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Abstract

Giammarresi & Restivo (1992) define locality and recognizability for 2-dimensional languages.
Based on these notions, generalized to the n-dimensional case, n-dimensionally colorable 1-
dimensional languages are introduced. It is shown: A language L is in NP if and only if L is
n-dimensionally colorable for some n. An analogous characterization in terms of deterministic
n-dimensional colorability, based on a definition of 2-dimensional deterministic recognizability
from Reinhardt (1998), is obtained for P. For an analogous characterization of PSPACE one
unbounded dimension for coloring is added.
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Abstract

Giammarresi & Restivo (1992) define locality and recognizability for 2-dimensional languages.
Based on these notions, generalized to the n-dimensional case, n-dimensionally colorable 1-
dimensional languages are introduced. It is shown: A language L is in NP if and only if L is
n-dimensionally colorable for some n. An analogous characterization in terms of deterministic
n-dimensional colorability, based on a definition of 2-dimensional deterministic recognizability
from Reinhardt (1998), is obtained for P. For an analogous characterization of PSPACE one
unbounded dimension for coloring is added.

1 Introduction

McNaughton & Papert [MP71] show that a 1-dimensional language is regular iff it is recognizable,
i.e. if it consists of the words which positions can be colored so that the coloring respects the letters
and obeys a given finite set of neighborhood constraints. Giammarresi & Restivo [GR92] define 2-
dimensional recognizable languages the same way, now with 2-dimensional neighborhood constraints.
Their definition can be generalized to n-dimensional words. Based on that definition in this paper n-
dimensionally colorable 1-dimensional languages are defined as the languages consisting of the words
which n-tupels of positions (instead of just positions) can be colored so that the coloring respects
the letters and obeys a given set of neighborhood constraints. It is shown as the main result: A
language L is in NP if and only if L is n-dimensionally colorable for some n.

For the proof the following equivalent characterization of the n-dimensionally colorable languages
is used: They can be shown to be the languages consisting of the frontiers (cf. [LS97b]) of recogniz-
able n-dimensional cubes. Latteux & Simplot [LS97b] define this notion of frontier and show that
the context-sensitive languages are the languages given by frontiers of recognizable 2-dimensional
words (any 2-dimensional words, not just 2-dimensional cubes), rediscovering an unpublished re-
sult of Sperber [Sp85]. Giammarresi [Gi03] modifies the definition of Latteux & Simplot [LS97b]
and introduces the bounded grid context sensitive languages Bgrid-CS. The definition of Bgrid-CS is
equivalent to that of being the set of frontiers of 2-dimensional cubes (mentioned in [Gi03][p.312]),
and therefore equivalent to the definition of the 2-dimensionally colorable languages. This shows
that not only first level of the colorability hierarchy is well-known (the 1-dimensionally colorable
languages are the regular languages) but also the second level was studied before.

The main result and its proof is related to the result of Fagin [Fa74] which says that NP equals
the set of problems definable in existential second-order logic. In Section 5 the n-dimensionally
colorable languages will be shown, as another characterization, to be equal to the following segment
of existential second-order logic on words: second-order arity bounded to n, only one first-order



quantifier which is universal, and signature [min, max, S| where S is the successor function. In Sec-
tion 6 n-dimensionally deterministically colorable 1-dimensional languages, based on the notion of
deterministically recognizable 2-dimensional languages from Reinhard [Re98], are considered and an
analogous result to the main result is proven: A language L is in P if and only if L is n-dimensionally
deterministically colorable for some n. In Section 7 similar characterizations of some counting classes
are given. In Section 8 unbounded dimensions are added to the bounded dimensions in the colorabil-
ity characterization via frontiers of cubes. It will be shown that with one additional unbounded
dimension one gets a charaterization of NPSPACE = PSPACE, generalizing the above mentioned
characterization of the context sensitive languages by Sperber (1985) and Latteux & Simplot (1997),
while more than one additional unbounded dimensions lead to the recursively enumerable languages.

2 Preliminaries

An n-dimensional word is basically an n-dimensional array of letters - in the sense the term array
is used in programming languages. A survey for n = 2 is given by Giammarresi & Restivo in
the Handbook of Formal Languages, Part IIT [GR96]. Giammarresi & Restivo also transfered the
notions of locality and recognizability from 1-dimensional to 2-dimensional languages [GR92, GR96].
First, the definitions are repeated (with modifications) and generalized from the 2-dimensional to
the n-dimensional case.

An alphabet is a finite non-empty set. An n-dimensional word x over an alphabet ¥ is a mapping
from {1,...,051} x -+ x{1,...,1,} to X, where l,...,l,, > 1. The empty word(s) for 1-dimensional
and n-dimensional languages will be ignored in this paper. The elements of the domain of = are called
positions, and the tuple (I,...,1,) is called the size of z. Let "% be the set of all n-dimensional
words over X. An n-dimensional cube over an alphabet ¥ is an n-dimensional word having size
(m,...,m), m is called the edge length of the cube. A 2-dimensional word is called a picture and a
2-dimensional cube is called a square.

Let # be a symbol not in X. The boundary extension T of a n-dimensional word z of size
s = (l1,...,1,) over X is the following n-dimensional word over ¥ of size s = (I + 2,...,l, + 2):
Z(t) := z(t — (1,...,1)) for all positions ¢ in {2,...,l; +1} x --- x {2,...,l, + 1} (these positions
are called the inner positions of ), and Z(t) := # for all other positions t of T (these positions are
called the boundary positions of Z). The #’s mark the boundary of the word, see Figures 1 and 2 for
a l-dimensional and 2-dimensional example, respectively. Call x the kernel of Z.

An n-dimensional word ¢ of size (l1,...,l,) is a subword of another n-dimensional word p if
there is a position z = (21, ...,x,) in p (call it the anchor position) such that the position (21 + 1y —
1,...,z,+1,—1) is still a position in p and for all positions y in ¢ it holds ¢(y) = p(x+y—(1,...,1)).
g can be visually imagined as the word of size (I1,...,l,) cut out from p at the anchor position.

Call two positions of an n-dimensional word neighbored if they differ in just one dimension j
and in that dimension only by 1. Example: (3,2,5,4) and (3,2,4,4) are neighbored (in the 3rd
dimension). A position in an n-dimensional word has at most 2™ neighbored positions.

An n-dimensional language L over an alphabet ¥ is recognizable if there is a finite set II (called
the set of colors) with a fixed assignment 7 : IT — X of colors to letters (the alphabet projection)
and a finite set © of n-dimensional words over the alphabet ITU {#} (the set of forbidden subwords)
such that an n-dimensional word z is in L if and only if all inner positions 7 of Z can be assigned
a color ¢(i) from 7= 1(x(i)) (an appropriate color for z(i)) and the colored word ¢ does not contain
a forbidden subword from ©. The set of n-dimensional words ¢ over the alphabet II such that ¢



Figure 1: 1-dimensional coloring of a 1-dimensional word

does not contain a forbidden subword from © is called a local language (given by ©). This way,
the recognizable n-dimensional languages are by definition the alphabet projections of the local
n-dimensional languages.

First an example for a 1-dimensional recognizable language L is given. Consider the 1-dimensional
local language on the alphabet {a, b, ¢, #} given by the set of forbidden words © = {ba, cb, ca, #b, #c}.
Figure 1 shows as an example & = #aabbbbc#. The word x is in the local language given by © be-
cause none of the forbidden words of © appears in . The word aabbabe is for example not in the
local language given by © because the forbidden word ba appears in #aabbabc#. Together with the
mapping 7 : {a,b,c} — {0,1} defined by w(a) = 1,7(b) = 0,7(c) = 1 this local language defines
the recognizable language L; = 170*1*, see again Figure 1 where the word 1100001 is the image
of #aabbbbc# under the alphabet projection 7. Verify that Ly is not a local language (unlike 1+0*
which is local) — but still it is the alphabet projection (via m) of a local language, i.e. it is a recog-
nizable language. This recognizable language L; being a regular language is no coincidence. It is a
classical result by McNaughton & Papert 1971 [MP71] that the recognizable 1-dimensional languages
are the regular languages. This means that for n = 1 the recognizable languages coincide — besides
many other characterization of the regular languages — with the languages accepted by deterministic
finite automata.

An example of a 2-dimensional recognizable language is the set Ly of squares of odd length size
such that the letter in the center of the square is a 1. The local language for this is given by the
alphabet {x,y,a,b} and a set of forbidden subwords © which gurantee that the only way to color a
picture is by assigning the positions of the two diagonals through the picture colors x or y and their
crossing point a color y while all other positions have color a or b. If the picture is not a square of odd
length size the picture is not colorable because the diagonals and therefore also their crossing point
do not exists. After defining the alphabet projection 7 as w(x) = 0,7(y) = 1,7(a) = 0,7(b) = 1
one get as the recognizable language the language consisting of the squares of odd length size such
that the letter in the center of the square is a 1 (because the color is guaranteed to be y there).
Surprisingly, for n = 2 there are recognizable languages which are not accepted by a deterministic
finite automata acting on the n-dimensional word, see [GR92, GR96]. Actually, the language Lo was
already the witness in the paper of Blum & Hewitt 1967 [BH67] for the proof that nondeterministic
automata are more powerful on 2-dimensional words than deterministic ones. The recognizable
2-dimensional languages are btw. also different from the languages accepted by nondeterministic
automata, see [GR92, GR96].

Locality is defined in this paper by a finite set of forbidden subwords (of any size). Usually,
locality is defined the other way round: A shape of the subwords is fixed, say for example they
have to be cubes of edge length k, and then a finite set of allowed subwords of that shape is given.
The local language is now the set of words x such that every subword in Z of the given shape is an
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Figure 2: 2-dimensional coloring of a 2-dimensional word

allowed one. See for example [GR92, GR96] where for n = 2 the fixed shape is that of squares of
edge length 2. A picture is called a tile when being an allowed subword because one looks at the
tiles (like roof tiles) as a set of small words with which one covers the large word (the roof). Another
example are the domino tiles of size (2,1) and (1,2) studied in [LS97a]. The definition of a local
language possibly depends on the given shape, for example locality defined by finite sets of domino
tiles is different from locality defined by finite sets of squares of edge length 2, which again is different
from locality defined by squares of edge length 3. Nevertheless, the notion of recogizability will turn
out to be equivalent for all “reasonable” shapes, see [GR92, GR96, LS97a, PV97], and is equivalent
to the definition of recognizability via forbidden subwords. The definition of locality via forbidden
subwords is choosen here because it seems to be the shortest and also the most general definition in
the sense that every local set given by a finite set of allowed subwords of a certain shape is also a
local language definable via a finite set of forbidden subwords. Moreover, this definition will allow a
simple logical characterization of the n-dimensional local languages, see Lemma 5.1.

3 The Colorability Hierarchy

The main new notion of this paper is that of n-dimensional colorability. The idea is the follow-
ing. A 1-dimensional language is recognizable if the positions can be colored so that a given finite
set of neighborhood constraints is obeyed. The step from recognizability to that of n-dimensional
colorability is that of going from positions of a 1-dimensional word x to n-tupels of positions of x:
Instead of coloring the positions now the n-tupels of positions are colored, seen as an n-dimensional
word (note that it is a cube), and x is in the n-dimensionally colorable language if a coloring of
this n-dimensional cube of n-tupels exists which obeys a given set of n-dimensional neighborhood
constraints. Note that for n = 1 this remains the definition of recognizability. The idea is repeated
in the following formal definition.
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Figure 3: 2-dimensional coloring of a 1-dimensional word

Definition 3.1 (n-dimensionally colorable languages) An 1-dimensional language L over an
alphabet 3 is n-dimensionally colorable if there is an alphabet 11 (called the set of colors) together
with a fized assignment 7 : II — 3™ of colors to n-tupels of letters (called the alphabet projection)
and a set © of n-dimensional words over alphabet IIU{#} (called the forbidden subwords) such that
a 1-dimensional word x is in L if and only if all n-tupels i = (i1,...,1,) of positions of x can be
assigned a color (i) from 7= ((x(i)) (call such a color appropriate for x(i)) and the colored word ¢
does not contain a forbidden subword from ©. Let COL"™ denote the set of n-dimensionally colorable
languages, and let COL be the set of languages which are n-dimensionally colorable for some n.

As an example it will be shown that the non-regular but context-free language L = {0"10" | n >
0} is 2-dimensionally colorable according to the definition above. The colors for the coloring will
be {a,z,y,w, z}, together with the alphabet projection w(a) = (0,0), w(x) = (0,0), n(y) = (1,1),
m(w) = (1,0), and 7(z) = (0,1). The set of forbidden subwords © can be given in a way so that the
diagonal is colored with x’s, besides the center which is colored with y. The coloring of the diagonals
with 2’s is done in order to find the center of the square (in the example before it was also done for
guaranteeing that the picture is a square - here it is a square anyway). From that center a horizontal
line is colored with z’s and a vertikal column with w’s. This is done because for a word in L the
pairs of letters at these positions will be (0,1) and (1,0), respectively. It holds: If a word z is of
the form 07™10™ then the 2-tupels of positions can be colored obeying the constraints from O, see
Figure 3 where a coloring of the 2-tupels of the positions in the word 0001000 is given, and if the
word is not of that form any coloring will fail, i.e. will not assign every 2-tupel an appropriate color
or it will contain a forbidden subword.



Figure 4: 2- and 3-dimensional cubes with their frontiers
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Figure 5: 2- and 3-dimensional words with their circumferential frontiers

In the following Lemma 3.2 equivalent — and possibly easier to understand — characterizations of
n-dimensional colorability will be given. The following notion was introduced by Latteux & Simplot
in [LS97b]. Let the frontier fr(z) of an n-dimensional word x of size (I,....,l;) be its lowest
row, i.e. the 1-dimensional word of length I; which is the concatenation of the letters x(1,1,...,1),
x(2,1,...,1), ...x(l3,1,...,1). See Figure 4 for frontiers of a 2- and 3-dimensional cube. Let n-
padded-cube(w) for some 1-dimensional word w € X1 of length m be the n-dimensional cube with
edge size m having frontier w and a blank symbol B ¢ X at all other positions, see also Figure 4
(the frontier notion and the padded-cube notion are kind of inverse). The following definitions
are generalizations of a 2-dimensional notion from [Gi03]. Let for j = 2,...,n the frontier in
the j-th dimension frj(z) of an n-dimensional word z be the the 1-dimensional word of length
1;—1 consisting of the concatenation of the letters z(l1,...,1;-1,2,1,...,1), x(l1,...,l;-1,3,1,...,1),
ozl o, 1,000, 1), Let the circumferential frontier of an n-dimensional word be the 1-
dimensional concatenation fr(z)fra(z) - - - fr,, (z). See Figure 5 for the circumferential frontiers of a 2-
and a 3-dimensional word.

Lemma 3.2 For a 1-dimensional language L over ¥ and n > 2 the following are equivalent:

(a) L is n-dimensionally colorable,

(b) there exists an n-dimensional local (or recognizable) language L' such that L consists of the
frontiers of the cubes in L',



(¢) n-padded-cube(L) is recognizable (as an n-dimensional language),
(d) there exists an n-dimensional local (or recognizable) language L' such that L consists of the
circumferential frontiers of the words in L'.

Note that all characterizations are still from Formal Languages Theory, no concept of computation
is used in the respective definitions.

Proof. (a) = (b): Let L be n-dimensionally colorable via a local language L given by © and
7 : II — X", In order to build a local language on the n-dimensional cube (which does not contain
the n-tupels of letters) - a local language is constructed which “shows” the n-tupels of letters in the
frontier in its colors. As the first step build a new ©1 over a new alphabet II; which ensures that only
n-dimensional cubes are in L, this can be done by building a diagonal, see examples above. As the
next step make ¥ U Il, for an extended alphabet II; O II; the new alphabet and let a ©, guarantee
that the letters from ¥ only appear in the frontier of the cube. As the next step make X U Tl3 x 3"
for II3 D Iy the new alphabet for a new n-dimensional local language given by ©3 where O3 ensures
that each position i = (i1,...,,) not belonging to the frontier has color (d, (I;,,...,l;,)) such that
letter [;; is equal to the i;-th letter of the frontier. This can be done by guaranteeing this first for the
frontiers in the other dimensions via 2-dimensional diagonals, and then forwarding this information
from neighbor to neighbor in every dimension j. Now that the n-tupels of the frontier can basically
be “seen” at all positions, combine the original set of forbidden words © and its alphabet projection
7w : II — ¥™ with O3 in order to get a local language which contains a cube with frontier z iff x is
n-dimensionally colorable with © and 7. (b) < (c) is immediate. (¢) = (a): Let II be the of colors
of the recognizable set and © be the set of forbidden subwords. Construct the following new local
language: Make II x 3" the new alphabet, let the set of forbidden subwords be like ©, ignoring the
n-tupels of letters, and let the alphabet projection 7 map a color (c,t) to the n-tupel of letters ¢.
The equivalence (b) < (d) is mentioned in [Gi03][p. 312] for n = 2, and can also for n > 2 be shown
in both directions with elementary tiling “programming” techniques. q.e.d.

It is obvious that the n-dimensionally colorable languages are a subset of the (n+1)-dimensionally
colorable languages. Therefore one gets a hierarchy of language classes. Non-collapsing properties of
the hierarchy will be concluded in the next paragraph. The 1-dimensionally colorable languages are
by definition the 1-dimensional recognizable language which are the regular languages (McNaughton
& Papert 1971 [MPT71]). An example of a 2-dimensionally recognizable language which is not 1-
dimensionally recognizable (because it is not regular) is the language L from the example above
consisting of words w over {0,1} such that w = 0"10™ for some n. In the next section it will
be observed that COL? already contains NP-complete languages. The languages which correspond
to part (d) of the above Lemma 3.2 were introduced for n = 2 by Giammarresi [Gi03] as the
bounded-grid context sensitive languages, short Bgrid-CS. Bgrid-CS contains the set LINEARcg
from Book [Bo71] which contains for example the contextfree languages. The observations of this
paragraph are summarized.

Observation 3.3
(a) For alln > 1: COL™ C COL" ™,
(b) COL' ¢ COL?,
(¢) COL' = REC = REG (]MP71]),
(d) COL? = BgridCS ([Gi03]).

At the end of this chapter it will be observed that by looking at neighborship requirements of
n-tupels of positions while coloring not the tupels but only the letters one does not get out of the



regular languages. Consider a 1-dimensional language from X, an alphabet II, a function 7 : II — X
and a finite set © of n-dimensional words over the alphabet II"™ U {#}. Assume that L consists of
the words w = wy - - - wy, such that there exists a word e from II" such that w = m(e) and the
n-dimensional cube ¢ with edge size m + 2 defined by ¢(x1,...,2,) = (e(z1),...,e(x,)) does not
contain a subword from ©. Then L is regular. This can be shown by turning the local language given
by © into an equivalent domino local language [LL.S97a] with a possibly new alphabet II' and new 7/,
and arguing that L is the n’-image of the 1-dimensional local language given by the conjunction of
the n sets (for each dimension) of domino local constraints.

4 A Characterization of NP

It will be shown that the n-dimensionally colorable languages are the languages accepted by non-
deterministic Turing machines, see for example the textbook [Pa94]. More specifically, NP is the
union (over all n) of the classes NTIME(|z|") which is defined to be the set of language from X+
accepted by a nondeterministic Turing machine having for every input x run time c¢|z|™ or less on
every nondeterministic path, for some constant ¢. From now on let ¥ always be {0,1}. First the
following simple result is shown.

Lemma 4.1 COL" C NTIME(|z|™).

Proof. Let a language L from COL" be given via a set © of forbidden words over an alphabet
ITU {#}, according to characterization (b) from Lemma 3.2, note that ¥ is contained in II. Given an
input z of size k the Turing machine builds an n-dimensional cube (= array) p of size (k+2,...,k+2)
which cells can hold a code for the letters of ITU {#}. It places the code for letter # at all boundary
positions, writes the word x into the frontier of the cube, and for each inner position it guesses
nondeterministically a code for one of the letters from II. Then it checks deterministically by going
through all positions i as anchor positions whether one of the forbidden words in © is a subword of p
with anchor position i. If it finds such a subword the Turing machine rejects the input x, otherwise
it accepts = after the search. By construction the machine accepts the input x if = is in L, and its
runtime is O(|z|™). q.e.d.

The above lemma shows COL C NP. In order to show the other direction (Theorem 4.4) first
the following Lemma 4.2 is recalled. Its main idea - namely the simulation of a general, i.e., not
ressource-bounded, Turing machine computation by a 2-dimensional tiling system - goes finally back
to Wang [Wa61, Wa62] who used an infinite w x w area. Lewis [Le77, Le78] modified the idea for
the simulation of a ressource-bounded Turing machine by a tiling system for a finite area, resulting
in a “tiling” master problem for NP-completeness as an alternative to SAT (resolutely done in the
textbook [LP81]), see the papers of van Emde Boas [vEm82, SE84, vEm97] for a survey.

Let C(z, s,t) for a word x € {0,1}" and numbers s > |z| and ¢ be the 2-dimensional word of size
(s,t) over the alphabet {0,1, B} such that the lowest row is a word zB*~1*l and all other positions
have the ”blank” letter B, see Figure 6. For simplicity it is assumed that a Turing machine has only
a halftape. i.e. it cannot move left to the initial cell; complexity classes like NTIME(|z|™) are robust
under this restriction.

Lemma 4.2 (cf. Wang [Wa61, Wa62|, Lewis [Le78]) Let M be a nondeterministic Turing ma-
chine. Then the following 2-dimensional language is recognizable: The set of squares C(z,t,t) such
that M accepts x within time t.
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Figure 6: Turing computation, cf. Lemma 4.2

Proof Sketch. The idea of the construction is the following: The local language will ensure that on
every row a configuration of the Turing machine is encoded, the cell below the head will be colored
with the state the Turing machine is in. The content of the tape will be copied from one row to the
upper row, besides a possible change below the head caused by writing. It will be ensured that the
upper right corner can only be tiled if the Turing machine has accpeted on some row. q.e.d.

Lemma 4.3 NTIME(|z|") € COL*".

Proof. First the case n = 1 is shown. Let L be accepted by a nondeterministic Turing machine
having time bound in ¢(|z|). Consider ¢ = 1. Then Lemma 4.2 gives immediately that L is in
COL2. For ¢ > 1 one has to consider tiles which combine ¢ x ¢ adjacent tiles into one - neighborship
requirements of the smaller tiles are translated into neighborship requirements for the ¢ x ¢ tiles.

Second, the case n > 2 is shown. Let M be a nondeterministic Turing machine time-bounded
by c|z|™. Assume again w.l.o.g. that ¢ = 1 because in case ¢ > 1 one combines ¢ x ¢ adjacent tiles
into one, see case n = 1 above.. Let L be the 2-dimensional local language for this M according to
Lemma 4.2 given by the set of forbidden subwords ©. © can according to [LS97a] be assumed to
consist of domino tiles. This 2-dimensional local language L will be turned into a 2n-dimensional
local language. The first n dimensions are used to represent a configuration of M, i.e. a line in the
computation square of Lemma 4.2, while the other n dimensions are used to represent the sequence
of configurations of the computation of M. One line of the local language for M given by Lemma 4.2
has length |z|™. This line will be embedded into an n-dimesnional cube of length size n in a way
so that two positions which were neighbored in the line are still neighbored in the n-dimensional
cube. One way to do this is the ”snakelike” embedding, see Figure 7. The horizontal part of the 2-
dimensional domino local language L can therefore be translated into a n-dimensional local language
which ensures that the n-dimensional cube of length size |z| is in this local n-dimensional language
iff the line of length |z|™ is in the local horizontal domino-local language L. This procedure is done
the same way in order to now folding the columns of the computation square via the vertical part
of the local domino language, using again another n dimensions, see Figure 8. Note that the two
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Figure 8: Folding a configuation/time computation

foldings, first the horizontal and then the vertical, can be done independently. Neighbored positions
in the 2-dimensional square of Figure 6 are still neighbored in the 2n-dimensional cube. Finally, this
2n-dimensional local language has the property that an input z is in the frontier of a cube of this
local language iff x is accepted by M. q.e.d.

The following theorem combines Lemmata 4.1 and 4.3, and can be seen as a characterization of
NP in terms of formal language theory.

Theorem 4.4 NP = COL.
Note that the two hierarchies
COL' C COL?> C COL® C ...
and
NTIME(|z|') € NTIME(|z|?) € NTIME(|z|*) C ...

have both NP as their union limit but seem not to be too closely related: The n-th level of the first
hierarchy can be shown to be included in the n-th level of the latter, but the other direction needs
a factor of 2. It is unknown to the author whether one can improve this factor of 2. Moreover, the
following answer to the question of the previous section concerning the properness of the colorability
hierarchy, possible by the result of Cook [Co73] who showed that NTIME(|z|*) is a proper subset
of NTIME(|z|[*+1) for every k (“nondeterministic time hierarchy theorem”), could be made stronger
when that factor of 2 would be improved.

Corollary 4.5 (cf. Cook [Co73]) The colorability hierarchy does not collapse to some level: For
every n COL™ is a proper subset of COL*".

Lemma 4.3 for n = 1 can be combined with the result of Michel[Mi91], stating that NTIME(|z|)
contains NP-complete problems, to conclude the following.
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Corollary 4.6 (cf. Michel [Mi91]) COL? = BgridCS contains NP-complete problems.

5 The Relation to the Characterization of NP by Fagin

First, the local languages are described logically, using the logical system for 2-dimensional words
from Giammarresi et al. [GRST96], generalized to the n-dimensional case. S; in the following signa-
ture [min, max, S1, ..., Sy, (Pe)eern] is the successor function for dimension 4, and P, is the predicate
which is TRUE for a position iff the letter at that position is c.

Lemma 5.1 For all n > 1 and all alphabets 11 it holds: The n-dimensional local languages over
alphabet 11 are the languages expressible with one first-order universal quantifier over signature
[mina max, Slv L) Sna (PC)CEH]'

Proof. Let an n-dimensional local language over an alphabet II be given by a finite set of
forbidden subwords © = {ws,...,wy} over alphabet ITU {#}. Expressing that a word Z does not
contain a forbidden subword is done via a universal quantification over every position 7 in T seen as a
potential anchor position and expressing: Vi : =€y, (1) A... A =ey, (i), where e, (i) expresses that w;
is a subword of z with anchor position i. The subexpression e, (i) can be build using the successor
functions and the letter predicates P., and in case the bounding letter # is contained in w; it uses
the min and max predicates appropriately. If on the other hand an expression Vie(i) with only one
universal quantifier is given, let k£ be an upper bound for the length of a chain of successor functions
occuring in e(i). For all n-dimensional words x with sizes (l1,...,1,) over alphabet IT U {#} such
that all I; are < k+1 check if e(1,...,1) on = evaluates to FALSE, considering the #’s appropriately,
and make in that case x a forbidden subword. This set of forbidden subwords suffices to determine
the local language because the expression can not “reach further” in the n-dimensional word. q.e.d.

For each n > 1 let 32"V![min, max, S] be the set of 1-dimensional languages over alphabet 3
definable with signature [min, max, S, (P;);ex] with existential second variables having arity at most
n and with one universal first-order quantifier only (from now the predicates s(P;);cx are no longer
mentioned in the signature).

Lemma 5.2 COL" = 32"V} [min, max, S].

Proof. For the direction C translate k colors into k n-ary predicates and require via the universal
first order quantifier that exactly one of them holds for each tupel and that these predicates do obey
the restrictions of the set of forbidden subwords, see Lemma 5.1 above. For the other direction let
every combination of predicates become a color of a new alphabet, and construct a set of forbidden
subwords like in Lemma 5.1. q.e.d.

Lemma 5.2 can be seen as another charactization of the n-dimensionally recognizable languages.
Note that for n = 1 this gives a logical characterization of the regular languages as the languages
definable with signature [min, max, S] in monadic second order having only one first-order quantifier
which is universal. For n = 2 this gives a logical characterization of the bounded grid context-
sensitive languages BgridCS [Gi03]: The languages definable with signature [min, max, S] in duadic
second order having only one first-order quantifier which is universal.

Let 32V! be the union of all 3"V1, and let 3°FO[o] be the set of languages expressible in second
order with signature ¢ with no restriction on the first order part. The first of the following equalities
follows from Lemma 5.2 together with Theorem 4.4. The second follows from the fact that a first
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order part can be evaluated in polynomial time, and the last equality follows from the fact that [<]
is definable via [min, max, S] in existential second order, and vice versa (even in first order).

Theorem 5.3 (Fagin [Fa74]) NP = 32¥![min, max, S| = 3?FO[min, max, S] = F2FO[<].

6 A Characterization of P

Reinhardt [Re98] introduced the following concept of deterministic recognizability. Instead of just
asking for the existence of a coloring the coloring has to be constructed in a deterministic fashion,
starting from the boundary extension of the 2-dimensional word on letters, and flipping letters
successively into colors only when that color is the only one at the position locally not hurting the
neighborhood requirements. Only if this iterated procedure results in a fully colored word the word
is deterministically colorable.

For a formal treatment and the generalization from 2 to n dimensions the following definition is
introduced. Let like in the definition of colorability two alphabets ¥ (the letters) and II (the colors)
be given (let them be disjunct), together with an alphabet projection 7 : IT — ¥ and a finite set of
forbidden subwords © of n-dimensional words over the alphabet ITU {#}. Like in [Re98] the set © is
required to consist only of domino words, i.e. words of size (2,1,...,1),(1,2,1,...,1),...,(1,...,1,2).

Define the following relation o, among n-dimensional words x, 2’ on the alphabet X UTIU {#}
to hold if the following conditions (1)-(3) are met: (1) x, 2" only differ at one position 4 at which x(7)
is a letter and 2/(¢) is an appropriate color for z(i), (2) both z and 2’ do not contain a forbidden
subword, and (3) every coloring of ¢ and its yet uncolored neighbors ji,...,jr with appropriate
colors ¢(i),c(41),-..,c(ji), resp., which results, after replacing these letters in = by these colors
c(i),¢e(41), - --,c(jk), resp., in a word not containing a forbidden subword from ©, has ¢(i) = 2/(3).
An n-dimensional language L over an alphabet X is deterministically recognizable if there are II,
and © like above such that an n-dimensional word  is in L if and only if there are words x4, ..., 251
over the alphabet ¥ UII and a word zy over the alphabet II such that it holds

®

~ 60,7 ~ O, O, 7 ~ 0,7 ~
r— X1 ==Xy — Ty,

i

Corollary 6.1 For a language L it holds: L € P <= mn-padded-cube(L) is deterministically
recognizable for some n.

The corollary is a proof corollary of Lemmata 4.1 and 4.3, note that the simulation of a deter-
minstic Turing machine by the local language, see Lemma 4.2, is a simple case of the above notion
of determinism: starting from the head position of a deterministic Turing machine one first colors
the current line containing the start configuration and after that one moves, at the position of the
head, one line up and continues there. Like in the previous section one can conclude that levels n
and 2n of the deterministic colorability hierarchy are different (via the deterministic time hierarchy
theorem, see [Pa94, Th. 7.1]).

7 Characterizations of Counting Classes

In this section colorability characterizations of some counting complexity classes are given. The idea
is the following: Instead of asking whether a coloring exists one counts the number of valid colorings.
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Figure 9: A 3-dimensional word which is a cube in the first 2 dimensions

An 1-dimensional language L over an alphabet ¥ is n-dimensionally complement (exactly-1, par-
ity, majority, unambiguously) colorable if there is an alphabet II together with a alphabet projection
7w : II — X" of colors to n-tupels of letters and a set of forbidden subwords © of n-dimensional words
over alphabet ITU{#} such that a 1-dimensional word z is in L if and only if the number of colorings
of the n-tupels i = (i1, ...,1,) of positions of z with an appropriate color ¢(i) such that ¢ does not
contain a forbidden subword from © is 0 (is exactly 1, is odd, is at least half as large as the total
number of colorings with appropriate colors, is 1 and it is given that for every word z there is at
most one such coloring). The recognizability version of the 2-dimensionally unambiguously colorable
languages was defined as UREC in [GR92].

The following is a proof corollary of Lemmata 4.1 and 4.3. For the definition of the classes
occurring refer for example to [Pa94]. More counting classes could be characterized in an analogous
fashion.

Corollary 7.1 Let L be a language in X . L € co-NP(1-NP,®P, PP, UP) <= L isn-dimensionally
complement (exactly-1, parity, majority, unambiguously) colorable for some n.

8 A Characterization of PSPACE

The definition of colorabilty, according to characterization (b) of Lemma 3.2, is generalized to addi-
tional unbounded dimensions. Let in the following n > 1 and m > 0. Call an (n 4+ m)-dimensional
word of size (k,..., Kk, lntr1,...,1n) a cube in the first n dimensions, and call k its edge length. See
Figure 9 for a 3-dimensional word which is a cube in the first 2 dimensions. A 1-dimensional language
L over an alphabet X is called colorable in n bounded and m unbounded dimensions if there exists an
(n + m)-dimensional local (or recognizable) language L’ such that L consists of the frontiers of the
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Figure 10: Turing computation, cf. Lemma 4.2

cubes in the first n dimensions in L'. Let COL™ ™Y be the set of these languages. By Lemma 3.2(b),
COL"™ = COL™*Y. One could have, equivalently, extended the original definition of colorability, or
the equivalent characterization via circumferential frontiers.

The following more general version of Lemma 4.2 is needed, see Figure 10. The space constraint
is obeyed by not allowing the Turing machine head to move right of the right border.

Lemma 8.1 (cf. Wang [Wa61, Wa62], Lewis [Le78]) Let M be a nondeterministic Turing ma-
chine. Then the following 2-dimensional language is recognizable: The set of words C(x,s,t) such
that M accepts x within space s and time t.

From this Lemma 8.1 one can conclude that with two or more unbounded dimensions one gets
the recursively enumerable languages RE.

Lemma 8.2 If m > 2 then it holds for every n > 1: COL"*™V = RE.

Proof. C: For an input word & put all possible (n+m)-dimensional words which are cubes in the
first n dimensions and having = as its frontier into a sequence and accept the first time one of them
does not contain a forbidden subword. O: Copy via a diagonal the input word « into the first frontier
positions of the first unbounded dimension and accept if one of the C'(z, s,t) is accepted according
to Lemma 8.1 applied to the first two unbounded dimensions and ignoring the other. g.e.d.

It remains to study the classes colorable in n bounded and 1 unbounded dimension.

Lemma 8.3 COL""'Y = NSPACE(|z|").

Proof. C: Let the local language for a language in COL™ ™Y have k colors. Then suffices to
check for an input x all cubes in the first n dimensions having x as a frontier with length of the
last dimension being bounded by k(m") because all colorings of cubes in the first n dimensions with
a longer last dimension would contain identical slices in the first n dimensions and could therefore
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be shortened in the last dimension by dropping the part between the identical slices (including one
of the two identical slices) until the length becomes less than £(*I"). This gives an NSPACE(|z|")
algorithm which nondeterminstically guesses slice by slice all these cubes in the first n dimensions up
to this length in the last dimension and looks if one of them does not contain a forbidden subword. 2:
Like in the proof of Lemma 4.3 one considers the local language for the 2-dimensional recognizable
language from Lemma 8.1. But here only the horizontal lines (i.e. the configurations) will be folded,
not the vertical (time) dimension. This gives a n+ 1-dimensional local language L such that an input
x is accepted by a Turing machine M working with space c|x|™ iff  is the frontier of a cube in the
first n dimensions in L and one unbounded dimension which represents the time dimension. q.e.d.

Together with the result of Kuroda [Ku64], stating NSPACE(|z|) = CSL, this implies as the
special case n = 1 the following characterization of the context sensitive languages CSL.

Theorem 8.4 (Sperber 1985, Latteux & Simplot 1997) COL'"'Y = NSPACE(|z|) = CSL.

It remains to follow immediately from Lemma 8.3 that the union limit of the classes COL" Y
is NPSPACE, which equals PSPACE according to Savitch’s Theorem [Sa70] stating, for polynomial
space bounds, NSPACE(|z|") € DSPACE(|x|*").

Theorem 8.5 PSPACE = NPSPACE = |J,,, COL""'V.

Conclusions and Open Problems

The characterization of NP given in this paper is the first one in terms of Formal Language Theory,
likewise the one for PSPACE (for P there exists already the characterization as the set of languages
accepted by alternating two-way multihead finite automata [Ki88]). These characterizations demon-
strate an even closer relation of Formal Language Theory and Complexity Theory.

A problem not solved is the separation of level n from level n — 1 (and not only from level n/2)
in the colorability hierarchy, likewise in the deterministic colorability hierarchy. As another open
problem it would be interesting to see whether for some k& > 3 the complement of the k-slice of the
CLIQUE problem (or similar problems) could be shown not to be in the second level COL?: Tt is
easy to see that for every k the problem k-CLIQUE (i.e. the set of graphs, given via the adjacency
matrix, which contain a clique of size k) is in COL? but for k > 3 its complement co-k-CLIQUE
does not seem to be contained in COL?, only COLF is an obvious upper bound for co-k-CLIQUE.
(Proving for every m that COL™ does not contain all co-k-CLIQUE problems would imply co-NP
Z NP: Assume co-NP C NP, then the complement of CLIQUE would be in COL™ for some m, and
for every k the problem co-k-CLIQUE would be in COL™"!, contradicting the hypothesis). Another
question: Can one interpret the characterization of PSPACE in Section 8 as a logical characterization
of PSPACE?
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