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Abbreviations: 
 
δ                                             chemical shift 
λ                                             wavelength  
br                                            broad 
cm                                           centimeter 
°C                                           Degree Celsius 
C                                             Coulomb 
CH2Cl2                                    dichloromethane 
CDCl3                                     chloroform 
DBU                                       1,8-diazabicyclo[5.4.0]-undec-7-ene 
DCM                                      dichloromethane 
DMF                                       N,N-dimethylformamide 
E.I.                                          Electron Ionisation 
ESA                                         Excited State Absorption 
F                                              Faraday 
FAB                                         Fast Atom Bombardement 
FD                                            Field Desorption 
HOMO                                     Highest Occupied Molecular Orbital 
IR                                             Infra Red 
LUMO                                     Lowest Unoccupied Molecular Orbital 
m                                              meter 
MS                                           Mass spectroscopy 
NLO                                         Non linear optics 
NMR                                        Nuclear Magnetic Resonance 
OL                                            Optical Limiting 
Pc                                             Phthalocyanine 
ppm                                          parts per million 
Nc                                             Naphthalocyanine 
RSA                                          Revere Saturable Absorption 
Tetracyclone                             tetraphenylcyclopentadien-1-one 
THF                                           Tetrahydrofurane 
THF-d8                                      octa deuterated tetrahydrofurane 
TLC                                           Thin layer chromatography 
UV/Vis                                      Ultra-violet/Visible  
V                                                Volt 
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1. Introduction 

 

 In the area of materials chemistry, the growth of interest in using all-optical, electro-

optical and opto-mechanical devices in modern technology has been very high, especially in 

the last few years. For example, the substitution of electronic by optical devices in 

communication technology, showed to be an impressive accelerator for proceeding, transport 

and storage of data. Manipulation of amplitude, polarization, direction or phase of the optical 

beam is of unique significance. In order to carry out these manipulations, an understanding of 

the nonlinear optical phenomena is essential. 

 The structural prerequisite for the verification of NLO phenomena[1] in organic 

compounds is the presence of a network of delocalized  π−conjugated electrons, which infer 

high polarizability and fast charge redistribution when the conjugated molecule interacts with 

rapidly variable intense electromagnetic fields like those of laser radiations.[2] Among the 

conjugated organic molecules possessing NLO properties, the class of phthalocyanines (Pc’s) 

and related species like naphthalocyanines, occupy a prominent position due to their high 

thermal and chemical stability and the ease of preparation and purification.[3] 

 Phthalocyanines offer great structural flexibility, and can host ~70 different elements 

in the central phthalocyanine cavity. Moreover a large range of peripheral substituents of 

phthalocyanines is known, which were introduced in order to improve the poor solubility of 

unsubstituted phthalocyanine.  

Several mechanisms can give rise to NLO response. NLO properties of 

phthalocyanines are of great interest, since these compounds combine several physical and 

chemical properties favourable for the development of effective optics devices into a single 

compound.[4] The intention of developing optical limiting (which will be discussed later) 

devices for eye and sensor protection from aggressive energetic light pulses motivated 

researchers in the quest of better materials for this purpose.[5,6] Pc’s show optical limiting 

(OL) effect  through the mechanism of excited state absorption (ESA). This means the OL 

effect generated by Pcs is an accumulative nonlinearity because it is produced through the 

polarization of the electronic ground state and the successive absorption from this polarized 

state as determined by the intensity of the applied electric field.[7]  

 The following paragraphs will demonstrate the potential of phthalocyanines in 

the field of materials science, and specially for optical limiting applications.  

 



 10

2. Phthalocyanines and related macrocycles 

 

Phthalocyanines are widely used as pigments in textiles, polymers and paints.[8] They 

exhibit remarkable qualities like lightfastness, brightness and stability towards environmental 

influences. Pc's consist of a planar macrocycle with an 18 π-electron system, which mainly 

confers this known stability. For many years, these macrocycles have been the target of 

meticulous investigation,[3,8] particularly considering their properties as dyes.[9,10] In recent 

times, research has been retargeted for applications in materials science,[11-15] including, 

phthalocyanines as liquid crystals,[16-18] as Langmuir-Blodgett films,[19-23] as molecular semi-

conductors,[24] in electrophotographic applications,[25-28] in optical-data storage,[29-31] in cancer 

therapy,[32-34] in fuel cells,[35] in photoelectrochemical cells,[36] in photovoltaic cells,[37] in gas-

sensing devices,[38-45] as organic semi-conductors,[11-13,46,47] as photosensitizers,[48] and in 

nonlinear optics.[4,49,50] Phthalocyanines do not occur in nature, but they are structurally 

related to porphyrins such as haemoglobin, vitamin B12 and chlorophyll (see Figure 1). 
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Figure 1: Porphyne (PM), porphyrazine (PzM), phthalocyanine (Pc) and 

naphthalocyanine (Nc) complexes 
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A metal-free phthalocyanine was found for the first time in 1907 as by-product during 

the preparation of 2-cyanobenzamide.[51] However, not much importance was given to the 

discovery at that time. Later, in 1927, a copper phthalocyanine was prepared in 23% yield by 

reacting 1,2-dibromobenzene with copper(I) cyanide in pyridine.[52] The structure of this 

substance was investigated meticulously by Linstead. He was the first to use the term 

phthalocyanine,[53] deriving the name from the Greek words naphtha (rock oil) and cyanine 

(blue). In the subsequent years he elucidated the structure of phthalocyanines as well as 

procedures for obtaining several metal phthalocyanines and the metal free Pc's.[54-62]  

As mentioned before, nowadays, phthalocyanines have numerous applications. This 

extensive use of phthalocyanines is due to their remarkable structural flexibility.[63] The 

coordination number of the square-planar phthalocyanine is four, and therefore many of the 

metals, having higher coordination numbers, can bond with a variety of axial ligands.[3]  

 

2.2 Absorption spectra of phthalocyanines 

 

Purity and intensity of phthalocyanine's colour arises from an isolated and intense 

band (Q-band) at the red end of the visible spectrum of light, between 650 and 720 nm 

approximately. A second band (B-Band) appears between 300 and 400 nm, being generally 

less intense (Figure 2). In the spectra of metal phthalocyanine solutions, the intense Q-band 

arises from a doubly degenerate  π-π*-transition between the A1g (a2
1u) ground state to the 

first excited singlet state, which has Eu (a1
1ue1

g) symmetry. The second allowed π-π*-

transition (B-band) is caused by a transition between either an a2u or a b2u orbital to the eg 

orbital (LUMO).[64]  

In the case of metal free phthalocyanines all states are non-degenerated, due to the 

reduced D2h molecular symmetry. The Q-band transition is polarized in either the x or y 

direction, and is therefore splitted in two bands.[5]  
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Figure 2: UV/Vis spectra of (RO)8PcMg (R = 2-ethylhexyl) 

 

Additional bands, which appear in the spectra of certain molecules can be assigned to 

metal-ligand or ligand-metal charge transfer or even to exciton coupling between the π-

systems of dimeric complexes.[3]  

 

2.3 General synthesis of phthalocyanines 

 

In general, the synthesis of phthalocyanines proceeds from a single step reaction, 

normally denominated cyclotetramerization of benzoic acid or its derivatives, e.g. phthalic 

anhydride, phthalimide, o-cyanobenzamide, phthalonitrile or isoindolinediimine[3,65] (see 

Figure 3).  

The most used precursor for substituted phthalocyanine synthesis is the substituted 

phthalonitrile, or in some cases, when the low reactivity of the precursor inhibits the 

macrocycle formation, isoindolinediimines can be used as well. Nucleophilic hindered bases 

like 1,8-diazabicylo-[5,4,0]-undec-7-ene (DBU) can be used as powerful catalysts for the 

cyclotetramerization of phthalonitriles in solution (e.g. pentanol, octanol), with the metal ion 

as template for the formation of metal phthalocyanines.[3] 
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Figure 3: Phthalocyanine synthesis scheme 

 

 2.4 Solubilization of phthalocyanines 

 

The solubility of phthalocyanines in common organic solvents can be increased by 

introduction of bulky or long chain substituents in the periphery of macrocycle (peripheral 

substitution) and/or, in case of possibility, by coordination of the central metal with additional 

axial ligands (axial substitution).[66-68] Depending on the position of the substituents in the 

precursor, different structural isomers are formed during the preparation of phthalocyanines. 

Asymmetric precursors, like 3-, 4-, 3,4-, 3,5- substituted phthalonitriles, form a mixture of 

structural isomers during the tetracyclomerization. As an example, the four isomers of 2,(3)-

tetrasubstituted phthalocyanine are shown in Figure 4. The single isomers are (C4h) 2,9,16,23-, 

(D2h) 2,10,16,24-, (C2v) 2,9,17,24- and (Cs) 2,9,16,24- tetrasubstituted complexes.  

Symmetrically disubstituted precursors, due to their location, form either the 

2,3,9,10,16,17,23,24-[69] or the 1,4,8,11,15,18,22,25-[3] octasubstituted phthalocyanines 
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(Figure 5). Also the 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecasubstituted have been 

prepared.[70]  

Substituents enable phthalocyanine solvation because they increase the distance 

between the stacked molecules.[3,11] The peripherally substituted phthalocyanines studied in 

more detail are the tetra- and octa- substituted ones.[11] Generally, the solubility of tetra-

substituted phthalocyanines is higher than the octasubstituted analogues, mainly due to the 

fact that the tetrasubstituted phthalocyanines are prepared as a mixture of isomers (see 

Figure 4), and therefore, leading to a lower degree of order in the solid state, when compared 

to the symmetrically octasubstituted phthalocyanines. 
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Figure 5: 1,4- and 2,3- octasubstituted phthalocyanines  

 

Furthermore, the less symmetrical isomers have a higher dipole moment derived from 

the more unsymmetrical arrangement of the substituents in the periphery of the macrocycle. 

This was proven by Hanack et al. after complete separation of the four structural isomers for 

the first time.[71-73] 

 

2.5 Expansion of the π-system: benzoannulated phthalocyanines 

 

Preparation of benzoannulated phthalocyanines such as 1,2-naphthalocyanine (Nc), 

2,3-naphthalocyanine, anthracenocyanine (Ac) or 9,10 phenanthrenocyanine (Phc), from the 

corresponding benzoannulated phthalonitriles, is carried out under similar conditions to those 

of general phthalocyanine synthesis (Figure 6).  

The characteristic properties of these complexes are mainly due to their extended 

π-electron systems. In the electronic absorption spectra going from 2,3-naphthalocyanine to 

2,3-anthracenocyanine, an increasing bathochromic shift of the Q-band compared to 

phthalocyanines is observed.[74] The HOMO-LUMO energy gap generally decreases in 

systems with larger π-electron delocalization. This increasingly larger π-electron system 

enhances intermolecular π-π interactions, favouring stronger aggregation and lower 

solubility.[75] 
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Figure 6: Benzoannulated phthalocyanines  

 

Electronically, 1,2-naphthalocyanines are similar to phthalocyanines. There is only a 

small bathochromic shift of the Q-band.[76] Angular annulation of the benzo moieties has a 

smaller effect on the HOMO-LUMO energy gap than the linear annulation[75,76] (Figure 7).  

 

 
Figure 7: HOMO-LUMO energy gap between H2Pc, 2,3-H2Nc, 1,2-H2Nc and H2Phc 
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3. Optical limiting: A nonlinear optical effect 
 

Some special materials have the particular property of changing reversibly their optical 

properties with the variation of  the radiation intensity  I  during their irradiation with intense 

light-sources. These effects are verified when  I  reaches  a material-specific critical value 

(here denoted as  Ilim), at  which the material undergoes a physical and/or chemical transition 

leading to the reversible modification of the optical properties of  the material itself.[78] In 

general, light intensity modifies the absorptive, refractive and scattering properties of the 

illuminated system once I >Ilim. In the case of molecular species, the extinction coefficient  k 

can vary with the intensity I according to a relationship:  

 

                                                k  = k0  [1/ 1+( I/Ilim)]                                                                (1) 

 

with  k0  corresponding to the  low intensity limit value of  k. Equation (1) describes  the 

optical behaviour of a saturable absorber and expresses the fact  that the extinction coefficient 

k  decreases with the increase of  the incident intensity. In doing so, the optical system gets 

more transparent at higher incident intensities, and behaves like an intensity-activated optical 

switch. On the other hand, in the case of optical limiting (OL) systems the opposite situation 

is verified, i.e. the optical system has an extinction coefficient which increases reversibly with 

the augmentation of  the incident radiation intensity.[79,80] This phenomenon constitutes the so-

called reverse saturable absorption (RSA), and takes mostly place with the irradiation of 

organic dyes, donor-acceptor molecules, fullerenes and, in less extent, inorganic 

semiconductors. The OL effect can be produced also by means of several other mechanisms 

based on fundamental optical processes different to absorption, e.g. refraction and/or 

scattering. In fact, OL effect based on radiation diffraction or scattering does not  allow the 

formation of  a well-resolved image once  the incident light rays  have interacted  with the 

optical limiter system. As a consequence, optical limiters based on  phenomena other than 

absorption have the practical limitation of not being useful for the protection of those complex 

light-sensitive elements, e.g. the eye, employed in direct viewing operations which require a 

clear vision of the surrounding environment. For this reason among the available systems for 

the limiting of intense radiations, those based upon the phenomenon of absorption are 

preferable. 
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3.1 Nonlinearity of the Optical Limiting Effect 

 

In the practice, the occurrence of the OL effect is verified when a constant output 

intensity Iout (in J cm-2 s-1) is transmitted through the limiter once  the incident intensity  Iin 

exceeds the system-characteristic threshold value Ilim. This means that no matter of how many 

photons per unit of  time will impinge the system, the flux of photons passing through the 

system remains constant when the irradiation of  the system has levels of photonic fluxes 

corresponding to the situation   Iin> Ilim. The optical response of an ideal optical limiter is 

presented in Figure 8.  

 

Figure 8: Trend of the light intensity Iout transmitted by an ideal optical limiter versus the 

incoming light intensity Iin. In the abscissae axis the threshold intensity Ilim at which Iout 

saturates is indicated. 

 

 

The transmittance T [= d(Iout) / d(Iin)]  of  an ideal optical limiter  is not constant 

within the whole regime of  irradiation and T becomes a  function  of  Iin with T 0 for Iin >> 

Ilim.  A  useful parameter for the evaluation of the OL effectiveness of different systems  is the 

intensity threshold defined as  the incident intensity value at which the transmittance of  the 

system is equal to the 50% of the linear transmittance.   

As nonlinear optical (NLO) phenomenon, the effect of OL can be also analyzed in terms of 

the  vector polarization  P
r

 defined  as  the number of dipole moments per unit volume of  

material (in C m-2), and its variations with the applied electric field  E
r

(in V m-1) of  the 

interacting  electromagnetic wave. In the weak field regime, the polarization and the electric 

field  of  the applied radiation are directly related according to:       

 

Ilim

I ou
t /

 W
at

t

Iin/ Watt
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                                                       P
r

= ε0 χ  E
r

                                                                 (2) 

 

where χ  is  the generalized macroscopic susceptibility (a tensorial property), and ε0 the 

dielectric constant of  the vacuum   ( 8.85 x 10-12  F m-1). In the case of  strong field regime, 

the susceptibility becomes itself  a  function of  the applied electric field, thus giving rise to a 

nonlinear dependence of  polarization on applied electric field. In a system of non-interacting 

molecules, the macroscopic susceptibility χ is given by the product of the molecular 

polarizability α’ and the density number N (in m-3) of the molecules:  

 

                                   χ  =  N α’                                                                                                (3) 

 

At low light intensities, the polarization P
r

 is only dependent on the frequency of the light. 

Nevertheless, in an intense electric field of a laser beam, the polarization cannot follow the 

oscillations of the electric field linearly and the macroscopic polarization P
r

 varies with the 

amplitude of  the electric field E
r

: 

 

PI(ω1) = ∑
J

)1(
IJχ (-ω1;ω2) EJ (ω2) + ∑

JK

)2(
IJKχ (-ω1;ω2,ω3) EJ (ω2) EK (ω3) +  

              ∑
JKL

)3(
IJKLχ (-ω1;ω2, ω3,ω4) EJ (ω2) EK (ω3) EL (ω4)                                                     (4) 

 

In equation (4) χ(1), χ(2) and χ(3) describe the linear, the second and third order optical 

susceptibilities, respectively.  

An important mechanism for the occurrence of NLO effects like OL is optical 

pumping. In this case the incident laser frequency approaches a transition frequency in the 

molecule. The light is absorbed, causing transitions to the excited state. The optical properties 

of the excited state differ considerably from those of the ground state and the higher the 

population in the excited state, the larger the changes in the optical properties of the material. 

Optical pumping involves real transitions to the excited state, and this phenomenon is  quite 

different from the small perturbations of the electronic cloud which are verified in the regime 

of  linear polarization. Optical pumping can induce both saturable and reverse saturable 

absorption depending on the difference of the absorption properties of  the system between 

the ground  and excited  states at  the wavelength of irradiation.  
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3.2 Optical limiting: mechanisms and models 

 

It is usually convenient to describe a molecular optical limiter as a  system possessing 

four relevant electronic energy  levels for the analysis of  NLO absorption produced by these 

species (Figure 9). In a four-level system like the one depicted in Figure 9, the absorption of  

the photon can take place for both transitions [1 3] and  [2 4] with σ13 and σ24 as 

absorption cross-sections, respectively. Assuming the lifetimes of the states with the energies 

values corresponding to the levels 3 and  4 are short  (this implies fast intersystem crossing 

(ISC)  [3 2] and fast fluorescence decay [4 2] ), then the only significantly populated levels 

will be 1 and 2 during the irradiation process.  

 

Figure 9: Energy diagram of a four-levels system. Full lines indicate absorption from ground 

[1→3] and excited states [2→4]; dashed lines represent  intersystem crossing [3→2] and 

excited state fluorescence [4→2] (fast processes); dotted line indicates phosphorescence 

[2→1] (slow process) 

 

The kinetics representing the time variations of the different levels in a  four-level 

model during irradiation are given by  the following equations: 

 

                                     dN1/dt  = - σ13 ΦinN1+ N3/τ31+ N2/τ21                                                  (5) 

                                     dN2/dt  = - σ24 ΦinN2+ N3/τ32+ N4/τ42- N2/τ21                                     (6) 

 

where Ni , τ jk  and Φin represent  the population in the i-level, the time required for  the 

transition [j k] and  the flux of incident photons (in: number of photons / cm2 s), 
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respectively. The steady state solutions  for  the populations at  the level 1  and  2  are  given 

by: 

 

                   N1(Steady state)  = Ntot(1 + Φin/Φsat)-1                                                                   (7) 

                   N2(Steady state)  = Ntot (Φin/Φsat)/(1 + Φin/Φsat)                                                    (8) 

 

being  Ntot = N1+ N2  (N3 and N4 are considered negligible), and  Φsat = 1/(σ13τ21). At  this 

point is  convenient to define an effective absorption cross-section σeff through the Lambert-

Beer equation: 

 

                                               (dΦin/ dz) = -Φin σeff N’tot                                                           (9)  

 

in which N’tot is the number of absorbers per unit of volume and z is  the direction of light 

propagation, in order to obtain the steady-state dependence of  σeff  on  Φin (statement of 

nonlinearity of  the optical absorption of  a four-level system): 

   

                                   σeff =  σ24 + {(σ13 - σ24) /[1+(Φin/Φsat)]}                                             (10) 

 

In  a  saturable absorber σ13 > σ24  and strong irradiation achieved when Φin   > Φsat,  brings  

about a bleaching  of  the system, i.e. the ratio   Φout /Φin   tends to increase with increasing 

irradiation. Such a  phenomenon doesn't produce  OL purposes because this requires the 

decrease of  the ratio Φout /Φin  upon Φin   increase.  On the other hand, the OL will be  

achieved when the four-level system fulfills the condition σ24 > σ13, i.e. the system in the 

excited state has a larger absorption cross-section  with respect to the ground state at  the 

wavelength of irradiation.  

The behaviour of the four-level system will then correspond to the operation 

accomplished by  an optical limiter based on NLO absorption and the four-level system is 

recognized as a reverse saturable absorber. Equation (6) shows the effectiveness of the 

nonlinear absorption  produced with excited state absorptive systems, which relies upon the 

value of  the excited state absorption cross-section σ24 at  the wavelength of  irradiation. From 

this analysis the OL effect generated by molecular systems like Pc’s is an accumulative 

nonlinearity because it is produced through the polarization of the electronic ground state and 

the successive absorption from this polarized state as determined by the intensity of the 

applied electric  field. An important characteristic associated with the accumulative feature of 
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the operation mode in reverse saturable absorbers is  the scarce dependence of  the absorption 

kinetics on the incident pulse duration. Consequently, the response of  the optical limiter 

based on reverse saturable absorbers is mainly dependent on the radiation fluence (in photons 

per irradiated area), instead of the radiation intensity (in photons per irradiated area per unit  

time). 

The excited state absorption is not the sole mechanism with which optical limiting 

effects can be achieved. In fact other mechanisms can intervene in processes of optical 

limiting like thermal refractive beam spreading,[82] non-linear refraction[83] or optical 

breakdown-induced scattering.[84,85] In the latter case, a perturbation of the electronic 

distribution with the electric field associated with the incident light, or an directional 

rearrangement of polar molecules with intensity-dependent changes of the refractive index 

represent the active mechanisms for the occurrence of optical limiting.  

The  values  of  χ(3)  attainable  through  electron-cloud  deformation  or  molecular  

alignment  fall  in  the  range  10-34–10-29  C  m  V-3  with  transition   time  in the  order  of  

10-15-10-9 s. [86,87] On the other hand the mechanism of multiple absorption originated by 

optical pumping,[88] can result in values of χ (3) as high as 10-19 C m V-3.[89] Such relevant 

differences are basically due to an electronic transition to excited states and not simply an 

electronic redistribution is involved in the process of optical limiting. 

The response-time in optical pumping can vary quite extensively in a range from 10-13 to 10-3 

s , being directly proportional with the lifetime of the first  upper excited state.[90] This can 

affect radically the values of Ilim at which saturation occurs. The involvement of excited states 

in the mechanism of optical pumping brings about not only intensity-dependent absorption, 

but also intensity-dependent refraction.[81]  

 

3.3. Phthalocyanines and optical limiting  

 

As already pointed before, the structural prerequisite for the verification of NLO 

phenomena[1] in organic compounds, such as optical limiting, is the presence of a network of 

conjugated π−electrons, which infer high polarizability and fast charge redistribution when 

the conjugated molecule interacts with rapidly variable intense electromagnetic fields like 

those of laser radiations.[2] In the variety of conjugated organic molecules possessing NLO 

properties, the class of phthalocyanines (Pc’s) and related species like naphthalocyanines, 

porphyrins or tetraazaporphyrins (see Figure 1), occupy a prominent position for the high 

thermal and chemical stability and the ease of preparation.[3] 
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Pc’s show OL effects through the mechanism of excited state absorption (ESA). This 

means the OL effect generated by Pcs is an accumulative nonlinearity because it is produced  

through the polarization of the electronic ground state and the successive absorption from this 

polarized state as determined by the intensity of the applied electric field.[7]  

Phthalocyanines are a class of materials which is most extensively investigated, due to 

the remarkable ability of modulation of phthalocyanine’s physical properties as required, 

through suitable chemical derivatization of the phthalocyanine frame[36,91a-d] or variation of 

the central metals.[91-109] 

To be used as optical limiters, phthalocyanines must show a high level of linear 

transmission and large nonlinear absorption over a broad spectral bandwidth, as well as a high 

threshold for damage. Moreover, the nonlinear absorption must appear within a sub-

nanosecond response time.[4] Among the phthalocyanine based nonlinear absorbers that have 

been used as optical limiting materials and approach the necessary characteristics for a 

practical device some examples can be cited: (β-cumylphenoxy)4PcPb (A),[91e-h] (tert-

butyl)4PcInX compounds (B),[4,90,92a,92b] (tert-butyl)4PcTi[O2C6H2)(CN)2] (C).[92c] 
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There are several structural factors that can influence the optical limiting properties of 

phthalocyanines. In general, the appropriate changes in the structure by chemical modification 

are mostly enough to change significantly the OL properties of the phthalocyanine. This 



 24

chemical modification can change positively or negatively several aspects of electronic, 

molecular and supramolecular properties of the material. Consequently, all the factors 

discussed below must be taken in account for the achievement of an effective optical limiter. 

Varying the central atom (metal) in a phthalocyanine can cause a change in the 

performance of the material as an optical limiter. Central moieties, such as VO, TiO, GaCl or 

InCl, have the ability of introducing high dipole moments perpendicularly oriented to the Pc 

or Nc ring, which alter the electronic structure of the macrocycle,[93a] and introduce new steric 

effects that modify the packing properties of PcMX's.[90] 

The introduction and variation of peripheral substituents in phthalocyanines can also 

modify the structural arrangement of the molecule or the spatial relationship between 

neighbouring molecules. The use of unsymmetrically substituted phthalocyanines are another 

approach to enhance the OL properties of phthalocyanines, since the introduction of non-

symmetry in structural arrangement can change the electronic structure of the macrocycle.[93b] 

Our working group has been very much interested the in last few years on the 

improvement of the Pc's structural characteristics in order to achieve OL properties 

enhancement.[90,92a,94-108]] 

Optical limiting properties have been mainly studied for monomeric Pc's. Only few 

studies have been carried out for dimeric or binuclear Pc's.  
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Among dimeric Pc’s, the NLO properties of  µ-oxo bridged Pc dimers with the general 

structure Pc(X)M-O-M(X)Pc [M = Fe, Ga and In (compound D), diisocyanobenzene (dib) 

(compound E) and 2,3,5,6 tetrafluorophenylene(TFP) (coumpound F), X= Cl and 

TMP][97,108,109h] have been studied, mostly in our group. The larger OL effect generated by the 
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dimers PcInX-dib-InPc as bridging ligand with respect to the bridged dimers PcIn-TFP-InPc, 

indicates the sharing of the common axial ligand TFP in PcIn-TFP-InPc reduces the excited 

absorption cross-section of the lower triplet excited state which is responsible for the 

nonlinear optical absorption. On the other hand, the similarity of the Z-scan profiles (see page 

20) for [tBu4PcInCl]2.dib and [tBu4PcIn(p-TMP)]2.dib combined with their better OL 

performance, is indicative of the favorable effect associated with the presence of the 

additional axial electron-withdrawing groups Cl and TMP in their structures.[108]  
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A newly synthesized dimer with a direct M–M bond [tBu4PcM]2 2L with M = In and L = 

tmed (tmed = N, N, N`, N`-tetramethylethylenediamine) (compound G) display  OL 

properties with improved features with respect to the single Pc ring coordinated by one single 

metal atom.[102,109h] Similarly, the Pc dimer with central Ti atoms bridged by tetrahydroxy-p-

benzoquinone (compound H) also displays an OL effect with improved characteristics if 

compared with the parent monomer.  



 26

The above referred optical limiting measurements were only carried out for these type 

of dimers. Directly conjugated binuclear Pc's, as we will explain later (see page 24), were not 

used for OL studies, so far. 

The NLO properties of dimeric Pc’s constituted by sandwiched 

bis(phthalocyaninato)lanthanides have been studied and analyzed  by several groups.109a-c] 

Modifications of  the energy levels scheme involved in the NLO processes are usually taken 

into account due to the existence of cofacial interactions between the two Pc rings.[109d] The 

main structural limitation associated with the use of  lanthanide Pc’s is the impossibility of 

varying the electronic properties of the sandwiched coordinating atom through, e.g. axial 

substitution, due to the fixed valence of the lanthanides. The OL properties of sandwich-type 

lanthanides diphthalocyanines were also investigated.109e,109f] In one of  these studies, it was 

demonstrated that Eu[Pc(OC5H11)8]2  exhibited better optical limiting behavior than 

Eu[Pc(C7H15)8]2   (compound I).[109e] 

 

                                              I           R = C7H15 and  OC5H11 

 

 

3.4. Naphthalocyanines and optical limiting 

 

As pointed out before, being analogues of phthalocyanines, naphthalocyanines have a 

more extended conjugated π-system due to the additional tetra-benzo-annulation (Figure 1). 

Such a structural modification is reflected in case of 2,3-naphthalocyanines in their UV-Vis 

spectra as a strong bathochromic shift of the Q-band and as the enlargement of the highly 

transparent window between the Q- and B-bands, desirable for optical limiting. To the 
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contrary, UV-Vis spectra of 1,2-naphthalocyanines do not differ very much from those of 

Pc’s: the position of the Q-band is almost not affected by 1,2-annulation indicating no strong 

conjugation of the annulated benzo-rings with the phthalocyanine macrocycle.[75,76] 

Therefore, only 2,3-naphthalocyanines received an attention in connection with their 

optical limiting properties. No OL studies on 1,2-naphthalocyanines were reported till now. 

The approaches for the fine tuning of OL properties of naphthalocyanines are quite similar to 

those used for the modification of OL properties in phthalocyanines, e.g. peripheral and/or 

axial ligand substitution, variation of the central atom, etc. However, one should take into 

account that the negative effects connected with their tendency to aggregate and/or to 

decompose photochemically are stronger than in case of phthalocyanines.  
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OL measurements were carried out in our group for the first time on axially substituted 

gallium tetra-tert.-butyl naphthalocyanines t-Bu4NcGaCl, t-Bu4NcGa(p-TMP) (compound J) 

and the µ-oxo-dimer [t-Bu4NcGa]2O in chloroform solutions.[98] An hexadecafluorinated 

gallium-2,3-naphthalocyanine F16NcGaCl (coumpound K) and a µ-oxo-dimer [F16NcGa]2O 

were also prepared and studied recently by us.[103] Although the solubility of the monomeric 

species appeared to be too low for OL-studies, the optical limiting properties of the dimeric 

[F16NcGa]2O were studied in THF and compared with those of t-Bu4NcGaCl, [t-Bu4NcGa]2O 

and C60 at 532 nm irradiation, exhibiting the best results for (F16NcGa)2O. 

Through the appropriate peripheral substitution, the Nc’s can give an increased 

transmitting window, shifted to the red, which is desirable for the fabrication of optical 

limiters effective in the broad visible-light range including the red-light region. Some 

substitution patterns which provoke absorption in the near-IR and infer high solubility to 

indium-naphthalocyanines as materials for OL were also realized (compound L).[110] Among 
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these octa-substituted Nc’s the mixed substituent derivative (t-Bu)4(EHO)4NcInCl, where 

EHO is 2-ethylhexyloxy, and its axially substituted analogue (t-Bu)4(EHO)4NcIn(p-TMP) 

have shown high solubility and no aggregation at 2×10-3 M concentration in chloroform. 
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3.5. Z-scan technique 

 

The measurement techniques used in the studies of these materials are third-harmonic 

generation (THG),[87] degenerate four-wave mixing (DFWM),[111-114] electric field induced 

second harmonic generation (EFISH),[115] and Z-scan methods.[116-118] This last referred 

method will be discussed in more detail, also in connection with the measurements of  the OL 

effect generated by the compounds whose synthesis is reported in this thesis (page 60).  

The Z-scan technique[117] allows the experimental determination of  nonlinear 

transmission and nonlinear refraction. In the Z-scan technique  the sample under investigation 

moves along the optical axis of a focused Gaussian beam. The sample experiences  a large 

variations of the incident intensity along its path and nonlinear optical effects can be then 

induced. 

 

3.5.1. Some examples 

Considering a Gaussian beam in a tight focus geometry as shown in Figure 10, the 

transmittance of a nonlinear medium is recorded through an open or closed aperture as a 

function of the sample position z measured with respect to the focal plane (z = 0). The sample 

for  a Z-scan  determination  must  have  a  thickness  smaller  than  the  diffraction  length 

w0
2 π / λ  ( w0  is the beam waist radius at  the focus and λ is the laser wavelength) of the 

focused beam (thin medium condition).  



 29

- z + z

D1

D2

Beam splitter Sample

Aperture

 
Figure 10: Typical Z-scan set-up. The ratio of the signal measured by the photo diodes D2/D1 

is recorded as a function of sample position Z 

 

In the simple case of positive nonlinear refractive index and absence of nonlinear 

absorption in the far field region, the beam irradiance is low and negligible nonlinear 

refraction occurs. Consequently  the transmittance  remains constant. As the sample is brought 

closer to the focus, the beam irradiance increases, leading to self-lensing effects  in the 

sample. A positive self-lensing prior to focus will tend to broaden the beam, as shown in 

Figure 11-b, causing a beam broadening in correspondence of the closed aperture which 

results in a decrease of the measured transmittance. As the scan in Z continues and the sample 

passes the focal plane to the right (positive Z), the same self-defocusing decreases the beam 

divergence, leading to beam narrowing in correspondence of  the closed aperture, and thus 

transmittance increases, as represented in Figure 11-c. This is analogous to placing a thin lens 

at or near the focus, resulting in a minimal change of the far-field pattern of the beam. The Z-

scan is completed as the sample is moved away from focus (positive z) such that the 

transmittance becomes linear since the irradiance is again low. Therefore, a prefocal 

transmittance minimum (valley) followed by a postfocal transmittance maximum (peak) is the 

Z-scan signature of  the sole positive refractive nonlinearity as shown in Figure 12 when a Z-

scan closed aperture configuration is adopted (presence of a spatial filter in front of  D2 with 

an aperture smaller than the beam diameter in Figure 10). Negative nonlinear refraction, 

following the same analogy, gives rise to an opposite peak-valley pattern. The sign of the 

nonlinear index is then immediately obvious from these patterns (Figure 12).  
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Figure 11:  (a) Linear and (b,c) nonlinear optical behavior of  a refracting system with n2 >0 

(b) before and (c) after the passage through the Gaussian beam focus in a Z-scan experiment. 

 

 
Figure 12: Z-scan signature for the sole occurrence of negative (positive) refraction 

nonlinearity resulting from a prefocal  beam narrowing (broadening) followed by a postfocal 

beam broadening (narrowing). In case of n2 > 0, the optical effects originating the Z-scan 

pattern of this figure are shown in Figure 11 (b) and (c). 

 

In case of  positive nonlinear absorption, i.e. occurrence of RSA,  then in the open 

aperture configuration (presence of a spatial filter in front of  D2 with an aperture larger than 

the beam diameter in Figure 10), the typical Z-scan pattern is that presented in Figure 13. As 

the sample approaches the beam focus the  increase of  beam intensity promotes changes  in 

the sample in such a  way  that  the overall absorption coefficient of  the sample increases and, 

consequently, the transmission decreases. In the far field region, i.e. Z >> 0 or <<0, which 
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corresponds to the linear optical regime, the transmittance value of the system reaches 

reversibly  the pristine value. 

 

 
 

Figure 13: Z-scan pattern of a positive nonlinear absorber (RSA occurrence). 
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II - Aim of the work 

 

 The objective of this work is a systematic study on the synthesis and an investigation 

of optical limiting (OL) properties of binuclear metal phthalocyanines based on the structure 

type as represented in Figures 14 and 15. 
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Figure 14: Unsymmetrically substituted binuclear metal phthalocyanines 
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 Figure 15: Symmetrically substituted binuclear metal phthalocyanines 

 

The intention of our work at first is synthetic, since we plan to synthesize the binuclear 

metal phthalocyanines shown in Figures 14 and 15 with the same metals but also with 

different metals.[120] In a primary approach, copper and nickel seem to be convenient for the 
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later purpose, since both have good chelating and stabilizing properties for the formed 

phthalocyanines.[11,120,121] Afterwards, indium and gallium are planned to be examined (Figure 

16), in a way that optical limiting could be investigated, since phthalocyanines with metals 

from this group, as pointed out before, possess enhanced OL properties.[4,95,109] Another 

important feature is that the planned synthetic pathway (see below) permits to introduce 

asymmetry in the binuclear metal phthalocyanines, due to an asymmetric substitution pattern 

(see Figure 14).  
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Figure 16: Binuclear phthalocyanines designed for optical limiting 

 

The synthesis of the binuclear metal phthalocyanines shown in Figure 14 and 15 will 

follow the procedure from Scheme 1 (page 31). The binuclear In and Ga phthalocyanines 

given in Figure 16 were synthesized via the corresponding Mg compounds according to 

Scheme 5 and Scheme 10 on page 45 and 48, respectively, representing the first approach to 

obtain these compounds through a direct synthesis.  

 The measurements of the OL properties of the synthesized compounds is also part of 

the work. Emphasis will be put on the performance of the synthesized complexes as optical 

limiters. These investigations were carried out at Trinity College in Dublin, Ireland, in 

cooperation with the group of Prof. Dr. Werner Blau, supported by an E.U. network scientific 

project, and with Prof. Dr. James Shirk, at U. S. Naval Research Laboratory, in Washington, 

D.C. U.S.A.  
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III - Results and discussion 

 

 1. Synthesis of binuclear phthalocyanines 

 

Planar or nearly planar binuclear Pcs, binuclear Pc-triazolehemiporphyrazinates 

(Thp)[123,124] (Figure 17) and phthalocyanine based dimers[124-135] are known. As an example, a 

dimer in which two Pcs are linked with bis(acetylene) bridges[125] (Figure 18) was obtained by 

coupling the Pc derivatives having two acetylene units in the presence of a copper salt in 

pyridine. Another example is an oligo(phenylenevinylene)-bridged Pc dimer[127] (Figure 19), 

obtained by our group through the reaction of 2 equivalents of a modified Pc-monoaldehyde 

with 1 equivalent of p-xylylene bis(triphenylphosphonium)bromide. Also a Pc dimer fused 

with anthraquinone was reported recently by our group[126] (Figure 20). Torres et al. reported 

the preparation of heterodimetallic binuclear Pc-derivatives, having Ni and Zn as different 

metals (Figure 21).[124] Preparation of heterodimetallic binuclear Pc-Thp-compounds with Ni 

and Zn have also been reported by the same authors.[123]  
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Figure 17: Binuclear Pc-triazolehemiporphyrazinate (Thp)[123,124] 
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Figure 18: Dimer linked by bis(acetylene) bridges[125] 
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Figure 19: Oligo(phenylenevinylene) bridged Pc dimer[127] 
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Figure 20: Pc dimer fused with anthraquinone[126] 
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Figure 21: Heterodimetallic binuclear Pc[124] 

 

Among the reported binuclear Pcs, the metal free compound with the structure given in 

Figure 22 with twelve dodecyloxy substituents was synthesized by mixed condensation of 

didodecyloxydiiminoisoindoline with naphthalene-bis(diiminoisoindoline).[129] The reaction 

was carried out in one step, producing the mononuclear octadodecyloxy phthalocyanine and 

other statistical products, among the desired binuclear Pc, which was isolated in a comparable 

low yield. A corresponding binuclear metal phthalocyanine was not prepared. In contrast to 

the binuclear Pc shown in Figure 21,[124] which can also be considered as an unsymmetrically 
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substituted mononuclear Pc, two complete Pc's are linked together in the phthalocyanine 

shown in Figure 22. 
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Figure 22: Metal-free binuclear Pc[129] 

 

We have developed now a new synthesis of binuclear Pc's (Scheme 1, page 31/32) of the 

type shown in Figure 22, which allows us to obtain the binuclear Pcs 12-15 containing the 

same metals, Ni, and also different metals e. g. Ni and Cu in the same molecule (14, 15), as 

well as to obtain unsymmetrically substituted binuclear PcM's (12, 14).[120]  

The new synthesis starts with the Pc 11, (page 31), containing two cyano groups. These 

benzoannulated unsymmetrically substituted PcMs are desirable building blocks for the 

preparation of polymers,[127] for the linkage of PcMs with other materials, e.g. poly p-

(phenylenevinylene) (PPV),[127,138] or in our case as the starting material for the synthesis of 

binuclear PcMs. 

 The combination of two different phthalonitriles permits the preparation of 

phthalocyanines with high functionality. In principle, two different phthalonitriles A and B 

can be condensed to give six different phthalocyanines, in a statistical distribution (Figure 23).  
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Figure 23: Possible products from a statistical condensation  

 

 From the six possible isomers shown in Figure 23, which are formed by the reaction of 

1 and 2, the one which is the necessary compound to carry out a straightforward synthesis of 

12–15 is the unsymmetrically substituted phthalocyanine 4 (see Scheme 1). By changing the 
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ratio between the two dinitriles 1 and 2 in the statistical synthesis, the resulting amount of 

each isomer can be varied, so that the required isomer 4 is obtained in good yield. In the 

following, we describe which relative portions of the six phthalocyanines 3-8 in the product 

mixture are to be expected by varying the stoichiometry of 1 and 2, assuming a simple model, 

with the same kinetics for all the condensation steps. When the ratio between the dinitriles A 

(1) and B (2) is 1:1 (i.e. 50%), the probability of obtaining AA, AB and AB is approximately 

(0.5)2 = 0.25. However, for AB it must be considered that BA makes the same contribution, 

because there are two permutations of the elements A and B at two places. Thus, for all six 

specified Pcs 3–8, the probability is (0.5)4 = 0.0625. This number, however, must be still 

multiplied by the number of permutations. This simple model does not consider the template 

and/or steric or electronic effects. In addition, it does not consider that the particle reservoir 

decreases during the reaction. However, this can be neglected, to the good approximation of 

the large particle number.[136]  

 In Table 1 an example with the number of permutations and the relative portions of 

products 3–8 for different reactions stoichiometry used in the model of Cook et al.[136,137] is 

given. 

 

Table 1: Expected relative portions from the statistical condensation mixture of products. 

A:B 3 (AAAA) 4 (AAAB) 5 (ABAB) 6 (AABB) 7 (ABBB) 8 (BBBB) 

1:1 6.25 25 12.5 25 25 6.25 

3:1 31.6 42.2 7.0 14.1 4.7 0.4 

9:1 65.6 29.2 1.6 3.2 0.4 0.01 

Permutations 1 4 2 4 4 1 

 

From Table 1 it is evident that the relative portions obtained from a statistical 

condensation can be modulated by changing the concentrations of A and B, in order to obtain 

an excess of the desired phthalocyanine. In the present case the stoichiometry used was 3:1, 

since the desired product is the AAAB product 4, in which the theoretical yield is 

approximately 42%.  
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 1.1. Synthesis of [2,3,9,10,16,17-hexa-2-ethyl-hexyloxy-25,26-dicyano-

phthalocyaninato] nickel (11) 

 

As described, the synthesis shown in Scheme 1 allows us to obtain the binuclear Pcs 12-

15 containing the same metal as well as different metals e. g. Ni and Cu in the same molecule 

14 and 15 , as well as to obtain unsymmetrically substituted binuclear PcM's 12 and 14.[120] 

Compounds 12 and 13 were synthesized with Ni as central metal in both cavities, while 14 

and 15 containing Ni and Cu in their cavities. Both Ni and Cu were chosen as central metals 

mainly due to their good chelating and stabilizing properties of the formed Pc rings.[11,120,121]  
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Scheme 1: Overall synthesis of compounds 12-15 

 

 According to Scheme 1, first we had to synthesize and isolate considerable amounts of 

Pc 4. The subsequent steps shown in the Scheme are explained in detail in the following.  

 

 1.1.1. Synthesis and spectroscopic characterization of phthalocyanine 4[137,138] 

 (c.f. Scheme 1) 

 

To obtain the phthalocyanine 4 a statistical condensation with a 3:1 stoichiometry was 

carried out, by reacting 3 equivalents of dinitrile 1 and 1 equivalent of dinitrile 2 with 

Nickel(II)-acetate in n-pentanol at 140 °C for 18 hours, in the presence of catalytic amounts of 

DBU, as shown in Figure 23.  

The products shown in Figure 23 were separated by chromatography over silica gel. 

The first fraction, which was the AAAA-isomer 3, was eluted with dichloromethane (DCM). 

After the collection of the first fraction, the second, which was the desired fraction, was eluted 

(compound 4), using the same solvent. Chromatography was continued, but the subsequent 

fractions were eluted all together with a mixture of DCM:ethyl acetate (4:1), since the rest of 

the products were not necessary for our purpose.  

The 1H-NMR spectrum of phthalocyanine 4 show the expected aggregation and 

broadening of the signals. The multiplets of the 2-ethylhexyloxy substituents present an 

unstructured signal between 1.05 and 2.08 ppm. The aromatic signals, in spite of the 

broadening, appear as singlets. The protons of the epoxynaphthalene bridge are found at 6.24 
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ppm, while the protons from carbons 9 and 12 appear at 8.23 ppm, and the protons from 

carbon 4 at 8.80 ppm (see Figure 23, compound 4). 

The 13C-NMR spectrum shows all the characteristic signals, especially the 

epoxynaphthalene fragment at 82.7 ppm (see experimental, page 72). 

In the UV/Vis spectra of phthalocyanines, besides the intense Q-bands (650-750 nm), 

the Soret-band appears between 300 and 400 nm. Both bands are due to π-π* transitions in the 

18-π electron systems of the macrocycle.[140,141] The Q-bands are assigned to HOMO-LUMO 

transitions (Q0-0). Near this Q-band other transitions, with lower intensity, of vibrational levels 

can also be found (Q1-0), Q2-0, etc…). In the case of 4, the UV/Vis spectrum shows the Q-

bands (Q0-0) at 665 nm, and Q1-0 at 601 nm. The typical B-band appears at 401 nm. 

 

 1.1.2. Synthesis and spectroscopic characterization of phthalocyanine 9[137,138] 

 (c.f. Scheme 1) 

 

Compound 4 and tetraphenylcyclopentadien-1-one (tetracyclone) were dissolved in 

dry toluene and stirred at 70°C for 4 days. Compound 9 was obtained in 89% yield after 

chromatographic work-up. The 1H-NMR spectrum of 9 shows the characteristic signals from 

the phenyl protons in the aromatic region between 6.33 and 7.68 ppm, as well as the alkyloxy 

chains in the non aromatic region, between 1.00 and 2.06 ppm. The 13C-NMR shows also the 

characteristic C=O signal at 196.6 ppm, among the other assigned signals (see experimental, 

page 73). The IR spectrum of 9 shows clearly the C=O band at 1780 cm-1. The UV/Vis 

spectrum, when compared to its precursor, 4, shows a five nm red-shift, from 665.0 nm in 4 to 

670.0 nm in 9, for the Q-band. 

 

 1.1.3. Synthesis and spectroscopic characterization of phthalocyanine 10[137,138] 

 (c.f. Scheme1) 

The reaction of 9 with fumaronitrile in o-xylene at 140° C afforded compound 10 in 

93% yield. The reaction proceeds via the intermediate 9a (see Scheme 1) which is formed 

from 9 (with formation of tetraphenylbenzene), reacting then with fumaronitrile to give 10. 

The 1H-NMR spectrum of 10 shows the loss of the phenyl protons from the previous step, 

which were replaced by the protons that are adjacent to the cyano groups on the nonaromatic 

ring, at 3.76 ppm. The 13C-NMR shows also the characteristic CN signal at 116.3 ppm, among 

the other assigned signals (see experimental, page 74). The UV/Vis spectrum exhibits a five 

nm red-shift, to 676.0 nm, when compared to its precursor, 9, for the Q-band.  
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 1.1.4. Synthesis and spectroscopic characterization  of phthalocyanine 11[137,138] 

 (c.f. Scheme1) 

 

 Dehydration of 10 with DBU in anhydrous toluene leads to 11 in 94% yield. A 

downfield shifted singlet for the protons form the epoxy bridge is observed (see experimental, 

page 74).  The UV/Vis  spectrum  has a bathochromic shift  of  25  nm, to 700.5 nm  for the 

Q-band, due to an increased conjugation of the molecule, when compared to its precursor, 10.  

 

1.2. Ni/Ni binuclear metal-phthalocyanines 12 and 13 

 

1.2.1. Synthesis and spectroscopic characterization of the binuclear phthalocyanines 

12 and 13 

 

Pc 11 was reacted with the appropriate dinitrile [phthalonitrile or 4,5-bis(2-

ethylhexyloxy)-1,2-phthalonitrile (1)] in a statistical condensation approach in order to form 

the “second phthalocyanine ring” in 12 and 13 (Scheme 2).  
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Scheme 2: Binuclear phthalocyanines 12 and 13 
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In general, as previously discussed (page 28), in a reaction of two different dinitriles A 

and B, six different products can be expected. However, in the reaction of one equivalent of 

11, with four equivalents of phthalonitrile or phthalonitrile 1 and NiCl2 in octanol in the 

presence of catalytic amounts of 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU), only the AAAB 

and AAAA products were formed. The other isomers, e.g. AABB or ABAB are not obtained 

due to the high steric demand of dinitrile 11 (B) in the process of the chelating ring formation. 

Pure 11 does not form any BBBB-product in presence of NiCl2. Force field calculations 

carried out on the hypothetic BBBB-isomer (Hyper Chem 5.0) showed very high steric 

crowding of this isomer, as depicted in Figures 24 and 25. Separation of the AAAB and 

AAAA isomers, in case of 12 and 13, was performed by column chromatography on silica 

gel,[73] with further purification by extracting the AAAB products (12 or 13) with methanol 

several times. Were obtained yields of 23% and 20% for 12 and 13, respectively. 

 

 
Figure 24: Steric crowding of the BBBB isomer.  
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Figures 25: Rings relative orientation of the BBBB isomer (without the 2-ethylhexyloxy 

substituents).  

 

The binuclear phthalocyanine 2-ethylhexyloxy substituents in 12 and 13 lead to a 

characteristic fragmentation under the measurement conditions of FAB-MS.[130] Compounds 

12 (unsymmetrically substituted macrocycle) and 13 (symmetrically substituted macrocycle) 

show the same fragmentation pattern (Scheme 3), corresponding to the molecular peak with 

loss of two substituents as the highest signal, followed by the loss of other fragments in a 

common pattern (see experimental, pages 76/77).  
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Scheme 3: 2-Ethylhexyloxy substituents fragmentation mechanism 

 

The 1H NMR of 12 and 13 (Ni – Ni binuclear Pc’s) exhibit relatively broad peaks of 

the Pc substituents (2-ethylhexyloxy groups) and broad aromatic signals in the region between 

6.80 and 8.80 nm. The broadening is caused by the essentially flat nature of the molecules 

leading to aggregation. While the 1H NMR spectrum of 12 shows several merged peaks in the 

aromatic region mainly due to its aggregation and asymmetry (see experimental, pages 

76/77), compound 13 with its symmetric structure, has less aggregated peaks (Figure 26). The 

protons from C-2 and C-7 carbons are shown at 8.82 ppm (see Scheme 2 for numbering), 

while the C-10 protons are assigned at 8.53 ppm. The C-15 and C-17 protons are shown at 

8.20 ppm. Also the 13C-NMR spectra of the same type of compounds are quite different. The 

symmetry present in the structure of 13, leads to less similar peaks, while 12 (Figure 27), in 

spite of its aggregation, shows the aromatic carbon peaks for C-2, C-7 and C-10 around 104 

ppm. Carbons C-15 and C-17 are allocated at 124.7 and 125.1, respectively, while the C-3, C-

6, C-11, C-14 and C-16 carbons are assigned between 129.0 and133.5 ppm. The C-4, C-5, C-

12 and C-13 carbons are shown between 136.0 and 142.0, while the alkyloxy substituted 

aromatic carbons C-23, C-24, C- 31 can also be assigned around 153 ppm. 
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Figure 26: 1H-NMR spectrum of 13 (aromatic region) 
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 Figure 27: 13C-NMR spectrum of 12 (aromatic region) 
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 Figure 28: UV/Vis spectra of compounds 12 (…..), 13 (----) and 3 (–––) for comparison  

 

The UV/Vis spectra of 12 and 13 in CH2Cl2 show the Q-band maxima at 697.5 and 664.5 

nm, respectively (Figure 28). In comparison to the monomeric (RO)8PcNi (3, Figure 23) 

(AAAA product, R = 2-ethylhexyl), broad absorptions in the Q-band region can be seen in 12 

and 13 due to aggregation, which differ characteristically from the sharp peaks of the 

monomeric phthalocyanine 3. No or only a small red shift is observed for the Q-bands of 12 

and 13. This points to little π-electron delocalisation in the binuclear systems 12 and 13, 

showing an almost independent behaviour of the two Pc-rings, in terms of their UV/Vis 

spectra. When comparing the spectra of 12, 13 and (RO)8PcNi (3), a blue shift from the 

(RO)8PcNi (670.0 nm) to 13 (664.5 nm), and a red shift going from (RO)8PcNi (670.0 nm) to 

12 (697.5 nm) can be observed. 

 

1.3. Ni/Cu binuclear metal-phthalocyanines 14 and 15 

 

1.3.1. Synthesis and spectroscopic characterization of binuclear phthalocyanines 14 

and 15 (Scheme 4) 

 

The preparation of the binuclear Pc’s 14 and 15 was carried out by a similar method to 

that of 12 and 13, by reacting one equivalent of 11, with four equivalents of the corresponding 

dinitriles [phthalonitrile or 4,5-bis(2-ethylhexyloxy)-phthalonitrile (1)] respectively, and 

CuCl2 in octanol in the presence of catalytic amounts of DBU (Scheme 4). Separation of the 

products was performed, as shown previously, by column chromatography on silica gel, and 

further purification was achieved by extracting the product with methanol several times. The 
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bimetallic compounds 14 and 15 were isolated in pure form in a yield of 20 and 18%, 

respectively, based on 11.  
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Scheme 4: Binuclear phthalocyanines 14 and 15 

 

Atomic absorption spectroscopy (AAS) was used for further characterization of 14 and 

15, specially to prove the presence of two different metals in these Pc's. 

 

 1.3.1.1. Atomic Absorption Spectroscopy - a simple and effective method for 

qualitative and quantitative determination of metals[142,143] 

 

Atomic absorption spectroscopy (AAS) is an analytical method for qualitative and 

quantitative determination of most of the metals and metalloid elements from the periodic 

table. It is a technique in which gaseous ground state atoms absorb electromagnetic radiation 

at a specific wavelength to produce a corresponding measurable signal. The absorption signal 

corresponds to the concentration of the ground state atoms present in the optical path. The 

method used by us, flame atomic absorption, is one of the most widely used techniques for 

trace metal analysis, reflecting its simplicity of use and relative freedom from interferences. 

The sample, usually in solution is sprayed into the flame by means of a nebulizer with 

generation of an aerosol.  
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The type of flame employed was a premixed combustion flame consisting of acetylene 

as fuel and air as oxidant gas. This premixed flame is stable, simple to operate and produces 

enough atomisation to enable good sensitivity and freedom from most of interferences. A 

lamp is used for irradiation of this flame. The radiation lamp used was a demountable hollow-

cathode lamp, which is a low-pressure gaseous discharge tube in that only the cathode needs 

to be changed when going from one element to another. 

All light-absorbing methods follow the Lambert-Beer law, which states, in terms of 

AAS, that a light beam passing through a mass of absorbing gas decreases exponentially in 

intensity as the number of reacting atoms is summed up arithmetically. The expression of this 

law is:  

Ix = I0 x 10-KC 

where I0 is the intensity of the entering beam, Ix the intensity of the emerging beam, C the 

concentration of atoms that the beam encounters, and K a constant including such variables as 

path length and temperature. 

Flame Atomic Absorption Spectroscopy (FAAS)[142,143] was also used for the 

quantitative determination of the metals Ni and Cu in 14 and 15.  

Three standard solutions of both nickel(II) acetylacetonate and copper chloride at fixed 

concentrations were prepared, using THF as solvent, in order to calculate a calibration curve. 

Note that the concentration (µg/l) was calculated to the metal in the salt, e.g. 10 µg/l of Cu in 

CuCl2 solution. Then a solution of respectively 14 and 15 in THF was prepared. The 

absorbance values for the standard solutions were then measured, followed by measurement 

of the solutions of 14 and 15. The calibration curves were then plotted (Figure 29) and the 

effective concentration of Ni and Cu in 14 and 15 calculated. The values for the absorbance 

for the respective concentrations of the metal salts are listed also in Table 2, as well as the 

values recorded for the solutions of 14 and 15 in Table 3. 

From the calibration curve equations, which were calculated as the logarithmical 

approximation curves, (Table 2) the concentration of Ni and Cu in each binuclear Pc (Figure 

29) was calculated. For 14 the calculated value was a concentration of 1.9 µg/l of Ni and 2.3 

µg/l of Cu. For 15 the value found was 1.8 µg/l for Ni and 2.1 µg/l for Cu. This values are in 

agreement with the difference in molecular weight of Ni (58,69 g/mol) and Cu (63.55 g/mol), 

and therefore of the difference of the concentration of both metals.  
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Table 2: Values of absorbance recorded for the solutions of the metal salts Ni-(II) 

acetylacetonate and CuCl2, as well as its respective calibration curve equations 

Compound Concentration 

(µg/l) 

Absorbance  

(a. u.) 

Calibration curve  

Ni-(II) 

acetylacetonate 

2 

10 

20 

0.429 

0.810 

1.098 

 

y = 0.4995ln(x) + 0.1177 

CuCl2 2 

10 

20 

0.357 

1.384 

1.589 

 

y = 0.5532ln(x) + 0.0052 

 

Table 3: Values of absorbance recorded for the solutions of 14 and 15  

Compound Absorbance value 

for Ni ion (a. u.) 

Absorbance value 

for Cu ion (a. u.) 

14 0.438 0.467 

15 0.399 0.410 
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Figure 29: Calibration curve for a) Ni salt solutions and b) Cu salt solutions (absorbance in 

arbitrary units (a. u.) and concentration in µg/l) 

 

The 1H NMR and 13C NMR spectra of 14 and 15 (Ni/Cu binuclear Pc’s), show 

extremely broad and weak resonances, due to the paramagnetism of Cu and aggregation of the 

molecules. However, the characteristic peaks for 14 and 15 could be detected (see 

experimental, pages 78/79). 

The UV/Vis spectra of all the binuclear phthalocyanines 12–15, are compared in the 

following. The UV/Vis maxima of 12–15 measured in CH2Cl2 are listed in Table 4. In 

comparison with the monomeric Pc's (RO)8PcNi (3) and (RO)8PcCu (R = 2-ethylhexyl), 
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broad absorptions in the Q-band region are observed for 12–15 due to aggregation, which 

differ characteristically from the sharp peaks of the monomeric PcMs (RO)8PcNi (3) and 

(RO)8PcCu. No or only a small red shift is observed for the Q-bands in PcMs 12–15, which 

points to only little π-electron delocalisation in the binuclear systems, as described for the 

Ni/Ni binuclear Pc's 12 and 13 before. Thereby they show an almost independent behaviour 

of the two Pc-rings, in terms of the UV/Vis absorption spectra. Only a small shift to lower 

wavelength of the Q-band is observed going from 14 to 12, and from 15 to 13, respectively. 

This can be explained by the influence of Cu in the binuclear Pc, also supported by the 

observed shift to lower wavelength when comparing (RO)8PcCu and (RO)8PcNi (3) (Table 4). 

In the cases of 12 and 14, the distance between the first and the second maxima of Q-band, 

which is characteristic for unsymmetrically substituted phthalocyanines, increases going from 

12 to 14. This is due to the presence of different metals in the binuclear Pc 14. This shift is 

more evident comparing 13 with 15, since these compounds are symmetric, and therefore, the 

dependence can be assigned to the metal interaction only. A blue shift of the Q-band maxima 

is observed between (RO)8PcCu and (RO)8PcNi (3) by 9 nm, the same effect can be seen 

between 14 and 15, however to a lesser extent. When we compare the spectra of 14, 15 and 

(RO)8PcCu, a blue shift going from the (RO)8PcCu to 15, and a red shift going from 

(OR8)PcCu to 14 can be observed. Likewise, the same effect can be detected when comparing 

(RO)8PcNi (3) with 13 and 12, respectively.  

 

Table 4: Values of Q and B transition absorption for the list of compounds.  

Compound Q0-1 (nm) Q0-0 (nm) Q1-1 (nm) B0-0 (nm) B0-1 (nm) 
12 697.5 669.0 640.0 (sh) ------ 321.0 
13 664.5 626.0 (sh) ------ ------ 312.5 
14 699.5 661.0   638.0 (sh) ------ 326.0 
15 672.5 631.0 (sh) ------ ------ 304.0 

(RO)8PcCu 679.0 611.5 (sh) ------ 418.0  339.5 
(RO)8PcNi 670.0 604.0 (sh) ------ 410.0  310.0 

 a) All the spectra were recorded in CH2Cl2 as solvent. (R = 2-ethylhexyl) 

 

 2. Binuclear metal phthalocyanines for optical limiting purposes 

 

 The design of binuclear metal phthalocyanines in order to achieve effective optical 

limiting materials lead us to the previously discussed methods for the preparation of such 

materials (page 31 ff). Because phthalocyanines with In or Ga as central metal are known to 

have good optical limiting performances,[4,95,101,109] we directed our research now to the 
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synthesis of this type of binuclear metal phthalocyanines using the same approach as 

described for the synthesis of Ni/Ni and Ni/Cu binuclear Pc's (12, 14) (c.f. page 31 ff). 

To achieve the functionalized dicyano substituted phthalocyanine 19, (Scheme 5) but 

with InCl or GaCl as central moieties is expected to be difficult, due to the poor stability of 

this moieties against the number of steps which are necessary to obtain these corresponding 

binuclear metal phthalocyanines.  

To solve this problem an approach was used in which InCl or GaCl can be inserted in 

the final step, avoiding the expectable big losses of material throughout all steps shown is 

Scheme 2. Following the method developed by S. Vagin in our laboratory[100,144] we 

synthesized and isolated compound 16, containing Mg as central metal, in reasonably large 

amounts using the same method as described before. The further steps were carried out as 

described for the analogue Ni compounds. Since magnesium (Mg) is a relatively easy metal to 

remove[100,144], this step could be done after achieving the Mg/Mg binuclear phthalocyanine 

(20) shown in Scheme 10 on page 49. The metal free binuclear phthalocyanine 21, is than the 

starting material for the preparation of suitable optical limiting effective metal binuclear 

phthalocyanines 22 and 23 containing InCl or GaCl, respectively. 

 

 2.1. Synthesis of the unsymmetrically functionalized [2,3,9,10,16,17-hexa-

2-ethylhexyloxy-25,26 dicyano phthalocyaninato] magnesium 19   
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Scheme 5: Overall synthesis to obtain compound 19 
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The synthesis of compounds 16–19 (Scheme 5) was accomplished by similar methods 

used earlier in the case of the binuclear nickel Pc's. The target compounds in each step are 

structurally similar. Consequently, the spectroscopic characterization of these Pc's is very also 

similar. 

 

2.1.1. Synthesis and spectroscopic characterization of phthalocyanine 16 

 

A statistical condensation with 3:1 stoichiometry was carried out to obtain 

phthalocyanine 16, by reacting 3 equivalents of the dinitrile 1 with 1 equivalent of 

phthalonitrile 2 with magnesium(II) pentanolate in n-octanol at 150 °C, for 24 hours (Scheme 

6). After chromatographic workup 16 was obtained, besides the other statistical products (see 

page 29).  

The 1H-NMR spectrum of phthalocyanine 16 shows, as pointed out before for the 

corresponding Ni-compound 4, the predictable aggregation and broadening of the signals. The 

identification and assignment of the peaks were easier when the 1H- and 13C-NMR spectra 

were recorded in deuterated THF as solvent, since this solvent forms a complex with the 

magnesium phthalocyanine, reducing the level of aggregation, as well as the observation of a 

downfield shifting in NMR (see experimental, page 80). In the 1H- NMR spectrum the 2-

ethylhexyloxy substituents are shown between 0.95 and 2.05 ppm, plus the OCH2 groups at 

4.49 ppm. At 7.83 ppm appear the protons from the epoxide bridge (see Scheme 6 for 

numbering), while the H-1 protons appear at 8.58 ppm. The H-9 and H-4 protons appear at 

9.09 and 10.00 ppm, respectively.  
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Scheme 6: Synthesis of 16 
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2.1.2. Synthesis and spectroscopic characterization of phthalocyanine 17 

 

Compound 16 and tetraphenylcyclopentadien-1-one were dissolved in dry toluene and 

stirred at 70°C for 4 days to obtain 17 in 89% yield (Scheme 7). The 1H-NMR spectrum of 17 

shows the characteristic signals of the phenyl protons in the aromatic region, between 6.94 

and 7.67 ppm, as well as the alkyloxy chains in the nonaromatic region, between 0.81 and 

2.40 ppm, while the 13C-NMR spectrum presents the characteristic C=O signal at 196.6 ppm, 

among the other assigned signals (see experimental, page 81). The IR spectrum of 17 also 

reveal clearly the C=O band at 1780 cm-1. The UV/Vis spectrum shows a two nm red-shift, 

from 682.5 in 16 to 685.0 nm in 17.  
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Scheme 7: Synthesis of 17 

 

 

 

2.1.3. Synthesis and spectroscopic characterization of phthalocyanine 18 

 

The reaction of 17 with fumaronitrile in o-xylene at 140°C via the appropriate 

intermediate 17a which is formed from 17, giving tetraphenylbenzene. Subsequently it 

reacted with fumaronitrile, (Scheme 8) affording compound 18 in 93% yield. The 1H-NMR 

spectrum of 18 shows the loss of the phenyl protons from the previous step, which were 

replaced by the protons that are adjacent to the cyano groups on the nonaromatic ring, at 3.25 

ppm. The 13C-NMR spectrum presents also the characteristic CN signal at 116.7 ppm, among 

the other assigned signals (see experimental, page 82). The UV/Vis spectrum shows it's Q-

band maximum at 686.0 nm. 
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Scheme 8: Synthesis of 18 

 

2.1.4. Synthesis and spectroscopic characterization of phthalocyanine 19 

 

Dehydration of 18 with DBU in anhydrous toluene at 110° C (Scheme 9) afforded 19 

in 94% yield. A downfield shifted singlet for the protons corresponding to loss of the epoxy 

bridge is observed at 8.56 nm (see experimental, page 83). The UV/Vis spectrum shows a 

bathochromic shift of 25 nm for the Q-band, from 686.0 nm in 18 to 710.5 nm in 19, due to an 

increased conjugation of 19, when compared to its precursor, 18.  
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Scheme 9: Synthesis of 19 
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2.2. Binuclear metal-phthalocyanines 22 and 23 with InCl and GaCl as central 

moieties 

 

2.2.1. Synthesis of binuclear phthalocyanines 20-23  

 

A statistical condensation, similar to the one carried out for the formation of the 

binuclear Ni/Ni and Ni/Cu phthalocyanines 12–15 was used to obtain phthalocyanine 20, by 

reacting 19 with a 10-12 fold excess of phthalonitrile 3 and magnesium(II) pentanolate in n-

octanol at 175 °C, for 24 hours (Scheme 10). The other main product of this reaction was 

unsubstituted PcMg, that could be easily separated from 20 by chromatographic workup on 

silica gel.  
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Scheme 10: Binuclear phthalocyanine 20 

 

 The binuclear phthalocyanine 20 was heated with trifluoroacetic acid in THF for 5 

hours, to give the metal free compound 21, which was purified by chromatography on silica 

gel (Scheme 11). The eluent used to collect the first fraction (21) was dichloromethane. The 

second fraction (unreacted 20) was eluted afterwards with a mixture dichloromethane–THF 

(10:1). Compound 21 was then precipitated from methanol/dichloromethane.  
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Scheme 11: Binuclear phthalocyanine 21 

 

A mixture of binuclear Pc 21 and a large excess of InCl3 in DMF and a small portion 

of quinoline was heated just below the boiling point of the solvent, in order to obtain 

compound 22 (Scheme 12). After completion of the reaction (monitored by UV/Vis 

spectroscopy and thin-layer chromatography) water was added dropwise to the mixture to 

precipitate the compound. After centrifugation the solid compound was heated in boiling 

methanol for 1 hour for removal of impurities and collected by filtration. 
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Scheme 12: Binuclear phthalocyanine 22 

 

The method used for the preparation of the Ga/Ga compound (23) was similar to the 

one used for preparation of 22, taking an excess of GaCl3 (Scheme 13) in this case. 
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Scheme 13: Binuclear phthalocyanine 23 

 

2.2.2. Spectroscopic characterization of binuclear phthalocyanines 20–23  

 

The 1H-NMR spectra of 20, 22 and 23 are somewhat similar, as expected, since the 

basic structures of the binuclear Pc's are identical (see Figure 30, for example). The 

introduction of metals with an axial ligand, (GaCl and InCl, in this case) did not solve the 

problem of aggregation, typical for this type of compounds, though the Mg/Mg binuclear Pc 

20 tends to aggregate even more than the other compounds. This is due to the small size of 

Mg, and the lack of an axial substituent. Furthermore, since the binuclear Pc's possess one 

unsubstituted ring, the aggregates can be formed through stacking,[145] on account of the 

essentially flat nature of the molecules. The aromatic region of the 1H-NMR spectra of 20, 22 

and 23 shows merged peaks, due to the aggregation as well as their asymmetry (see 

experimental, pages 83-87). In Figure 30 it is represented the aromatic region of the 1H-NMR 

spectrum of 22, showing at 6.91 ppm the protons H-25, H-30, H-33 and H-38. At 7.17 and 

7.28 ppm the H-17 and H-15 protons can also be seen, respectively. Between 7.40 and 7.90 

ppm the H-10, H-9 and H-2 are shown while the H-1 and H-8 protons can be seen around 

8.84 ppm. 
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Figure 30: 1H-NMR spectrum of 22 (aromatic region) 

 

The aggregation is even stronger in the metal free binuclear Pc 21, especially seen in 

the  aromatic  region  of its 1H-NMR  spectrum. The  characteristic NH peaks  can be  seen at 

-0.26 and -0.45 ppm. Since these protons are not equivalent, due to the asymmetry of the 

molecule, two peaks appear in the referred region.  

Also 13C-NMR spectra are very similar for the compounds 20–23. The assigned 

carbon peaks appear in the same region for these compounds (see experimental, page 84-87). 

For instance, the 13C-NMR spectrum of 23 (Figure 31) shows the aromatic carbon peaks for 

C-22, C-25 and C-30 in the region around 105 ppm. The C-1, C-8,C-9 and C-2, C-7, C-10 

carbon atoms of the unsubstituted part of the binuclear Pc can be assigned around 123 ppm 

and 130 ppm, respectively. Carbons C-15 and C-17 can be allocated at 127.3 and 128.7, 

respectively. The alkyloxy substituted aromatic carbons C-23, C-24, C- 31 can also be 

assigned around 155 ppm. 
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Figure 31: 13C-NMR spectrum of 23 (aromatic region) (R = 2-ethylhexyl) 

 

The IR spectra of compounds 20-23 are resembling to normal phthalocyanines. The 

important feature is that the IR spectrum of 21 (metal-free binuclear Pc) has the typical NH 

stretching band at 3298 cm-1, and compounds 22 and 23 show the loss of this band, due to 

metalation.  

 In the mass spectra, in spite of the typical fragmentation that occurs when measuring 

the FAB-MS spectra of these compounds, as discussed before (see pages 36/37), all the peaks 

could be assigned, as well as the molecular peaks (see experimental).  

 The formula for 22 and 23 with both axially chlorine in the syn position to each other 

is arbitrary. We have no information from the spectra whether or not the other isomer with an 

anti position of the chlorines is also present. 

 

Table 5: Values of Q and B bands in the UV/Vis spectra for 21–27.  

Compound Q0-1 (nm) Q0-0 (nm) Q1-1 (nm) B0-0 (nm) B0-1 (nm) 
20 706.0 (sh) 676.0 652.0 (sh) 432.5 362.0 
21 724.0 (sh) 688.0 667.0 (sh) ------ 358.0 
22 ------ 689.0 663.0 ------ 353.0 
23 718.5 (sh) 687.0 654.5 (sh) ------ 344.0 
24 ------ 679.0 613.0 (sh) ------ 360.0 
26 ------ 698.5 629.5 (sh) 446.0 362.5 
27 ------ 694.5 625.0 (sh) 441.0 357.5 

 a) All the spectra were recorded in CH2Cl2 as solvent. (R = 2-ethylhexyl) 
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The UV/Vis maxima of 20-23 measured in CH2Cl2 are given in Table 5. Compounds 

24 [(RO)8PcMg], 26 [(RO)8PcInCl] and 27 [(RO)8PcGaCl], which will be discussed later, are 

also included in Table 5. When comparing the binuclear Pc's with the respective monomers 

(20 with 24, 22 with 26 and 23 with 27), there is no red-shift for the more intense peak of the 

Q-band for the binuclear Pc's 20–23. The shoulders show a red-shift of the band of 

approximately 25 in all cases. As can be seen for the monomers, in which their UV/Vis 

spectra shows a red-shift when going from 24 to 26, passing through 27, the binuclear Pc's 

also present the same feature, i.e. a red shift can be observed going from the Mg/Mg binuclear 

Pc, passing through the Ga/Ga binuclear Pc and the In/In binuclear Pc (Figure 32). Comparing 

these unsymmetrical compounds with the also previously discussed Ni/Ni binuclear Pc 12 and 

Ni/Cu binuclear Pc 14 (page 43-table 4) we can observe and confirm that the asymmetry in 

this type of compounds plays an important role in their UV/Vis absorption features. Also the 

employed type of central moiety in these compounds determines the observed UV/Vis 

characteristics. Independent of the kind of peripheral substituents present in the Pc ring, 

(RO)8PcInCl always shows a red shift of the Q-band, compared to the analogous 

(RO)8PcGaCl, and even more pronounced than that of (RO)8PcMg or (RO)8PcNi and 

(RO)8PcCu. Therefore, the observed red-shift is due to the influence of the different central 

moieties, but not as shown earlier to an extended delocalization in the ring π-electrons. 
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Figure 32: UV/Vis spectra of compounds 20 (–––), 22 (----) and 23 (…...) for comparison 
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The metal-free binuclear Pc 21 also has a very different UV/Vis spectrum, when 

compared with the mononuclear metal free Pc's. The characteristic double Q-band of the 

compounds is hardly observable in 21, as already described by other authors.[129]  

 

3. Synthesis of octaalkoxy substituted Ga, In and Tl Pc's 

 

 Recently, the substituent effect in several Pc's was studied in our laboratory.[106] Pc -

based materials possessing strong electron withdrawing substituents like fluorine or 

trifluoromethyl at the peripheral positions show low optical transmission at high levels of 

irradiation.[106] To our knowledge, only in few cases previous to this referred work a possible 

electronic effect of the peripheral substituents features on the optical limiting properties of a 

Pc macrocycle were taken in consideration.[146-148] Here we give some additional contribution 

to this issue. Electron withdrawing groups in conjugated molecules increase their oxidation 

potential, consequently increasing the chemical stability of these systems against e.g. 

oxidation due to intense light.[106]   

 Octasubstituted Pc's with electron donating substituents and GaCl and InCl as central 

moieties have not been discussed before. Therefore a comparison of these compounds with 

the state of art molecule (tBu4)PcInCl was another scope of this work. 

 The comparison of the OL properties of Pc's with Ga and In as central moieties has 

been studied very much in detail by our group. However, due to the synthetic difficulties, the 

last element of this group, namely Thallium (Tl) has not been studied so far, except in one 

case.[149] For the first time we synthesized an octaalkoxy substituted thallium–Pc–compound, 

namely (RO)8PcTlX with R = 2-ethylhexyl and X = OCOCF3. 

 Octa-(2-ethylhexyloxy)phthalocyaninato magnesium (24) is used for obtaining these 

compounds because treating the alkoxy substituted phthalonitrile directly with GaCl3, InCl3 or 

Tl(CF3COOH)3 proceeds only with difficulties. Using a similar approach to the one 

previously applied for the preparation of the In/In and Ga/Ga binuclear Pc's 22 and 23, Mg is 

removed from 24, yielding 25. The octa-(2-ethylhexyloxy)phthalocyanine (25) is than treated 

with the corresponding metal salt, in order to obtain  the desired metallated Pc's 26, 27 and 28.  
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3.1.Isolation and spectroscopic characterization of Mg phthalocyanine 24 

 

Mg

N

N

N

N
N

N

N
N

RO

RO

RO

RO OR

OR

OR

OR

24  
  

[(RO)8PcMg] (24) is collected as the first fraction from the chromatographic separation of the 

products from the statistical condensation to prepare 16 (see Scheme 6). The collected 

fraction was precipitated two times with methanol to achieve further purification. The 1H–

NMR of 24 shows, besides the typical non-aromatic signals, a signal (singlet) at 8.50 ppm, 

assigned to the Pc benzene protons (see experimental, page 87).  

 

3.2. Synthesis and spectroscopic characterization of metal free phthalocyanine 25 

 

The octa-(2-ethylhexyloxy)phthalocyanine (25) was obtained by removing the metal 

from octa-(2-ethylhexyloxy)phthalocyaninato magnesium(II) (24) with CF3COOH yielding 

82.5% of metal-free phthalocyanine 25 (Scheme 14). 
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Scheme 14: Synthesis of 25 

 

The UV/Vis spectrum shows the two characteristic Qx and Qy bands, at 700 and 664.5 

nm, respectively for 25, thereby demonstrating the removal of Mg, while 24 shows a single 

Q-band at 679.0 nm (Figure 33).  
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Figure 33: UV/Vis spectra of compounds 24 (–––) and 25 (……) for comparison 

 

The 1H-NMR of 25 is very typical for a metal free phthalocyanine, with the signal 

corresponding to the protons of NH from the macrocyclic cavity at – 0.57 ppm, besides the 

singlet in the aromatic region at 9.15, from the benzene ring of the phthalocyanine (see 

experimental, page 88). 

 

3.3. Octasubstituted indium (26), gallium (27) and thallium (28) Pc's 

 

3.3.1. Synthesis and spectroscopic characterization of phthalocyanines 26 and 27  

 

 Indium and gallium were inserted in the cavity of the macrocycle 25 as 

precursor for these compounds. By reacting 25 with the corresponding metal chloride in DMF 

as solvent, 26 and 27 were obtained in 88 and 62.5% yields, respectively (Scheme 15).  
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Scheme 15: Synthesis of 26 and 27  



 65

 

The 1H- and 13C-NMR spectra are very similar for both compounds (see experimental, 

pages 89/90). For example, the 1H-NMR spectrum of 27 is shown in Figure 34, which 

presents the characteristic alkyloxy substituents in the region between 0.92 and 2.05 ppm, as 

well as the -OCH2 groups at 4.39 ppm. The characteristic singlet assigned to the Pc protons 

appear at 9.16 ppm. 

 

Figure 34: 1H-NMR spectrum of 27 (R = 2-ethylhexyl)  
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Figure 35: UV/Vis spectra of compounds 24 (–––) 26 (……) and 27 (----) for comparison 
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The UV/Vis spectra of these compounds differ in the position of the Q-band maxima, 

being 698.5 and 694.5 nm for 26 and 27, respectively (Figure 35). This shows that, in similar 

phthalocyanine structures, the metal has some influence on the UV/Vis spectra. From Ga to 

In, a red shift of the Q-band of approximately 5 nm can be seen (698.5 nm in 26 and 694.5 nm 

in 27). This is due to the size of the metal. (RO)8PcMg (24) has a Q-band maximum at 679.0 

nm. 

 

3.3.2. Synthesis and spectroscopic characterization of phthalocyanine 28  

 

Several attempts to reproduce the above discussed method for the introduction with 

TlCl3 in the Pc core were unsuccessful. In other words, the corresponding Pc with an axial Cl 

could not be obtained. Then we used Tl(CF3COO)3, as the metal salt, which proved to be 

successful to synthesize the corresponding (RO)8PcTlX 28 with R = 2-ethylhexyloxy and X = 

OCOCF3.  

Octa-(2-ethylhexyloxy)phthalocyanine and Tl(CF3COO)3 were dissolved in freshly 

dried DMF (containing a small portion of quinoline), stirred and boiled at 145 °C for 6 hours 

(Scheme 16). The product was precipitated with a 10% methanolic solution of NaOH. The 

precipitation of 28 had to be done under extremely careful conditions. If no base was used, the 

reaction equilibrium would be changed back with formation of the metal-free Pc 25. The 

trifluoroacetic acid, which is formed during the reaction can demetalate 28. The presence of 

NaOH leads to the formation of NaOOCCF3, which upon washing is separated from the 

reaction mixture. The PcTl 28 is not very stable, for instance, in spite of its good solubility in 

common solvents of medium polarity, e.g. CH2Cl2, CHCl3 or any other chlorinated solvents, it 

is demetalated (forming the metal-free Pc 25). However, 28 is stable in solvents such as 

toluene, xylene, or THF, and poorly soluble in methanol or acetone.  
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When comparing the UV/Vis spectrum of (RO)8PcTlX (28) with X = OCOCF3 with 

[(RO)8PcInCl] (26) R = 2-ethylhexyl (Figure 36), the Q-band of 28 is red-shifted by 22 nm, 

from 698.5 nm in 26 to 720.5 in 28 (see experimental, page 91). This is due to the fact that Tl 

is even larger than In, being located outside the plane of the macrocycle. This feature can be 

also observed in lead phthalocyanine derivatives.[151] Another factor is the axial ligand, which 

leads also to a red-shift.[95] 
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Figure 36: UV/Vis spectra of compounds 26 (–––) 28 (-----) for comparison 
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4. Optical limiting measurements for the In/In binuclear Pc 22 

 

The optical limiting (OL) effect of 22 in toluene has been studied at the wavelength 532 nm 

with nanosecond laser pulses by means of the Z-scan technique (see page 20 ff). Z-scan 

profiles of 22 in solution have been determined  both in the open (Figure 37) and closed 

(Figure 38) aperture configurations.  In the series of experiments shown in Figures 37 and 38 

the optics was f/5, i.e. the ratio of the focal length of the lens to the diameter of the laser beam 

was equal to 5. In the closed aperture configuration the percentage of collection of the 

transmitted  radiation  was 40%.   

 

 

 

 

 

 

 

 

 
 
 
Figure 37: Open aperture Z-scan profiles of  a deaerated 5 mM solution of  22 in toluene at 
532 nm. The thickness of the sample was 35 µm. Optical windows were  made of CaF2. The 
values of  the incident energies for the various profiles are given in nJ  in the right-side 
column. 
 

In the series of  experiments in Figures 37 and 38 the energy E of the incident beam 

varied in the range 10 < E < 1500 nJ. In the open aperture experiments the diminution of 

sample transmittance in correspondence  of  the beam focus ( Z = 0)  becomes larger with the 

increase of the incident energy (Figure 37). Such findings indicate that 22 has a positive 

nonlinear absorption coefficient. Consequently, 22 behaves as reverse saturable absorber in 

the adopted range of incident energies and at  that value of  concentration in toluene solution. 

At  the highest value of incident energies (about 1400 nJ), due to thermal expansion of the 

liquid solution following the conversion into heat of the absorbed energy, the formation of gas 

bubbles in the sample could be observed. Such a phenomenon could  be associated with the 

oscillations of the sample optical transmission following  the strong absorption of radiation in 

correspondence of  the focus, and it is not indicative of compound degradation.  



 69

The Z-scan profiles determined with a closed aperture configuration are shown in 

Figure 38. The closed aperture curves are characterized by a  non symmetrical profile with 

respect to the focus position. In fact, the profiles have  a peak-valley shape, which is  

indicative  of  the occurrence of nonlinear refraction. The verification of  an increase of 

transmittance at sample positions preceding  the focus is due to a prefocal defocusing effect 

which is associated with the negative variation of  the refractive index upon increase of  the 

incident  fluence. This effect becomes apparent  at incident energies as  low as 14 nJ and 

dominates the data with the increase of the  incident energy. This negative contribution has 

mostly a thermal origin but an electronic contribution to the nonlinear variation of the 

refractive index  cannot  be  excluded. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 38: Closed aperture Z-scan profiles of  a deaerated 5 mM solution of  22 in toluene at 
532 nm. The percentage  of  collection of  the transmitted radiation was 40%. The thickness of 
the sample was 35 µm. Optical windows were  made of CaF2. The values of  the incident 
energies for the various profiles are given in nJ  in the right-side column. 
 

 

The transmission variation of  the sample of Figure 37 at  the focus of a gaussian beam 

as a function of the incident energy was determined at the wavelength 532 nm and  the results 

are shown in Figure 39.  

For binuclear Pc 22 the energy threshold at  which the transmittance  corresponds to 

50% of the linear transmittance value is about 1500 nJ  when the concentration of 22 in 

toluene is 5mM.  The OL performance of 22 with that of the "state of the art" molecule 

tBu4PcInCl (Figure 40) are compared.[152]  From the comparison of Figures 39 and 40, a larger 
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decrease of transmittance for tBu4PcInCl with respect to 22 is observed in the nonlinear 

regime. In fact, the lowest transmittance of binuclear Pc 22 sample, is below 40% when its 

linear transmittance is 80 % (Figure 39), whereas the lowest transmittance of tBu4PcInCl 

sample, is about 20% when its linear transmittance is 90 % (Figure 40).  

 

 

 

 

 

 

 

 

 

 

Figure 39: Transmittance variation  of  a 30 µm thick sample of  22 5mM in toluene as a 

function of the incident energy at 532 nm for nanosecond pulses. 

 

Figure 40: Transmission variation of  a  solution of tBu4PcInCl in toluene as a function of the 

incident fluence at 532 nm. 
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 The better OL performance of tBu4PcInCl with respect to  binuclear phthalocyanine 

22 is due to lower aggregation for tBu4PcInCl in solution, which leads to a longer lifetime of 

the excited states of tBu4PcInCl responsible for the absorption of  light at high values of 

incident  fluence. 
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IV - Summary 

 

One objective of this work was the synthesis and full characterization of binuclear 

metal phthalocyanines 12-15 (c.f. scheme 1, page 31/32)[120] containing the same metal or 

different metals e. g. Ni and Cu in the same molecule (14 and 15), as well as to obtain 

unsymmetrically substituted binuclear PcM's 12 and 14.[120] Compounds 12 and 13 were 

synthesized with Ni as central metal in both cavities. Copper and nickel where found to be 

convenient for the purpose, since both have good chelating and stabilizing properties for the 

formed phthalocyanines.[11,120,121] 

As shown in scheme 1 (c.f. page 31/32), the starting material for the synthesis of 

compounds 12-15 was the unsymmetrically substituted phthalocyanine 11, which was 

obtained employing a Diels-Alder approach. From the statistical synthesis of phthalonitriles 1 

and 2 (c.f figure 23, page 28) phthalocyanine 4 (among the other statistical products) was 

obtained. Reaction of 4 with tetracyclone afforded 9, which was subsequently (via the 

appropriate intermediate 9a) transformed into 10 by reaction with fumaronitrile. Then, 11 was 

obtained through dehydration of 10 with DBU (scheme1, page 31/32).  

Other accomplished objective was the design of binuclear metal phthalocyanines in 

order to achieve effective optical limiting materials. Because phthalocyanines with In or Ga as 

central metals are known to have good optical limiting performances,[4,95,101,109] we directed 

our research now to the synthesis of this type of binuclear metal phthalocyanines using the 

same approach as described for the synthesis of Ni/Ni and Ni/Cu binuclear Pc's (12, 14) (c.f. 

page 31 ff). 

To achieve the functionalized dicyano substituted phthalocyanine 19, (scheme 5) but 

with InCl or GaCl as central moieties was expected to be difficult, due to the poor stability of 

these moieties against the number of steps which were necessary to obtain these 

corresponding binuclear metal phthalocyanines. This problem was solved using an approach 

in which InCl or GaCl can be inserted in the final step, avoiding the expectable big losses of 

material throughout all steps shown is scheme 2. We synthesized and isolated compound 16, 

containing Mg as central metal, in reasonably large amounts using the same method as 

described above for the nickel phthalocyanine 4. The additional steps were also carried out as 

described for the Ni analogues. Since magnesium is a relatively easy metal to remove[100,144], 

this step was done after achieving the Mg/Mg binuclear phthalocyanine (20) shown in scheme 

10 on page 49. The metal free binuclear phthalocyanine 21 was the starting material for the 
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preparation and characterization of suitable optical limiting effective metal binuclear 

phthalocyanines 22 and 23 containing InCl or GaCl, respectively. 

Since the use of octasubstituted phthalocyanines with electron donating substituents 

and GaCl and InCl as central moieties for optical limiting purposes has not been discussed 

before, the idea of comparison of these type of compounds with the state of art molecule 

(tBu4)PcInCl emerged on the course of our work The comparison of the OL properties of 

phthalocyanines with Ga and In as central moieties has been studied very much in detail by 

our group. However, due to the synthetic difficulties, the last element of this group, namely 

Thallium (Tl) has not been studied so far, except in one case.[149] For the first time we 

synthesized an octaalkoxy substituted thallium–Pc–compound, namely (RO)8PcTlX with R = 

2-ethylhexyl and X = OCOCF3 (28), as well as (RO)8PcInCl (26) and (RO)8PcGaCl (27), 

being also R= 2-ethylhexyl (c.f. page 56 f.f.). Octa-(ethylhexyloxy) magnesium 

phthalocyanine (24) was used for obtaining these compounds because treating the alkoxy 

substituted phthalonitrile directly with GaCl3, InCl3 or Tl(CF3COOH)3 proceeds only with 

difficulties. Using a similar approach to the one previously applied for the preparation of the 

In/In and Ga/Ga binuclear Pc's 22 and 23, Mg is removed from 24, yielding 25 (scheme 14, 

page 55). The octa-(ethylhexyloxy)phthalocyanine (25) is than treated with the corresponding 

metal salt, in order to obtain  the desired metallated Pc's 26, 27 (scheme 15, page 56) and 28 

(scheme16, page 58).  

The  optical  limiting (OL)  properties  of  In/In  binuclear Pc 22  were  also  studied 

(cf page 60 f.f.). The OL effect of 22 in toluene has been studied at the wavelength 532 nm 

with nanosecond laser pulses by means of the Z-scan technique (c.f. page 20 ff). Z-scan 

profiles of 22 in solution have been determined  both in the open (Figure 37, page 60) and 

closed (Figure 38, page 61) aperture configurations. In the open aperture experiments the 

diminution of sample transmittance in correspondence of the beam focus ( Z = 0) became 

larger with the increase of the incident energy (Figure 37). Such findings indicated that 22 has 

a positive nonlinear absorption coefficient. Consequently, 22 behaves as reverse saturable 

absorber in the adopted range of incident energies and at that value of concentration in toluene 

solution. The Z-scan profiles determined with a closed aperture configuration ( page 61) were 

characterized by a non symmetrical profile with respect to the focus position. In fact, the 

profiles showed a peak-valley shape, which was indicative of the occurrence of nonlinear 

refraction. The verification of an increase of transmittance at sample positions preceding the 

focus is due to a prefocal defocusing effect which is associated with the negative variation of  

the refractive index upon increase of  the incident  fluence. This negative contribution has 
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mostly a thermal origin but an electronic contribution to the nonlinear variation of the 

refractive index  cannot be excluded. 

Comparison of 22 with tBu4PcInCl (figures 39 and 40, page 62) showed a larger 

decrease of transmittance for tBu4PcInCl with respect to 22 in the nonlinear regime. In fact, 

the lowest transmittance of binuclear Pc 22 sample, was about  40% when its linear 

transmittance was 80 % (Figure 39), whereas the lowest transmittance of tBu4PcInCl sample, 

was about  20% when its linear transmittance was 90 % (Figure 40). The better OL 

performance of tBu4PcInCl with respect to binuclear phthalocyanine 22 can be mostly 

explained in terms of lower aggregation for tBu4PcInCl in solution, which leads to a longer 

lifetime of the excited states of tBu4PcInCl responsible for the absorption of  light at high 

values of incident  fluence. 
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V - EXPERIMENTAL PART 

 

1. General comments  

 

 All reactions were carried out in argon atmosphere, unless otherwise stated. The 

commercial available reagents were used as acquired. Additional purification proceedings are 

described in the respective synthetic procedures. All solvents were purified and/or dried 

according to standard methods. The following equipment was used for the analysis and 

characterization of the compounds: 

 

IR Spectroscopy 

 Bruker IFS 48 and Bruker Tensor 27: solid substances were grounded with KBr and 

pressed to pellets, liquid compounds were measured directly in Bruker Tensor 27.  

 

 UV/Vis Spectroscopy 

 Shimadzu UV 2102 PC: The absorption spectra of the compound were recorded as 

solutions in CH2Cl2 (otherwise stated). The path lengths were 1 cm .  

 

 1H-NMR Spectroscopy  

 Bruker AC250 (250.131 MHz): the deuterated solvent was used as an internal 

standard. The correlation between the signals was made by using increments and by 

comparison with known related compounds. 

 
13C-NMR Spectroscopy  

 Bruker AC250 (62.902 MHz): the deuterated solvent was used as an internal standard. 

The correlation between the signals and the carbon atoms was made by using increments and 

by comparison with known related compounds. 

 

 Mass spectrometry 

 EI: Finnigan TSQ 70 MAT with direct inlet, temperature of ion source 200°C, electron 

energy 70 eV. 

  

FD: Finnigan MAT 711A, temperature of ion source: 30°C. 
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 FAB: Finnigan MAT, temperature of ion source: 30°C, electron-energy: NPOE 

(otherwise stated). 

 

 Atomic absorption spectroscopy 

 Varian Spectra A 20 plus: The type of flame employed was a premixed combustion 

flame consisting of a fuel and oxidant gas. Air was the oxidant gas and acetylene the fuel gas. 

The lamp used was a demountable hollow-cathode lamp. 

 

 Elemental analysis 

 Carlo Erba 1104, 1106 and EuroVector EA Elemental Analyzers 

 

 

 2. Synthesis 

 

Note: the numbering which is shown in the compounds figures are solely for 1H- and 13C- 

NMR assignments, does not follow  IUPAC rules.  

 

 2.1. Synthesis of precursors 

 

 2.1.1. 4,5-Bis(2-ethyl-hexyloxy)-phthalonitrile (1) 

 

 2.1.1.1 1,2-Bis(2-ethyl-hexyloxy)benzene 

 Two different procedures were carried out for the synthesis of this compound: 

 First method: 55 g of cathecol (0.5 mol) were poured under stirring into 350 ml of 

acetonitrile in a 1000 ml three-neck flask. 213 ml of 2-ethylhexylbromide (1.2 mol, 231 g) 

were added, followed by 170 g K2CO3 (1.25 mol) and the mixture was heated and stirred at 

82°C for 3 days. The solution was allowed to cool down and filtered, to retain the base, 

washing also with CH2Cl2. The solvent was evaporated and the product chromatographed 

with n-hexane to obtain 1,2-bis(2-ethyl-hexyloxy)benzene as a dark yellow viscous oil. 

Yield: 1,2-bis(2-ethyl-hexyloxy)benzene, 130 g (67%), dark-yellow viscous oil. 

Second method: 0.6 mol of finely powdered KOH (34 g) was added to 23 g cathecol 

(0.25 mol) and 13 mmol aliquat 336 (phase-transfer catalyst) (4.8 g) in a 500ml round three- 

neck flask. Then, 0.55 mol of 2-ethylhexylbromide (107 g, 88 ml). was added, with magnetic 

stirring, and the mixture was heated until 85°C and maintained, with stirring, at that 
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temperature for 2 hours. After cooling,  the only product 1,2-bis(2-ethyl-hexyloxy)benzene 

(64 g) was recovered after addition of 500 ml CH2Cl2 and the solution was filtered through a 

glass sintered filter to retain the insoluble products. After washing a few times with CH2Cl2, 

the obtained solution was kept and the solvent evaporated, resulting an yellow-brown viscous 

oil. 

Yield: 1,2-bis(2-ethyl-hexyloxy)benzene, 64 g (97%), yellow-brown viscous oil. 

 

MS (EI, 70 eV): 335.5 [M+], 222.4 [M+ - C8H16]. 

 
1H NMR (CDCl3): δ = 0.89, 0.91, 0.99 (s, 12 H, CH3),  

1.16 (br, 2 H, CH), 1.26, 1.46, 1.60 (br, 16 H CH2), 3.86, 3.93  

(d, 4 H, OCH2), 6.48 (dd, 2 H, H-3), 6.55 (dd, 2 H, H-4).  

 
13C NMR (CDCl3): δ = 10.7, 13.8, (CH3), 22.5, 23.7, 28.5, 30.2 (CH2), 41.0 (CH), 72.0 

(OCH2), 116.5 (C-3), 122.0 (C-4), 149.0(C-1). 

 

 2.1.1.2 1,2-Dibromo-4,5-bis(2-ethyl-hexyloxy)benzene 

 0.2 mol of 1,2-bis(2-ethylhexyloxy)benzene (67 g) was poured into 300 ml CH2Cl2 in 

a 500 ml three-neck flask and stirred. The solution was cooled till 0°C. Then, a solution of 0.4 

mol Br2 (64 g) in 50 ml CH2Cl2 was added dropwise, over 5 hours. The temperature of the 

reaction mixture was allowed to rise till room-temperature and stirred for 3 hours more. The 

solution was shacked in a separatory funnel with a 10% solution of NaHSO3 (150 ml each 

time) until no more reaction with unreacted bromine could be seen (3 or 4 times). Then, the 

mixture was extracted with a 10% solution of NaHCO3. The organic phase was dried with 

MgSO4 over 6 hours and the solvent evaporated. Column chromatography was performed 

with a mixture of n-hexane/CH2Cl2 (5/1) in silica-gel (SiO2) to give a yellow-greenish oil. 

Yield: 1,2-dibromo-4,5-bis(2-ethyl-hexyloxy)benzene, 60.3 g, (90%), yellow-greenish oil. 

 

MS (EI, 70 eV): 492.3 [M+], 413.4 [M+ -Br], 380.0 [M+  

- C8H16], 112.9 [C8H17]. 

 
1H NMR (Aceton-D6): δ = 0.90, 0.93 (m, 12 H, CH3), 1.35, 

1.49 (m, 16 H, CH2), 1.72 (m, 2 H, CH), 3.92 (d, 4 H, OCH2),  

7.23 (s, 2 H, H-3). 
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13C NMR (CDCl3): δ = 11.1, 14.1 (CH3), 23.0, 23.8, 29.0, 30.5 (CH2), 39.3 (CH), 71.7 

(OCH2), 114.4 (C-4), 117.5 (C-3), 149.3 (C-1). 

 

 2.1.1.3 4,5-Bis(2-ethylhexyloxy)-phthalonitrile (1) 

 0.1 mol of 1,2-dibromo-4,5-bis(2-ethylhexyloxy)benzene (49.2 g) was dissolved with 

0.3 mol CuCN in 300 ml of freshly dried DMF.A catalytic amount of NaI was added and the 

mixture stirred and kept under reflux (152°C) for approximately 9 hours. After cooling to 

room temperature, a solution of 600 ml ammonia was added to the reaction mixture, and 

aerated for approximately 12 hours or over night. The precipitate was filtrated and washed 

with neutral water until no ammonia could be found in the solution, and dried in an oven for 

approximately 24 hours at 80°C. The solid was washed and filtered with hot methanol in a 

sintered glass filter several times. After evaporating the solvent, the dinitrile was separated by 

column chromatography on SiO2 with a mixture of n-hexane/CH2Cl2 (3/1). A light green oil, 

that solidified after few days in the refrigerator, was obtained. 

Yield: 1, 19.5g, (51%), light green solid-oil, m.p.: 40-42 °C.  

 

MS (EI, 70 eV): 384.2 [M+], 359.3 [M+-CN], 273.0  

[M+-C8H16]. 

 
1H NMR (CDCl3): δ = 0.85 0.88 (m, 12 H, CH3), 1.29,  

1.45 (m, 8 H, CH2), 1.75 (m, 2 H, CH), 3.89 (d, 4 H, 

OCH2), 7.09 (s, 2 H, H-3). 

 
13C NMR (CDCl3): 11.1, 14.0 (CH3), 22.9, 23.8, 28.9, 30.4 (CH2), 39.2 (CH), 71.8 (OCH2), 

108.2 (C-4), 115.4 (C-3), 116.0 (C-5), 152.7 (C-1).  

 

 2.1.2. 6,7-Dicyano-1,4-Epoxy-1,4-dihydronaphthalene (2) 

 

 2.1.2.1 6,7-Dibromo-1,4-epoxy-1,4-dihydronaphthalene 

 A solution 1.6 M n-BuLi in n-hexane (53 ml, 85 mmol) was added dropwise to a 

solution of  31.5 g 1,2,4,5-tetrabromobenzene (80 mmol) and 39 ml furane in 300 ml of dried 

toluene, for 4 hours, at -23 °C. The stirred mixture was allowed to come to room temperature 

and 3 ml methanol were added. The solution was washed with distilled water, dried with 
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MgSO4 and the solvent was evaporated. The resulting yellowish oil was poured into a small 

quantity of n-hexane and recrystallized from methanol. 

Yield: 6,7-Dibromo-1,4-epoxy-1,4-dihydronaphthalene, 16.0 g, (66.4%), yellow solid, m.p.: 

115-117°C 

 

MS (EI, 70 eV): 301.8 [M+], 275.6 [M+-C2H2] 

 
1H NMR (CDCl3): δ = 5.65 (s, 2 H, H-1), 6.98 (s, 2 H, H-2), 7.46  

(s, 2 H, H-6),  

 
13C NMR (CDCl3): δ = 81.7 (C-1), 120.6 (C-7), 125.4 (C-6), 142.6 (C-5), 150 3 (C-2).  

 

2.1.2.2. 6,7-Dicyano-1,4-Epoxy-1,4-dihydronaphthalene (2) 

 0.1 mol of 6,7-dibromo-1,4-epoxy-1,4-dihydronaphthalene (30.2 g) was dissolved 

with 0.3 mol CuCN in 300 ml of freshly dried DMF.A catalytic amount of NaI was added and 

the mixture stirred and kept under reflux (152°C) for approximately 8 hours. After cooling to 

room temperature, a solution of 600 ml ammonia was added to the reaction mixture, and 

aerated for approximately 12 hours or over night. The product was filtrated and washed with 

water until no ammonia could be found in the solution, and dried in an oven for 

approximately 24 hours at 80°C. The solid was washed and filtered with hot CH2Cl2 in a 

sintered glass filter several times. After evaporating the solvent, the desired product was 

recrystallized from CHCl3. A light yellow solid, was obtained. 

Yield: 2, 7.8 g, (40.0%) yellow solid, m.p.: 200-201°C 

 

MS (EI, 70 eV): 194.1 [M+], 167.9 [M+-CN]. 

 
1H NMR (CDCl3): δ = 5.89 (s, 2 H, H-1), 7.04 (s, 2 H, H-2), 7.58  

(s, 2 H, H-6).  

 
13C NMR (CDCl3): δ = 81.8 (C-1), 113.8 (C-7), 115.6 (C-8), 123.9 (C-6), 142.7 (5), 155.7 

(C-2). 
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2.2. Synthesis of the unsymmetrically substituted nickel phthalocyanine 11 

 

2.2.1. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-23,26-dihydro-23,26-epoxybenzo-

phthalocyaninato]nickel (4) 

780 mg 6,7-Dicyano-1,4-Epoxy-1,4-dihydronaphthalene (4.0 mmol), 4.0 g 4,5-bis(2-

ethylhexyloxy)-phthalonitrile (10.4 mmol) and 1.1 g Ni(OAc)2*4H2O (4.43 mmol) were 

suspended in 30 ml pentanol and a catalytic amount of DBU was added. The mixture was 

heated until 140°C and stirred for 20 hours. After cooling, the mixture was poured in 150 ml 

methanol, the formed precipitate was isolated using centrifugation and washed several times 

with methanol. The crude mixture of the PcNi complexes was separated through 

chromatography on SiO2 with CH2Cl2. After elution of fraction 1 (octa-(2-

ethylhexyloxy)PcNi) (3), 4 was obtained as the second fraction. The solvent was removed and 

the bluish-green solid was recrystallized from methanol to achieve further purification, and 

dried in vacuum at 90°C. The other products of the statistical condensation were discarded, 

since they were not necessary for further reactions.  

Yield: 4, 900 mg, (18%), bluish-green solid. 

 

MS (FD): 1405.1 [M+], 1389, 1293 [M+-C8H16], 1180  

[M+-2 C8H16]. 

 
1H NMR (CDCl3): δ = 1.05, 1.18 (br, 36 H, 

CH3), 1.52, 1.79 (br, 48 H, CH2), 2.08 (br, 6 H, 

CH), 4.36 (br, 12 H, OCH2), 6.24 (s, 2 H, H-2), 7.36 (s, 2 H, 

H-1),8.23 (3s, br, 6 H, H-9, H-12, H-17), 8.80 (s, 2 H, H-4). 

 
13C NMR (CDCl3): δ = 11.3, 11.5, 14.1, 14.3 (CH3), 21.6, 23.2, 23.9, 24.2, 29.2, 29.4, 30.3, 

30.7, 30.9 (CH2), 39.7, 39.9 (CH), 71.8 (OCH2), 82.7 (C-2), 103.8, 104.3, 104.5 (C-9, C-12, 

C-17), 113.4 (C-4), 130.5, 130.9 (C-8, C-13, C-16), 135.1 (C-5), 143.2, 143.6, 144.7, 146.0 

(C-1, C-3, C-7, C-14, C-15), 149.3 (C-6), 151.9, 152.1, 152.5 (C-10, C-11, C-18).  

 

IR (KBr): ν (cm-1): 2958, 2926, 2858, 1607, 1531, 1460, 1381, 1277, 1217, 1105, 1068, 852, 

750.  

 

UV/Vis (CH2Cl2): λmax = 665, 601, 309 nm. 

N

N

N

Ni

N

RO OR

RO

RO

RO OR

N

N N

ON

R =
1

2

912

417

20

25 28

4



 81

 

2.2.2. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-23,26-dihydro-23,26-epoxybenzo-

24,25-tetracyclone-phthalocyaninato]nickel adduct 9 

 A mixture of 140 mg 4 (~100 µmol) and 40 mg tetraphenylcyclopentadien-1-one 

(tetracyclone) (103 µmol) was dissolved in 30 ml dried toluene and stirred at 70°C for 4 days. 

The solvent was evaporated and the residue was separated by flash-chromatography with 

CH2Cl2 (first fraction: tetracyclone, second fraction: product). The solvent was evaporated, 

the product dried in vacuum at 75°C and reprecipitated from methanol.  

Yield: 9, 160 mg, (89%), bluish-green solid.  

 

MS (FAB): 1790.5 [M+], 1380.0 [M+-isobenzofurane]. 

 
1H NMR (CDCl3): δ = 1.00, 1.05, 1.18  

(br, 36 H, CH3), 1.52, 1.79 ( br, 48 H, CH2),  

2.06 (br, 6 H, CH), 3.39 (s, 2 H, H-1),  

4.35 (br, 12 H, OCH2), 6.33 (s, 2H, H-2),  

7.20 (br, 10 H, H-40,  H-41, H-42), 7.40-7.68  

(br, 10 H, H-40', H-41', H-42'), 8.07, 8.25, 8.41  

(3 s, br, 6 H, H-9, H-12, H-17), 9.12 (s, 2 H, H-4). 

 
13C NMR (CDCl3): δ = 11.3, 11.5, 14.1, 14.3, (CH3), 23.1, 23.2, 23.9, 29.2, 29.4, 30.7, 30.9, 

(CH2), 39.6, 39.8 (CH), 47.1 (C-1), 64.6 (C-37), 68.2, 71.7 (OCH2), 81.6 C-2), 104.5, 104.6 

(C-9, C-12, C-17), 112.2 (C-4), 126.9, 127.5, 128.0, 128.5, 129.3, 129.8, 130.1, 130.8 (C-8, 

C-13, C-16, C-40-42, C-40'-42'), 135.4, 135.4 (C-39, C-39') 138.7 (C-38), 147.4 (C-3, C-5, C-

6, C-7, C-14, C-15), 152.4, 154.5 (C-10, C-11, C-18), 196.6 (CO).  

 

IR (KBr): ν (cm-1):2959, 2926, 1178 (C=O) 1605, 1481, 1462, 1391, 1358, 1275, 1263, 

1234, 1215, 1105, 1061, 851, 802, 696. 

 

UV/Vis (CH2Cl2): λmax = 670, 603, 391 nm.  
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2.2.3. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-23,26-dihydro-23,26-epoxybenzo-

25,26-fumaronitrile-phthalocyaninato]nickel adduct 10 

 180 mg 9 (100 µmol) and 63 mg fumaronitrile (800 µmol) were dissolved in 4 ml of o-

xylene and stirred in a sealed tube at 140 °C for 18 hours. The solvent was evaporated and the 

residue separated by flash-chromatography in SiO2. CH2Cl2 as eluent gave the first fraction 

(1,2,3,4-tetraphenylbenzene), a mixture of CH2Cl2:ethylacetate (4:1) gave the second fraction 

(product). After evaporation of the solvent the obtained solid was dried in vacuum and 

reprecipitated from methanol.  

Yield: 10, 135 mg, (93%), dark green powder. 

 

MS (FD): 1380.5 [M+-isobenzofurane].  

 
1H NMR (CDCl3): δ = 1.04, 1.20, (br, 36 H, CH3), 

1.51, 1.78 (br, 48 H, CH2), 2.10 (br, 6 H, CH), 

3.02, 3.76 (br, 2 H, H-1), 4.33, 4.40 (br, 12 H, 

OCH2), 6.15 (br, 2 H, H-3), 8.09, 8.23, 8.30  

(3 s, br, 6 H, H-9, H-12, H-17), 8.41 (br, 2 H, H-4). 

 
13C NMR (CDCl3): δ = 11.4, 11.5, 11.7, 14.2, (CH3), 23.2, 23.3, 24.1, 29.3, 29.4, 29.6, 30.9, 

(CH2), 39.8 (CH), 71.8, 72.1 (OCH2), 81.1, 83.5 (C-2), 103.7, 104.0, 104.2, 104.5, 104.7    

(C-9, C-12, C-17), 112.3, 114.5 (C-4), 116.3 (C-29), 130.3, 130.7, 130.9 (C-3, C-5, C-8, C-

13, C-16), 135.9, 139.0, 140.9, 144.0, 146.0, 146.3, 146.4 (C-6, C-7, C-14, C-15), 151.9, 

152.2 (C-10, C-11, C-18). 

 

IR (KBr): ν (cm-1):2959, 2928, 1607, 1529, 1481, 1460, 1389, 1279, 1242, 1200, 1136, 1109, 

1090, 1032, 852, 750. 

 

UV/Vis (CH2Cl2): λmax = 676, 661, 601, 389 nm.  

 

2.2.4. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-25,26-dicyano-phthalocyaninato] 

nickel (11) 

 150 mg 10 (102 µmol) were dissolved in freshly distilled anhydrous toluene in an 

argon purged vessel and 1.2 ml DBU were added. The mixture was stirred for 2 hours at 

100°C and then allowed to cool down. The mixture was extracted with distilled water to 
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remove the unreacted DBU, and the solvent evaporated. Subsequent flash-chromatography 

(CH2Cl2) was performed and the obtained product dried in vacuum. 

Yield: 11, 135 mg, (95%), green-olive powder.  

 

MS (FD): 1440.5 [M+], 1328.5 [M+-C8H17],  

1215.0 [M+-2 C8H17]. 

 
1H NMR (CDCl3): δ = 1.08, 1.20 (br, 36 H,  

CH3), 1.46, 1.56, 1.75 (br, 48 H, CH2), 1.82, 

2.03, 2.14 (br, 6 H, CH), 3.68, 4.13, 4.445  

(br, 12 H, OCH2), 6.31 (br, 2 H, H-4), 6.45 (br, 2 H, H-2),  

6.97 (br, 2 H, H-17), 7.67, 8.29 (2 s, br, 4 H, H-9, H-12). 

 
13C NMR (CDCl3): δ = 11.5, 11.7, 14.3 (CH3), 23.2, 23.7, 23.9, 24.2, 29.4, 29.7, 30.6, 30.8, 

(CH2), 39.7, 40.0 (CH), 71.4, 72.1, 17.3, (OCH2), 102.2, 102.9, 104.4 (C-9, C-12, C-17), 

107.7, (C-1), 115.7 (C-29), 118.2 (C-4), 128.7, 128.8, 129.3, 130.4, 132.7, (C-3, C-5, C-8,   

C-13, C-16), 135.4 (C--2), 139.8, 142.9, 144.9, 145.4 (C-6, C-7, C-14, C-15), 151.3, 151.6, 

152.6 (C-10, C-11, C-18).  

 

IR (KBr): ν (cm-1): 2959, 2928, 2230, 1603, 1531, 1460, 1427, 1383, 1281, 1205, 1159, 

1109, 1061, 912, 852, 748.  

 

UV/Vis (CH2Cl2): λmax = 700.0, 671.5, 633.0, 454, 325.5, 310.5 nm.  

 

 2.3. Synthesis of the Ni/Ni and Ni/Cu binuclear metal-phthalocyanines  

 

 2.3.1. Unsymmetrically substituted Ni/Ni binuclear metal-phthalocyanine 12 

A mixture of 11 (210 mg, 140 µmol), phthalonitrile (70 mg, 530 µmol) and NiCl2 (20 

mg, 145 mmol) was suspended in octan-1-ol (10 mL) in an argon-purged vessel and DBU 

(0.05 mL) was added. The mixture was stirred and heated to 175 ºC for 24 h, allowed to cool 

down, and poured into MeOH (50 mL). The precipitate formed was isolated by centrifugation 

and was washed several times with MeOH. The crude mixture was separated by flash 

chromatography on silica gel with dichloromethane as eluent to obtain the desired compound. 

The first fraction contained mostly unreacted 11 and was discarded. Compound 12 was eluted 
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as the second fraction. After evaporation of the solvent and drying in vacuum at 100°C, the 

product was then reprecipitated from methanol. The third fraction was identified as the 

AAAA-product of the semi-statistical condensation and discarded (poorly soluble PcNi).  

 

Yield: 12, 60 mg, (23%), dark bluish-green powder. 

 

EA: Theory: C=69.64%; H=6.88%; N=10.17%; 

Found: C=69.34%; H=6.28%; N=9.36%. 

 

MS (FAB): m/z (%) = 1686.7 (15)  

[M+ - C8H16 – OC8H16 + Na], 1570.7 (15) 

[M+ - 3 C8H16  + Na], 1327.9 (40) [M+ - 5 C8H16], 

1214.7 (100)[ M+ - 6 C8H16]. 

 
1H NMR (CDCl3): δ = 0.86, 0.90, 1.09 [br, 36H, CH3], 1.24,  

1.56, 1.66 [br, 48H, CH2], 1.98, 2.02 [br, 6H, CH], 4.19, 4.29 [br, 12H, OCH2], 6.80, 6.95, 

7.39, 7.52, 7.69, 7.75, 8.04 [br, PcH]. 

 
13C NMR (THF d8): δ = 11.0, 11.2, 13.8, 13.9 [CH3], 19.4, 22.8, 23.5, 23.8, 27.1, 29.3, 29.7, 

29.9, 30.4, 31.1, 32.2, 32.9 [CH2], 37.3, 39.9, 41.2 [CH], 71.4, 71.6, 72.1 [OCH2], 104.1, 

104.3, 104.8 [C-2, C-7, C-8, C-9, C-10, C-22, C-25, C-30], 124.7 [C-15], 125.1 [C-17], 127.7, 

128.2, 128.6 [C-22, C-25, C-30], 129.0 – 133.5 [C-3, C-6, C-11, C-14, C-16, C-18, C-21,     

C-26, C-29], 143.6, 146.1, 147.5, 148.5 [C-4, C-5, C-12, C-13, C-19, C-20, C-27, C-28], 

152.0, 152.3, 152.6 [C-1, C-8, C-9, C-23, C-24, C- 31]. 

 

UV/Vis (CH2Cl2): λmax = 697.5, 669.0, 640.0, 321.0 nm. 

 

2.3.2. Symmetrically substituted Ni/Ni binuclear metal-phthalocyanine 13 

A mixture of 11 (210 mg, 140 µmol), 4,5-bis(2-ethylhexyloxy)-phthalonitrile (110 mg, 

280 µmol) and NiCl2 (20 mg, 145 mmol) was suspended in octan-1-ol (10 mL) in an argon-

purged vessel and DBU (0.05 mL) was added. The mixture was stirred and heated to 175 ºC 

for 24 h, allowed to cool down, and poured into MeOH (50 mL). The precipitate formed was 

isolated by centrifugation and was washed several times with MeOH. The crude mixture was 

separated by flash chromatography on silica gel with dichloromethane as eluent to obtain the 
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desired compound. The first fraction from the chromatography contained the AAAA-product 

(compound 3-discarded) and the second fraction was identified as the desired product. The 

third fraction was the unreacted 11 and was discarded. After evaporation of the solvent and 

drying in vacuum at 100°C, the product was then reprecipitated from methanol. 

Yield: 13, 74 mg (20%), bluish-green powder. 

 

EA: Theory: C=72.13%; H=8.06%; N=7.44%; 

Found: C=72.05%; H=5.56%; N=7.19%. 

 

MS (FAB): m/z (%) = 2537.4 (30)  

[M+ - 2 C8H16], 2305.8 (70) [M+ -  

3 C8H16]. 

 
1H NMR (CDCl3): δ = 0.84, 0.87,  

[br, 72H, CH3], 1.04, 1.24, 1.51, 1.76 [br, 96H, CH2], 2.02, 2.04,  

2.10 [br, 12H, CH], 4.16, 4.32, 4.50 [br, 24H, OCH2], 7.49, 7.92, 8.53, 8.82 [br, PcH]. 

 
13C NMR (THF d8): δ = 10.4, 11.4, 13.6, 14.0 [CH3], 22.9, 23.1, 23.8, 24.2, 29.0, 29.7, 29.9, 

31.1, 31.4, 31.6, 32.1 [CH2], 38.6, 39.9, 41.3 [CH], 71.3, 71.6, 71.9 [OCH2], 102.7, 103.6, 

104.2 [C-2, C-7, C-10, C-22, C-25, C-30], 117.7 [C-15], 125.2 – 133.9 [C-3, C-6, C-11, C-14, 

C-16, C-18, C-21, C-26, C-29], 143.2, 143.6, 144.1 [C-4, C-5, C-12, C-13, C-19, C-20, C-27, 

C-28], 151.1, 151.2, 151.5, 151.9 [C-1, C-8, C-9, C-23, C-24, C- 31]. 

 

UV/Vis (CH2Cl2): λmax = 664.5, 626.0, 398.5, 370.5, 312.5 nm. 

 

2.3.3. Unsymmetrically substituted Ni/Cu binuclear metal-phthalocyanine 14 

A mixture of 11 (210 mg, 140 µmol), phthalonitrile (70 mg, 530 µmol) and CuCl2 (20 

mg, 150 µmol) was suspended in octan-1-ol (10 mL) in an argon-purged vessel and DBU 

(0.05 mL) was added. The mixture was stirred and heated to 175 ºC for 24 h, allowed to cool 

down, and poured into MeOH (50 mL). The precipitate formed was isolated by centrifugation 

and was washed several times with MeOH. The crude mixture was separated by flash 

chromatography on silica gel with dichloromethane as eluent to obtain the desired compound. 

The first fraction contained mostly unreacted 11 and was discarded. Compound 14 (AAAB-

product) was eluted as the second fraction. After evaporation of the solvent and drying in 
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vacuum at 100°C, the product was then reprecipitated from methanol. The third fraction was 

identified as the AAAA-product (PcCu) and discarded.  

Yield: 14, 53 mg, (20%), dark bluish-green powder. 

 

EA: Theory: C=69.66%; H=6.98%; N=10.17%; 

Found: C=69.17%; H=7.16%; N=9.33%. 

 

MS (FAB): m/z (%) = 1651.9 (90)  

[M+-2 C8H16 + Li], 1602.7 (40)  

[M+ - 2 OC8H16–28], 1538.7 (80)  

[M+-3 C8H16 +Li], 1511.8 (40) [M+-3 C8H16+Li -28], 

1440.7 (30)[ M+-4 C8H16]. 

 
1H NMR (CDCl3): δ = 0.86, 1.07 [br,CH3], 1.24, 1.41, 1.51, 1.66 [br, CH2], 2.03 [br, CH], 

4.18, 4.26 [br, OCH2], 6.48 – 9.10 [br, PcH]. 

 
13C NMR (CDCl3): δ = 10.6, 11.5, 14.3 [CH3], 22.7, 23.3, 23.7, 24.1, 24.5, 26.4, 29.3, 29.7, 

30.4, 30.8, 31.9 [CH2], 39.3, 39.4, 39.7, 40.2 [CH], 70.8, 71.7, 73.3 [OCH2], 102.9 – 103.8 

[C-2, C-7, C-8, C-9, C-10, C-22, C-25, C-30], 126.6 – 133.5 [C-22, C-25, C-30, C-3, C-6,    

C-11, C-14, C-16, C-18, C-21, C-26, C-29], 144.1 – 145.1 [C-4, C-5, C-12, C-13, C-19, C-20, 

C-27, C-28], 150.7 – 153.0 [C-1, C-8, C-9, C-23, C-24, C- 31]. 

 

FAAS (Air-Acetylene): 1.9 µg/L of Ni and 2.3 µg/L of Cu. 

 

UV/Vis (CH2Cl2): λmax = 699.5, 661.0, 638.0, 326.0 nm. 

 

2.3.4. Symmetrically substituted Ni/Cu binuclear metal-phthalocyanine 15 

A mixture of 11 (210 mg, 140 µmol), 4,5-bis(2-ethylhexyloxy)-phthalonitrile (110 mg, 

280 µmol) and CuCl2 (20 mg, 150 µmol) was suspended in octan-1-ol (10 mL) in an argon-

purged vessel and DBU (0.05 mL) was added. The mixture was stirred and heated to 175 ºC 

for 24 h, allowed to cool down, and poured into MeOH (50 mL). The formed precipitate was 

isolated by centrifugation and was washed several times with MeOH. The crude mixture was 

separated by flash chromatography on silica gel with dichloromethane as eluent to obtain the 

desired compound. The first fraction from the chromatography contained the AAAA-product 
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(octa-(2-ethylhexyloxy)PcCu) and was discarded. The second fraction was identified as the 

AAAB-product 15. After evaporation of the solvent and drying in vacuum at 100°C, the 

product was then reprecipitated from methanol. The third fraction was unreacted 11 and was 

discarded.  

Yield: 15, 74.5 mg, (18%), bluish-green powder. 

 

 EA: Theory: C=72.40%; H=8.34%; N=7.43%; 

Found: C=72.59%; H=8.39%; N=7.48%. 

 

MS (FAB): m/z (%) = 2442.8 (20)  

[M+- 2 C8H16  ], 2133.7 (40)  

[M+ - 3 OC8H16 – C8H16 – 28],  

1832.7 (60) [M+ - OC8H16 – 4 C8H16],  

1516.1 (50)[M+ - 9 OC8H16],1357.1 (50) 

[M+ - 10 OC8H16 – 28], 1141.9 (40) 

[M+ - 12 OC8H16]. 

 
1H NMR (CDCl3): δ = 0.91, 0.93 [br,CH3], 1.20, 1.33, 1.50 [br, CH2], 1.78  

[br, CH], 4.01, 4.49 [br, OCH2], 7.35 – 8.51 [br, PcH]. 

 
13C NMR (CDCl3): δ = 11.2, 11.5, 14.1, 14.2 [CH3], 22.6, 23.0, 23.3, 23.9, 29.1, 29.4, 29.7, 

30.6, 30.9, 31.4[CH2], 39.3, 39.6, 40.0 [CH], 71.6, 71.8, 72.1 [OCH2], 104.4 – 108.1 [C-2,   

C-7, C-8, C-9, C-10, C-22, C-25, C-30], 115.4 [C-15, C-17], 129.2 – 132.9 [C-22, C-25,      

C-30], 133.1– 136.4 [C-3, C-6, C-11, C-14, C-16, C-18, C-21, C-26, C-29], 143.2 – 146.9  

[C-4, C-5, C-12, C-13, C-19, C-20, C-27, C-28], 150.4 – 152.8 [C-1, C-8, C-9, C-23, C-24,  

C- 31]. 

 

FAAS (Air:Acetylene): 1.8 µg/L for Ni and 2.1 µg/L for Cu. 

 

UV/Vis (CH2Cl2): λmax = 672.5, 631.0, 304.0 nm. 

 

 

 

 

NN

N N

N

Cu

N N

NN

N N

N

Ni

N N

RO OR

RO

RO

RO OR

N N

RO OR

OR

OR

ORRO
R =

12

710

1517

15



 88

2.4. Synthesis of the unsymmetrically substituted magnesium phthalocyanine 19 

 

2.4.1. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-23,26-dihydro-23,26-epoxybenzo-

phthalocyaninato]magnesium (16) 

80 mg magnesium turnings were suspended in ~ 10 ml pentanol. This suspension was 

heated to 150 °C (reflux) and maintained at that temperature until an amalgam was formed 

(~1 hour). Octanol was added to this amalgam (20 ml), followed by 780 mg 6,7-dicyano-1,4-

epoxy-1,4-dihydronaphthalene (4.0 mmol) and 4.0 g 4,5-bis(2-ethylhexyloxy)-phthalonitrile 

(10.4 mmol). The suspension was heated till 160°C and stirred for 24 hours. After cooling, the 

mixture was poured in 150 ml of a mixture methanol/water (5/1). The formed precipitate was 

isolated by centrifugation and washed several times with methanol. The crude mixture of 

PcMg complexes was separated through chromatography in silica gel, starting with CH2Cl2 as 

mobile phase. After elution of fraction 1 [octa-(2-ethylhexyloxy)PcMg)] (24), 

[2,3,9,10,16,17-hexa(2-ethyl-hexyloxy)-23,26-dihydro-23,26-epoxy-benzophthalocyaninato] 

magnesium (16) was obtained as the second fraction, using a mixture (CH2Cl2/THF: 50/1) as 

eluent. The solvent was removed, the green solids (16 and 24) were reprecipitated from 

methanol to achieve further purification, and dried in vacuum at 100°C. Characterization of 

24 is given on pages 87/88. The other products of the statistical condensation were discarded.  

Yield: 16, 750 mg, (15%), green solid; 24, 750 mg (15%), green solid.  

 

MS (FAB): 1372.1 [M+], 1258.9 [M+-C8H17],  

1146.1 [M+- 2 C8H17]. 

 
1H NMR (THF-d8): δ = 0.95, 1.00, 1.15 (br, 36 H,  

CH3), 1.44 (br, 48 H, CH2), 2.05 (br, 6 H, CH), 

4.39, 4.49 (br, 12 H, OCH2), 7.83 (s, 2 H, H-2),  

8.58 (s, 2 H, H-1),9.09 (3s, br, 6 H, H-9, H-12,  

H-17), 10.00 (s, 2 H, H-4). 

 
13C NMR (THF-d8): δ = 11.7, 11.8, 14.6 (CH3), 23.5, 23.6, 24.1, 24.3, 24.7, 25.1, 25.3, 30.3, 

30.5, 31.6,  31.9,  32.8,  32.9  (CH2), 40.8, 41.1, 42.0 (CH), 72.1  (OCH2),  78.3  (C-2),  106.3,  

106.6, 106.7, 107.0, 107.2 (C-9, C-12, C-17), 117.3 (C-4), 122.1, 122.8, 123.2, (C-8, C-13,  

C-16), 127.3 (C-5), 130.6, 133.5, 133.8, 134.0, 135.0, (C-1, C-3, C-7, C-14, C-15), 138.0    

(C-5), 150.6 (C-6), 152.4, 152.9, 153.1, 154.0, 154.5 (C-10, C-11, C-18).  
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UV/Vis (CH2Cl2): λmax = 682.5, 620.0, 359.0 nm. 

 

2.4.2. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-23,26-dihydro-23,26-epoxybenzo-

24,25-tetracyclone-phthalocyaninato]magnesium adduct 17 

 A mixture of 140 mg 16 (~100 µmol) and 40 mg tetraphenylcyclopentadien-1-one 

(103 µmol) was dissolved in 30 ml dried toluene and stirred at 72°C for 2 days. The solvent 

was evaporated and the residue was separated by flash-chromatography on SiO2 using CH2Cl2 

as eluent (first fraction: tetracyclone, second fraction: 17). The solvent was evaporated, the 

product dried in vacuum at 100°C and reprecipitated from methanol.  

Yield: 17, 165 mg, (92%), green solid.  

 

MS (FAB): 1756.9 [M+], 1346.3 [M+ - C30H22 -CO]. 

 
1H NMR (THF-d8): δ = 0.81, 1.04, 1.21  

(br, 36 H, CH3), 1.40, 1.62 ( br,  

48 H, CH2), 2.40 (br, 6 H, CH), 3.40  

(s, 2 H, H-1), 4.15, 4.38 (br, 12 H, 

OCH2), 6.33 (s, 2H, H-2), 6.94, 7.03, 7.06, 7.20  

(br, 10 H, H-40, H-41, H-42), 7.23-7.67 (br, 10 H, 

H-40', H-41', H-42'), 8.91, 9.07, (3 s, br, 6 H, H-9, H-12, H-17), 9.51 (s, 2 H, H-4). 

 
13C NMR (THF-d8): δ = 11.6, 11.8, 14.5, 14.6, (CH3), 23.6, 24.0, 24.2, 24.7, 25.0, 25.3, 26.0, 

30.2, 31.8, 32.0, (CH2), 40.6, 41.0 (CH), 48.6 (C-1), 65.7 (C-37), 68.2, 72.0, 72.2 (OCH2), 

82.7 (C-2), 106.1, 106.3, 106.6 (C-9, C-12, C-17), 114.1 (C-4), 127.3, 127.9, 128.3, 128.9, 

130.7, 131.2, (C-8, C-13, C-16, C-40-42,      C-40'-42'), 136.8, 137.2, 137.9, (C-39, C-39') 

139.6, 139.9 (C-38), 149.2, 150.8, 153.0 (C-3, C-5, C-6, C-7, C-14, C-15), 154.4, 154.9, 

155.6, 156.5 (C-10, C-11, C-18), 196.9 (CO).  

 

IR (KBr): ν (cm-1): 2959, 2926, 1178 (C=O) 1605, 1481, 1462, 1391, 1358, 1275, 1263, 

1234, 1105, 1061, 802, 696. 

 

UV/Vis (CH2Cl2): λmax = 685.0, 613.0, 359.5 nm. 

 

N

N

N

Mg

N

RO OR

RO

RO

RO OR

N

N N

ON O

R = 124

912

17

20

25 28

37 38

39-42

39'-42'

17



 90

2.4.3. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-23,26-dihydro-23,26-epoxybenzo-

25,26-fumaronitrile-phthalocyaninato]magnesium adduct 18 

 180 mg 17 (100 µmol) and 63 mg fumaronitrile (800 µmol) were dissolved in 4 ml of 

o-xylene and stirred in a sealed tube at 140 °C for 16 hours. The solvent was evaporated and 

the residue separated by flash-chromatography in SiO2. Using CH2Cl2 as eluent gave the first 

fraction (1,2,3,4-tetraphenylbenzene) and a mixture of CH2Cl2:THF (5:1) gave the second 

fraction (18). After evaporation of the solvent the obtained solid was dried in vacuum at 

100°C and reprecipitated from methanol.  

Yield: 18, 135 mg, (93%), dark green solid. 

 

MS (FAB): 1424.1 [M+], 1346.1 [M+ - C4H2N2]. 

 
1H NMR (THF-d8): δ = 1.03, 1.04, 1.16, 1.18  

(br, 36 H, CH3),1.31, 1.53, 1.82 (br, 48 H, 

CH2), 2.05 (br, 6 H, CH), 3.25, (br, 2 H,  

H-1), 4.51 (br, 12 H, OCH2), 6.35 (br, 2 H,  

H-3), 8.98 (s, br, 6 H, H-9, H-12, H-17), 9.53 (br, 2 H, H-4). 

 
13C NMR (THF-d8): δ = 11.9, 14.6, (CH3), 24.1, 30.3, 32.0, (CH2), 41.2 (CH), 72.2 (OCH2), 

82.2, 84.8 (C-2), 106.1, 106.3, 106.6, 106.9 (C-9, C-12, C-17), 115.3, 116.7 (C-29),119.9,  

(C-4), 133.7, 134.2, 134.3 (C-3, C-5, C-8, C-13, C-16), 139.9, 140.2, 142.5, 144.1, (C-6, C-7, 

C-14, C-15), 151.9, 153.2, 154.0, 155.4 (C-10, C-11, C-18). 

 

UV/Vis (CH2Cl2): λmax = 686.0, 669.0, 609.5, 426.5, 360.0 nm. 

 

2.4.4. [2,3,9,10,16,17-hexa(2-ethylhexyloxy)-25,26-dicyano-phthalocyaninato] 

magnesium 19 

 150 mg 18 (102 µmol) were dissolved in freshly distilled anhydrous toluene in an 

argon purged vessel and 1.2 ml DBU were added. The mixture was stirred for 2 hours at 

100°C and then allowed to cool. The mixture was extracted with distilled water to remove the 

unreacted DBU, and the solvent evaporated. Subsequent flash-chromatography on SiO2 using 

CH2Cl2 as eluent was performed and 19 dried in vacuum at 100°C. 

Yield: 19, 135 mg, (95%), dark green powder.  
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MS (FAB): 1406.1 [M+], 1293.0 [M+ - C8H16]. 

 
1H NMR (THF-d8): δ = 1.04, 1.07, 1.09  

(br, 18 H, CH3), 1.18, 1.21, 1.24 (br, 18 H, CH3), 

1.57, 1.81, 1.84, 1.87 (br 48 H, CH2),  2.10 (br, 

6 H, CH), 4.53, 4.59 (br, 12 H, OCH2),  

6.36 (br, 2 H, H-4), 8.56 (br, 2 H, H-2),  

8.85 (br, 2 H, H-17), 9.02 (2 s, br, 4 H, H-9, H-12). 

 
13C NMR (THF-d8): δ = 12.0, 14.6 (CH3), 24.2, 25.3, 30.4, 32.0 (CH2), 41.1, 41.2 (CH), 

72.2, 72.4 (OCH2), 106.1, 106.5, 106.9 (C-9, C-12, C-17), 109.7, (C-1), 117.3 (C-29), 122.2 

(C-4), 132.3, 133.6, 133.9, (C-3, C-5, C-8, C-13, C-16), 134.1, (C--2), 138.2, 138.8, 142.6, 

145.3 (C-6, C-7, C-14, C-15), 150.8, 151.7, 152.1, 152.8 (C-10, C-11, C-18).  

 

UV/Vis (CH2Cl2): λmax =710.5, 682.0, 642.0, 544.5, 363.0 nm. 

 

2.4.5. Binuclear Mg/Mg phthalocyanine 20 

80 mg magnesium turnings were suspended in ~ 10 ml pentanol. The suspension was 

heated to 150 °C (reflux) and maintained at this temperature until an amalgam was formed 

(~1 hour). After adding 10 ml octanol a mixture of 19 (210 mg, 140 µmol) and phthalonitrile 

(210 mg, 1590 µmol) was suspended in this mixture in an argon-purged vessel. The mixture 

was stirred and heated to 175 ºC for 24 h, allowed to cool and poured into MeOH (50 mL). 

The precipitate formed was isolated by centrifugation and was washed several times with 

MeOH. The crude mixture was separated by flash chromatography on silica gel, first with 

dichloromethane as eluent to remove part of the impurities. The eluent mixture was changed 

to dichloromethane:THF (50:1) to elute 20, as second fraction.. The third  fraction  could only 

be partially eluted with pure THF and was identified as the AAAA-product of the semi-

statistical condensation (MgPc) and discarded. After evaporation of the solvent and drying in 

vacuum, 20 was reprecipitated from methanol. 

Yield: 20, 90 mg, (35%), dark green powder. 

 

E.A.: Theory: C=72.64%; H=7.09%; N=11.17%; 

Found: C=72.52%; H=7.33%; N=9.95%. 
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MS (FAB): 1815 [M+]. 

 
1H NMR (THF-d8): δ = 0.90, 1.15 [br, 36H, CH3],  

1.29 [br, 48H, CH2], 2.12 [br, 6H, CH],  

4.39 [br, 12H, OCH2], 7.47 [s, 4H, H-25,  

H-30, H-33, H-38], 7.70 [s,br, 2H, H-17], 

7.79 [s,br, 2H, H-15], 7.89, 8.02. 8.25, 8.61  

[br, 6H, H-10, H-8, H-9], 8.86, [br, d, 2H, H-1]. 

 
13C NMR (THF-d8): δ = 11.9, 14.0, 14.6 [CH3], 23.7, 24.1, 30.4, 30.6, 31.2, 32.0, 32.9 

[CH2], 40.8, 41.2, 42.2 [CH], 72.3, 72.7 [OCH2], 105.9, 106.3, 107.0 [C-22, C-25, C-30], 

122.6, 123.5, 123.7, 124.3, [C-1, C-8, C-9], 125.5 [C-15], 127.1 [C-17], 128.8, 129.7, 129.9 

[C-2, C-7, C-10], 131.0 – 136.7 [C-3, C-6, C-11, C-14, C-16, C-18, C-21, C-26, C-29], 139.4, 

140.2, 140.7, 142.0 [C-4, C-5, C-12, C-13, C-19, C-20, C-27, C-28], 151.6, 153.0, 153.9     

[C-23, C-24, C- 31]. 

 

UV/Vis (CH2Cl2): λmax= 706.0, 676.0, 652.0, 432.5, 362.0 nm. 

 

2.4.6. Binuclear metal free phthalocyanine 21 

 

50 µmol 20 (90 mg) were dissolved in freshly dried THF. CF3COOH (5ml) was added 

dropwise at room temperature in an argon atmosphere and this mixture was heated at 50°C for 

5 hours. After cooling, 20 ml of H2O was added dropwise to the reaction mixture. The formed 

precipitate was collected and washed several times with methanol. After drying in an oven 

overnight at 90°C the product was purified by column chromatography on silica gel, in which 

the eluent used to collect the first fraction (21) was dichloromethane. The second fraction 

(unreacted 20) was eluted afterwards with a mixture dichloromethane–THF (10:1). 

Compound 21 was then reprecipitated from methanol/dichloromethane and dried in vacuum at 

100°C. 

Yield: 21, 70 mg, (65%), dark bluish-green powder 

 

EA: Theory: C=71.79%; H=7.34%; N=10.28 %; 

Found: C= 71.42 %; H= 7.20 %; N= 9.85 %. 
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MS (FAB): 1770 [M+], 1346.1 [M+ - 4R + Na], 

1120.9 [M+ - 6R + Na], 1006.6 [M+ - 6OR + Na]. 

 
1H NMR (THF-d8): δ = 0.86, [br, 36H, CH3],  

1.15 [br, 48H, CH2], 2.28 [br, 6H, CH], 4.01,  

4.11 [br, 12H, OCH2], 6.81, 7.08, 7.34, 7.65, 7.77,  

8.34 [br, PcH]. 

 
13C NMR (THF-d8): 11.1, 11.5, 13.8, 14.2 [CH3], 22.7, 23.2, 24.2, 26.1, 29.3, 29.7, 30.8, 

31.9 [CH2], 39.8, 40.8, 45.7, 46.3, 47.3 [CH], 71.9 [OCH2], 103.6, 104.5, 105.7, 108.3 [C-22, 

C-25, C-30], 112.2 [C-15], 114.1 [C-17], 121.3, 121.7, 122.7, [C-1, C-8, C-9], 126.5, 127.5, 

128.3, 129.3 [C-2, C-7, C-10], 132.5, 133.2, 134.2, 138.7, 139.5 [C-3, C-6, C-11, C-14, C-16, 

C-18, C-21, C-26, C-29], 142.0—145.0 [C-4, C-5, C-12, C-13, C-19, C-20, C-27, C-28], 

150.6, 151.6, 152.6, 154.4 [C-23, C-24, C- 31]. 

 

IR (KBr): ν (cm-1): 3298 (NH st), 1607 (NH δ), 801 (NH δ) 

 

UV/Vis (CH2Cl2): λmax= 688.0, 673.0, 667.0, 358.0 nm. 

 

2.4.7. Binuclear In/In phthalocyanine 22 

Binuclear Pc 21 (70 mg, 40 µmol) and an excess InCl3 (90 mg, 400µmol) were 

suspended in DMF. After adding 1 ml quinoline, the mixture was heated till 130°C and 

maintained at this temperature. After completion of the reaction (monitored by UV/Vis 

spectroscopy and thin-layer chromatography - ~ 4 hours) water was added dropwise to the 

mixture to precipitate the compound (20 ml). After centrifugation 22 was 3 times 

reprecipitated from hot methanol and dried in vacuum at 100°C. 

Yield: 22, 68 mg, (82%), dark green powder 

 

EA: Theory: C=64.92%; H=6.05%; N=10.04%; 

Found: C= 65.72%; H= 5.57 %; N=  9.19 %. 

 

MS (FAB): 2060.5 [M+], 1916.0 [M+ - OR - CH3] 
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1H NMR (THF-d8): δ = 0.87, 0.89, 1.29  

[br, 36H, CH3], 1.40, 1.60, [br, 48H, CH2], 2.04  

[br, 6H, CH], 4.01, 4.25, 4.50 [br, 12H, OCH2],  

6.91 [s, 4H, H-25, H-30, H-33, H-38], 7.17  

[s,br, 2H, H-17], 7.28 [s,br, 2H, H-15], 7.40, 

7.78, 7.82. 7.90, [br, 6H, H-10, H-8, H-9], 

8.20, 8.24 [br, d, 2H, H-1] 

 
13C NMR (THF-d8): δ = 11.5, 11.7, 12.2, 14.6, 14.8 [CH3], 21.4, 23.0, 23.5, 26.9, 27.7, 28.0, 

30.3, 30.6, 32.8, 35.1 [CH2], 40.0, 40.4, 40.7 [CH], 71.5, 72.2 [OCH2], 104.9, 105.5, 106.4, 

106.9 [C-22, C-25, C-30], 123.6, 123.9, 124.8, 125.9 [C-1, C-8, C-9], 127.5 [C-15], 128.2 [C-

17], 128.8, 129.6, 129.9, 130.1, 130.9 [C-2, C-7, C-10], 133.0 – 138.2 [C-3, C-6, C-11, C-14, 

C-16, C-18, C-21, C-26, C-29], 140.7, 140.9, 142.0 [C-4, C-5, C-12, C-13, C-19, C-20, C-27, 

C-28], 152.0, 152.7, 153.5 [C-23, C-24, C- 31]. 

 

IR (KBr): ν (cm-1): 2958, 2927, 2858, 1602, 1494, 1457, 1383, 1276, 1202, 1098, 1049, 892, 

740.7, 567. 

 

UV/Vis (CH2Cl2): λmax 724.0, 689.0, 663.0, 353.0 nm. 

 

2.4.8. Binuclear Ga/Ga phthalocyanine 23 

Binuclear Pc 21 (70 mg, 40 µmol) and an excess of GaCl3 (90 mg, 500µmol) were 

suspended in DMF. Quinoline (1 ml) of was added and the mixture was heated till 130°C and 

maintained at this temperature. After completion of the reaction (monitored by UV/Vis 

spectroscopy and thin-layer chromatography - ~ 5 hours) water (20 ml) was added dropwise 

to the mixture to precipitate the compound.  After centrifugation 23 was 3 times reprecipitated 

from hot methanol and dried in vacuum at 100°C. 

Yield: 23, 63 mg, (79%), dark green powder 

 

EA: Theory: C=66.84%; H=6.12%; N=10.34%; 

Found: C= 66.02 %; H= 5.51 %; N= 9.19 %. 

 

MS (FAB):  1975.7 [M+], 1478.2 [M+ - 4OR + Na], 1339.1 [M+ - 5OR] 
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1H NMR (THF-d8): δ = 0.90, 1.04, 1.17 1.30  

[br, 36H, CH3], 1.54, [br, 48H, CH2], 2.04  

[br, 6H, CH], 4.25, 4.52 [br, 12H, OCH2],  

7.55 [br, 2H, H-17], 7.68 [br, 2H, H-15], 

8.13 [br, s, 6H, H-22, H-25, H-30, H-33, H-38,  

H-41], 8.92, 8.94 [br, d, 2H, H-2], 9.16, 9.19  

[br, d, 2H, H-7], 9.42, 9.45 [br, d, 6H, H-1, H-8, H-9],  

9.69, 9.71 [br, d, 2H, H-10.  

 
13C NMR (THF-d8): δ = 11.6, 11.9, 12.5, 14.4, 14.8 [CH3], 23.4, 23.7, 24.1, 26.7, 30.3, 30.6, 

31.5, 32.1, 32.9 [CH2], 40.7, 41.0 [CH], 72.5, 72.7 [OCH2], 104.2, 105.4, 105.8, 106.6 [C-22, 

C-25, C-30], 122.0, 123.4, 124.1, [C-1, C-8, C-9], 127.3 [C-15], 128.7 [C-17], 129.9, 130.2, 

130.9, [C-2, C-7, C-10], 133.0 – 137.1 [C-3, C-6, C-11, C-14, C-16, C-18, C-21, C-26, C-29], 

140.0-150.7 [C-4, C-5, C-12, C-13, C-19, C-20, C-27, C-28], 153.9, 154.6, 155.6 [C-23, C-

24, C- 31]. 

 

IR (KBr): ν (cm-1): 2958, 2927, 2859, 1602, 1495, 1457, 1383, 1276, 1201, 1098, 1048, 892, 

857, 740.7, 565. 

 

UV/Vis (CH2Cl2): λmax =718.5, 687.5, 654.5, 344.0 nm. 

 

2.5. Synthesis of In, Ga and Tl octa-substituted phthalocyanines 

 

2.5.1. [2,3,9,10,16,17,24,25-octa-(2-ethylhexyloxy)] Mg phthalocyanine (24) 

From step 2.4.1. the first fraction of the performed column previously described (page 

80) was collected, the solvent evaporated, twice reprecipitated from methanol and dried in 

vacuum at 100°C to obtain 24. 

Yield: 24, 0.75 g, (15%), green solid. 

 

EA: Theory: C=71.13%; H=9.01%; N=7.16%; 

Found: C= 70.30 %; H= 8.87 %; N= 7.02 %. 

 

MS (FD): 1564.6 [M+], 1451.4 [M+-C8H16
+]. 
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1H NMR (CDCl3): δ = 0.89, 0.99 (br,  

48 H, CH3), 1.25-1.60 (br, 64 H, CH2), 1.75 (br, 8 H, CH),  

4.10 (br, 16 H, OCH2), 8.50 (s, br, 8 H, H-2). 

 
13C NMR (CDCl3): δ = 11.1, 11.4, 14.0, 14.2  

(C-CH3), 23.0, 23.2, 24.2, 29.0, 29.3, 30.8 (C-CH2),  

39.3, 39.8 (C-CH), 72.2 (C-OCH2), 105.6, 106.2 (br, C-2), 131.4  

(br, C-3), 143.5-149.7 (C-4), 153.0 (br, C-1). 

 

UV/Vis (CH2Cl2): λmax = 679.0, 613.0, 360.0 nm. 

 

 2.5.2. 2,3,9,10,16,17,24,25-octa-(2-ethylhexyloxy)phthalocyanine (25) 

 Octa-(2-ethylhexyloxy)phthalocyaninato-magnesium (24) (308 mg, 200 µmol) was 

dissolved in 20 ml of anhydrous THF and 5 ml CF3COOH were added to the solution. The 

mixture was stirred at 40°C for 6 hours. After cooling, distilled water (30 ml) was added, in 

order to precipitate the metal free phthalocyanine. Compound 25 was filtered, washed with 

aqueous methanol and dried in vacuum at 80°C.  

Yield: 25, 254 mg, (82.5%) greenish-violet powder. 

 

EA: Theory: C=74.96%; H=9.55%; N=7.27%; 

Found: C= 75.19 %; H= 9.50%; N= 7.11 %. 

 

MS (FD): 1540.2 [M+], 1426.7 [M+-C8H17]. 

 
1H NMR (CDCl3): δ = -0.57 (s, br, 2 H,  

H-NH), 0.76 (s, br, 48 H, CH3), 1.13, 1.32,  

(br, 64 H, CH2), 1.63, 2.07 (br, 8 H, CH), 4.15, 4.49  

(br, 16 H, OCH2), 9.15 (br, 8 H, H-2).  

 
13C NMR (CDCl3): δ = 11.1, 14.0 (C-CH3), 22.9, 23.8, 29.0, 30.5 (C-CH2), 39.5 (C-CH), 

71.7 (C-OCH2), 104.9, 105.3, 105.7 (br, C-2), 126.0, 127.3, 130.5, 130.7, 131.8 (br, C-3), 

143.3, 148.6, 149.7, 150.3 (C-4), 152.6 (br, C-1). 
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IR (KBr): ν (cm-1): 3297 (NH st), 2958, 2926, 2858, 1607 (NH δ), 1456, 1383, 1276, 1198, 

1098, 1023, 856, 801 (NH δ), 746. 

 

UV/Vis (CH2Cl2): λmax = 700.0, 664.5, 604.5, 427.0, 346.0 nm. 

 

 

2.5.3. [2,3,9,10,16,17,24,25-octa-(2-ethylhexyloxy)phthalocyaninato]indium(III)-

       chloride (26) 

 100 mg InCl3 (0.45 mmol) and 140 mg 25 (0.090 mmol) were dissolved in 20 ml 

freshly distilled DMF (adding 5 ml anhydrous THF), stirred and boiled (145 °C) for 3 hours. 

After cooling, the product was precipitated upon a dropwise addition of water, filtered, 

washed through with aqueous methanol and dried in vacuum at 90°C to obtain 26.  

Yield: 26, 132 mg, (88%), dark green powder. 

 

EA: Theory: C=68.19%; H=8.55%; N=6.64%; 

Found: C= 67.95 %; H= 8.50 %; N= 6.58 %. 

 

MS (FD): 1686.1 [M+].  

 
1H NMR (THF-d8): δ = 0.96 (s, br, 48 H,  

CH3), 1.42, 1.63, (br, 64 H, CH2), 1.97 (br,  

8 H, CH), 4.36 (br, 16 H, OCH2), 8.94 (br, 8 H, H-2).  

 
13C NMR (THF-d8): δ = 11.4, 14.1 (C-CH3), 23.1, 24.1, 29.2, 30.8 (C-CH2), 39.7 (C-CH), 

72.2(C-OCH2), 103.7, 105.4, 106.1 (br, C-2), 127.4, 129.8, 131 (br, C-3), 149.7, 150.3 152.8 

(C-4), 154.2, 157.1(br, C-1). 

 

UV/Vis (CH2Cl2): λmax = 698.50, 671.5, 629.5, 446.0, 401.5, 362.5 nm. 

 

2.5.5. [2,3,9,10,16,17,24,25-octa-(2-ethylhexyloxy)phthalocyaninato]gallium(III)- 

chloride 27 

75 mg GaCl3 (0.43 mmol) and 125 mg 25 (0.080 mmol) were dissolved in 15 ml 

freshly distilled DMF (adding 4 ml anhydrous THF), stirred and boiled (145 °C) for 3.5 hours. 
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After cooling, the product was precipitated upon a dropwise addition of water, filtered, 

washed through with aqueous methanol and dried in vacuum at 90°C, obtaining 27.  

Yield: 27, 80.4 mg, (62.5%),dark green powder. 

 

EA: Theory: C=70.16%; H=8.83%; N=6.82%; 

Found: C= 70.09 %; H= 8.84 %; N= 6.90 %. 

 

MS (FD): 1642.0 [M+].  

 
1H NMR (THF-d8): δ = 0.92 (s, br, 48 H,  

CH3), 1.33, 1.53 (br, 64 H, CH2), 2.05  

(br, 8 H, CH), 4.24, 4.39 (br, 16 H, OCH2), 9.16 (br, 8 H, H-2).  

 
13C NMR (CDCl3): 11.1, 14.2 (C-CH3), 23.0, 23.2, 29.0, 30.8 (C-CH2), 39.3, 39.8 (C-CH), 

72.0 (C-OCH2), 105.6, 106.2 (br, C-2), 131.4 (br, C-3), 143.5-149.7 (C-4), 153.0 (br, C-1). 

 

UV/Vis (CH2Cl2): λmax = 694.5, 625.0, 441.0, 357.5 nm. 

 

2.5.6. [2,3,9,10,16,17,24,25-octa-(2-ethylhexyloxy)phthalocyaninato]thallium(III)- 

trifluoroacetate (28) 

120 mg Tl(CF3COO)3 (0.2 mmol) and 125 mg 25 (0.080 mmol) were dissolved in 15 

ml freshly distilled DMF (adding 4 ml quinoline), stirred and boiled (145 °C) for 6 hours. 

After cooling, the product was precipitated upon a dropwise addition of a 10% methanolic 

solution of NaOH, filtered, washed through several times with aqueous methanol and dried in 

vacuum at 70°C. 

Yield: 28, 100 mg, (60.0%),dark green powder. 

 

 EA: Theory: C=62.93%; H=6.82%; N=6.04%; 

Found: C= 61.96 %; H= 5.65 %; N= 5.97 %. 

 

MS (FD): 1855.6 [M+].  

 
1H NMR (THF-d8): δ = 1.00 (s, br, 24 H, CH3),  

1.12 (s, br, 24 H, CH3) 1.33, 1.49 (br, 64 H, CH2),  
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1.98 (br, 8 H, CH), 4.48 (br, 16 H, OCH2), 8.95 (br, 8 H, H-2).  

 
13C NMR (THF-d8): 12.2, 12.5, 15.0, 15.2 (C-CH3), 24.7, 25.8, 30.7, 30.9, 32.2, 33.2         

(C-CH2), 41.4, 41.7 (C-CH), 73.0 (C-OCH2), 107.0 (br, C-2), 135.2 (br, C-3), 143.5-149.7 (C-

4), 151.3–153.8(br, C-1), 157.1 (C=O). 

 

IR (KBr): ν (cm-1): 2958, 2926, 2858, 1700 (C=O), 1601, 1455, 1376, 1268, 1199. 1041, 

878, 842, 746 (C—F), 718 (C—F), 673. 

 

UV/Vis (CH2Cl2): λmax = 720.5, 647.5, 403.5, 364.5 nm. 
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