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Chapter 1

Introduction

The first attempt to describe atomic nuclei goes back to 1936, when Bethe and

Weizsäcker proposed the empirical liquid drop model that relates the number of

nucleons in a nuclear system to the binding energy [bet36, wei36]. The protons

and the neutrons in the nucleus form a fermion many-body system for which the

Bethe-Weizsäcker formula models the action of a short-ranged nuclear force and

the electromagnetic repulsion between the protons in a phenomenological way.

The volume to surface ratio in a nucleus increases with increasing mass number.

Due to the short-ranged character of the nuclear potential, the nucleons in the

center of the nucleus are more tightly bound than those at the surface. This leads

to an increase of the mean binding energy per nucleon up to the mass number of
56Fe. Beyond, the repulsion due to the large number of positive charged protons

that are confined in a small volume overcompensates this energy gain and the

mean binding energy is reduced whenever a further particle is added. Thus, for

heavy systems, binding energy can only be gained by a reduction of the system

size. Processes like the emission of α-particles or spontaneous fission set an upper

limit to the mass number of stable nuclei. In low-energy experiments on primor-

dial nuclei, condensed hadronic matter can be studied from the very low-density

region in light nuclei up to the central density of the 208Pb nucleus. Over the last

60 years, all possible kinds of experiments on nuclei close to the valley of stability

have accumulated a huge amount of information about the structure of the nuclei

and the nature of the interaction between the individual constituents, the proton

and the neutron.

In modern acceleration facilities, the beam energies are large enough to overcome
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1 Introduction

the Coulomb barrier between two heavy nuclei. For a short period of time and in a

very limited region in space, a hot and dense system can be formed in the labora-

tory when two heavy ions collide. The particles that are produced (or their decay

products) are detected after the collision. Experiments with heavy ion beams are

the only possible way to study the properties of matter under extreme conditions

in a laboratory on earth.

In astrophysics, hadronic matter occurs in a range of different environments, some

of which may be briefly sketched in the following description of the evolution of

a massive star that undergoes a type II supernova explosion and forms a neutron

star. The matter in an aging star that has gone through various burning stages is

composed of electrons and a gas of nuclei. While in the outer layers of the star,

still, hydrogen and helium are fused, more heavy elements like carbon, oxygen or

neon are burned in the dense and hot interior. The proton to neutron ratio is close

to one and the temperature amounts to some hundreds of keV. The pressure is

maintained by exothermic nuclear reactions. It stabilizes the system against grav-

itational collapse that occurs as soon as no further energy can be gained by fusion

processes, i.e., when an iron core has been formed in the center of the star. If

the mass of the star exceeds the Chandrasekhar limit, it is energetically favorable

to form neutrons and neutrinos from highly energetic electrons and protons via

weak interaction processes. The collapsing matter in the center of the star forms

a high density neutron rich core of uniform structure that is now stabilized by the

pressure of the nearly degenerate neutron gas. Due to the low compressibility of

this system, the in-falling hot and asymmetric matter is reflected at the core and

ejected in the shock wave of a supernova explosion, which is probably boosted by

interaction of matter with neutrinos that leave the core region.

The remnant is a hot neutron star with a neutron to proton ratio of the order

of ten. It cools down by emission of neutrinos. The composition inside the neu-

tron star changes from the low density crust region, where nuclei are thought to

form a lattice structure, embedded in neutron matter, to homogeneous matter in

a superfluid state. The composition of matter in the center of the neutron star

is speculative. Strange baryons like the Λ or the Σ− are likely to appear when a

certain threshold density is reached. The attractive interaction between nuclear

matter and mesons may lead to π−- or K−-condensates, and a transition to a

deconfined phase is also discussed.

The hope to understand the properties of systems of interacting nucleons under all

kinds of physical conditions, such as different temperature and density domains,
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1 Introduction

from a common point of view is a strong motivation for nuclear physicists to

investigate microscopic approaches. In low energy nuclear physics, the relevant

degrees of freedom are the hadrons, which are treated as structureless particles.

Although a truly microscopic description should take into account their composite

nature, a quantitative description of hadronic matter starting out from quarks and

gluons as the fundamental degrees of freedom is currently out of reach.

Most modern realistic nucleon-nucleon (NN) potentials like the CDBONN [mac96],

the Argonne V18 [wir95], or the Nijmegen potentials [sto94] are based on the meson

exchange picture that goes back to Yukawa [yuk35]. The complicated structure

of the nuclear force is modeled by mesons with different quantum numbers, like

the π, the σ, the ρ and the ω, that are emitted by one nucleon and absorbed

by another one. The potential models include a number of free parameters that

can be fitted in order to accurately describe the properties of the deuteron and

the NN scattering phase shifts in free space up to energies of about 300 MeV.

The challenge is to derive the properties of matter from such realistic potentials.

Defining a ‘microscopic approach’ in this way has the advantage that the two-

body problem of finding the appropriate NN Hamiltonian is decoupled from the

many-body problem.

The specific many-body system that will be studied in this Thesis is symmetric

nuclear matter (NM). This is a hypothetical, infinite and homogeneous system that

consists of an equal fraction of protons and neutrons, in which the electromagnetic

interaction, that is responsible for the limitation of the system size, has been

turned off artificially. Although NM cannot be observed in nature for this reason,

it approximates the conditions in the central region of heavy nuclei. Neutron

star matter has also many features in common with NM (for both examples, the

restriction is valid that one actually would have to consider asymmetric NM where

the neutron fraction is larger than the proton fraction).

The big advantage of an infinite system from the point of view of theoretical

physics is, that translational invariance allows much more sophisticated many-

body calculations. This makes NM a popular testing ground for nuclear physicists.

For instance, the best possible choice for single-particle states in NM are plane

waves. This represents a great simplification compared to finite nuclei, where

the determination of the appropriate single-particle basis, e.g., in a Hartree-Fock

calculation, is a complicated problem itself.

Well-known characteristic features of realistic nuclear forces are the strong repul-
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sion at small interparticle distances, mediated by the exchange of the ω meson, and

the intermediate-range attraction. It is the repulsive core that prevents a simple

mean field description of nuclear systems. A mean field single particle potential

is obtained by an averaging of the two-body potential over the Fermi sea. Such

an averaging also includes configurations where two nucleons are very close and

interpenetrate their repulsive cores. In this way, the repulsive contributions are

overestimated and lead to an unbound system. A more realistic model should allow

for correlations between individual nucleons that suppress energetically unfavor-

able configurations. A similar argument applies to the predominantly attractive

tensor components of the nuclear interaction. These give rise to important tensor

correlations that can enhance favorable configurations in the wave function.

Correlated Fermi liquids can be treated within a variety of distinct many-body

theories. The following brief overview tries to give some very basic ideas of the

philosophy of different methods that are applied.

Variational methods assume a trial many-body wave function composed of a slater

determinant and a correlation operator that describes the deviation of the true

wave function with respect to the slater determinant when two particles are close.

This operator possesses some functional freedom to be constrained by a variational

minimization procedure of the ground state energy of the system. This leads to the

so-called Fermi hypernetted-chain (FHNC) integral equations. Refs. [cla79, fan98]

are detailed reviews of the variational method.

The variational results for the expectation value of the Hamiltonian represent an

upper bound to the ground state energy. A main drawback of the method is that

it is quite difficult to find a trial wave function that is reasonable close to the

to the true ground state. However, the result can be systematically improved

by the method of Correlated Basis Functions [cla59, fee69]. In a first step, a

complete set of correlated eigenstates is constructed from the variational results.

The correlated basis is assumed to be close enough to the exact eigenstates of the

Hamiltonian, so that it is sufficient to do low order perturbation theory. Variational

methods are successful in reproducing the properties of very dense systems such

as liquid 3He, and they are also suitable to describe correlations in NM and finite

nuclei [fan84, ben89, ben94].

Monte Carlo sampling methods can be applied to calculations in quantum many-

body systems in various ways. In the Variational Monte Carlo method, for in-

stance, the expectation value for the ground state energy is explicitely computed
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from a trial wave function with an integral in 3N -dimensional configuration space.

The Monte Carlo integral is a summation over the value of the integrand for ran-

dom configurations, each contribution to the sum being weighted by the square

of the wave function. The optimal ground state can be found by minimizing the

expectation value for the energy. For an efficient sampling of configuration space,

a rejection algorithm must take care that only configurations with a large proba-

bility can contribute to the sum.

In so-called Quantum Monte Carlo methods, the time-dependent Schrödinger equa-

tion for the many-body system is integrated stochastically starting from an initial

trial wave function, and the ground state can be projected out. Although Monte

Carlo methods are capable to find the exact ground state, it is often not easy to

interprete the results in an intuitive way. Another problem is that the complicated

structure of the nuclear force makes it very difficult to compute the solution for a

large number of particles. Refs. [cep95, gua98] are recent reviews on Monte Carlo

methods. Applications for nuclear systems are described in Refs. [car91, pie98].

The Coupled Cluster or exp(S) method is another way to describe correlated many-

body systems [kue78]. The exact many-body wave function is generated by the

action of the exp(S) operator on a Slater determinant of model states. S contains

a sum of excitation operators — labeled by n — that excite clusters of n particles

above the Fermi level, leaving n holes below. Due to the exponential structure

of the wave function, independent events of, for instance, two-particle two-hole

excitations are contained in the wave function according to their multiplicity, so

that double counting of statistically independent events is avoided. This leads

automatically to the correct form of a many-body wave function. The Coupled

Cluster approach is successfully applicable in all kinds of many-body systems. A

review on the method and a comparison to other quantum many-body theories

has recently been given by Bishop in Ref. [bis98].

The general idea of diagrammatic approaches is to expand physical quantities in

terms of diagrams that provide a graphical interpretation of the interaction pro-

cesses between the relevant degrees of freedom. In nuclear physics, these diagrams

are composed of two types of lines that describe the motion of the nucleons and

the exchange of bosons between them. A one-to-one correspondence between such

diagrams and a set of rules that enable their evaluation must be established. Dia-

grammatic approaches have the great advantage that they offer intuitive interpre-

tations to the approximations being made. Diagrams can be classified according to
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various criteria, among which there are the number of interaction lines or certain

structural elements. The importance of certain classes of diagrams for a many-

body system can often be judged by physical arguments and in this way, one is

then guided to include the most sizable contributions.

A very well known example for a diagrammatic theory is the Brueckner hole-line

expansion. In this approach, the shift between the ground state energy of the in-

teracting system and the non-interacting system is expanded in terms of so-called

Goldstone diagrams. The criterion for the classification of the diagrams is the

the number of fermions in a diagram that are scattered out of their single-particle

states, leaving a hole. Following the respective set of rules for the evaluation of

the diagrams, each hole-line implies an integration over the phase space of the hole

states, and accordingly, each particle line implies an integration over the accessible

phase space of the particles. Since the latter is much larger than the former in a

low-density system, the diagrams containing many hole lines are suppressed with

respect to those with less hole lines.

In the many-body approach that is applied in this Thesis, the quantity that is

expanded in terms of diagrams is the single-particle Green’s function. This func-

tion can be defined for a grand-canonical ensemble and describes the propagation

of nucleon states that interact with other nucleons along their path through the

many-body system. The approach is related to the Brueckner hole line expansion,

however, forward and backward propagation in time is treated on a symmetric

footing, while, for instance, in the two-hole line expansion, the latter is neglected.

In the Green’s functions theory, correlated nucleons are off-shell particles that

do not fulfill an energy-momentum relation. The energy of a momentum state

k is fragmented over a wide range of energies with a peak at the position of the

quasiparticle energy. In scattering experiments on nuclei, such a fragmentation

of strength can indeed be observed and quantitatively described in terms of the

nuclear spectral function [roh03]. This central quantity arises in a natural way in

the formalism of Green’s functions.

It has been an aim of various groups working on the Green’s function description

of nuclear systems, to find a self-consistent Green’s function (SCGF) for the many-

body problem in the following sense: the Green’s function that characterizes the

propagating particle must be determined from its interaction with the surrounding

nucleons. These particles are also off-shell, and so they should in turn be described

by the same Green’s function. While it is relatively simple to write down a number
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of diagrams that express this concept of self-consistency, it is quite another matter

to implement a numerical scheme that solves the problem.

Over more than 15 years, many attempts have been made to find a solution in

T matrix approximation. This ansatz takes correlations into account by summing

up multiple two-nucleon scattering processes in the medium and becomes exact

in the low density limit. In the early works of Ramos, Polls, Dickhoff et. al. in

Barcelona and St. Louis [ram88, ram89, von90, von91, von93], the problem has

been treated at zero temperature in a quasiparticle description. The fragmented

strength distribution is approximated by a single Dirac function, the so-called

quasiparticle peak, that is located at the quasiparticle energy. Self-consistency is

obtained on the level of the quasiparticle spectrum only, but not for the off-shell

structure, that can nevertheless be computed. Similar quasiparticle calculations

have been performed at finite temperature by Schnell, Alm, Röpke et. al. in

the Rostock group [snl96, alm96]. Over the recent 5 years, several papers have

been published that aim at a self-consistent description of the off-shell structure

of the spectral function. Roth, Dickhoff et. al. have tried to find a self-consistent

solution by approximating the off-shell structure of the nuclear self energy [dic99,

rot00] by a set of Gaussians. Bożek et. al. from the Krakow group were the

first to iterate the full off-shell structure of the spectral function using simple

separable NN potentials [boz99, boz01]. Meanwhile, separable versions of more

realistic potentials have also been applied [boz03]. Dewulf, Van Neck et. al. in

the Gent group have approximated the off-shell structure of the spectral function

by a number of discrete Dirac peaks [dew00, dew02, dew03]. They have obtained

self-consistent results for various realistic potentials.

In this work, a self-consistent solution for the Green’s function will be presented

for symmetric nuclear matter at finite temperature, using a realistic NN potential.

The full off-shell structure of all relevant quantities is calculated on an energy-

momentum lattice and no parameterization procedures are applied. The numerical

routine that has been developed to solve the many-body problem is capable to

obtain very stable results by iteration of the spectral function. The method and

some of the results that are presented in this work have already been published in

Ref. [fri03].

In Chapter 2, the finite temperature Green’s functions formalism is introduced.

The notation follows the book of Kadanoff and Baym [kad62]. The basic concepts

of the expansion of the propagator are reviewed and the nuclear self energy is de-

fined. To illustrate the failure of the mean field picture, but also to introduce the
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concept of self-consistent dressing, the Hartree-Fock approximation is discussed.

To improve the description of nuclear matter beyond the mean field level, the

T matrix is then introduced as the solution of an integral equation that takes into

account in-medium scattering processes of the propagating particle with the sur-

rounding particles to all orders. Some of the limitations of the T matrix formalism

are discussed in the final Section of Chapter 2.

The many-body equations in Chapter 2 are formulated in terms of the imaginary

time Matsubara Green’s function. Chapter 3 contains a description how these

are related to physical observables like the spectral function or the momentum

distribution. In order to write down a set of equations that can be solved numeri-

cally, some manipulations must be applied: the analytic properties of the Green’s

function and the T matrix can be used to perform the Matsubara summations.

Furthermore, the in-medium integral equation must be decomposed into partial

waves. Chapter 3 includes a discussion of quasiparticle approximations to the

SCGF solution.

Results are presented in Chapter 4. The qualitative features of the T matrix and

the nuclear self energy are discussed, and the issue of NN pairing at low temper-

atures is alluded. The density and the temperature dependence of the nuclear

spectral function and the momentum distributions are discussed, and finally, re-

sults for the internal energy per particle are presented. The work closes with a

summary and some conclusions.
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Chapter 2

Many-Body Theory

2.1 Green’s Functions at Finite Temperature

The time evolution of a many-body system of identical particles that interact with

each other via a two-body potential V is determined by the following expression

for the Hamiltonian in second quantization,

H = H0 +H1

=

∫

d3xψ†(x)

[

−
∇2

2m

]

ψ(x) +
1

2

∫

d3x

∫

d3x′ ψ†(x)ψ†(x′)V (x,x′)ψ(x′)ψ(x).

(2.1)

ψ(x) and ψ†(x) are quantum field operators that describe the annihilation and

the creation of particles in the Schrödinger picture. m is the particle mass. For

the sake of simplicity, spin and isospin projection indices are understood to be

included in the argument x and each integration over x implies a summation over

the respective projection quantum numbers.

The Green’s functions theory allows to expand physical quantities in terms of Feyn-

man diagrams that can be interpreted as elementary descriptions of interaction and

propagation processes in the many-body system. The basic physical quantity that

is expanded in terms of diagrams is the N -particle Green’s function. It describes

the propagation of disturbances, that arise from adding or removing N particles,

through a medium that is composed of identical particles of the same type. In a
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2 Many-Body Theory

grand-canonical formulation, the one-particle Green’s function can be defined in

the following way, for both real and imaginary time arguments t, t′ [kad62],

ig(xt;x′t′) = Tr{ρG T[ψ(xt)ψ†(x′t′)]}. (2.2)

T is the time ordering operator that acts on a product of Heisenberg field operators,

ψ(xt) = eitHψ(x)e−itH , in such a way that the field operator with the largest time

argument t (or it in the case that t is imaginary) is put to the left. A minus sign is

generated for each commutation between two field operators within a time ordered

product of field operators:

T[ψ(xt)ψ†(x′t′)] =

{
ψ(xt)ψ†(x′t′) for t > t′ or it > it′

−ψ†(x′t′)ψ(xt) for t < t′ or it < it′.
(2.3)

The trace in Eq. (2.2) is to be taken over a complete basis of the many-body

system, which is built of simultaneous eigenstates of the Hamiltonian H and the

particle number operator N . The trace is weighted by the statistical operator,

ρG =
1

Z
e−β(H−µN). (2.4)

β and µ denote the inverse temperature and the chemical potential of the system,

respectively. N counts the total number of particles in the system

N =

∫

d3xψ†(xt)ψ(xt). (2.5)

N is independent of time, since it commutes with H. The operator ρ(x, t) =

ψ†(xt)ψ(xt) measures the density ρ of particles at the space-time point (x, t). The

normalization of the probability (2.4) defines the partition function of the grand

canonical ensemble,

Z = Tr e−β(H−µN). (2.6)

The general N -particle Green’s function is defined analogously, and it contains the

time ordered product of N creation operators and N annihilation operators. The

two-body Green’s function, e.g., has the form

igII(x1t1,x2t2;x
′
1t

′
1,x

′
2t

′
2) = Tr{ρG T[ψ(x1t1)ψ(x2t2)ψ

†(x′
2t

′
2)ψ

†(x′
1t

′
1)]}. (2.7)

To circumvent the time ordering operator T, the so-called correlation functions g>

and g< are now introduced. Depending on whether t > t′ or t < t′, the one-particle

Green’s function equals

i g>(xt;x′t′) = Tr{ρG ψ(xt)ψ†(x′t′)} (2.8)
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2.1 Green’s Functions at Finite Temperature

in the former case, and

i g<(xt;x′t′) = −Tr{ρG ψ
†(x′t′)ψ(xt)} (2.9)

in the latter case. Note that for real time arguments, −ig<(xt;xt) is the expecta-

tion value of the particle density operator ρ(x, t).

It can be checked from the definitions of the correlation functions that the ab-

solute convergence of the trace is guaranteed by the factor e−β(H−µN) as long as

0 < Im t, Im t′ < −β, so that the Green’s function is defined for imaginary time

arguments in the region 0 < it, it′ < β. Due to the invariance of the trace under

cyclic permutations, it can be shown that the one-particle Green’s functions obeys

the following quasi-periodic boundary condition:

g(x, t = 0;x′t′) = −eβµg(x, t = −iβ;x′t′). (2.10)

For the derivation of Eq. (2.10), the relation ψ(x)eβµN = eβµ(N+1)ψ(x) has been

used [kad62].

It is clear from its definition, Eq. (2.2) – Eq. (2.6), that the single-particle Green’s

function contains a lot of physics. Strategies are required to determine g at least

approximately. One possible method was suggested by Martin and Schwinger in

Ref. [mar59] and will be sketched in this paragraph. Starting from the equation

of motion for the Heisenberg field operator,

i
∂ψ(xt)

∂t
= [ψ(xt), H], (2.11)

it is possible to derive the equations of motion for the Green’s functions. Since the

particles move in a strongly correlated many-body system, the motion of a single

particle is coupled to the motion of all other particles in the medium. It turns

out that for the Hamiltonian (2.1), the equation of motion for the single-particle

Green’s function involves the two-body potential V and the two-particle Green’s

function gII,

[

i
∂

∂t
+

∇2

2m

]

g(xt;x′t′) + i

∫

d3x′′ V (x,x′′)gII(xt,x
′′t;x′t′,x′′t+)

= δ(3)(x − x′)δ(t− t′). (2.12)

The derivation of this result is reported, e.g., in Refs. [mar59, kad62]. In general,

for N > 1, the equation of motion for the N -particle Green’s function is coupled
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2 Many-Body Theory

to the (N +1)-particle Green’s function and the (N−1)-particle Green’s function,

if the Hamiltonian contains a two-body interaction. Therefore, a good approxima-

tion scheme for g(x, t;x′, t′) must be based upon an appropriate truncation scheme

for an expansion of the two-particle propagator. To obtain a closed equation for

the single-particle Green’s function, the truncated two-particle Green’s propagator

should be expressed as a function of g. One possible choice is to replace gII by an

antisymmetric product of two single-particle Green’s functions. In this case, one

obtains the Hartree-Fock equations that are discussed in Section 2.2. In a sys-

tematic way, it is shown in Refs. [kad62, mat67], how different truncation schemes

lead to different levels of approximations.

It has already been mentioned in this Section that it is possible to expand the

imaginary time Green’s function in a perturbation series that can be interpreted

in terms of diagrams. It is this alternative, maybe more intuitive method to find

approximation schemes to the single-particle Green’s function, that will be adopted

in this Thesis.

Before the diagrams are introduced, it is convenient to take advantage of the

fact that nuclear matter is a quantum mechanical system that is invariant under

translations in space and time as well as under spatial rotations. As a consequence

of these symmetries, the Green’s function g depends only on the difference variables

ξ = |x − x′| and τ = t− t′. Therefore, one can identify

g(xt;x′t′) = g(ξ = |x − x′|, τ = t− t′). (2.13)

The optimal representation to deal with translationally invariant systems is the

momentum-frequency space. The quasi-periodicity of the Green’s function along

the imaginary time axis suggests a discrete Fourier representation,

g(ξ, τ) =

∫
d3k

(2π)3
eikξ 1

−iβ

∑

ν

e−izντg(k, zν), (2.14)

where zν = πν
−iβ

+µ are the so-called fermionic Matsubara frequencies, for which the

index ν is an odd integer. The Fourier coefficient g(k, zν) is given by the inverse

transformation,

g(k, zν) =

∫

d3ξ

−iβ∫

0

dτ e−ikξ+izντg(ξ, τ). (2.15)

In a non-interacting system, the single-particle Green’s function is defined in the

same way as for the interacting system, however, the Hamiltonian is just given by

12



2.1 Green’s Functions at Finite Temperature

the kinetic term H0. Hence, the equation of motion for this object, g0, reduces to

the simple form,
[

i
∂

∂τ
+

∇2

2m

]

g0(ξ, τ) = δ(3)(ξ)δ(τ). (2.16)

After multiplication by e−ikξ+izντ and integration over all ξ and all τ in the in-

terval 0 to −iβ, one obtains a simple expression for the free Green’s function in

momentum-frequency representation,

g0(k, zν) =
1

zν − k2/2m
. (2.17)

The perturbation series of the imaginary time Green’s function in an interacting

many-body system is an expansion in terms of the free Green’s function g0 and the

interaction potential V . A comprehensive derivation can be found in Ref. [fet71].

For the slightly different definitions and notations adopted in this Thesis, a reca-

pitulating summary is given in Appendix A. The basic ideas are sketched in a few

words below.

The Heisenberg field operators in the definition of the Green’s function, Eq. (2.2),

are rewritten using interaction picture field operators. As a consequence of this

transformation, they are sandwiched between exponential factors of the form

e±it(H−H0), which means that these factors are functions of the interaction part

H1 of the Hamiltonian only. The exponentials are expanded and this leads to a

sum of terms containing thermal averages of time ordered products of creation and

annihilation field operators. The different contributions can be classified according

to the order in the interaction potential V . Wick’s theorem is then applied and

it turns out that the time ordered products of field operators can be written as

products of free Green’s functions.

Up to first oder in V , the perturbation expansion reads (cf. Appendix A):

g(k, zν) = g0(k, zν) + g0(k, zν)

×

[

(−1)i
1

−iβ

∑

ν′

ez
ν′

η

∫
d3k′

(2π)3
〈kk′|V |kk′〉 g0(k′, zν′) (2.18)

+ i
1

−iβ

∑

ν′

ez
ν′

η

∫
d3k′

(2π)3
〈kk′|V |k′k〉 g0(k′, zν′)

]

g0(k, zν) + · · · .

A set of rules, the famous Feynman rules, establishes a one-to-one correspondence

between each term in this expansion and a Feynman diagram. In the diagrammatic

13



2 Many-Body Theory

k, zν k, zν k, zν

k, zν

k′, zν′
k, zν

k, zν

k′, zν′

= + + +  ...

Figure 2.1: All Feynman diagrams that contribute to the Green’s function

up to first order in the nuclear two-body interaction.

language, a free Green’s functions g0 is depicted by a straight line, for which an ar-

row denotes the direction of momentum flow. A horizontal wavy line characterizes

the action of the two-body potential. The full Green’s function of the interacting

system is represented by a double straight line. Fig. 2.1 shows the translation of

Eq. (2.18) into Feynman diagrams. The complete set of Feynman rules is given in

Appendix B.

Note that there are no unknown quantities on the right hand side of Eq. (2.18),

and this holds for all orders of the expansion. Unfortunately, the number of dia-

grams grows quickly and the structure of the individual terms becomes more and

more complicated, so that it is practically impossible to compute the exact Green’s

function diagram by diagram. In second order, there are already 10 diagrams to

be evaluated. They are shown in Fig. 2.2.

By introducing the concept of the self energy, the number of diagrams that must

be retained in the expansion can be reduced efficiently. A self energy insertion

is obtained from each diagram by cutting the propagating lines to the external

points, as illustrated in Fig. 2.3. In Eq. (2.18), the self energy insertions that cor-

respond to the two first order diagrams are located between the square brackets.

Self energy insertions can be classified into two groups: the reducible self energy

diagrams can be decomposed into two parts by cutting a single fermion line only.

In Fig. 2.2, such a cut is possible in diagrams (a) – (d), whereas diagrams (e) –

(j) are obviously irreducible. It is clear that an arbitrary contribution to the self

energy is either irreducible or a combination of at least two irreducible terms. The

reducible self energy, Σred, is composed of both the complete set of the latter type

of combined diagrams and all irreducible self energy insertions. In contrast, the

irreducible self energy is defined as the sum of all irreducible self energy insertions

only, and will be denoted by Σ in the following. By inspection, the reducible

14



2.1 Green’s Functions at Finite Temperature

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 2.2: All second order contributions to the Green’s function. Dia-

grams (a) – (d) are reducible, i.e., they are sequential repetitions of first

order diagrams. Diagrams (e) – (h) are nested repetitions of first order

diagrams in the sense that one first order diagram is inserted in the in-

termediate line of the other. Diagrams (i) and (j) are the only ones in

second order that contain new structural elements.

15



2 Many-Body Theory

Figure 2.3: A self energy insertion is obtained from a contribution to the

Green’s function by cutting the propagator lines to the external points.

By removing these lines, external vertex points are generated, that are

at most connected to one internal line.

Σred.

Σ
Σ

Σ

Σ

Σ

Σ

= + + +  ...

Figure 2.4: The reducible self energy is composed of the irreducible self

energy diagrams plus all possible repetitions of irreducible self energy

insertions.
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2.1 Green’s Functions at Finite Temperature

Σ= +

Figure 2.5: Dyson’s equation in diagrammatic form.

self energy can be generated by the diagrammatic series depicted in Fig. 2.4. Us-

ing the irreducible self energy, one can formulate Dyson’s equation that allows to

determine the single-particle Green’s function,

g(k, zν) = g0(k, zν) + g0(k, zν)Σ(k, zν)g(k, zν). (2.19)

All reducible terms can be generated from this recursive expression by repeatedly

replacing the full Green’s function on the right hand side by the complete right

hand side of the equation. Due to the translational invariance in an infinite system,

Dyson’s equation is an algebraic equation in momentum-frequency space. The

solution is trivial,

g(k, zν) =
1

g0(k, zν)−1 − Σ(k, zν)
. (2.20)

Dyson’s equation itself can be represented diagrammatically, as it is shown in

Fig. 2.5.

Up to this point, no selection on the diagrams was made on the basis of physi-

cal arguments. It turns out in the derivation of the diagrammatic expansion of

the single-particle Green’s function that only connected diagrams contribute (cf.

Appendix A). By introducing the concept of the self energy, it is immediately

clear from the structure of Dyson’s equation that only one-particle irreducible self

energy diagrams need to be considered. However, the number of irreducible dia-

grams increases in each order and their structure gets more and more complicated.

A direct calculation of all self energy diagrams is impossible. Fig. 2.6 gives an im-

pression of the variety of diagrams that can appear up to fifth order. All diagrams

in one column belong to the same order, which means that they have the same

number of interaction lines. Diagrams that have a similar structure are grouped

in each row. Of course, the list represents only a selection.
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ladders

 

  

 (a)  

  

 (b)  

  

 (c)  

  

 (d)  

  

 (e)

exch.

 

  

 (f)  

  

 (g)  

  

 (h)  

  

 (i)  

  

 (j)

diagrams with self energy insertions

 

  

 (k)  

  

 (l)  

  

 (m)

ring or chain diagrams

 

  

 (n)  

  

 (o)  

  

 (p)

diagrams with polarization insertions

 

  

 (q)  

  

 (r)  

  

 (s)

parquet diagrams (ladders & rings)

 

  

 (t)  

  

 (u)

completely irreducible diagrams

 

  

 (v)

Figure 2.6: A selection of contributions to the irreducible self energy.

The diagrams are classified according to their order (from left to right)

and their type (from top to bottom).
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2.2 Self-Consistent Hartree-Fock

2.2 Self-Consistent Hartree-Fock

At first sight, one is tempted to start to evaluate the self energy diagrams according

to the ordering in the perturbation expansion, starting with the two first order

diagrams depicted in Fig. 2.6. This may be a good approximation if the potential

is small in the sense that the terms of order n + 1 are suppressed by some factor

with respect to the terms of order n. In the present Section, it is illustrated that

this assumption is wrong for any realistic nuclear potential. However, the failure

of the Hartree-Fock (HF) approximation is a motivation for more sophisticated

summation methods for diagrams. Besides, studying this oversimplified ansatz,

techniques like contour integration or the concept of self-consistent renormalization

can be introduced in a clear manner.

From the Feynman rules in momentum space, it follows that the first order self

energy has the form

Σ(1)(k) = −i
1

−iβ

∑

ν

ezνη

∫
d3k′

(2π)3
〈kk′|V |kk′〉A g

0(k′, zν), (2.21)

where the subscript A indicates an anti-symmetric matrix element |kk′〉A = |kk′〉−

|k′k〉.

The sum in Eq. (2.21) is a structure that occurs frequently in statistical Green’s

functions theory. It can be evaluated by applying a transformation into a contour

integral. Consider the function

−βf(z) =
−β

e[β(z−µ)] + 1
. (2.22)

This function has simple poles with unit residues at the fermion Matsubara fre-

quencies zν. Since none of these poles coincides with the one of g0(k, z) =

[z − ε(k)]−1, one can write

∑

ν

ezνηg0(k, zν) = −β

∫

C

dz

2πi
ezηf(z)g0(k, z), (2.23)

where C is a contour that encircles all poles of f in the positive sense. The contour

C can be deformed to the contour C ′ as depicted in Fig 2.7. Due to the convergence

factor, the contributions from the arcs vanish everywhere in the complex plane,

and one is left with a contour that encircles the pole of g0 at z = ε(k), with residue
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2 Many-Body Theory

(k)ε

µ

Re z

Im z

C’C

Figure 2.7: Deformation of the contour C to the contour C ′. The dots

that are encircled by C are the complex poles of the Fermi function.

Integrating along C ′, the contributions from the arcs vanish, and the

result is determined by the residue of the pole of the Green’s function on

the real axis, at z = ε(k). Note that C ′ encircles this pole in the negative

sense.

Res [g0(z), ε(k)] = +1, in the negative sense, yielding a minus sign. Hence, the

frequency summation yields

∑

ν

ezνηg0(k, zν) = βf(ε(k)), (2.24)

and the first order self energy becomes

Σ(1)(k) =

∫
d3k′

(2π)3
〈kk′|V |kk′〉A f(ε(k′)). (2.25)

By construction of the perturbation expansion, ε(k) is the energy of a free nu-

cleon with momentum k, and thus f(ε(k)) is the occupation probability of the

unperturbed system,

f(ε(k)) = [eβ( k
2

2m
−µ) + 1]−1. (2.26)
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2.2 Self-Consistent Hartree-Fock

Figure 2.8: Self-consistent renormalization on the level of the HF self

energy. The free Green’s function in the first order contributions (left)

are replaced by full propagators that, in turn, contain iterated self en-

ergy insertions of the first order type (right). By using antisymmetrized

potential matrix elements, the exchange diagrams (lower diagrams) are

assumed to be automatically included in the notation for the direct terms

and will not be displayed separately from now on.

The interpretation of the first order result is the following: Eq. (2.25) takes into

account the interaction of a nucleon in an initial state k with all occupied states

via the bare NN potential. Only processes are allowed in which the final state is

also k. Since the particles are not distinguishable, one should take care to include

both the direct forward scattering term and the exchange term, where the initial

nucleon ends up in an state k′ and the nucleon occupying that state is scattered

into the state k.

It is important to emphasize that Eq. (2.25) contains an inconsistency. The ex-

ternal nucleon interacts with a Fermi sea of nucleons that are non-interacting.

However, a consistent solution should contain a Fermi sea of nucleons that inter-

act with each other in the same way as with the external nucleon. A natural way

to cure this problem is to replace the non-interacting propagator line g0 in the

first oder self energy by a Green’s function that is obtained from Dyson’s equa-

tion (2.19), in which one inserts the first order approximation to the irreducible

self energy, Σ(1). This is shown diagrammatically in Fig. 2.8. The two equations

form a problem that has to be solved self-consistently, the solution is the HF self

energy ΣHF and the HF Green’s function, gHF . This procedure is called self-

consistent renormalization. Whereas the first order self energy contains only the

simplest two diagrams of the complete set, as shown in the left part of Fig. 2.8,

the self-consistent HF self energy diagrams include implicitly contributions to all
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2 Many-Body Theory

orders in the interaction potential — successive first-order self energy insertions,

generated by Dyson’s equation. Note that the second order diagrams (a) – (h) in

Fig. 2.2 are included in a self-consistent HF Green’s function. The only formal

difference between the first oder self energy Σ(1), Eq. (2.25), and the self-consistent

HF self energy ΣHF for a uniform system is the replacement of the free occupation

probability by

nHF (k) = [eβ(ε(k)−µ) + 1]−1, (2.27)

where ε(k) = k2

2m
+ΣHF (k). This structural resemblance is due to the fact that the

mathematical form of gHF is equal to the structure of the free Green’s function.

The internal energy per particle in HF approximation is given by the integral over

all occupied states [fet71],

EHF

A
=
γ

ρ

∫
d3k

(2π)3

[
k2

2m
+

1

2
ΣHF (k)

]

nHF (k), (2.28)

where γ = (2s + 1)(2t + 1) is the spin-isospin degeneracy factor of symmetric

nuclear matter, composed of nucleons with spin s = 1
2

and isospin t = 1
2
. The

explicit factor 1
2

in Eq. (2.28) must be included to avoid double counting of self

energy contributions. The density of the system is

ρ = γ

∫
d3k

(2π)3
nHF (k). (2.29)

In practice, the density is fixed at the beginning of the calculation, and Eq. (2.29)

is then used to determine the chemical potential µ.

Unfortunately, the HF approximation is not very well suited for a description of

nuclear systems with realistic potentials. In Fig. 2.9, numerical results for the

Argonne V18 potential and the CDBONN potential are compared at different

temperatures. Up to a laboratory energy of 350 MeV, both of them fit the avail-

able experimental two-nucleon data to a very high level of accuracy with a χ2

value per data point close to one. However, in a many-body calculation on the

HF level, they fail completely. First of all, neither of the two potentials is able

to describe a bound system (right panel): the internal energy is positive over the

whole density range, the Argonne potential yielding even more repulsion than the

CDBONN potential. The repulsive effect at finite temperature amounts to about

4 MeV at saturation density and this is predominantly due to an increase of the
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Figure 2.9: Results of a Hartree-Fock calculation for two different realistic

potentials. The HF self energy at saturation density, ρ0 = 0.16 fm−3, is

shown in the left panel. Only a small repulsion at finite temperature is

observed. The internal energy is shown in the right panel. At saturation

density, the temperature effect is about 4 MeV.

kinetic energy term in Eq. (2.28). This can be inferred from the HF self energies,

which display only a weak temperature dependence (left panel).

The large difference between the two potentials of about 50 MeV for the self ener-

gies and more than 20 MeV for the internal energies shows drastically how sensitive

a HF calculation is to the structure of those components in the nuclear potential

that are not fixed by two-nucleon scattering data. In particular, the HF approx-

imation neglects correlation effects, which means that the wave function is an

antisymmetric product of plane waves. These plane waves feel the full short-range

repulsion of the potential if two (or more) nucleons are close, and the large devia-

tions for different realistic NN potentials reflect basically the different modeling of

the repulsive core. One must conclude from these observations, that correlation ef-

fects between nucleons play an important role. In order to improve the description

of nuclear matter, one should therefore include those type of higher order diagrams

in the perturbation expansion that are relevant for two-body correlations.
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2 Many-Body Theory

2.3 Ladder Approximation to the Self Energy

The Hartree-Fock approximation to the self energy describes particles that move

in an averaged potential generated by all other particles in the Fermi sea. Since

a nucleon with a certain momentum k either stays in its orbit or is exchanged

with a particle in an occupied orbit, a redistribution of momentum or spin-isospin

quanta with other nucleons propagating along with it in the medium cannot be

described within the HF formalism. Only the consideration of multiple interaction

processes between co-propagating pairs or clusters will yield information about the

correlated system. The suppression of configurations in which two nucleons are

very close such that they feel their mutual repulsion, and, in turn, the enhancement

of energetically favorable groupings is an important effect to be expected from two-

body correlations. In this way, the self energy will become more attractive.

The approximation scheme to the self energy that will be introduced in the present

section takes multiple scattering processes into account. This leads to a coupled

set of equations for the correlated many-body system, that is formulated in terms

of self-consistent Green’s functions. It is the main focus of this Thesis to find a

solution to these equations. The techniques that are necessary to solve the SCGF

equations will be described in detail in Chapter 3 and results are presented in

Chapter 4.

It is well known from NN scattering in free space that a resummation of one-boson

exchange processes to all orders in the Lippman-Schwinger equation is required to

achieve an exact description of experimental data. Summation techniques of this

kind are called non-perturbative. In contrast, in perturbative approaches, one is

obliged to evaluate the perturbation series diagram by diagram, starting with the

first order contributions. Due to the repulsive core of the nucleons, the matrix ele-

ments containing the bare potential are large, and the perturbation series converges

too slowly if at all. Under the assumption that the dominant contribution to the

self energy from the higher order diagrams is due to multiple scattering processes of

only two participant nucleons, it is reasonable to apply a similar non-perturbative

method like in free space to the many-body system. This approximation should

work well in the limit of low densities. Around the central density of 208Pb, only

about 20% of the space is occupied by the repulsive core of the nucleons, which

means that the range of the interaction is smaller than the mean interparticle

distance, so that the assumption of a dilute system is justified to some extent.
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2.3 Ladder Approximation to the Self Energy

Σ T=

Figure 2.10: The ladder self energy approximation in a diagrammatic

representation. The exchange diagrams are included since the T matrix

elements are assumed to be anti-symmetrized.

There are of course other processes that start to play a role, which are neglected

by choosing a low density ansatz; some of them are briefly discussed in Section 2.4.

In Fig. 2.6, the direct self energy diagrams, (a) – (e), as well as the corresponding

exchange terms, (f) – (j), that are contained in the so-called T matrix approxima-

tion, are depicted up to fifth order. Due to their structure, they are called ladder

diagrams. Note that the ladder series includes the two first order diagrams.

The structure of the self energy in ladder approximation is similar to Eq. (2.21),

ΣL(k, zν) = −i
1

−iβ

∑

ν′

∫
d3k′

(2π)3
〈kk′|T (zν + zν′)|kk′〉A g(k

′, zν′), (2.30)

and it is shown diagrammatically in Fig. 2.10. The T matrix has been introduced as

an auxiliary quantity representing an effective two-body interaction that contains

a resummation of all ladders; it is defined as

〈kk′|T (ZΛ)|pp′〉 = 〈kk′|V |pp′〉 + i

(
1

−iβ

)2 ∑

ν1ν2

∫
d3k1

(2π)3

∫
d3k2

(2π)3

×〈kk′|V |k1k2〉 g(k1, zν1)g(k2, zν2) 〈k1k2|T (ZΛ)|pp′〉

×(2π)3δ(3)(k + k′ − k1 − k2)(−iβ)δΛ;ν1+ν2. (2.31)

Graphically, the ladder equation is depicted in Fig. 2.11. The delta functions

guarantee the conservation of the center of mass momentum and the total pair

frequency ZΛ = πΛ
−iβ

+2µ, where Λ is an even integer. One can check that all orders

of direct and exchange contributions to the self energy in ladder approximation

are reproduced according to the Feynman rules (cf. Appendix B) by repeatedly

inserting Eq. (2.31) into Eq. (2.30). Note, however, that the free propagators

have been replaced by the full Green’s functions, following the procedure of self-

consistent renormalization that was explained in Section 2.2. As in the case of the
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T
T

= +

Figure 2.11: The graphical representation of the T matrix. The structure

is similar to the scattering matrix that describes NN collisions in free

space, but the propagators are dressed in-medium Green’s functions.

self-consistent HF approximation, the dressing of the particle lines implicates that

an additional subset of self energy contributions, the ones containing self energy

insertions, is implicitly included. Typical examples are given by the diagrams

(k), (l) and (m) in Fig. 2.6.

Both Eq. (2.31) and Eq. (2.30) contain Matsubara summations. After performing

the trivial summation over ν2 in the ladder equation, the non-interacting two-

particle propagator appears:

g0
II(k1, k2, ZΛ) = −

1

β

∑

ν1

g(k1, zν1)g(k2, ZΛ − zν1). (2.32)

The evaluation of the remaining Matsubara sum in this interesting quantity is

postponed to Section 3.2. In principle, it follows similar lines as the frequency sum-

mation carried out in Section 2.2, however, due to the more complicated structure

of the renormalized Green’s functions, a spectral decomposition of g is required.

The evaluation of the frequency sum in the ladder self energy requires a spectral

decomposition of the T matrix and is also discussed in Section 3.2.

2.4 Beyond the Ladder Approximation

In the final Section of this Chapter, the following three questions will be addressed:

what are the improvements that can be expected from the T matrix approach, what

are possible shortcomings and in which way one might be able to further improve

the description of nuclear matter.

The T matrix scheme offers an approximate solution to the nuclear many-body

problem. It is a non-perturbative method that is capable to sum up the specific

26



2.4 Beyond the Ladder Approximation

class of ladder diagrams to all orders. By dressing of the propagators, the variety

of diagrams that are included in this set becomes very rich and detailed informa-

tion about the energy and momenta of nucleons in the medium can be expected.

The two-particle Green’s function, Eq. (2.32), is a product of two SCGF’s and

treats forward (particle-particle) propagation and backward (hole-hole) propaga-

tion on the same footing, so that intermediate NN states are correctly described.

The method constitutes a consistent type of approximation, but one should not

forget that it is focused predominantly on the problem of adequately treating the

short-range correlations. Remember that in Section 2.2, it was argued that these

contributions were likely to improve the results for bulk properties of the nuclear

medium, in particular the internal binding energy, with respect to the poor HF

result. Long-range low-energy excitations in the region around the Fermi surface

are not as well incorporated in the ladder approximation.

It can be considered as one of the drawbacks of the method, that it is difficult to

predict the importance of the retained diagrams relative to the neglected terms.

The Green’s function is not expanded in terms of a small quantity as, e.g., the

hole-line in the Goldstone diagrams for the energy in the Brueckner hole-line ex-

pansion. Carried out to all orders, Brueckner and Green’s function’s theory must

yield the same result. Both methods should work well at low densities, but in

contrast to the latter, the former method can be characterized as an expansion

in powers of the density, in which the suppression of diagrams that contain more

and more hole-lines is guaranteed. Indeed, a reasonable convergence seems to be

achieved already at the three hole-line level, as was shown by Baldo and collab-

orators in Ref. [son98]. In the same paper, it is demonstrated that, although the

absolute three hole-line contribution to the internal energy is small, this partly due

to a cancellation effect between repulsive Goldstone diagrams of the ladder type

with dressed particle lines and attractive ring diagrams.

In the Green’s functions approach, it is difficult to control the error that is made

by neglecting diagrams of other structural types, e.g. the ring or chain diagrams

that are depicted in Fig. 2.6 (n), (o) and (p). The lowest order self-energy contri-

butions of the ring type is of third order in the interaction potential. Similar non-

perturbative summation techniques as for the ladder diagrams exist for the comple-

mentary sector of long-ranged, low-energy and collective excitations in many-body

systems. These methods are based on a partial summation of rings, which is de-

scribed in many textbooks on Green’s functions, e.g., in Refs. [mat67, fet71, neg88].

A consistent treatment of the long-range excitations in nuclear matter is related to
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the problem of pion condensation and the unresolved issue of the role of ∆(1232)

excitations. These effects could have a large effect on the nuclear binding energy.

Further information on the topic can be found, e.g., in Refs. [dic81, dic82, dic83].

Diagrammatic Green’s functions theory can be improved systematically: the par-

quet equations [jac82] allow a consistent resummation of self energy contributions

of the ladder type and the ring type as well as generalized types of diagrams that

include mixtures of both. Two examples are shown in Fig. 2.6. Diagram (t) is

generated from the ladder diagram (c) by augmenting the middle rung with a po-

larization insertion, and in diagram (u), a ladder was inserted in the third order

ring diagram (n). The parquet equations can be formulated as a closed system of

equations in terms of the dressed Green’s functions, similarly to the dressed ladder

equations for the T matrix. A solution of the parquet equations for the full nuclear

many-body system has never been achieved so far. In any case, it would go far

beyond the SCGF approximation applied in this Thesis.

Still, there are diagrams that are not included in the parquet approximation. They

first appear in fifth order in the potential. One example is given by Fig. 2.6 (v).

These fully irreducible diagrams can be related to the so-called elementary dia-

grams of the hypernetted chain summation techniques.

28



Chapter 3

Ladder Approximation in Detail

3.1 The Spectral Function

In the previous Chapter, it was shown how the Green’s function can be described in

different approximations by applying diagrammatic methods. Due to the formal

identity of the the the thermal weight factor eβH and the time evolution factor

eitH for t = −iβ, the diagrammatic expansion for the Green’s function holds for

a bounded interval in the imaginary time domain or, equivalently, at discrete

Matsubara frequencies. However, physical quantities that depend on real-time or

frequency variables have a simpler interpretation. Since we deal with functions

that are analytic in certain regions of the complex ω plane, it is possible to use

the concept of analytic continuation to learn about the properties of the Green’s

function or the self energy along the real time or frequency axis. A very interesting

quantity in this context is the spectral function, that will be introduced in this

Section.

It was mentioned in the paragraph after Eq. (2.9), that −ig<(xt;xt) is the particle

density of the system at the real spacetime point (x, t). The Fourier transform of

the correlation function in a uniform system, along the real time axis, reads

g<(k, ω) = −i

∫

d3x

+∞∫

−∞

dt e−ikx+iωtg<(x, t), (3.1)

where the explicit factor −i is included. This function describes a spectral distri-

bution of the number of particles in the state k. To make the point very clear,
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3 Ladder Approximation in Detail

g<(k, ω) dω/2π is the probability to remove a particle with an energy ω from the

momentum state k of the many-body system. In the same way, one can define

another real and positive function that is interpreted as the spectral probability

to attach a further particle with energy ω to the momentum state k,

g>(k, ω) = i

∫

d3x

+∞∫

−∞

dt e−ikx+iωtg>(x, t). (3.2)

For a given momentum state k, the correlation function g<(k, ω) bears information

about the spectral distribution of the thermally populated energy domain, while

g>(k, ω) describes the capability of the system to pick up particles in the energy

region that is not accessible in thermal equilibrium. In other words, g>(k, ω)

describes the potential occupation of state k. The sum of both functions is a

positive quantity that defines the spectral function,

A(k, ω) = g>(k, ω) + g<(k, ω). (3.3)

An important property of the spectral function A(k, ω) — and the reason why

one can speak of probabilities — is its normalization to one. The Pauli exclusion

principle requires that each state k can at most be occupied by only one particle,

so that the following sum rule must be fulfilled,

+∞∫

−∞

dω

2π
A(k, ω) = 1. (3.4)

From Eq. (3.1) and the quasi-periodicity condition, Eq. (2.10), it follows that the

Fourier transformed correlation functions are related by detailed balance,

g>(k, ω) = eβ(ω−µ)g<(k, ω). (3.5)

Using this condition, the correlation functions can be expressed by the spectral

function,

g<(k, ω) = f(ω)A(k, ω). (3.6)

and

g>(k, ω) = [1 − f(ω)]A(k, ω) (3.7)
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3.1 The Spectral Function

In the limit of zero temperature, g< and g> are the hole spectral function and the

particle spectral function, respectively [ben89, von93].

The Fourier coefficients of the imaginary time Green’s function and the spectral

function are related by the Lehman decomposition [kad62],

g(k, zν) =

+∞∫

−∞

dω

2π

A(k, ω)

zν − ω
. (3.8)

g(k, zν) can be continued analytically to all non-real frequencies, just by replacing

the Matsubara frequencies zν by a complex number z. The Plemelj identity,

1

ω + iη
=

P

ω
− iπ δ(ω), (3.9)

is used to separate the real and the imaginary part of the retarded propagator

g(k, ω+ iη) from each other. P denotes the principal value. The spectral function

is then related to the imaginary part of the retarded propagator,

A(k, ω) = −2 Im g(k, ω + iη). (3.10)

For practical purposes, the spectral function is computed from the self energy by

inserting the solution of Dyson’s equation, Eq. (2.20), into Eq. (3.10). This yields

A(k, ω) =
−2 Im Σ(k, ω + iη)

[ω − k2

2m
− Re Σ(k, ω)]2 + [Im Σ(k, ω + iη)]2

. (3.11)

If the self energy had no frequency dependence, the spectral function would have a

perfect Lorentzian shape. Due to the explicit ω dependence, there are deviations,

but the Lorentzian provides a rather satisfying description of the spectral function

in the region around the peak of the spectral function.

A special case is sketched in the following. For non-interacting particles or in

a system where interactions are mediated via a mean field described in the HF

approximation, the self energy has no imaginary part. But also in a correlated

system, the imaginary part can be neglected as an approximation. If only the real

part of the self energy is considered, it follows from Eqs. (3.9) and (3.10) that the

spectral function is just a delta spike,

A(k, ω) = 2πδ(ω − ε(k)). (3.12)
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3 Ladder Approximation in Detail
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Figure 3.1: Spectral function in nuclear matter for k = 0 and k =

526 MeV. The solid line is a non-trivial spectral function, calculated

from Eq. (3.11). The dash-dotted line is the Lorentzian approximation

and the dashed line is the quasiparticle delta spike. The calculation was

performed at T = 3 MeV and a density of ρ = 0.16 fm−3. The chemical

potential is also indicated.

ε(k) is the single-particle energy for a particle with momentum k,

ε(k) =
k2

2m
+ ReΣ(k, ε(k)). (3.13)

Since an energy-momentum relation of this type is commonly associated with

the particle character of matter, an approximation scheme for which the spectral

function has the form of Eq. (3.12) is called quasiparticle picture. In Fig. 3.1,

a non-trivial spectral function, the Lorentzian approximation and a quasiparticle

delta spike are shown. The peak of the spectral function is located at the quasipar-

ticle energy. Quasiparticle approximations to the SCGF formalism are discussed

in Section 3.5. One should keep in mind that it is the correlations between the

particles that lead to the non-existence of an energy-momentum relation, and this

implies the use of a spectral function in advanced many-body calculations.

It is a very nice feature of the Green’s functions formalism that it provides imme-
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Figure 3.2: Momentum distribution in nuclear matter. At zero temper-

ature, there is a sharp Fermi surface located at kF (solid line). The step

is smeared out at finite temperature (dash-dotted line). Due to correla-

tions, the occupied states are depleted and the states above kF display a

finite occupation (dashed line).

diate access to the nucleon spectral function. On the one hand, it follows from

the spectral representation, Eq. (3.8), that the knowledge of the spectral function

is equivalent to the information contained in the single-particle Green’s function.

On the other hand, A(k, ω) also provides a link between theory and experiment.

At zero temperature, for instance, the cross section of a proton knock-out reaction

is proportional to A(k, ω), which is hardly surprising, because this was interpreted

as the probability to find a nucleon with momentum k and energy ω in the many-

body system.

It is clear from the interpretation of g<(k, ω), that the overall occupation number

for a state with momentum k is given by the integral

n(k) =

+∞∫

−∞

dω

2π
A(k, ω)f(ω). (3.14)
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3 Ladder Approximation in Detail

In turn, the depletion of a state k can be expressed by the difference

d(k) = 1 − n(k). (3.15)

Already at zero temperature, a non-trivial nucleon spectral function in nuclear

matter yields occupation numbers different from unity below the Fermi momentum

kF , and a finite fraction of high-momentum nucleons, see Fig. 3.2. This effect is

only due to NN correlations and cannot be described within the traditional shell

model or the HF picture, where the states below (above) the Fermi momentum

are considered to be fully occupied (unoccupied). In hot systems, there is also a

temperature induced depletion effect, especially for the weakly bound states.

The density ρ of the system is deduced from the occupation number n(k),

ρ = γ

∫
d3k

(2π)3
n(k). (3.16)

Again, γ = 4 is the degeneracy factor for spin-isospin symmetric nuclear matter.

Experimental evidence on the effects of short range correlations on the occupation

of low-lying states can be deduced from the analysis of nucleon knock-out reac-

tions [sic91, bat01]. A recent analysis of the (e, e′p) reaction on 208Pb, covering

a wide range of missing energies, indicates that the deeply bound proton states

are on average depleted by (22 ± 8)% [bat01]. Another experiment of knock-out

reactions of protons from high-momentum states up to k = 650 MeV on 12C, Al, Fe

and Au provides a complementary view [roh03]. The analysis demonstrates that

there are indeed high-momentum off-shell nucleons present in the ground state of

a nucleus. Also the strength distribution over a large range of energies can be

observed experimentally.

3.2 Evaluation of Matsubara Sums

The Green’s function in T matrix approximation is completely determined by a

set of three equations: Dyson’s equation (2.19), the ladder equation (2.31), and

the expression for the ladder self energy, Eq. (2.30). As a first step towards a nu-

merical solution of this set, the Matsubara summations that appear in Eqs. (2.31)

and (2.30) must be performed. The techniques that are applied are similar for

both cases and the basic ingredients are the spectral representation of the Green’s

function and the integration of complex functions along contours in the complex
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3.2 Evaluation of Matsubara Sums

ω plane as discussed in Section 2.2. Derivations that are similar to those that are

discussed below can be found in Refs. [kra86, snl96].

The starting point for the evaluation of the Matsubara sum in the ladder equation

is the non-interacting two-particle Green’s function, g0
II , that was already reported

in Section 2.3 (cf. Eq. (2.32)),

g0
II(k1, k2, ZΛ) = −

1

β

∞∑

ν=−∞

g(k1, zν)g(k2, ZΛ − zν). (3.17)

The spectral representation of the Matsubara Green’s functions (3.8) is inserted

into Eq. (3.17) and the Matsubara sum is converted into a contour integral [kra86].

This procedure is completely analogous to the transformation of the Matsubara

sum that was discussed in connection with the first order self energy in Section 2.2,

Eq. (2.23). The contour C encircles all poles of the Fermi function f(z) as shown

in Fig. 2.7,

g0
II(k1, k2, ZΛ) =

+∞∫

−∞

dω

2π

+∞∫

−∞

dω′

2π
A(k1, ω)A(k2, ω

′)

∫

C

dz

2πi
f(z)F (z, ZΛ), (3.18)

where

F (z, ZΛ) =
1

(z − ω)(ZΛ − z − ω′)
. (3.19)

The poles of F are located at z1 = ω and z2 = ZΛ − ω′. The contour C can be

deformed to a contour C ′ in such a way that that only the residues of the product

f(z)F (z, ZΛ) at the poles of F contribute. The result is

g0
II(k1, k2, ZΛ) =

+∞∫

−∞

dω

2π

+∞∫

−∞

dω′

2π
A(k1, ω)A(k2, ω

′)
1 − f(ω) − f(ω′)

ZΛ − ω − ω′
. (3.20)

Here, the relation f(ZΛ − ω) = 1 − f(ω) has been applied, that holds for even

integers Λ. The expression for the two-particle propagator, Eq. (3.20), can be

continued analytically to slightly complex values Z = Ω+iη (Ω real). Substituting

ω′ = Ω′ − ω, the real and the imaginary part of the retarded propagator are
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3 Ladder Approximation in Detail

separated from each other,

g0
II(k1, k2,Ω + iη) = −

P

π

+∞∫

−∞

dΩ′ Im g0
II(k1, k2,Ω

′ + iη)

Ω − Ω′
+ i Im g0

II(k1, k2,Ω + iη),

(3.21)

where

Im g0
II(k1, k2,Ω+iη) = −

1

2

+∞∫

−∞

dω

2π
A(k1, ω)A(k2,Ω−ω)[1−f(ω)−f(Ω−ω)]. (3.22)

This result is extremely useful since it allows us to obtain Im g0
II by carrying out

only one ω-integration. Since the spectral functions are sharply peaked and there-

fore rather difficult to handle numerically, this is essential for the computational

treatment. The technical procedure to obtain the complex non-interacting two-

particle propagator works as follws: in a first step, Im g0
II is calculated for a distri-

bution of Ω, and stored. In a second step, the stored data is used for the evaluation

of the principal value integral.

Before the integral in Eq. (3.22) can be computed, a chemical potential µ must be

fixed (remember that µ appears in the Fermi function). In principle, Eq. (3.16)

must be inverted to find µ. In practice, the density is computed for a number

of chemical potentials in a sufficiently wide range, and the final µ is interpolated

from the results. The results in this Thesis have been obtained in this way. Al-

ternatively, the chemical potential can be considered as an external variable as

described in Ref. [fri03]. In this case, the density will vary in each iteration cycle

unless convergence is achieved.

The construction of Im g0
II is rather delicate, since two sharply peaked spectral

functions have to be folded. The careful evaluation of Eq. (3.22) is crucial for the

self-consistent procedure. Actually, it is convenient to consider

Im g0
II(k1, k2, Ω̃ + iη) = −

1

2

+∞∫

−∞

dω

2π
A(k1, ω + ε(k1))A(k2, Ω̃ − ε(k1) − ω)

×[1 − f(ω + ε(k1)) − f(Ω̃ − ε(k1) − ω)], (3.23)
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3.2 Evaluation of Matsubara Sums

where Ω̃ = Ω + ε(k1) + ε(k2). The on-shell energy ε(k) is defined by

ε(k) =
k2

2m
+ ReΣ(k, ε(k)). (3.24)

Note that the peaks of the spectral functions in Eq. (3.23) are located around

ω = 0 and ω = Ω, independent of k1 and k2. This simplifies the construction of

the integration mesh. Furthermore, in the subsequent angle-averaging procedure,

one can take advantage of the fact that Im g0
II(k1, k2, Ω̃) is peaked around Ω = 0 for

all single-particle momenta. This is the quasiparticle peak, and it is formed where

the peaks of both one-particle spectral functions coincide in the folding integral,

Eq. (3.23).

A sum rule for the two-particle spectral function was given in Ref. [dic99] for

zero temperature. For the present case of finite temperature, this sum rule was

generalized to

−
1

π

+∞∫

−∞

dΩ Im g0
II(k1, k2,Ω + iη) = 1 − n(k1) − n(k2). (3.25)

Since the right hand side is easily computed from the single-particle spectral func-

tion, the relation can be used to check the numerical accuracy that is achieved for

Im g0
II after performing the integration in Eq. (3.23). Mesh spacings and integra-

tion limits were adjusted such that both sides of Eq. (3.25) do not deviate by more

than 1% for single particle momenta up to k ≈ 2000 MeV.

The real part of the two-particle propagator is obtained from the principal value

integration according to Eq. (3.21). In principal value integrals, one has to take

care that the integration mesh points in the vicinity of the pole at Ω′ = Ω are

arranged symmetrically in order to guarantee a proper cancellation of large con-

tributions with opposite sign. NΩ̃ = 120 mesh points are used for the final mesh

and the number of mesh points for either of the momentum variables is Nk = 70,

which means that NΩ̃ ×Nk ×Nk ≈ 6 × 105 integrals have to be evaluated.

The Matsubara summation that appears in the expression for the ladder self en-

ergy,

ΣL(k, zν) =
1

β

∑

ν′

∫
d3k′

(2π)3
〈kk′|T (zν + zν′)|kk′〉A g(k

′, zν′), (3.26)
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3 Ladder Approximation in Detail

will be performed in the second part of this Section. Again, the spectral represen-

tation of the single-particle Green’s function is inserted. Since the T matrix shows

a dependence upon the Matsubara frequency zν′ , a spectral decomposition of T is

required,

T (zν + zν′) = V −
1

π

+∞∫

−∞

dΩ
ImT (Ω + iη)

zν + zν′ − Ω
. (3.27)

This relation follows from the definition of the T matrix and the analytical proper-

ties of the Green’s function, Eq. (3.8). Using once again the contour C, the ladder

self energy can be written as

ΣL(k, zν) =

∫
d3k′

(2π)3
〈k,k′|V |k,k′〉A n(k′) +

+∞∫

−∞

dΩ

π

∫
d3k′

(2π)3

+∞∫

−∞

dω′

2π

×〈kk′|ImT (Ω + iη)|kk′〉AA(k′, ω′)

∫

C

dz

2πi
f(z)G(z, zν), (3.28)

where

G(z, zν) =
1

(z + zν − Ω)(z − ω′)
. (3.29)

The first term in Eq. (3.28) is a generalized HF contribution in the sense that it does

not only contain HF self energy insertions in the propagating line, but the mean

field effects of more complex excitations, which are contained in the full momentum

distribution n(k) given by Eq. (3.14). One of the most important contributions for

the modification of n(k) with respect to the HF result, the rearrangement term that

accounts for the depletion effect in the Bethe-Brueckner-Goldstone theory [jeu76,

zuo99], is included in the diagram (k) of Fig. 2.6.

The contour integration in the second term can be performed with the residues of

the function G at the poles z1 = ω′ and z2 = Ω − zν. The result is

ΣL(k, zν) = ΣHF (k) −

+∞∫

−∞

dΩ

π

∫
d3k′

(2π)3

+∞∫

−∞

dω′

2π
〈kk′|ImT (Ω + iη)|kk′〉A

×
A(k′, ω′)[f(ω′) + b(Ω)]

zν + ω′ − Ω
. (3.30)
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3.3 Partial Wave Decomposition

The factor [f(ω′) + b(Ω)] contains the Bose function, b(Ω) = [eβ(Ω−2µ) − 1]−1

that appears due to the symmetric treatment of hole-hole and particle-particle

propagation in the T matrix approach. In the derivation of Eq. (3.30), the relation

f(Ω− zν) = −b(Ω) was used, which holds for odd integers ν. In order to separate

the real part from the imaginary part, one considers the retarded self energy and

substitutes Ω = λ+ ω′ in Eq. (3.30),

ΣL(k, ω + iη) = ΣHF (k)−
P

π

+∞∫

−∞

dλ
ImΣ(k, λ+ iη)

ω − λ
+ i ImΣ(k, ω + iη), (3.31)

where

ImΣL(k, ω + iη) =

∫
d3k′

(2π)3

+∞∫

−∞

dω′

2π
〈kk′|ImT (ω + ω′ + iη)|kk′〉A

×A(k′, ω′)[f(ω′) + b(ω + ω′)]. (3.32)

The Bose function b(Ω) has a pole at Ω = 2µ that is exactly canceled by a node in

the imaginary part of the T matrix [alm93, alm96]. As long as the T matrix does

not acquire a pole at ω + ω′ = 2µ, the integrand remains a smooth function of ω′.

Such a pole in the T matrix occurs below a critical temperature TC , a phenomenon

which is often referred to as pairing instability. Both the sign change of ImT and

the pole formation at low temperatures are discussed in Section 4.2.

3.3 Partial Wave Decomposition

Up to this point, spin-isospin indices have been suppressed according to the con-

vention that was introduced after Eq. (2.1), and the matrix elements of the nuclear

potential have been described in the basis of the three momenta k and k′. However,

a coupled two-nucleon basis is much better suited to take advantage of the sym-

metries of the NN potential. For this purpose, it is at first necessary to construct

the transformation matrix between the uncoupled basis, in which the Feynman

diagrams are formulated, and the coupled two-particle basis that is described in

terms of a maximal set of good quantum numbers of the interacting nucleon pair.

Then, an explicit partial wave decomposition of the self energy is carried out.
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3 Ladder Approximation in Detail

In the following, single particle angular momentum and isospin quantum numbers

are denoted by s and t; the corresponding projection quantum numbers by σ and

τ . Two-nucleon quantum numbers and their projections are denoted by capital

letters, e.g., J and mJ .

The HF self energy, including the explicit labels of spin and isospin degrees of

freedom, can be written as

ΣHF (k) =
1

(2s+ 1)(2t+ 1)

∑

στ

∑

σ′τ ′

×

∫
d3k′

(2π)3
〈kστ,k′σ′τ ′|V |kστ,k′σ′τ ′〉A n(k′). (3.33)

Note that only the summations over the internal spin-isospin quantum numbers

σ′ and τ ′ were assumed to be implicitly included in the momentum integration.

The summations over the external spin-isospin projection quantum numbers σ

and τ correspond to an averaging, and one has to normalize by dividing by the

degeneracy factors (2s+ 1) and (2t+ 1).

As a first step, the anti-symmetric matrix element is expressed in terms of the

relative momentum q = 1
2
(k − k′) and the spin and isospin quantum numbers of

the pair, S, mS, T and mT . The center of mass dependence of the state vectors

is suppressed, since the potential matrix elements depend only on the relative

momenta,

|kστ,k′σ′τ ′〉A = |q; στ, σ′τ ′〉 − |−q; σ′τ ′, στ〉

=
∑

SmS

∑

TmT

|q SmSTmT 〉C
SmS

sσs′σ′C
TmT

tτ t′τ ′

−
∑

SmS

∑

TmT

|−q SmSTmT 〉C
SmS

s′σ′sσC
TmT

t′τ ′tτ . (3.34)

CXmX

aαbβ is the Clebsch-Gordan coefficient that connects the uncoupled basis |αβ〉

to the coupled basis |XmX〉 for given angular momenta a and b by means of a

unitary transformation.

The next step requires an expansion of the relative wave vector state q in partial

waves. In coordinate space, this expansion reads [jac98]:

(2π)3/2 〈r|q〉 = eiqr = 4π

∞∑

L=0

iLjL(qr)

+L∑

mL=−L

YLmL
(êr)Y

∗
LmL

(êq) (3.35)
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3.3 Partial Wave Decomposition

Here, the jL represent the spherical Bessel functions and the YLmL
are the spherical

harmonics. The coordinate representation of the partial wave state is [sak95]

〈r|q LmL〉 =

√

2

π
iLjL(qr)YLmL

(êr). (3.36)

Comparing Eq. (3.35) and Eq. (3.36), one can identify that the transformation

matrix elements are just given by the spherical harmonics,

|q〉 =
∞∑

L=0

+L∑

mL=−L

|q LmL〉Y
∗
LmL

(êq). (3.37)

Using this decomposition into partial waves, the expansion of the anti-symmetric

two-particle state takes the form

|kστ,k′σ′τ ′〉A =
∑

LmL

∑

SmS

∑

TmT

|q LmLSmSTmT 〉

×
[
Y ∗

LmL
(êq)C

SmS

sσs′σ′C
TmT

tτ t′τ ′ − Y ∗
LmL

(−êq)C
SmS

s′σ′sσC
TmT

t′τ ′tτ

]
.

(3.38)

The tensor components in the nuclear potential lead to a coupling of partial waves

with different orbital angular momentum L; the conserved quantum number is the

total angular momentum J . A recoupling of the projection quantum numbers mL

and mS to J and mJ by a further unitary transformation makes it possible to

express the uncoupled two-particle state by a coupled state that is given in terms

of J , mJ , T , mT and S. This is the maximal set of good quantum numbers,

|kστ,k′σ′τ ′〉A =
∑

JmJ

∑

LmL

∑

TmT

∑

SmS

|q LSJmJTmT 〉

× CJmJ

LmLSmS
Y ∗

LmL
(êq)C

SmS

sσs′σ′C
TmT

tτ t′τ ′

[
1 − (−1)L+S+T

]
.

(3.39)

Due to symmetry properties of the Clebsch-Gordan coefficients that are reported,

e.g., in Ref. [var88], the anti-symmetry restriction for the coupled state can be

expressed by the factor
[
1 − (−1)L+S+T

]
, which yields either zero or two. This is

a selection rule for the partial waves with

L + S + T = odd. (3.40)
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3 Ladder Approximation in Detail

The full HF self energy can now be obtained by sandwiching the potential be-

tween the expressions (3.39) for the state 〈kστ,k′σ′τ ′| and the anti-symmetric

state |kστ,k′σ′τ ′〉A,

ΣHF (k) =
2

(2s+ 1)(2t+ 1)

∑

JST
LL′

∫
d3k′

(2π)3
〈q|V JST

LL′ |q〉n(k′)

×
∑

mT

∑

ττ ′

CTmT

tτ t′τ ′C
TmT

tτ t′τ ′

︸ ︷︷ ︸

(2T+1)

∑

mL

m
L′

∑

mS

m
S′

∑

σσ′

CSmS

sσs′σ′C
Sm

S′

sσs′σ′

︸ ︷︷ ︸

δmSm
S′

⇒δmLm
L′

×
∑

mJ

CJmJ

LmLSmS
CJmJ

L′m
L′Sm

S′
YLmL

(êq)Y
∗
L′m

L′
(êq). (3.41)

In Eq. (3.41), the trivial summations over J ′, mJ ′, S ′, T ′ and mT ′ — the conserved

quantum numbers — have already been carried out and the order of the remaining

sums in Eq. (3.41) has been arranged in a way that is most convenient for the

subsequent steps. The potential matrix elements, 〈q|V JST
LL′ |q〉, can be handled in

a relative simple way in numerical calculations, because they are a function of

only one continuous variables. It is understood that in the ket vector, only partial

waves that fulfill condition (3.40) can contribute.

The nuclear interaction does not conserve the angular momentum L, because the

tensor components of the NN force lead to a coupling of partial waves with equal

parity, Π = (−1)L and ∆L = 2. The best known example for a system with

coupled partial waves is the deuteron, which is a 3S1 −
3 D1 bound neutron-proton

state.

Rules for the sums involving Clebsch-Gordan coefficients are given in Ref. [var88].

Note that the factor δmLm
L′

follows from the conservation of the spin projection

mS and the LS coupling rules mS +mL = mJ and mS′ +mL′ = mJ . The remaining

summations over mJ , mL and mS are carried out in the following steps,

ΣHF (k) =
2

(2s+ 1)(2t+ 1)

∑

JST
LL′

(2T + 1)

∫
d3k′

(2π)3
〈q|V JST

LL′ |q〉n(k′)

×
∑

mL

∑

mJ

mS

CJmJ

LmLSmS
CJmJ

L′mLSmS

︸ ︷︷ ︸
(2J+1)
(2L+1)

δ
LL′

YLmL
(êq)Y

∗
L′mL

(êq). (3.42)
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Using the relation

∑

mL

YLmL
(êq)Y

∗
LmL

(êq) =
1

4π
(2L + 1), (3.43)

and the fact that spin s = 1
2

and isospin t = 1
2

for nucleons, one obtains the final

result for the HF self energy in a partial wave decomposition

ΣHF (k) =
1

8π

∑

JSTL

(2T + 1)(2J + 1)

∫
d3k′

(2π)3
〈q|V JST

LL |q〉n(k′). (3.44)

Exactly the same kind of decomposition applies to the imaginary part of the self

energy in T matrix approximation:

ImΣL(k, ω + iη) =
1

8π

∑

JSTL

(2T + 1)(2J + 1)

∫
d3k′

(2π)3

+∞∫

−∞

dω′

2π
A(k′, ω′)

×
〈
q|ImT JST

LL (P, ω + ω′ + iη)|q
〉
[f(ω′) + b(ω + ω′)].

(3.45)

Note that there is an explicit dependence upon the center of mass momentum in

the partial wave T matrix elements, which will be discussed in the next Section.

3.4 Solution for the T Matrix

The missing link to form a closed system of equations is the solution of the ladder

equation for the retarded T matrix. After the Matsubara summations are carried

out and the trivial integrations are performed, the ladder equation, Eq. (2.31),

turns into a three-dimensional integral equation. A partial wave decomposition

can be applied, however, there is a complication due to the explicit dependence

of g0
II upon the single particle momenta k1 = |P + k′| and k2 = |P − k′|, P

being the center of mass momentum and k′ the relative momentum of the pair

in the intermediate state. Obviously, the exact g0
II depends upon the angle θ

between the center of mass momentum and the relative momentum, and this leads

to a coupling of partial waves with different values of J [sar96, slr99]. In other

words, two-particle scattering processes in the nuclear medium do not conserve
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3 Ladder Approximation in Detail

the total angular momentum of the pair. The computational difficulties due to

this additional coupling can be circumvented by introducing an angle-averaged

approximation to g0
II,

ḡ0
II(P,Ω + iη, k′) =

1

2

+1∫

−1

d cos θ g0
II(|P + k′|, |P− k′|,Ω + iη). (3.46)

Replacing the exact propagator g0
II by the angle-approximated ḡ0

II, the ladder

equation for the retarded T matrix can be written as a one-dimensional integral

equation for each allowed combination of the total angular momentum J , spin S

and isospin T ,

〈
q|T JST

LL′ (P,Ω + iη)|q′
〉

=
〈
q|V JST

LL′ |q′
〉

+
∑

L′′

∞∫

0

dk′ k′2

(2π)3

〈
q|V JST

LL′′ |k′
〉

×ḡ0
II(P,Ω + iη, k′)

〈
k′|T JST

L′′L′(P,Ω + iη)|q′
〉
. (3.47)

Only for the coupled partial waves, a summation over L′′ is required. The maxi-

mum number of coupled partial waves is Nc = 2. All possible channels up to J = 2

are listed in Table 3.1.

There have been efforts to estimate the effect of the angle-averaging procedure on

the self energy or the total binding energy of the system in Brueckner quasipar-

ticle type calculations, and only moderate deviations from the exact result have

been found [sar96, slr99, suz00, fri02]. Beyond the quasiparticle approximation,

no calculation without angle-averaging approximation has been published.

Eq. (3.47) is solved by a numerical matrix inversion technique similar to the one

described by Haftel and Tabakin in Ref. [haf70]. However, since the dressed two-

particle ḡ0
II is not divergent, a pole subtraction is not necessary. As a first step,

the integration variable k′ is discretized, so that the integral is written as a sum,

∞∫

0

dk′ h(k′) −→

NI∑

n=1

un h(kn). (3.48)

In this expression, h(kn) is the integrand of Eq. (3.47) at the mesh point kn and

un is the corresponding integration weight. NI is the number of integration mesh

points and has to be adjusted in such a way that the desired accuracy is achieved.
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3.4 Solution for the T Matrix

J Π S T term symbol Nc

0 + 0 1 1S0 1

- 1 1 3P0 1

1 + 1 0 3S1 −
3D1 2

- 1 1 3P1 1

- 0 0 1P1 1

2 + 1 0 3D2 1

+ 0 1 1D2 1

- 1 1 3P2 −
3F2 2

Table 3.1: Quantum numbers and spectroscopic terms of all channels up

to J = 2 under the antisymmetry constraint L + S + T = odd. Π is

the parity of the two-nucleon state, Π = (−1)L, and Nc is the number of

coupled orbital angular momenta.

In order to reformulate the problem as a matrix equation, the momentum variable

q needs to be discretized, too, and the same mesh points must be used. For given

values of the total pair momentum P , the total pair energy Ω and the initial

relative momentum q, the ladder equation can be written as

〈
km|V

JST
LL′ |q

〉
=

∑

L′′

NI∑

n=1

[
δmnδLL′′ −

〈
km|V

JST
LL′′ |kn

〉
ḡ0

II(P,Ω + iη, kn) un k
2
n

]

×
〈
kn|T

JST
L′′L′(P,Ω + iη)|q

〉
. (3.49)

The superfluous prime has been omitted. The structure of this equation can be

further simplified by introducing multi-indices,

N ≡ (n, L′′) and M ≡ (m,L), (3.50)

which are used to define two vectors withNcNI components and a complex quadratic

NcNI ×NcNI matrix,

V
α
M(q) =

〈
km|V

JST
LL′ |q

〉

T
α
N (P,Ω, q) =

〈
kn|T

JST
L′′L′(P,Ω + iη)|q

〉

M
α
MN(P,Ω) =

[
δmnδLL′′ −

〈
km|V

JST
LL′′ |kn

〉
ḡ0

II(P,Ω + iη, kn) un k
2
n

]
. (3.51)
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3 Ladder Approximation in Detail

The index α denotes the three-tuple (J , S, T ). With these abbreviations, the

matrix structure of the ladder equation becomes obvious,

V
α
M(q) =

Nc×NI∑

N=1

M
α
MN(P,Ω) T

α
N(P,Ω, q). (3.52)

Eq. (3.52) can be solved separately in each channel α by inversion of the matrix M,

T
α
N (P,Ω, q) =

Nc×NI∑

M=1

[Mα−1

(P,Ω)]MN V
α
M(q). (3.53)

Finally, the desired diagonal T matrix elements
〈
q|ImT JST

LL (P,Ω + iη)|q
〉

are ob-

tained by interpolation.

The solution of the ladder equation for the T matrix elements is a quite time

consuming task in the numerical treatment. The numerical cost for the matrix in-

version operation is proportional to the square of the number of integration mesh

points, NI . Therefore, some effort should be spend to keep this number as small

as possible. On the other hand, an accurate sampling of the regions around k0,

the position of the quasiparticle peak of the two-particle propagator, is crucial for

convergence. Of course, the high momentum region needs to be well sampled, too.

To achieve both aims, the integration range is divided into two intervals by intro-

ducing a momentum kX . It is required that k0 is located in the low momentum

interval [0, kX ], so that the location of kX depends on the position of the quasipar-

ticle peak. Close to k0, the integrand varies rapidly, but it does not diverge as in a

quasiparticle description (cf. Eq. (3.57) in Section 3.5 at the end of this Chapter).

Various bins of Gauss-Legendre mesh points are used in the interval [0, kX ]. In the

vicinity of the quasiparticle peak, a high density of mesh points is applied, and, like

in the case of the dispersion integral for Re g0
II, they are distributed symmetrically

on both sides, to favor a proper cancellation of contributions with opposite sign.

The second interval defines the high momentum region. To achieve a reasonable

sampling in this case, the k-interval [kX ,∞] is mapped to a finite x-interval [X, 1]

with 0 < X < 1, using the transformation

kj = c tan
(π

2
xj

)

, (3.54)

where xj are Gauss-Legendre mesh points within the finite x-interval. The con-

stant c needs to be chosen such that an adequate sampling is guaranteed up to a
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3.5 Quasiparticle Approximations

momentum region where the potential is suppressed by the cutoff. Above kX , the

Gaussian integration weights wj must be transformed according to

uj = c
π
2
wj

cos2
(

π
2
xj

) . (3.55)

NI = 50 integration points are used in the numerical calculation. The T matrix is

computed on a three-dimensional mesh in terms of the center of mass momentum

P , the total pair energy Ω and the relative momentum of the pair q. The energy

mesh contains NΩ = 80 points, while NP = Nq = 30. The matrix does not de-

pend on the relative momentum q, hence, the computer routine has to carry out

NMI = NΩ × NP × NJST matrix inversion operations, where NJST is the number

of partial waves that contribute. If partial waves up to a total angular momentum

of J = 2 are included, NJST = 8 (cf. Table 3.1) and NMI ≈ 20000.

The methods that were discussed in this Chapter provide all ingredients for the

self-consistent determination of an unknown function of two variables — the spec-

tral function A(k, ω): in Section 3.2, it was explained how the the two-particle

propagator must be constructed from the spectral function. The present Section

was devoted to the computation of the T matrix elements, which, in turn, are used

to calculate the self energy as reported in Section 3.2. A new spectral function is

then obtained from the self energy according to Eq. (3.11) in Section 3.1.

Before the numerical procedure that was developed to find a solution for the self-

consistent Green’s function is discussed more closely in Section 4.1, two different

approximations to the full SCGF approach will be outlined below.

3.5 Quasiparticle Approximations

In the final Section of Chapter 3, two distinct approximative schemes are discussed.

In both schemes, the non-trivial spectral functions are replaced by the quasiparticle

expression, Eq. (3.12), that was given in Section 3.1,

A(k, ω) = 2π δ(ω − ε(k)).

The Dirac function is peaked at the quasiparticle energy and introduces an en-

ergy momentum relation to the model. The quasiparticle energy spectrum ε(k) is
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3 Ladder Approximation in Detail

determined from the following on-shell condition

ε(k) =
k2

2m
+ ReΣ(k, ε(k)). (3.56)

In addition to the kinetic energy, this expression includes the real part of the

on-shell self energy, which is interpreted as a momentum dependent quasiparticle

potential. In a quasiparticle scheme, self-consistency is established on the level

of the quasiparticle spectrum (3.56), which is a function of only one variable. All

integrations over ω that contain a spectral function in the integrand become trivial

in the quasiparticle picture and can be carried out immediately.

The first approximation is called quasiparticle or QPGF scheme in the following.

This scheme is an approximation in the spirit of the Green’s functions formalism

in the sense that the self energy or the propagator can be displayed as a set of

Feynman diagrams. It is however not fully consistent, since the off-shell structure

of the self energy that is introduced by the ladder diagrams is not refeeded into the

single-particle Green’s functions in the ladder equation. Self-energy diagrams with

self energy insertions, such as the diagrams (k), (l) and (m) in Fig. 2.6 are there-

fore neglected. In the QPGF picture, the retarded, angle-averaged two-particle

propagator takes the simple form

ḡQP
II (P,Ω + iη, q) =

〈
1 − f(ε(k1)) − f(ε(k2))

Ω − ε(k1) + ε(k2) + iη

〉

θ

. (3.57)

Note that a zero can appear in the denominator. The corresponding pole requires

the application of slightly different techniques than in the case of the dressed

propagator. They are discussed Refs. [haf70, ter91, dew00].

The imaginary part of the self energy in ladder approximation is given by

ImΣQP (k, ω + iη) =
1

8π

∑

JSTL

(2T + 1)(2J + 1)

∫
d3k′

(2π)3
[f(ε(k′)) + b(ω + ε(k′)]

×
〈
q|ImT JST

LL (P, ω + ε(k′) + iη)|q
〉
. (3.58)

The real part of the self energy is obtained from a dispersion relation, as it was

described in Section 3.2, and therefore, the full off-shell structure of Im Σ must be

computed. The QPGF off-shell self energy can be used to compute a non-trivial

spectral function in the complete momentum-energy plane. To preclude misunder-

standings, it should be emphasized once again that such a QPGF spectral function
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3.5 Quasiparticle Approximations

cannot be characterized as self-consistent, since only the on-shell information is

constrained in a quasiparticle description.

Successful numerical calculations of the QPGF type have been performed by var-

ious groups since the late 80’s. A comprehensive and very clear description of the

method at zero temperature can be found, e.g., in Ref. [ram88]. A selection of

other useful references may be given by [ram89, dic92, von93, snl96].

A second approximation of the quasiparticle type is the well-known two hole-line

expansion or Brueckner-Hartree-Fock (BHF) scheme. The BHF method was de-

veloped in the 50’s by Brueckner and collaborators [bru54, bru58] and has been

successfully applied in many problems since then. Ref. [day67] is a pedagogical

review article on the application of Brueckner theory to nuclear matter.

Strictly speaking, this approximation is not in line with the principles of Green’s

functions theory, since physical quantities are not expanded in terms of fully-

fledged Green’s functions. Instead, all propagators are split into two terms propor-

tional to g< and g>, respectively, and in this way, a time ordering is introduced into

the diagrammatical language. Goldstone showed that there exists an expansion of

the ground state energy of the system in terms of the time ordered graphs [gol57],

which is equivalent to the perturbation expansion of the Green’s function [fet71].

A similar expansion for the Gibbs potential of a quantum many-body system was

formulated by Bloch and De Dominicis [blo58].

At low densities, the phase space for the forward propagating particles is much

larger than the phase space for the holes. Since each internal line is associated

with an integration over the respective phase space, it is to some extent justified to

retain only those diagrams with a minimal number of hole lines in the expansion

of the self energy. And these diagrams are just the self energy diagrams that are

composed of ladders of the forward propagating particle-particle contributions and

a single hole line that connects two of the four external points.

It is instructive to reformulate Eq. (3.20) in order to see that the dressed, non-

interacting two-particle propagator includes both forward and backward contribu-

tions,

g0
II(k1, k2,Ω + iη) =

+∞∫

−∞

dω

2π

+∞∫

−∞

dω′

2π

g>(k1, ω) g>(k2, ω
′) − g<(k1, ω) g<(k2, ω

′)

Ω − ω − ω′ + iη
.

(3.59)

If the second term is neglected and quasiparticle spectral functions are assumed,
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3 Ladder Approximation in Detail

the particle-particle propagator reduces to the BHF form,

ḡBHF
II (P,Ω + iη, q) =

〈
[1 − f(ε(k1))][1 − f(ε(k2))]

Ω − ε(k1) + ε(k2) + iη

〉

θ

. (3.60)

The nominator of Eq. (3.60) is the Pauli operator of a system of quasiparticle in

thermodynamic equilibrium, which projects onto two-particle intermediate states.

In the zero temperature case, the nominator reduces to Θ(k1 − kF ) Θ(k2 − kF ).

In the framework of the BHF theory, the quasiparticle energy ε(k) is determined

by Eq. (3.56) only for the hole states, according to the theorem of Bethe, Brandow

and Petschek [bet63]. For the particle states, various prescriptions for ε(k) are

in use [son98]. The conventional choice is to ignore the self energy contributions

for the particle states completely. The energies for these states are approximated

by the kinetic energy only. This choice results in a gap in the spectrum between

the holes and the particles, which is why it is also called gap choice. A more

natural prescription from the point of view of the theory of Green’s functions was

suggested in Ref. [jeu76]. In this so-called continuous choice, Eq. (3.56) is used for

both particle and hole states, which leads to a continuous spectrum. For the BHF

calculations in this Thesis, the continuous choice is adopted.

The ladder equation with the two-particle propagator (3.60),

〈
q|GJST

LL′ (P,Ω + iη)|q′
〉

=
〈
q|V JST

LL′ |q′
〉

+
∑

L′′

∞∫

0

dk′ k′2

(2π)3

〈
q|V JST

LL′′ |k′
〉

×ḡBHF
II (P,Ω + iη, k′)

〈
k′|GJST

L′′L′(P,Ω + iη)|q′
〉
,

(3.61)

is usually referred to as Bethe-Goldstone equation, and the solution is called the

Brueckner G matrix. Since only particle pairs propagate in the intermediate states,

the time ordering requires that the BHF self energy graphs must be closed by hole

line. Real and imaginary part of the BHF self energy are then given by

ΣBHF (k, ε(k)) =
1

8π

∑

JSTL

(2T + 1)(2J + 1)

×

∫
d3k′

(2π)3
〈q|GJST

LL (P, ε(k) + ε(k′) + iη) |q〉 f(ε(k′)).

(3.62)
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Figure 3.3: Convergence problems in the QPGF scheme. Left panel:

BHF single-particle potential (solid line), real part of the on-shell QPGF

self energy after one iteration cycle (dashed line) and after two iteration

cycles (dash-dotted line). Right panel: Graphical solution of Eq. (3.56),

using the off-shell QPGF self energy. The parameters are T = 5 MeV

and ρ = 0.17 fm−3.

To find the BHF quasiparticle spectrum, Eqs. (3.61), (3.62) and (3.56) need to be

solved self-consistently. Unlike for the quasiparticle scheme, it is sufficient to know

the on-shell values of the self energy.

The two quasiparticle schemes that were discussed in this Sections are usually

solved by iteration. Convergence is achieved as soon as the single-particle spec-

trum does not change any more. Results of the QPGF and the BHF scheme will

be compared to those of the full SCGF approximation in Chapter 4. However, a

problem concerning the convergence properties of the QPGF truncation must be

mentioned. The left panel of Fig. 3.3 shows the self-consistent BHF on-shell self

energy and the first two iterations of the same quantity in the QPGF scheme. The

BHF self energy plus the kinetic energy was used as an input spectrum for the

QPGF calculation. While the first iteration (dashed line) yields a repulsive effect

of nearly 20 MeV with respect to the BHF result (solid line) for the states with low
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3 Ladder Approximation in Detail

momenta, the second iteration (dash-dotted line) displays an attraction of more

than 40 MeV compared to the first iteration. Further iterations lead to a strange

pattern, where Re Σ(0, ε(0)) seems to jump between two solutions. Obviously, the

calculation does not converge for momenta below k ≈ 200 MeV. This curious effect

can be understood by a graphical solution of the on-shell condition, Eq. (3.56).

For a momentum of k = 60 MeV, the right hand side (kinetic energy plus real

off-shell self energy) is plotted in the right panel of Fig. 3.3. The dotted line is the

left hand side. The on-shell solution is given by the intersection point. Using the

repulsive spectrum of the first iteration as an input for the second iteration, the

dispersive structure in the off-shell self energy is shifted in the positive direction,

and this leads to a drastic shift of the intersection point from ω ≈ −70 MeV to

ω ≈ −110 MeV.

The same convergence problem was found by Dewulf in Ref. [dew00] using the

Reid 93 interaction. Quasiparticle calculations with separable potentials did not

show this feature, e.g. [snl96].

Since self-consistent spectra cannot be obtained, the QPGF results that are pre-

sented in the following, are first iteration results, using a BHF input spectrum.
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Chapter 4

Results

4.1 Iterative Scheme

In Chapter 3, the closed set of equations that determine the Green’s function was

cast into a form that is ready for a numerical treatment. A main part of the work

on this Thesis was spend on the development of a computer code that is able to

find a self-consistent solution to the problem. Before the results will be presented

in the subsequent Sections, some general remarks on the structure of the code and

the way the iteration scheme works will be made.

In Fig. 4.1, the mutual dependence of the various physical quantities is illustrated.

The spectral function A, the chemical potential µ, the non-interacting two-particle

propagator g0
II, the T matrix and the self energy Σ must be determined in a con-

sistent way from the nuclear two-body potential V , and for a given density ρ and

a given inverse temperature β (the dependence on β is not displayed in Fig. 4.1).

A solution must be consistent in the sense that, e.g., the spectral function that en-

ters the computation of the self energy in Eq. (3.45) should in turn be reproduced

by this self energy in Eq. (3.11) The natural way to tackle such a problem is to

assume an initial set of functions that defines the problem completely. Starting

with this input, the problem is solved by iteration. Each step in Fig. 4.1 is cycled

several times, in the order given in Tab. 4.1, until the output and the input are

reasonably close. Depending on the initial guess, around 6−12 iteration cycles are

necessary to establish convergence. To illustrate this process, two numbers that

depend on a specific momentum k and a specific energy ω of the particle, namely
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Figure 4.1: Graphical representation of the coupled system that has to

be solved self-consistently. The density ρ and the nuclear potential V

are external quantities (long-dashed boxes). The central quantity is the

spectral function A, that enters in the computation of the two-particle

propagator g0
II and the self energy Σ (large short-dashed boxes). The

angle averaging of g0
II is not displayed.

the real and the imaginary part of the on-shell self-energy at zero momentum and

close to the Fermi surface, and two characteristic global numbers, the chemical

potential, and the internal energy per particle were monitored during the itera-

tion procedure. They are displayed in Fig. 4.2 and show an excellent convergence

behavior. After 7 iteration cycles, for instance, the deviation of µ with respect to

the final value after 10 cycles is already less than 0.05%.

For the first calculation that was conducted with the computer code, a spectral

function that was obtained from an quasiparticle off-shell self energy was used as

an initial guess. Once the first self-consistent result had been obtained, it was

found to be most convenient to use it, in turn, as an initial guess for the next

calculation at slightly different temperatures and densities. In this way, it is pos-

sible to explore a wide range of densities and temperatures with an initial spectral

function that is always close to the final result, so that quick convergence is guar-

anteed.

The computer code for the self-consistent solution of the problem was written in
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Figure 4.2: Typical convergence characteristics of the iteration scheme.

Four quantities are monitored for 10 iteration cycles. After about 6

cycles, convergence is achieved. The parameters are T = 7 MeV and

ρ = 0.16 fm−3.

MATLAB, which has proven to be an ideal tool to handle large multi-dimensional

fields numerically. On a normal workstation, the CPU time for one iteration cycle

is about 5 h, so that less than 2 days are needed for a converged calculation at a

given density and a given temperature.

It must be emphasized that, with the applied method, self-consistency cannot be

achieved in all temperature and density regions for numerical reasons. The sys-

tem becomes more and more degenerate the higher the density and the lower the

temperature is. Thus, the number of mesh points that are necessary to sample the

pronounced structures due to the sharpening of the Fermi edge increases strongly.

For instance, the width of the spectral functions tends to zero for T → 0, so that

the numerical integration in Eq. (3.23) and the subsequent angle-averaging proce-

dure become too tedious and time consuming below a temperature of T = 3 MeV

(at a density in the range of the central density of 208Pb).

In the following Sections, the self-consistent results that have been obtained within

the SCGF scheme are presented and discussed. Most of the calculations in this
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µ Im g0
II Re g0

II ḡ0
II ImT ΣHF Im ΣL Re ΣL A

Step 1 2 3 4 5 6 7 8 9

Eq. (3.16) (3.22) (3.21) (3.46) (3.47) (3.44) (3.45) (3.31) (3.11)

Table 4.1: Sequence of the numerical steps that are carried out in a single

iteration cycle. The numbers of the corresponding equations are given in

the last row.

Thesis have been performed using the CDBONN potential [mac96]. In the cases

where another potential was used, this is indicated. Numerical checks revealed

that, for the imaginary part of the self energy, it is sufficient to include partial

waves up to an total angular momentum of J = 2 for the pair of colliding nu-

cleons. The generalized HF contribution contains partial waves up to J = 9.

The T matrix is discussed in Section 4.2. Section 4.3 is devoted to the self en-

ergy. An extrapolation method is proposed to explore the temperature region

below T = 3 MeV. Self-consistent spectral functions and momentum distributions

are presented in Section 4.4 and Section 4.5, respectively. Finally, the saturation

properties of nuclear matter are discussed in Section 4.6.

4.2 The T Matrix and Signals of Pairing

The discussion of the results for the thermodynamical T matrix will be guided by

two major points. As a first item, it is useful to illustrate and explain its structure.

Many features of the T matrix are imprinted by the structure of g0
II . The off-shell

behavior of T for pair energies Ω → −∞ and the fingerprints of the phase space

restrictions imposed by the Pauli principle will be discussed. Qualitative distinc-

tions between the quasiparticle scheme and the SCGF solution can be pinpointed.

Secondly, at low temperatures, the effects of the NN pairing and the formation

of bound states become apparent in the T matrix [sch90, von90]. The Green’s

functions formalism that was outlined in the previous Chapters is not capable to

describe phenomena that are associated with the transition to a superfluid system.

However, precursor effects that indicate a possible phase transition in a tempera-
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Figure 4.3: Comparison between the quasiparticle approach (left panel)

and the full scheme (right panel) on the level of the T -matrix. The

dependence upon the center of mass momentum P and the pair energy

Ω is displayed, while the relative pair momentum q is set to zero. The

density is ρ = 0.16 fm−3 and the temperature is chosen to be T = 5 MeV.

ture regime that cannot be covered in this work are visible in the structure of the

T matrix and will be discussed.

In Fig. 4.3, the imaginary part of the thermodynamic T matrix in the SCGF

scheme, and the same quantity — obtained with a non-trivial g0
II obtained in the

full SCGF scheme — are compared. The calculations were performed at a density

of ρ = 0.16 fm−1. This number corresponds to the so-called saturation density ρ0

of nuclear matter and it can be derived from an extrapolation of electron scattering

data on heavy nuclei. The T matrix depends on three variables, P , Ω and q, but

since only two of them can be displayed in a three-dimensional plot, the relative

momentum of the pair, q, is set to zero. In the left panel of Fig. 4.3, it can be

observed that the quasiparticle T matrix has no imaginary part for pair energies

Ω below a sharp line in the Ω−P plane. This property of the quasiparticle ansatz

will be explained in the following. Using the identity (3.9), and the quasiparticle

propagator that was given in Section 3.5, the right hand side of the ladder equa-

tion, Eq. (3.47), can be split into two pieces. The second one includes a Dirac
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function,

〈
q|T JST

LL′ (P,Ω + iη)|q′
〉

= [· · · ] − iπ
∑

L′′

∞∫

0

dk′ k′2

(2π)3
δ(Ω − 〈ε(k1) + ε(k2)〉θ)

×
〈
q|V JST

LL′′ |k′
〉
〈[1 − f(ε(k1)) − f(ε(k2))]〉θ

〈
k′|T JST

L′′L′(P,Ω + iη)|q′
〉
. (4.1)

Note that k1 and k2 were taken as a shorthand notation for |P + k′| and |P− k′|.

The quasiparticle T matrix can have an imaginary part only if the argument of

the Dirac function — the denominator of the quasiparticle propagator — has a

node at any point within the integration range, i.e., only if there is a combination

of P , Ω and any value of the integration variable k′, such that

Ω = 〈ε(|P + k′|) + ε(|P − k′|)〉θ . (4.2)

A quite reasonable assumption is an effective mass parameterization of the quasi-

particle energy spectrum,

ε(k) =
k2

2m∗
+ U0. (4.3)

This analytic expression will be adopted in the following discussion for the sake

of simplicity. The parameters are the effective mass, m∗, and the potential depth,

U0. For a fixed center of mass momentum P , it follows that the condition for a

vanishing imaginary part is

Ω < 2ε(P ). (4.4)

The edge in the left panel of Fig. 4.3 is therefore given by the threshold energy

that can be approximated by Ωmin(P ) = 2ε(P ). In the full SCGF scheme, where

off-shell propagation is taken into account, no sharp signature can be observed

and the imaginary part extends to much higher negative energy values. This is

an interesting point, because the properties of the negative energy tail of ImT are

reflected in the negative energy tail of the spectral function (cf. Section 4.4).

Some details of the structure of the T matrix are closely related to the phase space

restrictions imposed by the fermionic nature of the colliding nucleons. This can

be studied most easily in the quasiparticle picture, too. Using again the quadratic

parameterization of the quasiparticle spectrum, Eq. (4.3), the pole of the two-

particle propagator can be written as an analytic function in terms of Ω and P ,

k0 =
√

m∗[Ω − Ωmin(P )]. (4.5)
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This expression is only reasonable above the threshold energy Ωmin(P ), which is

given by

Ωmin(P ) =
P 2

m∗
+ 2U0. (4.6)

Taking advantage of the Dirac function, the integral in Eq. (4.1) can be evaluated,

〈
q|T JST

LL′ (P,Ω + iη)|q′
〉

= [· · · ] − iπ
m∗k0

(2π)3

∑

L′′

〈
q|V JST

LL′′ |k0

〉

×
〈
k0|T

JST
L′′L′(P,Ω + iη)|q′

〉
〈[1 − f(ε(|P + k0|)) − f(ε(|P + k0|))]〉θ
︸ ︷︷ ︸

Pauli factor

. (4.7)

It can be shown that the imaginary part of the T matrix is proportional to the

Pauli factor in Eq. (4.7). This factor is a function of Ω and P . It is shown in

Fig. 4.4 and should be related with the left panel of Fig. 4.3, where the same

chemical potential and the same parameter ranges for Ω and P were assumed. In

the region that is defined by Ω < Ωmin(P ), the value of the Pauli factor has been set

to zero arbitrarily. This region is irrelevant for the the study of the fingerprints of

the Pauli factor in the T matrix, since there, the imaginary part of the T matrix

is zero because the two-particle propagator has no pole, as was pointed out in

connection with Eq. (4.5). In the region defined by Ω > Ωmin(P ), the shape of

ImT shows clear signatures of the Pauli phase space factor. The absolute values

of the gradients in both plots are similar in major regions of the Ω−P plane. The

stretched hump in the vicinity of the deep valley, e.g., reflects the reduction of the

Pauli factor in this kinematic region. Also the sign change of ImT at Ω = 2µ is a

consequence of the sign change of the Pauli factor. Note that for arbitrary energy

variables ω and ω′, the Pauli operator can be written as [sch90]:

1 − f(ω) − f(ω′) = b−1(ω + ω′)f(ω)f(ω′). (4.8)

By writing the Pauli factor in this way, it becomes obvious how the apparent di-

vergence of the integrand of Eq. (3.32) at Ω = 2µ, being introduced by the Bose

function, is exactly canceled by the inverse of this function.

It is instructive to study the onset of pairing effects in the T matrix of the nuclear

many-body system. Under a broad range of physical conditions, charged fermion

many-body systems undergo a phase transition to a superconducting state below

a critical temperature TC . The new state possesses different symmetry properties
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Figure 4.4: The Pauli factor for a quasiparticle pair in the Ω − P plane.

The relative momentum k0 of the pair is fixed by the condition that

g0
II(P,Ω, k0) must be singular. An effective mass parameterization was

used. The parameters, m∗ = 670 MeV and U0 = −90 MeV, were fitted

to the quasiparticle energy spectrum that was used for the calculation in

the left panel of Fig. 4.3. Also ρ and T were taken from there.

and can be understood as a superposition of NN pairs with particles of oppo-

site spin and momentum. Unfortunately, the pair condensation process cannot be

described in the framework of the type of ‘normal’ Green’s functions that were

considered here. The reason is, that below TC , the perturbation expansion for

the propagator becomes instable. An illustrative discussion concerning this break-

down, which is referred to as pairing instability, can be found in Ref. [mat67]. The

breakdown of the propagator expansion at TC is signaled by the formation of a

pole in the T matrix at Ω = 2µ for pairs with opposite momentum. Decreasing the

temperature from above TC , the critical temperature is reached, if the condition

det [Mα(P = 0,Ω = 2µ)] = 0 (4.9)

is fulfilled in any channel α = JST (the notation of Section 3.4 was applied).

Eq. (4.9) is the so-called Thouless criterion for the transition temperature of the
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Figure 4.5: The critical temperature TC in the 3S1−
3D1 channel in sym-

metric nuclear matter. TC is obtained from the Thouless condition (4.9),

using a quasiparticle T matrix. The crosses indicate that calculations in

the full SCGF scheme are still possible in the normal phase below the

transition temperature deduced from the quasiparticle scheme.

normal phase to the superfluid phase [tho60]. In a nuclear system around satu-

ration density, proton-neutron pairing will preferentially occur in the 3S1 −
3 D1

(deuteron) channel. Fig. 4.5 shows the critical temperature in this channel as de-

rived from Eq. (4.9), using a QPGF type g0
II.

As pointed out already, it is conceptually impossible to study the superconducting

phase within the formalism adopted for this Thesis, at least without an extension

of the Green’s function theory to anomalous propagators [gor58, nam60, abr75].

However, a precursor structure of the pole in the T matrix can be observed in the

temperature range well above TC . This was studied in a quasiparticle scheme in

Ref. [alm96]. In Fig. 4.6, the real part of the T matrix is displayed for two dif-

ferent temperatures. At low temperature, a strong enhancement of the attraction

of pairs with opposite momentum and pair energies around Ω = 2µ is visible. In

all other parameter regions, the two graphs look very similar. Inspecting once

again Fig. 4.3, the dispersive structure in the imaginary part of the quasiparticle
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Figure 4.6: Precursor effect of the transition to the superconducting

phase in the SCGF scheme. The real part of the T matrix is displayed

for a high temperature of T = 20 MeV (left panel) and a low temperature

of T = 3 MeV (right panel). For pair energies of Ω = 2µ, the low tem-

perature T matrix is very attractive for pairs with zero center of mass

momentum. The relative momentum is set to zero, and the density is

ρ = 0.16 fm−3.

T matrix at low values of P can also be interpreted as the precursor structure of

the pole.

The effect is significantly reduced in the full scheme, where the depletion of the

Fermi sea due to short-range correlations, in addition to the temperature-induced

reduction of occupation at the Fermi surface, weakens the pairing correlations.

Thus, the critical temperature in a full SCGF calculation should be lower than

for a system of quasiparticles. The fact that it is possible to perform a self-

consistent calculation at saturation density and a temperature of T = 3 MeV in

the normal phase demonstrates that TC is overestimated in a quasiparticle scheme

(cf. Fig. 4.5). A similar reduction of TC has also been observed in Ref. [boz99],

using a simple separable potential of rank one, as well as in finite nuclei [hei95].
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4.3 Self Energy and an Extrapolation to Zero Temperature

4.3 Self Energy and an Extrapolation to Zero

Temperature

Once the T matrix is obtained on the (P,Ω, q)-mesh, a three-dimensional interpo-

lation has to be applied in order to perform the transformation to the integration

variables that appear in the energy-momentum integrals for the imaginary part of

the self energy in Eq. (3.45). The three-dimensional integral over k′ is carried out

in spherical coordinates (remember that q = 1
2
|k − k′|). Without loss of general-

ity, k can be chosen along the z axis. The φ′ integration is trivial and yields a

factor 2π, and so the remaining integration variables are k′, θ′ and ω′. Since it is

not meaningful to define a Fermi momentum in a hot system, the quantity k∗ is

introduced for a density ρ,

k∗ =

(
3π2ρ

2

) 1
3

. (4.10)

This is the Fermi momentum of a free Fermi sea at zero temperature. For some

densities, the corresponding k∗ is listed in Tab. 4.2. In principle, the k′ integration

must be carried out up to infinity, in practice, momenta k′ up to about four to five

times k∗ contribute.

Fig. 4.7 displays ImΣ(k = 0, ω) for a temperature of 3 MeV and ρ = 0.16 fm−3. One

can observe that the imaginary part has a global minimum around ω = 200 MeV.

For positive values of ω, it decays very slowly and extends to more than 100 GeV

(which cannot be seen on the plot any more). For negative values of ω, there is

a local minimum at ω = −90 MeV, below which ImΣ tends to zero within some

hundreds of MeV’s.

The qualitative behavior of the self energy in in the vicinity of the chemical poten-

tial, between the two minima, can be understood with Fig. 4.8. For a nucleon with

zero momentum k, the composition of the self energy is studied for ω = µ− δ (top

row), ω = µ (middle row) and ω = µ+ δ (bottom row). The parameter δ is set to

ρ [fm−3] 0.08 0.1 0.16 0.2 0.3 0.4 0.5

k∗ [MeV] 209 225 263 283 324 357 385

Table 4.2: Conversion between the density and the Fermi momentum of

a system at zero temperature.
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Figure 4.7: Imaginary part of the retarded self energy for a nucleon with

zero momentum. The region close to ω = µ is displayed separately in the

inset. The parameters are T = 3 MeV and ρ = 0.16 fm−3.

35 MeV. The three factors contributing to ImΣ in the integrand of Eq. (3.32),

I(k′, ω′) = 〈kk′|ImT (ω + ω′ + iη)|kk′〉A ×A(k′, ω′)× [f(ω′)+ b(ω+ω′)], (4.11)

are displayed separately, as well as their product, as a function of ω ′, for three

momenta k′ in the vicinity of k∗. This is a (momentum) domain where large

contributions are to be expected in the momentum integration. Each of the four

curves are rescaled to arbitrary units in order to compare all of them in a sin-

gle plot. The dashed line is proportional to 〈0k′|ImT (ω + ω′ + iη)|0k′〉A. This

contribution crosses zero at ω′ = 2µ − ω. The solid line is the spectral function,

A(k′, ω′), and the hatched area denotes the energy domain where the phase space

factor, [f(ω′) + b(ω + ω′)], is different from zero. The ω′-integral over the prod-

uct of the three contributions is given by the shaded area. In the upper row, the

phase space factor describes the thermally unoccupied phase space from ω ′ ' µ

up to ω′ ' µ+ δ. The upper limit guarantees that the total energy of the process

ω + ω′ < 2µ, such that the process describes scattering of backward propagating

intermediate states. In the bottom row, the phase space factor covers the ther-

mally occupied region down to an energy of ω′ ' µ − δ and so the total energy
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Figure 4.8: Contributions to the integral of ImΣ(k = 0, ω + iη) as a

function of the integration variable ω′, for three distinct values of ω (ω =

µ − 35 MeV, ω = µ and ω = µ + 35 MeV) and for three distinct values

of the integration variable k′ (k′ = k∗ + 20 MeV, k′ = k∗ and k′ =

k∗ − 20 MeV). The dashed line is proportional to ImT (ω + ω ′ + iη), the

solid line represents the spectral function (in arbitrary units) and the

hatched area marks a phase space factor that is different from zero. The

shaded area is the product of all three curves and it is proportional to

the contribution to the self energy at the respective value of k′.
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is ω + ω′ > 2µ. Note that in all nine figures, the pole of the phase space factor

at ω′ = 2µ− ω is canceled by the zero in the matrix element as discussed in Sec-

tion 4.2.

To get a rough estimate of the relative size of ImΣ at the respective energy ω, one

should ‘integrate’ by eye over the size of the shaded areas of all three plots in each

row. One can observe that in the first row, at ω = µ− δ, this integrated result is

large, with a dominant contribution to ImΣ from states that are characterized by

k′ > k∗, the so-called particle states (see upper right plot). Only for these states,

the peak of the spectral function is located in a region with a sizeable phase space

factor. The contrary effect can be observed for ω > µ. There, the main contri-

bution is from hole states (bottom left plot). For ω = µ (middle row), the phase

space factor extends to µ± ε(T ), where ε(T ) goes to zero at zero temperature. It

is this vanishing phase space that brings ImΣ(k, ω = µ) to zero at T = 0. Fig. 4.8

corresponds to a temperature of T = 3 MeV, and so the integral over k′ yields a

small but finite contribution.

The momentum k has been set zero in Fig. 4.8, but the behavior of Im Σ(k, ω)

does not change qualitatively for other momenta. The only dependence upon k is

contained in the matrix element, however, the position of the node at ω ′ = 2µ−ω

is independent of k.

The energy dependence of ImΣ(k = k∗, ω) in the two tail regions is displayed in

Fig. 4.9 for various densities. In the right panel, one can observe a rather linear

dependence of ImΣ upon the density. To understand this behavior, it is again

instructive to inspect Eq. (4.11) and Fig. 4.8. For an arbitrary momentum k,

and ω > µ, the dominant contribution to ImΣ(k, ω) comes from occupied states,

most of which are located below k∗ (although there is of course a finite occupation

of high momentum states due to correlations and temperature). A larger Fermi

sea will therefore increase ImΣ(k, ω). The dependence of the matrix element,

〈k∗k′|ImT (ω + ω′ + iη)|k∗k′〉A, upon the integration variables k′ and ω′ is shown

in Fig. 4.10 for the same densities. Obviously, the T matrix is only weakly density

dependent in the high frequency limit and this explains that the self energy is pro-

portional to the density for ω � µ. This behavior is in line with the argument that

an integration over a hole line yields a factor that is proportional to the density

(cf. the paragraph about Brueckner in the Introduction of this Thesis).

The situation is different for the opposite tail region, which is shown in the left

panel of Fig. 4.9. For ω < µ, the main contribution to ImΣ is due to the mo-

mentum integration over states with k′ > k∗, so that there is no upper bound
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Figure 4.9: Density dependence of the energy tails of the retarded self

energy at k = k∗. The five densities are indicated in the right panel. The

temperature is T = 10 MeV.

for the integration variable k′. The size of ImΣ is limited by the attenuation of

〈k∗k′|ImT (ω + ω′ + iη)|k∗k′〉A. Although the negative energy tail region (ω < 0)

is not very well resolved in Fig. 4.10, one can see that both for high values of k ′

and for ω + ω′ → −∞, the matrix element goes to zero. The decay of the T ma-

trix element is strongly density dependent: at higher densities, the matrix element

extends to higher negative values of ω′ and up to higher momenta k′. Also, the

maximum value of the matrix element increases with ρ. This is the reason that

the negative energy tail of ImΣ has a very strong density dependence.

It has been mentioned in Section 4.1 that no calculations can be performed at

zero temperature with the implemented scheme. Nevertheless, it would be very

interesting to have information about the self energy or also the spectral function at

zero temperature, since the nuclei that can be studied in experiments are usually

zero temperature systems. Therefore, a method was developed that allows an

extrapolation of the imaginary part of the self energy to zero temperature. Self

consistent results for ImΣ were computed at a number of different temperatures

and stored on a (k, ω) mesh. For each k and ω, a second order polynomial was fitted
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Figure 4.10: Density dependence of the high energy tails of the retarded

T matrix. The temperature and the five densities values are the same as

in Fig. 4.9.

to the stored values. From this polynomial, an extrapolated or interpolated value

can be obtained at a desired temperature. The chemical potential at T = 0 MeV

was also derived as an extrapolation of the finite T values. Following the phase

space argument of Luttinger [lut61], a parabolic shape of ImΣ was assumed in the

vicinity of the chemical potential,

ImΣ(k, ω) = a(ω − µ)2. (4.12)

The curvature a was extrapolated from the curvatures of the self-consistent results,

too. In Fig. 4.11, the extrapolated zero temperature self energy at saturation

density is compared to the various self-consistent finite temperature results for

two different momenta, k = 0 and k = k∗. A smooth behavior is found, and it

appears that this is a promising way to derive information for a zero temperature

system from SCGF calculations at finite temperature. However, one remark should

be added: Although it has been shown in Section 4.2 that the pairing correlations

that lead to a superconducting state are weakened in the full T matrix approach,

a transition temperature TC > 0 is possible below the temperature region that can

be covered by the calculations. Of course, the extrapolated result cannot provide
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Figure 4.11: Extrapolation of ImΣ(k, ω + iη) to zero temperature (bold

solid line) at two different momenta, k = 0 and k = k∗. The self consis-

tent results at T = 3, 4, 5, 7, 10, 15 and 20 MeV are displayed for compar-

ison (thin solid lines).

any information about such a superconducting state.

The real part of the self energy is the sum of the generalized HF self energy and a

dispersive contribution. The dispersive part of ReΣ is determined by means of a

straightforward evaluation of the principal value integral, Eq. (3.31),

Re Σ(k, ω) = ΣHF (k) −
P

π

+∞∫

−∞

dλ
Im Σ(k, λ+ iη)

ω − λ
. (4.13)

To obtain the full real part, the energy independent Hartree-Fock self energy must

be added, using the correlated momentum distribution that is derived from the

non-trivial spectral function. The real part of the extrapolated self energy is

obtained in the same way as in the finite temperature case. For the Hartree-Fock

part, another extrapolation to zero temperature must be applied. In this case, the

temperature dependence is only very weak, which was already visible in Fig. 2.9.
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Figure 4.12: Full momentum and energy dependence of the self energy.

Real and imaginary part of Σ(k, ω + iη) are shown at zero temperature

and saturation density. ImΣ(k, ω+ iη) was obtained by an extrapolation

technique that is explained in the text.

The full momentum and energy dependence of the real and the imaginary part of

the self energy at zero temperature and saturation density is displayed in Fig. 4.12.

Note that the relative importance of the energy dependence is reduced in the real

part, which is due to the large energy independent Hartree-Fock contribution that

was added.

The on-shell value of Σ is obtained by Eq. (3.24), in the same way as the HF

or the BHF single-particle potential. Although Σ(k, ε(k)) does not play the same

role in the SCGF approximation in the sense that is is possible to compute the

internal energy from it, the full result can be compared to the results for the

single-particle potentials that are obtained in the other truncation schemes. In

the left panel of Fig. 4.13, one can observe that the BHF result yields about

40 MeV more attraction than the HF result. This is the well-known effect of short

range correlations — incorporated both in the G matrix and the T matrix —

that keep the nucleons from penetrating their repulsive cores. Comparing the two

approaches that include correlation effects, the BHF self energy is 20 MeV more

attractive than the SCGF result for low momenta. A similar effect has also been

observed in calculations, where hole-hole scattering is taken into account on a

quasiparticle level [alm96, fri02]. Obviously, hole-hole scattering in intermediate

states is a repulsive process that makes the single-particle spectrum shallower for
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Figure 4.13: On-shell behavior of the SCGF self energy (solid lines).

The real part (left panel) is compared to the BHF and the HF single-

particle potential (dashed line and dash-dotted line). The generalized

HF contribution is also reported. The imaginary part is compared to the

imaginary part of the BHF potential (right panel). The parameters are

ρ = 0.16 fm−3 and T = 5 MeV.

the hole states.

It would be interesting to judge the effect of the dressing of the ladders on the

on-shell self energy, by comparing the SCGF and the QPGF results. For reasons

that were explained in Section 3.5, it is not possible to derive a fully converged

single-particle spectrum within the QPGF scheme and therefore, a quantitative

comparison of the on-shell self energies would be questionable. However, it is

possible to compare the energy-independent contributions. The difference between

the simple HF result and the generalized HF contribution to the real part of the

full SCGF self energy is only moderate. This indicates, at least for the energy-

independent part, that the effect of dressing on the on-shell self energy is not very

important [fri04].

In the right panel of Fig. 4.13, the imaginary part of the on-shell self energy is

displayed. In the BHF approximation, Im Σ(k, ε(k)) is interpreted as an optical
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potential that describes the absorption of a particle state with momentum k. In

the SCGF picture, Im Σ(k, ε(k)) is connected to the on-shell width of a general

(particle or hole) state k,

Γ(k) = −2Im Σ(k, ε(k)). (4.14)

Whereas the BHF on-shell width goes to zero for the hole states, because the

G matrix does not include hole-hole propagation, a local maximum of the SCGF

width can be observed for the deepest bound states. The width assumes a mini-

mum at the Fermi surface that is located around k = 260 MeV. Above, the BHF

result and the SCGF result are qualitatively similar. The dependence of the width

upon the temperature and the density will be further discussed in Section 4.4.

4.4 Spectral Functions

In this Section, the results for the nucleon spectral functions will be presented and

discussed. A first interesting point is to clarify in which way the self-consistent so-

lution differs from the quasiparticle result. Secondly, the temperature and density

dependence is discussed, and finally, the theoretical spectral functions are com-

pared to experimental results that were recently obtained for the 12C nucleus.

The solid lines in Fig. 4.14 represent the self-consistent spectral function for a

temperature of 10 MeV and a density of 0.16 fm−1, at three different momentum

states, k = 0, k = k∗ and k = 2k∗. The position of the global maximum of the

spectral function, the quasiparticle peak, is located at the quasiparticle energy,

ε(k). At k = k∗, the quasiparticle energy coincides with the chemical potential,

ε(k) = µ (middle panel). Correlations between nucleons are responsible for the

fragmentation of the strength distribution over a very large energy domain. Recall

that in Section 3.1, a probabilistic interpretation was given for either of the two

contributions to the spectral function, the correlation functions g< and g>.

To illustrate the effect of self-consistency, the full SCGF result is compared to the

QPGF spectral function (dashed line). Especially for the deeply bound states (left

panel), the self-consistent spectral function displays a negative energy tail that is

much more pronounced than in the quasiparticle approach. This behavior can be

traced back to the structure of the imaginary part of the quasiparticle T matrix

at negative pair energies (cf. Fig 4.3), which is zero below a threshold energy. At

high momentum values (right panel), the spectral function looks quite similar in
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Figure 4.14: Comparison between a self consistent spectral function (solid

line) and a quasiparticle spectral function (dashed line) for three different

momenta. The inset shows the region of the quasiparticle peak for zero

momentum states. The parameters are ρ = 0.3 fm−3 and T = 10 MeV.

both pictures.

The blow up in the inset of Fig. 4.14 shows a quasiparticle spectral function with

a double-hump structure. One peak is located at ω = µ − 50 MeV and a second

one at ω = µ − 150 MeV. The first of the two maxima corresponds to the quasi-

particle peak. The breakdown of the quasiparticle picture that was described in

Section 3.5 is connected to the appearance of the second maximum. Either of the

two peaks represents a possible solution for the quasiparticle energy, Eq. (3.56).

The fragmentation signals a strong coupling of one-hole states to two-hole one-

particle excitations in the quasiparticle description. This effect is reduced by a

self-consistent dressing of the Green’s function.

The temperature dependence of the SCGF result at saturation density is shown

in Fig. 4.15. Spectral functions at four different temperatures, T = 0 MeV,

T = 3 MeV, T = 10 MeV and T = 20 MeV, are compared at the same momen-

tum values as in Fig. 4.14. All finite temperature results have been obtained from

self-consistent calculations. The zero temperature curve (solid line) has been com-

puted with the extrapolation routine that was explained in Section 4.3, based on
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Figure 4.15: Temperature dependence of the spectral function. The
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(top), k = k∗ (middle) and k = 2k∗ (bottom). All calculations were

performed at saturation density.

74



4.4 Spectral Functions

T [MeV] Γ(0) [MeV] Γ(k∗) [MeV] Γ(2k∗) [MeV]

3 44.2 2.5 29.0

4 42.4 3.5 28.9

5 41.2 4.5 28.9

7 39.9 6.9 29.3

10 39.1 10.8 30.1

15 38.6 16.9 31.2

20 39.1 22.2 32.3

Table 4.3: Temperature dependence of the on-shell width of the spectral

function at zero momentum, k∗ and 2k∗. The calculations were performed

at saturation density.

independent calculations between T = 3 MeV and T = 20 MeV. The extrapolated

result displays the correct limit behavior and vanishes at ω = µ, so that the hole

and the particle part of the spectral function are separated from each other. A

separation of a particle part and a hole part is no longer visible at finite tempera-

ture; the correlation functions g< and g> are both defined below and above ω = µ.

The zero temperature spectral function has a very narrow peak at ω = µ for

momentum states close to the Fermi surface. This peak is broadened already at

T = 3 MeV, and, in the temperature range up to 20 MeV, the width of the peak of

the spectral function increases strongly for these loosely bound states. In contrast,

the spectral functions are relatively weakly temperature dependent outside a re-

gion defined by the interval [µ − 50 MeV, µ + 50 MeV]. The widths of the deeply

bound hole states and the high momentum particle states are hardly influenced

by an increasing thermal motion. In Tab. 4.3, the on-shell widths are reported for

different temperatures.

The density dependence of the spectral function is shown in Fig. 4.16. Self-

consistent spectral functions are plotted at five different densities between ρ =

0.1 fm−3 and ρ = 0.5 fm−3. Again, the momenta are the same as in Fig. 4.14. The

negative energy tails of the low density spectral functions are suppressed, which is

due to the suppression of Im Σ in this region (cf. Fig. 4.9). Due to the same effect,

the quasiparticle peaks of the deeply bound states broaden with increasing den-

sity. A broadening can also be observed for the widths of the quasiparticle peaks

at high momenta. However, the situation is vice versa for the weakly bound states

with a peak close to ω = µ. In Section 4.3, it was illustrated that at ω = µ, the
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Figure 4.16: Density dependence of the spectral function. The spectral
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ρ [fm−3] Γ(0) [MeV] Γ(k∗) [MeV] Γ(2k∗) [MeV]

0.1 29.1 13.6 23.8

0.2 44.7 9.2 34.9

0.3 54.8 6.5 48.6

0.4 62.4 4.9 64.7

0.5 68.0 4.2 82.7

Table 4.4: Density dependence of the on-shell width of the spectral func-

tion at zero momentum, k∗ and 2k∗. The temperature for all calculations

is T = 10 MeV.

imaginary part of the self energy goes to zero in a completely degenerate system,

because there is no phase space available for excitation processes. Comparing two

Fermi systems at the same (finite) temperature and different densities, the Fermi

surface of the one with the higher density is more degenerate. Therefore, it is not

surprising that the width of the quasiparticle peak in this region decreases with

increasing density. The density-dependence of the on-shell widths is summarized

in Tab. 4.4 for the three momenta.

Because the cross sections for knock-out reactions, such as (e,e′p) or (p,2p), and

pick-up reactions, such as (p,d) or (d,3He), are proportional to the (zero temper-

ature) spectral function, it is clear that this quantity is not only interesting for

theoretical physicists, but it is also useful for experimentalists. The cross section

for an (e,e′p) reaction, for instance, can be written as [bat01],

d6σ

dEe′dΩe′dEp′dΩp′
= K σepA(k,−E). (4.15)

Ee′ , Ωe′, Ep′ and Ωp′ denote the energy and the solid angle of the out-going parti-

cles, K is a kinematical factor, and A(k,−E) is the hole part of the spectral func-

tion. The missing energy E (> 0) must be reconstructed from the energy transfer

and the kinetic energies of the out-going fragments, and k is determined by the

momentum transfer and the momentum kp′ of the detected proton. Unfortunately,

σep, the off-shell electron-proton cross section is experimentally non-accessible and

must be calculated from a theoretical model. There exist several choices that pro-

duce different results, especially in the interesting region at high k and E.

One method to constrain a theoretical spectral function for a finite nucleus by ex-

perimental data from an (e,e′p) process would be to calculate the cross section of
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Figure 4.17: Spectral function in the 12C nucleus. Left panel: Experimen-

tal result for several momenta above the Fermi momentum (solid lines

with error bars). The data are similar to those presented in Ref. [roh03],

but the choice cc was used for σep instead of cc1. The dashed lines

represent the SCGF nuclear matter spectral function at a density of

ρ = 0.08 fm−3. To compare the nuclear matter spectral function with

the experimental result, it must be multiplied by a normalization factor

of 4Z(2π)−4ρ−1. Right panel: A comparison between the experimental

result at k = 410 MeV (solid lines with error bars), the theoretical spec-

tral functions for a finite system by Benhar et. al. [ben94] (dashed line)

and Müther et. al. [mut95] (dotted line), and the SCGF result (solid line).

the knock-out reaction according to Eq. (4.15) and to compare the result with the

experiment. Another possibility is to proceed the other way round. Recently, Rohe

has carried out (e,e′p) experiments on the nuclei C, Al, Fe and Au [roh03]. Starting

from the measured cross section of the reaction, she extracted the experimental

spectral function for carbon, A12C(k, ω). Of course, this quantity is also biased by

the uncertainties of the off-shell electron-proton cross section σep. In the analysis,

particularly the high momentum and high energy region up to k = 650 MeV and

E = 500 MeV was explored. In the energy region above E ≈ 150 − 250 MeV,

there are contaminations due to inelastic excitations of nucleons and final state
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interactions of the out-going nucleon with the residual nucleus. Such processes are

not considered in the Green’s function description of the spectral functions and

therefore, this region is not suitable for a comparison between theory and exper-

iment. Only below E ≈ 150 − 250 MeV, it is possible to describe the measured

spectral functions by the kind of physical processes that are taken into account in

a T matrix description.

The direct comparison between A12C and a spectral function for infinite nuclear

matter is problematic, because the latter cannot account for the finite size effects

of a nucleus. Anyway, to give a qualitative orientation, the 12C spectral function

in the high-momentum region is shown in the left panel of Fig. 4.17, together with

a nuclear matter spectral function that was calculated at the mean density of the
12C nucleus, ρ ≈ 0.08 fm−3, and the lowest feasible temperature of T = 2 MeV.

The normalization of A12C is given by

Z =

∫

d3k

µ∫

−∞

dωA12C(k, ω). (4.16)

Z = 6 is the charge number. Note that in Fig. 4.17, the spectral functions are

plotted as a function of the missing energy, so that the negative energy tail extends

into the direction of positive missing energies. At low momenta, the calculation

is in good agreement with the data, but the agreement gets worse with increasing

momentum. The theoretical spectral function tends to overshoot at high momenta

and high energies. The missing strength at low momentum is probably due to long-

range low-energy excitations that are not treated satisfactorily in the theory (cf.

Section 2.4). In the low energy region, major effects must also be expected from

the finite size of the 12C nucleus.

A local density approximation for finite nuclei, derived from nuclear matter spec-

tral functions in the CBF approach was presented by Benhar et. al. in Ref. [ben94].

An explicit calculation of a spectral function in 16O, using a Green’s functions ap-

proach, was published by Müther et. al. in Ref. [mut95]. These calculations

were derived using completely different many-body theories, but in both cases, the

hole-hole scattering was treated in a perturbative way. For a single momentum,

k = 410 MeV, the theoretical predictions for the finite systems (rescaled to 12C)

are compared with the experimental result and the SCGF nuclear matter result

in the right panel of Fig. 4.17. It is surprising that the nuclear matter spectral

function is closer to the experimental result than the calculations for the finite

system. In particular, the peak of the background distribution is shifted to lower
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missing energies and the slope at high energies is better reproduced. This could

be a sign that a sophisticated treatment of hole-hole scattering, as it is done in the

T matrix approach, is indeed important to describe correlations in nuclear systems

correctly. To finally answer this question, a calculation in a finite nucleus should

be performed.

4.5 Momentum Distributions

Momentum distributions are computed from the spectral functions according to

Eq. (3.14). Correlated momentum distributions at finite temperature are distorted

by two different effects with respect to the box-like distribution of the uncorrelated

zero-temperature case. Both effects, the temperature effect and the correlation-

induced effect, were illustrated separately in Fig. 3.2. One of the questions to be

addressed in this Section is whether they can be disentangled from each other.

In Fig. 4.18, the temperature dependence and the density dependence of the mo-

mentum distributions are shown. Fig. 4.18 (a) displays the temperature depen-

dence for a single density. The momentum distribution at T = 0 is computed

from the self energy extrapolation. NN correlation lead to a constant depletion of

the low momentum states, and a discontinuity is formed at kF . With increasing

temperature, the Fermi surface is smeared out, but for not too high temperatures,

the finite temperature results merge into the extrapolated zero temperature curve

in the high momentum region. This indicates that the information contained in

the correlation-induced occupation of high momentum states is independent of the

temperature.

Fig. 4.18 (b) shows the depletion of deeply-bound zero momentum states at satu-

ration density, as a function of the temperature. Above T = 10 MeV, the depletion

increases strongly with temperature. Below T = 5 MeV, the depletion becomes

temperature independent, which means that it is induced solely by NN correlations.

The extrapolated value for the depletion of zero momentum states at T = MeV is

d(0) = 10.6%. This corresponds to a partial occupation of 89.4%.

Momentum distributions derived from different realistic NN potentials have been

calculated by several authors, using different many-body techniques. Fantoni and

Pandharipande showed that tensor components in the two-body force account for

a large fraction of the depletion [fan84]. Potentials with strong tensor compo-

nents are therefore likely to produce more depletion. Benhar, Fabrocini and Fan-
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Figure 4.18: Momentum distributions and depletion of deeply bound

states. (a) Temperature dependence of the momentum distribution at

saturation density. The solid line is the zero temperature momentum

distribution, obtained from an extrapolated spectral function. (b) Tem-

perature dependence of the depletion of the zero momentum states. (c)

Density dependence of the momentum distributions at a constant tem-

perature of T = 10 MeV. To obtain comparable results, all curves have

been divided by the respective k∗. (d) Density dependence of the deple-

tion for deeply bound states. The first value is given in brackets, since

the high depletion at ρ = 0.1 fm−3 is predominantly a temperature effect.
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toni used perturbation theory in a correlated basis (CBF) [ben89, ben90]. With

the Urbana V14 interaction plus a three-nucleon force, they found n(0) = 0.83.

An advanced hole-line calculation by Baldo and collaborators that includes some

higher order diagrams with respect to the BHF approximation yields 0.87 for

the same potential [bal90]. The result of the Paris potential, having a stronger

tensor part, is n(0) = 0.82 in this type of Brueckner calculation. The Green’s

function approach by Vonderfecht et. al. is similar to the QPGF approximation

described in Section 3.5, but a somewhat different choice for the energy spectrum

was used [von91, von93]. An occupation of 0.83 is obtained for the Reid 68 poten-

tial [rei68]. Dewulf and Van Neck used a discrete parameterization of the Green’s

function that goes beyond a quasiparticle description [dew02]. They found an

occupation of 0.88 for the updated version of the Reid potential [sto94], in which

the tensor force is not as strong as in the older Reid 68 potential. Bożek used a

separable version of the Paris potential in a self-consistent Green’s functions ap-

proach and obtained 0.87 [boz02a].

If one compares only the Green’s functions calculations, it seems that the QPGF

approximation overestimates the depletion. This trend can also be observed in

Fig. 4.19, where a QPGF momentum distribution is compared to the full SCGF

result. While above k∗, the partial occupation is higher than for the SCGF result,

it is reduced by about four percentage points for low momenta. The reduction of

the depletion is due to the dressing of the propagators in the intermediate states.

Since the occupation of low momentum states is less than unity in the SCGF lad-

der equation, nucleons can also be scattered in these normally occupied states and

the depletion effect is softened as a direct effect of self-consistency.

Generally, Green’s functions results that include dressing of the intermediate states

yield less depletion than the results that are derived from CBF or Brueckner theory.

The soft tensor components of the CDBONN potential account for the remarkably

low depletion in the SCGF calculation in this Thesis. This is corroborated by a

calculation with the stiffer Argonne V18 potential, which reduces the occupation

number by two percentage points.

The occupation numbers of the deeply bound states can be compared to the spec-

troscopic factors for low-lying single-particle states in 208Pb. Because the deple-

tion of these states is due to SRC, the finite size of the nucleus should not play

an important role. Experimental numbers have been derived from an analysis

of (e,e’p) scattering experiments [bat01]. A statistically weighted average of the

spectroscopic factors of the five deepest bound proton orbits, 1s1/2, 1p1/2, 1p3/2,
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Figure 4.19: Comparison between a quasiparticle momentum distribution

and the full momentum distribution at a temperature of T = 5 MeV and

saturation density. The inset displays the depletion of the bound states

in both schemes.

1d3/2 and 1s5/2, yields a mean value of Zdeep = 0.78 ± 0.08, which means that the

experimentally observable strength is significantly lower than the self-consistent

Green’s functions results. The analysis is based on a model for a state-dependent

fragmentation of strength and partly, the error bars are due to the rather large

model-dependence. Furthermore, the spectroscopic factors for the individual states

are quite different. Considering only the 1s1/2 or only the 1p protons, the spectro-

scopic factor is Z1s = 0.87 ± 0.12 and Z1p = 0.81 ± 0.13, respectively.

The density-dependence of n(k) is discussed in the subsequent part of this section.

Calculations were performed for five different densities, assuming a temperature

of T = 10 MeV. In Fig. 4.18 (c), the results are shown as a function of k/k∗. It is

clear from the discussion of the temperature dependence that information related

to the correlation induced effects should be extracted from the high-momentum

region or the the deeply bound states. However, one must be careful with that

argument in the low density regime. A temperature of 10 MeV at the lowest den-
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ρ [fm−3] T [MeV] a [fm−5] b [fm]

0.1 10 4.61 2.02

0.16 0 12.1 1.71

0.16 10 12.1 1.71

0.2 10 16.0 1.63

0.3 10 19.4 1.58

0.4 10 21.0 1.55

0.5 10 20.7 1.55

Table 4.5: Parameterization of the momentum distribution in the range

between 2k∗ and 3k∗. The Table lists the fitting constants a and b that

are defined in Eq. (4.17). The temperature at which the respective cal-

culation was performed is also given.

sity of ρ = 0.1 fm−3 causes already quite a strong distortion (compare the solid

line in Fig. 4.18 (c) with the temperature dependent curves in Fig. 4.18 (a)). The

momentum distributions at higher densities are more degenerate.

In the high momentum region, between 2k∗ and 3k∗, an exponential of the form

n(k) =
k∗5

a
e−bk (4.17)

was fitted to the tail of the momentum distributions, following a suggestion of

Baldo and collaborators for a density-independent parameterization of the high-

momentum tail in an advanced Brueckner type calculation [bal90]. The fitting

constants a and b are given in Tab. 4.5. The parameterization is applicable and

the density independence is rather well fulfilled at high densities, whereas the

low density results show a strong deviation. Note that the extrapolated result at

zero temperature follows this trend. This shows that the effect is not due to the

incipient temperature distortion — the parameters a and b are just not density-

independent in the SCGF approach. The mean values for the three highest densi-

ties are a = 1.56 fm−5 and b = 20.3 fm. Baldo et. al. obtained a = 1.6 fm−5 and

b = 7 fm for the Paris interaction.

A decrease of correlation induced depletion of the zero momentum states with in-

creasing density can be inferred from Fig. 4.18(d). Around three times saturation

density, the occupation of zero momentum states is 92.6%. Remember that the

zero temperature result at ρ0 was almost three percentage points less. This is a
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4.6 Nuclear Matter Saturation

surprising result, because intuitively, one would expect the importance of corre-

lations and correlation-induced depletion to increase with density. In particular,

n(0) should tend to unity for ρ→ 0. The calculations that can be found in litera-

ture provide an ambiguous picture. A CBF calculation at nuclear matter densities

below ρ0 was performed by Benhar et. al. in Ref. [ben94]. They found a roughly

density-independent depletion at low momenta and assigned this behavior to the

attractive components in the nuclear interaction. The attraction leads to the for-

mation of correlated pairs or in-medium deuterons. Since the deuteron formation

is favored at low densities, it could explain the strong depletion at densities be-

low ρ0. In the quasiparticle Green’s functions calculation presented in the thesis

of Schnell [snl96], a simple non-realistic potential was used. Like in the present

work, a decrease of the depletion in the range between 0.5ρ0 and 1.5ρ0 was found.

These results are in contrast to the findings of Ramos et. al. [ram89]. In their

quasiparticle Green’s functions calculation, a noticeable increase of the depletion

was observed at densities above ρ0. It is interesting to comment on the fact that

a truncated potential was applied in this work. To prevent pairing effects that

would lead to the kind of instabilities that have been described in Section 4.2, only

the central components of the Reid 68 potential were taken into account, and only

S-waves were kept. The resulting interaction is purely repulsive and does not yield

a bound two-nucleon state any more.

At three times nuclear matter saturation density, deuteron formation is not very

likely. The density dependence of the depletion should therefore be further inves-

tigated.

4.6 Nuclear Matter Saturation

It is impossible to determine the properties of symmetric nuclear matter from a

direct experiment, because a homogeneous system of an equal number of protons

and neutrons (and electrons, that are necessary to guarantee charge neutrality) is

unstable against weak electron capture. Due to its simple structure, nuclear matter

has nevertheless been a popular testing ground for nuclear many-body calculations

for more than 50 years, and therefore, nuclear matter ‘observables’ that can be

compared with the results of theoretical calculations have been deduced by other

means. A semi-empiric number can be extracted from experimentally determined

binding energies in finite nuclei: since in nuclear matter, the coulomb repulsion
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is turned off and there are no surface or asymmetry effects present, the binding

energy per nucleon must be equal to the coefficient of the volume term in the

Bethe-Weizsäcker mass formula [bet36, wei36]. The coefficients in this empirical

relation have been fitted to the binding energies of all stable nuclei. The size of

the volume term is:

E0

A
= aV = −15.67 MeV. (4.18)

Electron scattering experiments on nuclei are sensitive to the proton charge dis-

tribution, from which the nuclear density profile of can be deduced [fro77]. The

central density of the heavy nuclei is only very weakly dependent on the mass num-

ber A, and the density of nuclear matter is obtained by extrapolating to A→ ∞,

ρ0 = 0.16 nucleons × fm−3. (4.19)

The central density of 208Pb amounts to more than 90% of that value. The con-

stant density is a characteristic property of a saturating system that can be found

in all liquids. Apart from surface effects, the density of water inside a tiny drop,

e.g., is the same as in an ocean. Both in a nuclear system and in chemical liquids,

there are short-range attractive forces that are counterbalanced by very strong and

even shorter-range repulsive forces. Unlike for the infinite-range electromagnetic or

gravitational potentials, the attractive components of the individual constituents

cannot add up to overcompensate the repulsion and will never cause to a collapse

when the system size grows. Instead, an equilibrium is realized. The binding en-

ergy per nucleon, E0/A, and the nuclear saturation density, ρ0, define the nuclear

saturation point, which is a free energy minimum for zero temperature. Density

fluctuations around the saturation density ρ0 reduce the binding energy: an ad-

ditional compression leads to an enhanced repulsion due to the overlapping core

regions, and when the system is diluted, the particles do not feel their mutual

attraction any more.

The semi-empirical nuclear saturation point is an important observable to be com-

pared with the results of nuclear matter calculations. In a computer code, ρ serves

as an input parameter that can be easily varied in a certain range to find out

whether the system saturates at the correct density. The relation between density

and nuclear binding energy is often referred to as equation of state. It is a well-

known problem that, up to now, all non-relativistic nuclear many-body calculations

fail to reproduce the correct saturation point, no matter what two-body potential
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4.6 Nuclear Matter Saturation

is used as an input. Stiff potentials, that are characterized by a strong repulsive

core, usually saturate around the correct density, but do not produce enough bind-

ing energy. In contrast, potentials like the CDBONN potential provide enough or

even too much binding energy, but their soft cores yield too dense systems. In

this way, an increase in binding energy is accompanied by an increase of the sat-

uration density, as was first pointed out by Coester and collaborators [coe70]. An

improved description of the saturation properties using two-body forces only, has

been achieved with relativistic Dirac-Brueckner-Hartree-Fock calculations [mac89].

By introducing a three-body force that provides additional attraction in dilute

systems and repulsion at high densities, the nuclear saturation point can also be

met [wir88, gra89]. It is nevertheless important to study the saturation properties

of the sophisticated non-relativistic SCGF many-body approach that is based on

a two-body Hamiltonian.

In the finite temperature Green’s functions theory approach, the internal energy

for symmetric nuclear matter in thermodynamic equilibrium can be calculated

from the spectral function with Koltun’s sum rule [fet71],

ESCGF

A
=
γ

ρ

∫
d3k

(2π)3

+∞∫

−∞

dω

2π

1

2

(
k2

2m
+ ω

)

A(k, ω)f(ω). (4.20)

γ = 4 is the spin-isospin degeneracy factor. The BHF result for the internal energy

per particle is

EBHF

A
=
γ

ρ

∫
d3k

(2π)3

1

2

(
k2

2m
+ ε(k)

)

f(ε(k)). (4.21)

This expression is obtained from Koltun’s sum rule, Eq. (4.20), using the quasi-

particle form of the spectral function (the Delta spike) and the definition of the

BHF quasiparticle energy,

ε(k) =
k2

2m
+ ΣBHF (k). (4.22)

In Fig. 4.20, the internal energy per particle is plotted vs. the density between

ρ = 0.1 fm−3 and ρ = 0.5 fm−3. The results of the full SCGF calculation, computed

at a temperature of T = 10 MeV, are indicated by the circles that are connected

by a solid line. Two curves from a continuous choice BHF calculation are given:

at the same temperature, and — to illustrate the size of the temperature effect
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Figure 4.20: The internal energy per nucleon (solid lines) and the chem-

ical potential (dashed lines) as a function of the density of the system

at a temperature of 10 MeV. The full SCGF calculation (circles) is com-

pared to BHF calculations (thin solid lines). To illustrate the size of the

temperature effect, the zero temperature BHF result is also given (thick

solid lines). The result of a HF calculation is reported, too (lines with

triangles). The semi-empirical saturation point is indicated by the big

square. Note that the Hugenholtz-Van Hove theorem is well fulfilled in

the HF and the SCGF approximation, while it is badly violated in the

BHF approach.
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4.6 Nuclear Matter Saturation

— at T = 0. The BHF results are indicated by the thick and the thin solid lines,

respectively. For comparison, the HF result is also reported (triangles and solid

line). The empirical saturation point is given by the big square.

An overall repulsive effect in the full T matrix calculation, compared with the

BHF calculation at the same temperature can be observed. The repulsive effect

increases with density. It can be assigned to the hole-hole scattering contributions

that are neglected in the BHF approximation. The relative importance of the hole-

hole scattering terms to the total energy grows, because the accessible phase space

for the holes increases with density. Due to this effect, the saturation density in

the SCGF approximation, ρsat = 0.31 fm−3, is slightly smaller than the saturation

density in the BHF approach. However, this value is still almost twice as large as

the empirical saturation density ρ0.

It was argued in Ref. [dew03] that the repulsive effect due to the inclusion of the

hole-hole scattering might be able to shift the saturation point close to the em-

pirical value. An obvious, although not the only possible interpretation of this

statement is, that short-range correlations alone — because they are taken into

account most efficiently by the ladder approximation — are able to describe the

mechanism of nuclear saturation correctly. Although one has to keep in mind that

the results that are displayed in Fig. 4.20 are calculated at finite temperature,

they show that such a statement is much too strong for the CDBONN potential.

The findings of Bożek and Czerski [boz03], who use a separable version of the

CDBONN potential point into the same direction. Dewulf and Van Neck used an

iterative scheme in which the energy dependence of the spectral function A(k, ω)

for a given momentum k is approximated by three Dirac functions [dew02]. They

carried out an analysis for different NN potentials and found a systematic, but

only moderate reduction of the saturation density.

It must be emphasized that there is a variety of effects that are not considered on

the level of the T matrix approximation. Some of these effects will probably alter

the saturation properties presented here. Other classes of self energy diagrams,

like the ring diagrams, some of which are shown in Fig. 2.6, excitations of internal

nuclear degrees of freedom like the ∆(1232), relativistic extensions to the theory

or genuine three-body forces should be included in a full picture of nuclear matter

saturation. Much more work needs to be done to settle the issue of reproducing

the nuclear saturation point.

A nice property of the SCGF approach is its thermodynamic consistency. In par-

ticular, it fulfills the Hugenholtz-Van Hove theorem, which states, that whenever a
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Figure 4.21: Mean removal energy (solid line) vs. BHF quasiparticle

energy (dashed line). The dash-dotted line is the SCGF quasiparticle

spectrum. Note the kink in the mean removal energy for momenta greater

than k∗. The dots indicate the chemical potentials. The calculation was

performed at T = 5 MeV and ρ = 0.16 fm−3.

further nucleon is added to the nuclear system in equilibrium, i.e. at the saturation

point, the energy gain is exactly the binding energy of a nucleon [hug58],

µ =
Esat

A
. (4.23)

Strictly speaking, this theorem is only valid at zero temperature, where the Fermi

surface is well defined. In Fig. 4.20, the chemical potentials, that correspond to

the three binding curves discussed above, are given by the dashed lines. The vio-

lation of the theorem in the zero temperature continuous choice BHF calculation

amounts to about 20 MeV, and is exceeded by about 10% at a temperature of

10 MeV. The SCGF calculation shows only a small violation. Although a zero

temperature calculation was not performed, one can conclude that a good ther-

modynamic consistency is achieved. This findings agree with the results that were

obtained in the Krakow group [boz01] and the Gent group [dew02].

To understand the drastic difference between the chemical potential in the two
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k∗ 2k∗ 3k∗ 4k∗ 5k∗

Etot/A 84 95 99.8 100.1 100.0

Ekin/A 44 80 93.6 99.0 99.9

Epot/A 56 84 95.5 99.3 99.9

Table 4.6: Contributions to the internal energy, the kinetic energy and

the potential energy per particle. The numbers represent the fractions of

the final value (in %) for a given upper integration limit. k∗ is 263 MeV.

The temperature is T = 5 MeV and the density is ρ = 0.16 fm−3.

pictures, while the binding energy differs by only a few MeV, we have to exam-

ine the mechanism of saturation in nuclear matter in more detail. It was pointed

out in Section 4.3, that the internal energy in the SCGF approach cannot be

calculated from the quasiparticle energy. Instead, by defining the mean removal

energy [boz02b],

ω̄r(k) =
1

n(k)

+∞∫

−∞

dω

2π
ωA(k, ω)f(ω), (4.24)

Koltun’s sum rule, Eq. (4.20), can be reformulated in the following way,

ESCGF

A
=
γ

ρ

∫
d3k

(2π)3

1

2

(
k2

2m
+ ω̄r(k)

)

n(k). (4.25)

It is the mean removal energy that determines the binding energy in the SCGF

picture. ω̄r is plotted, together with the SCGF and the BHF quasiparticle energies,

in Fig. 4.21. For small momenta, ω̄r is more repulsive than the corresponding

BHF spectrum, but much more attractive than the SCGF quasiparticle spectrum.

Above k∗, it displays a noticeable kink and goes to very negative values. In this

way, the binding energies in the BHF and the SCGF picture differ by only 2 MeV

at T = 5 MeV and ρ = 0.16 fm−3. In contrast, in both pictures, µ is determined

by the quasiparticle energy, as can be seen from the denominator of Eq. (3.11).

The chemical potentials are indicated by the two dots in Fig. 4.21. They have a

distance of about 15 MeV. This shows why the Hugenholtz-Van Hove theorem can

be fulfilled.

The strongly attractive mean removal energy above k∗ and the finite occupation of

high-momentum states suggest that there are non-negligible contributions to the
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Figure 4.22: The running integral illustrates the saturation of the kinetic

energy, the potential energy and the binding energy per particle in the

SCGF picture (solid line) and in the BHF picture (dashed line). The

calculation was performed at T = 5 MeV and ρ = 0.16 fm−3.

internal energy from nucleons in these states. This is illustrated in the left panel

of Fig. 4.22, where the running integrals of Eqs. (4.25) and (4.21) over a sphere in

momentum space are plotted. While the BHF integral saturates quickly above k∗,

an attractive contribution of more than 2 MeV from states between k∗ and 3k∗ is

observed in the SCGF result. The internal energy can be split in a kinetic part,

Ekin

A
=
γ

ρ

∫
d3k

(2π)3

k2

2m
n(k). (4.26)

and a remaining contribution, which is interpreted as the potential part,

Epot

A
=
γ

ρ

∫
d3k

(2π)3

1

2

(

ω̄r(k) −
k2

2m

)

n(k). (4.27)

The saturation of the running integrals for these expressions are compared with

the corresponding BHF results in the middle and the right panel of Fig. 4.22.

The absolute value of the kinetic and the potential part in the SCGF picture are

12 MeV and 10 MeV greater than the BHF results. As much as 56% of the kinetic
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Figure 4.23: Distribution of the kinetic energy contributions (left panel)

and the potential energy contributions (right panel) in the energy-

momentum plane. The regions inside the various bands contain a contri-

bution of 90%, 80%, 70%, 60%, 50%, 40% and 30% to the total integral.

The solid line is the SCGF quasiparticle energy. The data were obtained

using the extrapolation of the self energy to zero temperature at nu-

clear matter saturation density, ρ = 0.16 fm−3. The chemical potential is

µ = −25 MeV (dashed line).

energy and 44% of the potential energy are from off-shell nucleons in high momen-

tum states as can be seen from Tab. 4.6. Only after integrating up to 5k∗, Ekin/A

and Epot/A are fully converged.

The strength of a state k is fragmented according to the spectral function, and

so one can not only look for the momentum regions that contribute to the kinetic

energy and the potential energy, but also for the respective energy domains. In

Fig. 4.23, the region that is enclosed by one of the bands represents the smallest

possible area in the energy-momentum plane that contributes a given percentage

to the total kinetic energy (left panel) and potential energy (right panel). For

the present analysis, the zero temperature spectral function that was derived from

the extrapolation procedure (cf. Section 4.3) was inserted into the kinetic and

93



4 Results

0 100 200 300 400 500 600
momentum [MeV]

-300

-250

-200

-150

-100

-50

µ
0

en
er

gy
 [

M
eV

]

Figure 4.24: Positive and negative contributions to the binding energy

in the energy-momentum plane. Bands of the same color code indicate

contributions of equal absolute size (attractive below the dotted line and

repulsive above). The straight line marks the SCGF quasiparticle energy

and the chemical potential is indicated by the horizontal dashed line.

The parameters are the same as in Fig. 4.23.

the potential contribution to Eq. (4.20). At zero temperature, only energies up to

ω = µ, the chemical potential, can contribute to the integral. About 40% − 50%

of the kinetic and the potential energy is concentrated in the quasiparticle region.

The rest is spread over the low energy – high momentum region. Both plots look

similar, however, the bands are deformed into the direction of high momentum

rather than into the direction of low energy in the case of the kinetic energy and

vice versa for the potential energy.

The contributions to the kinetic energy are positive everywhere in the energy-

momentum plane, while those to the potential energy is always negative. In

Fig. 4.24, the sum of both distributions is shown. Each band indicates a region

with a contribution of equal absolute size to the internal energy. The dotted line

is determined by the condition:

k2

2m
+ ω = 0 (4.28)
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Figure 4.25: The running integral illustrates the saturation of the kinetic

energy, the potential energy and the binding energy per particle for T =

5 MeV (solid line), T = 7 MeV (dashed line), T = 10 MeV (dash-dotted

line) and T = 20 MeV (double-dash-dotted line). All calculations were

done at saturation density.

The left hand side is the weighting factor of Koltun’s sum rule, which means, that

below the dotted line, the distribution is attractive, above, it is repulsive. The

contribution of a momentum state k = 600 MeV is repulsive down to energies of

−200 MeV, nevertheless, the net contribution of the state to the binding energy

is attractive (cf. left panel of Fig. 4.22). This illustrates the role of the negative

energy tail of the spectral function for the nuclear binding energy.

Finally, the temperature dependence of the running integral is studied. Like in

Fig. 4.22, the internal energy, the kinetic energy and the potential energy at sat-

uration density are displayed separately in Fig. 4.25. A strong repulsive effect

in the internal energy can be observed, which is roughly proportional to T 2. (a

closer analysis shows that the exact temperature dependence of the kinetic energy

cannot be given in a simple analytic form even for free particles). The potential

energy depends only very weakly upon the temperature (right panel). Almost the

complete repulsion is induced by an increasing kinetic energy (middle panel). This

is due to the thermal excitation of on-shell particles in a narrow momentum inter-
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val above k∗. The results for temperatures up to 10 MeV in the left panel show

that the high momentum off-shell nucleons above k ≈ 500 MeV provide attraction.

However, at T = 20 MeV, also the off-shell nucleons yield a repulsive contribution.
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Chapter 5

Summary and Conclusions

Based on recent (e,e’p) knock-out experiments in finite nuclei, experimentalists are

now able to pin down the role of short-range NN correlations on a quantitative

level. The shell-model states below the Fermi energy are not fully occupied, and

the missing strength is redistributed to high momenta. Both from the experimental

and from the theoretical point of view, the spectral function is the key quantity

to study the properties of nucleons that are moving in the nuclear medium.

Among other many-body approaches, the theory of Green’s function provides a

particularly suitable framework to determine the spectral function. The Green’s

function describes the propagation of a nucleon in the many-body system. Along

its path, a particle collides with the particles in the surrounding medium, which,

in turn, alter the particles’ own properties from those in free space. The nucleon

self energy accounts for these medium-modifications. There is an obvious aspect of

recursivity in this situation, since the same kind of self-modification must apply for

all particles in the medium. A solution to the many-body problem must therefore

be self-consistent in this regard.

In this work, a fully self-consistent solution for symmetric nuclear matter at finite

temperature has been obtained in the T matrix approximation: to some extent,

it is justified to consider nuclear matter as a dilute system, because the range of

the interaction is shorter than the mean interparticle distance. In a low density

system, the successive exchange of several bosons between only two nucleons is

more likely than the simultaneous participation of three or more nucleons in a

collision process. The multiple-scattering process between the dressed fermions
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modifies their relative wave function in such a way that their repulsive cores do

not overlap. By taking into account these correlations in terms of an effective

interaction, realistic NN potentials can be applied. In a mean-field picture, where

correlations are neglected and the nucleons move in a potential that is averaged

over the Fermi sea, the use of realistic NN forces would never lead to satisfying

results. Partial summation over ladder diagrams to all orders leads to a Lippmann-

Schwinger type of equation for the energy-dependent T matrix or, alternatively, to

the Brueckner G matrix, both of which can be interpreted as effective in-medium

interactions.

The central improvement concerning the matter of self-consistency in this Thesis

is that the intermediate nucleon pair in the ladder equation is described by a

product of two full in-medium Green’s functions. This object takes into account

forward (particle-particle) and backward (hole-hole) propagation of the NN pair.

By assuming a propagation on the energy shell (quasiparticle approximation) and

by neglecting the backward propagation, the ladder equation for the T matrix

reduces to the familiar Bethe-Goldstone equation.

For the first time, the self-consistent Green’s function has been computed from the

T matrix without any approximation apart from the angle-averaging of the two-

particle propagator in the ladder equation. In previous studies that go beyond the

quasiparticle approximation, either the self energy or the spectral function was

parameterized, or the T matrix was determined for separable potentials only.

At finite temperature, the numerical solution has been obtained with an iterative

procedure that leads to very stable results at finite temperatures. The realistic CD-

BONN potential was applied. In the discussion of the self-consistent results for the

T matrix, special attendance was paid to the differences between the quasiparticle

picture and the full solution: artificial phase space restrictions in the quasiparti-

cle scheme lead to a lower bound for the total energy of the scattered NN pair,

whereas the full solution extends to more negative energies.

The phase transition to a superfluid states below a critical temperature is a well-

known phenomenon in Fermi liquids. Calculations in the superfluid phase cannot

be performed in the T matrix approach, but precursor effects for the phase tran-

sition have been studied. In the full SCGF solution, they are weaker than in the

quasiparticle scheme and it was found that TC is overestimated in a quasiparticle

description. In the SCGF scheme, the critical temperature was not reached in the

temperature and density range that could be covered.

The energy dependence and the density dependence of the imaginary part of the
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nuclear self energy have been discussed thoroughly. Since a direct calculation at

zero temperature is not possible with the implemented iteration procedure, an ex-

trapolation scheme has been developed. An extrapolation of the results to zero

temperature is most easily done on the level of the self energy, because of its rather

smooth energy dependence.

The spectral function of a correlated system is composed of a peak and a broad

background distribution that extends to very high positive energies and displays

also a negative energy tail. In contrast to the zero temperature case, the hole

and the particle part of the spectral function are not separated at ω = µ at finite

temperature. Compared to spectral functions that were obtained in a quasiparti-

cle picture, the negative energy tail of the self-consistent results is smoother and

extends to more negative energies. Generally, the agreement between the quasi-

particle and the self-consistent spectral function becomes better at high momenta.

Self-consistent spectral functions in hot and dense nuclear matter can be applied

in microscopic simulations of heavy-ion collisions or supernova explosions. It was

found that the spectral functions at finite temperature differ from the zero tem-

perature result mainly in a temperature dependent energy interval around the

chemical potential, leading to a temperature broadening of the quasiparticle peak

for the loosely-bound states. Investigating the density dependence of the on-shell

width at a single temperature, one finds an increasing width for deeply bound

states and a sharpening peak for states at the Fermi edge.

A nuclear matter spectral function, calculated at the mean density of 12C has

been compared to an experimental spectral function for this nucleus. The results

describe the data surprisingly well, especially for momenta up to twice the Fermi

momentum. For even higher momenta, the energy tail of the theoretical curves

overshoots the data, and the strength at low energies is underestimated. The

SCGF results have also been compared to recent theoretical spectral functions for

finite systems. The deviations to the experimental result are similar in all models,

but the T matrix results yields the best description, which can be seen as a hint

that the self-consistent dressing of the Green’s function is important. However,

to draw further conclusions, an explicit calculation for the finite system should be

made, using dressed Green’s functions.

The effect of short-range correlations on the momentum distributions has also been

investigated in this Thesis. SRC lead to a constant depletion of low momentum

states with respect to the Fermi-Dirac distribution, and, in turn, high momen-

tum states up to five times the Fermi momentum are partially occupied. The
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temperature-induced softening effect on n(k) is limited to momenta up to only

two times the Fermi momentum in the temperature range that was considered.

The total depletion of the deeply bound states that has been computed within

the framework of self-consistent Green’s functions is only about half of the value

that was measured recently in an (e,e’p) experiment on 208Pb. Other many-body

theories, as the theory of correlated basis functions, are closer to the experimental

value. However, the experimental error bars are still quite large.

A somewhat surprising result is the decrease of the depletion at high densities,

between ρ0 and 3ρ0. In previous studies, a similar dependence was found at lower

densities and assigned to attractive correlations in the deuteron channel. Since the

deuteron formation is suppressed at high densities, the origin of this effect should

be further investigated.

Finally, the saturation properties of hot nuclear matter have been studied. Due to

an increase in kinetic energy, the internal energy of hot nuclear matter is 5−2 MeV

higher than at zero temperature. This is due to a higher kinetic energy of the nu-

cleons. The total effect on the internal energy is more pronounced at low densities.

Compared to the result of a continuous-choice BHF calculation at the same tem-

perature, a density dependent overall repulsive effect between 2 and 7 MeV was

found, which shifts the minimum of the equation of state towards the empirical

value of the saturation point. However, the saturation density is still too large (no

three-body force was used in the calculation).

The difference with respect to the BHF result can be assigned to the backward

propagation that is taken into account in the T matrix approach. An analysis

of the contribution of the individual momentum states shows that the repulsion

is due to the low momentum states. The high-momentum off-shell nucleons, and

especially the strength located in the negative energy tail, provide attraction.

The Hugenholtz-Van Hove theorem states, that at zero temperature, the chemical

potential must be equal to the binding energy per particle at the saturation point

and it is badly violated in lowest order Brueckner theory. Although the equation

of state has only been computed at finite temperature, we can conclude that the

theorem is well satisfied.

The results of this Thesis show that the fingerprints of correlations in nuclear

systems can be described within the self-consistent Green’s functions approach. As

far as experimental data are available, the results agree well on a qualitative level.

It should be stressed that the theory contains no free parameters that can be used

to fit experimental or semi-experimental data as the nuclear saturation point. One
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should also keep in mind that in nuclear systems, there are a variety of additional

phenomena that can play a role, as to mention further self energy contributions

from long-range correlations, internal excitations of nucleons or relativistic effects,

none of which have been taken into account in the present approach. Probably one

of the major achievements of this work is the conceptually consistent treatment

of the non-relativistic nuclear many-body problem. It can be considered as a

solid starting point for further investigations that aim on a more quantitative

description of the available data. A possible project that points into the direction

of a realistic description of hadronic neutron star matter would be the extention

of the formalism to hot asymmetric or hyperonic matter.

101



5 Summary and Conclusions

102



Appendix A

Expansion of the Green’s

Function

As for the zero temperature case, there exists a diagrammatic expansion of the

finite temperature single-particle Green’s function in terms of unperturbed Green’s

functions. The Feynman diagrams provide some insight into the structure of the

approximations being made. Each approximation scheme corresponds to a certain

class of diagrams. For the finite temperature case in an equilibrium system, the

structure of the single-particle Green’s function that was given by Eq. (2.2) must

be studied,

ig(xt;x′t′) =
Tr{e−β(H−µN)T[ψ(xt)ψ†(x′t′)]}

Tr{e−β(H−µN)}
, (A.1)

The time arguments t and t′ are chosen to be imaginary. The denominator of

Eq. (A.1) is the grand partition function of the system, Z, that can also be ex-

pressed in terms of the thermodynamic potential Ω,

Z = e−βΩ. (A.2)

The Hamiltonian of the system of interacting nucleons is given by

H = H0 +H1 =
∫

d3xψ†(xt)T (x)ψ(xt) +
1

2

∫

d3x

∫

d3x′ ψ†(xt)ψ†(x′t)V (x,x′)ψ(x′t)ψ(xt),

(A.3)
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where the field operators are expressed in the Heisenberg picture. The well-known

textbook relation between operators in the Schrödinger picture and in the Heisen-

berg picture can be formally continued to imaginary times [fet71]. The time evo-

lution of the Heisenberg operators is governed by the full Hamiltonian,

ÔH(xt) = eitHÔS(x)e−itH , (A.4)

while H0 determines the evolution of operators in the inteaction picture

ÔI(xt) = eitH0ÔS(x)e−itH0 . (A.5)

It follows that operators in the interaction picture and the Heisenberg picture are

related by the transformation

ÔH(xt) = U(0, t) ÔI(xt) U(t, 0). (A.6)

U is the evolution operator,

U(t, t′) = eitH0e−i(t−t′)He−it′H0 . (A.7)

U is not unitary for imaginary times, but it obeys the group property and a

differential equation,

i
∂

∂t
U(t, t′) = −H1(t) U(t, t′). (A.8)

The time dependence of H1(t) is given by Eq. (A.5); note that the subscript I is

omitted. The formal solution to this differential equation is

U(t, t′) =

∞∑

n=0

(−i)n

n!

t′∫

t

dt1 · · ·

t′∫

t

dtnT[H1(t1) · · ·H1(tn)] (A.9)

With the evolution operator U, the numerator of the statistical operator, e−β(H−µN),

is expressed as

e−β(H−µN) = e−β(H0−µN)
U(−iβ, 0). (A.10)

Using Eq. (A.9) and Eq. (A.10), the grand partition function can be expanded as

follows:

e−βΩ = Tr e−β(H−µN)

= e−βΩ0

∞∑

n=0

(−i)n

n!

−iβ∫

0

dt1 · · ·

−iβ∫

0

dtnTr{ρG0T[H1(t1) · · ·H1(tn)]}, (A.11)
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where the statistical operator of the non-interacting system has been introduced,

ρG0 =
e−β(H0−µN)

e−βΩ0
. (A.12)

The time-ordered Green’s function can be rewritten using interaction picture field

operators,

ig(xt;x′t′) = eβ(Ω−Ω0)Tr{ρG0 T [U(−iβ, t)ψI(xt) U(t, t′)ψ†
I(x

′t′) U(t′, 0)]} (A.13)

Inserting Eq. (A.9) into this expression, the Green’s function becomes, after some

combinatoric considerations [fet71],

ig(xt;x′t′) = eβ(Ω−Ω0)
∞∑

n=0

(−i)n

n!

−iβ∫

0

dt1 · · ·

−iβ∫

0

dtn

× Tr{ρG0T[H1(t1) · · ·H1(tn)ψI(xt)ψ
†
I(x

′t′)]} (A.14)

The interaction picture operatorH1 can be expressed in terms of interaction picture

field operators,

H1(t1) =
1

2

∫

d3x

∫

d3x′
−iβ∫

0

dt2 ψ
†
I(xt1)ψ

†
I(x

′t2)V (xt1;x
′t2)ψI(x

′t2)ψI(xt1), (A.15)

where

V (xt1;x
′t2) = V (x,x′) δ(t1 − t2). (A.16)

Since H1 contains four field operators, a term of order n in Eq. (A.14) contains

4n+2 field operators. The zeroth and the first order contributions in the expansion

read:

ig(xt;x′t′) = eβ(Ω−Ω0)
[

Tr{ρG0T[ψI(xt)ψ
†
I(x

′t′)]}

+
(−i)

2

∫

d3x1

−iβ∫

0

dt1

∫

d3x2

−iβ∫

0

dt2V (x1t1;x2t2)

×Tr{ρG0T[ψ†
I(x1t1)ψ

†
I(x2t2)ψI(x2t2)ψI(x1t1)ψI(xt)ψ

†
I(x

′t′)]}

+ · · ·
]

. (A.17)
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Still, time ordered products like the one in Eq. (A.17) have to be decomposed. A

generalized Wick’s theorem states that the traces in Eq. (A.14) are equal to the

sum of all fully contracted terms, where the contraction of two field operators in

the interaction picture is defined as

ȦḂ = Tr{ρG0T[AB]} (A.18)

The contraction is a complex number and not an operator. Note that the Green’s

function of the non-interacting system is just the contraction between a creation

operator ψI(xt) and an annihilation operator ψ†
I(x

′t′)

ig0(xt;x′t′) = Tr{ρG0T[ψI(xt)ψ
†
I(x

′t′)]}. (A.19)

A contraction between two creation operators or two annihilation operators van-

ishes. Using the invariance of the trace under cyclic permutations, the first order

term in Eq. (A.17) can be arranged in six distinct ways such that each of these six

contributions is a product of three non-vanishing contractions. Denoting creators

by C and annihilators by A, and keeping the indices of the arguments, these six

possible fully contracted terms are

Tr{ρG0T[C1C2A2A1AC
′]} = ȦĊ ′Ä1C̈1

...
A2

...
C2 − ȦĊ ′Ä1C̈2

...
A2

...
C1 + ȦĊ2Ä2C̈1

...
A1

...
C

′

− ȦĊ2Ä1C̈1

...
A2

...
C

′
+ ȦĊ1Ä1C̈2

...
A2

...
C

′
− ȦĊ1Ä2C̈2

...
A1

...
C

′
.

(A.20)

These contributions can be classified into two types. The first two terms are dis-

connected in the sense that they contain a contraction between the external fields

ψI(xt) and ψ†
I(x

′t′) (denoted by ȦĊ ′ in Eq. (A.20)). In this case, the contraction

does not depend on the integration variables x1, t1, x2 or t2 and so the discon-

nected terms can be written as a product of a factor that contains the external

points and a factor that contains only integration variables. The remaining four

contributions are connected and do not factorize. This classification applies to all

orders of the expansion.

A consequence of this factorization property for single disconnected terms is, that

the whole expansion series (everything between the square brackets in Eq. (A.17))

factorizes into the sum Sconn(xt;x′t′) of an infinite number of all connected con-

tributions, that include also external indices, and a sum Sint of an infinite number

of terms that do not depend upon the external variables, so that one can write

ig(xt;x′t′) = eβ(Ω−Ω0) [Sconn(xt;x′t′) × Sint] (A.21)
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Wick’s theorem can be applied in a similar form for the expansion of the partition

function, Eq. (A.11). Inspecting the structure of the integrals, it can be verified

that the expansion of e−βΩ cannot contain external points. It turns out that

e−β(Ω−Ω0), the denominator of Eq. (A.21), is the sum of all internal contributions,

e−β(Ω−Ω0) = Sint. (A.22)

It follows that only the connected terms must be considered in the expansion of

the Green’s function,

ig(xt;x′t′) = Sconn(xt;x′t′). (A.23)

A further reduction of the number of connected terms can be achieved. The third

and the fifth term of the six fully contracted objects in Eq. (A.20) can be generated

from each other by exchanging the labels of the integration variables. They are

topologically equivalent and give identical contributions. The same applies for

term four and six. Generally, each connected contribution in nth order of the

expansion of ig occurs in 2n n! topologically equivalent permutations. This cancels

the factor 1
n!

in Eq. (A.14) and the 1
2n that is introduced by the n interaction

Hamiltionians.

The remaining topologically distinct connected contributions are, up to first order

ig(xt;x′t′) = ig0(xt;x′t′) + i2
∫

d3x1

−iβ∫

0

dt1

∫

d3x2

−iβ∫

0

dt2V (x1t1;x2t2)

×
[
− g0(xt;x1t1)g

0(x2t2;x2t
+
2 )g0(x1t1;x

′t′)

+g0(xt;x2t2)g
0(x2t2;x1t1)g

0(x1t1;x
′t′)

]
+ · · · (A.24)

By carrying out a similar analysis for higher order terms, an expansion of the

full Green’s function in terms of free propagators is obtained. For applications in

uniform and isotropic systems, it is convenient to work with the Fourier transform

of this expansion. All objects in Eq. (A.24), both on the right hand side and on

the left hand side, are expressed by their Fourier representation, e.g.,

g(xt;x′t′) =

∫
d3k

(2π)3
eik(x−x′) 1

−iβ

∑

ν

e−izν(t−t′)g(k, zν). (A.25)

The first order terms contain a 12-dimensional integration and four Matsubara

summations. The integral representation of the three-dimensional Dirac function,
∫

d3x eikx = (2π)3 δ(3)(k), (A.26)
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and the useful relation for the Matsubara frequencies,

−iβ∫

0

dt e−i(zν−z
ν′

)t = −iβ δzν ,z
ν′
, (A.27)

allow to express momentum and frequency conservation at each vertex. In this

way, many of the integrals and the Matsubara summations can be eliminated.

The final expression for the Fourier transform of the Green’s functions expansion

up to first order is given in Eq. (2.18) of Section 2.1.

It is clear that the procedure that was sketched in this Section becomes very

tedious beyond the first order terms. Fortunately, for practical purposes, it is not

necessary to compute all possible contractions of field operators and to perform

Fourier transformations of complicated expressions. A set of rules, the so-called

Feynman rules, takes advantage of the fact that each term in the expansion can be

interpreted as a Feynman diagram and of the one-to-one correspondence between

the diagrams and the mathematical expressions. By following these rules, the value

of the nth order contribution to the Green’s function can be determined much more

quickly. For the momentum space representation of the Green’s function series,

the Feynman rules are given in Appendix B.
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The Feynman Rules

The Feynman rules as stated below form a set of instructions to find the value

of the nth-order contribution to the momentum-frequency representation of the

Green’s function, g(k, zν).

1. Draw all topologically distinct connected diagrams with n (wavy) interaction

lines and 2n+ 1 (straight) fermion lines. An arrow indicates the direction of

momentum flow. Up to first order, this is shown in Fig. 2.1.

2. Associate a wave vector ki and a discrete fermion Matsubara frequency zνi

with each line (i = 1, . . . , 2n). One of the two external lines in each diagram

must be labeled by k and zν.

3. To calculate the value of a diagram, write down a factor

g0(ki, zνi
) =

1

zνi
− k2

i /2m

for each fermion line labeled with ki and zνi
.

4. With each potential line, associate a factor

i 〈k1k2|V |k3k4〉 (2π)3 δ(3)(k1 + k2 − k3 − k4)(−iβ)δν1+ν2,ν3+ν4 .

The labels of in-going and out-going propagator lines are shown in Fig. B.1.

The Dirac function and the Kronecker delta guarantee the conservation of

momentum and energy in the collision process.
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k3, zν3

k1, zν1
k2, zν2

k4, zν4

Figure B.1: Orientation of the frequency and momentum labels in the

factor that is associated with the potential line.

5. Integrate over the momenta associated with all fermion lines except the ex-

ternal fermion line labeled by k and sum over all Matsubara frequencies

except the one labeled by zν. Associate a factor (2π)−3 with each integration

and a factor 1
−iβ

with each Matsubara summation.

6. Sum over all internal spin and isospin projections.

7. Add a factor (−1)F to the final expression, where F is the number of closed

fermion loops in the respective diagram.

8. Whenever a propagator line either closes on itself or is joined by the same

interaction line, insert a convergence factor ezνη, where η = 0+ is small and

positive such that

lim
Re z→∞

ηRe z = ∞. (B.1)

This factor is required to prevent divergent contributions from the arcs, for

instance in the contour integration in Section 2.2.
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Zusammenfassung in deutscher

Sprache

In der vorliegenden Arbeit werden Nukleon-Nukleon (NN)-Korrelationen in sym-

metrischer Kernmaterie im Rahmen der Theorie selbstkonsistenter Green’scher

Funktionen (SCGF) bei endlichen Temperaturen und endlichem chemischen Po-

tential untersucht. Dabei wird ein realistisches Modell für die Kernkraft zugrun-

degelegt, welches in der Lage ist, die zugänglichen Zwei-Nukleon Daten aus NN-

Streuung sowie die Eigenschaften des Deuterons mit hoher Präzision zu beschrei-

ben. Ausgehend von der diagrammatischen Entwicklung der Ein-Teilchen Green’s

Funktion im Medium werden zunächst am Beispiel der Hartree-Fock-Naeherung

grundlegende Begriffe wie die selbstkonsistente Renormierung der Selbstenergie-

Diagramme sowie Techniken zur Berechnung von Matsubara-Summen erklärt. Zur

Beschreibung stark korrelierter Vielteilchen-Systeme ist jedoch die Hartree-Fock-

Naeherung ungeeignet, da Korrelationen in den HF-Produktwellenfunktionen nicht

beruecksichtigt werden koennen. Insbesondere die Vernachlässigung von kurzreich-

weitigen Korrelationen (SRC), die genau solche Konfigurationen, in denen NN-

Paare kleine Relativabstände haben, unterdrücken, führt zu einer unphyikalischen

Übergewichtung der repulsiven Beiträge im NN-Potential und zu ungebundenen

Systemen. Eine geeignete Methode, solche kurzreichweitigen Korrelationen so-

wie die v.a. durch das Pion vermittelten Tensorkorrelationen zu berücksichtigen,

ist die thermodynamische T -Matrix, eine effektive Wechselwirkung, die durch ei-

ne Streugleichung im Medium bestimmt wird. Ähnlich wie in der Lippmann-

Schwinger-Gleichung, die die Streuung freier Teilchen beschreibt, werden dabei

die sogenannten Leiter-Diagramme aufsummiert. Die Integralgleichung beinhal-

tet eine Zweiteilchen-Green’sche Funktion, die die Propagation von zwei nicht

wechselwirkenden Nukleonen zwischen den einzelnen Streuprozessen beschreibt.
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Während in allen bisher durchgefuehrten Rechnungen dieser Art auf verschiedene

Naeherungsmethoden zur Lösung der T -Matrix Gleichung zurückgegriffen wurde,

wird die Zweiteilchen-Green’sche Funktion in der hier vorliegenden Arbeit als Pro-

dukt aus zwei vollwertigen Einteilchen-Propagatoren in ihrer vollen Energie-und

Impulsabhängigkeit explizit berechnet. Neben der üblichen Berücksichtigung von

Teilchen-Teilchen Propagation wird dabei auch Loch-Loch-Propagation in allen

Ordnungen berücksichtigt.

Aus der effektive Wechselwikung wird die Selbstenergie der Nukleonen bestimmt.

Die Berechnung dieser komlexwertigen Größe wird durch die Anwendung von Di-

spersionsrelationen möglich, die eine Trennung von Real-und Imaginärteil erlau-

ben. Aus der Selbstenergie kann leicht die Spektralfunktion der Nukleonen be-

stimmt werden. Dies ist eine zentrale Größe in der Theorie Green’scher Funktio-

nen, die dem Imaginärteil der Einteilchen-Green’schen Funktion proportional ist,

und die die Energieverteilung quantenmechanischer Impulszustände beschreibt.

In einem korrelierten Vielteilchen-System ist nämlich eine strenge Energie-Impuls-

Relation wie für freie Teilchen nicht mehr erfüllt, und ein Teilchen in einem definier-

ten Impulszustand ist deshalb über verschiedene sogenannte “off-shell”-Energien

verschmiert.

Ein wesentlicher Punkt bei dem beschriebenen Verfahren ist, dass die Bestimmung

der “off-shell”-Struktur der Spektralfunktion in selbstkonsistenter Weise erfolgt,

was bei Quasiteilchen-Näherungen (QPGF) nicht der Fall ist. Dort wird bei der

Berechnung der effektiven Wechselwirkung und der Selbstenergie angenommen,

dass die Nukleonen “on-shell” sind, also eine Energie-Impuls-relation erfüllen, was

die Lösung des gekoppelten Gleichungssystems stark vereinfacht. Ist die Spektral-

funktion einmal bestimmt, können alle Einteilchen-Observable sowie die Grundzu-

standsenergie des Vielteilchen-Systems aus ihr berechnet werden.

Daneben ist die Spektralfunktion auch eine bestimmende Größe bei “knock-out”-

Reaktionen, bei denen z.B. durch Beschuß mit hochenergetischen Elektonen ein

Proton aus einem Atomkern herausgeschlagen und detektiert wird. Der Wirkungs-

querschnitt für solche Kernreaktionen ist proportional zur Spektralfunktion.

Die Ergebnisse der selbstkonsistenten T -Matrix zeigen deutliche Abweichungen

von den Resultaten, die in Quasiteilchen-Näherungen berechnet wurden. Die Un-

terschiede lassen sich konkret auf die Nährungen zurückführen, die bei der Be-

stimmung Zweiteilchen-Green’schen Funktion gemacht werden. In der QPGF-Be-

schreibung werden insbesondere solche Beiträge zur T -Matrix zu stark unter-

drückt, die von den Loch-Loch-Leiterdiagrammen bei stark negativen Paarener-
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gien herrühren. Ein anderes interessantes Phänomen, der Übergang zu einer su-

prafluiden Phase, kann im Rahmen des Formalismus “normaler” Green’scher Funk-

tionen nicht beschrieben werden. Allerdings läßt dich die Übergangstemperatur

TC des Phasenübergangs durch die Bedingung bestimmen, dass bestimmte T -

Matrixelemente singulär werden. Dabei zeigt sich, dass die Quasiteilchen-Näherung

TC überschätzt, da SCGF-Rechnungen in der normalen Phase noch bei Tempera-

turen durchgefürht werden können, die schon unterhalb der Übergangstemperatur

der Quasiteilchen-Näherung liegen.

Aus der T -Matrix und der Spektralfunktion kann der Imaginärteil der Selbstener-

gie berechnet werde. Die Energie-, die Impuls- und die Dichteabhängigkeit dieser

Größe wird in der Arbeit ausführlich diskutiert. Da die Energieabhängigkeit der

Selbsenergie relativ glatt ist, eignet sich diese auch zur Extrapolation der Ergeb-

nisse bei endlicher Temperatur auf T = 0, was insbesondere für den Vergleich mit

experimentellen Ergebnissen wichtig ist.

Beim Vergleich der Resultate der selbstkonsistenten Spektralfunktion mit den

QPGF-Ergebnissen zeigt sich, dass sich die oben auf der Ebene der T -Matrix

beschriebene Unterdrückung bei stark negativen Energien auch auf der Ebene der

QPGF-Spektralfunktion auswirkt. Die Temperatur- und Dichteabhängigkeit der

Spektralfunktion im Bereich von 3 MeV < T < 20 MeV und 0.1 fm−3 < ρ <

0.5 fm−3 werden ebenfalls diskutiert. Eine erst kürzlich aus den experimentallen

Daten einer (e,e’p)-Reaktion an 12C extrahierte Spektralfunktion wird mit einer

selbstkonsistent berechneten Spektralfunktion bei mittleren Dichte des Kohlenstoff-

Kerns verglichen. Die Rechnung zeigt eine recht gute Übereinstimmung mit den

experimentellen Daten, was deshalb erstaunlich ist, weil die Daten besser beschrie-

ben werden als von kürzlich publizierten Rechnungen, die speziell für endliche Sy-

steme durchgeführt wurden.

Auch für die Besetzung der tief gebundenen Zustände in 208Pb existieren expe-

rimentell gemessene Werte. SRC sorgen bereits im Grundzustand dafür, dass ein

bestimmter Anteil der Nukleonen in den Zuständen, die eigentlich voll besetzt

sind, zu sehr hohen Impulszuständen gestreut werden, so dass die Orbitale im Be-

reich unterhalb der Fermikante nur teilweise besetzt, und diejenigen oberhalb der

Fermikante nicht völlig unbesetzt sind. Die experimentell bestimmten Werte für

Blei können mit der Besetzungszahlen n(k) der Zustände mit kleinen Impulsen in

Kernmaterie verglichen werden. Der auf Temperatur Null extrapolierte Wert für

n(0) ist allerdings mit 0.89 um mehr als 10% größer als der Mittelwert aus den

fünf tiefstgebundenen Zustände in Blei. Allerdings sind die experimenellen Feh-
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lerbalken ebenfalls recht groß. In der Arbeit wird außerdem die Besetzung von

Zuständen mit sehr hohem Impuls diskutiert.

Zum Schluß wird das Sättigungsverhalten von Kernmaterie studiert. Dafür wird

die interne Energie pro Nukleon mit der sogenannten Koltun-Summenregel berech-

net. Im Vergleich zu einer “continuous choice” Brueckner-Hartree-Fock (BHF)-

Rechnung, die ebenfalls von Quasiteilchen ausgeht, kann ein repulsiver Effekt be-

obachtet werden, der bei hohen Dichten (ca. 3ρ0) auf ca. 6 MeV anwächst. Diese

Repulsion ist auf die Loch-Loch-Propagation zurückzuführen. Der Sättigungspunkt

von Kernmaterie wird dadurch zu etwas niedrigeren Dichten verschoben, allerdings

bei weitem nicht in die Nähe von ρ0.

Eine genauere Analyse des Ursprungs für den repulsiven Effekt zeigt, dass die-

jenigen Nukleonen, die sich in nur teilweise besetzten Orbitalen mit sehr hohen

Impulsen aufhalten, einen stark attraktiven Beitrag zur Gesamtenergie des Sy-

stems leisten, und das owohl sie eine sehr hohe kinetische Energie besitzen. Diese

Nukleonen sind “off-shell” und können in einer reinen Quasiteilchen-Näherung wie

der BHF-Theorie nicht beschrieben werden. Der im Saldo repulsive Effekt liegt so-

mit darin begründet, dass die Bindung von Nukleonen in Orbitalen mit kleineren

Impulsen sehr viel schwächer ist als im BHF-Bild.

Die in der vorliegenden Arbeit erarbeitete Lösung für die Green’sche Funktion

ermöglicht eine konsistente Beschreibungs unendlich ausgedehnter nukleare Syste-

me bei endlichen Temperaturen und in einem weiten Dichtebereich. Die Resultate

können ohne größere Schwierigkeiten auf Temperatur Null extrapoliert werden,

was einen Vergleich mit Messungen an endlichen Systemen erlaubt. Da die eigent-

lich in endlichen Systemen anzuwendenden theoretischen Methoden grundsätzlich

anders (und schwieriger) sind, sollte man jedoch nicht vergessen, dass solche Ver-

gleiche letztlich höchstens qualitativen Charakter haben können.

Anders sieht dies mit Anwendungen in astrophysikalischen Systemen wie Neu-

tronensternen aus, wo Effekte, die durch die endliche Ausdehnung des Systems

herrühren, keine Rolle spielen. Ein erster weiterer Schritt zur realistischen Beschrei-

bung hadronischer Materie im Inneren eines Neutronensterns wäre die Berech-

nung β-stablier asymmetrischer Kernmaterie unter Einbeziehung der “off-shell”-

Struktur der Neutronen-und der Protonen-Spektralfunktion. Darüber hinausge-

hend könnte dann das Auftreten anderer Leptonen wie des µ− sowie von Baryonen

mit “Strangeness” wie des Σ− oder des Λ bei hohen Dichten modelliert werden. Für

solche Projekte bildet der im Rahmen dieser Arbeit erarbeitete Computer-Code

die Ausgangsbasis.
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