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Introduction

Partial differential equations on bounded domains of
� n have traditionally been

equipped with homogeneous boundary conditions (usually Dirichlet, Neumann,
or Robin). However, other kinds of boundary conditions can also be considered,
and for a number of concrete application it seems that dynamic (i.e., time-
dependent) boundary conditions are the right ones.

Motivated by physical problems, numerous partial differential equations
with dynamic boundary conditions have been studied in the last decades: H.
Amann and J.L. Lions, among others, have investigated elliptic equations (see,
e.g., [Li61, Chapt. VI.6], [Hi89], [Gu94], [AF97], and references therein); J. Es-
cher has investigated parabolic problems (see [Es93] and references therein); and
J.T. Beale and V.N. Krasil’nikov, among others, have investigated second order
hyperbolic equations with dynamical boundary conditions (see [Be76], [Kr61],
[Be00], and references therein).

In recent years, a systematic study of problems of this kind has been per-
formed mainly by A. Favini, J.A. Goldstein, G.R. Goldstein, and S. Romanelli,
who in a series of papers (see [FGGR02], [FGG+03], and references therein)
have convincingly shown that dynamic boundary conditions are the natural
Lp-counterpart to the well-known (generalized) Wentzell boundary conditions.
On the other side, K.-J. Engel has introduced a powerful abstract technique to
handle this kind of problems, reducing them in some sense to usual, perturbed
evolution equations with homogeneous, time-independent boundary conditions
(see [En99], [CENN03], and [KMN03]). Both schools reduce the problem to
an abstract Cauchy problem associated to an operator matrix on a suitable
product space.

We remark that more recently an abstract approach that in some sense
unifies dynamic and static boundary value problems has been developed by G.
Nickel, cf. [Ni04].

In the first chapter we introduce an abstract setting to consider what we
call an abstrac initial boundary value problem, i.e., a system of the form

(AIBVP)























u̇(t) = Au(t), t ≥ 0,

ẋ(t) = Bu(t) + B̃x(t), t ≥ 0,
x(t) = Lu(t), t ≥ 0,
u(0) = f ∈ X,
x(0) = g ∈ ∂X.

Here the first equation takes place on a Banach state space X (in concrete
applications, this is often a space of functions on a domain Ω ⊂ � n with smooth,
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nonempty boundary ∂Ω). The third equation represents a coupling relation
between the variable in X and the variable in a Banach boundary space ∂X
(in concrete applications, this is often a space of functions on ∂Ω). Finally,
the second equation represents an evolution equation on the boundary with a
feedback term given by the operator B.

Following [KMN03, § 2], we first define reasonable notions of solution to,
and well-posedness of (AIBVP). Then, we show the equivalence between its
well-posedness and the well-posedness of the abstract Cauchy problem

(0.1)























(

u̇
ẋ

)

(t) =

(

A 0

B B̃

)(

u
x

)

(t), t ≥ 0,

(

u
x

)

(0) =

(

f
g

)

on the product space X × ∂X. This formally justifes the semigroup techniques
used, e.g., in [FGGR02], [AMPR03], and [CENN03]. It is crucial that the
operator matrix that appears in (0.1) has a suitable, non-diagonal domain, as
discussed in detail in Chapter 2. We refer to [Ni04] for a systematic treatment
of these issues.

Then, it is natural to extend such results to second order problems like














ü(t) = Au(t), t ∈ �
,

ẍ(t) = Bu(t) + B̃x(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X.

However, we still need to impose a coupling relation between the variables
u(·) and x(·). In fact, a second order abstract problem can be equipped with
several kinds of dynamic boundary conditions, and they differ essentially in the
coupling relation: motivated by applications we consider three kinds of them.
We show that the well-posedness of such problems is related to the theory of
cosine operator functions.

In the second chapter we consider a certain class of operator matrices A that
arise naturally while transforming (AIBVP) into an abstract Cauchy problem.
The peculiarity of such operator matrices is that their domain is not a diago-
nal subset of the product Banach space X × ∂X (say, D(A) ×D(B̃)); instead,
following K.-J. Engel (see [En97], [En99], and [KMN03b]) we introduce the no-
tion of operator matrix with coupled domain. We recall some known properties
of such operator matrices and prove several new results: in particular, in Sec-
tion 2.2 we are able to characterize boundedness of the semigroup generated by
A and resolvent compactness of A, to obtain a regularity result, and moreover
to generalize some generation results obtained in [CENN03] and [KMN03]. The
results obtained here are systematically exploited in the following chapters.

In the third chapter we consider a second order problem where the coupling
relation is given by

ẋ(·) = Lu(·).
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This is physically motivated by so-called wave equations with acoustic boundary
conditions, first investigated in [MI68] and [BR74] (for bounded domains of

� 3),
and more recently in [GGG03]. The traditional approach has been recently
extended by C. Gal to bounded domains of

� n. Gal’s results concern well-
posedness and compactness issues, and have been obtained simultaneously to,
but independently of ours; they will appear in [Ga04]. The core of this chapter
is [Mu04].

It is possible to say that, roughly speaking, wave equations with acous-
tic boundary conditions have been traditionally interpreted as wave equations
equipped with (first order) dynamic Neumann-like boundary conditions, cf. Sec-
tion 3.1. Instead, we argue that acoustic boundary conditions should be looked
at as dynamic (first order) Robin-like boundary conditions. To our opinion,
this accounts for several properties of such systems, including well-posedness
and resolvent compactness of the associated operator matrix.

In the fourth chapter we investigate second order problems equipped with
abstract second order dynamic boundary conditions, given by

(0.2) x(·) = Lu(·)

or else

(0.3) x(·) = Lu(·) and ẋ(·) = Lu̇(·).

As shown in [Mu04b], on which this chapter is essentially based, dynamic
boundary conditions complemented with (0.2) or (0.3) represent quite differ-
ent concrete problems, modelling, for example, in concrete applications second
order Neumann (or Robin) and Dirichlet dynamic boundary conditons, respec-
tively. We show that an abstract approach to these boundary conditions is
necessarily different. In fact, we can show that the phase space associated
to such problems depend on the assumed coupling relation. More precisely,
if (0.2) holds, then the first coordinate-space of the phase space associated to
the problem is a diagonal subspace of X × ∂X, while if (0.3) holds, then the
first coordinate-space of the phase space is shown to be a certain subpaces of
X × ∂X that contains a coupling relation in its definition. This kind of non-
diagonal spaces has been considered, e.g., in [En03] to discuss heat equations
with dynamic boundary conditions on spaces of continuous functions.

In the fifth chapter we generalize the problem to complete second order
problems, i.e., sytems where the first equation is

ü(t) = Au(t) + Cu̇(t), t ∈ �
.

Also in this case we need to distinguish between cases that represent abstract
versions of dynamic Dirichlet and Neumann boundary conditions. We also
consider the case of overdamped complete problems, i.e., where C is more un-
bounded than A. Similar abstract problems have been investigated, by different
means, in [XL04b]; concrete problems fitting into this framework have been con-
sidered, e.g., in [CENP04], equipped with both first and second order dynamic
boundary conditions.
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In Appendix A we recall some well-known facts about C0-semigroups, in-
cluding perturbation and almost periodicity results.

Appendix B contains basic results in the theory of cosine operator functions;
most of them are well-known. Moreover, the boundedness of the H∞-calculus
associated to the invertible generator of a bounded cosine operator function on
a UMD-space is established. We also briefly describe the well-posedness of some
classes of complete second-order problems. Using a new Desch–Schappacher-
type perturbation result, we can also obtain the well-posedness of a certain class
of overdamped abstract wave equations, complementing known results stated
in [EN00, § VI.3].

In Appendix C we collect some basic facts and relations about Dirichlet
operators, i.e. solution operators of abstract (eigenvalue) Dirichlet problems of
the form

{

Au = λu,
Lu = x.

Such operators, already investigated in [Gr87] and [GK91], play a key role in
our approach.
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Chapter 1

Well-posedness of abstract

initial-boundary value

problems

1.1 Abstract initial-boundary value problems

The standard setting throughout this chapter is the following.

• X is a Banach space.

• ∂X is a Banach space.

• A : D(A) ⊂ X → X is a linear operator.

• L : D(L) ⊂ X → ∂X is a linear operator such that D(A) ⊂ D(L).

• B : D(B) ⊂ X → ∂X is a linear operator such that D(A) ⊂ D(B).

• B̃ : D(B̃) ⊂ ∂X → ∂X is a linear operator.

We denote by
X := X × ∂X

the product space of X and ∂X, and by π1 and π2 the projections from X onto
X and ∂X, respectively.

For these operators we consider what we call an abstract initial-boundary
value problem on the state space X and the boundary space ∂X:

(AIBVPf,g)























u̇(t) = Au(t), t ≥ 0,

ẋ(t) = Bu(t) + B̃x(t), t ≥ 0,
x(t) = Lu(t), t ≥ 0,
u(0) = f ∈ X,
x(0) = g ∈ ∂X.

If it is clear from the context which initial data f, g we are considering, we will
simply write (AIBVP) instead of (AIBVPf,g).
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In order to tackle (AIBVP) by means of C0-semigroups we consider the
operator matrix on X given by

(1.1) A :=

(

A 0

B B̃

)

, D(A) :=

{(

u
x

)

∈ D(A) ×D(B̃) : Lu = x

}

.

We emphasize that in general A does not have diagonal domain, i.e., D(A) is
not a diagonal subset of X .

Our aim is to show that (AIBVPf,g) is equivalent to the abstract Cauchy
problem

(ACP f)

{

u̇(t) = A u(t), t ≥ 0,
u(0) = f ∈ X ,

on the product space X , where we have set

(1.2) u(t) :=

(

u(t)
Lu(t)

)

, t ≥ 0, and f :=

(

f
g

)

.

Motivated by applications, we do not assume the operator A introduced
above to be closed. Instead, we assume the operator

(1.3)

(

A
L

)

: D(A) 3 u 7→
(

Au
Lu

)

∈ X

to be closed. Under this assumption, we obtain a Banach space by endowing
D(A) with the graph norm of

(A
L

)

, i.e.,

‖u‖(A
L) := ‖u‖X + ‖Au‖X + ‖Lu‖∂X .

We denote this Banach space by [D(A)]L.

In many applications the restriction A0 defined by

(1.4) A0u := Au for all u ∈ D(A0) := D(A) ∩ ker(L)

plays an important role. If if is closed, then D(A0) becomes a Banach space
[D(A0)] when equipped with the graph norm

‖u‖A0 := ‖u‖X + ‖A0u‖X .

Remark 1.1.1. If the operators
(A
L

)

, B̃,A are closed, then it follows by def-
inition that also A0 is closed and further [D(A0)] ↪→ [D(A)]L and [D(A)] ↪→
(

[D(A)]L × [D(B̃)]
)

.

We begin by showing some relations between operator theoretical properties
of the operators A,B,L, B̃,A defined above.

Lemma 1.1.2. The following assertions hold.
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(1) Assume
(A
L

)

and B̃ to be closed, and B to be bounded from [D(A)]L to ∂X.
Then A is closed.

(2) Assume A and
(A
L

)

to be closed and B̃ to be bounded. Then B is bounded
from [D(A)]L to ∂X.

(3) Assume A to be closed, B̃ to be bounded, and B to be bounded from [D(A)]L
to ∂X. Then

(

A
L

)

is closed.

(4) Assume A and
(A
L

)

to be closed and B to be bounded from [D(A)]L to ∂X.

If A0 has nonempty resolvent set, then B̃ is closed.

Proof. (1) Let

(

un
Lun

)

n∈ �
⊂ D(A), lim

n→∞

(

un
Lun

)

=

(

u
v

)

,

and lim
n→∞

A
(

un
Lun

)

= lim
n→∞

(

Aun
Bun + B̃Lun

)

=

(

w
z

)

for some u,w ∈ X and v, z ∈ ∂X. Since (un)n∈ � ⊂ D(A),

lim
n→∞

(

A
L

)

un = lim
n→∞

(

Aun
vn

)

=

(

w
v

)

,

i.e., the sequence (un) converges in the Banach space [D(A)]L. Thus, the bound-
edness of B from [D(A)]L to ∂X implies that limn→∞Bun = Bu and conse-
quently limn→∞ B̃Lun = z −Bu. Moreover, (Lun)n∈ � ⊂ D(B̃) and since B̃ is
closed, it follows that v ∈ D(B̃) and B̃v = z−Bu. Moreover, the closedness of
(A
L

)

now yields that u ∈ D(A) and Lu = v, thus showing that
(u
v

)

∈ D(A), and
furthermore Au = w. Hence A

(u
v

)

=
(w
z

)

. Thus, A is closed.
(2) Let

(un)n∈ � ⊂ D(A), [D(A)]L − lim
n→∞

un = u, and lim
n→∞

Bun = z

for some u ∈ D(A), z ∈ ∂X , where “[D(A)]L− lim” stands for the limit with re-
spect to the norm of [D(A)]L. It follows that u ∈ D(A) and also limn→∞Aun =
Au and limn→∞Lun = Lu. Consequently limn→∞ B̃Lun = B̃Lu. Thus,

(

un
Lun

)

n∈ �
⊂ D(A), lim

n→∞

(

un
Lun

)

=

(

u
Lu

)

,

and lim
n→∞

A
(

un
Lun

)

= lim
n→∞

(

Aun
Bun + B̃Lun

)

=

(

Au

z + B̃Lu

)

.

Due to the closedness of A, we obtain in particular that Bu = z, thus showing
the closedness of B as an operator from [D(A)]L to ∂X. The claim now follows
by the closed graph theorem.

(3) Let

(un)n∈ � ⊂ D(A), lim
n→∞

un = u, and lim
n→∞

(

A
L

)

un = lim
n→∞

(

Aun
Lun

)

=

(

w
v

)
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for some u,w ∈ X, v ∈ ∂X. This means that (un)n∈ � converges with respect to
the norm of [D(A)]L, hence limn→∞Bun = Bu. Moreover limn→∞ B̃Lun = B̃v,
and it follows that

(

un
Lun

)

n∈ �
⊂ D(A), lim

n→∞

(

un
Lun

)

=

(

u
v

)

,

and lim
n→∞

A
(

un
Lun

)

= lim
n→∞

(

Aun
Bun + B̃Lun

)

=

(

w

Bu+ B̃v

)

.

Finally, due to the closedness of A,

(

u
v

)

∈ D(A) and A
(

u
v

)

=

(

Au

Bu+ B̃v

)

=

(

w

Bu+ B̃v

)

,

i.e., u ∈ D(A), Lu = v, and Au = w.
(4) Let

(xn)n∈ � ⊂ D(B̃), lim
n→∞

xn = x, and lim
n→∞

B̃xn = y

for some x, y ∈ ∂X. Take λ ∈ ρ(A0) and observe that by assumption Lemma C.1
applies and yields the existence of the Dirichlet operator DA,L

λ associated to the

pair (A,L). Thus, for all n ∈ �
there exists un := DA,L

λ xn ∈ D(A) such that

by definition Aun = λun and Lun = xn. Moreover, by Lemma C.4 DA,L
λ is

bounded from ∂X to [D(A)]L, and it follows that limn→∞Bun = BDA,L
λ x.

Summing up, we can consider

(

un
xn

)

n∈ �
⊂ D(A) such that lim

n→∞

(

un
xn

)

=

(

DA,L
λ x

x

)

and lim
n→∞

A
(

un
xn

)

= lim
n→∞

(

Aun
Bun + B̃xn

)

=

(

ADA,L
λ x

BDA,L
λ x+ y

)

.

Hence,

(

DA,L
λ x

x

)

∈ D(A) and A
(

DA,L
λ x

x

)

=

(

ADA,L
λ

BDA,L
λ x+ B̃x

)

,

and we conclude that x ∈ D(B̃) and further B̃x = y.

Lemma 1.1.3. The following assertions hold.

(1) Assume A0 and B̃ to be densely defined in X and ∂X, respectively. If L is
surjective from D(A) to D(B̃), then A is densely defined.

(2) If A is densely defined, then A and B̃ are densely defined in X and ∂X,
respectively.
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Proof. (1) Let x ∈ X, y ∈ ∂X, ε > 0. Take z ∈ D(B̃) such that ‖y − z‖ < ε.
The surjectivity of L ensures that there exists u ∈ D(A) such that Lu = z.
Take ũ, x̃ ∈ ker(L) ∩ D(A) such that ‖u − ũ‖

X
< ε and ‖x − x̃‖

X
< ε. Let

w := x̃+ u− ũ ∈ D(A). Then

∥

∥

∥

∥

(

x
y

)

−
(

w
z

)∥

∥

∥

∥

≤
∥

∥

∥

∥

(

x− x̃
0

)∥

∥

∥

∥

+

∥

∥

∥

∥

(

u− ũ
0

)∥

∥

∥

∥

+

∥

∥

∥

∥

(

0
y − z

)∥

∥

∥

∥

< 3ε.

Since L(w) = L(u) = z, we obtain
(

w
z

)

∈ D(A).
(2) The claim follows immediately by definition.

1.2 Equivalence between (ACP) and (AIBVP)

It is known that the well-posedness of abstract Cauchy problems is related to
the theory of C0-semigroups, as recalled in Appendix A. Thus, it is reasonable to
impose, throughout this section, a set of minimal assumptions on the operators
A,B,L, B̃ ensuring that the operator matrix A be closed and densely defined.
The following are motivated by Lemma 1.1.2.

Assumptions 1.2.1.

1. A0 is densely defined.

2.

(

A
L

)

is closed.

3. L is surjective.

4. B is bounded from [D(A)]L to [D(B̃)].

5. B̃ is closed and densely defined.

Under these assumptions we now make precise what we understand by a
solution to an abstract initial-boundary value problem.

Definition 1.2.2. A classical solution (in (X, ∂X)) to (AIBVPf,g) is a function
u(·) such that

• u(·) ∈ C1(
�

+, X),

• u(t) ∈ D(A) for all t ≥ 0,

• Lu(·) ∈ C1(
�

+, ∂X),

• Lu(t) ∈ D(B̃) for all t ≥ 0, and

• u(·) satisfies (AIBVPf,g).

Moreover, (AIBVP) is called well-posed on (X, ∂X) if

• (AIBVPf,g) admits a unique classical solution u = u(·, f, g) for all initial
data f ∈ D(A), g ∈ D(B̃) satisfying the compatibility condition Lf = g,
and
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• for all sequences of initial data (fn, gn)n∈ � ⊂ D(A) ×D(B̃) tending to 0
and satisfying the compatibility condition Lfn = gn, one has limn→∞ u(t, fn, gn) =
0 and limn→∞Lu(t, fn, gn) = 0 uniformly for t in compact intervals.

Our aim is to show that the well-posedness of the abstract initial-boundary
value problem (AIBVP) is equivalent to the well-posedness of the abstract
Cauchy problem (ACP), with A defined as in (1.1). To this purpose we re-
late the solutions of the two problems. We recall that π1, π2 denote the first
and second projection of the product space X = X × ∂X, respectively.

Lemma 1.2.3. The following assertions hold.

(1) If u(·) is a classical solution to (AIBVPf,g), then

u(·) :=

(

u(·)
Lu(·)

)

is a classical solution to (ACP(f
g)

).

(2) Conversely, if u(·) is a classical solution to (ACP f), then

u(·) := π1u(·)

is a classical solution to (AIBVPπ1f,π2f).

Proof. (1) Let u(·) be a classical solution to (AIBVPf,g). It follows that u ∈
C1(

�
+, X) and Lu ∈ C1(

�
+, ∂X), and therefore u ∈ C1(

�
+,X ). Moreover,

u(t) ∈ D(A) and Lu(t) ∈ D(B̃) for all t ≥ 0, thus u(t) ∈ D(A) for all t ≥ 0.
Finally, one can see that (ACP(f

g)
) is fulfilled.

(2) Assume now u(·) to be a classical solution to (ACP f). Then u(t) ∈ D(A)
for all t ≥ 0 and hence u(t) := π1u(t) ∈ D(A) and π2u(t) = Lπ1u(t) = Lu(t) ∈
D(B̃) for all t ≥ 0. It also follows from u ∈ C1(

�
+,X ) that u ∈ C1(

�
+, X) and

Lu ∈ C1(
�

+, ∂X). One can see that (AIBVPπ1f,π2f) is fulfilled, and the claim
follows.

Finally, we can show that the well-posedness of (ACP), i.e., the generator
property of A is equivalent to the well-posedness of the corresponding abstract
initial-boundary value problem (AIBVP). This motivates the strategy of our
later investigation.

Theorem 1.2.4. The operator matrix A generates a C0-semigroup (etA)t≥0 on
the product space X = X×∂X if and only if (AIBVP) is well-posed on (X, ∂X).

In this case, the unique classical solution to (AIBVPf,g) is given by

u = u(t, f, g) := π1e
tA

(

f

g

)

, t ≥ 0,

for all initial data f ∈ D(A) and g ∈ D(B̃) such that Lf = g.
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Proof. Let A generate a C0-semigroup on X . Then A is closed, thus by
Lemma A.3 the associated abstract Cauchy problem (ACP) is well-posed. By
Lemma 1.2.3, u = u(t, (f, g)) = π1u(t,

(f
g

)

) = π1e
tA
(f
g

)

, t ≥ 0, yields a classical

solution to (AIBVPf,g) for all (f, g) ∈ D(A) ×D(B̃) such that Lf = g, i.e., for

all
(

f
g

)

∈ D(A). This classical solution is unique, again by Lemma 1.2.3.
Let now t0 > 0 and (fn, gn)n∈ � be a sequence of initial data satisfying

Lfn = gn and tending to 0. Note that fn :=
(

fn

gn

)

∈ D(A) and u(t, fn) ∈ D(A),
for all t ≥ 0 and n ∈ �

. Hence we have limn→∞ u(t, fn) = 0 uniformly for
t ∈ [0, t0] if and only if

lim
n→∞

u(t, fn, gn) = 0 and lim
n→∞

Lu(t, fn, gn) = 0,

both uniformly for t ∈ [0, t0]. Since (ACP) is well-posed, the assertion follows.
Assume now (AIBVP) to be well-posed. Since under the standing Assump-

tions 1.2.1 A is closed and densely defined, it suffices by Lemma A.3 to show
that the associated (ACP) admits a unique classical solution for all f ∈ D(A),
continuously depending on the initial data. Let f ∈ D(A). Well-posedness
of (AIBVP) yields, by Lemma 1.2.3, existence and uniqueness of a classical
solution to (ACP f).

To show continuous dependence on initial data, let t0 > 0 and (fn)n∈ � ⊂
D(A) be a sequence of initial data tending to 0. Then (π1fn, π2fn)n∈ � is a
sequence of initial data for (AIBVP) tending to 0 and such that Lπ1fn = π2fn.
Then there holds limn→∞ u(t, π1fn, π2fn) = 0 and limn→∞Lu(t, π1fn, π2fn) = 0
(both uniformly for t ∈ [0, t0]). Also,

u = u(t, fn) =

(

u(t, π1fn, π2fn)
Lu(t, π1fn, π2fn)

)

, t ≥ 0,

is the (unique) classical solution to (ACP fn) for each n ∈ �
, and we finally

obtain limn→∞ u(t, fn) = 0 uniformly for t ∈ [0, t0].

The following regularity result for the solution to (AIBVPf,g) holds, by
Corollary 2.3.4 below.

Proposition 1.2.5. The following assertions hold.

(1) Let B map D(Ak+1) into D(B̃k), k ∈ �
. Assume A to generate a C0-

semigroup on X . If for some n = 1, 2, . . . the initial data f belongs to

n−1
⋂

h=0

{

u ∈ D(An) : LAhu = BAhu = 0
}

and moreover g = 0, then the unique classical solution u = u(t) to (AIBVPf,g)
belongs to D(An) for all t ≥ 0 and n = 1, 2, . . ..

(2) Let A generate an analytic semigroup on X . Then the unique classical
solution u = u(t) to (AIBVPf,g) belongs to

D∞(A) :=
⋂

n∈ �
D(An)

for all t > 0 and all f ∈ X, g ∈ ∂X.

13



As in the case of abstract Cauchy problems, we can relax the notion of
classical solution and introduce the following.

Definition 1.2.6. A mild solution (in (X, ∂X)) to (AIBVPf,g) is a function
u(·) such that

• u(·) ∈ C(
�

+, X),

•
∫ t
0 u(s)ds ∈ D(A) for all t ≥ 0,

• L
∫ t
0 u(s)ds ∈ D(B̃) for all t ≥ 0, and

• there exists a function x(·) ∈ C(
�

+, ∂X) such that the integrated identities

(1.5)











u(t) = f +A
∫ t
0 u(s)ds, t ≥ 0,

x(t) = g +B
∫ t
0 u(s)ds+ B̃L

∫ t
0 u(s)ds, t ≥ 0,

∫ t
0 x(s)ds = L

∫ t
0 u(s)ds, t ≥ 0,

are satisfied.

Lemma 1.2.7. The following assertions hold.

(1) Let u(·) be a mild solution to (AIBVPf,g), and let x be the function in-

troduced in Definition 1.2.6. Then u(·) :=
(u(·)
x(·)

)

is a mild solution to

(ACP(f
g)

).

(2) Conversely, let u(·) be a mild solution to (ACP f). Then u(·) := π1u(·) is a
mild solution to (AIBVPπ1f,π2f).

Proof. (1) Let u(·) be a mild solution to (AIBVPf,g). Since u(·) ∈ C(
�

+, X),
one has x(·) ∈ C(

�
+, ∂X), and therefore u ∈ C(

�
+,X ). Moreover, u(·) and

x(·) satisfy the system (1.5), hence in particular L
∫ t
0 u(s)ds =

∫ t
0 x(s)ds and

therefore
∫ t
0 u(s)ds ∈ D(A) for all t ≥ 0. Finally, the equalities in (1.5) show

that the integrated identity

(1.6) u(t) =

(

f

g

)

+ A
∫ t

0
u(s) ds, t ≥ 0,

is satisfied.
(2) Assume now u(·) to be a mild solution to (ACP f). Since u(·) ∈ C(

�
+,X )

and
∫ t
0 u(s)ds ∈ D(A), there holds u(·) := π1u(·) ∈ C(

�
+, X) and

∫ t
0 u(s)ds ∈

D(A). Set now x(·) := π2u(·). Again because u(·) ∈ C(
�

+,X ) and
∫ t
0 u(s)ds ∈

D(A), there holds x(·) ∈ C(
�

+, ∂X) and
∫ t
0 x(s)ds ∈ D(B̃) with L

∫ t
0 u(s)ds =

∫ t
0 x(s) ds. Finally, u(·) satisfies (1.6). Considering its components yields the

first two identities in (1.5).
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1.3 Equivalence between (ACP) and (aAIBVP2)

For X, ∂X as in Section 1.1, instead of Assumptions 1.2.1 we impose the fol-
lowing, where Y is a further Banach space such that Y ↪→ X.

Assumptions 1.3.1.

1. D(A) ⊂ Y .

2. A0 := A|ker(R) is densely defined.

3.

(

A
R

)

is closed as an operator from Y to X × ∂X.

4. R : D(A) → ∂X is surjective.

5. B1 is bounded from [D(A)]YR to ∂X.

6. B2 is bounded from Y to ∂X.

7. B3, B4 are bounded on ∂X.

In the Assumption 1.3.1.5 we have denoted by [D(A)]YR the Banach space
obtained by endowing D(A) with the graph norm of

(A
R

)

. Moreover, it will be
convenient to define a new operator L by

L := R+B2, L : D(A) → ∂X.

We discuss in this section well-posedness issues of abstract second order
initial-boundary value problems of the form

(aAIBVP2
f,g,h,j)























ü(t) = Au(t), t ∈ �
,

ẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t ∈ �
,

ẋ(t) = Lu(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X

Definition 1.3.2. A classical solution (in (Y,X, ∂X)) to (aAIBVP2) is a func-
tion u(·) such that

• u(·) ∈ C2(
�
, X) ∩C1(

�
, Y ),

• u(t) ∈ D(A) for all t ∈ �
,

• Lu(·) ∈ C1(
�
, ∂X), and

• u(·) satisfies (aAIBVP2).

Moreover, (aAIBVP2) is called well-posed on (Y,X, ∂X) if

• (aAIBVP2
f,g,h,j) admits a unique classical solution u = u(·, f, g, h, j) for

all initial data f ∈ D(A), g ∈ Y , h, j ∈ ∂X satisfying the compatibility
condition Lf = j, and
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• for all sequences of initial data (fn, gn, hn, jn)n∈ � ⊂ D(A)×Y ×∂X×∂X
tending to 0 and satisfying the compatibility condition Lfn = jn, one
has limn→∞ u(t, fn, gn, hn, jn) = 0 and limn→∞Lu(t, fn, gn, hn, jn) = 0
uniformly for t in compact intervals.

In order to tackle (aAIBVP2) by means of the results of the previous section,
we consider the operator matrix A on the product Banach space

X := Y ×X × ∂X

defined by

A :=





0 IY 0
A 0 0
L 0 0



 , D(A) := D(A) × Y × ∂X.

Further, L and B are the operators

L :=
(

R 0 0
)

, D(L) := D(A),

and
B :=

(

B1 +B4B2 0 B3

)

, D(B) := D(A),

respectively, both from X to ∂X := ∂X . Moreover, B̃ is the operator

B̃ := B4, D(B̃) := D(B4),

on ∂X.

Lemma 1.3.3. The operator matrices A on X, and
(

A
L

)

from X to X × ∂X,
are both closed and their graph norms are equivalent.

Proof. We show that the operator matrix A is closed. Let





un
vn
xn





n∈ �

⊂ D(A), lim
n→∞





un
vn
xn



 =





u
v
x



 in X,

and lim
n→∞

A





un
vn
xn



 = lim
n→∞





0 IY 0
A 0 0
L 0 0









un
vn
xn





= lim
n→∞





vn
Aun
Lun



 =





v
w
z



 in X.

Since limn→∞ un = u holds with respect to the norm of Y , it follows from the
Assumption 1.3.1.6 that limn→∞B2un = Bu and accordingly limn→∞Run =
z − B2u. Moreover, by Assumption 1.3.1.3 we obtain u ∈ D(A) and Au = w.
This completes the proof of the closedness of A. The closedness of

(

A
L

)

and the
equivalence of the graph norms can be proven likewise.

Lemma 1.3.4. The operators A,B,L, B̃ satisfy the Assumptions 1.2.1.
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Proof. First observe that, by Lemma 1.3.3 and the closed graph theorem,
[D(A)]L ↪→ [D(A)]YR × Y × ∂X. Hence the boundedness of B from [D(A)]L
to ∂X is a consequence of Assumptions 1.3.1.5–7. The remaining Assump-
tions 1.2.1 are clearly satisfied by A,L, B̃ under the Assumptions 1.3.1.

By virtue of the above lemma, we can apply the results of Section 1.2, and
in particular obtain that

(AIBVPf ,g)























u̇(t) = Au(t), t ∈ �
,

ẋ(t) = Bu(t) + B̃x(t), t ∈ �
,

x(t) = Lu(t), t ∈ �
,

u(0) = f ∈ X,
x(0) = g ∈ ∂X,

on the Banach spaces X and ∂X is well posed (in the sense of Theorem 1.2.4)
if and only if the operator matrix

(1.7) A :=

(

A 0

B B̃

)

, D(A) :=

{(

u

x

)

∈ D(A) ×D(B̃) : Lu = x

}

,

generates a C0-group on X × ∂X. (Here we have set

(1.8) u(t) :=





u(t)
v(t)
x(t)



 , t ∈ �
, and f :=





f
g
h



 , g := j −B2f.)

Thus, our goal becomes to prove the equivalence between (aAIBVP2) and
(AIBVP). In the following we use the terminology of Definitions 1.2.2 and 1.3.2.

Lemma 1.3.5. The following assertions hold.

(1) Let u(·) be a classical solution in (Y,X, ∂X) to (aAIBVP2
f,g,h,j). Then

u(·) :=





u(·)
u̇(·)

h+
∫ ·
0 Lu(s)ds





is a classical solution in (X, ∂X) to (AIBVPf ,g), with f ,g defined as
in (1.8).

(2) Conversely, let u(·) be a classical solution in (X, ∂X) to (AIBVPf ,g).
Then

u(·) := π1u(·)
is a classical solution in (Y,X, ∂X) to (aAIBVP2

f,g,h,j), with f, g, h, j de-
fined as in (1.8).

Proof. To begin with, observe that for all u(·) ∈ C 1(
�
, Y ) there holds B2u(·) ∈

C1(
�
, ∂X) and

(1.9)
B2

du
dt (·) = B2

(

Y − lim
h→0

u(·+h)−u(·)
h

)

= ∂X − lim
h→0

B2

(

u(·+h)−u(t)
h

)

= d(B2u)
dt (·),
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by Assumption 1.3.1.6, where “Y − lim” stands for the limit with respect to the
norm of Y . Note that this argument does not hold for L.

(1) Let u(·) be classical solution to (aAIBVP2
f,g,h,j). Observe that x(·) :=

(

h+
∫ ·
0 Lu(s)ds

)

∈ C1(
�
, ∂X), hence � (·) ∈ C1(

�
,X). Moreover, Ru(·) ∈

C1(
�
, ∂X), since Ru(·) = Lu(·) − B2u(·). Further, u(t) ∈ D(A) for all t ∈ �

because u(t) ∈ D(A) for all t ∈ �
, and one can check directly that u(·) satisfies

(AIBVPf ,g).
(2) Let

u(·) =





u(·)
v(·)
x(·)



 ∈ C1(
�
,X)

be a classical solution to (AIBVPf ,g). Hence Lu(·) ∈ C1(
�
, ∂X), i.e. y(·) :=

Ru(·) = Lu(·) −B2u(·) ∈ C1(
�
, ∂X). Thus, there holds

(1.10)







































u̇(t) = v(t), t ∈ �
,

v̇(t) = Au(t), t ∈ �
,

ẋ(t) = Lu(t), t ∈ �
,

ẏ(t) = (B1 +B4B2)u(t) +B3x(t) +B4y(t), t ∈ �
,

y(t) = (L−B2)u(t), t ∈ �
,

u(0) = f, v(0) = g,
x(0) = h, y(0) = j −B2f,

with v(t) ∈ Y , t ∈ �
, or, equivalently,

(1.11)























ü(t) = Au(t), t ∈ �
,

ẋ(t) = Lu(t), t ∈ �
,

ẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t ∈ �
,

u(0) = f, u̇(0) = g,
x(0) = h, ẋ(0) = j.

Here we have used the fact that u̇(t) ∈ Y , t ∈ �
, and the last step is justified

by (1.9). Moreover, u(·) ∈ C2(
�
, X) ∩ C1(

�
, Y ) and Lu(·) ∈ C1(

�
, ∂X). This

shows that u(·) is a classical solution to (aAIBVP2
f,g,h,j) on (Y,X, ∂X).

Summing up, we obtain the following.

Theorem 1.3.6. The operator matrix A in (1.7) generates a C0-group (etA)t∈ �
on the product space X = X × ∂X if and only if (aAIBVP2) is well-posed on
(Y,X, ∂X).

In this case, the unique classical solution to (aAIBVP2
f,g,h,j) is given by

u = u(t, f, g, h, j) := π1e
tA

(

f

g

)

, t ∈ �
,

for all initial data f ∈ D(A), g ∈ Y , and h, j ∈ ∂X such that Rf = j. Here
f ,g are defined as in (1.8).

Proof. Taking into account Lemma 1.3.5, one can check directly that (aAIBVP2)
is well-posed on (Y,X, ∂X) if and only if (AIBVP) is well-posed on (X, ∂X).
Now the claims follows directly by Theorem 1.2.4.
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The following holds by Proposition 1.2.5 and Lemma 3.3.1 below.

Corollary 1.3.7. Assume the operator matrix A in (1.7) to generate a C0-
group on X . Let the initial data f, g be in

(1.12)

∞
⋂

k=0

{

u ∈ D∞(A) : LAku = B2A
ku = 0

}

.

If further j = 0, then the classical solution u = u(t) to (aAIBVP2
f,g,h,j) is in

D∞(A) for all t ∈ �
and h ∈ ∂X.

1.4 Equivalence between (ACP2) and (dAIBVP2)

Throughout this section we consider two Banach spaces Y, ∂Y such thatD(A) ⊂
Y ↪→ X and D(B̃) ⊂ ∂Y ↪→ ∂X. We impose the Assumptions 1.2.1 and discuss
well-posedness issues for a second order abstract initial-boundary value problem
of the form

(dAIBPV2
f,g,h,j)























ü(t) = Au(t), t ∈ �
,

ẍ(t) = Bu(t) + B̃x(t), t ∈ �
,

x(t) = Lu(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X.

Definition 1.4.1. A classical solution to (dAIBVP2) in (Y,X, ∂Y , ∂X) is a
function u(·) such that

• u(·) ∈ C2(
�
, X) ∩C1(

�
, Y ),

• u(t) ∈ D(A) for all t ∈ �
,

• Lu(·) ∈ C2(
�
, ∂X) ∩ C1(

�
, ∂Y ),

• Lu(t) ∈ D(B̃) for all t ∈ �
, and

• u(·) satisfies (dAIBVP2).

Moreover, (dAIBVP2) is called well-posed on (Y,X, ∂Y, ∂X) if

• (dAIBVP2
f,g,h,j) admits a unique classical solution u = u(·, f, g, h, j) for

all initial data f ∈ D(A), g ∈ Y , h ∈ D(B̃), and j ∈ ∂Y satisfying the
compatibility condition Lf = h, and

• for all sequences of initial data (fn, gn, hn, jn)n∈ � ⊂ D(A)×Y ×D(B̃)×∂Y
tending to 0 and satisfying the compatibility condition Lfn = hn, one
has limn→∞ u(t, fn, gn, hn, jn) = 0 and limn→∞Lu(t, fn, gn, hn, jn) = 0
uniformly for t in compact intervals.
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Define the operator matrix A as in (1.1) and consider the second order
abstract Cauchy problem

(ACP2
f,g)

{

ü(t) = A u(t), t ∈ �
,

u(0) = f ∈ X , u̇(0) = g ∈ X ,

on the product space X = X × ∂X. Like in (1.2) here we have set

u(t) :=

(

u(t)
Lu(t)

)

, t ∈ �
, and f :=

(

f
h

)

, g :=

(

g
j

)

.

Similarly to what we have done in Section 1.2, in the remainder of this
section we show that the well-posedness of the abstract initial-boundary value
problem (dAIBVP2) is equivalent to the well-posedness of the abstract Cauchy
problem (ACP2).

The following can be proven exactly like Lemma 1.2.3.

Lemma 1.4.2. The following assertions hold.

(1) If u(·) is a classical solution to (dAIBVP2
f,g,h,j), then

u(·) :=

(

u(·)
Lu(·)

)

is a classical solution to (ACP2

(f
h),(

g
j)

).

(2) Conversely, if u(·) is a classical solution to (ACP 2
f,g), then

u(·) := π1u(·)

is a classical solution to (dAIBVP2
π1f,π1g,π2f,π2g).

We can finally relate the property of cosine operator function generator of
A and the well-posedness of (dAIBVP2).

Theorem 1.4.3. The operator matrix A generates a cosine operator function
(C(t,A))t∈ � with associated phase space Y×X := (Y × ∂Y )× (X × ∂X) if and
only if (dAIBVP2) is well-posed on (Y,X, ∂Y, ∂X).

In this case, the unique classical solution to (dAIBVP2
f,g,h,j) is given by

u = u(t, f, g, h, j) := π1C(t,A)

(

f

h

)

+ π1S(t,A)

(

g

j

)

, t ∈ �
,

for all initial data f ∈ D(A), g ∈ Y , h ∈ D(B̃), and j ∈ ∂Y such that Lf = h.

Proof. Let A generate a cosine operator function with associated phase space
Y ×X . Then A is closed, thus by Proposition B.11 the associated second order
abstract Cauchy problem (ACP2) is well-posed. By Lemma 1.4.2,

u = u(t, (f, g, h, j)) = π1u(t,
(

f
h

)

,
(

g
j

)

)

= π1C(t,A)
(f
h

)

+ π1S(t,A)
(g
j

)

, t ∈ �
,
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yields a classical solution to (dAIBVP2
f,g,h,j) for all f ∈ D(A), g ∈ Y , h ∈ D(B̃),

and j ∈ ∂Y such that Lf = h, i.e., for all
(

f
h

)

∈ D(A) and
(

g
j

)

∈ Y. This classical
solution is unique, again by Lemma 1.4.2.

Let now t0 > 0 and (fn, gn, hn, jn)n∈ � be a sequence of initial data satisfying
Lfn = gn and tending to 0. Note that fn :=

(fn

hn

)

∈ D(A), gn :=
(gn

jn

)

∈ Y, and
u(t, fn, gn) ∈ D(A), for all t ∈ �

and n ∈ �
. Hence we have limn→∞ u(t, fn, gn) =

0 uniformly for t ∈ [0, t0] if and only if

lim
n→∞

u(t, fn, gn, hn, jn) = 0 and lim
n→∞

Lu(t, fn, gn, hn, jn) = 0,

both uniformly for t ∈ [0, t0]. Since (ACP2) is well-posed, the assertion follows.
Assume now (dAIBVP2) to be well-posed. Since under the standing As-

sumptions 1.2.1 A is closed and densely defined, it suffices by Proposition B.11
to show that the associated second order abstract Cauchy problem (ACP 2)
admits a unique classical solution for all f ∈ D(A) and g ∈ Y, continuously
depending on the initial data. Let f ∈ D(A), g ∈ Y. Well-posedness of
(dAIBVP2) yields, by Lemma 1.4.2, existence and uniqueness of a classical
solution to (ACP2

f,g).
To show continuous dependence on initial data, let t0 > 0 and (fn, gn)n∈ � ⊂

D(A) × Y be a sequence of initial data for (ACP2) that tends to 0. Then
(π1fn, π1gn, π2fn, π2gn)n∈ � is a sequence of initial data for (dAIBVP2) that
tends to 0 and such that Lπ1fn = π2fn, n ∈ �

. Then there holds

lim
n→∞

u(t, π1fn, π1gn, π2fn, π2gn) = 0 and lim
n→∞

Lu(t, π1fn, π1gn, π2fn, π2gn) = 0

(both uniformly for t ∈ [0, t0]). Also,

u = u(t, π1fn, π1gn) =

(

u(t, π1fn, π1gn, π2fn, π2gn)
Lu(t, π1fn, π1gn, π2fn, π2gn)

)

, t ∈ �
,

is the (unique) classical solution to (ACP 2
fn,gn

) for each n ∈ �
, and we finally

obtain limn→∞ u(t, fn, gn) = 0 uniformly for t ∈ [0, t0].

The following regularity result for the solution to (dAIBVP2
f,g,h,j) holds, by

Proposition 4.4.1 below.

Proposition 1.4.4. Let B map D(Ak+1) into D(B̃k), k ∈ �
. Assume A to

generate a cosine operator function on X . If the initial data f, g belong to

∞
⋂

h=0

{

u ∈ D∞(A) : LAhu = BAhu = 0
}

and moreover h = j = 0, then the unique classical solution u = u(t) to
(dAIBVP2

f,g,h,j) belongs to D∞(A), for all t ∈ �
.

As in the first order case, we can relax the notion of classical solution and
introduce the following.

Definition 1.4.5. A mild solution (in (Y,X, ∂Y, ∂X)) to (dAIBVP2
f,g,h,j) is a

function u(·) such that
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• u(·) ∈ C1(
�
, X) ∩C(

�
, Y ),

•
∫ t
0

∫ s
0 u(r)drds =

∫ t
0 (t− s)u(s)ds ∈ D(A) for all t ∈ �

,

• L
∫ t
0

∫ s
0 u(r)dr = L

∫ t
0 (t− s)u(s)ds ∈ D(B̃) for all t ∈ �

, and

• there exists a function x(·) ∈ C1(
�
, ∂X) ∩ C(

�
, ∂Y ) such that the inte-

grated identities



















u(t) = f + tg +A
∫ t
0 (t− s)u(s)ds, t ∈ �

,

x(t) = h+ tj +B
∫ t
0 (t− s)u(s)ds

+B̃
∫ t
0 (t− s)x(s)ds, t ∈ �

,
∫ t
0 (t− s)x(s)ds = L

∫ t
0 (t− s)u(s)ds, t ∈ �

,

are satisfied.

The following can be proven like Lemma 1.2.7.

Lemma 1.4.6. The following assertions hold.

(1) Let u(·) be a mild solution to (dAIBVP2
f,g,h,j), and let x be the function

introduced in Definition 1.4.5. Then u(·) :=
(u(·)
x(·)

)

is a mild solution to

(ACP2

(f
h),(

g
j)

).

(2) Conversely, let u(·) be a mild solution to (ACP 2
f,g). Then u(·) := π1u(·) is

a mild solution to (dAIBVP2
π1f,π1g,π2f,π2g).

1.5 Equivalence between (ACP2) and (bAIBVP2)

Throughout this section we consider two Banach spaces Y, ∂Y such thatD(A) ⊂
Y ↪→ X and D(B̃) ⊂ ∂Y ↪→ ∂X. We then complement the Assumptions 1.2.1
by imposing that L is well-defined on all of Y . We discuss well-posedness issues
for a second order abstract initial-boundary value problem of the form

(bAIBPV2
f,g,h,j)























ü(t) = Au(t), t ∈ �
,

ẍ(t) = Bu(t) + B̃x(t), t ∈ �
,

x(t) = Lu(t), ẋ(t) = Lu̇(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X. Most definitions and assertions are only slighlty different from
those in Section 1.4, hence we do not give any detail.

Definition 1.5.1. A classical solution to (bAIBVP2) in (Y,X, ∂Y , ∂X) is a
function u(·) such that

• u(·) ∈ C2(
�
, X) ∩C1(

�
, Y ),

• u(t) ∈ D(A) for all t ∈ �
,
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• Lu(·) ∈ C2(
�
, ∂X) ∩ C1(

�
, ∂Y ),

• Lu(t) ∈ D(B̃) for all t ∈ �
, and

• u(·) satisfies (bAIBVP2).

Moreover, (bAIBVP2) is called well-posed on (Y,X, ∂Y, ∂X) if

• (bAIBVP2
f,g,h,j) admits a unique classical solution u = u(·, f, g, h, j) for

all initial data f ∈ D(A), g ∈ Y , h ∈ D(B̃), and j ∈ ∂Y satisfying the
compatibility conditions Lf = h and Lg = j, and

• for all sequences of initial data (fn, gn, hn, jn)n∈ � ⊂ D(A) × Y ×D(B̃)×
∂Y tending to 0 and satisfying the compatibility conditions Lfn = hn
and Lgn = jn, one has limn→∞ u(t, fn, gn, hn, jn) = 0 and moreover
limn→∞Lu(t, fn, gn, hn, jn) = 0 uniformly for t in compact intervals.

Lemma 1.5.2. The following assertions hold.

(1) If u(·) is a classical solution to (bAIBVP2
f,g,h,j), then

u(·) :=

(

u(·)
Lu(·)

)

is a classical solution to (ACP2

(f
h),(

g
j)

).

(2) Conversely, if u(·) is a classical solution to (ACP 2
f,g), then

u(·) := π1u(·)

is a classical solution to (bAIBVP2
π1f,π1g,π2f,π2g).

Theorem 1.5.3. The operator matrix A generates a cosine operator function
(C(t,A))t∈ � with associated phase space

V × X :=

{(

u

x

)

∈ Y × ∂Y : Lu = x

}

× (X × ∂X)

if and only if (bAIBVP2) is well-posed on (Y,X, ∂Y, ∂X).
In this case, the unique classical solution to (bAIBVP2

f,g,h,j) is given by

u = u(t, f, g, h, j) := π1C(t,A)

(

f

h

)

+ π1S(t,A)

(

g

j

)

, t ∈ �
,

for all initial data f ∈ D(A), g ∈ Y , h ∈ D(B̃), and j ∈ ∂Y such that Lf = h
and Lg = j.

Definition 1.5.4. A mild solution (in (Y,X, ∂Y, ∂X)) to (dAIBVP2
f,g,h,j) is a

function u(·) such that

• u(·) ∈ C1(
�
, X) ∩C(

�
, Y ),
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• Lu(·) ∈ C1(
�
, ∂X) ∩ C(

�
, ∂Y ),

•
∫ t
0

∫ s
0 u(r)drds =

∫ t
0 (t− s)u(s)ds ∈ D(A) for all t ∈ �

,

• L
∫ t
0

∫ s
0 u(r)dr = L

∫ t
0 (t− s)u(s)ds ∈ D(B̃) for all t ∈ �

, and

• the integrated identities

{

u(t) = f + tg +A
∫ t
0 (t− s)u(s)ds, t ∈ �

,

Lu(t) = h+ tj +B
∫ t
0 (t− s)u(s)ds+ B̃

∫ t
0 (t− s)Lu(s)ds, t ∈ �

,

are satisfied.

Lemma 1.5.5. The following assertions hold.

(1) Let u(·) be a mild solution to (bAIBVP2
f,g,h,j). Then u(·) :=

( u(·)
Lu(·)

)

is a

mild solution to (ACP2

(f
h),(

g
j)

).

(2) Conversely, let u(·) be a mild solution to (ACP 2
f,g). Then u(·) := π1u(·) is

a mild solution to (bAIBVP2
π1f,π1g,π2f,π2g).
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Chapter 2

Operator matrices with

coupled domain

Throughout this chapter we stick to the notation introduced in Section 1.1. In
particular, we consider Banach spaces X, ∂X and linear operators A : D(A) ⊂
X → X, B : D(B) ⊂ X → ∂X, L : D(L) ⊂ X → ∂X, and B̃ : D(B̃) ⊂ ∂X →
∂X such that D(A) ⊂ D(L) and D(A) ⊂ D(B). We consider the operator
matrix

A :=

(

A 0

B B̃

)

, D(A) :=

{(

u
x

)

∈ D(A) ×D(B̃) : Lu = x

}

,

on the product space X := X × ∂X. We emphasize that the domain of A is
not a product set, but rather a strict subset of the product set D(A) ×D(B̃),
due to the relation Lu = x inserted in the definition of D(A). Thus, we call A
an operator matrix with coupled domain.

2.1 Decoupling an operator matrix

The following assumptions are motivated by Lemma 1.1.2, and will be imposed
throughout this chapter.

Assumptions 2.1.1.

1. A0 has nonempty resolvent set.

2.

(

A
L

)

is closed (as an operator from X to X × ∂X).

3. L is surjective from D(A) to ∂X.

4. B̃ is closed.

By Lemma C.1 and Lemma C.4, the above assumptions ensure the existence
of the Dirichlet operator DA,L

λ , as a bounded operator from ∂X to any Banach
space Z satisfying D∞(A) ⊂ Z ↪→ X, for all λ ∈ ρ(A0).

In the Appendix C we have considered the Dirichlet operators only for
their analytic property of yielding solutions to an abstract Dirichlet problem.
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However, it is worth to remark the algebraic counterpart of the same property,
viz., that for λ ∈ ρ(A0) a Dirichlet operator DA,L

λ is, by definition, a right
inverse of L – or rather the inverse of the restriction L|ker(λ−A). This allows us to
perform some very useful matrix analysis of the operator matrix A with coupled
domain defined in (1.1). This idea has been thoroughly developed in [En99] (see
also [KMN03b]) where the following Lemma 2.1.2 has been proven. We mention
its proof to illustrate our matrix methods.

In the following, the family of operators defined by

(2.1) B̃λ := B̃ +BDA,L
λ , D(B̃λ) := D(B̃) for all λ ∈ ρ(A0),

will play an important role. Such operators are well-defined since the Dirichlet
operators map ∂X into ker(λ−A) ⊂ D(A) ⊂ D(B).

Lemma 2.1.2. Let λ ∈ ρ(A0). Then the factorization

(2.2)

λ−A = LλAλMλ

:=

(

IX 0
−BR(λ,A0) I∂X

)(

λ−A0 0

0 λ− B̃λ

)(

IX −DA,L
λ

0 I∂X

)

holds, and for all µ ∈ �
we have

(2.3)

µ−A = Lλ
(

µ−A0 0

0 µ− B̃λ

)

Mλ

+(µ− λ)

(

0 DA,L
λ

BR(λ,A0) −BR(λ,A0)D
A,L
λ

)

.

Proof. Let λ ∈ ρ(A0) and take u :=
(u
v

)

∈ X . Observe first that u is in the

domain of the operator matrix LλAλMλ if and only if u−DA,L
λ v ∈ D(A0) and

v ∈ D(B̃λ), that is, if and only if u ∈ D(A), L
(

u − DA,L
λ v

)

= Lu − v = 0,

and v ∈ D(B̃). This shows that the domains of the operators in (2.2) agree.
Moreover, we obtain

(

IX 0
−BR(λ,A0) I∂X

)(

λ−A0 0

0 λ− B̃λ

)(

IX −DA,L
λ

0 I∂X

)(

u
v

)

=

(

IX 0
−BR(λ,A0) I∂X

)(

λ−A0 0

0 λ− B̃λ

)(

u−DA,L
λ v
v

)

=

(

IX 0
−BR(λ,A0) I∂X

)(

(λ−A0)(u−DA,L
λ v)

λv − B̃λv

)

=

(

(λ−A)(u−DA,L
λ v)

−Bu+BDA,L
λ v + λv − B̃λv

)

=

(

λ−A 0

−B λ− B̃

)(

u
v

)

,

where we have used (2.1) and the fact that DA,L
λ maps ∂X into ker(λ− A) by

definition.
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To show (2.3), take µ ∈ �
and observe that

µ−A = (µ− λ)IX + LλAλMλ

= (µ− λ)IX + Lλ
((

µ−A0 0

0 µ− B̃λ

)

− (µ− λ)IX

)

Mλ

= Lλ
(

µ−A0 0

0 µ− B̃λ

)

Mλ + (µ− λ)(IX −LλMλ).

One can check that

(2.4) LλMλ =

(

IX −DA,L
λ

−BR(λ,A0) I∂X +BR(λ,A0)D
A,L
λ

)

,

and the claim follows.

Proposition 2.1.3. Let λ ∈ ρ(A0). Then A − λ is similar to the operator
matrix

(2.5) Ãλ :=

(

A0 −DA,L
λ B − λ −DA,L

λ (B̃λ − λ)

B B̃λ − λ

)

,

with diagonal domain
D(Ãλ) := D(A0) ×D(B̃).

The similarity transformation is performed by means of the operator Mλ defined
in (2.2), which is an isomorphism on X .

Proof. Take λ ∈ ρ(A0) and consider the factorisation in (2.2). By Lemma C.4
the Dirichlet operator DA,L

λ is bounded from ∂X to X, thus the operator matrix
Mλ is bounded. Moreover, Mλ is invertible with bounded inverse

M−1
λ =

(

IX DA,L
λ

0 I∂X

)

=

(

IX −DA,−L
λ

0 I∂X

)

,

thus λ−A is similar to MλLλAλMλM−1
λ = MλLλAλ. A direct matrix com-

putation finally shows that MλLλAλ = −Ãλ.

2.2 Generator and spectral properties

Most operator theoretical properties are invariant under similarity transforma-
tion, and the operator matrix introduced in (2.5) is much easier to handle. This
is due to the fact that it has diagonal domain (see, e.g., [Na89] and [Na96]).

Proposition 2.2.1. Let A0, B̃, and A generate C0-semigroups. If B = 0, then

(2.6) etA =

(

etA0 (λ−A0)
∫ t
0 e

(t−s)A0DA,L
λ esB̃ds

0 etB̃

)

, t ≥ 0,

for all λ ∈ ρ(A0) (up to considering the extension of the upper-right entry from
∂X to X).
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Observe that by (C.2) the upper-right entries of (2.6) actually agree for all
λ ∈ ρ(A0).

Proof. Take λ ∈ ρ(A0). Then by Proposition 2.1.3 there holds

A− λ = M−1
λ ÃλMλ = M−1

λ

(

A0 − λ −DA,L
λ (B̃ − λ)

0 B̃ − λ

)

Mλ.

We can compute the semigroup generated by Ãλ by applying [Na89, Prop. 3.1]
and obtain

(2.7)

etÃλ =

(

et(A0−λ) −
∫ t
0 e

(t−s)(A0−λ)DA,L
λ (B̃ − λ)es(B̃−λ)ds

0 et(B̃−λ)

)

= e−λt

(

etA0 −
∫ t
0 e

(t−s)A0DA,L
λ (B̃ − λ)esB̃ds

0 et(B̃−λ),

)

.

up to considering the extension of the upper-right entry from ∂X to X. By
Lemma A.4

e−λtetA = M−1
λ etÃλMλ,

and integrating by parts we obtain (2.6).

The following seems to be new.

Corollary 2.2.2. Let the assumptions of Proposition 2.2.1 hold. Then the
following assertions hold.

(1) If (etA)t≥0 is bounded, then so are (etA0)t≥0 and (etB̃)t≥0.

(2) Let (etA0)t≥0 and (etB̃)t≥0 be bounded, with B̃ ∈ L(∂X). If either of these
semigroups is uniformly exponentially stable, then (etA)t≥0 is bounded.

(3) Let B̃ ∈ L(∂X). If (etA0)t≥0 and (etB̃)t≥0 are both uniformly exponentially
stable, then also (etA)t≥0 is uniformly exponentially stable.

Proof. (1) follows directly from (2.6). To check (2) and (3), take λ ∈ ρ(A0) and
observe that the upper-right entry of (2.7) can be seen as the convolution

(

e·A0DA,L
λ

)

∗
(

(B̃ − λ)e·B̃
)

.

By the Datko–Pazy theorem, a C0-semigroup is uniformly exponentially stable
if and only if it is of class L1(

�
+,L(X)). Now the claims follows by well-

known results on convolution of operator-valued functions on
�

+, cf. [ABHN01,
Prop. 1.3.5.(c)–(d)].

The following is a direct consequence of [EN00, Prop. II.4.25].

Corollary 2.2.3. Assume the operator matrix A to have nonempty resolvent
set. Then A has compact resolvent if and only if the embeddings [D(A0)] ↪→ X
and [D(B̃)] ↪→ ∂X are both compact.

In particular, if B̃ is bounded on ∂X, then a necessary condition for A to
have compact resolvent is that ∂X be finite dimensional.

28



The following is a consequence of Lemma A.8.(1) and Corollaries 2.2.2
and 2.2.3. Observe that [CENP04, Thm. 2.7] is a special case of it.

Corollary 2.2.4. Let A0, B̃, and A generate C0-semigroups, with B = 0 and
B̃ ∈ L(∂X). Assume (etA0)t≥0 and (etB̃)t≥0 to be bounded, and either of them
to be uniformly exponentially stable. If the embedding [D(A0)] ↪→ X is compact,
then (etA)t≥0 is asymptotically almost periodic.

The spectrum and the point spectrum (denoted by σ and Pσ, respectively)
of the operator matrix A on the product space X = X × ∂X can be (partially)
characterized by means of the operator pencils (B̃λ)λ∈ρ(A0) on ∂X.

The following is an immediate consequence of the theory developed in [En99],
and earlier in [Na96].

Lemma 2.2.5. Let B be bounded from [D(A0)] to ∂X. For λ ∈ ρ(A0) the
equivalences

(2.8) λ ∈ σ(A) ⇐⇒ λ ∈ σ(B̃λ) and λ ∈ Pσ(A) ⇐⇒ λ ∈ Pσ(B̃λ)

hold. If moreover the set Γ :=
{

λ ∈ �
: λ ∈ ρ(A0) ∩ ρ(B̃λ)

}

⊂ ρ(A) is nonempty,

then for λ ∈ Γ the resolvent operator of A is given by

(2.9) R(λ,A) =

(

R(λ,A0) +DA,L
λ R(λ, B̃λ)BR(λ,A0) DA,L

λ R(λ, B̃λ)

R(λ, B̃λ)BR(λ,A0) R(λ, B̃λ)

)

.

Proof. Let λ ∈ ρ(A0). Then the factorization (2.2) holds. Observe that the
operators Lλ, Mλ are isomorphism on X , hence λ−A is invertible if and only
if the diagonal matrix Aλ is invertible. We conclude that λ ∈ σ(A) if and only
if λ ∈ σ(B̃λ), and likewise that λ ∈ Pσ(A) if and only if λ ∈ Pσ(B̃λ).

Finally, taking again into account (2.2) we obtain that for λ ∈ Γ there holds
R(λ,A) = M−1

λ A−1
λ L−1

λ . A direct computation now yields (2.9).

Lemma 2.2.6. Let B = 0. If λ 6∈ Pσ(B̃), then the equivalence

λ ∈ Pσ(A) ⇐⇒ λ ∈ Pσ(A0).

holds.

Proof. Take u =
(

u
Lu

)

∈ D(A) and let

(A− λ)u =

(

Au− λu

(B̃ − λ)Lu

)

= 0.

We obtain that Lu = 0, hence (A0 − λ)u = 0 and the claim follows.

The equivalences in (2.8) hold in fact not only for the spectrum and point
spectrum, but also for the essential spectrum. However, under additional as-
sumptions we can obtain a more precise characterisation.

Proposition 2.2.7. The following assertions hold.
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(1) Let ∂X be finite dimensional. If B is bounded from [D(A0)] to ∂X, then
the essential spectrum of A is given by

σess(A) = σess(A0),

and for the Fredholm index we have

ind(A− µ) = ind(A0 − µ) for all µ 6∈ σess(A0).

(2) Let Y be a Banach space such that D(A) ⊂ Y ↪→ X. Assume the embed-
dings [D(A0)] ↪→ [D(A)]L ↪→ Y to be both compact. If B is bounded from
Y to ∂X, then

σess(A) = σess(B̃)

and for the Fredholm index we have

ind(A− µ) = ind(B̃ − µ) for all µ 6∈ σess(B̃).

Proof. To begin with, recall that the essential spectrum does neither change
under compact additive perturbations, nor under similarity transformations.
Moreover, observe that by Remark C.5.(a) under the assumptions in both (1)
and (2) DA,L

λ and BR(λ,A0) are compact operators (from ∂X to X and from
X to ∂X, respectively) for all λ ∈ ρ(A0).

(1) Fix λ ∈ ρ(A0), take into account (2.3), and observe that by (2.4) IX −
LλMλ is a compact operator on X . Moreover, Lλ and Mλ are isomorphisms
on X . Thus, to decide whether a given µ ∈ �

is in the essential spectrum of A
it suffices to check whether 0 is in the essential spectrum of the operator matrix

(2.10)

(

µ−A0 0

0 µ− B̃λ

)

=

(

µ−A0 0
0 0

)

+

(

0 0

0 µ− B̃λ

)

.

The second addend is a bounded operator with finite dimensional range, hence
it does not affect the essential spectrum of the operator matrix on the left-hand
side, and the claim follows.

(2) Take λ ∈ ρ(A0) and reason as in the proof of (1) to obtain that µ ∈
σess(A) if and only if 0 lies in the essential spectrum of the operator matrix
in (2.10). Observe that A0 has empty essential spectrum (because [D(A0)] is
compactly embedded in X) and that σess

(

B̃λ) = σess(B̃) (because BDλ is a
compact operator on ∂X) to conclude.

Theorem 2.2.8.(1) and (2) (with a different proof) are [KMN03, Prop. 4.3]
and [CENN03, Cor. 2.8], respectively.

Theorem 2.2.8. The following assertions hold.

(1) Let B ∈ L([D(A)]L, ∂X) and B̃ ∈ L(∂X). Then the operator matrix A
generates a C0-semigroup on X if and only if the operator A0 − DA,L

λ B
generates a C0-semigroup on X for some λ ∈ ρ(A0) if and only if A0 −
DA,L
λ B generates a C0-semigroup on X for all λ ∈ ρ(A0).

30



(2) Let B ∈ L(X, ∂X). Then A generates an analytic semigroup on X if and
only if A0 and B̃ generate analytic semigroups on X and ∂X, respectively.

(3) Let A0 and B̃ generate anayltic semigroups on X and ∂X, respectively. If
for some 0 < α < 1 there holds [D(A)]L ↪→ [D(A0), X]α and further B ∈
L([D(A)]L, ∂X)∩L

(

[D(A0)], [D(B̃), ∂X]α

)

, then A generates an analytic

semigroup on X .

Proof. Take λ ∈ ρ(A0). It has been proven in Proposition 2.1.3 that A − λ is
similar to the operator matrix Ãλ defined in (2.5). Thus, A is a generator if
and only if Ãλ is a generator.

(1) We decompose

Ãλ =

(

A0 −DA,L
λ B 0

0 0

)

+

(

0 0
B 0

)

+

(

−λ DA,L
λ (λ− B̃λ)

0 B̃λ − λ

)

with diagonal domain D(Ãλ) = D(A0) × ∂X.
Since B ∈ L([D(A)]L, ∂X), by Remark 1.1.1 also B ∈ L([D(A0)], ∂X),

hence the second operator on the right-hand side is bounded on the product
Banach space [D(Ãλ)] = [D(A0)] × ∂X. Moreover, the third operator on the
right-hand side is bounded on X as a direct consequence of Lemma C.4. Taking
into account Lemma A.6.(1)-(2) the claim follows.

(2) We decompose

Ãλ =

(

A0 −DA,L
λ B̃

0 B̃

)

+

(

−DA,L
λ B − λ DA,L

λ (λ−BDA,L
λ )

B BDA,L
λ − λ

)

with diagonal domain D(Ãλ) = D(A0) ×D(B̃).
Since B ∈ L(X, ∂X), by Lemma C.4 the second operator on the right hand

side is bounded on X . Hence, by Lemma A.6.(1) Ãλ generates an analytic
semigroup on X if and only if

(

A0 −DA,L
λ B̃

0 B̃

)

with domain D(A0) ×D(B̃)

generates an analytic semigroup on X . Since DA,L
λ B̃ ∈ L([D(B̃)], X), and the

claim follows by [Na89, Cor. 3.3].
(3) We decompose

Ãλ =

(

A0 0

0 B̃

)

+

(

−DA,L
λ B − λ −DA,L

λ B̃
B 0

)

+

(

0 DA,L
λ (λ−BDA,L

λ )

0 BDA,L
λ − λ

)

with diagonal domain D(Ãλ) = D(A0) ×D(B̃).
The first addend on the right-hand side generates an analytic semigroup on

X and the corresponding interpolation space is [D(Ãλ),X ]α = [D(A0), X]α ×
[D(B̃), ∂X]α.

Thus, by assumption the second addend on the right-hand side is bounded
from [D(Ãλ)] to [D(Ãλ),X ]α, while the third one is bounded on X . Hence, by
Lemma A.6.(3) Ãλ generates an analytic semigroup on X .
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Remarks 2.2.9. (a) A very special case is that of inhomogeneous, time-
independent boundary conditions. That is, we consider an abstract problem
of the form

(2.11)







v̇(t) = Av(t), t ≥ 0,
Lv(t) = g, t ≥ 0,
v(0) = f ∈ X.

for g ∈ ∂X. Then we can differentiate the second equation with respect to
t, rewrite such a problem as (AIBVPf,g) with B = B̃ = 0, and finally apply
Theorem 1.2.4 and Theorem 2.2.8.(1) to obtain that (2.11) admits a unique
mild solution for all f ∈ X, g ∈ ∂X if and only if A0 generates a C0-semigroup
on X. By Proposition 2.2.1 such a solution v = v(t) is given by

v(t) = etA0f + (λ−A0)

∫ t

0
e(t−s)A0DA,L

λ gds, t ≥ 0.

for any λ ∈ ρ(A0), and it is classical if f ∈ D(A) and if moreover the compati-
bility condition Lf = g is satisfied.

(b) It is worth to remark that if B ∈ L(X, ∂X) and B̃ ∈ L(∂X), then by
Lemma A.6.(1) the estimate

‖u(t) − v(t)‖X ≤ tM, 0 ≤ t ≤ 1,

holds for the mild solution u to (AIBVPf,g), whereM > 0 is a suitable constant,
and v is the mild solution to (2.11) obtained in (a).

We can now revisit a problem considered in [CENN03, § 3] and slightly
improve the result obtained therein.

Example 2.2.10. Let Ω be a bounded open domain of
� n with boundary ∂Ω

smooth enough. Set

X := L2(Ω) and ∂X := L2(∂Ω).

Define
A := ∆, D(A) :=

{

u ∈ H
3
2 (Ω) : ∆u ∈ L2(Ω)

}

,

L :=
∂

∂ν
, D(L) := D(A),

B̃ := ∆, D(B̃) := H2(∂Ω),

i.e., B̃ is the Laplace–Beltrami operator on ∂Ω.
Then, it has been shown in [CENN03, § 3] that A and L satisfy the As-

sumptions 2.1.1, and one sees that the restriction A0 of A to ker(L) is the
Neumann Laplacian. Since A0 and B̃ generate analytic semigroups, Theo-
rem 2.2.8.(3) applies and the operator matrix A defined in (4.2) generates an
analytic semigroup on L2(Ω)×L2(∂Ω) for any operator B that is bounded from

H
3
2 (Ω) to L2(∂Ω) as well as from H2(Ω) to H

1
2 (∂Ω) (in [CENN03] only the case

B ∈ L(L2(Ω), L2(∂Ω)) has been considered).
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Remark 2.2.11. Lemma 2.2.8.(1) shows that the well-posedness of the abstract
Cauchy problem (ACP) on the product space X is in some sense equivalent to
the well-posedness of the (perturbed) abstract Cauchy problem on X associated
to

u̇(t) = A0u(t) −DA,L
λ Bu(t), t ≥ 0,

for some/all λ ∈ ρ(A0). Observe that if B ∈ L(X, ∂X), then A0 − DA,L
λ B

is a generator if and only if A0 is (since in this case DA,L
λ B ∈ L(X) for all

λ ∈ ρ(A0)).

2.3 Powers of an operator matrix with coupled do-

main

The following can be checked by a direct computation.

Lemma 2.3.1. If the operator B : D(A) → ∂X maps D(A2) into D(B̃), then
the square of the operator matrix A is given by

A2 =

(

A2 0

BA+ B̃B B̃2

)

with domain

D(A2) =

{(

u
x

)

∈ D(A2) ×D(B̃2) : Lu = x, LAu = Bu+ B̃Lu

}

.

Remark 2.3.2. It is remarkable that A2 can be seen as an operator matrix
with coupled domain

D(A2) =

{(

u

x

)

∈ D(A2
w) ×D(B̃2) : Lu = x

}

,

where A2
w is given by

A2
wu := A2u for all u ∈ D(A2

w) :=
{

u ∈ D(A2) : LAu = Bu+ B̃Lu
}

.

This can be looked at as an abstract formulation of a generalized Wentzell
boundary condition on the operatorA in the sense of [FGGR00], cf. also [En04b].

More generally, the following can be proven by induction on n.

Lemma 2.3.3. Let the operator B : D(A) → ∂X map D(Ak+1) into D(B̃k),
k ∈ �

. Define the family (Bh)h∈ � of operators from X to ∂X by

Bh :=

{

0 for h = 0,
∑h−1

k=0 B̃
kBAh−k−1 for h = 1, 2, . . . .

Then the n-th power of A is given by

An =

(

An 0

Bn B̃n

)
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with domain

D(An) =

n−1
⋂

h=0

{(

u
x

)

∈ D(An) ×D(B̃n) : LAhu = Bhu+ B̃hx

}

.

We can now deduce a regularity result for the solutions of the Cauchy prob-
lem governed by the semigroup generated by A. We first need to define the
class

Dn
0 :=

n−1
⋂

h=0

{

u ∈ D(An) : LAhu = BAhu = 0
}

, n = 1, 2, . . . ,

which in concrete applications contains the class of test functions on a bounded
domain, cf. e.g. Example 3.3.2 below.

Corollary 2.3.4. Let the operator B : D(A) → ∂X map D(Ak+1) into D(B̃k),
k ∈ �

. If A generates a C0-semigroup, then etA maps Dn
0 × {0} into D(An) ×

D(B̃n) for all t ≥ 0 and n = 1, 2, . . .. If further this C0-semigroup is analytic,
then in fact etA maps X into D∞(A) ×D(B̃∞) for all t > 0.

Proof. It is evident that Dn
0 × {0} ⊂ D(An) ⊂ D(An) ×D(B̃n) for all n ∈ �

.
Then, we just need to apply Lemma A.5.
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Chapter 3

Second order abstract

problems with acoustic

boundary conditions

Certain investigations have led theoretical physicists, cf. [MI68], to wave equa-
tions equipped with acoustic (or absorbing) boundary conditions, which can be
written in the form

(ABC)















φ̈(t, x) = c2∆φ(t, x), t ∈ �
, x ∈ Ω,

m(z)δ̈(t, z) = −d(z)δ̇(t, z) − k(z)δ(t, z)

−ρ(z)φ̇(t, z), t ∈ �
, z ∈ ∂Ω,

δ̇(t, z) = ∂φ
∂ν (t, z), t ∈ �

, z ∈ ∂Ω.

Here φ is the velocity potential of a fluid filling an open domain Ω ⊂ � n, either
bounded or exterior; δ is the normal displacement of the (sufficiently smooth)
boundary ∂Ω of Ω; m, d, and k are the mass per unit area, the resistivity,
and the spring constant of the boundary, respectively; finally, ρ and c are the
unperturbed density of, and the constant speed of sound in the medium, respec-
tively. It is reasonable to assume all these physical quantities to be modelled
by essentially bounded functions with ρ,m real valued, ρ ≥ 0, inf

z∈∂Ω
m(z) > 0.

Quoting Beale and Rosencrans in [BR74] (who denote by G our domain Ω),
we point out that ’the physical model giving rise to these conditions is that of
a gas undergoing small irrotational perturbations from rest in a domain G with
smooth compact boundary’, assuming that ’each point of the surface ∂G acts
like a spring in response to the excess pressure in the gas, and that there is
no transverse tension between neighboring points of ∂G, i.e., the “springs” are
independent of each other’.

3.1 The direct approach: Beale’s results

The mathematical formulation of, and the first well-posedness results for the
initial value problem associated to (ABC) have been presented in the 1970s, in
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a series of papers mainly by Beale ([BR74], [Be76], and [Be77]). Beale was in
fact already using techniques based on operator matrices and C0-semigroups –
this is one of the earliest historical appearences of such a method we are aware
of. Due to their historical interest, and as a warm-up for our own investigation,
we explain in this section Beale’s ideas.

Under somehow stricter assumptions on the parameters m, d, ρ, k (in par-
ticular, ρ is now a constant), Beale considered the weighted product space

Y :=
(

H1(Ω; ρ)/ < � >
)

× L2
(

Ω;
ρ

c2

)

× L2(∂Ω; k) × L2(∂Ω;m)

and the operator matrix

G :=









0 IH1(Ω)/<� > 0 0

∆ 0 0 0
0 0 0 I

0 − ρ
m ·|∂Ω − k

m − d
m









with maximal domain

D(G) :=























u
v
x
y









∈ Y : ∆u ∈ L2(Ω;
ρ

c2
), v ∈

(

H1(Ω; ρ)/ < � >
)

,
∂u

∂ν
= y















.

Taking the quotient of H1(Ω; ρ) (i.e., considering the functions of class H 1(Ω; ρ)
modulo constants) in the first factor of Y is needed by Beale in order to endow
H1(Ω; ρ) with the equivalent Dirichlet norm

|‖u‖| :=

∫

Ω
ρ(x)‖∇u(x)‖2dx.

Because of boundary regularity, one can check that the domain of G agrees with






















u
v
x
y









∈
(

H
3
2 (Ω; ρ)/ < � >

)

×
(

H1(Ω; ρ)/ < � > ∩L2(Ω; ρ
c2

)
)

×L2(∂Ω; k) × L2(∂Ω;m) : ∆u ∈ L2(Ω; ρ
c2

) and ∂u
∂ν = y

}

.

Since (ABC) is formally equivalent to

u̇(t) = Gu(t), t ∈ �
,

the issue becomes to investigate the generator property of G.

The following is [Be76, Thm. 2.1] (see also [FG00], where a more general
nonlinear problem is considered).

Proposition 3.1.1. Assume m, k, d to be continuous positive (m strictly posi-
tive) functions, ρ a positive constant. Then the operator matrix G generates a
C0-group on Y. Moreover, the semigroup (etG)t≥0 is contractive. If d ≡ 0, then
(etG)t∈ � is unitary.
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Proof. The crucial point is that, by the Gauss–Green formulae, for u ∈ D(G)
there holds

Re 〈Gu, u〉 = −
∫

∂Ω
d(z)|y(z)|2dσ(z),

where y is the fourth component of u. If d ≡ 0, then Stone’s theorem applies
and G generates a unitary group. The general case can be considered as a
bounded perturbation of the unitary case. Finally, due to the positivity of d, G
is always dissipative, and the Lumer–Phillips theorem applies as well.

Beale explicitly considered only the particular cases of a bounded (or ex-
terior) domain Ω of

� 3, but in fact Proposition 3.1.1 holds whenever Ω is a
bounded (or exterior) domain of

� n with boundary smooth enough that the
formulae of Gauss–Green hold. The reason why Beale was restricting to the 3-
dimensional case is perhaps that there explicit computations can be performed
in order to show that G does not have compact resolvent and to describe the
essential spectrum of G. However, Beale’s techniques are very technical and can
be hardly applied to problems on domains of

� n, n 6= 3. For an extension of
Beale’s results to arbitrary bounded domains of

� n see [Ga04].

We can fit Beale’s setting into the abstract framework introduced in Chap-
ter 2: in fact, we can see

G =













0 IH1(Ω)/<� > 0 0

∆ 0 0 0

0 0 0 I

0 − ρ
m ·|∂Ω − k

m − d
m













as an operator matrix with coupled domain

D(G) =



























u
v
x





y









∈
(

H
3
2 (Ω; ρ)/ < � > ×

(

H1(Ω; ρ)/ < � > ∩L2(Ω; ρ
c2 )
)

×L2(Ω; k) : ∆u ∈ L2(Ω; ρ
c2

)
)

× L2(∂Ω) :
(

∂
∂ν 0 0

)





u
v
x



 = y







.

Without going into details, one can check that the Assumptions 2.1.1 are
satisfied, and in particular the upper-left block entry of G, restricted to the null
space of the operator

(

∂
∂ν 0 0

)

, becomes





0 IH1(Ω)/<� > 0

∆ 0 0
0 0 0





with domain
{

u ∈ H2(Ω) ∩H1(Ω; ρ)/ < � >: ∆u ∈ L2(Ω; ρ
c2

), ∂u∂ν = 0
}

×
(

H1(Ω; ρ)/ < � > ∩L2(Ω; ρ
c2

)
)

× L2(∂Ω).
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Hence, by Corollary 2.2.3 we are able to prove the following, which was for-
mulated as a conjecture in the first draft of [GGG03, § 5]. J.A. Goldstein has
informed us that his and G.R. Goldstein’s student C. Gal has obtained, by
different methods, the same result, which will appear in [Ga04].

Proposition 3.1.2. The operator matrix G has compact resolvent if and only
if Ω is a bounded interval of

�
. In this case, (etG)t≥0 is asymptotically almost

periodic and, if d ≡ 0, then (etG)t∈ � is almost periodic.

Proof. Recall that for a domain Ω ⊂ � n the embeddings H2(Ω) ↪→ H1(Ω) ↪→
L2(Ω) are compact if and only if Ω is bounded. Moreover, the multiplication
operator

L2(∂Ω) 3 f 7−→ df

m
∈ L2(∂Ω)

is bounded under our assumption on d,m. Then Corollary 2.2.3, Lemma B.22,
and Lemma B.25 yield the claim.

Applying Propositions 2.2.5 and 2.2.7, one also obtains information about
the spectrum and essential spectrum of G for Ω in arbitrary dimension. How-
ever, if we apply Theorem 2.2.8.(1) in order to re-prove the generator property
by the methods we have introduced in Chapter 2, we conclude that G generates
a C0-group if

(

0 IH1(Ω)/<� > +D
∆, ∂

∂ν

λ2

( ρ
m ·|∂Ω

)

∆ 0

)

with domain
{

u ∈ H2(Ω) ∩H1(Ω; ρ)/ < � >: ∆u ∈ L2(Ω;
ρ

c2
),
∂u

∂ν
= 0

}

×H1(Ω; ρ)/ < � >

generates a C0-semigroup on H1(Ω; ρ)/ < � > ×L2(Ω; ρ
c2

) for some λ > 0.
Seemingly, no known perturbation result for C0-semigroups can be applied, so
we are not able to show the well-posedness of our motivating problem in this
way.

Motivated by this failure, our purpose becomes to develop a more abstract
approach to tackle this and more general problems as an application of the
theory introduced in the previous chapter. This will reduce the need for formal
computations and allow more general cases.

3.2 General setting and well-posedness

We impose the following throughout the rest of this chapter.

Assumptions 3.2.1.

1. X, Y , and ∂X are Banach spaces with Y ↪→ X.

2. A : D(A) → X is linear with D(A) ⊂ Y .
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3. R : D(A) → ∂X is linear and surjective.

4. B1, B2 are linear and bounded from Y to ∂X.

5. B3, B4 are linear and bounded on ∂X.

6.

(

A
R

)

: D(A) ⊂ Y → X × ∂X is closed.

7. A0 := A|ker(R) generates a cosine operator function with associated phase
space Y ×X.

Moreover, it will be convenient to define a new operator L by

L := R+B2, L : D(A) → ∂X.

We will see that in some applications the operator L is in some sense “more
natural” than R. E.g., when we discuss the motivating equation (ABC), the
operator B2 will be the trace operator and L the normal derivative, while R is
a linear combination of the two. This shows that the operator A0 = A|ker(R)

can be considered as an abstract version of a operator equipped with Robin
boundary conditions.

Remarks 3.2.2. (a) Observe in particular that since B2 ∈ L(Y, ∂X) the As-
sumption 3.2.1.6 is satisfied if (and only if) also the operator

(

A

L

)

=

(

A
R

)

+

(

0
B2

)

: D(A) ⊂ Y → X × ∂X

is closed.
(b) Reasoning as in Lemma C.1 and Lemma C.4 one can see that under the

Assumptions 3.2.1 the Dirichlet operators associated to (A,L) exist as bounded
operators from ∂X to Z for every Banach space Z satisfying D∞(A) ⊂ Z ↪→ Y .

Of concern in this chapter are abstract second order initial-boundary value
problems equipped with abstract acoustic boundary conditions of the form

(aAIBVP2
f,g,h,j)























ü(t) = Au(t), t ∈ �
,

ẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t ∈ �
,

ẋ(t) = Lu(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X, where the operators A,B1, B2, B3, B4, R satisfy the Assump-
tions 3.2.1.

Following the approach of Section 1.3, we consider the operator matrix

(3.1) A :=





0 IY 0
A 0 0
L 0 0



 , D(A) := D(A) × Y × ∂X,
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on the product Banach space

X := Y ×X × ∂X,

the operators
L :=

(

R 0 0
)

, D(L) := D(A),

and
B :=

(

B1 +B4B2 0 B3

)

, D(B) := D(A),

both from X to ∂X := ∂X , and finally the operator

B̃ := B4, D(B̃) := D(B4) = ∂X,

on ∂X. Observe that we have identified

u(t) :=





u(t)
v(t)
x(t)



 , t ∈ �
, and f :=





f
g
h



 , g := j −B2f.

By Proposition 1.2.4, the well-posedness of (aAIBVP2) is equivalent to the
generator property of the operator matrix with coupled domain

(3.2) A :=

(

A 0

B B̃

)

, D(A) :=

{(

u

x

)

∈ D(A) × ∂X : Lu = x

}

,

on the product Banach space X := X × ∂X. In order to apply the results
on operator matrices with coupled domain obtained in Chapter 2 we need the
following.

Lemma 3.2.3. The following assertions hold.

(1) The restriction A0 of A to ker(L) generates a C0-group on X.

(2) The operator L is surjective from D(A) to ∂X.

(3) The operator B is bounded from X to ∂X.

(4) The operator B̃ is bounded on ∂X.

(5) The operator

(

A

L

)

: D(A) ⊂ X → ∂X is closed.

Proof. Observe first that ker(L) = {u ∈ D(A) : Lu = B2u}×Y ×∂X , thus the
operator A0 takes the form

(3.3) A0 =









0 IY 0

A0 0 0

B2 0 0









.

Observe that the perturbation
(

B2 0
)

is bounded from Y × X to ∂X, and
the only non-zero diagonal block of A0 generates by Lemma B.11 a C0-group
on Y ×X. Therefore, A0 generates a C0-group on X, and (1) is proven. The
remaining claims follow directly by Assumptions 3.2.1.
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Therefore, A,L, B̃ satisfy the Assumptions 2.1.1, and by Theorem 2.2.8.(1)
and Remark 2.2.11 the following result is immediate.

Theorem 3.2.4. The operator matrix with coupled domain A defined in (3.2)
generates a C0-group on X .

Hence, it follows by Theorem 1.3.6 that (aAIBVP2) is well-posed.

Example 3.2.5. The abstract initial–boundary value problem associated to the
wave equation with acoustic boundary conditions (ABC) on an open bounded
domain Ω ⊂ � n with smooth boundary ∂Ω is well-posed. In particular, for all
initial data

φ(0, ·) ∈ H 3
2 (Ω), φ̇(0, ·) ∈ H1(Ω), δ(0, ·), δ̇(0, ·) ∈ L2(∂Ω)

such that ∆φ(0, ·) ∈ L2(Ω) and
∂φ

∂ν
(0, ·) = δ̇(0, ·)

there exists a classical solution to (ABC) on (H 1(Ω), L2(Ω), L2(∂Ω)) continu-
ously depending on them.

Take first

X := L2(Ω), Y := H1(Ω), ∂X := L2(∂Ω).

We set
A := c2∆, D(A) :=

{

u ∈ H 3
2 (Ω) : ∆u ∈ L2(Ω)

}

,

(Rf)(z) =
∂f

∂ν
(z) +

ρ(z)

m(z)
f(z), f ∈ D(R) = D(A), z ∈ ∂Ω,

B1 = 0, (B2f)(z) := − ρ(z)

m(z)
f(z), f ∈ H1(Ω), z ∈ ∂Ω,

(B3g)(z) := − k(z)

m(z)
g(z), (B4g)(z) := − d(z)

m(z)
g(z), g ∈ L2(∂Ω), z ∈ ∂Ω.

By Theorem 3.2.4 and Theorem 1.3.6, it suffices to check that the Assump-
tions 3.2.1 are satisfied in the above setting.

To check the Assumption 3.2.1.3, we apply [LM72, Vol. I, Thm. 2.7.4] and

obtain that for all g ∈ L2(∂Ω) there exists u ∈ H
3
2 (Ω) such that ∆u = 0

and ∂u
∂ν + ρ

mu|∂Ω = g. The Assumption 3.2.1.4 holds because the trace oper-
ator is bounded from H1(Ω) to L2(∂Ω) and because ρ

m ∈ L∞(∂Ω), while the

Assumption 3.2.1.5 is satisfied because d
m ,

k
m ∈ L∞(∂Ω).

The Assumption 3.2.1.6 is satisfied because the closedness of
(A
L

)

holds by
interior estimates for elliptic operators, (a short proof of this can be found in
[CENN03, § 3]), and B2 ∈ L(Y, ∂X), cf. Remark 3.2.2.(a).

To check Assumption 3.2.1.7, observe that

A0u = c2∆u, D(A0) =

{

u ∈ H2(Ω) :
∂u

∂ν
+

ρ

m
u|∂Ω = 0

}

,

i.e., A0 is (up to the constant c2) the Laplacian with Robin boundary conditions.
By [Fa85, Thm. IV.5.1], this operator generates a cosine operator function with
associated phase space H1(Ω) × L2(Ω) = Y ×X.
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Our Assumptions 3.2.1 are satisfied by a variety of other operators and
spaces. We discuss a biharmonic wave equation with acoustic-type boundary
conditions.

Example 3.2.6. Let p, q, r, s ∈ L∞(∂Ω), s ≤ 0. Then the initial value problem
associated to


























φ̈(t, x) = −∆2φ(t, x), t ∈ �
, x ∈ Ω,

δ̈(t, z) = p(z)δ(t, z) + q(z)δ̇(t, z)

+r(z)∂φ∂ν (t, z) + s(z)∂φ̇∂ν (t, z), t ∈ �
, z ∈ ∂Ω,

δ̇(t, z) = ∆φ(t, z), t ∈ �
, z ∈ ∂Ω,

φ(t, z) = 0, t ∈ �
, z ∈ ∂Ω,

is well-posed. In particular, for all initial data

φ(0, ·) ∈ H4(Ω) ∩H1
0 (Ω), φ̇(0, ·) ∈ H2(Ω) ∩H1

0 (Ω), δ(0, ·) ∈ L2(∂Ω),

and δ̇(0, ·) ∈ L2(∂Ω) such that ∆φ(0, z) = δ̇(0, z), z ∈ ∂Ω,

there exists a classical solution continuously depending on them.
Take

X := L2(Ω), Y := H2(Ω) ∩H1
0 (Ω), ∂X := L2(∂Ω),

and consider the operators

A := −∆2, D(A) :=
{

u ∈ H
5
2 (Ω) ∩H1

0 (Ω) : ∆2u ∈ L2(Ω)
}

,

Ru := (∆u)|∂Ω − s
∂u

∂ν
, for all u ∈ D(R) := D(A),

B1 := r
∂

∂ν
, B2 := s

∂

∂ν
, D(B1) := D(B2) := Y,

B3x := px, B4 := qx, for all x ∈ ∂X.

We are only going to prove that A0, i.e., the restriction of −∆2 to

D(A0) := ker(R) =

{

u ∈ H4(Ω) ∩H1
0 (Ω) : (∆u)|∂Ω = s

∂u

∂ν

}

,

generates a cosine operator function with associated phase space
(

H2(Ω) ∩
H1

0 (Ω)
)

×L2(Ω) = Y ×X, the other Assumptions 3.2.1 being satisfied trivially.
Take u, v ∈ D(A0) and observe that applying the Gauss–Green formulae

twice yields

(3.4) 〈A0u, v〉 = −
∫

Ω
∆2u · v dx = −

∫

Ω
∆u · ∆v dx+

∫

∂Ω
s
∂u

∂ν
· ∂v
∂ν

dσ.

Since s ≤ 0, it is immediate that A0 is dissipative and self-adjoint, hence by
Remark B.4.(a) the generator of a cosine operator function on X. We claim
that the associated Kisyński space (see Definition B.13) is actually isomorphic
to Y = H2(Ω) ∩H1

0 (Ω).
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We first show that A0 is injective. To see this, let u ∈ D(A0) such that
A0u = 0. By (3.4) one obtains

0 = −〈A0u, u〉 = ‖∆u‖2
L2(Ω) −

∫

∂Ω
s

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

2

dσ ≥ ‖∆u‖2
L2(Ω).

Hence, u is a harmonic function of class H1
0 (Ω). The fact that the Dirichlet

Laplacian is invertible implies that u = 0, thus that 0 is not an eigenvalue
of A0. Since A0 has compact resolvent, we conclude that it is a self-adjoint,
strictly negative definite operator. Therefore, by Remark B.18 we deduce that
the Kisyński space is isomorphic to [D(A0), L

2(Ω)] 1
2
] =

(

H2(Ω) ∩ H1
0 (Ω)

)

as

claimed.

Remarks 3.2.7. (a) Among further operators and spaces fitting into our ab-
stract framework we list the following. In both cases, the operator B2 is defined
as in Example 3.2.5.

a) X := L2(Ω), Y := H1(Ω), ∂X := L2(∂Ω),

Au(x) := ∇(a(x)∇u(x)), x ∈ Ω, with the function a ≥ 0 sufficiently regular
on Ω,

Lu(z) = 〈a(z)∇u(z), ν(z)〉, z ∈ ∂Ω,

for u ∈ D(A) := {H 3
2 (Ω) : Au ∈ L2(Ω)}.

b) X := L2(Ω), Y = H2(Ω), ∂X := L2(∂Ω),

Au := −∆2u,

Lu := −∂∆u
∂ν ,

for u ∈ D(A) :=
{

H
7
2 (Ω) : ∆2u ∈ L2(Ω), (∆u)|∂Ω = 0

}

.

In both cases one can check that A0 is self-adjoint and dissipative by the Gauss–
Green formulae, and this ensures that A0 generates a cosine operator function.

(b) Remarkably, it seems to be still unknown whether the (realization of the)
second derivative with Robin boundary conditions generates a cosine operator
function on Lp(0, 1), p 6= 2. If this would be the case, however, a wave equation
with acoustic boundary condition in Lp(0, 1) could be easily fitted into the
setting presented in this section.

Remark 3.2.8. The main drawback of our approach, in comparison with
Beale’s, is that the group that governs the motivating equation (ABC) on a
bounded domain Ω ⊂ � n is not contractive, as it can be seen already in the
case of n = 1 – in other words, we fail to produce an energy space.

However, our approach has other advantages: e.g., the entries B and B̃ of
A defined in (3.2) are bounded from X to ∂X and on ∂X, respectively. Thus,
by Remark 2.2.9.(b) the estimate

‖φ(t, ·) − ψ(t, ·)‖L2(Ω) ≤ tM, 0 ≤ t ≤ 1,
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holds for some constant M . Here φ is the solution to the initial value problem
associated to (ABC) and ψ is the solution to the inital value problem associated
to the wave equation with inhomogeneous (static) Robin boundary conditions

{

ψ̈(t, x) = c2∆ψ(t, x), t ∈ �
, x ∈ Ω,

∂ψ
∂ν (t, z) + ρ(z)

m(z)ψ(t, z) = ∂φ
∂ν (0, z) + ρ(z)

m(z)φ(0, z), t ∈ �
, z ∈ ∂Ω.

3.3 Regularity and spectral theory

The following, which is crucial to prove Proposition 1.3.7, is a direct consequence
of Lemma B.20.

Lemma 3.3.1. For the operator A defined in (3.1) we obtain

D(A2k−1) = D(Ak) ×D((Ak−1)|Y ) × ∂X and

D(A2k) = D((Ak)|Y ) ×D(Ak) × ∂X for all k ∈ �
.

In particular, D(A∞) = D∞(A) ×D∞(A) × ∂X.

Example 3.3.2. Proposition 1.3.7 yields a regularity result that is analogous
to [Be76, Thm. 2.2]. In the framework introduced in Example 3.2.5 to treat
(ABC) the set defined in (1.12) is

⋂

h∈ �

{

u ∈ C∞(Ω) ∩H 3
2 (Ω) : γhu = 0

}

where γh denotes the normal derivative of h-th order, cf. [LM72, Vol. 1, § 1.8.2].
Hence, if in particular the initial value φ(0, ·), φ̇(0, ·) are functions of class

C∞(Ω) ∩H 3
2 (Ω) that vanish in a suitable neighborhood of ∂Ω, thus belonging

to the set defined above, and if δ̇(0, ·) ≡ 0, then the unique classical solution to
the initial value problem associated to (ABC) is contained in D∞(A) ⊂ C∞(Ω),
no matter how rough δ(0, ·) is.

Due to the important role played by the operator matrix A defined in (3.2),
we are interested in obtaining some spectral results about it. To begin with,
we generalize Proposition 3.1.2.

Proposition 3.3.3. The operator matrix A has compact resolvent if and only
if ∂X is finite dimensional and moreover the embeddings [D(A0)] ↪→ Y ↪→ X
are both compact.

Proof. Take into account Corollary 2.2.3 and obtain that A has compact re-
solvent if and only if the embedding [D(A0)] ↪→ X is compact and ∂X is
finite dimensional. This yields the claim, since D(A0) = D(A0) × Y × ∂X and
X = Y ×X × ∂X.

Taking into account Lemma B.22 and [Na89, Thm. 2.4], we obtain the
following.
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Lemma 3.3.4. The resolvent set of the operator matrix A0 as in (3.3) is given
by

ρ(A0) =
{

λ ∈ �
: λ 6= 0, λ2 ∈ ρ(A0)

}

.

For λ ∈ ρ(A0) there holds

R(λ,A0) =





λR(λ2, A0) R(λ2, A0) 0
A0R(λ2, A0) λR(λ2, A0) 0
−B2R(λ2, A0) − 1

λB2R(λ2, A0)
1
λI∂X



 .

By Lemma 3.2.3, Lemma C.1, and Lemma C.4 we obtain the existence of the
Dirichlet operator associated to the pair (A,L). More precisely, the following
representation holds.

Lemma 3.3.5. Let λ ∈ ρ(A0). Then the Dirichlet operator DA,L
λ exists and is

given by

DA,L
λ =







DA,R
λ2

λDA,R
λ2

1
λLD

A,R
λ2






.

Proof. To obtain the claimed representation, take x := y ∈ ∂X = ∂X. By
definition the Dirichlet operator DA,L

λ maps x into the unique vector

u :=





u
v
x



 ∈ D(A) such that

{

Au = λu,
Lu = x,

or rather















v = λu,
Au = λv,
Lu = λx,
Ru = y.

Thus, we see that u = DA,R
λ2 y, and the claim follows.

Observe that by definition of L

LDA,R
λ = I∂X +B2D

A,R
λ .

Thus, the following holds.

Lemma 3.3.6. Let λ ∈ ρ(A0). Then the operator

B̃λ := B̃ + BDA,L
λ

is given by

B̃λ = B1D
A,R
λ2 +

(

1

λ
B3 +B4

)

LDA,R
λ2 .

With the operators introduced in Lemma 3.3.4, 3.3.5, and 3.3.6 we can
exploit the spectral results of Section 2.2, and in particular apply Lemma 2.2.5
to describe the spectrum and the resolvent operator of the operator matrix A
defined in (3.2).

To conclude, we briefly consider the essential spectrum and obtain the fol-
lowing, which in some sense complements the results of [Be76, § 3]: e.g., it
also applies if we consider the motivating equation (ABC) to take place on the
unbounded domain Ω =

�
+. The following is just a consequence of Proposi-

tion 2.2.7.(1).
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Proposition 3.3.7. If ∂X is finite dimensional, then the essential spectrum of
A is given by

σess(A) = σess(A0),

and for the Fredholm index we have

ind(A− µ) = ind(A0 − µ) for all µ 6∈ σess(A0).

3.4 Implicit acoustic boundary conditions

Among the so-called boundary contact problems discussed by B.P. Belinsky in
[Be00, § 3], a version of the Timoschenko model

(TM)



































φ̈(t, x) = c2∆φ(t, x), t ∈ �
, x ∈ Ω,

∂φ
∂ν (t, z) = 0, t ∈ �

, z ∈ Γ0,

m(1 − ∆)δ̈(t, z) = −ρφ̇(t, z) − k(z)δ(t, z)

−d(z)δ̇(t, z), t ∈ �
, z ∈ Γ1,

δ̇(t, z) = ∂φ
∂ν (t, z), t ∈ �

, z ∈ Γ1,
δ(t, y) = 0, t ∈ �

, y ∈ ∂Γ1,

is particularly interesting, because it can be seen as a wave equation equipped
with implicit acoustic-type boundary conditions. For the geophysical explana-
tion of this model we refer to [Be00]. We only mention that the system (TM)
models an ocean waveguide Ω covered (on the part Γ1 of his surface ∂Ω) by a
thin pack ice layer with inertia of rotation. B.P. Belinsky investigates such a
system for Ω ⊂ � 2 and obtains some spectral properties.

Here the boundary ∂Ω is the disjoint union of Γ0,Γ1. Observe that, due
to technical reasons, we consider the case of a medium of homogeneous density
ρ filling a domain whose boundary has homogeneous mass m. However, we
still allow k and d to be essentially bounded functions, whereas B.P. Belinsky
assumes them to be constant.

To begin with, we introduce an operator M that will appear in the new
implicit acoustic-type boundary conditions.

Assumption 3.4.1. We complement the Assumptions 3.2.1 by the following.

M : D(M) ⊂ ∂X → ∂X is linear and satisfies 1 ∈ ρ(M).

We can now consider the abstract second order initial-boundary value prob-
lem obtained by replacing the second equation in (aAIBVP2) by

ẍ(t) −Mẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t ∈ �
.

Thus, our aim is to show the well-posedness of the problem

(iaAIBVP2)























ü(t) = Au(t), t ∈ �
,

ẍ(t) = B�
1u(t) +B�

2 u̇(t) +B�
3x(t) +B�

4 ẋ(t), t ∈ �
,

ẋ(t) = Lu(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,
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on X and ∂X, where

(3.5) B�
i := R(1,M)Bi, i = 1, 2,

are bounded operators from Y to ∂X, and

(3.6) B�
i := R(1,M)Bi, i = 3, 4,

are bounded operators on ∂X. Similarly, we consider the operator

(3.7) R� := L−B�
2 .

Observe now that, after replacing R by R� and Bi by B�
i , i = 1, 2, 3, 4, all the

Assumptions 3.2.1 are satisfied, except for 3 and 7.

Assumptions 3.4.2. We replace the corresponding Assumptions 3.2.1 by the
following.

3′. R� : D(A) → ∂X is surjective.

7′. A�
0 := A|ker(R�) generates a cosine operator function with associated

phase space Y ×X.

Proposition 3.4.3. Under the Assumptions 3.2.1, 3.4.1, and 3.4.2 the problem
(iaAIBVP2) with abstract implicit acoustic-type boundary conditions is well-
posed.

Proof. Consider the operator matrix A introduced in (3.1) and define the op-
erators

L� :=
(

R� 0 0
)

, D(L�) := D(A),

B� :=
(

B�
1 +B�

4B
�
2 0 B�

3

)

, D(B�) := X,

B̃� := B�
4 , D(B̃�) := ∂X.

We can now directly check that properties analogous to those in Lemma 3.2.3
are satisfied. Therefore, the well-posedness of

(iAIBVP)























u̇(t) = Au(t), t ∈ �
,

ẋ(t) = B�u(t) + B̃�x(t), t ∈ �
,

x(t) = L�u(t), t ∈ �
,

u(0) = f ∈ X,
x(0) = g ∈ ∂X,

follows like in Theorem 3.2.4. Finally, reasoning like in Lemma 1.3.5 one obtains
the equivalence between (iAIBVP) and (iaAIBVP2), and the claim follows.

We revisit Example 3.2.5.
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Example 3.4.4. The initial value problem associated to the wave equation with
implicit acoustic-type boundary conditions (TM) on an open bounded domain
Ω ⊂ � n with smooth boundary ∂Ω = Γ0 ∪ Γ1, is well-posed. In particular, for
all initial data

φ(0, ·) ∈ H
3
2 (Ω), φ̇(0, ·) ∈ H1(Ω), δ(0, ·), δ̇(0, ·) ∈ L2(Γ1)

such that ∆φ(0, ·) ∈ L2(Ω) and
∂φ

∂ν
(0, ·)|Γ1

= δ̇(0, ·)

there exists a classical solution on (H1(Ω), L2(Ω), L2(Γ1)) continuously depend-
ing on them.

We adapt the setting introduced in Example 3.2.5 to the current problem.
We let

X := L2(Ω), Y := H1(Ω), ∂X := L2(Γ1).

Moreover, we set

A := c2∆, D(A) :=

{

u ∈ H 3
2 (Ω) : ∆u ∈ L2(Ω),

∂u

∂ν |Γ0

= 0

}

,

(Rf)(z) =
∂f

∂ν
(z) +

ρ(z)

m(z)
f(z), f ∈ D(R) = D(A), z ∈ Γ1,

B1 = 0, (B2f)(z) := − ρ(z)

m(z)
f(z), f ∈ H1(Ω), z ∈ Γ1,

(B3g)(z) := − k(z)

m(z)
g(z), (B4g)(z) := − d(z)

m(z)
g(z), g ∈ L2(Γ1), z ∈ Γ1.

Further, we introduce the operator

M := ∆Γ1 , D(M) := H2(Γ1) ∩H1
0 (Γ1),

that is, the Laplace–Beltrami operator (on the precompact manifold Γ1 with
boundary ∂Γ1) equipped with Dirichlet boundary conditions. We can now
define the auxiliary operators B�

i , i = 1, 2, 3, 4, and R� like in (3.5)–(3.7).
The operatorM is self-adjoint and strictly negative definite, hence it satisfies

the Assumption 3.4.1, hence only the Assumptions 3.4.2 still need to be checked.
To check the Assumption 3.4.2.3’ we are going to apply Lemma C.7. First

consider the normal derivative L = R + B2 on Γ1: L is surjective by [LM72,
Vol. I, Thm. 2.7.4]. Moreover, observe that

ker(L) =

{

u ∈ H2(Ω) :
∂u

∂ν |∂Ω
= 0

}

,

that is, the restriction A0 of A to ker(L) is the Neumann Laplacian ∆N , which
generates an analytic semigroup on X. Further, by [LM72, Vol. II, (4.14.32)],
we obtain that

[D(∆N ), L2(Ω)]θ = H2(1−θ)(Ω) for all θ ∈
(

1

4
, 1

]

.
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Therefore we obtain that

D(A) ⊂ H
3
2 (Ω) ⊂ [D(∆N )], L2(Ω)] 1

2
−ε ⊂ [D(∆N ), L2(Ω)] 1

2
= H1(Ω) = Y

for all 0 ≤ ε < 1
4 . Since L− R� = B�

2 ∈ L(H1(Ω), L2(Γ1)), by Lemma C.7 the
Assumption 3.4.2.3’ holds.

Finally, to check the Assumption 3.4.2.7’ we show that A�
0 is self-adjoint

and strictly negative definite. Recall that we are assuming ρ and m to be real
constants, and observe that

D(A�
0) =

{

f ∈ H2(Ω) :
∂u

∂ν |Γ0

= 0,
∂u

∂ν |Γ1

+
ρ

m
R(1,M)(u|Γ1

) = 0

}

.

Take u, v ∈ D(A�
0) and obtain that

〈A�
0u, v〉 =

∫

Ω
∆u · vdx =

∫

∂Ω

∂u

∂ν
· vdσ −

∫

Ω
∇u · ∇vdx

= − ρ

m

∫

Γ1

R(1,M)u · vdσ −
∫

Ω
∇u · ∇vdx.

Taking into account the positivity and the self-adjointness of the operator
R(1,M) (see [Gr99, § 2.4]), one obtains that A�

0 is self-adjoint and dissipa-
tive, hence it generates a cosine operator function. Letting A�

0u = 0 and mul-
tiplying by u one can likewise see that A�

0 is also invertible. Hence, apply
Remark B.18 to obtain that the Kisyński space is isomorphic to [D(A�

0), X] 1
2
.

Since [D(A�
0), X] 1

2
= H1(Ω) by [LM72, Vol. II, (4.14.32)], the claim follows.

3.5 The special case of B3 = 0: asymptotic behavior

After setting
y(t) ≡ ẋ(t), t ∈ �

,

(aAIBVP2) can equivalently be written as the second order problem with integro-
differential boundary conditions



























ü(t) = Au(t), t ∈ �
,

ẏ(t) = B1u(t) +B2u̇(t) +B3

(

h+
∫ t
0 y(s)ds

)

+B4y(t), t ∈ �
,

y(t) = Lu(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
y(0) = j ∈ ∂X.

In the special case of B3 = 0, which we assume throughout this section, the
initial value x(0) = h is therefore superfluous, and we obtain an abstract
second order problem with first order dynamic boundary conditions. Simi-
lar problems have been discussed, among others, in [CENP04], and in fact
our Theorem 3.2.4 complements some well-posedness result obtained therein,
cf. [CENP04, Thm. 2.2].
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We can replace X = Y ×X × ∂X by

X = Y ×X,

and the operator matrix A as defined in (3.2) by

A =

(

0 IY
A 0

)

, D(A) = D(A) × Y.

Accordingly, the operators L and B become

L =
(

R 0
)

, D(L) = D(A) ×X,
B =

(

B1 +B4B2 0
)

, D(B) = X.

Then the operator matrix A defined in (3.2) is replaced by

(3.8) A =





0 IY 0
A 0 0

B1 +B4B2 0 B4





with domain

(3.9) D(A) =











u
v
y



 ∈ D(A) × Y × ∂X : Ru = y







.

The main difference with the general setting of Section 3.2 is that the resolvent
of A0 as well as the Dirichlet operators associated to (A,L) can be compact
also in the case of dim ∂X = ∞.

Proposition 3.5.1. Let B3 = 0. Assume that there exists a Banach space Z
such that D(A) ⊂ Z ↪→ Y . If the embeddings Z ↪→ Y ↪→ X are both compact,
then the essential spectrum of A is given by

σess(A) = σess(B4),

and for the Fredholm index we have

ind(A− µ) = ind(B4 − µ) for λ 6∈ σess(B4).

In particular, σess(A) = ∅ if and only if ∂X is finite dimensional.

Example 3.5.2. In the context of our motivating equation (ABC), the as-
sumption B3 = 0 means that k ≡ 0, hence the initial-boundary value problem
becomes

(3.10)



























φ̈(t, x) = c2∆φ(t, x), t ∈ �
, x ∈ Ω,

δ̈(t, z) = − d(z)
m(z) δ̇(t, z) −

ρ(z)
m(z) φ̇(t, z), t ∈ �

, z ∈ ∂Ω,

δ̇(t, z) = ∂φ
∂ν (t, z), t ∈ �

, z ∈ ∂Ω,

φ(0, ·) = f, φ̇(0, ·) = g,

δ̇(0, ·) = j,
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on a bounded open domain Ω ⊂ � n. Observe that D(A) ⊂ Z := H
3
2 (Ω), and

for Y = H1(Ω) the embeddings H
3
2 (Ω) ↪→ H1(Ω) ↪→ L2(Ω) are compact by

[LM72, Vol. I, Thm. 1.16.1]. Thus, by Proposition 3.5.1 the essential spectrum
of the operator matrix A associated to (3.10) agrees with the essential spectrum
of the (bounded) multiplication operator

(B4u)(z) = − d(z)

m(z)
u(z), u ∈ L2(∂Ω), z ∈ ∂Ω.

The essential spectrum of B4 cannot be empty unless ∂X is finite dimensional,
thus the essential spectrum of A cannot be empty unless Ω is a (possibly un-
bounded) interval of

�
.

In case B1 = −B4B2, the operator matrix A as in (3.8) has in fact only
diagonal entries, i.e.

A =

(

A 0

0 B̃

)

.

Such an operator matrix is associated to the second order problem with first
order dynamic boundary conditions























ü(t) = Au(t), t ∈ �
,

ẏ(t) = B4y(t), t ∈ �
,

y(t) = Ru(t), t ∈ �
,

u(0) = f, u̇(0) = g,
y(0) = j.

Beyond well-posedness, we can now apply the results on boundedness and
asymptotical almost periodicity obtained in Section 2.2.

Proposition 3.5.3. Let B1 = −B4B2 and B3 = 0. Assume (C(t, A0))t∈ � to
be bounded. If A0 is invertible and (etB4)t≥0 is uniformly exponentially stable,
then the semigroup generated by A as in (3.8)–(3.9) is bounded.

If moreover the embeddings [D(A0)] ↪→ Y ↪→ X are both compact and ∂X
is finite dimensional, then (etA)t≥0 is asymptotically almost periodic.

Proof. Under our assumptions, (etA0)t≥0 is a bounded C0-semigroup on X and

(etB̃)t≥0 is a uniformly exponentially stable C0-semigroup on ∂X with bounded
generator. The claim follows by Corollaries 2.2.2 and 2.2.4.

Example 3.5.4. We consider a version of the problem discussed in Exam-
ple 3.5.2, which we modify by adding a new feedback term. Observe that by
definition

(B4B2f)(z) =
ρ(z)d(z)

m2(z)
f(z), f ∈ H1(Ω), z ∈ ∂Ω.
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Hence, the problem we want to consider is

(3.11)







































φ̈(t, x) = c2∆φ(t, x), t ∈ �
, x ∈ Ω,

δ̈(t, z) = − d(z)
m(z) δ̇(t, z) −

ρ(z)d(z)
m2(z)

φ(t, z)

− ρ(z)
m(z) φ̇(t, z), t ∈ �

, z ∈ ∂Ω,

δ̇(t, z) = ∂φ
∂ν (t, z), t ∈ �

, z ∈ ∂Ω,

φ(0, ·) = f, φ̇(0, ·) = g,

δ̇(0, ·) = j,

As seen before, A0 is the Laplacian with Robin boundary conditions: if ρ is not
identically 0, i.e., if the Robin boundary conditions do not reduce to Neumann,
then A0 is self-adjoint and strictly negative, and by Remark B.18 it generates
a contractive cosine operator function.

Moreover, (etB4)t≥0 is the multiplication semigroup given by

(etB4g)(z) = e
−t d(z)

m(z) g(z), t ≥ 0, g ∈ L2(∂Ω), z ∈ ∂Ω,

which is uniformly exponentially stable if (and only if) the closure of the essen-
tial range of d

m lies in {z ∈ �
: Rez < 0}.

Summing up, if

ρ 6≡ 0 and

(

d

m

)

ess

(Ω) ⊂ {z ∈ �
: Re(z) < 0} ,

then by Proposition 3.5.3 the solution φ = φ(t) to (3.11) is bounded for t ≥ 0. If
moreover Ω is an interval of

�
, then the compactness of the Sobolev embeddings

yields asymptotical almost periodicity of the solution.
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Chapter 4

Second order abstract

problems with dynamic

boundary conditions

Of concern in this chapter are second order abstract initial-boundary value
problems with dynamic boundary conditions of the form

(dAIBPV2
f,g,h,j)























ü(t) = Au(t), t ∈ �
,

ẍ(t) = Bu(t) + B̃x(t), t ∈ �
,

x(t) = Lu(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X.

As in the corresponding first order initial-boundary value problems (see
[CENN03] and [En03] for the cases of L /∈ L(X, ∂X) and L ∈ L(X, ∂X), re-
spectively), we need to distinguish three different cases: for some given Banach
space Y (somehow related to the Kisyński space associated to the problem

{

ü(t) = Au(t), t ∈ �
,

Lu(t) = 0, t ∈ �
,

in the sense of Definition B.13) such that D(A) ⊂ Y ↪→ X the operator L can
be unbounded from Y to ∂X; unbounded from X to ∂X but bounded from Y
to ∂X; or bounded from X to ∂X. In this chapter we only consider the first
two cases in Sections 4.2 and 4.3, respectively. These cases occur, e.g., when
we consider a wave equation on an Lp-space and L is the normal derivative or
the trace operator, respectively.

As an example for the latter, we mention the following. P. Lancaster, A.
Shkalikov, and Q. Ye [LSY93, § 5 and § 7]) and later C. Gal, G.R. Goldstein and
J.A. Goldstein ([GGG03]), M. Kramar, R. Nagel, and the author ([KMN03b,
Rem. 9.13]), and T.-J. Xiao and J. Liang ([XL04b, Ex. 6.1]) have already con-
sidered wave equations with second order dynamic boundary conditions in an
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L2-setting, using quite different methods. The following is a corollary of state-
ments obtained in these papers. We mention it as a motivation for our in-
vestigations. All the proofs in the above mentioned papers deeply rely on the
Hilbert space setting.

Example 4.0.1. The problem

(4.1)







ü(t, x) = u′′(t, x), t ∈ �
, x ∈ (0, 1),

ü(t, j) = (−1)ju′(t, j) + βju(t, j), t ∈ �
, j = 0, 1,

u(0, ·) = f, u̇(0, ·) = g,

admits a unique classical solution for all f, g ∈ H 2(0, 1) and β0, β1 ∈ �
, con-

tinuously depending on the initial data. If (β0, β1) ∈ � 2
− \ {0, 0}, then such a

solution is uniformly bounded in time with respect to the L2-norm.

We finally remark that the third case (i.e., L ∈ L(X, ∂X)) is typical for wave
equations with so-called Wentzell boundary conditions on spaces of continuous
functions. Among those who have already treated such problems we mention
A. Favini, G.R. Goldstein, J.A. Goldstein, and S. Romanelli ([FGGR01]), who
considered plain Wentzell boundary conditions, and T.-J. Xiao and J. Liang
([XL04]), who treated generalized Wentzell boundary conditions. Later, A.
Bátkai and K.-J. Engel ([BE04]) extended the above results to hyperbolic prob-
lems with arbitrary (possibly degenerate) second order differential operators
and (possibly non-local) generalized Wentzell boundary conditions. Finally,
K.-J. Engel ([En04b, § 5]) developed an abstract framework that includes all
the above mentioned results as special cases. The results obtained in this chap-
ter complement his investigation.

4.1 General setting

We impose the following throughout this chapter.

Assumptions 4.1.1.

1. X and Y are Banach spaces such that Y ↪→ X.

2. ∂X and ∂Y are Banach spaces such that ∂Y ↪→ ∂X.

3. A : D(A) → X is linear, with D(A) ⊂ Y .

4. L : D(A) → ∂X is linear and surjective.

5. A0 := A| ker(L) is densely defined and has nonempty resolvent set.

6.

(

A
L

)

: D(A) ⊂ X → X × ∂X is closed.

7. B : [D(A)]L → ∂X is linear and bounded.

8. B̃ : D(B̃) ⊂ ∂X → ∂X is linear and closed, with D(B̃) ⊂ ∂Y .
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Observe that the Assumptions 2.1.1 are satisfied whenever the Assump-
tions 4.1.1 are.

Remark 4.1.2. By Lemma C.1 and Lemma C.4, the Dirichlet operators as-
sociated to (A,L) exist and are bounded from ∂X to [D(A)]L as well as to Y .
Moreover, the operator BDA,L

λ is bounded on ∂X for all λ ∈ ρ(A0).

To start our investigations on (dAIBVP2), we re-write such problem as a
more usual second order abstract Cauchy problem

(ACP2)

{

ü(t) = Au(t), t ∈ �
,

u(0) = f, u̇(0) = g,

on the product Banach space

X := X × ∂X,

where

(4.2) A :=

(

A 0

B B̃

)

, D(A) :=

{(

u
x

)

∈ D(A) ×D(B̃) : Lu = x

}

,

is an operator matrix with coupled domain on X .
Here the new variable u(·) and the inital data f, g are defined by

u(t) :=

(

u(t)
Lu(t)

)

for t ∈ �
, f :=

(

f
h

)

, g :=

(

g
j

)

.

Thus, taking the components of (ACP 2) in the factor spaces of X yields the first
two equations in (AIBVP2), while the coupling relation Lu(t) = x(t), t ∈ �

, is
incorporated in the domain of the operator matrix A. Taking into account the
results of Section 1.4 we can therefore equivalently investigate (ACP 2) instead
of (AIBVP2).

4.2 The case L 6∈ L(Y, ∂X)

Having reformulated (dAIBVP2) as (ACP2), the issue becomes to decide whether
A generates a cosine operator function on X , and what is the associated Kisyński
space.

Assumption 4.2.1. We complement the Assumptions 4.1.1 by the following.

B is bounded either from [D(A0)] to ∂Y , or from Y to ∂X.

It is intuitive to consider the product space

Y := Y × ∂Y

as a candidate Kisyński space for (ACP2). This intuition is partly correct, as
we show in this and the next section.
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Theorem 4.2.2. Under the Assumptions 4.1.1 and 4.2.1 the operator matrix
A generates a cosine operator function with associated phase space Y × X if
and only if A0 and B̃ generate cosine operator functions with associated phase
spaces Y ×X and ∂Y × ∂X, respectively.

Proof. Take λ ∈ ρ(A0). It has been proven in Proposition 2.1.3 that A−λ is sim-
ilar to the operator matrix Ãλ defined in (2.5). The similarity transformation
is performed by the matrix Mλ introduced in (2.2), which is an isomorphism
not only on X , but also, by Remark 4.1.2, on Y. Thus, by Lemma B.14, A gen-
erates a cosine operator function with associated phase space Y ×X if and only
if the similar operator Ãλ generates a cosine operator function with associated
phase space Y × X .

We decompose

Ãλ =

(

A0 −DA,L
λ B̃

0 B̃

)

+

(

−DA,L
λ B 0
B 0

)

+

(

−λ DA,L
λ (λ−BDA,L

λ )

0 BDA,L
λ − λ

)

with diagonal domain D(Ãλ) = D(A0) ×D(B̃).
Taking into account again Remark 4.1.2, one can check that the second

operator on the right hand side is bounded either from [D(Ãλ)] to Y or from Y
to X , while the third one is bounded on X . Thus, by Lemma B.15 we conclude
that A generates a cosine operator function with associated phase space Y ×X
if and only if

(

A0 −DA,L
λ B̃

0 B̃

)

with domain D(A0) ×D(B̃)

generates a cosine operator function with phase space Y × X . Since DA,L
λ B̃ ∈

L([D(B̃)], Y ), the claim follows by Corollary B.29.

Example 4.2.3. By virtue of Theorem 4.2.2 we can revisit the setting intro-
duced in Example 2.2.10 and improve the result obtained therein.

It has been seen that A0 is the Neumann Laplacian, which generates a
cosine operator function with associated phase space H 1(Ω)×L2(Ω), cf. [Fa85,
Thm. IV.5.1]. Further, B̃ is the Laplace–Beltrami operator, which is self-adjoint
and dissipative, hence by Remark B.4.(b) it generates a cosine operator function
on L2(∂Ω). By [Ka95, Thm. VI.2.23], the associated Kisyński space agrees with
the form domain of B̃, which is H1(∂Ω) by definition.

Summing up, we conclude that A generates a cosine operator function (and
hence an analytic semigroup of angle π

2 as well) on X whenever B is a bounded
operator either from H2(Ω) to H1(∂Ω), or fromH1(Ω) to L2(∂Ω). For example,
we can take

(4.3) (Bu)(z) := −u(z), u ∈ H1(Ω), z ∈ ∂Ω,

which defines a bounded operator from H1(Ω) to L2(∂Ω). With this choice A
becomes self-adjoint and dissipative (this can be checked integrating by parts,
thanks to the Gauss–Green formulae), hence by Remark B.4.(b) (C(t,A))t∈ � is
contractive and consists of self-adjoint operators.
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Remarks 4.2.4. (a) By Lemma B.30 we can characterize the generator prop-
erty of the reduction matrix associated to the second order complete problem

{

ü(t) = Au(t) + Cu̇(t), t ∈ �
,

u(0) = f ∈ X , u̇(0) = g ∈ X ,

for C ∈ L(Y). The Kisyński space Y = Y × ∂Y has the nice property that an
operator matrix

C :=

(

0 0

C C̃

)

is bounded on Y if (and only if) C ∈ L(Y, ∂Y ) and C̃ ∈ L(∂Y ). Thus, we can
perturb our dynamic boundary conditions by a quite wide class of unbounded
damping operators C and C̃.

(b) If B̃ is a bounded operator on ∂X, then the Assumption 4.2.1 is satisfied
as soon as the Assumptions 4.1.1 are (with ∂Y = ∂X), and Theorem 4.2.2
applies as soon as A0 generates a cosine operator function with associated phase
space Y ×X.

Hence our operator matrix approach yields an abstract result that can be
reformulated in the following intuitive way: For any B̃ ∈ L(∂X), C ∈ L(Y, ∂X),
and C̃ ∈ L(∂X), the second order abstract equation

ü(t) = Au(t), t ∈ �
,

equipped with (damped) dynamic boundary conditions

(Lu)··(t) = Bu(t) + Cu̇(t) + B̃Lu(t) + C̃(Lu)·(t), t ∈ �
,

has a unique mild solution for all initial data

u(0) ∈ Y, Lu(0) ∈ ∂Y, u̇(0) ∈ X, and (Lu)·(0) ∈ ∂X,

if and only if the same equation equipped with homogeneous boundary condi-
tions

Lu(t) = 0, t ∈ �
,

has a unique mild solution for all initial data

u(0) ∈ Y and u̇(0) ∈ X.

Example 4.2.5. Consider the second order concrete initial-boundary value
problem

(4.4)



























φ̈(t, x) = c2∆φ(t, x), t ∈ �
, x ∈ Ω,

δ̈(t, z) = p(z)φ̇(t, z) + q(z)δ(t, z) + r(z)δ̇(t, z), t ∈ �
, z ∈ ∂Ω,

δ(t, z) = ∂φ
∂ν (t, z), t ∈ �

, z ∈ ∂Ω,

φ(0, ·) = f, φ̇(0, ·) = g,

δ(0, ·) = h, δ̇(0, ·) = j,

on a bounded open domain Ω ⊂ � n with sufficiently smooth boundary ∂Ω. Ob-
serve that there is a damping in the boundary conditions, thus the problem (4.4)
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resembles the wave equation with acoustic boundary conditions discussed in Ex-
ample 3.2.5.

We claim the following: If c ∈ �
and p, q, r ∈ L∞(∂Ω), then the prob-

lem (4.4) can be reduced to a first-order problem that is governed by a C0-group
on
(

H1(Ω) × L2(∂Ω)
)

×
(

L2(Ω) × L2(∂Ω)
)

.
Set

X := L2(Ω), Y := H1(Ω), ∂X := L2(∂Ω).

and define

A := c2∆, D(A) :=
{

u ∈ H
3
2 (Ω) : ∆u ∈ L2(Ω)

}

,

L :=
∂

∂ν
, D(L) := D(A),

(Bu)(z) := q(z)
∂u

∂ν
(z), for all u ∈ D(B) := D(A), z ∈ ∂Ω, B̃ := 0,

(Cu)(z) := p(z)u(z), for all u ∈ H1(Ω), z ∈ ∂Ω,

(C̃v)(z) := r(z)v(z), for all v ∈ L2(∂Ω).

First consider the undamped case of p = r ≡ 0. We want to prove that (4.4) is
well-posed in (H1(Ω), L2(Ω), L2(∂Ω), L2(∂Ω)), in the sense of Definition 1.4.1.
By Theorem 1.4.3 it suffices to show that the operator matrix A as in (4.2) gen-
erates a cosine operator function with associated phase space

(

H1(Ω) × L2(∂Ω)
)

×
(

L2(Ω) × L2(∂Ω)
)

.
To check the Assumptions 4.1.1 reason as in Example 3.2.5 and observe

that ‖Bu‖ ≤ ‖q‖∞‖Lu‖. As seen in Example 4.2.3, the restriction A0 of A
to ker(L) is the generator of a cosine operator function with associated phase
space H1(Ω) × L2(Ω). Further, by [LM72, Vol. 1, Thm. 2.7.4] we obtain B ∈
L([D(A)]L, ∂X). Hence, by Theorem 4.3.4 the operator matrix with coupled
domain associated to (4.4) generates a cosine operator function with phase
space

(

H1(Ω) × L2(∂Ω)
)

×
(

L2(Ω) × L2(∂Ω)
)

.
For arbitrary p ∈ L∞(∂Ω) we can consider C as a multiplicative perturba-

tion of the trace operator, which is bounded from Y = H 1(Ω) to ∂X = L2(∂Ω).
Also the multiplication operator associated to r is bounded on L2(∂Ω), by as-
sumption, and summing up we obtain that C and C̃ are bounded from Y to ∂X
and on ∂X, respectively. By Remark 4.2.4.(b) we finally obtain that the prob-
lem (4.4) is governed by a C0-group on

(

H1(Ω) × L2(∂Ω)
)

×
(

L2(Ω) × L2(∂Ω)
)

.
Finally, observe that since the Neumann Laplacian generates a cosine oper-

ator function on Lp(Ω), Ω ⊂ � n, only if p = 2 or n = 1 (cf. [KW03, Thm. 3.2]),
it follows that (4.4) is well-posed in an Lp-setting if and only if p = 2 or n = 1.

4.3 The case L ∈ L(Y, ∂X)

We now consider the case where L is bounded from Y to the boundary space
∂X.

Assumptions 4.3.1. We complement the Assumptions 4.1.1 by the following.
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1. V is a Banach space such that V ↪→ Y .

2. L can be extended to an operator that is bounded from Y to ∂X, which
we denote again by L, and such that ker(L) = V .

3. B̃ is bounded on ∂X.

Observe that it follows by Assumptions 4.1.1.8 and 4.3.1.3 that ∂Y = ∂X.

Remark 4.3.2. Observe that if u ∈ C1(
�
, Y ) is a solution to (dAIBVP2), then

necessarily

L
du

dt
(·) =

dLu

dt
(·) =

dx

dt
(·),

where we have used the boundedness of L from Y to ∂X. Hence, under the
Assumptions 4.1.1 and 4.3.1 a classical solution to (dAIBVP2) automatically
satisfies the additional compatibility condition Lu̇(t) = ẋ(t), t ∈ �

, i.e., it solves
in fact the problem (bAIBVP2) considered in Section 1.5.

Lemma 4.3.3. Consider the Banach space

V :=

{(

u
x

)

∈ Y × ∂X : Lu = x

}

.

Then for all λ ∈ ρ(A0) the operator matrix Mλ defined in (2.2) can be restricted
to an operator matrix that is an isomorphism from V onto

W := V × ∂X,

which we denote again by Mλ. Its inverse is given by the operator matrix

(4.5) M−1
λ =

(

IV DA,L
λ

0 I∂X

)

.

Proof. Take λ ∈ ρ(A0). The operator matrix Mλ is everywhere defined on V,
and for u =

( u
Lu

)

∈ V there holds

Mλu =

(

IY −DA,L
λ

0 I∂X

)(

u
Lu

)

=

(

u−DA,L
λ Lu
Lu

)

.

Now u ∈ Y and also DA,L
λ Lu ∈ Y , due to Remark 4.1.2. Thus, the vector

u−DA,L
λ Lu ∈ V , since also L(u−DA,L

λ Lu) = Lu− LDA,L
λ Lu = Lu− Lu = 0.

This shows that Mλu ∈ W.
Moreover, one sees that the operator matrix given in (4.5) is the inverse of

Mλ. To show that it maps W into V, take v ∈ V , x ∈ ∂X. Then

(

IV DA,L
λ

0 I∂X

)(

v
x

)

=

(

v +DA,L
λ x
x

)

.

Now v + DA,L
λ x ∈ Y because V ↪→ Y and due to Remark 4.1.2. Moreover,

Lv = 0 by definition of the space V , thus L(v + DA,L
λ x) = LDA,L

λ x = x, and
this yields the claim.
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Theorem 4.3.4. Under the Assumptions 4.1.1 and 4.3.1 the operator matrix
A generates a cosine operator function with associated phase space V×X if and
only if A0 −DA,L

λ B generates a cosine operator function with associated phase

space V ×X, for some λ ∈ ρ(A0) if and only if A0 −DA,L
λ B generates a cosine

operator function with associated phase space V ×X, for all λ ∈ ρ(A0).

Proof. Take λ ∈ ρ(A0). By Lemma B.14, Proposition 2.1.3 and Lemma 4.3.3,
A generates a cosine operator function with associated phase space V × X if
and only if the operator matrix Ãλ, defined in (2.5), generates a cosine operator
function with associated phase space W ×X for some λ ∈ ρ(A0) if and only if
Ãλ generates a cosine operator function with associated phase space W×X for
all λ ∈ ρ(A0).

We decompose

Ãλ =

(

A0 −DA,L
λ B 0

0 0

)

+

(

0 0
B 0

)

+

(

−λ DA,L
λ (λ− B̃λ)

0 B̃λ − λ

)

with diagonal domain D(Ãλ) = D(A0) × ∂X.
Now the proof goes exactly as in Theorem 2.2.8.(1), taking into account

Lemma B.15.

Remarks 4.3.5. (a) Since V is not a product space, it may be tricky to endow
it with a “good” norm. More precisely, the canonical norms

∥

∥

∥

∥

(

u
Lu

)∥

∥

∥

∥

V

:= ‖u‖Y + ‖Lu‖∂X

or (in the Hilbert space case)

∥

∥

∥

∥

(

u
Lu

)∥

∥

∥

∥

V

:=
(

‖u‖2
Y + ‖Lu‖2

∂X

)
1
2

may not be the most suitable – that is, they may not yield conservation of
energy of the system (or equivalently, the reduction matrix associated to A
may be non-dissipative with respect to these norms, cf. Theorem B.11). This
will be explained in Example 4.5.5.

(b) Theorem 4.3.4 can be expressed in the following way: The second order
abstract equation

ü(t) = Au(t), t ∈ �
,

equipped with dynamic boundary conditions

(Lu)··(t) = Bu(t) + B̃Lu(t), t ∈ �
,

has a unique mild solution for all initial data

u(0) ∈ Y, Lu(0) ∈ ∂X, u̇(0) ∈ X, and (Lu)·(0) ∈ ∂X,

if and only if the perturbed second order equation

ü(t) = Au(t) −DA,L
λ Bu(t), t ∈ �

,
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equipped with homogeneous boundary conditions

Lu(t) = 0, t ∈ �
,

has a unique mild solution for all initial data

u(0) ∈ V and u̇(0) ∈ X.

(c) Let λ ∈ ρ(A0). It follows by Remark 4.1.2 that DA,L
λ B is bounded from

[D(A0)] to Y (the Kisyński space in Section 4.2), while DA,L
λ B is not bounded

from [D(A0)] to the current Kisyński space V , since D(A) is in general not con-
tained in V . This explains why the characterization obtained in Theorem 4.2.2
is less satisfactory than that obtained in Theorem 4.3.4.

Corollary 4.3.6. Let A0 generate a cosine operator function with associated
phase space V ×X. Assume that

(4.6) ‖DA,L
λ ‖L(∂X,X) = O(|λ|−ε) as |λ| → ∞, Reλ > 0,

and moreover that

(4.7)

∫ 1

0
‖BS(s,A0)f‖∂X ds ≤ M‖f‖X

holds for all f ∈ D(A0) and some M > 0. Then A generates a cosine operator
function with associated phase space V × X .

Proof. The basic tool for the proof is Lemma B.19, which yields that A0 −
DA,L
λ B generates a cosine operator function with associated phase space V ×X

whenever
∫ 1

0
‖DA,L

λ BS(s,A0)f‖X ds ≤ q‖f‖X

holds for all f ∈ D(A0) and some q < 1. This condition is clearly satisfied
under our assumptions for λ ∈ ρ(A0) sufficiently large.

Remark 4.3.7. By Lemma C.6.(2) the condition (4.6) is in particular satisfied
whenever [D(A)]L ↪→ [D(A0), X]α for some 0 < α < 1.

Example 4.3.8. Consider the second order problem with dynamic boundary
conditions

{

ü(t, x) = u′′(t, x) + q(x)u′(t, x) + r(x)u(t, x), t ∈ �
, x ∈ (0, 1),

ü(t, j) = αju
′(t, j) + βju(t, j), t ∈ �

, j = 0, 1,

as a generalization of (4.1). Here q, r are functions on (0, 1) and α0, α1, β0, β1

are complex numbers.
We are interested in the well-posedness (in the sense of Definition 1.5.1)

in (W 1,p(0, 1), Lp(0, 1),
� 2,

� 2) of the abstract initial-boundary value problem
associated to such a system. Then by Theorem 1.5.3 the initial value problem
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associated to the above system is equivalent to the second order abstract Cauchy
problem (ACP2), where A is the operator matrix

(4.8) A :=





d2

dx2 + q d
dx + rI 0

(

α0δ
′
0

α1δ
′
1

) (

β0 0
0 β1

)





with domain

(4.9) D(A) :=











u
(

x0

x1

)



 ∈W 2,p(0, 1) × � 2 : u(0) = x0, u(1) = x1







,

where δ′iu := u′(i), i = 0, 1.
We claim the following: the operator matrix A generates a cosine operator

function on Lp(0, 1)× � 2, 1 ≤ p <∞, for all q, r ∈ L∞(0, 1) and α0, α1, β0, β1 ∈
�
. The associated Kisyński space is











u
(

x0

x1

)



 ∈W 1,p(0, 1) × � 2 : u(0) = x0, u(1) = x1







.

Set
X := Lp(0, 1), Y := W 1,p(0, 1), ∂X :=

� 2.

We define the operators

Au(x) := u′′(x) + q(x)u′(x) + r(x)u(x) u ∈ D(A) := W 2,p(0, 1), x ∈ (0, 1),

Lu :=

(

u(0)
u(1)

)

D(L) := Y,

Bu :=

(

α0u
′(0)

α1u
′(1)

)

, D(B) := D(A),

B̃ :=

(

β0 0
0 β1

)

.

Therefore, we obtain V = ker(L) = W 1,p
0 (0, 1).

In the following, it will be convenient to write A as the sum

A := A1 +A2 :=
d2

dx2
+

(

q
d

dx
+ rI

)

,

and to define A10 and A20 as the restrictions of A1 and A2, respectively, to

D(A) ∩ ker(L) = W 2,p(0, 1) ∩W 1,p
0 (0, 1).

It will be proven soon that A10 +A20 generates a cosine operator function,
hence Assumption 4.1.1.5 is satisfied. The second derivative on W 2,p(0, 1) is
closed, hence also

(A
L

)

is closed as an operator fromX toX×∂X, and this checks
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Assumption 4.1.1.6. Further, it follows from the embedding W 1,p(0, 1) ↪→
C[0, 1] that we can find suitable constants ξ, ξ1, ξ2, ξ

′, ξ̃, such that

‖Bu‖ =
(

|u′(0)|p + |u′(1)|p
) 1

p ≤ |u′(0)| + |u′(1)| ≤ 2‖u′‖C[0,1]

≤ ξ
(

‖u′′‖Lp(0,1) + ‖u′‖Lp(0,1)

)

≤ ξ1‖u′′‖Lp(0,1) + ξ2‖u‖Lp(0,1)

≤ ξ′‖u‖A10
≤ ξ̃‖u‖A0 ,

for all u ∈ D(A), where we have exploited the closed graph theorem and the
fact that the second derivative is relatively bounded by the second derivative
with relative bound 0. Thus, Assumption 4.1.1.7 holds. The other Assump-
tions 4.1.1, as well as the Assumptions 4.3.1 are clearly satisfied as well.

In order to prove that A10 +A20 generates a cosine operator function with
associated phase space V × X, observe that since q, r ∈ L∞(0, 1), one has
qu′ + ru ∈ Lp(0, 1) for all u ∈ W 1,p

0 (0, 1). Thus, A20 is bounded from V to X
and by Lemma B.15 we can neglect such a perturbation. On the other hand,
the operator A10 is the second derivative with Dirichlet boundary conditions on
Lp(0, 1), hence it generates a cosine operator function that, as a consequence
of the D’Alembert formula, is given by

(4.10) (C(t, A10)f) (x) =
f̃(x+ t) + f̃(x− t)

2
, t ∈ �

, x ∈ (0, 1),

where f̃ is the function obtained by extending f ∈ Lp(0, 1) first by by oddity
to [−1, 1], and then by 2-periodicity to

�
(see [FGGR01, § 2]). One can check

that the space of strong differentiability of (C(t, A10))t∈ � – that is, the Kisyński
space associated to A10 – is V = W 1,p

0 (0, 1).
Thus, we can apply Corollary 4.3.6 and obtain that the operator matrix A

generates a cosine operator function with associated phase space V × X if the
conditions (4.6) and (4.7) are satisfied.

It is known that

W 2,p(0, 1) ↪→W α,p(0, 1) = [W 2,p(0, 1) ∩W 1,p
0 (0, 1), Lp(0, 1)]α, 0 < α <

1

2p
,

hence [D(A)]L ↪→ [D(A0), X]α, for suitable α, and by Remark 4.3.7 the condi-
tion (4.6) is satisfied.

To check condition (4.7), observe that integrating (4.10) yields that the sine
operator function generated by A10 is given by

S(t, A10)f =
1

2

∫ ·+t

·−t
f̃(s)ds, t ∈ �

.

Thus,

BS(t, A10)f =
1

2

(

α0

(

f̃(t) − f̃(−t)
)

α1

(

f̃(1 + t) − f̃(1 − t)
)

)

, t ≥ 0, f ∈ D(A10).

Since f̃ is by definition the odd, 2-periodic extension of f , we conclude that

BS(t, A10)f =

(

α0f̃(t)

α1f̃(t)

)

, t ≥ 0, f ∈ D(A10),
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and in particular

|BS(t, A10)f | = M |f(t)|, t ∈ [0, 1], f ∈ D(A10),

where M := |α0| + |α1| (here we have endowed
� 2 with the l1-norm). Thus,

∫ 1

0
|BS(s,A0)f | ds ≤ M

∫ 1

0
|f(s)| ds = M‖f‖L1(0,1) ≤M‖f‖Lp(0,1).

This concludes the proof.

Remark 4.3.9. Observe that, as a consequence of Example 4.3.8, we also
obtain that the operator matrix A defined in (4.8)–(4.9) is the generator of
an analytic semigroup of angle π

2 on Lp(0, 1) × � 2, 1 ≤ p < ∞. This im-
proves [KMN03b, Thm. 9.4 and Rem. 9.11], where no angle of analyticity has
been obtained, the L1-setting was not considered, and the assumptions on the
parameters q, r, α0, α1 were stronger.

An analogous operator matrix A in an Lp(Ω)-context, 1 < p <∞, has also
been considered in [FGGR02] (where no analyticity result has been obtained),
but with A an elliptic operator in divergence form, and by different means
in [AMPR03] and [En04], where A = ∆.

4.4 Regularity and representation formulae

Throughout this section we only impose the Assumptions 4.1.1. Hence, the re-
sults below hold in the framework of both Sections 4.2 and 4.3, unless otherwise
stated.

Define the class

D∞
0 :=

∞
⋂

h=0

{

u ∈ D∞(A) : LAhu = BAhu = 0
}

.

Then by Lemma 2.3.3 and Corollary B.21 we obtain the following.

Proposition 4.4.1. Let B map D(Ak+1) into D(B̃k), k ∈ �
. Assume A

to generate a cosine operator function on X . Then C(t,A) and S(t,A) map
D∞

0 × {0} into D∞(A) ×D(B̃∞), for all t ∈ �
.

The following representation formula holds, in analogy to Proposition 2.2.1.

Proposition 4.4.2. Let A0, B̃, and A generate cosine operator functions. If
B = 0, then

C(t,A− λ) =

(

C(t, A0 − λ) (λ−A0)
∫ t
0 S(t− s,A0 − λ)DA,L

λ C(s, B̃ − λ)ds

0 C(t, B̃ − λ)

)

for all t ∈ �
and λ ∈ ρ(A0).
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Proof. Take λ ∈ ρ(A0). Then by Proposition 2.1.3 there holds

A− λ = M−1
λ ÃλMλ = M−1

λ

(

A0 − λ −DA,L
λ (B̃ − λ)

0 B̃ − λ

)

Mλ,

hence by Lemma B.14

C(t,A− λ) = M−1
λ C(t, Ãλ)Mλ, t ∈ �

.

Apply Proposition B.28 and obtain

C(t, Ãλ) =

(

C(t, A0 − λ) −
∫ t
0 C(t− s,A0 − λ)DA,L

λ (B̃ − λ)S(s, B̃ − λ)ds

0 C(t, B̃ − λ)

)

,

for all t ∈ �
. Integrating by parts we see that

∫ t
0 C(t− s,A0 − λ)DA,L

λ (B̃ − λ)S(s, B̃ − λ)ds

=
[

C(t− s,A0 − λ)DA,L
λ C(s, B̃ − λ)

]t

0

+
∫ t
0 (A0 − λ)S(t− s,A0 − λ)DA,L

λ C(s, B̃ − λ)ds

= DA,L
λ C(t, B̃ − λ) −C(t, A0 − λ)DA,L

λ

+
∫ t
0 (A0 − λ)S(t− s,A0 − λ)DA,L

λ C(s, B̃ − λ)ds,

for all t ∈ �
, and a straightforward matrix computation yields the claimed

formula.

Corollary 4.4.3. Let the assumptions of Proposition 4.4.2 hold. Then for all
λ ∈ ρ(A0) a necessary condition for (C(t,A− λ))t∈ � to be bounded is that both
(C(t, A0 − λ))t∈ � and (C(t, B̃ − λ))t∈ � be bounded as well.

Remarks 4.4.4. (a) Under the assumptions of Proposition 4.4.2, let further
A0 be invertible and B̃ = 0. Then we obtain that

C(t,A) =

(

C(t, A0) DA,L
0 − C(t, A0)D

A,L
0

0 I∂X

)

, t ∈ �
.

Thus, in this very special case (C(t,A))t∈ � is bounded if and only if (C(t, A0))t∈ �
is bounded. Integrating this formula one sees that the associated sine operator
function is

S(t,A) =

(

S(t, A0) tDA,L
0 − S(t, A0)D

A,L
0

0 tI∂X

)

, t ∈ �
.

This shows that, under these assumptions, (S(t,A))t∈ � is never bounded, be
(S(t, A0))t∈ � bounded or not.

(b) Consider the abstract second order problem with inhomogeneous bound-
ary conditions

(4.11)







v̈(t) = Av(t), t ∈ �
,

Lv(t) = jt+ h, t ∈ �
,

v(0) = f ∈ X, v̇(0) = g ∈ X,
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with h, j ∈ ∂X. Differentiating the second equation twice, one can rewrite (4.11)
as (dAIBVP2

f,g,h,j), with B = B̃ = 0. Theorems 1.4.3 and 4.2.2 yield that (4.11)
has a unique mild solution for all f ∈ Y , g ∈ X, h ∈ ∂Y , and j ∈ ∂X if and only
if A0 generates a cosine operator function with associated phase space Y ×X.

If we additionally assume A0 to be invertible, then by (a) such a solution is
given by

v(t) = C(t, A0)f + S(t, A0)g +DA,L
0 h− C(t, A0)D

A,L
0 h

+tDA,L
0 j − S(t, A0)D

A,L
0 j, t ∈ �

,

and it is classical if f ∈ D(A), g ∈ Y , h ∈ D(B̃), j ∈ ∂Y , and if the compati-
bility condition Lf = g is satisfied.

(c) It is worth to remark that if B ∈ L(Y, ∂X) and B̃ ∈ L(∂X), then by
Corollary B.16 the estimate

‖u(t) − v(t)‖X ≤ tM, 0 ≤ t ≤ 1,

holds for the mild solution u to (dAIBVP2
f,0,h,0), where M > 0 is a suitable

constant, and v is the mild solution to (2.11) obtained in (b).

4.5 Asymptotic behavior

As in the previous one, throughout this section we only impose the Assump-
tions 4.1.1.

We first obtain a result that complements [GGG03, § 5].

Lemma 4.5.1. The following assertions hold.

(1) Let the Assumptions 4.1.1 be satisfied. Then the reduction matrix associated
to A has compact resolvent if and only if the embeddings [D(A0)] ↪→ Y ↪→ X
and [D(B̃)] ↪→ ∂Y ↪→ ∂X are all compact.

(2) Let the Assumptions 4.3.1 be satisfied. Then the reduction matrix associated
to A has compact resolvent if and only if ∂X is finite dimensional and the
embeddings [D(A0)] ↪→ V ↪→ X are both compact.

Given two Banach spaces E,F such that E ↪→ F , we denote in the following
by iE,F the continuous embedding of E in F .

Proof. In the trivial case of finite dimensional spaces Y,X the claim holds at
once: from now on we therefore assume that dim Y = dim X = ∞. Our aim is
to exploit Lemma B.22 in both cases.

(1) Under the Assumption 4.2.1, the domain of the reduction matrix asso-
ciated to A is D(A) × Y, where Y = Y × ∂Y . Take λ ∈ ρ(A0) and recall that
the (restriction of the) operator Mλ defined in (2.2) is an isomorphism on Y,
but is not compact (because dim Y = ∞). Moreover, Mλ maps D(A) into
MλD(A) = D(A0) ×D(B̃). Since we can decompose

i[D(A)],Y = iD(A0)×D(B̃),Y ◦Mλ,
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the claim follows.
(2) Under the Assumptions 4.3.1, the domain of the reduction matrix asso-

ciated to A is D(A) × V, where

V =

{(

u

x

)

∈ Y × ∂X : Lu = x

}

.

Take λ ∈ ρ(A0) and observe that by Lemma 4.3.3 the (restriction of the) oper-
ator Mλ is an isomoprhism from V to W = V × ∂X. Thus, we can decompose

i[D(A)],V = M−1
λ ◦ i[D(A0)]×∂X,W ◦Mλ.

Likewise we obtain
iV ,X = iW ,X ◦Mλ.

Since Mλ is not compact (because dim X = ∞, we obtain that i[D(A)],V and
iV ,X are both compact if and only if i[D(A0)]×∂X,W and iW ,X are both compact,
and the claim follows.

Taking into account Lemma B.7.(4) and Corollary 2.2.3 we obtain the fol-
lowing.

Corollary 4.5.2. Let A generate a cosine operator function. Then (S(t,A))t∈ �
is compact if and only if the embeddings [D(A0)] ↪→ X and [D(B̃)] ↪→ ∂X are
both compact.

Thus, under the Assumptions 4.3.1 a necessary condition for (S(t,A))t∈ �
to be compact is that ∂X be finite dimensional.

Proposition 4.5.3. Let A generate a cosine operator function. Assume the
embeddings of [D(A)] into the Kisyński space and of the Kisyński space into X
to be both compact. If (C(t,A))t∈ � is bounded, then it is also almost periodic. If
further A is invertible, then (S(t,A))t∈ � is almost periodic as well. If moreover
the inclusion

(4.12) Pσ(A0) ∪ {λ ∈ ρ(A0) : λ ∈ Pσ(B̃λ)} ⊂ −4π2α2 � 2

holds for some α > 0, then (C(t,A))t∈ � and (S(t,A))t∈ � are periodic.

Proof. The claims concerning almost periodicity hold by Lemma B.25 and B.27.
To check periodicity, by Lemma B.25 it suffices to prove that under our as-
sumptions Pσ(A) ⊂ −4π2α2 � 2 for some suitable α > 0. This follows by
Lemma 2.2.5.

Remarks 4.5.4. (a) Taking into account [EN00, Cor. V.2.15], one obtains
that Pσ(A0) ⊂ −4π2α2 � 2 for some α > 0 if (C(t, A0))t∈ � and (S(t, A0))t∈ �
are periodic. Thus, condition (4.12) holds in particular if (C(t, A0))t∈ � and
(S(t, A0))t∈ � are periodic and further λ 6∈ Pσ(B̃λ) for all λ ∈ ρ(A0).

(b) Let in particular the Assumptions 4.3.1 be satisfied. Since under the
assumptions of Proposition 4.5.3 A0 has compact resolvent and the operator
B̃λ, λ ∈ ρ(A0), is a scalar matrix (because ∂X is necessarily finite dimensional),
one sees that λ 6∈ Pσ(B̃λ) for all λ ∈ ρ(A0) reduces to check that a suitable
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scalar characteristic equation has no solution outside a set of countably many
points of the real negative halfline. We consider a concrete example of such a
characteristic equation in Example 4.5.5 below.

Example 4.5.5. Let us revisit the problem considered in Example 4.3.8, and
consider in particular the case p = 2, which will be useful in Chapter 5. Then
L2(0, 1) × � 2 equipped with the l2-norm becomes a Hilbert space.

Fix q ≡ 0, r ≤ 0, α0 = 1, α1 = −1, β0, β1 ≤ 0 such that (β0, β1) 6= (0, 0).
Integrating by parts one sees that for all u, v ∈ H 2(0, 1)

〈(

u′′ + ru 0
( u′(0)
−u′(1)

) (α0u(0)
α1u(1)

)

)

,

(

v
(v(0)
v(1)

)

)〉

= −
∫ 1
0 u

′(x)v′(x)dx+
∫ 1
0 r(x)u(x)v(x)dx+ β0u(0)v(0) + β1u(1)v(1),

hence the operator matrix A defined in (4.8)–(4.9) is self-adjoint and dissipative.
Likewise, one sees that 0 is not an eigenvalue of A, and since as shown below
Pσ(A) = σ(A), it follows that A is strictly negative definite.

Hence, if r ≤ 0 and (β0, β1) ∈
� 2
− \ {0, 0}, then by Remark B.18 the cosine

operator function generated by the operator matrix

A =









d2

dx2 + rI 0

(

δ′0
−δ′1

) (

β0 0
0 β1

)









with coupled domain

D(A) :=











u
(

x0

x1

)



 ∈ H2(0, 1) × � 2 : u(0) = x0, u(1) = x1







on the Hilbert space L2(0, 1)× � 2 is contractive and consists of self-adjoint op-
erators, and moreover the associated sine operator function is bounded. More-
over, again by Remark B.18, the associated Kisyński space is isomorphic to
[D((−A)

1
2 )]. We have already seen that in fact the Kisyński space is given by

(4.13) V :=











u
(

x0

x1

)



 ∈ H1(0, 1) × � 2 : u(0) = x0, u(1) = x1







,

but it is interesting to prove this in another way.
By [Ka95, Thm. VI.2.23] D((−A)

1
2 ) agrees with the form domain of A. The

sesquilinear form associated to A is

a(u, v) := −
∫ 1

0
u′(s)v′(s)ds+

∫ 1

0
r(s)u(s)v(s)ds+ β0u(0)v(0) + β1u(1)v(1),

whose form domain is exactly V. Moreover, the scalar product 〈·, ·〉V := −a(·, ·),
makes the reduction matrix associated to A dissipative – in other words, we
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obtain conservation of the energy of solutions to (4.1). This norm is actually
equivalent to the product norm as a consequence of the generalized Poincaré
inequality, cf. [Ma85, § 1.1.11 and § 3.6.3].

The compactness of the embeddings H2(0, 1) ∩ H1
0 (0, 1) ↪→ H1

0 (0, 1) ↪→
L2(0, 1) implies that the embeddings [D(A0)] ↪→ V ↪→ X are both compact,
hence Lemma 4.5.1, Corollary 4.5.2, and the first part of Proposition 4.5.3 apply.
Therefore, (S(t,A))t∈ � is compact, and further (C(t,A))t∈ � and (S(t,A))t∈ �
are almost periodic.

Further, it is known that the spectrum of the second derivative on (0, 1)
with Dirichlet boundary conditions is σ(A0) =

{

−(πk)2 : k = 1, 2, . . .
}

. Hence,
to obtain periodicity of (C(t,A))t∈ � and (S(t,A))t∈ � , by Remark 4.5.4.(b) it is
sufficient that no λ ∈ ρ(A0) is an eigenvalue of the 2× 2 matrix B̃+BDA,L

λ . It
has been computed in [KMN03b, § 9] that a given λ ∈ ρ(A0) is an eigenvalue
of B̃ +BDA,L

λ if and only if it is a root of the characteristic equation

(4.14) λ2 + λ

(

1 +
2
√
λ

tanh
√
λ
− (β0 + β1)

)

− (β0 + β1)
√
λ

tanh
√
λ

+ β0β1 = 0.

Thus, if for given (β0, β1) ∈ � 2
− \ {0} the roots of (4.14) are contained in the

set {−(πk)2, k = 1, 2, . . .}, then the solution to (4.1) is periodic.

Example 4.5.6. We revisit the setting introduced in Example 4.2.3. We have
seen that A0 is the Neumann Laplacian ∆N , which generates a cosine operator
function with associated phase space H1(Ω) × L2(Ω), and B̃ is the Laplace–
Beltrami operator, which generates a cosine operator function with associated
phase space H1(∂Ω)×L2(∂Ω). By the compactness of the Sobolev embeddings
H2(Ω) ↪→ H1(Ω) ↪→ L2(Ω) and H2(∂Ω) ↪→ H1(∂Ω) ↪→ L2(∂Ω) it follows
that Lemma 4.5.1 and Corollary 4.5.2 apply. We conclude that the reduction
matrix associated to A defined in (4.2) has compact resolvent, and moreover
(S(t,A))t∈ � is compact. Finally, if B is defined as in (4.3), then A becomes self-
adjoint and dissipative and hence (C(t,A))t∈ � is contractive. Thus, it follows
by Proposition 4.5.3 that (C(t,A))t∈ � is almost periodic.

Example 4.5.7. We revisit the setting introduced in Example 4.3.8 and define
the operator matrix A as in (4.8)–(4.9). Observe that the Sobolev embeddings
W 2,p(0, 1) ∩W 1,p

0 (0, 1) ↪→ W 1,p
0 (0, 1) ↪→ Lp(0, 1) are both compact for all 1 ≤

p < ∞. Hence, we can apply Corollary 4.5.2 and conclude that (S(t,A))t∈ �
is compact. For the same reason, the analytic semigroup generated by A is
compact.

Moreover, in the special case of q = r ≡ 0, (C(t, A0))t∈ � = (C(t, A10))t∈ � is
given by (4.10), and one can check that ‖C(t, A10)‖L(Lp(0,1)) = 1 for all t ∈ �

and 1 ≤ p <∞. Hence if α0 = α1 = β0 = β1 = 0, then (C(t,A))t∈ � is bounded,
by Remark 4.4.4.(a), and almost periodic, by Proposition 4.5.3.
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Chapter 5

Complete second order

abstract problems with

dynamic boundary conditions

On a Banach space X let us consider a complete abstract second order problem

ü(t) = Au(t) +Cu̇(t), t≥ 0.

We equip such a problem with abstract second order dynamic boundary condi-
tions represented by an equation

ẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t≥ 0,

on another Banach space ∂X. Here the relation between the variables u and x
is expressed by

x(t) = Lu(t), t ≥ 0,

or else by
ẋ(t) = Lu̇(t), t ≥ 0.

Thus, our framework is different from that considered in Section 3.2. We want
to investigate well-posedness of such a system. The case of purely boundary
damping (i.e., C = 0) has already been considered in Remark 4.2.4. Hence, in
this chapter we will focus on the case C 6= 0.

5.1 General setting

We impose the following throughout this chapter.

Assumptions 5.1.1.

1. X, Y , and ∂X are Banach spaces such that Y ↪→ X.

2. A : D(A) → X and C : D(C) → X are linear.

3. L : D(A) ∩D(C) → ∂X is linear and surjective.
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4. B1 : D(A) → ∂X and B2 : D(C) → ∂X are linear.

5. B3 : D(B3) ⊂ ∂X → ∂X and B4 : D(B4) ⊂ ∂X → ∂X are linear and
closed.

To tackle the above problem we investigate the complete second order ab-
stract Cauchy problem

(cACP2)

{

ü(t) = Au(t) + Cu̇(t), t ≥ 0,
u(0) = f ∈ X , u̇(0) = g ∈ X ,

on the product space X := X × ∂X. Here

(5.1) A :=

(

A 0
B1 B3

)

and C :=

(

C 0
B2 B4

)

are operator matrices on X , and their domains will depend on “how unbounded
is the damping term C with respect to the elastic term A”, as we see next.

Hence, our aim in this chapter is to characterize the generator property of
(some part of) the reduction matrix

(5.2) � :=

(

0 ID(C)

A C

)

, D( � ) := D(A) ×D(C).

Example 5.1.2. The system







































ü(t, x) = −u′′′′(t, x) + u̇′′(t, x), t ≥ 0, x ∈ (0, 1),
u′′(t, j) = (−1)ju′(t, j) − u(t, j), t ≥ 0, j = 0, 1,
ü(t, j) = (−1)j+1u′′′(t, j) + (−1)ju′(t, j)

+(−1)j u̇′(t, j) − u(t, j) − u̇(t, j), t ≥ 0, j = 0, 1,
u(0, x) = f(x), x ∈ [0, 1],
u̇(0, x) = g(x), x ∈ (0, 1),
u̇(0, 0) = x0, u̇(0, 1) =x1,

is obtained by equipping a one-dimensional damped plate-like equation with
dynamic boundary conditions. We show that such a problem is governed by
an analytic, uniformly exponentially stable semigroup that acts on the phase
space

{(

u
(x0

x1

)

)

∈ H2(0, 1) × � 2 : u(0) = x0, u(1) = x1

}

×
(

L2(0, 1) × � 2
)

.

In particular, for all f ∈ H2(0, 1), g ∈ L2(0, 1), and x0, x1 ∈ � 2 such a system
admits a unique mild solution.

Since such a problem involves a fourth-order differential operator, we need
two boundary conditions: the first one (given by the second equation of the
system) can be looked at as a statical, generalized Wentzell boundary condition
(see, e.g., [FGGR01]) on the damping operator, while the second one (given by
the third equation of the system) is a dynamic, damped boundary condition on
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the elastic operator. Then, we can reformulate the problems as (cACP 2) on the
Hilbert space X = L2(0, 1) × � 2, where

A =









− d4

dx4 0

(

−δ′′′0 + δ′0
δ′′′1 − δ′1

) (

−1 0
0 −1

)









and C =









d2

dx2 0

(

δ′0
−δ′1

) (

−1 0
0 −1

)









with coupled domains

D(A) :=











u
(

x0

x1

)



 ∈ H4(0, 1) × � 2 : u(0) = x0, u(1) = x1,

u′′(0) − u′(0) + u(0) = 0, u′′(1) + u′(1) + u(1) = 0
}

,

and

D(C) :=











u
(

x0

x1

)



 ∈ H2(0, 1) × � 2 : u(0) = x0, u(1) = x1







.

We have shown in Example 4.5.5 that C is self-adjoint and strictly negative
definite. Moreover, taking into account Lemma 2.3.1 one can check that A =
−C2. By Lemma B.33.(2) we can now conclude that the reduction matrix �
(with domain D( � ) = D(A) × D(C)) defined in (5.2) generates an analytic,
compact, uniformly exponentially stable semigroup on the product space � =
[D(C)] ×X .

The crucial point in the above discussion is that a certain operator matrix is
self-adjoint and strictly negative definite. Checking that an operator matrix en-
joys such properties is usually an application of the Gauss–Green formulae. Our
goal is to develop a more abstract theory that permits to characterize the gener-
ator property of (some part of) � by means of its entries A,C,L,B1, B2, B3, B4.

As in Chapter 4, we need to distinguish the cases L 6∈ L(Y,X) and L ∈
L(Y,X). The final section is devoted to the overdamped case, i.e., the case of
a damping operator C that is “more unbounded” than the elastic operator A.

5.2 The damped case: L 6∈ L(Y, X)

Of concern in this section are complete second order abstract initial-boundary
value problems with dynamic boundary conditions of the form

(uAIBPV2)























ü(t) = Au(t) +Cu̇(t), t≥ 0,
ẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t≥ 0,
x(t) = Lu(t), t≥ 0,
u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X.
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Assumptions 5.2.1. We complement the Assumptions 5.1.1 by the following.

1. C is closed, D(A) ⊂ D(C), and [D(C)] is isomorphic to Y .

2.

(

0 IY
A0 C

)

with domain D(A0) ×D(C), where A0 := A|ker(L), generates

a C0-semigroup on Y ×X.

3.

(

A
L

)

: D(A) ⊂ Y → X × ∂X is closed.

4. B3 is bounded on ∂X.

5. B4 generates a C0-semigroup on ∂X.

We denote by [D(A)]YL the Banach space obtained by endowing D(A) with
the graph norm of the closed (from Y to X×∂X) operator

(

A
L

)

. It is clear that

if
(A
L

)

is closed as an operator from X to X × ∂X, then it is also closed as an
operator from Y to X × ∂X, and [D(A)]YL ↪→ [D(A)]L.

In order to reformulate (dAIBVP2) as (cACP2), we consider the operator
matrices A and C introduced in (5.1). The domain of A is

D(A) :=

{(

u
x

)

∈ D(A) × ∂X : Lu = x

}

,

throughout this section, while the domain of C is

D(C) := D(C) ×D(B4).

A direct matrix computation yields the following.

Lemma 5.2.2. The part in

� := Y × ∂X ×X × ∂X

of the operator matrix � defined in (5.2) is similar to

�
:=









0 IY 0 0
A C 0 0
0 0 0 I∂X
B1 B2 B3 B4









with domain

D(
�
) :=























u
x
v
y









∈ D(A) ×D(C) × ∂X ×D(B4) : Lu = x















on the Banach space �
:= Y ×X × ∂X × ∂X.
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The similarity transformation is performed by the operator matrix

�
:=









IY 0 0 0
0 0 IX 0
0 I∂X 0 0
0 0 0 I∂X









,

which is an isomorphism from � onto
�
.

In order to apply our abstract theory, we consider
�

as a 2 × 2 operator
matrix with diagonal domain. More precisely,

�
=

(

A I

B B̃

)

, D(
�
) = D(A) ×D(B̃),

where the block-entry A is an operator matrix with coupled domain defined by

A :=





0 IY 0
A C 0
0 0 0



 , D(A) :=











u
v
x



 ∈ D(A) ×D(C) × ∂X : Lu = x







,

on
X := Y ×X × ∂X.

Further,

I :=





0
0
I∂X



 , D(I) := ∂X,

is an operator from ∂X := ∂X to X, while

B :=
(

B1 B2 B3

)

, D(B) := D(A),

is an operator from X to ∂X. Finally,

B̃ := B4, D(B̃) := D(B4),

is an operator on ∂X.

Lemma 5.2.3. The operator matrix A generates a C0-semigroup on X. Such
a semigroup is analytic (resp., bounded) if and only if the semigroup considered
in the Assumption 5.2.1.2 is analytic (resp., bounded). Finally, A has compact
resolvent if and only if the embeddings [D(A0)] ↪→ Y ↪→ X are both compact
and dim ∂X <∞.

Proof. Consider A as

A =









0 IY 0

A C 0

0 0 0
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with coupled domain

D(A) =











(

u
v

)

x



 ∈
(

D(A) ×D(C)
)

× ∂X :
(

L 0
)

(

u

v

)

= x







.

The only non-zero block-entry

(

0 IY
A C

)

of A, restricted to
ker(

(

L 0
)

) = D(A0) ×D(C),

generates by Assumption 5.2.1.2 a C0-semigroup on Y ×X. Moreover,

(

L 0
)

: D(A) ×D(C) → ∂X

is surjective by Assumption 5.1.1.3. Finally, the operator matrix





(

0 IY
A C

)

(

L 0
)



 : D(A) ×D(C) ⊂ Y ×X → Y ×X × ∂X

is closed. To prove this let

(

un
vn

)

n∈ �
⊂ D(A) ×D(C), lim

n→∞

(

un
vn

)

=

(

u
v

)

in Y ×X,

and lim
n→∞





0 IY
A C
L 0





(

un
vn

)

= lim
n→∞





vn
Aun + Cvn

Lun



 =





v
w
z



 in Y×X×∂X.

Observe that limn→∞ un = u and limn→∞ vn = v hold with respect to the
norm of Y . Hence, it follows by Assumption 5.2.1.1 that limn→∞Cvn = Cv.
Moreover, since limn→∞Aun = w − Cv and limn→∞Lun = z, wo obtain by
Assumption 5.1.1.3 that u ∈ D(A), Au+ Cv = w, and Lu = z.

Hence, we have shown that the Assumptions 2.1.1 are satisfied and the
operator matrix A with coupled domain generates a C0-semigroup on X by
Theorem 2.2.8.(1). The analytic case follows by Theorem 2.2.8.(2). Further,
(etA)t≥0 is block-triangular and its lower-right entry is I∂X : hence, it is bounded
if and only if its upper-left block-entry (i.e., the semigroup considered in the
Assumption 5.2.1.2) is bounded. The assertion about the resolvent compactness
can be proven likewise.

We are now in the position to prove the main result of this section.

Theorem 5.2.4. Under the Assumptions 5.1.1 and 5.2.1 the following asser-
tions hold.

(1) If B1 ∈ L([D(A)]YL , [D(B4)]), B2 ∈ L(Y, [D(B4)]), and B3 ∈ L(∂X, [D(B4)]),
then the part of � in � generates a C0-semigroup.

75



(2) Let B1 ∈ L([D(A)]YL , ∂X), B2 ∈ L(Y, ∂X). If the two semigroups consid-
ered in the Assumptions 5.2.1.2–5 are both analytic, then � generates an
analytic semigroup on � .

(3) Let B1 = B2 = B3 = 0, B4 ∈ L(∂X). If the two semigroups considered in
the Assumptions 5.2.1.2–5 are bounded and uniformly exponentially stable,
respectively, then the semigroup generated by the part of � in � is bounded.

(4) The part of � in � has compact resolvent if and only if the embeddings
[D(A0)] ↪→ Y ↪→ X are both compact and dim ∂X <∞. If this is the case
and (2) (resp., (3)) applies, then the semigroup generated by the part of �
in � is compact (resp., asymptotically almost periodic).

Proof. By Lemma 5.2.2 it suffices to investigate the similar operator matrix
�

on
�
, instead of � on � .We decompose

�
:=

�
0 +

�
1 :=

(

A 0

B B̃

)

+

(

0 I

0 0

)

,

where the operator matrix
�

1 is bounded on
�
. Hence, the part of � in � is a

generator if and only if the lower triangular operator matrix
�

0 is a generator on�
. Observe that the diagonal block-entries of

�
0 both generate a C0-semigroup,

by Lemma 5.2.3 and Assumption 5.2.1.1)
(1) By the closed graph theorem [D(A)] ↪→ [D(A)]YL×Y ×∂X. Then the off-

diagonal entry B is bounded from [D(A)] to [D(B̃)]. Now it follows by [Na89,
Cor. 3.2] that

�
0 generates a C0-semigroup on

�
.

(2) The diagonal entries of
�

0 both generate analytic semigroups, on X and
∂X respectively. Moreover, the off-diagonal entry B is bounded from [D(A)] to
∂X. Now it follows by [Na89, Cor. 3.3] that

�
0 generates an analytic semigroup

on
�
.

(3) If B = 0, then
�

is an upper triangular matrix that generates a C0-

semigroup by (1). The diagonal entries (etA)t≥0 and (etB̃)t≥0 of such a semi-
group matrix are by assumption bounded and uniformly exponentially stable,
respectively. Then the boundedness of (et � )t≥0, and hence of (et � )t≥0 can be
proven mimicking the proof of Corollary 2.2.2.(2), taking into account [Na89,
Prop. 3.1].

(4) The block-diagonal operator matrix
�

has compact resolvent if and only
its diagonal block-entries A and B̃ on X and ∂X, respectively, have compact
resolvent. Then, we just need to apply Lemma 5.2.3. The claim about asymp-
totical almost periodicity holds by Lemma A.8.(1).

5.3 The damped case: L ∈ L(Y, X)

Assumptions 5.3.1. We complement the Assumptions 5.1.1 by the following.

1. V is a Banach space such that V ↪→ Y .

2. L can be extended to an operator that is bounded from Y to ∂X, which
we denote again by L, and such that ker(L) = V .
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3. C is closed, D(A) ⊂ D(C), and [D(C)] is isomorphic to Y .

4. A0 := A|D(A)∩ker(L) is invertible.

5.

(

0 IV
A0 C0

)

with domain D(A0) ×D(C0), where C0 := C|ker(L), generates

a C0-semigroup on V ×X.

6.

(

A
L

)

: D(A) ⊂ Y → X × ∂X is closed.

7. B3 is bounded on ∂X.

8. B4 generates a C0-semigroup on ∂X.

As in the previous section, we denote by [D(A)]YL the Banach space obtained
by endowing D(A) with the graph norm of the closed (from Y to X × ∂X)
operator

(

A
L

)

.

Consider the non-diagonal Banach space � defined by

� :=

{(

u
x

)

∈ Y × ∂X : Lu = x

}

×X × ∂X.

Motivated by the results of Section 4.3, we investigate the part in � (rather
than in

� := Y × ∂X ×X × ∂X,

as in the previous section) of the reduction matrix � defined in (5.2).
The initial value problem associated to

(5.3) ˙� (t) = � � (t), t≥ 0,

on � is formally equivalent to (dAIBVP2) on X and ∂X, if we identify

� (t) ≡









u(t)
Lu(t)
v(t)
y(t)









, t ≥ 0.

The first coordinate of (5.3) reads

du

dt
(·) = v(·),

where the limit is to be understood with respect to the norm of Y . Hence,
taking into account the coupling incorporated in the definition of the Banach
space � and reasoning as in (1.9), we obtain that for a function

� (·) ≡









u(·)
Lu(·)
v(·)
y(·)









∈ C1(
�
, � )
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(hence in particular for a solution to (5.3)) there holds

(5.4) y(·) =
d(Lu)

dt
(·) = L

du

dt
(·) = Lv(·),

where we have used the assumption L ∈ L(Y, ∂X).

Summing up, the systems we are concerned with in this section are of the
form

(mAIBPV2)























ü(t) = Au(t) + Cu̇(t), t≥ 0,
ẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t≥ 0,
x(t) = Lu(t), ẋ(t) = Lu̇(t), t≥ 0,
u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X. Taking into account (5.4), observe that (mAIBVP2) can there-
fore be reformulated as the initial value problem associated to

˙� (t) = � � (t), t≥ 0,

again on the Banach space � . Here the operator matrix � is given by

� :=









0 0 IY 0
0 0 L 0
A 0 C 0
B1 B3 B2 B4









.

with domain

D( � ) :=























u
v
x
y









∈ D(A) × ∂X ×D(C) ×D(B4) : Lu = x, Lv = y















.

Our aim in the remainder of this section is hence to characterize the generator
property of (some part of) � .

A direct matrix computation yields the following.

Lemma 5.3.2. The part in � of the operator matrix � is similar to

�
:=









0 IY 0 0
A C 0 0
0 L 0 0
B1 B2 B3 B4









with domain

D(
�
) :=























u
v
x
y









∈ D(A0) ×D(C) × ∂X ×D(B4) : Lu = x, Lv = y















78



on the Banach space

�
:=











u
v
x



 ∈ Y ×X × ∂X : Lu = x







× ∂X.

The similarity transformation is performed by the operator matrix

�
:=









IY 0 0 0
0 0 IX 0
0 I∂X 0 0
0 0 0 I∂X









,

which is an isomorphism from � onto
�
.

To investigate the generator property of
�
, we consider it as a 2×2 operator

matrix with coupled domain, i.e.,

�
=

(

A 0

B B̃

)

, D(
�
) =

{(

u

x

)

∈ D(A) ×D(B̃) : Lu = x

}

.

Here A is an operator matrix with coupled domain defined by

A :=





0 IY 0
A C 0
0 L 0



 , D(A) :=











u
v
x



 ∈ D(A) ×D(C) × ∂X : Lu = x







,

on the Banach space

X :=











u
v
x



 ∈ Y ×X × ∂X : Lu = x







.

Further,
L :=

(

0 L 0
)

, D(L) := D(A), and

B :=
(

B1 B2 B3

)

, D(B) := D(A),

are operators from X to ∂X := ∂X. Finally,

B̃ := B4, D(B̃) := D(B4),

is an operator on ∂X.

Reasoning as in Lemma C.1 and Lemma C.4 one can see that under the
Assumptions 5.1.1 and 5.3.1 the Dirichlet operator DA,L

0 associated to (A,L)
exists as a bounded operator from ∂X to Y . Using such an operator to “decou-
ple” the non-diagonal Banach space X (similarly to what we did in Section 4.3),
we obtain the following.

Lemma 5.3.3. The restriction A0 of A to ker(L) generates a C0-semigroup on
X. Such a semigroup is analytic (resp., bounded) if and only if the semigroup
considered in the Assumption 5.3.1.5 is analytic (resp., bounded). Finally, A0

has compact resolvent if and only if the embeddings [D(A0)] ↪→ V ↪→ X are
both compact and dim ∂X <∞.
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Proof. Define the product Banach space

X̂ := V ×X × ∂X

and the operator

(5.5) S :=





IY 0 −DA,L
0

0 IX 0
0 0 I∂X



 .

Then it can be shown (essentially like in the proof of Lemma 4.3.3) that S is
an isomorphism from X onto X̂.

A direct matrix computation yields that the restriction A0 of the operator
matrix A to ker(L) is similar via S to

Â :=





0 IV 0
A0 C0 0
0 0 0



 , D(Â) := D(A0) ×D(C0) × ∂X,

on the product Banach space X̂. Such an operator matrix with diagonal domain
generates a C0-semigroup by Assumption 5.3.1.5. The analytic case follows by

Theorem 2.2.8.(2). Further, (etÂ)t≥0 is block-diagonal and its lower-right entry
is I∂X : hence, it is bounded if and only if its upper-left block-entry (i.e., the
semigroup considered in the Assumption 5.3.1.2) is bounded. The assertion
about the resolvent compactness follows by Corollary 2.2.3.

The following can be proven similarly to Lemma 1.3.3.

Lemma 5.3.4. The operator matrices A on X and
(

A
L

)

from X to X×∂X are
both closed, and their graph norms are equivalent.

Lemma 5.3.5. The Dirichlet operators associated to the pair (A,L) exist as
bounded operators from ∂X to Z for every Banach space Z satisfying D(A∞) ⊂
Z ↪→ X. Moreover, the Dirichlet operator D

A,L
λ is given by

D
A,L
λ :=







1
λD

A
λ

+C,L

λ

D
A
λ

+C,L

λ
1
λI∂X






for λ large enough.

Proof. It has already been proven in Lemma 5.3.3 and Lemma 5.3.4 that A0

generates a C0-semigroup on X and that
(

A
L

)

is a closed operator from X to

X × ∂X, respectively. The surjectivity of L from D(A) to ∂X is a direct
consequence of Assumptions 5.1.1.3 and 5.3.1.1. Thus, the existence and the
boundedness of the Dirichlet operators associated to the pair (A,L) follow by
Lemma C.1 and Lemma C.4.

To obtain the claimed representation, take x := y ∈ ∂X = ∂X. By defini-
tion the Dirichlet operator D

A,L
λ maps x into the unique vector

u :=





u
v
Lu



 ∈ D(A) such that

{

Au = λu,
Lu = x,
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or rather














v = λu,
Au+ Cv = λv,

Lv = λLu,
Lv = y.

Thus, we see that 1
λAv + Cv = λv, whence v = D

A
λ

+C,L

λ y, and the claim
follows.

We are now in the position to prove the main result of this section, which
parallels Theorem 5.2.4.

Theorem 5.3.6. Under the Assumptions 5.1.1 and 5.3.1 the following asser-
tions hold.

(1) Let B1 ∈ L([D(A)]YL , ∂X), B2 ∈ L(Y, ∂X) and B4 ∈ L(∂X). Then the part
of � in � generates a C0-semigroup if the reduction matrix

(

0 IV

A0 −D
A
λ

+C,L

λ B1 C0 −D
A
λ

+C,L

λ B2

)

with domain D(A0) ×D(C0)

generates a C0-semigroup on V ×X for some λ large enough.

(2) Let B1 ∈ L(Y, ∂X) and B2 ∈ L(X, ∂X). Then the part of � in � generates
an analytic semigroup if and only if the two semigroups considered in the
Assumptions 5.3.1.5–8 are both analytic.

(3) Let the semigroups considered in the Assumptions 5.3.1.5–8 be both ana-
lytic. Assume that for some 0 < α < 1 there holds Y ↪→ [V,X]1−α. If fur-
ther B1 ∈ L([D(A)]YL , [D(B4), ∂X]α), B2 ∈ L(Y, ∂X)∩L(V, [D(B4), ∂X]α),
and B3 ∈ L(∂X, [D(B4), ∂X]α), then the part of � in � generates an ana-
lytic semigroup.

(4) Let B1 = B2 = B3 = 0, B4 ∈ L(∂X). If the two semigroups considered
in the Assumptions 5.3.1.5–8 are bounded and uniformly exponentially sta-
ble, respectively, then the the semigroup generated by the part of � in � is
bounded.

(5) The part of � in � has compact resolvent if and only if the embeddings
[D(A0)] ↪→ V ↪→ X are both compact and dim ∂X <∞. If this is the case
and (2) or (3) (resp., (4)) apply, then the semigroup generated by the part
of � in � is compact (resp., asymptotically almost periodic).

Proof. By Lemma 5.3.2 the part of � in � is a generator if and only if the
operator matrix

�
is a generator on

�
.

It has been shown in the proof of Lemma 5.3.5 that the spaces X, ∂X and
the operators A,L satisfy the Assumptions 2.1.1. Hence the operator matrix
with coupled domain

�
can be studied by means of the results of Chapter 2.

(1) By Lemma 5.3.4 the graph norms of A and
(

A
L

)

are equivalent, hence it

follows by the closed graph theorem that [D(A)]L ↪→ [D(A)]YL ×Y ×∂X. Thus,
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by assumption B is bounded from [D(A)]L to ∂X. Therefore, the claim follows

by Theorem 2.2.8.(1) if we can prove that A0 −D
A,L
λ B on X, or equivalently

the similar operator S
(

A0 −D
A,L
λ B

)

S−1 on X̂ = V × X × ∂X generate a

C0-semigroup, where S is defined as in (5.5).
Take into account the proof of Lemma 5.3.3 and compute the operator

matrix SD
A,L
λ BS−1 on X̂. By Lemma 5.3.5 we obtain that, if the Dirichlet

operator D
A,L
λ exists, then

SD
A,L
λ BS−1 =









0 0 0

D
A
λ

+C,L

λ B1 D
A
λ

+C,L

λ B2 D
A
λ

+C,L

λ

(

B3 +B1D
A,L
0

)

1
λB1

1
λB2

1
λ

(

B3 +B1D
A,L
0

)









.

Summing up, if D
A,L
λ exists, then A0 −D

A,L
λ B is similar to

Â − SD
A,L
λ BS−1 =









0 IV 0

A0 −D
A
λ

+C,L

λ B1 C0 −D
A
λ

+C,L

λ B2 0

1
λB1

1
λB2 0









+











0 0 0

0 0 D
A
λ

+C,L

λ

(

B3 +B1D
A,L
0

)

0 0 1
λ

(

B3 +B1D
A,L
0

)











.

Now the second operator on the right-hand side is bounded on X̂, while the first
one is a block-diagonal matrix. Since the lower-left block-entry is by assumption
bounded from the domain of the upper-left block-entry (i.e., D(A0) ×D(C0))
to ∂X, by [Na89, Cor. 3.2] we conclude that the claim follows.

(2) Observe that by assumption B ∈ L(X, ∂X). Hence the claim is a direct
consequence of Theorem 2.2.8.(2) and Lemma 5.3.3.

(3) Taking into account Lemma 5.3.3, A0 and B̃ generate analytic semi-
groups on X and ∂X, respectively. Moreover, one sees that the interpolation
spaces between [D(A0)] and X are given by

[D(A0),X]ε =











u
v
x



 ∈ [D(A), Y ]ε × [V,X]ε × ∂X : Lu = x







for 0 < ε < 1. Hence, by assumption [D(A)]L ↪→ [D(A0),X]α. Further,
[D(A0)] ↪→ [D(A)]YL × V × ∂X and consequently B ∈ L([D(A)]L, ∂X) ∩
L([D(A0)], [D(B̃), ∂X]α), and the claim follows by Theorem 2.2.8.(3).

(4) There holds B = 0, and the claim follows by Corollary 2.2.2.(2) and
Lemma 5.3.3.

(5) By Corollary 2.2.3, the part of the operator matrix
�

with coupled
domain has compact resolvent if and only if A0 and B̃ have compact resolvent.
Hence the claim follows by Lemma 5.3.3 and Lemma A.8.(1).
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5.4 The overdamped case

Of concern in this section are complete second order abstract initial-boundary
value problems with dynamic boundary conditions of the form

(oAIBPV2)























ü(t) = Au(t) + Cu̇(t), t≥ 0,
ẍ(t) = B1u(t) +B2u̇(t) +B3x(t) +B4ẋ(t), t≥ 0,
ẋ(t) = Lu̇(t), t≥ 0,
u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X,

on X and ∂X. Observe that the coupling relation expressed by the third equa-
tion is not the same of (uAIBPV2) or (mAIBPV2).

Assumptions 5.4.1. We complement the Assumptions 5.1.1 by the following.

1. D(C) ⊂ D(A) ⊂ Y .

2. C0 := C|ker(L) is densely defined and has nonempty resolvent set.

3.

(

C
L

)

: D(C) ⊂ X → X × ∂X is closed.

4. B2 : [D(C)]L → ∂X is bounded.

In order to reformulate (oAIBVP2) as (cACP2), we consider the operator
matrices A and C introduced in (5.1). The domain of C will be

D(C) :=

{(

u
x

)

∈ D(C) ×D(B4) : Lu = x

}

throughout this section, while the domain of A is either diagonal or coupled,
i.e.,

(5.6)

{(

u
x

)

∈ D(A) ×D(B3) : Lu = x

}

.

We show sufficient conditions under which a suitable part of the reduction
matrix � defined in (5.2) is a generator, i.e., under which (cACP 2) is governed
by a C0-semigroup.

Proposition 5.4.2. Let D(A) = D(C) and D(B3) = D(B4). If
(A
L

)

is closed
and B1 ∈ L([D(A)]L, ∂X), then the following assertions hold.

(1) Let B2 ∈ L(X, ∂X) and B4 ∈ L(∂X). Then � with domain D( � ) = D(C)×
D(C) generates a C0-semigroup on [D(C)] × X if and only if C0 generates
a C0-semigroup on X.

(2) Let B2 ∈ L(X, ∂X). Then � with domain D( � ) = D(C) ×D(C) generates
an analytic semigroup on [D(C)] × X if and only if C0 and B4 generate
analytic semigroups on X and ∂X, respectively.
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(3) Let C0 and B4 generate anayltic semigroups on X and ∂X, respectively.
If for some 0 < α < 1 there holds [D(C)]L ↪→ [D(C0), X]α and further
B2 ∈ L([D(C0)], [D(B4), ∂X]α), then � with domain D( � ) = D(C) ×D(C)
generates an analytic semigroup on [D(C)] ×X .

Proof. First of all, observe that by Lemma 1.1.2.(1) the operator matrix A on
X defined in (5.1) with coupled domain as in (5.6) is closed. Moreover, by
assumption D(A) = D(C). If we can prove that C is a generator, then the claim
follows by Lemma B.31 and the closed graph theorem.

Under the assumptions of (1) (resp., of (2), of (3)), the operator matrix C
on X generates a C0-semigroup by Theorem 2.2.8.(1) and Remark 2.2.11 (resp,
generates an analytic semigroup by Theorem 2.2.8.(2), generates an analytic
semigroup by Theorem 2.2.8.(3)).

Remark 5.4.3. Look back at the original problem and observe we obtain
automatically a regularity result for solutions to (oAIBVP2), if Lemma 5.4.2
applies. More precisely, the part of � in D(C) × D(C) is not exactly associ-
ated to (oAIBVP2), but rather to (oAIBVP2) complemented with the extra
compatibility condition

x(t) = Lu(t), t ≥ 0,

(i.e., to (mAIBVP2) as in Section 5.3).

In the following two propositions we show that we can also permit a more
unbounded damping operator C, provided it generates a cosine operator func-
tion. Recall that a generator of a cosine operator function also generates an
analytic semigroup of angle π

2 .

Proposition 5.4.4. Consider a Banach space ∂Y such that D(B4) ⊂ ∂Y ↪→
∂X. Let either B2 ∈ L([D(C0)], ∂Y ) or B2 ∈ L(Y, ∂X). If further

(5.7) A ∈ L(Y,X), B1 ∈ L(Y, ∂X), and B3 ∈ L(∂Y, ∂X),

then � with domain D( � ) = (Y × ∂Y ) × D(C) generates a cosine operator
function on

(Y × ∂Y ) × (X × ∂X)

if and only if C0 and B4 generate cosine operator functions with associated
phase space Y ×X and ∂Y × ∂X, respectively.

Proof. By Lemma 4.2.2 the operator matrix C generates a cosine operator func-
tion with associated phase space (Y × ∂Y ) × (X × ∂X) if and only if C0 and
B4 generate cosine operator functions with associated phase space Y ×X and
∂Y × ∂X, respectively. Moreover, by assumption A is bounded from Y × ∂Y
to X × ∂X, hence the claim follows by Lemma B.32.

Proposition 5.4.5. Consider a Banach space V such that V ↪→ Y . Assume
that L can be extended to Y and ker(L) = V . Let finally A,B1, B3 satisfy (5.7),
and B4 ∈ L(∂X). Then � with domain

D( � ) =

{(

u

x

)

∈ Y × ∂X : Lu = x

}

×D(C)
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generates a cosine operator function on

{(

u

x

)

∈ Y × ∂X : Lu = x

}

× (X × ∂X)

if and only if C0 −DC,L
λ B2 generates a cosine operator function with associated

phase space V ×X for some λ ∈ ρ(C0) if and only if C0 −DC,L
λ B2 generates a

cosine operator function with associated phase space V ×X for all λ ∈ ρ(C0),
where C0 is the restriction of C to D(C) ∩ ker(L).

Proof. By Theorem 4.3.4 the operator matrix C generates a cosine operator
function with associated phase space

{(

u

x

)

∈ Y × ∂X : Lu = x

}

× (X × ∂X)

if and only if C0−DC,L
λ B2 generates a cosine operator function with associated

phase space V ×X for some λ ∈ ρ(C0) if and only if C0 −DC,L
λ B2 generates a

cosine operator function with associated phase space V ×X for all λ ∈ ρ(C0).
Moreover, by assumption A is bounded from Y × ∂X to X × ∂X, hence the
claim follows by Lemma B.32.

Remark 5.4.6. As in Remark 5.4.3, we notice that under the assumptions of
Proposition 5.4.5 the semigroup generated by the part of � yields a solution to
(oAIBVP2) that moreover satisfies the additional condition

x(t) = Lu(t), t ≥ 0.
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Appendix A

Basic results on semigroups of

linear operators

Throughout this Appendix, A will be an operator on a Banach space X. Con-
sider the the abstract Cauchy problem

(ACPf )

{

u̇(t) = Au(t), t ≥ 0,
u(0) = f ∈ X.

(We can also replace t ≥ 0 by t ∈ �
.) If it is clear from the context which initial

data f we are considering, we will simply write (ACP) instead of (ACPf,g).
In the context of the theory of C0-semigroups the following is standard,

cf. [EN00, § II.6].

Definition A.1. A classical solution to (ACPf ) is a function u(·) such that

• u(·) ∈ C1(
�

+, X),

• u(t) ∈ D(A) for all t ≥ 0, and

• (ACPf ) is satisfied.

The problem (ACPf ) is called well-posed (in the Banach space X) if

• D(A) is dense in X,

• (ACPf ) admits a unique classical solution u(·, f) for all f ∈ D(A), and

• for every sequence of initial data (fn)n∈ � ⊂ D(A) tending to 0 there holds
limn→∞ u(t, fn) = 0 uniformly for t in compact intervals.

We can also relax the notion of solution and introduce the following.

Definition A.2. A mild solution to (ACPf ) is a function u(·) such that

• u(·) ∈ C(
�

+, X),

•
∫ t
0 u(s)ds ∈ D(A) for all t ≥ 0, and
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• u(·) satisfies the integrated problem

u(t) = f +A

∫ t

0
u(s)ds, t ≥ 0.

The following result is well-known, cf. [EN00, Prop. II.6.2, Prop. II.6.4, and
Cor. II.6.9] and [ABHN01, Thm. 3.1.12].

Lemma A.3. Let A be a closed operator on a Banach space X. Then the
following are equivalent.

(i) The operator A generates a C0-semigroup on X.

(ii) The problem (ACPf ) is well-posed.

(iii) The problem (ACPf ) admits a unique mild solution for all f ∈ X.

If (i) holds, then the unique classical (resp., mild) solution to (ACPf ) is given
by

u(t) := etAf, t ≥ 0,

for all f ∈ D(A) (resp., f ∈ X).

Lemma A.4. Let X,Y be Banach space, and let U be an isomorphism from
X onto Y . Then an operator A on X generates a C0-semigroup on X if and
only if UAU−1 generates a C0-semigroup on Y , and in this case

UetAU−1 = etUAU
−1
, t ≥ 0.

Lemma A.5. Let A generate a C0-semigroup on a Banach space X. Then
etA maps D(An) into itself for all t ≥ 0 and all n ∈ �

. If it is immediately
differentiable, then in fact etA maps X into D∞(A) for all t > 0.

Here and in the following, for a sectorial operator A on X we denote by
[D(A), X]α, 0 < α < 1, the associated (complex) interpolation space, cf. [Lu95,
Chapt. 1] for the abstract theory and [LM72, Vol. I, Chapt. 1] for concrete
spaces.

The following perturbation results are well-known. We refer to [EN00,
Chapt. 3] for more results in this field.

Lemma A.6. Let A generate a C0-semigroup. Then the following assertions
hold.

(1) If B ∈ L(X), then A+B generates a C0-semigroup as well. Such a semi-
group is analytic if and only if the semigroup generated by A is analytic.
Moreover, the estimate

‖etA − et(A+B)‖ ≤ tM, 0 ≤ t ≤ 1,

holds, for some M > 0.

(2) If B ∈ L([D(A)]), then A + B generates a C0-semigroup as well. Such a
semigroup is analytic if and only if the semigroup generated by A is analytic.

87



(3) Let the semigroup generated by A be analytic. If B ∈ L ([D(A)], [D(A), X]α),
0 < α < 1, then A+B generates an analytic semigroup as well.

While considering (incomplete) second order problems, a key asymptotical
notion is that of (asymptotical) almost periodicity. We recall this concept,
cf. [ABHN01, § 4.5, § 5.4, and references therein].

Definition A.7. Let an operator A generate a bounded C0-semigroup on a
Banach space X. Then (etA)t≥0 is called asymptotically almost periodic if
X = X0 ⊕Xap, where

X0 :=
{

x ∈ X : lim
t→∞

‖etAx‖ = 0
}

and

Xap := span {x ∈ D(A) : Ax = iηx for some η ∈ � } .

If A generates a bounded C0-group, then (etA)t∈ � is called almost periodic if
X = Xap with Xap defined as above.

The following holds by [ABHN01, Rem. 4.5.13 and Prop. 5.4.7] and [EN00,
Thm. IV.2.26].

Lemma A.8. Let A be an operator on a Banach space X. If the embedding
[D(A)] ↪→ X is compact, then the following assertions hold.

(1) If A generates a bounded C0-semigroup, then it is asymptotically almost
periodic. Such a C0-semigroup is periodic if and only if Xap = X and
further

(A.1) Pσ(A) ⊂ 2πiα
�

for some α > 0.

(2) If A generates a bounded C0-group, then it is almost periodic. Such a C0-
group is periodic if and only if (A.1) holds.
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Appendix B

Basic results on cosine

operator functions and

complete second order

problems

Definition B.1. Let X be a Banach space. A strongly continuous function
C :

� → L(X) is called a cosine operator function if it satisfies the D’Alembert
functional relations

{

C(t+ s) + C(t− s) = 2C(t)C(s), t, s ∈ �
,

C(0) = IX .

As for the case of C0-semigroups, it is possible to associate to any cosine
operator function a unique generator.

Definition B.2. Consider a cosine operator function (C(t))t∈ � on a Banach
space X. Then we call

Ax := lim
t→0

2

t2
(C(t)x− x), D(A) :=

{

x ∈ X : lim
t→0

2

t2
(C(t)x− x) exists

}

,

the generator of (C(t))t∈ � , and denote C(t) = C(t, A), t ∈ �
.

A real characterisation of generators of cosine operator functions is due
to M. Sova, in analogy to the theorem of Hille–Yosida. Moreover, H.O. Fat-
torini has proven that on UMD-spaces (i.e., Banach spaces on which the Hilbert
transform is bounded) generators of cosine operator functions are not far from
being squares of C0-group generators. Summing up, we can state the following,
cf. [ABHN01, Thm. 3.15.3 and Cor. 3.16.8].

Proposition B.3. Let A be a closed, densely defined operator on a Banach
space X. Then the following are equivalent.

(i) A generates a cosine operator function.
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(ii) There exist M ≥ 1 and ω ≥ 0 such that (ω2,∞) ⊂ ρ(A) and

(B.1)

∥

∥

∥

∥

(λ− ω)k+1 d
k

dλk
λR(λ2, A)

∥

∥

∥

∥

≤Mk! for λ > ω, k = 0, 1, 2, . . . .

If (i) and (ii) hold, then

(B.2) ‖C(t, A)‖ ≤Meω|t|, t ∈ �
.

If further X is a UMD-space, then (i)–(ii) are also equivalent to the following.

(iii) There exists a generator B of a C0-group on X such that A = B2 + ω′,
for some ω′ ≥ 0.

(If ω = 0, then we can take ω′ = 0.)

Remarks B.4. (a) Observe that if condition (ii) in the above proposition holds
with ω = 0, then in particular it follows from (B.1) with k = 0 that

∥

∥λ2R(λ2, A)
∥

∥ ≤M for all λ > 0.

In other words, a necessary condition for A to generate a bounded cosine op-
erator function is that A be sectorial and moreover that A generate a bounded
C0-semigroup (and in this case the bounds agree).

This condition is not sufficient, since there are examples of generators of
cosine operator functions A such that (C(t, A + ω))t∈ � is not bounded for any
ω ∈ �

, cf. [Go80, § 3].
(b) As an application of Proposition B.3 and the spectral theorem, one

obtains that every self-adjoint, dissipative (resp., upper bounded) operator on
a Hilbert space generates a contractive (resp., quasi-contractive, i.e., M =
0 in (B.2)) cosine operator function of self-adjoint operators, cf. [ABHN01,
Exa. 3.14.16].

To every cosine operator function (C(t, A))t∈ � is associated another strongly
continuous family of operators.

Definition B.5. Let (C(t, A))t∈ � be a cosine operator function on a Banach
space X. Then we define the associated sine operator function (S(t, A))t∈ � by

S(t, A)x :=

∫ t

0
C(s,A)xds, t ∈ �

, x ∈ X.

Remark B.6. If Proposition B.3.(iii) applies, then S(·, A) ∈ C(
�
,L(X, [D(B)])),

and D(B) agrees with the space of strong differentiability of (C(t, A))t∈ � ,
cf. [Go69, Thm. 2.1]. Moreover,

etB = C(t, A) +BS(t, A), t ∈ �
.

In the following we collect some basic properties of cosine and sine operator
functions, cf. [So66, § 2], [Ki72], [TW77], and [Lu82] (see also [Fa85, Chapt. II
and Chapt. V], [Go85, § 8], and [ABHN01, § 3.14-15]).

90



Lemma B.7. Let A generate a cosine operator function (C(t, A))t∈ � with as-
sociated sine operator function (S(t, A))t∈ � on a Banach space X. Then the
following properties hold.

(1) A generates an analytic semigroup of angle π
2 . Such a semigroup is bounded

if also (C(t, A))t∈ � is bounded.

(2) The functions C(·, A)x :
� → X and S(·, A)x :

� → X are even and odd,
respectively, for all x ∈ X.

(3) C(·, A)x ∈ C2(
�
, X) for all x ∈ D(A), and one has

d
dtC(t, A)x = AS(t, A)x = S(t, A)Ax,
d2

dt2C(t, A)x = AC(t, A)x = C(t, A)Ax,
t ∈ �

, x ∈ D(A).

(4) S(t, A) (resp., C(t, A)) is a compact operator for t in some interval of non-
zero length – or equivalently for all t ∈ �

– if and only if A has compact
resolvent (resp., if and only if dimX <∞).

(5) Let x ∈ X. If (C(t, A))t∈ � is bounded and limt→∞C(t, A)x = 0, then
x = 0.

(6) If (C(t, A))t∈ � is bounded, then σ(A) ⊂ (−∞, 0]. If moreover A is invert-
ible, then also (S(t, A))t∈ � is bounded.

(7) For λ ∈ �
large enough there holds

λR(λ2, A) =

∫ ∞

0
e−λtC(t, A)dt.

The following observation seems to be new.

Lemma B.8. A necessary condition for an invertible operator A to generate
a bounded cosine operator function on a UMD-space is that −A has a bounded
H∞(Σφ)-calculus for all φ > 0.

Proof. If (C(t, A))t∈ � is bounded, then by Proposition B.3 there exists a genera-
tor B of a C0-group such that A = B2. By Lemma B.7.(6) and Remark B.6 such
a C0-group is bounded. Hence, by [HP98, Cor. 4] −A has bounded H∞(Σφ)-
calculus for all φ > 0.

Lemma B.7.(3) shows that a cosine operator function (C(t, A))t∈ � is a nat-
ural candidate for the solution to the second order Cauchy problem

(ACP2
f,g)

{

ü(t) = Au(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,

for g = 0. Before making this intuition precise we need the following.

Definition B.9. Let V a Banach space such that [D(A)] ↪→ V ↪→ X. A
classical solution to (ACP2) in (V,X) is a function u(·) such that
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• u(·) ∈ C2(
�
, X) ∩C1(

�
, V ),

• u(t) ∈ D(A) for all t ∈ �
, and

• (ACP2
f,g) is satisfied.

The problem (ACP2) is called well-posed in (V,X) if

• The embeddings [D(A)] ↪→ V ↪→ X are both dense,

• (ACP2
f,g) admits a unique classical solution u = u(·, f, g) in (V,X) for all

f ∈ D(A), g ∈ V , and

• for every sequence of initial data (fn, gn)n∈ � ⊂ D(A) × V tending to 0
there holds limn→∞ u(t, fn, gn) = 0 uniformly for t in compact intervals.

We can also relax the notion of solution and introduce the following, cf. [ABHN01,
§ 3.14].

Definition B.10. Let V a Banach space such that [D(A)] ↪→ V ↪→ X. A mild
solution to (ACP2

f,g) in (V,X) is a function u(·) such that

• u(·) ∈ C1(
�
, X) ∩C(

�
, V ),

•
∫ t
0

∫ s
0 u(r)drds =

∫ t
0 (t− s)u(s)ds ∈ D(A) for all t ∈ �

,

• u(·) satisfies the integrated problem

u(t) = f + tg +A

∫ t

0
(t− s)u(s)ds, t ∈ �

.

Observe that, for any given Banach space V such that [D(A)] ↪→ V ↪→ X,
(ACP2

f,g) can be formally reduced to a first order abstract Cauchy problem

(ACPf )

{

u̇(t) = Au(t), t ∈ �
,

u(0) = f ∈ X,

on the product Banach space X := V ×X, where A is the operator matrix

(B.3) A :=

(

0 IV
A 0

)

, D(A) := D(A) × V,

on X. Here

u(t) :=

(

u(t)

u̇(t)

)

, t ∈ �
, and f :=

(

f

g

)

.

The intuitive equivalence of (ACP2) and (ACP) is precised in the following.

Theorem B.11. Let A be closed. For a Banach space V such that [D(A)] ↪→
V ↪→ X the following are equivalent.

(i) The problem (ACP2) is well-posed in (V,X).
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(ii) The problem (ACP2
f,g) admits a unique mild solution in (V,X) for all

f ∈ V , g ∈ X.

(iii) The operator A generates a cosine operator function on X and

V =
{

x ∈ X : C(·, A)x ∈ C1(
�
, X)

}

.

(iv) The operator matrix A generates a C0-group in X.

(v) The operator matrix A generates a C0-semigroup in X.

If (iii) and (iv) hold, then

(B.4) etA =

(

C(t, A) S(t, A)
AS(t, A) C(t, A)

)

, t ∈ �
.

Accordingly, the unique classical (resp., mild) solution to (ACP2
f,g) is given by

u(t) := C(t, A)f + S(t, A)g, t ∈ �
,

for all f ∈ D(A), g ∈ V (resp., f ∈ V , g ∈ X).

Proof. Take initial data f, g. To begin with, one can check directly that u(·) is

a classical (resp., mild) solution to (ACP(f
g)

) if and only if
(u(·)
u̇(·)

)

is a classical

solution (resp.,
( u(·)

g+A
R ·
0
u(s)ds

)

is a mild solution) to (ACP2
f,g). It follows that

(ACP2) is well-posed in (V,X) if and only if (ACP) is well-posed in the Banach
space X, and moreover that (ACP2

f,g) admits a unique mild solution in (V,X)
for all f ∈ V , g ∈ X if and only if (ACP(f

g)
) admits a unique mild solution in

X for all ∈ V , g ∈ X.
Since the operator matrix A is closed if (and only if) A is closed, by

Lemma A.3 the conditions (i) and (ii) are both equivalent to saying that the
operator matrix A generates a C0-group in X. Thus, the equivalence of (i),
(ii), and (iv) is proven.

To see that (v) implies (iv), observe that the reduction matrix A is similar
to −A via

(

IV 0
0 −IX

)

,

which is an isomorphism on X.
Finally, the equivalence of (iii) and (iv) is a celebrated result due to Kisyński,

cf. [Ki72, § 2], as well as the formula (B.4).

Remark B.12. Observe that (etA)t∈ � is bounded if and only if (C(t, A))t∈ � and
(S(t, A))t∈ � are bounded. Also, (etA)t∈ � is periodic if and only if (C(t, A))t∈ �
and (S(t, A))t∈ � are periodic (and in this case the periods coincide).

Take into account Lemma B.7.(7) and the inversion formula for the Laplace
transform: Then, it follows from the equivalence of (ii) and (iii) in Proposi-
tion B.11 that if (ACP2) is well-posed in (V1, X) as well as in (V2, X), then the
spaces V1 and V2 coincide. Such a space V , which is unique if it exists, deserves
a name.
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Definition B.13. Let A generate a cosine operator function. The (unique)
space V introduced in Proposition B.11 is called Kisyński space associated to
(C(t, A))t∈ � (or to A). The product space X = V × X is called phase space
associated to (C(t, A))t∈ � .

Theorem B.11 shows that the notion of phase space is the key to investigate
several properties of cosine operator function, using techniques that are already
developed in the context of C0-groups.

Lemma B.14. Let V1, V2, X1, X2 be Banach spaces with V1 ↪→ X1 and V2 ↪→
X2, and let U be an isomorphism from V1 onto V2 and from X1 onto X2.
Then an operator A generates a cosine operator function with associated phase
space V1 ×X1 if and only if UAU−1 generates a cosine operator function with
associated phase space V2 ×X2. In this case, there holds

UC(t, A)U−1 = C(t, UAU−1), t ∈ �
.

Proof. The operator matrix

U :=

(

U 0
0 U

)

is an isomorphism from V1 × X1 onto V2 × X2. Thus, by Lemma A.4 and
Lemma B.11 it follows that A defined as in (B.3) (with V := V1) generates a
C0-group on V1 ×X1 if and only if UAU−1 generates a C0-group on V2 ×X2.
Now

UAU−1 =

(

0 IV1

UAU−1 0

)

,

hence UAU−1 generates a C0-group on V2×X2 if and only if UAU−1 generates
a cosine operator function with associated phase space V2 ×X2.

Phase spaces also allow to obtain the following perturbation result.

Lemma B.15. Let A generate a cosine operator function with associated phase
space V ×X. Then A+B generates a cosine operator function with associated
phase space V × X as well, provided B is an operator that is either bounded
from [D(A)] to V , or bounded from V to X.

Proof. The operator matrix A defined in (B.3) generates a C0-group on X =
V ×X. Consider its perturbation

B :=

(

0 0
B 0

)

.

Since [D(A)] = [D(A)] × V , then by assumption either B ∈ L([D(A)]), or
B ∈ L(X). Thus, by Lemma A.6.(1),(2) also their sum

A + B =

(

0 IV
A+B 0

)

generates a C0-group on X, that is, A+B generates a cosine operator function
with associated phase space X.
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The following is a direct consequence of Lemma B.15 and Lemma A.6.(1).

Remark B.16. Let A generate a cosine operator function with associated
phase space V ×X. If B ∈ L(V,X), then the estimate

‖C(t, A) − C(t, A+B)‖ ≤ tM, 0 ≤ t ≤ 1,

holds, for some M > 0.

Even when it is known that a given operator A generates a cosine oper-
ator function, it is usually impossible to write down an explicit formula for
(C(t, A))t∈ � , and consequently to compute its space of strong differentiability,
i.e., its Kisyński space. Things look better if we work on a UMD-space.

Corollary B.17. Let A be the generator of a cosine operator function on a
UMD-space X. If (C(t, A − ω))t∈ � is bounded for some ω ∈ ρ(A), then the
associated Kisyński space is isomorphic to [D(A), X] 1

2
.

Proof. Lemma B.15 ensures that A − ω generates a cosine operator function
as well. By Remark B.4.(a) and Lemma B.8, the operator ω − A is invertible
and sectorial and has bounded H∞-calculus. In particular, ω−A has bounded
imaginary powers. It follows by [Tr78, § 1.15.3] that [D ((ω −A)α)] is isomor-
phic to [D(A− ω), X]1−α = [D(A), X]1−α for 0 < α < 1. In particular, [D(B)]
is isomorphic to [D(A), X] 1

2
, where B is the square root of ω−A introduced in

the proof of Lemma B.8. On the other hand, by Remark B.6 the Kisyński space
associated to (C(t, A − ω))t∈ � is [D(B)]. The proof is concluded by observing
that by Lemma B.15 the Kisyński space associated to (C(t, A − ω))t∈ � agrees
with the Kisyński space associated to (C(t, A))t∈ � .

Remark B.18. A corollary of Remark B.4.(b) and Corollary B.17 we derive
the following known result, cf. [GW03, Prop. 2.1]: Every self-adjoint, strictly
negative definite operator A on a Hilbert space H generates a (contractive)
cosine operator function (with associated (bounded) sine operator function,
cf. [Fa85, § V.6]) whose associated Kisyński space is isomorphic to [D(A),H] 1

2
.

With completely different methods the following has been proven by Rhandi
([Rh92, Thm. 1.2]).

Lemma B.19. Let A generate a cosine operator function. If B is an operator
such that D(A) ⊂ D(B) and moreover t0 > 0 and q < 1 can be chosen such
that

∫ t0

0
‖BS(s,A)f‖ds ≤ q‖f‖ for all f ∈ D(A),

then also A+B generates a cosine operator function, and the associated phase
spaces coincide.

Regularity can also be investigated by means of phase spaces.

Lemma B.20. Let A be an operator on a Banach space X, V a Banach space
such that [D(A)] ↪→ V ↪→ X. For the operator A defined in (B.3) there holds

D(A2k−1) = D(Ak) ×D((Ak−1)|V ) and D(A2k) = D((Ak)|V ) ×D(Ak)

for all k ∈ �
. In particular, D(A∞) = D∞(A) ×D∞(A).

95



Proof. The claim can be performed by induction on n, using the fact that

D((Ak)|Y ) = {u ∈ D(A) : Au ∈ D((Ak−1)|Y )}

and recalling that D(A) ⊂ V .

The following is an immediate consequence of Lemma A.5, Proposition B.11,
and Lemma B.20.

Corollary B.21. Let A generate a cosine operator function, and let f, g ∈
D(Ak). Then the classical solution u = u(t) to (ACP2

f,g) belongs to D(Ak) as
well, for all t ∈ �

.

Due to the key role played by the reduction matrix A, it is natural to
investigate some of its spectral properties.

Lemma B.22. Let A be a closed operator on a Banach space X, V a Banach
space such that [D(A)] ↪→ V ↪→ X. Then the reduction operator matrix A

introduced in (B.3) is closed. Moreover, its resolvent set is

ρ(A) =
{

λ ∈ �
: λ2 ∈ ρ(A)

}

,

and

R(λ,A) =

(

λR(λ2, A) R(λ2, A)
AR(λ2, A) λR(λ2, A)

)

, λ ∈ ρ(A).

If ρ(A) 6= ∅, then A has compact resolvent if and only if the embeddings
[D(A)] ↪→ V ↪→ X are both compact.

Let us now turn to the asymptotic behavior of solutions to a second order
problem. By Proposition B.3 and Lemma B.7.(5), a cosine operator function
has growth bound at least 0, and its space of strong stability can only be trivial.
Hence, we focus instead on results about (almost) periodicity.

The notion of almost periodicity for a cosine or sine operator function is less
obvious than that for a C0-group, cf. [ABHN01, Def. 4.5.6 and Thm. 4.5.7].

Definition B.23. Let (C(t))t∈ � be a bounded cosine operator function on a
Banach space X. Then (C(t))t∈ � is called almost periodic if for every x ∈ X
and every ε > 0 there exists a lenght l > 0 such that

{t > 0 : ‖C(t+ s)x− C(s)x‖ ≤ ε for all s ∈ � } ∩ [a, a+ l] 6= ∅

for all a ∈ �
.

We can likewise define then notion of almost periodicity for a bounded sine
operator function.

Remark B.24. The two notions of almost periodicity (for C0-groups and for
cosine/sine operator functions) are consistent: that is, if the group (etA)t∈ � de-
fined in (B.4) is almost periodic in the sense of Definition A.7, then its operator
entries are almost periodic in the sense of Definition B.23, cf. [ABHN01, § 4.5].
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Lemma B.25. Let A be the invertible generator of a bounded cosine operator
function with associated phase space V ×X. If the embeddings [D(A)] ↪→ V ↪→
X are both compact, then the following assertions hold.

(1) (C(t, A))t∈ � and (S(t, A))t∈ � are almost periodic.

(2) (C(t, A))t∈ � and (S(t, A))t∈ � are periodic (with same period) if and only if
Pσ(A) ⊂ −4π2α2 � 2 for some α > 0.

Proof. The key point of the proof is that by Lemma B.7.(6), Remark B.12 and
Lemma B.22 the reduction matrix A has compact resolvent and generates a
bounded C0-group (etA)t∈ � on X = V ×X, hence by Lemma A.8.(2) (etA)t∈ �
is almost periodic. The almost periodicity of (C(t, A))t∈ � and (S(t, A))t∈ � then
follows by Remark B.24.

To prove (2), observe that by Lemma B.22 one obtains Pσ(A) ⊂ 2πiα
�
.

Hence, the periodicity of (etA)t∈ � follows by Lemma A.8.(2).

Remarks B.26. (a) Let A be the invertible generator of a bounded cosine
operator function on a Banach spaceX. Then the conclusion of Lemma B.25.(1)
still holds if we only assume [D(A)] ↪→ X to be compact, and moreover X not
to contain c0, cf. [ABHN01, Rem. 5.7.6].

(b) Let A generate a cosine operator function. If (S(t, A))t∈ � is almost
periodic, then also (C(t, A))t∈ � is almost periodic, cf. [XL98, Thm. 7.1.7].

If no assumption is made on the invertibility of A, one can still investi-
gate the almost periodicity of (C(t, A))t∈ � only. As a consequence of [AB97,
Prop. 4.8] we obtain the following.

Lemma B.27. Let A generate a cosine operator function with associated phase
space V ×X. Assume (C(t, A))t∈ � to be bounded and the embeddings [D(A)] ↪→
V ↪→ X to be both compact. Then (C(t, A))t∈ � is almost periodic.

We will need the following, which is analogous to [Na89, Prop. 3.1].

Lemma B.28. Let A and D be generators of cosine operator functions with
associated phase space V ×X and W × Y , respectively. Consider an operator
H that is bounded from [D(D)] to X and the operator matrix

A :=

(

A H
0 D

)

, D(A) := D(A) ×D(D).

Then the operator matrix A generates a cosine operator function with associated
phase space (V ×W ) × (X × Y ) if and only if

∫ t

0
C(t− s,A)HS(s,D)ds, t ≥ 0,

can be extended to a family of operators from Y to X which is uniformly bounded
as t→ 0+. In this case, there holds

(B.5) C(t,A) =

(

C(t, A)
∫ t
0 C(t− s,A)HS(s,D)ds

0 C(t,D)

)

, t ∈ �
,
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and the associated sine operator function is

(B.6) S(t,A) =

(

S(t, A)
∫ t
0 S(t− s,A)HS(s,D)ds

0 S(t,D)

)

, t ∈ �

(up to considering the extensions from Y to X of the upper-right entries in (B.5)
and (B.6)).

Proof. The operator matrix A generates a cosine operator function with asso-
ciated phase space (V ×W ) × (X × Y ) if and only if the reduction matrix

� :=

(

0 IV×W

A 0

)

, D( � ) := (D(A) ×D(D)) × (V ×W ) ,

generates a C0-semigroup on (V ×W ) × (X × Y ). Define the operator matrix

U :=









IV 0 0 0
0 0 IX 0
0 IW 0 0
0 0 0 IY









,

which is an isomorphism from (V ×W ) × (X × Y ) onto (V ×X) × (W × Y )
with inverse

U
−1 :=









IV 0 0 0
0 0 IW 0
0 IX 0 0
0 0 0 IY









.

Then the similar operator matrix ˜� := U � U
−1 is given by

˜� =

(

A H

0 D

)

, D(˜� ) := D(A) ×D(D).

Here A is defined as in (B.3) and

D :=

(

0 IW
D 0

)

, H :=

(

0 0
H 0

)

, D(D) : D(H) := D(D) ×W.

By assumption A and D generate C0-semigroups on V × X and W × Y , re-
spectively. Moreover H ∈ L([D(D)], V ×X), and a direct computation shows
that

e(t−s)AHesD =

(

S(t− s,A)HC(s,D) S(t− s,A)HS(s,D)
C(t− s,A)HS(s,D) C(t− s,A)HS(s,D)

)

, 0 ≤ s ≤ t.

By virtue of [Na89, Prop. 3.1] we obtain that ˜� generates a C0-semigroup if and
only if the family of operators

∫ t

0
e(t−s)AHesDds, t ≥ 0,
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from W ×Y to V ×X is uniformly bounded as t→ 0+. Hence, if ˜� generates a
C0-semigroup, then in particular

∫ t
0 C(t−s,A)HS(s,D)ds is uniformly bounded

as t→ 0+.
Again by [Na89, Prop. 3.1]

et
˜� =

(

etA
∫ t
0 e

(t−s)AHesDds
0 etD

)

, t ≥ 0.

By Lemma A.4 et � = etU
−1˜� U = U

−1et
˜�
U, t ≥ 0. Thus, a direct computations

shows that the semigroup generated by � is given by













C(t, A)
∫ t
0 S(t− s,A)HC(s,D)ds S(t, A)

∫ t
0 S(t− s,A)HS(s,D)ds

0 C(t,D) 0 S(t,D)

AS(t, A)
∫ t
0 C(t− s,A)HC(s,D)ds C(t, A)

∫ t
0 C(t− s,A)HS(s,D)ds

0 DS(t,D) 0 C(t,D)













,

for t ≥ 0. Since by assumption � generates a cosine operator function with asso-
ciated phase space (V ×W )×(X × Y ), comparing the above formula with (B.4)
yields (B.5) and (B.6).

One can also check directly that the lower-right block-entry defines a cosine
operator function on X × Y . Further, integrating by parts one sees that the
upper-right and lower-right block-entries can be obtained by integrating the
upper-left and lower-left block-entries, respectively, and moreover that the di-
agonal blocks coincide. Hence, by definition of sine operator function, all the
blocks are strongly continuous families as soon as the lower-right is strongly
continuous. Consequently, if the family

∫ t
0 C(t− s,A)HS(s,D)ds is uniformly

bounded as t→ 0+, then the family
∫ t
0 e

(t−s)AHesDds is uniformly bounded as
t→ 0+, and the claim follows.

The following is the analogous of [Na89, Cor. 3.2].

Corollary B.29. Let A and D be closed operators, V,X,W, Y be Banach spaces
such that [D(A)] ↪→ V ↪→ X and [D(D)] ↪→ W ↪→ Y . Assume the operator H
to be bounded either from [D(D)] to V , or from W to X, and the operator K
to be bounded either from [D(A)] to W , or from V to Y . Then the operator
matrix

A :=

(

A H
K D

)

, D(A) := D(A) ×D(D),

generates a cosine operator function with associated phase space (V ×W ) ×
(X × Y ) if and only if A and D generate cosine operator functions with asso-
ciated phase space V ×X and W × Y , respectively.

Proof. It follows by Lemma B.28 that the diagonal matrix

A0 :=

(

A 0
0 D

)

, D(A0) := D(A),

generates a cosine operator function with associated phase space (V ×W ) ×
(X × Y ) if (and only if, since A0 is diagonal) A and D generate cosine operator
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functions with associated phase space V × X and W × Y , respectively. Now
consider perturbations of A0 given by the operator matrices

H :=

(

0 H
0 0

)

and K :=

(

0 0
K 0

)

.

Observe that both H and K are, by assumption, either bounded from [D(A)]×
[D(D)] to V ×W , or from V ×W to X × Y . By Lemma B.15 also their sum
A0 + H + K = A generates a cosine operator function with associated phase
space (V ×W ) × (X × Y ).

Introduce now a closed damping operator C : D(C) ⊂ X → X. Whenever
we consider a complete second order abstract Cauchy problem

(cACP2)

{

ü(t) = Au(t) + Cu̇(t), t ≥ 0,
u(0) = f, u̇(0) = g,

the theory becomes different (for example, we cannot in general expect back-
ward solvability) and, as a rule, more complicated. A natural step is to intro-
duce the reduction matrix

Ã :=

(

0 ID(C)

A C

)

, D(Ã) = D(A) ×D(C),

and investigate the generator property of (some suitable part of) Ã.

The following seems to be new. In particular, it shows that the unbound-
edness (on X) of the damping term C may not prevent backward solvability of
(cACP2).

Lemma B.30. If C is bounded either on V or on X, then Ã generates a
C0-group on V ×X if and only if A generates a cosine operator function with
associated phase space V ×X.

Proof. Reason as in the proof of Lemma B.15 and observe that, under our
assumptions, the operator matrix

(

0 0
0 C

)

is bounded either on [D(Ã)] = [D(A)] × V , or on the phase space X = V ×X.
The claim follows by Lemma A.6.(1).

In the overdamped case (i.e., C is “more unbounded” than A) the following
can be shown with the same proof of [EN00, Cor. VI.3.3].

Lemma B.31. Let A be bounded from [D(C)] to X. Then Ã (with domain
D(C) × D(C)) generates a C0-semigroup (resp., an analytic semigroup) on
[D(C)]×X if and only if C generates a C0-semigroup (resp., an analytic semi-
group) on X.
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We can allow a damping term even “more unbounded”, if this is the gener-
ator of a cosine operator function.

Lemma B.32. Let V be a Banach space such that [D(C)] ↪→ V ↪→ X and
A ∈ L(V,X). Then Ã (with domain V × D(C)) generates a cosine operator
function on V ×X if and only if C generates a cosine operator function with
associated phase space V ×X.

Proof. The proof mimics that of [EN00, Cor. VI.3.3]. Let first C generate a
cosine operator function with associated phase space V ×X. Then by Corol-
lary B.29 the operator matrix

(

0 0
0 C

)

with domain V ×D(C)

generates a cosine operator function on V ×X with associated Kisyński space
V × V . Now observe that

(

0 ID(C)

0 0

)

and

(

0 0
A 0

)

are bounded from V × [D(C)] to V ×V and from V ×V to V ×X, respectively.
Hence, Ã generates a cosine operator function on V ×X by Lemma B.15.

The converse implication can be proven likewise, and the claim follows.

We emphasize that, if the above lemma applies, then in particular Ã gen-
erates an analytic semigroup of angle π

2 .

The following are known results: Lemma B.33.(1) is [EN00, Thm. VI.3.14],
while (2) follows by [XL98, Thm. 6.4.3 and Thm. 6.4.4].

Lemma B.33. Let X be a Hilbert space. Then the following assertions hold.

(1) Consider a densely defined, invertible operator D on X, and assume that
A = −D∗D. If D(D) ⊂ D(C) and C is dissipative, then Ã with domain
D(Ã) = D(A)×D(C) generates a contraction C0-semigroup on the product
space [D(D)] ×X.

(2) Assume A,C to be self-adjoint and strictly negative definite. If D((−A)
1
2 ) ⊂

D(C), then Ã with domain D(Ã) = D(A) × D(C) generates a uniformly

exponentially stable C0-semigroup on the product space [D((−A)
1
2 )] × X.

If moreover C = −(−A)
1
2 , then such a semigroup is analytic, and also

compact if additionally the embeddings D(A) ↪→ D((−A)
1
2 ) ↪→ X are both

compact.

Remarks B.34. (a) The theory of complete second order abstract Cauchy
problem with an operator C “subordinated” to A has been started by some
papers by S.P. Chen and R. Triggiani, cf. [CT88], [CT89], [CT90], and [CT90b].
Their investigations has been further developed by T.-J. Xiao and J. Liang
in [XL98, § 6.4], where functional calculus for self-adjoint operators is also
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applied. To avoid technicalities, in the above lemma we have stuck to their
easier results.

(b) We have not discussed the relation between well-posedness of (cACP2)
and generator property of Ã. This has been thoroughly investigated in [XL98,
Chapt. 2] and [EN00, § VI.3].
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Appendix C

The Dirichlet operator

Consider a domain Ω ⊂ � n with smooth boundary ∂Ω. Then one can study the
Dirichlet problem

(C.1)

{

∆u(x) = 0, x ∈ Ω,
u(z) = f(z), z ∈ ∂Ω,

for some given function f on ∂Ω. It is well-known that this problem can be
solved whenever there exists a Green function G for the domain Ω, and in this
case the solution is given by

u(x) =

∫

∂Ω
f(z)

∂G

∂ν
(x, z)dσ(z), x ∈ Ω,

cf. [Ev98, § 2.2.4] (see also [ABHN01, § 6.1] for a nice operator theoretical
approach to such problems).

More generally, consider the abstract setting introduced in Section 1.1, and
in particular the spaces X, ∂X and the operators A,L. One can now consider
the abstract (eigenvalue) Dirichlet problem

(ADP)

{

Au = λu,
Lu = x,

where L models some boundary operator (e.g., the trace operator or the normal
derivative). In the following a key role will be played by the operators

(A
L

)

and
A0 defined in (1.3) and (1.4).

A sufficient condition for the solvability of (ADP) is expressed in the fol-
lowing result due to Greiner, cf. [Gr87, Lemma 1.2].

Lemma C.1. Assume A0 to have nonempty resolvent set. If L is surjective
from D(A) to ∂X, then (ADP) admits a unique solution u := DA,L

λ x for all
x ∈ ∂X and λ ∈ ρ(A0).

We have thus introduced a family of (linear, since (ADP) is linear) operators
DA,L
λ : ∂X → X, defined for λ ∈ ρ(A0): we call them Dirichlet operators

associated to the pair (A,L).
It is sometimes useful to know what is the relation between different Dirich-

let operators. Lemma C.2.(1) below is due to Greiner, cf. [Gr87, Lemma 1.3].
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Lemma C.2. Under the assumptions of Lemma C.1, the following assertions
hold.

(1) Let λ, λ′ ∈ ρ(A0). Then there holds

(C.2) DA,L
λ −DA,L

λ′ = (λ′ − λ)R(λ,A0)D
A,L
λ′ ,

and further
R(λ′, A0)D

A,L
λ = R(λ,A0)D

A,L
λ′ .

(2) Let λ ∈ ρ(A0). Let L′ be another operator from X to ∂X with D(A) ⊂
D(L′). If the Dirichlet operator DA,L′

λ : ∂X → X exists, then there holds

DA,L
λ = DA,L′

λ L′DA,L
λ .

(3) Let λ ∈ ρ(A0). Let A′ be another operator on X, such that D(A′) ⊂ D(A).

If the Dirichlet operator DA′,L
λ : ∂X → X exists, then there holds

DA,L
λ −DA′,L

λ = R(λ,A0)(A− λ)DA′,L
λ .

Proof. (1) Take λ, λ′ ∈ ρ(A0). Then

(λ− λ′)DA,L
λ′ = λDA,L

λ′ − λDA,L
λ +ADA,L

λ −ADA,L
λ′ = (λ−A0)(D

A,L
λ′ −DA,L

λ ),

where we have used the fact that DA,L
λ and DA,L

λ′ are both right inverses of L,

hence (DA,L
λ′ −DA,L

λ )(∂X) ⊂ D(A0). Thus,

(λ− λ′)R(λ,A0)D
A,L
λ′ = DA,L

λ′ −DA,L
λ .

Multiplying both sides by R(λ′, A0) and applying the resolvent identity we
finally show that the claim holds.

(2) Let x ∈ ∂X and set u := DA,L
λ x. Then by definition

{

Au = λu,
Lu = x,

or equivalently

{

Au = λu,
L′u = x+ (L′ − L)u.

Hence, by definition, u = DA,L′

λ

(

x+ (L′ − L)u
)

, and there follows

DA,L
λ x = u = DA,L′

λ

(

x+ (L′ − L)DA,L
λ x

)

= DA,L′

λ L′DA,L
λ x,

because DA,L
λ is by definition a right inverse of L.

(3) Take x ∈ ∂X. Set u := DA,L
λ x and v := DA′,L

λ x. Observe that by
assumption v ∈ D(A), and moreover u− v ∈ D(A0). Then

λv −Av = λv − λu+Au−Av = (λ−A0)(v − u),

whence u− v = R(λ,A0)(A− λ)v. This yields the claim.

The solutions to (C.1) depend continuously on the given boundary value.
Lemma C.4 below shows that the same holds for abstract Dirichlet problem.
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Lemma C.3. Assume
(A
L

)

to be closed (as an operator from X to X × ∂X).
Let Z be a Banach space such that Z ↪→ X, and consider the operator matrix

(

A 0
L 0

)

: D(A) × ∂X → X × ∂X

on X × ∂X. Then its part in Z × ∂X is closed.

Proof. Denote by A| the part of A in Z and let
(

un
xn

)

n∈ �
⊂ D(A|) × ∂X, lim

n→∞

(

un
xn

)

=

(

u
x

)

in Z × ∂X,

and lim
n→∞

(

A| 0

L 0

)(

un
xn

)

= lim
n→∞

(

Aun
Lun

)

=

(

w
y

)

in Z × ∂X,

for some u,w ∈ Z, x, y ∈ ∂X. Since Z ↪→ X, we can apply the closedness of
(A
L

)

and conclude that u ∈ D(A), Au = w, and Lu = y.

Lemma C.4. Under the assumptions of Lemma C.1, take λ ∈ ρ(A0) and
consider the Dirichlet operator DA,L

λ . If
(A
L

)

is closed (as an operator from X

to X × ∂X), then DA,L
λ is bounded from ∂X to Z for every Banach space Z

satisfying D∞(A) ⊂ Z ↪→ X. In particular, DA,L
λ ∈ L(∂X, [D(A)]L).

Proof. Observe that ker(λ−A) ⊂ D∞(A). Therefore the boundedness of DA,L
λ

from ∂X to some Banach space Z containingD∞(A) is implied by the closedness
of the operator L| ker(λ−A) : ker(λ − A) ⊂ Z → ∂X (as an operator from Z to
∂X).

To show that L|ker(λ−A) is actually closed, let

(un)n∈ � ⊂ ker(λ−A), Z − lim
n→∞

un = u

and lim
n→∞

Lun = x,

where “Z − lim” stands for the limit with respect to the norm of Z. It follows

that Aun = λun
Z→λu, that is

lim
n→∞

(

A 0
L 0

)

|

(

un
0

)

=

(

λu
x

)

in Z × ∂X.

By Lemma C.3 we conclude that u ∈ D(A) and that Au = λu, Lu = x.

Remarks C.5. (a) Lemma C.2.(1) implies that (DA,L
λ )λ∈ρ(A0) is a family of

compact operators from ∂X to X if and only if DA,L
λ0

is a compact operator
from ∂X to X for some λ0 ∈ ρ(A0). In this case we say that the pair (A,L)
has compact Dirichlet operator.

(b) If ∂X is finite dimensional, or else if a Banach space Z as in the statement
of Lemma C.4 can be compactly embedded in X, then we obtain that the pair
(A,L) has compact Dirichlet operator.

(c) If one only assumes L to be surjective from D(A) to some subspace V
of ∂X, then the Dirichlet operators can still be defined, but only as bounded
operators from V to Z for every Banach space Z satisfying D∞(A) ⊂ Z ↪→ X
(see [Gr87]).
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To conclude this section, we mention two important results about the decay
rate of ‖DA,L

λ ‖ for λ ∈ ρ(A0) ∩
�
.

Lemma C.6. Under the assuptions of Lemma C.1, let A0 generate a C0-
semigroup on X. Then the following assertions hold.

(1) There exists K > 0 such that ‖DA,L
λ ‖L(∂X,X) ≤ K for all λ ∈ ρ(A0) ∩

�
.

(2) Let further the semigroup generated by A0 be analytic. Then [D(A)]L is
continuously embedded in some interpolation space [D(A0), X]α, 0 < α < 1,
if and only if

lim
|λ|→∞
Reλ>0

|λ|β−α‖DA,L
λ ‖L(∂X,[D(A0),X]β) = 0, 0 ≤ β < α.

Proof. (1) Let the semigroup (etA0)t≥0 satisfy

‖etA0‖ ≤Meωt, t ≥ 0,

for some M ≥ 1 and ω ∈ �
. Take λ, λ′ ∈ (ω,∞). Then by virtue of (C.2) there

holds
‖DA,L

λ ‖L(∂X,X) ≤
(

1 + ‖(λ′ − λ)R(λ,A0)‖
)

‖DA,L
λ′ ‖L(∂X,X).

It follows by the theorem of Hille–Yosida that

‖DA,L
λ ‖L(∂X,X) ≤ (1 +M)‖DA,L

λ′ ‖L(∂X,X) =: K,

and this yields the claim.
(2) This is [GK91, Lemma. 2.4].

In Chapter 3 we consider complicated operators L′ from X to ∂X that can
be looked at as “good” perturbations of a suitable, more usual operator L.
Checking their surjectivity might in general be a tough task, but things can be
handled more easily if L is surjective and, additionally, the restriction A0 of A
to ker(L) has good properties.

Corollary C.7. Under the assumptions of Lemma C.1, let further A0 generate
an analytic semigroup on X. Assume that [D(A)]L ↪→ [D(A0), X]α for some
0 < α < 1. Then every operator L′ : D(A) → ∂X such that (L − L′) ∈
L([D(A0), X]α, ∂X) is surjective.

Proof. Under our assumptions, the operator (L − L′)DA,L
λ is bounded on ∂X

for all λ ∈ ρ(A0). Moreover, by Lemma C.6.(2) we obtain that

lim
|λ|→+∞
Reλ>0

‖DA,L
λ ‖L(∂X,[D(A0),X]α) = 0.

Thus, I∂X − (L− L′)DA,L
λ0

= L′DA,L
λ0

can be inverted for λ0 large enough.
To prove the surjectivity of L′, take x ∈ ∂X, and observe that for u :=

DA,L
λ

(

L′DA,L
λ

)−1
x there holds L′u = x.
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[AMPR03] W. Arendt, G. Metafune, D. Pallara, and S. Romanelli, The Lapla-
cian with Wentzell–Robin boundary conditions on spaces of continuous func-
tions, Semigroup Forum 67 (2003), 247–261.
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ites, Grundlehren der mathematischen Wissenschaften 111, Springer-Verlag
1961.

[LM72] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Prob-
lems and Applications. Vol. I–II, Grundlehren der mathematischen Wis-
senschaften 181–182, Springer-Verlag 1972.

[Lu95] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic
Problems, Progress in Nonlinear Differential Equations and their Applications
16, Birkhäuser 1995.
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Zusammenfassung in deutscher
Sprache

Von physikalischen Problemen ausgehend, oder als Lp-Pendant zur Theorie der
Wentzell’schen Randbedingungen für Diffussionsprozesse, sind in den letzten
Jahren partielle Differentialgleichungungen auf beschränkten Gebieten von

� n

mit dynamischen Randbedingungen betrachtet worden. In der vorliegenden
Arbeit richten wir den Fokus auf Halbgruppenmethoden für abstrakte Wellen-
gleichungen mit verschiedenen Arten von dynamischen Randbedingungen.

Im ersten Kapitel führen wir den Begriff Wohlgestelltheit für abstrakte
Probleme 1. Ordnung der Form

(AIBVP)























u̇(t) = Au(t), t ≥ 0,

ẋ(t) = Bu(t) + B̃x(t), t ≥ 0,
x(t) = Lu(t), t ≥ 0,
u(0) = f ∈ X,
x(0) = g ∈ ∂X,

ein und charakterisieren diesen anschließend. Die erste dieser Gleichungen
findet in einem Banach-Zustandsraum statt: in konkreten Anwendungen ist
dieser oft ein Raum von Funktionen auf einem Gebiet Ω ⊂ � n mit glattem,
nichtleeren Rand ∂Ω. Die dritte Gleichung stellt eine Kopplungsbeziehung
zwischen der Variablen u(·) in X und x(·) in einem Banach-Randraum ∂X
dar: in konkreten Anwendungen ist ∂X oft ein Raum von Funktionen auf ∂Ω.
Schließlich stellt die zweite Gleichung eine Evolutionsgleichung auf dem Rand
dar mit einem Feedback durch den Operator B repräsentiert.

Um die Theorie der starkstetigen Halbgruppen von beschränkten linearen
Operatoren (kurz: C0-Halbgruppen) anzuwenden, ist entscheidend, dass (AIBVP)
auf ein passendes abstraktes Cauchyproblem auf dem Produktraum X × ∂X
reduziert wird.

Es wird bewiesen, dass unter passenden Voraussetzungen ein solches Cauchy-
problem von einer C0-Halbgruppe gesteuert wird, deren Generator eine Oper-
atormatrix mit nicht-diagonalem Definitionsbereich ist. Spektral- und Gen-
eratoreigenschaften dieser Art von Operatormatrizen werden ausführlich im
zweiten Kapitel diskutiert.

Es ist dann natürlich, Resultate dieser Art zu Problemen 2. Ordnung
fortzusetzen, wie















ü(t) = Au(t), t ∈ �
,

ẍ(t) = Bu(t) + B̃x(t), t ∈ �
,

u(0) = f ∈ X, u̇(0) = g ∈ X,
x(0) = h ∈ ∂X, ẋ(0) = j ∈ ∂X.
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Hier braucht man jedoch noch eine Kopplungsbeziehung zwischen den Vari-
ablen u(·) und x(·). In der Tat kann ein abstraktes Problem 2. Ordnung
mit verschiedenen Arten von dynamischen Randbedingungen ausgestattet wer-
den. Diese unterscheiden sich grundsätzlich in der Kopplungsbeziehung: an-
gesichts der Anwendungen betrachen wir drei Arten. Wir zeigen, dass die
Wohlgestelltheit solcher Probleme mit der Theorie der Cosinusfamilien, die in
Appendix B erwähnt wird, verwandt ist.

Im dritten Kapitel betrachten wir ein abstraktes Problem 2. Ordnung, in
dem die Kopplungsbeziehung durch

ẋ(·) = Lu(·)

gegeben ist. Das ist physikalisch durch sogenannte Wellengleichungen mit
akustischen Randbedingungen motiviert, die in den letzten 40 Jahren untersucht
worden sind. Als Anwendung unserer abstrakten Techniken diskutieren wir ver-
schiedene Systeme dieser Art, beweisen einige bekannte Ergebnisse (hinsichtlich
Generatoreigenschaft und Resolventenkompaktheit) erneut, und bringen diese
in einen abstrakten Rahmen.

Im vierten Kapitel untersuchen wir abstrakte Probleme 2. Ordnung, die mit
dynamischen Randbedingungen 2. Ordnung ausgestattet sind, und in denen die
Kopplungsbeziehung durch

(∗) x(·) = Lu(·)

oder durch

(∗∗) x(·) = Lu(·) und ẋ(·) = Lu̇(·)

gegeben ist. Dynamische Randbedingungen mit solchen Kopplungsbeziehungen
stellen recht unterschiedliche konkrete Probleme dar. In konkreten Anwendun-
gen modellieren sie beispielsweise dynamische Neumann’sche (oder Robin’sche)
bzw. Dirichlet’sche Randbedingungen der 2. Ordnung. Wir zeigen, dass der zu
solchen Problemen assoziierte Phasenraum von der angenommenen Kopplungs-
beziehung abhängt. Genauer, wenn (∗) gilt, dann ist der erste Koordinaten-
raum des zum Problem assoziierten Phasenraumes ein diagonaler Teilraum von
X × ∂X. Wenn jedoch (∗∗) gilt, ist der erste Koordinatenraum des Phasen-
raumes ein gewisser Teilraum von X × ∂X, der in seiner Definition selbst eine
Kopplungsbeziehung enthält.

Im fünften Kapitel betrachten wir vollständige Probleme 2. Ordnung, d.h.,
Systeme in denen die erste Gleichung durch

ü(t) = Au(t) + Cu̇(t), t ∈ �
,

gegeben ist. Auch bei dieser Verallgemeinerung müssen wir zwischen Fällen
unterscheiden, die konkret dynamischen Dirichlet’schen bzw. Neumann’schen
(oder Robin’schen) Randbedingungen entsprechen. Außerdem betrachten wir
den Fall übergedämpfter vollständiger Probleme, d.h., Probleme, in denen C
“unbeschränkter” als A ist.
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