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Introduction

“Eventually people will see that group
representation theory is not such a big deal;

what really matters is representation of categories.”
(Minhyong Kim to John Baez, see [3])

This thesis consists of two parts. In the first part, containing chapters one to four, we want
to take a look at product systems from a new point of view. Product systems were first
introduced in 1989 by Arveson in [1] to develop an index theory for continuous semigroups
of ∗-endomorphisms of L(H). Later, they were studied by Dinh [8] in the discrete case
and Fowler generalized the concept of Dihn by using Hilbert bimodules. Fowler’s discrete
product systems of Hilbert bimodules consist of a family of Hilbert bimodules {Xs : s ∈ S}
over a C∗-algebra A indexed by a countable semigroup S together with a family of unitary
bimodule mappings

Φs,t : Xs ⊗A Xt → Xst, s, t ∈ S.

We want to reveal the structure that lies behind product systems using bicategory theory.
Similar to a category, a bicategory consists of objects and arrows between these objects,
but contrary to categories, bicategories possess an extra structure, namely arrows between
the arrows that are called 2-cells. Our main example for a bicategory will be C∗ARR, the
bicategory with objects C∗-algebras, arrows C∗-arrows (based on Hilbert bimodules, see
below) and with adjointable, isometric bimodule mappings as 2-cells.

We will introduce the “functors” between bicategories, which are called morphisms, and
we will see that Fowler’s product systems are nothing but special morphisms from the
semigroup S (viewed as a bicategory) to the bicategory C∗ARR. Thus, we can give a
more elegant definition of the notion of a product system by defining them as morphisms
from an index category J (viewed as a bicategory) to the bicategory C∗ARR. Hence, the
product systems that originated from semigroups of ∗-endomorphisms in Arveson’s paper
[1] can now be described in a very natural way using the concept of morphisms between
bicategories. Moreover, we get a much bigger class of examples taking index categories
instead of semigroups to index our product systems.

Next, we will associate two C∗-algebras to every given product system (F,Φ), namely
the reduced Toeplitz algebra Tr(F,Φ) and the reduced Cuntz-Pimsner algebra Or(F,Φ).

5



6 Introduction

Studying various special cases shows that our method of constructing the reduced Toeplitz
and Cuntz-Pimsner algebras generalizes many other constructions of C∗-algebras.

Moreover, we will introduce the universal Toeplitz algebra T (F,Φ) and the universal
Cuntz-Pimsner algebra O(F,Φ). We recall the notion of the bicategorial colimit for a
morphism and we finish the first part of this thesis by showing that for certain product
systems (F,Φ), the universal Toeplitz algebra can be viewed as the bicategorial colimit
object for the morphism (F,Φ).

In the second part of the thesis, containing chapters five and six, we develop a duality
theory for locally compact semigroups using the concept of Hopf C∗-algebras. A Hopf C∗-
algebra is a C∗-algebra H together with a comultiplication, i.e., a nondegenerate, injective
∗-homomorphism δH : H → M(H ⊗H). The standard example for a Hopf C∗-algebra is
C0(S), the C∗-algebra of complex functions on a locally compact semigroup S vanishing
at infinity. The multiplication on S induces a comultiplication on C0(S). Thus, Hopf
C∗-algebras can be viewed as generalized locally compact semigroups.

We will develop a sufficient condition on the Hopf C∗-algebra H that allows us to con-
struct a corepresentation of H on a distinguished Hilbert space, similar to the regular
representation of a locally compact group G on the Hilbert space L2(G, µ), where µ is the
right Haar measure on G. Using this regular corepresentation, we can define the reduced
dual C∗-algebra of a Hopf C∗-algebra and we will show that the classic Toeplitz algebra
C∗(N) is the reduced dual C∗-algebra of the Hopf C∗-algebra c0(N). We will also see that
c0(N) is the reduced dual C∗-algebra of the Hopf C∗-algebra C∗(N). This corresponds
to the well known fact that for a locally compact group G, the C∗-algebra C0(G) and
the full group C∗-algebra C∗(G) are in duality, which can be viewed as an analogue of
Pontryagin’s duality theorem.

Finally, we will deal with Takai’s duality theorem [28], which is one of most fundamental
theorems in the theory of crossed products. It states that for a C∗-dynamical system
(A,G, α), the double crossed product (Aoα G) oα̂ Ĝ is strongly Morita equivalent to A.
In [25], Schweizer treated an analogue of Takai’s duality theorem for crossed products by
equivalence bimodules. He showed that for an equivalence bimodule X over a C∗-algebra
A, there exists an action γ of Ẑ on A oX Z such that (A oX Z) oγ Ẑ is strongly Morita
equivalent to A.

We want to transfer Schweizer’s statement to the situation when E is a C∗-arrow over a
C∗-algebra A. Therefore, we define the crossed product AoE N as the reduced Toeplitz
algebra of (A,E), where (A,E) is a certain product system over N that consist of the
powers of E. Next, we define the reduced crossed product of a dynamical cosystem and
finally, we construct a coaction δ of C∗(N) on AoE N and show that the double crossed
product (AoE N) oδ C

∗(N) is strongly Morita equivalent to A.

The following chapter summaries will give a more detailed description of this thesis:

Chapter 1 is devoted to the historical development of product systems. We give a short
overview over the work of Arveson [1], who introduced product systems, Dinh [8], who
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first studied discrete product systems, and Fowler [10], who introduced product systems
of Hilbert bimodules.

In Chapter 2 we recall the notion of a bicategory and provide several examples. We will
introduce the concept of C∗-arrows which play a central role in our thesis. A C∗-arrow is
a Hilbert B-module that also possesses an A-B-bimodule structure, where A and B are
C∗-algebras. C∗-arrows are the arrows in our motivating example for a bicategory, the
bicategory C∗ARR. The objects of C∗ARR are C∗-algebras and the 2-cells are adjointable,
isometric bimodule mappings. Moreover, we will recall the notion of a morphism between
bicategories, that generalizes the concept of functors between categories. We will define
a product system over a category to be a morphism from an index category J to the
bicategory C∗ARR. Hence, a product system over an index category J will consist of a
family of C∗-algebras Ai, i ∈ Ob(J), a family of C∗-arrows Fr, r ∈ Arr(J), and a family
of isometric, adjointable bimodule mappings Φs,r : Fr ⊗ Fs → Fsr indexed by pairs (r, s)
of composable arrows of J . Finally, we will see that Fowler’s discrete product systems of
Hilbert bimodules are a special case of our definition.

Chapter 3 deals with the construction of the reduced Toeplitz algebra Tr(F,Φ) and the
reduced Cuntz-Pimsner algebra Or(F,Φ) associated to every given product system (F,Φ).
First, we introduce the notion of a Toeplitz representation from a product system (F,Φ)
to a C∗-algebra and we provide some technical results about homomorphisms between
Hilbert C∗-modules that we will need later. Then we introduce the Fock correspondence
F(F,Φ) of a product system (F,Φ) and we construct one particular Toeplitz represen-
tation, the reduced Toeplitz representation from (F,Φ) to the reduced Toeplitz algebra
Tr(F,Φ), which is a C∗-subalgebra of L(F(F,Φ)). We define the reduced Cuntz-Pimsner
algebra to be the quotient of Tr(F,Φ) modulo the ideal of generalized compact operators in
Tr(F,Φ). Next, we provide various examples which show that our method of constructing
the reduced Toeplitz and Cuntz-Pimsner algebras generalizes many other constructions
of C∗-algebras. Depending on how we choose our product system (F,Φ), the resulting
C∗-algebras Tr(F,Φ) and Or(F,Φ), respectively, are isomorphic to the direct sum of a
family of C∗-algebras, the direct limit of a direct system of C∗-algebras or the crossed
product of a C∗-algebra by a group or a semigroup.

In Chapter 4 we will introduce the universal Toeplitz algebra T (F,Φ) and the universal
Cuntz-Pimsner algebra O(F,Φ) together with their corresponding Toeplitz representa-
tions. First, we show that given a product system (F,Φ) over an index category J , there
is a C∗-algebra that is universal for Toeplitz representations over (F,Φ) and we will call
it the universal Toeplitz algebra T (F,Φ). Then we recall the notion of Cuntz-Pimsner
covariant Toeplitz representations from [10] and introduce the universal Cuntz-Pimsner
algebra, which will be universal for Cuntz-Pimsner covariant Toeplitz representations over
(F,Φ). Finally, we will recall the notion of a bicategorial colimit for a morphism (F,Φ)
from a bicategory B to a bicategory B′ and we will show that for certain product systems
(F,Φ) the universal Toeplitz algebra T (F,Φ) can be viewed as the colimit object for the
morphism (F,Φ) in the bicategory C∗ARR.
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In Chapter 5 we first recall the concept of Hopf C∗-algebras, which can be viewed as a
generalization of locally compact semigroups. We also recall the notions of corepresen-
tations of Hopf C∗-algebras, coactions of Hopf C∗-algebras on C∗-algebras and covariant
representations of dynamical cosystems, which generalize the corresponding notions for
semigroups, namely representations of semigroups, actions of semigroups on C∗-algebras
and covariant representations of semigroup dynamical systems. Then we show that the
existence of an invariant weight τ on the Hopf C∗-algebra H makes it possible to con-
struct a specific covariant representation of the dynamical cosystem (H,H, δH) inspired
by the right regular covariant representation of (C0(G), G, α) on L2(G, µ), where µ is a
right Haar measure on a locally compact group G and α is the action of G on C0(G) by
right translation. For Hopf C∗-algebras H that are equipped with an invariant weight τ ,
we construct the reduced and universal dual C∗-algebras C∗

r (H, δH) and C∗(H, δH), re-
spectively. We show that the reduced dual C∗-algebra of the Hopf C∗-algebra (c0(N), αN)
is isomorphic to C∗(N) and that the reduced dual C∗-algebra of the Hopf C∗-algebra
(C∗(N), δN) is isomorphic to the C∗-algebra c0(N). This result can be viewed as a gen-
eralization of Pontryagin’s duality theorem for locally compact, abelian groups to the
semigroup N. Finally, we construct the reduced crossed product Aoδ H for a dynamical
cosystem (A,H, δ), which we will need in the next chapter.

Chapter 6 deals with an analogue of Takai’s duality theorem [28] in the setting of crossed
products by C∗-arrows. We show that for specific product systems (A,E) over the natural
numbers, where A is a C∗-algebra and E a C∗-arrow over A, the double crossed product
(A oE N) oδ C

∗(N) is strongly Morita equivalent to A, where A oE N is the reduced
Toeplitz algebra of (A,E) and δ can be viewed as the dual coaction of C∗(N) on AoE N.
As a minor result we also get that a product system (A,E) over N is always strongly
Morita equivalent to a product system induced by a ∗-endomorphism.

Notation

When we talk of a semigroup, we shall always mean a semigroup with a unit element.
This also means that the natural numbers N always include zero and hence, (N,+) is a
semigroup with unit element zero.

If E is a subset of a linear space L, then we write spanE for the linear span of E. If L
is a normed linear space, then spanE denotes the norm closure of the linear span of E in
L. If E and F are subsets of an algebra A, then EF := span{ef : e ∈ E, f ∈ F}.

For a C∗-algebra A, we denote the positive elements in A by A+ and the multiplier algebra
of A by M(A). The unique unital extension of a ∗-homomorphism σ : A→M(B) toM(A)
is denoted by σ. All tensor products of C∗-algebras are minimal.
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Chapter 1

An introduction to product systems

In this first chapter, we want to sketch the development of product systems. They were
first introduced in 1989 by Arveson in [1] to develop an index theory for continuous semi-
groups of ∗-endomorphisms of L(H). Arveson’s product systems consist of a continuous
family {Et : t ∈ R+} of Hilbert spaces together with a tensoring operation.

Extending Arveson’s work, in [8], Dinh studied discrete product systems over G+ where G
is a discrete, countable and dense subgroup of R. He associated to each discrete product
system E = {Et : t ∈ G+} a separable C∗-algebra OE(G) and examined the structure of
this C∗-algebra. The family of these C∗-algebras may be regarded as analogues of Cuntz
algebras or CAR algebras.

Finally, Fowler considered discrete product systems of Hilbert bimodules in his paper
[10], i.e., he replaced the Hilbert spaces Et by Hilbert bimodules Xt. Moreover, he al-
lowed arbitrary semigroups S to index his family of Hilbert bimodules. Given such a
product system X = {Xs : s ∈ S}, he defined a corresponding generalized Cuntz-Pimsner
algebra OX . His work was motivated by the example when X comes from a semigroup
dynamical system (A,S, α). In this case he showed that OX is canonically isomorphic to
the semigroup crossed product Aoα S.

1.1 Arveson’s continuous product systems

In [21], [22] and [23], Powers and Robinson introduced an index theory for E0-semigroups.
An E0-semigroup is a continuous semigroup α = {αt : t ≥ 0} of normal ∗-endomorphisms
of the C∗-algebra L(H) of all bounded operators on a Hilbert spaceH, such that αt(1) = 1
for all t ≥ 0. Two E0-semigroups α and β of L(H) and L(K), respectively, are paired if
there is a continuous group Γ = {Γt : t ∈ R} of ∗-automorphisms of L(H⊗K) such that
Γt(A⊗1) = αt(A)⊗1 and Γ−t(1⊗B) = 1⊗βt(B) for all A ∈ L(H), B ∈ L(K) and t ≥ 0.
Two E0-semigroups have the same index if there is an E0-semigroup σ such that α and
σ are paired and σ and β are paired.

13



14 Chapter 1. An introduction to product systems

In [1], Arveson gave an equivalent characterization of the index by introducing the notion
of continuous product systems. A continuous product system Eα arises naturally from
each E0-semigroup α and Arveson showed that two E0-semigroups α and β have the
same Powers-Robinson index if and only if their associated product systems Eα and Eβ

are isomorphic. Now we want to recall Arveson’s definition of a continuous product system
and then show in Example 1.2 how a continuous product system Eα can be associated
with an E0-semigroup α.

Definition 1.1 (Arveson’s continuous product systems)
Let E be a standard Borel space and p a measurable function from E onto (0,+∞) such
that each fiber

E(t) := p−1(t), t > 0,

is a separable infinite dimensional Hilbert space and such that the inner product is mea-
surable if we consider it to be a complex-valued function defined on the following Borel
subset of E × E:

{(x, y) ∈ E × E : p(x) = p(y)}.

We also require that there is a Hilbert space H0 such that E is isomorphic to the trivial
family (0,+∞)×H0, i.e., that there is a Borel isomorphism θ : E → (0,+∞)×H0 such that
for every t > 0, θ restricts to a unitary isomorphism of Hilbert spaces θ : E(t) → {t}×H0.

Finally, we require that there be given a jointly measurable binary associative operation
(x, y) ∈ E × E 7→ xy ∈ E satisfying the conditions

(i) p(xy) = p(x) + p(y) and

(ii) for every s, t > 0, E(s)E(t) is dense in E(s+t) and we have 〈xy, x′y′〉 = 〈x, x′〉〈y, y′〉
for all x, x′ ∈ E(s), y, y′ ∈ E(t).

Notice that (i) means that E(s)E(t) ⊆ E(s + t), while (ii) asserts that there is a unique
unitary operator Ws,t : E(s)⊗ E(t) → E(s+ t) defined by

Ws,t(x⊗ y) = xy, x ∈ E(s), y ∈ E(t).

The structure p : E → (0,+∞) satisfying all of the above conditions is called a continuous
tensor product system of Hilbert spaces or just a continuous product system.

Example 1.2 (Continuous product systems associated with E0-semigroups)
Let α be an E0-semigroup of L(H). For every positive real number t, we consider the
linear space of operators

Eα
t := {T ∈ L(H) : αt(A)T = TA for all A ∈ L(H)}.
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The family of vector spaces {Eα
t : t ≥ 0} has three important properties. First of all, each

Eα
t is a Hilbert space. To see this, let S and T be two operators in Eα

t . Then

T ∗SA = T ∗αt(A)S = (αt(A
∗)T )∗S = (TA∗)∗S = AT ∗S

for all A ∈ L(H), i.e., T ∗S commutes with every operator in L(H), and hence, it must be
a scalar multiple of the identity operator:

T ∗S = 〈S, T 〉1.

This identity defines an inner product 〈·, ·〉 on Eα
t which turns Eα

t into a Hilbert space.

Now we let Eα be the set of ordered pairs

Eα := {(t, T ) : t > 0, T ∈ Eα
t },

and we let pα : Eα → (0,+∞) be the projection pα((t, T )) = t. Then the structure
pα : Eα → (0,+∞) is a family of Hilbert spaces having fibers (pα)−1(t) = Eα

t , t > 0.
Our second observation is that one can make Eα into an associative semigroup by using
operator multiplication:

(s, S)(t, T ) := (s+ t, ST ).

Then we have pα((s, S)(t, T )) = s+t = pα((s, S))+pα((t, T )), i.e., the projection becomes
a homomorphism of Eα onto the additive semigroup of positive real numbers.

Finally, this multiplication acts like tensoring in the sense that it defines a natural unitary
operator W α

s,t from the tensor product of Hilbert spaces Eα
s ⊗ Eα

t onto Eα
s+t, for every

s, t > 0. Wα
s,t is defined by

Wα
s,t(S ⊗ T ) := ST,

for all S ∈ Eα
s , T ∈ Eα

t . The fact that Wα
s,t is unitary is a consequence of the following

two properties relating multiplication and the inner products defined in the fiber spaces:

(i) If S, S ′ ∈ Eα
s and T, T ′ ∈ Eα

t , then 〈ST, S ′T ′〉 = 〈S, S ′〉〈T, T ′〉, and

(ii) Eα
s+t = span{ST : S ∈ Eα

s , T ∈ Eα
t }.

Property (i) follows directly from the definition of the inner product. For property (ii),
see [1, Proposition 2.2.], where Arveson also shows that Eα satisfies all of the remaining
conditions for a continuous product system. So we see that every E0-semigroup α gives
rise to an associated continuous product system Eα.
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1.2 Dinh’s discrete product systems

In [2], Arveson associated a C∗-algebra to each continuous product system. This C∗-
algebra is a separable C∗-algebra whose nondegenerate ∗-representations correspond bi-
jectively to representations of the continuous product system. Dinh extended the work
of Arveson and studied this C∗-algebra in the case when the parameter t varies over a
discrete subsemigroup of R+. We first want to provide Dinh’s definition of a discrete
product system and then show how the associated C∗-algebra can be constructed from a
given discrete product system E. We note that this construction will be similar to the
construction of the Cuntz algebra On from the Fock space or the CAR algebra from the
canonical anti-commutation relations.

Definition 1.3 (Dinh’s discrete product systems)
Let G be a countable dense subgroup of the real line equipped with the discrete topology
and let G+ denote the semigroup of strictly positive elements of G. A discrete product
system over G+ is defined to be a disjoint union E =

⋃
t∈G+ Et, where each fiber Et is

a separable Hilbert space. Moreover, there is an associative tensoring operation on E
satisfying

(i) For each s, t ∈ G+, there is a bilinear map (u, v) ∈ Es×Et 7→ uv ∈ Es+t. Moreover,
EsEt is dense in Es+t.

(ii) 〈uv, u′v′〉 = 〈u, u′〉〈v, v′〉 for every u, u′ ∈ Es and v, v′ ∈ Et, s, t ∈ G+.

Note that (i) and (ii) imply that the mapping u ⊗ v ∈ Es ⊗ Et 7→ uv ∈ Es+t, u ∈ Es,
v ∈ Et, s, t ∈ G+, extends to a unitary operator from Es ⊗ Et to Es+t.

Moreover, Dinh defines a representation of a discrete product system E on a Hilbert space
H to be a mapping φ : E → L(H) satisfying

1. φ(ξ)∗φ(η) = 〈η, ξ〉 1 for ξ, η ∈ Et and t ∈ G+,

2. φ(ξ)φ(η) = φ(ξη) for ξ, η ∈ E.

Then OE(G) is defined to be the C∗-algebra generated by the range of φ in L(H). Dinh
shows that OE(G) does not depend on the representation φ, i.e., if φ1 : E → L(H1)
and φ2 : E → L(H2) are two representations, then the map φ1(u) 7→ φ2(u) extends to a
∗-isomorphism from O1

E(G) onto O2
E(G).

He also presents one particular representation, the Fock representation l on the Fock
space F = CΩ⊕

⊕
t∈G+ Et, where Ω is the unit vacuum vector. The Fock representation

l : E → L(F) is defined by

l(u)Ω := u and l(u)w := uw
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for u ∈ Et, w ∈ Es. The operator l(u) is called the left creation operator. Its adjoint
is called the left annihilation operator and is uniquely characterized by the requirements
l(u)∗w = 0 for w ∈ CΩ ⊕

⊕
s∈G+∩(0,t)Es, l(u)

∗w = 〈w, u〉Ω for w ∈ Et and l(u)∗wv =

〈w, u〉v for w ∈ Et, v ∈ Es. It is easy to see that this defines a representation and Dinh
shows that the corresponding ∗-representation of OE(G) on F is irreducible. Now we take
a look at two examples for discrete product systems.

Example 1.4 (Discrete product systems over Z+)
For the sake of simplicity we drop the condition of G being dense in R in this first example
and consider the case G = Z. Let H = E1. Then E2

∼= E1⊗E1 = H⊗H, E3
∼= E1⊗E2

∼=
H⊗H⊗H, etc. Thus E =

⋃
n∈Z+ H⊗n and the Fock space F = CΩ⊕

⊕
n∈Z+ H⊗n is the

full Fock space.

The following example is a natural generalization of the above construction for Z, namely
when G is countable and dense in R. It was first studied by von Neumann in [19] and so
Dinh calls it a von Neumann discrete product system.

Example 1.5 (Von Neumann discrete product systems)
Let H be a fixed Hilbert space of dimension N = 1, 2, 3, . . . or ℵ0. We fix a unit vector
a ∈ H and for t ∈ G+, we define Et =

⊗
G+∩(0,t]H as follows. Let G denote the collection

of all finite subsets of G+ ∩ (0, t]. Then G is directed by inclusion. For T ∈ G, we form
the finite tensor product

⊗
T H and if T1, T2 ∈ G, T1 ⊆ T2, we define an embedding

αT2T1 :
⊗

T1
H →

⊗
T2
H by

αT2T1(x) := x⊗ a⊗T2\T1 ∈ (
⊗
T1

H)⊗ (
⊗
T2\T1

H) ∼=
⊗
T2

H

for x ∈
⊗

T1
H. Then we define Et to be the Hilbert space direct limit lim−→

⊗
T ∈GH.

Now let {f1 = a, f2, . . . , fN} be an orthonormal basis of H. Then an orthonormal basis of
Et consists of all vectors of the form

⊗
r∈G+∩(0,t] xr where xr ∈ {f1, f2, . . . , fN} and xr = a

for all but finitely many r. Note that Et is separable since H is separable and G+ ∩ (0, t]
is countable. For u ∈ Es and v ∈ Et, we define uv := u ⊗ v ∈ Es ⊗ Et

∼= Es+t, i.e., the
operation on E is tensoring.

1.3 Fowler’s discrete product systems of Hilbert bi-

modules

The next step in the generalization of discrete product systems is to replace the Hilbert
spaces Et by Hilbert bimodules. This is the concept of Fowler in [10]. In order to present
this concept we first have to provide some theory about Hilbert C∗-modules:
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Definition 1.6 (Hilbert C∗-modules)
Let A be a C∗-algebra and E a right A-module with an A-valued inner product

( . | . )A : E × E → A,

such that the following identities hold for ξ, η, η1, η2 ∈ E and a, b ∈ A:

1. ( ξ | η1 + η2 )A = ( ξ | η1 )A + ( ξ | η2 )A,

2. ( ξ · a | η · b )A = a∗( ξ | η )Ab,

3. ( ξ | η )A = ( η | ξ )∗A,

4. ( ξ | ξ )A ≥ 0, ( ξ | ξ )A = 0 =⇒ ξ = 0,

5. E is complete with respect to the norm ‖.‖E :=
√
‖( . | . )A‖A.

Then we call E a Hilbert A-module or a Hilbert C∗-module over the C∗-algebra A.

Now let E,F be Hilbert A-modules. A mapping Φ: E → F is called adjointable if there
is a mapping Φ∗ : F → E such that

( Φ(ξ) | η )A = ( ξ |Φ∗(η) )A

for all ξ ∈ E, η ∈ F . Note that an adjointable mapping Φ: E → F is always right A-linear
and bounded, i.e., Φ(ξ · a) = Φ(ξ) · a for all ξ ∈ E, a ∈ A and there is an M > 0 with
‖Φ(ξ)‖ ≤M‖ξ‖ for all ξ ∈ E. The set of all adjointable mappings from E to F is denoted
by L(E,F ). Instead of L(E,E) we just write L(E). It is easy to see that L(E) is a C∗-
algebra, see [15, page 8]. L(E) contains the ideal of generalized compact operators K(E),
which is the closed linear span of all operators θξ,η, ξ, η ∈ E, where θξ,η(ζ) = ξ · ( η | ζ )A.

Definition 1.7 (Hilbert bimodules)
Let A be a separable C∗-algebra. A Hilbert bimodule over A is a Hilbert A-module X
together with a ∗-homomorphism λ : A → L(X). We use λ to define a left action of A
on X via a · ξ := λ(a)(ξ) for a ∈ A and ξ ∈ X. Since λ(a) is adjointable, the following
identity holds for the left multiplication of A on X:

( a · ξ | η )A = ( ξ | a∗ · η )A,

for all ξ, η ∈ X and a ∈ A.

We notice that every Hilbert space H can be viewed as a Hilbert bimodule over the
C∗-algebra C.



1.3. Fowler’s discrete product systems of Hilbert bimodules 19

Example 1.8 (Directed graphs)
Suppose G = (V , E , s, r) is a directed graph with vertex set V , edge set E and mappings
s, r : E → V , which describe the source and range of edges. Let EG be the vector space
of all complex valued functions ξ on E for which the function

v ∈ V 7→
∑
e∈E

r(e)=v

|ξ(e)|2

belongs to the C∗-algebra AG := c0(V). For ξ, η ∈ EG, a ∈ AG, e ∈ E , v ∈ V , we define the
operations

(ξ · a)(e) := ξ(e)a(r(e)),

(a · ξ)(e) := a(s(e))ξ(e),

( ξ | η )AG(v) :=
∑
e∈E

r(e)=v

ξ(e)η(e),

which make EG a Hilbert bimodule over AG.

Example 1.9 (Endomorphisms)
Let A be a C∗-algebra and α an endomorphism on A. We set αA := A and define the
inner product and the left and right module multiplications by

( ξ | η )A := ξ∗η,

a · ξ := α(a)ξ,

ξ · a := ξa,

for ξ, η ∈ αA, a ∈ A. It is easy to see, that αA is a Hilbert bimodule over A. Note that
the norm on αA is just the norm on A, since ‖ξ‖2

αA = ‖( ξ | ξ )A‖A = ‖ξ∗ξ‖A = ‖ξ‖2
A.

Considering the case when α = id, we see that a C∗-algebra A can always be viewed as a
Hilbert bimodule idA over A.

Now let X be a Hilbert bimodule over A. A Toeplitz representation of X in a C∗-algebra
B is a pair (ψ, π) consisting of a linear mapping ψ : X → B and a ∗-homomorphism
π : A→ B such that

ψ(a · ξ · b) = π(a)ψ(ξ)π(b) and ψ(ξ)∗ψ(η) = π(( ξ | η )A)

for ξ, η ∈ X and a, b ∈ A. Given such a representation, there is a ∗-homomorphism
π(1) : K(X) → B which satisfies π(1)(θξ,η) = ψ(ξ)ψ(η)∗ for all ξ, η ∈ X. We say that
the Toeplitz representation (ψ, π) is Cuntz-Pimsner covariant if π(1)(λ(a)) = π(a) for all
a ∈ λ−1(K(X)), where λ : A→ L(X) is the ∗-homomorphism that defines the left action
of A on X. The Toeplitz algebra of X is the C∗-algebra TX which is universal for Toeplitz
representations of X, and the Cuntz-Pimsner algebra of X is the C∗-algebra OX which
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is universal for Toeplitz representations of X that are Cuntz-Pimsner covariant. Pimsner
showed in [20] that every crossed product by Z and every Cuntz-Krieger algebra can be
realized as OX for a suitable Hilbert bimodule X.

Fowler extends this concept to the case when X is a product system of Hilbert bimodules.
But in order to define the notion of a discrete product system of Hilbert bimodules we first
have to explain how the internal tensor product of two Hilbert bimodules is constructed
and what we mean by saying that two Hilbert bimodules are unitarily equivalent. So let
X and Y be two Hilbert bimodules over a C∗-algebra A. A mapping Φ: X → Y is called
a bimodule mapping if Φ(a · ξ · b) = a · Φ(ξ) · b for all a, b ∈ A and ξ ∈ X. It is called
adjointable if it is adjointable as a mapping from X to Y , where X and Y are considered
as Hilbert A-modules.

An adjointable bimodule mapping U : X → Y is called unitary if UU∗ = idY and U∗U =
idX . If there exists a unitary bimodule mapping U : X → Y , we say that X and Y are
unitarily equivalent, X ≈ Y .

Definition 1.10 (The internal tensor product of Hilbert bimodules)
In order to obtain the (internal) tensor product X ⊗A Y of two Hilbert bimodules X,Y
over a C∗-algebra A, we first establish an A-valued inner product on the vector space
tensor product X ⊗ Y given on simple tensors by

( ξ1 ⊗ η1 | ξ2 ⊗ η2 )A := ( η1 | ( ξ1 | ξ2 )A · η2 )A, ξ1, ξ2 ∈ X, η1, η2 ∈ Y.

Then we separate the kernel of this inner product and complete with respect to the norm
induced by ( . | . )A to get the (internal) tensor product X ⊗A Y , cf. [29, page 266]. We
define the bimodule operations by

a · (ξ ⊗ η) · b := (a · ξ)⊗ (η · b), a, b ∈ A, ξ ∈ X, η ∈ Y,

making X ⊗A Y a Hilbert bimodule over A. We note that the relation ξ · a⊗ η = ξ⊗ a · η
holds in X ⊗A Y for a ∈ A, ξ ∈ X and η ∈ Y .

Now we are able to present Fowler’s discrete product systems of Hilbert bimodules that
he introduced in [10].

Definition 1.11 (Fowler’s discrete product systems of Hilbert bimodules)
Let S be a countable semigroup with identity e and let A be a C∗-algebra. A discrete
product system over S is defined to be a disjoint union X =

⋃
s∈S Xs, where each fiber Xs

is a Hilbert bimodule over A. Moreover, there is an associative tensoring operation on X
such that for each s, t ∈ S, there is a mapping (ξ, η) ∈ Xs×Xt 7→ ξη ∈ Xst that extends to
a unitary bimodule mapping from the Hilbert bimodule Xs⊗AXt to the Hilbert bimodule
Xst. Moreover, Fowler requires that Xe = idA, see [10] for more details.
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So Fowler generalizes the discrete product systems of Dinh by replacing the Hilbert spaces
Et by Hilbert bimodules Xt. This is a generalization since we have already seen that a
Hilbert space H can always be viewed as a Hilbert bimodule over the complex numbers
C. Moreover, he admits arbitrary countable semigroups.

Fowler’s work was motivated by discrete semigroup dynamical systems. A discrete semi-
group dynamical system (A,S, α) consists of a C∗-algebra A and a discrete semigroup S
acting on A via endomorphisms α, i.e., for all s ∈ S there is an endomorphism αs on A
such that αs ◦αt = αst for all s, t ∈ S. Given such a discrete semigroup dynamical system
(A,S, α), Fowler constructs a discrete product system X(A,S, α) of Hilbert bimodules.
The following example shows how this can be done in the case when A is unital.

Example 1.12 (A semigroup acting on a C∗-algebra)
Let A be a unital C∗-algebra and let (A,S, α) be a discrete semigroup dynamical system.
We want to construct the corresponding discrete product system X(A,S, α) of Hilbert
bimodules. So we set Xs := αsA, s ∈ S, see Example 1.9. Then X(A,S, α) :=

⋃
s∈S Xs is

a disjoint union of Hilbert bimodules over A. Since αe = id, we have that Xe = idA. We
define a mapping Φs,t : Xt ×Xs → Xst by setting

Φs,t(ξ, η) := αs(ξ)η, ξ ∈ Xt, η ∈ Xs.

We claim that Φs,t extends to a unitary bimodule mapping from Xt ⊗A Xs to Xst that
we also denote by Φs,t. So let ξ ∈ Xt, η ∈ Xs and a ∈ A be arbitrary. Then we have
Φs,t(a · (ξ ⊗ η)) = Φs,t((a · ξ) ⊗ η) = Φs,t(αt(a)ξ ⊗ η) = αs(αt(a)ξ)η = αst(a)αs(ξ)η =
a · αs(ξ)η = a · Φs,t(ξ ⊗ η) and Φs,t((ξ ⊗ η) · a) = Φs,t(ξ ⊗ (η · a)) = Φs,t(ξ ⊗ (ηa)) =
αs(ξ)(ηa) = (αs(ξ)η)a = (αs(ξ)η) · a = Φs,t(ξ ⊗ η) · a, which shows that Φs,t is an A-A-
bimodule mapping. Next we define a mapping Ψs,t : Xst → Xt ⊗A Xs by

Ψs,t(ζ) := 1⊗ ζ.

Then we compute for ξ ∈ Xt, η ∈ Xs and ζ ∈ Xst:

( Φs,t(ξ ⊗ η) | ζ )A = (αs(ξ)η | ζ )A = η∗αs(ξ
∗)ζ = ( η |αs(ξ

∗)ζ )A = ( η | ξ∗ · ζ )A

= ( η | ( ξ | 1 )A · ζ )A = ( ξ ⊗ η | 1⊗ ζ )A = ( ξ ⊗ η |Ψs,t(ζ) )A

and so we see that Φs,t is adjointable with Φ∗
s,t = Ψs,t. Finally, we get that Φs,t(Φ

∗
s,t(ζ)) =

Φs,t(1 ⊗ ζ) = αs(1)ζ = ζ and Φ∗
s,t(Φs,t(ξ ⊗ η)) = Φ∗

s,t(αs(ξ)η) = 1 ⊗ αs(ξ)η = 1 ⊗ ξ · η =
1 · ξ ⊗ η = ξ ⊗ η. Hence, we conclude that Φs,tΦ

∗
s,t = idXst and Φ∗

s,tΦs,t = idXt⊗Xs ,
which shows that Φs,t is unitary. So we have seen that Φs,t extends to a unitary bimodule
mapping and hence, X(A,S, α) is a discrete product system of Hilbert bimodules over
the opposite semigroup S0.

Now suppose that X =
⋃

s∈S Xs is a discrete product system of Hilbert bimodules over
a C∗-algebra A and let ψ be a mapping from X to a C∗-algebra B. Let ψs denote the
restriction of ψ to Xs, s ∈ S. We call ψ a Toeplitz representation of X if
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1. for each s ∈ S, (ψs, ψe) is a Toeplitz representation of Xs, and

2. ψ(ξη) = ψ(ξ)ψ(η) for all ξ, η ∈ X.

We say that ψ is Cuntz-Pimsner covariant, if in addition each (ψs, ψe) is Cuntz-Pimsner
covariant.

Then Fowler constructs the Fock representation l : X → L(F(X)) on the Hilbert A-
module F(X) =

⊕
s∈S Xs. This construction is similar to the construction of Dinh’s Fock

representation on the Fock space F and it easy to see that it is a Toeplitz representation.

Moreover, he shows that there is a C∗-algebra TX , called the Toeplitz algebra of the product
system X, which is universal for Toeplitz representations of X. To be more precise, he
shows that given a product system X over a semigroup S, there is a C∗-algebra TX and
a Toeplitz representation iX : X → TX , such that for every Toeplitz representation ψ of
X, there is a unique ∗-homomorphism ψ∗ of TX such that ψ∗ ◦ iX = ψ.

Similarly, Fowler shows that there is a C∗-algebra OX , called the Cuntz-Pimsner alge-
bra of the product system X, which is universal for Cuntz-Pimsner covariant Toeplitz
representations of X.

Now let (A,S, α) be a discrete semigroup dynamical system. A (partial) isometric repre-
sentation of S on a Hilbert space H is a mapping V : S → L(H) such that Vs is a (partial)
isometry for all s ∈ S and VsVt = Vst for all s, t ∈ S. A covariant representation of
(A,S, α) on a Hilbert spaceH is a pair (π, V ) consisting of a nondegenerate representation
π : A→ L(H) and an isometric representation of S on H such that

π(αs(a)) = Vsπ(a)V ∗
s for all s ∈ S and a ∈ A. (1.1)

A crossed product for (A,S, α) is a triple (B, iA, iS) consisting of a C∗-algebra B, a
nondegenerate ∗-homomorphism iA : A→ B, and a mapping iS : S →M(B) such that

1. if σ is a nondegenerate representation of B, then (σ ◦ iA, σ ◦ iS) is a covariant
representation of (A,S, α) and

2. for every covariant representation (π, V ) of (A,S, α), there is a unique representation
π × V of B such that (π × V ) ◦ iA = π and π × V ◦ iS = V .

It can be shown that a crossed product exists and that it is unique up to canonical
isomorphism. We denote the crossed product by Aoα S.

Now Fowler shows that given a discrete semigroup dynamical system (A,S, α) and the
corresponding discrete product system X = X(A,S, α), the Cuntz-Pimsner algebra OX is
a crossed product for (A,S, α). Moreover he shows that the Toeplitz algebra TX also has
a crossed product structure: it is universal for pairs (π, V ) satisfying Equation (1.1) in
which π is a nondegenerate representation of A and V is a partial isometric representation
such that

V ∗
s Vsπ(a) = π(a)V ∗

s Vs for all s ∈ S and a ∈ A.



Chapter 2

A bicategorial view on product
systems

In the present chapter we want to provide new insights into product systems by analy-
zing them from a bicategorial point of view. We start with the category C∗ALG whose
objects are C∗-algebras and whose arrows are ∗-homomorphisms. Then we replace the
∗-homomorphisms by C∗-arrows (based on Hilbert bimodules, see below) and we examine
if this new structure C∗ARR still is a category. We will see that this is not the case but
that C∗ARR is an example of what is known as a bicategory. We will recall the concept
of a bicategory and we are going to provide several examples.

Following our overview of bicategories, we will introduce the “functors” between bica-
tegories, which are called morphisms. They allow us to give a very short and elegant
definition of the notion of a product system. Therefore, the product systems that origi-
nated from semigroups of ∗-endomorphisms in Arveson’s paper [1] can now be described
in a very natural way using the concept of morphisms between bicategories.

2.1 The bicategory of C∗-arrows

Before we start to deal with bicategories in this section, we first want to recall the notion
of a category to show the formal similarity between categories and bicategories.

Definition 2.1 (Categories)
A category C consists of the following data:

(A) a class Ob(C) of objects A, B, C, . . .,

(B) for every two objects A and B a set C(A,B) of arrows from A to B and

23
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(C) for every triple (A,B,C) of objects a mapping called composition

◦A,B,C : C(B,C)× C(A,B) → C(A,C)

(g, f) 7−→ g ◦ f = gf

such that

– the composition is associative and

– for each object A there is an arrow IA ∈ C(A,A), called the identity arrow on
A satisfying fIA = f and IBf = f for every f ∈ C(A,B).

We write f : A → B to indicate that f is an arrow from the object A to the object B.
By Arr(C) we denote the collection of all arrows between objects of C whereas the set
{(f, g) : f : A→ B, g : B → C, A,B,C ∈ Ob(C)} of all composable pairs of arrows will
be denoted by Arr(C) ◦ Arr(C). A category C is called small if Ob(C) is a set.

An arrow f ∈ C(A,B) is called invertible, if there is an arrow f̃ ∈ C(B,A) such that
f̃f = IA and ff̃ = IB. If such an arrow f̃ exists, it is unique and we write f̃ = f−1. In
this case the objects A and B are called isomorphic and we write A ∼= B.

An arrow m ∈ C(A,B) is called monic if for arbitrary arrows f1, f2 ∈ C(C,A) the equation
mf1 = mf2 holds only if f1 = f2. In other words, m is left-cancellative. An arrow
e ∈ C(A,B) is called epi if for arbitrary arrows g1, g2 ∈ C(B,C) the equation g1e = g2e
holds only if g1 = g2, i.e., e is right-cancellative.

Example 2.2 (Semigroups)
Let S be a small category with only one object A. Such a category is also called a monoid.
Then Arr(S) = Arr(S) ◦ Arr(S), i.e., all arrows are composable. The composition ◦ is
associative and fIA = IAf = f for all f ∈ Arr(S). Hence, (Arr(S), ◦) is a semigroup.
The unit element of (Arr(S), ◦) is IA.

On the other hand, if S is a semigroup with unit element e, we can view each element
s ∈ S as an arrow fs : A → A of a monoid S ′ with object A. The composition in S ′ is
defined by fs ◦ ft := fst. It is clear that S ′ is a small category. The identity arrow of S ′
is fe.

Example 2.3 (Partial order)
Let O be a small category with the property that |O(A,B)∪O(B,A)| ≤ 1 for all objects
A,B ∈ Ob(O), i.e., given two objects A,B of O, there is at most one arrow between
them. Then we can introduce a partial order on the objects of O by defining that A ≤ B
if and only if |O(A,B)| = 1, i.e., if and only if there is an arrow going from A to B.

Since for every object A, there is the identity arrow IA ∈ O(A,A), we have that A ≤ A
for all objects A. If A ≤ B and B ≤ C, there is an arrow f : A → B and an arrow
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g : B → C. Hence, there is an arrow gf : A→ C and thus A ≤ C. Finally, if A ≤ B and
B ≤ A we have an arrow f : A→ B and an arrow g : B → A. If we assume that A 6= B,
we have that |O(A,B)∪O(B,A)| ≥ 2, which contradicts the basic property of O. Hence,
we get A = B and so we have shown that the arrows of O define a partial order on the
set of objects of O.

On the other hand, given a partially ordered set M , we can always define a corresponding
small category OM in the following way. Let Ob(OM) := M and let there be an arrow
f : A → B, A,B ∈ Ob(OM), if and only if A ≤ B as elements of M . Now if f : A → B
and g : B → C are two arrows of OM , we know that A ≤ B and B ≤ C. Hence, A ≤ C
since M is partially ordered and so there is exactly one arrow h : A → C and we set
g ◦ f := h. This defines a composition on OM and it is easy to see that OM is a small
category with |OM(A,B) ∪ OM(B,A)| ≤ 1 for all A,B ∈ Ob(OM).

Examples 2.2 and 2.3 show that small categories are a generalization of semigroups on the
one hand as well as partially ordered sets on the other. These examples are complementary
in a sense, because in Example 2.2 we have only one object but arbitrarily many arrows
over this object, whereas in Example 2.3, we have arbitrarily many objects but at most
one arrow between two of these objects. So these are the two extreme cases that we
always want to keep in mind when we study product systems over small categories. Here
are two examples for categories that are not small:

Example 2.4 (Relations)
Let X and Y be sets. A relation R from X to Y is a subset of X×Y . Now let R : X → Y
and S : Y → Z be relations. We define the composition of R and S to be

SR := {(x, z) ∈ X × Z : ∃ y ∈ Y such that (x, y) ∈ R ∧ (y, z) ∈ S}.

This composition is clearly associative and given a set X, the relation IX : X → X,
IX = {(x, x) : x ∈ X} satisfies RIX = R and IXS = S for relations R : X → Y and
S : W → X. So if we take sets as objects and relations as arrows between these objects,
we get a category.

Example 2.5 (The category C∗ALG)
Let C∗ALG be the category with objects C∗-algebras and arrows ∗-homomorphisms. It
is clear that this is a category since the composition of ∗-homomorphisms is associative
and for every C∗-algebra A we have idA as identity arrow.

Definition 2.6 (C∗-arrows)
Let A and B be C∗-algebras. A C∗-arrow from A to B is a Hilbert B-module E together
with a ∗-homomorphism λ : A→ L(E).
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We will write E : A → B to indicate that E is a C∗-arrow from A to B and we will
consider E as an A-B-bimodule and hence, write a · ξ instead of λ(a)(ξ), a ∈ A, ξ ∈ E,
except when we discuss properties of λ or λ(a). We will say that E is a C∗-arrow over A
if E is a C∗-arrow from A to A. Hence, a C∗-arrow over a C∗-algebra A is nothing but a
Hilbert bimodule over A. We introduce this new name to emphasize that C∗-arrows will
be the arrows of the bicategory C∗ARR that we will present in a moment.

The following example shows that C∗-arrows are a generalization of ∗-homomorphisms
between C∗-algebras.

Example 2.7 (∗-homomorphisms as C∗-arrows)
Let A and B be C∗-algebras and suppose λ : A → B is a ∗-homomorphism. We set

λB := λ(A)B ⊆ B and define module operations and an inner product on λB by

a · ξ := λ(a)ξ,

ξ · b := ξb,

( ξ | η )B := ξ∗η,

for all ξ, η ∈ λB, a ∈ A and b ∈ B. It is easy to see, that λB becomes a C∗-arrow from A
to B.

Now let E,F : A → B be two C∗-arrows. A mapping Φ: E → F is called an A-B-
bimodule mapping if Φ(a · ξ · b) = a · Φ(ξ) · b for all a ∈ A, b ∈ B and ξ ∈ E. The
notions of adjointable and unitary A-B-bimodule mappings are defined similar to those
of adjointable and unitary bimodule mappings in section 1.3. We also say that E and F are
unitarily equivalent , E ≈ F , if there exists a unitary A-B-bimodule mapping U : E → F .

An adjointable A-B-bimodule mapping V : E → F is called isometric if V ∗V = idE. We
note that this yields (V ξ |V η )B = ( ξ |V ∗V η )B = ( ξ | η )B for all ξ, η ∈ E.

The (internal) tensor product E ⊗B F of two C∗-arrows E : A → B and F : B → C, is
also defined similar to the case in section 1.3, when E and F were Hilbert bimodules over
a C∗-algebra A. Here, E ⊗B F turns out to be a C∗-arrow from A to C.

Now we use this internal tensor product to introduce the composition F ◦ E or just FE
of two C∗-arrows E : A→ B and F : B → C by setting

FE := E ⊗B F.

This composition is not associative though, since for C∗-arrows E : A → B, F : B → C
and G : C → D, the C∗-arrows (GF )E and G(FE) are not identical, but only unitarily
equivalent, i.e., there is a unitary A-D-bimodule mapping αG,F,E : (GF )E → G(FE) given
on simple tensors by ξ ⊗ (η ⊗ ζ) 7→ (ξ ⊗ η) ⊗ ζ, ξ ∈ E, η ∈ F , ζ ∈ G. Thus we have
(GF )E ≈ G(FE) instead of equality.
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Given a C∗-algebra B, Example 1.9 tells us that idB is a C∗-arrow from B to B. We set
IB := idB. Then, given C∗-arrows E : A→ B and F : B → C, there exists a unitary A-B-
bimodule mapping λE : IBE → E as well as a unitary B-C-bimodule mapping ρF : FIB →
F given on simple tensors by

λE(η ⊗ ξ) := η · ξ and ρF (ξ ⊗ ζ) := ξ · ζ,

where ξ ∈ IB, η ∈ E and ζ ∈ F . Thus we have FIB ≈ F and IBE ≈ E.

So if we take C∗-algebras as objects and C∗-arrows as arrows we do not get a category
anymore, because associativity only holds up to unitary equivalence and also the identity
C∗-arrows IB are only identity arrows up to unitary equivalence. We notice however, that
for fixed C∗-algebras A and B, we get a category whose objects are C∗-arrows E : A→ B
and whose arrows are adjointable A-B-bimodule mappings between the C∗-arrows. What
we get when we take C∗-algebras as objects, C∗-arrows as arrows and adjointable bimodule
mappings as arrows between the arrows is a so called bicategory, whose definition we want
to recall.

Definition 2.8 (Bicategories)
A bicategory B consists of the following data:

(A) A class Ob(B) of objects A, B, C, . . .

(B) For every 2 objects A and B a category B(A,B) with objects f, g, h, . . . and arrows
α, β, γ, . . .. The objects of B(A,B) are called arrows from A to B and the arrows
of B(A,B) are called 2-cells between the arrows from A to B.

(C) For every triple (A,B,C) of objects a functor called composition

◦A,B,C : B(B,C)× B(A,B) → B(A,C)

(where we denote the composition of two arrows f, g by g ◦ f = gf and the compo-
sition of two 2-cells α, β by β ∗ α) such that

– for every triple f, g, h of arrows f : A → B, g : B → C, h : C → D there is an
invertible associator 2-cell

αh,g,f : (hg)f ⇒ h(gf),

– for every object A of B there is an arrow IA : A → A and for every arrow
f : A→ B there are invertible 2-cells

ρf : fIA ⇒ f, λf : IBf ⇒ f,
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and such that the following diagrams commute:

((hg)f)e) (hg)(fe) h(g(fe))

(h(gf))e h((gf)e)

- -

-

6

?

αhg,f,e αh,g,fe

αh,gf,e

αh,g,f∗ιe ιh∗αg,f,e

(gIB)f g(IBf)

gf

-

@
@

@
@@R

�
�

�
��	

αg,IB,f

ρg∗ιf ιg∗λf

Before we provide examples of bicategories, we first want to give a more detailed descrip-
tion of the notion of a bicategory. Like a category, a bicategory consists of objects and
arrows but contrary to a category, there are also arrows between the arrows, called 2-cells.

u u
PP��

PP��

��AA
A Bα

f

g

As in a category, arrows can be composed. For 2-cells however, there are two kinds of
compositions. First, given arrows f, g, h : A→ B and 2-cells α : f ⇒ g and β : g ⇒ h, we
can compose α and β to get a 2-cell βα : f ⇒ h, since B(A,B) is a category. We call this
composition the vertical composition.

u u
PP��

PP��

PP��

��AA

��AA

A B

α

β

f

g

h
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It is associative and for every arrow f there is an identity 2-cell ιf : f ⇒ f , since B(A,B)
is a category.

Secondly, given 2-cells α : f ⇒ f ′ and β : g ⇒ g′ as below, we can horizontally compose
them to obtain a 2-cell β ∗ α : gf ⇒ g′f ′:

u u u
PP��

PP��

PP��

PP��

��AA ��AA
A B Cα β

f

f ′

g

g′

Since the composition ◦A,B,C is a functor, the following interchange identity relating ver-
tical and horizontal composition holds in the situation below:

(δγ) ∗ (βα) = (δ ∗ β)(γ ∗ α).

u u
PP��

PP��

PP��

��AA

��AA

α

β

u
PP��

PP��

PP��

��AA

��AA

γ

δ

Now for arbitrary objects A,B,C,D of B and arbitrary arrows f : A → B, g : B → C
and h : C → D between these objects, we can form the arrows (hg)f and h(gf) from A
to D. If B was a category, then (hg)f and h(gf) would be equal. In a bicategory they
are not equal but there is an invertible associator 2-cell

αh,g,f : (hg)f ⇒ h(gf).

Furthermore, for any object A of B there is an arrow IA : A → A and for any arrow
f : A→ B there are invertible 2-cells

ρf : fIA ⇒ f, λf : IBf ⇒ f.

Example 2.9 (The bicategory C∗ARR)
Now we take a look at our motivating example of C∗-arrows between C∗-algebras again,
which was already introduced in a similar way by Landsman in [16]. We claim that we
are dealing with a bicategory that we denote by C∗ARR. The objects of C∗ARR are



30 Chapter 2. A bicategorial view on product systems

C∗-algebras, the arrows are C∗-arrows and the 2-cells are adjointable, isometric bimodule
mappings. The invertible 2-cells then turn out to be unitary bimodule mappings.

We have already seen that given C∗-arrows E : A→ B, F : B → C and G : C → D, there
is an invertible 2-cell (a unitary A-D-bimodule mapping) αG,F,E : (GF )E ⇒ G(FE). We
have also seen that given C∗-arrows E : A→ B and F : B → C, there exists an invertible
2-cell (a unitary A-B-bimodule mapping) λE : IBE ⇒ E as well as an invertible 2-cell (a
unitary B-C-bimodule mapping) ρF : FIB ⇒ F .

Now if E,F,G : A→ B are C∗-arrows and V : E ⇒ F and W : F ⇒ G are 2-cells, we let
WV : E → G be the usual composition of A-B-bimodule mappings. Then it is easy to see
that WV is an adjointable, isometric bimodule mapping and hence, a 2-cell WV : E ⇒ G
and it is clear that this vertical composition is associative. The identity 2-cell ιE : E ⇒ E
is the identity mapping on E.

If E,E ′ : A → B and F, F ′ : B → C are C∗-arrows and V : E ⇒ E ′ and W : F ⇒ F ′ are
2-cells, we define W ∗ V : FE ⇒ F ′E ′ by

(W ∗ V )(ξ ⊗ η) := V (ξ)⊗W (η)

for ξ ∈ E and η ∈ F . It is easy to see that W ∗ V is an isometric A-C-bimodule mapping
with adjoint W ∗ ∗ V ∗ and so it is clear that W ∗ V is a 2-cell. Moreover, it is rather
obvious that C∗ARR satisfies all of the remaining conditions of a bicategory.

Now we want to take a closer look at what it means that two C∗-algebras A and B are
isomorphic in C∗ARR. Therefore, we recall the notion of strong Morita equivalence from
[24]. Let X be a Hilbert B-module and an A-B-bimodule equipped with an A-valued
inner product A( · | · ), linear in the first variable, such that

A( ξ | η ) · ζ = ξ · ( η | ζ )B for all ξ, η, ζ ∈ X

and such that A(X |X ) and (X |X )B are dense in A and B, respectively. Then we call
X an A-B-equivalence bimodule. A and B are called strongly Morita equivalent if there
exists an A-B-equivalence bimodule.

If E is a C∗-arrow from A to B it is easy to see that K(E)( ξ | η ) := θξ,η, ξ, η ∈ E,
defines a K(E)-valued inner product which is linear in the first variable and satisfies

K(E)( ξ | η ) · ζ = θξ,η(ζ) = ξ · ( η | ζ )B for all ξ, η, ζ ∈ E. Now if K(E) ⊆ λ(A) and λ is
faithful on λ−1(K(E)), we can define an A-valued inner product on E by setting

A( ξ | η ) := λ−1(K(E)( ξ | η )) for all ξ, η ∈ E.

Moreover, if λ is an isomorphism from A onto K(E) and if (E |E )B is dense in B then
E is an A-B-equivalence bimodule.

By definition, two C∗-algebras A and B are isomorphic in C∗ARR if there is an invertible
C∗-arrow E : A→ B. We notice that this means that there is also a C∗-arrow F : B → A
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such that E ⊗B F = FE ≈ A and F ⊗A E = EF ≈ B. Schweizer shows in [25] that
E : A → B is an invertible C∗-arrow if and only if E is an A-B-equivalence bimodule.
Hence, two C∗-algebras are isomorphic in C∗ARR if and only if they are strongly Morita
equivalent in the sense of Rieffel.

Example 2.10 (Diagrams)
Let X and Y be sets. A diagram D : X → Y is a triple (D, s, r) consisting of a set of
edges D and source and range maps s : D → X, r : D → Y . We define the composition
of diagrams D1 : X → Y , D2 : Y → Z to be D2D1 := (D3, s3, r3) with

D3 := {(e, e′) ∈ D1 ×D2 : r1(e) = s2(e
′)},

s3((e, e
′)) = s1(e), r3((e, e

′)) = r2(e
′).

Now this composition is not associative. To see this, let D1 : W → X, D2 : X → Y and
D3 : Y → Z be diagrams and letD andD′ be the sets of edges of D3(D2D1) and (D3D2)D1,
respectively. Then D = {

(
(e1, e2), e3

)
: ei ∈ Di, i = 1, 2, 3, r1(e1) = s2(e2), r2(e2) =

s3(e3)} whereas D′ = {
(
e1, (e2, e3)

)
: ei ∈ Di, i = 1, 2, 3, r1(e1) = s2(e2), r2(e2) = s3(e3)}.

Hence, the sets of edges D and D′ are not equal, but the mapping

αD1,D2,D3 : D → D′,
(
(e1, e2), e3

)
7→

(
e1, (e2, e3)

)
is obviously invertible and respects the sources and ranges of the edges, i.e.,

s(e) = s′(αD1,D2,D3(e)) and r(e) = r′(αD1,D2,D3(e)) for all e ∈ D.

Moreover, for any set X there is a diagram IX = (IX , sX , rX) : X → X with set of edges
IX = X and sX(x) = rX(x) = x for all x ∈ IX . Then for any diagram D : X → Y we get
DIX = (Dρ, sρ, rρ) with

Dρ = {(x, e) ∈ IX ×D : s(e) = x}

and hence, there is an invertible mapping ρD : Dρ → D, (x, e) 7→ e, which respects the
sources and ranges of the edges. Analogously, we have IYD = (Dλ, sλ, rλ) with Dλ =
{(e, y) ∈ D × IY : r(e) = y} and an invertible mapping λD : Dλ → D, (e, y) 7→ e that
respects the sources and ranges of the edges. It is easy to check that the mappings
αD1,D2,D3 , ρD and λD fulfill all the requirements in Definition 2.8.

So we have a bicategory DIAG with objects sets, arrows diagrams between sets and 2-cells
mappings between sets of edges that respect the sources and ranges of the edges.

Example 2.11 (Relations)
In Example 2.4 we have seen that if we take sets as objects and relations as arrows between
these objects, we get a category C. We want to add 2-cells to C to get a bicategory SET≤.
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We let two sets X and Y be fixed and consider the set C(X, Y ) of relations R,S, T , . . .
from X to Y . These relations are by definition subsets of X×Y and so C(X, Y ) is partially
ordered by inclusion. Now every partially ordered set gives rise to a category as we know
from Example 2.3. We let SET≤(X, Y ) be this category, i.e., SET≤(X, Y ) is a category
whose objects are relations R,S, T , . . . from X to Y and whose arrows are the arrows
that come from the partial order on the set of relations.

Now we let SET≤ be the bicategory whose objects are sets, whose arrows are relations
between sets and whose 2-cells are the arrows that come from the partial order on the set of
relations. It is easy to see that SET≤ really is a bicategory. We notice that the associator
2-cells and also ρR and λR are the identity 2-cells, since the structure that remains if we
take SET≤ and forget about all the 2-cells is the category C. Such a bicategory is also
called a 2-category.

2.2 Product systems over small categories

In this section, after recalling the notion of a functor, we introduce morphisms, which are
the “functors” between bicategories. We give various examples for morphisms and finally,
we use a morphism to define the notion of a product system over a small category.

Definition 2.12 (Functors)
A functor F from a category C to a category C ′ is a map from the class of objects of C to
the class of objects of C ′ together with a map from the set C(A,B) for any objects A, B
of C to the set C ′(F (A), F (B)) satisfying the following conditions:

• F (IA) = I ′F (A) for all objects A of C,

• F (gf) = F (g)F (f) for all arrows f ∈ C(A,B), g ∈ C(B,C).

Since bicategories are a generalization of categories that possess a more complex struc-
ture, we expect the corresponding mappings between bicategories to be a generalization
of functors that also possess an extra structure. These mappings were introduced by
Bénabou in [4], who called them morphisms. They are defined as follows:

Definition 2.13 (Morphisms)
Let B and B′ be bicategories. A morphism (F,Φ) consists of a function F sending objects
of B to objects of B′ and for every pair (A,B) of objects in B a functor FA,B from the
category B(A,B) to the category B′(F (A), F (B)). Furthermore, given any triple (A,B,C)
of objects of B and arrows f : A→ B, g : B → C, there is a 2-cell

Φg,f : FB,C(g)FA,B(f) ⇒ FA,C(gf).
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Finally, for every object A of B, there is a 2-cell ΦA : I ′F (A) ⇒ FA,A(IA) such that for
every arrow f : A → B, g : B → C and h : C → D the following diagrams commute,
where we omit the indices and just write F (f) instead of FA,B(f):

(F (h)F (g))F (f) F (hg)F (f) F ((hg)f)

F (h)(F (g)F (f)) F (h)F (gf) F (h(gf))

- -

- -

??

Φh,g∗ι′F (f) Φhg,f

ι′
F (h)

∗Φg,f Φh,gf

α′
F (h),F (g),F (f) F (αh,g,f )

F (f)I ′F (A)

F (f)F (IA) F (fIA)

F (f)-

-

?

6
ι′
F (f)

∗ΦA

Φf,IA

ρ′
F (f)

F (ρf )

I ′F (B)F (f)

F (IB)F (f) F (IBf)

F (f)-

-

?

6
ΦB∗ι′F (f)

ΦIB,f

λ′
F (f)

F (λf )

If all the 2-cells Φg,f and ΦA are invertible, so that FB,C(g)FA,B(f) ∼= FA,C(gf) and
I ′F (A)

∼= FA,A(IA), then (F,Φ) is called a homomorphism. If all Φg,f and ΦA are identities,

so that FB,C(g)FA,B(f) = FA,C(gf) and I ′F (A) = FA,A(IA), then (F,Φ) is called a strict
homomorphism.

Example 2.14 (Unital algebras)
Let B be the bicategory 1 with only one object A, one arrow IA and one 2-cell ιIA

and let
B′ be the bicategory K-VECT. K-VECT has only one object, a field K. The arrows of
K-VECT are K-vector spaces and the 2-cells are K-linear mappings between these vector
spaces. The composition of two arrows is the vector space tensor product and the identity
arrow I ′K is K itself, viewed as a K-vector space.

Now let (F,Φ) be a morphism from B to B′, i.e., we have F (A) = K and FA,A(IA) = V
for some K-vector space V . Moreover, there are K-linear mappings ΦIA,IA

: V ⊗ V → V
and ΦA : K → V . We define a multiplication on V by setting u · v := ΦIA,IA

(u⊗ v) and
we set 1V := ΦA(1K). Then it follows from the axioms for morphisms above that the
multiplication is associative and that (λ1V ) · v = v · (λ1V ) = λv for λ ∈ K, v ∈ V and
hence, V becomes a unital K-algebra with respect to this multiplication and with 1V as
a unit.

On the other hand, given a unital K-algebra V , we can define a morphism (F,Φ) from 1 to
K-VECT by setting F (A) := K, FA,A(IA) := V , ΦIA,IA

(u⊗v) := u ·v and ΦA(λ) := λ ·1V .
Thus there is a 1-1 correspondence between morphisms from 1 to K-VECT on the one
hand and unital K-algebras on the other.
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Example 2.15 (Relations and diagrams)
In this example we want to provide a morphism (F,Φ) from B = SET≤ (Example 2.11)
to B′ =DIAG (Example 2.10). Of course, we set F (X) := X for a set X. Now let
R : X → Y be a relation. Then we set FX,Y (R) := DR := (DR, sR, rR) with DR = R,
sR((x, y)) = x and rR((x, y)) = y.

Suppose R,S are relations from X to Y with R ⊆ S. Then there is a 2-cell β : R ⇒ S.
We let FX,Y (β) be the embedding of DR into DS which is surely a 2-cell from DR to DS ,
since it respects the sources and ranges of the edges. It is easy to check that FX,Y is a
functor from B(X,Y ) to B′(X,Y ).

Now let R : X → Y and S : Y → Z be relations. We are looking for a 2-cell

ΦS,R : DSDR ⇒ DSR.

By the definition of DS , DR and the composition of diagrams it is clear that DSDR =
(D, s, r) with D = {

(
(x, y), (y, z)

)
: (x, y) ∈ R, (y, z) ∈ S}, s

((
(x, y), (y, z)

))
= x

and r
((

(x, y), (y, z)
))

= z. Moreover, we have DSR = (DSR, sSR, rSR) with DSR =
SR = {(x, z) ∈ X × Z : ∃ y ∈ Y such that (x, y) ∈ R ∧ (y, z) ∈ S}, sSR((x, z)) = x,
rSR((x, z)) = z. So the only mapping from D to DSR that respects the source and range
of the edges is defined by

ΦS,R
((

(x, y), (y, z)
))

= (x, z).

It is not hard to check that this mapping is suitable to make the first diagram in Definition
2.13 commute.

Finally, given a set X, we are looking for a 2-cell ΦX : I ′X ⇒ FX,X(IX). But this is easy,
we just have to remember that I ′X = (I ′X , s

′
X , r

′
X) with I ′X = X and FX,X(IX) = DIX

=
(DIX

, sIX
, rIX

) with DIX
= {(x, x) : x ∈ X} and so there is only one way to define a

mapping from I ′X to DIX
that respects the sources and ranges of the edges and this is

ΦX(x) = (x, x).

Again it is easy to see that the remaining two diagrams of Definition 2.13 commute with
ΦX defined like this and hence, (F,Φ) is a morphism from SET≤ to DIAG.

Example 2.16 (The embedding of C∗ALG in C∗ARR)
We have already studied the category C∗ALG as well as the bicategory C∗ARR. Now
we want to provide a morphism that embeds C∗ALG in C∗ARR. We make C∗ALG a
bicategory (in fact it is a 2-category) by adding identity 2-cells to every arrow. For a C∗-
algebra A, we set F (A) := A and for a ∗-homomorphism λ : A→ B, we set FA,B(λ) := λB,
see Example 2.7. Now, given C∗-algebras A,B,C and ∗-homomorphisms λ : A → B and
µ : B → C, we define a 2-cell Φµ,λ : µCλB ⇒ µ◦λC by setting

Φµ,λ(ξ ⊗ η) := µ(ξ)η
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for ξ ∈ λB = λ(A)B, η ∈ µC = µ(B)C. To see that Φµ,λ(ξ ⊗ η) ∈ µ◦λC let ξ = λ(a)b
with a ∈ A, b ∈ B, and let η ∈ µC be arbitrary. Then we have Φµ,λ(ξ ⊗ η) = µ(ξ)η =

µ(λ(a)b)η = (µ ◦ λ)(a)µ(b)η ∈ (µ ◦ λ)(A)C = µ◦λC, since µ(b)η ∈ C. The following
computation shows that Φµ,λ is an A-C-bimodule mapping:

Φµ,λ(a · (ξ ⊗ η) · c) = µ(a · ξ)(η · c) = µ(λ(a)ξ)ηc = (µ ◦ λ)(a)(µ(ξ)η)c = a · Φµ,λ(ξ ⊗ η) · c

for a ∈ A, ξ ∈ λB, η ∈ µC and c ∈ C. It is also easy to see that Φµ,λ is isometric. Moreover,

we have Φµ,λ(λB ⊗ µC) = Φµ,λ(λ(A)B ⊗ µ(B)C) = µ(λ(A)B)µ(B)C = µ(λ(A))µ(B)C =

µ(λ(A))C = µ◦λC, since µ(B)C ⊆ C yields µ(λ(A))µ(B)C ⊆ µ(λ(A))C and µ(λ(A)) =

µ(λ(A))µ(λ(A)) ⊆ µ(λ(A))µ(B) yields µ(λ(A))C ⊆ µ(λ(A))µ(B)C. This shows that Φµ,λ

is isometric and surjective and hence unitary. To see that the first diagram in Definition
2.13 commutes, suppose that A,B,C,D are C∗-algebras and that λ : A→ B, µ : B → C,
ν : C → D are ∗-homomorphisms. Furthermore, let ξ ∈ λB, η ∈ µC and ζ ∈ νD be
arbitrary. Note that F (αν,µ,λ) = id since αν,µ,λ = id, C∗ALG being a category. So we
have

F (αν,µ,λ) ◦ Φνµ,λ ◦ (Φν,µ ∗ ιλE)(ξ ⊗ (η ⊗ ζ)) = Φνµ,λ(ξ ⊗ ν(η)ζ) = (ν ◦ µ)(ξ)ν(η)ζ and

Φν,µλ ◦ (ι′
νE ∗ Φµ,λ) ◦ α′νE,µE,λE(ξ ⊗ (η ⊗ ζ)) = Φν,µλ ◦ (ι′

νE ∗ Φµ,λ)((ξ ⊗ η)⊗ ζ)

= Φν,µλ(µ(ξ)η ⊗ ζ)

= ν(µ(ξ)η)ζ = (ν ◦ µ)(ξ)ν(η)ζ.

Having provided all of the above examples, we come to the main reason why we introduced
morphisms. It gives us the possibility to define the notion of a product system over a
small category in a very short and elegant way. By an index category J we shall mean a
small category with objects i, j, k, . . . and arrows r, s, t, . . .. Notice that an index category
J can always be considered as a bicategory: just add an identity 2-cell to each arrow.
The 2-cells αr,s,t and ρr, λr are the identity 2-cells, of course, since J is a category.

Now it is easy to define the notion of a product system in one sentence:

Definition 2.17 (Product systems over a small category)
A product system (F,Φ) over an index category J is a morphism from J to the bicategory
C∗ARR.

But let us repeat what this means exactly. For every object i in J there is a C∗-algebra
F (i) in C∗ARR, which we denote by Ai, and for every arrow r : i→ j there is a C∗-arrow
Fi,j(r) from Ai to Aj, which we denote by Fr. We also write Fi for the C∗-arrow Fi,i(Ii).
Moreover, given any triple (i, j, k) of objects of J and arrows r : i→ j, s : j → k, there is
an isometric, adjointable Ai-Ak-bimodule mapping

Φs,r : FsFr ⇒ Fsr,
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such that the following coherence condition holds for the family Φs,r:

Φt,sr ◦ (Φs,r ⊗ ι′Ft
)
(
(ξr ⊗ ξs)⊗ ξt

)
= Φts,r ◦ (ι′Fr

⊗ Φt,s)
(
ξr ⊗ (ξs ⊗ ξt)

)
, (2.1)

where ξr ∈ Fr, ξs ∈ Fs, ξt ∈ Ft and r : i → j, s : j → k, t : k → l. This coherence
condition corresponds to the commutativity of the first diagram in Definition 2.13. Note
that αt,s,r = ιtsr, since J is a category and hence, Fi,l(αt,s,r) = ι′Fi,l(tsr)

, since Fi,l is

a functor. We get a multiplication on the composable parts of
⋃

r∈Arr(J) Fr by setting

ξr · ξs := Φs,r(ξr ⊗ ξs) for ξr ∈ Fr and ξs ∈ Fs. We note that Equation (2.1) yields the
associativity of this multiplication.

Finally, given any object i of J , there is an isometric, adjointable Ai-Ai-bimodule mapping
Φi : I ′Ai

⇒ Fi such that for any arrow r : i→ j the following identities hold:

Φr,Ii
◦ (Φi ⊗ ι′Fr

) = ρ′Fr
, ΦIj ,r ◦ (ι′Fr

⊗ Φj) = λ′Fr
. (2.2)

These identities correspond directly to the commutativity of the second and third diagram
in Definition 2.13. Notice that ρr = λr = ιr, since J is a category and thus Fi,j(ρr) =
Fi,j(λr) = ι′Fi,j(r)

, since Fi,j is a functor.

So there are two major differences between Fowler’s discrete product systems and our
product systems. The first difference is that Fowler only studies product systems over
semigroups whereas we allow product systems over arbitrary small categories. The other
difference is that Fowler requires that Es ⊗A Et and Est be unitarily equivalent. We only
require that there be an isometric, adjointable bimodule mapping Φs,t : FsFt → Fst. In
fact, Fowler’s definition is a special case of our definition as the following example shows.

Example 2.18 (Fowler’s discrete product systems of Hilbert bimodules)
Let S be a countable semigroup with identity e and let A be a C∗-algebra. By (S0)′

we denote the monoid with object i that corresponds to the opposite semigroup S0 (see
Example 2.2). We take (S0)′ as an index category and we let (F,Φ) be a product system
over (S0)′ such that (F,Φ) is a homomorphism with F (i) = A and Φi = id. Then for
every fs ∈ Arr((S0)′) we get a C∗-arrow (and hence a Hilbert bimodule) Xs := Fi,i(fs)
over A. Moreover there are unitary bimodule mappings

Φft,fs : XtXs = Xs ⊗A Xt → Xst

for every fs, ft ∈ Arr((S0)′), since (F,Φ) is a homomorphism. We also have that Xe =
Fi,i(fe) = Fi = IA = idA, since Φi = id. Hence, X =

⋃
s∈S Xs is a discrete product system

of Hilbert bimodules over the semigroup S in the sense of Fowler.



Chapter 3

The reduced Toeplitz and
Cuntz-Pimsner algebras

In this chapter we associate two C∗-algebras to every given product system (F,Φ), namely
the reduced Toeplitz algebra Tr(F,Φ) and the reduced Cuntz-Pimsner algebra Or(F,Φ),
and we study various special cases.

First, we introduce the notion of a Toeplitz representation from a product system (F,Φ)
to a C∗-algebra and we provide some technical results about homomorphisms between
Hilbert C∗-modules that we will need later. Then we introduce the Fock correspondence
F(F,Φ) of a given product system (F,Φ) and we construct one particular Toeplitz repre-
sentation, the reduced Toeplitz representation from (F,Φ) to the reduced Toeplitz algebra
Tr(F,Φ), which is a C∗-subalgebra of L(F(F,Φ)). We introduce the reduced crossed pro-
duct AoE N of a C∗-algebra A by a C∗-arrow E as the reduced Toeplitz algebra Tr(F,Φ)
for a specific product system (F,Φ) over the natural numbers N. Moreover, we define
the reduced Cuntz-Pimsner algebra to be the quotient of Tr(F,Φ) modulo the ideal of
compact operators in Tr(F,Φ).

Finally, we provide various examples, which show that our method of constructing the
reduced Toeplitz and Cuntz-Pimsner algebras generalizes many other constructions of
C∗-algebras. Our findings show that depending on how we choose our product system
(F,Φ), the resulting C∗-algebras Tr(F,Φ) and Or(F,Φ), respectively, are isomorphic to
the direct sum of a family of C∗-algebras, the direct limit of a direct system of C∗-algebras
or the crossed product of a C∗-algebra by a group or a semigroup.

3.1 Toeplitz representations

In [10], Fowler introduced the notion of a Toeplitz representation of a discrete product
system X over a semigroup S. The following definition generalizes this concept to our
situation.

37
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Definition 3.1 (Toeplitz representations)
Let J be an index category and let (F,Φ) be a product system over J . A Toeplitz
representation π from (F,Φ) into a C∗-algebra B consists of a family of ∗-homomorphisms
{πi : Ai → B, i ∈ Ob(J)} and linear mappings {πr : Fr → B, r ∈ Arr(J)} such that the
following identities hold:

πr(ai · ξr · aj) = πi(ai)πr(ξr)πj(aj),

πr(ξr)
∗πr(ηr) = πj

(
( ξr | ηr )Aj

)
,

πsr

(
Φs,r(ξr ⊗ ξs)

)
= πr(ξr)πs(ξs),

πIi
◦ Φi = πi,

πi(ai)πj(aj) = 0 for i 6= j,

where ξr, ηr ∈ Fr, ai ∈ Ai, aj ∈ Aj and ξs ∈ Fs, r : i → j, s : j → k ∈ Arr(J). For a
Toeplitz representation π from a product system (F,Φ) into a C∗-algebra B we just write
π : (F,Φ) → B.

Example 3.2 (Covariant semigroup homomorphisms)
Let (A,S, α) be the discrete semigroup dynamical system from Example 1.12, in par-
ticular, let A be unital again. We set Fs := αsA and define Φs,t : FsFt → Fst by
Φs,t(ξt ⊗ ξs) := αs(ξt)ξs for ξt ∈ Ft and ξs ∈ Fs. Then (F,Φ) is a product system over
the monoid that comes from the semigroup S. Now let (π, V ) be a covariant homomor-
phism from (A,S, α) to a unital C∗-algebra B, i.e., π is a nondegenerate ∗-homomorphism
from A to B and V is a semigroup homomorphism from S to the semigroup of isometric
elements of B such that

π(αs(a)) = Vsπ(a)V ∗
s

for all a ∈ A and s ∈ S. Then we set πi := π and πr(ξr) := V ∗
r π(ξr) for ξr ∈ Fr and we

claim that this defines a Toeplitz representation from (F,Φ) into B. So we let a, b ∈ A,
ξr, ηr ∈ Fr and ξs ∈ Fs be arbitrary and compute

πr(a · ξr · b) = πr(αr(a)ξrb) = V ∗
r π(αr(a)ξrb) = V ∗

r π(αr(a))π(ξr)π(b)

= π(a)V ∗
r π(ξr)π(b) = πi(a)πr(ξr)πi(b),

πr(ξr)
∗πr(ηr) = π(ξr)

∗VrV
∗
r π(ηr) = π(ξr)

∗Vrπ(1)V ∗
r π(ηr) = π(ξr)

∗π(αr(1))π(ηr)

= π(ξ∗rαr(1)ηr) = π(ξ∗rηr) = π(( ξr | ηr )A) = πi(( ξr | ηr )A) and

πr(ξr)πs(ξs) = V ∗
r π(ξr)V

∗
s π(ξs) = V ∗

r V
∗
s Vsπ(ξr)V

∗
s π(ξs) = (VsVr)

∗π(αs(ξr))π(ξs)

= V ∗
srπ(αs(ξr)ξs) = πsr(αs(ξr)ξs) = πsr(Φs,r(ξr ⊗ ξs)).

Let e be the unit element in S. Then αe = id ∈ End(A) and Ve = 1B. Hence, Fe = idA =
I ′A and so Φi = id, which yields that πIi

◦ Φi(ξ) = πe(ξ) = V ∗
e πi(ξ) = 1∗Bπi(ξ) = πi(ξ) for

ξ ∈ I ′A = A. The last identity holds trivially, since there is only one object i ∈ Ob(J) and
so we have shown that π in fact is a Toeplitz representation.
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Definition 3.3 (Homomorphisms between Hilbert C∗-modules)
Let E be a Hilbert A-module and F be a Hilbert B-module. A homomorphism from
(E,A) to (F,B) is a pair (λE, λA) consisting of a linear mapping λE : E → F and a
∗-homomorphism λA : A→ B such that

λE(ξ · a) = λE(ξ) · λA(a) and (λE(ξ1) |λE(ξ2) )B = λA(( ξ1 | ξ2 )A)

for all ξ, ξ1, ξ2 ∈ E and a ∈ A. We write (λE, λA) : (E,A) → (F,B) to indicate that
(λE, λA) is a homomorphism from the Hilbert A-module E to the Hilbert B-module F and
(λE, λA) : (E,A) → B if (λE, λA) is a homomorphism from (E,A) to the Hilbert B-module

idB. For homomorphisms (λE, λA) : (E,A) → (F,B) and (µF , µB) : (F,B) → (G,C) we
set

(µF , µB) ◦ (λE, λA) := (µF ◦ λE, µB ◦ λA)

and it is easy to see that this makes (µF , µB) ◦ (λE, λA) a homomorphism from (E,A) to
(G,C).

Example 3.4 Let A and B be C∗-algebras and let π : A → B be a ∗-homomorphism.
We set E := idA and F := idB. Then (π, π) is a homomorphism from (E,A) to (F,B),
because π(ξ · a) = π(ξa) = π(ξ)π(a) = π(ξ) · π(a) and (π(ξ1) |π(ξ2) )B = π(ξ1)

∗π(ξ2) =
π(ξ∗1ξ2) = π(( ξ1 | ξ2 )A) for all ξ, ξ1, ξ2 ∈ E and a ∈ A.

Example 3.5 Let (F,Φ) be a product system over J and let π be a Toeplitz represen-
tation from (F,Φ) into a C∗-algebra B. If r : i → j is an arrow of J , then it is easy to
see that the pair (πr, πj) is a homomorphism from (Fr, Aj) to B. This is the main reason
why we recall the concept of homomorphisms between Hilbert C∗-modules.

Lemma 3.6 Let (λE, λA) : (E,A) → (F,B) be a homomorphism of Hilbert C∗-modules.
Then the identity

λK(E)(θξ,η) := θλE(ξ),λE(η) ξ, η ∈ E

uniquely defines a ∗-homomorphism λK(E) : K(E) → K(F ).

Proof: From [14, Lemma 2.1] we know that if X is a Hilbert C∗-module over a C∗-algebra
C then the following identity holds for ξ1, . . . , ξn, η1, . . . , ηn ∈ X:

∥∥∥ n∑
i=1

θξi,ηi

∥∥∥ = ‖(( ξi | ξj )C)
1/2
ij (( ηi | ηj )C)

1/2
ij ‖,
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where the norm on the right hand side is the C∗-norm on Mn(C). Now it follows easily
that ∥∥∥ n∑

i=1

θλE(ξi),λE(ηi)

∥∥∥ = ‖((λE(ξi) |λE(ξj) )B)
1/2
ij ((λE(ηi) |λE(ηj) )B)

1/2
ij ‖

= ‖(λA(( ξi | ξj )A))
1/2
ij (λA(( ηi | ηj )A))

1/2
ij ‖

= ‖λ(n)
A ((( ξi | ξj )A)ij)

1/2λ
(n)
A ((( ηi | ηj )A)ij)

1/2‖
= ‖λ(n)

A ((( ξi | ξj )A)
1/2
ij (( ηi | ηj )A)

1/2
ij )‖

≤ ‖(( ξi | ξj )A)
1/2
ij (( ηi | ηj )A)

1/2
ij ‖ =

∥∥∥ n∑
i=1

θξi,ηi

∥∥∥,
where λ

(n)
A : Mn(A) →Mn(B) is the ∗-homomorphism given by λ

(n)
A ((aij)ij) = (λA(aij))ij.

This shows that the mapping λK(E) : K(E) → K(F ) given by

λK(E)

( n∑
i=1

θξi,ηi

)
:=

n∑
i=1

λK(E)(θξi,ηi
) =

n∑
i=1

θλE(ξi),λE(ηi)

is well defined and contractive on the linear span of {θξ,η : ξ, η ∈ E}. For ξ1, ξ2, η1, η2 ∈ E
we have

λK(E)(θξ1,η1θξ2,η2) = λK(E)(θξ1·( η1 | ξ2 )A,η2) = θλE(ξ1·( η1 | ξ2 )A),λE(η2)

= θλE(ξ1)·λA(( η1 | ξ2 )A),λE(η2) = θλE(ξ1)·( λE(η1) |λE(ξ2) )B ,λE(η2)

= θλE(ξ1),λE(η1)θλE(ξ2),λE(η2) = λK(E)(θξ1,η1)λK(E)(θξ2,η2)

since (λE, λA) is a homomorphism. From this it easily follows that λK(E) is multiplica-
tive on the linear span of {θξ,η : ξ, η ∈ E}. Moreover, we have λK(E)((

∑n
i=1 θξi,ηi

)∗) =
λK(E)((

∑n
i=1 θηi,ξi

)) =
∑n

i=1 θλE(ηi),λE(ξi) = (
∑n

i=1 θλE(ξi),λE(ηi))
∗ = λK(E)(

∑n
i=1 θξi,ηi

)∗. Now,
since λK(E) is a contraction on the linear span of {θξ,η : ξ, η ∈ E}, we know that there is
a unique extension of λK(E) to all of K(E) and that this extension is a ∗-homomorphism
from K(E) to K(F ). 2

Corollary 3.7 Let (λE, λA) : (E,A) → B be a homomorphism of Hilbert C∗-modules.
Then the identity

λK(E)(θξ,η) := λE(ξ)λE(η)∗ ξ, η ∈ E
uniquely defines a ∗-homomorphism λK(E) : K(E) → B.

Proof: If we view B as Hilbert C∗-module over itself, we have θξ,ηζ = ξ · ( η | ζ )B = ξη∗ζ
for ξ, η, ζ ∈ B and so wet get that K(B) ∼= B by identifying θξ,η with the operation of left
multiplication by ξη∗. Hence, the assertion follows directly from Lemma 3.6. 2
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3.2 The reduced Toeplitz algebra

Now we want to present the construction of the reduced Toeplitz algebra. First, we recall
the notions of the direct sum of a family of C∗-algebras and the inner and outer direct
sums of families of Hilbert C∗-modules, which we need to define the Fock correspon-
dence F(F,Φ) of a given product system (F,Φ) over an index category J . F(F,Φ) is
a C∗-arrow over the direct sum of the family {Ai : i ∈ Ob(J)}. Hence, we are able to
define generalized shift operators πr(ξr), ξr ∈ Fr, r ∈ Arr(J), and multiplication operators
πi(ai), ai ∈ Ai, i ∈ Ob(J), on F(F,Φ) and we show that π is a Toeplitz representation
from (F,Φ) to L(F(F,Φ)). Finally, we define the reduced Toeplitz algebra Tr(F,Φ) to be
the C∗-algebra generated by the image of (F,Φ) under π.

Definition 3.8 (The direct sum of C∗-algebras)
The direct sum of a family {Ai : i ∈ I} of C∗-algebras is defined by

AI :=
⊕
i∈I

Ai := {(ai) ∈
∏
i∈I

Ai : lim
i→∞

‖ai‖ = 0}.

Here limi→∞ ‖ai‖ = 0 means that for every ε > 0 there is a finite subset L(ε) ⊂ I such
that ‖ai‖ < ε for all i ∈ I\L(ε). We define addition, multiplication, multiplication by
scalars and involution componentwise. Moreover, we define a norm on AI by setting
‖(ai)‖ := supi∈I ‖ai‖. It is not hard to see that this makes AI a C∗-algebra.

Definition 3.9 (The inner and outer direct sum of Hilbert C∗-modules)
Let {Fj : j ∈ I} be a family of Hilbert A-modules. Then we define the inner direct sum
of {Fj : j ∈ I} by⊕

j∈I

(i)
Fj := {(ξj) ∈

∏
j∈I

Fj :
∑
j∈I

( ξj | ξj )A converges in A}.

We define the right multiplication by A componentwise and an A-valued inner product by
( (ξj) | (ηj) )A :=

∑
j∈I( ξj | ηn )A for (ξj), (ηj) ∈

⊕(i)
j∈I Fj. It is easy to see that this makes⊕(i)

j∈I Fj a Hilbert A-module, see [15, pages 5-6].

Now let {(Fj, Aj) : j ∈ I} be a family of Hilbert C∗-modules. We define the outer direct
sum of {Fj : j ∈ I} by⊕

j∈I

(o)
Fj := {(ξj) ∈

∏
j∈I

Fj : (( ξj | ξj )Aj
)j∈I ∈

⊕
j∈I

Aj}.

Again, we define a right multiplication by elements of
⊕

j∈I Aj componentwise and an
inner product that takes values in

⊕
j∈I Aj by ( (ξj) | (ηj) )⊕

Aj
:= (( ξj | ηj )Aj

)j∈I for

(ξj), (ηj) ∈
⊕(o)

j∈I Fj. It is not hard to see that this inner product is well defined and that

it makes
⊕(o)

j∈I Fj a Hilbert C∗-module over
⊕

j∈I Aj.
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Proposition 3.10 Let {(Fn, An) : n ∈ I} be a family of Hilbert C∗-modules. Then

L(
⊕
n∈I

(o)
Fn) ∼=

∏
n∈I

L(Fn) and K(
⊕
n∈I

(o)
Fn) ∼=

⊕
n∈I

K(Fn).

Proof: Let T ∈ L(
⊕(o)

n∈I Fn) be arbitrary. Then it is easy to see that T (Fn) ⊂ Fn, where

we view Fn as a submodule of
⊕(o)

n∈I Fn. We let T |Fn ∈ L(Fn) denote the restriction of T

to Fn and define a mapping ϑ : L(
⊕(o)

n∈I Fn) →
∏

n∈I L(Fn) by setting

ϑ(T ) := (T |Fn)n∈I .

It is clear that ϑ(T ) ∈
∏

n∈I L(Fn), since ‖T |Fn‖ ≤ ‖T‖ for all n ∈ I and it is easy to see
that ϑ is an injective ∗-homomorphism. To see that ϑ is surjective, let (Tn) ∈

∏
n∈I L(Fn)

be arbitrary. We have to find a T ∈ L(
⊕(o)

n∈I Fn) with T |Fn = Tn for all n ∈ I. Since

L(Fn) ⊂ L(
⊕(o)

n∈I Fn) we set T :=
∑

n∈I Tn. If we can show that this sum defines an

element of L(
⊕(o)

n∈I Fn) then it is clear that T is the element we are looking for. We

have to show that (
∑

n∈I Tn)(ξn) = (Tnξn) ∈
⊕(o)

n∈I Fn for (ξn) ∈
⊕(o)

n∈I Fn. But this is
easy to see, since ‖Tnξn‖ ≤ ‖Tn‖‖ξn‖ ≤ M‖ξn‖ and so limn→∞ ‖(Tnξn |Tnξn )An‖ =

limn→∞ ‖( ξn | ξn )An‖ = 0, since (ξn) ∈
⊕(o)

n∈I Fn. So we have shown that ϑ is a ∗-

isomorphism from L(
⊕(o)

n∈I Fn) to
∏

n∈I L(Fn).

Since K(
⊕(o)

n∈I Fn) is a C∗-subalgebra of L(
⊕(o)

n∈I Fn), we can restrict ϑ to K(
⊕(o)

n∈I Fn)

to get a ∗-isomorphism from K(
⊕(o)

n∈I Fn) to ϑ(K(
⊕(o)

n∈I Fn)). So it remains to prove that

ϑ(K(
⊕(o)

n∈I Fn)) =
⊕

n∈I K(Fn). We let (ξn), (ηn) ∈
⊕(o)

n∈I Fn. Then it is easy to see that

ϑ(θ(ξn),(ηn)) = (θξn,ηn)n∈I

and (θξn,ηn)n∈I ∈
⊕

n∈I K(Fn), since 0 ≤ limn→∞ ‖θξn,ηn‖ ≤ limn→∞ ‖ξn‖‖ηn‖ = 0. Hence,

ϑ(K(
⊕(o)

n∈I Fn)) ⊆
⊕

n∈I K(Fn). Now let (Kn)n∈I ∈
⊕

n∈I K(Fn) be arbitrary. Then

Kn ∈ K(Fn) ⊂ K(
⊕(o)

n∈I Fn) and so
∑

n∈I Kn ∈ K(
⊕(o)

n∈I Fn) by the same argument as

above. Now it is clear that ϑ(
∑

n∈I Kn) = (Kn)n∈I which shows that ϑ(K(
⊕(o)

n∈I Fn)) =⊕
n∈I K(Fn). 2

From now on, let J be a fixed index category such that all arrows of J are epi and let
(F,Φ) be a fixed product system over J .

Definition 3.11 (The Fock correspondence F(F,Φ))
Let AJ denote the direct sum of the family {Ai : i ∈ Ob(J)} of C∗-algebras. We set

F(F,Φ) :=
⊕

j∈Ob(J)

(o)( ⊕
r : i→j

(i)
Fr

)
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We recall that F(F,Φ) is a Hilbert AJ -module and that we can also write

F(F,Φ) = {(ξr) ∈
∏

r∈Arr(J)

Fr :
( ∑

r : i→j

( ξr | ξr )Aj

)
j∈Ob(J)

∈ AJ}.

Especially, this means that for every j ∈ Ob(J) the sum
∑

r : i→j( ξr | ξr )Aj
converges in

Aj. We also recall that the AJ -valued inner product and the right multiplication with
elements of AJ are defined by

( (ξr) | (ηr) )AJ
:=

( ∑
r : i→j

( ξr | ηr )Aj

)
j∈Ob(J)

and

(ξr) · (ak) := (ζr) with ζr = ξr · aj, for r : i→ j,

(ak) ∈ AJ , (ξr), (ηr) ∈ F(F,Φ). Moreover, we define a left multiplication by elements of
AJ by setting

(ak) · (ξr) := (ζr) with ζr = ai · ξr, for r : i→ j,

(ak) ∈ AJ , (ξr) ∈ F(F,Φ), which makes F(F,Φ) a C∗-arrow over AJ .

Now we are going to define operators Tξr on F(F,Φ) and we want to show that these
operators are adjointable. But first, we want to talk about notation. By (ηr) we shall
mean an element in F(F,Φ), whereas ηr denotes an element in Fr, which can of course also
be thought of as the element in F(F,Φ) that has only one nonzero entry ηr at ’position’
r ∈ Arr(J).

So let ξr ∈ Fr and ηs ∈ Fs be arbitrary. We define the operator Tξr on the single
components of F(F,Φ) by setting

Tξr(ηs) :=

{
Φs,r(ξr ⊗ ηs) if (r, s) ∈ Arr(J) ◦ Arr(J)

0 otherwise.

To show that Tξr is well defined, we have to make sure that Tξr((ηs)) ∈ F(F,Φ) for arbi-
trary (ηs) ∈ F(F,Φ). So first we have to show that

∑
t : i→j( (Tξr((ηs)))t | (Tξr((ηs)))t )Aj

converges in Aj and then we must check that( ∑
t : i→j

( (Tξr((ηs)))t | (Tξr((ηs)))t )Aj

)
j∈Ob(J)

∈ AJ .

To simplify notation, we set Mj := {r ∈ Arr(J)| r : i → j, i ∈ Ob(J)}. Now the sum∑
t∈Mj

( (Tξr((ηs)))t | (Tξr((ηs)))t )Aj
converges in Aj if and only if for all ε > 0 there is a

finite subset L(ε) ⊆Mj such that for all finite subsets K ⊆Mj\L(ε) we have∥∥∥∑
t∈K

( (Tξr((ηs)))t | (Tξr((ηs)))t )Aj

∥∥∥ < ε.
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So let ε > 0 be arbitrary. Since (ηs) ∈ F(F,Φ), we know that
∑

s∈Mj
( ηs | ηs )Aj

converges

in Aj and hence, there is a finite subset L′(ε) ⊆ Mj such that for all finite subsets
K ′ ⊆Mj\L′(ε) we have

‖ξr‖2
∥∥∥ ∑

s∈K′

( ηs | ηs )Aj

∥∥∥ < ε.

We set L(ε) := {t ∈ Mj : ∃s ∈ L′(ε) such that t = s ◦ r}. It is clear that L(ε) is a finite
subset of Mj. Now let K be an arbitrary finite subset of Mj\L(ε). Then∑

t∈K

( (Tξr((ηs)))t | (Tξr((ηs)))t )Aj
=

∑
s∈Mj
s◦r∈K

(Tξr(ηs) |Tξr(ηs) )Aj

=
∑
s∈Mj
s◦r∈K

( Φs,r(ξr ⊗ ηs) |Φs,r(ξr ⊗ ηs) )Aj

=
∑
s∈Mj
s◦r∈K

( ξr ⊗ ηs | ξr ⊗ ηs )Aj
≤ ‖ξr‖2

∑
s∈Mj
s◦r∈K

( ηs | ηs )Aj
.

We set K ′ := {s ∈Mj : s◦r ∈ K}. Then K ′ is a finite subset of Mj, since K is a finite set
and r is epi and so for every t ∈ K there is at most one s ∈Mj with t = s ◦ r. Moreover,
it follows easily that K ′ ⊆Mj\L′(ε). Thus we have∥∥∥∑

t∈K

( (Tξr(ηs))t | (Tξr(ηs))t )Aj

∥∥∥ ≤ ‖ξr‖2
∥∥∥ ∑

s∈K′

( ηs | ηs )Aj

∥∥∥ < ε,

which shows that the sum
∑

t∈Mj
( (Tξr((ηs)))t | (Tξr((ηs)))t )Aj

converges in Aj. The com-
putation above also yields that∥∥∥ ∑

t∈Mj

( (Tξr(ηs))t | (Tξr(ηs))t )Aj

∥∥∥ ≤ ‖ξr‖2
∥∥∥ ∑

s∈Mj

( ηs | ηs )Aj

∥∥∥
and so it is clear that( ∑

t∈Mj

( (Tξr((ηs)))t | (Tξr((ηs)))t )Aj

)
j∈Ob(J)

∈ AJ

since
( ∑

s∈Mj
( ηs | ηs )Aj

)
j∈Ob(J)

∈ AJ . Hence, we have shown that Tξr((ηs)) ∈ F(F,Φ)

and that ‖Tξr((ηs))‖ ≤ ‖ξr‖‖(ηs)‖, and so Tξr is a well defined bounded operator on
F(F,Φ).

We already claimed that Tξr is adjointable, so now we have to provide the adjoint operator
T ∗ξr

. Suppose (r, s) ∈ Arr(J) ◦ Arr(J), r : i → j, s : j → k, and let Ks,r
ξr

: Fr ⊗ Fs → Fs

be the mapping that is given on simple tensors by

Ks,r
ξr

(ηr ⊗ ηs) := ( ξr | ηr )Aj
· ηs.
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Now we define the operator T ∗ξr
componentwise by

T ∗ξr
(ηt) :=

{
Ks,r

ξr
◦ Φ∗

s,r(ηt) if there exists an s ∈ Arr(J) with t = s ◦ r
0 otherwise.

To show that T ∗ξr
is the adjoint of Tξr , we have to prove the equation ( (ηt) |Tξr((ζt)) )AJ

=
(T ∗ξr

((ηt)) | (ζt) )AJ
for all (ηt), (ζt) ∈ F(F,Φ). We do that componentwise and consider

only the component of the inner product, that arises from the fixed arrow t ∈ Arr(J).

u u uPP��

PP��

PP��
i j k

r s

t = s ◦ r

If there exists an s ∈ Arr(J) with t = s ◦ r (such an s is unique then, since all arrows of
J are epi), we want to assume that Φ∗

s,r(ηt) = xr ⊗ ys, xr ∈ Fr, ys ∈ Fs. Then we have

( ηt |Tξr(ζs) )Ak
= ( ηt |Φs,r(ξr ⊗ ζs) )Ak

= ( Φ∗
s,r(ηt) | ξr ⊗ ζs )Ak

= (xr ⊗ ys | ξr ⊗ ζs )Ak
= ( ys | (xr | ξr )Aj

· ζs )Ak

= ( ( ξr |xr )Aj
· ys | ζs )Ak

= (Ks,r
ξr
◦ Φ∗

s,r(ηt) | ζs )Ak

= (T ∗ξr
(ηt) | ζs )Ak

.

The left hand side of the equation is zero if there is no s ∈ Arr(J) with t = s ◦ r. But
in this case the right hand side of the equation is zero, too, and so we have shown that
Tξr ∈ L(F(F,Φ)).

We set πr(ξr) := Tξr to get a mapping πr from Fr into the C∗-algebra L(F(F,Φ)). πr is
surely linear, since the tensor product is linear in the first component and the mappings
Φs,r are linear.

For ai ∈ Ai, i ∈ Ob(J), we let πi(ai) be the operator on F(F,Φ) that acts componentwise
by multiplication with ai from the left, where we consider ai as an element of AJ , thus

πi(ai)(ηs) :=

{
ai · ηs if s : i→ j

0 otherwise.

It is clear that πi is a C∗-homomorphism from Ai to L(F(F,Φ)). (This is a direct conse-
quence of the fact that each Fs is a C∗-arrow.)

Proposition 3.12 π is a Toeplitz representation from (F,Φ) to L(F(F,Φ)).
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Proof: Let ξr, ηr ∈ Fr, ai ∈ Ai, aj ∈ Aj and ξs ∈ Fs be arbitrary, r : i→ j, s : j → k. We
prove the five identities

(1) πr(ai · ξr · aj)(ζt) = πi(ai)πr(ξr)πj(aj)(ζt),
(2) πr(ξr)

∗πr(ηr)(ζt) = πj

(
( ξr | ηr )Aj

)
(ζt),

(3) πsr

(
Φs,r(ξr ⊗ ξs)

)
(ζt) = πr(ξr)πs(ξs)(ζt),

(4) (πIi
◦ Φi)(ai)(ζt) = πi(ai)(ζt),

(5) πi(ai)πj(aj)(ζt) = 0 for i 6= j

for an arbitrary component ζt ∈ Ft.

1) If the source of t is not j then both sides of Equation (1) are zero. So we suppose that
t : j → l and we compute

πi(ai)πr(ξr)πj(aj)(ζt) = πi(ai)Tξr(aj · ζt) = πi(ai)Φt,r(ξr ⊗ (aj · ζt))
= ai · Φt,r((ξr · aj)⊗ ζt) = Φt,r((ai · ξr · aj)⊗ ζt)

= Tai·ξr·aj
(ζt) = πr(ai · ξr · aj)(ζt).

2) With the same argument as in 1), we suppose that t : j → l and we have

πr(ξr)
∗πr(ηr)(ζt) = T ∗ξr

Tηr(ζt) = T ∗ξr
(Φt,r(ηr ⊗ ζt)) = Kt,r

ξr
(Φ∗

t,r(Φt,r(ηr ⊗ ζt)))

= Kt,r
ξr

(ηr ⊗ ζt) = ( ξr | ηr )Aj
· ζt = πj

(
( ξr | ηr )Aj

)
(ζt).

3) If the source of t is not k then both sides of Equation (3) are zero. So we suppose that
t : k → l and we compute

πr(ξr)πs(ξs)(ζt) = Tξr(Tξs(ζt)) = Tξr(Φt,s(ξs ⊗ ζt)) = Φts,r(ξr ⊗ (Φt,s(ξs ⊗ ζt)))

= Φts,r ◦ (ιFr ⊗ Φt,s)
(
ξr ⊗ (ξs ⊗ ζt)

)
= Φt,sr ◦ (Φs,r ⊗ ιFt)

(
(ξr ⊗ ξs)⊗ ζt

)
(see Equation (2.1))

= Φt,sr(Φs,r(ξr ⊗ ξs)⊗ ζt) = TΦs,r(ξr⊗ξs)(ζt)

= πsr

(
Φs,r(ξr ⊗ ξs)

)
(ζt).

4) If the source of t is not i then both sides of Equation (4) are zero. So we suppose that
t : i→ j and we compute

(πIi
◦ Φi)(ai)(ζt) = TΦi(ai)(ζt) = Φt,Ii

(Φi(ai)⊗ ζt) = Φt,Ii
◦ (Φi ⊗ ι′Ft

)(ai ⊗ ζt)

= ρ′Ft
(ai ⊗ ζt) (see Equation (2.2))

= ai · ζt = πi(ai)(ζt).

5) We have

πi(ai)πj(aj)(ζt) =

{
πi(ai)(aj · ζt) if t : j → k

0 otherwise.

}
=

{
(aiaj) · ζt if t : j → k ∧ t : i→ k

0 otherwise.

and so it is clear that πi(ai)πj(aj)(ζt) = 0 for i 6= j. 2
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Definition 3.13 (The reduced Toeplitz algebra)
The reduced Toeplitz algebra Tr(F,Φ) is the C∗-subalgebra of L(F(F,Φ)) generated by
the operators πr(ξr) and πi(ai),

Tr(F,Φ) := C∗({πr(ξr) : ξr ∈ Fr, r ∈ Arr(J)} ∪ {πi(ai) : ai ∈ Ai, i ∈ Ob(J)}).

Of course, π is a Toeplitz representation from (F,Φ) into the reduced Toeplitz algebra
Tr(F,Φ). We call π the reduced Toeplitz representation.

Example 3.14 (The reduced crossed product AoE N)
Let (F,Φ) be a product system over the natural numbers N such that (F,Φ) is a homo-
morphism and Φi = id. Thus our product system (F,Φ) consists of a C∗-algebra A and
C∗-arrows Fn, n ∈ N, from A to A such that Fn+m ≈ Fn ⊗ Fm for all n,m ∈ N and so
Fn ≈ F n

1 . Moreover, we have F0 = idA and Φk,0 = ρ′Fk
since Φi = id. We set E := F1,

E0 := F0 = idA and we denote the product system (F,Φ) by (A,E). Moreover, we set

F(E) := F(F,Φ) = {(ξn) ∈
∏
n∈N

En :
∑
n∈N

( ξn | ξn )A converges in A}.

Now let π : (F,Φ) → Tr(F,Φ) be the reduced Toeplitz representation of (F,Φ) on Tr(F,Φ).
We set πA := π0 and πE := π1. Since Fn ≈ En, we have πn(ξ1⊗· · ·⊗ξn) = πE(ξ1) · · ·πE(ξn)
for ξ1, . . . , ξn ∈ E and thus, it is clear that the corresponding reduced Toeplitz algebra
Tr(F,Φ), which we denote by AoE N, is generated by πA(A) and πE(E):

AoE N := Tr(F,Φ) = C∗({πE(ξ) : ξ ∈ E} ∪ {πA(a) : a ∈ A}).

We call AoE N the reduced crossed product of A by the C∗-arrow E.

3.3 The reduced Cuntz-Pimsner algebra

Let J be an index category such that all arrows of J are epi and let (F,Φ) be a product
system over J . Moreover, let π : (F,Φ) → Tr(F,Φ) be the reduced Toeplitz representation.
Then K(F(F,Φ)) ∩ Tr(F,Φ) is an ideal in Tr(F,Φ). We set

Or(F,Φ) :=
Tr(F,Φ)

K(F(F,Φ)) ∩ Tr(F,Φ)

and ψ := q ◦ π, where q : Tr(F,Φ) → Or(F,Φ) is the canonical quotient mapping. It is
clear that ψ is a Toeplitz representation from (F,Φ) to Or(F,Φ). We call ψ the reduced
Toeplitz representation from (F,Φ) into the reduced Cuntz-Pimsner algebra Or(F,Φ).

In the following sections we will study the reduced Toeplitz algebra Tr(F,Φ) and the
reduced Cuntz-Pimsner algebra Or(F,Φ) for concrete product systems. If we let (F,Φ)
be a product system over a discrete small category J , then we will see that the reduced
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Toeplitz algebra Tr(F,Φ) is isomorphic to the direct sum of C∗-algebras. Then, for a
given discrete C∗-dynamical system (A,G, α), we construct a product system (F,Φ) over
the monoid J coming from the group G, such that Tr(F,Φ) is isomorphic to the reduced
crossed product A oαr G. And finally, given a direct system {Ai : i ∈ I} of C∗-algebras,
we construct a product system (F,Φ) over the index category J coming from the directed
set I, such that Or(F,Φ) is strongly Morita equivalent to the direct limit lim−→Ai.

3.4 The direct sum of C∗-algebras

Let J be a discrete small category, i.e., I := Ob(J) is a set and the only arrows of J are the
identity arrows. Let (F,Φ) be a product system over J with Φi = id for all i ∈ I. Hence,
we have a family of C∗-algebras Ai, i ∈ I, and a family of C∗-arrows id(Ai) : Ai → Ai,
i ∈ I. For i ∈ I, let ΦIi,Ii

: id(Ai)⊗ id(Ai) → id(Ai) be defined by

ΦIi,Ii
(a⊗ b) := ab

for a, b ∈ id(Ai) = Ai. Then we have AJ =
⊕

i∈I Ai and

F(F,Φ) =
⊕

j∈Ob(J)

(o)( ⊕
r : i→j

(i)
Fr

)
=

⊕
j∈I

(o)

idAj = id

( ⊕
j∈I

Aj

)
= idAJ .

For (ai) ∈ AJ , let M(ai) ∈ K(id(AJ)) = K(F(F,Φ)) be the multiplication operator
M(ai)(bi) := (aibi). Then the mapping (ai) 7→ M(ai) is a ∗-isomorphism from AJ =⊕

i∈I Ai → K(id(AJ)) = K(F(F,Φ)). Now for a ∈ id(Ai), b ∈ id(Aj), we have

πIi
(a)(b) = Ta(b) = δi,jΦIi,Ii

(a⊗ b) = δi,jab ∈ id(Ai)

and so we see that πIi
(a) is the multiplication operator Ma, where we view a ∈ id(Ai) =

Ai ⊂ AJ . Since πi(a) = πIi
(a) for a ∈ Ai = id(Ai), we have that πi(a) = πIi

(a) = Ma ∈
K(F(F,Φ)) and thus Tr(F,Φ) ⊂ K(F(F,Φ)) ∼= AJ . But now it is easy to see that the
linear span of {Ta : a ∈ Ai, i ∈ I} is dense in K(F(F,Φ)) and so we have

Tr(F,Φ) = K(F(F,Φ)) ∼= AJ =
⊕
i∈I

Ai.

3.5 Crossed products by groups and semigroups

Let (A,G, α) be a discrete C∗-dynamical system (see Appendix A) and let A be unital.
G gives rise to a monoid J with object i and with set of arrows {fs : s ∈ G}, such that
all arrows are invertible, see Example 2.2. For the sake of convenience we write s instead
of fs. We define a product system (F,Φ) over J by setting Fs := αsA for all s ∈ G



3.5. Crossed products by groups and semigroups 49

and Φs,t : FsFt → Fst, Φs,t(ξt ⊗ ξs) = αs(ξt)ξs. Let π : (F,Φ) → Tr(F,Φ) be the reduced
Toeplitz representation. We claim that

Tr(F,Φ) ∼= Aoαr G.

To prove this, we use the fact, that Aoαr G is isomorphic to the C∗-algebra B described
in Appendix A and so we show that Tr(F,Φ) ∼= B. Let Ψ be the universal representation
of A on Hu and let (Ψ̃ρ, ρ̃) be the corresponding right regular representation of (A,G, α)
on `2(G,Hu). For η ∈ Hu, we let ηs denote the element of `2(G,Hu) with ηs(t) = δs,tη,
s, t ∈ G. Then we have

ρ̃t(ηs) = ηst−1 and Ψ̃ρ(a)(ηs) = (Ψ(αs(a))η)s.

We also recall from Appendix A that the linear span of {Ψ̃ρ(a)ρ̃s : a ∈ A, s ∈ G} is dense
in B. Now we want to examine Tr(F,Φ). We have

F(F,Φ) =
⊕

j∈Ob(J)

(o)( ⊕
r : i→j

(i)
Fr

)
=

⊕
r∈G

(i)
Fr =

⊕
r∈G

(i)

αrA

and so F(F,Φ) =
⊕(i)

r∈GA = `2(G,A) as Hilbert A-modules. For ξ ∈ Ft, η ∈ Fs we have

πt(ξ)(η) = Tξ(η) = Φs,t(ξ ⊗ η) = αs(ξ)η ∈ Fst,

πt(ξ)
∗(η) = T ∗ξ (η) = Kst−1,t

ξ ◦ Φ∗
st−1,t(η) = Kst−1,t

ξ (1⊗ η)

= ( ξ | 1 )A · η = αst−1(ξ∗)η ∈ Fst−1 and

πi(a)(η) = a · η = αs(a)η ∈ Fs.

Now we define πA := πi and πG(t) := πt(1)
∗ for all t ∈ G. Like above, for η ∈ A, we let ηs

denote the element of `2(G,A) with ηs(t) = δs,tη, s, t ∈ G. Then the above computation
yields

πG(t)(ηs) = ηst−1 , πG(t)∗(ηs) = ηst and πA(a)(ηs) = (αs(a)η)s

for all t, s ∈ G and a ∈ A. Hence, πG is a group homomorphism from G to the group of
unitary element in Tr(F,Φ). Moreover, using the fact that π is a Toeplitz representation,
we can show that (πA, πG) is a covariant homomorphism:

πG(t)πA(a)πG(t)∗ = πt(1)∗πi(a)πt(1) = πt(1)
∗πt(a · 1) = πt(1)

∗πt(αt(a))

= πi(( 1 |αt(a) )A) = πA(αt(a))

for a ∈ A and t ∈ G arbitrary. To see that Tr(F,Φ) ∼= B, we use the fact that the Hilbert
spaces `2(G,A)⊗ΨHu and `2(G,Hu) are unitarily equivalent. The unitary linear mapping
U : `2(G,A) ⊗Ψ Hu → `2(G,Hu) is given by U((as) ⊗ ξ) := (Ψ(as)ξ) for (as) ∈ `2(G,A)
and ξ ∈ Hu. Now we define a ∗-homomorphism ϑ : L(`2(G,A)) → L(`2(G,Hu)) by setting

ϑ(T )(ξ) := U ◦ (T ⊗ id) ◦ U∗(ξ)
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for T ∈ L(`2(G,A)) and ξ ∈ `2(G,Hu). ϑ is injective, since Ψ is injective, see [15, p.42],
and so it remains to prove that ϑ(Tr(F,Φ)) = B. For η ∈ Hu we compute

ϑ(πG(t))(ηs) = U ◦ (πG(t)⊗ id) ◦ U∗((Ψ(1)η)s) = U ◦ (πG(t)⊗ id)(1s ⊗ η)

= U(1st−1 ⊗ η) = (Ψ(1)η)st−1 = ηst−1 and

ϑ(πA(a))(ηs) = U ◦ (πA(a)⊗ id) ◦ U∗((Ψ(1)η)s) = U ◦ (πA(a)⊗ id)(1s ⊗ η)

= U((αs(a))s ⊗ η) = (Ψ(αs(a))η)s

and so we see that ϑ(πG(t)) = ρ̃t and ϑ(πA(a)) = Ψ̃ρ(a). Now Tr(F,Φ) is generated by
the set {πs(a) : a ∈ A, s ∈ G} and we have πs(a) = πs(α

−1
s (a) · 1) = πi(α

−1
s (a))πs(1) =

πA(α−1
s (a))πG(s). Hence, ϑ(πs(a)) = Ψ̃ρ(α

−1
s (a))ρ̃s ∈ A oαr G and since the linear span

of the set {Ψ̃ρ(a)ρ̃s : a ∈ A, s ∈ G} is dense in B, we get that ϑ(Tr(F,Φ)) = B.

The reduced semigroup crossed product can be treated similar to the discussion above.
We refer to [10, chapter 3] for a precise description of the universal semigroup crossed
product and its connection with the universal Toeplitz and Cuntz-Pimsner algebra, see
also section 1.3.

We want to close this section with a special case. We consider the discrete semigroup
dynamical system (C,S, id), i.e., S acts by the identity on the complex numbers. Then
the corresponding product system (F,Φ) consists of the C∗-algebra Ai = C and the C∗-
arrows Fr = idC, r ∈ S, over C. Moreover, all of the isometric adjointable C-C-bimodule
mappings Φs,r are just the canonical mappings from C⊗C to C given by z1 ⊗ z2 7→ z1z2.
Then it is clear that F(F,Φ) = `2(S). Let er be the element of `2(S) with er(s) = δr,s,
r, s ∈ S. Then we have

Ter(es) := Φs,r(er ⊗ es) = esr.

Moreover, T ∗er
(et) := 0 if there exists no s ∈ S with t = sr and

T ∗er
(esr) := Ks,r

er
◦ Φ∗

s,r(esr) = Ks,r
er

(er ⊗ es) = ( er | er )C · es = es.

It is easy to see, that πi(z) = z ·id, z ∈ C, and so Tr(F,Φ) = C∗({Ter : r ∈ S}) ⊆ L(`2(S)).
In this special case, we denote Tr(F,Φ) by C∗

r (S) and hence,

C∗
r (S) := C∗({Ter : r ∈ S}) ⊆ L(`2(S)).

Note that for S = N we have that Te1 is the forward unilateral shift operator S on `2(N)
and that Tel

= Sl for l ∈ N. Hence, C∗
r (N) = C∗({Tel

: l ∈ N}) = C∗(S), which is the
classical Toeplitz algebra.

3.6 The direct limit

An upward-directed set I is a partially ordered set such that for every i, j ∈ I there is
an element k ∈ I with i ≤ k and j ≤ k. A direct system of C∗-algebras, indexed by
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an upward-directed set I, is a family of C∗-algebras Ai, i ∈ I, together with a family of
∗-homomorphisms ϕij : Ai → Aj for i ≤ j ∈ I such that

ϕii = idAi
for all i ∈ I and ϕjk ◦ ϕij = ϕik

for all i ≤ j ≤ k ∈ I. The direct limit (see also [9, p.34]) of the direct system (Ai, ϕij)
is a pair (lim−→Ai, ϕi) consisting of a C∗-algebra lim−→Ai and a system of ∗-homomorphisms
ϕi : Ai → lim−→Ai, i ∈ I, with

ϕj ◦ ϕij = ϕi for all i ≤ j ∈ I

such that (lim−→Ai, ϕi) is universal in the sense that if (B,ψi) is another pair consisting of
a C∗-algebra B and a system of ∗-homomorphisms ψi : Ai → B with ψj ◦ ϕij = ψi for all
i ≤ j ∈ I, there exists a unique ∗-homomorphism ψ : lim−→Ai → B with ψ ◦ ϕi = ψi for all

i ∈ I. Since (lim−→Ai, ϕi) is universal, lim−→Ai is unique up to isomorphism. Thus we can
speak of the direct limit lim−→Ai.

One way to construct lim−→Ai is the following: Let A0 be the ∗-subalgebra of the product∏
Ai consisting of all a = (ai) for which there exists an i0 ∈ I such that ϕij(ai) = aj

for all i0 < i < j ∈ I. Then ‖a‖ = lim ‖ai‖ exists since the ϕij are norm-decreasing.
Moreover, ‖ · ‖ is a seminorm that satisfies the C∗-identity. Let A1 be the quotient of A0

modulo the ideal of elements of norm zero. The direct limit lim−→Ai is the completion of A1.

To construct the ∗-homomorphism ϕi, let a ∈ Ai be arbitrary. Let b = (bj) be the element
of

∏
Aj with bj = ϕij(a) if j ≥ i and bj = 0 otherwise. Then b ∈ A0 and we define ϕi(a)

to be the image of b under the canonical ∗-homomorphism from A0 to A1 ⊂ lim−→Ai. It is
easy to see that ϕi becomes a ∗-homomorphism and that the system ϕi, i ∈ I, satisfies the
required conditions. The union

⋃
i∈I ϕi(Ai) is dense in lim−→Ai and hence, given another

pair (B,ψi) consisting of a C∗-algebra B and a system of ∗-homomorphisms ψi : Ai → B
with ψj ◦ ϕij = ψi for all i ≤ j ∈ I, the identity

ψ(ϕi(a)) := ψi(a) a ∈ Ai, i ∈ I

uniquely defines a ∗-homomorphism ψ : lim−→Ai → B.

For the rest of this section, let (Ai, ϕij) be a fixed direct system of unital C∗-algebras
Ai and unital ∗-homomorphisms ϕij indexed by an upward-directed set I. We set Fij :=

ϕij
Aj : Ai → Aj for i ≤ j, i.e., Fij = Aj and for ξ, η ∈ Fij, ai ∈ Ai, aj ∈ Aj we have

( ξ | η )Aj
= ξ∗η, ai · ξ = ϕij(ai)ξ and ξ · aj = ξaj,

see Example 2.7. For i ≤ j ≤ k ∈ I we define Φjk,ij : Fij ⊗ Fjk → Fik by

Φjk,ij(ξ ⊗ η) := ϕjk(ξ)η

for ξ ∈ Fij and η ∈ Fjk. As in Example 2.16 we get that Φjk,ij is a unitary Ai-Ak-bimodule
mapping. Since the C∗-algebras Ai are unital, we can even provide the adjoint bimodule
mapping Φ∗

jk,ij : Fik → Fij ⊗ Fjk explicitly:

Φ∗
jk,ij(ζ) = 1⊗ ζ,
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which makes sense, because ζ ∈ Fik = Fjk = Ak. Moreover, it is easy to see that the
family {Φjk,ij : i ≤ j ≤ k ∈ I} satisfies the coherence condition (2.1) and finally, we
define Φj := idFjj

for all j ∈ I. Hence, we get a product system (F,Φ) = (Ai, Fij,Φij,Φi)
over the index category J = OI , coming from the partial order on I, see Example 2.3.
In the following, we want to examine the corresponding reduced Cuntz-Pimsner algebra
Or(F,Φ).

We let Fj :=
⊕(i)

i≤j Fij =
⊕(i)

i≤j Aj be the inner direct sum of the family {Fij : i ≤ j} of
Hilbert Aj-modules. Then Fj is a Hilbert Aj-module, too, and the definition of the Fock
correspondence yields

F(F,Φ) =
⊕

j∈Ob(J)

(o)(⊕
i≤j

(i)
Fij

)
=

⊕
j∈Ob(J)

(o)
Fj =

⊕
j∈I

(o)
Fj.

For a ∈ Ai, ξ ∈ Fij, we have a · ξ = ϕij(a)ξ = θϕij(a),1ξ, where we view ϕij(a) and ξ as
elements of Aj when we write ϕij(a)ξ whereas we view ϕij(a), 1 and ξ as elements of Fij

when we write θϕij(a),1ξ. Hence, the left action of Ai on Fij is given by the ∗-homomorphism
ϕij and ϕij(a) ∈ K(Fij) for all a ∈ Ai.

For n ≤ m ∈ I we define a mapping λnm : Fn → Fm by setting

λnm(⊕i≤nξin) := ⊕i≤nϕnm(ξin),

i.e., for ⊕j≤mηjm = λnm(⊕i≤nξin) we have ηjm = ϕnm(ξjn) if j ≤ n and ηjm = 0 otherwise.

Proposition 3.15 Let n ≤ m ∈ I be fixed. Then (λnm, ϕnm) : (Fn, An) → (Fm, Am) is a
homomorphism of Hilbert C∗-modules.

Proof: It is clear that λnm is additive. So let ξ = ⊕i≤nξin, η = ⊕i≤nηin ∈ Fn and a ∈ An

be arbitrary. Then we compute

λnm(ξ · a) = λnm(⊕i≤n(ξina)) = ⊕i≤nϕnm(ξina) = ⊕i≤n(ϕnm(ξin)ϕnm(a))

= (⊕i≤nϕnm(ξin)) · ϕnm(a) = λnm(ξ) · ϕnm(a) and

(λnm(ξ) |λnm(η) )Am = (λnm(⊕i≤nξin) |λnm(⊕i≤nηin) )Am

= (⊕i≤nϕnm(ξin) | ⊕i≤nϕnm(ηin) )Am =
∑
i≤n

ϕnm(ξin)∗ϕnm(ηin)

= ϕnm(
∑
i≤n

ξ∗inηin) = ϕnm((⊕i≤nξin | ⊕i≤nηin )An)

= ϕnm(( ξ | η )An).

2
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It is clear from the definition that λnn = idFn for all n ∈ I and that λml ◦ λnm = λnl

for all n ≤ m ≤ l ∈ I. Hence, the system ((Fn, An), (λnm, ϕnm)) is a direct system of
Hilbert C∗-modules indexed by the directed set I. The direct limit of the direct sys-
tem ((Fn, An), (λnm, ϕnm)) is a pair ((F,A), (λn, ϕn)) consisting of a Hilbert A-module F
together with a system of homomorphisms (λn, ϕn) : (Fn, An) → (F,A) with

(λm, ϕm) ◦ (λnm, ϕnm) = (λn, ϕn) for all n ≤ m ∈ I,

such that ((F,A), (λn, ϕn)) is universal in the sense that if ((E,B), (µn, ψn)) is another pair
consisting of a Hilbert B-module E and a system of homomorphisms (µn, ψn) : (Fn, An) →
(E,B) satisfying (µm, ψm) ◦ (λnm, ϕnm) = (µn, ψn) for all n ≤ m ∈ I, there is a uniquely
determined homomorphism (µ, ψ) : (F,A) → (E,B) satisfying

(µ, ψ) ◦ (λn, ϕn) = (µn, ψn)

for all n ∈ I. Since ((F,A), (λn, ϕn)) is universal, (F,A) is unique up to isomorphism and
we can speak of the direct limit lim−→(Fn, An) := (F,A). It remains to prove that the direct

limit lim−→(Fn, An) exists.

Proposition 3.16 Let ((Fn, An), (λnm, ϕnm)) be a direct system of Hilbert C∗-modules
over the upward-directed set I. Then the Banach space direct limit (lim−→Fn, λn) can be

turned into a Hilbert C∗-module over lim−→An, where (lim−→An, ϕn) is the direct limit of the

C∗-algebra direct system (An, ϕnm), such that ((lim−→Fn, lim−→An), (λn, ϕn)) is a direct limit

of the direct system ((Fn, An), (λnm, ϕnm)) of Hilbert C∗-modules.

Before we start to prove the proposition, we recall some facts about the Banach space
direct limit. First of all, we notice that every Hilbert C∗-module is also a Banach space.
For the mappings λnm : Fn → Fm we have

‖λnm(ξ)‖2 = ‖(λnm(ξ) |λnm(ξ) )Am‖ = ‖ϕnm(( ξ | ξ )An)‖ ≤ ‖( ξ | ξ )An‖ = ‖ξ‖2

and thus λnm is a contraction. Hence, we have a system of Banach spaces Fn, n ∈ I,
together with a system of contractions λnm for n ≤ m ∈ I such that λnn = idFn and that
λml ◦ λnm = λnl for all n ≤ m ≤ l ∈ I. We call this system a direct system of Banach
spaces indexed by I.

The direct limit of the direct system (Fn, λnm) is a pair (lim−→Fn, λn) consisting of a Banach
space lim−→Fn and a system of contractions λn : Fn → lim−→Fn, n ∈ I, with

λm ◦ λnm = λn for all n ≤ m ∈ I

such that (lim−→Fn, λn) is universal in the sense that if (E, µn) is another pair consisting
of a Banach space E and a system of contractions µn : Fn → E with µm ◦ λnm = µn for
all n ≤ m ∈ I, there exists a unique contraction µ : lim−→Fn → E with µ ◦ λn = µn for all
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n ∈ I. Since (lim−→Fn, λn) is universal, lim−→Fn is unique up to isomorphism. Thus, we can
speak of the direct limit lim−→Fn. It is possible to construct the direct limit lim−→Fn in a way
similar to the construction of the direct limit of a direct system of C∗-algebras.

Proof of Proposition 3.16: Since (Fn, λnm) is a direct system of Banach spaces, we
also have that (Fn × Fn, λnm × λnm) is a direct system of Banach spaces. It is clear that
(lim−→Fn × lim−→Fn, λn × λn) is a direct limit for this direct system. Now we define mappings
σn : Fn × Fn → lim−→An by setting

σn(ξ, η) := ϕn(( ξ | η )An)

for ξ, η ∈ Fn. Then for n ≤ m we have σm◦(λnm×λnm)(ξ, η) = ϕm((λnm(ξ) |λnm(η) )Am) =
ϕm(ϕnm(( ξ | η )An)) = ϕn(( ξ | η )An) = σn(ξ, η). Since lim−→Fn × lim−→Fn is universal, there

exists a uniquely defined mapping ( . | . )lim−→An : lim−→Fn × lim−→Fn → lim−→An with

(λn(ξ) |λn(η) )lim−→An = σn(ξ, η) = ϕn(( ξ | η )An)

for ξ, η ∈ Fn. In a similar way one can show that there is a uniquely defined multiplication
· : lim−→Fn × lim−→An → lim−→Fn that satisfies

λn(ξ) · ϕn(a) = λn(ξ · a)

for ξ ∈ Fn, a ∈ An. It is easy to see that the inner product and multiplication make lim−→Fn

a Hilbert C∗-module over lim−→An and the above identities show that (λn, ϕn) : (Fn, An) →
(lim−→Fn, lim−→An) is a homomorphism of Hilbert C∗-modules. Since it is clear that the

system {(λn, ϕn) : n ∈ I} is compatible with {(λnm, ϕnm) : n ≤ m ∈ I}, it only remains
to prove that ((lim−→Fn, lim−→An), (λn, ϕn)) is universal. To see this, let ((E,B), (µn, ψn))
be another pair consisting of a Hilbert B-module E and a system of homomorphisms
(µn, ψn) : (Fn, An) → (E,B) satisfying (µm, ψm)◦(λnm, ϕnm) = (µn, ψn) for all n ≤ m ∈ I.
Then, in particular, we have ψm◦ϕnm = ψn for the system of ∗-homomorphisms ψn, n ∈ I,
and µm ◦ λnm = µn for the system of contractions µn, n ∈ I. Since lim−→An and lim−→Fn are
universal, there is a uniquely defined ∗-homomorphism ψ : lim−→An → B as well as a uniquely
defined contraction µ : lim−→Fn → E satisfying

ψ(ϕn(a)) = ψn(a) and µ(λn(ξ)) = µn(ξ)

for all n ∈ I and a ∈ An, ξ ∈ Fn. Now we have µ(λn(ξ) · ϕn(a)) = µ(λn(ξ · a)) =
µn(ξ · a) = µn(ξ) · ψn(a) = µ(λn(ξ)) · ψ(ϕn(a)), since (λn, ϕn) and (µn, ψn) are homo-
morphisms. For the same reason we get that (µ(λn(ξ)) |µ(λn(η)) )B = (µn(ξ) |µn(η) )B =
ψn(( ξ | η )An) = ψ(ϕn(( ξ | η )An)) = ψ((λn(ξ) |λn(η) )lim−→An). Hence, we have shown that

(µ, ψ) is a uniquely defined homomorphism from (lim−→Fn, lim−→An) to (E,B), which shows

that (lim−→Fn, lim−→An) is universal. 2

Proposition 3.17 lim−→K(Fn) ∼= K(lim−→Fn)
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Proof: Let l ≤ m ∈ I be arbitrary. Then it follows from Proposition 3.15 that
(λlm, ϕlm) : (Fl, Al) → (Fm, Am) is a homomorphism of Hilbert C∗-modules. Hence, by
Lemma 3.6 it follows that there is a ∗-homomorphism τlm : K(Fl) → K(Fm) that satisfies
τlm(θξ,η) = θλlm(ξ),λlm(η) for all ξ, η ∈ Fl. Now for k ≤ l ≤ m ∈ I and ξ, η ∈ Fk arbitrary
we have

τlm ◦ τkl(θξ,η) = θλlm◦λkl(ξ),λlm◦λkl(η) = θλkm(ξ),λkm(η) = τkm(θξ,η),

which shows that (K(Fm), τlm) is a direct system of C∗-algebras indexed by I. Let
(lim−→K(Fn), τn) be the direct limit of this system.

For l ∈ I arbitrary, we know from Proposition 3.16 that (λl, ϕl) : (Fl, Al) → (lim−→Fn, lim−→An)
is a homomorphism of Hilbert C∗-modules. Hence, there is a unique ∗-homomorphism
ωl : K(Fl) → K(lim−→Fn) that satisfies ωl(θξ,η) = θλl(ξ),λl(η) for all ξ, η ∈ Fl. For l ≤ m ∈ I
and ξ, η ∈ Fl arbitrary we have

ωm ◦ τlm(θξ,η) = θλm◦λlm(ξ),λm◦λlm(η) = θλl(ξ),λl(η) = ωl(θξ,η).

Hence, there exists a uniquely defined ∗-homomorphism ω : lim−→K(Fn) → K(lim−→Fn) with

ω ◦ τn = ωn for all n ∈ I, since (lim−→K(Fn), τn) is universal. To see that ω is isometric, we

let ξi, ηi ∈ Fn be arbitrary and compute for K = τn

( ∑k
i=1 θξi,ηi

)
∈ lim−→K(Fn)

‖K‖ =
∥∥∥τn( k∑

i=1

θξi,ηi

)∥∥∥ = lim
m→∞

∥∥∥τnm

( k∑
i=1

θξi,ηi

)∥∥∥ = lim
m→∞

∥∥∥ k∑
i=1

θλnm(ξi),λnm(ηi)

∥∥∥ and

‖ω(K)‖ =
∥∥∥ω(

τn

( k∑
i=1

θξi,ηi

))∥∥∥ =
∥∥∥ k∑

i=1

ωn(θξi,ηi
)
∥∥∥ =

∥∥∥ k∑
i=1

θλn(ξi),λn(ηi)

∥∥∥
=

∥∥(
(λn(ξi) |λn(ξj) )lim−→An

)1/2

i,j

(
(λn(ηi) |λn(ηj) )lim−→An

)1/2

i,j

∥∥
= lim

m→∞

∥∥(
(λnm(ξi) |λnm(ξj) )Am

)1/2

i,j

(
(λnm(ηi) |λnm(ηj) )Am

)1/2

i,j

∥∥
= lim

m→∞

∥∥∥ k∑
i=1

θλnm(ξi),λnm(ηi)

∥∥∥,
where we use that Mk(lim−→An) ∼= lim−→Mk(An). Since the union

⋃
n∈I τn(K(Fn)) is dense in

lim−→K(Fn), this shows that ω is an isometry and hence injective. To see that ω is surjective
it suffices to show that elements of the form θλn(ξ),λn(η), ξ, η ∈ Fn, are in the image of ω,
since

⋃
n∈I λn(Fn) is dense in lim−→Fn. But this is obvious, since

θλn(ξ),λn(η) = ωn(θξ,η) = ω(τn(θξ,η)).

2
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Proposition 3.18 Or(F,Φ) ∼= lim−→K(Fn)

Proof: We will work with the concrete realization of the direct limit lim−→K(Fn) described

above. So let K0 be the ∗-subalgebra of the product
∏

n∈I K(Fn) consisting of all k = (kn)
for which there exists an n0 ∈ I such that τnm(kn) = km for all n0 < n < m ∈ I. Let K1

be the quotient of K0 modulo
⊕

n∈I K(Fn). The direct limit lim−→K(Fn) is the completion

of K1. To construct the ∗-homomorphisms τn : K(Fn) → lim−→K(Fn), let k ∈ K(Fn) be

arbitrary. Let κ = (κm) be the element of
∏
K(Fn) with κm = τnm(k) if m ≥ n and

κm = 0 otherwise. Then κ ∈ K0 and we define τn(k) to be the image of κ under the
canonical quotient mapping p from K0 to K1 ⊂ lim−→K(Fn).

Now let ϑ : L(F(F,Φ)) = L(
⊕(o)

n∈I Fn) →
∏

n∈I L(Fn) be the mapping defined in the proof
of Proposition 3.10 by setting

ϑ(T ) := (T |Fn)n∈I ,

where T |Fn is the restriction of T to Fn. Since Tr(F,Φ) is generated by the generalized shift
operators Tξij

, ξij ∈ Fij, we want to compute ϑ(Tξij
). So let ξij ∈ Fij and (ηkn)k≤n ∈ Fn

be arbitrary. Then for j ≤ n we have

Tξij
(ηkn)k≤n = Tξij

ηjn = Φjn,ij(ξij ⊗ ηjn) = ϕjn(ξij)ηjn ∈ Fin.

This yields that Tξij
|Fn = θϕjn(ξij),1 ∈ K(Fn), with ϕjn(ξin) ∈ Fin and 1 ∈ Fjn if j ≤ n and

Tξij
|Fn = 0 otherwise. Hence, ϑ(Tξij

) ∈
∏

n∈I K(Fn). Moreover, for all j ≤ n ≤ m ∈ I we
have

τnm(Tξij
|Fn) = τnm(θϕjn(ξij),1) = θλnm(ϕjn(ξij)),λnm(1) = θϕnm(ϕjn(ξij)),ϕnm(1)

= θϕjm(ξij),1 = Tξij
|Fm

and thus ϑ(Tξij
) ∈ K0. Hence, ϑ restricts to a ∗-homomorphism from Tr(F,Φ) to K0. Let

q : Tr(F,Φ) → Or(F,Φ) be the canonical quotient mapping. We define a ∗-homomorphism
ϑ̃ : Or(F,Φ) → lim−→K(Fn) by setting

ϑ̃(q(T )) := p(ϑ(T ))

for all T ∈ Tr(F,Φ). To see that ϑ̃ is well-defined, let T ∈ Tr(F,Φ) and K ∈ K(F(F,Φ))∩
Tr(F,Φ) be arbitrary. Then q(T +K) = q(T ) and so we have to show that p(ϑ(T +K)) =
p(ϑ(T )). But p(ϑ(T +K)) = p(ϑ(T ))+ p(ϑ(K)) = p(ϑ(T )), since ϑ(K) ∈

⊕
n∈I K(Fn) by

Proposition 3.10. Next, we show that ϑ̃ is injective by computing its kernel:

ker(ϑ̃) = {q(T ) ∈ Or(F,Φ): ϑ̃(q(T )) = 0} = {q(T ) ∈ Or(F,Φ): p(ϑ(T )) = 0}
= {q(T ) ∈ Or(F,Φ): ϑ(T ) ∈

⊕
n∈I

K(Fn)}

= {q(T ) ∈ Or(F,Φ): T ∈ K(F(F,Φ))} = 0.
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To see that ϑ̃ is surjective, it suffices for arbitrary (ξin)i≤n, (ηin)i≤n ∈ Fn to find an operator
T ∈ Tr(F,Φ) with T |Fn = θ(ξin),(ηin). We claim that( ∑

i,j≤n

Tξin
T ∗ηjn

)∣∣∣
Fn

= θ(ξin),(ηin).

So let (ζin)i≤n ∈ Fn be arbitrary. Then we have

θ(ξin)i≤n,(ηjn)j≤n
(ζkn)k≤n = (ξin)i≤n · ( (ηjn)j≤n | (ζkn)k≤n )An = (ξin ·

∑
j≤n

( ηjn | ζjn )An)i≤n

=
( ∑

j≤n

ξinη
∗
jnζjn

)
i≤n

and

( ∑
i,j≤n

Tξin
T ∗ηjn

)
(ζkn)k≤n =

∑
i,j≤n

Tξin
T ∗ηjn

ζjn =
∑
i,j≤n

Tξin
(( ηjn | 1 )An · ζjn)

=
∑
i,j≤n

Tξin
(ϕnn(η∗jn)ζjn) =

( ∑
j≤n

ϕnn(ξin)η∗jnζjn

)
i≤n

=
( ∑

j≤n

ξinη
∗
jnζjn

)
i≤n

and thus ϑ̃ is a ∗-isomorphism from Or(F,Φ) onto lim−→K(Fn). 2

Theorem 3.19 Or(F,Φ) and lim−→An are strongly Morita equivalent.

Proof: From Propositions 3.17 and 3.18 we know that the C∗-algebras Or(F,Φ) and
K(lim−→Fn) are isomorphic. Moreover, it is easy to see that ( lim−→Fn | lim−→Fn )lim−→An is dense in

lim−→An. Hence, it is clear (see Example 2.9) that lim−→Fn is an Or(F,Φ)-lim−→An-equivalence
bimodule. 2
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Chapter 4

The universal Toeplitz and
Cuntz-Pimsner algebras

In the present chapter we introduce the universal Toeplitz algebra T (F,Φ) and the uni-
versal Cuntz-Pimsner algebra O(F,Φ) together with their corresponding Toeplitz repre-
sentations. First, we show that given a product system (F,Φ) over an index category
J , there is a C∗-algebra that is universal for Toeplitz representations over (F,Φ). This
C∗-algebra will be defined by a universal condition and consequently, it will be unique up
to isomorphism and we will call it the universal Toeplitz algebra T (F,Φ).

Secondly, we recall the notion of Cuntz-Pimsner covariant Toeplitz representations from
[10] and introduce the universal Cuntz-Pimsner algebra, which is universal for Cuntz-
Pimsner covariant Toeplitz representations over (F,Φ).

Finally, we provide some facts about bicategorial colimits that allow us to reveal the
bicategorial structure behind the universal Toeplitz algebra. Given a morphism (F,Φ)
from a bicategory B to a bicategory B′, we recall the notion of the colimit for (F,Φ) and
we show that in the bicategory C∗ARR, the universal Toeplitz algebra T (F,Φ) can be
viewed as the colimit object for the product system (F,Φ).

4.1 The universal Toeplitz algebra

Proposition 4.1 For every product system (F,Φ) over J , there is a C∗-algebra T (F,Φ)
and a Toeplitz representation i : (F,Φ) → T (F,Φ) such that every Toeplitz representa-
tion π : (F,Φ) → B factors uniquely through i, i.e., there is a unique ∗-homomorphism
π̃ : T (F,Φ) → B, such that πr = π̃ ◦ ir and πk = π̃ ◦ ik for all r ∈ Arr(J), k ∈ Ob(J).

Proof: Let P be the universal ∗-algebra generated by symbols

{tξr : ξr ∈ Fr, r ∈ Arr(J)} ∪ {tai
: ai ∈ Ai, i ∈ Ob(J)}

59
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and relations such that for all objects i of J the mapping Ai 3 ai 7→ tai
becomes a

∗-homomorphism and that the identities

tξr+ηr = tξr + tηr , tai·ξr·aj
= tai

tξrtaj
, t∗ξr

tηr = t( ξr | ηr )Aj

tΦs,r(ξr⊗ξs) = tξrtξs , tΦi(ai) = tai
, tai

taj
= 0 for i 6= j

hold, where ξr, ηr ∈ Fr, ξs ∈ Fs, ai ∈ Ai, aj ∈ Aj, i, j, k ∈ Ob(J), r : i→ j, s : j → k. We
now define a maximal C∗-seminorm on P by setting

‖x‖ := sup{ν(x) : ν is a C∗-seminorm on P}, x ∈ P .

To make sure that this supremum is actually bounded, we let ν be an arbitrary C∗-
seminorm on P , i, j ∈ Ob(J) and r : i → j be arbitrary. Then ai 7→ ν(tai

) defines a
C∗-seminorm on Ai and hence, ν(tai

) ≤ ‖ai‖Ai
, where ‖.‖Ai

denotes the C∗-norm on Ai.
Moreover, for an arbitrary ξr ∈ Fr we have

ν(tξr)
2 = ν(t∗ξr

tξr) = ν(t( ξr | ξr )Aj
) ≤ ‖( ξr | ξr )Aj

‖Aj
= ‖ξr‖2

Fr
.

Since C∗-seminorms are submultiplicative, it follows that ‖.‖ is bounded on every element
of P . By separating and completing with respect to ‖.‖ we get a C∗-algebra which we
denote by T (F,Φ). We write ir(ξr), ξr ∈ Fr, and ij(aj), aj ∈ Aj, for the images of tξr and
taj

in T (F,Φ). Because of the relations that hold in P and hence in T (F,Φ), it is clear
that i : (F,Φ) → T (F,Φ) becomes a Toeplitz representation.

Now we suppose that π : (F,Φ) → B is a Toeplitz representation. By θ(tξr) := πr(ξr),
ξr ∈ Fr, r ∈ Arr(J) and θ(tai

) := πi(ai), ai ∈ Ai, i ∈ Ob(J), we define a mapping θ
that extends to a ∗-homomorphism from P to B. By setting µ(x) := ‖θ(x)‖, we get a
C∗-seminorm on P and thus θ is a contraction, since

‖θ(x)‖ = µ(x) ≤ sup{ν(x) : ν is a C∗-seminorm on P} = ‖x‖.

Hence, θ extends to a C∗-homomorphism π̃ : T (F,Φ) → B. It is obvious that π̃(ir(ξr)) =
θ(tξr) = πr(ξr) and π̃(ij(aj)) = θ(taj

) = πj(aj) for all ξr ∈ Fr, r ∈ Arr(J), and aj ∈ Aj,
j ∈ Ob(J). Finally, π̃ is unique, since θ is determined by its values on the generating
symbols of P . 2

Definition 4.2 (The universal Toeplitz algebra)
Since T (F,Φ) is defined by a universal condition, it is unique up to isomorphism. Thus
we call T (F,Φ) the universal Toeplitz algebra and we say that i is the universal Toeplitz
representation from (F,Φ) into T (F,Φ).

Remark: ijT (F,Φ) = ij(Aj)T (F,Φ), j ∈ Ob(J), is a family of Hilbert C∗-submodules
of the Hilbert T (F,Φ)-module idT (F,Φ). We have that ij(aj) ∈ ijT (F,Φ) for aj ∈ Aj,
as well as ir(ξr) ∈ ijT (F,Φ) for ξr ∈ Fr, if r : j → k ∈ Arr(J). Moreover, for j 6= k we
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have ijT (F,Φ) ⊥ ikT (F,Φ), because for aj ∈ Aj, ak ∈ Ak and ξ, η ∈ T (F,Φ) we compute
( ij(aj)ξ | ik(ak)η )T (F,Φ) = ξ∗ij(a

∗
j)ik(ak)η = 0, since ij(a

∗
j)ik(ak) = 0. Hence, idT (F,Φ) is

the inner direct sum of the family {ijT (F,Φ): j ∈ Ob(J)},

idT (F,Φ) =
⊕

j∈Ob(J)

(i)

ijT (F,Φ).

4.2 The universal Cuntz-Pimsner algebra

In [10], Fowler introduced the notion of Cuntz-Pimsner covariant Toeplitz representations
over product systems that are indexed by a semigroup. We want to carry this notion
over to our situation to introduce the universal Cuntz-Pimsner algebra O(F,Φ) that will
be universal for Cuntz-Pimsner covariant Toeplitz representations over a given product
system (F,Φ).

Let π : (F,Φ) → B be a Toeplitz representation. Then for every r : i → j ∈ Arr(J),
(πr, πj) : (Fr, Aj) → B is a homomorphism of Hilbert C∗-modules. Hence, Corollary 3.7
implies that there is a ∗-homomorphism π̃r : K(Fr) → B, which satisfies

π̃r(θξ,η) = πr(ξ)πr(η)
∗ for all ξ, η ∈ Fr.

We say that the Toeplitz representation π : (F,Φ) → B is Cuntz-Pimsner covariant if

π̃r(λr(a)) = πi(a)

for all a ∈ λ−1
r (K(Fr)), r : i→ j ∈ Arr(J), where λr : Ai → L(Fr) is the ∗-homomorphism

that defines the Ai-left multiplication on Fr.

Proposition 4.3 For every product system (F,Φ) over J , there is a C∗-algebra O(F,Φ)
and a Toeplitz representation j : (F,Φ) → O(F,Φ), which is Cuntz-Pimsner covariant,
such that every Cuntz-Pimsner covariant Toeplitz representation π : (F,Φ) → B factors
uniquely through j, i.e., there is a unique ∗-homomorphism π̃ : O(F,Φ) → B, such that
πr = π̃ ◦ jr and πk = π̃ ◦ jk for all r ∈ Arr(J), k ∈ Ob(J).

Proof: Let i be the universal Toeplitz representation from (F,Φ) into the universal
Toeplitz algebra T (F,Φ) and let I be the ideal in T (F,Φ) generated by

{ik(a)− ĩr(λr(a)) : a ∈ λ−1
r (K(Fr)), r : k → l ∈ Arr(J)}.

We define O(F,Φ) := T (F,Φ)/I and j := q ◦ i, where q : T (F,Φ) → O(F,Φ) is the
canonical projection. It is easy to see that j is a Toeplitz representation from (F,Φ) to
O(F,Φ) and for a ∈ λ−1

r (K(Fr)), r : k → l ∈ Arr(J), we have j̃r(λr(a)) = q(̃ir(λr(a))) =
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q(ik(a)) = jk(a), which shows that j is Cuntz-Pimsner covariant. If ψ is another Cuntz-
Pimsner covariant Toeplitz representation from (F,Φ) to a C∗-algebra B, there is a
unique ∗-homomorphism ψ̃ : T (F,Φ) → B that satisfies ψ̃ ◦ ir = ψr and ψ̃ ◦ ik = ψk

for all r ∈ Arr(J) and k ∈ Ob(J), since ψ is a Toeplitz representation. Now for
a ∈ λ−1

r (K(Fr)), r : k → l ∈ Arr(J) we have

ψ̃(ik(a)− ĩr(λr(a))) = ψk(a)− ψ̃r(λr(a)) = 0,

since ψ is Cuntz-Pimsner covariant and hence, ψ̃ descends to a unique ∗-homomorphism
ψ : O(F,Φ) → B that satisfies ψ ◦ q = ψ̃. Hence, we have ψ ◦ jr = ψ ◦ q ◦ ir = ψ̃ ◦ ir = ψr

and ψ ◦ jk = ψ ◦ q ◦ ik = ψ̃ ◦ ik = ψk for all r ∈ Arr(J) and k ∈ Ob(J). 2

Definition 4.4 (The universal Cuntz-Pimsner algebra)
O(F,Φ) is defined by a universal condition and thus it is unique up to isomorphism. We
call j the universal Cuntz-Pimsner covariant Toeplitz representation from (F,Φ) into the
universal Cuntz-Pimsner algebra O(F,Φ).

4.3 Bicategorial colimits

The aim of this section is to show that for certain product systems (F,Φ), the universal
Toeplitz algebra T (F,Φ) can be viewed as the colimit object for (F,Φ) in the bicategory
C∗ARR. Therefore, we first have to recall the notion of a colimit for a morphism (F,Φ)
from a bicategory B to another bicategory B′ from [13]. To define the notion of a bi-
categorial colimit, we need to provide some other basic notions from bicategory theory,
namely optransformations, the diagonal morphism and modifications, see also [17].

Definition 4.5 (Optransformations)
Let B,B′ be bicategories and let (F,Φ), (G,Ψ): B → B′ be morphisms. An optransforma-
tion σ : (F,Φ) → (G,Ψ) consists of a family of arrows σ0(A) : F (A) → G(A), A ∈ Ob(B)
and a family of 2-cells

σ1(f) : σ0(B) ◦ FA,B(f) ⇒ GA,B(f) ◦ σ0(A),

f : A → B ∈ Arr(B), such that the following diagrams commute for f : A → B and
g : B → C ∈ Arr(B):
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σ0(C)(F (g)F (f)) (σ0(C)(F (g))F (f) (G(g)σ0(B))F (f)

σ0(C)F (gf) G(g)(σ0(B)F (f))

G(gf)σ0(A) (G(g)G(f))σ0(A) G(g)(G(f)σ0(A))

- -

� �

??

??

(α′)−1 σ1(g)∗ι′
F (f)

Ψg,f∗ι′σ0(A) (α′)−1

σ1(gf) ι′
G(g)

∗σ1(f)

ι′
σ0(C)

∗Φg,f α′

σ0(A)I ′F (A) σ0(A)F (IA) G(IA)σ0(A)

σ0(A) I ′G(A)σ0(A)

- -

-

6

?

ι′
σ0(A)

∗ΦA σ1(IA)

(λ′
σ0(A)

)−1

ρ′
σ0(A)

ΨA∗ι′σ0(A)

Definition 4.6 (The diagonal morphism ∆X)
Let B,B′ be bicategories and let X ∈ Ob(B′). Then we define a morphism ∆X =
(∆X,ΨX) : B → B′ by setting

∆X(A) := X ∆XA,B(f) := I ′X ∆XA,B(β) := ι′I′X

for all A,B ∈ Ob(B), f ∈ Ob(B(A,B)) and β ∈ Arr(B(A,B)). It is clear that ∆XA,B is
a functor from B(A,B) to B′(X,X). Furthermore, given any triple (A,B,C) of objects
of B and arrows f : A→ B, g : B → C, we set

(ΨX)g,f := ρ′I′X : I ′X ◦ I ′X ⇒ I ′X and (ΨX)A := ι′I′X : I ′X ⇒ I ′X .

One can show that this definition makes (∆X,ΨX) a morphism from B to B′, which we
call the diagonal morphism.

Remark: In fact, ∆ is a morphism from B′ to the bicategory (B′)B, whose objects
are morphisms from B to B′, whose arrows are optransformations and whose 2-cells are
modifications (see below).

Now that we are familiar with optransformations and the diagonal morphism, we are able
to introduce lax cones, which are of great importance, since the definition of bicategorial
colimits is based on them.
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Definition 4.7 (Lax cones)
Let B,B′ be bicategories, let (F,Φ): B → B′ be a morphism and let X ∈ Ob(B′). A lax
cone from (F,Φ) to X is an optransformation

σ : (F,Φ) → (∆X,ΨX).

Hence, a lax cone from (F,Φ) to X consist of a family of arrows σ0(A) : F (A) → X,
A ∈ Ob(B), and a family of 2-cells σ1(f) : σ0(B) ◦ FA,B(f) ⇒ I ′X ◦ σ0(A), f : A→ B,

J
J

J
J

J
J

J
J

J
J

J
J
J


































u u

u

HH

HH

HH

HH��

��
�

� �
���

F (A) F (B)

X

σ1(f)

FA,B(f)

σ0(B)σ0(B)◦FA,B(f)

σ0(A)

I′X◦σ0(A)

such that the following diagrams commute for A,B,C ∈ Ob(B), f ∈ Ob(B(A,B)) and
g ∈ Ob(B(B,C)) arbitrary:

σ0(C)(F (g)F (f)) (σ0(C)(F (g))F (f) (I ′Xσo(B))F (f)

σ0(C)F (gf) I ′X(σ0(B)F (f))

I ′Xσ0(A) (I ′XI
′
X)σ0(A) I ′X(I ′Xσ0(A))

- -

� �

??

??

(α′)−1 σ1(g)∗ι′
F (f)

ρ′
I′
X
∗ι′

σ0(A) (α′)−1

σ1(gf) ι′
I′
X
∗σ1(f)

ι′
σ0(C)

∗Φg,f α′

σ0(A)I ′F (A) σ0(A)F (IA)

σ0(A) I ′Xσ0(A)

-

-

??

ι′
σ0(A)

∗ΦA

(λ′
σ0(A)

)−1

ρ′
σ0(A) σ1(IA)
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Before we are able to define the notion of a bicategorial colimit we have to provide a way
to construct a new lax cone f ◦ σ from a given lax cone σ and we need to introduce the
notion of a modification between optransformations.

If σ is a lax cone from (F,Φ) to X and f : X → Y is an arrow in B′ then we define a lax
cone f ◦ σ from (F,Φ) to Y as follows. For A ∈ Ob(B), we set

(f ◦ σ)0(A) := f ◦ σ0(A) : F (A) → Y

and for an arrow r ∈ Ob(B(A,B)), we define a 2-cell

(f ◦ σ)1(r) : (f ◦ σ)0(B) ◦ FA,B(r) ⇒ I ′Y ◦ (f ◦ σ)0(A)

by setting

(f ◦ σ)1(r) := α′ ◦ ((λ′f )
−1 ∗ ι′σ0(A)) ◦ (ρ′f ∗ ι′σ0(A)) ◦ (α′)−1 ◦ (ι′f ∗ σ1(r)) ◦ α′,

see diagram below:

(fσ0(B))F (r) f(σ0(B)F (r)) f(I ′Xσ0(A))

(fI ′X)σ0(A)

I ′Y (fσ0(A)) (I ′Y f)σ0(A) fσ0(A)

- -

� �

?

?

?

α′ ι′f∗σ1(r)

α′ (λ′f )−1∗ι′
σ0(A)

(f◦σ)1(r)

ρ′f∗ι
′
σ0(A)

(α′)−1

One can show that this definition in deed makes f ◦ σ a lax cone from (F,Φ) to Y .

Definition 4.8 (Modifications)
Let B,B′ be bicategories and let (F,Φ), (G,Ψ): B → B′ be morphisms. Moreover, let
σ, σ̃ : (F,Φ) → (G,Ψ) be optransformations. A modification Γ: σ → σ̃ consists of a
family of 2-cells

ΓA : σ0(A) ⇒ σ̃0(A),

A ∈ Ob(B), such that the following diagram commutes for all f : A→ B ∈ Arr(B):

σ0(B)F (f) σ̃0(B)F (f)

G(f)σ0(A) G(f)σ̃0(A)

-

-

??

ΓB∗ι′F (f)

ι′
G(f)

∗ΓA

σ1(f) σ̃1(f)
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Definition 4.9 (Colimit for a morphism (F,Φ))
Let B,B′ be bicategories and let (F,Φ): B → B′ be a morphism. A colimit for (F,Φ) is a
lax cone σ from (F,Φ) to the colimit object X such that for each lax cone τ from (F,Φ) to
Y there is a pair (f, β), where f : X → Y is an arrow and β : τ → f ◦ σ is a modification,
which is universal among such pairs, i.e., given another such pair (f ′, β′) there is a unique
2-cell χ : f ⇒ f ′ such that β′A = (χ ∗ ι′σ0(A)) ◦ βA for all A ∈ Ob(B).

First, we want to describe what it means that there is a modification β : τ → f ◦ σ. It
means that there are 2-cells βA : τ0(A) ⇒ f ◦ σ0(A), A ∈ Ob(B), such that the following
equation holds for r ∈ Ob(B(A,B)):

(ι′I′Y ∗ βA) ◦ τ1(r) = (f ◦ σ)1(r) ◦ (βB ∗ ι′F (r))

= α′ ◦ ((λ′f )
−1 ∗ ι′σ0(A)) ◦ (ρ′f ∗ ι′σ0(A)) ◦ (α′)−1 ◦ (ι′f ∗ σ1(r)) ◦ α′ ◦ (βB ∗ ι′F (r)).

Now that we have provided the bicategorial background, we want to show that for certain
product systems (F,Φ), the universal Toeplitz algebra T (F,Φ) can be viewed as the
colimit object for (F,Φ) in the bicategory C∗ARR. So for the rest of this section, let (F,Φ)
be a product system over an index category J such that all C∗-arrows Fr, r ∈ Arr(J), are
finitely generated and all C∗-algebras Ai, i ∈ Ob(J), are unital.

First of all, we want to show that a Toeplitz representation π : (F,Φ) → B can always be
viewed as a lax cone σ(π) from (F,Φ) to B. We set

σ(π)0(i) := πi
B and σ(π)1(r)(ξ ⊗ η) := πr(ξ)⊗ η

for i ∈ Ob(J), r : i→ j ∈ Arr(J), ξ ∈ Fr and η ∈ πj
B.

Lemma 4.10 σ(π) is a lax cone from (F,Φ) to B.

Proof: It is clear that σ(π)0(i) = πi
B is a C∗-arrow from Ai to B. To see that σ(π)1(r) is

a 2-cell from σ(π)0(j) ◦Fr = Fr⊗ πj
B to I ′B ◦ πi

B = πi
B⊗ idB we first show that σ(π)1(r)

is isometric:

(σ(π)1(r)(ξ ⊗ η) |σ(π)1(r)(ξ̃ ⊗ η̃) )B = (πr(ξ)⊗ η |πr(ξ̃)⊗ η̃ )B

= ( η | (πr(ξ) |πr(ξ̃) )B · η̃ )B = ( η |πr(ξ)
∗πr(ξ̃)η̃ )B

= ( η |πj(( ξ | ξ̃ )Aj
)η̃ )B = ( η | ( ξ | ξ̃ )Aj

· η̃ )B

= ( ξ ⊗ η | ξ̃ ⊗ η̃ )B,

where ξ, ξ̃ ∈ Fr, η, η̃ ∈ πj
B. Since Aj is unital, it follows easily that πj

B is finitely
generated as a Hilbert B-module by πj(1). Since Fr is a finitely generated C∗-arrow, we
also have that Fr⊗ πj

B is finitely generated. Hence, the image of Fr⊗ πj
B under σ(π)1(r)

is finitely generated. Schweizer shows in [26] that a finitely generated Hilbert C∗-module
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is always self dual. From this it follows easily that σ(π)1(r)(Fr ⊗ πj
B) is a complemented

submodule of πi
B ⊗ idB, which yields that σ(π)1(r) is adjointable and hence, a 2-cell.

Now let r : i→ j, s : j → k ∈ Arr(J) be arbitrary. We have to show that

σ(π)1(sr)(ι
′
πk

B ∗ Φs,r) = (ρ′
idB ∗ ι′πiB

)(α′)−1(ι′
idB ∗ σ(π)1(r))α

′(σ(π)1(s) ∗ ι′Fr
)(α′)−1.

So let ξr ∈ Fr, ξs ∈ Fs and η ∈ πk
B be arbitrary. Then we have

σ(π)1(sr)(ι
′
πk

B ∗ Φs,r)((ξr ⊗ ξs)⊗ η) = σ(π)1(sr)(Φsr(ξr ⊗ ξs)⊗ η)

= πsr(Φsr(ξr ⊗ ξs))⊗ η = πr(ξr)πs(ξs)⊗ η and

(ρ′
idB ∗ ι′πiB

)(α′)−1(ι′
idB ∗ σ(π)1(r))α

′(σ(π)1(s) ∗ ι′Fr
)(α′)−1((ξr ⊗ ξs)⊗ η)

= (ρ′
idB ∗ ι′πiB

)(α′)−1(ι′
idB ∗ σ(π)1(r))α

′(σ(π)1(s) ∗ ι′Fr
)(ξr ⊗ (ξs ⊗ η))

= (ρ′
idB ∗ ι′πiB

)(α′)−1(ι′
idB ∗ σ(π)1(r))α

′(ξr ⊗ (πs(ξs)⊗ η))

= (ρ′
idB ∗ ι′πiB

)(α′)−1(ι′
idB ∗ σ(π)1(r))((ξr ⊗ πs(ξs))⊗ η)

= (ρ′
idB ∗ ι′πiB

)(α′)−1((πr(ξr)⊗ πs(ξs))⊗ η) = (ρ′
idB ∗ ι′πiB

)(πr(ξr)⊗ (πs(ξs)⊗ η))

= πr(ξr)⊗ πs(ξs)η = πr(ξr)πs(ξs)⊗ η.

Finally, it remains to prove that (λ′
πiB

)−1◦ρ′
πiB

= σ(π)1(Ii)◦(ι′
πiB

∗Φi) which is equivalent

to ρ′
πiB

= λ′
πiB

◦ σ(π)1(Ii) ◦ (ι′
πiB

∗Φi) . So we let ξ ∈ I ′Ai
= idAi and η ∈ πi

B be arbitrary
and compute

λ′
πiB

◦ σ(π)1(Ii) ◦ (ι′
πiB

∗ Φi)(ξ ⊗ η) = λ′
πiB

◦ σ(π)1(Ii)(Φi(ξ)⊗ η)

= λ′
πiB

(πIi
(Φi(ξ))⊗ η) = πi(ξ)η = ρ′

πiB
(ξ ⊗ η).

2

From Proposition 4.1 we know that the universal Toeplitz representation i : (F,Φ) →
T (F,Φ) is universal for Toeplitz representations over (F,Φ) and now we have seen in
Lemma 4.10 that Toeplitz representations can be viewed as lax cones. Hence, the lax
cone σ(i) is universal for lax cones over (F,Φ) that come from Toeplitz representations.
The following theorem states that σ(i) is universal for arbitrary lax cones over (F,Φ) or
in other words, that σ(i) is a colimit for (F,Φ). Hence, Theorem 4.11 extends Proposition
4.1. In what follows, we will denote the universal Toeplitz representation by π in order
not to confuse the universal Toeplitz representation i with an object i ∈ Ob(J).

Theorem 4.11 Let (F,Φ) be a product system over an index category J such that all
C∗-arrows Fr, r ∈ Arr(J), are finitely generated and all C∗-algebras Ai, i ∈ Ob(J), are
unital. Moreover, let π : (F,Φ) → T (F,Φ) be the universal Toeplitz representation. Then
σ(π) is a colimit for (F,Φ) and T (F,Φ) is the corresponding colimit object.
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Proof: From Lemma 4.10 we know that σ(π) is a lax cone from (F,Φ) to T (F,Φ). Now
let τ be an arbitrary lax cone from (F,Φ) to a C∗-algebra Y . We have to construct a
C∗-arrow f : T (F,Φ) → Y and a modification β : τ → f ◦ σ(π). τ0(j) is a C∗-arrow from
Aj to Y , j ∈ Ob(J). Especially, all τ0(j) are Hilbert Y -modules. Hence, we can set

f :=
⊕

j∈Ob(J)

(i)
τ0(j),

which makes f a Hilbert Y -module. We want to make f a C∗-arrow from T (F,Φ) to
Y and thus we have to provide f with a left multiplication by T (F,Φ), i.e., we are
looking for a ∗-homomorphism ψ : T (F,Φ) → L(f). Now the idea is to construct a
Toeplitz representation ψ : (F,Φ) → L(f) which yields the desired ∗-homomorphism. For
i ∈ Ob(J) let

ψi : Ai → L(τ0(i)) ⊂ L(f)

be the ∗-homomorphism that defines the left multiplication of Ai on τ0(i) (τ0(i) is a C∗-
arrow from Ai to Y ). For r : i→ j ∈ Arr(J) we define a linear mapping

ψr : Fr → L(τ0(j), τ0(i)) ⊂ L(f) by ψr(ξr)(ηj) := λ′τ0(i)(τ1(r)(ξr ⊗ ηj))

for ξr ∈ Fr, ηj ∈ τ0(j) ⊂ f . The adjoint operator ψr(ξr)
∗ ∈ L(τ0(i), τ0(j)) is given by

ψr(ξr)
∗ = Kj,r

ξr
◦ τ1(r)∗ ◦ (λ′τ0(i))

−1

where Kj,r
ξr

: Fr ⊗ τ0(j) → τ0(j) is the mapping given by Kj,r
ξr

(ηr ⊗ ηj) := ( ξr | ηr )Aj
· ηj.

The following computations show that ψ is a Toeplitz representation from (F,Φ) to L(f).
Let r : i→ j, s : j → k ∈ Arr(J) and let ai ∈ Ai, aj ∈ Aj, ξr, ηr ∈ Fr, ξs ∈ Fs, ηj ∈ τ0(j)
and ηk ∈ τ0(k) be arbitrary. Then we compute

ψr(ai · ξr · aj)(ηj) = λ′τ0(i)(τ1(r)(ai · ξr · aj ⊗ ηj)) = ai · λ′τ0(i)(τ1(r)(ξr ⊗ aj · ηj))

= ψi(ai)ψr(ξr)(aj · ηj) = ψi(ai)ψr(ξr)ψj(aj)(ηj),

ψr(ξr)
∗ψr(ηr)(ηj) = ψr(ξr)

∗λ′τ0(i)(τ1(r)(ηr ⊗ ηj))

= Kj,r
ξr
◦ τ1(r)∗ ◦ (λ′τ0(i))

−1λ′τ0(i)(τ1(r)(ηr ⊗ ηj))

= ( ξr | ηr )Aj
· ηj = ψj(( ξr | ηr )Aj

)(ηj),

ψs◦r(Φs,r(ξr ⊗ ξs))(ηk) = λ′τ0(i)(τ1(s ◦ r)(Φs,r(ξr ⊗ ξs)⊗ ηk))

= λ′τ0(i) ◦ (idτ0(i) ⊗ ρ′
idY ) ◦ (α′)−1 ◦ (τ1(r)⊗ id

idY ) ◦ α′ ◦ (idFr ⊗ τ1(s))(ξr ⊗ (ξs ⊗ ηk))

= λ′τ0(i) ◦ (idτ0(i) ⊗ ρ′
idY ) ◦ (α′)−1 ◦ (τ1(r)⊗ id

idY ) ◦ α′(ξr ⊗ τ1(s)(ξs ⊗ ηk))

= λ′τ0(i) ◦ τ1(r) ◦ (idFr ⊗ λ′τ0(j))(ξr ⊗ τ1(s)(ξs ⊗ ηk))

= λ′τ0(i) ◦ τ1(r)(ξr ⊗ λ′τ0(j)τ1(s)(ξs ⊗ ηk)) = λ′τ0(i) ◦ τ1(r)(ξr ⊗ ψs(ξs)(ηk))

= ψr(ξr)ψs(ξs)(ηk),
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(ψIj
◦ Φj)(aj)(ηj) = ψIj

(Φj(aj))(ηj) = λ′τ0(j)(τ1(Ij)(Φj(aj)⊗ ηj))

= λ′τ0(j) ◦ τ1(Ij) ◦ (Φj ⊗ idτ0(j))(aj ⊗ ηj) = λ′τ0(j)(λ
′
τ0(j))

−1ρ′τ0(j)(aj ⊗ ηj)

= ρ′τ0(j)(aj ⊗ ηj) = aj · ηj = ψj(aj)(ηj)

and it is clear by the construction of f that ψi(ai)ψj(aj) = 0 for i 6= j.

Hence, there exists a unique ∗-homomorphism ψ : T (F,Φ) → L(f) with

ψi = ψ ◦ πi and ψr = ψ ◦ πr

for all i ∈ Ob(J) and r ∈ Arr(J). We use ψ to define a left multiplication of T (F,Φ) on
f , which makes f a C∗-arrow from T (F,Φ) to Y . Next, we define mappings

βi := (ιτ0(i) ∗ πi) ◦ (ρτ0(i))
−1 : τ0(i) ⇒ πi

T (F,Φ)⊗ f, i ∈ Ob(J).

Hence, for ξ = ai · η = ρτ0(i)(ai ⊗ η), ai ∈ Ai, η ∈ τ0(i) we have βi(ξ) = πi(ai) ⊗ η. We
want to show that the family {βi : i ∈ Ob(J)} is a modification from τ to f ◦ σ(π). First
we show that each βi is a 2-cell from τ0(i) to f ◦ σ(π)0(i) = πi

T (F,Φ) ⊗ f . It is easy to
see that βi is an Ai-Y -bimodule mapping. To see that it is isometric we let ai, bi ∈ Ai

and ξ, η ∈ τ0(i) arbitrary and compute

( βi(ai · ξ) | βi(bi · η) )Y = (πi(ai)⊗ ξ |πi(bi)⊗ η )Y = ( ξ | (πi(ai) |πi(bi) )T (F,Φ) · η )Y

= ( ξ |ψ(πi(a
∗
i bi))(η) )Y = ( ξ |ψi(a

∗
i bi)(η) )Y

= (ψi(ai)(ξ) |ψi(bi)(η) )Y = ( ai · ξ | bi · η )Y .

Next, we want to show that βi is adjointable by providing the adjoint mapping β∗i expli-
citly. We define

β∗i : πi
T (F,Φ)⊗ f ⇒ τ0(i) by setting β∗i (ξ ⊗ η) := ψ(ξ)(η).

To see that β∗i (πi
T (F,Φ) ⊗ f) ⊆ τ0(i), we let πi(ai)ξ, ai ∈ Ai, ξ ∈ T (F,Φ), be a typical

element of πi
T (F,Φ) and we let η ∈ f be arbitrary. Then we have β∗i (πi(ai)ξ ⊗ η) =

ψ(πi(ai)ξ)(η) = ψi(ai)ψ(ξ)(η) ∈ τ0(i), since ψi(ai) ∈ L(τ0(i)). It is easy to see that β∗i
is an Ai-Y -bimodule mapping. The following computation shows that β∗i in deed is the
adjoint of βi:

( βi(ai · ξ) |πi(bi)η ⊗ ζ )Y = (πi(ai)⊗ ξ |πi(bi)η ⊗ ζ )Y

= ( ξ | (πi(ai) |πi(bi)η )T (F,Φ) · ζ )Y = ( ξ |ψ(πi(a
∗
i )πi(bi)η)(ζ) )Y

= ( ξ |ψi(ai)
∗ψ(πi(bi)η)(ζ) )Y = (ψi(ai)(ξ) |ψ(πi(bi)η)(ζ) )Y

= ( ai · ξ | β∗i (πi(bi)η ⊗ ζ) )Y

for ai, bi ∈ Ai, ξ ∈ τ0(i), η ∈ T (F,Φ) and ζ ∈ f arbitrary. Hence, βi is an adjointable,
isometric Ai-Y -bimodule mapping. We claim that βi is a unitary, i.e., we have to show
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that βi ◦ β∗i = idπiT (F,Φ)⊗f . So we let ai ∈ Ai, ξ ∈ T (F,Φ) and η ∈ f be arbitrary and
compute

βi ◦ β∗i (πi(ai)ξ ⊗ η) = βi(ψ(πi(ai)ξ)(η)) = βi(ψi(ai)(ψ(ξ)(η))) = πi(ai)⊗ ψ(ξ)(η)

= πi(ai)ξ ⊗ η,

which shows that βi is a unitary.

In order to prove that the family {βi : i ∈ Ob(J)} is a modification from τ to f ◦ σ(π), it
remains to show that

(βi ⊗ idI′Y
) ◦ τ1(r) = α′ ◦ (idπiT (F,Φ) ⊗ (λ′f )

−1) ◦ (idπiT (F,Φ) ⊗ ρ′f ) ◦ (α′)−1

◦(σ(π)1(r)⊗ idf ) ◦ α′ ◦ (idFr ⊗ βj), which is equivalent to

λ′τ0(i) ◦ τ1(r) ◦ (idFr ⊗ β∗j ) = λ′τ0(i) ◦ (β∗i ⊗ idI′Y
) ◦ α′ ◦ (idπiT (F,Φ) ⊗ (λ′f )

−1)

◦(idπiT (F,Φ) ⊗ ρ′f ) ◦ (α′)−1 ◦ (σ(π)1(r)⊗ idf ) ◦ α′.

So for ξ ∈ Fr, η ∈ πj
T (F,Φ) and ζ ∈ f we compute

λ′τ0(i) ◦ τ1(r) ◦ (idFr ⊗ β∗j )(ξ ⊗ (η ⊗ ζ)) = λ′τ0(i) ◦ τ1(r)(ξ ⊗ ψ(η)(ζ)) = ψr(ξ)(ψ(η)(ζ)),

λ′τ0(i) ◦ (β∗i ⊗ idI′Y
) ◦ α′ ◦ (idπiT (F,Φ) ⊗ (λ′f )

−1) ◦ (idπiT (F,Φ) ⊗ ρ′f ) ◦ (α′)−1

◦(σ(π)1(r)⊗ idf ) ◦ α′(ξ ⊗ (η ⊗ ζ))

= λ′τ0(i) ◦ (β∗i ⊗ idI′Y
) ◦ α′ ◦ (idπiT (F,Φ) ⊗ (λ′f )

−1) ◦ (idπiT (F,Φ) ⊗ ρ′f ) ◦ (α′)−1

((πr(ξ)⊗ η)⊗ ζ)

= λ′τ0(i) ◦ (β∗i ⊗ idI′Y
) ◦ α′ ◦ (idπiT (F,Φ) ⊗ (λ′f )

−1)(πr(ξ)⊗ (η · ζ))
= β∗i (πr(ξ)⊗ (η · ζ)) = ψ(πr(ξ))(η · ζ) = ψr(ξ)(ψ(η)(ζ)),

which shows that β is a modification from τ to f ◦ σ(π).

Now let (f ′, β′) be another pair consisting of a C∗-arrow f ′ : T (F,Φ) → Y and a modifica-
tion β′ : τ → f ′ ◦σ(π). We have to provide an isometric, adjointable T (F,Φ)-Y -bimodule
mapping χ : f → f ′ such that (idπiT (F,Φ) ⊗ χ) ◦ βi = β′i for all i ∈ Ob(J) and we have to
show that this χ is unique.

Let ρ′f ′ be the canonical T (F,Φ)-Y -bimodule mapping from idT (F,Φ)⊗ f ′ to f ′. We let
Ui denote the restriction of ρ′f ′ to πi

T (F,Φ)⊗ f ′ and we set f ′i := Ui(πi
T (F,Φ)⊗ f ′) ⊂ f ′.

Then f ′i is C∗-arrow from Ai to Y , the left multiplication is given by ai ·ξ := πi(ai) ·ξ, and
Ui is a unitary Ai-Y -bimodule mapping from πi

T (F,Φ)⊗ f ′ to f ′i . Moreover, due to the

remark following Definition 4.2, we know that idT (F,Φ) =
⊕(i)

i∈Ob(J) πi
T (F,Φ) and thus

it follows easily that f ′ =
⊕(i)

i∈Ob(J) f
′
i .

Next, we define isometric, adjointable Ai-Y -bimodule mappings χi : τ0(i) → f ′i by setting

χi := Ui ◦ β′i, i ∈ Ob(J),
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and finally, we define a mapping χ : f =
⊕(i)

i∈Ob(J) τ0(i) → f ′ =
⊕(i)

i∈Ob(J) f
′
i by setting

χ((ξi)i∈Ob(J)) := (χi(ξi))i∈Ob(J).

Then χ is an isometric T (F,Φ)-Y -bimodule mapping, because for ξi, ηi ∈ τ0(i), i ∈ Ob(J),
we have

(χ((ξi)i∈Ob(J)) |χ((ηi)i∈Ob(J)) )Y = ( (χi(ξi))i∈Ob(J) | (χi(ηi))i∈Ob(J) )Y

=
∑

i∈Ob(J)

(χi(ξi) |χi(ηi) )Y =
∑

i∈Ob(J)

( ξi | ηi )Y

= ( (ξi)i∈Ob(J) | (ηi)i∈Ob(J) )Y .

Moreover, χ is adjointable, because each χi, i ∈ Ob(J), is adjointable and so the adjoint
χ∗ : f ′ → f is given by χ∗((ξi)i∈Ob(J)) = (χ∗i (ξi))i∈Ob(J).

Next, we show that β′i = (idπiT (F,Φ) ⊗ χ) ◦ βi for all i ∈ Ob(J). For ξ ∈ τ0(i), we suppose
that β′i(ξ) = (πi(bi)η)⊗ ζ for bi ∈ Ai, η ∈ T (F,Φ) and ζ ∈ f ′. Then we have

(idπiT (F,Φ) ⊗ χ) ◦ βi(ai · ξ) = (idπiT (F,Φ) ⊗ χ)(πi(ai)⊗ ξ) = πi(ai)⊗ χi(ξ)

= πi(ai)⊗ Ui(β
′
i(ξ)) = πi(ai)⊗ Ui((πi(bi)η)⊗ ζ)

= πi(ai)⊗ (πi(bi)η) · ζ = πi(ai)πi(bi)η ⊗ ζ

= ai · (πi(bi)η ⊗ ζ) = ai · β′i(ξ) = β′i(ai · ξ),

which shows that χ is the desired bimodule mapping. Finally, it is easy to see that the
bimodule mapping χ is uniquely determined, since every χi is uniquely determined by the
identity (idπiT (F,Φ) ⊗ χ) ◦ βi = β′i. 2
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Chapter 5

Crossed products by Hopf
C∗-algebras

In this chapter, we want to make a first step towards the duality theory for locally com-
pact semigroups using Hopf C∗-algebras, which can be viewed as a generalization of
locally compact semigroups. A Hopf C∗-algebra is a C∗-algebra H together with a co-
multiplication δH . The standard example for a Hopf C∗-algebra is C0(S), the C∗-algebra
of continuous functions on a locally compact semigroup S that vanish at infinity. The
multiplication in S corresponds to the comultiplication in C0(S).

We introduce the notions of corepresentations of Hopf C∗-algebras, coactions of Hopf C∗-
algebras on C∗-algebras and covariant representations of dynamical cosystems, which ge-
neralize the corresponding notions for semigroups, namely representations of semigroups,
actions of semigroups on C∗-algebras and covariant representations of semigroup dyna-
mical systems.

Following our overview of Hopf C∗-algebras, we are looking for a condition on the Hopf
C∗-algebra H that makes it possible to construct a specific covariant representation of
the dynamical cosystem (H,H, δH) inspired by the right regular covariant representation
of (C0(G), G, α) on L2(G, µ), where µ is a right Haar measure on a locally compact group
G and α is the action of G on C0(G) by right translation. This condition will be the
existence of an invariant weight τ on H and we will see that for the Hopf C∗-algebra
C0(S), this condition is equivalent to the existence of a right invariant Radon measure µ
on S.

For Hopf C∗-algebras H that are equipped with an invariant weight τ , we construct
the reduced and universal dual C∗-algebras C∗

r (H, δH) and C∗(H, δH), respectively. We
show that the reduced dual C∗-algebra of the Hopf C∗-algebra (c0(N), αN) is isomorphic
to C∗(N) and that the reduced dual C∗-algebra of the Hopf C∗-algebra (C∗(N), δN) is
isomorphic to the C∗-algebra c0(N). This result can be viewed as a generalization of
Pontryagin’s duality theorem for locally compact, abelian groups to the semigroup of
natural numbers.

75
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Finally, we construct the reduced crossed product A oδ H for a dynamical cosystem
(A,H, δ) and examine the reduced crossed product (AoE N) oδ C

∗(N), which will be of
great importance in the next chapter.

5.1 Hopf C∗-algebras

In this section we define the notion of a Hopf C∗-algebra and show that Hopf C∗-algebras
can be viewed as a generalization of locally compact semigroups by introducing the Hopf
C∗-algebra C0(S) for a locally compact semigroup S.

Locally compact semigroups can be represented on a Hilbert space, they can act on a C∗-
algebra and given a dynamical system (A,S, α), where α is an action of a locally compact
semigroup S on a C∗-algebra A, there may be covariant representations of (A,S, α) on
a Hilbert space. Since Hopf C∗-algebras generalize locally compact semigroups, we are
interested in the generalizations of these notions and so we study the concepts of core-
presentations, coactions, dynamical cosystems and covariant representations of dynamical
cosystems.

Definition 5.1 (Hopf C∗-algebras)
A Hopf C∗-algebra is a C∗-algebra H together with a nondegenerate injective ∗-homo-
morphism δH : H →M(H ⊗H) such that

(δH ⊗ id) ◦ δH = (id⊗ δH) ◦ δH (5.1)

holds. δH is called a comultiplication on H and Equation (5.1) is the coassociativity
identity.

Definition 5.2 (Locally compact semigroups)
Let S be a semigroup as well as a locally compact topological space such that the mul-
tiplication is continuous. Then we call S a locally compact semigroup. We say that S is
right-cancellative if mp = np yields m = n for all m,n, p ∈ S.

Example 5.3 (Locally compact semigroups)

• Locally compact groups are of course also locally compact semigroups. Since they
are groups, they are also right-cancellative. Examples are (R,+), (Z,+) and (S1, ·),
where S1 := {z ∈ C : |z| = 1}.

• Subsemigroups of locally compact groups that are the intersection of an open and
a closed subset are locally compact semigroups. Since they are subsemigroups of a
group, they are also right-cancellative. Examples are (R+,+) and (N,+).
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As already mentioned above, the following example is our standard example for a Hopf
C∗-algebra, which shows that Hopf C∗-algebras generalize locally compact semigroups.

Example 5.4 (The Hopf C∗-algebra C0(S))
Let S be an arbitrary locally compact semigroup and let C0(S) be the C∗-algebra of
complex functions on S that vanish at infinity. We define a comultiplication αS : C0(S) →
M(C0(S)⊗ C0(S)) ∼= Cb(S × S) by the use of the multiplication in S. We set

αS(f)(s, t) := f(st) (5.2)

for f ∈ C0(S) and s, t ∈ S. Then αS is a nondegenerate injective ∗-homomorphism and
the associativity of the multiplication in S yields the coassociativity of αS .

As a special case of this example we consider the situation when S is the semigroup of
natural numbers.

Example 5.5 (The Hopf C∗-algebra c0(N))
Let c0(N) be the C∗-algebra of all complex sequences a = (a(n))n∈N with limn→∞ a(n) = 0,
with addition, multiplication and involution defined componentwise and with the norm
‖a‖ = supn∈N |a(n)|. For n ∈ N, let en ∈ c0(N) be the sequence with en(k) = δn,k. Then
the defining Equation (5.2) for the comultiplication αN on c0(N) yields

αN(en) =
n∑

m=0

em ⊗ en−m.

Example 5.6 (The Hopf C∗-algebra C∗(N))
Let C∗(N) be the Toeplitz algebra, which is the C∗-subalgebra of L(`2(N)) generated
by the forward unilateral shift operator S. S is an isometry and the linear span of
{Sm(S∗)n : m,n ∈ N} is a dense subset of C∗(N). We can define a comultiplication
δN : C∗(N) → C∗(N)⊗ C∗(N) by setting

δN(Sn) := Sn ⊗ Sn.

Since C∗(N) is the universal C∗-algebra generated by a non-unitary isometry (see [5] for
details), the above identity yields a well defined *-homomorphism that is nondegenerate
and injective. It is easy to see that δN satisfies the comultiplication identity (5.1) and so
(C∗(N), δN) is a Hopf C∗-algebra.

Definition 5.7 (Corepresentations)
A corepresentation of a Hopf C∗-algebra H on a Hilbert space H is a partial isometry
V ∈M(K(H)⊗H) such that

(id⊗ δH)(V ) = V12V13 (5.3)
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as elements of M(K(H)⊗H ⊗H). By V12, we denote the element of M(K(H)⊗H ⊗H)
that is V acting on the first and second factors, i.e., V12 = V ⊗ 1. V13 is V acting on the
first and third factors, that is V13 = σ23(V ⊗ 1)σ23, where σ23 is the flip automorphism on
M(K(H)⊗H ⊗H) that satisfies σ23(K ⊗ a⊗ b) = K ⊗ b⊗ a.

The following example demonstrates that corepresentations of Hopf C∗-algebras generalize
the notion of representations of semigroups. It shows that there is a 1-1-correspondence
between the representations of a locally compact semigroup S and the corepresentations
of C0(S).

Example 5.8 (Corepresentations of C0(S))
Let S be a locally compact semigroup that is right cancellative and let {Vs : s ∈ S} be
a family of partial isometries on a Hilbert space H such that VsVt = Vst for all s, t ∈ S
and such that the mapping s 7→ Vsξ is continuous for all ξ ∈ H. We say that the family
{Vs : s ∈ S} is a semigroup representation of S on H. Since the strong topology on
L(H) is the same as the strict topology on M(K(H)) ∼= L(H), we know that the function
V := (s 7→ Vs) is continuous from S to M(K(H)) in the strict topology and hence,
V ∈ Cb(S,M(K(H))) ⊆M(K(H)⊗ C0(S)). Now

V12V13 = ((s, t) 7→ VsVt) = ((s, t) 7→ Vst) = (id⊗ αS)(V )

and
V V ∗V = (s 7→ Vs)(s 7→ V ∗

s )(s 7→ Vs) = (s 7→ VsV
∗
s Vs) = (s 7→ Vs) = V.

This shows that V is a partial isometry and thus a corepresentation of C0(S) onH. Hence,
each semigroup representation {Vs : s ∈ S} of S on a Hilbert space H gives rise to a
corepresentation V of C0(S) on H.

On the other hand, let V ∈M(K(H)⊗C0(S)) be a corepresentation of C0(S) on a Hilbert
space H and let εs : C0(S) → C be the evaluation at s, i.e., εs(f) = f(s). For s ∈ S, we
set

Vs := (id⊗ εs)(V ) ∈ L(H).

Since (id⊗ εs) : M(K(H)⊗ C0(S)) → L(H) is a ∗-homomorphism, we have

VsV
∗
s Vs = (id⊗ εs)(V )(id⊗ εs)(V )∗(id⊗ εs)(V ) = (id⊗ εs)(V V

∗V ) = (id⊗ εs)(V ) = Vs,

which shows that Vs is a partial isometry. Moreover, we have

VsVt = (id⊗ εs)(V )(id⊗ εt)(V ) = (id⊗ εs ⊗ εt)(V12V13)

= (id⊗ εs ⊗ εt)(id⊗ αS)(V ) = (id⊗ εst)(V ) = Vst,

since (εs ⊗ εt)(αS(f)) = αS(f)(s, t) = f(st) = εst(f). It is easy to see that the mapping
s 7→ Vs(ξ) = (id ⊗ εs)(V )(ξ) is continuous, since V ∈ M(K(H) ⊗ C0(S)). Hence, each
corepresentation V of C0(S) on a Hilbert space H gives rise to a semigroup representation
{Vs : s ∈ S} of S on H and so we see that there is a 1-1-correspondence between the
semigroup representations of S and the corepresentations of C0(S).
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A locally compact semigroup S can act on a C∗-algebra A via an action α and in this situ-
ation we call the triple (A,S, α) a dynamical system. The following definition generalizes
these concepts to the Hopf C∗-algebra situation.

Definition 5.9 (Coactions, dynamical cosystems)
A coaction of a Hopf C∗-algebra H on a C∗-algebra A is a nondegenerate injective ∗-
homomorphism δ : A→M(A⊗H) such that

(δ ⊗ id) ◦ δ = (id⊗ δH) ◦ δ. (5.4)

In this situation, we call the triple (A,H, δ) a dynamical cosystem.

Example 5.10 (a) Any Hopf C∗-algebra coacts trivially on the complex numbers C via
z 7→ z ⊗ 1.

(b) The comultiplication δH on a Hopf C∗-algebra H is a coaction of H on itself, which
follows directly from Equation (5.1).

The following example shows that coactions of Hopf C∗-algebras are in fact a generaliza-
tion of the concept of actions of locally compact semigroups.

Example 5.11 (Coactions of C0(S))
Let S be a locally compact semigroup, let A be a C∗-algebra and let {αs : s ∈ S} be an
action of S on A, i.e., {αs : s ∈ S} is a family of unital ∗-endomorphisms αs ∈ End(M(A))
such that αs◦αt = αst and such that the mappings s 7→ αs(a) are continuous for all a ∈ A.
In other words, we have that (s 7→ αs(a)) ∈ Cb(S,M(A)) ⊆M(A⊗C0(S)). Thus, we get
an injective and nondegenerate *-homomorphism α : A→M(A⊗ C0(S)) by setting

α(a) := (s 7→ αs(a)).

Moreover, we have

(id⊗ αS) ◦ α(a) = ((s, t) 7→ αst(a)) = ((s, t) 7→ αs(αt(a))) = (α⊗ id) ◦ α(a).

So the action {αs : s ∈ S} of S on A yields a coaction α of C0(S) on A. On the other
hand, let α be a coaction of C0(S) on a C∗-algebra A. For s ∈ S and a ∈ A, we set

αs(a) := (id⊗ εs)(α(a)) ∈M(A).

Then αs : A → M(A) is a nondegenerate ∗-homomorphism, since α and (id ⊗ εs) are
nondegenerate ∗-homomorphisms. Hence, αs can be extended to a unital ∗-endomorphism
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in End(M(A)) that we also denote by αs. To see that the mapping s 7→ αs is a semigroup
homomorphism, we compute

αs ◦ αt(a) = αs ◦ (id⊗ εt) ◦ α(a) = (id⊗ εs) ◦ α ◦ (id⊗ εt) ◦ α(a)

= (id⊗ εs ⊗ εt)((α⊗ id) ◦ α(a)) = (id⊗ εs ⊗ εt)((id⊗ αS) ◦ α(a))

= (id⊗ εst)(α(a)) = αst(a).

It is clear that the mapping s 7→ αs(a) = (id⊗εs)(α(a)) is continuous and thus, the family
{αs : s ∈ S} is an action of S on A. Hence, each coaction of C0(S) on a C∗-algebra A
gives rise to an action of S on A and so there is a 1-1-correspondence between the actions
of S on A and the coactions of C0(S) on A.

Definition 5.12 (Covariant homomorphisms and covariant representations)
Let (A,H, δ) be a dynamical cosystem and let B be C∗-algebra. A covariant homomor-
phism of (A,H, δ) into M(B) is a pair (φ, v) where φ : A → M(B) is a nondegenerate
*-homomorphism and v ∈M(B ⊗H) is a partial isometry such that

(id⊗ δH)(v) = v12v13 and (5.5)

(φ⊗ id)(δ(a))v = v(φ(a)⊗ 1) for all a ∈ A. (5.6)

A covariant representation of (A,H, δ) on a Hilbert space H is a covariant homomorphism
of (A,H, δ) into M(K(H)) ∼= L(H). Hence, it is a pair (π, V ), where π : A → L(H) is
a nondegenerate *-representation and V ∈ M(K(H) ⊗ H) is a corepresentation of H,
satisfying

(π ⊗ id)(δ(a))V = V (π(a)⊗ 1) for all a ∈ A. (5.7)

In the following example we want to examine how the covariant representations of dyna-
mical cosystems generalize the concept of covariant representations of dynamical systems.

Example 5.13 (Covariant representations of (A,C0(S), α))
Let {αs : s ∈ S} be an action of S on a C∗-algebra A. We say that (π, {Vs : s ∈ S}) is a
covariant representation of (A,S, {αs : s ∈ S}) if π is a ∗-representation of A on a Hilbert
space H and if {Vs : s ∈ S} is a semigroup representation of S on H such that

π(αs(a))Vs = Vsπ(a) for all a ∈ A.

Let α be the coaction of C0(S) on A coming from the action {αs : s ∈ S} of S on A (see
Example 5.11) and let V be the corepresentation of C0(S) coming from the semigroup
representation {Vs : s ∈ S} of S (see Example 5.8). Then, for a ∈ A we have

(π ⊗ id)(α(a))V = (s 7→ π(αs(a)))(s 7→ Vs) = (s 7→ π(αs(a))Vs)

= (s 7→ Vsπ(a)) = (s 7→ Vs)(s 7→ π(a))

= V (π(a)⊗ 1),
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which shows that the pair (π, V ) is a covariant representation of the triple (A,C0(S), α)
on the Hilbert space H.

On the other hand, let (π, V ) be a covariant representation of (A,C0(S), α) on a Hilbert
space H and let {Vs : s ∈ S} and {αs : s ∈ S} be the corresponding semigroup represen-
tation of S on H and action of S on A, respectively. Then we compute

π(αs(a))Vs = π((id⊗ εs)(α(a)))(id⊗ εs)(V )

= (id⊗ εs)((π ⊗ id)(α(a))V ) = (id⊗ εs)(V (π(a)⊗ 1)) = Vsπ(a),

which shows that (π, {Vs : s ∈ S}) is a covariant representation of (A,S, {αs : s ∈ S}).
Hence, there is a 1-1-correspondence between the covariant representations of (A,C0(S), α)
and the covariant representations of (A,S, {αs : s ∈ S}).

Example 5.14 (Covariant representations of (C, H, δ))
Let δ be the trivial coaction of a Hopf C∗-algebra H on the complex numbers introduced
in Example 5.10 (a) and let V be any corepresentation of H. Since any nondegenerate ∗-
representation π of the complex numbers is of the form π(z) = z ·id for all z ∈ C, Equation
(5.7) holds trivially and so (π, V ) is a covariant representation of (C, H, δ). Thus, we have
seen that the covariant representations of (C, H, δ) are just the corepresentations of H.

5.2 The regular covariant representation

Given a locally compact group G, it is a classical result (see [12]) that there exists a right
invariant linear functional I on Cc(G), the linear space of all continuous functions on G
with compact support. Right invariance means that I(fs) = I(f) for all f ∈ Cc(G) and
s ∈ G, where fs(t) = f(ts). This functional is unique up to a multiplicative constant
and it is called the right Haar integral on Cc(G). Corresponding to I, there is a right
invariant measure µ on G, i.e., µ(Ms) = µ(M) for all M ⊂ G and s ∈ G. µ is unique
up to a multiplicative constant, too, and it is called the right Haar measure. Using the
right invariance of the right Haar measure µ, it is possible to construct an important
group representation of G on the Hilbert space L2(G, µ), the right regular representation
ρ. Let π be the representation of C0(G) on L2(G, µ) by multiplication operators, i.e.,
π(f)(g) := fg for f ∈ C0(G) and g ∈ L2(G, µ). Then it is easy to see that the pair
(π, ρ) is a covariant representation of the dynamical system (C0(G), G, α), where α is
the action of G on C0(G) by right translation. We call (π, ρ) the right regular covariant
representation of (C0(G), G, α) on L2(G, µ).

Now for a locally compact semigroup S, it is not true in general that there exists a
right invariant measure µ on S. Thus, it is not always possible to construct the regular
representation of S or the regular covariant representation of (C0(S),S, α). So we cannot
expect to be able to construct a regular corepresentation of an arbitrary Hopf C∗-algebra
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H or a regular covariant representation of the dynamical cosystem (H,H, δH). The aim
of this section is to find a condition on the Hopf C∗-algebra H that makes it possible
to construct a regular covariant representation of (H,H, δH). This condition will be the
existence of an invariant weight τ on H and we will see that for the Hopf C∗-algebra
C0(S), this condition is equivalent to the existence of a right invariant Radon measure µ
on S with supp(µ) = S.

We begin this section by giving some information about weights on C∗-algebras. The
standard reference for lower semi-continuous weights is [6].

Definition 5.15 (Weights on C∗-algebras)
Let A be a C∗-algebra and τ : A+ → [0,∞] a function such that

1. τ(x+ y) = τ(x) + τ(y) for all x, y ∈ A+ and

2. τ(rx) = rτ(x) for all r ∈ R+ and x ∈ A+.

Then we call τ a weight on A.

Let τ be a weight on a C∗-algebra A. We will use the following standard notations:

• M+
τ = {a ∈ A+ : τ(a) <∞},

• Nτ = {a ∈ A : τ(a∗a) <∞},

• Mτ = spanM+
τ = N ∗

τ Nτ .

Nτ is a left ideal in A and hence, Mτ ⊆ Nτ . Furthermore, Mτ is a sub *-algebra of A
and M+

τ = Mτ ∩ A+.

There exists a unique linear map ϕ : Mτ → C such that ϕ(x) = τ(x) for all x ∈ M+
τ .

Hence, we get a unique extension of τ to all of Mτ by setting τ(x) := ϕ(x) for all x ∈Mτ .

We say that τ is densely defined if M+
τ is dense in A+. This is the case if and only if Mτ

is dense in A and if and only if Nτ is dense in A. We call τ lower semi-continuous if we
have for every λ ∈ R+ that the set {a ∈ A+ : τ(a) ≤ λ} is closed.

Note that for a locally compact topological space X there is a 1-1 correspondence between
the densely defined, lower semi-continuous weights on C0(X) and the Radon measures on
X, since the integral corresponding to a Radon measure on X is a densely defined, lower
semi-continuous weight on C0(X). We recall that a Radon measure µ on a locally compact
topological space X is a Borel measure on X that is locally finite and inner regular, i.e.,

• for each x ∈ X there is an open neighborhood Vx such that µ(Vx) <∞,
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• µ(B) = sup{µ(K) : K ⊂ B,K compact} for all Borel sets B ⊆ X.

Definition 5.16 (GNS-construction for a weight)
Let τ be a weight on a C∗-algebra A. A GNS-construction for τ is a triple (Hτ , πτ ,Λτ )
such that

• Hτ is a Hilbert space;

• Λτ is a linear map from Nτ into Hτ such that

– Λτ (Nτ ) is dense in Hτ and

– we have for every a, b ∈ Nτ , that (Λτ (a) |Λτ (b)) = τ(a∗b);

• πτ is a *-representation of A on Hτ such that πτ (a)Λτ (b) = Λτ (ab) for every a ∈ A
and b ∈ Nτ .

It is easy to produce such a GNS-construction for any weight on a C∗-algebra. Moreover,
this construction is unique up to a unitary transformation. If τ is lower semi-continuous
and densely defined, we have that πτ is nondegenerate. If τ is a lower semi-continuous and
densely defined weight on the C∗-algebra C0(X) for a locally compact topological space
X, then πτ is faithful if and only if the corresponding Radon measure µ on X satisfies
supp(µ) = X.

For the rest of this section, let H be a Hopf C∗-algebra, τ a densely defined, lower semi-
continuous weight on H and (Hτ , πτ ,Λτ ) its GNS-construction. We define an operator
V : Nτ ⊗alg H →M(H ⊗H) by setting

V (
∑

xi ⊗ ai) :=
∑

δH(xi)(1⊗ ai) (5.8)

on finite sums
∑
xi ⊗ ai with xi ∈ Nτ and ai ∈ H.

Proposition 5.17 If the operator V defined in Equation (5.8) extends to a partial isom-
etry Vτ ∈ L(Hτ ⊗H), then Vτ is a corepresentation of H on Hτ .

To prove this proposition, we need the following lemma:

Lemma 5.18 The C∗-arrows (Hτ ⊗H)⊗H δH
(H ⊗H) and Hτ ⊗C (H ⊗H) are unitarily

equivalent.
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Proof: We define U : (Hτ ⊗H)⊗H δH
(H ⊗H) → Hτ ⊗C (H ⊗H) by setting

U((ξ ⊗ x)⊗ (a⊗ b)) := ξ ⊗ (δH(x)(a⊗ b))

for ξ ∈ Hτ , x, a, b ∈ H and we want to show that U is a unitary bimodule mapping. We
start by proving that U is an isometry. Let ξ, η ∈ Hτ and x, y, a, b, c, d ∈ H arbitrary.
Then we have

( (ξ ⊗ x)⊗ (a⊗ b) | (η ⊗ y)⊗ (c⊗ d) )H⊗H

= ( a⊗ b | δH(( ξ ⊗ x | η ⊗ y )H)(c⊗ d) )H⊗H

= ( a⊗ b | δH((x | ( ξ | η )C · y )H)(c⊗ d) )H⊗H = (a∗ ⊗ b∗)( ξ | η )CδH(x∗y)(c⊗ d)

and

(U((ξ ⊗ x)⊗ (a⊗ b)) |U((η ⊗ y)⊗ (c⊗ d)) )H⊗H

= ( ξ ⊗ (δH(x)(a⊗ b)) | η ⊗ (δH(y)(c⊗ d)) )H⊗H

= ( δH(x)(a⊗ b) | ( ξ | η )C · δH(y)(c⊗ d) )H⊗H = (a∗ ⊗ b∗)δH(x)∗( ξ | η )CδH(y)(c⊗ d)

= (a∗ ⊗ b∗)( ξ | η )CδH(x∗y)(c⊗ d).

Moreover, using an approximate unit, it is easy to see that U is surjective, since δH is
nondegenerate. Hence, U is a surjective isometry and thus a unitary and this would finish
the proof. But we also want to show that U is a unitary in the case that H is unital, by
providing the adjoint U∗ explicitly and showing that UU∗ = idHτ⊗(H⊗H). So we suppose
that H is unital. Then we have that U∗ : Hτ ⊗ (H ⊗ H) → (Hτ ⊗ H) ⊗δH

(H ⊗ H) is
given by

U∗(ξ ⊗ (a⊗ b)) = (ξ ⊗ 1)⊗ (a⊗ b)

for ξ ∈ Hτ , a, b ∈ H as the following computation shows for ξ, η ∈ Hτ , x, a, b, c, d ∈ H:

( η ⊗ (c⊗ d) |U((ξ ⊗ x)⊗ (a⊗ b)) )H⊗H = ( η ⊗ (c⊗ d) | ξ ⊗ δH(x)(a⊗ b) )H⊗H

= ( c⊗ d | ( η | ξ )C · δH(x)(a⊗ b) )H⊗H

= ( η | ξ )C(c∗ ⊗ d∗)δH(x)(a⊗ b) and

(U∗(η ⊗ (c⊗ d)) | (ξ ⊗ x)⊗ (a⊗ b) )H⊗H = ( (η ⊗ 1)⊗ (c⊗ d) | (ξ ⊗ x)⊗ (a⊗ b) )H⊗H

= ( c⊗ d | δH(( η ⊗ 1 | ξ ⊗ x )H)(a⊗ b) )H⊗H

= (c∗ ⊗ d∗)δH(( 1 | ( η | ξ )C · x )H)(a⊗ b)

= ( η | ξ )C(c∗ ⊗ d∗)δH(x)(a⊗ b).

Since U is an isometry, we have that U∗U = id(Hτ⊗H)⊗δH
(H⊗H) and so it remains to prove

that UU∗ = idHτ⊗(H⊗H). But for ξ ∈ Hτ , a, b ∈ H we get

UU∗(ξ ⊗ (a⊗ b)) = U((ξ ⊗ 1)⊗ (a⊗ b)) = ξ ⊗ δH(1)(a⊗ b) = ξ ⊗ (1⊗ 1)(a⊗ b)

= ξ ⊗ (a⊗ b).
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Hence, U is a unitary bimodule mapping and so the C∗-arrows (Hτ ⊗H)⊗H δH
(H ⊗H)

and Hτ ⊗C (H ⊗H) are unitarily equivalent. 2

Proof of Proposition 5.17: We have to show that (id⊗ δH)(Vτ ) = (Vτ )12(Vτ )13. To do
so, we use the fact thatM(K(Hτ )⊗H) ∼= L(Hτ⊗H). We suppose thatH is unital to avoid
having to deal with approximate units. First we want to show that, for T ∈ L(Hτ ⊗H),
the identity

(id⊗ δH)(T ) = U(T ⊗ id)U∗

holds, where U is the unitary bimodule mapping constructed in the preceding lemma. Let
T = K ⊗ h for K ∈ K(Hτ ), h ∈ H and let ξ ∈ Hτ , a, b ∈ H. Then we have

(id⊗ δH)(T )(ξ ⊗ a⊗ b) = (K ⊗ δH(h))(ξ ⊗ a⊗ b) = K(ξ)⊗ δH(h)(a⊗ b) and

U(T ⊗ id)U∗(ξ ⊗ a⊗ b) = U(K ⊗ h⊗ id)(ξ ⊗ 1⊗ a⊗ b) = U(K(ξ)⊗ h⊗ a⊗ b)

= K(ξ)⊗ δH(h)(a⊗ b).

Since (id⊗δH)(Vτ ) and (Vτ )12(Vτ )13 are elements of M(K(Hτ )⊗H⊗H) ∼= L(Hτ⊗H⊗H)
and thus C− (H⊗H)-bimodule mappings it suffices to prove that they agree on elements
of the form ξ ⊗ 1⊗ 1. We compute as follows:

(id⊗ δH)(Vτ )(ξ ⊗ 1⊗ 1) = U(Vτ ⊗ id)U∗(ξ ⊗ 1⊗ 1) = U(Vτ ⊗ id)(ξ ⊗ 1⊗ 1⊗ 1)

= U(δH(ξ)(1⊗ 1)⊗ 1⊗ 1) = U(δH(ξ)⊗ 1⊗ 1)

= (id⊗ δH)(δH(ξ)) and

(Vτ )12(Vτ )13(ξ ⊗ 1⊗ 1) = (Vτ )12(σ2,3((Vτ ⊗ id)(ξ ⊗ 1⊗ 1))) = (Vτ )12(σ2,3(δH(ξ)⊗ 1))

= (Vτ ⊗ id)(σ2,3(δH(ξ)⊗ 1)) = (δH ⊗ id)(δH(ξ))

and equality follows from the coassociativity identity (5.1). 2

Now we want to take a closer look at our standard example, the Hopf C∗-algebra C0(S).
We will see that the condition of V extending to a partial isometry Vτ ∈ L(Hτ ⊗ C0(S))
corresponds to the right invariance of the Radon measure µ on S that induces the weight
τ on C0(S).

Definition 5.19 (Invariant Radon measures on semigroups)
Let S be locally compact semigroup and let µ be a Radon measure on S. We say that µ
is right invariant if

µ(M) = µ(Ms)

for all Borel sets M ⊆ S and all s ∈ S.
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Example 5.20 The counting measure on (N,+) and the Lebesgue measure on (R+,+)
are examples of right invariant Radon measures on locally compact semigroups.

Let S be a locally compact semigroup and let µ be a right invariant Radon measure on
S with supp(µ) = S. Then

τ(f) :=

∫
S
f(s)dµ(s)

defines a densely defined, lower semi-continuous weight on C0(S) and the GNS-representa-
tion for τ is (L2(S, µ), πτ ,Λτ ), where πτ is the representation of C0(S) on L2(S, µ) by
multiplication operators and Λτ is the canonical embedding of C0(S) ∩ L2(S, µ) into
L2(S, µ). It is clear that πτ is a nondegenerate ∗-representation and it is faithful since
supp(µ) = S. We want to construct a coisometry Vτ ∈ L(L2(S, µ)⊗C0(S)) that extends
the operator V from Equation (5.8). For t ∈ S we set

(Vtf)(s) := f(st)

with f ∈ L2(S, µ) and s ∈ S arbitrary. We claim that Vt ∈ L(L2(S, µ)) and that V ∗
t is

given by

(V ∗
t g)(u) =

{
g(s) if there exists an s ∈ S with u = st
0 otherwise.

To see that V ∗
t in deed is the adjoint operator of Vt we compute

(Vtf | g ) =

∫
S

(Vtf)(s)g(s)dµ(s) =

∫
S
f(st)g(s)dµ(s)

=

∫
S
f(st)(V ∗

t g)(st)dµ(s) =

∫
S
f(st)(V ∗

t g)(st)dµ(st)

=

∫
S
f(u)(V ∗

t g)(u)dµ(u) = ( f |V ∗
t g )

for f, g ∈ L2(S, µ) arbitrary, which shows V ∗
t is the adjoint of Vt and thus Vt ∈ L(L2(S, µ)).

The identity (VtV
∗
t f)(s) = (V ∗

t f)(st) = f(s) shows that Vt is a coisometry. Moreover, it
is easy to see that VsVt = Vst for all s, t ∈ S and that the mapping s 7→ Vsf is continuous
for all f ∈ L2(S, µ). Hence, the family {Vs : s ∈ S} is a semigroup representation of S on
L2(S, µ). We know from Example 5.8 that Vτ := (t 7→ Vt) defines a corepresentation of
C0(S).

Now we want to show that Vτ extends the operator V from Equation (5.8). For f ∈
L2(S, µ) ∩ C0(S), g ∈ C0(S) and s, t ∈ S we compute

Vτ (f ⊗ g)(s, t) = (u 7→ Vufg(u))(s, t) = (Vtfg(t))(s) = (Vtf)(s)g(t)

= f(st)g(t) = αS(f)(s, t)(1⊗ g)(s, t) = V (f ⊗ g)(s, t).

So Vτ extends V and since Vτ is a coisometry (and thus a partial isometry) it also follows
from Proposition 5.17 that Vτ is a corepresentation of C0(S) on L2(S, µ).
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Hence, we have seen that a right invariant Radon measure on a locally compact semigroup
S with supp(µ) = S yields a densely defined, lower semi-continuous weight τ on C0(S)
such that the GNS-representation πτ is faithful and such that the operator V defined in
Equation 5.8 extends to a coisometry. The following Proposition shows that the converse
is true as well.

Proposition 5.21 Let S be a locally compact semigroup that is right-cancellative and
let τ be a densely defined, lower semi-continuous weight on C0(S) such that the GNS-
representation πτ on Hτ is faithful. If the operator V defined in Equation (5.8) extends
to a partial isometry Vτ ∈ L(Hτ ⊗C0(S)), then the corresponding Radon measure µ on S
is right invariant and Vτ is a coisometry.

Proof: Since πτ is faithful, we know that supp(µ) = S. Moreover, Hτ = L2(S, µ). We
let f ∈ L2(S, µ) ∩ C0(S) and g ∈ C0(S) be arbitrary. Then Equation (5.8) yields

V (f ⊗ g)(s, t) = αS(f)(s, t)(1⊗ g)(s, t) = f(st)g(t) = (f ⊗ g)(st, t).

Now V extends to a partial isometry Vτ ∈ L(L2(S, µ)⊗C0(S)) and for f ∈ L2(S, µ)⊗C0(S)
we have (Vτf)(s, t) = f(st, t). Hence, Vτ can be written as Vτ = (t 7→ Vt) with (Vtf)(s) :=
f(st) and since Vτ is a partial isometry, we know that Vt must be a partial isometry in
L(L2(S, µ)) for all t ∈ S.

Thus, there is a closed subspace Ut ⊂ L2(S, µ) with ‖Vtf‖ = ‖f‖ for f ∈ Ut and Vtf = 0
for f ∈ U⊥

t . It is easy to see that U⊥
t = {f ∈ L2(S, µ) : f |St = 0µ-almost everywhere}

and thus Ut = {f ∈ L2(S, µ) : f |(St)c = 0µ-almost everywhere}.

Now let M ⊂ S be a Borel set such that the indicator function χM is an element of
L2(S, µ). Then we have χMt ∈ Ut and Vt(χMt) = χM lies in the range of Vt, which shows
that the range of Vt is dense in L2(S, µ). But since the range of a partial isometry is
always closed, we see that Vt is onto. Hence, V ∗

t is an isometry and so Vt is a coisometry.

Since χMt ∈ Ut, we have that V ∗
t VtχMt = χMt and since Vt(χMt) = χM , we get V ∗

t χM =
χMt. But V ∗

t is an isometry and thus µ(M) = ‖χM‖ = ‖V ∗
t χM‖ = ‖χMt‖ = µ(Mt), which

shows that µ is right-invariant. 2

Hence, for a locally compact semigroup S that is right-cancellative, there is a 1-1-
correspondence between right invariant Radon measures µ on S with supp(µ) = S
and densely defined, lower semi-continuous weights τ on C0(S) such that the GNS-
representation πτ is faithful and such that the operator V defined in Equation (5.8)
extends to a partial isometry. This motivates the idea to call a weight τ on a Hopf
C∗-algebra H with the properties above invariant:
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Definition 5.22 (Invariant weights and the regular corepresentation)
Let H be a Hopf C∗-algebra, τ a densely defined, lower semi-continuous weight on H
and (Hτ , πτ ,Λτ ) its GNS-construction. If πτ is faithful and if the operator V defined in
Equation (5.8) extends to a partial isometry Vτ ∈ L(Hτ⊗H), we say that τ is an invariant
weight on the Hopf C∗-algebra H and we call Vτ the regular corepresentation of H on Hτ .

In what follows, the term “an invariant weight τ on a Hopf C∗-algebra H” shall always
mean that τ is a densely defined, lower semi-continuous weight on H with faithful GNS-
representation πτ such that the operator V defined in Equation (5.8) extends to a partial
isometry Vτ ∈ L(Hτ ⊗ H). The following proposition shows that the existence of an
invariant weight on H is the condition that makes it possible to construct a covariant
representation of (H,H, δH) on Hτ .

Proposition 5.23 Let τ be an invariant weight on a Hopf C∗-algebra H. Then the pair
(πτ , Vτ ) is a covariant representation of (H,H, δH) on Hτ .

Proof: We have to prove that Equation (5.7) holds for π = πτ , V = Vτ and a ∈ H. So
we let a, x, y ∈ H be arbitrary and compute

Vτ (πτ (a)⊗ 1)(Λτ (x)⊗ y) = Vτ (Λτ (ax)⊗ y) = (Λτ ⊗ id)(δH(ax)(1⊗ y)),

(πτ ⊗ id)(δH(a))Vτ (Λτ (x)⊗ y) = (πτ ⊗ id)(δH(a))(Λτ ⊗ id)(δH(x)(1⊗ y))

= (Λτ ⊗ id)(δH(a)δH(x)(1⊗ y))

= (Λτ ⊗ id)(δH(ax)(1⊗ y)).

2

Definition 5.24 (The regular covariant representation)
Let τ be an invariant weight on a Hopf C∗-algebra H. Then we call the pair (πτ , Vτ ) the
regular covariant representation of (H,H, δH) on Hτ .

Example 5.25 (The Hopf C∗-algebra C0(S))
If τ is an invariant weight on the Hopf C∗-algebra C0(S), S a right-cancellative locally
compact semigroup, we know from Proposition 5.21 that τ is the integral corresponding to
a right-invariant Radon measure µ on S with supp(µ) = S. Hτ = L2(S, µ) and πτ is the
representation of C0(S) as multiplication operators on L2(S, µ). The partial isometry Vτ

turns out to be a coisometry with Vτ = (t 7→ Vt), where Vt is the coisometry on L2(S, µ)
that satisfies (Vtf)(s) = f(st) for f ∈ L2(S, µ). We want to show that (πτ , Vτ ) in deed is
a covariant representation of (C0(S), C0(S), αS) on L2(S, µ), i.e.,

(πτ ⊗ id)(αS(f))Vτ = Vτ (πτ (f)⊗ 1)
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for all f ∈ C0(S). We identify (πτ ⊗ id)(αS(f))Vτ with the mapping

(t 7→ πτ (s 7→ f(st)))(t 7→ Vt) = (t 7→ πτ (s 7→ f(st))Vt)

and Vτ (πτ (f) ⊗ 1) with the mapping (t 7→ Vtπτ (f)). Then for g ∈ L2(S, µ) arbitrary we
have

(πτ (s 7→ f(st))Vt)(g)(s) = f(st)g(st) = fg(st) = πτ (f)(g)(st) = (Vtπτ (f))(g)(s),

which yields the desired identity.

Example 5.26 (The Hopf C∗-algebra c0(N))
In Example 5.5 we have already described the comultiplication αN on the Hopf C∗-algebra
c0(N). An invariant weight on c0(N) comes from a right-invariant Radon measure µ on N
with supp(µ) = N. So µ(n) = µ(0) > 0 for all n ∈ N and we have that µ is a multiple
of the counting measure on N. Without loss of generality, we may assume that µ is
the counting measure on N. Then Hτ = `2(N) and πτ is the representation of c0(N) as
multiplication operators on `2(N), i.e., πτ (en) = Pn, where Pn is the projection onto the
n-th component of `2(N).

It is clear that Vk = (S∗)k, where S is the forward unilateral shift on `2(N) and Vτ can be
written as Vτ =

∑
n∈N(S∗)n⊗en ∈M(K(`2(N))⊗c0(N)). We already know that (πτ , Vτ ) is

a covariant representation – it is the regular covariant representation of (c0(N), c0(N), αN)
on `2(N) – but we wish to show how this can be proved explicitly in the discrete case.

First we show that Vτ is a coisometry:

VτV
∗
τ =

( ∑
n∈N

(S∗)n ⊗ en

)( ∑
m∈N

Sm ⊗ em

)
=

∑
m,n∈N

(S∗)nSm ⊗ enem

=
∑
n∈N

(S∗)nSn ⊗ en = id⊗
∑
n∈N

en = id⊗ 1 = 1.

The following shows that Vτ satisfies equation (5.3):

(Vτ )12(Vτ )13 =
( ∑

m∈N

(S∗)m ⊗ em

)
12

( ∑
n∈N

(S∗)n ⊗ en

)
13

=
∑

m,n∈N

(S∗)m(S∗)n ⊗ em ⊗ en

=
∑

m,n∈N

(S∗)m+n ⊗ em ⊗ en =
∑
n∈N

n∑
m=0

(S∗)n ⊗ em ⊗ en−m

= (id⊗ αN)
( ∑

n∈N

(S∗)n ⊗ en

)
= (id⊗ αN)(Vτ ).
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It remains to be proven that (πτ ⊗ id)(αN(a))Vτ = Vτ (πτ (a)⊗ 1) for all a ∈ c0(N). Since
πτ and αN are continuous, it suffices to show that this holds for the elements en, n ∈ N:

(πτ ⊗ id)(αN(en))Vτ = (πτ ⊗ id)
( n∑

l=0

el ⊗ en−l

)( ∑
m∈N

(S∗)m ⊗ em

)
=

( n∑
l=0

Pl ⊗ en−l

)( ∑
m∈N

(S∗)m ⊗ em

)
=

n∑
l=0

∑
m∈N

Pl(S
∗)m ⊗ en−lem

=
n∑

l=0

Pl(S
∗)n−l ⊗ en−l =

n∑
l=0

(S∗)n−lPn ⊗ en−l

=
n∑

l=0

(S∗)lPn ⊗ el =
∑
l∈N

(S∗)lPn ⊗ el

=
( ∑

l∈N

(S∗)l ⊗ el

)
(Pn ⊗ 1) = Vτ (πτ (en)⊗ 1).

Example 5.27 (The Hopf C∗-algebra C∗(N))

We have already seen in Example 5.6 that C∗(N) together with the comultiplication δN
is a Hopf C∗-algebra. Now we introduce a weight τ on C∗(N) and we show that τ is
an invariant weight. This allows us to construct the regular covariant representation of
(C∗(N), C∗(N), δN) on Hτ .

C∗(N) is a C∗-subalgebra of L(`2(N)). Let Ω = (1, 0, 0, . . .) denote the vacuum vector in
`2(N). We define τ by setting

τ(a) := ( Ω | aΩ )

for a ∈ C∗(N). It is obvious that τ is a positive functional on C∗(N) and thus τ is also
a densely defined, lower semi-continuous weight on C∗(N). We define an inner product
by ( a | b ) := τ(a∗b). It is easy to see that Hτ

∼= `2(N) and that Λτ (S
n) = en, while

Λτ (S
n(S∗)m) = 0 for m > 0. Finally, we get that πτ is the identity map on C∗(N) and

hence, in particular, πτ is faithful.

Now we claim that Vτ =
∑

m∈N Pm ⊗ Sm. To see this, we compare
∑

m∈N Pm ⊗ Sm to the
operator V defined in Equation (5.8) on elements of the form Sn ⊗ Sl(S∗)k:

(
∑
m∈N

Pm ⊗ Sm)(Λτ (S
n)⊗ Sl(S∗)k) =

∑
m∈N

Pm(en)⊗ Sm+l(S∗)k = en ⊗ Sn+l(S∗)k

= (Λτ ⊗ id)(Sn ⊗ Sn+l(S∗)k) and

V (Sn ⊗ Sl(S∗)k) = δN(Sn)(1⊗ Sl(S∗)k) = (Sn ⊗ Sn)(1⊗ Sl(S∗)k) = Sn ⊗ Sn+l(S∗)k.

To show that τ is an invariant weight, we have to prove that Vτ =
∑

m∈N Pm ⊗ Sm is a
partial isometry. In fact, it is an isometry:
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V ∗
τ Vτ =

( ∑
n∈N

Pn ⊗ (S∗)n
)( ∑

m∈N

Pm ⊗ Sm
)

=
∑

m,n∈N

PnPm ⊗ (S∗)nSm

=
∑
n∈N

Pn ⊗ (S∗)nSn =
∑
n∈N

Pn ⊗ id = id⊗ id = 1.

From Proposition 5.23 we know that the pair (πτ , Vτ ) is a covariant representation of
(C∗(N), C∗(N), δN) on `2(N), the regular covariant representation with respect to τ , but
we also want to show this explicitly. Hence, we show that Equations (5.3) and (5.7) hold:

(Vτ )12(Vτ )13 =
( ∑

n∈N

Pn ⊗ Sn
)
12

( ∑
m∈N

Pm ⊗ Sm
)
13

=
∑

m,n∈N

PnPm ⊗ Sn ⊗ Sm

=
∑
n∈N

Pn ⊗ Sn ⊗ Sn = (id⊗ δN)
( ∑

n∈N

Pn ⊗ Sn
)

= (id⊗ δN)(Vτ );

Vτ (πτ (S
n(S∗)m)⊗ 1) =

( ∑
l∈N

Pl ⊗ Sl
)
(Sn(S∗)m ⊗ 1) =

∑
l∈N

PlS
n(S∗)m ⊗ Sl

=
∑
l∈N

Pl+nS
n(S∗)m ⊗ Sl+n and

(πτ ⊗ id)(δN(Sn(S∗)m))Vτ = (Sn(S∗)m ⊗ Sn(S∗)m)
( ∑

l∈N

Pl ⊗ Sl
)

=
∑
l∈N

Sn(S∗)mPl ⊗ Sn(S∗)mSl

=
∑
l≥m

SnPl−m(S∗)m ⊗ Sn(S∗)mSl

=
∑
l≥m

Pl−m+nS
n(S∗)m ⊗ Sn(S∗)mSl

=
∑
l∈N

Pl+nS
n(S∗)m ⊗ Sn(S∗)mSl+m

=
∑
l∈N

Pl+nS
n(S∗)m ⊗ Sl+n.



92 Chapter 5. Crossed products by Hopf C∗-algebras

5.3 The dual C∗-algebra

Given a locally compact group G, there is a pair of C∗-algebras in duality: the C∗-algebra
C0(G) and the full group C∗-algebra C∗(G). Since for locally compact, abelian groups G
we have that C∗(G) ∼= C0(Ĝ), this duality can be viewed as an extension of Pontryagin’s

duality theorem for locally compact, abelian groups, which states that G and
ˆ̂
G are

topologically isomorphic.

In this section, we want to extend this duality concept to Hopf C∗-algebras equipped with
an invariant weight. So in the following, we let H be a Hopf C∗-algebra equipped with an
invariant weight τ . We will construct the reduced and the universal dual C∗-algebra of
H and we will show that the reduced dual C∗-algebra of the Hopf C∗-algebra (c0(N), αN)
is isomorphic to C∗(N) whereas the reduced dual C∗-algebra of the Hopf C∗-algebra
(C∗(N), δN) is isomorphic to the C∗-algebra c0(N).

Given a functional f ∈ H∗ and a corepresentation V ∈M(K(H)⊗H), we set

ϑV (f) := (id⊗ f)(V )

to get a bounded linear mapping ϑV from H∗ to L(H) that satisfies ‖ϑV (f)‖op ≤ ‖f‖‖V ‖,
where ‖.‖op is the operator norm on L(H). For a, b ∈ Nτ , let fa,b ∈ H∗ be the functional
defined by

fa,b(x) := τ(a∗xb), x ∈ H.

Notice that τ(a∗xb) = (Λτ (a)|πτ (x)Λτ (b)), which shows that fa,b is in deed a bounded
linear functional on H. We now define Z to be the closure in H∗ of the linear span of all
functionals of the form fa,b, a, b ∈ Nτ :

Z := span{fa,b : a, b ∈ Nτ} ⊆ H∗.

Finally, we define the reduced dual C∗-algebra C∗
r (H, δH) by

C∗
r (H, δH) := C∗(ϑVτ (Z)) ⊆ L(Hτ ),

where Vτ is the regular corepresentation of H on Hτ .

We notice that we have not defined a comultiplication on the reduced dual C∗-algebra,
i.e., C∗

r (H, δH) is only a C∗-algebra and not a Hopf C∗-algebra.

The following two examples show that C∗(N) is the reduced dual C∗-algebra of the Hopf
C∗-algebra (c0(N), αN) and that c0(N) is the reduced dual C∗-algebra of the Hopf C∗-
algebra (C∗(N), δN).

Example 5.28 (c0(N), αN)
Let τ be the invariant weight on c0(N) given by τ((a(n))n∈N) =

∑
n∈N a(n), i.e., τ is the

weight that comes from the counting measure on N. It is easy to see that Nτ = `2(N) and



5.3. The dual C∗-algebra 93

Mτ = `1(N). Since c0(N) is commutative, we have that fa,b(x) = τ(a∗xb) = τ(a∗bx) for
a, b ∈ `2(N) and x ∈ c0(N). But a∗b ∈ `1(N) and hence, Z = span{fa,b : a, b ∈ `2(N)} =
{fc : c ∈ `1(N)} ∼= `1(N), where fc is the functional defined by fc(x) := τ(cx), x ∈ c0(N).

The linear span of the sequences en, n ∈ N, is dense in `1(N) and so we compute

ϑVτ (fen) = (id⊗ fen)(Vτ ) = (id⊗ fen)(
∑
l∈N

(S∗)l ⊗ el) = (S∗)n,

since fen(el) = τ(enel) = δn,lτ(en) = δn,l. Hence, C∗
r (c0(N), αN) is the C∗-algebra that is

generated by the left shift S∗ on `2(N) and thus, it is isomorphic to C∗(N):

C∗
r (c0(N), αN) ∼= C∗(N).

Example 5.29 (C∗(N), δN)
Let τ be the invariant weight on C∗(N) introduced in Example 5.27. Here we have
Mτ = Nτ = C∗(N) and we compute

fSm(S∗)n, Sk(S∗)l(Sp(S∗)q) = τ(Sn(S∗)mSp(S∗)qSk(S∗)l) = (Sm(S∗)nΩ|Sp(S∗)qSk(S∗)lΩ)

=

{
1 if l = n = 0, p− q = m− k, q ≤ k
0 otherwise.

Hence, we have that fSm(S∗)n, Sk(S∗)l = 0 if n > 0 or l > 0 and

fSm, Sn(Sp(S∗)q) =

{
1 if p− q = m− n, q ≤ n
0 otherwise.

Furthermore, we see that

Z = span{fSm,Sn : m,n ∈ N}

and since the regular corepresentation of C∗(N) on `2(N) is Vτ =
∑

l∈N Pl⊗Sl, we compute

ϑVτ (fSm, Sn) = (id⊗ fSm, Sn)(
∑
l∈N

Pl ⊗ Sl) =
∑
l∈N

PlfSm, Sn(Sl) =

{
Pm−n if m ≥ n
0 otherwise.

But now it is easy to see that C∗
r (C∗(N), δN) is the C∗-algebra that is generated by the

one dimensional projections Pl, l ∈ N, on `2(N) and so

C∗
r (C∗(N), δN) ∼= c0(N).

The rest of this section is dedicated to the construction of the universal dual C∗-algebra
C∗(H, δH). In what follows, we suppose that (H, δH) is a Hopf C∗-algebra equipped with
an invariant weight τ that satisfies the following condition:

(f ⊗ g) ◦ δH ∈ Z for all f, g ∈ Z. (5.9)
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This extra condition allows us to define a multiplication ∗ on Z by setting

f ∗ g := (f ⊗ g) ◦ δH .

We want to examine if our standard examples (c0(N), αN) and (C∗(N), δN) satisfy this
condition and what the definition above for the multiplication on Z yields in the concrete
examples.

Example 5.30 (c0(N), αN)
We have seen in Example 5.28 that Z = {fc : c ∈ `1(N)} and hence, we compute

(fen ⊗ fem)(αN(el)) = (fen ⊗ fem)(
l∑

k=0

ek ⊗ el−k) =
l∑

k=0

fen(ek)fem(el−k)

=

{
1 if l = m+ n
0 otherwise

}
= fen+m(el).

So we see that (fen ⊗ fem) ◦ αN = fen+m ∈ Z and it is easy to see that (fa ⊗ fb) ◦ αN ∈ Z
for arbitrary a, b ∈ `1(N). This means that (c0(N), αN) satisfies Equation (5.9) and so we
can define the multiplication ∗ on c0(N) to get

fen ∗ fem = fen+m

for all n,m ∈ N. Hence, the multiplication ∗ on Z ∼= `1(N) is the usual convolution
product.

Example 5.31 (C∗(N), δN)
From Example 5.29 we already know that for the Hopf C∗-algebra (C∗(N), δN), we have
Z = span{fSm,Sn : m,n ∈ N}. To see if (C∗(N), δN) satisfies condition (5.9), we compute

(fSl,Sk ⊗ fSm,Sn)(δN(Sp(S∗)q)) = fSl,Sk(Sp(S∗)q)fSm,Sn(Sp(S∗)q)

=

{
1 if k ≥ q, n ≥ q and l − k = m− n = p− q
0 otherwise.

So now it is easy to see that

(fSl,Sk ⊗ fSm,Sn) ◦ δN =


0 if l − k 6= m− n
fSl,Sk if l − k = m− n and k ≤ n
fSm,Sn if l − k = m− n and k > n.

In any case (fSl,Sk ⊗ fSm,Sn) ◦ δN ∈ Z and so we see that (C∗(N), δN) satisfies condition
(5.9). Thus we can define the multiplication ∗ on C∗(N) to get

fSl,Sk ∗ fSm,Sn =


0 if l − k 6= m− n
fSl,Sk if l − k = m− n and k ≤ n
fSm,Sn if l − k = m− n and k > n.
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Proposition 5.32 The multiplication ∗ on Z is associative.

Proof: Let f, g, h ∈ Z and x ∈ H be arbitrary. Then

(f ∗ (g ∗ h))(x) = (f ⊗ (g ∗ h))(δH(x)) = (f ⊗ g ⊗ h)
(
(id⊗ δH)(δH(x))

)
(5.1)
= (f ⊗ g ⊗ h)

(
(δH ⊗ id)(δH(x))

)
= ((f ∗ g)⊗ h)(δH(x))

= ((f ∗ g) ∗ h)(x).

and we see that the associativity of ∗ follows from the coassociativity of δH . 2

Hence, (Z,+, ∗) is an associative algebra. Now let V ∈ M(K(H) ⊗ H) be a corepresen-
tation of H on a Hilbert space H. The following computation shows that the bounded
linear mapping ϑV : Z → L(H) is multiplicative. For f, g ∈ Z we have

ϑV (f)ϑV (g) = ((id⊗ f)(V ))((id⊗ g)(V )) = (id⊗ f ⊗ g)(V12V13)

= (id⊗ f ⊗ g)((id⊗ δH)(V )) = (id⊗ (f ∗ g))(V ) = ϑV (f ∗ g).

Next, we want to construct the universal dual C∗-algebra C∗(H, δH) and we proceed in
the following way. Let L be the universal enveloping *-algebra of Z, i.e., L is a *-algebra
together with an injective algebra homomorphism ϕ : Z → L that is universal in the sense
that if there is another algebra homomorphism ψ from Z into another *-algebra K, there
exists a *-homomorphism ψ̃ : L→ K such that ψ = ψ̃ ◦ ϕ.

Given a corepresentation V of H on a Hilbert space H, we know that ϑV : Z → L(H)

is an algebra homomorphism and thus, there exists a *-homomorphism ϑ̃V : L → L(H).
This allows us to define a norm on L. For a ∈ L we set

‖a‖ := sup{‖ϑ̃V (a)‖op : V corepresentation of H},

where ‖.‖op denotes the operator norm on L(H). To see that this supremum exists,
note that the linear span of alternating products of elements from ϕ(Z) and ϕ(Z)∗ is a
dense subset of L. For example, we let a := ϕ(z1)ϕ(z2)

∗ϕ(z3)ϕ(z4)
∗ . . . ϕ(zn−1)ϕ(zn)∗ be

a typical alternating product in L and we let V be an arbitrary corepresentation of H on
a Hilbert space H. Then we have

‖ϑ̃V (a)‖op = ‖ϑ̃V (ϕ(z1)ϕ(z2)
∗ϕ(z3)ϕ(z4)

∗ . . . ϕ(zn−1)ϕ(zn)∗)‖op

= ‖ϑ̃V (ϕ(z1))ϑ̃V (ϕ(z2))
∗ϑ̃V (ϕ(z3))ϑ̃V (ϕ(z4))

∗ . . . ϑ̃V (ϕ(zn−1))ϑ̃V (ϕ(zn))∗‖op

= ‖ϑV (z1)ϑV (z2)
∗ϑV (z3)ϑV (z4)

∗ . . . ϑV (zn−1)ϑV (zn)∗‖op

≤ ‖ϑV (z1)‖op‖ϑV (z2)‖op‖ϑV (z3)‖op‖ϑV (z4)‖op . . . ‖ϑV (zn−1)‖op‖ϑV (zn)‖op

≤ ‖z1‖‖V ‖‖z2‖‖V ‖‖z3‖‖V ‖‖z4‖‖V ‖ . . . ‖zn−1‖‖V ‖‖zn‖‖V ‖
≤ ‖z1‖‖z2‖‖z3‖‖z4‖ . . . ‖zn−1‖‖zn‖
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and so sup{‖ϑ̃V (ϕ(z1)ϕ(z2)
∗ϕ(z3)ϕ(z4)

∗ . . . ϕ(zn−1)ϕ(zn)∗)‖op : V corepresentation of H}
is bounded by ‖z1‖‖z2‖‖z3‖‖z4‖ . . . ‖zn−1‖‖zn‖.

Now ‖.‖ is a C∗-seminorm on L. Let N := {a ∈ L : ‖a‖ = 0}. We define the universal
dual C∗-algebra C∗(H, δH) to be the completion of L/N . Again, we notice that we have
not defined a comultiplication on C∗(H, δH) and thus C∗(H, δH) is only a C∗-algebra but
not a Hopf C∗-algebra.

5.4 The reduced crossed product

In the present section, we want to construct the reduced crossed product A oδ H for a
dynamical cosystem (A,H, δ). We will show that for the dynamical cosystem (C, H, id),
where id is the trivial coaction of a Hopf C∗-algebra H on the complex numbers, the
reduced crossed product C oid H corresponds to the reduced dual C∗-algebra C∗

r (H, δH).
Finally, we will introduce a coaction δ of the Hopf C∗-algebra C∗(N) on the crossed
product A oE N and we will examine the reduced crossed product (A oE N) oδ C

∗(N).
This example will be of great importance in the next chapter.

In the following, let τ be an invariant weight on a Hopf C∗-algebra H and let (πτ , Vτ ) be
the corresponding regular covariant representation of (H,H, δH) on Hτ . Moreover, let δ
be a coaction of H on a C∗-algebra A. We set

V := σ23(Vτ ⊗ idA) ∈ L(Hτ ⊗ A⊗H)

and we define a nondegenerate ∗-homomorphism ψ : A→ L(Hτ ⊗ A) by setting

ψ := σ ◦ (id⊗ πτ ) ◦ δ.

Moreover, we define the C∗-algebra Aoδ H ⊂ L(Hτ ⊗ A) by

Aoδ H := C∗({ψ(a)(id⊗ id⊗ f)(V ) : a ∈ A, f ∈ Z})

and we call Aoδ H the reduced crossed product for (A,H, δ).

Proposition 5.33 (ψ, V ) is a covariant homomorphism from (A,H, δ) into M(Aoδ H).

Proof: It is clear that ψ : A→M(AoδH) is a nondegenerate ∗-homomorphism and that
V ∈M(Aoδ H ⊗H). The fact that V is a partial isometry follows directly from the fact
that Vτ is a partial isometry. Moreover, we have

(id⊗ δH)(V ) = (id⊗ δH)(σ23(Vτ ⊗ idA)) = σ23σ34(id⊗ δH ⊗ id)(Vτ ⊗ idA)

= σ23σ34((Vτ )12(Vτ )13 ⊗ idA) = V12V13
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and for a ∈ A arbitrary we get

V (ψ(a)⊗ 1) = (σ23(Vτ ⊗ idA))(σ12(idA ⊗ πτ ⊗ idH)(δ(a)⊗ 1))

= σ12

((
idA ⊗ Vτ

)(
(idA ⊗ πτ ⊗ idH)(δ(a)⊗ 1)

))
(?)
= σ12

((
(idA ⊗ πτ ⊗ idH)(idA ⊗ δH)(δ(a))

)(
idA ⊗ Vτ

))
= (σ12(idA ⊗ πτ ⊗ idH)(δ ⊗ idH)(δ(a)))(σ23(Vτ ⊗ idA))

= (ψ ⊗ id)(δ(a))V,

where (?) holds because (πτ , Vτ ) is a covariant representation of (H,H, δH) on Hτ and
hence, (πτ ⊗ id)(δH(h))Vτ = Vτ (πτ (h)⊗ 1) for all h ∈ H. 2

Example 5.34 (The reduced dual C∗-algebra)
Let H be a Hopf C∗-algebra equipped with an invariant weight τ and let (πτ , Vτ ) be
the corresponding regular covariant representation on Hτ . Moreover, let id be the trivial
coaction of H on the complex numbers C introduced in Example 5.10 (a). Since Hτ⊗C ≈
Hτ , we can identify V with Vτ and ψ is just the trivial representation of C on Hτ . Finally,
we have

C oid H = C∗({ψ(z)(id⊗ f)(Vτ ) : z ∈ C, f ∈ Z}) = C∗({(id⊗ f)(Vτ ) : f ∈ Z})
= C∗(ϑVτ (Z)) = C∗

r (H, δH)

and so the reduced crossed product for (C, H, id) is the reduced dual C∗-algebra C∗
r (H, δH).

Example 5.35 (The double crossed product (AoE N) oδ C
∗(N))

Let AoE N be the reduced crossed product of A by E from Example 3.14, i.e.,

AoE N = C∗({πE(ξ) : ξ ∈ E} ∪ {πA(a) : a ∈ A}) ⊆ L(F(E)).

We define a Toeplitz representation ψ : (F,Φ) →M((AoE N)⊗ C∗(N)) by setting

ψn(ξn) := πn(ξn)⊗ Sn for n ≥ 1 and ψ0(a) := π0(a)⊗ 1

for ξn ∈ En and a ∈ A arbitrary. To see that ψ is a Toeplitz representation from (F,Φ)
into M((A oE N) ⊗ C∗(N)), we let a, b ∈ A, ξn, ηn ∈ En and ξm ∈ Em be arbitrary and
compute

ψn(a · ξn · b) = πn(a · ξn · b)⊗ Sn = π0(a)πn(ξn)π0(b)⊗ Sn

= (π0(a)⊗ 1)(πn(ξn)⊗ Sn)(π0(b)⊗ 1) = ψ0(a)ψn(ξn)ψ0(b),

ψn(ξn)∗ψn(ηn) = (πn(ξn)∗ ⊗ (S∗)n)(πn(ηn)⊗ Sn) = πn(ξn)∗πn(ηn)⊗ (S∗)nSn

= π0(( ξ
n | ηn )A)⊗ 1 = ψ0(( ξ

n | ηn )A) and

ψn+m(Φn,m(ξm ⊗ ξn)) = πn+m(Φn,m(ξm ⊗ ξn))⊗ Sn+m = πm(ξm)πn(ξn)⊗ SmSn

= (πm(ξm)⊗ Sm)(πn(ξn)⊗ Sn) = ψm(ξm)ψn(ξn).
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In [11, Corollary 2.2.], Fowler and Raeburn showed that AoE N = Tr(F,Φ) is isomorphic
to the universal Toeplitz algebra T (F,Φ). Hence, there exists a unique ∗-homomorphism
δ : AoE N →M((AoE N)⊗ C∗(N)) that satisfies

δ(πn(ξn)) = πn(ξn)⊗ Sn and δ(π0(a)) = π0(a)⊗ 1

for ξn ∈ En, n ≥ 1 and a ∈ A arbitrary. We claim that δ is a coaction of the Hopf
C∗-algebra C∗(N) on A oE N. It is clear that δ is nondegenerate and injective. To see
that it satisfies the coaction identity (5.4), we compute

(δ ⊗ id) ◦ δ(πn(ξn)) = (δ ⊗ id)(πn(ξn)⊗ Sn) = πn(ξn)⊗ Sn ⊗ Sn

= (id⊗ δN)(πn(ξn)⊗ Sn) = (id⊗ δN) ◦ δ(πn(ξn)).

From Example 5.27 we know that the regular covariant representation (πτ , Vτ ) of the
dynamical system (C∗(N), C∗(N), δN) on the Hilbert space `2(N) with respect to the weight
τ consists of the identity representation πτ of C∗(N) on `2(N) together with the isometry
Vτ =

∑
n∈N Pn ⊗ Sn ∈ L(`2(N)⊗ C∗(N)). Thus we get

V =
∑
n∈N

Pn⊗ idAoEN⊗Sn ∈ L(`2(N)⊗AoE N⊗C∗(N)) and ψ(πn(ξn)) = Sn⊗πn(ξn)

for ξn ∈ En and n ∈ N. Since (id⊗ id⊗ fSl,Sk)(V ) = Pl−k ⊗ idAoEN, we finally get that

(AoE N) oδ C
∗(N) = C∗({ψ(πm(ξm))(id⊗ id⊗ f)(V ) : ξm ∈ Em,m ∈ N, f ∈ Z})

= C∗({(Sm ⊗ πm(ξm))(Pn ⊗ idAoEN) : ξm ∈ Em,m, n ∈ N})
= C∗({SmPn ⊗ πm(ξn) : ξm ∈ Em,m, n ∈ N})
⊆ L(`2(N)⊗ AoE N).



Chapter 6

Takai duality

For a C∗-dynamical system (A,G, α), Takai’s duality theorem [28], which is the most
fundamental theorem in the theory of crossed products, states that the double crossed
product (A oα G) oα̂ Ĝ is strongly Morita equivalent to A. In [25], Schweizer provides
an analog of Takai duality for crossed products by equivalence bimodules. He shows that
there is an action γ of Ẑ on AoX Z, where X is an equivalence bimodule over a C∗-algebra
A, such that (AoX Z) oγ Ẑ is strongly Morita equivalent to A.

In this chapter our objective is to transfer this statement to the situation when E is a C∗-
arrow over a C∗-algebra A, i.e., we want to show that the C∗-algebra (AoE N) oδ C

∗(N)
introduced in Example 5.35 is strongly Morita equivalent to A. Thus, we concentrate on
the product systems (A,E) over the natural numbers from Example 3.14. First, we give
a general definition of strong Morita equivalence for product systems and then we discuss
what this notion means for our special product systems over N. Thirdly, we show that
an arbitrary product system (A,E) over N is always strongly Morita equivalent to the
product system induced by a ∗-endomorphism αE on the C∗-algebra K(F(E)). In the
main theorem of this chapter we show that (AoE N)oδ C

∗(N) is isomorphic to K(F(E)).
Since K(F(E)) is strongly Morita equivalent to A, this implies that (A oE N) oδ C

∗(N)
and A are strongly Morita equivalent.

Definition 6.1 (Strong Morita equivalence for product systems)
We say that two product systems (F,Φ) and (G,Ψ) over an index category J are strongly
Morita equivalent if there is an optransformation σ : (F,Φ) → (G,Ψ) such that all C∗-
arrows σ0(i) : Fi → Gi, i ∈ Ob(J), are invertible and all Fi-Gj-bimodule mappings
σ1(r) : Fr ⊗ σ0(j) ⇒ σ0(i)⊗Gr, r : i→ j ∈ Arr(J) are unitary.

For the rest of this chapter we will concentrate on the products systems (A,E) over the
natural numbers from Example 3.14. We recall that these product systems (A,E) consist
of a C∗-algebra A and a family of C∗-arrows {En : n ∈ N} over A, where we set E0 := idA.
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We also recall that we denoted the Fock correspondence for (A,E) by F(E), i.e.,

F(E) = {(ξn) ∈
∏
n∈N

En :
∑
n∈N

( ξn | ξn )A converges in A}.

Moreover, we suppose that

ϕ(A) ⊆ K(E),

where ϕ : A → L(E) is the ∗-homomorphism that implies the left multiplication of A on
E. In what follows the term “(A,E) is a product system over N” shall always mean that
(A,E) is of the form described above.

Now, we want to discuss what it means for two product systems (A,E) and (B,F ) over N
to be strongly Morita equivalent. By the definition above, (A,E) and (B,F ) are strongly
Morita equivalent if there is an optransformation σ : (A,E) → (B,F ) such that the C∗-
arrow σ0 : A → B is invertible and all 2-cells σ1(m) : Em ⊗ σ0 ⇒ σ0 ⊗ Fm, m ∈ N, are
unitary. But it is easy to see that in this situation, all of the 2-cells σ1(m), m > 1,
are uniquely determined by σ1 := σ1(1) and so (A,E) and (B,F ) are strongly Morita
equivalent if and only if there is an invertible C∗-arrow σ0 : A→ B and a unitary bimodule
mapping σ1 : E ⊗ σ0 ⇒ σ0 ⊗ F . We notice that the first condition is the strong Morita
equivalence of the C∗-algebras A and B.

In the following, we want to show that every product system (A,E) over N is strongly
Morita equivalent to a product system induced by a ∗-endomorphism αE on the C∗-
algebra K(F(E)). So let (A,E) be an arbitrary but fixed product system over the natural
numbers. By M ⊂ F(E) we denote the bisubmodule defined by

M := {ξ = (ξ0, ξ1, ξ2, . . .) ∈ F(E) : ξ0 = 0}.

It is clear that M is a C∗-arrow from A to A. We define a mapping V : F(E)⊗A E →M
by setting

V ((ξn)n∈N ⊗ ξ) = (0,Φ1,0(ξ0 ⊗ ξ),Φ1,1(ξ1 ⊗ ξ),Φ1,2(ξ2 ⊗ ξ), . . .).

It is easy to see that V is an A-A-bimodule mapping and the following computation shows
that it is isometric:

(V ((ξn)⊗ ξ) |V ((ηn)⊗ η) )A

= ( (0,Φ1,0(ξ0 ⊗ ξ),Φ1,1(ξ1 ⊗ ξ), . . .) | (0,Φ1,0(η0 ⊗ η),Φ1,1(η1 ⊗ η), . . .) )A

=
∑
n∈N

( Φ1,n(ξn ⊗ ξ) |Φ1,n(ηn ⊗ η) )A =
∑
n∈N

( ξn ⊗ ξ | ηn ⊗ η )A

=
∑
n∈N

( ξ | ( ξn | ηn )A · η )A = ( ξ | (
∑
n∈N

( ξn | ηn )A) · η )A

= ( ξ | ( (ξn) | (ηn) )A · η )A = ( (ξn)⊗ ξ | (ηn)⊗ η )A.



101

Moreover, it is rather obvious that V is surjective (we notice that all the Φ1,n are unitaries)
and hence, V is a unitary. Next, we define a ∗-homomorphism αE : K(F(E)) → K(M) by
setting

αE(k) := V (k ⊗ 1)V ∗

for k ∈ K(F(E)). To see that V (k ⊗ 1)V ∗ ∈ K(M), we notice that it follows from [15,
Proposition 4.7.] that k⊗1 ∈ K(F(E)⊗AE). Now we equipM with a K(F(E)) left action
by setting k · ξ := αE(k)(ξ) for k ∈ K(F(E)) and ξ ∈ M . Thus, M is a C∗-arrow from
K(F(E)) to A. Of course, F(E) ⊗A E can also be viewed as a C∗-arrow from K(F(E))
to A and the following computation shows that V is a K(F(E))-A-bimodule mapping:

V (k ·((ξn)⊗ξ)) = V (k ·(ξn)⊗ξ) = V (k⊗1)((ξn)⊗ξ) = αE(k)(V ((ξn)⊗ξ)) = k ·V ((ξn)⊗ξ),

where k ∈ K(F(E)), (ξn) ∈ F(E) and ξ ∈ E. This yields that M and F(E) ⊗A E are
unitarily equivalent as C∗-arrows from K(F(E)) to A.

Now αE : K(F(E)) → K(M) ⊂ K(F(E)) can be viewed as a ∗-endomorphism on K(F(E))
and thus αE induces another product system over N that we denote by (K(F(E)), αE).
This product system consists of the C∗-algebra K(F(E)) and the family αn

E
K(F(E)),

n ∈ N, of C∗-arrows over K(F(E)). The family of unitary K(F(E))-K(F(E))-bimodule
mappings Ψn,m : αm

E
K(F(E)) ⊗K(F(E)) αn

E
K(F(E)) → αn+m

E
K(F(E)), n,m ∈ N, is defined

by setting
Ψn,m(ξ ⊗ η) := αn

E(ξ)η.

Similar to Example 2.16, we can show that Ψn,m is in deed a unitary K(F(E))-K(F(E))-
bimodule mapping and that the family {Ψn,m : n,m ∈ N} satisfies the necessary identities
for (K(F(E)), αE) being a product system.

Proposition 6.2 (A,E) and (K(F(E)), αE) are strongly Morita equivalent.

Proof: By the discussion above, it suffices to provide an invertible C∗-arrow σ0 from
K(F(E)) to A and a unitary bimodule mapping σ1 : αE

K(F(E))⊗K(F(E)) σ0 ⇒ σ0 ⊗A E.
We set σ0 := F(E). F(E) clearly is a C∗-arrow from K(F(E)) to A and it is easy to see
that F(E) is a K(F(E))-A-equivalence bimodule and hence invertible. It remains to show
that αE

K(F(E))⊗K(F(E))F(E) and F(E)⊗AE are unitarily equivalent. We have already
shown that F(E) ⊗A E and M are unitarily equivalent. So now we define a mapping
W : αE

K(F(E))⊗K(F(E)) F(E) →M by setting

W (k ⊗ ξ) := k(ξ)

for k ∈ αE
K(F(E)) and ξ ∈ F(E). We notice that k(ξ) ∈ M since k ∈ αE

K(F(E)) =

αE(K(F(E)))K(F(E)) and αE(K(F(E)) ⊆ K(M). Moreover, we claim that W is a
unitary K(F(E))-A-bimodule mapping. First we show that W is an isometry:

( k1 ⊗ ξ1 | k2 ⊗ ξ2 )A = ( ξ1 | ( k1 | k2 )K(F(E)) · ξ2 )A = ( ξ1 | k∗1k2(ξ2) )A

= ( k1(ξ1) | k2(ξ2) )A = (W (k1 ⊗ ξ1) |W (k2 ⊗ ξ2) )A
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for k1, k2 ∈ αE
K(F(E)) and ξ1, ξ2 ∈ F(E). Now let k ∈ K(F (E)), k′ ∈ αE

K(F(E)),
ξ ∈ F(E) and a ∈ A. Then

W (k · (k′ ⊗ ξ) · a) = W ((k · k′)⊗ (ξ · a)) = W (αE(k)k′ ⊗ ξ · a)
= αE(k)k′(ξ · a) = αE(k)(k′(ξ) · a)
= k · (k′(ξ)) · a = k ·W (k′ ⊗ ξ) · a,

which shows that W is a K(F(E))-A-bimodule mapping. It remains to prove that W is
surjective. It suffices to prove that Φ1,k(ξ ⊗ η) ∈ ran(W ) for ξ ∈ Ek, η ∈ E, where we
view En as a subset of F(E). So let (ai) be an approximate unit in A. Then we have

W (αE(θξ,ai
)θai·η,ai

⊗ ai) = αE(θξ,ai
)θai·η,ai

(ai) = V (θξ,ai
⊗ 1)V ∗(ai · η · ( ai | ai )A)

= V (θξ,ai
⊗ 1)(ai ⊗ η · ( ai | ai )A)

= V (ξ · ( ai | ai )A ⊗ η · ( ai | ai )A)

= Φ1,k(ξ · ( ai | ai )A ⊗ η · ( ai | ai )A),

which converges to Φ1,k(ξ ⊗ η), since (ai) is an approximate unit. Hence, W is a unitary
K(F(E))-A-bimodule mapping and so M and αE

K(F(E)) ⊗K(F(E)) F(E) are unitarily
equivalent as C∗-arrows from K(F(E)) to A. Together with the result above we get that

αE
K(F(E))⊗K(F(E)) F(E) ≈ F(E)⊗A E

as C∗-arrows from K(F(E)) to A. 2

Theorem 6.3 (AoE N) oδ C
∗(N) ∼= K(F(E))

To simplify our notation we put B := A oE N. Then `2(N, B) ≈ `2(N) ⊗ B is a Hilbert
B-module. Moreover, πA : A → B is a ∗-homomorphism and we define a linear mapping
πF(E) : F(E) → `2(N, B) by setting

πF(E)(ξ0, ξ1, ξ2, . . .) := (π0(ξ0), π1(ξ1), π2(ξ2), . . .).

Lemma 6.4 (πF(E), πA) is a homomorphism from (F(E), A) to (`2(N, B), B).

Proof: For ξ = (ξ0, ξ1, ξ2, . . .), η = (η0, η1, η2, . . .) ∈ F(E) and a ∈ A we have

(πF(E)(ξ) |πF(E)(η) )B =
∑
n∈N

πn(ξn)∗πn(ηn) =
∑
n∈N

π0(( ξn | ηn )A)

= πA(
∑
n∈N

( ξn | ηn )A) = πA(( ξ | η )A) and
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πF(E)(ξ · a) = πF(E)(ξ0 · a, ξ1 · a, ξ2 · a, . . .) = (π0(ξ0 · a), π1(ξ1 · a), π2(ξ2 · a), . . .)
= (π0(ξ0)π0(a), π1(ξ1)π0(a), π2(ξ2)π0(a), . . .)

= (π0(ξ0), π1(ξ1), π2(ξ2), . . .) · π0(a) = πF(E)(ξ) · π0(a).

2

Proof of Theorem 6.3: Since πA is injective, it is isometric and hence, πF(E) is also
isometric. We let L denote the image of F(E) under πF(E) and C the image of A under
πA,

L := πF(E)(F(E)), C := πA(A).

Hence, πF(E) : F(E) → L is a bijective linear mapping, πA : A → C is a ∗-isomorphism
and (πF(E), πA) is a homomorphism from (F(E), A) to (L,C). Let π−1

F(E) : L → F(E)

and π−1
A : C → A denote the corresponding inverse mappings. Then it is easy to see that

(π−1
F(E), π

−1
A ) : (L,C) → (F(E), A) is a homomorphism. By Lemma 3.6 it follows that

there are ∗-homomorphisms πK(F(E)) : K(F(E)) → K(L) and π−1
K(F(E)) : K(L) → K(F(E))

that are uniquely defined by

πK(F(E))(θξ1,ξ2) := θπF(E)(ξ1),πF(E)(ξ2) π−1
K(F(E))(θη1,η2) := θπ−1

F(E)
(η1),π−1

F(E)
(η2)

for ξ1, ξ2 ∈ F(E) and η1, η2 ∈ L. Since π−1
F(E) is the inverse mapping of πF(E), it is clear

that πK(F(E)) is a ∗-isomorphism with inverse π−1
K(F (E)) and hence, the C∗-algebras K(F(E))

and K(L) are isomorphic.

Next, we define a mapping W : L(F(E)) → L(L) by setting

W (T )(ξ) := πF(E) ◦ T ◦ π−1
F(E)(ξ)

for T ∈ L(F(E)) and ξ ∈ L. To see that W (T ) ∈ L(L), we let ξ, η ∈ L arbitrary and
compute

(W (T )(ξ) | η )C = (πF(E) ◦ T ◦ π−1
F(E)(ξ) | η )C = πA((T ◦ π−1

F(E)(ξ) |π
−1
F(E)(η) )A)

= πA((π−1
F(E)(ξ) |T

∗ ◦ π−1
F(E)(η) )A) = ( ξ |πF(E) ◦ T ∗ ◦ πF(E)−1(η) )C

= ( ξ |W (T ∗)(η) )C ,

which shows that W (T ) ∈ L(L) with W (T )∗ = W (T ∗). It is also easy to see that W is
linear and multiplicative and hence, a ∗-homomorphism from L(F(E)) to L(L).

Analogously, we define a mapping W−1 : L(L) → L(F(E)) by setting

W−1(T )(η) := π−1
F(E) ◦ T ◦ πF(E)(η)

for T ∈ L(L) and η ∈ F(E). It is clear that W−1 is a ∗-homomorphism from L(L) to
L(F(E)) and since π−1

F(E) is the inverse mapping of πF(E), it is also easy to see that W−1 is
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the inverse ∗-homomorphism of W . Hence, we see that the C∗-algebras L(L) and L(F(E))
are isomorphic. The following computation shows that πK(F(E)) is the restriction of W to
K(F(E)), because for ξ, η ∈ F(E) and ζ ∈ L we have

W (θξ,η)(ζ) = πF(E) ◦ θξ,η ◦ π−1
F(E)(ζ) = πF(E)(ξ · ( η |π−1

F(E)(ζ) )A)

= πF(E)(ξ) · πA(( η |π−1
F(E)(ζ) )A) = πF(E)(ξ) · (πF(E)(η) | ζ )C

= θπF(E)(ξ),πF(E)(η)(ζ) = πK(F(E))(θξ,η)(ζ).

Now let S be the forward shift operator on `2(N), i.e., S(z0, z1, z2, . . .) = (0, z0, z1, z2, . . .)
and let Pn ∈ L(`2(N)) be the projection on the n-th component of `2(N). We consider
the operators

SmPn ⊗ πm(ξm) ∈ L(`2(N)⊗B) ∼= L(`2(N, B)) (ξm ∈ Em,m, n ∈ N)

that generate B oδ C
∗(N), see Example 5.35. We claim that L ⊂ `2(N, B) is an invariant

submodule for SmPn ⊗ πm(ξm). So let η = (η0, η1, η2, . . .) ∈ F(E) be arbitrary. Then
πF(E)(η) = (π0(η0), π1(η1), π2(η2), . . .) ∈ L and we compute

(SmPn ⊗ πm(ξm))(π0(η0), π1(η1), π2(η2), . . .)

= (0, 0, . . . , 0, πm(ξm)πn(ηn), 0, . . .) = (0, 0, . . . , 0, πm+n(Φn,m(ξm ⊗ ηn)), 0, . . .)

= πF(E)(0, 0, . . . , 0,Φn,m(ξm ⊗ ηn), 0, . . .).

Now (0, 0, . . . , 0,Φn,m(ξm⊗ηn), 0, . . .) ∈ F(E), since the n+m-th component Φn,m(ξm⊗ηn)
is in En+m and thus (SmPn ⊗ πm(ξm))(π0(η0), π1(η1), π2(η2), . . .) ∈ L, which shows that
SmPn⊗πm(ξm) leaves L invariant. Analogously, we can show that (SmPn⊗πm(ξm))∗ leaves
L invariant and hence, BoδC

∗(N) leaves L invariant and can be viewed as a C∗-subalgebra
of L(L). The next computation shows that W−1(SmPn ⊗ πm(ξm)) = πm(ξm)P̃n = TξmP̃n,
where P̃n is the projection onto the n-th component of F(E). For η = (η0, η1, η2, . . .) ∈
F(E) we have

W−1(SmPn ⊗ πm(ξm))(η) = π−1
F(E) ◦ (SmPn ⊗ πm(ξm)) ◦ πF(E)(η)

= π−1
F(E) ◦ (SmPn ⊗ πm(ξm))(π0(η0), π1(η1), π2(η2), . . .)

= π−1
F(E)(πF(E)(0, 0, . . . , 0,Φn,m(ξm ⊗ ηn), 0, . . .))

= (0, 0, . . . , 0,Φn,m(ξm ⊗ ηn), 0, . . .)

= Tξm(0, 0, . . . , 0, ηn, 0, . . .) = TξmP̃n(η).

We claim that TξmP̃n ∈ K(F(E)). So let (uα)α be an approximate unit for A and let
φn : A → K(En) be the ∗-homomorphism that implies the left multiplication on En. We
note that φn(A) ⊂ K(En) since φ(A) ⊂ K(E). Then there exist ηα

i ∈ En such that
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φn(uα) =
∑

i θηα
i ,ηα

i
and we compute∑

i

θΦn,m(ξm⊗ηα
i ),ηα

i
(ζ) =

∑
i

Φn,m(ξm ⊗ ηα
i ) · ( ηα

i | ζn )A =
∑

i

Φn,m(ξm ⊗ ηα
i · ( ηα

i | ζn )A)

=
∑

i

Φn,m(ξm ⊗ θηα
i ,ηα

i
(ζn)) = Φn,m(ξm ⊗ (

∑
i

θηα
i ,ηα

i
)(ζn))

= Φn,m(ξm ⊗ uα · ζn) = Φn,m(ξm ⊗ uα · P̃n(ζ))

= Φn,m(ξm · uα ⊗ P̃n(ζ)) = Tξm·uαP̃n(ζ)

for ζ ∈ F(E) arbitrary. Hence, Tξm·uαP̃n =
∑

i θΦn,m(ξm⊗ηα
i ),ηα

i
∈ K(F(E)). But Tξm·uα

converges in norm to Tξm and thus also TξmP̃n ∈ K(F(E)).

Hence, we get that W−1(SmPn ⊗ πm(ξm)) = TξmP̃n ∈ K(F(E)), which implies that
W−1(B oδ C

∗(N)) ⊆ K(F(E)). Finally, we observe that

W−1((SmP0 ⊗ πm(ξm))(SnP0 ⊗ πn(ηn))∗) = TξmP̃0(TηnP̃0)
∗ = TξmT ∗ηnP̃n = θξm,ηn

for all ξm ∈ Em, ηn ∈ En, n,m ∈ N. But it is clear that the linear span of these operators
is dense in K(F(E)) and hence, W−1(B oδ C

∗(N)) = K(F(E)), which yields that

B oδ C
∗(N) ∼= K(F(E)).

2

Corollary 6.5 A and (AoE N) oδ C
∗(N) are strongly Morita equivalent.

Proof: By Theorem 6.3, (A oE N) oδ C
∗(N) and K(F(E)) are isomorphic and hence,

strongly Morita equivalent. Moreover, Proposition 6.2 implies that A and K(F(E)) are
strongly Morita equivalent and thus, it is clear that A and (AoE N)oδC

∗(N) are strongly
Morita equivalent. 2
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Appendix A

Crossed products by discrete groups

LetG be a discrete group, i.e., a group that carries the discrete topology, and let A be a C∗-
algebra. Moreover, let α be an action of G on A, i.e., the mapping g ∈ G 7→ αg ∈ Aut(A)
is a group homomorphism. Then we call the triple (A,G, α) a discrete C∗-dynamical
system.

A unitary representation of a discrete group G is a group homomorphism U from G into
the group of unitary operators U(H) on a Hilbert space H. A covariant representation
of a discrete C∗-dynamical system (A,G, α) is a pair (π, U), where π is a nondegenerate
representation of A on a Hilbert space H and U is a unitary representation on the same
Hilbert space such that

π(αs(a)) = Usπ(a)U∗
s

for all a ∈ A and s ∈ G.

Given a discrete C∗-dynamical system (A,G, α) and a nondegenerate representation π of
A on a Hilbert space H, we can always construct covariant representations (π̃λ, λ̃) and
(π̃ρ, ρ̃) of (A,G, α) on `2(G,H) using the left and the right regular representation λ and
ρ of G on `2(G), respectively :

(λsξ)(t) := ξ(s−1t) and (ρsξ)(t) := ξ(ts) ξ ∈ `2(G), s, t ∈ G.

For a ∈ A, ξ ∈ `2(G,H) and s, t ∈ G we define

(π̃λ(a)ξ)(t) := π(αt−1(a))ξ(t) and (λ̃sξ)(t) := ξ(s−1t).

Then one can easily check that (π̃λ, λ̃) is a covariant representation, the left regular rep-
resentation corresponding to π. Similarly, we define

(π̃ρ(a)ξ)(t) := π(αt(a))ξ(t) and (ρ̃sξ)(t) := ξ(ts)

and again it is easy to see that (π̃ρ, ρ̃) is a covariant representation of (A,G, α), the right
regular representation corresponding to π.

107



108 Appendix A. Crossed products by discrete groups

Definition A.1 A crossed product corresponding to a discrete C∗-dynamical system
(A,G, α) is a C∗-algebra B together with a ∗-homomorphism iA : A → M(B) and a
group homomorphism iG : G→ UM(B) such that

• iA(αs(a)) = iG(s)iA(a)iG(s)∗ for all a ∈ A, s ∈ G and

• for every covariant representation (π, U) of (A,G, α) there is a unique nondegenerate
representation π × U of B with π = (π × U) ◦ iA and U = (π × U) ◦ iG.

One can show that given a discrete C∗-dynamical system (A,G, α), a crossed product ex-
ists and that it is unique up to isomorphism. Hence, we can talk about the crossed product
of (A,G, α) and we denote it by A oα G. By definition, there is a 1-1-correspondence
between the representations of Aoα G and the covariant representations of (A,G, α).

We want to describe one way how the crossed product of a discrete C∗-dynamical system
(A,G, α) can be constructed. Let Cc(G,A) be the vector space of all A-valued functions
on G with compact support. Hence, a function f ∈ Cc(G,A) takes nonzero values only
on a finite subset of G. We define pointwise addition and a convolution product by

(f ∗ g)(t) :=
∑
s∈G

f(s)αs(g(s
−1t))

for f, g ∈ Cc(G,A) and t ∈ G. Moreover, we define an involution and a norm on Cc(G,A)
by

f ∗(t) := αt(f(t−1)∗) and ‖f‖1 :=
∑
s∈G

‖f(s)‖,

where f ∈ Cc(A,G) and t ∈ G. This makes Cc(G,A) a normed algebra with isometric
involution. The completion of Cc(G,A), which we denote by L1(G,A), is an involutive
Banach algebra but in general not a C∗-algebra since the norm ‖.‖1 is not a C∗-norm.

Now the full crossed product A oα G is the completion of Cc(G,A) with respect to the
maximal C∗-norm

‖f‖ := sup{‖π(f)‖ : π is a ∗-representation of L1(G,A)}

and the reduced crossed product AoαrG is the norm closure of ((π̃u)λ× λ̃)(AoαG), where
πu : A → L(Hu) is the universal representation of A on. We notice that the linear span
of the set of products {(π̃u)λ(a)λ̃s : a ∈ A, s ∈ G} is dense in A oαr G. In other words,
the reduced crossed product Aoαr G is the C∗-subalgebra of L(`2(G,Hu)) generated by
the products {(π̃u)λ(a)λ̃s : a ∈ A, s ∈ G}.
Remark: Let B be the C∗-subalgebra of L(`2(G,Hu)) generated by the set of products
{(π̃u)ρ(a)ρ̃s : a ∈ A, s ∈ G}. We claim that A oαr G and B are isomorphic. To see this,
we use the unitary operator U ∈ L(`2(G,Hu)) defined by (Uξ)(t) := ξ(t−1) and we define
an automorphism ϑ ∈ Aut(L(`2(G,Hu))) by ϑ(T ) := UTU∗ = UTU . An easy calculation
yields that ϑ(λ̃s) = ρ̃s and ϑ((π̃u)λ(a)) = (π̃u)ρ(a) for all s ∈ G and a ∈ A and so it is
clear that ϑ(Aoαr G) = B. So one could have also used the right regular representation
corresponding to πu to define the reduced crossed product.
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Zusammenfassung in deutscher
Sprache

Diese Arbeit lässt sich in zwei Teile gliedern. Im ersten Teil, der die Kapitel eins bis
vier umfasst, wollen wir Produktsysteme von einem höheren Standpunkt aus betrachten.
Produktsysteme wurden zuerst von Arveson [1] im Jahre 1989 eingeführt, um eine Index-
theorie für stetige Halbgruppen von ∗-Endomorphismen in L(H) zu entwickeln. Später
betrachtete dann Dinh [8] den diskreten Fall und Fowler [10] wiederum verallgemeinerte
Dinhs Konzept, indem er Hilbert-Bimoduln anstelle von Hilberträumen benutzte. Fowlers
diskrete Produktsysteme von Hilbert-Bimoduln bestehen aus einer Familie von Hilbert-
Bimoduln {Xs : s ∈ S} über einer C∗-Algebra A, die von einer abzählbaren Halbgruppe
S indiziert wird, und einer Familie von unitären Bimodulabbildungen

Φs,t : Xs ⊗A Xt → Xst, s, t ∈ S.

Wir wollen mit Hilfe der Bikategorientheorie die Struktur offenlegen, die sich hinter den
Produktsystemen verbirgt. Eine Bikategorie besteht, ebenso wie eine Kategorie, aus Ob-
jekten und Pfeilen zwischen diesen Objekten. Im Unterschied zu Kategorien besitzen
Bikategorien jedoch noch eine zusätzliche Struktur, nämlich Pfeile zwischen den Pfeilen,
die 2-Zellen genannt werden. Unser Hauptbeispiel für Bikategorien ist die Bikategorie
C∗ARR. Die Objekte von C∗ARR sind C∗-Algebren, die Pfeile sind C∗-Pfeile (ein Begriff,
der auf Hilbert-Bimoduln basiert und auf den wir später noch näher eingehen werden)
und die 2-Zellen sind adjungierbare, isometrische Bimodulabbildungen.

Wir werden die “Funktoren” zwischen Bikategorien einführen – die sogenannten Mor-
phismen – und wir werden sehen, dass die Fowlerschen Produktsysteme im Grunde nur
spezielle Morphismen von der Halbgruppe S (als Bikategorie betrachtet) in die Bikate-
gorie C∗ARR darstellen. Somit können wir eine natürlichere und elegantere Definition
für Produktsysteme angeben, indem wir definieren, dass ein Produktsystem ein Morphis-
mus von einer Indexkategorie J (die wir als Bikategorie betrachten) in die Bikategorie
C∗ARR ist. Wir können damit die Produktsysteme, die ursprünglich von Arveson für die
Indextheorie für Halbgruppen von ∗-Endomorphismen entwickelt worden waren, auf eine
sehr natürliche Art und Weise beschreiben, indem wir die Bikategorientheorie bemühen.
Außerdem ergibt sich dadurch, dass wir unsere Produktsysteme nicht mehr durch Hal-
bgruppen sondern durch Indexkategorien indizieren lassen, eine viel größere Klasse von
Beispielen.
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Im weiteren Verlauf der Arbeit ordnen wir jedem Produktsystem (F,Φ) zwei C∗-Algebren
zu, und zwar die reduzierte Toeplitz-Algebra Tr(F,Φ) und die reduzierte Cuntz-Pimsner-
Algebra Or(F,Φ). Desweiteren untersuchen wir diverse Spezialfälle, die zeigen, dass un-
sere Konstruktionsmethoden für die reduzierten Toeplitz- bzw. Cuntz-Pimsner-Algebren
viele andere Konstruktionen von C∗-Algebren verallgemeinern.

Anschließend werden wir die universelle Toeplitz-Algebra T (F,Φ) und die universelle
Cuntz-Pimsner-Algebra O(F,Φ) einführen. Wir wiederholen den Begriff des bikategoriel-
len Kolimes für einen Morphismus und beschließen den ersten Teil dieser Arbeit, indem
wir zeigen, dass für gewisse Produktsysteme (F,Φ) die universelle Toeplitz-Algebra als
das bikategorielle Kolimesobjekt des Morphismus (F,Φ) betrachtet werden kann.

Im zweiten Teil der Arbeit, der die Kapitel fünf und sechs beinhaltet, entwickeln wir
eine Dualitätstheorie für lokalkompakte Halbgruppen und greifen dabei auf das Konzept
der Hopf C∗-Algebren zurück. Eine Hopf C∗-Algebra ist eine C∗-Algebra H, auf der ein
nicht-degenerierter, injektiver ∗-Homomorphismus δH : H →M(H ⊗H) – die sogenannte
Komultiplikation – definiert ist. Das Standardbeispiel für eine Hopf C∗-Algebra ist C0(S),
die C∗-Algebra der komplexen Funktionen auf einer lokalkompakten Halbgruppe S, die
im Unendlichen verschwinden. Die Multiplikation auf S induziert eine Komultiplikation
auf C0(S). Insofern kann man Hopf C∗-Algebren als verallgemeinerte lokalkompakte
Halbgruppen betrachten.

Wir werden dann eine hinreichende Bedingung an die Hopf C∗-Algebra H entwickeln, die
es uns ermöglicht, eine Kodarstellung von H auf einem ausgezeichneten Hilbertraum zu
konstruieren, ähnlich der regulären Darstellung einer lokalkompakten Gruppe G auf dem
Hilbertraum L2(G, µ), wobei µ das rechte Haarmaß auf G bezeichnet. Mit Hilfe dieser
regulären Kodarstellung können wir dann die reduzierte duale C∗-Algebra von einer Hopf
C∗-Algebra definieren und wir werden zeigen, dass die klassische Toeplitz-Algebra C∗(N)
die reduzierte duale C∗-Algebra der Hopf C∗-Algebra c0(N) ist. Ebenso ergibt sich, dass
c0(N) die reduzierte duale C∗-Algebra der Hopf C∗-Algebra C∗(N) ist. Dies entspricht der
Tatsache, dass für eine lokalkompakte GruppeG die beiden C∗-Algebren C0(G) und C∗(G)
in Dualität zueinander stehen und kann als Analogon zum Dualitätssatz von Pontryagin
betrachtet werden.

Schließlich werden wir uns noch einem weiteren Dualitätssatz zuwenden, dem Dualitäts-
satz von Takai [28]. Dies ist einer der grundlegendsten Sätze aus dem Bereich der ver-
schränkten Produkte. Er besagt, dass für ein C∗-dynamisches System (A,G, α) das dop-
pelte verschränkte Produkt (A oα G) oα̂ Ĝ stark Morita-äquivalent zu A ist. Schweizer
behandelte in seiner Arbeit [25] ein Analogon zu Takais Dualitätssatz für verschränkte
Produkte durch Äquivalenzbimoduln. Er zeigte, dass es eine Wirkung γ von Ẑ auf AoX Z
gibt – wobei X ein Äquivalenzbimodul über der C∗-Algebra A ist – so dass (AoX Z)oγ Ẑ
stark Morita-äquivalent zu A ist.

Wir wollen Schweizers Aussage auf verschränkte Produkte durch C∗-Pfeile übertragen.
Dazu definieren wir zunächst das verschränkte ProduktAoEN eines C∗-Pfeils E über einer
C∗-Algebra A als die reduzierte Toeplitz-Algebra von (A,E), wobei (A,E) ein bestimmtes
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Produktsystem über N ist, das aus den Potenzen von E besteht. Anschließend definieren
wir das reduzierte verschränkte Produkt zu einem dynamischen Kosystem und schließlich
konstruieren wir eine Kowirkung δ von C∗(N) auf AoE N und zeigen, dass das doppelte
verschränkte Produkt (AoE N) oδ C

∗(N) stark Morita-äquivalent zu A ist.

Nach diesem eher allgemein gehaltenen Überblick wollen wir nun eine etwas präzisere
Inhaltsangabe machen:

Das erste Kapitel dient dazu, die historische Entwicklung der Produktsysteme zu skizzie-
ren. Wir geben einen kurzen Überblick über die Arbeiten von Arveson [1], der Produkt-
systeme erstmals eingeführt hat, Dinh [8], der als erster diskrete Produktsysteme unter-
suchte, und Fowler [10], der Dinhs diskrete Produktsysteme verallgemeinert hat, indem
er Hilberträume durch Hilbert-Bimoduln ersetzte und beliebige abzählbare Halbgruppen
als Indexmengen zuließ.

Im zweiten Kapitel wiederholen wir den Begriff der Bikategorie und liefern einige Beispiele
für Bikategorien. Wir werden das Konzept der C∗-Pfeile einführen, das eine wichtige Rolle
in unserer Arbeit spielt. Ein C∗-Pfeil ist ein Hilbert B-Modul, der auch die Struktur eines
A-B-Bimoduls besitzt, wobei A und B C∗-Algebren sind. C∗-Pfeile sind die Pfeile in un-
serem wichtigsten Beispiel für eine Bikategorie, der Bikategorie C∗ARR. Die Objekte von
C∗ARR sind C∗-Algebren und die 2-Zellen sind adjungierbare, isometrische Bimodulab-
bildungen. Wir wiederholen dann den Begriff des Morphismus zwischen Bikategorien,
welcher das Konzept von Funktoren zwischen Kategorien verallgemeinert. Diesen Begriff
werden wir dazu benutzen, um ein Produktsystem über einer Kategorie als Morphis-
mus von einer Indexkategorie J in die Bikategorie C∗ARR zu definieren. Nach dieser
Definition bestehen unsere Produktsysteme dann aus einer Familie von C∗-Algebren Ai,
i ∈ Ob(J), einer Familie von C∗-Pfeilen Fr, r ∈ Arr(J), und einer Familie von adjungier-
baren, isometrischen Bimodulabbildungen Φs,r : Fr⊗Fs → Fsr für komponierbare Pfeile s
und r in J . Schließlich werden wir sehen, dass die Fowlerschen diskreten Produktsysteme
von Hilbert-Bimoduln einen Spezialfall unserer Definition darstellen.

Kapitel 3 behandelt die Konstruktion der reduzierten Toeplitz-Algebra Tr(F,Φ) und der
reduzierten Cuntz-Pimsner-Algebra Or(F,Φ), die man jedem gegebenen Produktsystem
(F,Φ) zuordnen kann. Zunächst führen wir den Begriff der Toeplitz-Darstellung von einem
Produktsystem (F,Φ) in eine C∗-Algebra ein und geben einige technische Resultate über
Homomorphismen zwischen Hilbert C∗-Moduln an, die wir im späteren Verlauf der Ar-
beit noch gebrauchen werden. Dann führen wir die Fock-Korrespondenz F(F,Φ) eines
Produktsystems (F,Φ) als einen C∗-Pfeil über der direkten Summe der Ai, i ∈ Ob(J),
ein. Wir benutzen F(F,Φ), um eine spezielle Toeplitz-Darstellung zu konstruieren: die
reduzierte Toeplitz-Darstellung von (F,Φ) in die reduzierte Toeplitz-Algebra Tr(F,Φ),
bei der es sich um eine C∗-Unteralgebra von L(F(F,Φ)) handelt. Wir definieren die re-
duzierte Cuntz-Pimsner-Algebra Or(F,Φ) als den Quotienten von Tr(F,Φ) modulo dem
Ideal der kompakten Operatoren in Tr(F,Φ). Anschließend liefern wir mehrere Beispiele,
die zeigen, dass unsere Methode zur Konstruktion der reduzierten Toeplitz- bzw. Cuntz-
Pimsner-Algebren viele andere Methoden zur Konstruktion von C∗-Algebren verallge-
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meinert. Je nachdem, wie wir unser Produktsystem (F,Φ) wählen, erhalten wir als
resultierende Toeplitz- bzw. Cuntz-Pimsner-Algebren C∗-Algebren, die isomorph sind
zur direkten Summe einer Familie von C∗-Algebren, zum direkten Limes eines direkten
Systems von C∗-Algebren oder zum verschränkten Produkt einer C∗-Algebra mit einer
Gruppe oder Halbgruppe.

Im vierten Kapitel werden wir die universelle Toeplitz-Algebra T (F,Φ) und die universelle
Cuntz-Pimsner-Algebra O(F,Φ) zusammen mit ihren jeweiligen Toeplitz-Darstellungen
einführen. Zuerst zeigen wir, dass es zu jedem Produktsystem (F,Φ) über einer Indexka-
tegorie J eine C∗-Algebra gibt, die universell ist für Toeplitz-Darstellungen über (F,Φ).
Diese C∗-Algebra nennen wir die universelle Toeplitz-Algebra T (F,Φ). Dann wiederholen
wir den Begriff der Cuntz-Pimsner kovarianten Toeplitz-Darstellungen, den Fowler bereits
für seine Produktsysteme benutzt hat, und wir führen die universelle Cuntz-Pimsner-
Algebra ein, die universell ist für Cuntz-Pimsner kovariante Toeplitz-Darstellungen über
(F,Φ). Schließlich werden wir den Begriff des bikategoriellen Kolimes für einen Morphis-
mus (F,Φ) von einer Bikategorie B in eine Bikategorie B′ wiederholen und zeigen, dass
man für gewisse Produktsysteme (F,Φ) die universelle Toeplitz-Algebra T (F,Φ) als zum
Morphismus (F,Φ) gehöriges Kolimesobjekt in der Bikategorie C∗ARR betrachten kann.

In Kapitel 5 behandeln wir zunächst Hopf C∗-Algebren und wiederholen dabei auch
einige Begriffe aus deren Umfeld, die die entsprechenden Begriffe aus der Theorie der
lokalkompakten Halbgruppen verallgemeinern. Dabei handelt es sich um Kodarstellungen,
Kowirkungen von Hopf C∗-Algebren auf C∗-Algebren und kovariante Darstellungen von
dynamischen Kosystemen. Anschließend zeigen wir, dass die Existenz eines invarianten
Gewichtes auf einer Hopf C∗-Algebra H es ermöglicht, eine spezielle kovariante Darstel-
lung des dynamischen Kosystems (H,H, δH) zu konstruieren. Diese kovariante Darstel-
lung hat ihr Vorbild in der rechtsregulären kovarianten Darstellung von (C0(G), G, α) auf
L2(G, µ) – wobei µ das rechte Haarmaß auf einer lokalkompakten Gruppe G und α die
Gruppenwirkung von G auf C0(G) durch Rechtstranslation bezeichnet – und wir nennen
sie deshalb reguläre kovariante Darstellung. Wir benutzen diese im folgenden, um die
duale C∗-Algebra zu einer Hopf C∗-Algebra mit invariantem Gewicht τ zu konstruieren
und geben Beispiele für duale C∗-Algebren. Schließlich konstruieren wir noch das re-
duzierte verschränkte Produkt A oδ H zu einem dynamischen Kosystem (A,H, δ), das
wir in Kapitel 6 brauchen werden.

In diesem sechsten Kapitel übertragen wir Takais Dualitätssatz [28] auf verschränkte
Produkte mit C∗-Pfeilen. Wir zeigen, dass für spezielle Produktsysteme (A,E) über den
natürlichen Zahlen – wobei E ein C∗-Pfeil über einer C∗-Algebra A ist – gilt, dass das
doppelte verschränkte Produkt (AoE N)oδC

∗(N) stark Morita-äquivalent zu A ist. Dabei
ist AoE N die reduzierte Toeplitz-Algebra und δ kann als die duale Kowirkung von C∗(N)
auf AoE N betrachtet werden. Als weiteres Resultat erhalten wir hierbei noch, dass ein
Produktsystem (A,E) über N stets stark Morita-äquivalent ist zu einem Produktsystem,
das von einem ∗-Endomorphismus herkommt.
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