. Hence, for small displacements the pair consisting of Cauchy stress and Cauchy strain, for
large displacements the combination of the second Piola-Kirchhoff stress and the Green strain
is preferred. Note that both the second Piola-Kirchhoff stress and the Green strain are objective
tensors, i.e. they are indifferent under a rotation of the coordinate frame.

The total internal energy EU is then given by

EU =
∫

Ω

ρU dx =
∫ t

0

∫
Ω

σ : ε̇G dxdt.

For small displacements, at the state of equilibrium the time integration can be carried out and

EU =
∫

Ω

σ : ε dx.

The same equilibrium result is gained by replacing v = θ in the weak equation and employing
σ : ∇v = σ : D (see Appendix A, Prop. A.3).

2.5 Material Laws

ceiiinosssttuv
Anagram, R. Hooke 1676.

Ut tensio sic vis.
De potentia restitutiva, R. Hooke, 1678.

Until now, we have considered the fundamental concepts of stress and strain separately, so some-
thing is still missing in the framework. Also a closer look at the three equations of equilibrium
shows, that they form an underdetermined system, as they contain nine unknowns, namely the
six components of stress and the three components of the configuration ϕ. The key to the remain-
ing six equations is the material law that links, in our case, the geometric state to stress. Such a
material is called elastic, viz. the stress is a function of the configuration only. For rheologies that
are more complicated or materials of other nature, e.g. gas, further quantities like temperature,
electric of magnetic field densities may influence the constitutive equations.

2.5.1 Hooke’s Law

The simplest interdependence between stress and (small) strain is to assume a linear law

σij =
3∑

k,l=1

Cij,klεkl or shortly σ = Cε. (2.5.1)
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In one dimension, for a spring with rest length l0 and only one strain component, given by the
relative elongation, this constitutes Hooke’s law, and C/l0 =: k is the spring stiffness. Therefore,
schematically this relation is often symbolised by a spring. In three dimensions, for a deformable
solid, C possesses theoretically 36 entries. Because Hooke’s law can be derived from an elastic
energy principle, only 21 distinct entries remain for an anisotropic material. For an orthotropic
material, i.e. a material with orthogonal directions of anisotropy, the number of constants is
reduced to 6; for an isotropic material only two constants λ and µ remain. Hooke’s law then
reads

σii = λ
3∑

k=1

εkk + 2µεii and σij = 2µεij (i 
= j).

2.5.2 General Isotropic Materials

The question that arises next is what other material laws should be taken into account. We usually
want a material to be invariant under a change of the observer or frame-indifferent. Hence if the
configuration ϕ is rotated by a matrix R we expect the stress tensor σRϕ(R∇ϕ) at every point to
be the same with respect to the rotated system

σRϕ(R∇ϕ) = Rσϕ(∇ϕ)RT .

Related is the assumption of isotropy4, which implies, that for a rotation of the material coordi-
nates the stress stays the same

σϕ(∇ϕ) = σϕ(∇ϕR).

These two properties together with the Rivelin-Erickson theorem for matrix mappings imply
for the Cauchy and the second Piola-Kirchhoff stress, that

σ(∇ϕ) = σ(C) = β0id + β1C + β2C
2

where βi = βi(ιC) are real valued functions of the principle invariants5 ιC = {trC, 1
2 [(trC)2−

trC2], detC} of the right Cauchy deformation tensor C (2.2.3). As an alternative to the second
principle invariant often ι2a = trC2 = C : C is used, which is also a valid invariant because
ι1 = trC holds. This result means in particular, that the mapping is only a function of the
rotationally invariant tensor C – and not of the structurally more complex deformation gradient
– or, equivalently, of the Green strain and therefore can be formulated in these invariants.

A striking implication of this theorem is, that the material response function near the refer-
ence configuration, i.e. for C → id, takes the simple form

σ(ε) = λ tr (ε)id + 2µε+ p0id +O(‖ε‖2), (2.5.2)

which is exactly Hooke’s law with an eventual prestress pressure term p0. Hooke’s law is there-
fore considered a good approximation for any isotropic material for small strains. The constants
λ and µ are then called the Lamé constants. Note that this does not legitimate to use this approx-
imation for large strains also and continuously adopt the Lamé constants. To exploit this, also
the reference configuration would have to be adopted each time.

4Isotropy is a property depending on the reference configuration. For example, if an isotropic material is deformed
non-uniformly and the deformed state is taken as a new reference configuration, it is no longer isotropic.

Anisotropy can be handled by an aligned material coordinate system and a transformation technique similar to the
corotated strain concept.

5The principal invariants of a matrix C are the quantities that stay invariant under a change of basis B−1CB. They
can be identified as the coefficients of the characteristic polynomial of C.
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Figure 2.9: Standard experiment for the extraction of small strain material parameters. Only
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A is nonzero. Lamé’s constants are related to Young’s modulus E and Possion’s ratio ν
via the relations λ = Eν

(1+ν)(1−2ν) and µ = E
2(1+ν) .

Figure 2.10: Sphere inversion. An ambiguous solution of a boundary value problem of elasticity,
where vanishing traction boundary conditions were specified (pure traction problem).

2.5.3 St.Venant-Kirchhoff Elasticity

The combination of Hooke’s law with Cauchy’s linear strain tensor would lead to a linear partial
differential equation with a well-defined solution. Easily accessible physical evidence contradicts
this model (fig. 2.10). At first hand, this ambiguity can be blamed to the geometrical nonlinearity.
St.Venant and Kirchhoff proposed to drop the small strain requirement and simply use Hooke’s
law in combination with Green’s tensor for large strains. The resulting St.Venant-Kirchhoff
material is the simplest among the nonlinear models6 and quite popular in actual computations.
We therefore choose it as one of the implemented models.

On the other hand, it has several shortcomings. First of all, large strain does physically not
necessarily lead to large stress, as a linear law would imply. Secondly, the resulting hyperelas-
tic energy is not polyconvex, limiting the available existence results. Last, no term in (2.5.1)
prevents det(∇ϕ) to become 0, which of course is physically impossible. Despite all these short-
comings in practice St.Venant-Kirchhoff materials perform significantly better than linearised
models [Cia92].

2.5.4 Hyperelasticity

The restriction to objective and isotropic materials already led to a substantial simplification of
the material response function. A further, still very broad class are hyperelastic materials. A
material is hyperelastic, if the work done during a deformation only depends on the initial and
final strain. Motivated by the eventual use of a variational principle, it is conveniently defined by

6The mapping between ϕ and σ is nonlinear, though the constitutive law in terms of ε is linear.
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its stored energy function W (C). Stress is defined as the derivative of W

σ(C) = 2
∂W

∂C
(C) or σ(ε) =

∂W

∂ε
(ε).

Interestingly, hyperelasticity can be linked to thermodynamics, more precisely to nonnegative
work in closed processes. It can be shown [Gur81, Thm.28.2], that a material is hyperelastic and
therefore a strain-energy density or stored energy function can be constructed, if and only if the
work is nonnegative in any closed process.

As above, the energy of a hyperelastic, objective and isotropic material is a function of the
invariants of C or ε only. The constitutive equation is given by7

1

2
σ(C) =

[∂W
∂ι1

+
∂W

∂ι2
ι1 +

∂W

∂ι3
ι2
]
I − [∂W

∂ι2
+
∂W

∂ι3
ι1
]
C +

∂W

∂ι3
C2.

A St.Venant-Kirchhoff material is hyperelastic, with

WVK(ε) =
λ

2
(tr ε)2 + µ tr ε2.

As already mentioned ι3 = det∇ϕ is missing and WVK is a convex function of ε.
To the stored energy function, physical requirements can be posed, such as det∇ϕ → 0+

implies W → ∞. The physical plausibility conditions can be summarised in a coerciveness
inequality

∃α, p, q, r > 0, and β such that W (∇ϕ) ≥ α
[‖∇ϕ‖p+‖Cof ∇ϕ‖q+(det∇ϕ)r

]
+β (2.5.3)

for all det∇ϕ > 0, which is the first ingredient for existence proofs. Here, we use Cof(A) =
det(A)A−T as a notational abbreviation only. Generally existence proofs are very difficult, as
for example the usual second ingredient, the convexity of W is incompatible with W → ∞ for
det∇ϕ → 0+ [Cia92]. John Ball proposed to replace it by polyconvexity, which is convexity
of W interpreted as a function of (∇ϕ,Cof ∇ϕ, det∇ϕ). Polyconvexity as a second ingredient
allows some existence results. Finally a material with8

W (∇ϕ) = a1 tr(C) + a2 tr(C2) + b tr(Cof(C)) + Γ(det∇ϕ) + e

for any ai, b, c, d, e > 0 and Γ(x) = cx2 − d log(x) is polyconvex, satisfies the coerciveness
equations (2.5.3) and locally corresponds to a linear material as in equation (2.5.2). Specialisa-
tions of this material are for example

W (∇ϕ) = a tr(C) + Γ(det∇ϕ) (Compressible Neo-Hooke)

W (∇ϕ) = a tr(C) + b tr(Cof(C)) + Γ(det∇ϕ) (Compr. Mooney-Rivlin),

and a generalisation is given by Odgen’s material

W (F ) =
M∑
i=1

ai tr(C)γi/2 +
N∑

i=1

tr(Cof(C))δi/2 + Γ(det∇ϕ)

for M,N ∈ IN and δi, γi > 1.

7This reveals a hidden constraint to W . If we assume a natural, unstressed rest state, for C = id the equation must
evaluate to zero.

8Note that this is can also be written as W (∇ϕ) = a1ι1 + a2ι2a + bι2 + Γ(ι3).
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Figure 2.11: Overview over different viscoelastic laws and their behaviour for relaxation and
creep experiments.

2.6 Viscoelasticity

Few biological tissues obey Hooke’s law.
Biomechanics: Mechanical Properties of Living Tissues,

Y.C. Fung, 1993.

When a piece of tissue is strained, e.g. grabbed with a forceps, and held, the stresses will de-
crease with time. This phenomenon is called stress relaxation. If it is subjected to a constant
traction or stress, the tissue will continue to deform, which is called creep. If it is repeatedly
loaded and unloaded, the load and unload forces will have a phase lag, leading to dissipation of
mechanical energy, which is called hysteresis. Simple elasticity fails to describe this behaviour,
called viscoelasticity. For a viscoelastic material, the effective stiffness depends on the rate of
deformation. On the other hand, for a dynamical simulation including inertia, viscous damping
forces are required for the system to come to rest instead of performing a periodic motion.

Because the material seems to ‘remember’ the history of loading conditions for its response,
stress needs to be a function of (ετ )τ<t. The most common approach to model this is by assuming
linear viscoelasticity and summing up all step responses to differential changes in strain in a
hereditary integral

σ(t) =
∫ t

−∞
Ĝ(t− τ )ε̇(τ ) dτ. (2.6.1)

The function Ĝ is the response function to a unit step in stress, the relaxation function. Having a
computer implementation in mind, this model is too complex, as it would be necessary to store
the history of strain (ετ )τ<t to evaluate the integral.
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Therefore the relaxation function will be approximated by an exponential Prony series

Ĝ(t) ≈ G(t) := µ0 +
m∑

i=0

µie
−t/λi .

This approach has been developed in engineering [ZWK68]. The choice of a Prony series ex-
pansion is not at random. First, for a given t0 < t, it easily allows to split the material law
(2.6.1) into two terms: one representing the evolution of strain history beyond t0 and the other
one taking care of the strain during the interval [t0, t]

σ(t) = µ0ε(t) +
m∑

i=0

µi

[
e
− t−t0

λi

∫ t0

−∞
e
− t0−τ

λi ε̇(τ ) dτ +
∫ t

t0

e
− t−τ

λi ε̇(τ ) dτ
]
.

This leads to the definition of the ith memory parameter qi as

qi(t) :=
∫ t

−∞
e
− t−τ

λi ε̇(τ ) dτ.

Memory parameters are internal variables that store the strain history of the material. Finally
approximating the strain rate tensor ε̇(t) ≈ (ε(t) − ε(t0))/(t − t0) linearly during a time step
gives an update scheme for the memory parameters and ultimately strain, viz.

qi(t) = e−∆t/λiqi(t0) + ∆qi (2.6.2)

∆qi = (λi/∆t) (1 − e∆t/λi)
(
ε(t) − ε(t0)

)
(2.6.3)

σ(t) = µ0ε(t) +
m∑

i=0

µiqi(t), (2.6.4)

where ∆t = t − tn, t > tn. Inside a numerical time integration scheme, the memory parameter
array qi needs to be updated when advancing a time step and represents the history component
of the strain.

The second reason, which motivated this scheme, is, that in 1D it represents the spring-
damper combination shown in the last column of figure 2.11. Using only one memory parameter
and no parallel damper this is the well known standard solid (3rd column of fig. 2.11). The mem-
ory parameters are the elongation of the dampers in figure 2.11. Note though, that a continuous
tree-dimensional solid, given by a Prony series law and discretised by finite elements, is not
equivalent to a mass-spring network.

2.7 Measurements

Sine experientia nihil sufficienter scrire potest.
Cited from [HW96], Inscription overlooking the Botanic

Garden, Oxford.
...the response function which is essentially determined by
experiments

Mathematical Elasticity, P.G.Ciarlet, 1988.

Now that we have laid out the basics of elasticity, we follow the principles formulated in the
introduction and look at the physical properties of soft tissue by measurements. We explicitly
state at this point, that all instruments, experiments, and measurements in the ElastoMedTrain
project have been designed by our colleague J. Groß.
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Figure 2.12: The definition of the mechanical quality factor Q.

The biomechanical reference work of Fung [Fun93, p. 281] states: ‘The hysteresis curves of
most biological soft tissues have a salient feature: the hysteresis loop is almost independent of
the strain rate within several decades of the rate variation’. Several experiments, first with bovine
liver ex-vivo by Groß[GHE+00], then with ROSA-I [Sai01] and ROSA-II with pig liver in vivo,
were performed to confirm this.

A simple description for a hysteresis loop is the mechanical quality factor Q. It is defined by

Q :=
4πW
∆W

,

where W denotes the mean stored elastic energy during a hysteresis loop, and ∆W is the energy
loss (fig. 2.12). Consequently a material with Q = 0 absorbs all mechanical energy, like a fluid,
and a high Q material possesses almost no hysteresis, like a steel spring. Q may depend on the
speed the experiment is run, i.e. Q = Q(ω). An equivalent approach to define the quality factor
is to employ Hook’s law in the frequency domain, with a nonconstant modulus matrix M with
complex entries

σ(ω) = M(ω)ε(ω),

and set

Q(ω) =
ReM(ω)
ImM(ω)

.

Thus, a constant Q value means that the ratio between stiffness and damping constant is indepen-
dent of how fast the hysteresis loop is traversed. The related relaxation function Ĝ of a material
with constant Q is quite complicated [Kja79]. With γ = 1/ tan(πQ) and M0 being a reference
modulus at t0, we have

Ĝ(t) =
M0

Γ(1 − 2γ)

( t
t0

)−2γ

, (2.7.1)

with the gamma function Γ.
To simulate a constant Q material, the parameters λi, µi of a Prony series element are fitted

to the relaxation function. Instead of directly performing the nonlinear fit on (2.7.1) we rather
match the compliance functions S = M−1 of both models, minimising the relative L2-error.
This eases the numerical part of the fit and gives a good reproduction of relaxation and creep
experiments simultaneously. A last observation eases this fit, as the constant Q model in general
leads to a infinite, continuous hysteresis spectrum. The phenomena we are interested in for visual
simulation are in the range of human perception, which is rated between 10 kHz (haptics) to 0.1
Hz. Therefore, it suffices to fit the constant Q behaviour in this range. Figure 2.13 shows some
fits with 2 to 5 memory parameters. For comparison, a single KV-element (’Hooke’) has been
added, where we note that its mechanical quality Q(ω) = k/(ωd) depends on the frequency.
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Figure 2.13: Constant Q fits in the frequency domain.
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Figure 2.15: Creep experiments.

In figure 2.14, the quality of the constant Q-fit is compared to measured data. The data was
obtained by Groß by imposing the shown shear strain on a piece of bovine liver, glued between
two aluminium plates of a measurement facility. The red curve shows the results of fitting the
linear constant Q model. To rate the quality of the linear hysteresis model, the next possible
higher order is considered, adding a cubical dependency of the strain tensor ε, which did not
improve the results, as the weight of this term is negligible.

In figure 2.15 the result of a one-dimensional relaxation and creep experiment is provided.
The figure shows the response of a one dimensional probe of 0.1m length to a 1s unit step in
stress. The modulus was set to 10 kPa. The analytical response of the constant Q material was
computed using the FFT techniques from Kjartansson [Kja79]. The fit with a chain of 40 Prony
series element with three memory parameters each comes very close.

For comparison with Hooke’s law two fits with Kelvin-Voigt elements are added. The relax-
ation and creep function of these elements are given by exponentials, therefore the material law
gives only an exponentially damped sinus response and is not able to show visual creep unless
strongly overdamped. The first Hooke material shown was fitted to match the creep between 0.5
and 1s, the second one to match the initial slope.

The simulator however, is not limited to this material model. As an alternative model, we
chose the one measured by Kauer, Vuskovic et al. [KVD+01] and Nava at al. [NMK+03]. They
assume a hyperelastic material with a stored energy function in reduced polynomial form

W =
N∑

n=1

an(ι−
1
3

3 ι2a)n +
1
D

(ι1 − 1), (2.7.2)
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where the term ι
− 1

3
3 ensures, that the first part only affects the deviatoric part of strain, and

1
D admits a small material compressibility. Using the differentials of the invariants ι3(C) and
ι2a(C) the stress tensor can be derived from the stored energy function (2.7.2), viz.

σ =
∂W

∂C
=

N∑
n=1

ann(ι2a − 3)n−1
{− 1

3
ι
− 2

3
3 ι2aC

−1 + 2ι−
2
3

3 C
}

+
1

2D
ι3C

−1.

To permit viscoelasticity, the coefficients ai are given as a Prony series

an(t) = µ∞
n −

m∑
i=0

µn,ie
−t/λi .

Material properties are measured by an aspiration experiment and an inverse finite element com-
putation is used to fit the parameters [KVD+01]. Currently Nava constructs a fit for N = 5 and
m = 4.

2.8 Summary

In this section, we defined the rotational invariant, nonlinear Green strain and the linear Cauchy
strain, which can both be computed from the gradient of the displacement field or from the
configuration mapping. Combined with stress, strain allows the formulation of the equilibrium
conditions of a deformable body, which are most conveniently stated by the weak equation (2.4.4)
in material coordinates. For an elastic material, stress is a function of the invariants of strain
only, and – in the viscoelastic case – of their history. This allows very often the restriction to
hyperelastic materials, given by a stored energy function. Viscosity is in general handled by
fitting a Prony series, which is well suited to be combined with numerical time integration. The
actual form of the strain energy density and the coefficients are determined by measurements.
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Chapter 3

Numerical Implementation

The last chapter sketched the physical and mathematical settings leading to a partial differential
equation. This one will discuss the numerical basics of the implementation. First the partial
differential equation will be discretised in space by finite elements [ZT00, Bat82], yielding an
ordinary differential equation, which has to be solved by suitable numerical time integration
methods [HW96]. Implicit integration methods require the solution of possibly large systems
of equations that may be nonlinear. Therefore, efficient implementations of Newton’s method
will be discussed. Before concluding with a summary, some candidates for the embedded linear
system solver will be presented.

The presentation of the implicit integration methods partly coincides with our tutorials given
at Eurographics [HEE+02], Siggraph [KBF+03] and IEEE Visualisation/MICCAI [BHM03a,
BHM03b]. Further details on the toy example can be found in [HES03].

3.1 Finite Elements

The limitations of the human mind are such that it cannot
grasp the behaviour of its complex surroundings and
creations in one operation. Thus the process of subdividing
all systems into their individual components or ‘elements’,
whose behaviour is readily understood,[...] is a natural way
The Finite Element Method, O.C. Zienkiewicz, 1967, 2000.

The finite element method seeks an approximate solution of a partial differential equation that
minimises the error in a certain norm, usually defined by the function space of the solution. Be-
cause this space often has a non-finite dimension, it is necessary to project the solution into a
finite dimensional subspace, defined by the finite element mesh and the shape functions. Conse-
quently the error between the projection and a linear combination of these functions is minimised.
The weights, given as the solution of a nonlinear system, can usually be geometrically interpreted
as the position of the nodes. The norm is typically an integral norm, hence the solution is defined
on the whole space and can be interpolated between the nodes.

Starting point for a finite element approach is the variational equation in spatial (2.4.3)

∫
Ωϕ

δD : σϕ dxϕ =
∫

Ωϕ

δvfϕ dxϕ +
∫

∂Ωϕ

δvgϕ dAϕ
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Figure 3.1: A finite element mesh of a liver shaped object.

or material coordinates (2.4.4)∫
Ω

δε : σ dx =
∫

Ω

δvf dx+
∫

∂Ω

δvg dA. (3.1.1)

where σ and ε have to be work conjugate, like e.g. Green’s strain and the second Piola-Kirchhoff
stress (see section 2.4). For a total Lagrangian approach, which uses a single, fixed material
coordinate system as reference, the second equation is suited best.

The functions u and δv are replaced by a locally supported, piecewise polynomial approx-
imation over a decomposition of Ω into disjoint elements of simple shape, e.g. tetrahedra or
hexahedra. The basis or shape functions are uniquely defined by the degree and the property

φi(xj) = δij ,

for the vertices xj of the discretisation mesh. Hence u will be approximated by

u(x, t) =
N∑

i=0

µi(t)φi(x), µi(t) = u(xi, t),

and represented by the coordinate vector [µi(t)]i=1..N . In a Galerkin approach, which delivers
the ‘best’ convergence and will be used here, the variation δv is taken from the same space and
accordingly is represented by [ζi(t)]i=1..N . The finite element interpolation can be written in
matrix form

u(x, t) = [Φ(x)][µi(t)].

Being the first variation of ε, δε is also linear in [ζi] (section A.2)

δε = [B(x, [µi])][ζi].

For a more compact notation, we will again omit the dependence on t in this section. Inserting
these equations in the principle of virtual work (3.1.1) gives

[ζi]
∫

Ω

[B(x, [µi])] : σ dx = [ζi]
{∫

Ω

[Φ(x)]T f dx+
∫

∂Ω

[Φ(x)]T g dA
}
.

Because the equation has to be satisfied for all variations [ζi], it is equivalent to the 3N equations∫
Ω

[B(x, [µi])] : σ dx =
∫

Ω

[Φ(x)]T f dx+
∫

∂Ω

[Φ(x)]T g dA. (3.1.2)
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Rest State Deformed State

µ0

µ1

µ2

µ3

x0 = ϕ(x0) x1

x2

x3

u(x0) = 0

ϕt(x0) = x0 + µ0(t)

ϕt(x1) = x1 + µ1(t)

ϕt(x2) = x2 + µ2(t)

ϕt(x3) = x3 + µ3(t)

µ0(t) = ut(x0)

Figure 3.2: State coefficients µ of a tetrahedral element. The shape coefficients α can be com-
puted from the rest coordinates (Appendix C.1).

All integrals are evaluated locally and piecewise over the individual elements, and then summed
up.

3.1.1 Solid Tetrahedral Elements

Tetrahedra are usually the preferred elements in computer graphics because of their superior
shape-fitting properties. Furthermore, the proposed discretisation employs linear shape functions
φi, resulting in a piecewise affine approximation of the displacement field u. As a result, ε is
constant over each tetrahedron, greatly reducing the computational cost. The disadvantage of
this choice is the theoretical chance to suffer from locking effects (see section 3.1.4).

To make the discussion more concrete we provide the key equations for the selected element
type. A common technique to simplify the derivation is to evaluate all integrals over a refer-
ence element, e.g. the unit tetrahedron and use affine or isoparametric transformations to map
the elements. In our case, this means eight affine 3D-transformations, requiring a total of 144
floating-point operations. This gives an enhanced flexibility and ease of derivation, but in our
opinion is too expensive for a specialised interactive application. Hence we write the interpola-
tion already with general shape coefficients αnl

uj =
4∑

n=1

αn0µnj +
4∑

n=1

3∑
l=1

αnlxlµnj =
4∑

n=1

(αn0 +
3∑

l=1

αnlxl)µnj ,

µnj being the jth coordinate of the coefficient of vertex n in a local vertex-numbering scheme.
With P (x) = [α10 +

∑3
l=1 α1lxl| . . . |α40 +

∑3
l=1 α4lxl] we have

Φ(x) = [P (x) ⊗ id3×3]µ,

29



CHAPTER 3. NUMERICAL IMPLEMENTATION

Figure 3.3: Octasection of a tetrahedron.

where ⊗ denotes the Kronecker tensor product. Hence, the deformation gradient F := ∇ϕ is

F := [fij ] =
[∂ϕi

∂xj

]
i,j

=
[ 4∑

n=1

αnjµni + δij

]
i,j

and consequently Green’s strain tensor reads

εG =
[ 3∑

k=1

fkifkj − δij

]
i,j
.

Using one of the material laws proposed in the previous chapter and eventually the memory
parameter array of the element, the second Piola-Kirchhoff stress σ can be computed.

The matrix B := δε results from the variation of ε (Proposition A.5)

δε =
1

2

(∇δvT∇ϕ+ ∇ϕT∇δv)
which gives

δεij = [αnifkj + αnjfki]T(nk)=(11)..(43)[ζ(nk)](nk)=(11)..(43).

Therefore the contribution of the considered tetrahedron to the (nk)-th line of equation (3.1.2),
which contributes to the kth force component of the current vertex xn, reads

3∑
i,j=1

{
αni

4∑
l=1

αljµlk + αnj

4∑
l=1

αliµlk + αniδkj + δkiαnj

}
σij .

In appendix C.2 we provide some more details and show, how this computation can be carried
out with 300 floating point operations per tetrahedron.

3.1.2 Hierarchical Approximations

A key concept in computer graphics is to make use of level-of-detail representations in order to
add detail only where necessary. In the finite element setting this corresponds to the use of an
adaptive family of basis functions. There are two different possibilities to refine a given basis:
Either rise the degree of the shape functions (p-refinement) or refine the geometry (h-refinement).
The geometry can be refined either by inserting points and re-meshing or by subdividing individ-
ual elements. The fastest technique is the subdivision h-refinement, which was therefore selected
as most suitable. As a first step, a series of nested meshes is generated by subdivision of the initial
mesh. In the second step, a hierarchy of nested function spaces is constructed on the subdivided
meshes. This is most conveniently done by hierarchical approximations [Ban96].
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for k = l to 1
for xi ∈ Nk\Nk−1

xp1,i
+ = xi/2

xp2,i
+ = xi/2

Algorithm 3.3: Transforming φ to ψ.

For a given coarse tetrahedral discretisation T0 it is possible to construct a series of nested
meshes

T0 ⊂ T1 ⊂ T2 ⊂ . . .

by octasection of each tetrahedron (fig. 3.3). The inserted nodes are on the edges of the mother
tetrahedron, i.e. each finer level node has exactly two parent nodes. If the diagonal of the inner
octahedron is chosen properly, the resulting sequence is stable, i.e. the angles are uniformly
bounded away from zero [Bey97]. We denote the node set on each level by Nl.

Let Sl be the subspace of piecewise linear functions on Tl. With the nestedness of Tl also the
function spaces Sl are nested. For each hierarchy level l we have a nodal basis {φl

i} as before,
and an approximation ul defined by the values at the nodes xl

i of the mesh

ul(x, t) =
N∑

i=0

µl
i(t)φ

l
i(x), µl

i(t) = u(t, xl
i). (3.1.3)

Using a hierarchical basis, the function is represented by its values at the nodes of the coarsest
level and the difference between the nodal value at the next finer level and the linear interpolation
of its two parent nodes (fig. 3.4(c)). The basis functions itself are defined by [Yse92]

η1
i = φ1

i ,

ηl
i =
{
ηl−1

i node i ∈ Nl−1

φl
i node i ∈ Nl\Nl−1

l > 1. (3.1.4)

The resulting basis is illustrated in figure 3.4(a). On the left we have the nodal basis {φl
i} on 3

levels, in wavelet theory these are the scaling functions. On the right we have the hierarchical
wavelet basis {ψl

i}, spanning the same space. Now the coarse level basis functions are a subset
of the finer level basis. Note that the wavelets are not orthogonal and cease to be a partition of
unity.

A key to the efficiency of algorithms linked to hierarchical representations are the fast basis
transformations [Yse92]. For ul(x, t) =

∑N
i=0 η

l
i(t)ψ

l
i(x) we compute the coefficient vector µ

of the nodal representation (3.1.3) by evaluating ul at the nodes. The mapping S : ηl → µl

can be decomposed into transformations S1 . . . Sk iterating from the coarsest to the finest level,
always evaluating the interpolating part from the two parents p1 and p2, then adding the detail
coefficient (fig. 3.4). The resulting pseudo-code is given in algorithm 3.1. Quite obviously
the inverse transformation S−1, given in algorithm 3.2, can be deduced from this. Note that
S−1 = S−1

k . . . S−1
1 , so the loop is downwards.

For the transformations between basis functions from {ψi} to {φi} we use that∑
i

ηl
iψ

l
i = ul =

∑
i

µl
iφ

l
i =
∑

i

[Sηl]|iφl
i,

Using vector-notation, this equation reads

〈ηl, ψl〉 = 〈µl, φl〉 = 〈Sηl, φl〉
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(a) Function hierarchy. Standard nodal basis left, hierarchical right.

(b) Nodal basis, µ given by vertical lines. (c) Hierarchical basis, η given by vertical
lines.

Figure 3.4: Standard and hierarchical function approximation in 1D.

x = η
for k=1 to l

for xi ∈ Nk\Nk−1

xi = xi + 1
2 (xp1,i

+ xp2,i
)

µ = x

Algorithm 3.1: Transforming η to µ.

x = µ
for k=l downto 1

for xi ∈ Nk\Nk−1

xi = xi − 1
2 (xp1,i

+ xp2,i
)

η = x

Algorithm 3.2: Transforming µ to η.

Accordingly the transposed of S transforms the basis {φi} to {ψi} by

STφl = ψl,

and algorithm 3.3 follows. Thus we have the following diagrams:

η
S
�

S−1
µ and ψ

S−T

�
ST

φ.

For the operator B (3.1), mapping displacements to the first variation of strain, we have with
the chain rule

∂εη
∂η

(η) : C(εη(η)) = (S
∂εµ
∂µ

(Sη)) : C(εµ(Sη)) =
(
(S
∂εµ
∂µ

(Sη)
)

: C(εµ(Sη))

= ST
(∂εµ
∂µ

: C(εµ)
)
(Sη)
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and an analogous result for the viscous part. In each evaluation step we therefore perform an
inverse wavelet transform, evaluate in the nodal basis and transform the result back by ST . Sim-
ilarly, the traction and body loads are computed in the nodal basis and then transformed back.

This makes an implementation straightforward. Once the code is able to solve the system
in the nodal basis, one adds three lines for each of the transformations and applies them at the
appropriate places.

3.1.3 Corotational Formulation

In the previous chapter, the corotated Cauchy strain was introduced as a rotational invariant strain
measure that is still linear. However, the definition assumed that the rotation tensor field of the
body is known. In this section, we describe how we embed this issue into the finite element
setting. Like the strain tensor, we discretise the rotation tensor field R(x) per element. This
results in a finer representation of the tensor field than the per vertex discretisation of Müller et
al. [MMD+02] and is more consistent with the finite element modelling paradigm. In addition,
the resulting Jacobian matrix stays symmetric in contrast to a discretisation per vertex.

Another major difference to the work of Müller is the way the rotations are extracted. They
’found that the stability is not sensitive to the rotation field’ and therefore use a heuristics called
warping. It extracts rotations based on the deterministic selection of three edges per point of the
mesh and tracks their rotations. This is sufficient for a rigid body movement superimposed on
a deformed configuration, because the warping roughly compensates it and therefore does not
produce large ghost forces.

However, accuracy suffers this approximation, as it is not directly clear, how the rigid body
mode of an arbitrarily deformed element looks like. A way to extract a well defined rotation, is
given by employing the polar decomposition of the deformation gradient F := ∇ϕ. The polar
decomposition solves the following problem [SD92, Cia92]

Find an orthogonal R minimizing ‖F −R‖2
F ,

with the Frobenius norm ‖ · ‖F . It gives rise to a unique decomposition F = RT , with a
symmetric matrix T and orthogonal R, and therefore reduces (2.2.2) to

εG(φ) =
1

2
(TTT − id),

where T does not contain any rotational component. The factor R is the rotation closest to the
deformation gradient in the space of matrices equipped by the Frobenius norm.

In two dimensions, this rotation is straightforward to compute. First, calculate

R̂ = F + sign(det(F ))
[(
f22 −f21
f12 f11

)]
,

and a subsequent normalisation of the columns gives R. In higher dimensions, Higham [HS90]
proposed an efficient, quadratically convergent iteration scheme

R(0) := F

R(n+1) :=
1

2

(
R(n) +R(n)−T

)
.

Because the deformation gradient may be singular, e.g. in case of a pure rotation around one of
the coordinate axes, we use a QR decomposition ahead of the core algorithm as also proposed by
Higham. This results in a very robust and fast algorithm. Seldom more than three iterations are
required. A soon as R is known, we can compute the strain and proceed as before.
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1
2

fixed nodes

free nodes

(a) A locking experiment.
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S, Mid. Principal
(Ave. Crit. 75 %)

(b) Linear triangles.

(c) Quadratic triangles with constant pressure. (d) Linear triangles with decoupled pressure.

Figure 3.5: When linear triangles fail: (a) due to the incompressibility of Triangle 1 the red node
may only move horizontally. Due to the incompressibility of triangle 2 and the wall, it may only
move vertically. Hence, it will not move at all. The same argument can be propagated through the
whole mesh. As a result, the whole structure will seem rigid, independent of the shear modulus.
The simulations (b)-(d) have been performed using ABAQUS/Standard.

The last open issue for a corotational simulation is that the deformation gradient itself is one
of the unknowns. In practice, this is solved by exploiting temporal coherence and use F from
the previous time step or, in case of a hierarchical simulation, simulate the uppermost layer fully
nonlinear and propagate the rotations successively to the finer levels.

3.1.4 Locking and Mixed Elements

As the example in figure 3.5 shows, in the incompressible case linear elements may fail (3.5(b)).
Although we didn’t implement any of the following issues, we report briefly on the problem.
It can be explained by the Lemma of Céa [Bra97], which is part of the error analysis for finite
elements and links the polynomial order of convergence to the coerciveness of the weak equa-
tion1. Céa’s lemma hints that if ν approaches 0.5 the problem is arbitrary bad conditioned. In
this case, the volumetric part (see equations (2.3.2) and (2.2.4)) is better formulated as a separate
weak equation (cf. [ZT00]) and linked by Lagrangian multipliers, which can be identified as the

1That is, in the small displacement limit we have a(u, δv) = δε : σ = λ〈div u, div δv〉 + 2µ〈D, δD〉 and the
constants of the coerciveness-inequality α‖v‖ ≤ a(v, v) ≤ C‖v‖ satisfy α ≤ µ and C ≥ λ + µ. The Lemma of Céa
states, that the error is bounded by C/α times the optimal approximation error in the finite element space. Unfortunately
for ν → 0.5 the constant C/α tends to infinity.
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pressure∫
Ω

δε : σDev dx+
∫

Ω

δεM : p dx =
∫

Ω

δvf dx+
∫

∂Ω

δvg dA. ∀δε∫
Ω

q(e− 3p

λ
) dx = 0 ∀q (3.1.5)

with e := 1
3 tr(ε) (see eq. (2.2.4)). This is called the two-field u/p-formulation and leads to a

saddle point problem.
Due to the Ladyshenskaja-Babus̆ka-Brezzi [Bra97] conditions not every combination of el-

ements for p and u is admissible (fig. 3.5(d)), especially linear T4 tetrahedra with decoupled
linear pressure do not improve the results. The lowest order elements that work are quadratic
tetrahedra with a piecewise constant pressure (fig. 3.5(c)). For T10 elements ∇ϕ is linear in the
material coordinates and ε is quadratic, therefore we need a 11-point integration formula which
is fourth order accurate but expensive to compute. The saddle-point problem itself requires an
adequate numerical method as for example the Uzawa-algorithm, so that the system to solve does
not double in dimension. Then again, the quadratic displacement elements will allow a reduction
of the number of nodes.

An second approach to tackle the problem is selected reduced integration of the pressure
term, which of course then also requires quadratic elements for the displacement but omits the
saddle point problem. In the case of discontinuous pressure it can be shown equivalent to the
mixed formulation [ZT00], but is computationally much more efficient. In this case, the mixed
formulation itself serves as a vehicle to select the weights of the reduced quadrature formula.

The last way to deal with locking effects would be to introduce additional degrees of free-
dom by using bubble functions as in the MINI-element [Bra97], or to use other elements, e.g.
hexahedra, with their drawbacks in shape fitting and higher computational cost. The usual trick
of reduced integration for faster computation brings other disadvantages with him, which then
require unphysical cures, like hourglass control [Hut99].

In practise, locking effects are often not so drastic as demonstrated in the example. Slightly
changing the node positions often decreases their impact. They disturb the convergence of the
space discretisation, but, as for graphical applications often coarse meshes are used, this is only a
minor issue in this case. Even sophisticated, non-interactive simulations of soft tissue still employ
linear tetrahedra [ZGHD00]. On the other hand, a careful parameter study and an analysis of the
impact would deserve further attention.

3.1.5 Dynamics: Mass and Inertia

Although the first step to a true dynamical simulation has been made with the inclusion of vis-
cosity, the effects of mass have still been neglected in this presentation. The addition itself is
straightforward, combining the equations of equilibrium with Newton’s third law – or equiva-
lently adding a kinematic term to the energy balance – gives the spatial weak equation∫

Ωϕ

ρϕδvϕ̈+
∫

Ωϕ

δD : σϕ dxϕ =
∫

Ωϕ

δvfϕ dxϕ +
∫

∂Ωϕ

δvgϕ dAϕ

which as an extension of (3.1.2) gives the second order ordinary differential equation∫
Ωϕ

ΦT ρϕΦ dxϕµ̈+
∫

Ω

[B(x, [µi])] : σ dx =
∫

Ω

[Φ(x)]T f dx+
∫

∂Ω

[Φ(x)]T g dA. (3.1.6)

The matrix Mϕ :=
∫
Ωϕ ΦT ρϕΦ dxϕ is called the mass matrix. Equation (3.1.6) has the abstract

form of an implicit ODE Mü = f(u, u̇). A substantial part of the numerical solution methods
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for ODEs, e.g. all explicit methods, are only able to solve systems of the form ü = f(u, u̇),
therefore the mass matrix has to be inverted and the resulting ODE reads

µ̈ = Mϕ−1
{
−
∫

Ω

[B(x, [µi])] : σ dx+
∫

Ω

[Φ(x)]T f dx+
∫

∂Ω

[Φ(x)]T g dA
}
.

In practise, the inversion of Mϕ may be computationally very expensive, much more expen-
sive than the time integration itself. First Mϕ depends on ϕ, thus needs to be re-inverted when
ϕ changes. To save costs, often the approximation M = M0 is made, or M is only recomputed,
when a substantial amount of elements change their volume above some limit. The approxima-
tion is exact for an incompressible material, with a constant density. A second issue is, that the
multiplication with a factorised matrix still may be costly due to the fill-in (section 3.4.2). A
usual procedure is mass lumping, that is to concentrate the mass at the nodes to render the matrix
diagonal. In contrast, the full mass matrix using the original elements is called consistent or
compatible. When using a lumped mass we employ a row summation scheme, replacing M by
the diagonal matrix

M̂ϕ = diag(
N∑

j=1

mϕ
ij) = diag(Mϕ1), (3.1.7)

where 1 is the vector of all ones. In the hierarchical case, the second equality of (3.1.7) leads to
an efficient computation of the lumped matrix. The price of mass lumping is a slight artificial
increase of viscosity [ZT00] depending on the mesh.

3.2 Numerical Time Integration

Around 1960, things became completely different and
everyone became aware that the world was full of stiff
problems.

In Aiken: Stiff computation. Cited from [HW96],
G. Dahlquist, 1985.

The finite element method transforms the partial differential equation of elasto-dynamics into an
initial value problem of second order,

Mµ′′(t) = fv

(
t, µ(t), µ′(t)

)
, and µ(t0) = µ0, µ

′(t0) = v0. (3.2.1)

This differential equation can be transformed into a first order system by introducing velocities
as a separate variable:[

id 0
0 M

] [
µ(t)
ν(t)

]′
=
[

ν(t)
fv

(
t, µ(t), ν(t)

) ] , and

[
µ(t0)
ν(t0)

]
=
[
µ0

ν0

]
. (3.2.2)

For the next few sections, it will be convenient to write this equation in the more abstract form

My′(t) = f
(
t, y(t)

)
, and y(t0) = y0, (3.2.3)

or, because some methods cannot handle an implicit ODE, in explicit form

y′(t) = fM

(
t, y(t)

)
= M−1f

(
t, y(t)

)
, y(t0) = y0, (3.2.4)

Later we will come back to the special setting (3.2.2) for eventually gaining computational ad-
vantages.
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This section reports on the numerical methods used to solve the equation and which one is
suited ‘best’. Such a method will again produce a discretisation of y, this time approximating
y(nh) by Yn at some instants tn := nh of time. There are several criteria for evaluating an
integration method: convergence, accuracy, stability, and efficiency. Convergence means that for
h → 0 the numerical solutions Yn meets the analytical. All useful methods must be convergent,
so we won’t discuss non-convergent methods or criteria for convergence. More interesting is the
accuracy. By this we mean how fast a method converges for h → 0. This is measured by the
order. A method is defined to possess order p if ‖y(tn)−Yn‖ = O(hp). Stability will be an issue
in the next subsections, and finally efficiency, the most interesting question can only be decided
by experiment. Fortunately, there are some clues how to select the most promising candidates.

3.2.1 Explicit Methods

The oldest and most simple method of integration is the so called forward or explicit Euler
method. To get a formula for advancing a time step h, the differential quotient on the left hand
side of (3.2.4) is replaced by the forward difference quotient

y(t+ h) − y(t)
h

≈ y′(t) = fM (t, y(t)).

Thus we obtain the integration formula for advancing a single time step

y(t+ h) = y(t) + hfM (t, y(t)).

Iterating this scheme gives a sequence of numerical approximations Yn. Geometrically the
method can be interpreted as straightly following the tangent of the solution at time tn and then
recalculating the slope for the next step.

By using a Taylor expansion for the exact solution after a single time step

y(t+ h) = y(t) + hy′(t) +
1

2
h2y′′(t) +O(h3)

we find that the error of the numerical approximation Y1 is O(h2). If we continue the method
using the numerical solution Y1 as a starting value for the next time step we lose [HNW93] a
power of h for the global error, hence the explicit Euler method converges linearly or has order
1.

As a next step, we introduce methods of higher order. For this a centered difference estima-
tion for y′(t+ h/2) in equation (3.2.4) is used

y(t+ h) − y(t)
h

≈ y′(t+ h/2) = f(t+ h/2, y(t+ h/2)).

resulting in the iteration scheme

Yn+1 = Yn + hf(tn + h/2, y(tn + h/2)). (3.2.5)

But how do we find y(tn + h/2)? For an estimation k1 we use an explicit Euler step to get

k1 = Yn + h
2 f(tn, Yn) (3.2.6)

Yn+1 = Yn + hf(tn + h/2, k1), (3.2.7)

the so called explicit midpoint rule. The estimation by forward Euler, although not very accurate,
is good enough, as the function evaluation is multiplied by the time step to advance to the next
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approximation. So by a Taylor expansion we find a local error of O(h3) leading to a global error
of O(h2) for the explicit midpoint rule.

Generalizing the idea of using function evaluations at s intermediate points t + cjh leads to
Runge-Kutta methods. They are defined by a Runge-Kutta matrix (aij), weights bi, abscissae cj ,
and the equations

ki = Yn + h
s∑

j=1

aijk
′
j with k′i = f(tn + cih, ki) for i = 1, . . . , s,

Yn+1 = Yn + h

s∑
i=1

bik
′
i. (3.2.8)

The coefficient set can comfortably be specified as shown in table 3.1(a). If the matrix (aij)

c1 a11 a12 · · · a1s

c2 a12 a22 · · · a2s

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs
(a) General Runge–Kutta method.

0
1
2

1
2

0 1
(b) Explicit
Midpoint

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6
(c) "The" Runge-Kutta method
RK4.

Table 3.1: Runge-Kutta methods.

is strictly lower triangular, all inner stages ki only depend on kj with j < i and thus can be
computed one after the other. Table 3.1(b) shows the explicit midpoint rule interpreted as a
Runge-Kutta method. The most famous scheme is the method by Runge and Kutta given in table
3.1(c), which possesses order 4.

By using algebraic relations for the coefficients, it is possible to construct explicit Runge-
Kutta methods of arbitrary high order resulting in many inner stages with numerous evaluations.
For most practical applications, order 4 is sufficient.

3.2.2 The Stability Problem

[Wir] werden bei dem Anfangswertproblem hyperbolischer
Gleichungen erkennen, dass die Konvergenz allgemein nur
dann vorhanden ist, wenn die Verhältnisse der
Gittermaschen in verschiedenen Richtungen gewissen
Ungleichungen genügen.

U. d. partiellen Differentialgleichungen der math. Physik,
Courant, Friedrichs, and Lewy,1928.

The stability problem, first recognised early in the 1900 in numerical fluid dynamics, yielded the
CFL-condition [CFL28] for the explicit Euler method, restricting the time step for the numerical
method to be able to capture the characteristics of the equation. Basically this means that the time
step has to be small enough for a wavefront to traverse only one grid node per time step. This
implies a severe increase of work, when the grid resolution is increased. Its systematic analysis
evolved in the 50s and 60s [GL61], finally leading to the stability theory as used today [HW96].
The problem is illustrated in figure 3.6, where we compare the results of a simulation done with
the explicit Euler, the method of Runge and Kutta, and the implicit Euler method, which will be
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h=40ms (unstable) h=0.4ms (unstable) h=0.3ms (unstable) h t=0.2ms, =2.0s (stable)

h t=40ms, =0s h t=40ms, =5.0s h t==40ms, 14s h t==40ms, 44s

h=40ms (unstable) h=0.4ms (unstable) h t=0.3ms, =2.0s (stable)

(a) Several Euler method with =0.04s.hframes from a solution computed with the backward

(b) Several frames from ‘solutions’ computed with the forward Euler method with different time steps.
Only the smallest =0.0002s allows a stable simulation.h

(c) Several frames from ‘solutions’ computed with the RK4 method with different time steps. Only the
smallest =0.0003s allows a stable simulation.h

Figure 3.6: Several simulations with different methods and time steps to demonstrate the stability
problem of explicit methods.

discussed below. For both explicit methods, there is a critical time step. Above this sharp limit,
the simulation suddenly diverges. The larger limit of the higher order method only pretends to
be a gain of efficiency: due to its four stages, the RK4 method takes 7078 seconds to simulate
60s, compared to the explicit Euler with 2511s. The implicit method, benefiting from the large
time step, solves the problem in a visually pleasing manner in 40.1s.

The mathematical tool used to explain this phenomenon is Dahlquist’s test equation

y′ = λy, λ ∈ C. (3.2.9)

Its exact solution for an initial value y(0) = y0 is given by

y(t) = eλty0.

To make the problem more real-world like, we created the toy example [HES03] given in figure
3.7, which is equivalent to the equation[

z
vz

]′
=
[

0 1
− k

m − d
m

] [
z
vz

]
+
[

0
−kl0

m + gz

]
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Equation:
d2z

dt2
=
k (l0 − z)

m
− d

m

dz

dt
+ gz.

Parameter: m = 0.1, k = 100, l0 = −1,
d = 1, g = −10 v0,z = −5

Analytical Solution:

z (t) =− 33
√

39

1300
e−5 t sin

(
5
√

39t
)

+
1

100
e−5 t cos

(
5
√

39t
) − 101

100

Figure 3.7: A simple mechanical system: A particle p with massm connected to the origin using
a spring with stiffness k, damping d and rest length l0, is pulled down by gravity.
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Figure 3.8: By varying the time step, solutions of different accuracy are produced. The work-
precision diagram plots the flops spent against the error ‖Y (tend)−y(tend)‖. The stability limit is
marked by a sudden loss of accuracy. In the convergent region, the order of the method matches
the slope in the double logarithmic plot.

The real parts of the eigenvalues of the Jacobian, viz. the linearisation, of this equation are non-
positive and for d > 0 negative. This is a characteristic of every damped mechanical system and
a necessary condition for reaching a rest state. Therefore Dahlquists equation with Reλ < 0 is
considered to be a good model for a dissipative system. In this case, since the exponent is neg-
ative, the analytical solution is bounded for t → ∞. Therefore, one expects from a meaningful
numerical method to deliver a bounded solution. An integration scheme that yields a bounded
solution is called stable.

If we apply the forward Euler method with a fixed step size h to (3.2.9), the n-th point of the
numerical solution is given by:

Yn = (1 + hλ)ny0 (3.2.10)

For large |λ|, it is bounded if and only if |1 + hλ| < 1, i.e. for hλ in the unit sphere around
-1. A similar analysis can be carried out for the other methods and results in restrictions of the
admissible step size too.

This analysis explains the steep rises in the work precision diagram in figures 3.8. Only
when the step size drops below a certain limit dictated by λ, i.e. by h < 2|λ|−1 in case of the
forward Euler method, the numerical solutions can converge. If the damping is increased, i.e.
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Reλ→ −∞, then for the explicit Euler necessarily hmust tend to 0 for the solution to be stable.
This means the step size is artificially limited and cannot be increased beyond the stability limit.
This limits the flexibility of balancing work against accuracy.

3.2.3 The Implicit Euler Method

There are at least two ways to combat stiffness. One is to
design a better computer, the other, to design a better
algorithm.
In Aiken: Stiff computation. Cited from [HW96], H. Lomax,

1985.

To construct a method that better suits our needs we go back to (3.2.3) and substitute the differ-
ential quotient by a backward difference quotient

M
y(t+ h) − y(t)

h
≈My′(t+ h) = f(t+ h, y(t+ h)).

This results in the integration formula

MYn+1 = MYn + hf(t+ h, Yn+1),

the so called backward or implicit Euler method. As its explicit variant, this method can be
shown to have order 1. Now the numerical solution only is given implicitly by the solution of the
possibly nonlinear equation

MYn+1 − hf(t+ h, Yn+1) −MYn = 0.

This time the method is able to cope with an implicit ODE, without explicitly invertingM , as this
can be integrated into the nonlinear solution process. If we apply this method to the Dahlquist
equation, we get the recurrence formula

Yn = (1 − hλ)−ny0. (3.2.11)

The numerical solution Yn remains bounded for |(1−hλ)−1| < 1. If we assume λ < 0, this holds
for arbitrary h > 0. Thus, there is no restriction on step size. The method is unconditionally
stable. Figure 3.8 shows the work-precision curve for the implicit Euler method. We observe
that we never loose stability and we especially do not miss the solution by several orders of
magnitude compared to the explicit methods. Of course, the method looses accuracy when the
time steps become large.

As a useful tool for visualising the stability properties of a method we define the stability
region S to be the set of parameters, for which the integration method yields a bounded solution:

S := {z := hλ ∈ C : the numerical integration of equation (3.2.9)

with step size h and parameter λ is stable}.

If S contains the complete left half-plane the method is called unconditionally stable orA-stable.
Such methods are well suited for the stable integration of stiff2 equations. Obviously, the implicit
Euler scheme is A–stable, whereas its explicit counterpart is not. The stability regions of some
presented methods are shown in figure 3.9.

2A stiff equation, is by ‘definition’ an equation, where explicit methods suddenly loose stability. There is no precise
definition of ‘stiff’ (cf.[HW96]), but usually the equation has some large negative eigenvalues.
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Figure 3.9: Stability regions (shaded) of the methods.

After reviewing the process that led us to the definition of the stability region, we can outline a
more general idea that will allow us to determine the stability of more complex methods. The idea
for analysing both Euler methods applied to (3.2.9) was to find a closed expression describing
the stability function R. This function maps the initial value y0 to the value Y1, performing a
single step of the method

R : y0 �→ Y1.

Thus Yn = Rn(hλ)y0. For the explicit Euler method we found in (3.2.10)

R(z) = 1 + z,

for the implicit version in (3.2.11)

R(z) =
1

1 − z
.

The definition for the stability region now reads

S = {z ∈ C : |R(z)| ≤ 1}.

To compute R for an explicit Runge-Kutta method, we apply the definition (3.2.8) to (3.2.9):

g1 = y0 = p1(hλ)y0
g2 = y0 + a21hλg1 = p2(hλ)y0
. . .

for the polynomials p1(hλ) = 1 and p2(hλ) = a21hλ + 1. By induction, we have Y1 =
ps+1(hλ)y0 with a polynomial of degree ≤ s. Therefore, the stability function of an explicit
method is a polynomial. Hence, the stability region is bounded and the method cannot be uncon-
ditionally stable.

3.2.4 Implicit Runge-Kutta Methods

To find a higher order method, we go back to equation (3.2.5) and insert a linear interpolation
term for y(t+ h/2). The resulting formula is taken as an implicit definition of y(t+ h). We get
the implicit midpoint rule

Y1 = Y0 + hf
(
t+ h/2,

Y1 + Y0

2

)
,
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using a simplified notation for advancing one step, i.e. writing Y0 and Y1 instead of Yn and Yn+1.
Again a mass matrix can simply be added by multiplying the defining formula by M .

Alternatively the midpoint rule can be derived as a collocation method [HW96] with s = 1
internal nodes, i.e. by constructing a polynomial interpolating the particle trajectories at a given,
fixed set of s nodes [HW96]. This idea allows the construction of implicit Runge-Kutta methods
with arbitrary order. In contrast to explicit methods the matrix (aij) ceases to be strictly lower
triangular. These methods are computationally more expensive, so we just stick to the midpoint
rule. Its stability function is given by

R =
1 + z/2
1 − z/2

.

As R ≤ 1 for any Re z < 0 the implicit midpoint rule is A-stable.

3.2.5 Multistep Methods

As another possible choice, we now introduce multistep methods. They are computationally
inexpensive because they have no inner stages and some of them are A-stable. A multistep
method with k steps is of the general form

k∑
j=0

αjY1−j = h
k∑

j=0

βjf1−j ,

with fj := f(tj , Yj). Here we also have ‘history points’ with negative indices. The lowest
coefficient α0 is required to be nonzero; for variable time step sizes the coefficients depend on
the last step sizes, which we have omitted here for the ease of demonstration. Important special
cases are the class of Adams methods where α0 = · · · = αk−2 = 0:

Y1 = Y0 + h

k∑
j=0

βjf1−j

and the class of BDF–methods (backward differentiation formulas) with β0 = · · · = βk−1 = 0:

k∑
j=0

αjY1−j = hβkf1.

If the formula involves the right-hand side f1 at the new approximation point Y1 the method
is said to be implicit. BDF-methods are always implicit. The stability regions of implicit and
explicit Adams methods are bounded and located around the origin, thus they are not interesting
for large time steps, and we won’t discuss them further.

Implicit multistep methods are able to handle implicit differential equations in the same way
as demonstrated for the backward Euler method, so we dropped the index M for a clearer nota-
tion. The coefficients for the methods can again be constructed by a collocation approach. For
the BDF-methods, this is feasible up to order 6, higher order methods loose consistency for any
choice of coefficients [HW96]. BDF-methods were the first to be developed to deal with stiff
equations and possess an unbounded stability region covering a sector within the negative com-
plex half-plane. Therefore, they are among the most widely used methods today. For k+1 points,
these methods possess order k + 1 and only one nonlinear system has to be solved, whereas s
coupled systems have to be solved for an s-stage implicit Runge-Kutta method.
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The BDF-method for k = 1 is just the implicit Euler method, for k=2 the method, also known
as trapezoidal rule, is given as

Y1 =
4

3
Y0 − 1

3
Y−1 +

2

3
hf(t+ h, Y1)

The coefficients for higher order methods are given in table 3.2. The stability region of BDF(2)
is shown in figure 3.9. In [HES03] BDF with variable coefficients is discussed.

α0 α1 α2 α3 α4 α5 α6 β
3
2 −2 1

2 1
11
6 −3 3

2 −1
3 1

25
12 −4 3 −4

3
1
4 1

137
60 −5 5 −10

3
5
4 −1

5 1
147
60 −6 15

2 −20
3

15
4 −6

5
1
6 1

Table 3.2: BDF Methods

3.2.6 Rosenbrock Methods

An idea employed by most other authors [BW98, DDBC99] is to ignore the non-linearitiy of
the equations that arise from the application of an implicit solution method. This is equivalent to
performing only a single Newton iteration and is sometimes called ‘semi-implicit’. Unfortunately
this may sacrifice A-stability. If on the other hand, we put this requirement already into the
definition of the method, we arrive at Rosenbrock methods

(M − hγiiJ)ki = hf

⎛
⎝Yn +

i−1∑
j=1

aijk
′
j

⎞
⎠+ hJ

i−1∑
j=1

γijkj with J =
∂f

∂y
(Yn)

Yn+1 = Yn + h

s∑
i=1

biki.

Now the coefficient set αij , γij , bi can be specially constructed to maximize order and stability.
Again, whole families arise, some of which are A-stable or include at least a sector of angle α
around the negative real axis in their stability region (A(α)-stable). Rosenbrock methods are
recommended by Press et al. [PTVF88] for stiff equations, although the discussed siblings are
not even A-stable. Furthermore Rosenbrock methods suffer from the necessity to recompute the
Jacobian very often, per definitionem at each integration step. Therefore Steihaug and Wolf-
brandt [SW79] attempted to construct methods that only require an approximation to J , thus
relaxing the update burden. The resulting methods are called W -methods. Using the framework
developed for the other implicit methods, it is trivial to implement them, so we added several
methods of order 4 [HW96] (SHAMP, GRK4A, GRK4T, VELDA, VELDB, LSTAB), a second or-
der Rosenbrock-W method due to Verwer et al. [VSBH99], and the third order Rosenbrock-W
method AMF-RK32 [GV02] to our library.

3.2.7 The Verlet Method

The leapfrog or Stoermer-Verlet method is especially efficient if (3.2.1) is given as the second
order system

x′′(t) = fv

(
t, x(t)

)
, (3.2.12)
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t0 t1 t2 t3 t4t1/2 t5/2t3/2 t7/2

x0 x1 x2 x3 x4

v1/2 v5/2v3/2 v7/2

Figure 3.10: Staggered grids for the Verlet method.

i.e. fv

(
t, x(t), x′(t)

)
= fv

(
t, x(t)

)
. It is not applicable to general first order systems of the form

(3.2.4).
To derive it, we use centered differences at a staggered grid (figure 3.10), i.e. we now approx-

imate v at t+ (2i+ 1)h/2 and x at t+ ih by centered differences

vn+1/2 − vn−1/2

h
= f(xn)

xn+1 − xn

h
= vn+1/2

thus

vn+1/2 = vn−1/2 + hf(xn) (3.2.13)

xn+1 = xn + hvn+1/2. (3.2.14)

The method possesses order 2 as one can see by substituting (3.2.13) into (3.2.14) resulting in
the second order centered difference

xn+1 − 2xn + xn−1

h2
= f(xn).

From this equation an alternative formulation of the Verlet scheme as a multistep method can be
derived

vn − vn−1 = hf(xn),
xn+1 − xn = hvn,

which omits the half steps and staggered grids from above. Now for second order equations
which do not possess the form of (3.2.12) one may replace f(xn) by f(xn, vn−1) at the expense
of some stability. Correctly the replacement had to be with f(xn, vn) but this would result in
a implicit method. The work precision diagram 3.8 shows the Verlet method applied to our toy
example.

Up to now, we have omitted a discussion of the stability properties of the leapfrog method.
From the example, it can be observed that the method is not unconditionally stable. Indeed, some
more delicate computations show that the method only delivers a bounded solution for arbitrary
h > 0 for purely oscillatoric equations, i.e. for second order ordinary differential equations of
the form (3.2.12) (with no damping term) and a contractive right hand side. Nevertheless, the
method remains well behaved in the presence of low damping. This explains its importance in
molecular and celestial dynamics. In the tutorial [KBF+03] we discuss an application to the
undamped wave equation.

3.2.8 ROCK - A Stabilised Explicit Integration Method

The classical explicit methods were constructed by fixing a number of stages and maximising
the order under some additional constraints, e.g. a cheap embedded method. Unfortunately,
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Figure 3.11: Selecting a method.

the stability region, characterised by the polynomial R, is usually small. Fixing the number
of stages s, one can also try to find the polynomials which give the largest stability region and
coincide with the first terms of the exponential function to guarantee convergence. These are
given by shifted and scaled Chebychev polynomials. Optimized to a tube along the real axis
for parabolic equations, the lower bound can be pushed nearly to −s2. The next problem is to
find a corresponding Runge-Kutta method that can be implemented in a stable manner. Several
techniques have been proposed, but they either require numerically computed roots or have low
order. Recently Abdulle et al. [AM01] proposed a stable and efficient implementation based on
orthogonal and nearly optimal stability polynomials. The Orthogonal-Runge-Kutta-Chebychev
methods (ROCK) are a family of methods with a large stability domain along the negative real
axis. The lower bound grows with s2, thus the methods are efficient for stiff problems, because
they are able to use time steps usually about 2 to 10 times larger than other explicit methods.
ROCK2, which we use in our implementation adapts and balances s against the time step h
based on a user-supplied estimate of the spectral bound. For details we refer to the thesis of
Abdulle [Abd01].

3.2.9 Selecting an Efficient Method

Which method is best for a certain application? This question is nearly impossible to answer a
priori. The only choice is to try a set of methods and to evaluate which one performs best. Choos-
ing the methods to try though can be done based on theoretical considerations and observations
of the problem at hand. A possible strategy is shown in figure 3.11.

The same statement holds for predicting the efficiency of a method. Generally, implicit
methods require more work per step. On the other hand, one may be able to use time steps that
are several magnitudes larger than the ones explicit methods would allow. Although accuracy
will suffer, the integration won’t be unstable. If evaluations of the right hand side function are
cheap, a step with RK4 is faster than an implicit step with BDF(4). Then again, if it is cheap to
compute a good sparse approximation to the Jacobian, it may be more efficient to solve the linear
system with a few cg iterations than to perform four full function evaluations.
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for k = 1, 2, . . . until convergence do
Compute G(Y (k)).
Compute J (k) = ∂

∂Y G(Y (k)).
Solve J (k)s(k) = −G(Y (k)).
Y (k+1) := Y (k) + s(k)

end

Algorithm 3.4: Newton’s Method

3.3 Solving Nonlinear Systems

Most implicit methods require the solution of a nonlinear system. The implicit Euler method for
example reduces the integration problem to the solution of the nonlinear system

MY1 − hf(Y1) −MY0 = 0.

The other methods yield a system of similar structure, for example

MY1 − hf(
1

2
(Y1 + Y0)) −MY0 = 0

MY1 − 2

3
f(Y1) +M

(
−4

3
Y0 +

1

3
Y−1

)
= 0

for the midpoint and BDF(2) rule, respectively. This is a nonlinear system of dimension 6N ,
from now on abbreviated as G(Y ) = 0, where N is the number of nodes in the mesh. Due to the
special structure of the system we have

∂G

∂Y
=
[

id 0
0 M

]
− αh

[
0 id
∂f
∂µ

∂f
∂ν

]
,

which can later be exploited to speed up the linear solver. The system must be solved with
Newton’s method to allow arbitrary step sizes independent of λ. Simpler methods for nonlinear
systems, like fixed-point iteration, would compensate the advantage of A-stability because the
number of iterations would increase proportionally to the stiffness parameter |λ|. We now will
work out an approach for implementing Newton’s method efficiently.

3.3.1 Newton’s Method

For the nonlinear system G(Y ) = 0 we compute a numerical solution by algorithm 3.4. This
reduces the problem to the successive solution of linear systems. In a classical Newton method
these systems are solved by Gaussian elimination, which, for sparse systems, introduces a lot of
additional non-zero elements into the factors. Therefore special sparse solvers need to be used,
which will be discussed below.

The majority of authors [BW98, VMT00a, HE01, CK02] take another approach and use iter-
ative methods to solve the linear system. As of the exchangeable solvers, we provide a precondi-
tioned conjugate gradient method to solve the linear systems in each Newton step. Unfortunately
this changes the convergence behaviour of the outer Newton method, which is referred to as an
inexact Newton method [Rhe98], given by algorithm 3.5.

3.3.2 Convergence and Residual Control

The error of the iterative solution of the linear system in line 4 of algorithm 3.5 is formulated
in terms of the residual, which is easily computationally accessible, whereas the actual error
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for k = 1, 2, . . . until convergence do
Compute G(Y (k)).
Compute J (k) = ∂

∂y (Y (k)).
Find s(k) with J (k)s(k) = −G(Y (k))) + r(k), such that ‖r(k)‖ ≤ ηk‖G(Y (k))‖.
Y (k+1) := Y (k) + s(k)

end

Algorithm 3.5: Inexact Newton Method

cannot be computed. The tolerance of the linear iteration is decreased proportionally to the
monotonically decreasing residual of the nonlinear iteration.

An analysis of this method [Rhe98] shows that it converges under rather weak additional as-
sumptions. If the classical Newton method converges and the scalar tolerances η(k) are uniformly
bounded by an η < 1, the inexact method converges. In literature the η(k) are referred to as forc-
ing terms. Note that this additional assumption is also necessary: For η = 1, s(k) = 0 would be
admissible and the iteration would stagnate. The inexact method then at least converges linearly,
whereas Newton converges superlinearly. By choosing the ηk to converge to zero sufficiently
fast, the convergence of the inexact Newton method can be forced to have an order > 1.

On the other hand, smaller η(k) mean tighter tolerances for the iterative linear solver, which
imply more work to spend there. Hence, advanced codes carefully balance η(k) against the con-
vergence of the method, which of course depends on G. Several choices of forcing terms have
been evaluated in our thesis [Hau99a].

3.3.3 Inexact Simplified Newton Methods

The efficiency of the Newton method can be further improved by another approximation. In
the simplified version of Newton’s method the Jacobian J (k) is approximated by J (0). Such a
scheme can be rewritten in the form of an inexact Newton method, if the linear system is written
as follows and J is chosen as approximation to J (k)

Js(k) = −G(Y (k)) + (J − J (k))s(k) + r(k)

=: −G(Y (k)) + r̃(k)

The residual r(k) is replaced by the larger r̃(k), which can be bounded if J ≈ J (k). By choosing
η̃(k) appropriately, the method still converges. In fact, we trade some accuracy approximating
J (k) for accuracy in solving the linear system and up to a certain limit the method still behaves
as before. If only a single Jacobian J (0) is used, a constant term is introduced into η̃(k), therefore
the order of convergence drops to linear, no matter how fast the forcing terms η(k) converge to 0.
In the simplified case it suffices to specify η(k) = η ≡ const, which is a user parameter. Usually
η = 0.01 gives good results. More important for a quick convergence are good initial values,
which we obtain by extrapolating the solution of the previous time step.

3.3.4 Monitoring Convergence

Since the convergence is linear, we have for the step length ‖s(k)‖ = ‖Y (k+1) − Y (k)‖
‖s(k+1)‖ ≤ Θ‖s(k)‖

and therefore for the exact solution Y ∗

‖Y (k+1) − Y ∗‖ ≤ Θ

1−Θ
‖s(k)‖.
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Compute J ≈ ∂
∂Y G(Y (0)).

for k = 1, 2, . . . until convergence do
Compute G(Y (k)).
Find s(k) with Js(k) = −G(Y (k))) + r(k), such that ‖r(k)‖ ≤ η̃k‖G(Y (k))‖.
Update Y (k+1) := Y (k) + s(k)

end

Algorithm 3.6: Inexact Simplified Newton’s Method

Hence Θ/(1 − Θ)‖s(k)‖ provides a meaningful stopping criterion. The convergence rate Θ can
easily be estimated by

Θk ≤ ‖s(k)‖
‖s(k−1)‖

.

In addition a small Θk or a low number of Newton iterations are a hint for a good convergence,
thus we adopt the trick of Hairer [HW96] and save Jacobian updates, whenever less than 4
iterations were necessary or Θk < 10−3.

3.3.5 Global Convergence

As stated in the introduction an important issue in interactive simulations is to keep the simulator
running. This means, that we have to take precautions against convergence failures of the New-
ton method. The usual procedure is to reject the step and restart it with a smaller time step and
an updated Jacobian. This is too costly, as the current time quantum may already be nearly spent.
In this case we reluctantly give up accuracy, but at least stability has to be insured. Convergence
failures, although very rare, because the trajectory is usually smooth and the temporal coherence
provides good starting values, may cause instability. Monitoring convergence and updating the
Jacobian is an effective precaution. Large discontinuities however, caused for example by mas-
sive collisions, may occur without warning and the Newton iteration may overshoot. In this case,
if the average decrease is not sufficiently fast, viz. ‖G(Y (k+1))‖ > ‖G((k))‖ + 10−4〈∇G, s(k)〉,
a line-search technique is employed to find an admissible step length [Rhe98]. First G(Y (k)),
G(Y (k+1)) and ∇Gs(k) is used to build a quadratic model for g(ω) = G(Y (k) + ωs(k)). The
tentative step length ωten is then chosen to minimize the model. If this again fails, we build a
safeguarded cubic interpolation [DS96], with the additional g(ωten), and iterate till convergence
or a maximum iteration count. For all tested cases, this guaranteed convergence.

3.4 Solving Linear Systems

Most codes for solving stiff systems spend most of their
time solving systems of linear equations.

Cited from [HW96], Watkins and Hanson-Smith, 1983.

Employing Newton’s method reduces the implicit integration problem to the solution of a linear
system of equations of possibly large dimension. Rosenbrock and W-methods directly lead to
a linear system. Besides the function and Jacobian evaluation, this part of the algorithm is the
most time consuming. Here efficiency is preserved or can be lost. A characteristic property of
this system is sparsity, which means only 3-by-3 blocks corresponding to nodes with a common
edge have non-zero entries. To illustrate this, the sparsity pattern of three Jacobian resulting from
the sample problems in figure 3.12 are shown in figure 3.13.
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Figure 3.12: The sample scenes, directly grabbed from the application, showing an overlay of
rest and deformed state. The smallest scene consists of a sphere composed of 175 tetrahedra
and 70 nodes that bounces on a table. The medium example was taken from a liver model with
2616 tetrahedra and 739 nodes. Shearing a cube with 4913 nodes and 24576 tetrahedra gives
the matrix of the largest example.

Currently three different techniques dominate in the solution of such systems: multi-grid
methods, non-stationary iterative schemes [Saa96] or direct solvers [DER90]. For very large
systems with millions of nodes, combinations of the underlying principles are not unusual, for
example conjugate gradients with a multi-level BPX-preconditioner. For the problems, that are
interactively solvable on a single computer, we restrict ourselves to two of the solution methods
only: iterative schemes and sparse direct solvers. The application of multi-level methods, for
example in the form of the Newton-Cascade algorithm, could be an interesting point for future
work.

3.4.1 Reduction

The matrix A arising from Newton’s method has a very special structure due to the second order
nature of the differential equation,

A =
[

id 0
0 M

]
− hα

[
0 id
∂f
∂µ

∂f
∂ν

]
, (3.4.1)

where α depends on the integration method used. By using block sustitution, the linear system
can be reduced to two systems of halved dimension

[M − (hα)2
∂f

∂µ
− hα

∂f

∂ν
]ν = bν +

∂f

∂µ
bµ (3.4.2)

µ− hαν = bµ.

The second one requires only a scaled addition, after the first one is solved. Because the com-
putational expense grows superlinearly with the dimension, this greatly improves performance.
Moreover, it can be implemented without changing the surrounding logic.

3.4.2 Sequential and Parallel Direct Methods for Sparse Systems

The factorisation of a m × n matrix requires O(mn2) floating point operations, too quickly
growing with the dimension to be feasible for larger problems. For sparse matrices, where only
cn entries – with c typically less than a hundred – are different from zero, most work is wasted
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on the empty parts. Unfortunately, the direct application of Gaussian elimination tends to fill the
empty regions, as the examples in figure 3.13 show. The problem can be tackled using graph-
theory and the fill-in can be worked out. As it turns out, that it depends on the numbering of the
unkowns, which induces the elimination order, it is possible to permute the unknowns

APx̂ = b,

x = P−1x̂

to reduce the fill-in. The permutation P is commonly known as ordering for sparsity. For sym-
metric matrices, the system is in addition multiplied by PT from the left in order to keep sym-
metry. Unfortunately, the problem of computing the optimal permutation can be shown to be
NP-complete [Yan81].

Typically, a direct solver proceeds in four steps: First an analysis of the graph structure to
compute a fill-reducing permutation. Second a symbolic factorisation step that determines the
non-zero entries and sets up data structures and memory. The third step is the numerical factori-
sation with pivoting. To solve for a given right-hand side, in the last step, forward and backward
substitutions on the triangular factors are performed. If only the right hand side changes, like
in the simplified Newton method, the factors can be re-used. Also, if the topology of the mesh
remains fixed, the ordering for sparsity and the symbolic factorisation need to be executed only
once. The efficiency of the algorithm depends on the sophisticated selection of the permutation
and efficient data structures and kernels for the numerical solve. For example, linked lists – used
in the first codes – would be convenient for adding elements, but will perform bad in step three
and four. For the evaluation of permutation strategies as discussed below, we use MATLAB, ver-
sion 5.3 and 6.1 [GMS92], in the actual C++-implementation, we employ SuperLU[DEG+99]
and UMFPACK[DD99].

During the second step of the algorithm, a symbolic elimination tree is computed, that rep-
resents the order the variables (columns) are eliminated. If, after including the fill-in, column
j has no entry in row i, they can be treated independently, as they do not update each other.
Therefore, independent subtrees can be computed in parallel, which is the first source of coarse
level parallelism. As soon, as there are only dependent subtrees left, pipelining allows to further
exploit parallelism, that is a column can be processed, until a dependant variable k is found. If
the complex scheduling is done in a sophisticated manner, a fine level parallelism is exposed,
which of course then requires a fast communication facility. This approach is well suited for a
shared memory architecture. We use SuperLU_MT, developed by Demmel et al. [DGL99]. For
very large systems, also a cluster-based implementation (SuperLU_DIST) is available, which is
not used by our application.

We performed a few experiments on the sample matrices, to determine the optimal permu-
tation strategy. The results are summarized in table 3.3. We compare the best available native
permutations in MATLAB6.13, the MATLABalgorithms combined with AMD [ADD96], and the
mex-variants of UMFPACK4.1 and SuperLU, which is comparable to lu but significantly faster.
Although using the different AMD variants with the built in lu gives the lowest fill-in, UMF-
PACKwith the built in variant of AMD is fastest.

3Starting with MATLAB6.5 (2003), UMFPACK4.0 replaces lu, and AMD is made available by default.
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(a) Matrices Nonzero pattern

(b) Classical factorisation (L+U) with large fill-in

(c) Permuted matrices

(d) smart factorisation (L+U) with reduced fill-in

Figure 3.13: Test matrices
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Problem (dimension) Sphere (210) Liver (2217) Cube (14 739)

flops nnz(L+U) flops nnz(L+U) flops nnz(L+U)
direct lu 4.15 37 758 643 407 934 199 994 57 015 396
lu/SYMMMD .63 14 892 53 211 320 10 978 12 599 580
chol/SYMAMD .27 13 962 7 170 304 5 096 11 910 726
lu/ best P : .54 13 962 30 168 048 10 192 11 910 726
UMFPACK: .56 17 804 15 182 718 14 366 13 759 224

source matrix 6 102 41 001 566 643

Table 3.3: Comparison of direct solvers. Operation count are ×106 flops. For the smallest
example, SYMAMD performed best, the medium showed a small favor for AMD , in the largest
case SYMAMD was most effective.

3.4.3 Iterative Methods

Ich empfehle Ihnen diesen Modus zur Nachahmung.
Schwerlich werden Sie je wieder direct eliminieren,
wenigstens nicht, wenn Sie mehr als 2 Unbekannte haben.
Das indirecte Verfahren läßt sich halb im Schlafe ausführen,
oder man kann während desselben an andere Dinge denken.

Taken from a letter to Gerling, C.F. Gauß, citation from
[Hac93], 1823.

Employing the inexact Newton formulation allows the use of iterative methods for an inner iter-
ation. Using only a single grid resolution, non-stationary Krylov-methods are usually preferred
over stationary methods, like Jacobi or SSOR. These classical methods then often are valuable
as preconditioners. In the symmetric, positive definite case4, arising from Ritz-Galerkin finite
element methods, the conjugate gradient method, with a stable and fast three-term recursion re-
quiring only matrix-vector products is the method of choice. It needs a constant amount of vector
storage, no transposed multiplication routine, only a single matrix-vector product per iteration
and converges in the A-norm, which corresponds naturally to the discretised energy norm of the
underlying problem. Because the matrix A is sparse, a single iteration takes O(n) work.

The number of iterations to reach a given accuracy is proportional to the square root of the
condition number of A. Therefore, preconditioning techniques are used. Preconditioning means
that instead of As = g, the modified system (M−1AM)M−1s = M−1g, with A := I − hαJ ,
is solved, where M−1AM hopefully gives a smoother convergence. A suitable preconditioner
M consists of an easily invertible matrix that approximates A. We will briefly compare some
inexpensively accessible preconditoners.

The diagonal and block diagonal preconditioner is defined by using the diagonal or the di-
agonal three-by-three block-part of A as M . This is the only choice considered in other systems
[BW98, VMT00a], also called diagonal scaling. The diagonal preconditioner is easily available
and inexpensive to apply, as each application is just a division of each vector-component by the
corresponding diagonal entry, resulting in N flops per application. In case of the block diago-
nal preconditioner, each block is factored, and the application is performed by backsubstitution,
requiring 18N flops.

The incomplete Cholesky factorisation [Saa96] (chol) is computed by carrying out an ap-
proximate Cholesky factorisation of A, i.e. formally factorising A and dropping all intermediate

4The approximated Jacobian J is symmetric and negative definite due to Newton’s third law and the passivity of the
system.
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Problem Sphere (210) Liver (2217) Cube (14 739)

#iter M cg total #iter M cg total #iter M cg total
diag 75 .000 2.14 2.14 42 .00 14.80 14.80 90 .0 243.4 243.4
blockDiag 72 .002 2.16 2.16 39 .01 14.20 14.21 81 .1 227.2 227.4
chol(0) 27 .071 1.11 1.18 14 .91 6.22 7.13 27 8.5 104.9 113.5
chol(1e-2) 22 .684 .91 1.59 7 6.67 3.25 9.92 14 499.2 58.6 557.9
ssor 37 .006 1.52 1.52 17 .04 8.12 8.16 33 .5 129.1 129.7
cgeis 38 .000 .71 .71 23 .00 3.74 3.74 51 .0 81.4 81.4

Table 3.4: This table compares the iteration count, the setup cost, and the cost of the cg-method
for the different preconditoners. All numbers besides the iteration count are ×106 floating point
operations.

values that are either not fitting the sparsity pattern of A (chol(0)), or smaller than a given tol-
erance, e.g. 0.01. It is more expensive to compute and to apply and costs at least 2m flops per
application, where m denotes the number of nonzero entries of A.

The successive-symmetric over-relaxation method [Saa96] (SSOR) is another iterative solv-
ing scheme for linear equations. It is common to use a classical iteration scheme as SSOR for
preconditioning the cg method. The matrix formulation of one SSOR-step is given by the multi-
plication with

M := (D − L)−1D(D − LT ), (3.4.3)

whereA = D−L−LT andD = diag(A), L strictly lower tridiagonal. Note that the inversion is
carried out by inverting two triangular systems, as in practice one product withD is precomputed.
Thus it is approximately as expensive to apply but cheaper to initialize as chol.

To compare the efficiency of the preconditioners we again solved the systems with MAT-
LABup to a relative residual tolerance of 10−6. The measurements in table 3.4 show the charac-
teristics of the different preconditioners in terms of resulting iteration count, setup, and iteration
cost. The SSOR-Preconditoner gives a good balance between both, and always scores second
best after the incomplete factorisation. In the next chapter, we will employ a subset of these
preconditioners directly in a cloth draping simulation, with similar results.

Eisenstat [Eis81, EOV90] proposed an implementation of the cg method, that already incor-
porates preconditioning. The algorithm combines A multiplications and preconditioning in an
effective way. Using SSOR-preconditioning, the problem is restated5 as

{(D − L)−1A(D − LT )−1}(D − LT )x = (D − L)−1b,

which, when diagonally preconditioned, is equivalent to the original system. A clever reuse
of partial result vectors reduces the iteration count from 6 dim(A) + 2 nnz(A) to 8 dim(A) +
nnz(A). The last row of table 3.4 shows our MATLABimplementation of this algorithm and
proves it to be up to twice as fast.

3.4.4 Numerical Evaluation

In a last experiment, we compared the C/C++-Implementation of the direct and iterative methods
against each other, using the benchmark. The relative residual tolerance for the cg method was
set to 10−4 − 10−7 in 4 steps, decreasing by an order of magnitude, reflecting the embedding in
an outer Newton iteration. Table 3.5 summarizes the results. Clearly, the direct solvers benefit
from their very fast backsubstitution. Also it can be seen, that the higher iteration count of the
blockdiagonal preconditioner is partially compensated by its cheaper application.

5In European publications this is also known as the Niethammer trick.
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Problem Sphere (210) Liver (2 217) Box (14 739)

setup solve #iter setup solve #iter setup solve #iter
[ms] [ms] [ms] [ms] [s] [s]

UMFPACK 6.76 .58 - 114 11 - 17.807 .370 -
SuperLU 6.12 .37 - 199 8 - 54.125 .307 -
SuperLU_MT 4.37∗ .24∗ - 110∗ 7∗ - 24.805∗ .280∗ -
cg/blockDiag .01 2.19 54/67/80/84 .1 16 28/34/39/45 .002 .339 56/68/80/92
cgeis .01 .98 20/29/32/37 .2 11 13/16/19/21 .002 .225 29/33/38/43

Table 3.5: Comparison of direct and iterative solvers. The setup time reflects the factorisation
or preconditioner computation step, the solve column gives the time for a single solve. For the
iterative solvers a mean value for a residual tolerance of 10−4 − 10−7 is given. The parallel
benchmark∗ was made on a dual Xeon 2.2GHz, the sequential on a 2.0GHz Pentium 4. For a fair
comparison, the timings should be increased by about 10%.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

um
fp

ac
k

Sup
er

LU

Sup
er

LU
_M

T

cg
(B

lo
ck

D
ia
g.

)

cg
(E

is
en

st
at

)

Solve

Setup

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

um
fp

ac
k

Sup
er

LU

Sup
er

LU
_M

T

cg
(B

lo
ck

D
ia
g.

)

cg
(E

is
en

st
at

)

Solve

Setup

0

10

20

30

40

50

60

70

um
fp

ac
k

Sup
er

LU

Sup
er

LU
_M

T

cg
(B

lo
ck

D
ia
g.

)

cg
(E

is
en

st
at

)

Solve

Setup

Figure 3.14: Comparison of solver efficiency for a single factorisation or preconditioner setup
and 20 solves. The sample-matrices are described above, dimensions are 210, 2217, and 14793,
from left to right.

If the solver is embedded in a Newton method inside a time integrator, a convergence monitor
of the nonlinear solver often allows the code to keep the Jacobian constant over several time steps.
This situation is compared in figure 3.14, which is based on the assumption, that the Jacobian
is held constant for 5 time steps, each requiring 4 Newton iterations. Despite their higher setup
costs, the direct solvers are competitive or even faster than the plain cg method, except for the
largest example, which corresponds to 4913 nodes and 24576 tetrahedra.

3.5 Summary

In the first section of this chapter, we proposed to use finite elements to discretise the variational
equations of elasticity, including mass and dynamics. A co-rotated strain measure provides a
technique to keep the ordinary differential equation linear. Neglecting the possibility of locking,
we employ linear tetrahedral shape functions yielding a reasonably fast implementation that suits
our needs and can be extended to a hierarchical approximation.

The arising ordinary differential equation can be solved by explicit or implicit time integra-
tion. Implicit methods are preferable, as they require no mass lumping and allow large time
steps due to their unconditional stability. As the equation is stiff and the accuracy requirements
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are comparably low, stable implicit integration methods will proof superior for the application.
Their drawback is the necessity to provide a Jacobian, needed for the Newton-type nonlinear
solver. The simplified Newton iteration is the method of choice inside a time integrator, for our
needs enhanced for global convergence and eventually in an inexact form.

Even though the dimension can be reduced, the linear system solver finally is the most time
consuming component. A flexible architecture permits the use of sparse direct solvers and iter-
ative preconditioned Krylov methods, the latter starting to be faster only for larger systems with
thousands of nodes. In both cases, techniques for enhancing efficiency as ordering for sparsity
or Eisenstat’s implementation have been discussed.
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Chapter 4

Application 1: A Numerical Core
for Clothing Simulation

The first application we developed – based on a part of the techniques presented in the last
chapters – is a numerical core for the simulation of garments, implemented together with O.
Etzmuß. It continued the work presented in the thesis ‘Numerische Verfahren zur Simulation von
Textilien’ [Hau99b], now replacing adapted standard codes by custom-tailored building blocks.

The physical model is given by a simple particle system based on finite differences, cov-
ered in the first section. This space discretisation scheme was further analysed and refined by
Etzmuß[EGS03]. The next section describes the assembly of the time integrator, consisting of an
implicit integration method, a non-linear, and a linear solver. A module for handling interactions
with the environment completes the system. To demonstrate the soundness of the approach, we
present some experiments. The chapter is closed by a summary and an outlook on the continua-
tion of the project by the Virtual-TryOn group.

4.1 Spatial Discretisation

When using the particle system paradigm, the discretisation is already a part of the physical mod-
elling process, as the continuous object is immediately represented as a set of discrete points with
finite masses. Physical properties are specified by directly defining forces between these mass
points. Typical representatives of this approach, that is very popular in cloth simulations, are
mass-spring-damper systems [Pro95, VSC01] and particle systems with forces defined directly
by measured curves [EWS96] or low order polynomial fits of this data [BHW94].

As already demonstrated, a more ambitious physical modelling process yields a partial differ-
ential equation. A geometrically inspired discretisation technique, simpler than finite elements,
is the finite difference method. Finite differences are less flexible, as they are restricted on the
shape of the domain and the elements that can be used; also, convergence is usually inferior to
finite elements. On the other hand, they result in less complex equations, which was the reason
we chose them in the first place. The method proceeds by replacing the spatial derivatives with
finite differences, i.e.

∂f

∂x
→ f(x+δx)−f(x−δx)

2δx
and

∂2f

∂x2
→ f(x+δx)−2f(x)+f(x−δx)

δx2
. (4.1.1)

This replacement is easily accomplished in one dimension or on structured grids in any di-
mension. It becomes harder to define finite difference approximations on unstructured meshes
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[MDSB02], often finite element techniques are used for deriving appropriate schemes [Pol02].
An important trait of finite difference schemes is, that the terms on the right hand side of the
ODE are given for a point and its neighbours, i.e. are specified on the edges of the discretisation.
The resulting equations are structured very similar to these from particle systems.

Indeed finite difference techniques can be used to derive a particle system from a 2D con-
tinuum formulation employing a St.Venant-Kirchhoff material(Etzmuss et al. [EGS03]). This
plan of attack combines a sound derivation with an easy implementation. In the model, used in
several of our publications, the tension forces coincide with damped linear springs. Shear and
bend forces from the finite difference discretisation, magnitudes smaller than the stiff in-plane
springs, do not map to spring-type laws. We denote them by placeholders and refer to Etzmuss
[Etz02] for details. The final second order equation that has to be solved for the particle system
with positions x and velocities v reads

ρ
d2xi

dt2
=
∑

j|(i,j)∈E

[
kij

l2ij

(‖xi − xj‖ − lij)
xi−xj

‖xi−xj‖
+

dij

l2ij

(vi − vj)
]

+ Fshear/bend + Fenvironment,

where E is the set of all edges in the particle system, kij , and dij are the stiffness and damping
constants determining the spring properties, and lij the rest lengths between theN particles. The
system is nonlinear because of the appearance of the norm ‖xi − xj‖.

4.2 Time Integration

The blueprint given by the method-of-lines now leaves us with an ordinary differential equation
to solve. A first analysis of the structural problems identified the stiff in-plane forces as the
limiting factor for using large time steps, which are necessary for a fast solution. Therefore,
after the evaluation of standard codes, we used IMEX methods [EEH00, Etz02], that allowed to
split off the stiff part of the system – essentially the stiff tension springs – to be treated implicitly,
whereas the remaining part is treated explicitly. The combination of explicit and implicit methods
is not allowed to be arbitrary; we used the implicit and explicit midpoint and the Euler methods.

Hairer and Wanner [HW96] call such methods ‘partitioning methods’. Their criticism is, that
it is not always straightforward to identify stiff parts of the equation. Indeed, the first try with
IMEX methods used a complete linearisation, as also done by Baraff and Witkin [BW98], that
is the stiff part was assumed to be the linearised spring forces. This gives rise to a very efficient
implementation, because only a single linear system has to be solved per time step. Although
allowing larger time steps than explicit methods, the arising scheme is not unconditionally stable.
The achievable time step sizes, which depend on the material parameters1, are around 1ms.
Therefore, an update and re-evaluation of the ‘non-stiff’ part during a single time step [EEH00]
was used, which allows larger steps at the expense of solving a linear system per additional
update.

A much more elegant solution is not to adapt the underlying numerical integration method to
the partitioning but the linear algebra only [HE01, HES03]. This inevitably leads to a numerical
integration method combined with an inexact Newton method, using an approximate Jacobian
only. In some special cases, this is just the ‘updated IMEX’ idea, but now with a sound basis.
In addition, the simple fix-point iteration of the update IMEX [Etz02] is replaced by the superior
Newton method. This allows us to include techniques for convergence monitoring, adaptive
termination of the Newton iteration and the use of forcing terms for balancing inner and outer
iterations, as described in the previous chapter. In this case it is convenient to construct the solver

1As for example visible in the CFL condition [CFL28, DDCB01] (see also Sec. 3.2.2).
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Constraints

enforce

Nonlinear Solver

Residuum control

Linear Solver

Stepsize control

Integration Formula

Figure 4.1: Layered structure of the numerical solver core for clothing simulation.

as a layered architecture as depicted in figure 4.1. To be more concrete, the following techniques
were implemented in the clothing simulator core.
Integration methods The previously used Midpoint and Euler methods also have been imple-
mented in the new framework. In addition a multistep BDF(2) method including a variable
stepsize formulation has been added. For BDF(2), the complete integration algorithm has been
published in ‘The Visual Computer’ [HES03].
Nonlinear solver As a nonlinear solver, the inexact Newton method has been applied. The pre-
conditioned conjugate gradient method has been used as an inner, approximate solution method.
As an additional degree of freedom, the Jacobian of the system has only been approximated.
This significantly speeds up the computation. As an approximation the linearized tension part
has been used

Fl =
∑

j|(i,j)∈E

(
kij

l2ij

(xi − xj) +
dij

l2ij

(vi − vj)
)
,

which gives the following form for the approximated Jacobian

J :=
[

0 id
K D

]
,

where K and D possess a Laplacian-like structure, with local coefficients of diffusion. This
choice of the Jacobian has two major advantages over the full Jacobian. First, J is inexpensive to
compute and only changes when either the material constants or the step size changes. Second,
we reduce the entries in the Jacobian to approximately a third of the entries in the sparsity pattern
of the full Jacobian. Hence, an iteration of the linear solver only requires a third of the original
time. The same matrix has already been used in a different technique for clothing simulation by
Debunne [DDBC99]. In fact, this operator is the Jacobian associated to the Cauchy tensor of
linear small strain elasticity, such that the small strain problem with respect to the initial state is
solved in each Newton iteration.
Linear solver As already mentioned, the preconditioned cg method has been employed as a
linear system solver. Of course, the system was reduced by exploiting the second order struc-
ture, as described in section 3.4.1. Because of their eminent importance, several preconditioners
have been implemented, namely a diagonal preconditioner, a chol(0)-preconditioner and a ssor-
precondioner, the latter two being a novelty for visual simulations. Etzmuss [Etz02] only reports
on chol(0). In the next section, we will give a small example of their performance.
Collsions Collisions can be elegantly handled inside the cg method, a trick that was first em-
ployed by Baraff for the simulation of deformable objects. Later it was justified and analysed
by Ascher and Boxerman [AB03]. It operates by restricting the solution increments computed
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Figure 4.2: Eigenvalues of (4.3.1) for N = 20, k = 5000Nm/m2, l = 1m, ρ = 0.2kg/m2. The
left picture shows d = 50Ns/m, the right d = 2.5Ns/m.

by the cg-update to a space orthogonal to a set of given constraint directions per particle and
therefore prevents any movements in these directions. In section 5.4.2, when we describe a more
complete collision handling concept, we will give some more detail.

4.3 Experiments and Results

In addition to some results, this section will present some real world experiments that back up the
observations and conclusions made in the theory chapter. We start with an eigenvalue analysis of
the approximated Jacobian, which describes the damped 2D wave equation

ρ
d2xi

dt2
= k∇2x+ d∇2 dxi

dt
. (4.3.1)

The eigenvalues of the Laplacian ∇2 in the Poisson equation on a square of length l discre-
tised by finite differences at N × N points are bounded by −8N2/l2 [HW96]. Therefore for
k = 0 all eigenvalues of the complete second order system are aligned along the negative real
axis in the interval [−8dN2/(ρl2), 0]. For d = 0 only imaginary components in the interval
[−√8kN2/(ρl2)i,

√
8kN2/(ρl2)i] are present. For k > 0 and d > 0 the eigenvalues are dis-

tributed as shown in fig. 4.2. Analytical considerations allows the computation of the smallest
eigenvalue, responsible for the maximal stiffness

λmin = 4
dN2

ρl2

(
− 1 −

√
1 − kρl2

2d2N2

)
. (4.3.2)

For a square piece of linen with k = 5000Nm/m2, l = 1m, ρ = 0.2kg/m2, and d = 50Ns/m,
discretised by 20x20 points this gives λmin ≈ −8 · 105, the resulting spectrum is shown in 4.2.
Thus the time step for the explicit Euler and midpoint rules would be limited to 2.5µs. Equa-
tion (4.3.2) is a more accurate formulation of the quantity called‘numerical hardness’ (already
including the time step h)

kN2

ρl2
h2

defined and empirically confirmed by Volino and Magnenat-Thalmann [VMT01].
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(a) A tablecloth (b) A draping sheet hitting a ball.

(c) Dressing up a virtual mannequin. (d) A walking mannequin.

Figure 4.3: Examples of clothing simulation

#Newton #cg total execution time construction time

diag 210 774 1.27s 0.04s
chol(0) 183 319 1.10s 0.11s
ssor 182 330 1.09s 0.08s

Table 4.1: Performance of preconditioners, using h = 0.02 for 400 particles on SGI
R10k/250Mhz.

To compare the real world efficiency of the preconditioners we made a simple second experi-
ment, draping a piece of cloth with a stiffness k

ρl2 = 106 N
cm and damping d

ρl2 = 1600N·s
cm over

a square table with constant step size for 1s (fig. 4.3(a)). The preconditioner was recomputed
in every integration step to measure the costs of its construction. A recomputation is necessary
when A (in equation (3.4.1)) is changing, either because of a nonlinear stress or strain law or
because h changes.

4.1The results given in table 4.1 confirm the previous ones from the theory chapter. The ssor

4.2

and chol(0) methods perform almost equally well. The diagonal preconditioner performs clearly
worse. First, it requires nearly three cg iterations per Newton step, compared to less than two for
the competitors. Second, it also requires more Newton iterations. This is explained by the fact,
that the good convergence using ssor or chol(0) often leads to a more accurate solution than the
residual control requires. This again results in a faster convergence of Newton’s method. In the
execution time, this is only partly visible, thanks to the low costs of the diagonal preconditioner.
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Even the slow R10k-system this already was nearly real time, of course using simplified
collision detection for the table top and no self collision, which for complex scenes can be one
of the major bottlenecks. Figures 4.3 show some additional results produced with the simulator.

4.4 Discussion and Outlook

This chapter presented a numerical solver core for the simulation of textiles. Although the uni-
versal pattern will be the same for the following soft tissue simulator, the design will be consid-
erably refined. Up to now, several of the concepts presented in the previous chapters are missing:
the faster cg implementation, direct solvers, and stabilisation of the Newton method, as well as
many of the integration methods, e.g. any explicit method, for comparison and testing. The con-
crete implementation lacked easily refinability, abstract basis classes, and flexibly combinable
components.

Nevertheless, it provides the numerical kernel, upon which the Virtual-TryOn-Project has
been started upon [EKK+01] and furnished a solid basis for several publications and tutori-
als. Despite of the fact that the integrator is a vital part for simulation, other issues emerged
with comparable importance. This comprises the detection and handling of collisions – espe-
cially self-collisions and collisions with a dynamic environment, which have been extensively
improved [MKE03] and the physical model which was restricted to quadrilateral meshes. The
most promising candidates for a generalisation are finite volume methods [TBHF03] that pre-
serve the geometric simplicity of a particle system, or a finite element approach, that has recently
been realised [EKS03]. Upon this, more complex applications could be realised, for example a
virtual environment for garment assembly [KSFS03].
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Application 2: A Soft Object
Simulator

The main application of the presented solid dynamics toolbox is the simulation of volumetric soft
objects, which will be discussed in this chapter. The assembly of the framework was governed
by the goal to be able to map material properties, which is important for an application in virtual
medicine, hence the name VirTis (virtual tissue) has been chosen. Nevertheless, the framework
provides the flexibility to cover animation tasks also, where speed is at least as significant as
accuracy, by simply changing some components like the strain representation or the material
law. If speed matters, stable time integration allows the time step to be increased up to the visual
rate of 25Hz or beyond, admitting to animate several thousand elements in real time. Therefore
time integration, space discretisation, and material model have been arranged as separate blocks.
The architecture of the system will be described in the first section.

The next section will provide a set of examples to investigate the behaviour of the time inte-
gration methods. These and the following examples are designed to isolate specific components
of the system, to demonstrate their strength and to analyse their weaknesses.

Convergence and its rate, a central issue in numerical analysis, is also a point of interest in
visual simulation, perhaps of slightly less emphasis. It states, how much precision is gained
when the time step is decreased, influencing the decision how to balance the workload. Stability
is a very important issue, as an instable simulation is useless. Both can be studied by computing
work-precision diagrams, as we did for the toy example to illustrate the theory discussed in
section 3.2.2. Convergence for decreasing time steps is also important for large steps tuned for
speed, as it proves the implementation to be valid. Some small glitch or wrong design decision
in the implementation of a higher order method may reduce the order of convergence to one - or
worse give a constant error - and thus the user won’t notice any advantage over a simple Euler
method. Convergence is seldom considered in graphics literature, the only notable exception is
by Volino and Magnenat-Thalmann [VMT01]. The authors compare the number of cg-iterations
needed for static equilibrium and the draping speed of a piece of cloth as an indicator for an
accurate simulation. Using scripted benchmarks for three-dimensional objects, we are now able
to close this gap between the theoretical analysis and real word examples in a more ambitious
and satisfying way, than our toy example could provide. As a result, the magnitude of acceptable
time steps for a given accuracy can be estimated.

The following section discusses issues of the spatial semi-discretisation and the material
models. Some examples show the capabilities and the limit of the finite element method. As
analytical solutions for elastic equations can only be obtained for very special cases, e.g. for the
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ones used by Gladilin [Gla03], we compare the results to a commercial finite element package.
Furthermore, we repeat these examples using mass-spring-damper networks, which provide no
alternative as soon as material properties need to be mapped. Next, the co-rotated strain tensor
will considered and will prove to be an important tool to increase the number of elements while
still achieving interactive rates. These experiments follow Hauth and Straßer [HS04]. Besides in
this section and in the marked examples in section 5.4.4 we always use Green’s strain.

Also several of the examples illustrating visco-elasticity have been taken from the papers
published at SCA [HGS03a] and MICCAI [HGS03b]. For the majority, we show the actual
surface of the tetrahedral mesh. The illusion of richer surface detail can be added by interpolating
the displacement field defined on the finite element discretisation to a finer surface mesh, e.g. also
used by Debunne et al. [DDCB01] or Müller et al. [MMD+02]. We employ this technique when
animating a mesh that possesses texture coordinates, necessary for advanced vertex and pixel
shaders.

Collisions and user interaction are described in the succeeding section. We briefly describe
the available methods, focusing on constraint based techniques, which need assistance from the
integration method. Some effort will be necessary to combine them with the linear solvers that
we introduced. Haptic output is achieved by customising the general idea of a virtual proxy. The
last part of this section demonstrates the potential for animation, setting loose parameters for a
fast execution, but still staying inside the well-grounded toolbox.

All screen captures and measurements have been performed on a single processor Pentium
4/Willamette Processor with 2.0 GHz.1 We use double precision floating point numbers, the Mi-
crosoft Visual Studio 6 compiler and no special SSE enhancements besides the ones provided by
the vendor BLAS implementation from Intel. Switching to single precision floats and SSE/SSE2
could enhance performance considerably, especially for the finite element loops. Single precision
halves the memory requirements, thus doubles the available bandwidth, which is a bottleneck for
inexpensive loops, e.g. for vector additions. Likewise, single precision SSE instructions increase
peak performance from 1 to 4 GFLOPS. Unfortunately, SSE still requires a part of the low-level
routines to be manually coded using these extensions.

5.1 System Architecture

The system is organised into several libraries, each providing a specific feature set. The compo-
nent structure is given in figure 5.1. The bold-faced modules are developed at the WSI/GRIS. The
core-libraries for the application are odesolver, leana, and VirTis, exclusively developed for this
project. On top, two applications are provided, VirTisInteractive, which allows the interactive
manipulation of a deformable object, e.g. by a Phantom, and VirTisScript, which uses XML to
perform off-line computations. These three libraries, together with the two applications contain
about sixty thousand lines of C++-code. The GUI is programmed using QT, assisted by the use
of the DaVis system developed by S. Gumhold, which provides a reflection mechanism for easy
user interface generation.

Two dimensional triangle-meshes and graphical primitives like 3D points are provided by
the core-library, collision detection between triangle meshes is performed using the kdop- and
collision-library [Mez01, MKE03] developed in the Virtual TryOn project. The rendering is
performed using OpenGL. Because soft tissue is usually wet, specular highlights are important,
and should be computed per pixel [NHS02]. We therefore implemented hardware accelerated
bump mapping, using per pixel normals. The approach follows the work of Kilgard [Kil00] and

1Using the SPEC benchmark suite, which includes FEM and ODE solvers, the processor rates at approximately 750
SPECfp2000. On current leading-edge hardware, like a P4EE@3.4GHz (∼1550 SPECfp2000), an Opteron 148 (∼1650
SPECfp2000) or the Itanium2@1.5GHz (∼2100 SPECfp2000), the benchmarks would be faster accordingly.
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Figure 5.1: Overview over the VirTis system structure.

uses a normal map and a decal texture. For the metallic tools, we employ a reflection shader,
using a static environment map. An example using DirectX 8 compliant vertex and pixel shaders
is shown in figure 5.2.
leana: The leana-module (Lean Linear Algebra) provides a thin object-oriented wrapper around
the standard BLAS library, and adds missing functionality. This is for example the summation
of three vectors, which is considerably faster than using two of BLAS’s axpys2. In addition, it
provides compressed sparse matrix and block matrix classes, and implements the interface to
UMFPACK, SuperLU, and SuperLU_MT. These freely available third party libraries are used
for sparse Gaussian elimination. A legacy interface to MTL [SL99], which was previously used
for the cloth-application, is offered. leana was primarily designed to replace MTL.
odesolver: At the moment, the odesolver library provides more than a dozen methods for the
time integration of ordinary differential equations, some of them in different flavours. They are
summarised in table 5.1. We included some third party code, namely by Hairer and Wanner, to
establish an independent ‘ground truth’.

The basic design of the library is shown in figure 5.3. An abstract ‘ODESolver’ base class
allows an easy handling through a common interface. It uses an abstract ‘ODE’ base class,
which is implemented by the finite element or mass spring mesh. In addition, the ODESolver
class provides a callback after each time step, for collision detection, per-step output, coordinate
updates and so on. From this class, explicit and implicit methods are derived, not all of whom are
shown. For the third party code, thin wrapper classes are implemented to fit it into the framework.
All implicit methods share a polymorphic ‘LinearSolver’ member pointer that is specialised to
the different linear solver types, which are included in the leana module. At this point, which
is not shown, also the polymorphism to the different solvers for collision handling, which will
be discussed in section 5.4.2, takes place. The implicit Runge-Kutta methods and the multistep
methods share a common Newton solver that is stabilised by backtracking.

2axpy is the BLAS function call for αx + y
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Figure 5.2: A per-pixel bump mapped liver with a reflective tool. The local deformation is
revealed by the highlight.

Method Type Order Remark

Forward Euler Explicit (Runge-Kutta) 1
Explicit Midpoint Explicit Runge-Kutta 2
RK4 Explicit Runge-Kutta 4
3/8-rule Explicit Runge-Kutta 4 alternative to RK4
Dopri5 Explicit Runge-Kutta 5 variable timestep, by Hairer and Wanner
Dopri853 Explicit Runge-Kutta 8(5,3) variable order, variable time step, by Hairer and Wanner
ROCK2 Stabilised Runge-Kutta 2 by Abdulle, time stepping modified.
Stoermer-Verlet Explicit Runge-Kutta 2 order 2 only for purely oscillatory problems.
Backward Euler Implicit (Runge-Kutta) 1
Implicit midpoint Implicit Runge-Kutta 2
BDF(2) Multistep 2
BDF(3) Multistep 3
Rosenbrock2 W-method 2 Jacobian recomputed and factored in every step.
AMF-RK32 W-method 3 Jacobian recomputed and factored in every step.
Rosenbrock4 Rosenbrock 4 Flavours: Shamp, Grk4A, Grk4T, Velda, Veldb, Lstab.

Lstab is used for tests.

Table 5.1: Time integration methods provided by odesolver.

The design allows for an almost redundant free implementation of the methods. Especially
the abstraction of Newton’s method and the linear solver has proven its value. It allowed for
the implementation of BDF(3) and the Rosenbrock methods in only a couple of hours each.
The abstraction of the callback class permits the comfortable realisation of different kinds of
simulators: the multi-threaded VirTisInteractive and the command-line VirTisScript.
VirTis: The VirTis library provides the glue between the different components, which are all
almost independent of each other. It offers the functionality upon which higher-level applications
are built. The most important components are the tetrahedral meshes, which are specialised
to finite element meshes with different strain measures and constitutive laws, and mass-spring
meshes. They implement the interface of an ODE, and therefore ODESolver is able to handle
these active meshes. This is also the reason, why no separate FEM-module is constructed, as
these meshes fuse graphical and numerical concepts, and we do not want to have derivations
across several libraries.

For a versatile usage, the design is organised in a model-view-controller fashion. We gener-
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+solve( begin, end, y)

+setStepsize( h )

+step( t, h, y )

+setCallback( s )

#mODE

#mtimeStep

#mCallback

ODESolver

+setLinearSolver( l )

-mLinearSolver

ImplicitODESolver

#newtonSolve( )

#backtrack( )

ImplicitOneStageMethod

BDF2 BDF3 IEuler IMidpoint

Rosenbrock32

+f( t, y, fy )

+update_dfdy( t, y )

ODEBase

+prepareSolve( )

LinearSolver

SparseLUSolver

+setTolerance( )

PcgSolver

+setTolerance( )

EisSolver

+call( t, y )

CallBackBase

ExplicitODESolver

«uses»

«uses»

SuperLU,

SuperLU_MT
umfpack

+solve( b, x )

..
.

...

Figure 5.3: UML class diagram of the main components of the odesolver library. Only the most
important members are shown.

alise the controller concept to physical and geometrical controller objects, which can be applied
to a model given as an active mesh, similar for example to the ‘SpaceWarps’ of 3DStudioMAX.
As an example of this concept, a fragment of the class hierarchy is shown in figure 5.4. Forces,
derived from an abstract base class can be used to manipulate a TetraFEMMesh, and may be re-
stricted to specific regions of the mesh. The same restriction concept is used to pin points or faces
during a simulation. The Visualizer family of classes, attached to the mesh, is used to display
the resulting constraints and forces during runtime. An example is shown in figure 5.5, where
we used four NormalRestrictors to select the four opposite faces shown in pink, LiveRstTangent-
Load forces are used to produce the shear pattern. A BoundingBoxRestrictor in combination
with a SurfacePointImmobilizer fixes the lower edge, as shown by the red cubes displayed by the
ConstraintVisualizer. Another example of the output of stress and strain visualizers is presented
in figure 2.1, where we used ellipsoid glyphs to show stress and strain.

The most important communication procedures of VirTis are protected by mutexes, to allow
the use in a multi-threaded application. The computationally most intensive routines are easily
parallelised: the finite-element routines are expensive loops over all tetrahedra or edges, for
the sparse solvers already parallel implementations exist, and the collision detection also offers
possibilities for a parallel execution. The communication latency though must be short in order to
achieve interactivity or real-time: if for example 10ms time steps are taken, all latencies should
be considerably lower. Hence, the parallelisation on a closely coupled shared memory multi-
processor would be an interesting option.
VirTisInteractive: The VirTisInteractive application is multi-threaded, although on a coarse
level. It uses several parallel threads to carry out a simulation. The sequence diagram of a typical
execution is shown in figure 5.6. First, the main thread forks off a GUI, that is itself multi-
threaded through the use of QT, and a heartbeat thread, that ensures a smooth animated rendering
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Model View

Physical Controller Objects

#mcoords

#mtetra

TetrahedralMesh

#mdisplacement

TetraFEMMesh

+glRender( )=0()

RenderableObject

+glRender( )

ConstraintVisualizer

+glRender( )

StrainVisualizer

#mmesh

MeshAttributeVisualizer

+glRender( )

StressVisualizer

+glRender( )

ForceVisualizer

+isSelected( p, n ) = 0

SubspaceRestrictor

+isSelected( p, n )

-mboundingBox

BoundingBoxRestrictor

+isSelected( p, n )

-mplane

HalfSpaceRestrictor

+isSelected( p, n )

-mnormalDir

NormalRestrictor

+applyForce( t, mesh, f ) = 0()

ForceBase

+applyForce( t, mesh, f )

-mspaceRestrictor

LiveRstTangentLoad

+applyForce( t, mesh, f )

DeadSurfaceLoad

+BodyLoad( dir )

-#mdirection

BodyLoad

+GravityLoad:BodyLoad( (0,0,-1) )

GravityForce

-mspaceRestrictor

SurfacePointImmobilizer

-mspaceRestrictor

SurfaceFaceImmobilizer

1

Figure 5.4: Subset of the model-view-(physical) controller architecture of the VirTis library.

Figure 5.5: The sample scene was produced by attaching a shear force pattern to a
TetraFEMMesh and fixing an edge in space. A ConstraintVisualizer and a ForceVisualizer class
is used to produce the picture. Note that it is correct, that the forces have different magnitude:
they are produced by integrating the product of a force-density and the shape functions over the
surface. The forces shown in red are unconstrained; the blue one is nullified by the constraint.
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GLWidget

new GUIThread

Heartbeatnew

StartSimulation

*@25Hz: Render

Simulatornew

PhantomThreadnew

*: UpdateInterpolation*: UpdateCoordinates

SimulationFinished

delete

UserStart

Figure 5.6: UML Sequence diagram for the multi-threaded VirTisInteractive application.

by generating refreshes at an interactive rate. As soon as the user has configured the scene and
started the simulation, a thread for simulation and force feedback is created. The simulation
thread communicates updated coordinates to the main thread, which does the rendering, and to
the Phantom thread for extrapolation. Using a separate thread for the haptic rendering ensures the
tight 1 kHz refresh and is recommended and supported by the Sensable GHOST toolkit [Sen03].
The separate GUI and rendering threads guarantee responsiveness. Even if a simulation step
would take several hundred milliseconds, the model could for example be rotated smoothly by
the user. All screenshots and live-captured animations are taken from VirTisInteractive.

VirTisScript: The VirTisScript application serves a different purpose. It is intended to perform
unattended experiments, with an easy variation of parameters, e.g. to generate the work-precision
diagrams shown below. Using VirTisScript, about a thousand test-runs were performed with
only several dozen lines of configuration. VirTisScript is single threaded and used from the
command line. The scene and the components are configured by an XML-configuration file;
XML-processing nodes are used for scripting commands. The results are again written to XML-
files. The underlying paradigm is that of a state machine. XML nodes configure the state, and
as soon as a processing command is encountered, it is executed with the current state. Then
some variables may be changed, and the command may be repeated with the updated state. We
use expat [eXp03] as an XML parser, that implements the publicly developed SAX (Simple
API for XML), and is also used in the Mozilla project. In this case, SAX is superior to the
W3C DOM specification [W3C], because the XML document is parsed in a serial, event-based
manner, which nicely fits the scripting and state-machine model. An example configuration file
is shown in figure 5.7. It first loads a scene, configures the ‘gold standard’ Dopri853 solver
to compute a reference solution, loads the solution, and then performs some experiments with
different solvers.
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<VirTisScript>

<FEMesh>
<MeshFile type="string">
</MeshFile>

<lambda type="double"> </lambda>
<mu type="double"> </mu>
<dlambda type="double"> </dlambda>
<dmu type="double"> </dmu>

</FEMesh>

<Simulator>
<writeEndMesh type="string"> </writeEndMesh>
<statusOut type="string"> </statusOut>

</Simulator>
<Solver>
<integrator type="string"> </integrator>
<timestep type="vdouble"> </timestep>
<starttime type="double"> </starttime>
<endtime type="double"> </endtime>

</Solver>

<Simulator>
<writeEndMesh type="string"> </writeEndMesh>

<perEndFileTags type="string"> </perEndFileTags>

<statusOut type="string"> </statusOut>
</Simulator>
<Solver>
<integrator type="string"> </integrator>
<timestep type="vdouble"> </timestep>
<linearSolver type="string"> </linearSolver>

</Solver>

<Solver>
<integrator type="string"> </integrator>
</Solver>

<Solver>
<integrator type="string"> </integrator>
</Solver>

</VirTisScript>

<!-- Mesh -->

<!-- Compute reference solution -->

<!-- Do some testing with different integration methods -->

<!-- This decorates the results by _solvername_simtime_timestep -->

<!-- Writes status information like time
and error to a protocol file -->

../models/diss/bar30x_144.volmesh

300000
3000
3000
30

refsol/solution
refsolStatus.xml

Dopri853
1e-14
0
1

<?simulate ?>

testResults

nth

Protocol.xml

IEuler
1e-1 1e-2 1e-3 1e-4
SparseLU

<?loadReference refsol/solution.volmesh?>
<?simulate ?>

BDF3

<?simulate ?>

RK4

<?simulate ?>

Figure 5.7: A sample script for processing by VirTisScript. It loads a mesh, configures DO-
PRI853 to compute a reference solution, loads the solution, and then evaluates the performance
of some time integrators.
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5.2 Time Integration

This section will investigate the performance of the time integration schemes provided by ode-
solver, and compare the linear system solvers. As already laid out, theory allows a decision
upon a suitable set of methods, but in the end, the most efficient method can only be found by
experiment. We therefore constructed two benchmarks for evaluation and testing. Especially the
second one, carefully constructed around a potential source of instability, will be a hard test.

5.2.1 Example 1: A Bar under Gravity

Setup

The first example employs a bar of 0.3x0.1x0.1m3 edge length, with homogeneous Dirichlet
boundary conditions on the left end. The bar has a density of ρ = 1000kg/m3 and is subjected
to a gravity load. We take a St.Venant-Kirchhoff material with parameters λ = 0.3MPa and
µ = 3kPa. For damping we employ the visco-elastic correspondence principle, viz. we use the
same elastic operator now applied to the velocity (see for example [OH99]), with parameters
dλ = 3kPa · s and dµ = 0.03kPa · s. The bar is discretised into a mesh with 144 tetrahedra, and
63 nodes, leading to 378 coupled equations. Starting from a horizontal position, the bar drops
about 3.5cm in about 0.5s, and then swings back about 0.5cm. Some small vibrations die out
between t =1.0s and t = 2.0s.

5.1The diagrams are generated by using all methods with different time steps and measuring the
execution time. In addition, for BDF methods, the backward Euler, and the implicit midpoint
rule, we vary the exit conditions from the embedded Newton method and exchange the linear
system solver. To establish a measure for the error, a reference solution y∗ was computed using
Dopri853 with a very small error tolerance atol = rtol = 10−14 for the integrated stepsize
controller [HNW93]. We take the reference solution at t = 0.5s, which coincides roughly with
the point of maximum displacement. Taking a point later than 1-2s would distort the picture,
because the equation would be approaching its stable limit, as the flow of the differential equation
is contractive. Any stable integration will reach this limit eventually, no matter how accurate the
dynamics have been computed, which results in a completely different work-precision diagram
(see [HES03] for a discussion of the toy example of section 3.2.2). The error is then measured in
the RMS-norm

e = ‖y∗ − y‖ =

√√√√ 1

n

n∑
i=1

(y∗i − yi)2.

time step [s] run time [s] #Newton #Newton/step

0.100 0.156 84 14.00
0.050 0.218 125 10.42
0.020 0.218 175 6.73
0.010 0.234 226 4.43
0.005 0.218 198 1.96
0.002 0.468 396 1.58
0.001 0.765 648 1.29

Table 5.2: Details for example 1, 0.5s simulation time, using BDF(3).
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Figure 5.8: Work-precision diagram for the implicit methods with loose Newton tolerances ap-
plied to example 1.

Results and Discussion

The first two figures 5.8 and 5.9 show the various methods applied to the example. For the first
4 methods (implicit Euler and midpoint, BDF), Newton’s method is terminated, whenever the
correction step length is smaller than 10−5m/s, or the residual force is less than 10−5N. This
means the rooted sum of squares of all velocity corrections is less than 10−5m/s, which means
for an individual point less than 1µm/s in the average, and the same for the forces. The time
step varies between 0.1s and 10−6s. In addition to the time-error trade-off, the figures depict
the largest tested time step, for which the method was stable, given by the numerical values at
the specific data point. The gray rectangle denotes the region, where the method is able to give
real-time results. The dotted line finally marks a RMS-error of 1mm, which we consider as
tolerable.

All the implicit methods (figure 5.8) allow a stable real-time simulation of the bar. For the
largest time step, the Rosenbrock-type methods perform best, the fourth order method in the
lead. The methods of order two and three although are at the accuracy-limit we wish to achieve.
For large time steps, the schemes using an embedded Newton method show a peculiar behaviour.
Namely, for decreasing time steps they need the same or even less work while simultaneously
the error decreases. This can be explained by a decreasing number of Newton iterations per time
step, and is typical for these codes. In table 5.2 we give the relevant data for this phenomenon
using the BDF(3) method, for the other methods the picture is the same. The decreasing number
of iterations is due to the smaller time steps: the state vector does change less from one step to
the other and the iteration starts with a better initial guess, and therefore converges faster.

Looking at the behaviour for small time steps, all methods smoothly converge towards ma-
chine precision. As soon as the error drops below the femto-meter scale, the reference solution
start to loose its accuracy, which can be rated at about 10−14. At this level, also rounding errors
start to dominate the process, such that more time steps mean less accuracy. Furthermore, the
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Figure 5.9: Work-precision diagram for the explicit methods applied to example 1. The implicit
Euler method from above is shown for comparison.
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Figure 5.10: Work-precision diagram for some of the implicit methods with strict Newton toler-
ances applied to example 1.
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Figure 5.11: Work-precision diagram for some of the implicit methods. The dotted lines are for
a sparse direct solver, the solid ones for a SSOR-preconditioned conjugate gradient method.

picture reveals the order of the method as the slope of the curve in the double logarithmic plot.
This can be observed nicely for the Rosenbrock42, implicit midpoint and BDF(2) method. Note
that BDF(3) has not its full order, which is due to the lax Newton stopping criteria, as we will
show below.

None of the explicit methods (fig. 5.9) is suitable for real time for this example. They need
small time steps, usually below 1ms to be stable. The only exception is the stabilised ROCK
integrator. It is stable up to 10ms, although the convergence is irregular for large steps. A soon,
as the time step drops enough, it competes with the best methods. As there are no iterative
processes for the explicit methods, the convergence behaviour is generally smoother than for the
implicit methods. Note that the Dopri methods possess an embedded step size controller, the
numbers specified are error tolerances not step lengths for this integrator. The curves for Dopri
are nearly vertical: after reaching the stability limit, only small changes in step size at the most
critical points in time allows a very fast reduction of the error.

Figure 5.10 shows the convergence of implicit Euler, midpoint, and BDF, when the Newton
iteration is run until convergence. Now the BDF(3) method reaches its full order three, BDF(2)
and the implicit midpoint rule run nicely in parallel as before.

The last figure 5.11 compares the performance of the integrators, if the sparse direct solver
is replaced by a SSOR-preconditioned conjugate gradient method in Eisenstats implementation.
The dotted lines show the Gauss-type methods and are the same as in figure 5.8, the solid lines
denote the cg method. For this dimension, the direct solver is about two to three times faster
than the iterative solver. The experiment also shows that the use of an inner-outer iteration like
Newton/cg inside the numerical time integration does not disturb the convergence of the methods.
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Figure 5.12: Work-precision diagram for the implicit methods with loose Newton tolerances
applied to example 2.
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Figure 5.13: Work-precision diagram for the explicit methods applied to example 2. The implicit
Euler method from above is shown for comparison.
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Figure 5.14: Work-precision diagram for some of the implicit methods with strict Newton toler-
ances applied to example 2.
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Figure 5.15: Work-precision diagram for some of the implicit methods, applied to example 2. The
dotted lines are for a sparse direct solver, the solid ones for a SSOR-preconditioned conjugate
gradient method.
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5.2.2 Example 2: Pure Shear

Setup

The second example used to evaluate the time convergence is a so-called pure shear experiment,
illustrated in figure 5.5. We apply a set of tangential shear forces to two pairs of opposite faces
of a cubic object, such that the forces on one side cancel the ones on the other side. Note
that the forces are live, as their direction depends on the surface normal. The object is fixed
at the lower left edge. Ideally, the forces cancel during the whole shear movement, and the
object only deforms without any global rotation. This behaviour however critically depends on
the face normals of the mesh, which are computed from the current vertex positions. As the
forces are live, the normals directly influence the force computations. Due to the finite machine
precision, after a few time steps, these normals on a single face coincide only up to an angle
of say 10−12 degrees. If the time integration does not update the vertex positions accurately
enough, this deviation increases very fast and the object drifts into a skewed rotation. Therefore,
this benchmark is very sensitive to the accurate and uniform update of the vertex positions.
Small-scale numerical noise quickly builds up to a macroscopic error.

5.2

5.3

5.4

As material parameters we chose ρ = 103kg/m3, λ = 0.1MPa, µ = 1kPa, dλ = 0.02MPa · s,
µ = 0.1kPa · s. The cube of edge length 0.1m is discretised into 384 tetrahedra with 125 nodes.
We employ a ramp force to the four sides, rising from zero to a force density of 200N/m2 in
one second. This gives a final force of 2N to each of the four sides. The viscous parameters are
chosen in such a way, that the elastic response is nearly on the instant and the cube reaches its
final elongation with a displacement of about 1cm (10%) at about 1.2s, with rapidly dying out
oscillations. A good method manages to keep the cube at this position for about 20s, a bad one
doesn’t even reach one second. We again perform the same set of experiments with the same
evaluation as in the previous section, this time measuring the error at t = 1.0s.

Results and Discussion

Figure 5.12 shows the results of the implicit methods in this experiment. All methods allow a
real time simulation of the benchmark. The low order Rosenbrock methods, the most inaccurate
in the last example, have difficulties for the larger step sizes to meet the accuracy goal for a
stable simulation. The fourth order Rosenbrock method, the best performing method in the last
experiment, now is only average. The other methods pass the test, though convergence is slightly
more irregular, and again not all methods reach their full order for loose Newton tolerances. Note
that for the largest time step we take only 10 steps of a time varying, slightly ill conditioned,
geometrically non-linear problem. This again requires a high number of Newton iterations per
step, leading to the same phenomenon as discussed in the last section.

For the explicit methods shown in figure 5.13 this setting is even less forgiving than the
last. Whereas before they missed the real time capability by a factor of five to ten, this time
it is closer to a hundred and more. An interesting observation can be made with the two Euler
methods: As soon as the forward Euler method becomes stable, both methods show a very similar
performance. The major difference is that the curve of the implicit method continues to the left
to a larger error with lower cost. After the explicit methods reach their stability limit, they are
immediately very accurate due to the small time step.

In figure 5.14 we again run the Newton iteration until convergence. As before, the conver-
gence behaviour becomes more regular. The first two data points of each curve show, that the
largest time step is in fact too large: with a smaller one, all methods need considerably less work.

We also exchanged the solver for Eisenstat’s method; the results are shown in figure 5.15.
Due to the larger dimension, the gap between the direct (shown by the dotted lines) and the
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#tetrahedra absolute error [mm] relative error in %

6 0.588 4.26
48 0.780 5.65

384 0.407 2.95
3072 0.092 0.66

24576 0.021 0.15
1168 0.015 0.11

Table 5.3: Comparison of the error in the z-component of the left front corner of the cube in
figure 5.16.

iterative method becomes smaller, as already seen in the experiments of section 3.4.4. It also can
be seen, that the convergence is very similar and does not depend on the linear solver.

Summarising the results of this section, we state that most of the higher order implicit inte-
gration methods allow the simulation of soft objects with time steps of 25Hz and above, yielding
a precision that is sufficient for visual simulations.

5.3 Materials and Spatial Discretisation

The next set of experiments investigates the behaviour of the spatial discretisation techniques
we presented. The first one will show the convergence of finite elements. The second one
emphasises, that although finite elements are a valuable method, convergence can sometimes be
difficult to achieve, especially when important physical features can only be resolved by a fine
mesh. The experiments will be repeated using mass-spring-damper meshes and reveal that this
approach suffers from some difficulties, e.g. topology-dependant material attributes and a lack of
volume conservation. It will be shown, that the hierarchical basis is equivalent to the nodal one,
and we will demonstrate its benefits.

Some experiments with corotated strain will certify this linear, rotational-invariant strain
measure as useful for reducing computational costs, at the expense of some accuracy. Finally
some experiments with visco-elasticity will be given. Visco-elastic laws are needed on the one
hand to reproduce biological tissue properties realistically, and on the other hand can provide
effects for animation purposes that can otherwise only be produced manually.

5.3.1 Example 3: A Suspended Cube

The next example considers a cube, which is fixed at its upper face and subjected to gravity.
The material parameters are set to λ = µ = 1kPa, allowing some volume compression, and
dλ =dµ = 0.1kPa · s, quickly damping out most oscillations, as we are heading for the rest
state. For time integration we use BDF(3) with a small step size of h = 1ms. Figure 5.16 shows
the relaxation state of the several different tetrahedralisations of the cube after 10s of simulation.
The rest length visually appears the same. To quantify this, we compare the z-displacements of
the left front corner. The error is shown in table 5.3. For the first level of subdivision, the error
gets larger. This shows, that the coarsest mesh cannot really represent the deformation state, but
just has been lucky in this example. With an increasing number of tetrahedra, the error decreases,
as the underlying theory predicts. It also predicts that the achievable accuracy critically depends
on the quality of the mesh, which is indicated by the last line. Whereas the other meshes have
been generated by subdivison of the initial coarse mesh, this mesh with 1168 nodes has been
directly generated from a cube by an external triangulator, which takes quality measures, like
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6 tetrahedra 384 tetrahedra48 tetrahedra

1168 tetrahedra 24576 tetrahedra3072 tetrahedra

Figure 5.16: Rest state of a cube under the influence of gravity. The tetrahedralisation is varied
from coarse to fine, the meshes with 6, 48, 384, 3072 and 24576 tetrahedra are generated by
octasection. The remaining two meshes are unrelated. Besides the coarsest mesh, the relaxed
length of the meshes visually looks the same.

edge length grading and minimal angles into account. As a result, it shows the smallest error,
despite possessing only a relatively small number of elements.

5.3.2 Example 4: A Bar under Gravity Revisited

The following experiment again employs the cantilever from the first benchmark for time con-
vergence (sec. 5.2.1). Now, the mesh will be varied. This example has been inspired by a
similar setup used by Müller et. al. [MMD+02]. In their presentation however, Müller et al. did
not investigate the effect of changing the discretisation, and thus the authors did not discuss the
peculiarity that will be described next.

We use different related and unrelated tetrahedralisations. For time integration, we make use
of Dopri853 with a strict tolerance to ensure stability and exclude artifacts from the temporal
discretisation. The results are given by the blue bars in figure 5.17. This time the results on
refining the meshes are quite different, although a general trend is visible. The bar globally drops
farther with increasing resolution. To investigate the phenomenon, we did the same simulations
with comparable tetrahedralisations using ABAQUS, one of the leading commercial products for
finite element elasticity. The red bars show the results.

The coarse red bar, computed by ABAQUS using the same elastic model with linear tetra-
hedral elements, and the coarsest blue bar look similar, indeed the difference in displacement is
about 2mm in z-direction, taking the left upper front corner as a reference point, which is one
of the points of maximum elongation. Moreover, the fine, rightmost red bar looks similar to the
fine blue one; in this case, the difference is 5mm or about 3.7%. The displacement computed by

79



CHAPTER 5. SOFT OBJECT SIMULATION

Figure 5.17: A cantilever attached to the wall, computed with different meshes (144, 16, 85, 260,
680, 2080, 16640, 21784 tetrahedra, from left to right). The red bars are computed by ABAQUS,
the blue ones with VirTis. From coarse to fine, the global shape changes considerably, indicating
slow convergence. A third ABAQUS simulation (not shown) indicates that the fine red mesh is a
good approximation to the true state.

Figure 5.18: Detail comparison of the last two beams from figure 5.17. Visually, the results are
similar, indeed the difference in z-displacement is at most about 4%.
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ABAQUS is 133.86mm, VirTis yields 128.8mm with the coarser mesh3. The fine mesh computed
by ABAQUS possesses 21784 tetrahedra and has been generated using quadratic, mixed elements
with decoupled pressure to counteract any locking. Due to the quadratic formulation, the number
of degrees of freedom corresponds to a linearly simulated mesh with 174272 tetrahedra, although
this comparison neglects the higher approximation order of the quadratic displacement field.

Hence, the VirTis framework is able to reproduce the results of a commercial program within
a tolerance of a few percent, but in this special benchmark, the convergence is slow and needs
more than 10000 elements to yield an acceptable accuracy. However, this behaviour is also
present in ABAQUS; it is a problem of the method, not of the implementation. The reason
behind this can be found in the nature of the experiment and is illustrated in figures 5.19 and
5.20, which show the red meshes from above visualised in ABAQUS. The colour code denotes
the van-Mises stress, which is defined as the rooted sum of the squared differences of the three
eigen-stresses. This is a measure for the shape of the local stress tensor and is considered a
good indicator for the focus points of stress, where the material may fail4. The finely resolved
bar shows a very homogeneous stress on the right-hand side, which is nearly straight. In the
left-hand part, there is a sharp increase of van-Mises stress of about three orders of magnitude
towards two small geometric features next to the upper and lower fixed edge. This local features,
with an extent of less than 1cm carry the main load, their configuration ultimately determines the
global shape and the height displacement of the other end. A coarse mesh, as shown in figure
5.19 is simply not fine enough to represent these features, and consequently the global error is
large. With the coarse resolution, the stress contour is a smooth slope from left to right of only
one order of magnitude.

For comparison, we display the van-Mises stress contours of the previous example in figure
5.21. Although there is also a steep rise towards the fixed corners, the overall contour is more
regular, which can be represented on a coarser mesh with a reasonable accuracy. This explains
the smoother and quicker convergence in the previous example.

Discussion

As a conclusion, we therefore state, that finite elements give good results, as long as the features,
at least those who determine the global shape of the object, are reasonably resolved by the mesh.
In engineering, such cases are handled by a non-uniform meshing (here, concentrating elements
on the left), which is usually generated manually by the user, who has insight in the physical
nature of the problem. This is difficult for interactive visual simulations, as the loading conditions
cannot always be anticipated, which is why we chose to present this example.

5.3.3 Mass-Spring-Damper Meshes

After the investigation of the capabilities and limitations of the finite-element approach, we
model the same examples with a mass-spring-damper mesh. Mass-spring-damper meshes are
very common in graphics, hence their use is considered for comparison. The implementation
of a tetrahedral mass-spring-damper mesh, especially the fitting of spring and damper constants,
was designed carefully. The evaluation procedure for springs and damper forces was organised in
a way to provide a sensible amount of efficiency, such that a fair comparison is possible. Details
about our implementation can be found in Appendix B.

3A second ABAQUS simulation with a finer mesh (75931 quadratic tetrahedra) yields a displacement of 133.68mm, a
deviation of 0.2mm, which confirms that finally for the finer resolutions the simulation is convergent up to the millimetre
range and thus can be considered as a reference for VirTis. It took 17 Newton iterations to reach equilibrium, requiring a
total of 7h computation time (wall clock time).

4At least for the common engineering materials like metal and concrete.
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Figure 5.19: Van-Mises stress contours of example 4 in a coarse simulation, computed by
ABAQUS.

Figure 5.20: Van-Mises stress contours of example 4 in a fine simulation, computed by ABAQUS.

Figure 5.21: Van-Mises stress contours of example 3, computed by ABAQUS.
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6 tetrahedra 384 tetrahedra48 tetrahedra

1168 tetrahedra59 tetrahedra3072 tetrahedra

Figure 5.22: Example 3 with mass-spring meshes of different topologies. Each mesh yields some
more or less severe distortions.

Example 3 using Mass-Spring-Damper Meshes

We begin with the suspended cube. The spring constants were computed using the formula
5.5

5.6

5.7

5.8

(B.1.1) of van Gelder [VG98]. Figure 5.22 shows, that all meshes derived from the 6-tetrahedra
cube suffer from an incorrect distortion to the left, which apparently is an artefact of the mesh
topology. The last two subfigures employ directly generated tetrahedralisations, which give better
results. Nevertheless, the cube with 59 tetrahedra is also biased to the left and its left edge is
straight and not symmetric to the right. The cube with 1168 tetrahedra is slightly biased to the
right. Here the right edge does not possess the correct concave shape, disturbing the appearance
as it again is not symmetric.

Dynamics: It becomes worse, when we look at the dynamics of the meshes. For the
following experiments we used BDF(3) with a time step of 1ms. We investigated high and
medium settings for the viscous damping and compare them to the St.Venant-Kirchhoff mate-
rial with λ = 1kPa, and µ = 1kPa, dλ1 = 0.1kPa · s, dµ1 = 0.1kPa · s, and dλ2 = 5Pa · s,
dµ2 = 5Pa · s. The elastic parameters imply a Young modulus E = 2.5kPa, which is plugged
into van-Gelders formula. As it can be seen from the rest experiments in figure 5.22 this results
in approximately the same relaxed length. A Poisson ratio cannot be set. The damping constants
were tuned manually, such that in the first case, there are a few oscillations and the cube comes to
rest in the first 5 seconds. In the second case, we headed for visible oscillations up to 10 seconds.

We used three different strategies to distribute the damping parameters onto the mesh. The
first uses the same damping parameter for all spring-damper pairs, taken to be proportional to
Young’s modulus. The selection of the proportionality factor then allows us to choose the amount
of damping. For high damping we chose d1 = E/100, for the low d2 = E/1500. The second
strategy sets the damping proportional to the spring stiffness. We used d1 = k/3 and d2 = k/15.
As said, the constants have been adopted manually, taking the ratio from the first strategy did not
give acceptable results. Finally, the third strategy computes the damping parameters such that the
spring damper pair has a given mechanical quality factorQ. The rationality behind this approach
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Figure 5.23: Relaxed state of the beam of example 4 using mass-spring systems (green) and finite
elements (blue). The red bar again shows the ABAQUSsolution.

is, that for a given frequency all springs perform the same number of oscillations. The resulting
formula is discussed in Appendix B. We selected Q1 = 0.1 and Q2 = 0.25. Note that a higher
quality results in less damping.

Results and discussion: Neglecting the wrong rest state, all movies reveal wrong oscil-
lations in the x-y-plane, independent of the strategy used for selecting the parameters. The
St.Venant-Kirchhoff material does not show these oscillations. Their presence does not depend
on the tesselation used, as an additional experiment shows. They are an artefact of the mass-
spring-damper approach. Hence mass-spring-damper systems with a three dimensional topology
should only be used with critical damping to disguise the wrong dynamics.

Besides the overall performance tuning, we did not optimise any of the animations for speed.
In addition, the movies are created by grabbing the OpenGL frame-buffer and live encoding it
into an avi-stream on the same machine, which consumes additional resources. Hence, the films
do not allow an absolute judgement of the speed of the application. Nevertheless, comparing the
relative speed shows that the mass-spring-damper meshes are faster by a factor of two to three
than the finite-element simulation. Hence, the speed penalty of properly implemented finite
elements is not as large as commonly believed.

Example 4 using Mass-Spring-Damper Meshes

This last test with mass-spring networks repeats the cantilever benchmark that proved difficult
for the finite-element discretisation, using again different mesh resolutions. As above we set the
spring stiffness according to van-Gelder, with a Young modulus of E = 8.997kPa, computed
from the parameters of the St.Venant Material. The damping constants, irrelevant for the rest
state, are set for critical damping, such that no tetrahedral cell ‘inverts’ due to high inertia forces.
The results, compared to the ABAQUS and VirTis finite-element simulation, are displayed in
figure 5.23 and 5.24. For a coarse mesh, also the mass-spring mesh suffers from a reduced
displacement. In addition, in neither resolution, it does develop the geometric features at the sus-
pension caused by the concentrated stress and the high Poisson ratio. For the higher resolution,
the springs at the suspension are unable to handle the load during the simulation and the first
layer of nodes is squeezed into the suspended face. As a consequence, there are unappealing er-
rors at the surface and the global form looses its curved shape to be replaced by an approximately
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(a) Mass-Spring-Damper

(b) ABAQUS

(c) VirTis

Figure 5.24: Side-by-side comparison of a mass-spring and two finite element simulations, shown
from different views.

85



CHAPTER 5. SOFT OBJECT SIMULATION

Nodal Basis Hierarchical Basis

Figure 5.25: Side by side comparison of the same example using a nodal and a hierarchical
basis. Visually hardly any difference is found.

Figure 5.26: Convergence of the hierarchical basis against the solution. The grey solid cube
gives the finest level; the overlaid wire frame shows the nodal basis result for comparison. The
two coarse wire frames display the first and second level of the hierarchy.

straight line.

Discussion

The examples of this section showed, that mass-spring-damper networks are a useful method
for unspecific soft objects, as long as no mapping of physical parameters is required. Their
limitations are a strong influence of topology and the inability to model volume conservation.
Adding additional non-spring forces helps for the last point, but then the border to finite element
methods or the related mass-tensor models has already been crossed, and a pure approach often
makes more sense.

5.3.4 Hierarchical Bases

We will experiment with the implementation of the hierarchical basis next. As a first experiment,
we again consider the cube under a gravity load. The simulation is on the one hand performed
using a hierarchical basis and on the other hand with a standard nodal basis defined on the finest
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mesh. We use the 6-tetrahedra cube as a base and add 3 levels of subdivision, yielding 3072
tetrahedra on the finest level. The relaxed state of both meshes is shown in figure 5.25. Visually,
the states are barely distinguishable. As both bases span the same space, the simulations should
give exactly the same result, which then indicates the correctness of the implementation. In
practise, this is only partly true, because of the finite machine precision, and more important
because of the very different range of the numerical values. Whereas for the nodal basis, all
displacements are of the same magnitude, for the hierarchical basis, the scaling of the degrees of
freedom is quite different by construction, which results in a different roundoff behaviour. Using
once more the z-displacement of the lower left corner, the standard basis yields a displacement of
-13.894mm, whereas the hierarchical basis gives -13.958mm, a difference of 0.064mm or about
0.5%. The geometrical convergence of the hierarchy is depicted in figure 5.26 showing different
levels at once. The grey solid cube is the finest level; the red mesh gives the nodal simulation for
comparison. The coarser wireframe meshes show the first and second level of the hierarchy.

Example 5: An Embedded Sphere

More interesting of course is not a full hierarchical simulation, but to use only a part of the
hierarchy to add local detail at a region of interest, for example at the point of user-interaction.
Detail coefficients can be computed where needed and left away elsewhere. For refinement and
unrefinement they can be initialised to zero, representing the interpolation, and dropped when
small. On a deformed solid, they can be frozen and the deformation stays locally the same,
although at a coarser level the solid may continue to deform. To maintain integrity, it only has
to be assured that all parent vertices of active vertices are present in the basis. A simple set of
rules to assure consistent meshes has been presented by Krysl and Grinspun [KGS01, GKS02].
An advantage is that it suffices to use regular, red refinements [Bey97]. The resulting T-vertices
or hanging nodes pose no problem for the simulation. At the hanging nodes, the deformation can
be interpolated from the non-subdivided tetrahedra. On the surface, we always display the finest
level, avoiding discontinuities. The drawback of not closing the mesh using green refinements
at the T-vertices is, that the local deformations do not communicate a re-actio to the adjacent
coarser level nodes.

A tetrahedron will be allowed to refine, if all its neighbouring tetrahedra have at least the
same refinement level, i.e. none of its vertices is hanging. If any vertex is hanging, which pre-
vents a refinement, we refine all its adjacent tetrahedra first thus adding detail to this region.
Therefore during the next refinement step it could be refined if still necessary. A tetrahedron can
be unrefined, if none of its neighbouring tetrahedra possesses a higher refinement level.

To decide, where to refine, we use a criterion similar to Debunne et al. [DDCB01] and
decide upon the magnitude of the internal shear forces. A hysteresis, i.e. a higher refinement
than a coarsening threshold counteracts unwished refine/unrefine cycles.

The local refinement is demonstrated in the experiment illustrated in figure 5.27, which
5.9shows a cube of 25x25x5cm3 with an embedded region with different material properties. The

material inside the dark blue sphere has a nearly incompressible constant Q material, which will
be discussed in section 5.3.6. The outside has a lower µ of 0.4kPa and a Poisson ratio of 0.3.
In the wireframe animation, the tetrahedra of the inner sphere are blue. In the first still of the
animation you can see the resulting slight bulge under gravity. We use a two-level hierarchical
basis. The tetrahedra of the higher level are darker; the lower levels are activated when the
pressure of the tool gives rise to high forces. In the second part of the animation, it is shown,
how the material reacts differently. This is how a surgeon could feel an embedded tumour. The
video is live captured from the application, in the lower left corner the ratio between real-time
and simulation time is displayed, which is between 0.4 and 0.7.

87

Using a hierarchical basis to reveal inhomogeneity.



CHAPTER 5. SOFT OBJECT SIMULATION

Figure 5.27: A parallelepiped with an inhomogeneous material. The left picture shows the setup,
the right a simulation using a two-level basis. The bright elements are the second refinement
level, activated near the point of interaction, where the shear stress is large.

Discussion

The use of a hierarchical basis proved to be especially useful for adding local detail to a simula-
tion. The limits we encountered, and the reason for the shallow hierarchies we use, are not due to
the method itself, but are induced by the subdivison scheme, which generates a very fast growing
number of elements. The hierarchical bases themselves can be combined with other subdivision
methods, a possibility we did not find the time to evaluate exhaustively. In addition, the method
should be combined with multi-grid solvers or multi-level preconditioning, which we also did
not consider in this work. As soon as other subdivision methods are evaluated, the point of at-
tention will be shifted towards an efficient implementation of the level-of-detail data-structure,
which we consider as an interesting point of future work, especially in combination with cutting
into these meshes.

5.3.5 Corotated Strain

In this section, we will take a closer look at the corotated strain formulation proposed in sections
2.2 and 3.1.3.

Example 6: Forces on a Rotated and Sheared Cube

To compare the quality of the warping heuristics proposed by Müller et al. [MMD+02] (applied
5.10 per element) and the polar decomposition we perform the following experiment: Using Green’s

tensor for simulation we rotated a cube of 0.1m side length (µ = 1kPa, ν = 0.45) with ω =
0.63s−1 performing a single rotation in 10s. Then the cube is sheared with a constant force on
the top surface. After coming to rest, it is again rotated. The resulting local coordinate systems
are shown in figure 5.28(a) and animation 5.10. They pass the visual test of rotating globally
with the rigid rotations and locally with the shear deformation.

For the next video, the internal stress forces from Green’s (black), Cauchy’s (red), corota-
tion/polar (green) and warped tensors (orange/purple) were computed. The gold standard is

5.11 given by the quadratic Green strain, ideally all should match this model. During the first rotation
with no deformation the phantom forces from Cauchy’s tensor can be seen, which will be switch
off for the rest of the video. All other forces are zero. During the shear movement, the corotated
and warped forces split from the Green forces. This is due to the fact, that Green’s tensor is a
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(a) (b)

Figure 5.28: Local coordinate systems generated by the polar decomposition (a), and the result-
ing force (b) using different strain measures: Green’s tensor (black), corotation/polar (green)
and warped tensors (purple).
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(a) Pressure Forces.
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(b) Shear Forces.

Figure 5.29: Example 6: Relative error with respect to the forces generated by using Green’s
tensor.

second order model of strain, whereas the other ones are linear. The polar decomposition roughly
halves the error compared to warping. Of course, all are rotational invariant.

In figure 5.29 we plotted the relative error ‖f−fG‖/‖fG‖ of the different force contributions,
leaving away the first 10s. The picture confirms the above observations, and shows that the error
is especially large in the pressure component. Therefore, we introduced a hybrid tensor shown
in blue, combining Green’s tensor for pressure and the corotated tensor for shear forces. This is
very cheap in terms of force computations, but of course makes the system nonlinear again. For
this tensor, the Jacobian is updated correctly including the nonlinear terms, whenever the rotation
frame is updated.

Example 7: Shearing of a Long Bar

This example employs a bar similar to figure 2.5, of size 0.1x0.1x0.6m3, with λ = 100kPa, µ =
10kPa, dλ = 10Pa · s, dµ = 1Pa · s and a time step of 20ms with a Gauss solver. The bar is
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(b) Shearing while rotating.

Figure 5.30: Displacement error for Example 7.

CPU time [s] Newton evals LU dec.(Jacobi)

time step 20ms, update rate 20ms
Green 16.5 6490 21276 105
Warped 27.4 - 2000 2000
Polar 31.4 - 2000 2000
Hybrid 33.8 3092 3092 2000

time step 20ms, update rate 200ms
Green 16.5 6490 21276 105
Warped 5.5 - 2000 201
Polar 5.9 - 2000 201
Hybrid 22.5 9981 10538 422

time step 60ms, update rate 300ms, rotating
Green 13.6 4489 16688 202
Warped 2.7 - 667 135
Polar 3.0 - 667 135
Hybrid 22.4 7142 21576 411

Table 5.4: Runtime Details for Example 7.

discretised in 337 tetrahedra. A shear force rising linearly from 0 to 200N/m2, is applied to the
top surface. As an error measure, we chose the relative error in the z-component of the upper
right front corner (compared to Green). The results (fig. 5.30(a)) are similar to those from above,
identifying the hybrid formulation as best, warping as worst. This does not change, when the
rotated frame is updated less than once per time step, e.g. only every 200ms. This causes Gauss-
or preconditioner updates to be less frequent and makes the cost for computing the reference
frame negligible (table 5.4).

To bring the method to its limit, we again performed this test, but imposing a rotation, choos-
ing a time step of 60ms and updating the frame only every 300ms (about every 10 degrees of
rotation, fig. 5.30(b)). This brings the methods very close together, showing again a favour for
the tensors based on the polar decomposition. Now after reaching the rest position the bar still
vibrates, resulting in an oscillating error. The hybrid tensor suffers from the bad frame, combined
with an inaccurate Jacobian, due to the nonlinear pressure forces. Delaying updates more than
0.5s (or about 20 degree) makes the linearised methods unstable, whereas using Green’s tensor
the Newton iterations increase but the system remains stable. Without the rotation, the corota-
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Figure 5.31: Example 8. Bar with 70/4480 Tetrahedra subjected to a shear deformation.

tional formulations stay stable for larger update rates and time steps, and with Green’s tensor one
can even use steps of 1s and above.

Example 8: Hierarchical Simulation

The next example addresses the use of corotational tensors in a hierarchical setting. For the
coarsest level, Green’s tensor is used, allowing a very stable simulation. From the configuration
of the coarse level, the rotation state is computed by the polar decomposition of the deformation
gradient, then propagated to the finer levels. If necessary, this could be iterated, recomputing
rotations at several levels. Here we just do it for the top level. Thus at the coarse level, where
linear algebra is cheap, we perform a full nonlinear simulation, at the finer levels the system is
linearised and now solved by cg, adding detail for reduced computational costs. Nevertheless the
computational costs of the finer levels dominate.

The bar (0.1x0.1x0.3m3,µ = 1kPa, ν = 0.3) shown in figure 5.31 is discretised by 70 tetra-
hedra, two octasection steps give 4480, i.e. 82 × 70, fine elements. As before we add a rising
top shear force of 80N/m2. We rotate the bar as shown in the video during the 10s simulation,
with a time step of 30ms and an update rate of 150ms for the coordinate systems. The specular
highlights in the video and the silhouette in fig. 5.31 show the smooth deformation gained by

5.12the fine discretisation. The coarse surface is given by the red wireframe. The computation time
of 11.2s is almost real-time. It takes 6693 preconditioned cg steps, i.e. about 20 iterations per
time steps to smooth out the error at the finer levels. For a comparison a complete nonlinear
simulation was computed in 71.7s, the relative deformation error at the corner was 16%. This is
larger than in the previous examples, because we are using the same frame for 64 tetrahedra.

Example 9: Deforming a Liver

The last experiment shows an application in virtual medicine. It employs a liver model (about
0.2x0.3x0.2cm3, µ = 1kPa, ν = 0.495, roughly as measured in [GHEB01]), shown in figure
5.32 at the left. The opaque parts possess homogeneous Dirichlet boundary condition, i.e. are
fixed. The initial tetrahedralization has 327 elements; we add a single level with 2616 tetrahedra.
The liver is pushed in the region marked by the green arrows. Again, thanks to the fine level the

5.13surface stays very smooth, compared to the coarse initial disrcetization, which can be seen at the
fixed parts and the silhouette.

For a simulation of 40s the application spent 25.8s, the time step was 30ms using BDF(3).
The video discloses one small drawback of using a large number of coarse tetrahedra. About
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Figure 5.32: Example 9: Liver with 327/2616 tetrahedra on two hierarchy levels. We use a
predefined ramp force, pushing in the region marked by the green arrows.

every second, the update of the rotation frames, which recomputes the linearised corotated Jaco-
bian and the update of the coarse nonlinear Jacobian, including its LU-decomposition, coincide
with each other, giving an unpleasant speed shift. This could be cured by just delaying one of the
tasks, or by using a coarser top-level mesh, such that the decomposition is faster.

Discussion

The examples show, that the corotational approximation induces an error of about 5-20%, but
can give a speedup of about a factor of seven or more, when applied in the hierarchical case. It is
the most central tool for trading accuracy for speed. The use of the polar decomposition instead
of the warping heuristics helps to decrease the introduced error. Using a hybrid tensor can further
reduce the error, but computation times rise due to the reintroduced nonlinearity. Hence, we did
not carry this concept further. The stability is enhanced when comparing to the admissible time
steps published by Müller et al. [MMD+02], which were all around 10ms or below. We use step
sizes of 20-60ms in the above examples and are stable for 100ms and beyond. Especially the
hierarchical approach benefits from its unconditionally stable top level.

5.3.6 Viscoelastic Materials

This last section will perform a set of experiments to compare true visco-elasticity to a simple
elastic model with damping added. By the first, we mean general (linear) visco-elasticity, mod-
elled as a Prony series (section 2.6), here used for a constant Q material. By the second, further
simply denoted as Hooke model, we mean a St.Venant-Kirchhoff material, with damping added
by the use of the visco-elastic correspondence principle. Usually not even this is found in most
systems, where the damping matrices are often lumped, sometimes called Rayleigh damping5. If
the damping matrices are lumped, also rigid body modes will be damped, as the damping now
simply is proportional to the nodal velocity, clearly an unwanted effect.

Example 10: Comparing CQ and Hooke

Our first example shows the advantages of using the constant Q material. It applies a shear force
with a force density of 10 N/m2 to the top surface of a cube with 0.1m edge length. The bottom
of the cube is fixed to the ground. We apply the force for 4s and let the cube swing into its rest
position afterwards (fig. 5.34). The red cube has a constant Q material, fitted with 3 memory

5Some authors also refer to the un-lumped model as Rayleigh damping
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Figure 5.33: Experiment 10: 439 Tetrahedra with different material laws.
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Figure 5.34: Example 10: Displacement of the upper right corner.

parameters, the blue one has a Hooke material. The constant Q material has the parameters
measured for liver tissue Q = 4.8, and µ = 2.5kPa at 2Hz. As the liver is filled with blood, we
choose a Poisson ratio of 0.495. In the nearly incompressible case, it makes no sense to use the
constant Q model for the longitudinal waves, so we apply the constant Q material law only to the
shear εdev part of Green’s strain tensor ε. As a viscous damping constant for the compression
part, we generally use λ/100.

5.14The constants λ and µ of the first Hooke material (blue cube) are fitted, such that it possesses
a Q of 4.8 at the resonance frequency of the cube, i.e. the intersection of the light green curve in
figure 2.13 is located at the resonance frequency. This gives a similar initial slope. The arising
displacements of the upper right front corner are plotted in figure 5.34. Note that it oscillates
longer, and does not show the correct creep behaviour.

The orange cube was an attempt to show creep between t = 2 and t = 4. This results in
an overdamped system. So we again note that it is not possible to fit a Hooke material law to
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ROCK BDF(3)

Material time [s] av. step time[s] #Newton Jacobi/LU
small cube, 60s simulation time

Hooke (matched) 57.9 ≈ 1.5ms 5.95 1833 4
constant Q 75.6 ≈ 1.5ms 7.27 1896 5

large cube, 60s simulation time
Hooke (same) 42.7 ≈ 4ms 6.83 2197 4
Hooke (newly matched) 38.1 ≈ 5ms - - -
constant Q 16.0 ≈ 7ms 4.14 1506 4

(a) 60s simulation with different solvers and material laws.

solver time av. step stages

ROCK2 16.0s ≈ 7ms ≈4
DOPRI853 100.5s ≈ 9ms ≈8
DOPRI5 215.3 ≈ 3ms 5
Midpoint 56.9 1.5ms 2

(b) 60s simulation with different explicit solvers
and a constantQ material.

Table 5.5: Runtimes for example 10, using different material laws and solvers.

the model. This results either in a crude creep approximation or in a strongly oscillating system,
showing no creep at all.

In the second part, we rescaled the red and blue cubes with a factor of two, keeping all
5.15 material constants. Now the blue cube gives a different behaviour and oscillates much longer.

This is due to its new resonance frequency. The new green cube is again a Hooke material with
a model fitted to the new resonance frequency. Thus using Hooke’s law, one has to tune the
parameters to the given geometry.

For the videos, we choose a stress impulse of 30s to show creep more clearly. The experiment
was originally designed for the publication at SCA [HGS03a], which promoted the use of ROCK.
At that time, the implementation of the implicit methods had not been finished. To show the
efficiency of ROCK, we compared this simulation using other explicit solvers. All run times are
given in table 5.5. As predicted, the performance impact of the Prony model is about 15-20% of
the total costs, i.e. about 5% per memory parameter.

After completing the implicit solver module, we re-ran the example using BDF(3) with a
time step of 40ms, also shown in table 5.5. For the small cube, we have approximately the
same increase of runtime by about 20% as for the explicit method when switching from Hooke
to constant Q. These are the expenses for updating the memory parameters and computing the
more complex stress-strain relationship. Note that the number of Newton iterations also grows
by about 3%, but this is too small to account for this increase. Conversely, for the large cube the
constant Q material permits a faster simulation, as already observed with the explicit methods.
This is due to the fact, that the constant Q model does not give more oscillations for the larger
model, as opposed to Hooke. Therefore the explicit integrators are able to take larger steps, the
implicit ones need less nonlinear solves, as they are easily able to follow the slow creep phase.
The overall simulation time for BDF(3) is so low due to this creep phase: during the 60s it needs
only very few Jacobian updates and decompositions, which gives a clear edge over the explicit
methods.
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Figure 5.35: Three spheres with different materials. The green one is hard, the blue one soft. The
orange one has a complex visco-elastic material, being hard for high and soft for low frequencies.

Example 11: Three Spheres

The effects of the constant Q model are subtle. To demonstrate the benefit of being able to shape a
frequency dependent visco-elastic law at will, we set up another experiment, using three spheres
with different materials as show in figure 5.35 and let them bounce on a virtual ground. We
choose ν = 0.25 to allow some material compression and employed the blue sphere with a soft
Hooke material with µ = 2kPa, the green one with a hard Hooke material using µ = 300kPa.
The orange one is equipped with a linear visco-elastic material law with the relaxation function

Ĝ(t) = 2 · 103Pa + 5 · 104 e−t/1.0s Pa + 3 · 105 e−t/6.0s Pa.

As a result, it behaves like the first material for high frequencies, and as the second one in the
transient limit.

When we let the spheres drop, the blue one gets smashed due to its softness, while the
5.16other two rebound, as the impact consists of high frequency components. At soon as the green

sphere comes to rest on the ground after some bounces, the orange sphere stops behaving alike
and starts to break down. This is due to the now absent high frequency components, hence the
material is soft. Waiting long enough, it will take the rest shape of the blue one. Note that due to
the imperfect, discrete model and the collision response, this takes a very long time: each time
a node hits the ground and is suddenly stopped, a new shock wave travels through the mesh and
makes the material stiff again.

Example 12: Deforming a Liver

The last experiment again employs the liver model (about 20x30x20 cm), shown in figure 5.32
5.17from example 9, this time equipped with Green’s strain. As before the opaque parts possess

homogeneous Dirichlet boundary condition, i.e. are fixed.
The first material is again the constant Q material from above. The second is the Hooke

5.18

material using the constants of the large, green cube. The video shows the deformation by a
predefined force and subsequent relaxation allowing a direct comparison. The counter in this
video shows the simulation time. The Hooke material shows very different dynamics. Because
not tool is present, the framerate was faster than real-time.

The second video shows the same setting, now with a user controlled tool. The counter now
shows again the ratio between simulation and real time. We again employed ROCK for time
integration. Due to collision detection, the framerates drop to 60-75% real-time. Later we will
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Scripted deformation of a liver model with 327 tetrahedra, using a constant Q and a Hooke material. For time integration, ROCK has been employed.

Interactive deformation of a liver model with 327 tetrahedra, using a constant Q and a Hooke material. For time integration, ROCK has been employed.
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show an example of a liver with the same material model, then with about twice the number of
tetrahedra simulated in real-time using BDF(3).

Discussion

This section presented one of the most important pieces for a soft tissue core. It is the first
implementation of a real dynamic material in this field, incorporating a defined frequency be-
haviour that is capable of modelling organic materials more accurately. The additional costs for
the higher fidelity are about 15%-25% (compared to the usual model), depending on the number
of memory parameters necessary. The fidelity of the simulation builds on the reproduction of
measured data by the fitting process described in section 2.7. For animation purposes, we do not
deny, that a Hooke model, manually tuned by an artist to a special geometry, varying the stiffness
and damping constants over time may also be able to mimic some of the effects. However, this
does not hold in general, requires tedious manual tuning of a possibly large set of parameters for
each simulation, and lacks physical reasoning. The advantage of the viscoelastic fitting is, that it
can be adopted to a wide class of physical material models as described in section 2.6, not only
to constant Q. In fact, linear visco-elastic materials are the broadest class offered by the common
off-line finite element packages. For biological soft tissue, we prefer the restriction to constant
Q, because measurements for two important classes of materials have shown, that the usage of a
one-parameter viscoelastic description already gives good results.

5.4 Interaction

A simulator cannot be called interactive, until there is a way of manipulating the scene during
simulation. Although we already showed examples including interactively controlled tools, up to
now we did not describe the techniques used. Interaction is usually achieved by manipulating the
boundary conditions of the deformable object, in order to prevent and to resolve interpenetration
of the object with the static environment or user controlled tools. We therefore describe first how
we handle static Dirichlet boundary conditions. Then we describe the basics of general collision
handling. A central component of our collision handling toolbox is a constraint mechanism.
Constraints need to be enforced by the numerical solver, usually within the linear solver. For
this, a modification of the method of conjugate gradients has been proposed by Baraff, which we
extend to Eisenstat’s implementation. In addition, we propose a new formulation, which allows
the combination of constraints and direct solvers for sparse systems.

The last part of this section describes the integration of the PHANToM, for coordinate input
and haptic output. The standard method to accomplish this is to employ boundary conditions
of traction, in this case referred to as virtual coupling, which we finally describe for the sake of
completeness.

5.4.1 Static Displacement Constraints

One of the geometric restrictions that can be posed to a deformable object is, that a part of
its boundary remains fixed in space, viz. homogeneous Dirichlet boundary conditions to the
displacement field. The proper way to achieve this is to restrict the space from which the solution
is taken, i.e. to admit only basis functions, which are zero on the restricted part of the boundary.
This means pruning the basis for each new combination of boundary conditions, which deems
inflexible for visual simulations. A common way to achieve the same effect is to take care, that
the coefficient of the basis function is zero, which for finite elements means, that the displacement
of the associated node is zero. For elasto-dynamics, this is fulfilled, if the initial displacement is
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zero, and all forces acting on the node vanish during the simulation. This concept immediately
generalises to constraining only some coordinates of a node, e.g. for dragging something along
rails, or posing a constraint along a general polygon in space. This boils down to restricting forces
to a subspace. This task is usually solved by an orthogonal projection Ps onto the unconstrained
space.

Hence the basic ODE (3.2.1) given by Newton’s law of motion is changed to

Mµ′′ = Psf,

with a static projection matrix Ps. Using an implicit time integration scheme, possibly in com-
bination with Newton’s method and a reduction, now leads to a linear system of the form (see
equation (3.4.2))

[M − PsA]x = b, (5.4.1)

where we abbreviated the linear combination of the Jacobian blocks by A. Unfortunately, this
system ceases to be symmetric, a fact that can easily be seen when considering a Ps that fixes
a single node, which cancels a row of A (the actio on the node) but not the associated column
(the re-actio). The system still is invertible due to the mass matrix, but formally, the conjugate-
gradient method cannot be applied legally and will at least have difficulties to converge. At this
point, one could switch to the expensive GMRES, QMR or any other Lanczos method [Gre97,
Saa96]. We choose to transform the system back to symmetry, multiplying by a decomposition
of the identity matrix I from the right

[M − PsA(Ps + I − Ps)]x = [M − PsAPs]x+ PsA(I − Ps)x = b.

Note that I − Ps is the orthogonal projection to Ps, i.e. extracts just the components that remain
fixed. For these components we know x, such that we simply move PsA(I − Ps)x to the right
hand side and solve the now again symmetric system

[M − PsAPs]x = b− PsA(I − Ps)x.

Although simple and elegant, we have not been able to find this published anywhere. Fixing a
node, this correction matrix is just the column ofA associated with that node (minus the diagonal
block, cancelled by the left-multiplication with Ps), such that we are able to build PsA(I − Ps)
and PsAPs by deciding during the assembly of A if a node is fixed and writing the block to the
respective matrix. This technique is applicable in combination with any linear solver, even multi-
grid, is completely transparent, and only needs a way to multiply with PsA(I −Ps). It therefore
does not disturb convergence. Its drawback is, thatA is dissected into parts, which requires some
memory shuffling, and - more severe for direct solvers - renders a factorisation with a different
set of constraints useless. Thus, we primarily promote this trick for static boundary conditions.

5.4.2 Collisions

The handling of collisions is perhaps the most important point that distinguishes visual simula-
tions from classical engineering approaches. Contact modelling is among the hardest problems in
structural mechanics. Determining the exact point in time, when interpenetration occurs during a
dynamic simulation, can consume considerably more time than computing a normal integration
step. Therefore, simulation in graphics uses crude approximations, and detects collisions when
they occur and tries to handle them heuristically, applying some corrections during the next time
step.

Collision detection, possessing a quadratic run-time in the worst case, usually is sped up
by using bounding volume hierarchies. For the proximity detection between general triangle
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meshes, we employ the k-dop hierarchy as described by Mezger [Mez01], for simpler objects
like planes, we use directly available distance measures, and for point-mesh collisions, e.g. when
using the Phantom, we omit the bounding volumes altogether and only compute point-triangle
distances. As an output, pairs of close primitives are handed to a collision response algorithm.

Much has been written about collision handling, we have nothing to add to the basic tech-
niques of this subject per se. However, as we propose to use several new numerical techniques,
some effort is needed in order to combine them with common collision handling schemes. These
fundamental schemes, which will briefly be described, have already been discussed by Platt and
Barr [PB88], since then combinations and improvements of these key techniques allow to re-
solve even difficult problems in an acceptable way, recently demonstrated by Bridson [BFA02],
to whom we refer for an overview over the different contributions.

Essentially, there are three sets of state variables that can be manipulated to resolve a colli-
sion: the displacement or configuration state, the velocity field and finally the force or energy
functional. The most drastic correction is done when directly manipulating the displacement
field, as this all of a sudden may distort some of the elements, artificially adding strain energy to
the system. The same, with a lesser extent, holds for changing the velocities, usually made by ap-
plying impulse corrections. The most graceful way is to manipulate the force field. However, this
can either not resolve very fast collisions or requires excessively large forces, that again threaten
the physical stability of the system. So usually, a hybrid strategy is employed, that is as smooth
as possible but proceeds by all means necessary to resolve the collisions. The construction of a
method normally is governed by the goal to conserve as many physical quantities as possible, like
energy, impulse, and moment, in order to guarantee the physical stability of the system, and to do
this in a way that does not jeopardise the numerical stability of the actual implementation. When
a node encounters multiple simultaneous collisions, usually the heuristics are at their limits, and
one either proceeds with fingers crossed, or monitors the conservation quantities and employs
corrections to assure the physical stability.

Once a collision has occurred, the objects must be stopped to interpenetrate each other further,
that is the simulation poses constraints on the movements of the nodes. When the collision
is detected exactly at the moment it happens, constraints suffice to handle the collision, as no
interpenetration takes place. Of course this requires some event location mechanism and rollback
in time, but is the most correct way to handle the problem (cf. [HNW93, pp.195-200]). The
sheer amount of collisions prohibits this approach for visual simulation. Therefore, the collision
is corrected in one of the ways described above, then constraints are applied6. This can be done
using the penalty method, (augmented) Lagrangian multipliers, or reaction constraints [PB88].

The penalty method proceeds by adding corrective force or energy terms to the equation, that
pull the nodes towards the constraint manyfold like a strong rubber band. Its drawback is, that it
does not enforce constraints exactly, besides the selection of the penalty function or constant is a
free parameter. A function that grows too strong adds unnecessary stiffness and may overshoot,
a function that grows too weak will not enforce the constraint accurately enough.

Lagrangian multipliers, the dominant technique used in numerical analysis and engineering
[ZT00], couple the constraint equations through a set of additional variables, the multipliers, and
add additional equations for this variables resulting from the constraint conditions. Besides the
additional computational burden caused by these equations, this turns the minimisation problem
to a saddle point problem, resulting in the system matrix loosing positive definiteness, which
again is a major obstacle for using a conjugate gradient method as a linear solver. The advantage
of Lagrangian multipliers is that the constraints will be enforced exactly, and the initial system

6Actually a constraint restricts the degrees of freedom of the system, which means that the number of coordinates
is reduced. As above for the Dirichlet boundary conditions, an obvious method would be to reduce the number of
coordinates assigned to a constrained node dynamically, but this would complicate the system dramatically.
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Figure 5.36: Constraint directions are enforced inside the linear solver. As a result, the constraint
is also fulfilled by the Newton method and the integration formula.

state does not need to fulfil the constraints, viz. the technique is also able to resolve interpenetra-
tions.

The most common technique in graphics to enforce constraints are reaction constraints, or
some similar variant (e.g. by Baraff [BW98]) of the projection method. The idea is simple,
and more or less the same as described above for the static boundary conditions. If forces and
velocities are restricted to a space orthogonal to the constraints, the node will not move into
the forbidden directions during a time step. Of course, this requires some procedure for an
initial resolution of an interpenetration in the direction orthogonal to the constraint. Reaction
constraints in their pure form use critically damped spring forces, but also point relocation or
Baraff’s position alteration (working with velocities) is feasible. The advantage of this projection
technique is, that it solves for unconstrained dynamics as before, whereas the constraint parts are
under user control. Note that the difference to the static constraints is, that every constraint
may change at every time step, such that the above-described method has an unacceptable high
overhead. The system to be solved is the same

[M − PdA]x = b, (5.4.2)

only Pd now changes frequently.

Modified cg

A central point of the contribution of Baraff and Witkin [BW98] was the construction of a modi-
fied conjugate gradient method, recently analysed by Ascher and Boxerman [AB03], that allows
an efficient treatment of dynamically changing orthogonal projection matrices Pd.

First we note that the constrained problem (5.4.2) is equivalent to the equations

Pd[M −A]x = Pdb

(I − Pd)x = (I − Pd)b,

where the first equation is the one that needs to be solved, unfortunately now with a singular
matrix Pd[M −A]. The elements of x in the null-space of this matrix are defined by the second
equation. Using that the cg-method is an iterative method, adding scalar multiples of a search
direction to an initial guess, the modified cg method simply filters the search direction by Pd. As
a result, no corrections violating the constraints are added, hence if the initial guess fulfils the
constraint, the final solution also does. In addition, the residual update is also projected, such
that the filtering does not disturb convergence. Indeed, Ascher proved, that the iterates generated
by this approach coincide with those of the system projected to the unconstrained subspace.
The overhead compared to the normal cg method are two applications of the filter per iteration,
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which typically for each constraint consists of a multiplication of a three-by-three matrix with
the corresponding vector blocks and therefore is considerably cheap.

Embedding this method into an implicit numerical time integration method results in an over-
all behaviour as illustrated in figure 5.36. As the result of the linear solver satisfying the con-
straint, the Newton update direction also does. Hence, the step computed by the integration
formula also meets the constraint. Baraff only used a semi-implicit or linearised Euler method,
but adding an outer Newton iteration does not change the effect.

Modifying Eisenstat’s implementation

Eisenstat’s implementation [Eis81] of the cg method is based on restating the system (5.4.2) as{
(D + L)−1Pd[M −A](D + L)−T

}{
(D + L)Tx

}
= (D + L)−1b,

whereM−A = L+D+LT , and solving it with a diagonal preconditionerD, which is equivalent
to solving the original system with an SSOR-preconditioner. The iterates are correlated by

x̂ = (D + L)Tx and r̂ = (D + L)−1r,

and the same relation holds for the search and update directions.
In order to construct a modified Eisenstat iteration, we exploit, that the projection matrices

Pd are assembled of individual constraint directions ni

Pd = I −
∑

nin
T
i .

Thus, if we filter the update p in the modified cg method by Pd, this corresponds to

p̂ = (D+L)TPdp = (D+L)TPd(D+L)−T p̂ =
[
I−
∑{

(D+L)Tni

}{
(D+L)−1ni

}T
]
p̂,

and the new filter directions are given by the expressions in the curly brackets. A similar argu-
ment holds for the update of the residuals.

Of course, the projection matrix is never assembled explicitly, but the multiplication is per-
formed using dot products and vector additions. Hence, whenever a constraint is posed in the
standard basis, we transform it to the coordinates of the Eisenstat iteration and are able to pro-
ceed as before. A small handicap is, that ni usually has only three entries, that correspond to the
contrained direction in 3D, whereas (D + L)Tni may be less sparse due to the transformation.
As a result, the dot product is slightly more expensive to compute than before. Compared to a
matrix-vector multiplication, which dominates the workload of a cg-iteration and one of whom
is saved by Eisenstat’s implementation, it is still considerably cheap.

Additive Decomposition and Constraints for Direct Solvers

As already mentioned the workload of direct solvers is divided in a very unsymmetric way be-
tween factorisation and solve (e.g. consult table 3.5). Therefore, we want to avoid a new factori-
sation, whenever a constraint changes, which usually happens every time step. Ideally, we looked
for some sort of pre- and postprocessing using the projection and one of the two equivalent for-
mulations of the problem, involving both the vectors b and x, and the factors L and U . After
some fruitless experiments however, we rejected this idea and looked for a new formulation.

The key for an efficient algorithm to tackle this problem is to switch from a multiplicative
formulation to an additive representation for the perturbation. Consequently, we write the full
order system as

[M − PdA] = [M −A] +A− PdA =
{
[M −A]

}
+
{
(I − Pd)A

}
.
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The first system is just the unconstrained one, the second one is composed of projections of the
rows corresponding to constrained nodes, thus it has very few entries. Inserting the definition of
the projections, it holds

(I − Pd)A =
∑

nin
T
i A =

∑
uiv

T
i ,

if we define
ui := ni and vi := ATni.

To permit a more compact notation, we define the matrices U and V to be assembled from
the columns ui and vi. Note that vi is efficiently computable in constant time, as it is a linear
combination of three columns of AT , where the number of non-zero elements per column is
proportional to the number of neighbours of the constrained node. Hence, for m constraints, we
have an additive perturbation of rank m of M −A.

This is exactly the problem solved by the multi-dimensional Sherman-Morrison-Woodbury
formula7 [Hag89], which states

(B + UV T )−1 = B−1 −B−1UD−1
m V TB−1, with

Dm := Im + V TB−1U,

where we added the indexm to accentuate matrices in IRm×m. So in order to solve a constrained
system, we proceed in two phases: after the constraints are defined, we compute the auxiliary
vectors ui, vi, ûi with

ûi = B−1ui.

From these the capacitance matrix Dm can be calculated by m2 dot products. An inversion of
Dm is cheap due to the low dimension. The computation of ûi needs to perform m solves with
B = M − A, which heavily relies on the fact, that these are inexpensive due to an existing
factorisation. Note that ûi is also sparse due to reordering, although possibly less sparse than ui

and vi. Whenever a system needs to be solved, the second phase calculates

x̂ = B−1b

x = x̂− Û
(
D−1

m (V T x̂)
)
. (5.4.3)

If the second line of (5.4.3) is evaluated as hinted by the brackets, it consists of m sparse dot-
products, a matrix-vector multiplication in IRm×m and m sparse vector additions. Hence the
overhead over an unconstrained solve in the second phase is at most O(mN), and typically due
to sparsity O(m) on average, where m is the number of constraints. Thus, we precisely achieved
what we initially set out to find: an inexpensive post-processing of an unconstrained solution
vector.

Examples

To demonstrate the feasibility of the constraint enforcement mechanisms, we implemented a
prototype of the above-sketched algorithms. Due to time restrictions, it lacks several points.
First, it does not exploit sparse vector operations, which would be important for speeding up
the direct solver. More severe, no time coherence is exploited, that is, in every step we perform
a collision detection and pose new constraints, even if they coincide with the old ones, which
means for the direct solver the expensive phase one is processed every step for every constraint.

7More correctly the Woodbury formula, although it appeared in several papers before being published by Woodbury
for this task (cf. [Hag89]).

101



CHAPTER 5. SOFT OBJECT SIMULATION

Figure 5.37: Sphere hitting a table.
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Figure 5.38: Double axed plot of Newton and backtracking iterations per time step. At the
moment of impact, both increase, ensuring stability.

Also the collision response has its shortcomings in several ways, and is by far not as elaborate
as for example the one of Bridson. Because it’s simple to implement, we use direct point relo-
cation for the resolution of interpenetrations. This has the disadvantage that it threatens physical
stability, as it continually injects energy into the system that needs to be consumed by the viscous
component. It also is a hard stress test for the stability of the numerical solver, as it has to com-
pensate and relax suddenly seriously distorted element. On the other hand, this demonstrates the
robustness of the solver.

The first example is a sphere of 0.2m diameter shown in figure 5.37, that is dropped from a
5.19 height of 0.2m and bounces for 10s. It hits the ground after a falling time of 0.2s with a speed of

2m/s, using a gravity constant of g = 10m/s2. With a time step of 0.01s, this means for the first
collision response step to move the nodes by 2cm. The solver is able to cope with this without
loosing stability. This is made possible by the global convergent Newton method, which detects
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A sphere hitting the ground. The collision handling is based on constraints and point relocation only.
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sphere, small mesh (172)

#newton av. time/newton[ms] #Jacobian #backsubst #cgiter #backtrack
mod. cgeis 1788 3.4 33 - 62346 842
direct+smw 2409 3.0 35 11235 - 781

sphere, larger mesh (275)

#newton av. time/newton[ms] #Jacobian #backsubst #cgiter #backtrack
mod. cgeis 5852 4.5 57 - 127031 819
direct+smw 6563 7.7 135 37512 - 896

Table 5.6: Details for the collision of a sphere and the ground.

Figure 5.39: Toy duck hitting a table.

the difficult situation and uses backtracking to maintain convergence, as shown in figure 5.38.
The price is an increase in Newton iterations per step at the moment of impact, which vanish as
soon as the discontinuity has passed.

In table 5.6, we give some detail about the performance of the algorithms, when using two
different tetrahedralisations with 172 and 275 tetrahedra. As expected, for the smaller mesh,
the direct solver takes the lead. The implementation of the direct solver without time coherence
requires a high number of backsubstitution solves. The average Newton time for the direct solver
includes this cost of phase one in each integration step, averaged over the number of Newton
iterations. Still, it is faster than the modified Eisenstat method. The remaining characteristics
are alike, which shows again, that the choice of the solver does not influence stability or the
characteristics of the outer time integration.

As the dimension of the system increases, the iterative solver gains advantages, similar to
the unconstrained case, although the break-even point comes earlier in this case. We conjecture
that this is mainly due to the current implementation, which is clearly biased. In this case, all
constraints have the same direction. Moreover they are applied to a set of about a dozen points.
Exploiting time coherence will supposedly bring down the number of backsubstitutions below a
hundred, and thus restore the lead of the direct solver up to a higher dimension.

The second example is a proof of concept for the more complex geometry of a duck, shown
5.20

5.21

5.22

in figure 5.39. We also let it drop from a height of 0.2m. It is discretised into 511 tetrahedra
of various sizes, which makes the numerical simulation more difficult due to a wide spread
spectrum of eigen-frequencies. Because we actually do not know much about the material of a
toy duck, we once used a moderately compressible St.Venant-Kirchhoff material with ν = 0.25
and µ = 1kPa. As there are some sorts of hollow rubber ducks, we also employed a mass-
spring mesh with practically no force preventing a change of volume, using a Young modulus
of E = 15kPa. This is possible, because the collision handling concept and its implementation
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Dropping an toy duck, made of a St.Venant-Kirchhoff material. The collision handling is based on constraints and point relocation only.
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Figure 5.40: Using the phantom to manipulate a deformable model.

is completely orthogonal to the physical modelling. The two movies again demonstrate that the
resulting materials lead to a very different outcome of the simulation. Due to no resistance to
volume changes and the added rotational moment, the front of the mass-spring duck is squeezed
in at the impact and the head nods forward, resulting in an unbalanced, translational rigid body
mode. As we model no friction or damping of rigid modes, this lets the duck slowly slide of the
scene.

5.4.3 Haptics

The central application, a soft tissue module to be included in a virtual surgery simulation, re-
quires some way of direct user interaction, which we realised by the use of a Sensable PHANToM
1.5 Premium (fig. 5.40). This version of the PHANToM allows a six degree of freedom user in-
put, i.e. position and orientation, but only three degrees of output. From an input point of view,
it therefore represents a rigid body; the appropriate paradigm for the output though is merely a
point.

A peculiarity of current haptic hardware is the fact, that it requires a very high force input
rate beyond 1kHz from the application. It is a common misperception that this frequency-limit
is due to human haptic perception being especially sensitive to high frequencies. It is true that
haptic perception reaches several hundred Hertz, but the high servo rates are motivated by their
relation to the range of impedance or ‘z-width’, the device is able to display [CB94]. Higher servo
rates, even beyond 1kHz, are needed in the case of stiffer objects, while lower rates suffice for
softer objects. The common devices implement their main servo loop on the CPU, thus depend
on the high input rate. On the other hand, the time integrator, that generates the soft object’s
response, is more effective for a low rate of less than a hundred Hertz. We solve this rate problem
by computing the haptic response in a separate thread. Because the haptic response needs to
correspond to the current state of the object, which is only known after the time integrator has
completed a step, some sort of extrapolation is needed. Picinbono et al. [PLDA02] solve this
problem by a spatial extrapolation of the finite element forces along the line that connects the
PHANToM positions of the two last time steps. We found it better to use a local representation
of the deformable object that can be computed at the high servo rate and is updated from the
slower simulation. This concept is generally called a local buffer model [Bal99]. At the same
time, the local buffer concept defines the way the user interacts with the simulation by boundary
conditions of traction, which solves another issue described next.

In principle, the techniques used for collision detection from above could be used for em-
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Figure 5.41: Using a virtual proxy at the surface, force input and output can be modelled using
a stiff spring.

bedding an interactively controlled rigid object into the simulation and displaying the reaction
forces from the collision to the user. This was the first plan of attack, which we used to deal
with the problem. There is a severe problem with this approach. Caused by the stiffness of the
differential equation, the reaction forces at the very first instant can be high, if we simply force
the deformable tissue to the outside of the tool by geometrical corrections. This is an artefact
of the numerical solution, and the fact, that we sometimes are unable to relax the system totally.
These forces should not be displayed to the user, so we experimented with several strategies,
including low pass filters and intermediate force buffers.

Again, another approach proved to be more satisfactory. It embeds the user-controlled instru-
ment using boundary conditions of traction, rather than using displacement boundary conditions.
From a modelling point of view, this is more natural, as the user exerts a force, rather than mov-
ing the surface of a deformable object to a specific place. Only as a result, the nodes then take
specific positions in space. Unfortunately, this is exactly the opposite way common haptic de-
vices are constructed, which do not include a force sensor. Hence, a method is needed to translate
positions from the haptic device to forces.

For this purpose, we employ a virtual proxy or god object as the local buffer model, which
is also used for generating force feedback when interacting with rigid objects, and credited to
Ruspini et al. [RKK97] and Zilles and Salisbury [ZS95]. The concept lets the virtual counterpart
of the haptic device penetrate the virtual object (figure 5.41). It introduces the closest surface
point of the deformable objects surface, called a proxy. The force rendered to the user is then
given as a spring force, i.e. proportional to the penetration depth. In the above-cited early work
the proxy is computed with respect to the rest position of the object, as a result the force output
to the user does not reflect any material properties and is determined by the spring constant.
We update the position of the proxy at every step of the time integrator, performing a proximity
search. In addition we take the same spring to compute a force that is applied to the mesh, more
precisely to the surface triangle that contains the proxy. As a consequence of the actio-reactio
principle, if the mesh is in equilibrium, the force that is sent to the haptic device has the same
length but the opposite direction of the one, that is applied to the simulation, and thus is the
same as the finite element response. The error that is caused by this indirect formulation is rather
located in the position than in the force, as the haptic real world position must be inside the
virtual object. For visualisation, the virtual representation of the PHANToM is positioned at the
proxy point, so no penetration is visible. Hence, as soon as a deformable object is touched, the
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Figure 5.42: A collision proxy plane separates the haptic point from the deformable object. For
smooth regions (left) plane normal and surface normal coincide, for sharp features, the closest
distance vector used as plane normal shows its benefit.

real world and the position of the graphical feedback are different, but the user is usually not
sensitive to this error. In fact, the error is proportional to the stiffness of the spring, for infinite
stiffness there is no error. Commonly the stiffness is fitted to the limited z-width of the haptic
device, which cannot display infinite stiffness. It may not be set to arbitrary high values, because
this may introduce an instability in the haptic loop (cf. [SCB04]). Hence, in our application we
use 50-500N/m.

To represent the force in the finite element setting, we use a linear hat density-function over
the triangle, the peak is located at the proxy, the height is chosen, such that the density inte-
grated over the triangle gives the input-spring force. The force is distributed to the nodes by
taking the scalar product of this force density with the corresponding basis function (cf. equation
(3.1.2)). This calculation can be performed symbolically; as a result, the input force is distributed
weighted by the barycentric coordinates of the proxy.

For slow movements and equilibrium states, this approach gives a smooth force-output. How-
ever, for fast movements establishing or loosing contact, we were not content with the quality, as
the contact feels sticky or squashy. This is due to the fact, that collision detection and updates of
the proxy are only performed with the rate of the simulation, that is, a contact may be established
with a latency of possibly 10ms or more. To cure this flaw, we enhanced the local buffer model
by a substitute for the local geometry. For this purpose, we use a plane, given by the virtual
proxy and the direction from the proxy to the haptic position (figure 5.42). Other authors use
the surface normal of the closest triangle for orienting the plane, but this gives strange results at
sharp features as edges and corners. There the normal vector may jump between two triangles at
either side, which gives oscillating inside/outside answers and ghost forces. For smooth sections,
both choices coincide. In each servo loop, we perform a collision detection with this plane. If
the haptic position is outside, no force is sent to the device, if inside, the force is rendered as
described above. To improve the approximation further, we move the plane by the speed of the
triangle, which contains the proxy. As a result, we have a crisp contact and release force. An
example force protocol is shown in figure 5.43.

The algorithm works up to a simulation time step of 10-20ms. An increase to 40ms, which
is the visually acceptable limit, would be desirable, but for this large step, the haptics show
perceptible vibrations. A practical solution would be to smooth the haptic output with a low
pass filter. This induces a time lag of several milliseconds, which is the reason we gave up this
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Figure 5.43: Double axed plot of positions and forces when manipulating a liver model. Forces
and positions are only recorded when the stylus is in vicinity of the object. The liver is first poked
twice slightly, then heavily pushed and held, where it shows some creep. Afterwards its pushed
cyclically, suddenly released, and finally the stylus is moved around the object without touching
it directly. Forces are generated as soon as proxy and haptic position cease to coincide.

enhancement.

5.4.4 Interactive Examples

This last example section demonstrates the interactive features of the simulator. The different
5.23

5.24

5.25

5.26

5.27

animations show the interactive manipulation of the duck model and the objects depicted in
figure 5.44, using several of the discretisation techniques and material laws we proposed.

The smallest example from figure 5.44 again uses the liver model, this time discretised with
676 tetrahedra. For all the examples in this section BDF(3) is used for time integration, for this
mesh with a time step of 15ms. This is the example used for recording the forces displayed in
figure 5.43. The corresponding video shows, that with or without active haptics, with or without
a Prony series material, the simulation achieves real-time frame rates with nonlinear strain. As
soon as the haptic output is activated, the frame rate drops considerably. In either case, the haptic
servoing is active at 1kHz in a separate thread, polling the position of the PHANToM, even the
virtual proxy forces are calculated in both cases inside the servo thread. The only difference is,
that with output activated, the force output routine of the GHOST SDK is called. As the system
time increases from below 10% to 50% and beyond, we conjecture, that the PHANToMdevice
driver routine is responsible for the high load. SensAble Technologies recommends the use of
multi-processor workstations.
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Live screen captures of several interactive manipulations of different objects, using St.Venant-Kirchhoff and constant Q materials, Green's and the corotated Cauchy strain tensor. Some of the animations were made with haptic output activated. This animations were intended to show the real frame-rates, captured by an external device. Unfortunately the capture device sometimes dropped frames. Therefore, a status line has been added, showing "simulation time t/process run time/simulation thread execution time s/ratio t/s". If haptic output is disabled the process and thread times nearly coincide.
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Figure 5.44: Screenshots from the interactive manipulation of several objects. The insets display
the rest states of the models.

The next model, the liver with 1168 tetrahedra, is located at the limit that we are able to
simulate with a nonlinear strain model at 25Hz, i.e. a time step of 40ms. We therefore once use
a co-rotated strain with a 20ms time step.

The elephant model has 1304 tetrahedra and still can comfortably simulated with a time step
of 20ms using a corotated strain with an update of the local coordinate systems every 200ms.
In contrast to the elephant, which permitted a nice tetrahedral approximation, the original Stan-
ford bunny model, after eliminating some intersecting and non manyfold triangles, is not easily
approximated with tetrahedra. It passes the mark of 3000 tetrahedra, and the resulting discretisa-
tion is very bad in terms of grading and other quality measures. Nevertheless, a stable interactive
simulation is possible, now using a time step of 40ms. We again used a Cauchy strain model
for comparison, which permits a faster simulation with a time step of 20ms, but is not suited
for the large strain we produce. Hence the artificial volume inflation effect, also reported by
Müller [MG04] can be seen, especially at the ears of the model. Using the co-rotated strain, this
phenomenon vanishes.
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Discussion

The final application section finally assembled the numerical core components to an interactive
visual simulator. We extended the direct and iterative linear solvers to be compatible with com-
mon collision techniques and showed the feasibility of the approach. Haptic in- and output was
described, built around the paradigm of a virtual proxy.

The resulting program is capable of simulating several hundred up to a few thousand tetra-
hedra at real time rates. The lower limit is given for non-linear simulations, using haptic output.
Haptics pose a limit to the maximum step size of about 20ms and in addition consume about half
of the CPU cycles. If only a corotated strain is used with a time step of 40ms that corresponds
to a visual simulation rate of 25Hz, the number of tetrahedra can be increased to over 3000 el-
ements. Using Cauchy’s strain would permit to push the number of elements even higher, but
leads to unpleasing and visible volume inflation.

5.5 Conclusion and Directions for Further Work

This thesis presented a framework for the simulation of deformable objects. We build upon a
tetrahedral discretisation of the solid object and use finite elements with linear shape functions to
obtain an ordinary differential equation. For the reproduction of material parameters, the finite
element method showed superior to mass-spring meshes. In addition, finite elements allow an
efficient representation of visco-elastic materials, which permitted the first interactive simulation
of visco-elastic solids. An important part of the framework is the model for strain, which should
be rotationally invariant to be in line with the large displacements that occur during the manipu-
lation. Besides the non-linear Green strain, we proposed to use a corotated Cauchy strain based
on the polar decomposition, which leads to a ‘quasi-linear’ ordinary differential equation.

The framework permits to employ different numerical methods for the solution of this equa-
tion. Some benchmarks showed that the implicit methods work best, already anticipated as the
equation can be assumed to be stiff. As implicit time integration relies on an efficient solution
of linear systems, we employed several methods: the (modified) cg method of Baraff, the newly
introduced (modified) Eisenstat method, that already includes preconditioning, and sparse direct
solvers, which are superior for smaller dimensions. Both methods have been extended to be
compatible with constraints. The interactive application has been augmented by haptic output.

When this work was started, nonlinear finite elements have been considered too slow for this
kind of applications. We achieve real-time frame rates for up to about a thousand elements on
a single processor workstation. Using corotated strain, the application permits the interactive
simulation of several thousand elements at real time frame rates, even though it is only optimised
on an algorithmical level and uses double precision floating point numbers. A specialisation to
the SIMD floating point architecture of current processors could further improve these results.
Today nearly every research group in this field is switching or already has switched to finite
elements or related methods. Properly specialised for interactivity they are only two to three
times more expensive than mass-spring meshes.

A straightforward extension of our approach is the use of quadratic shape functions on the
tetrahedral mesh. As already mentioned in section 3.1.4 this results in a piecewise linear approx-
imation of the strain tensor, which means that more complex computations need to be performed
per element. On the other hand, the deformed shape is approximated piecewise quadratically,
which would justify the use of a surface mesh with a much higher resolution for the visualisa-
tion. This would also pave the way for a locking free formulation; perhaps even with a reduced
integration that decreases the computational expenses.

We did not discuss cutting into these meshes, which is a subject of active research. The
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approach of Delingette [DCA00] to remove the tetrahedra, which are touched by a scalpel, is
commonly considered to be not satisfactory. Hence, as long as a model with a topological struc-
ture is used, the area of the cut needs to be remeshed. Recently an interesting approach has been
presented by Bielser et al. [BGTG03], extending his previous work on using a state machine for
remeshing. An efficient implementation and support data structure for changing mesh topology
is also required by an adaptive simulation. We investigated adaptivity using a hierarchical basis,
which provides a sound numerical foundation for local refinements. The octasection method
however generates a too fast growing number of elements to allow a satisfying adaptive simu-
lation. We regard other subdivision methods and their efficient implementation for interactive
applications, especially in combination with topological modifications, as an interesting area of
future work. Another approach, eliminating topology related problems completely, could consist
in using meshless or element-free finite element methods [ZT00], which are currently an area of
active research in numerical analysis.
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Appendix A

Additional Remarks to Chapter 2
and 3

A.1 Some Propositions from the Theory of Elasticity

In this addendum, we provide some more precise formulated theorems and lemmata to chapter
2. For completeness, we begin with Cauchy’s fundamental theorem on the existence of the stress
tensor field, which provides the basis of the mathematical treatment of continuum mechanics.

Theorem A.1 (Cauchy’s theorem) Assume, that the body force density fϕ and surface traction
gϕ applied to a body Dϕ are continuous, and that the Cauchy stress vector field σϕ(xϕ, nϕ) is
continuously differentiable with respect to xϕ and continuous in nϕ. Then the axiom of force
balance implies, that there exists a continuous differentiable tensor field σϕ on Dϕ, such that

σϕ(xϕ, nϕ) = σϕ(xϕ)nϕ

and

− divϕ σϕ(xϕ) = fϕ(xϕ) for all xϕ ∈ Dϕ

σϕ(xϕ)nϕ = gϕ(xϕ) for all xϕ ∈ ∂Dϕ.

K0 Kt

dx
dxt

x x= ( )ö0 x+dx
=ö x+dx0( )

öt( )x ö öt t t( ( )x +dxx+dx)=

v x0( ) v x+dx0( ) v xt( ) v x+dx( )t

Figure A.1: Computing the spatial rate of deformation.
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If additionally the axiom of moment balance is fulfilled, as a consequence

σϕ = σϕT

holds.

Proposition A.2 For the spatial rate of deformationD = 1
2 ( ∂vt

∂xt
+ ∂vt

∂xt

T
) and the rate of Green’s

tensor ε̇G it holds
ε̇G = ∇̇ϕT∇ϕ+ ∇ϕT ∇̇ϕ = ∇ϕTD∇ϕ.

Proof: With F := ∇ϕ, the first equality follows from the definition εG = FTF − id and the
chain rule. For the second equality we use that ∇vF = Ḟ , because (fig. A.1)

dvt =
∂vt

∂xt
dxt =

∂vt

∂xt
Fdx

and

dvt =
∂

∂t
(dxt) =

∂

∂t
(Fdx) = Ḟ dx.

The proposition follows. ��

Proposition A.3 (Double contraction) For a symmetric matrix A and an arbitrary matrix B, it
holds

A : B = A :
{ 1

2
(B +BT )

}
.

Proof: For an antisymmetric C = 1
2 (C − CT ) the equation

A : C =
1

2
(A : C −A : CT ) = (A : C − C : A) = (A : C −A : C) = 0

holds, because A is symmetric. Therefore the claim

A : B = A :
{ 1

2
(B +BT ) +

1

2
(B −BT )

}
= A :

{ 1

2
(B +BT )

}
follows. ��

A.2 Definition of the Variation

The finite element method heavily relies on the calculus of variation. In chapter 3 we used the first
variation of a function without formally defining it. This section will at least give a definition
and explain the symbols and expressions used. For further reading we refer to textbooks on
functional analysis, to Blanchard and Brüning [BB82] or Klingbeil [Kli88].

The calculus of variation concerns the minimisation of a function F , defined on a not neces-
sary finite dimensional Banach space X . For example, this can be a mechanical energy defined
on the set of admissible configurations. Similar to the finite dimensional case, a necessary con-
dition is a vanishing first variation, which replaces the usual first derivative.

Definition A.4 (First variation) Let x, δx ∈ X . Then

δF(δx) :=
∂F
∂τ

(x+ τδx)|τ=0δx

is called the first variation of F in the direction δx.
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Figure A.2: Modelling and discretisation methods in computational mechanics.

If the domain of F is a genuine subset of X , additional restrictions may need to be posed to
δx. For the reader familiar with functional analysis, the definition is linked to the Fréchet and
Gâteaux derivative of F . The variational derivative is by definition the weakest concept of the
three. In the sense it is applied in most physical oriented textbooks, it is used in place of the
Fréchet derivative, i.e. assumed to exist for all variations δx and to be linear and continuous in
δx.

To conclude this short tour-de-horizon we present the variations used in chapter 3.

Proposition A.5 (Variation of deformation measures) The first variations of F = ∇ϕ,D,C
and ε expand to

δF (δx) = ∇δx
δD(δx) =

1

2
(∇δx+ ∇δxT )

δε(δx) =
1

2
δC(δx)

δC(δx) = ∇ϕT∇δx+ ∇δxT∇ϕ.

Proof: The first two equations follow trivially with the linearity of the derivative. For the last
we differentiate

∂C

∂τ
(ϕ+ τδx) =

∂

∂τ

(
(∇ϕ+ τ∇δx)T (∇ϕ+ τ∇δx)) = ∇ϕT∇δx+ δxT∇ϕ+ 2τ∇δxT∇δx,

which for τ = 0 proofs the claim. ��

A.3 Rayleigh-Ritz and Galerkin Methods

The methods described in chapter 2 and 3 are subtly linked. This section is intended to clarify
this associations and the vocabulary used to distinguish between them. As already seen, the
physical principles of mechanics can be stated in a strong form, i.e. a pointwise defined, partial
differential equation with boundary conditions, or in a weak integral form, that combines both in
a single integral statement. These forms can always be transformed into each other. The weak
form is sometimes also called a variational principle or equation. Contrastingly, by variational
form we mean, that the problem is presented as a functional to be minimised, and the stationary
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points of whom give the weak and strong forms. Usual this is the connected mechanical energy,
which does not necessarily exist, as for example with path dependent materials. The dashed
transformations in figure A.2 are therefore not always possible, at least not in standard variational
calculus.

The numerical discretisation methods are distinguished accordingly. The Finite Difference
method works with the strong form and is limited in terms of the regions and boundary conditions
it can handle. Finite element methods work with the variational or weak form. Galerkin meth-
ods, being a subset of the finite element toolbox, work with the weak form. If the spaces for the
solution and the test function are not the same, for example used for problems with singularities,
the method is called a Petrov-Galerkin method. In this case, of course a somewhat different tech-
nique to proof error estimates and convergence is needed. The Rayleigh-Ritz methods work with
the variational form either by directly discretising the energy and minimising the discrete func-
tion (as we described our approach in Hauth et al. [HGS03a]) or by using variational calculus
to provide a basis free and discretisation independent weak equation, which is then discretised,
as presented here. In these terms, it satisfies the definition of a Galerkin method. Of course the
stronger assumptions on the existence of a variational form remain, therefore this is sometimes
emphasised by the term Ritz-Galerkin method. The interchange of minimisation and discretisa-
tion does indeed give the same equations. Ritz-Galerkin and Ralyleigh-Ritz methods were the
first finite element methods considered, as the variational form permits a more powerful mathe-
matical treatment. For example, the more general Galerkin method does not automatically lead
to symmetric or positive definite systems, as the transformation from strong to weak form does
not require either. Thus, the concrete implementation of Galerkin and Rayleigh-Ritz methods is
very similar to identical, but the mathematical starting point is different.
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Appendix B

A Mass-Spring-Damper System

As mass-spring-damper systems are very popular in graphics, we implemented a system for
comparison. This chapter provides the details.

A solid is again described by a tetrahedral mesh, but now the internal forces are described by
a spring-damper pair for each edge. The advantages of this approach are a very efficient force
evaluation and rotational invariant forces by design. There are several publication concerning the
selection of spring constant for a given behaviour [DKT95, LPC95, MBT03]. Unfortunately it
can be shown, that mass-spring-damper systems fail to describe a continuum mechanical solid
[VG98], though this does not lessen their popularity.

The spring-force between two nodes on node i (figure B.1) with distance d and rest distance
l0 is given as

fij = −k∆l d

‖d‖
= −k(1 − l0

‖d‖
)d,

the reaction force on node j is fji = −fij . For an implicit integrator we need the derivative

J :=
∂fij

∂xi
= −{k(1 − l0

‖d‖
)id +

k−l0

‖d‖2
[dkdl]k,l.

}
The Jacobian of the local force pair [fij , fji]T evaluates to[

fij

fji

]′
=
[

J −J
−J J

]

x , vi i

x , vj jd=x - xi j

fij

fji

Figure B.1: A spring-damper connection along an edge.
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The obvious damping force fd ∼ −∆v has the disadvantage that rigid body rotations are
damped as well. Therefore, the correct damping force has to be proportional to the projected
velocity difference onto the edge

fR
ij = −R∆vd = −R〈∆v, d

‖d‖
〉 d

‖d‖
= −R 〈∆v,d〉

〈d,d〉
d.

with ∆v = vi − vj , R > 0. The partial derivatives evaluate this time to

JR
v :=

∂fd
ij

∂vi
= −R 1

〈d,d〉
[dldk]k,l,

and, as fR depends on d

JR
x :=

∂fR
ij

∂xi
= −R{ 1

〈d,d〉
d∆vT − 2〈∆v,d〉

〈d,d〉
[dkdl]k,l

}−Rβid,

with β = 〈∆v,d〉
〈d,d〉 .Note that due to the term d∆vT the matrix JR

x is not symmetric. Finally the
Jacobian is [

fR
ij

fR
ji

]′
=
[

JR
x −JR

x JR
v −JR

v

−JR
x JR

x −JR
v JR

v

]
.

B.1 Fitting of Constants

Van Gelder showed [VG98] that triangulated spring meshes fail to reproduce the results from a
triangular finite element membrane, even qualitatively. Additionally he showed, that at least in
the constant strain case with a Poisson ratio of ν = 0, choosing the stiffness of an edge as the
summation of the adjacent triangle areas over the rest length squared

k =
E
∑

Ta
vol(Ta)

‖l0‖ (B.1.1)

leads to an undistorted deformation state. He also describes the generalisation of formula (B.1.1)
to tetrahedral meshes, replacing the area by the volume.

The damping constant is fitted afterwards, such that all the spring-damper pairs possess a
user-defined mechanical quality. The mechanical quality of a spring-damper system is given as
Q = k

ωR , which we fit at the eigenfrequency of the system ω0 We therefore solve the algebraic
system

Q =
k

ω0R

ω0 =
1

2

√
4

k

m
+
(

R

m

)2
for R. The resulting fourth order polynomial has exactly one real positive root,

R =
1

Q

√
2 kmQ

√
Q2 + 1 − 2 kmQ2,

which we take as the desired damping constant.
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B.2 Efficient Implementation

for all nodes i
fetch xi, vi

f=0
for all neighs j of i
f+=fij(xj , vj , lij,0)

fi=f

Algorithm B.1: Per Node

set ( f ,0)
// loop arbitrarily over
// edges
for all edges (i, j)

fetch xi, vi, xj , vj , lij,0
−fji = fij(xj , vj , lij,0)
add fij to fi

add −fij to fj

Algorithm B.2: Per Edge

set ( f ,0)
// loop over sorted edges
for all edges (i, j)

if ( i != lasti )
write flasti=f
fetch xi , vi

fetch xj , vj , lij,0
f+ = fij(xj , vj , lij,0)
add −fij to fj

Algorithm B.3: Hybrid

The assembly of the local spring forces can basically be performed in two fashions: per
edge or per node. Whereas the per node variant is more efficient in terms of memory traffic, it
computes fij and fji = −fij , therefore it the number of function evaluations equals two times
the number of edges. Looping over all edges fixes this flaw, but now for each function evaluation
all operands need to be fetched separately. Because function evaluations are very cheap, memory
traffic cannot be neglected in this case. On the other hand, this variant possesses the advantage
that no neighbourhood topology is needed in explicitly, only a way to iterate over the edges.
The last variant is based on a sorted edge list. It combines the advantages of both variants,
being as memory efficient as the first one, and as computational effective as the second one.
Its disadvantage is, that it needs a minimum of topology preprocessing, as it requires a sorted
edge list. On the other hand, by this all coordinate- and displacement-vectors are accessed more
regularly, desirable for the streaming architecture of modern processors.
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Appendix C

Computational details for
Tetrahedral Elements

C.1 Shape Coefficients for a Linear Tetrahedral Element

The shape coefficients (figure C.1) can be computed by the following determinants [ZT00]

αi0 =
1

6V
det

∣∣∣∣∣∣
xj,1 xj,2 xj,3

xk,1 xk,2 xk,3

xl,1 xl,2 xl,3

∣∣∣∣∣∣ αi1 = − 1

6V
det

∣∣∣∣∣∣
1 xj,2 xj,3

1 xk,2 xk,3

1 xl,2 xl,3

∣∣∣∣∣∣
αi2 = − 1

6V
det

∣∣∣∣∣∣
xj,1 1 xj,3

xk,1 1 xk,3

xl,1 1 xl,3

∣∣∣∣∣∣ αi3 = − 1

6V
det

∣∣∣∣∣∣
xj,1 xj,2 1
xk,1 xk,2 1
xl,1 xl,2 1

∣∣∣∣∣∣

with

[i, j, k, l] ∈ {[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 0, 1, 1]}
and V denoting the volume of the tetrahedron.

C.2 Green’s strain and St.Venant Kirchhoff material

Briefly, this section will describe an efficient computation of Green’s strain and the forces result-
ing from a St.Venant Kirchhoff material. The generalisation to other material laws and a memory
parameter model is straightforward.

As in the previous section and in section C.1, a tetrahedron is described by its shape coeffi-
cients αn,i and the displacement µn,j , where the first index denotes the node, the second one the
coordinate. Following a Rayleigh-Ritz argumentation, this force is given by

fr,s =
∫

V

3∑
i,j=1

σij
∂εij
∂µr,s

(C.2.1)

= V
[ 3∑

i,j=1

2µεij
∂εij
∂µr,s

+ λ

3∑
i=1

εii

3∑
j=1

∂εjj

∂µr,s

]
,
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Rest State Deformed State

µ0

µ1

µ2

µ3

x0 = ϕ(x0) x1

x2

x3

u(x0) = 0

ϕt(x0) = x0 + µ0(t)

ϕt(x1) = x1 + µ1(t)

ϕt(x2) = x2 + µ2(t)

ϕt(x3) = x3 + µ3(t)

µ0(t) =
∑

n=1..4

αn0µn +
∑

l=1..3

αnlx0,lµn

Figure C.1: Shape and state coefficients of a tetrahedral element.

inserting the material law and exploiting that the strain is constant over a tetrahedron. We abbre-
viate the shear part of σ by

gij := 2µεij

and the pressure part by

t := λ
3∑

i=1

εii.

In addition, we define the displacement gradients

eij :=
4∑

n=1

αn,iµn,j .

Computing the partial derivatives of the shape functions, the force then transforms to

fr,s = V
{
t
[
αr,s +

3∑
i=1

αr,ieis

]
+

3∑
j=1

αr,j

(
gsj +

3∑
i=1

gijeis

)}
. (C.2.2)

Now the algorithm starts by computing eij , which takes 9 · 7 flops. From this Green’s strain
can be obtained as

εij =
1

2

(
eij + eji +

3∑
k=1

eikejk

)
.

As Green’s strain is symmetric, this takes 6 ·8 operations. Another 12+3 operations then give the
strain components t and gij . Identifying another common subexpression in the round brackets of
(C.2.2), we define

hjs =
3∑

i=1

gijeis,
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which uses 9 · 5 operations. Finally, from this the twelve force components can be computed as

fr,s = V
{
t
[
αr,s +

3∑
i=1

αr,ieis

]
+

3∑
j=1

αr,j

(
gsj + hjs

)}
.

with 12 ·10+3 ·3 operations, as the expression in the round brackets does not depend on r. This
gives a total of 63 + 48 + 15 + 45 + 129 = 300 operations per tetrahedron.

When memory parameters are used, we add the viscous stress computed according to equa-
tion (2.6.2) to the stress components g and t, which needs a few additional floating point oper-
ations per memory variable. Using non-linear stress measures, σ is computed from ε or F , and
then plugged into equation C.2.1.
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Appendix D

Frequently used Symbols

Ω Parameter domain, domain of material coordinates.
ϕ : Ω → IR3 Configuration of a deformable body.
u Displacement vector field of a deformable body.
v Velocity vector field.
tϕn Traction or Cauchy stress vector in direction n.
σϕ Cauchy or true stress tensor.
σ1 First Piola-Kirchhoff stress tensor.
σ Second Piola-Kirchhoff stress tensor.
ε Strain tensor, if not further specialised, Green’s strain.
εC , εCR Cauchy’s strain tensor, the latter co-rotated.
F Deformation gradient.
C Cauchy-Green deformation tensor.
ι1, ι2, ι2a, ι3 Invariants of a symmetric three-by-three matrix.
W Stored energy function.
Ĝ,G Relaxation function and its Prony series expansion.
Q Mechanical quality factor.
φ Nodal finite element basis.
ψ Hierarchical finite element basis.
α Finite element shape coefficients.
µ, ν Finite-Element coefficient vector of u and v.
µ, λ, ν In constitutive laws: Lamé’s constants, and Poisson’s ratio.
M Mass matrix.
y(t) State vector of the ordinary differential equation, usually y = [µ, ν]T

f Right-hand side of the ODE.
J The Jacobian ∂f/∂y.
Yi The numerical approximation to y at step i.
⊗ (Kronecker product) For A = [ai,j ] ∈ IRn×m, B = [bk,l] ∈ IRr×s the matrix C = A ⊗ B

lies in IRnr×ms and is given by c(i−1)r+k,(j−1)s+l = ai,jbk,l, i.e. can be
viewed as a block matrix composed of aijB-blocks.
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