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(i) 
 
 

 
Zusammenfassung 
 

Ektomykorrhizen haben in borealen Nadelwäldern und temperierten Laubwäldern der 

Nordhemisphäre eine entscheidene Aufgabe in der Versorgung ihrer pflanzlichen Partner 

mit Stickstoff, der wichtigste wachstumslimitierende Nährstoff. In diesen Waldböden ist 

Stickstoff hauptsächlich in organischen Verbindungen vorhanden, welche nicht für die 

Pflanze, aber für den Ektomykorrhizapilz verwertbar sind.  

Die mit der Pflanze in Symbiose lebenden Pilze können mit Hilfe von extrazellulären 

Proteinasen Proteine in diesen Böden spalten. Dies ermöglicht dem Pilz organischen 

Stickstoff in Form von freien Aminosäuren und Peptiden aufzunehmen, zu assimilieren 

und schliesslich (zum Teil) an die Pflanze abzugeben. Da der Ektomykorrhizapilz einen 

wichtigen Beitrag zur Stickstoffversorgung für die mit ihm assoziierten Pflanze leistet, ist 

es von Bedeutung, die Aufnahmemechanismen von organischen Stickstoff vom Boden in  

den Pilz (und schliesslich Transport in die Pflanze) und deren Regulation zu verstehen. 

Um Transporter zu identifizieren, die an der Aufnahme von organischen 

Stickstoffverbindungen aus dem Boden in die Pilzhyphen bzw. am Transport vom Pilz in 

die Pflanze, beteiligt sind wurde eine cDNA Bibliothek vom Myzel des 

Ektomykorrhizapilzes Hebeloma cylindrosporum hergestellt. In dieser Arbeit wurde die 

Qualität dieser Bibliothek getestet, indem ca. 500 ESTs sequenziert wurden und damit 

eine Sequenzdatenbank für den Modellorganismus H. cylindrosporum hergestellt 

(www.uni-tuebingen.de/plantphys /hebeloma/index.html). 

Von dieser cDNA Bibliothek wurde ein Gen, das für einen Aminosäuretransporter 

(HcGAP1) kodiert isoliert und charakterisiert. Zusätzlich wurden zwei Peptidtransporter 

(HcPTR2A, -B) charakterisiert. Die Analyse dieser Transporter durch 

Aufnahmeexperimenten zeigt, das sie am Import von organischen 

Stickstoffverbindungen beteiligt sind. Weiterhin konnte durch Expressionsstudien gezeigt 

werden, dass diese Transporter durch verschiedene Stickstoffquellen reguliert werden.  

Da extrazelluläre Proteinasen eine wichtige Rolle für die Verfügbarkeit von organischen 

Stickstoff für den Pilz bzw die Pflanze spielen, wurde die Proteaseaktivität von Hebeloma 

getestet und ein Gen das möglicherweise für eine Proteinase kodiert isoliert. 

Schliesslich wurde eine Methode zur Transformation von Hebeloma via Agrobakterium 

tumefaciens etabliert. 
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Summary 
 

Ectomycorrhizal trees dominate boreal and temperate forest ecosystems in which 

nitrogen is generally accepted to be the most important growth-limiting nutrient. In 

these forest soils nitrogen is mainly available as organic compounds which are not 

accessible to plants but to the ectomycorrhizal fungi. 

The fungal partners are able to break down proteins present in these soils by using 

extracellular proteinase. Thus, they can take up and assimilate organic nitrogen in 

the form of free amino acids and peptides which can then be transferred to the plant. 

Since ectomycorrhizal fungi strongly participate in nitrogen nutrition of the plant in 

these soils, it is necessary to understand uptake of organic nitrogen from the soil by 

the fungus (its subsequent transport to the plant) and its regulation. 

To identify the transporters involved in the uptake of organic nitrogen compounds by 

the fungal hyphae and their transfer to the plant, it was necessary to develop 

genomic tools. An oriented expression library was constructed from the mycelia of 

the ectomycorrhizal fungus Hebeloma cylindrosporum. 

In this work, the quality of this library was tested by DNA sequencing of ~500 ESTs 

and a sequence database was generated for the model fungus H. cylindrosporum 

(www.uni-tuebingen.de/plantphys/hebeloma/index.html). 

Furthermore the suitability of the library to identify Hebeloma genes via their function 

was demonstrated. 

Using Hebeloma cDNA libraries a gene encoding for an amino acid transporter 

(HcGAP1) was isolated and characterized. Two peptide transporters (HcPTR2A, -B) 

were also characterized. The characterization of these transporters by uptake 

experiments shows that they play a role in the import of organic nitrogen compounds 

into Hebeloma. Expression studies demonstrated that these transporters are 

regulated by different nitrogen sources. 

As extracellular proteinases play an important role in organic nitrogen availability, the 

proteinase activity of Hebeloma was characterized and a gene encoding for a 

putative extracellular proteinase was isolated. 

Finally, a method for Agrobacterium tumefaciens mediated transformation of 

Hebeloma was successfully established.  
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Abbreviations: 
 
AA    amino acid 
AATA   amino acid toxic analog 
AAP   amino acid permease 
ABC transporter ATP binding cassette transporter 
ADH   alcohol dehydrogenase 
APC superfamily amino acid polyamine choline superfamily 
AS   Acetosyringone 
Asp   aspartate 
ATF1 superfamily amino acid transporter superfamily 
ATMT   Agrobacterium tumefaciens mediated transformation 
ATP   adenosine tri-phosphate 
BLAST  basic local alignment search tool 
BSA   bovine serum albumine 
Bq   Becquerel 
Bp   base pairs 
C   carbon 
CCCP   carbonylcyanide m-chlorophenylhydrazone 
CAT   cationic amino acid transporters 
Cys   cysteine 
DEPC   diethyl pyrocarbonate 
DES    diethylstillbestrol 
DNA   deoxyribonucleic acid 
2,4 DNP  2,4 dinitrophenol 
EDTA   ethylenediamine tetraacetic acid 
EGFP   enhanced green fluorescent protein 
EST   expressed sequence tag 
FITC   fluorescein-isothiocyanat 
GABA   γ - aminobutyric acid 
GFP   green fluorescent protein 
Gln   glutamine 
gpd   glyceraldehyde phosphodehydrogenase 
hph   hygromycin B phosphotransferase gene 
K   potassium 
KM   Michaelis constant 
Leu   leucine 
LHT   lysine histidine transporter 
MCT   H+/monocarboxylate transporters 
MFS   major facilitator super family 
MMN   modified Melin Norkans medium 
MDR   multi drug resistance 
N   nitrogen 
NADP   nicotinamide-adenine-dinucleotide-phosphate 
NCBI   National Center for Biotechnology Information 
NCR   nitrogen catabolic repression 
NH4

+   ammonium 
NO3

-   nitrate 



   

(iii) 
 
 

nt   nucleotide 
NTS   neurotransmitter superfamily 
OD   optical density 
OPT   oligopeptide transporter 
P   phosphate 
PCR   polymerase chain reaction 
PGK   3-phosphoglycerate kinase 
PMA   plasma membrane H+-ATPase 
PMF   proton motive force 
POT   proton coupled oligopeptide transporter 
ProT   proline transporter 
PTR   peptide transporter 
PVC   polyvinyl chloride 
RNA   ribonucleic acid 
RT   room temperature 
SC   synthetic complete 
SDS superfamily Sodium dicarboxylate symporter 
VGT   vesicular glutamate transporter 
YMG   yeast extract maltose glucose  
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1 Introduction 

1.1 Nitrogen sources available for plants 
 

In the soil nitrogen (N) occurs in various forms such as ammonium, nitrate, amino 

acid, peptides and other complex nitrogen-containing molecules. The form in which 

nitrogen is available for the plants is largely dependent on climate, soil type 

acidification and nitrification processes, vegetation and fertilization. Nitrogen is an 

essential nutrient for plants and serves as a component of amino acids and 

consequently proteins, nucleic acids, vitamins and other important compounds such 

as hormones and chlorophyll. Nitrogen, as the mineral element of which plants 

require the greatest amount, often limits plant growth. The acquisition and distribution 

of nitrogenous compounds by plants is a complex network of demand and supply. A 

diverse array of transporters for these compounds varying in their specificity, affinity, 

capacity and/or expression pattern play a key role in these processes. Plants are 

generally thought to acquire nitrogen primarily in the form of inorganic nitrogen, e.g. 

ammonium and nitrate. Following uptake, inorganic nitrogen is assimilated into 

organic nitrogen forms. Ammonium assimilation usually takes place in root cells. In 

comparison, nitrate assimilation can occur either in root cells or in leaves, depending 

on the nitrogen supply and the plant species. In temperate and boreal forest 

ecosystems (largest terrestrial biome of the earth) nitrogen is mainly available as 

organic compounds not easily accessible for plants. These areas exhibit low 

mineralization rates due to low temperature and/or pH, causing these soils to 

become depleted of easily available nutrients (Van Cleve & Yarie, 1986; Read, 1991; 

Kielland, 1994). It has been proposed that selection favored symbiosis between plant 

roots and ectomycorrhizal fungi in growth limiting environments due to fungal 

improvement of plant access to nutrients (Read, 1991). 

Plants, which live in symbiotic associations with nitrogen fixing bacteria, can use 

atmospheric nitrogen provided by the bacteroid in the form of ammonium or alanine 

(reviewed in Udvardi and Day, 1997; Waters et al, 1998). Mycorrhizal fungi make a 

valuable contribution to the nitrogen nutrition of their host by absorbing, assimilating 

and translocating simple nitrogenous compounds from the soil to the root and by 

converting complex nitrogen sources to more readily utilizable forms. The exchange 
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from the fungus to the plant is thought to occur in the form of amino acids (Martin and 

Botton, 1993). 

1.2 What are mycorrhizas ? 

1.2.1 Introduction 

 

Mycorrhizas are symbiotic associations that form between the roots of most plant 

species and fungi. These symbioses are characterized by bi-directional movement of 

nutrient where carbon (C) flows to the fungus and inorganic nutrients move to the 

plant, thereby providing a critical linkage between the plant root and soil. In infertile 

soils, nutrient taken up by the mycorrhizal fungi can lead to improved plant growth 

and reproduction. As a result, mycorrhizal plants are often more competitive and 

better able to tolerate environmental stresses (pathogens attack, drought…) than are 

nonmycorrhizal plants.  

At least seven different types of mycorrhizal associations have been recognized 

(vesicular-arbuscular mycorrhizas, ectomycorrhizas, orchid mycorrhizas, ericoid 

mycorrhizas, ectendo-, arbutoid and monotropoid mycorrhizas) (Brundrett, 1996), 

involving different groups of fungi and host plants and distinct morphology patterns 

(Tab 1.1). The most studied mycorrhizal associations are the vesicular-arbuscular 

mycorrhizas (Fig 1.1.A) (or endomycorrhizas), where fungi produce arbuscules, 

hyphae, and vesicles within root cortex cells, and ectomycorrhizas (Fig. 1.1.B) 

(described later in more details). 

 

 
 

 

 

 

 

 

 

 
Figure 1.1: Looking at the mycorrhizal association. A. Scheme of the interaction between the
fungus and the root cell in ectomycorrhiza association; the fungal hyphae form a mantle around
roots and a Hartig net between the root cells. B. Scheme of the endomycorrhiza association; the
hyphae penetrate the root cells and form arbuscules and vesicules. 

A B

(from Mykorrhiza-CD, Fester et al.)
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The Orchidaceae form mycorrhizas with basidiomycetes of various affinities (orchid 

mycorrhizas) where the fungi produce coils of hyphae within roots (or stems) of the  

plants. Some fungi forming orchid mycorrhiza are saprophytes or parasites of other 

plants and transfer organic C and mineral nutrient to the orchids. Ericoid mycorrhizas 

involve hyphal coils in outer cells of the narrow “hair roots” of plants. Ectendo-, 

arbutoid and monotropoid mycorrhiza associations are similar to ectomycorrhizal 

associations, but have specialized anatomical features. In the ectendomycorrhizas, 

the mantel may be reduced or absent, the Hartig net is usually well developed, but 

the hyphae penetrate into the cells plant. The same species of fungus may form 

ectomycorrhiza with one plant species and ectendomycorrhiza with another. In 

Arbutoid mycorrhizas, mantle, external hyphae and a developed Hartig net are 

present. In addition there is an extensive intracellular development of hyphal coils in 

the plant cells. The monotropoid mycorrhizas are somewhat similar to the arbutoid 

and ectendomycorrhizas and in addition they have a haustorium-like structure which 

penetrate the epidermal cells and goes through a complicated developmental pattern 

as the plant grows and flowers. 

 

 

 

 Table 1.1 : The characteristics of the important mycorrhizal types 
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Fossil records and molecular clock dating suggest that all extant land plants have 

arisen from an ancestral arbuscular mycorrhizal condition. Arbuscular mycorrhizas 

evolved concurrently with the first colonization of land by plants some 450-500 million 

years ago and persist in most extant plant taxa. Ectomycorrhizas (about 200 million 

years ago) and ericoid mycorrhizas (about 100 million years ago) evolved 

subsequently as the organic matter content of some ancient soils increased and 

sclerophyllous vegetation arose as a response to nutrient-poor soils respectively. 

Mycorrhizal associations appear to be the result of relatively diffuse coevolutionary 

processes. While early events in the evolution of mycorrhizal symbioses map have 

involved reciprocal genetic changes in ancestral plants and free-living fungi, available 

evidence points largely to ongoing parallel evolution of the partners in response to 

environmental change (Axelrod, 1986) (Cairney, 2000). 

1.2.2 Ectomycorrhiza 

 
In the North-Hemisphere forest soil, more than 95% of the root tips of boreal forest 

trees form an ectomycorrhiza symbiosis (Fransson et al., 2000). The importance of 

the mycorrhizal fungi for the performance of the trees is also highlighted by the fact 

that around 30% of the carbon assimilated by the tree has been estimated to be 

allocated to the fungal symbionts (Smith & Read, 1997). Ectomycorrhizal fungi 

receive simple carbohydrates directly from their host trees, and in return the fungi 

supply the trees with nutrients and water (Smith & Read, 1997). 

The ectomycorrhiza roots are characterized by the presence of a mantle of fungal 

tissue which encloses the root. The hyphae grow between the epidermal and cortical 

cells and form the Hartig net. The apoplast of the hyphae mantle forms a 

impermeable layer and thus must be a barrier to nutrient movement between soil and 

root. The presence of the impermeable layer means that all solutes reach the root 

cells via the fungal symplast of the mantle, first by translocation in the external 

mycelium and subsequently by efflux to the interfacial apoplast in the Hartig net 

region. Conversely, solutes from the root cells effluxing to the apoplast must pass to 

the fungal symplast and cannot “leak” to the soil via the apoplast of the fungal 

mantle. Thus, the impermeable layers offer an opportunity control conditions and 

solute concentrations in the cortical apoplast and Hartig net region, where transport 

between the ectomycorrhizal symbionts must occur (Smith and Read, 1997).  
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Intercellular penetration induces profound morphogenetic change in the mycorrhizal 

hyphae. The fungal cells form a labyrinthine structure, which is the product of 

repeated and prolific hyphal branching at the root cell surface. These prolific 

branching of the fungus as it encircles the epidermal or cortical cells leads to a 

structure of immensely enlarged surface area. The hyphal walls are so closely 

associated with those of the plant that the two appear to be fused in a joint structure 

which has been termed “the contact zone” (Smith & Read, 1997). The similarities 

between the elaborate structures produced by the proliferation of the hyphae in the 

Hartig net, and those seen in transfer cells which increase the surface area for 

exchange of solutes in many physiologically active plant tissues, has been 

recognized (Kottke & Oberwinkler, 1987). 

The bi-directional movement nutrient and metabolite is the essential features of 

functional mycorrhizas (Smith & Read, 1997). The fungal symbionts absorb nutrients 

available in inorganic/organic form in soil (water, minerals, cations) and translocate 

them (or their metabolite) to the symbiotic roots through the extensive vegetative 

mycelium. Organic C derived from photosynthesis is also transferred from the plant to 

the fungus, followed by translocation to the growing margins of the extraradical 

mycelium and to developing spores and fruit bodies (Smith & Read, 1997). 

1.3 Transport across cell membranes 

 
The uptake of nitrogen by the fungus and later the exchange of carbohydrates and 

nitrogen with the plant, requires a number of membrane transport steps along the 

translocation pathway. Biological membranes are gradient selective regarding 

transport of molecule, which is often permitted in only one direction. The explanation 

for such a selective permeability is the presence of transmembrane transport 

proteins, which mediate the transfer of specific molecules, including ions, across 

biological membranes.  

Due to a limited number of transporters in the membrane, such transport is saturated 

when the substrate is present in high concentration. This kind of transport can be 

described by the Michaelis-Menten formula, in which the KM value represents the 

substrate concentration for which half of the transporters are bound to a specific 

substrate. The substrate specificity can be studied by competitive inhibition. All 
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membrane transport proteins are integrated membrane proteins and are classified in 

the three major groups: channels, ATP-driven pumps and carriers transport. 

Channels act mainly as selective pores for passive flux of ions and water molecules 

with or without transient binding of the substrate. The size and the charge density at 

the surface of a pore govern the selectivity of the channel. As long as the pore is 

open, water and ions diffuse spontaneously across membranes down a 

concentration or electric potential gradient in an energetically favorable process. The 

rate of the transport by channels can be very high and approach the limits posed by 

diffusion. 

Carrier-mediated transport includes binding of the solute on one side of the 

compartment, conformational changes of the carrier protein leading to exposure of 

the substrate to the other side of the membrane and finally the release of the 

substrate. The transport rates for carrier are much lower than the channels. Carrier-

mediated transport can be coupled to driving ions- typically H+ or Na+ - or 

uncoupled. Uncoupled carries catalyze transport down its electrochemical gradient 

(or simple concentration for uncharged solutes). Coupled carriers utilize the gradient 

of a coupling ion to generate a transmembrane solute gradient. The driving ion can 

be transported in the same direction (symporter) or in the opposite direction 

(antiporter). 

Active transport can be differentiated into primary active and secondary active 

energy. Primary active transport is directly coupled to a metabolic source, such as 

ATP hydrolysis. These carriers are called pumps, e.g. the H+-ATPase which pump 

H+-ions across membranes out of the cytoplasm into cell wall space or vacuole, 

generating a membrane potential and a pH gradient. The energy which is stored in 

these electrochemical gradients, the proton motive force (PMF), is used to drive 

transport of other solutes by secondary active transport catalyzed by coupled 

carriers. 

1.3.1 Organic nitrogen transport 

1.3.1.1 Amino acid transport 

In yeast, animals and plants, amino acids play fundamental roles in a multitude of 

functions including protein synthesis, hormone metabolism, nerve transmission, 

regulation of cell growth, production of metabolic energy, synthesis of nucleobases, 

nitrogen metabolism and biosynthesis of urea. In those organisms, amino acids 
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transport was therefore well characterized and can be divided into five superfamilies 

(Wipf et al., 2002a). 

1.3.1.1.1 Amino acid-Polyamine-Choline transporter superfamily (APC) 

Most of the APC family members were described for yeast where the amino acid 

transport is understood in detail (Fischer et al., 1998). In Saccharomyces cerevisiae, 

24 transporters involved in amino acid uptake, have been characterized. All contain 

12 putative membrane spanning domains, most of them are not highly specific and 

can even transport a wide spectrum of substrate (Regenberg et al., 1998). In 

addition, some members of the APC family, like SSY1, has been shown to be 

involved in the sensing of extracellular amino acid and to control the amino acid 

uptake. 

APC homologs are also found in animals and plants. Nevertheless the phylogenetic 

analysis clearly shows that APC members group in three clusters reflecting the three 

kingdoms (yeast, plant and animal) (Wipf et al., 2002a) (Fig.1.2).  

APC transporters from animals and plants into two subgroups were categorized into 

two subgroups. The cationic amino acid transporters subfamily (CATs), which have 

14 putative transmembrane domains, are found in both animals and plants. 

Mammalian CATs are represented by transporter mediating Na+ -independent uptake 

of cationic amino acids, (Closs et al., 1993) and AtCAT1, a homolog of those 

transporters, has been found in plants (Frommer et al., 1995). The second subfamily,  

including the yeast APC transporters, comprises of proteins characterized by 12 

putative transmembrane domains.  

In yeast, plant and animals, the amino acid transporters of the APC family are 

involved in the uptake of different substrates and can be coupled to Na+ or H+. They 

might be important for selective accumulation of specific amino acids, redistribution 

and to keep intracellular concentrations constant. 
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1.3.1.1.2 Sodium-dicarboxylate symporter superfamily (SDS) 

Members of the SDS family were described mainly for animals, but homologs exist in 

flies, worm and bacteria. SDS transporters mediate glutamate and aspartate uptake 

by cotransport of Na+ and counter-transport of K+, with no apparent dependence on 

chloride gradients [GLAST (Storck et al., 1992); GLT-1 (Pines et al., 1992), EAAC1 

(Kanai & Hediger, 1992)]. Members of this superfamily are found mainly in brain 

tissue and are characterized by 10 putative membrane domains with C- and N-

termini in the cytosol. Since the SDS transporters are involved in amino acid 

transport at synapses it may not be surprising that no related proteins were found in 

yeast and plant genomes, whereas homologs exist in other animals like flies and 

worms and in also bacteria. 

 

 

Figure 1.2: Phylogenetic tree
of the amino acid-polyamine-
choline (APC) superfamily
(SLC7). Maximum parsimony
analyses were performed
using PAUP 4.0b4a
informative(http://paup.csit.fs
u.edu/index.html). The APC
superfamily can be divided
into five different clusters 
(shadowed areas).  
 Abbreviations: At, Arabi-
dopsis thaliana; Hs, Homo
sapiens; Sc, Saccharomyces
cerevisiae. 
(Wipf et al., 2002a) 
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1.3.1.1.3 Neurotransmitter superfamily (NTS) 

Neurotransmitter transporters represent the third large superfamily of transporters 

(Wipf et al, 2002a). NTS members have 12 putative transmembrane helices and 

transport γ- aminobutyric acid (GABA), proline, glycine and betaine (Nelson, 1998). 

Like the SDS members, carriers belonging to this family are mainly found in brain but 

they couple amino acid uptake to electrogenic cotransport of Na+ and Cl-, allowing 

uptake of neurotransmitter molecules against a concentration gradient. Similar to the 

SDS family, NTS homologs do not seem to be represented in yeast and plant 

genomes. 

1.3.1.1.4 Amino acid transporter superfamily 1 (ATF1) 

In contrast to the other superfamilies, members of the ATF1 family were first 

described in plants, and structurally related proteins have only recently been 

identified in yeast and animals (Fischer et al., 1998). The superfamily contains plant-

specific subbranches, and branches structurally more closely related to yeast and 

human transporters. Members of this superfamily are predicted to have a structure 

with 9-11 putative membrane spanning domains with cytosolic N- and extracellular C-

termini (Chang & Bush, 1997).  

In plants the ATF1 superfamily can be divided into five subfamilies : the lysine 

histidine transporter (LHTs), the proline transporters (ProTs), the AUX1-related 

proteins and a new branch comprising of vacuolar and vesicular amino acid carrier 

from yeast and animals, and amino acid permease (AAPs).  

The best characterized members of the ATF1 superfamily are the Arabidopsis AAPs 

(amino acid permeases from 1 to 8), which mediate proton-coupled uptake of a wide 

spectrum of amino acids (Fischer et al., 2002). All characterized members of AAP 

family have overlapping spectra of transported substrates. Interestingly, each 

member of AAP family shows a distinct expression pattern, indicating non-redundant 

roles for each AAP in plant.  

The mammalian ATF1 homologs are most closely related to yet non-characterized 

plant genes, but functionally resemble plant transporters for cellular uptake of amino 

acids. The coupling mechanisms are different, animal transporters couple amino acid 

uptake to the sodium gradient whereas plant transporters couple amino acid uptake 

to the proton gradient.  
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1.3.1.1.5 Amino acid transporters within the Major Facilitator Super-family (MFS) 

The MFS family can be subdivided in two subfamilies : (i) the H+/monocarboxylate 

transporters (MCT), which have been described in animals and mediate uptake of 

aromatic amino acids (Kim et al., 2001). Homologs of MCTs have also been found in 

yeast (ii) the vesicular glutamate transporters (VGT), which are closely related to 

inorganic phosphate transporters, with homologs in yeast (allantoate transporters) 

and in Arabidopsis but their function is still unknown. 

Beside these five families, an other group of amino acid transporters, designated as 

organellar transporters, has to be mentioned. The mitochondrial transporter family 

and the plastidic transpoters belong to this group. 

1.3.2 Peptide transporters 
 
Peptide transport is a widely observed physiological phenomenon. Gene encoding 

peptide transporters have been cloned and characterized from Bacteria (Smid et al., 

1989), fungi (Perry et al., 1994), plants (Rentsch et al., 1995), vertebrates (Fei et al., 

1994) and invertebrates (Fei et al., 1998). Peptide transporters are categorized into 

three families (Tab 1.2; Stacey et al., 2002) : the ATP binding cassette family (ABC 

transporters; Higgins, 1992), the oligopeptide transporter (OPT; Lubkowitz et al., 

1997; Hauser et al., 2001) family and the peptide transporter (PTR) or proton-

coupled oligopeptide transporter (POT) family (transporting di- and tripeptides but 

also including nitrate transporters, Paulsen & Skurray, 1994; Steiner et al., 1995). 

 

 

 

 

 
Table1.2: Peptide transporters families 
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1.3.2.1 ABC family 

The ABC superfamily is the largest protein family known (Stacey et al., 2002), with 

members in prokaryotes, eukaryotes and archaea. Most of the proteins are 

transporter, which export or import with a wide spectrum of substance like sugar, 

anorganic anion, polysaccharide, protein or peptide. 

ABC-transporter from prokaryotes are formed of two membrane proteins, each have 

six transmembrane domain, and two ATP-binding protein consisting of a conserved 

Walker A motif (Gx4GK[S/T]) and a Walker B motif ([R/K]x3Gx3L[hydrophobic]3) 

(where x represents any amino acid; Detmers et al., 2001). In the Eukaryotes, both 

function are combine together in one protein, which 12 to 14 transmembrane domain. 

The ABC-transporter use energy from the ATP hydrolysis for the transport. Plant 

member of the ABC-family belong to the MRP-subfamily (multi drug resistance 

proteins) (Sánchez-Fernández et al., 2001). 

1.3.2.2 OPT family 

This family was recently described. The members have like the ABC - or the PTR - 

family, 12 to 14 putative transmembrane domains but no sequence similarity was 

shown. So far the OPT family has only been described from the yeasts Candida 

albicans (CaOpt1p; Lubkowitz et al., 1997), Schizosaccharomyces pombe (Isp4p; 

Lubkowitz et al., 1998) and Saccharomyces cerevisiae (Opt1p and Opt2p; Hauser et 

al., 2000). By database search nine genes from Arabidopsis, similar to the OPT 

family, were identified (Koh et al., 2002). Seven of the genes showed specific 

expression in various tissues. Using leucine containing tetra- and pentapeptides five 

genes could complement the leucine auxotrophy of a S. cerevisiae mutant, 

suggesting uptake of these substrates. Like the PTR transporters, members of the 

OPT family probably use the PMF to energize transport. 

1.3.2.3 PTR or POT family 

PTR transporters have been shown to transport a wide range of nitrogen-containing 

substrates, including amino acids, peptides and nitrate (Williams & Miller, 2001) and 

were identified in prokaryotes and eukaryotes. Data showed pointed out that 
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members of this family may cotransport peptides and proton, and most likely di- and 

tri- peptides (Rentsch et al., 1995). 

Analysis of the PTR members structure suggested they include approximatively 12 

transmembrane domains and a unique signature FING motif (FYxxINxGSL) in the 

fourth or fifth hydrophobic segment (Steiner, 1995). Yeung et al. (1998) showed that 

FING motif is necessary for peptide transport. Most of the data about peptide uptake 

are available from Saccharomyces cerevisiae. In yeast, the transport of dipeptides 

and tripeptides has been well characterized physiocally and genetically (Becker and 

Naider, 1995) and involves 3 genes ptr1, ptr2 and ptr3 (Island et al.,1991; Perry et al, 

1994; Barnes et al., 1998). Only ScPTR2 has been shown to have transport 

properties, ScPTR1 and ScPTR3 seems to regulate peptide transport. Other 

members of the PTR-family were described in Lactococcus lactis (DtpT, Harting et 

al.,1994) and Candida albicans (CaPTR2, Basrai et al., 1995). 

In higher plants, peptide transport has been reported to occur in several species 

(Higgins & Payne, 1982), i.e.: in A. thaliana (AtPTR2; Steiner et al, 1995), in 

Hordeum vulgare (HvPTR1; West et al., 1998), in Vicia faba (Delrot et al., 2001) in 

the carnivorous plant Nepenthes alata (Schulze et al., 1997), and they are expressed 

in different tissues, in plasma membrane of the scutellar epithelium (Hordeum 

vulgare), leaf tissue (Vicia faba) and phloem tissue (Nepenthes alata).  

 

The diversity of peptide transporters as a result of, for example, different patterns of 

tissue expression and cellular location, indicates that they probably play a variety of 

roles in plant metabolism. Moreover, in Arabidopsis, antisense silencing of AtPTR2 

(Song et al., 1996) resulted in severe defects in seed and embryo development. 

Taken together, this suggests that peptide transporters might have other functions 

besides nutrient acquisition. In fact, Peptide transport systems might be involved in 

the  movement of hormone–peptide conjugates across the plant cellular membrane 

(Salisbury & Ross, 1992). It was also suggested that they might play a role in the 

recognition mechanism of pathogens or symbionts, like mycorrhizal fungi. 

Microorganisms secrete modified peptide, which allows the plants to recognize 

pathogen from symbiotic partner (Gross, 1991) 
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1.4 Nitrogen nutrition in ectomycorrhizal fungi 

 
Less is known about the molecular basis of the role of ectomycorrhiza in nitrogen 

nutrition. Most studies in this area have focused on the uptake and assimilation of 

inorganic nitrogen sources by ectomycorrhizal roots. 

In fungi, data are mostly available for ascomycetes : Saccharomyces cerevisiae, 

Neurospora crassa, and Aspergillus nidulans. All studied fungi, ascomycetes or 

basidiomycetes, can use different organic or inorganic N sources. Better growth is 

obtained on ammonium, glutamine or glutamate. The presence of this N “primary” 

source leads to the repression of enzyme involved in the utilization of “secondary” N 

sources (urea, nitrate, proteins…) which are more complex or need more energy. 

Some fungi, like Hebeloma (Plassard et al., 1994), and some yeasts (Hanseluna, 

Rhodotorula…) can use nitrate but Saccharomyces cerevisiae not (Smith & Read, 

1997) 

Moreover, several fungi, by producing extracellular proteinase, are able to use 

proteins as nitrogen sources and assimilate organic nitrogen in the form of free 

amino acids and peptides. Most of the work concerning extracellular proteinases was 

done in ascomycetes fungi , Neurospora crassa and Aspergillus nidulans (Jenning, 

1989). However, it was also shown that some mycorrhizal fungi, Hymenoscyphus 

ericae, Hebeloma crustuliniforme, Amanita muscaria, Amanita rubescens, 

Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus, can use proteins 

as nitrogen source (Finlay et al., 1992; El Badaoui & Botton, 1989). Fungi can take 

up all amino acids and some better than others. In most of the soil, glutamate, 

alanine and glutamine are the predominant amino acids and can be used by 

mycorrhizal fungi (Smith & Read, 1997). 

In ectomycorrhizal fungi, all nitrogen sources are metabolized in glutamate, alanine 

or glutamine, exported to the Hartig net and through plant amino acid importer 

transferred to the plant (Fig 1.3) (Chalot et al., 1991). 

However, Chalot et al. (1996), could show the presence of amino acid transport 

systems in the ectomycorrhizal fungus Paxillus involutus; a high affinity transport 

system with a wide substrate spectrum and a low affinity system, which also has a 
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 wide substrate spectrum. Until now, only few nitrogen transporter genes have been 

described in ectomycorrhizal fungi : amino acid- (AmAAP1; Nehls et al., 1999), 

ammonium- (Javelle et al., 2003) and nitrate- transporter (Jargeat et al., 2003) 

genes 

 

 

1.5 Nitrogen metabolism regulation  

Many fungi have the ability to metabolize a broad range of compounds, which, in 

turn, demand a sophisticated array of regulatory mechanisms in order to achieve the 

appropriate genetic and physiological responses. An example of this is nitrogen 

metabolism in which hundreds of genes are coordinately regulated to utilize available 

nitrogen sources optimally. In Aspergillus nidulans, Neurospora crassa and 

Saccharomyces cerevisiae, the principal regulatory genes involved encode GATA 

transcription factors (Coffman et al., 1997; Fu & Marzluf, 1990a; Kudla et al., 1990; 

Minehart & Magasanik, 1991). 
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The GATA-binding family of transcription factors constitutes a subgroup of DNA-

binding proteins whose members both bind a consensus 5´-HGATAR-3´motif (where 

H can be A/C or T and R can be A/G). They are characterized by a highly conserved 

DNA-binding motif comprising a Cys(4) zinc finger followed by a basic domain 

(Omichinski et al., 1993). They are found in plants, fungi and metazoans. In 

metazoans, they are involved in differentiation of a number of cell lines ranging from 

the erythroid line of vertebrates to the endoderm line of Caenorhabditis elegans 

(Pandolfi et al., 1995; Pevny et al., 1991; Tsai et al., 1994). In fungi, GATA factors 

are involved in processes as diverse as regulation of nitrogen metabolism (Fu & 

Marzluf, 1990a; Kudla et al., 1990), repression of siderophore biosynthesis and 

transcriptional activation of light-induced processes (Ballario et al., 1996; Linden et 

al., 1997). Generally speaking, there appears to be evolutionary conservation with 

regard to function.  

The first of these genes to be characterized genetically was areA from A. nidulans 

(Arst & Cove, 1973; Caddick et al., 1994; Wiame et al., 1985). In the absence of the 

primary nitrogen sources, NH4+ and glutamine, the areA product acts in concert with 

other transcription factors to facilitate the expression of the many structural genes 

required for the metabolism of other nitrogen sources. Loss-of-function mutations in 

areA (designated areAr ) prevent utilization of most nitrogen sources apart from NH4+ 

and Gln. Additionally, AreA has a direct or indirect role in regulating NADP-linked  

glutamate dehydrogenase (Christensen et al., 1998), the key enzyme in nitrogen 

assimilation. 

In Neurospora crassa, a homolog of area gene, nit-2, was identified and 

characterized (Fu & Marzluf, 1990b). 

Nitrogen regulation of gene expression in Saccharomyces cerevisiae has been 

shown to be mediated by four GATA homologous proteins : Gln3p, Nil1p/Gat1p, 

Uga43p/ Dal80p and Gzf3p/Nil2p/Deh1p (Coffman et al., 1997; Coornaert et al., 

1992; Cunningham & Cooper, 1991; Minehart & Magasanik, 1991; Soussi-Boudekou 

et al., 1997; Szyroki et al., 2001). 

 

In fungi, GATA factors are involved in a physiological process designated nitrogen 

catabolic repression (NCR) (Wiame et al., 1985). For instance, in yeast, NCR occurs 

at the level of transcriptional activation of genes encoding the permease and 
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catabolic enzyme systems needed to degrade poor nitrogen sources (e.g., allantoin, 

proline, and GABA). When readily used nitrogen sources (e.g., asparagine, 

glutamine or ammonia) are available, NCR-sensitive gene are expressed only at low 

levels (Cunningham et al., 1996). Upon depletion of these repressive nitrogen 

sources, NCR is relieved and transcription of NCR-sensitive genes increases; 

(Cooper & Sumrada, 1983; Cunningham et al., 1994). NCR-sensitive transcription is 

observed for a wide variety of genes like DAL5, CAN1, GAP1, UGA1, UGA4, PUT1, 

PUT2, … (Cunningham et al., 1996). 

1.6 Biological model 

As the external mycelium of all mycorrhizal types plays a key role in uptake of nutrient 

by plants, to understand organic nitrogen transport in ectomycorrhiza we need to 

investigate this kind of transport in the fungal partner. There are a number of 

ectomycorrhizal associations that have been widely used over the past few years for 

physiological studies on nitrogen metabolism. But for most of them genetic studies are 

not possible, due to the lack of information like the number of chromosomes, genome 

sequence, transformation technique. 

However, Debaud et al. (1997) showed that homokaryotic Hebeloma cylindrosporum 

strains are appropriated for genetic studies. A dikaryotic strain is also available for 

mycorrhizal synthesis. Hebeloma is one of the few ectomycorrhizal fungi for which the 

different stages of the life cycle including fruit body production (Fig. 1.4) have been 

characterized and obtained in axenic culture under laboratory conditions (Debaud & 

Gay, 1987). Moreover, H.cylindrosporum can be transformed (protoplast 

transformation, Marmeisse et al., 1992; Agrobacterium mediated transformation; 

Pardo et al., 2002 and Combier et al., 2003) and the transformation of the plant 

partner Pinus pinaster is currently set up in the INRA Bordeaux (France) (Frigerio et 

al., unpublished). 
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Recently, a cDNA library from Hebeloma mycelia was constructed (Wipf et al., 2003). 

Two features characterize this cDNA library; (i) it was prepared from homokaryotic 

mycelia subjected to different nitrogen nutrition conditions, in order to increase the 

chance of identifying genes involved in N acquisition by mycorrhiza (ii) the cDNA 

library was cloned in the yeast expression vector pDR196 (Wipf et al., 2003) allowing 

assignment of functions to sequences by functional complementation of yeast mutant. 

A second cDNA library prepared from K+- and Pi- starved dikaryotic mycelia, has 

been constructed in the yeast expression plasmid pFL61; and has been used to 

identified two peptide transporters from Hebeloma HcPTR2A and HcPTR2B (Wipf et 

al., 2003; Rikirsch, 2002; Lambilliotte, unpublished data). The two putative peptide 

transporters, HcPTR2A and HcPTR2B, present 11 transmembrane spanning domains. 

HcPTR2A has a N-terminus in the cytoplasm and a C-terminus outside, and HcPTR2B 

Figure 1.4: Hebeloma cylindrosporum life cycle. This ectomycorrhizal basidomycete shows
a typical tetrapolar mating system. Spore germination gives rise to monokaryotic mycelia
belonging to four mating types. Crossing between two compatible monokaryons results in
dikaryons formation. The dikaryotic mycelium forms ectomycorrhizas on Pinus pinaster root
systems, which allows the formation of sporulating basidiocarps.

from Debaud et al.(1997) 
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has both N- and C- termini in the cytoplasm. PTR signature, specific of the PTR 

transporter, was found in HcPTR2A and B.  

Phylogenetic analysis of PTR-Family members from animals, plants, yeast and 

bacteria underlined the fungal origin of the genes (Fig 1.5). The two HcPTR2 form a 

distinct group, closely related to t he transporters from lower fungi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7 Aim of this work 

Most of the plant in boreal and temperate forest make ectomycorrhiza and in these 

forest soils nitrogen is mainly available as organic compounds, which are not easily 

accessible for plants but can be taken up by ectomycorrhizal fungi.  

The fungal partners, by using extracellular proteinases, are able to break down 

proteins, present in these soils, and to assimilate organic nitrogen in the form of free 

amino acids and peptides. After metabolism in the fungus, amino acids are 

transfered to the plant and compensate for the low availability of anorganic nitrogen 

in these ecosystems. Since, in these areas, ectomycorrhizal fungi fully participate to 

nitrogen nutrition of the plant, it is necessary to understand uptake of organic 

nitrogen from the soil to the fungus and its regulation. In this work we used the 

Hebeloma cylindrosporum / Pinus pinaster ectomycorrhizal association to investigate 

organic nitrogen transport in ectomycorrhiza. 

Figure 1.5: Phylogenetic tree
generated by using the PAUP
4.0b10 package (Maximum of
parsimony) on an alignment of
peptide transporters (Swofford,
1998). 
 Arabidopsis thaliana (At), Candida
albicans (Ca), Fungus (f),
Hebeloma cylindrosporum (Hc),
Homo sapiens (Hs), Hordeum
vulgare (Hv), Lacto-coccus lactis
(Lc), Mus musculus (Mm),
Oryctolagus cuniculus (Oc),
Saccharomyces cerevisiae (Sc),
Schizosaccharomyces pombe (Sp)

Rikirsch, 2002 
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2 Materials and Methods 

2.1 Materials  

2.1.1 Biological materials  

2.1.1.1 Hebeloma cylindrosporum 

Hebeloma cylindrosporum Romagnesi is an ectomycorrhizal basidiomycete 

associated with gymnosperm trees in coastal sand dunes. 
Two wild-type homokaryotic strains of H. cylindrosporum, h1 and h7 (Debaud & Gay, 

1987), and dikaryotic strain D2, resulting from the crossing of h1 and h7, were used 

in this study. 

 

 

 

 

 

2.1.1.2 Pinus Pinaster (Ait.) 

Pinus Pinaster is the natural mycorrhizal partner of H. cylindrosporum. 

Seeds of maritime pine were obtained from Conrad Appel “Samen und Pflanzen” 

(Darmstadt, Germany). Seeds were surface-sterilized in a 30% (w/w) H2O2 solution 

for 30 min, rinsed with sterile distilled water and air-dried. Germination was carried 

out on agar plate(14 g.l-1) containing 2 g.l-1 glucose. 
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2.1.1.3 Bacterial and Yeast strains 

 
Escherichia coli XL1-Blue MRF (Bullock et al., 1987) 
recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac [F' proAB, lacIqZ∆M15, 
Tn10 (Tetr)]. Procedures for manipulating E. coli have been described previously 
(Sambrook et al., 1989). 
 
LE 392 
Host strain for the lambda phage GEM®-12. 
 
Agrobacterium tumefaciens AGL-1 (Lazo et al., 1991) 
AGL0 recA::bla pTiBo542 ∆T Mop+ CbR. 
 
Saccharomyces cerevisiae 23344c (Soussi-Boudekou et al., 1997) 
MATα ura3-52. 
 
Saccharomyces cerevisiae 22∆8AA (Hahn et al., 1997) 
MATα gap1-1 put4-1 uga4-1 ∆can1 ∆apl1 ∆lyp1 ∆hip1 ∆dip5 ura3-1. 
Yeast mutant deficient for multiple amino acid uptake system. 
 
Saccharomyces cerevisiae JT16 (Tanaka & Fink, 1985) 
MATα hip1-614 his4-401 can1 ino1 ura3-52. 
Yeast mutant deficient in histidine uptake and metabolism. 
 
Saccharomyces cerevisiae LR2 (Rentsch et al., 1995) 
MATα, ura3-52, his4-401, hip1-614, ptr2 ∆hisG; ino1, can1. 
Yeast mutant deficient in histidine uptake and metabolism, and peptide uptake. 
 
Saccharomyces cerevisae BJ2168 (Jones, 1990) 
MATa prc1 prb1 pep4 leu2 trp1 ura3. 
Yeast strain deficient in vesicular protease. 

2.1.1.4 Vectors 

(Maps of the vector are available in the appendices) 

pBGghg (Chen et al., 2000)  

pGEM-T easy (Promega corporation, USA)  
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Vectors for yeast transformation 

Vector Promoter Terminator Reference 

pDR196 

 

PMA 

Plasma Membrane-ATPase 

(strong promoter) 

 

ADH3 

Alcohol 

dehydrogenase 

(Wipf et al., 2003) 

pFL61 

 

PGK 

3-phosphoglycerate kinase 

(weak promoter) 

 

PGK 

 

(Minet et al., 1992) 

 

2.1.1.5 Oligonucleotides 

All the used oligonucleotides are listed in the appendices. 

2.1.1.6 Genomic DNA library from Hebeloma cylindrosporum 

The library was provided by Dr. Roland Marmeisse. (University of Lyon, France). It 

was prepared from the homokaryotic Hebeloma strain h1 in the Lambda GEM®-12 

vector. 

2.1.2 Media 
 
Solid media was prepared by adding 1.5% of agar. 

2.1.2.1 Escherichia coli 
E. coli was grown at 37°C on Luria Broth (5 g.l-1 yeast extract, 10 g.l-1 Bacto tryptone, 
10 g.l-1 NaCl) medium according to Sambrook et al. (1989). 

2.1.2.2 Hebeloma cylindrosporum 
H. cylindrosporum mycelium was grown at 21°C on YMG (full medium) (Rao & 

Niederpruem, 1969) or MMN (synthetic medium ) (Marx, 1969).  
 

YMG-Medium (Yeast extract Maltose Glucose): 
 4 g.l-1 yeast extract 
 4 g.l-1 glucose 

            10 g.l-1 malt extract 
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MMN - Medium (Modified Melin Norkrans) 
 
 5 g.l-1  KH2PO4 
 2.5 g.l-1  (NH4)2HPO4 

 500 mg.l-1  CaCl2, 2H2O 
 250 mg.l-1  NaCl 

 1.5 g.l-1 MgSO4, 7 H2O 
 10 mg.l-1 FeCl3 

 0.01 mg.l-1 thiamine 
 10 g.l-1 glucose 
 

for MMN medium without nitrogen source (MMN–N), 7.5 g.l-1 KH2PO4 was used 

instead of 5 g.l-1 KH2PO4 and 2.5 g.l-1 (NH4)2HPO4. 

2.1.2.3 Saccharomyces cerevisiae 

S. cerevisae was grown at 28°C on full medium YPD (Adams et al., 1997) (Yeast 

extract Pepton Dextrose: yeast extract 10 g.l-1, peptone 20 g.l-1, glucose 20 g.l-1), or 

SC-medium (Adams et al., 1997) [Synthetic Complete-medium : 1,7 g.l-1 Yeast 

Nitrogen Base (without amino acids, without ammonium), 20 g.l-1 Glucose, 5 g.l-

1(NH4)2SO4, 2 g.l-1 Drop-Out-Mix)]. 
 

   Drop-Out-Mix : 
 
    0.5 g  adenine   2 g lysine 
    2 g  alanine   2 g  methionine  
    2 g  arginine  0.2 g para-aminobenzoic acid 
    2 g  asparagine  2 g  phenylalanine  
    2 g  aspartic acid  2 g  proline 
    2 g  cysteine  2 g serine 
    2 g  glutamine  2 g  threonine 
    2 g  glutamic acid  2 g  tryptophane 
    2 g  glycine   2 g  tyrosine 
    2 g  isoleucine  2 g  uracile 
    4  g  leucine   2 g  valine 
 
Yeast synthetic medium (Jacobs et al., 1980) was prepared as follows :  
 
One litre macroelement solution (A) was autoclaved separately and the following supplements added :  
 100 ml glucose (30%w/v) 
 1 ml micro elements (1000X) (B) 
 1 ml vitamin solution (1000X) (C) 
 X ml Nitrogen source (D) 
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2.1.2.4 Pinus pinaster / Hebeloma cylindrosporum mycorrhiza synthesis 

Mycorrhiza synthesis was carried out with the Hebeloma strain h1h7 (dikaryotic). 

2.1.2.4.1 For northern analysis 

Mycorrhizal synthesis was realised on MMN/2. The concentration of MMN medium 

components was reduced to half and 0.5 g.l-1  of glucose was added. 

Thirty day-old Pinus seedlings were transferred to square Petri dishes (145 cm) 

containing MMN/2 medium. Two agar plugs were cut from an actively growing fungal 

culture precultivated for 2 weeks on MMN medium and placed close to the plant root. 

Plants were then grown for 6 to 10 weeks in a growth chamber at 22° and 16h day / 

8h night. 

A. Macroelement solution  
 

 0.7 g.l-1 MgSO4, 7H2O 
 1 g.l-1 KH2PO4 
 0.4 g.l-1 CaCl2,2H2O 
 0.5 g.l-1 NaCl 
 1 g.l-1 K2SO4  
 10.5 g.l-1 C6H8O7,H2O  
 9.03 g.l-1 KOH 
 15 g oxoid agar        
         pH 6.1 (adjust with citric acid or KOH) 
 

B. Micro element solution (1000X) 
 

• Stock solutions (100 ml each) 
 S1 100 mg H3Bo4 
 S2 100 mg CuSO4,5H20 
 S3 100 mg KI 
 S4 100 mg Na2MoO4,2H2O 
 S5 1.4 g     ZnSO4,7H20 
          All stock solutions are sterilized by filtration 

 
• Micro element solution (1000X) (1 liter) 

 
10 ml S1 0.4 g MnSO4,H2O 

                1 ml S2    5 g FeCl3,6H2O 
                2 ml   S3            1 g      C6H8O7,H2O 
                4 ml S4 
                1 ml S5 
         (filtrated and store at 4°C in dark) 

C. Vitamin solution (1000X) (100ml) 
 250 µg biotine 

 100 mg thiamine 
 1 g inositol 
 200 mg Ca panthoenate 
 100 mg pyridoxin 

 
        (filtrated and store at 4°C in dark) 
 

D. Nitrogen source 
Ammonium or amino acids were added to 
the desired concentration 
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2.1.2.4.2 For the mycorrhiza cDNA library 

Fungal stock cultures were grown at 24 °C in the dark, in Petri dishes containing solid 

N6 medium (see composition below). Mycorrhizal synthesis was carried out in test 

tubes with seedlings, which had been germinated in aseptically Petri dishes 

(Plassard et al., 1994). Only the root of a 2 week-old seedling was introduced into the 

tube containing a piece of Whatman paper (cat. No. 1542.185) and 10 ml of nutritive 

solution “N0.5” (see composition below). Each test tube was equipped with two 

Teflon tubes that permitted changing and sampling the solution within the tube. 

Plants were inoculated in sterile conditions by placing three fungal agar plugs (8 mm 

in diameter) cut from the edge of an actively growing stock culture in the tube at the 

time of transfer of the seedling. Plant was grown in a growth cabinet (16h light, 

210 µmol.m-2.s-1) for 3 months. Culture solution from the tubes was renewed every 

week under aseptic conditions. Mycorrhized plants were transferred on soil in mini 

rhizoboxes. The soil used is a fersialitic soil collected from southern France 

(Cazevieille, Hérault). Before use, the soil was air-dried, crushed gently and sieved at 

210 µm. Physical and chemical analysis showed that its pH was close to neutrality. In 

addition, it had a very low level of soluble phosphate (P). The soil was used either 

without any treatment (NT) or after addition of P (350 mg.kg–1 dry soil). Then soil 

water mixed suspensions were stirred for 72 h and centrifuged. After rinsing, the soil 

pellet was mixed with water (25% of the soil weight) and put in plastic bags. Non-

treated soil and treated soil were mixed with deionised water (1/1, w/w) in plastic 

bags. The different soils were sterilised twice by autoclaving them for 40 min at 

114 °C. Soil samples were then kept sterile, at 4 °C, before use. 

 

Mycorrhized plants were grown in mini rhizoboxes that are presented in Figure 2.1 as 

described in Casarin et al. (2003). They were made from 2 glass plates (100 x 200 x 

2 mm) separated by a PVC band.  
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The set-up of each mini rhizobox with the plant was carried out in sterile conditions. 

Every piece of the box were cleaned with a solution containing ethanol (70%, v/v) 

and sodium hypochloride (5%) in a laminar flow hood. A soil layer (500 µm thick) was 

spread on one side of a glass plate by using a sterile syringe. A piece of fibreglass 

filter paper (Schleicher et Schuell GF50, 104280087) (6 cm x12 cm), previously 

sterilised (120 °C, 20 min, twice at 48 h intervals), was added to the lower part of the 

soil layer. The plant, with roots previously aseptically grown in tubes, was put on the 

surface of the soil layer before adding the second glass plate on the top of the roots. 

The root boxes were then closed with 4 drawing clips fixed on the sides and tape 

fixed on the top of the box to minimise water evaporation. Finally the root boxes were 

taken out of the laminar flow hood and placed in a PVC box previously cleaned with 

the ethanol-sodium hypochloride solution. The PVC boxes with the plants were 

placed in the growth chamber as previously described. Plants were continuously 

 

 
 Glass plate 

(100 x 200 x 2 mm) 

 

Thin soil layer 
(0.5 mm thick) 

PVC band 
(3 mm thick) 

Fiberglass 
filter paper 

PVC block

clip 

Figure 2.1: Scheme of the rhizobox designed for culture of Pinus  
 pinaster plants on a thin layer of soil (Casarin et al., 2003) 
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supplied with a simplified nutrient solution containing 1 mM KNO3, 0.2 ml.l-1 of 

Morizet and Mingeau microelements solution, pH 6.0. The N6 solution (50 ml per 

plant), previously autoclaved (120 °C, 20 min), was added to the PVC box. The 

solution was renewed every week, in non-sterile conditions, in the growth chamber. 

The duration of the culture was 4 months. 

 

 

Solution N6 : 
 
       6 mM      KNO3, 
       4 mM      KCl,  
       1 mM      NaH2PO4, 
       1 mM      CaCl2,  
       1 mM      NaCl,  
       1 mM      MgSO4 7H2O  
   110 mM      glucose 
100 µg. l-1        thiamine-HCl  
 10 mg. l-1        ferric citrate  
 0.2 ml. l-1        microelement solution 
     
 
Solution “NO,5” :  
 
     0.1 mM     KNO3 
     0.1 mM     KH2PO4 
        2 mM     Ca(NO3)2 
     0.1 mM     MgSO4 
 0.5 mg.l-1     Fe-EDTA 
  50 mg.l-1     thiamine-HCl 
  0.5 ml.l-1     microelement solution 
 
NP2/2 (1 liter) MES 25mM pH 5,5-6 

       50 mg      CaCl2 
    150 mg      MgSO4, 7H2O 
 245.7 mg      KH2PO4  
     4.5 mg      NaH2PO4, 2H2O 
    158 mg      Na2HPO4, 2 H2O 
       1 ml        Biotine 0.4µg/ml 
       1 ml        Thiamine 40µg/ml 
       1 ml         Iron citrate 1.2% 
      2.5 g        Glucose  
     10 ml        Heller microelements  
     10 ml        N source  
                     (NH4)2SO4, NaNO3, NH4NO3 (100X) 

 
Autoclave 
Add 20 ml steril filtrated MES 50X pH 5.5- 6 
If medium w/o MES then pH 6.0 
 

 
microelement solution (Morizet & 
Mingeau, 1976): 
 
18.55 g.l-1     H3BO4 
  8.45 g.l-1     MnSO4,H2O 
  2.88 g.l-1     ZnSO4,7H20 
    2.5 g.l-1     CuSO4,5H20 
    1.4 g.l-1     NH4(Mo7O2)4,4H2O 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Heller micorelements stock solution  
(1 liter) (100X) 
 
    100 mg     FeCl3, 6H2O  
    100 mg     ZnSO4, 7H2O 
    100 mg     H3BO3 
      10 mg     MnSO4, 4H2O 
        2 mg     CuSO4, 5H2O 
        3 mg     AlCl3  
        3 mg     NiCl2, 6H20 
        1 mg     KI 
 
Store at –20° C 
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2.2 Methods 

2.2.1 Standard methods 

Standard methods such as plasmid preparations, restriction digestion, gel 

electrophoretic DNA separation, DNA isolation from agarose gels, cloning steps, 

PCR amplification, Southern blotting, etc... were perfomed as described in Sambrook 

et al. (1989). The screening of the phage library was performed according to Ausubel 

et al. (1996). Sequencing of DNA was performed by the chain-terminating method of 

Sanger et al. (1977) using “Big Dye Terminator Cycle Sequencing Ready Reaction 

Kit“ (BD-Kit) (Perkin Elmer, Warrington, UK) on ABI PRISM sequencer 310 (Perkin 

Elmer, Warrington, UK) or by GATC company (Constance, Germany). Sequence 

comparisons with databases were performed using the Basic Local Alignment 

Search Tool program at the US NCBIs Gene info network (Altschul et al., 1990); 

http://www.ncbi.nlm.nih.gov/blast/. 

 

2.2.2 Transformation 

2.2.2.1 Bacteria 

Transformations of E. coli were performed as described by Nishimura et al. (1990). 

2.2.2.2 Yeast  

Yeast cells were transformed according to a modified method from Dohmen et al. 

(1991). Competent Saccharomyces cerevisiae were prepared by inoculating 200 ml 

YPD with an yeast overnight culture in the ratio 1:100. Cells were grown at 30°C and 

harvested at an OD600 of 0.6 by a centrifugation at 3000 rpm for 5 min. Cells were 

then washed with 20 ml solution A (10 mM Bicine-NaOH, pH 8.35, 1 M Sorbitol, 3 % 

(v/v) Ethylene glycol) centrifuged and resuspended in 2 ml solution A and 200 µl 

aliquots were frozen at –70°C for later use. For transformation, 1 – 2 µg of plasmid 

DNA were added to the frozen cells and incubated for 5 min at 37°C with shaking. 

After the addition of 1 ml solution B (200 mM Bicine-NaOH, 40 % (w/v) PEG 1000, 

pH 8.35), the cells were mixed by inversion and incubated for 1 hour at 30°C. 

Following centrifugation at 3000 rpm, the cells were washed with 1ml solution C  
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(10 mM Bicine-NaOH, 150 mM NaCl, pH 8.35), centrifuged, resuspended in 100 µl 

solution C and plated on selective media. 

2.2.2.3 Agrobacterium tumefaciens 

Cells were transformed by electroporation (TransporatorTM Plus; BTX inc. CA, USA). 

DNA and electrocompetent cells (40 µL) were mixed in a cold electroporation cuvette 

and a pulse (1.5 kV, 25 µF) was given to the cells. LB medium (1ml) was quickly 

added, cells were grown on a shaker at 28°C for 2 H, plated on selective medium 

and grown at 28°C for 2 - 4 days. 

 

2.2.2.4 Hebeloma cylindrosporum  

The transforming plasmid, pBGgHg, contains a disarmed T-DNA in which the 

hygromycin B phosphotransferase gene (hph) fused to the Agaricus bisporus gpd 

promoter sequence, was inserted. This modified T-DNA confers hygromycin 

resistance to the fungi. The pBGgHg plasmid was propagated in the hypervirulent A. 

tumefaciens AGL-1 strain then used for Hebeloma transformation. 

 

Hebeloma was transformed as follows : two week-old mycelia grown on YMG agar 

medium were roughly macerated using an raiser blade and the hyphal fragments 

were transferred to YMG liquid medium and grown for one week. Maceration with an 

Ultra-turrax homogenizer and sub-cultivation in fresh liquid medium was repeated 

every two day in order to get a fast growing mycelium. Two thalli obtained in 90 mm 

Petri dishes were finally macerated and resuspended in 50 ml YMG medium. Fifty µl 

of macerated mycelium were absorbed on a 1 cm in diameter glass microfibre disc 

(GF/D Whatman, United Kingdom). 

A. tumefaciens was grown at 28°C for two days in LB medium supplemented with 

50 µg.ml-1 carbenicillin and 50 µg.ml-1 kanamycin. 

Bacterial cell suspensions were subsequently diluted to an OD600 of 0.15 in Induction 

Medium (IM .l-1: 10.5 g K2HPO4; 4.5 g KH2PO4;1 g (NH4) 2SO4; 0,5 g Na3-citrate 

2H2O; 0.2 g MgSO4 7H2O; 1 mg thiamine-HCl; 2 g glucose; 0.5% glycerol; 40 mM 

MES pH 5.3; 50 µg.ml-1 kanamycin and 50 µg.ml-1 carbenicillin (Hanif et al., 

2002).The cells were grown for an additional five-hour period.  
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A. tumefaciens and H. cylindrosporum were co-cultivated between as follows : 100 µl 

of bacterial culture (~1.106 bacteria) were added to each glass microfibre disc 

containing macerated fungal mycelium. Discs were placed on co-cultivation medium 

(Pardo et al.,2002) (.l-1 : 5g KH2PO4; 2,5 g (NH4) 2SO4; 0,5 g CaCl2 2H2O; 1,5 g 

MgSO4 7H2O; 0,25 g NaCl; 0,01 mg thiamine-HCl; 2 g glucose; 10 mg FeCl3; 0,5% 

glycerol; 40 mM MES-KOH pH 5,3) supplemented with 200 µM AS. The plates were 

incubated at 23°C for 96 hours. After co-cultivation, glass microfibre discs were 

transferred to YMG medium supplemented with 200 µM claforan (Aventis, Germany) 

to counterselect Agrobacterium cells and 100 µg.ml-1 hygromycin B to select for 

fungal transformants. Each transformant was subsequently transferred to YMG agar 

medium containing 200 µg.ml-1 hygromycin B. 

 

2.2.3 Uptake assays  

(Wipf et al., 2002) 

2.2.3.1 Yeast uptake assays 

For S. cerevisiae uptake studies, yeast cells were grown to logarithmic phase. Cells 

were harvested at an OD600 of 0.5, washed twice in water, and resuspended in buffer 

A (0.6 M sorbitol, 50 mM potassium phosphate, at the desired pH) to a final OD600 of 

5. Prior to the uptake measurements, the cells were supplemented with 100 mM 

glucose and incubated for 5 min at 30°C. To start the reaction, 100 µl of this cell 

suspension was added to 100 µl of the same buffer containing at least 18.5 kBq 14C-

aspartate, specific activity 7.66 GBq / mmol (Amersham) and unlabeled amino acid to 

the concentrations used in the experiments. Sample aliquots of 45 µl were removed 

after 15, 60, 120, and 240 s, transferred to 4 ml of ice-cold buffer A, filtered on glass 

fiber filters (Whatman, GF/C), and washed twice with 4 ml of buffer A. The uptake of 

carbon-14 was quantified by liquid scintillation spectrometry. Competition for 

aspartate uptake was performed by adding a five-fold molar excess of the respective 

competitors to 150 µM 14C-aspartate. 

For analysis of pH dependence, incubations were performed in 100mM potassium 

phosphate buffer adjusted to the different pH values, 100 mM glucose, and 150 µM 
14C-aspartate. Influence of plasma membrane energization on the uptake rate of 
14C-aspartate was analyzed by incubating the yeast cells for 5min in the presence of 
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100 mM glucose (control), without glucose, or with glucose and 0.1 mM 

2,4-dinitrophenol (DNP), 0.1 mM diethylstilbestrol (DES), 0.1 mM carbonyl cyanide 

m-chlorophenyl-hydrazone (CCCP), or 0.1 mM vanadate.  

 

2.2.3.2 Hebeloma uptake assays 

In the H. cylindrosporum mycelia uptake experiments, discs of fungal mycelium were 

cut from the actively growing edge of 10 day-old mycelium using a 15-mm-diameter 

cork borer. The discs were floated for 5 min on a solution containing 1 ml nitrogen 

and glucose-free MMN (pH 4.2) at 25°C supplemented with 14C-aspartate or with 3H-

Leucine-Leucine, specific activity 7.66 GBq/mmol (Amersham, Braunschweig, 

Germany). Incubation time varied from 1 to 20 min. At the end of the uptake period 

the discs were washed with 0.1 mM CaSO4 and solubilized with 80% Soluene 350 

(Packard) overnight. The uptake of carbon-14 was quantified by liquid scintillation 

spectrometry. 

 

2.2.4 RNA isolation 

Material (1g) was harvested, immediately frozen in liquid nitrogen and ground with a 

mortar and pestle in liquid nitrogen. Before thawing, 1ml phenol was added to the 

material then 2 ml lyse buffer (100 mMTris/HCl, 20 mM EDTA, 100 mM NaCl, 2% 

(w/v) SDS, 0.1% (v/v) β-mercaptoethanol, pH 9.0) and 1 ml chloroform. Phases were 

separated by centrifugation at 4500 rpm for 10 min (Heraeus). The aqueous phase 

was extracted a second time with 2 ml phenol/chloroform. After a subsequent 

chloroform extraction, RNA was precipitated with 1/10 vol. 3 M NaAc pH 5,2 and 2.5 

volumes of ethanol for 1 hour at –20°C. After pelleting at 4500 rpm for 40 min, the 

RNA was solubilized in DEPC treated H2O and precipitated with 1/1 vol. 4 M LiCl on 

ice overnight. Following centrifugation (40 min, 4500rpm, at 4°C) the pellet was 

washed twice with 80% ethanol, dried, solubilized in DEPC treated H2O and the DNA 

was quantified by measuring the OD260. 

2.2.5 RNA gel-blot analysis 

RNA (20 µg) was separated on 1.5% (w/v) formaldehyde agarose gel (Sambrook et 

al., 1989). Prehybridization (2 to 3 hours) and hybridization (16h) was performed at 



Materials & Methods 

 34 
 

 

68°C in phosphate - SDS buffer (0.25 M sodium phosphate pH 7.2, 7% sodium 

dodecylsulfate (SDS), 1 mM EDTA and 1% bovine serum albumin (BSA)).  

Probes (100ng) were labeled with α32P-dCTP (Amersham, Braunschweig, Germany) 

using the Hexalabel DNA Labeling Kit (MBI Fermentas, USA).  

Filters were washed twice in 2x SSC and 0.1% SDS at room temperature for 5 min, 

in 0.2x SSC and 0.1% SDS at 68°C for 10 min, then for 20 min. Filters were exposed 

to a phosphorimager screen (Molecular Dynamics, California, USA) for 16 hours or to 

X-ray film (Amersham, Germany) for 7 days. 

2.2.6 Genomic DNA isolation from H. cylindrosporum  

(van Kan et al., 1991) 

Hebeloma mycelia were grown on cellophane-covered YMG plate, harvested, frozen 

in liquid nitrogen and ground. The extraction buffer (NaCl 0,5M, SDS 1 %, Na2EDTA 

10 mM, Tris-HCl 10 mM, pH 7,5) was warmed at 65°C and 2 ml were added to fungal 

material (1g). After incubation for 10 min at RT, 2 ml phenol (pH 8) was added and 

phases were separated by centrifugation at 13000 rpm for 15 min. The upper phase 

was extracted a second time with 2 ml chloroform / isoamylic alcohol (24:1) and 

centrifuged at 13000 rpm for 15 min. 

Between each step, extracts were incubated for 10 min at room temperature (RT). 

The supernatant was transferred to a new Eppendorf tube containing 10 µl RNase A 

(10 mg.ml-1) and incubated for 15 min at 37°C. The RNase A was then extracted with 

400 µl phenol and the samples were centrifuged at 15000 rpm for 10 min. The DNA 

was precipitated with 400 µl isopropanol at RT for 15 min. After centrifugation at 

13000 rpm for 10 min, the pellets were washed twice with 400 µl 70% ethanol, air-

dried and solubilized in 20 µl water. 

 

2.2.7 Proteinase assay  

(Leake & Read, 1990) 
 
H. cylindrosporum was grown in 100 ml conical flask each of which contained 20 ml 

of MMN/2-N. Nitrogen was supplied as (NH4)2SO4 (16 µg.ml-1) or as BSA 

(0.1 mg.ml-1).  

Each flask was inoculated with a single 4 mm diameter disc of an 8 day-old 

mycelium, which was cut from MMN-N agar plate. There were three replicate flasks 
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for each treatment, and harvests were taken 1, 2, 3, 4, 5, 7, 12, 16 days after 

inoculation. At each of these harvests fungus was separated from the culture 

solutions by filtration on glass micro-fiber filters (Whatman GF/A). The mycelium was 

then oven dried at 80°C for 24 h and weighed. 

Proteinase activity in cultures filtrates was measured as follows. The reaction mixture 

contained 1ml 0.1 M citric acid:Na2PO4 buffer (pH 2.2), 1 ml of culture filtrate and 50 

µl of 2 mg.ml-1 FITC-bovine serum albumin (FITC-BSA). After 3 h in a shaking water 

bath at 37°C, the reaction was terminated by addition of 1 ml of 10% w/v 

trichloroacetic acid. To provide a measure of background fluorescence, media from 

parallel uninoculated control flasks were assayed at each harvest. The sample tubes 

were centrifuged at 3000 g for 7 min, after which 0.2 ml of the supernatant was mixed 

with 1 ml of 0.4 M boric acid:NaOH buffer (pH 9.7). Fluorescence was then measured 

in a BioTek FL600 microplate fluorescence reader. Excitation and emission 

wavelengths were respectively 485 and 535 nm. Three replicate assays were 

performed on culture-filtrates from each flask. 
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3 Results 

3.1 EST analysis from the symbiotic basidiomycete H. cylindrosporum 
The sequences have been deposited in the NCBI database (accession Nos. 

BU963873–BU964314). 

 

To identify the transporters involved in uptake of solutes (particularly nitrogen) by the 

fungal hyphae, a Hebeloma cylindrosporum cDNA library was prepared. This cDNA 

library was constructed in a yeast expression vector, which allows the identification of 

genes by functional complementation in the yeast Saccharomyces cerevisiae. 

However the other goal of this cDNA library preparation was the generation of a 

sequence database for the model fungus H. cylindrosporum. The primary library 

contains 2x105 clones and the average insert size is 1.1 kb and range from 0.6 to 3.4 

kb. 

 

To analyze the quality of the library in more detail, ~500 randomly picked clones were 

sequenced from the 5´ end. Among the sequenced clones, most cDNAs were 

properly oriented in the vector as 99.5% possessed a start codon close to the PMA 

promoter and only 0.5% showed a poly(A)+ tract adjacent to the promoter. Thus, the 

vast majority of the ESTs contain 5´ end sequences of cDNAs from the mRNA 

transcripts.  

After editing the sequences, an average length of 300 bp was used for database 

searches and the distribution of ESTs based upon deduced sequence homology to 

known or hypothetical proteins was determined (Fig. 3.1). 

About 17% of the ESTs returned no homology at all and were not included in further 

statistical analyses. The lack of homology could suggest that these genes might be 

expressed only in H. cylindrosporum, or that they were rare transcripts that have not 

been found in previous EST projects. 

Seven percent of the ESTs, matched ribosomal proteins, reflecting the difficulty in 

purifying mRNA from total RNA and the presence of oligo(dA) tracts in ribosomal 

genes. Seventy-six percent of the ESTs showed a homology to known (14%) or 

hypothetical proteins (62%). 
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The low percentage of known homology reflects the fact that although yeast, animal, 

and plant genomes have been fully sequenced, there is less information available 

concerning higher fungi. For this reason, there is a statistical bias of the databases 

against fungal proteins, even if several fungal EST projects have recently been 

developed (Voiblet et al., 2001), (Polidori et al., 2002), (Soanes et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The high score of ESTs producing homology with unknown proteins illustrates the 

usefulness of an Hebeloma functional cDNA library for genome analysis.  

More than half of the ESTs homologous to known proteins were homologous to 

known characterized fungal genes, including genes of known function, putative open 

reading frames, and ESTs. This correlates with the purity of the library, because the 

fungal sequences are under-represented in the databases. This result is similar to 

the 51% of homology to known characterized plant and fungal genes observed by 

Voiblet et al. (2001) when analyzing ESTs from a mycorrhizal library. Among the 

ESTs that showed high homology to known proteins, it is interesting to note the 

presence of a mycorrhizal fungus gene that codes for Laccaria symbiosis-related 

transcription factor. Thirty percent of the ESTs produced a significant match (p = 

10-10) and only 20% produced highly significant matches (p = 10–20) (Fig. 3.2), which 

can be compared with the 60% of clones showing no similarity upon the analysis of 

Unknow function 

No significant 
similarity

Ribosomal genes 

Predicted functions  

P ≤ 10-10 

Figure 3.1 : Distribution of ESTs based on deduced amino acid sequence homologies to  
known or hypothetical proteins. 
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Tilia, or truffle, mycorrhizas (Polidori et al, 2002). This again illustrates the bias of the 

DNA sequence databases for fungal genes and especially “higher fungi”, i.e., 

mycorrhizal fungi genes. The ESTs exhibited a GC content of between 44 and 56%, 

most of them having a GC content of 52–54%, which could be correlated with GC 

contents of fungal genes (40–54%), which are higher than in plant (31–43%), but 

lower than in rhizobacteria (55–63%) (Hraber & Weller, 2001) . The Hebeloma genes 

with predicted functions show very low or no homology to yeast genes (P scores 

ranging from 3 × 10–30
 to no significant homology), which highlights the divergence 

between both genomes during their evolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P from 10-2 to 10-4

 P from 10-4 to 10-20 

P ≤ 10-20 

P ≥ 10-2 

 
Figure 3.2 : Frequency distribution of ESTs from the library according to P values returned    
                by BLASTx searches. 



Results 

 41 
 

 

 

3.2 Suitability of the cDNA library for suppression cloning  

To test the suitability of the cDNA library for suppression cloning and to identify 

genes that might be used as auxotrophic markers for transformation, the S. 

cerevisiae JT16 deficient in histidine biosynthesis was transformed with the 

Hebeloma cDNA library. Transformants were selected for growth on 6 mM histidine, 

the concentration at which JT16 is an auxotroph. This allowed selection of a histidine 

synthesis gene (HIS4). The yeast HIS4 is a large gene (2400 bp) and contains three 

domains encoding a trifunctional enzyme catalyzing the 2nd (phosphoribosyl-ATP 

pyrophosphohydrolase), 3rd (phosphoribosyl-AMP cyclohydrolase), and 10th 

(histidinol dehydrogenase) steps in histidine biosynthesis. Hebeloma HIS4 

(AY135023) is also homologous along the whole coding region, which, when taken 

together with the functional complementation of the deficiency, strongly suggests that 

Hebeloma also harbors all three functions fused into one polypeptide of 91 kDa. 

Thus, the cDNA library is efficient for cloning even large fungal cDNAs by 

complementation of yeast mutants.  

In parallel, the screening of the library also allowed the selection of a putative 

histidine transporter gene, which was later shown to be a Hebeloma cylindrosporum 

general amino acid transporter gene (HcGAP1) (Wipf et al., 2002a). 

 

3.3 Organic nitrogen transport in Hebeloma cylindrosporum 

To study the ability of H. cylindrosporum to use organic nitrogen, uptake experiments 

with 14C-labeled aspartate (asp) and 3H-labeled Leucine-Leucine (Leu-Leu) were 

performed in Hebeloma cylindrosporum. Discs of fungal mycelium were cut from the 

actively growing edge of 10 day-old colonies and were floated for 5 min on a solution 

containing 1 ml nitrogen and glucose-free MMN at 25°C, supplemented with 14C-asp 

(Fig. 3.3.A) or 3H-Leu-Leu (Fig. 3.3.B). 
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The uptake experiments show that Hebeloma can take up, in a linear way, 14C-

aspartate  or 3H-Leu-Leu, for at least 20 min. The concentration of radiolabeled 

compounds of 2 µM correspond approximatively to the concentration of amino acid 

and peptide present in the soil (Scheller, 1996). Taken together this confirms the 

involvement of amino acid and peptide transport and their role as primary source of N 

for the ectomycorrhizal fungus H. cylindrosporum and thus for the plant partner which 

it colonizes. Therefore transport systems involved in amino acid and peptide uptake 

in Hebeloma were investigated. 

 

3.3.1 Characterization and regulation of an H. cylindrosporum general amino 
acid permease 

The apparent ability of H. cylindrosporum to take up amino acids (Wipf et al., 2002b) 

led us to investigate the molecular basis of amino acid transporters potentially 

mediating mycelial uptake and transfer of amino acids. For this purpose a yeast 

mutant deficient in histidine uptake was transformed with a cDNA expression library 

from Hebeloma under the control of a yeast promoter (Wipf et al., 2002b). Sixty-four 

transformants were grown on selective media. The yeast strain JT16 was 

retransformed with DNA extracted from the 64 transformants to eliminate false 

positives. Three clones allowed regrowth of transformed JT16 on 6 mM histidine. 

From these three clones a cDNA with strong homology to other fungal amino acid 

A B

Figure 3.3 : Organic nitrogen uptake by the ectomycorrhizal fungus H. cylindrosporum. Discs of 
fungal mycelium were cut from the actively growing edge of 10 day-old colonies using a 15-mm-
diameter cork borer. The discs were floated for 5 min on a solution containing 1 ml nitrogen and 
glucose-free MMN at 25°C, supplemented with 2 µM of 14C-asp (A) or 3H-Leu-Leu (B). Uptake 
by the fungus was measured at different times. Values represent the mean of three 
independent experiments ± S.D.. 
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transporter genes was identified and was named H. cylindrosporum general amino 

acid permease 1 (HcGAP1).  

The HcGAP1 cDNA (Genbank AF521906) has a length of 1784 bp and encodes a 

594-amino acid protein with a calculated molecular mass of 65.7 kDa. 

HcGAP1 sequence includes the amino acid permease conserved domain (RPS-

BLAST 2.2.1 (Aug. 1 2001)). The best homology for the deduced HcGAP1 protein 

sequence was obtained with an amino acid permease of Uromyces fabae (Hahn et 

al., 1997) with an identity of 39% and similarity of 55%. Phylogenetic analyses by 

maximum of parsimony confirmed the strong homology between HcGAP1 and 

Uromyces fabae and Amanita muscaria (Nehls et al., 1999) amino acid permeases 

(Fig. 3.4). The fungal origin of the cDNA is strongly supported by the fact that all 

homologies revealed by the BLAST searches are homologies to fungal genes. The 

cDNA also showed homology to the APC family in yeast mediating H+-coupled 

amino acid uptake (André, 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 : Phylogenetic analyses
of a multiple alignment of the
deduced protein sequence of
HcGAP1 and other fungal amino
acid permeases Tree generated by
using the PAUP 4.0b10 package
(Maximum of parsimony) 
 (Swofford, 1998)  
(Am=Amanita muscaria; An=
Asper-gillus nidulans; Ca=Candida
albicans; Hc =Hebeloma cylindro-
sporum; Nc = Neurospora crassa;
Sc=Saccharomyces cerevisiae;
Sp=Schyzosaccharo-myces 
pombe; Uf=Uromyces fabae).  
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Hydropathy analyses of HcGAP1 with the TMHMM algorithm (Sonnhammer et al., 

1998) predict twelve putative transmembrane domains (Fig. 3.5). The amino-terminus 

is approximately the same length as that of the yeast GAP1. The carboxy terminus, 

however, is just around the half of the yeast GAP1. Both C and N termini are 

predicted to protrude into the intracellular space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same gene was identified three times when using a suppression cloning system 

for proline uptake deficiency (yeast strain 22∆8AA), indicating that HcGAP1 encodes 

a broad specificity amino acid transporters. This is further supported by growth 

analysis of the multiple knockout strain 22∆8AA expressing HcGAP1 under selective 

conditions using arginine, aspartate, glutamate, citrulline, GABA and proline as sole 

N-sources (Fig. 3.6). 

A 

B 

Figure 3.5 : Topology of the HcGAP1 protein. A: Transmembrane
domain prediction was done by using the TMHMM algorithm. B:
Schematic model of the HcGAP1 protein. 

cytoplasm 

outside 
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Figure 3.6 : Growth test of 22∆8AA cells transformed with different plasmids on minimal medium 
containing different amino acids at different concentrations. (1) HcGAP1/pDR196, (2) 
AtAAP6/pDR196, (3) pDR196 and (4) 22∆8AA. 
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3.3.1.1 Functional characterization of HcGAP1 : Kinetics of aspartate uptake by 

HcGAP1 in yeast mutant deficient in amino acid uptake systems 

 

To determine the transport properties of HcGAP1 directly, radiotracer uptake studies 

were performed using 14C-labeled aspartate, as growth of 22∆8AA expressing 

HcGAP1 was best on aspartate as single nitrogen source. Yeast cells expressing 

HcGAP1 showed more than 100-fold increased uptake rates of 14C-aspartate as 

compared with cells transformed with pDR196 vector alone (Fig. 3.7.A). Under 

standard assay conditions, 14C-aspartate uptake was linear for at least 4 min. The 

uptake rate was concentration dependent and displayed saturation kinetics (Fig. 

3.7.B). The Km value for the transport for aspartate was 150 µM, indicating that this 

amino acid permease is a high affinity amino acid transport system. HcGAP1 activity 

was strictly pH dependent with an optimum at approx. pH 4 (Fig. 3.7.C). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 : Uptake of 14C-aspartate by the yeast
mutant 22∆8AA. A: Time dependence of aspartate
uptake. Mutants were transformed with the empty
vector pDR196 (white circles) or with pDR196
expressing HcGAP1 (black circles). Yeast cells were
assayed for 14Caspartate uptake at 150 µM and pH
4.5. B: HcGAP1-mediated aspartate uptake at
different substrate concentrations. Experiments were
performed at pH 4.5. C: pH dependence. Yeast
expressing HcBAP1 in pDR196 measured at
different pH values and 100µM substrate
concentration. Values represent the mean of three
independent experiments ± S.D. 
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14C-aspartate uptake depended on the presence of glucose and was sensitive to the 

protonophores 2,4 -dinitrophenol (DNP), and carbonyl cyanide m-chlorophenyl 

hydrazone (CCCP) and to the plasma membrane H+ -ATPase inhibitors, 

diethylstilbestrol (DES) and vanadate, indicating that energization is required for 

transport (Fig. 3.8.A). The strong dependence on the presence of glucose and on the 

proton gradient indicates that HcGAP1-mediated transport is mediated by a 

secondary active transport mechanism similar to its yeast homologs (Opekarova et 

al., 1993). The range of amino acids transported by HcGAP1, as well as their 

transport efficiency, was determined by their competitive effect on the uptake of 

labeled aspartate (Fig. 3.8.B.) Most amino acids tested, except proline and 

isoleucine, competed even more efficiently as compared to aspartate. Thus HcGAP1 

is a general amino acid permease with a high affinity, allowing import of a wide 

spectrum of amino acids from the soil solution into Hebeloma mycelia. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Substrate specificity of 
HcGAP1.and influence of plasma 
membrane energization on uptake rate A. 
Substrate specificity of HcGAP1. Inhibition 
of 150 µM 14C-aspartate uptake by a five-
fold molar excess of competing amino acids. 
Data are expressed as percentage of the 
uptake rate in presence of 150 µM 
aspartate. Values represent the mean of 
three independent experiments ± S.D. B. 
Influence of plasma membrane energization 
on the uptake rate of 14C-aspartate in the 
yeast mutant 22∆8AA expressing HcGAP1. 
Yeast cells were preincubated for 5 min in 
the presence of 100 mM glucose (control), 
without glucose, or with glucose and 0.1 mM 
DNP, or 0.1 mM DES, or 0.1 mM CCCP, or 
0.1 mM vanadate. Values represent the 
mean of three independent experiments ± 
S.D.

A

B
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3.3.1.2 Regulation of HcGAP1 

3.3.1.2.1 Expression pattern of HcGAP1 
 

To investigate the regulation of HcGAP1 at the transcriptional level, its expression 

was analyzed by RNA gel-blot analysis.  

At first, HcGAP1 expression was studied in different tissues. The non-mycorrhized 

plants were grown for 3 weeks as described before. The mycorrhized short roots 

were collected from 12 week-old mycorrhized plants. Total RNA was isolated from 

Pinus needles, Hebeloma mycelia, mycorrhized and non-mycorrhized short roots and 

loaded on a gel (Fig.3.9.A). 

Strong expression of HcGAP1 was detected in mycelia grown on a standard medium. 

No mRNA was detected in Pinus roots and needles, confirming the fungal origin of 

HcGAP1. No transcripts could be detected in mycorrhiza, where the expression of 

HcGAP1 to take up amino acids from plant cell would be counterproductive. It has not, 

however, been shown directly that the expression is also high in extramatrical hyphae. 

The results may suggest that HcGAP1 plays a role in the uptake of amino acids from 

the soil for the fungal nutrition and further transfer to the plant partner, but is repressed 

in the mycorrhizal organ (Fig.3.9.B). 

 

 

 

 

 
 
 
 
 

A 

Figure 3.9: RNA gel-blot analysis of HcGAP1 regulation. 
A: Expression of HcGAP1 in different tissues
H.cylindrosporum 5.8S rRNA probe was used as a fungal
loading control. B: Scheme of putative HcGAP1
expression along the mycorrhizal association. HcGAP1 is
expressed (+) in the mycelium for fungal nutrition and is
repressed (-) in the mycorrhiza itself, where its expression
would be counterproductive. 

A B
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To further analyze the regulation of HcGAP1, in the mycelium, HcGAP1 expression 

was investigated under different N conditions (Fig.3.10). 

HcGAP1 is strongly expressed in mycelia grown on nitrate as nitrogen source and on 

nitrogen starved medium. The mRNA quantity seems to increase with time in mycelia 

supplied with NO3
-. On complete media, glutamine, glutamine-glutamine di-peptide or 

ammonium (for 6h and 12h) only weak transcripts could be detected. When mycelia 

were grown on ammonium as nitrogen source, strong expression of HcGAP1 could 

be seen after 24h. These results showed that transcription of HcGAP1 depends on 

nitrogen source and led us to think that, in vivo, HcGAP1 expression should be 

regulated by the availability of nitrogen in the soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 3.10: Regulation of HcGAP1 expression by nitrogen. A. Scheme of the experiment. A 0.5 cm
fungal agar plug was placed on cellophane-covered YMG plates and grown for 2 weeks. The
cellophanes, with the mycelium, were placed on plate containing liquid NP2/2 medium without nitrogen
source for 12h then transferred to NP2/2 medium containing 1 mM glutamine (Gln), glutamine-
glutamine (Gln-Gln), NO3

- or NH4
+, for 6h, 12h, or 24h. After each time, the mycelia were frozen, total

RNAs were extracted, transferred to nylon membrane and hybridized with 32P-HcGAP1 cDNA. B.
Expression level of HcGAP1 according to the nitrogen source in the medium. H.cylindrosporum 5.8S
rRNA probe was used as a loading control. 

A 

B 
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3.3.1.2.2 Isolation of the HcGAP1 promoter 

 
To understand how HcGAP1 is regulated, it was necessary to isolate the promoter. A 

genomic DNA library from Hebeloma strain h1 was screened according to Ausubel 

et al. (1996). The library, constructed in a λGEM-12 vector, was provided by Roland 

Marmeisse (Univ. of Lyon, France). The screen was carried out on 250 000 phages 

that represented approximately 50 times Hebeloma genome, as each phage 

contained 15 to 20 kb inserts and the size of H. cylindrosporum genome is estimated 

at 20 Mb (Roland Marmeisse, personal communication). 

By hybridization of a 32P-labelled HcGAP1 probe (complete), 15 clones were 

identified. In order to have a higher chance to get a clone containing HcGAP1 

promoter, the membranes were then hybridized with a 32P-labelled probe 

corresponding to the 5´ end of HcGAP1 (523 first nt). Four λ-phages (A, E, I, L), out 

of six positive clones were identified and used to obtain λ-phage DNA by plate 

lysates. 

 

To amplify the HcGAP1 promoter, a PCR was realized on the four DNA phages using 

a primer specific of HcGAP1 gene (5´- HcGAP1) (Fig 3.11) and the SP6 and T7 

primers specific of the λGEM-12 vector. A 2,5 kb fragment was obtained with the 

primer pair SP6/5´-HcGAP1 on the clone E. In order to get only the promoter 

sequence, a nested primer, promHcrev–50 was designed (Fig 3.11) and this primer, 

together with SP6 primer, were used to carry out a PCR on the clone E. A 2,1 kb 

fragment was obtained and cloned in pGEM-T vector. The primers 

promHcGAP1+1281 and promHcGAP1+724 (Fig 3.11) were designed to fully 

sequence the 2,1 kb fragment (Fig. 3.12). 

 

 

 

Figure 3.11: Scheme of HcGAP1 promoter sequencing strategy



Results 

 51 
 

 

 

 
    1 ATTGGGCCGA CGTCGCATGC TCCCGGCCGC CATGGCCGCG GGATTATTTA                   

 TAACCCGGCT GCAGCGTACG AGGGCCGGCG GTACCGGCGC CCTAATAAAT 

 GGTGACACTA TAGAAGAGCT CGCGGCCGCG GATCCCGGGA ATTCTCGATC 

 CCACTGTGAT ATCTTCTCGA GCGCCGGCGC CTAGGGCCCT TAAGAGCTAG 

  101 CAACACTGTT GAAGTACCCA GCGGAAAATC CACCAGTAAA GGCGCCATGT                   

 GTTGTGACAA CTTCATGGGT CGCCTTTTAG GTGGTCATTT CCGCGGTACA                   

 AATCTCCGTC GACCCTTCTC ATCTCGTACC TGCAGTTTTG AGGAGATTTA 

 TTAGAGGCAG CTGGGAAGAG TAGAGCATGG ACGTCAAAAC TCCTCTAAAT 

  201 AACGAGACAT TTTCGAAAAA GAAAACCGGG AAACCGGACC TCTTGTTTCC                   

 TTGCTCTGTA AAAGCTTTTT CTTTTGGCCC TTTGGCCTGG AGAACAAAGG                

   AGAGTGGAAC AAACTCCCCT GTGTCTTTTG ATTTTTCCAG AGGGGGCAAA 

 TCTCACCTTG TTTGAGGGGA CACAGAAAAC TAAAAAGGTC TCCCCCGTTT 

  301 GGGGTGCCAA TCTACATGTC AATTATCAGC ATTCTCTCTC TCATAATCAA                   

 CCCCACGGTT AGATGTACAG TTAATAGTCG TAAGAGAGAG AGTATTAGTT                   

 AGGAATCAAC GGGCCCACCA AACAGAAGTT TTCGTTCGCC TTTCGGCTAG 

 TCCTTAGTTG CCCGGGTGGT TTGTCTTCAA AAGCAAGCGG AAAGCCGATC 

  401 TCGTATCCAC CCCGAGGTCT CCAAGCTTGC GTTTAAGTCG GCTTGTCATT                   

 AGCATAGGTG GGGCTCCAGA GGTTCGAACG CAAATTCAGC CGAACAGTAA                

  TTGAGCTCCA GCCGTGTTCA ACGGTTCAAC CTTGTTGGTT CATAACAAAG 

 AACTCGAGGT CGGCACAAGT TGCCAAGTTG GAACAACCAA GTATTGTTTC 

  501 TCAGGCTTTG CGTGCTTGTA TCAAAGAAAT CCAGGTAGGT GATAGTCAAG                   

 AGTCCGAAAC GCACGAACAT AGTTTCTTTA GGTCCATCCA CTATCAGTTC                

 GATCAAAGGG TAGCATCACT GTCAAATACT TAGTGTCAGA TTCATCAGAC 

 CTAGTTTCCC ATCGTAGTGA CAGTTTATGA ATCACAGTCT AAGTAGTCTG 

  601 CATGGCACGT GCAACTTATG AGGCGGCCCG GTGAACCGAA TTTGGGCGTC                   

 GTACCGTGCA CGTTGAATAC TCCGCCGGGC CACTTGGCTT AAACCCGCAG                   

 TAATTAAAAC TTGGAAGTAA ATATACATGA AGGACACGCG TTTAAAATCC 

 ATTAATTTTG AACCTTCATT TATATGTACT TCCTGTGCGC AAATTTTAGG 

  701 ATCCTATTAC CTGCAAGACC TGTACCGATG GGTTTCTTTA TTCGTTACCA                   

 TAGGATAATG GACGTTCTGG ACATGGCTAC CCAAAGAAAT AAGCAATGGT                

 ATGACTCGGA AATAATTTTG AACTCATCAT TAAGTACTTA CTTATTTCTG 

 TACTGAGCCT TTATTAAAAC TTGAGTAGTA ATTCATGAAT GAATAAAGAC 

  801 ACGACTGACG GACCACCCAA CTTGTGACTC TGACTTGTTG TATATTAGGG                   

 TGCTGACTGC CTGGTGGGTT GAACACTGAG ACTGAACAAC ATATAATCCC                
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 ACATAACCAC GGTCTGTTCC ATGAACACAC CTCGTATCTA GATTTCAGAA 

 TGTATTGGTG CCAGACAAGG TACTTGTGTG GAGCATAGAT CTAAAGTCTT 

  901 TAAGGTTGGG TATGGAACGT GTACCTTGTC AAGTTTAAGG CCACTGTAGT                   

 ATTCCAACCC ATACCTTGCA CATGGAACAG TTCAAATTCC GGTGACATCA                

 TCCCTGAGTT AGAAAAGGAA AACAAATTAG TGTCAGAAAA TCAGAAAATC 

 AGGGACTCAA TCTTTTCCTT TTGTTTAATC ACAGTCTTTT AGTCTTTTAG 

 1001 AGCGAAGAAA TAAAAATAAA CTGCGACTTA CTACATTTTA ATCCTTCATA                   

 TCGCTTCTTT ATTTTTATTT GACGCTGAAT GATGTAAAAT TAGGAAGTAT                

 TCCTACGATA TTTCCACTCA TCTACACCAT GACAACCCCT GGACAACTCC 

 AGGATGCTAT AAAGGTGAGT AGATGTGGTA CTGTTGGGGA CCTGTTGAGG 

 1101 TAGTAAGTCG CCATTAGTAG TAGGCTGGAC ACTTCCATCT GATGATTTCA                   

 ATCATTCAGC GGTAATCATC ATCCGACCTG TGAAGGTAGA CTACTAAAGT                

 CGGCAGTCGG AAACAGCGAT GCCAGCCTGC ATGCGGGGGC CCGTCGTTGG 

 GCCGTCAGCC TTTGTCGCTA CGGTCGGACG TACGCCCCCG GGCAGCAACC 

 1201 TGGTAAATTG GTAATCGGTG ATCATGACAG GGAAAGTGTT GTCGGCGCAG                   

 ACCATTTAAC CATTAGCCAC TAGTACTGTC CCTTTCACAA CAGCCGCGTC                
ATACCCTAAA GCGGTGGTTG GCGTGATATT AGCGTGACTC GCCGACGTTA 

 TATGGGATTT CGCCACCAAC CGCACTATAA TCGCACTGAG CGGCTGCAAT 

 1301 GTCACTGTCA CCTGCCACCT GAAATCAACC TCGTGAACCC CCTCTTAAAG                   

 CAGTGACAGT GGACGGTGGA CTTTAGTTGG AGCACTTGGG GGAGAATTTC                

 TTTAAATAAA GCGAGTACTG GCCACGGCAG GTTCGCACCA TTAACCCAGG 

 AAATTTATTT CGCTCATGAC CGGTGCCGTC CAAGCGTGGT AATTGGGTCC 

 1401 CTTGCTATGG AACACGAATA TAAATCCGAT AATACGCCGC TTTCACGTCA                  

 GAACGATACC TTGTGCTTAT ATTTAGGCTA TTATGCGGCG AAAGTGCAGT                

 CCTGCGACAG GCTGCAATCG AGCTTCATCG CGCAAAACAG CACCTACGAC 

 GGACGCTGTC CGACGTTAGC TCGAAGTAGC GCGTTTTGTC GTGGATGCTG 

 1501 GATTACACGT TTAGCCTGGA CCAAGAATAA AACCACGGCA ACTTAGCTCA                   

 CTAATGTGCA AATCGGACCT GGTTCTTATT TTGGTGCCGT TGAATCGAGT                

 CCTACCCAGA CCTACCCACG ACCTTGGTTT TATTTTGCTA CTTGACATGG 

 GGATGGGTCT GGATGGGTGC TGGAACCAAA ATAAAACGAT GAACTGTACC 

 1601 CCCCCCCGAT GCTGCGCTGC AATGGAATCA GTGGGCGCGA GCTTTATCTG                   

 GGGGGGGCTA CGACGCGACG TTACCTTAGT CACCCGCGCT CGAAATAGAC                

 CGAATCTTAT TCCATATGTG GTGTACTTAG TTGGTCCTGC CACTGCCTCA 

 GCTTAGAATA AGGTATACAC CACATGAATC AACCAGGACG GTGACGGAGT 

 1701 TGAGGCCTTC ATTATTTTGC TCTTGACATA ACCGACGATC TGTGATGAAC                   

 ACTCCGGAAG TAATAAAACG AGAACTGTAT TGGCTGCTAG ACACTACTTG                

 GACCAGTCTG GCTTGGAATT CCTTCTTGAG ATATATTTAT TCTCAAAATT 
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 CTGGTCAGAC CGAACCTTAA GGAAGAACTC TATATAAATA AGAGTTTTAA 

 1801 ATTCGACAGA GACCAAAGGG TACCAATATA CTTACCACCA GCTGCACGTC                   

 TAAGCTGTCT CTGGTTTCCC ATGGTTATAT GAATGGTGGT CGACGTGCAG                

 CAGGGACATG GGGATACCTG GCGTCCGCAG GGCTGCCGAT GACGCGATGC 

 GTCCCTGTAC CCCTATGGAC CGCAGGCGTC CCGACGGCTA CTGCGCTACG 

 1901 GAATGTATCA GGCTGATCAC TGATAGCCAA AGGCACTGCA TTCGAATCCA                   

 CTTACATAGT CCGACTAGTG ACTATCGGTT TCCGTGACGT AAGCTTAGGT                

 GGTGCGCCCC TCCCATTATC TGACAGCACC ATGTGAAGAG GATTTTCTAT 

 CCACGCGGGG AGGGTAATAG ACTGTCGTGG TACACTTCTC CTAAAAGATA 

 2001 TTTTAACGCC TGTCAGCCAT AGCCTCACAC GCCGGTGGTG CAAAATACAC                   

 AAAATTGCGG ACAGTCGGTA TCGGAGTGTG CGGCCACCAC GTTTTATGTG                   

 TTCCCCGAAG CCACATTAAC TCCTGTGCAG GTGACTATAT AGGTCGGGCA 

 AAGGGGCTTC GGTGTAATTG AGGACACGTC CACTGATATA TCCAGCCCGT 

 2101 AACCCGCGGC CTTCTTTTCG TTCCTTCCTC CCAACCCCAG CAGTCACACG                   

 TTGGGCGCCG GAAGAAAAGC AAGGAAGGAG GGTTGGGGTC GTCAGTGTGC                

 ATGGAAAACG AGAAAACCGA GCATGAGAA 

 TACCTTTTGC TCTTTTGGCT CGTACTCTT 

 

 

 

The promoter sequence was analyzed in silico. A TATA box could be predicted with 

the program PROSCAN (http://bimas.dcrt.nih.gov/molbio/proscan).  

The oligonucleotide ATG start codon context (in blue in the figure 3.12) was also 

analyzed and compared to the consensus sequence described in eukaryotes by 

(Kozak M., 1999) : “AA/CA/CATGG”. HcGAP1 shows a G in position +4 and an A in 

position –3 which is conform to the consensus sequence.  

The sequence was further analyzed with the program TRANSFAC 

(http://transfac.gbf.de/TRANSFAC) to identify putative transcription factor binding 

sites. Eight putative GATA or TATCT sites were found which could be binding sites 

for GATA transcription factors like AreA from Aspergillus Nidulans (Caddick et al., 

1986) or Nit-2 from Neurospora crassa . AreA and Nit-2 belong to the GATA family of 

DNA-binding proteins. They contain a DNA-binding domain, consisting of a single 

zinc finger and basic region, which binds to specific motifs that are located in the 

promoter region of nitrogen-regulated genes (Nitrogen Catabolic Repression). This 

analysis led us to conclude that HcGAP1 might be regulated via the Nitrogen 

Figure 3.12: HcGAP1 promoter sequence 5´→ 3´. In red, putative GATA transcription binding site. In blue,
ATG start codon. Bold, putative TATA box. 
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Catabolic Repression like other genes involved in nitrogen uptake or metabolism 

(Arst & Cove, 1973; Arst et al., 1997; Caddick, 1994; Caddick et al., 1994; Marzluf, 

1997; Peters & Caddick, 1994; Wiame et al., 1985). 

3.3.1.3 Analysis of the HcGAP1 genomic sequence  

From the screening of the Hebeloma genomic library, HcGAP1 genomic sequence 

could be determined from clones which hybridize with the 32P-labelled HcGAP1 

probe. A PCR was carried out using the DNA prepared from the clones A, E, L, I and 

the primers HcBAP1gfor/HcBAP1grev. A 2.8 kb fragment was obtained, cloned in a 

pGEM-T vector and sequenced using gene-walking sequencing strategy with the 

following primers T7/SP6 in a first step, then cpl hcgap1 for/cpl hcgap1.  

 

HcGAP1 genomic sequence was analyzed. It contained 19 introns and 20 exons 

(Fig. 3.13.A). The high number of introns has already been described for other 

Hebeloma genes (Corratge, 2003; Jargeat et al., 2000; Tatry, 2003) and in 

basidiomycetes (Schuren, 1992). 

The introns are found as regularly distributed along the coding regions, occupying 

40% of them. Their size ranges over 38 - 118 bp but most of the introns are from 60 

to 50 bp (average size : 58 bp) (Fig 3.13.B). This small size of the introns and their 

uniformity were again observed in H. cylindrosporum : nitrate reductase gene 

HcNAR1 (12 introns), nitrate transporter gene HcNRT2 (7 introns), nitrite reductase 

gene HcNIR1 ( 19 introns) (Jargeat et al., 2000; Jargeat et al., 2003), the phosphate 

transporter genes HcPT1 (10 introns) and HcPT2 (16 introns) (Tatry, 2003) and the 

potassium transporter gene HcTRK (20 introns) (Corratgé, 2003). 

All introns start with GT and end with AG. In general, the 5´ and 3´ border sequences 

of the introns follow the pattern 5´- GTA/GA/CGT/C…..C/TAG - 3´, which is very similar to 

the conserved sequence identified in basidiomycetes fungi (Schuren, 1992) and in 

other Hebeloma genes (Jargeat et al., 2000; Jargeat et al., 2003; Corratgé, 2003; 

Tatry, 2003). The sequence C/TAG in 3´ was observed in 95% of the introns and in 5´, 

the sequence GTA/GA/CGT/C was found in more than 60% of the introns. 
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The exon size is variable, the biggest one is about 185 bp and the smallest is 14 bp 

(Fig 3.13.B). Presence in the gene of really small introns (20 bp, 14 bp) was also 

observed by Jargeat for HcNTR2 and HcNIR1 (Jargeat et al., 2000; Jargeat et al., 

2003) and by Corratgé for HcTRK (Corratgé, 2003). 

 

3.3.2 Characterization and regulation of two peptide transporters, HcPTR2A 
and HcPTR2B, from Hebeloma cylindrosporum 

A first step towards analysis of organic nitrogen transport in the Hebeloma 

cylindrosporum/Pinus pinaster ectomyccorhizal association, was the isolation and the 

characterization of an amino acid transporter from the fungal partner.  

Figure 3.13: Size and position of intron in the HcGAP1 genomic sequence 
A. Genomic structure of HcGAP1. Exons are represented by black rectangle. B. Size of the introns 

A 

B 
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Because of the ability of Hebeloma to use dipeptides as single nitrogen source 

(Rikirsch, 2002), transport systems involved in peptide uptake were investigated. Two 

peptide transporters from Hebeloma, HcPTR2A and HcPTR2B, were cloned by 

suppression cloning in a yeast mutant deficient in peptide uptake, using a yeast 

expression cDNA library generated from mycelia of Hebeloma D2 strain (Rikirsch, 

2002).  

 

3.3.2.1 Functional characterization of HcPTR2A and HcPTR2B 

The transport activity of HcPTR2A and HcPTR2B were tested directly by using 3H-

labeled Leucine-Leucine in a yeast mutant deficient in peptide uptake (LR2). 

Dipeptide uptake by yeast cells expressing HcPTR2A and cells expressing HcPTR2B 

was linear for at least the first four minutes of the assay (Fig 3.14.A). HcPTR2A-

mediated Leu-Leu uptake was 15-fold higher compared to the cells expressing the 

empty vector pFL61, whereas the transport rate for cells expressing HcPTR2B was 

only 2-fold increased (Fig 3.14.A). Due to the very low uptake rate of yeast cells 

expressing HcPTR2B, only HcPTR2A transport properties could be further 

investigated.  

Kinetic studies of Leu-Leu uptake by HcPTR2A showed that the transport rate was 

concentration dependent and displayed saturation kinetics (Fig 3.14.B). A KM value 

for Leu-Leu transport of 1.46 µM could be determined for HcPTR2A. HcPTR2A 

activity was pH dependent with an optimum around pH 5,5 (Fig 3.14.C). In addition 

HcPTR2A-mediated 3H-LeuLeu uptake was sensitive to the protonophores 2,4 DNP 

and CCCP and the plasma membrane H+ - ATPase inhibitors DES and was 

dependent on the presence of glucose, indicating that energization is required for 

transport (Fig 3.14.D). To determine the substrate specificity of HcPTR2A, 3H-LeuLeu 

uptake was competed with other peptide (di-, tri-, tetra-peptide), amino acids, nitrate 

and ammonium. Among the variety of substrates used, dipeptides with leucine in N-

terminal position, the dipeptide GlnGln, tri- peptides containing only leucines and to a 

lesser extent the dipeptide HisLeu were able to significantly compete with 3H-LeuLeu 

for uptake (Fig 3.14.E). It seems that HcPTR2A-mediated  transport is substrate-

specific and that the N-terminal amino acid might be essential in the substrate 

recognition by the transporter. 
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Figure 3.14: Kinetic of 3H-LeuLeu uptake by the yeast mutant LR2 expressing HcPTR2A and HcPTR2B.
A. Time-course of 3H-LeuLeu uptake. Mutants were transformed with the empty vector pFL61 (white
circles) or with pFL61 expressing HcPTR2A (black square) or HcPTR2B (grey square). Yeast cells were
assayed for 3H-LeuLeu uptake at 1,5 µM and pH 5. B. HcPTR2A-mediated 3H-LeuLeu uptake at
different substrate concentrations. Experiments were performed at pH 5. C pH dependence. Yeast
expressing HcPTR2A in pFL61 measured at different pH values and 1,5 µM substrate concentration.
Values represent the mean of three independent experiments ± S.D. D. Influence of plasma membrane
energization on the uptake rate of 3H-LeuLeu uptake by yeast cells expressing HcPTR2A. Yeast cells
were preincubated for 5 min in the presence of 100 mM glucose (control), without glucose, or with
glucose and 0.1 mM DNP, or 0.1 mM DES, or 0.1 mM CCCP. Substrate specificity of HcPTR2A.E
Inhibition of 1.50 µM 3H-LeuLeu uptake by a five-fold molar excess of competing nitrogen source . Data
are expressed as percentage of the uptake rate in presence of 1.5 µM 3H-LeuLeu. Values represent the
mean of three independent experiments ± S.D. 
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3.3.2.2 Expression pattern of H. cylindrosporum peptide transporter 

To understand how the two peptide transporters HcPTR2A and HcPTR2B are 

regulated in H. cylindrosporum, their expression was analyzed by RNA gel-blot 

hybridization. As for HcGAP1, the transcript level on different nitrogen sources was 

investigated (Fig 3.15). The experiment was carried out in the same way as already 

described for HcGAP1.  

HcPTR2B is constitutively expressed independently of the N-source and the time. In 

contrast, HcPTR2A is strongly expressed in mycelia grown on NO3
-, under nitrogen 

starvation and surprisingly also on complete media. A weak expression of HcPTR2A 

could be observed in mycelia grown on Gln, GlnGln or NH4
+ (after 6h and 12h). Like 

HcGAP1, HcPTR2A seems to be up-regulated under organic nitrogen deficiency and 

its transcription is repressed on primary nitrogen sources. 

Figure 3.15: Regulation of HcPTR2A and HcPTR2B expression by nitrogen. Expression level of
HcPTR2A and HcPTR2B according to the nitrogen source in the medium. H.cylindrosporum 5.8S
rRNA probe was used as a loading control. The nylon membrane used in § 3.3.1.2 was stripped and
successively hybridized with 32P-HcPTR2A cDNA and 32P-HcPTR2B cDNA. 
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3.3.3 Proteinase activity in Hebeloma cylindrosporum 

 
In the boreal and temperate forests soil, nitrogen availability is mainly the result of 

litter decomposition. Moreover, as the competition between soil micro-organisms for 

nitrogen is high, the organisms having the ability to use more complex organic 

compounds (proteins) will be favored. Ericoid fungi (for review, Smith & Read 1997), 

but also some ectomycorrhizal fungi (e.g. Amanita muscaria, Abuzinadah & Read, 

1986a; Nehls et al., 2001a) can use protein as nitrogen source.  

As Hebeloma cylindrosporum can take up peptides and amino acids from the soil, it 

was interesting to know if it can degrade proteins. Therefore we investigated the 

proteinase activity in Hebeloma. 

3.3.3.1 Proteinase activity measurement 

 
H. cylindrosporum mycelia were grown in 20 ml MMN medium. The experience was 

carried out at pH 4 as it was shown that the pH optimal of extracellular proteinase 

from ectomycorrhizal fungi is 4–4.5. Nitrogen was supplied as (NH4)2SO4 

(16 µg.ml-1), which is comparable with the concentration of NH4
 in the soil for much of 

the year (Abuarghub & Read, 1988), or as BSA (0.1 mg.ml-1). There were three 

replicate flasks for each treatment, and harvests were taken 1, 2, 3, 4, 5, 7, 12 and 

16 days after inoculation and proteinase activity in cultures filtrates was measured 

(Figure 3.16).  

From the first to the fifth harvest the proteinase activity showed no real difference 

between the mycelium grown on (NH4)2SO4 and the one grown on BSA. After five 

days culture, the proteinase activity of the filtrate where the mycelium was grown on 

BSA increased considerably and attained peak values. In these cultures, maximum 

activity is three times higher than that obtained with filtrates harvested from cultures 

grown on ammonium. Here where proteinase activity already reached peak values at 

5 days. In both case, activity declined rapidly after maximum had been attained. 
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This result led us to think that Hebeloma can produce extracellular proteinase, this 

production might be induced by proteins. Moreover, the identification from the cDNA 

library from Lambilliote et al. (submitted) and the cloning of one putative extracellular 

proteinase gene HcProtB seems to confirm these results. BLAST analysis of the 

HcProtB sequence showed similarity to various proteinase gene from yeast and 

animals (see alignment in appendix 6). However, expression of HcProtB protein in a 

yeast mutant (BJ2168) deficient in the three vesicular proteinases (pep4, prb1 and 

prc1), and used for expression of extracellular proteinase, could not show functional 

complementation and proteinase activity was not detected in the growth medium. 

3.3.3.2 Expression of HcProtB 

 
The expression of HcProtB was also investigated under different nitrogen 

concentration (Fig 3.17). The northern blot analysis was performed as described in 

§ 3.3.1.2. 

Figure 3.16: Specific enzyme activity (fluorescence units released in 3h per ml
culture filtrate per mg mycelium dry weight) in culture of Hebeloma cylindrosporum
grown on (NH4)2SO4 (white circle, ) or on BSA (black circle, ). Values represent
the mean of three independent experiments ± S.D.. 



Results 

 61 
 

 

HcProtB gene was only poorly transcribed under nitrogen starvation and when amino 

acid, dipeptide or nitrate were used as nitrogen source. In medium containing 

ammonium, a weak transcript was detectable after 6h and 12h growth, but after 24h 

the expression of HcProtB gene was increased. In complete medium a strong 

expression could also be detected. 

 

 

 

 

3.4 Hebeloma transformation 

 
Hebeloma cylindrosporum is the only symbiotic fungus that can be genetically 

transformed using the conventional protoplast method (Marmeisse et al., 1992). 

However, the transformation generally results in several plasmid integrations, which 

represent a strong limitation for gene tagging and subsequent molecular 

characterization of inactivated genes. The main advantage of A. tumefaciens-

mediated over plasmid-mediated transformation of fungi is that it alleviates protoplast 

isolation as spores, hyphae, sporocarp or gill fragments can be transformed (Chen et 

al., 2000; de Groot et al., 1998). Furthermore, A. tumefaciens-mediated 

transformation (ATMT) generates a high percentage of transformants with a single T-

DNA insert in the fungal genome (Combier et al., 2003; de Groot et al., 1998) which 

facilitates the genetic analysis of transformants and the identification of disrupted 

sequences.  

Figure 3.17: Regulation of HcProtB expression. Expression level of HcProtB were investigated under
different nitrogen conditions. The nylon membrane used in § 3.3.1.2 and § 3.3.2.2 were stripped and
hybridised with 32P- HcProtB cDNA o the nitrogen source in the medium. H.cylindrosporum 5.8S
rRNA probe was used as a loading control. 
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A. tumefaciens-mediated transformation was carried out as described before (see 

Materials and Methods). Hebeloma transformation was carried out with the A. 

tumefaciens AGL-1 strain containing pBGghg plasmid (see appendices). The 

transforming plasmid has a disarmed T-DNA into which the hygromycin B 

phosphotransferase gene (hph) fused to the Agaricus bisporus gpd promoter 

sequence was inserted. This modified T-DNA confers hygromycin resistance. 

Moreover, the T-DNA contains also a EGFP gene under 

the control of Agaricus bisporus gpd promoter. One 

hundred transformation were realised. One 

transformation consisting in a co-cultivation of 50 µL of 

Hebeloma mycelium suspension and 100 µL of a 

bacterial culture on a disc which was placed on a co-

cultivation solid medium (Fig.3.18). Hygromycin-resistant 

colonies appeared at the margins of the discs after 15 to 

21 days on selective medium. 

 

3.4.1 Molecular analysis of the transformants 

Thirteen transformants were obtained showing resistance on 200 µg.mL-1 

hygromycin after several propagations. Genomic DNA was extracted from the 13 

transformants and the presence of hph gene was tested by PCR using specific 

primers (hygro5´/hygro3´). The expected 850 bp PCR product was detected in the 13 

transformants (Fig. 3.19), indicating that T-DNA integrated into the fungal genome.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Hebeloma
transformation plate 

Figure 3.19: PCR analysis of DNA isolated from putative hygromycin-resistant Hebeloma trans-
formants . PCR amplify- cation was carried out on genomic DNA using primers (hygro 5´and
hygro 3´) defining an 850 bp sequence in the hph gene. M :DNA molecular size markers (1kb plus
DNA ladder). 
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Southern blot analyses using the 32P-hph as a probe confirmed that the hygromycin 

resistance gene was integrated into the genome of H. cylindrosporum (Fig. 3.20). We 

detected no false positives by Southern blot analysis or PCR amplification, though for 

T2 the hybridization signal was very weak. This could be due to the small quantity of 

genomic DNA loaded on the gel. The transformed cultures appeared to have a single 

integrated copy of the gene, although some showed evidence of up to three 

integration events. However, a precise determination of copy number would require 

further analysis, especially as several transformants showed the same hybridization 

pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Southern blot analysis of transformants of Hebeloma
cylin -drosporum. 
Genomic DNA of 12 transformants was digested with EcoRV, gel-
size fragmented, transferred onto a nylon membrane and probed
with the radiolabeled hph gene. Molecular weights are indicated
as bp, on the left. h7:untransformed wild type strain 
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3.4.2 GFP expression in the transformant 

 

As pBGghg contains EGFP gene under the control of the constitutive gpd promoter, 

GFP expression was investigated in fast growing mycelia of four transformants T2, 

T4, T36 and T86 by fluorescence confocal microscopy. Only T86 could show a GFP 

expression. Fluorescence appeared uniformly distributed throughout the cytoplasm of 

the hyphae. In control experiments with nontransformed mycelia, we were unable to 

detect any hyphae showing fluorescence (Fig. 3.2.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1: Fluorescence microscopy of
Hebeloma cylindrosporum. (a) Hyphae from
transformed Hebeloma cylindrosporum with the
pBGghg vector. (c) Hyphae from wild-type
strain h7. (b) and (d) transmission images. The
bar represent 8µm. 
 

(a) 

(c) (d) 

(b) 



Results 

 65 
 

 

 

 



  Discussion & conclusion 

 66 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion 
& 

Conclusion 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



   

 67 
 

 

 
 
 
 
 
 
 
 



  Discussion & conclusion 

 68 
 

 

 

4 Discussion and conclusion 

4.1 Analysis of the EST library from Hebeloma cylindrosporum 
 

We have constructed a Hebeloma cylindrosporum cDNA library, from mycelia grown 

under different N-nutrition conditions. Analysis of ESTs proved the high quality of this 

library with a large proportion of full-length cDNAs (www.uni-tuebingen.de 

/plantphys/hebeloma/index.html). In parallel, we have shown that the library is also 

suitable for functional genomics using suppression cloning strategies. It was possible 

to clone the HIS4 homologue from H. cylindrosporum and a general amino acid 

transporter HcGAP1. Thus, the cDNA library is efficient for cloning even large fungal 

cDNAs by complementation of yeast mutants.  

An analysis of 500 ESTs suggests that Hebeloma contains a significant proportion of 

genes that have no counterpart in yeast, indicating differences in the gene pools of 

different fungi. A larger EST project will thus not only be useful for characterization of 

the ectomycorrhizal symbiosis, but also as a reference for other fungi. In addition, 

another Hebeloma cDNA library has been constructed, in a yeast expression vector, 

from a dicaryotic mycelia under different culture conditions (Wipf et al., 2003). Thus, 

with these two libraries, efficient molecular tools are now available to identify genes 

likely to play crucial roles in ectomycorrhizal symbiosis, e.g. genes encoding proteins 

involved in N transport and metabolism, or P and K transport (uptake from the soil 

and secretion towards the host tree). 

 

4.2 Characterization and regulation of HcGAP1 

An Hebeloma gene coding for a general amino acid permease was cloned by 

suppression cloning in a yeast mutant deficient in histidine uptake, using a yeast 

expression cDNA library generated from mycelia of Hebeloma grown on different 

nitrogen sources. The uptake characteristics allowed description of HcGAP1 as a 

high-affinity, secondary active, proton coupled, general amino acid permease. The 

KM value for transport for aspartate of 150 µM is in the range of amino acid 

concentrations found in the soil (Scheller, 1996). Thus, the main function of HcGAP1, 

as also indicated by gene expression, may be the uptake of amino acids from the soil 

solution. 



  Discussion & conclusion 

 69 
 

 

 

HcGAP1 is regulated by nitrogen sources; the presence of amino acids, dipeptides or 

ammonia, which are N sources imported by the fungus, induced a weak and 

constitutive expression of HcGAP1. Thus, in the presence of primary nitrogen 

sources, strong expression of high affinity transporter is not needed. So either the 

transporter is not working at its “maximum” or other transport systems might be used 

in this context. In contrast, when mycelia were grown without N source or on nitrate, 

which can be used by Hebeloma but with a slow uptake rate (Jargeat, 1999), 

HcGAP1 expression was increased. Indeed, in condition of nitrogen deficiency or in 

the presence of a secondary nitrogen source like nitrate, high affinity transport 

systems (like HcGAP1), allowing uptake of amino acid, will be regulated positively. 

This led us to that HcGAP1 gene might be regulated at a transcriptional level by the 

Nitrogen Catabolism Repression (NCR) mechanism, which has already been 

described for yeast and other fungi (Coffman et al., 1997; Fu & Marzluf, 1990; Kudla 

et al., 1990; Minehart & Magasanik, 1991). The strong expression of HcGAP1 during 

N starvation could also indicate that HcGAP1 may be involved, as it was suggested 

for the amino acid transporter AmAAP1 (Nehls et al., 1999), in the control of loss of 

amino acid by hyphae leakage. As was shown for a yeast mutant deficient in arginine 

uptake, the incapacity of arginine import resulted in a loss of arginine from the cells 

(Nehls et al., 1999). 

It is worthwhile to notice that when mycelia were grown on ammonium as a nitrogen 

source, strong expression of HcGAP1 could be seen after 24h. This was not 

observed for AmAAP1. One explanation for this observation could be that, after 24h, 

NH4
+ uptake and assimilation by the fungus, ammonium concentration is reduced in 

the medium, (similar to N deficiency) thus leading to a condition of nitrogen 

deficiency. Therefore HcGAP1 expression is positively regulated.  

The presence of several GATA (8) sequences in HcGAP1 promoter also correlates 

with a possible regulation of HcGAP1 by NCR. However, to prove that these GATA 

sequences are really involved in NCR mechanism, further experiments, like 

promoter-reporter gene studies and electrophoretic mobility shift assays (EMSA) 

have to be performed.  
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HcGAP1 seems to be regulated by the NCR mechanism, like AmAAP1 from Amanita 

(Nehls et al., 1999) and Gap1 from yeast (Jauniaux & Grenson, 1990). Additionally, 

the yeast Gap1 is the target of post translational regulation, designated as nitrogen-

regulated ubiquitination. When the yeast is grown on proline or urea (secondary 

nitrogen sources) as a sole nitrogen source, Gap1 activity is maximal, when 

ammonium is added Gap1 is inactivated (Grenson, 1983a; Grenson, 1983b) 

internalized and subsequently degraded in the vacuole (Springael & Andre, 1998). 

HcGAP1 may also be regulated, at the translational level, in the same way as Gap1 

(Bruno André, personal communication. 

Analysis of the HcGAP1 genomic sequence revealed an important number of introns 

(19) with an average size of 58 bp. The high number of introns, their small size and 

their uniformity were observed in H. cylindrosporum : nitrate reductase gene HcNAR1 

(12 introns), nitrate transporter HcNRT2 (7 introns), nitrite reductase gene HcNIR1 

(19 introns) (Jargeat et al., 2000; Jargeat et al., 2003), the phosphate transporter 

genes HcPT1 (10 introns) and HcPT2 (16 introns) (Tatry, 2003) and the potassium 

transporter gene HcTRK (20 introns) (Corratgé, 2003). In other basidiomycete genes 

(Schuren, 1992), a high number of introns was also reported, for instance PIG2 gene, 

an amino acid transporter from Uromyces fabae, presents 17 introns (Hahn et al., 

1997). 

4.3 Characterization of two peptide transporters from Hebeloma  

 

Two peptide transporters from Hebeloma, HcPTR2A and HcPTR2B, the first peptide 

transporters described in mycorrhizal fungi, were isolated by functional 

complementation of the yeast strain LR2, deficient in peptide uptake (Rikirsch, 2002). 

In this work, biochemical properties of HcPTR2A and HcPTR2B were characterized. 

Tritium labeled LeuLeu uptake experiments showed that yeast expressing HcPTR2A 

and HcPTR2B could transport 3H-LeuLeu. HcPTR2A-mediated uptake was higher 

than the one observed in yeast cells expressing HcPTR2B. Since HcPTR2B uptake 

rate is really low, further kinetics studies could not be performed and only HcPTR2A 

was characterized. HcPTR2A codes for a high affinity H+/peptide transporter, which 

mediates uptake of di- and tripeptides, preferentially peptides containing leucine at 

the N terminal position but also other dipeptides like GlnGln and, to a less extent, the 

dipeptide HisLeu. It seems that HcPTR2A-mediated transport is substrate-specific 
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and that the N-terminal amino acid might be essential in the substrate recognition by 

the transporter. 

Although PTR transporters have been shown to transport a wide range of nitrogen-

containing substrates, including nitrate, amino acids and peptides (Williams & Miller, 

2001), NO3- and amino acids, such as leucine and glutamine could not compete 

against LeuLeu uptake mediated by HcPTR2A. However, further peptide 

transporters, such as the Arabidopsis PTR2, were showed to transport peptides but 

not NO3- (Song et al., 1996). In leaves of faba bean, peptide uptake systems do not 

import NO3- (Jamai et al., 1996) and it was shown that PTR members from A. 

thaliana and B. napus have a low affinity for basic amino acids (Frommer et al., 1994; 

Zhou et al., 1998).  

 

The KM value for LeuLeu transport of 1.46 µM could be determined. This value, in the 

range of peptide concentrations found in the soil (1-2 µM), allows us to conclude that 

HcPTR2A may be involved in peptide uptake for fungal nutrient acquisition from the 

soil. It is worthwhile to notice that HcPTR2A is the first peptide transporter described 

with a so high affinity when compared to all described PTR members. For instance 

the KM value of AtPTR2 for 3H-LeuLeu was found to be 14 µM (Song et al., 1996) 

and the KM of VfPTR1, peptide transporter from Vicia faba, showed a value of 20 µM 

(Delrot et al., 2001). 

 

Expression of HcPTR2A and HcPTR2B were also analyzed. HcPTR2A showed a 

different expression pattern according to the N source present in the medium. In the 

absence of a nitrogen source or in the presence of NO3-, HcPTR2A is highly 

expressed. This confirms the competition experiments where it was suggested that 

nitrate is not a substrate for Hebeloma PTR2A. According to Perry et al. (1994), yeast 

PTR2 gene, which HcPTR2A is close to, falls under the regulatory control of the NCR 

system. Thus, like the yeast PTR2 (Barnes et al., 1998) and HcGAP1, HcPTR2A is 

strongly expressed in condition of N deficiency or in the presence of secondary N 

source. In mycelia grown on amino acid, dipeptide or ammonia (after 6h and 12h), 

considered as “preferred” sources, HcPTR2A mRNA level is weak, which may 

confirm its regulation by the NCR system. In contrast to HcGAP1, HcPTR2A is 

surprisingly strongly expressed on complete medium. This expression pattern was 

also observed for VfPTR1 (peptide transporter from Vicia faba); Miranda et al., (2003) 
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investigated the VfPTR1 mRNA level in seedlings grown on medium supplemented 

with 1mM or 50 mM sorbitol (control, equivalent to N starvation), Gln, LeuLeu or 

nitrate. At high amino acid or peptide concentrations the transcript level was higher 

than the control. At low concentrations of Gln or LeuLeu, transcription of VfPTR1 

decreased and was lower than the control. HcPTR2A might be regulated as the Vicia 

faba peptide transporter; in complete medium, where the amino acid and the peptide 

concentration is higher, HcPTR2A transcript level is increased. However, Perry et al. 

(1994) mentioned that yeast PTR2 was always expressed at a basis level when 

yeasts were grown on full medium. 

Interestingly, HcPTR2A was positively regulated after 24h on medium containing 

NH4
+ as sole nitrogen source. As in the case of HcGAP1 it is hypothesized that, after 

24h, NH4
+ uptake and assimilation by the fungus reduce the ammonium 

concentration in the medium and produce a condition of nitrogen deficiency, 

therefore HcPTR2A expression is positively regulated. This hypothesis was 

confirmed by Javelle A., who could observed a decrease of ammonium concentration 

in a fungal culture after 24h (personnal communication). 

 

HcPTR2B seems to be a low affinity transporter, since its uptake capacity is low. The 

northern analysis could show that its regulation is independent from the nitrogen 

source present in the medium. HcPTR2B seems to behave like the yeast PTR3 

gene, which is not nitrogen dependent regulated (Barnes et al., 1998). PTR3 is one 

of the three identified components of the Ssy1p-Ptr3p-Ssy5 (SPS) sensor of 

extracellular amino acids (Klasson et al., 1999);. The SPS amino acid sensor affects 

the transcription of several encoding proteins involved in amino acid uptake (GAP1, 

BAP2, BAP3, AGP1, DIP5, GNP1, TAT1 and TAT2); (Forsberg & Ljungdahl, 2001; 

Iraqui et al., 1999) and other genes, i.e. PTR2 (Barnes et al., 1998) or a gene 

encoding for an arginase (CAR1) (Forsberg & Ljungdahl, 2001). Thus, HcPTR2B 

may be involved in peptide and amino acid uptake regulation.  
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4.4 Proteinase activity of Hebeloma cylindrosporum 
 

The ability of ectomycorrhizal fungi to explore the soil and to use organic debris as a 

nutrient source is important for the plants in nutrient poor soil (Smith & Read, 1997). 

A number of ericoid (Smith & Read, 1997) and ectomycorrhizal fungi can use 

proteins as a nitrogen and carbon source. However, proteins are not taken up directly 

but must be degraded to peptides and amino acid by proteinase. 

In this work, a proteinase activity was measured for the first time in the 

ectomycorrhizal fungus H. cylindrosporum. This activity was induced strongly in 

presence of protein (BSA) and attained a maximum after 7 days. Ammonium, to a 

less extent, could also induce proteinase activity which attained maximum at 5 days 

and was three times lower than that induced by the presence of protein. After 7 days, 

the proteinase activity in the presence of BSA declined rapidly, apparently due to the 

diminution of substrate availability. 

In the ericoid fungi Hymenoscyphus ericae Leake and Read (1990) a strong 

induction by BSA was observed and a weak induction by ammonia, amino acids and 

peptides. El Badaoui and Botton (1989) measured, for Cenococcum geophilum, a 

proteinase activity in presence of BSA, which was twice as high as than the one 

observed in the presence of ammonium. Zhu et al (1990), showed that proteins and a 

few amino acids, like glycine can induce proteinase production. Ammonium leads to 

weak proteinase activity which is, nevertheless, approximally twice as high as than 

that induced by glutamine and casein hydrolysate.  

Taken together Hebeloma cylindrosporum, like other mycorrhizal fungi, can produce 

extracellular proteinases which are regulated by induction. 

 

Moreover, a putative extracellular proteinase gene, HcProtB, was cloned, which 

confirms the detected extracellular proteinase activity. However, HcProtB could not 

complement the yeast strain BJ2168 which is deficient in vesicular proteinases and 

no specific proteinase activity was detected in the growth medium. One hypothesis to 

explain this result, is that HcProtB, which shows a similarity to the PEP4 gene 

(precursor of the S. cerevisiae vesicular proteinase A, PrA), was isolated from the 

Hebeloma cDNA library prepared by Lambilliote et al. (submitted ). In this library, 

inserts were cloned in the pFL61 yeast vector, thus, HcProtB is under the control of a 
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weak promoter. Furthermore, Wolff et al. (1996) showed that overexpression of PEP4 

leads to the secretion of mature PrA. Therefore it would be interesting to clone 

HcProtB under the control of a strong promoter to transform yeast mutants with this 

construct and see whether or not extracellular proteinase activity can be detected in 

the growth medium. 

In parallel, expression of HcProtB was investigated, transcripts were weakly 

detectable when the mycelia were grown on Gln, GlnGln, or NH4
+ (after 6h and 12h), 

but the mRNA level seemed to be slightly higher when ammonium was the sole 

nitrogen source. These results confirm the biochemical observations made in other 

mycorrhizal fungi (EL-Badaoui & Botton, 1989; Leake & Read, 1990; Zhu et al., 

1990); on amino acid, peptides and ammonium, the fungus showed a low secretion 

of extracellular proteinase.  

In N-starvation conditions, HcProtB is weakly expressed, as it is on nitrate. Thus, as 

mentioned in (Smith & Read, 1997), extracellular proteinase are not subject to NCR. 

A high level of transcripts was detected only when the mycelia were grown on 

complete medium and on NH4
+, after 24h. Complete media contains a mixture of 

amino acids, peptides of different size, vitamins…, it is likely that one or several 

compounds, i.e. glycine, present in the medium, are able to induce proteinase 

transcription.  

It is worthwhile to notice, that these results differ partially from the expression 

analysis of AmProt1, an extracellular proteinase isolated from A. muscaria (Nehls et 

al., 2001). In medium containing glucose and nitrate, phenylalanine or no nitrogen 

source, a high level of AmProt1 transcript was detected; in contrast on ammonium or 

casein hydrolysate, AmProt1 was weakly expressed.  

4.5 Hebeloma transformation 
 

Hebeloma transformation was carried out with the A. tumefaciens AGL-1 strain 

transformed with the binary plasmid, pBGghg. In this vector, the T-DNA contains the 

hygromycine resistance gene (hph) and the EGFP gene, both under the control of 

the Agaricus bisporus gpd promoter. 

Agrobacterium tumefaciens was used successfully to transform Hebeloma 

cylindrosporum. The efficiency of transformation was about 13% (percentage of discs 

regenerating colonies on hygromycin medium).  
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PCR amplification and Southern blot analysis could show that the hph gene was 

present and integrated into the genome of the transformants. For most of the 

transformants (except T84 transformant) only one band was detected on the 

Southern blot, indicating that a single copy of the T-DNA might be integrated in the 

genome. However, determination of the copy number would require further analysis. 

Interestingly, several transformants showed the same hybridization pattern. It is 

unlikely that the T-DNA was integrated at preferential sites, since Combier et al. 

(2003) showed that the integration occurred at random sites. One possibility to 

explain this hybridization pattern is that the transformants were the same. As 

described in the results, the transformation was performed on one disc and the 

transformed mycelium appeared at the margins of the discs, growing in every 

direction (Fig 4.1), some faster than the other. Fungal agar plug, surrounding one 

disc, was cut from the plate and transferred onto selective medium. However, on 

some plates, some mycelia were grew from one disc to the next, making it difficult to 

distinguish if the mycelium was growing from this disc or from the next disc. 

Therefore, it could be that mycelium appearing at the margin of several discs were 

from the same transformation which overgrow and reached other discs. Therefore, 

subsequent transformations, were carried out on compartmented Petri dishes. 

 

 

 

 

 

 

 

 

 

 

 

As the transforming plasmid pBGghg contain an EGFP gene inserted in the T-DNA, 

transformants were screened for GFP expression. From 4 transformants screened, 

one (T86 ) showed GFP expression, showing for the first time that GFP can be 

detected in Hebeloma. However , EGFP gene integration in the genome has to be 

confirmed.  

 

Figure 4.1: Hebeloma transformation  
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4.6 Conclusion and perspectives 
 

As a first step towards analysis of organic nitrogen nutrition, especially uptake and 

transport of organic nitrogen, by the mycorrhizal model fungus Hebeloma 

cylindrosporum, three genes involved in organic nitrogen uptake (HcGAP1, 

HcPTR2A and HcPTR2B) were isolated by functional complementation of yeast 

mutants.  

HcGAP1 encodes a general amino acid permease mediating high affinity secondary 

active uptake of amino acids into hyphae. The transporter gene is expressed in 

hyphae and down-regulated in the mycorrhizal association, indicating that it plays a 

role in the uptake of amino acids from the soil for fungal nutrition. Furthermore, 

Northern blot analysis showed that HcGAP1 expression is dependent on available 

nitrogen sources. HcPTR2-A and HcPTR2-B encode peptide transporters and 

display strong identity to peptide transporters in yeast, plant and mammalian. 

HcPTR2A mediates a strong dipeptide uptake and, like HcGAP1, its expression is 

highly regulated under organic nitrogen deficiency, whereas HcPTR2B mediates a 

weak uptake and is constitutively expressed. 

To characterize in more detail these transporters for their substrate specificity, it will 

be necessary to express them in Xenopus laevis oocytes and to carry out 

electrophysiology experiment, as several substrates can be tested in the same 

experiment. 

Evidence led us to think that HcGAP1, HcPTR2A and HcPTR2B expression is 

regulated by the Nitrogen Catabolic Repression regulatory system. However, this 

data has to be confirmed by promoter-reporter gene studies and electrophoretic 

mobility shift assay (EMSA). 

Production of extracellular proteinase from Hebeloma cylindrosporum could be 

demonstrated and led us think that Hebeloma, by producing extracellular proteinase, 

can degrade proteins, present in the soil, into amino acids and peptides which can be 

taken up. 
Furthermore, the development of the Hebeloma transformation provides an important 

tool for the molecular genetic analysis of biological processes in this fungus.  
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The next step towards mycorrhizal organic nitrogen transport is the identification of 

new transporters at the soil/fungus interface (importers) and at the fungus/plant 

interface (exporters). It will be also interesting to characterize mutants for N-transport. 

 

4.6.1 A new amino acid transporter 
 

Recently we isolated a clone, which has a high similarity to the yeast �- amino 

butyric acid transporter gene, UGA4. However, the function of this transporter has to 

be confirmed.  

4.6.2 Amino acid exporter  
 

Read et al., (1989) showed that amino acids could be translocated to the colonized 

roots through mycorrhizal mycelia. Thus, transport systems localized at the 

fungus/plant interface and involved in the transfer of amino acids from the fungus to 

the plant (exporters to the apoplast) need to be characterized.  

Preliminary experiments have already been carried out.  

In order to isolate a putative amino acid exporter, a suppression of toxicity approach 

was used. In fact, if yeast cells are grown on a medium containing an amino acid 

toxic analog (AATA) and import it, there are three solutions for the yeast to suppress 

the toxicity: import in the vacuole (export from the cytosol), export out of the cell or 

enzymatic degradation. Thus, yeast transformed with an H. cylindrosporum cDNA 

library and showing growth on AATA lethal concentration, may express an amino 

acid exporter (Fig. 4.2). 

As a first step, toxicity level, on yeast growth, of several AATA was tested in order to 

determine AATA toxic concentrations which could then be used for screening. The 

preliminary test were realized with the yeast “wild type” strain 23344c. The toxicity of 

different AATA was tested (Fig. 4.3). 
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The yeast strain 23344c was transformed with the Hebeloma cDNA library and plated 

on L methionine sulfoxime at the concentration of 1mM for screening. However, all 

the transformants obtained were sequenced, but no insert showed similarity with any 

known amino acid exporters. As this cDNA library was realized from the saprophyte 

mycelia, genes encoding amino acid exporters might not be expressed. So it is 

necessary to screen a mycorrhizal cDNA library to get higher possiblity to isolate this 

gene. In collaboration with the INRA Montpellier (France), mycorrhized plants were 

prepared under different conditions of potassium, phosphate and nitrogen. 

Mycorrhizas were harvested and a cDNA library will be constructed. 

 

 

Figure 4.2 : Scheme representing the suppression of toxicity apprroach in a yeast cell 
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4.6.3 Characterization of Hebeloma mutants 
 
Mutants of Hebeloma can be produced by UV mutagenesis, and since the 

development of Agrobacterium mediated transformation it is possible to obtain 

mutants by gene replacement or to silence a gene by RNAi technique. These 

Hebeloma mutants can then be tested for their N transport capacity and 

characterized.  

Thus, in order to characterize in vivo the role of HcGAP1, HcPTR2A and HcPTR2B, it 

would be interesting to silence HcGAP1, HcPTR2A and HcPTR2B gene and to 

observe the consequences on fungal growth and on the establishment of mycorrhiza. 

However, as a collection of insertional Hebeloma mutants (2000 mutants) is now 

available (Combier et al., 2003) a screening method was set up in order to 

characterize mutants deficient in amino acid transport. This technique is also based 

on the utilization of amino acid toxic analogs. Different amino acid toxic analogs were 

Figure 4.3: Growth test of the yeast wild type strain 23344c on different amino acid toxic
analogs. Several dilutions from a yeast culture grown until OD595 of 4 were dropped on the plate;
the dilution factor is decreasing from the left to the right. 
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tested on fungal growth, the results of the test are shown figure 4.4 These results will 

then be used to screen Hebeloma mutants for resistance to ATAA. 

 
     

 
  

 

To conclude, data are now available to analyze how the isolated transporters are 

involved in nitrogen nutrition of the ectomycorrhizal fungus and will allow us to 

understand to which extent they participate to plant nutrition.  

 

 

 

 

 

 

 

 

 

Figure 4.4: Growth test of Hebeloma mycelium on different amino acid toxic analog. Each
concentration was tested twice. 
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6 Appendices 

6.1 Appendix 1: Map of pBGghg vector 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 Appendix 2: Map of pGEM-T vector 
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6.3 Appendix 3: Map of the yeast expression vector pDR196 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.4 Appendix 4: Map of the yeast expression vector pFL61 
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6.5 Appendix 5: List of primers used in this work 
 
 
 
Name 
 

 
Sequence 
  5´→3´ 

promHcrev-50 
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HcBAP1gfor 
HcBAP1grev 
Cpl hcgap1 for 
Cpl hcgap1 rev 
hygro 5´ 
hygro 3´ 
 

AGA TTA GAG GAA CTT TCA CG 
ATT AAT CAT GCA GAC CAA CAC A 
ATT TAG GTG ACA CTA TAG 
CGC GTA ATA CGA CTC ACT ATA GGG 
GCA GGT GAC GTG AAA GCG GC  
CTG AAA TCT AGA TAC GAG GTG T 
ATG GAA AAC GAG AAA ACC GAG CAT GAG AAA CG 
TTA GAA GAT GAT ATT GGC AAT ACG TTC TCC G 
CGA CAC CTG TTG AAA TCA CGG 
CGT GAG TAC CTT GGG AGC TTG ACC 
GGAGGGCGTGGATATGTCCTGCGGG 
CGCTTCTGCGGGCGATTTGTGTACG 
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TC
CA
TT
GG
GA
CC
CC
TC
CC
CA
GG
AA
TT
CA
CT
GT
TA
TC
TT
TG
AC

Xe
no

pu
s P

ep
sin

og
en

(2
02

) C
AA
CT
A

C
TG
GA
TA
CT
GA
GT
AC
TA
TG
G 
AC
CA
TC
AC
CA
TT
GG
AA
C
CC

CC
TC
AG
GA
CT
TC
A

GT
T
T
TT
TG
AC

Co
ns

en
su

s
(9

87
)

10
67

11
46

10
80

10
90

11
00

11
10

11
20

11
30

(1
06

7)
TC
TG
GT
TC
GG
CC
GA
TT
TC
TG
GG
TC
GG
AG
CA
GA
GA
AC
TG
TC
AG
TC
TG
AC
GC
TG
GT
GG
TG
GA
TG
TG
GG
AA
TC
AC
AA
GT
TC
CT

Pr
ot

B
(1

41
) AC

CG
GC
TC
TT
CC
GA
TC
TC
TG
GG
TA
CC
AT
CC
GC
AG
CT
TG
CT
CC
--
--
--
AG
CT
CA
AT
TT
GC
GA
GC
CC
AA
GC
AC
AA
GT
AC
GA

Am
an

ita
 m

us
ca

ria
 p

ro
te

as
e

(4
28

) AC
TG
GT
TC
TT
CA
AA
CC
TT
TG
GG
TT
CC
AA
GT
AA
CG
AA
TG
TG
GT
--
--
--
TC
CT
TG
GC
TT
GT
TT
CC
TA
CA
TT
CT
AA
AT
AC
GA
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 v

ac
.P

ro
te

ina
se

A 
pr

ec
ur

so
r.(

10
55

) AC
GG
GA
TC
AT
CT
AA
CC
TT
TG
GG
TG
CC
CT
CG
AA
GG
AG
TG
CT
CA
TT
CA
CC
AA
CA
TC
GC
TT
GC
TT
GA
TG
CA
CA
AC
AA
AT
AC
AA

 A
ed

es
 a

eg
yp

ti l
ys

os
om

al 
as

pa
rtic

 p
ro

te
as

e 
mR

NA
 se

q.
..

(3
74

) AC
AG
GC
TC
CT
CA
GA
AC
TC
TG
GG
TG
CC
CT
CT
GT
GT
AC
TG
CA
GC
--
--
--
AG
CA
AA
GT
TT
GC
AG
AA
AC
CA
CA
AC
CG
CT
TT
GA

 R
at

tu
s n

or
ve
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us
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ro

ch
ym

os
in 

(L
OC

56
82

5)
, m

RN
A.

(2
87

) AC
TG
GC
TC
TT
CC
AA
CC
TG
TG
GG
TG
CC
CT
CC
AT
CT
AC
TG
CT
CC
--
--
--
AG
CT
CT
GC
CT
GC
AC
CA
AC
CA
CA
AC
CG
CT
TC
AA

Ca
me

lus
 d

ro
me

da
riu

s m
RN

A 
fo

r p
ep

sin
.

(3
17

) AC
CG
GC
TC
CT
CC
AA
CC
TG
TG
GG
TG
CC
CT
CT
GT
CT
AC
TG
CT
CT
--
--
--
AG
TC
TC
GC
CT
GC
AG
CG
AC
CA
CA
AC
CA
GT
TC
AA
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g 

pe
ps

ino
ge

n 
A 

mR
NA

, c
om

ple
te
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ds

.
(3

10
) AC

TG
GG
TC
CT
CA
AA
CC
TG
TG
GG
TA
CC
CT
CA
AC
CT
AC
TG
TC
AA
--
--
--
AG
CC
AG
GC
CT
GC
AC
CA
AT
CA
TC
CT
CA
GT
TT
AA
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na
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at

es
be

ian
a 

pe
ps

ino
ge

n 
mR

NA
, c

om
ple

te
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ds
.

(2
73

) AC
TG
GT
TC
AT
CC
AA
TC
TT
TG
GG
TG
CC
GT
CG
AA
AC
AC
TG
CA
GC
TA
TT
TT
GA
TA
TT
GC
TT
GC
CT
GC
TA
CA
TC
GT
AA
AT
AT
GA
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to
so
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 ja

po
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 a
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 p

ro
te

as
e 

pr
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ur
so

r m
...

(2
51

) AC
AG
GA
TC
TG
CT
AA
TC
TG
TG
GG
TT
CC
AT
CT
GT
GT
AC
TG
CT
CC
--
--
--
AG
CC
AA
GC
CT
GC
TC
AA
AT
CA
CA
AC
AG
GT
TT
AA

Xe
no

pu
s P

ep
sin

og
en

(2
79

) AC
TG
G
TC

TC
CA
AC
CT

TG
GG
TG
CC
CT
C 
G 
 T
AC
TG
CT
CC

AG
C

GC
TT
GC

AA
CA
CA
AC
AA
GT
TC
AA
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s(
10

67
) 11

47
12
26

11
60

11
70

11
80

11
90

12
00

12
10

(1
14

7)
CG
GA
GC
GC
AG
TC
CA
GT
AG
TT
CC
TT
CC
AG
GA
CA
CC
GG
CG
CA
CC
TT
TC
TC
CG
TT
AC
AT
AC
GG
A-
AC
AG
GG
--
CA
GG
TT
TC
TG

Pr
ot

B
(2

21
) TC

CT
AC
TG
CC
TC
CA
GC
A-
--
CC
TC
TC
AA
CT
GC
AG
AA
TG
GA
AC
AT
TC
AC
TA
TC
CA
AT
AT
GG
CG
AC
AA
GT
CA
AC
CG
TT
TC
GG
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 m

us
ca
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ro
te

as
e

(5
02

) TC
AT
GA
AG
CT
TC
AT
CA
A-
--
GC
TA
CA
AA
GC
TA
AT
GG
TA
CT
GA
AT
TT
GC
CA
TT
CA
AT
AT
GG
T-
AC
TG
GT
--
TC
TT
TG
GA
AG
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 v
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.P

ro
te
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se

A 
pr

ec
ur

so
r.(

11
29

) TG
CC
AA
GA
AG
TC
AT
CG
A-
--
CG
TT
CG
AA
AA
GA
AC
GG
AA
CA
GC
TT
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CA
TA
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CA
AT
AT
GG
A-
TC
TG
GT
--
AG
CT
TA
TC
TG

 A
ed
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 a

eg
yp

ti l
ys
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om

al 
as
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 p
ro

te
as

e 
mR
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 se

q.
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(4
54

) CC
CA
TC
CA
AG
TC
CT
TC
A-
--
CC
TT
CC
AG
AA
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TG
AG
CA
AG
CC
CC
TG
TT
TG
TC
CA
GT
AT
GG
T-
AC
TG
GC
--
AG
TG
TG
GA
GG
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in 
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5)
, m
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A.

(3
61

) CC
CT
GA
GG
AA
TC
CT
CC
A-
--
CC
TA
CC
AG
GG
CA
CC
GA
CG
AG
AC
GC
TC
TC
CA
TC
AC
CT
AT
GG
C-
AC
CG
GC
--
AG
CA
TG
AC
AG
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me

lus
 d

ro
me

da
riu

s m
RN

A 
fo

r p
ep

sin
.

(3
91

) CC
CT
GA
TG
AC
TC
CT
CC
A-
--
CC
TT
CG
AG
GC
CA
CC
AG
CC
AG
GA
GC
TG
TC
CA
TC
AC
CT
AT
GG
C-
AC
CG
GT
--
AG
CA
TG
AC
AG
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g 

pe
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ge

n 
A 

mR
NA

, c
om

ple
te
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ds

.
(3

84
) CC

CC
AG
CC
AG
TC
TT
CC
A-
--
GC
TA
TT
CC
TC
AA
AC
CA
GC
AG
CA
GT
TC
TC
TC
TG
CA
GT
AC
GG
C-
AC
TG
GT
--
AG
TC
TG
AC
TG
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na
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be
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a 

pe
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ino
ge

n 
mR

NA
, c

om
ple

te
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ds
.

(3
47

) CA
GC
TC
AA
AG
TC
CA
CC
A-
--
CT
TA
TG
TT
CC
GA
AT
GG
CA
CT
GA
TT
TC
AG
CA
TT
CG
TT
AC
GG
T-
AC
TG
GC
--
AG
TC
TT
AG
TG
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 a

sp
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ro
te
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e 
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so
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(3
31

) CC
CA
CA
GC
AG
TC
AT
CC
A-
--
CT
TT
CC
AA
GC
AA
CA
AA
CA
CT
CC
AG
TG
TC
TA
TT
CA
AT
AT
GG
A-
AC
CG
GC
--
AG
CA
TG
AG
TG

Xe
no

pu
s P

ep
sin

og
en

(3
53

) CC
C

A
AG
TC
CT
CC
A

CC
TT
CC
A
GC
 A
AC
GG
CA
C

C
TT
CT
CT
AT
TC
AA
TA
TG
G

AC
TG
GT

AG
C
TG
AC
TG
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11

47
)
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70
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80
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7)
GT
AA
TA
TT
AT
CA
AG
GA
TA
AT
AT
CG
CT
AT
TG
CT
GG
AC
TC
GC
AC
TC
GA
TG
CT
CA
AA
CT
TT
CG
GA
GT
CG
CT
AC
TT
CG
GA
AA
GC

Pr
ot

B
(2

98
) GC

CC
AG
TG
TA
CA
CT
GA
TG
CA
GT
CA
AT
GT
TG
CT
GG
TG
TC
CA
GG
TG
AC
AG
GT
CA
AT
AT
CT
CT
CT
C-
CG
G-
-T
CA
CA
AA
--
-T
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an
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 m
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ca

ria
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ro
te

as
e

(5
79

) GT
TA
CA
TT
TC
TC
AA
GA
CA
CT
TT
GT
CC
AT
CG
GG
GA
TT
TG
AC
CA
TT
CC
AA
AA
CA
AG
AC
TT
CG
CT
GA
GG
CT
AC
CA
GC
GA
--
GC
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.P
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A 
pr
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so
r.(

12
03

) GT
TA
CT
TG
TC
AA
CT
GA
CA
CC
GT
TG
GT
TT
GG
GA
GG
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TT
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CG
TT
AC
GA
AA
CA
AA
CC
TT
CG
CT
GA
AG
CC
AT
CA
AT
GA
--
AC

 A
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 a
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yp
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e 
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 se
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(5
28

) GC
TT
CC
TG
GC
CT
AT
GA
CA
CT
GT
CA
CG
GT
CT
CT
GA
CA
TT
GT
AG
TT
CC
CC
AT
CA
GA
CT
GT
GG
GC
CT
GA
GT
AC
TG
AG
GA
--
AC
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gic
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ym
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in 
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5)
, m

RN
A.

(4
35

) GC
AT
CC
TC
GG
AT
AT
GA
CA
CT
GT
CC
AG
GT
TG
GA
GG
CA
TC
AG
CG
AT
GT
CA
AC
CA
GA
TC
TT
TG
GC
CT
GA
GT
GA
GA
CA
GA
--
GC
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me

lus
 d

ro
me

da
riu

s m
RN

A 
fo

r p
ep

sin
.

(4
65

) GC
AT
CC
TT
GG
AT
AC
GA
CA
CC
GT
CC
AG
GT
CG
GA
GG
CA
TC
AG
CG
AC
AC
CA
AC
CA
GA
TC
TT
TG
GC
CT
GA
GC
GA
GA
CA
GA
--
GC

Pi
g 

pe
ps

ino
ge

n 
A 

mR
NA

, c
om

ple
te
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ds

.
(4

58
) GA

AT
CC
TT
GG
AT
AT
GA
CA
CA
GT
TC
AG
AT
CC
AG
AA
TA
TA
GC
TA
TT
TC
CC
AG
CA
AG
AA
TT
TG
GC
TT
GA
GT
GT
GA
CT
GA
--
GC
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na
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at

es
be
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a 

pe
ps

ino
ge

n 
mR

NA
, c

om
ple

te
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ds
.

(4
21

) GA
TT
TC
TA
AG
TA
CT
GA
CT
CC
CT
TC
AG
CT
AG
GT
TC
AC
TC
GG
AG
TA
AA
AG
GA
CA
AA
CA
TT
TG
GA
GA
AG
CG
AC
AA
AA
CA
--
GC
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so
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e 
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so
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...

(4
05

) GG
TT
CC
TG
GG
AT
AT
GA
TA
CT
TT
GC
AA
GT
GG
GA
AA
TA
TC
CA
GA
TT
TC
TA
AC
CA
AA
TG
TT
CG
GT
CT
TA
GT
GA
GT
CA
GA
--
GC

Xe
no

pu
s P

ep
sin

og
en

(4
27

) G
TT
CC
T
GG
AT
AT
GA
CA
CT
GT
CC
AG
GT
 G
G 
GG

AT
C

GT
T
C
AA

CA
AA

TT
CG
G
CT
GG
GT
A

AC
AG
A 
 G
C
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en
su

s(
12
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07
13
86

13
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13
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13
40

13
50

13
60

13
70

(1
30

7)
GT
GG
AT
TT
CT
CA
TC
TA
AT
AC
TA
CT
CC
CT
TT
GA
TG
GG
CT
GA
TG
GG
AC
TT
GC
GC
AG
GC
GA
CC
AT
TT
CG
CA
AC
AA
CG
AA
CT
CC

Pr
ot

B
(3

78
) CT

TT
CA
TC
GA
CC
TT
TG
GT
AC
CG
AT
CC
TA
TC
GA
CG
GG
CT
TC
TC
GG
CC
TG
GC
CT
TC
CC
TG
CG
AT
CT
CA
AA
CA
TG
AA
AC
AA
AG

Am
an

ita
 m

us
ca

ria
 p

ro
te

as
e

(6
53

) CG
GG
CT
TA
AC
AT
TT
GC
AT
T-
TG
GC
AA
GT
TC
GA
TG
GT
AT
TT
TG
GG
TT
TG
GG
TT
AC
GA
TA
CC
AT
TT
CT
GT
TG
AT
AA
GG
TG
GT
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 v
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.P

ro
te
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se

A 
pr

ec
ur

so
r.(

12
81

) CA
GG
AT
TG
GT
AT
TC
GT
TG
C-
GG
CC
AA
GT
TT
GA
CG
GA
AT
TC
TC
GG
AT
TA
GG
CT
AC
AG
CT
CG
AT
TT
CA
GT
AG
AT
GG
CG
TC
GT

 A
ed

es
 a

eg
yp

ti l
ys

os
om

al 
as
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rtic
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ro

te
as

e 
mR

NA
 se

q.
..

(6
06

) CA
GG
TG
AC
AT
CT
TC
AC
CT
A-
CT
CT
CC
AT
TT
GA
TG
GC
AT
CC
TG
GG
CC
TG
GC
CT
AC
CC
TA
CT
TT
TG
CC
TC
CA
AG
TA
CT
CA
GT

 R
at

tu
s n

or
ve

gic
us
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ro

ch
ym

os
in 

(L
OC

56
82

5)
, m

RN
A.

(5
13

) CC
GG
CT
CC
TT
CC
TG
TA
TT
A-
TG
CC
CC
CT
TC
GA
TG
GC
AT
CC
TG
GG
TC
TG
GC
TT
AC
CC
CA
GC
AT
CT
CC
TC
CT
CC
GG
GG
GC
AC

Ca
me

lus
 d

ro
me

da
riu

s m
RN

A 
fo

r p
ep

sin
.

(5
43

) CC
GG
CT
CC
TT
CC
TG
TA
CT
A-
CG
CC
CC
CT
TC
GA
CG
GC
AT
CC
TG
GG
TC
TG
GC
CT
AC
CC
CA
GC
AT
CT
CC
GC
CT
CC
GG
GG
CC
AC

Pi
g 

pe
ps

ino
ge

n 
A 

mR
NA

, c
om

ple
te
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ds

.
(5

36
) CT

GG
AA
CC
AA
CT
TT
GT
CT
A-
TG
CG
CA
GT
TT
GA
TG
GT
AT
TT
TG
GG
TC
TA
GC
CT
AC
CC
AT
CT
AT
TG
CT
GA
GG
GT
GG
GG
CT
AC

Ra
na
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at

es
be

ian
a 

pe
ps

ino
ge

n 
mR

NA
, c

om
ple

te
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ds
.

(4
99

) CA
GG
GT
TA
GT
TT
TC
GT
CA
T-
GG
CA
AA
AT
TT
GA
TG
GG
AT
TC
TG
GG
TA
TG
GC
TT
AT
CC
TT
CA
CT
TG
CT
GT
TG
GT
GG
TG
TT
AC
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to
so
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 a
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tic
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te

as
e 

pr
ec

ur
so

r m
...

(4
83

) CT
GG
TT
CA
TT
CC
TC
TA
CT
A-
CT
CA
CC
AT
TC
GA
TG
GA
AT
CC
TT
GG
TC
TA
GC
TT
TT
CC
CA
GC
AT
TG
CA
TC
AT
CT
CA
AG
CC
AC

Xe
no

pu
s P

ep
sin

og
en

(5
05

) C
GG

TT
C
TC
TT
CT

CT
A

GC
CC

TT
TG
AT
GG

AT
TC
TG
GG
TC
TG
GC
CT
AC
CC

AC
CA
TT
TC

G
TG
G 
GC
 A
C

Co
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en
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s(
13
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) 13

87
14
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14
00

14
10

14
20

14
30

14
40
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50

(1
38

7)
AA
CG
CC
GG
TT
GA
CT
CG
CT
CG
CT
AC
TG
CG
GG
AT
TG
AT
CC
CA
GA
CT
CC
AT
CG
TT
TC
AT
TC
AA
AA
TC
TC
TC
GC
CT
TG
CT
GA
TA

Pr
ot

B
(4

58
) CC

CA
TT
CT
TC
AA
CA
CC
GC
CA
TC
GC
AC
AA
GG
CA
GC
GT
GT
CA
AA
AC
CC
AG
CT
TT
GG
TT
TT
AA
AC
TC
GC
CA
AA
AA
CG
AT
--
--

Am
an

ita
 m

us
ca

ria
 p

ro
te

as
e

(7
33

) CC
CT
CC
AT
TT
TA
CA
AC
GC
CA
TT
CA
AC
AA
GA
TT
TG
TT
GG
AC
GA
AA
AG
AG
AT
TT
GC
CT
TT
TA
TT
TG
GG
AG
AC
AC
TT
CA
AA
GG

Sc
 v

ac
.P

ro
te

ina
se

A 
pr

ec
ur

so
r.(

13
60

) AC
CA
GT
AT
TC
TA
CA
AT
AT
GT
TC
AA
CC
AG
GG
TC
TC
AT
CG
AT
GC
TC
CC
GT
TT
TC
TC
TT
TC
TA
TT
TG
AA
TC
GT
GA
TC
CA
AG
TG

 A
ed

es
 a

eg
yp

ti l
ys

os
om

al 
as
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rtic
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ro

te
as

e 
mR

NA
 se

q.
..

(6
85

) AC
CC
AT
AT
TT
GA
CA
AC
AT
GA
TG
AA
CA
GG
CA
CC
TG
GT
GG
CC
CA
AG
AC
CT
GT
TC
TC
CG
TT
TA
CA
TG
AG
CA
GG
AA
TG
AC
--
--

 R
at

tu
s n

or
ve

gic
us
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ro
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ym

os
in 

(L
OC

56
82

5)
, m

RN
A.

(5
92

) CC
CT
GT
CT
TT
GA
CA
AC
AT
CT
GG
GA
CG
AG
GG
TC
TG
AT
TT
CC
GA
AG
AC
CT
CT
TC
TC
TG
TC
TA
CC
TG
AG
CT
CC
AA
TG
AC
--
--

Ca
me

lus
 d

ro
me

da
riu

s m
RN

A 
fo

r p
ep

sin
.

(6
22

) CC
CT
GT
CT
TT
GA
CA
AC
CT
GT
GG
GA
CC
AG
GG
CC
TG
GT
TT
CC
CA
AG
AC
CT
CT
TC
TC
CG
TC
TA
CC
TG
AG
CT
CC
AA
TG
AC
--
--

Pi
g 

pe
ps

ino
ge

n 
A 

mR
NA

, c
om

ple
te
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ds

.
(6

15
) CA

CT
GT
GA
TG
CA
AG
GC
AT
GA
TT
CA
AC
AG
AA
TC
TC
AT
CA
AC
CA
AC
CT
CT
CT
TT
GC
AT
TC
TA
CC
TT
AG
TG
GG
CA
AC
AG
AA
CT
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na

 c
at

es
be
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a 

pe
ps

ino
ge

n 
mR

NA
, c

om
ple

te
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ds
.

(5
78

) TC
CT
GT
AT
TT
GT
AA
AC
AT
GA
TC
AA
AC
AA
GG
TG
TA
GT
TG
AT
TC
CC
CA
GT
GT
TT
TC
CT
TT
TA
TT
TA
AG
CA
GG
AA
TA
TA
AC
GA
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 a
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te
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e 
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so

r m
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(5
62

) AC
CA
GT
GT
TT
GA
CA
AC
AT
GT
GG
AG
CC
AA
GG
AC
TC
AT
AC
CA
CA
GA
AC
CT
CT
TT
TC
TG
TG
TA
TC
TC
AG
CT
CT
GA
TG
GT
--
--

Xe
no

pu
s P

ep
sin

og
en

(5
84

) CC
CT
GT

TT
TG
AC
AA
CA
TG
AT

AA
CC
AG
GG
TC
TG
AT

CC
AA

CC
CT
CT
TT
TC

TT
CT
A
CT
GA
GC

G
AA
TG
A 
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7)
--
-A
CC
TG
AA
TG
AC
GG
A-
GA
GA
TT
AC
TT
TT
GG
AG
GA
CT
GG
AT
GA
CA
CC
AA
GT
TC
GA
TC
CA
AA
GA
CC
CT
GA
TT
AC
CG
TG
CC

Pr
ot

B
(5

38
) --

--
--
--
--
--
--
-T
CA
GA
AC
TT
TA
CC
TG
GG
CG
GT
GC
CA
AA
TG
CA
AG
CT
TT
AC
AC
CG
GG
GC
--
CA
TT
GA
AT
CG
CA
CA
GC
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te

as
e

(8
09

) AT
AC
TG
AA
AA
TG
GC
GG
T-
GA
AG
CC
AC
CT
TT
GG
TG
GT
AT
TG
AC
GA
GT
CT
AA
GT
TC
AA
GG
GC
GA
--
-T
AT
CA
CT
TG
GT
TA
CC
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te
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A 
pr
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ur

so
r.(

14
40

) --
-C
TG
CT
GA
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