Ternäre und quaternäre Nitridoborate

Synthesen, Kristallstrukturen und Eigenschaften

DISSERTATION

der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften

2003

vorgelegt von

Björn Blaschkowski

Ternäre und quaternäre Nitridoborate

Synthesen, Kristallstrukturen und Eigenschaften

DISSERTATION

der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften

2003

vorgelegt von

Björn Blaschkowski

Tag der mündlichen Prüfung: 25. Juli 2003

Dekan:Prof. Dr. H. Probst1. Berichterstatter:Prof. Dr. H.-J. Meyer2. Berichterstatter:Prof. Dr. Dr. h.c. J. Strähle

Die vorliegende Arbeit wurde von April 2000 bis Juli 2003 am Institut für Anorganische Chemie der Eberhard-Karls-Universität Tübingen unter der Leitung von Prof. Dr. H.-J. Meyer angefertigt.

Herzlich danken möchte ich meinem Doktorvater Prof. Dr. H.-J. Meyer für die Überlassung des interessanten Themas, sein Engagement und seine ständige Hilfsbereitschaft in allen thematischen und organisatorischen Fragen sowie seiner immerwährenden, freundschaftlichen und offenen Gesprächsbereitschaft. Ein ebenso herzlicher Dank geht an Peter, Haipeng, Markus, Martina, Marco, Christoph, Heinz-Jürgen, Kathrin, Sonja, Ruth, Simone, Jochen, Michael, Srini, Andi, Frank und Bernd, durch deren vertrauens- und liebevollen Umgang untereinander und mit mir, die Arbeit in der Arbeitsgruppe immer ein Vergnügen war. Dazu kommt die tatkräftige Unterstützung bei Kristallstrukturbestimmungen, magnetischen und thermischen Messungen, bei Diskussionen und Interpretationen der Ergebnisse, beim Schreiben und Korrigieren der Doktorarbeit und im Kampf gegen die überbordende Bürokratie.

Bedanken möchte ich mich auch bei Prof. Strähle, Prof. Schweda sowie den Mitgliedern ihrer Arbeitsgruppen. Auch hier waren es das gute Miteinander und die selbstverständliche Hilfestellung, die zum Gelingen dieser Arbeit beigetragen haben.

Einen besonderen Dank möchte ich meiner lieben Frau Ingrida aussprechen, die immer zu mir gehalten hat, die mich auch in schwierigen Zeiten unterstützt und motiviert hat und deren natürlicher Sinn für das Richtige und Wesentliche mich manches Mal vor Abwegen bewahrt hat.

Inhaltsverzeichnis

1	Einleitung	1
2	Einteilung der Nitridoborate	2
	2. 1 Nitridoborate mit BN ₂ -Einheiten	5
	2. 2 Nitridoborate mit BN ₃ -Einheiten	7
	2. 3 Nitridoborate mit B ₃ N ₆ -Einheiten	9
	2. 4 Nitridoborate mit B ₂ N ₄ -Einheiten	13
	2.5 Nitridoborate mit BN-Einheiten	16
3	Zur Struktursystematik von Nitridoborat(-Nitrid)en Ln _{3+x} (B ₂ N ₄)N _x	18
	3. 1 Darstellung von $La_4(B_2N_4)N$ und $Ce_4(B_2N_4)N$	18
	3. 2 Kristallstrukturbestimmung von Ce ₄ (B ₂ N ₄)N	19
	3. 3 Ergebnisse und Diskussion der Kristallstruktur von Ce ₄ (B ₂ N ₄)N	21
	3. 4 Strukturmodell des Formeltyps $Ln_{3+x}(B_2N_4)N_x$ mit $x = 0, 1, 2$	23
	3.5 Strukturentwurf für ein Nitridoborat La ₂ (BN ₃)	27
4	Quaternäre Nitridoborate mit BN-Einheiten	30
	4.1 Erdalkalinitridoborate CaNi(BN), CaPd(BN)	30
	4. 1. 1 Darstellung von CaNi(BN)	30
	4. 1. 2 Röntgenographische Untersuchungen an CaNi(BN)	31
	4. 1. 3 Strukturbeschreibung von CaNi(BN)	33
	4. 1. 4 Darstellung und Untersuchungen von CaPd(BN)	36
	4. 1. 5 Elektronische Struktur von CaNi(BN)	38
	4. 1. 6 Widerstands- und magnetische Messungen an CaNi(BN)	40
	4. 2 Lanthanoidnitridoborate LnNi(BN) (Ln = La, Ce, Pr)	43
	4. 2. 1 Synthesen	43
	4. 2. 2 Ergebnisse und Diskussion	43
	4. 2. 3 Magnetische Messungen an LaNi(BN), CeNi(BN), PrNi(BN)	44
	4. 3 $La_3Ni_2(BN)_2N$	46
	4. 3. 1 Darstellung von La ₃ Ni ₂ (BN) ₂ N	47
	4. 3. 2 Röntgenographische Untersuchungen	48
	4. 3. 3 Kristallstrukturbeschreibung von La ₃ Ni ₂ (BN) ₂ N	51
	4. 3. 4 Magnetische Eigenschaften von La ₃ Ni ₂ (BN) ₂ N	53

5	Ternäre Nitridometallate Ln ₃ T ₂ N ₆ (Ln = La, Ce, Pr; T = Nb, Ta)	55
	5. 1 Darstellung der Nitridometallate	55
	5. 2 Röntgenographische Untersuchungen	57
	5. 3 Strukturbeschreibung anhand der Kristallstruktur von $Ce_3Ta_2N_6$	59
	5.4 Magnetische Eigenschaften	63
6	Calciumtetraborid CaB _{4-x} C _x	65
	6. 1 Darstellung	65
	6. 2 Röntgenographische Untersuchungen	66
	6. 3 Strukturbeschreibung von CaB _{4-x} C _x	70
	6.4 Überlegungen zum Einbau von Kohlenstoff in das Borid-Gitter	72
	6. 5 Elektronische Struktur von CaB ₄	73
7	Zusammenfassung	79
8	Wissenschaftliche Publikationen	
9	Literaturliste	

1 Einleitung

Der Beginn systematischer Untersuchungen im System Metall-Stickstoff Anfang der vierziger Jahre des letzten Jahrhunderts durch Juza führte zur Darstellung und Beschreibung von Nitriden (GaN, InN) [1] und ersten Nitridometallaten (Li₃AlN₂, Li₃GaN₂) [2] der III. Hauptgruppe. Mit Li₃(BN₂), Ca₃(BN₂)₂ und Ba₃(BN₂)₂ gelang durch Goubeau und Anselment 1961 erstmals die Synthese von Nitridoboraten mit isolierten BN₂-Einheiten, die schwingungsspektroskopisch charakterisiert werden konnten [3]. In der Folgezeit wurden weitere Nitridoborate sowohl der Erdalkalimetalle als auch der Lanthanoide synthetisiert, strukturell charakterisiert und auf ihre Eigenschaften untersucht. Diese Untersuchungen erfolgten auch hinsichtlich der Entwicklung von Substanzen zur Verbesserung der Hochdruck-Konvertierung von hexagonalem Bornitrid in dessen kubische Form, da Nitridoborate hierbei eine besondere Rolle zu spielen scheinen [4, 5]. Ein weiterer technisch und theoretisch interessanter Aspekt trat 1994 zutage, nachdem im quaternären Nitridoborat La₃Ni₂(BN)₂N supraleitende Eigenschaften festgestellt wurden [6]. Das System Metall-Bor-Stickstoff bietet schon durch die Präsenz der binären Verbindungen wie LaB_6 als Elektronenemitter, MgB₂ als Hochtemperatursupraleiter [7], TiN als Hartmetall-Werkstoff, a-BN als Füll- oder Schmierstoff und kubisches BN als Schleifmittel, um nur einige aufzuführen, eine Fülle von Materialien mit herausragenden Eigenschaften, so dass durchaus Hoffnungen bestehen, im ternären System zu verbesserten oder kombinierten Stoffeigenschaften zu kommen. Der Schwerpunkt dieser Arbeit soll sich auf die Verbindungsklasse der Nitridoborate mit kovalent gebundenen $[B_x N_y]^{z}$ -Einheiten beschränken. Nitrid-Boride wie z.B. Nb₂BN [8] oder Mo₂BN [9], in deren Kristallstrukturen Bor und Stickstoff isoliert vorkommen, oder Verbindungen im System M-B-C oder M-C-N, die den Nitridoboraten vergleichbare kovalent gebundene Einheiten enthalten, sollen nicht weiter behandelt werden.

Darüber hinaus sollen hier Ergebnisse über ternäre Nitride $Ln_3T_2N_6$ (Ln = La, Ce, Pr, Nd; T = Nb, Ta) und Calciumtetraborid (CaB_{4-x}C_x) dargestellt werden, die neben den Arbeiten an Nitridoboraten entstanden sind.

2 Einteilung der Nitridoborate

Eine Einteilung der Nitridoborate lässt sich über die in Kristallstrukturen verwirklichten Nitridoborat-Einheiten vornehmen. Die bislang beschriebenen Nitridoborate enthalten die Einheiten $[BN]^{n-}$, $[BN_2]^{3-}$, $[BN_3]^{6-}$, $[B_2N_4]^{8-}$ und $[B_3N_6]^{9-}$. Diese Nitridoborat-Einheiten lassen sich als kovalent gebundene, elektronenpräzise (Ausnahme [BN]ⁿ⁻), anionische Molekülfragmente betrachten. Ihre Ladungen ergeben sich zwanglos unter Beachtung der Oktettregel. Tab. 1 gibt eine Übersicht über die bislang dargestellten Einheiten, Abb.1 veranschaulicht sie graphisch. Der Terminus "Nitridoborate" lässt sich in Analogie zu Thio-, Seleno- oder Fluoroboraten durch formalen Ersatz des Sauerstoffatoms in (Oxo)-Boraten durch Stickstoff herleiten. Im Gegensatz zu Oxo- oder Thioboraten wird ein tetraedrisch mit Stickstoff koordiniertes Bor nicht verwirklicht. Ein BN₄-Tetraeder oder ein adamantanartiges B₄N₁₀-Fragment wird im Gegensatz zu Beispielen für Oxo- oder Thioborate Ta(BO4) [10] oder Pb₂(B₂S₅) [11] nicht vorgefunden. Während die mannigfaltige Strukturchemie der Oxoborate aus einer Vielzahl an Möglichkeiten der Verknüpfung von trigonalen BO3-Dreiecken und BO₄-Tetraedern zu Bändern, Schichten und dreidimensionalen Netzwerken resultiert, werden die charakteristischen Einheiten der Nitridoborate in ihren Kristallstrukturen isoliert voneinander beobachtet. Ihre nächste Koordinationssphäre besteht aus Metallionen, wobei sich für die einzelnen Nitridoborat-Einheiten typische Umgebungen mit Kationen ergeben. Im Folgenden sollen die Strukturprinzipien der Nitridoborate anhand der einzelnen Fragmente kurz vorgestellt werden.

-	-	-	
Einheit	B-N-Abstände (pm)	B-B-Abstände (pm)	idealisierte Symmetrie
[BN] ²⁻	138-143	-	$C_{_{\infty v}}$
$[BN_2]^{3-}$	132-137	-	$D_{\infty h}$
[BN ₃] ⁶⁻	145-149	-	D_{3h}
$[B_3N_6]^{9-}$, plan	148	-	D_{3h}
$[B_3N_6]^{9-}$, gew.	144-151	-	C_{3v}
$[B_2N_4]^{8-}$	147-150	177 - 182	D_{2h}

Tab. 1 Nitridoborat-Einheiten mit interatomaren Abständen und idealisierter Symmetrie. Die B₃N₆-Einheit tritt in einer planaren und einer gewinkelten Konformation auf.

Abb. 1a BN-Einheit mit den Elektronenkonfigurationen für [BN]²⁻, [BN]⁴⁻ und [BN]⁶⁻.

Abb. 1b BN_2 -Einheit mit Elektronenkonfigurationen für $[BN_2]^{3-}$.

Abb. 1c BN₃-Einheit mit Elektronenkonfigurationen für [BN₃]⁶⁻.

Abb. 1d B_2N_4 -Einheit mit zwei mesomeren Grenzstrukturen für die Elektronenkonfigurationen in $[B_2N_4]^{8-}$.

Abb. 1e B_3N_6 -Einheit mit drei mesomeren Grenzstrukturen für die Elektronenkonfigurationen in $[B_3N_6]^{9-}$.

2. 1 Nitridoborate mit BN₂-Einheiten

Li₃(BN₂) und Erdalkalimetallverbindungen vom Typ E₃(BN₂)₂ mit E = Ca, Ba waren die ersten dargestellten Nitridoborate [3]. Sie enthalten lineare $[N-B-N]^{3-}$ -Anionen mit B-N-Abständen von 133-137 pm (Tab. 2). Sie sind isoelektronisch und isostrukturell zu $[CCC]^{4-}$, $[CBN]^{4-}$, $[NNN]^{-}$, $[NCO]^{-}$, $[NCN]^{2-}$, $[CBC]^{5-}$, $[ONO]^{+}$ und [OCO]. Abb. 2 zeigt die Energieniveauabfolge und die MOOP (molecular orbital overlap population) einer BN_2^{3-} -Einheit. Aus ihr wird ersichtlich, dass unterhalb ε_F bindende Orbitalkombinationen besetzt werden. Das HOMO besteht aus der prinzipiell nichtbindenden zweifach entarteten $1\pi_g$ -Orbitalkombination.

Abb. 2 Energieniveaus und MOOP einer $[BN_2]^3$ -Einheit ($d_{B-N} = 135$ pm). Die Energieniveaus werden bis zum prinzipiell nichtbindenden HOMO ($1\pi_g$, -13,3 eV) besetzt.

In Kristallstrukturen ist das Nitridoborat-Anion in charakteristischer Weise von Kationen koordiniert. Die Stickstoffatome der BN₂-Einheit sind aus quadratischpyramidalen Formationen von Metallkationen überdacht, wodurch für die Stickstoff-

Atome unter Einbeziehung des Boratoms verzerrt oktaedrische Metallumgebungen resultieren. Die Boratome sind in den Kristallstrukturen quadratisch-prismatisch von Kationen umgeben. Ausnahmen von dieser Systematik werden für β-Li₃(BN₂), Na₃(BN₂) und die Normaldruck-Modifikation von Mg₃(BN₂)N beobachtet. die für Nitridoborate Abbildung 3 zeigt mit BN₂-Einheiten typische Metallkoordination. Neben den ternären Nitridoboraten der Alkali-, Erdalkalimetalle und des Europiums wurden Nitridoborat-Nitride $E_3(BN_2)N$ mit E = Mg [26, 27], Ca [28] und quaternäre Nitridoborate vom Typ $AE_4(BN_2)_3$ (A = Li, Na; E = Ca, Sr, Ba, Eu) [23] dargestellt. Nitridoborat-Nitride enthalten neben der Nitridoborat-Einheit zusätzlich N³⁻-Anionen in oktaedrischer Metallumgebung. Tabelle 2 gibt einen Überblick über die bisher veröffentlichten Ergebnisse. Weiterhin sind Nitridoborat-Oxide [12] und -Halogenide [13] mit der Dinitridoborat-Einheit sowie Dipnictidoborate mit [BP2]³⁻- und [BAs2]³⁻-Einheiten [14] bekannt. Sie sollen im Rahmen dieser Arbeit jedoch nicht weiter behandelt werden.

Abb. 3 Typische Umgebung einer BN₂-Einheit mit Metallatomen in Form eines zweifach überkappten Prismas in den Kristallstrukturen von Nitridoboraten der Alkali- und Erdalkalimetalle.

Nitridoborat	B-N-A	Literatur	
α -Li ₃ (BN ₂) (L) ^[a]	133,9(2)	(2×)	[15]
β -Li ₃ (BN ₂) (H) ^[a]	133,9(1)	, 133,6(1)	[15, 16]
Na ₃ (BN ₂)	134,5(6)	, 134,4(6)	[17]
$Ca_3(BN_2)_2$	131,7(4)	(2×)	[18]
$Sr_3(BN_2)_2$	135,8(6)	(2×)	[19]
$Ba_3(BN_2)_2$	134(3)	(2×)	[20]
$Eu_3(BN_2)_2$	132(2)	133(2)	[21]
$Eu_7(BN_2)_5$	132(3)	-139(3)	[22]
LiCa ₄ (BN ₂) ₃	133,1(7)	(2×)	[23]
$LiSr_4(BN_2)_3$	135,7(7)	(2×)	[23]
$LiBa_4(BN_2)_3$	unbekannt		[23]
LiEu ₄ (BN ₂) ₃	137(2)	(2×)	[23]
$NaSr_4(BN_2)_3$	133(1)	(2×)	[23]
NaBa ₄ (BN ₂) ₃	133,7(9)	(2×)	[23]
$Mg_2Ca_7(BN_2)_6$	unbekannt		[24]
LiMg(BN ₂)	133,6(6)	(2×)	[25]
Mg ₃ (BN ₂)N (L) ^[a]	136,5(3)	(2×)	[26, 27]
$Mg_3(BN_2)N(H)^{[a]}$	133,8(4)	(2×)	[27]
Ca ₃ (BN ₂)N	135,2(4)	(2×)	[28]

Tab. 2 Nitridoborate und Nitridoborat-Nitride mit $[BN_2]^3$ -Einheiten.

[a] (L) Tieftemperaturmodifikation, (H) Hochtemperaturmodifikation

2. 2 Nitridoborate mit BN₃-Einheiten

Die BN₃-Einheit wird bislang nur in Kombination mit Lanthanoiden verwirklicht. Sie tritt in Kristallstrukturen nicht allein, sondern vereint mit weiteren BN_x -Einheiten, als Nitridoborat-Nitrid, -Oxid oder in der exotischen Verbindung $Ba_4Pr_7(BN_3)(Si_{12}N_{23}O)$ [34] auf. Die Darstellung eines quasibinären $La_2(BN_3)$ als Stammverbindung für Nitridoborate mit BN₃-Einheit gelang bisher nicht. Ein Strukturentwurf eines solchen lediglich aus Metallkationen und BN₃-Einheiten aufgebauten $La_2(BN_3)$ wird in Kap. 3 vorgestellt. Die in Kristallstrukturen verwirklichten [BN₃]⁶-Anionen weichen teilweise von der Idealsymmetrie (D_{3h}) zu C_{2v} und C₁ ab. Daraus resultieren

unterschiedliche B–N-Bindungslängen und N–B–N-Winkel $\neq 120^{\circ}$ (s. Tab. 3). Eine signifikante Abweichung von der Planarität wird nicht beobachtet. Abb. 4 zeigt eine BN₃-Einheit mit einer typischen trigonal prismatischen Metallumgebung für das B-Atom und quadratisch pyramidalen Metallumgebungen für die N-Atome. Insgesamt resultiert für die BN₃-Einheit eine dreifach überkappt prismatische Metall-koordination. Tabelle 3 gibt einen Überblick über die bisher veröffentlichten Ergebnisse von Nitridoboraten mit BN₃-Einheiten.

Abb. 4 BN₃-Einheit mit typischer Metallkoordination aus La₅(B₃N₆)(BN₃) [29].

Die trigonal planare $[BN_3]^{6}$ -Einheit ist isostrukturell und isoelektronisch zu $[CO_3]^{2}$. Abb. 5 zeigt die Energieniveauabfolge und die MOOP der B–N-Bindungen einer $[BN_3]^{6}$ -Einheit. Aus der MOOP für die B–N-Bindungen bis zum Fermi-Niveau (-13,0 eV) ergeben sich bindende (1a₁', 1e', 2a₁', 1a₂', 3e') und nichtbindende (2e', 1a₂') Orbitalkombinationen.

Nitridoborat	B–N-Abstände in pm	Symmetrie	Literatur
La ₅ (BN ₃)(B ₃ N ₆)	147(2), 150(2) (2×)	C_{2v}	[29]
La ₃ (BN ₃)N	146(5), 148(4), 153(4)	C_1	[30]
$Ce_{15}(BN_3)_8N$	145(1) (3×)	D_{3h}	[31]
$La_6(BN_3)(B_3N_6)N$	147,2(9), 147,8(8), 148,5(9)	<i>C</i> ₁	[32]
La ₆ (BN ₃)O ₆	145(2), 148(2) (2×)	C_{2v}	[33]
Ba ₄ Pr ₇ (BN ₃)(Si ₁₂ N ₂₃ O)	147,1(6) (3×)	D_{3h}	[34]

Tab. 3 Nitridoborate mit $[BN_3]^{6-}$ -Einheiten.

Abb. 5 Energieniveaus und MOOP einer isolierten [BN₃]⁶⁻Einheit (d_{B-N} = 147 pm) mit D_{3h}-Symmetrie. Energieniveaus werden bis zum prinzipiell nichtbindenden HOMO (1a₂', -13,0 eV) besetzt.

2. 3 Nitridoborate mit B₃N₆-Einheiten

Verbindungen vom Typ Ln₃(B₃N₆) mit cyclischen $[B_3N_6]^{9}$ -Anionen treten ebenfalls nur in Kombination mit Lanthanoiden auf. Sie weisen für Ln = La, Ce [35] und für Ln = Pr, Nd, Sm, Gd [36, 37] Unterschiede sowohl hinsichtlich des Nitridoborat-Fragments als auch hinsichtlich des Aufbaus der entsprechenden Kristallstrukturen auf. Während für die kleineren Ln-Kationen planare B₃N₆-Anionen erhalten werden, weichen sie für die La- und die Ce-Verbindung signifikant von der Planarität ab. Im Pr₃B₃N₆-Kristall ($R\overline{3}c$) [37] sind planare B₃N₆-Einheiten in gestaffelter Formation zu Säulen gestapelt. Die Abfolge der Nitridoborat-Fragmente entspricht einem Ausschnitt aus der Struktur des hexagonalen Bornitrids, wobei die B … N-Abstände zwischen den Schichten mit 351 pm etwas größer sind als die Schichtenabstände von 333 pm in der Struktur von h-BN. Die B–N-Abstände des planar gebauten B₃N₆-Ions

sind im Rahmen der Fehlergenauigkeit identisch (148 pm). Im nicht planar gebauten B₃N₆-Ion von La₃B₃N₆ ($P\overline{1}$) [35] treten unterscheidbare B–N-Bindungslängen auf. Sie betragen bei den exocyclischen Bindungen zwischen 142 und 147 pm und bei denen im Ring zwischen 148 und 151 pm. Diese kürzeren exocyclischen B-N-Bindungen können als zunehmende Lokalisierung der Elektronen dreier π -Kombinationen in Richtung der exocyclischen Bindungen interpretiert werden (Abbildung 8, rechts). Kürzere exocyclische B-N-Bindungslängen wurden auch in den Strukturen von La₅(B₃N₆)(BN₃) [29] und La₆(B₃N₆)(BN₃)N [32] beschrieben. Hier liegen die ebenfalls nichtplanaren B₃N₆-Einheiten in einer Sesselkonformation vor, wobei an den B-Atomen annähernd planare BN₃-Anordnungen erhalten bleiben. Die für Nitridoborate typischen Koordinationen mit Metallen werden für B₃N₆-Einheiten nur noch für die exoständigen N-Atome aufrechterhalten. Während für sie quadratisch-pyramidale Koordinationen beobachtet werden, zeigen die B- und N-Atome im Ring keine symmetrischen Metallumgebungen. Abbildung 6 zeigt Beispiele für die gewinkelte und die planare Konformation von B₃N₆-Einheiten mit ihren Metallumgebungen, Abbildung 7 den Aufbau der Einheiten in Kristallstrukturen am Beispiel von $Pr_3(B_3N_6)$ ($R\overline{3}c$, a = 1211,95(9) pm, c = 701,53(7) pm [37]).

Kristalle des Typs $Ln_3B_3N_6$ sind im Falle von $La_3B_3N_6$ farblos (die berechnete HOMO-LUMO-Lücke für ein isoliertes $[B_3N_6]^{9}$ -Fragment (Abb. 9) liegt in der Größenordnung von 7 eV) oder weisen die charakteristische Farbe der dreiwertigen Lanthanoid-Ionen auf (Kristalle von $Pr_3B_3N_6$ sind grün). Sie zeichnen sich durch mechanische Härte und chemische Beständigkeit aus. Beim Erhitzen an Luft reagiert $La_3B_3N_6$ oberhalb 700 °C zu LaBO₃. Eine Übersicht über die derzeit bekannten Nitridoborate mit B_3N_6 -Einheiten ist in Tabelle 4 wiedergegeben.

Abb. 6 B_3N_6 -Einheiten mit typischer Metallkoordination aus $La_3(B_3N_6)$ (links) und $Pr_3(B_3N_6)$ (rechts).

Abb. 7 Ausschnitt aus der Kristallstruktur von $Pr_3(B_3N_6)$ mit eingezeichneter Elementarzelle (links) und Abfolge der B_3N_6 -Einheiten in Stapelrichtung (rechts).

Abb. 8 Ausgewählte mesomere Grenzstrukturen für ein idealisiertes, planares $[B_3N_6]^{9}$ -Fragment mit D_{3h} -Symmetrie.

Abb. 9 Energieniveaus und MOOP einer idealen, planaren [B₃N₆]⁹-Einheit. Die Energieniveaus werden bis zum zweifach entarteten HOMO (6e', -12,8 eV) besetzt.

Nitridoborat	B-N-Abstände im Ring (pm)	B–N-exo- Abstände (pm)	Symmetrie	Literatur
$La_3(B_3N_6)$	146-150	144	C_s	[35]
Ce ₃ (B ₃ N ₆)	146-150	144	C_s	[35]
Pr ₃ (B ₃ N ₆)	147,9(6)	147,4(12)	D_{3h}	[36, 37]
Nd ₃ (B ₃ N ₆)	unbekannt		D_{3h}	[36]
Sm ₃ (B ₃ N ₆)	unbekannt		D_{3h}	[36]
Gd ₃ (B ₃ N ₆)	unbekannt		D_{3h}	[36]
La ₅ (B ₃ N ₆)(BN ₃)	148(1)	142(1)-146(2)	C_s	[29]
$La_6(B_3N_6)(BN_3)N$	150-151	142-146	C_s	[32]

Tab. 4 Nitridoborate und Nitridoborat-Nitride mit $[B_3N_6]^9$ -Einheiten.

2. 4 Nitridoborate mit B₂N₄-Einheiten

Die B_2N_4 -Einheit ist ebenso wie die BN_3 - und die B_3N_6 -Einheit bisher nur durch Verbindungen belegt, in denen sie in Kombination mit Elementen der Lanthanoide vorliegt. Formal lässt sie sich als ein Dimeres zweier BN_2 -Einheiten auffassen, die durch eine gerichtete B–B- σ -Bindung miteinander verknüpft sind. Das $[B_2N_4]^{8-}$ Molekülfragment besitzt im Idealfall D_{2h} -Symmetrie und ist somit isoelektronisch und isostrukturell zum Oxalat-Ion. Im Kristall treten die für Nitridoborat-Ionen typischen Koordinationen mit Metallatomen auf. Die trigonal-prismatisch umgebenen Boratome sind hier allerdings über eine B–B-Bindung zu B_2N_4 -Einheiten verknüpft, so dass die umgebenden trigonalen Metallprismen paarweise zu einem rhombischen Prisma kombinieren (Abb. 10). Die B–B-Bindungslängen liegen zwischen 176 und 182 pm. Jedes der vier Stickstoffatome ist von einer quadratisch-pyramidalen Formation von Metallatomen überdacht.

Abb. 10 B_2N_4 -Baustein mit typischer Metallkoordination aus $La_3(B_2N_4)$.

Analog Nitridoboraten mit BN_2 -, BN_3 - und B_3N_6 -Einheiten treten auch hier Nitridoborat-Nitride $Ln_{3+x}(B_2N_4)N_x$ (Ln = La, Ce; x = 1, 2) auf. In ihren Kristallstrukturen werden neben B_2N_4 -Fragmenten isolierte N^3 -Anionen in oktaedrischer Metallumgebung vorgefunden. Eine ausführliche Darstellung der Struktursystematik von Nitridoborat(nitrid)en erfolgt in Kap. 3. Die Verbindungen mit B_2N_4 -Einheiten nehmen eine Sonderstellung unter den bekannten Lanthanoid-Nitridoboraten ein, da sie gemäß $Ln_{3+x}(B_2N_4)N_x(e^-)$ überzählige Elektronen besitzen und somit den metallreichen Verbindungen zuzurechnen sind. Entsprechend werden sie als schwarze Kristallpulver erhalten. Tabelle 5 gibt einen Überblick über die bisher veröffentlichten Ergebnisse.

Berechnungen der elektronischen Situation eines isolierten $[B_2N_4]^{8-}$ -Molekülfragments ergaben für die B–B-Bindung stark bindende Wechselwirkungen sowohl für das HOMO (4a_g, -11,2 eV) mit einer B–B- σ -Bindung als auch für das LUMO (2b_{1u}, -7,8 eV). Die Besetzung des LUMO (B–B- π -Bindung) führte demnach zu einer B=B-Doppelbindung, wobei das Nitridoborat-Fragment dann eine formale Ladung von $[B_2N_4]^{10-}$ erhielte. Die B–N-Wechselwirkung zeigt dagegen sowohl für das HOMO als auch für das LUMO antibindende Wechselwirkung an.

Abb. 11 Energieniveaus und MOOP der B–N- und der B–B-Bindungen einer [B₂N₄]⁸⁻ Einheit. In Verbindungen werden die Energieniveaus bis zu dem für die B–N-Wechselwirkung antibindenden aber für die B–B-Wechselwirkung bindenden HOMO (4a_g, -11,2 eV) besetzt.

Dies ist insofern ungewöhnlich, als dass in der Regel für stabile Moleküle oder geladene Molekülfragmente nur bindende oder nichtbindende Zustände besetzt werden. Dennoch wird die $[B_2N_4]^{8-}$ Einheit, wie auch das isoelektronische Oxalat-Anion verwirklicht. Hinweise auf die Existenz eines $[B_2N_4]^{10-}$ liegen nicht vor. Energieniveaus und MOOP der B–N- und der B–B-Wechselwirkung sind in Abb. 11 gezeigt.

Nitridoborat	B-N-Abstände (pm)	B-B-Abstände (pm)	Literatur
$La_3(B_2N_4)$	150(1) (2×)	182(4)	[29]
$Ce_3(B_2N_4)$	149(1) (2×)	177(3)	[29]
$Pr_3(B_2N_4)$	149(1) (2×)	177(2)	[29]
$Nd_3(B_2N_4)$	149(2) (2×)	182(6)	[29]
$La_4(B_2N_4)N$	unbekann	t	[38]
$Ce_4(B_2N_4)N$	147(1) (2×), 149(1) (2×)	175(2)	[38]
$La_5(B_2N_4)N_2$	151(2) (2×), 149(1) (2×)	179(2)	[39]

Tab. 5 Nitridoborate und Nitridoborat-Nitride mit $[B_2N_4]^8$ -Einheiten.

2. 5 Nitridoborate mit BN-Einheiten

Das Mononitridoborat-Ion ist bisher nur aus quaternären Verbindungen bekannt. Eine Verwandtschaft, wie sie zwischen hexagonalem Bornitrid und Graphit besteht, könnte auch für Verbindungen mit BN- und C2-Einheiten angenommen werden. Ein dem CaC₂ analoges Nitridoborat Ca(BN) wäre demnach denkbar. Dennoch führt eine Festkörperreaktionen von Ca und BN (analog der Darstellung von CaC₂) nicht zu Ca(BN), sondern zu Ca₃(BN₂)₂ und CaB₆. Die BN-Einheit wird ausschließlich in quaternären Nitridoboraten vom Typ MT(BN) mit M = La, Ce, Pr, Eu, Tm, Yb und T = Ni, Pd (Tab. 6) sowie in La₃Ni₂(BN)₂N vorgefunden. Aufgrund der Elektronegativitätsdifferenz zwischen B und N kommt es zu unterschiedlichen Präferenzen für die Orientierung der B-N-Hantel, die durch deren unterschiedliche Metall-Koordination in den Verbindungen zum Ausdruck kommt. In allen Verbindungen wird N quadratisch-prismatisch von Erdalkali- oder Lanthanoid-Ionen koordiniert und das Boratom besetzt eine Position abwechselnd ober- und unterhalb einer quadratisch-planaren Formation von Übergangsmetallen, so dass für das Ubergangsmetall eine tetraedrische Bor-Koordination resultiert. Insgesamt ergibt sich für die BN-Hantel eine überkappt quadratisch-antiprismatische Umgebung aus Metallatomen (Abb. 12). Abbildung 13 zeigt ein Wechselwirkungsdiagramm und eine MOOP für eine isolierte [BN]²⁻-Einheit. Tabelle 6 gibt einen Überblick über die bisher veröffentlichten Ergebnisse. Die im Rahmen dieser Arbeit erhaltenen Ergebnisse werden in Kap. 4 ausführlich beschrieben.

Nitridoborat	B–N-Abstände (pm)	Literatur
LaNi(BN)	202(18) ^[a]	[6, 40, 41]
CeNi(BN)	unbekannt	[41]
PrNi(BN)	unbekannt	[41]
EuNi(BN)	unbekannt	[42]
TmNi(BN)	unbekannt	[42]
YbNi(BN)	unbekannt	[42]
CaNi(BN)	138,1(4)	[43]
CaPd(BN)	unbekannt	[43]
La ₃ Ni ₂ (BN) ₂ N	$143,7(4)^{[b]}; 143(2)^{[c]}$	[6,40,44]

Tab. 6 Quaternäre Nitridoborate und Nitridoborat-Nitride mit [BN]ⁿ⁻-Einheiten.

[a] Elektronenbeugung aus [6]; [b] Neutronenbeugung aus [44]; [c] eigene Bestimmung aus Röntgen-Einkristalldaten.

Abb. 12 Metallkoordination um eine BN-Einheit. Bor (gelb) sitzt oberhalb einer quadratisch-planaren Formation aus Übergangsmetallen (grün). Stickstoff (blau) ist quadratisch pyramidal von Lanthanoid- oder Erdalkalimetallen (rot) umgeben. Insgesamt ergibt sich für die BN-Einheit eine überkappt quadratischantiprismatische Umgebung.

Abb. 13 Wechselwirkungsdiagramm und MOOP für eine $[BN]^{2}$ -Einheit ($d_{B-N} = 138$ pm). Während die Molekülorbitale 1 σ , 2 σ und 1 π B–N-bindende Eigenschaften besitzen, zeigt das 3 σ -Orbital als HOMO (-11,2 eV) schwach antibindenden Charakter.

3 Zur Struktursystematik von Nitridoborat(-Nitrid)en Ln_{3+x}(B₂N₄)N_x

Die in der Reihe der Nitridoborat-Nitride $Ln_{3+x}(B_2N_4)N_x$ noch fehlenden Glieder mit x = 1 (Ln = La, Ce) wurden durch Festkörpersynthesen dargestellt und röntgenographisch charakterisiert. Mit den bereits bekannten Gliedern (x = 0, 2) lässt sich eine allgemeine Struktursystematik für Verbindungen dieses Formeltyps ableiten.

3. 1 Darstellung von La₄(B₂N₄)N und Ce₄(B₂N₄)N

Die Synthesen von La₄(B_2N_4)N und Ce₄(B_2N_4)N erfolgten einerseits über eine reduktive Salzmetathese-Reaktion bei 950 °C gemäß

(1)
$$4 \operatorname{LaCl}_3 + 2 \operatorname{Li}_3(BN_2) + \operatorname{Li}_3N + 3 \operatorname{Li} \xrightarrow{950^\circ C/3 \operatorname{Tage}} \operatorname{La}_4(B_2N_4)N + 12 \operatorname{LiCl}$$

oder über eine klassische Hochtemperatur-Synthese aus Lanthanoid-Nitrid und h-BN mit CaCl₂ als Flussmittel bei 1200 °C über drei Tage:

(2)
$$4 \operatorname{CeN} + 2 \operatorname{BN} \xrightarrow{1200^{\circ} \mathrm{C}/3 \operatorname{Tage}} \operatorname{Ce}_4(\mathrm{B}_2\mathrm{N}_4)\mathrm{N} + 0.5 \mathrm{N}_2$$

Das bei der Metathese (1) verwendete Li-Metall (Strem, 99,9%) dient zur partiellen Reduktion von La³⁺ (LaCl₃, Alfa, 99,9%) und zur reduktiven Verknüpfung zweier BN₂³⁻-Fragmente zur B₂N₄⁸⁻-Einheit. Li₃(BN₂) wurde aus Li₃N (Strem, 99,5%) und h-BN (ABCR, 99,8%, bei 400 °C im dynamischen Vakuum entgast) bei 800 °C in einer Ta-Ampulle dargestellt. Die für die Reaktionen erforderlichen Edukte wurden unter Schutzgas miteinander vermengt und in Ta-Ampullen eingeschweißt. Anschließend wurden die Tantal-Behälter zum Schutz vor Oxidation in evakuierte Quarzglas-Ampullen eingeschmolzen. Die Temperprozesse fanden in regelbaren Kastenöfen (Carbolite) mit Widerstandsheizungen statt. Typische Aufheiz- und Abkühlraten betrugen 10 °C/min. Nach Beendigung der Reaktionen wurden die Quarzglas- und Ta-Ampullen unter Schutzgas aufgebrochen, die entstandenen Reaktionsprodukte gesichtet und für weitere Untersuchungen unter Schutzgasatmosphäre gelagert.

Vor den röntgenographischen Untersuchungen der Reaktionsprodukte wurde das bei Reaktionen nach (1) gebildete LiCl mit Wasser aus dem Produktgemenge ausgewaschen. Es zeigte sich, dass aus (1) neben $La_4(B_2N_4)N$ auch $La_3(B_2N_4)$ und $La_5(B_2N_4)N_2$ vorgefunden wurden. Die aus Röntgen-Pulveraufnahmen geschätzten Ausbeuten an $La_4(B_2N_4)N$ lagen bei maximal 50%. Von $Ce_4(B_2N_4)N$ fielen in Reaktion (2) schwarze, stäbchenförmige Kristalle an, die für eine Bestimmung der Kristallstruktur geeignet waren. Die Darstellung von $La_4(B_2N_4)N$ nach (2) gelang nicht. Stets wurde die N-reichere Verbindung $La_5(B_2N_4)N_2$ oder die Stammverbindung $La_3(B_2N_4)$ als Hauptprodukt vorgefunden.

3. 2 Kristallstrukturbestimmung von Ce₄(B₂N₄)N

Ein stäbchenförmiger Einkristall von Ce₄B₂N₅ wurde in ein Markröhrchen eingeschmolzen und für eine Intensitätsdatenmessung mit einem Einkristalldiffraktometer (Bruker Smart CCD) verwendet. Die systematischen Auslöschungen der Klasse hkl mit $h + k \neq 2n$ sowie h00 mit $h \neq 2n$ führten zu den möglichen Raumgruppen C2, Cm und C2/m. Die Strukturlösung erfolgte in der zentrosymmetrischen Raumgruppe C2/m (Nr. 12) über Direkte Methoden des Programms SHELXS [45]. Die anisotrope Verfeinerung aller Parameter erfolgte mit SHELXL [45]. Daten, Parameter und Angaben zur Kristallstrukturbestimmung von Ce₄(B₂N₄)N sind in Tabelle 7, Atomkoordinaten und isotrope Auslenkungsparameter in Tabelle 8 angegeben. Ausgewählte interatomare Abstände zeigt Tabelle 9.

Von La₄(B₂N₄)N wurde mit einem Transmissiondiffraktometer ein Röntgen-Pulverdiffraktogramm (Cu K_{α 1}, λ = 154,0598 pm) aufgenommen. Die monokline Indizierung von 50 Beugungsreflexen ergab a = 1260,4(1) pm, b = 366,15(3) pm, c = 919,8(1) pm, β = 129,727(6)° in der einseitig flächenzentrierten Aufstellung (C 2/m) bzw. a = 976,06(9) pm, b = 366,15(3) pm, c = 919,8(1) pm, β = 96,732(6)° in der innenzentrierten Aufstellung (I 2/m).

	2
Summenformel	$Ce_4B_2N_5$
Anzahl der Formeleinheiten/Elementarzelle	2
Molmasse (g/mol)	652,12
Messtemperatur (K)	293(2)
Diffraktometer	Bruker Smart CCD
Strahlung, Wellenlänge (pm)	Μο Κ _{α1} , 71,073
Monochromator	Graphit
Datenkorrektur	SADABS
Kristallsystem, Raumgruppe	monoklin, C2/m (Nr. 12)
Gitterkonstanten (pm, °)	a = 1238,2(1)
	$b = 357,32(3), \beta = 129,700(1)$
	c = 905,21(7)
Zellvolumen (10 ⁶ ·pm ³)	308,15(4)
Röntgendichte (g/cm ³)	7,09
Absorptionskoeffizient (mm ⁻¹)	28,89
F(000)	554
Kristallabmessungen (mm), Farbe	0,14, 0,06, 0,04, schwarz
Messbereich (°)	$6 \le 2\Theta \le 61$
Bereich gemessener Indices	$-17 \le h \le 17, -5 \le k \le 5, -12 \le l \le 12$
Anzahl gemessener Reflexe	1989
Symmetrieunabhängige Reflexe	$540 (R_{int} = 0.0847)$
Beobachtete Reflexe (I > 2σ (I))	518
Daten, Parameter, Beschränkungen	540, 37, 0
GooF an F ²	1,097
Güteparameter R ₁ , wR ₂ (I> $2\sigma(I)$)	0,038, 0,098
Güteparameter R ₁ , wR ₂ (alle Reflexe)	0,039, 0,099
Restelektronendichte (10 ⁻⁶ ·e·pm ⁻³)	2,61, -3,08

Tab. 7 Daten, Parameter und Angaben zur Kristallstrukturbestimmung von Ce₄(B₂N₄)N.

3. 3 Ergebnisse und Diskussion der Kristallstruktur von Ce₄(B₂N₄)N

Die Kristallstruktur von $Ce_4(B_2N_4)N$ enthält als zentrales Strukturfragment anionische B_2N_4 -Einheiten. Diese Einheiten sind in charakteristischer Weise von 12 Metall-Ionen so umgeben, dass sie im Zentrum eines vierfach überkappten rhombischen Prismas zu liegen kommen (Abb. 14).

Abb. 14 B_2N_4 -Einheit mit typischer Umgebung aus Metallatomen in der Kristallstruktur von $Ce_4(B_2N_4)N$.

Für die Bor- bzw. Stickstoff-Atome ergeben sich daraus in erster Koordination trigonal-prismatische bzw. quadratisch-pyramidale Metallumgebungen. Die B–B-Abstände in Ce₄(B₂N₄)N betragen 175(2) pm und die B–N-Abstände sind mit 147(1) pm für B–N(2) und 149(1) pm für B–N(3) etwas länger als korrespondierende Abstände in h-BN (etwa 145 pm). Als weiteres Strukturfragment werden N³⁻-Anionen in einer leicht gestreckt oktaedrischen Metallumgebung ($d_{Ce-N(1)} = 258,15(3)$ pm 4× und 262,83(5) pm 2×) vorgefunden. Ein Ausschnitt aus der Kristallstruktur von Ce₄(B₂N₄)N ist in Abb. 15 in einer Projektion entlang [010] gezeigt. Die Verknüpfungsmuster der angegebenen Strukturfragmente werden im Rahmen der allgemeinen Strukturmodells für Ln_{3+x}(B₂N₄)N_x mit x = 0, 1, 2 in Kap. 3. 4 veranschaulicht.

Abb. 15 Projektion eines Ausschnitts aus der Kristallstruktur von Ce₄(B₂N₄)N entlang [010].

Atom	Position	x/a	y/b	z/c	U _{iso}
Ce(1)	4i	0,18961(4)	0,5	0,11515(5)	43(2)
Ce(2)	4i	0,07679(4)	0	0,34598(6)	41(2)
N(1)	2a	0	0	0	48(25)
N(2)	4i	0,1169(7)	0,5	-0,2054(11)	52(13)
N(3)	4i	0,2954(7)	0	0,3958(13)	60(13)
B(1)	4i	0,4137(10)	0	0,3911(15)	88(15)

Tab. 8 Atomkoordinaten und isotrope Auslenkungsparameter (pm^2) für Ce₄(B₂N₄)N.

Ce(1) - N(1)	258,15(3)
Ce(2) - N(1)	262,83(5)
Ce(1) - N(2)	266,4(5), 242,7(8)
Ce(1) - N(3)	266,6(5)
Ce(2) - N(2)	253,7(4)
Ce(2) - N(3)	244,4(7)
Ce(2) – B	291,4(8), 291,8(7)
$\operatorname{Ce}(1) - \operatorname{Ce}(1)$	357,32(3)
$\operatorname{Ce}(2) - \operatorname{Ce}(2)$	357,32(3)
$\operatorname{Ce}(1) - \operatorname{Ce}(2)$	363,84(5)
N(2) – B	147(1)
N(3) – B	149(1)
B – B	175(2)

Tab. 9 Ausgewählte Atomabstände (pm) in $Ce_4(B_2N_4)N$.

3. 4 Strukturmodell des Formeltyps $Ln_{3+x}(B_2N_4)N_x$ mit x = 0, 1, 2

Dem Formeltyp $Ln_{3+x}(B_2N_4)N_x$ gehören die bisher bekannten Verbindungen $Ln_3(B_2N_4)$ (Ln = La, Ce, Pr, Nd), die hier vorgestellten Verbindungen $Ln_4(B_2N_4)N$ (Ln = La, Ce) sowie $La_5(B_2N_4)N_2$ an. Diese Verbindungen nehmen eine Sonderstellung unter den bekannten Lanthanoid-Nitridoboraten ein, da sie gemäß $Ln_{3+x}(B_2N_4)N_x(e^-)$ überzählige Elektronen besitzen, womit sie den metallreichen Verbindungen zuzurechnen sind. Alle Strukturen enthalten das dem Oxalat analog gebaute B_2N_4 -Ion, sowie im Falle der Nitridoborat-Nitride zusätzlich N³⁻.

Für die Verbindungen $La_{3+x}(B_2N_4)N_x$ (oder $La_3(B_2N_4)\cdot(LaN)_x$) wird für x = 0, 1, 2eine schrittweise Zunahme des Molvolumens um 37,6 Å³ und um 37,7 Å³ verzeichnet, welches demjenigen von LaN (etwa 36,7 Å³) entspricht.

Durch die Besetzungen von Lagen bei 0 und 1/2 längs der kurzen Gitterkonstanten, die für $Ln_{3+x}(B_2N_4)N_x$ (x = 0, 1, 2) 357–368 pm betragen, resultieren Schichtstrukturen. Die Schichtenfolge AB, A... in den Strukturen führt zu deckungsgleichen Abfolgen alle Atome im Abstand der kurzen Gitterkonstante. Für $La_4(B_2N_4)N$ beträgt b = 366 pm und für Ce₄(B₂N₄)N wird im Trend der Lanthanoidenkontraktion b = 357 pm ermittelt. Diese Gitterkonstanten repräsentieren die kürzesten Metall–Metall-Abstände in den Strukturen. Die Abstände B…B und N…N zwischen den deckungsgleich gestapelten B_2N_4 -Ionen folgen ebenso den kurzen Gitterkonstanten und sind damit etwas länger als die van der Waals-Schichtenabstände zwischen B und N in der Struktur des hexagonalen Bornitrids (333 pm).

Die B₂N₄-Einheit ist durch ein rhombisches Prisma aus acht Metallatomen umgeben. In allen Verbindungen sind diese [Ln₈(B₂N₄)]-Baugruppen über gemeinsame Flächen zu [Ln_{8/2}(B₂N₄)]-Säulen längs der kurzen Gitterkonstanten gestapelt. Die [Ln_{8/2}(B₂N₄)]-Säulen sind in allen Strukturen derart angeordnet, dass Metallatome einer Säule stets N-Atome der B₂N₄-Einheit in einer benachbarten Säule überdachen. In den Strukturen Ln₄(B₂N₄)N befinden sich zwischen diesen Säulen Oktaederlücken, die von N³⁻ besetzt werden.

Die Rationalisierung der Strukturen $Ln_{3+x}(B_2N_4)N_x$ geht von $[Ln_{8/2}(B_2N_4)]$ -Säulen aus, die aus eindimensional verknüpften $[La_8(B_2N_4)]$ -Einheiten resultieren, sowie Säulen aus kantenverknüpften N-La₆-Oktaedern. Diese Säulen werden in den Strukturen für $Ln_{3+x}(B_2N_4)N_x$ in unterschiedlicher Weise miteinander verknüpft.

Abb. 16 zeigt einen isolierten [Ln₈B₂N₄]-Baustein sowie die Verknüpfung dieser Bausteine zu [Ln_{8/2}(B₂N₄)]-Säulen. In der Struktur der Stammverbindungen Ln₃(B₂N₄) sind die [Ln_{8/2}(B₂N₄)]-Säulen über gemeinsame Kanten zu planaren Anordnungen [Ln_{4/2}Ln_{4/4}(B₂N₄)] verknüpft, wobei die resultierenden Schichten um ¹/₂ längs der Gitterkonstanten b (Abb. 16, unten) gegeneinander verschoben sind. Analog Nitridoboraten mit BN₃- und B₃N₆-Einheiten treten auch hier Nitridoborat-Nitride Ln_{3+x}(B₂N₄)N_x (Ln = La, Ce; x = 1, 2) auf. Durch die Präsenz von N³⁻ in den Strukturen mit x = 1 und 2 wird die Anordnung der [Ln_{8/2}(B₂N₄)]-Säulen durch eine bzw. zwei (trans-kantenverknüpfte) Oktaedersäulen [Ln_{4/2}Ln₂(N)] ausgedünnt. Mit einem N³⁻ in der Struktur von Ln₄(B₂N₄)N (x = 1) liegen isolierte [Ln_{8/2}(B₂N₄)]-Säulen vor, deren Abfolge mit einer N-zentrierten Oktaedersäule alterniert.

Abb. 16 [Ln₈(B₂N₄)]-Baustein (oben links), [Ln_{8/2}(B₂N₄)]-Säule (oben rechts) und perspektivische Projektion der Struktur von Ln₃(B₂N₄) längs der kurzen Gitterkonstanten b (unten).

Durch ein weiteres N³⁻ in der Struktur von Ln₅(B₂N₄)N₂ (x = 2) alterniert die Abfolge von isolierten [Ln_{8/2}(B₂N₄)]-Säulen mit zwei N-zentrierten Oktaedersäulen. In Abbildung 17 sind Projektionen von Ausschnitten aus den Kristallstrukturen des Formeltyps Ln_{3+x}(B₂N₄)N_x mit x = 0, 1, 2 gezeigt.

Abb. 17Vergleichende Projektionen der Kristallstrukturen $Ln_{3+x}(B_2N_4)N_x$ mit x = 0 (oben),
1 (Mitte) und 2 (unten) längs ihrer kurzen Gitterkonstanten. Die konstituierenden
Strukturfragmente $[Ln_8(B_2N_4)]$ und $[Ln_6(N)]$ sind hervorgehoben.
3. 5 Strukturentwurf für ein Nitridoborat La₂(BN₃)

Da Nitridoborat-Ionen in charakteristischer Weise von Metallatomen umgeben sind, kann die für die Verbindungen $Ln_{3+x}(B_2N_4)N_x$ vorliegende Struktursystematik auf bisher unbekannte Nitridoborat(nitrid)e übertragen werden. Als kleinste Bausteine für Strukturentwürfe eignen sich BN_x -Anionen in ihren charakteristischen Metallumgebungen.

In der Serie der Nitridoborat-Nitride $Ln_{2+x}(BN_3)N_x$ ist bislang nur die Verbindung La₃(BN₃)N bekannt. Ein Beleg für eine Stammverbindung La₂(BN₃) konnte bislang nicht erbracht werden. Den allgemeinen Strukturprinzipien für Nitridoborate folgend, wurde für die hypothetische Verbindung La2(BN3) der in Abb. 18 gezeigte Strukturentwurf angefertigt. Kernpunkt des Strukturentwurfs sind BN₃-Einheiten, die von Metallatomen trigonal-prismatisch umgeben und längs ihrer dreizähligen Drehachse zu $[La_{6/2}(BN_3)]$ -Säulen gestapelt sind. In einem weiteren Konstruktionsschritt werden die Säulen um eine halbe Prismenlänge verschoben und so zusammengefügt, dass alle N-Atome zu einer tetragonalen NLa5-Pyramide überdacht werden und die Zusammensetzung La₂BN₃ resultiert.

Abb. 18 Projection eines Strukturentwurfs für La₂(BN₃).

Da sich die Syntheseversuche zur Darstellung von $La_2(BN_3)$ als schwierig erwiesen, wurde ein theoretisches Pulverdiffraktogramm für $La_2(BN_3)$ erstellt, um damit durch Vergleich mit experimentellen Pulverdiagrammen Anhaltspunkte für die Existenz dieses Nitridoborats zu erhalten. Dazu wurden aus dem Strukturentwurf Symmetrieelemente und eine sinnvolle Elementarzelle ermittelt und daraus folgend eine Raumgruppe mit genauen Atomlagen in der Elementarzelle bestimmt (Tab. 10 und 11). Aus dieser so angefertigten Kristallstruktur wurde dann das theoretische Pulverdiffraktogramm abgeleitet (Abb. 19).

6	2(3)
Summenformel	La_2BN_3
Anzahl der Formeleinheiten/Elementarzelle	4
Kristallsystem	orthorhombisch
Raumgruppe	Cmcm (Nr. 63)
Zellparameter (pm)	a = 365
	b = 1299
	c = 750
Molmasse (g/mol)	330,64
Zellvolumen (10 ⁶ ·pm ³)	355,60
theoretische Dichte (g/cm ³)	6,176

Tab. 10Angaben zur Kristallstruktur des Strukturentwurfs für La2(BN3).

Tab. 11Atompositionen in der Kristallstruktur für den Struktur-
entwurf von $La_2(BN_3)$.

Atom	Position	x/a	y/b	z/c
La(1)	4b	0,5	0	0
La(2)	4c	0	0,25	0,25
B(1)	4c	0	0,9166	0,25
N(1)	4c	0	0,03207	0,25
N(2)	8f	0	0,8589	0,0768

Abb. 19 Berechnetes Pulverdiffraktogramm für den Strukturentwurf von La₂(BN₃).

Nachfolgend wurden verschiedene Synthesen zur Darstellung von Nitridoboraten $Ln_2(BN_3)$ mit Ln = Y, La, Ce und Pr durchgeführt. Die Synthesen gingen von den Nitriden LnN und h-BN im Verhältnis 2:1 aus. Die Reaktionen wurden unter verschiedenen Bedingungen (Temperaturvariationen zwischen 1100 und 1300 °C in Ta-Containern oder Aufschmelzen als Pressling im Lichtbogen) durchgeführt und ergaben in fast allen Fällen graue bis grau-schwarze Reaktionsprodukte, die in Pulverform anfielen. Die aus den entstandenen Produkten aufgenommenen Röntgen-Pulverdiffraktogramme waren hinsichtlich ihrer Aussagequalität unbefriedigend. Sie enthielten in der Regel neben Reflexen der eingesetzten Nitride und bereits bekannter Nitridoborate (v. a. $Ln_3(B_2N_4)$) eine Vielzahl an (teilweise sehr schwachen) Reflexen, die nicht zugeordnet werden konnten. Reaktionen, die bei den höchsten Temperaturen und im Lichtbogen durchgeführt wurden, zeigten zusätzlich Reflexe der Hexaboride LnB_6 . Einen Hinweis auf die Existenz eines Nitridoborats $Ln_2(BN_3)$ konnte leider in keinem der durchgeführten Experimente erbracht werden.

4 Quaternäre Nitridoborate mit BN-Einheiten

Bislang waren für Nitridoborate mit einer BN-Einheit lediglich LaNi(BN) [6,40] und die supraleitende Verbindung La₃Ni₂(BN)₂N ($T_c = 12$ K) [6,40,44] bekannt. Im Rahmen dieser Arbeit wurden Reaktionswege zur Synthese von Nitridoboraten entwickelt und in diesem Kontext weitere Nitridoborate mit einer BN-Einheit synthetisiert und charakterisiert.

4.1 Erdalkalimetallnitridoborate CaNi(BN), CaPd(BN)

4. 1. 1 Darstellung von CaNi(BN)

Alle vorbereitenden Arbeiten zur Synthese von CaNi(BN) wurden in einem Handschuhkasten unter trockenem Argon durchgeführt. Als Ausgangsmaterialien wurden Ca (Strem, 99,99%, dendritisch), Ni (Strem, 99,99%) und h-BN (ABCR, 99,8%) im Verhältnis 1:1:1 gemäß

(1)
$$1 \operatorname{Ca} + 1 \operatorname{Ni} + 1 \operatorname{BN} \xrightarrow{1050^{\circ} \operatorname{C}/3 \operatorname{Tage}} \operatorname{CaNiBN}$$

verwendet. h-BN wurde vor der Verwendung unter dynamischem Vakuum bei 400 °C entgast. Die Reaktionen zur Synthese von CaNi(BN) wurden in verschweißten Ta-Containern durchgeführt. Dazu wurden 142,5 mg Ni-Pulver und 60,2 mg h-BN in einer Achatschale innig miteinander verrieben und anschließend zusammen mit 97,3 mg Ca-Stückchen in ein einseitig verschweißtes Ta-Rohr (Ø ca. 8 mm, Länge ca. 20 mm) eingefüllt. Der befüllte Ta-Behälter wurde zugekniffen und anschließend in einem Lichtbogen-Schweißgerät unter Ar (pAr = 500 mbar) zu einer Ampulle verschweißt. Der so hergestellte Reaktionscontainer wurde anschließend zum Schutz vor Oxidation in eine evakuierte Quarzglasampulle eingeschmolzen. Die Umsätze der Eduktgemenge gemäß (1) erfolgten durch 3-tägiges Tempern in Kastenöfen (Carbolite) bei Temperaturen von 1050°C. Nach Beendigung der Temperprozesse wurden die Reaktionsbehälter im Handschuhkasten aufgebrochen und die Reaktionsprodukte gesichtet. Für CaNi(BN) wurde ein mit dem bloßen Auge braunes, unter dem Mikroskop (Abb. 20) messingfarbenes Kristallpulver erhalten. Für weitere Analysen wurden die Reaktionsprodukte in ein verschraubbares Glasgefäß abgefüllt und im Handschuhkasten gelagert.

Abb. 20 Lichtmikroskopische Aufnahmen zweier CaNi(BN)-Kriställchen.

4. 1. 2 Röntgenographische Untersuchungen an CaNi(BN)

Eine Probe von CaNi(BN) wurde in einer Reibschale verrieben und für die Aufnahme mit einem Röntgen-Pulverdiffraktometer (STOE, STADI P, Cu K_{a1}, linearer PSD) auf eine Mylar-Folie aufgebracht. Aus dem erhaltenen Diffraktogramm ($10^{\circ} \le 2\Theta \le 107^{\circ}$) ließen sich mithilfe des Programmsystems FullProf [46] 51 Reflexe in einer tetragonalen Elementarzelle indizieren. Aus einer Verfeinerung der Gitterparameter ergaben sich a = 353,38(1) pm und c = 763,76(1) pm. Ausgehend von den Intensitätsdaten der Röntgen-Pulveraufnahme wurde eine Strukturbestimmung und Verfeinerung nach der Rietveld-Methode durchgeführt. Die Strukturverfeinerung konvergierte in der Raumgruppe P4/nmm (Nr. 129) zu R_{Bragg} = 0,034 und R_p = 0,059. Die Ergebnisse der Rietveld-Verfeinerung sind in den Tabellen 12 und 13 sowie Abbildung 21 angegeben.

Summenformel	CaNiBN
Anzahl der Formeleinheiten/Elementarzelle	2
Molmasse (g/mol)	123,61
Messtemperatur (K)	298(2)
Diffraktometer	STADI P (Stoe)
Strahlung, Wellenlänge (pm), Monochromator	CuK $_{\alpha 1}$, 154,0598, Germanium
Kristallsystem	tetragonal
Raumgruppe	P4/nmm (Nr. 129)

Tab. 12 Daten, Parameter und Angaben zur Rietveldverfeinerung von CaNi(BN).

Zellparameter (pm)	a = 353,38(1)
	c = 763,76(1)
Messbereich (°)	$10 \le 2\Theta \le 107$
Beobachtete unabhängige Reflexe	51
Anzahl verfeinerter Parameter	29
Güteparameter R _{Bragg} , R _p , R _{wp}	0,034, 0,059, 0,085

Tab. 13Atomkoordinaten und isotrope Auslenkungsparameter (pm²) nach der
Rietveldverfeinerung für CaNi(BN).

Atom	Position	x/a	y/b	z/c	U _{iso}
Ca	2c	0,25	0,25	0,3417(3)	82(6)
Ni	2a	0,75	0,25	0	124(6)
В	2c	0,25	0,25	0,8387(12)	61(31)
N	2c	0,25	0,25	0,6642(17)	194(38)

Abb. 21 Gemessenes und berechnetes Röntgen-Pulverdiffraktogramm eines CaNi(BN)-Präparats mit Reflexlagen und Differenzkurve nach der Rietveld-Verfeinerung.

Für eine Einkristallstrukturanalyse wurde ein geeigneter CaNi(BN)-Einkristall ausgesucht, in eine Glaskapillare eingeschmolzen und für die Aufnahme eines Intensitätsdatensatzes mit einem Röntgen-Einkristalldiffraktometer (STOE IPDS, MoK_{α 1}) verwendet. Die Strukturlösung erfolgte über Direkte Methoden (SHELXS) [45], die Strukturverfeinerung (SHELXL) [45] in der Raumgruppe P4/nmm (Nr. 129) konvergierte zu R₁ = 0,019 und wR₂ = 0,045. Daten zur Einkristallstrukturbestimmung sind in Tabelle 14 zusammengefasst.

4. 1. 3 Strukturbeschreibung von CaNi(BN)

Die Kristallstruktur von CaNi(BN) enthält quadratisch-planare Ni-Schichten (d_{Ni-Ni} = 249,78(2) pm). Ihre quadratischen Flächen sind abwechselnd ober- und unterhalb durch BN-Einheiten ($d_{B-N} = 138,1(4)$ pm) überkappt. Die B-Atome der BN-Einheiten weisen jeweils in Richtung der Ni-Quadrate. Dadurch resultiert für jedes Ni-Atom eine leicht verzerrt tetraedrische Koordination (D_{2d}) mit Bor-Atomen ($d_{Ni-B} = 213,5(2)$) pm). Die Stickstoff-Atome der BN-Hanteln werden in für Nitridoborate typischer Weise jeweils quadratisch-pyramidal von fünf Ca-Atomen überdacht. Insgesamt resultiert für die B-N-Hantel eine neunfache Koordination in Form eines überkappten quadratischen Antiprismas aus fünf Ca- und vier Ni-Atomen (Abb. 22). Diese Koordination wird auch für Pb-Atome im PbFCl-Typ beobachtet. CaNi(BN) lässt sich somit als aufgefüllte Variante des PbFCl-Typs, in dem das Pb durch eine B-N-Einheit und Cl bzw. F durch Ca und Ni ersetzt werden, auffassen. Eine alternative Beschreibung geht vom UCoC₂-Typ aus, dessen C₂-Hantel durch B–N ersetzt wird. Die Metallpositionen von U und Co werden dabei von Ca und Ni eingenommen. Eine Auflistung der Atomkoordinaten und ausgewählter interatomarer Abstände ist in den Tabellen 15 und 16 zusammengestellt.

Abb. 22 Elementarzelle der Kristallstruktur von CaNi(BN) (oben links), die Metallumgebung der B-N-Hantel (oben rechts) und die Darstellung einer quadratisch-planaren Ni-Schicht mit überkappenden BN-Einheiten (unten).

	6
Summenformel	CaNiBN
Anzahl der Formeleinheiten/Elementarzelle	2
Molmasse (g/mol)	123,61
Messtemperatur (K)	293(2)
Diffraktometer	IPDS (Stoe)
Strahlung, Wellenlänge (pm), Monochromator	Mo K $_{\alpha}$, 71,073, Graphit
Kristallsystem	tetragonal
Raumgruppe	P4/nmm (Nr. 129)
Zellparameter (pm)	a = 353,24(3)
	c = 763,59(9)
Zellvolumen (10 ⁶ ·pm ³)	95,28(2)
Röntgendichte (g/cm ³)	4,309
Absorptionskoeffizient (mm ⁻¹)	12,36
F(000)	120
Kristallabmessungen (mm), Farbe	0,2, 0,1, 0,04, messingfarben
Messbereich (°)	$4 \le 2\Theta \le 60$
Bereich gemessener Indices	$-5 \le h \le 4, -4 \le k \le 4, -10 \le l \le 10$
Beobachtete Reflexe	1887
Beobachtete unabhängige Reflexe	$106 (R_{int} = 0, 1083)$
Beobachtete unabhängige Reflexe $(I > 2\sigma(I))$	106
Daten, Einschränkungen, Parameter	106, 0, 17
GooF an F ²	1,340
Güteparameter R ₁ , wR ₂ (alle Reflexe)	0,0193, 0,0449
Restelektronendichte (10 ⁻⁶ ·e·pm ⁻³)	0,45 und -0,93

Tab. 14 Daten, Parameter und Angaben zur Kristallstrukturbestimmung von CaNi(BN).

Tab. 15 Atomkoordinaten und anisotrope Auslenkungsparameter^(a) (pm²) nach der Eiskristall-
Strukturanalyse von CaNi(BN).

Atom	Position	x/a	y/b	z/c	U ₁₁	U ₂₂	U ₃₃
Ca	2c	0,25	0,25	0,3407(1)	50(5)	50(5)	64(5)
Ni	2a	0,75	0,25	0	47(4)	47(4)	52(5)
В	2c	0,25	0,25	0,8429(4)	63(17)	63(17)	87(19)
N	2c	0,25	0,25	0,6620(4)	36(18)	36(18)	72(19)

^(a) $U_{23} = U_{13} = U_{12} = 0$

	()	
B–N	138,1(4)	1×
Ni–B	213,5(2)	4×
Ni–Ni	249,78(2)	4×
Ca–N	245,3(4)	1×
Ca–N	249,79(2)	4×
B–B	346,3(3)	4×
N–N	351,6(3)	4×
B-Ni-B	108,4(1)	
B-Ni-B	111,6(1)	
N–Ca–N	179,1(1)	

Tab. 16Ausgewählte interatomare Abstände (pm) mit
Koordinationszahlen und Winkel (°).

4. 1. 4 Darstellung und Untersuchungen an CaPd(BN)

Zur Darstellung von CaPd(BN) wurden Synthesen analog der oben für CaNi(BN) beschriebenen durchgeführt. Für einen typischen Ansatz wurden 58,5 mg Ca (Strem, 99,99%, dendritisch), 155,3 mg Pd (Heraeus, röntgenrein) und 36,3 mg h-BN (ABCR, 99,8%) verwendet. Die Temperzeiten betrugen 7 Tage bei 1085°C. Aus den durchgeführten Versuchen konnten graue Kristallpulver isoliert werden, die über eine durchgeführte Röntgen-Pulveruntersuchung mit anschließender Rietveldverfeinerung als CaPd(BN) mit einer zu CaNi(BN) isotypen Kristallstruktur bestimmt werden konnten. Die durchgeführte Verfeinerung erlaubte jedoch nur eine mäßige Bestimmung der Leichtatompositionen, die mit relativ großen Standardabweichungen behaftet blieben. Auch die ermittelten Gütefaktoren zeigten Unsicherheiten für das errechnete Strukurmodell, so dass auf eine detaillierte Auflistung der sich ergebenen Abstände und Winkel verzichtet wird. Die Isolierung von geeigneten Kristallen für eine Einkristallstrukturbestimmung gelang nicht.

Abb. 23 zeigt eine graphische Darstellung der Rietveld-Verfeinerung, die Tabellen 17 und 18 enthalten Daten, Parameter und numerische Werte der Verfeinerung.

Abb. 23 Gemessenes und berechnetes Röntgen-Pulverdiffraktogramm eines CaPd(BN)-Präparats mit Reflexlagen und Differenzkurve nach der Rietveld-Verfeinerung.

Summenformel	CaPdBN
Anzahl der Formeleinheiten/Elementarzelle	2
Molmasse (g/mol)	171,32
Messtemperatur (K)	298(2)
Diffraktometer	STADI P (Stoe)
Strahlung, Wellenlänge (pm), Monochromator	Cu K _{α} , 154,0598, Germanium
Kristallsystem	tetragonal
Raumgruppe	P4/nmm (Nr. 129)
Zellparameter (pm)	a = 377,38(1)
	c = 760,95(4)
Messbereich (°)	$10 \le 2\Theta \le 102$
Beobachtete unabhängige Reflexe	52
Anzahl verfeinerter Parameter	24
Güteparameter R _{Bragg} , R _p , R _{wp}	0,084, 0,084, 0,127

Tab. 17 Daten, Parameter und Angaben zur Rietveldverfeinerung von CaPd(BN).

Atom	Position	x/a	y/b	z/c
Ca	2c	0,25	0,25	0,3478(13)
Ni	2a	0,75	0,25	0
В	2c	0,25	0,25	0,812(8)
Ν	2c	0,25	0,25	0,687(14)

Tab. 18 Atomkoordinaten nach der Rietveldverfeinerung von CaPd(BN).

4. 1. 5 Elektronische Struktur von CaNi(BN)

Die elektronische Bandstruktur von CaNi(BN) wurde auf extended Hückel-Niveau mithilfe des Programmpakets YAeHMOP [47] durchgeführt. Berechnungen auf molekularer Ebene erfolgten mit dem Programm CACAO [48].

Die Berechnungen der elektronischen Situation an CaNi(BN) gehen von einer isolierten [BN]²⁻-Einheit aus, deren Valenzelektronenkonfiguration qualitativ derjenigen anderer 10-Elektronenfragmente wie $[C_2]^{2-}$ oder CO entspricht. Für die $(1\sigma)^{2}(2\sigma)^{2}(\pi)^{4}(3\sigma)^{2}(\pi^{*})^{0}$ resultient Konfiguration angenommene eine B-N-Mehrfachbindung mit einem im Wesentlichen nichtbindenden 3σ-Molekülorbital als HOMO. In einem ersten Schritt wurde die Bandstruktur für das (BN)x-Teilgitter entlang verschiedener Richtungen in der ersten Brillouin-Zone für ein tetragonal primitives Gitter berechnet. Abbildung 24 enthält eine graphische Darstellung der Ergebnisse. Aus ihr wird ersichtlich, dass die wesentlichen Charakteristika isolierter BN-Einheiten erhalten bleiben. Dispersionen, wie sie vor allem Bänder mit 2σ - und 3σ-Beteiligung zeigen, weisen auf intermolekulare Wechselwirkungen zwischen den BN-Fragmenten in der Teilstruktur hin. Die in Abb. 24 rechts abgebildete crystal orbital overlap population (COOP) gibt die Bindungsverhältnisse innerhalb des B-N-Fragments wieder. Sie entsprechen denen eines isolierten Moleküls: 1 σ , 2 σ und π zeigen B-N-bindende Eigenschaften, während 3σ nichtbindende und π^* antibindende Eigenschaften aufweisen. Nach den vorliegenden Rechnungen erscheint es plausibel, für das B–N-Fragment elektronische Zustände bis einschließlich 3σ zu besetzen. Dies wäre mit einer zweifach negativen Ladung für jedes B-N-Molekülfragment konsistent. Aus einer Besetzung höherer Zustände (π^*) resultierten stark antibindende Wechselwirkungen, die für das Molekülfragment zu einer Aufweitung des B-N-Abstandes führen würden. Dies ist nur dann plausibel, wenn damit eine stark bindende Kombination mit Orbitalen benachbarter Atome resultierte. Die Reihe der

Lanthanoiddicarbide (LnC₂) [49], in denen Ln-d-Orbitale bindende Wechselwirkungen mit π^* -Orbitalen der C₂-Hantel zeigen, steht beispielhaft hierfür.

Im nächsten Schritt wurden alle Atome von CaNi(BN) für die Berechnung der Bandstruktur in Abb. 25 berücksichtigt. Auch hier sind alle aus B–N-Orbitalen mit σ -Symmetrie herrührenden Bänder wieder zu finden (vgl. Abb. 24). Um etwa -14 eV ist ein Bereich hoher Banddichte zu erkennen, der dem kompakten Ni-d-Block zuzuschreiben ist. Er liegt unterhalb des Fermi-Niveaus, ist somit besetzt und deutet im ersten Schluss eine Ni d¹⁰-Konfiguration an. Weitere Analysen zeigen, dass bindende Wechselwirkungen von Ni 4s- und 4p-Orbitalen mit dem B–N-Fragment unterhalb ϵ_F vorhanden sind, die zu einer (schwachen) Ni–B-Bindung führen. Damit verbunden ist eine schwache Besetzung von Ni 4s- und 4p-Orbitalen, die zu einer leicht negativen Ladung am Ni-Atom führt. Elektronische Niveaus von Ca-Atomen liegen energetisch hoch und tragen nur in äußerst geringem Umfang unterhalb des Fermi-Niveaus zu Bändern bei. Das Ca-Atom kann daher als Ca²⁺ betrachtet und von der Diskussion der kovalenten Bindungswechselwirkungen in CaNi(BN) weitgehend ausgeschlossen werden.

Die Bindungsverhältnisse zwischen BN und Ni können anhand einer fragment molecular orbital (FMO)-Analyse für BN anschaulich gemacht werden. In Abbildung 25, Mitte sind die 1 σ -, 2 σ -, π ,- 3 σ - und π^* -Fragmentorbitale neben den Zustandsdichten gezeigt. Die intramolekulare Wechselwirkung für das B–N-Fragment sowie für die Ni–B-Bindung sind in der COOP (Abb. 25, rechts) wiedergegeben. Aus dieser Abbildung und weiteren Informationen aus der errechneten Überlappungsmatrix lassen sich drei Hauptwechselwirkungen zwischen BN und Ni ausmachen:

(1) BN 2σ und 3σ mit Ni 4s und Ni $3d_{z^2}$, $3d_{xy}$ mit bindender B–N- und bindender Ni– B-Wechselwirkung.

(2) BN 3σ mit Ni $4p_x$ und $4p_y$ mit nicht bindender B-N- und bindender Ni-B-Wechselwirkung.

(3) BN π^* mit Ni 4p_x und 4p_y mit antibindender B–N- und bindender Ni–B-Wechselwirkung.

Zusätzlich werden für alle Fälle bindende Ni-Ni-Wechselwirkungen festgestellt. Die Präsenz von kovalenten Ni-B-Wechselwirkungen mit Ni 4s- und 4p-Anteilen unterhalb des Fermi-Niveaus führt nach einer durchgeführten Mulliken-Analyse zu einer Ladungsverteilung gemäß Ca^{+1,82}Ni^{-0,76}(BN)^{-1,06} (Tab. 19). Allerdings sind diese Ladungen vom Parametersatz, der für die Berechnungen zugrunde gelegt wird, abhängig. Besondere Bedeutung kommt den Ionisationsenergien H_{ii} von Nickel zu, weil seine "Elektronegativität" in den Berechnungen hiervon wesentlich beeinflusst wird. In früher durchgeführten Berechnungen an vergleichbaren Systemen wurden unterschiedliche Parametersätze als Basis herangezogen. Die hier verwendeten Parameter entsprechen denen von Summerville und Hoffmann [50].

Die zu Wechselwirkung (3) zuordnenbaren Bänder liegen am und über E_f und sind somit für CaNi(BN) im Wesentlichen unbesetzt. Sie stellen die Leitungsbänder dar und nehmen an der Ni–B-Kovalenz kaum teil. Trotzdem führt die Wechselwirkung (3) zu Anteilen von π^* an Valenzbändern. Verglichen mit der (BN)_x-Teilstruktur resultieren aus der Wechselwirkung mit Ni in CaNi(BN) für die B–N-Fragmente eine Stärkung der σ -Bindungen und eine Schwächung der π -Bindungen (siehe Tabelle 19). Die Resultate, wie sie hier am Beispiel von CaNi(BN) erhalten wurden entsprechen qualitativ Rechnungen, die an isostrukturellen Borocarbiden vom Typ LnNi(BC) (Ln = Y, Lu) durchgeführt wurden [51, 52].

4. 1. 6 Widerstands- und magnetische Messungen an CaNi(BN)

Aus der berechneten Bandstruktur von CaNi(BN) ergab sich eine minimale Bandlücke von 0,05 eV. Diese ist so klein, dass sich für CaNi(BN) bei Raumtemperatur ein metallisches Leitungsverhalten ergeben sollte. Die Bestimmung des Leitungsverhaltens an einem CaNi(BN)-Pressling durch eine Vierpunkt-Gleichstrom-Messung ergab bei Raumtemperatur einen spezifischen Widerstand von $1 \cdot 10^{-3} \Omega \cdot cm$, einen Wert, der in der Größenordnung von Graphit (1,375 \cdot 10⁻³ $\Omega \cdot$ cm) liegt. Messungen der Temperaturabhängigkeit des Widerstands scheiterten leider an der mangelnden Stabilität des CaNi(BN)-Presslings, so dass eine Unterscheidung des Leitungsverhaltens zwischen Halb- und Metallleitung nicht vorgenommen werden konnte. Hinweise auf frei bewegliche Elektronen in CaNi(BN) wurden auch aus magnetischen Messungen in einem SQUID-Magnetometer (Quantum Design MPMS, 134 mg CaNi(BN), 25000G, $60 \text{ K} \le T \le 300 \text{ K}$) ermittelt. Neben einem äußerst geringen Curie-Anteil von 0,04 B.M. wurde ein temperaturunabhängier Paramagnetismus (TUP) von $6.5 \cdot 10^{-5}$ cm³/mol bestimmt.

Abb. 24 Energieniveaudiagramm und Orbitale eines isolierten [BN]²⁻-Ions (links), Bandstruktur des (BN)_x-Teilgitters von CaNi(BN) (Mitte) und crystal orbital overlap population (COOP) für die intramolekulare B–N-Wechselwirkung (rechts). Für die Berechnung verwendete spezielle Punkte in der tetragonalen Brillouin-Zone sind oberhalb der Bandstruktur abgebildet, das (BN)_x-Teilgitter in einer Elementarzelle ist oberhalb der COOP skizziert.

Abb. 25 Bandstruktur von CaNi(BN) (links), Zustandsdichte mit Projektion der BN-Zustände (schattiert) und 1 σ -, 2 σ -, π -, 3 σ -, π^* -Fragmentorbitale von BN (Mitte), crystal orbital overlap population (COOP) für die intramolekulare B–N und die Ni–B-Wechselwirkung (rechts). Das Fermi-Niveau (ϵ_F) ist als gepunktete Linie eingezeichnet.

	CaNi(BN)	(BN) _x	
	reduzierte Überlappungspopulationen (ROP)		
B-N (total)	1,08	1,13	
B-N (σ)	0,76	0,70	
B–N (π)	0,31	0,43	
Ni–Ni	0,12		
Ni–B	0,34		
	Atomare Ne	ettoladungen	
Ca	+1,82		
Ni	-0,76		
В	+0,75 +1,38		
Ν	-1,82 -1,38		
(B–N)	-1,06 0,00		
	(B-N)-FMO-	-Besetzungen	
1σ	2,00	2,00	
2σ	1,73	1,93	
π	3,83	3,97	
3σ	1,21	0,08	
π^*	0,28	0,02	
	Fermir	niveaus	
	-10,97	-13,61	

Tab. 19 Numerische Daten aus der Bandstrukturrechnung für CaNi(BN).

4. 2 LnNi(BN) (Ln = La, Ce, Pr)

Nachdem das Nitridoborat LaNi(BN) als einziger Vertreter dieses Typs mit einem Lanthanoid dargestellt worden war, wurde versucht, weitere Verbindungen mit Vertretern der frühen Elemente in der Reihe der Lanthanoide zu synthetisieren.

4.2.1 Synthesen

Die Synthesen zur Darstellung der Verbindungen LnNi(BN) (Ln = La, Ce, Pr, Nd) wurden analog der oben für CaNi(BN) beschriebenen aus den Metallen mit h-BN durchgeführt. Einzig die Reaktionstemperaturen wurden von 1050 auf 1200°C gesteigert.

4.2.2 Ergebnisse und Diskussion

Die Nitridoborate LnNi(BN) mit Ln = La, Ce und Pr wurden auf diese Weise als schwarze Pulver erhalten. Die Synthese von NdNi(BN) gelang unter den angegebenen Bedingungen nicht. Von LaNi(BN), CeNi(BN) und PrNi(BN) wurden Röntgenpulverdiffraktogramme aufgenommen und miteinander verglichen. Alle drei Aufnahmen konnten in tetragonal primitiven Elementarzellen indiziert werden. Abb. 26 zeigt eine Gegenüberstellung der entsprechenden Pulverdiffraktogramme, Tab. 20 gibt die Ergebnisse der Zellbestimmungen wieder. Ein Vergleich der erhaltenen Intensitätsdaten mit berechneten Daten unter Zuhilfenahme von Lageparametern des bereits beschriebenen LaNi(BN) belegen die Isotypie der Strukturen von LaNi(BN), CeNi(BN), PrNi(BN) und auch CaNi(BN). Bestimmungen der Lageparameter aus Rietveld-Verfeinerungen insbesondere der Leichtatompositionen waren jedoch mit Unsicherheiten behaftet, so dass die exakte Strukturbestimmung und der Beweis der Isotypie letztlich unterbleiben. Auffällig ist, dass die Abnahme der ermittelten Zellvolumina nicht dem Gang der Lanthanoidenkontraktion für die dreiwertigen Metalle entsprechen. Das Zellvolumen für CeNi(BN) ist deutlich kleiner, als es aus der Stellung zwischen der La- und der Pr-Verbindung zu erwarten wäre. Diese Tatsache legt den Schluss nahe, dass Ce hier nicht dreiwertig sondern als Ce⁴⁺ vorliegt. Durchgeführte magnetische Messungen weisen auf gemischtvalentes Cer mit schwacher Besetzung der f-Schale (im Mittel Ce^{+3.8}) bei Raumtemperatur hin.

Abb. 26 Gegenüberstellung der Röntgenpulverdiagramme von LnNi(BN) mit Ln = La, Ce, Pr.

Tab. 20ErmittelteParameterdertetragonalprimitivenElementarzellenderNitridoborateLnNi(BN)mitLn = La, Ce, Pr.

Nitridoborat	Zellparameter a (pm)	Zellparameter c (pm)	Anzahl indizierter Reflexe
LaNi(BN)	371,96(3)	758,23(9)	19
CeNi(BN)	358,49(3)	751,41(9)	19
PrNi(BN)	363,05(2)	761,31(6)	23

4. 2. 3 Magnetische Eigenschaften von LaNi(BN), CeNi(BN), PrNi(BN)

Proben von 50-100 mg der Nitridoborate wurden auf ihre magnetischen Eigenschaften in einem SQUID-Magnetometer (Quantum Design, MPMS) untersucht. Die Magnetisierungen wurden bei Feldstärken von 500 G in einem Temperaturintervall $5K \le T \le 300$ K aufgenommen und die daraus resultierenden molaren Suszeptibilitäten χ_{mol} errechnet (Abb. 27). Die erhaltenen Kurven für die La- und die Pr-Verbindung entsprechen dem erwarteten Verlauf. Für LaNi(BN) wird über den gesamten Messbereich ein temperaturunabhängiges paramagnetisches ($\chi_{mol} = 1 \cdot 10^{-3}$ cm³/mol) Verhalten (TUP) beobachtet, während PrNi(BN) einen typisch Curieparamagnetischen Verlauf zeigt. Eine Analyse der Messdaten im Intervall $20 \text{ K} \leq \text{T} \leq$ 300 K ergab für Pr ein magnetisches Moment von 3,8 B.M., was in etwa dem theoretischen Wert für Pr³⁺ (3,6 B.M.) entsprach. Gleichzeitig konnte für PrNi(BN) ein zugrunde liegender TUP von $7 \cdot 10^{-4} \text{ cm}^3/\text{mol}$ ermittelt werden. Einen unerwarteten Verlauf der Temperaturabhängigkeit der Molsuszeptibilitäten wurde für CeNi(BN) vorgefunden. Während sie im Temperaturbereich $300 \text{ K} \geq \text{T} \geq 20 \text{ K}$ ein nahezu temperaturunabhängiges Verhalten zeigten, stiegen sie unterhalb 20 K sprunghaft an. Unterhalb 10 K trat eine deutliche Aufspaltung der Messwerte in eine zero field cooled-Kurve (ZFC) und eine field cooled-Kurve (FC) auf. Diese Charakteristik deutete auf ein magnetisches Ordnungsverhalten hin, das sich auch in einer feldstärkeabhängigen Messung (10 K) zeigte (Abb. 28). Dort wurde ein deutliches Hystereseverhalten festgestellt, das für kooperative Wechselwirkungen typisch ist.

Abb. 27 Vergleich der Molsuszeptibilitäten für LaNi(BN), CeNi(BN) und PrNi(BN).

Abb. 28 Hysteresekurve von CeNi(BN).

4. 3 La₃Ni₂(BN)₂N

Nachdem 1994 supraleitende Eigenschaften im System der intermetallischen Borocarbide Ln-T-B-C mit Sprungtemperaturen bis 16,6K (LuNi₂B₂C) [53,54] festgestellt wurden, entstand ein reges Interesse an der Synthese neuer Materialien nicht nur im System der Borocarbide sondern auch im System der quaternären Nitridoborate. In diesem Zuge wurden auch die bis dahin einzigen bekannten quaternären Nitridoborate, LaNi(BN) und das supraleitende $La_3Ni_2(BN)_2N$ (T_c = 12K) über Lichtbogensynthesen mit anschließendem Tempern erhalten und über Elektronen- und Neutronenbeugung an Pulvern charakterisiert. Eine weitere Syntheseroute, in der ein nicht genau definiertes Polyborazylen $[B_3N_3H_{-4}]_x$ [55] als Precursor zusammen mit La- und Ni(Co)-Metall pyrolisiert wurde, führte zu Pulvern von La₃Ni₂(BN)₂N und La₃Co₂(BN)₂N, die jedoch nicht weiter strukturell charakterisiert wurden. Eine allgemein anwendbare und leicht reproduzierbare Synthese zur Darstellung quaternären Nitridoboraten im System Ln-T-B-N gelang jedoch nicht. Im Rahmen dieser Arbeit wurde versucht, über verschiedene präparative Ansätze zu neuen Wegen für die Synthese dieser Verbindungen zu kommen. Ein weiterer untersuchenswerter Aspekt lag in der Tatsache, dass bei der früher durchgeführten Neutronen-Pulveruntersuchung für La₃Ni₂B₂N_{3-x} ein Stickstoffdefizit von x = 0,09 festgestellt wurde und daraus ein Einfluss auf die Übergangstemperatur in den supraleitenden Zustand erwogen wurde.

4. 3. 1 Darstellung von La₃Ni₂(BN)₂N

Ausgehend von Metathese-Reaktionen, die erfolgreich zur Darstellung von ternären Nitridoboraten der Lanthanoide eingesetzt wurden, kamen zur Darstellung von $La_3Ni_2(BN)_2N$ zwei unterschiedliche Synthesestrategien zur Erprobung. Nach der ersten wirkt La-Metall als reduzierendes Agens und wurde zusammen mit NiCl₂ und $Li_3(BN_2)$ gemäß

(1)
$$5 \operatorname{La} + 3 \operatorname{NiCl}_2 + 3 \operatorname{Li}_3 \operatorname{BN}_2 \longrightarrow 1,5 \operatorname{La}_3 \operatorname{Ni}_2 (\operatorname{BN})_2 \operatorname{N} + \operatorname{Li}_3 \operatorname{N} + 0,5 \operatorname{LaN} + 6 \operatorname{LiCl}_3 \operatorname{Ni}_2 (\operatorname{BN})_2 \operatorname{N} + 1,5 \operatorname{La}_3 \operatorname{Ni}_2 \operatorname{N} + 1,5 \operatorname{La}_3 \operatorname{N} + 1,5 \operatorname{La}_3$$

umgesetzt. Für den zweiten Reaktionsweg wurden beide Metalle in Form ihrer Halogenide eingesetzt:

(2)
$$3 \operatorname{LaCl}_3 + 2 \operatorname{NiCl}_2 + \operatorname{Li}_3 \operatorname{BN}_2 + \operatorname{BN} + 10 \operatorname{Li} \longrightarrow \operatorname{La}_3 \operatorname{Ni}_2(\operatorname{BN})_2 \operatorname{N} + 13 \operatorname{LiCl}$$

In diesem Fall diente Li zur Reduktion von Ni^{2+} und zur reduktiven Fragmentierung von α -BN.

Alle vorbereitenden Arbeiten zu den Synthesen von La₃Ni₂(BN)₂N wurden in einem Handschuhkasten unter trockenem Argon durchgeführt.

Als Ausgangsmaterialien zur Darstellung nach (1) wurden La (Heraeus, 99,9%), NiCl₂ (Strem, 98%, vor Gebrauch zweifach sublimiert) und Li₃(BN₂) (s. Kap. 3) im Verhältnis 5:3:3 verwendet. Die Reaktionen zur Synthese von La₃Ni₂(BN)₂N wurden in verschweißten Ta-Containern durchgeführt. Dazu wurden 275,1 mg La-Pulver mit 154,0 mg NiCl₂ und 70,9 mg Li₃(BN₂) in einer Achatschale innig miteinander verrieben und anschließend in ein einseitig verschweißtes Ta-Rohr (\emptyset ca. 8 mm, Länge ca. 20 mm) eingefüllt. Der befüllte Ta-Behälter wurde zugekniffen und anschließend in einem Lichtbogen-Schweißgerät unter Ar (p_{Ar} = 500 mbar) zu einer Ampulle verschweißt. Der so hergestellte Reaktionscontainer wurde anschließend zum Schutz vor Oxidation in eine evakuierte Quarzglasampulle eingeschmolzen. Die Umsetzungen der Eduktgemenge gemäß (1) erfolgten durch 10-tägiges Tempern in Kastenöfen (Carbolite) bei Temperaturen von 1025 °C.

Zur Darstellung nach (2) wurden 224,2 mg LaCl₃ (Alfa Aesar, 99,9%), 79,1 mg NiCl₂ (Strem, 98%, vor Gebrauch zweifach sublimiert), 18,2 mg Li₃(BN₂) (s. Kap. 3), 7,6

mg α -BN (ABCR, 99,8%, vor Gebrauch unter dynamischem Vakuum bei 400°C entgast) in einer Achatschale innig miteinander verrieben und anschließend zusammen mit 21,1 mg Li-Stückchen in Ta-Container eingefüllt, die analog (1) zu Reaktionsbehältern verarbeitet wurden. Die Umsetzungen nach (2) erfolgten bei 1040°C über 8 Tage.

Nach Beendigung der Temperprozesse wurden für beide Synthesestrategien die Reaktionsbehälter im Handschuhkasten aufgebrochen und die Reaktionsprodukte gesichtet. Für alle durchgeführten Synthesen wurden schwarze kristalline vorgefunden. Reaktionsprodukte neben Kristallen LiCl weißen von Lichtmikroskopische Aufnahmen zeigten, dass die entstandenen La₃Ni₂(BN)₂N-Kristalle zu größeren Aggregaten verwachsen waren (Abb. 29). Für weitere Analysen wurden die Reaktionsprodukte in verschraubbare Glasgefäße abgefüllt und im Handschuhkasten gelagert.

Abb. 29 Lichtmikroskopische Aufnahmen eines Kristallsplitters (links) und eines Aggregats (rechts) von La₃Ni₂(BN)₂N-Kriställchen.

4. 3. 2 Röntgenographische Untersuchungen

Für die nach beiden Routen erhaltenen Reaktionsprodukte wurden Übersichtsmessungen mit einem Röntgen-Pulverdiffraktometer (STOE, STADI P, Cu K_{α 1}, linear PSD) durchgeführt. Sie bestätigten die Entstehung von LiCl neben La₃Ni₂(BN)₂N als Hauptprodukt. Weiter wurden kleinere Reflexe von LaNi(BN) vorgefunden. Zur Abtrennung der entstandenen Reaktionsnebenprodukte wurden Proben der Rohmaterialien in einem Gemisch aus Wasser/Aceton 1:1 mehrmals für je eine Stunde behandelt und die entstehenden weißen Niederschläge mit einer Pipette abgesaugt (Versuche zur Aufreinigung mit verd. HCl (pH 4-5) führten zur zügigen Zersetzung von La₃Ni₂(BN)₂N). Anschließend wurde nochmals gründlich mit Aceton gewaschen und die verbliebenen schwarzen Kristallite (Abb. 29) unter Aceton in einem kleinen Achatmörser verrieben. Nachdem überschüssiges Aceton abgesaugt und die La₃Ni₂(BN)₂N-Pulver getrocknet waren, wurden sie auf Mylar-Folien aufgebracht und nochmals röntgenographisch untersucht. Die so erhaltenen Pulverdiffraktogramme (Abb. 30) zeigten nunmehr für beide Syntheserouten nahezu reines La₃Ni₂(BN)₂N. Für die Reaktionen nach (1) wurden jedoch zwei schwache nicht identifizierbare Reflexe gefunden, während für die Reaktionen nach (2) zusätzlich schwache Reflexe von LaNi(BN) beobachtet wurden. Reflexe von LiCl konnten nicht mehr detektiert werden.

Abb. 30 Röntgen-Pulverdiffraktogramm von La₃Ni₂(BN)₂N unterlegt mit den Reflexlagen aus der Einkristallstrukturbestimmung.

Für die Durchführung von Einkristallstrukturanalysen bestand die Schwierigkeit, die erhaltenen verwachsenen Kristall-Aggregate zu trennen und einzelne nicht verzwillingte Individuen zu isolieren. Nur für die Reaktion nach der Syntheseroute (1) konnte ein geeigneter La₃Ni₂(BN)₂N-Einkristall ausgesucht, in eine Glaskapillare

eingeschmolzen und für die Aufnahme eines Intensitätsdatensatzes mit einem Röntgen-Einkristalldiffraktometer (STOE IPDS, $Mo K_{\alpha 1}$) verwendet werden. Die Strukturlösung erfolgte über Direkte Methoden (SHELXS) [45], die Strukturverfeinerung (SHELXL) [45] in der Raumgruppe P4/mmm (Nr. 139) konvergierte zu $R_1 = 0,027$ und $wR_2 = 0,062$. Daten zur Einkristallstrukturbestimmung sind in Tabelle 21 zusammengefasst.

Tub: 21 Daton, Turamotor and Tingabon Zar Emikrista	
Summenformel	$La_3Ni_2B_2N_3$
Anzahl der Formeleinheiten/Elementarzelle	2
Molmasse (g/mol)	597,80
Messtemperatur (K)	293(2)
Diffraktometer	IPDS (Stoe)
Strahlung, Wellenlänge (pm), Monochromator	Mo K $_{\alpha 1}$, 71,073, Graphit
Absorptionskorrektur	X-red / X-shape (Stoe)
Kristallsystem	tetragonal
Raumgruppe	I4/mmm (Nr. 139)
Zellparameter (pm)	a = 372,95(2)
	c = 2056,3(2)
Zellvolumen $(10^6 \cdot \text{pm}^3)$	286,01(2)
Röntgendichte (g/cm ³)	6,942
Absorptionskoeffizient (mm ⁻¹)	28,26
F(000)	516
Kristallabmessungen (mm), Farbe	0,15, 0,15, 0,04, Schwarz
Messbereich (°)	$8 \le 2\Theta \le 60$
Bereich gemessener Indices	$-5 \le h \le 5, -5 \le k \le 5, -28 \le l \le 28$
Beobachtete Reflexe	2071
Beobachtete unabhängige Reflexe	$167 (R_{int} = 0.041)$
Beobachtete unabhängige Reflexe (I > $2\sigma(I)$)	163
Daten, Einschränkungen, Parameter	167, 0, 17
GooF an F ²	1,486
Gütefaktoren R ₁ , wR ₂ (alle Reflexe)	0,0272, 0,0619
Restelektronendichte $(10^{-6} \cdot e \cdot pm^{-3})$	1,39 und -1,81

Tab. 21 Daten, Parameter und Angaben zur Einkristallstrukturbestimmung von La₃Ni₂(BN)₂N.

4. 3. 3 Kristallstrukturbeschreibung von La₃Ni₂(BN)₂N

Die Ergebnisse der hier vorgelegten Einkristallstrukturuntersuchung zeigen eine gute Übereinstimmung mit Daten aus einer früheren Neutronen-Pulveruntersuchung [44].

Abb. 31 Elementarzelle der Kristallstruktur von La₃Ni₂(BN)₂N.

Danach enthält die Kristallstruktur von La₃Ni₂(BN)₂N (Abb. 31) quadratisch planare Schichten von Ni-Atomen ($d_{Ni-Ni} = 263,7(1)$ pm) deren quadratische Flächen abwechselnd ober- und unterhalb durch BN-Einheiten ($d_{B-N} = 143(2)$ pm) überkappt sind. Die B-Atome der BN-Einheiten weisen jeweils in Richtung der Ni-Quadrate. Dadurch resultiert für jedes Ni-Atom eine verzerrt tetraedrische Koordination (D_{2d} , 106,2(3) und 116,3(6)°) mit Bor-Atomen ($d_{Ni-B} = 219,5(7)$ pm). Die resultierenden zweidimensionalen Schichten aus kantenverknüpften NiB₄-Tetraedern können als fluoritartige Baueinheit angesehen werden Die Stickstoff-Atome der BN-Hanteln werden in für Nitridoborate typischer Weise jeweils quadratischpyramidal von fünf La-Atomen überdacht (d_{La-N} = 263,9(4) $4 \times$ und 255,4(8) $1 \times$). Insgesamt resultieren für die B-N-Hanteln neunfache Koordinationen in Form von überkappten quadratischen Antiprismen aus fünf Ca- und 4 Ni-Atomen (Abb. 32). Weiterhin ist in Kristallstruktur isoliertes der ein Nitrid-Anion enthalten, welches in einer leicht gestreckt oktaedrischen Koordination von La-Atomen umgeben ist. Die in der Struktur enthaltenen LaN5-und LaN6-Polyeder werden über gemeinsame Kanten verknüpft und formen kochsalzartige Baueinheiten. Daraus resultiert eine alternative Betrachtungsweise der La₃Ni₂(BN)₂N, Struktur die von von einem schichtartigen Aufbau aus einem fluoritartigen Ni₂B₂-

Block gefolgt von drei kochsalzartigen LaN-Blöcken (... Ni_2B_2 - LaN - LaN - LaN - Ni_2B_2 ...) ausgeht.

Abb. 32 Metallumgebung um die BN-Einheit in La₃Ni₂(BN)₂N in Form eines überkappten quadratischen Antiprismas (Nickel grün, Lanthan rot).

Tab.22 Atomkoordinaten und anisotrope Auslenkungsparameter^(a) (pm²) aus der Einkristall-
strukturbestimmung von La₃Ni₂(BN)₂N.

Atom	Position	x/a	y/b	z/c	U ₁₁	U ₂₂	U ₃₃
La (1)	2a	0	0	0	86(4)	86(4)	69(5)
La (2)	4e	0,5	0,5	0,87054(3)	67(4)	67(4)	94(4)
Ni	4d	0	0,5	0,75	93(5)	93(5)	70(5)
В	4e	0	0	0,1937(6)	139(38)	139(38)	79(37)
N (1)	4e	0	0	0,1242(4)	64(42)	64(42)	51(48)
N (2)	2b	0,5	0,5	0	167(60)	167(60)	105(68)

^(a) $U_{23} = U_{13} = U_{12} = 0$

B-N(1)	143(2)	1×
Ni-B	219,5(7)	4×
Ni–Ni	263,7(1)	4×
La(1)–N(2)	263,7(1)	4×
La(1)–N(1)	255,4(8)	2×
La(2)–N(2)	266,2(1)	4×
La(2)–N(1)	263,9(4)	4×
La(2)–B	295,0(6)	4×
B–Ni–B	106,2(3)	
B-Ni-B	116,3(6)	
N(1)-La(2)-N(1)	175,3(4)	

Tab. 23 Ausgewählte interatomare Abstände (pm) mit Koordinationszahlen und Winkel (°) in der Kristallstruktur von La₃Ni₂(BN)₂N.

4. 3. 4 Magnetische Eigenschaften von La₃Ni₂(BN)₂N

Die Bestimmung der magnetischen Eigenschaften insbesondere der Bestimmung der kritischen Temperatur (T_c) des supraleitenden Übergangs wurde mit einem SQUID-MPMS) Für Magnetometer (Quantum Design, durchgeführt. die Suszeptibilitätsmessungen wurden Proben von 6 bis 40 mg der erhaltenen Materialien in Gelatinekapseln eingewogen und mit Baumwollwatte fixiert. Anschließend wurden die Gelatinekapseln an Probenhalterungen aus zwei Plastikröhrchen befestigt, in das Magnetometer eingeführt und im feldfreien Zustand auf 5K abgekühlt. Dann erst wurde das Magnetfeld (10G) angelegt und die Magnetisierung der Probe beim Erwärmen von 5 auf 30K gemessen. Daraus resultierte die ZFC (zero field cooled)-Kurve. Anschließend wurde die Temperatur wieder auf 5K gesenkt und während des Abkühlens die FC (field cooled)-Kurve aufgenommen. Aus Messungen von Proben verschiedener Syntheserouten und Reinheit wurden für La₃Ni₂(BN)₂N kritische Temperaturen zwischen 13,0 und 14,6K festgestellt. Eine kritische Prüfung der Ergebnisse kommt zu dem Schluss, dass T_c von der Reinheit und der Kristallinität der Probe abhängt. Der gleiche Zusammenhang wurde auch für die "Schärfe" des Übergangs beobachtet. Der schärfste Übergang in den normalleitenden Zustand mit der höchsten Sprungtemperatur ($T_c = 14,6K$) wurde mit einer Probe von 6 mg gereinigter La₃Ni₂(BN)₂N-Kristalle erreicht (Abb. 33).

Abb. 33 Field cooled (FC) und zero field cooled (ZFC) Kurven von $La_3Ni_2(BN)_2N$ (10G).

5 Ternäre Nitridometallate Ln₃T₂N₆ (Ln = La, Ce, Pr; T = Nb, Ta)

Aus einer Reaktion zur Synthese von Nitridoboraten, ausgehend von La-Metall zusammen mit h-Bornitrid und Lithiumnitrid in einer Ta-Ampulle, ließen sich nach 16-stündigem Tempern bei Temperaturen um 1025 °C luft- und säurestabile Kriställchen mit augenscheinlich tetragonaler Symmetrie isolieren. Einer Einkristall-Röntgenstrukturanalyse zufolge handelte es sich bei den isolierten Kriställchen nicht um ein Nitridoborat, sondern um ein ternäres Nitrid der Zusammensetzung La₃Ta₂N₆. Offenbar hatte unter den gegebenen Reaktionsbedingungen eine Nebenreaktion mit dem Ampullenmaterial zur Bildung ternärer Lanthan-Tantal-Nitride geführt.

Eine durchgeführte Literaturrecherche ergab, dass in der vielfältigen Nitridchemie Kombinationen von Lanthanoiden mit Übergangsmetallen in ternären Nitriden eine Rarität darstellen. Die größte Gruppe wird hier durch die sechs Verbindungen des Formeltyps M_2TN_3 (M = U, Th; T = Cr, Mn) [56] sowie den Cer-Verbindungen Ce₂MnN₃ [57] und Ce₂CrN₃ [58] aufgebaut. Sie lassen sich als eine Defektvariante des K₂NiF₄-Typs betrachten, bei der eine Nichtmetallposition vakant bleibt.

Nachdem Nitridometallate des Formeltyps $Ln_3T_2N_6$ bislang nicht bekannt waren, wurde der Versuch unternommen, eine gezielte Darstellung dieser Verbindungen anzugehen.

5. 1 Darstellung der Nitridometallate

Die Synthesen von Nitridometallaten des Typs $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Nb, Ta) gelingen ausgehend von den Metallen zusammen mit überschüssigem Lithiumnitrid gemäß

(1) $3 \operatorname{Ln} + 2 \operatorname{Ta} + 10 \operatorname{Li}_3 \operatorname{N} \xrightarrow{\operatorname{Ta-Ampulle}/1027^\circ \operatorname{C}/60 \operatorname{h}} \operatorname{Ln}_3 \operatorname{Ta}_2 \operatorname{N}_6 + 30 \operatorname{Li} + \operatorname{Ta}_{\operatorname{N}_8}$

für die Ta-Verbindungen und gemäß

(2)
$$3 \operatorname{Ln} + 2 \operatorname{Nb} + 10 \operatorname{Li}_3 \operatorname{N} \xrightarrow{\operatorname{Nb-Ampulle}/1027^\circ \operatorname{C}/60 \operatorname{h}} \operatorname{Ln}_3 \operatorname{Nb}_2 \operatorname{N}_6 + 30 \operatorname{Li} + \operatorname{NbN}_5$$

für die entsprechenden Nb-Verbindungen. Ein Überschuss an Li₃N wurde dabei bewusst eingesetzt, um den Stickstoffverbrauch, der durch teilweise Nitridierung der Reaktionsbehälter stattfand, auszugleichen.

Die vorbereitenden präparativen Arbeiten zur Synthese der Nitridometallate wurden in einem Handschuhkasten unter trockenem Argon durchgeführt. Als Ausgangsmaterialien wurden La-, Ce- und Pr-Späne (Strem, 99,9%), Nb- und TaPulver (Strem, 99,8% (Nb), 99,98% (Ta)) und Li₃N (Strem, 99,5%) verwendet. Die Reaktionen wurden in verschweißten Ta- bzw. Nb-Containern durchgeführt. Dazu wurden die gemäß (1) oder (2) abgewogenen Metalle mit Li₃N in einer Achatschale miteinander verrieben und anschließend in ein einseitig verschweißte Ta(Nb)-Rohre (\varnothing ca. 8 mm, Länge ca. 20 mm) eingefüllt. Die Gesamtmasse der Edukte belief sich dabei auf 250 mg. Die befüllten Ta(Nb)-Behälter wurden zugekniffen und anschließend in einem Lichtbogen-Schweißgerät unter Ar ($p_{Ar} = 500$ mbar) zu einer Ampulle verschweißt. Die so hergestellten Reaktionscontainer wurden anschließend zum Schutz vor Oxidation in evakuierte Quarzglasampullen eingeschmolzen. Die Umsätze der Eduktgemenge gemäß (1) oder (2) erfolgten durch 60-stündiges Tempern in Kastenöfen (Carbolite) bei Temperaturen von 1030°C. Nach Beendigung der Temperprozesse wurden die Reaktionsbehälter im Handschuhkasten aufgebrochen und die Reaktionsprodukte gesichtet. Für alle durchgeführten Reaktionen enthielten die Reaktionsbehälter eine metallische Li-Matrix, in die schwarze Kristalle der entsprechenden Nitridometallate eingebettet lagen. Die Isolation der Nitridometallate erfolgte durch eine mehrstündige Behandlung des Produktgemenges in verdünnter Salzsäure (0,1 mol/l). Dabei wurden sämtliche Nebenprodukte aufgelöst und die Nitridometallate nach Abfiltrieren und gründlichem Waschen phasenrein erhalten. Die so gewonnenen Reaktionsprodukte stellten sich allesamt als schwarze, luft- und säurestabile sowie spröde Kristallpulver mit augenscheinlich tetragonaler Symmetrie (Abb. 34) heraus.

Abb. 34 Lichtmikroskopische Aufnahmen von Ce₃Ta₂N₆-Kriställchen.

5. 2 Röntgenographische Untersuchungen

Proben der Nitridometallate La₃Ta₂N₆, Ce₃Ta₂N₆, Pr₃Ta₂N₆ und La₃Nb₂N₆ wurden in Reibschalen verrieben und für Aufnahmen mit einem Röntgen-Pulverdiffraktometer (STOE, STADI P, CuK_{a1}, linearer PSD) auf Mylar-Folien aufgebracht. Aus den erhaltenen Diffraktogrammen (10° $\leq 2\Theta \leq 90°$) ließen sich mithilfe des Programmsystems WinX^{POW} [59] alle Verbindungen in tetragonal innenzentrierten Zellen indizieren. Tabelle 24 gibt einen Überblick über die ermittelten Zellparameter.

Verbindung	Anzahl Reflexe (I < 0,03·I _{max.})	Messbereich	a (pm)	c (pm)
La ₃ Ta ₂ N ₆	24	$8 \leq 2\Theta \leq 90$	4,0624(6)	2015,3(3)
Ce ₃ Ta ₂ N ₆	27	$8 \le 2\Theta \le 90$	4,0440(4)	1987,0(2)
Pr ₃ Ta ₂ N ₆	26	$8 \le 2\Theta \le 90$	4,0361(3)	1971,3(2)
La ₃ Nb ₂ N ₆	26	$8 \le 2\Theta \le 90$	4,0708(4)	2011,9(2)

Tab. 24Ermittelte Zellparameter der Nitridometallate $Ln_3Ta_2N_6$ (Ln = La, Ce, Pr) und
 $La_3Nb_2N_6$ aus Röntgenpulveruntersuchungen.

Für eine Einkristallstrukturanalyse wurde ein geeigneter Ce₃Ta₂N₆-Einkristall ausgesucht, in eine Glaskapillare eingeschmolzen und für die Aufnahme eines Intensitätsdatensatzes mit einem Röntgen-Einkristalldiffraktometer (STOE IPDS, MoK_{α 1}) verwendet. Die Strukturlösung erfolgte über Direkte Methoden (SHELXS) [45], die Strukturverfeinerung (SHELXL) [45] in der Raumgruppe P4/nmm (Nr. 139) konvergierte zu R₁ = 0,024 und wR₂ = 0,050 für alle erfassten unabhängigen Reflexe. Daten zur Einkristallstrukturbestimmung sind in Tabelle 25 zusammengefasst. Die Tabellen 26 und 27 enthalten die ermittelten Atomkoordinaten und ausgewählte interatomare Abstände.

Summenformel	Ce ₃ Ta ₂ N ₆
Anzahl der Formeleinheiten/Elementarzelle	2
Molmasse (g/mol)	886,32
Messtemperatur (K)	298(2)
Diffraktometer	IPDS (Stoe)
Strahlung, Wellenlänge (pm), Monochromator	Mo K $_{\alpha}$, 71,073, Graphit
Absorptionskorrektur	X-red / X-shape (Stoe)
Kristallsystem	tetragonal
Raumgruppe	I4/mmm (Nr. 139)
Zellparameter (pm)	a = 405,76(2)
	c = 1989, 8(2)
Zellvolumen (10 ⁶ ·pm ³)	327,55(4)
Röntgendichte (g/cm ³)	8,784
Absorptionskoeffizient (mm ⁻¹)	53,6
F(000)	724
Kristallabmessungen (mm), Farbe	0,08, 0,08, 0,08, schwarz
Messbereich (°)	max. $2\Theta = 65,70$
Bereich gemessener Indices	$-5 \le h \le 5, -6 \le k \le 6, -30 \le l \le 30$
Beobachtete Reflexe	4319
Beobachtete unabhängige Reflexe	227 ($R_{int} = 0,070$)
Beobachtete unabhängige Reflexe (I > $2\sigma(I)$)	215
Daten, Einschränkungen, Parameter	227, 0, 17
GooF an F ²	1,277
Gütefaktoren R ₁ , wR ₂ (alle Reflexe)	0,0236, 0,0499
Gütefaktoren R ₁ , wR ₂ ($\overline{I > 2\sigma(I)}$)	0,0226, 0,0496
Restelektronendichte (10 ⁻⁶ ·e·pm ⁻³)	4,53 und -3,55

Atom	Position	x/a	y/b	z/c	U ₁₁	U ₂₂	U ₃₃
Та	4e	0,5	0,5	0,6000(1)	17(2)	17(2)	35(2)
Ce(1)	2a	0	0	0	31(3)	31(3)	35(4)
Ce(2)	4e	0	0	0,6808(1)	47(3)	47(3)	33(3)
N(1)	8g	0,5	0	0,5847(3)	49(25)	61(25)	90(27)
N(2)	4e	0,5	0,5	0,6978(5)	114(34)	114(34)	65(50)
^(a) $U_{23} = U_{13} = U_{12} = 0$							

Tab. 26 Atomkoordinaten und anisotrope Auslenkungsparameter^(a) (pm²) für Ce₃Ta₂N₆.

Tab. 27Ausgewählte interatomare Abstände (pm) mit Koordinations-
zahlen und Winkel in der Kristallstruktur von Ce3Ta2N6.

Ta(1)-N(2)	194,5(10)	1×
Ta(1)-N(1)	205,2(1)	4×
Ce(2)–N(1)	263,7(4)	8×
Ce(2)–N(2)	241,6(10)	$1 \times$
Ce(2)–N(2)	288,9(1)	4×
Ce(2)-N(1)	278,7(4)	4×
N–Ta–N	163,4(1)	

5. 3 Strukturbeschreibung anhand der Kristallstruktur von Ce₃Ta₂N₆

Zentrales Strukturfragment in den Kristallstrukturen der hier beschriebenen Nitridometallate ist ein Polyeder aus einem zentralen Ta-Atom umgeben von fünf quadratisch-pyramidal angeordneten Stickstoff-Atomen ($d_{Ta-N} = 194,5(10)$ pm 1× und 205,2(1) pm 4×). Das Ta-Atom kommt dabei knapp oberhalb der quadratischen Basis der N₅-Pyramide zu liegen (\angle N–Ta–N = 163,4(1)°). Abb. 35zeigt eine TaN₅-Pyramide.

Abb. 35 TaN₅-Pyramide aus der Kristallstruktur von Ce₃Ta₂N₆.

Die quadratischen Pyramiden werden in den Kristallstrukturen über gemeinsame Ecken der Pyramidenbasis zu zweidimensionalen Schichten verknüpft, so dass die Pyramidenspitzen in die gleiche Richtung weisen. Die Schichtenabfolge in die dritte Dimension erfolgt so, dass Schichtendoppel mit jeweils entgegengesetzt gerichteten Pyramidenspitzen gebildet werden. Das ober- bzw. unterhalb eines Schichtendoppels befindliche Doppel ist gegenüber dem ersten um ½ entlang [110] verschoben, so dass die Pyramidenspitzen des einen Doppels in Mulden des anderen Doppels weisen. Es resultiert daraus eine Schichtenabfolge A A' B B'... (Abb. 36 und 38). In den Strukturen werden zwei kristallographisch unterscheidbare Ce-Positionen besetzt. Sie werden in Lücken des Stickstoff-Teilgitters eingebaut. Es resultieren für Ce einerseits achtfache, quadratisch-prismatische Umgebungen, andererseits neunfache, überkappt quadratisch-antiprismatische Umgebungen durch N.

Abb. 36 Elementarzelle von $Ce_3Ta_2N_6$.

Die hier vorgefundenen Kristallstrukturen für ternäre Lanthanoid-Nitridotantalate sind isotyp zu quasiternären Oxo-Cupraten vom Typ $Ln_{2-x}Sr_xCaCu_2O_6$ [60, 61], die durch ihre Supraleitfähigkeit ($T_c \approx 60$ K) bestechen, und nichtmetallischen Oxo-Cobaltaten $Sr_2Ln_{0,8}Ca_{0,2}Co_2O_6$ [62]. Eine generelle Strukturbeschreibung dieses Typs kann aus den aus perowskit- und kochsalzartig aufgebauten Ruddlesden-Popper-Phasen (SrTiO₃)_n(SrO) [63] (Abb. 37) abgeleitet werden.

Abb. 37 Strontiumtitanate der allgemeinen Zusammensetzung (SrTiO₃)_n(SrO) nach Ruddlesden-Popper. Schematische Darstellung des Verknüpfungsmusters der TiO₆-Oktaeder.

Sie werden durch n perowskitartigen Schichten SrTiO₃ und einer kochsalzartigen Schicht SrO aufgebaut. Die hier beschriebenen Nitridometallate enthalten zwei (unvollständig besetzte) perowskitartige Schichten LnTaN_{5/2} (n = 2) und eine kochsalzartige LnN-Schicht. Im Gegensatz zu den Oxo-Titanaten mit TiO₆-Oktaedern bleibt für die Nitridometallate (und auch Oxo-Cuprate) die Nichtmetallposition 2b (0, 0, ½) vakant, und es resultieren TaN₅-Pyramiden. Statt einer Summenformel Ln₃T₂N₇ ergibt sich somit Ln₃T₂N₆. Eine vergleichende Darstellung der Kristallstrukturen der Nitridometallate Ln₃T₂N₆ und der Oxocuprate (La, Sr, Ca)₃Cu₂O₆ ist in Abbildung 38 gezeigt. Die bereits bekannten Nitridometallate des Formeltyps M₂TN₃ lassen sich als Defektvariante des Ruddlseden-Popper-Typs mit n = 1 (Sr₂TiO₄) beschreiben. Auch hier bleibt eine N-Position (½, 0, ½) vakant, so dass aus zweidimensionalen Oktaederschichten hier eindimensionale Ketten aus TN₄-Quadraten resultieren.

Abb. 38 Vergleich der Strukturen von Ce₃Ta₂N₆ (links) und (La,Sr,Ca)₃Cu₂O₆ (rechts) anhand des schematischen Aufbaus und ihrer zentralen Strukturfragmente TaN₅-Pyramide und CuO₅-Pyramide.

5. 4 Magnetische Eigenschaften

Nach der strukturellen Isotypie zu supraleitenden Oxo-Cupraten lag eine Untersuchung des magnetischen Verhaltens nahe. Hierzu wurden Proben von La₃Ta₂N₆, Ce₃Ta₂N₆ und Pr₃Ta₂N₆ in Gelatinekapseln gefüllt (ca. 50 mg) und in einem SQUID-Magnetometer bei Feldern von 500 G (für Ce₃Ta₂N₆ und Pr₃Ta₂N₆) und 2000 G (La₃Ta₂N₆) temperaturabhängige magnetische Messungen durchgeführt. Die Auswertung für die La-Verbindung ergab einen nahezu temperaturabhängigkeit kann geschlossen werden, dass die beteiligten Atome keine lokalisierten Elektronen und damit keine magnetischen Momente tragen. Zusammen mit der konstanten, schwach positiven Suszeptiblilität, die auf das Vorhandensein von Elektronen in Leitungsbändern hindeutet, ergibt sich eine formale Ladungszuordnung zu (La⁺³)₃(Ta⁺⁵)₂(N⁻³)₆(e⁻) mit einem Elektron in Leitungsbändern.

Dagegen zeigen die Messungen für die Ce- und die Pr-Verbindung Temperaturabhängigkeiten wie sie für Elemente mit besetzten inneren f-Elektronen typisch sind. Da hier ebenfalls temperaturunabhängige Anteile an den gemessen Suszeptibilitäten vermutet wurden, wurden die Messdaten mit Hilfe eines Curie-Weiss'schen Modells mit zusätzlichem temperaturunabhängigen Teil

$$\chi_{\rm mol} = \frac{\rm C}{\rm T - \Theta} + \chi_0$$

analysiert, um neben dem temperaturabhängigen Curie-Anteil auch temperaturunabhängige Anteile zu erfassen. Die Auswertungen für die Ce- und die Pr-Verbindung ergaben magnetische Momente von 2,2 und 3,8 B.M. pro magnetischem Zentrum, die in grober Übereinstimmung zu den erwarteten Werten für freie dreiwertige Lanthanoidkationen (2,5 B.M. für Ce³⁺ und 3,6 B.M. für Pr³⁺) liegen. Zusätzlich wurde für beide Verbindungen ein temperaturunabhängier Anteil von $\chi_0 = 2,7\cdot10^{-6}$ cm³/mol für die Ce- und $\chi_0 = 4,6\cdot10^{-6}$ cm³/mol für die Pr-Verbindung ermittelt.

Nach den durchgeführten magnetischen Messungen ergeben sich auch hier die formalen Ladungszuordnungen zu $(Ce^{+3})_3(Ta^{+5})_2(N^{-3})_6(e^{-1})$ und $(Pr^{+3})_3(Ta^{+5})_2(N^{-3})_6(e^{-1})$ mit jeweils einem Elektron pro Formeleinheit in Leitungsbändern. Abbildung 39 zeigt die Ergebnisse der durchgeführten Messungen.

Abb. 39 Magnetische Messungen (χ_{mol} gegen T) an den Nitridometallaten Ln₃Ta₂N₆. Das Inlay zeigt die inversen molaren Suszeptibilitäten für die Pr- und die Ce-Verbindung nach Abzug der temperaturunabhängigen Anteile.

6 Calciumtetraborid CaB_{4-x}C_x

Nachdem im System Erdalkalimetall-Bor-Stickstoff Nitridoborate mit isolierten Einheiten $[N-B-N]^{3-}$ auftreten, wurde versucht, analoge Einheiten $[C-B-C]^{5-}$, die aus Verbindungen der Lanthanoide bekannt waren [64], über Festkörperreaktionen im System Ca–B–C darzustellen. In diesem System waren bislang lediglich Verbindungen des Typs EAB₂C₂ (EA = Mg, Ca) mit zweidimensionalen B–C-Netzwerken bekannt [65, 66]. Die hier durchgeführten Versuche führten jedoch nicht zu den geplanten Verbindungen sondern zu CaB_{4-x}C_x, einem teilweise mit Kohlenstoff substituiertem Tetraborid vom UB₄-Typ, das hier erstmalig mit einem Erdalkalimetall verwirklicht wurde.

6.1 Darstellung

CaB_{4-x}C_x wurde durch Festkörperreaktionen in verschweißten Niob-Behältern aus den Elementen Ca, B und C (3:2:1) synthetisiert. Alle vorbereitenden Arbeiten zur Synthese von CaB_{4-x}C_x wurden in einem Handschuhkasten unter trockenem Argon durchgeführt. Als Ausgangsmaterialien wurden Ca (Strem, 99,99%, dendritisch), B (ABCR, cryst. powder, 99,7%) und Kohlenstoff (Strem, Carbon 5N) im Verhältnis 3:2:1 verwendet. Die Reaktionen zur Synthese von CaB_{4-x}C_x wurden in verschweißten Nb-Containern durchgeführt. Dazu wurden 35,1 mg B und 19,5 mg C in einer Achatschale innig miteinander verrieben und anschließend zusammen mit 195,4 mg Ca-Stückchen in ein einseitig verschweißtes Nb-Rohr (Ø ca. 8 mm, Länge ca. 20 mm) eingefüllt. Der befüllte Nb-Behälter wurde zugekniffen und anschließend in einem Lichtbogen-Schweißgerät unter Ar ($p_{Ar} = 500 \text{ mbar}$) zu einer Ampulle verschweißt. Der so hergestellte Reaktionscontainer wurde anschließend zum Schutz vor Oxidation in eine evakuierte Quarzglasampulle eingeschmolzen. Die Reaktionen der Eduktgemenge erfolgten durch dreitägiges Tempern in Kastenöfen (Carbolite) bei Temperaturen von 1000 °C. Nach Beendigung der Temperprozesse wurden die Reaktionsbehälter im Handschuhkasten aufgebrochen und die Reaktionsprodukte gesichtet. Für CaB_{4-x}C_x wurde eine metallische Matrix aus überschüssigem Ca erhalten, in die schwarze Kristalle von CaB_{4-x}C_x eingebettet lagen. Die Isolation der Tetraboride erfolgte durch eine mehrstündige Behandlung des Produktgemenges in verdünnter Salzsäure (0,01 mol/l). Dabei wurden sämtliche Nebenprodukte aufgelöst und CaB_{4-x}C_x nach Abfiltrieren und gründlichem Waschen in einkristalliner Form erhalten. Die so gewonnenen Reaktionsprodukte stellten sich als luft- und säurestabile sowie spröde Kristallpulver heraus, deren Betrachtung mit dem bloßen Auge den Eindruck eines schwarzen Pulvers vermittelte. Unter dem Mikroskop erschienen die aufgelösten Kriställchen je nach Lichteinfall als schwarz oder als metallisch glänzend (Abb. 40). Für weitere Analysen wurden die Reaktionsprodukte in ein verschraubbares Glasgefäß abgefüllt und im Handschuhkasten gelagert.

Abb. 40 Lichtmikroskopische Aufnahmen von CaB_{4-x}C_x-Kriställchen (rechts) und von einem CaB_{4-x}C_x-Einkristall auf der Spitze eines Glasfadens (links).

6. 2 Röntgenographische Untersuchungen

Eine Probe von $CaB_{4-x}C_x$ wurde in einer Reibschale verrieben und für die Aufnahme mit einem Röntgen-Pulverdiffraktometer (STOE, STADI P, $Cu K_{\alpha 1}$, linear PSD) auf eine Mylar-Folie aufgebracht. Aus dem erhaltenen Diffraktogramm ($16^{\circ} \le 2\Theta \le 106^{\circ}$) ließen sich mithilfe des Programmsystems WinX^{POW} [59] 48 Reflexe in einer tetragonal primitiven Elementarzelle indizieren (Abb. 41). Aus einer Verfeinerung der Gitterparameter ergaben sich a = 705,83(2) pm und c = 411,99(1) pm. Ein Vergleich des erhaltenen Reflexmusters mit Pulverdaten von bekannten Lanthanoid- und Actinoid-Tetraboriden zeigte eine ausgezeichnete Übereinstimmung in den Reflexabfolgen, Linienintensitäten und auch der Größenordnung der ermittelten Gitterparameter, so dass der Schluss nahe lag, dass es sich hier ebenfalls um ein Tetraborid handelte.

Abb. 41 Röntgen-Pulverdiffraktogramm von $CaB_{4-x}C_x$ (schwarz) und simulierte Reflexlagen und Intensitäten nach der Einkristall-Röntgenstrukturanalyse (rot). Zusätzliche Reflexe bei $2\Theta = 30,4,37,5,43,5$ und 49,0 zeigen CaB_6 als Nebenprodukt an.

Für eine Einkristallstrukturanalyse wurde ein geeigneter CaB_{4-x}C_x-Einkristall ausgesucht, in eine Glaskapillare eingeschmolzen und für die Aufnahme eines Intensitätsdatensatzes mit einem Röntgen-Einkristalldiffraktometer (STOE IPDS, $Mo K_{\alpha 1}$) verwendet. Die Strukturlösung erfolgte über Direkte Methoden (SHELXS) [45] und führte eindeutig zu einer Lösung, nach der neben einer Ca-Position noch drei Leichtatompositionen in der Struktur vorhanden sind. In der nachfolgenden Strukturverfeinerung in der Raumgruppe P4/mbm (Nr. 127) wurden sämtliche Möglichkeiten der Besetzung mit B- und C-Atomen sowie simultane Besetzungen beider Atomsorten auf den Leichtatomplätzen durchgeführt. Dabei stellte sich heraus, dass bei Verfeinerungen, bei denen ausschließlich **B-**Atome auf den Leichtatompositionen besetzt wurden, deutliche verbesserte Werte hinsichtlich der erreichten Gütefaktoren zu verzeichnen waren. Die letztlich durchgeführte Strukturverfeinerung, bei der die Position der Ca-Lage bei Vollbesetzung fixiert wurde und die drei kristallographisch unterschiedlichen B-Positionen hinsichtlich ihrer Besetzungsfaktoren (sof) frei blieben, konvergierte zu $R_1 = 0.0264$ und $wR_2 =$ 0,0582 für alle erfassten unabhängigen Reflexe. Obzwar eine Röntgen-Einkristallstrukturbestimmung prinzipiell bezüglich der Unterscheidung von B und C kritisch zu bewerten ist, wies die hier durchgeführte Verfeinerung darauf hin, dass es sich bei der dargestellten Verbindung um ein reines Calciumtetraborid, also $CaB_{4-x}C_x$ mit x = 0 handelt. Dennoch kann eine zumindest partielle Substitution von B durch C nicht ausgeschlossen werden, so dass weiterhin von einem Tetraborid $CaB_{4-x}C_x$ gesprochen werden soll (zu weiteren Versuchen und Analysen siehe Kap. 6. 4).

Summenformel	CaB ₄
Anzahl der Formeleinheiten/Elementarzelle	4
Molmasse (g/mol)	83,32
Messtemperatur (K)	293(2)
Diffraktometer	IPDS (Stoe)
Strahlung, Wellenlänge (pm), Monochromator	Mo K $_{\alpha 1}$, 71,073, Graphit
Kristallsystem	tetragonal
Raumgruppe	P4/mbm (Nr. 127)
Zellparameter (pm)	a = 709,89(7)
	c = 413,53(5)
Zellvolumen $(10^6 \cdot \text{pm}^3)$	208,40(4)
Röntgendichte (g/cm ³)	2,656
Absorptionskoeffizient (mm ⁻¹)	2,53
F(000)	160
Kristallabmessungen (mm), Farbe	0,05, 0,05, 0,05, schwarz
Messbereich (°)	$10 \le 2\Theta \le 65$
Bereich gemessener Indices	$-10 \le h \le 10, -10 \le k \le 10, -6 \le l \le 6$
Beobachtete Reflexe	2298
Beobachtete unabhängige Reflexe	240 ($R_{int} = 0.034$)
Beobachtete unabhängige Reflexe $(I > 2\sigma(I))$	221
Daten, Einschränkungen, Parameter	240, 0, 21
GooF an F ²	1,115
Gütefaktoren R ₁ , wR ₂ (alle Reflexe)	0,0264, 0,0582
Gütefaktoren R ₁ , wR ₂ (I > $2\sigma(I)$)	0,0231, 0,0571
Restelektronendichte $(10^{-6} \cdot e \cdot pm^{-3})$	0,50 und -0,35

Tab. 28Kristalldaten, Messparameter und Ergebnisse zur Einkristallstrukturbestimmung
von CaB4.

Numerische Daten zur Einkristallstrukturbestimmung, Atomkoordinaten und thermische Auslenkungsparameter sind in den Tabellen 28-30 zusammengefasst. Tabelle 31 zeigt ausgewählte interatomare Abstände.

Atom	Position	x/a	y/b	z/c	sof	U _{iso} (pm ²)
Ca	4g	0,31884(4)	0,81884(4)	0	1	122(2)
B(1)	8j	0,1780(2)	0,0353(2)	0,5	0,98(1)	107(5)
B(2)	4h	0,4168(2)	0,0831(2)	0,5	1,03(2)	117(7)
B(3)	4e	0	0	0,2052(5)	1,00(1)	112(7)

Tab. 29 Atomkoordinaten und isotrope Auslenkungsparameter in CaB₄.

Tab. 30 Anisotrope Auslenkungsparameter (pm²) in CaB₄.

Atom	Position	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Са	4g	118(2)	118(2)	130(2)	0	0	18(1)
B(1)	8j	118(8)	117(8)	85(7)	0	0	-3(5)
B(2)	4h	119(8)	119(8)	113(10)	0	0	-10(7)
B(3)	4e	123(8)	123(8)	89(9)	0	0	0

Tab. 31AusgewählteBindungsabständemitKoordinationszahleninderKristallstruktur von CaB4.

B(1) - B(1)	182,2(2)	$2 \times$	B-Oktaeder
B(3) - B(1)	177,3(2)	4 ×	D ₆ -Oktaedel
B(2) - B(2)	167,0(5)	$1 \times$	B ₂ -Hantel
B(3) - B(3)	169,7(4)	1×	Verknüpfung OktOkt.
B(1) - B(2)	172,9(2)	2×	Verknüpfung OktHantel
Ca – B	273,8(1) - 314,2(2)	16×	CaB ₁₆ -Polyeder

6.3 Strukturbeschreibung von CaB_{4-x}C_x

CaB_{4-x}C_x enthält das für Boride vom UB₄-Typ charakteristische dreidimensionale B(C)-Netzwerk aus verknüpften leicht nach D_{4h} gestauchten B₆-Oktaedern (d_{B-B} = 182,2(2) pm und 177,3(2) pm) und B₂-Hanteln (d_{B-B} = 167,0(5) pm). Die verknüpfende Bindung zwischen einem B₆-Oktaeder und einer B₂-Hantel beträgt 172,9(2) pm. Calciumionen besetzen Positionen in Kanälen des Bor-Netzwerkes, so dass eine 16-fache Koordination der Calciumatome durch Bor (d_{Ca-B} = 273,8(1) - 314,2(2) pm) erfolgt. Die Betrachtung einer Projektion entlang [001] zeigt das Verknüpfungsmuster der B₆-Oktaeder (eingefärbt) mit je vier B₂-Hanteln zu unendlich ausgedehnten Schichten (Abb. 42). Durch dieses Muster werden unregelmäßige B₇-Ringe gebildet, die ober- und unterhalb von Ca-Atomen überdacht werden.

Abb. 42 Projektion eines Ausschnitts aus der Kristallstruktur von CaB₄ entlang der tetragonalen Achse. B₆-Oktaeder sind farblich hervorgehoben, die tetragonale Elementarzelle ist angedeutet.

Aus einer Projektion senkrecht zu [001] (Abb. 43) wird die Ausdehnung des Bor-Netzwerkes in die dritte Dimension über direkte Verknüpfungen der B₆-Oktaeder anschaulich. Der Abstand der oktaederverknüpfenden B-Atome beträgt 169,7(4) pm. Aus den angegebenen Verknüpfungen der Bor-Atome resultiert insgesamt ein dreidimensionales Bor-Netzwerk, wie es für die bekannten Tetraboride der Lanthanoide charakteristisch ist. Das Histogramm der B–B-Abstände in Abb. 44 veranschaulicht nochmals den dreidimensionalen Charakter des Bor-Netzwerks in CaB₄. Alle B–B-Bindungen konzentrieren sich hier um einen Mittelwert von etwa 175 pm, bevor nach einer deutlichen Lücke sekundäre Abstände bei etwa 240 pm beginnen.

Abb. 43 Projektion der Kristallstruktur von CaB₄ senkrecht [001]. B₆-Oktaeder sind farblich hervorgehoben.

Abb. 44 Histogramm der ermittelten B–B-Abstände in CaB_{4-x}C_x.

6. 4 Überlegungen zum Einbau von Kohlenstoff in das Borid-Gitter

Nachdem die Ergebnisse aus der Kristallstrukturbestimmung auf ein binäres Borid CaB₄ hindeuteten, wurde in weiteren Experimenten der Versuch unternommen, CaB₄ nur aus den Elementen Calcium und Bor zu synthetisieren. Dabei zeigte sich, dass Synthesen, die ausschließlich Ca und B enthielten, nicht zu CaB₄ reagierten sondern ausschließlich zum bekannten CaB₆ [67]. Eine sukzessive Zugabe an Kohlenstoff zu den Synthesen führten dann zu Reaktionsprodukten, die neben CaB₆ wieder CaB₄ enthielten und schließlich für Ansätze im Verhältnis Ca:B:C = 3:2:1 (s. Kap. 6. 1) zu nahezu reinem CaB₄. Die experimentellen Befunde legen den Schluss nahe, dass zur Stabilisierung der Verbindung Kohlenstoff in das Bornetzwerk eingebaut werden muss, also ein Borid(carbid) CaB_{4-x}C_x entsteht. Dennoch kann auch die Möglichkeit nicht ausgeschlossen werden, dass Kohlenstoff zwar wesentlich am Reaktionsverlauf beteiligt ist, aber nicht in das entstehende Bor-Netzwerk eingebaut wird. Neuere Untersuchungen und Analysen (WDS-EPMA, wavelength dispersive spectroscopyelectron probe microanalysis) an GdB₄, dessen Synthese unter Verwendung von Kohlenstoff durchgeführt wurde, zeigen keinen oder keinen nennenswerten (< 1%) Einbau von Kohlenstoff in das Borid-Netzwerk [68].

Aufgrund theoretischer Überlegungen zu den elektronischen Anforderungen an Bor-Netzwerke vom MB₄- und dem verwandten MB₆-Typ lassen sich Stabilisierungen der Bor-Netzwerke durch ein zumindest zweiwertiges Kation M²⁺ ableiten [69]. Sie gehen vom Aufbau der Tetraboride aus closo-B6-Clustern und ethylenartigen B2-Einheiten aus, für deren Stabilisierung 14 Elektronen (n+1 Elektronenpaare für einen Cluster aus n Atomen) und 4 Elektronen (B-B-Doppelbindung für die B₂-Einheiten) benötigt werden. Die Verknüpfung der Strukturfragmente erfolgt über 2-Elektronen-2-Zentren-Bindungen und erfordert für die B₆-Cluster nochmals 6 und für die B₂-Einheit nochmals 4 Elektronen. Eine Elementarzelle von CaB₄ enthält 4 Formeleinheiten (Ca₄B₁₆), davon zwei B₆-Oktaeder und zwei B₂-Hanteln. Eine einfache Rechnung ergibt 14 + 6 Elektronen pro B₆-Einheit und 4 + 4 Elektronen pro B₂-Hantel für die Stabilisierung des Bornetzwerks in Tetraboriden. Insgesamt werden pro Elementarzelle also 56 Elektronen benötigt. Ein Vergleich mit der Valenzelektronenzahl von Ca_4B_{16} (8 Elektronen von Ca + 48 Elektronen von B = 56Elektronen) zeigt, dass die Erfordernisse von einem zweiwertigen Kation erfüllt

werden. Eine analoge Rechnung für die nur aus verknüpften B6-Oktaedern bestehenden Hexaboride ergibt ebenfalls Stabilisierungen der Bornetzwerke für zweiwertige Kationen. Entsprechend sind Hexaboride MB₆ von Erdalkalimetallen (Ca, Sr, Ba) und Lanthanoiden (La – Dy, Yb) bekannt [70]. Im Gegensatz hierzu wurden Tetraboride mit UB4-Struktur nur für typischerweise dreiwertig auftretende Kationen charakterisiert (alle Lanthanoide außer Eu), während für Sr, Ba und Eu keine Tetraboride bekannt sind und für Ca lediglich Hinweise auf dessen Existenz vorliegen [71]. Nachdem die Versuche zur Darstellung von CaB₄ ohne Zugabe von C ausschließlich zur Bildung von CaB₆ führten, liegt der Schluss nahe, dass zur elektronischen Absättigung des Nichtmetall-Gerüstes ein zumindest teilweiser Ersatz von Bor durch Kohlenstoff erfolgen muss. Dieser stabilisierende Einbau des um ein Elektron reicheren Kohlenstoffs ist für Alkalimetallboridcarbide AB_5C (A = Na, K) mit CaB₆-Struktur belegt [72, 73]. Um weitere Aufschlüsse über die Bindungsverhältnisse und die elektronische Situation in CaB_{4-x}C_x zu erhalten, wurden im Folgenden Bandstrukturrechnungen durchgeführt. Sie erfolgten ausgehend von der Kristallstruktur des hier vorgefundenen Tetraborids unter der Annahme eines reinen, unsubstituierten Bor-Netzwerks.

6. 5 Elektronische Struktur von CaB₄

Für CaB_{4-x}C_x (x = 0) wurde eine Berechnung der elektronischen Struktur auf extended Hückel-Niveau durchgeführt. Abb. 45 zeigt die Bandstruktur entlang verschiedener Richtungen der ersten Brillouin-Zone für eine tetragonal primitive Elementarzelle. Die Rechnungen ergaben eine kleine (indirekte) Bandlücke von etwa 0,2 eV. Das ermittelte Fermi-Niveau (ϵ_F) liegt bei -7,93 eV.

Abb. 45 Berechnete Bandstruktur von CaB₄ entlang verschiedener Richtungen in der ersten Brillouin-Zone für ein tetragonal primitives Gitter.

Die im dargestellten Bereich abgebildeten Bänder werden allesamt von Orbitalen des Bor-Netzwerkes dominiert. Orbitalbeteiligungen von Ca spielen hier nur eine untergeordnete Rolle und können bei der Betrachtung der elektronische Situation um das Fermi-Niveau und darunter vernachlässigt werden. Ca kommt demnach die zu erwartende Rolle eines näherungsweise zweiwertigen Kations zu, das an kovalenten Wechselwirkungen nicht beteiligt und in geeignete Hohlräume des anionischen Netzwerkes eingebaut ist.

Abb. 46 Zustandsdichten (DOS) für CaB₄. Zusätzlich sind Projektionen der Zustände der B₆-Oktaeder (links) und der B₂-Einheit (rechts) schraffiert eingezeichnet.

Eine genauere Analyse der Energiebänder zeigt wechselnde Anteile der konstituierenden Bauelemente des Bor-Netzwerkes, die jedoch nicht eindeutig separierbar sind. Dennoch können Energiebereiche festgestellt werden, in denen Zustände der B₆-Oktaeder überwiegen (um -23 eV), und Bereiche, in denen die B₂-Hantel einen starken Anteil an der Zustandsdichte tragen (um -20 eV und knapp oberhalb ε_F). Eine Abbildung der Zustandsdichten (DOS) ist in Abb. 46 gezeigt.

Weiter wurde eine Analyse der Überlappungspopulationen (COOP) für das B₆-Oktaeder und die B2-Einheit durchgeführt. Aus ihr ergab sich, dass für beide Strukturfragmente unterhalb des Fermi-Niveaus ($\varepsilon_F = -7,93$ eV) durchweg bindende Zustände besetzt werden (Abb. 47). Oberhalb ɛ_F werden für das B₆-Oktaeder zunächst schwach antibindende B–B-Wechselwirkungen verzeichnet, während die Wechselwirkungen für die B₂-Einheit um ε_F von stark bindend zu stark antibindend wechseln. Eine genauere Betrachtung der Kristallorbitale für die B₂-Einheit zeigt, dass $\varepsilon_{\rm F}$ bindende π -Kombinationen (B–B-Doppelbindung) und oberhalb $\varepsilon_{\rm F}$ bis antibindende π^* -Kombinationen dominant sind. Eine durchgeführte Mulliken-Analyse kommt zu einer reduzierten Überlappungspopulation (reduced overlap population, ROP) von 0,58 bindenden Elektronen für eine B–B-Bindung im B_6 -Oktaeder und 1,18 bindenden Elektronen für die B-B-Bindung der B2-Hantel. Vereinfacht ausgedrückt ergeben sich daraus B-B-Einfachbindungen im B6-Oktaeder und eine B-B-Doppelbindung für die B₂-Hantel.

Abb. 47 Überlappungspopulationen (COOP) für das B₆-Oktaeder (links) und die B₂-Einheit (rechts) für CaB₄.

Die Ergebnisse aus den hier durchgeführten Bandstrukturrechnungen entsprechen qualitativ den Überlegungen von Lipscomb und Britton [69], wonach eine Stabilisierung des Bornetzwerkes in Tetraboriden mit einem zweiwertigen Kation optimal erscheint. Die berechnete kleine Bandlücke von 0,2 eV lässt auf ein semimetallisches Verhalten schließen. Die erhaltenen schwarzen, teilweise Metallglanz zeigenden Kristalle bestätigen diese Annahme. Ein weiterer Hinweis auf bewegliche Elektronen in CaB_{4-x}C_x ergibt sich aus durchgeführten magnetischen Messungen in einem SQUID-Magnetometer (Quantum Design MPMS), aus denen ein $1 \cdot 10^{-3} \cdot \text{cm}^3/\text{mol}$ (TUP) von temperaturunabhängiger Paramagnetismus im Temperaturintervall zwischen 20 und 300 K ermittelt wurde.

Die Einführung eines dreiwertigen Kations, wie in den Lanthanoidtetraboriden, könnte zu einer zunehmenden Besetzung von antibindenden π^* -Orbitalen der B₂-Hantel führen und ließe eine Verlängerung des B–B-Abstandes in der B₂-Hantel erwarten, während der Effekt auf die Bindungslängen im B₆-Oktaeder eher gering ausfallen sollte. Ein Vergleich der experimentell ermittelten B–B-Bindungslängen des hier dargestellten Calciumtetraborids mit den Tetraboriden der Lanthanoide bestätigt dies. Während für CaB_{4-x}C_x der B–B-Abstand in der B₂-Hantel zu 167,0(5) pm ermittelt wurde, steigt der durchschnittliche Abstand in der B₂-Hantel für die Lanthanoid- und Actinoidtetraboride LnB₄ (Ln = La, Ce, Sm, Tb, Dy, Er, Tb, Y, U, Th, Pu) um etwa 7 pm auf 174,4 pm. Die übrigen B–B-Bindungen in CaB_{4-x}C_x zeigen deutlich geringere Abweichungen vom Durchschnitt der Tetraboride LnB₄ (Tab. 32).

B-B-Bindung	Ø in LnB4	CaB _{4-x} C _x	
B ₂ -Hantel	174,4	167,0(5)	
B ₆ -Oktaeder	176,9	178,9(2)	
Verknüpfung OktOkt.	165,9	169,7(4)	
Verknüpfung OktHantel	173,2	172,9(2)	

Tab. 32 Vergleich der durchschnittlichen B–B-Bindungsabstände in Lanthanoid- und Actinoidtetraboriden mit denen aus CaB_{4-x}C_x.

Als Fazit der durchgeführten Bandstrukturrechnungen kann festgehalten werden, dass ein Tetraborid des Calciums durchaus plausibel erscheint und die Ergebnisse der berechneten Bor–Bor-Wechselwirkungen im Einklang mit den Ergebnissen aus der Kristallstrukturanalyse stehen.

Um nochmals weiteren Aufschluss über die Zusammensetzung von CaB_{4-x}C_x zu erhalten, wurde eine Elementanalyse über eine Elektronenstrahl-Mikrosonde (JEOL Superprobe 8900) und eine ¹³C-Festkörper-NMR-Untersuchung (Bruker ASX 200) durchgeführt. Leider führten diese Experimente zu widersprüchlichen Ergebnissen, denn während in den Analysen der Mikrosonden-Untersuchung neben Ca und B kein C detektiert werden konnten, wiesen die NMR-Untersuchungen qualitativ auf einen Einbau von Kohlenstoff in das Leichtatomgerüst hin. Hier konnten die erhaltenen Signale drei verschiedenen Kohlenstoff-Spezies, entsprechend den drei Leichtatompositionen in der Struktur zugeordnet werden (Abb. 48). Eine quantitative Aussage über den Gehalt an Kohlenstoff konnte aus der Kernresonanz-Untersuchung jedoch nicht abgeleitet werden.

Abb. 48 ¹³C-NMR von $CaB_{4-x}C_x$. Die grüne, rote und gelbe Linie deuten die drei ermittelten Kohlenstoff-Spezies in $CaB_{4-x}C_x$ an.

Die Ergebnisse der durchgeführten Analysen waren nicht dazu geeignet, die genaue Zusammensetzung von $CaB_{4-x}C_x$ festzustellen. Aus ihnen lässt sich jedoch der Schluss ableiten, dass ein geringer, substitutiver Einbau von Kohlenstoff in das Borid-Netzwerk erfolgt, und zwar gleichmäßig über alle drei Leichtatompositionen.

Als Fazit aus den Bemühungen über Synthesen, Analysen und theoretische schlüssigen Bild über das hier Berechnungen zu einem dargestellte Calciumborid(carbid) CaB_{4-x}C_x kann gezogen werden, dass es sich hier eindeutig um eine Verbindung mit einem Leichatomnetzwerk handelt, wie es für Tetraboride der Lanthanoide typisch ist. Dieses Netzwerk wurde hier erstmalig in Kombination mit einem Erdalkalimetall verwirklicht. Aus den Synthesen und der Kernresonanz-Untersuchung geht hervor, dass das Bor-Netzwerk teilweise durch Kohlenstoff substituiert wird, während die Kristallstrukturanalyse und die Elementanalyse über die Elektronenstrahl-Mikrosonde nicht für diese Substitution sprechen. Die durchgeführten Berechnungen zur elektronischen Struktur lassen zwar ein reines Borid CaB₄ als plausibel hinsichtlich der elektronischen Absättigung erscheinen, Aussagen über (geringe) Substitutionen durch Kohlenstoff können aber aus ihnen nicht abgeleitet werden. Letztlich bleibt die Frage, wie viel und auf welchen Positionen B durch C in CaB_{4-x}C_x substituiert wird, unbeantwortet.

7 Zusammenfassung

Im Rahmen dieser Arbeit wurde versucht, das Gebiet der Nitridoborate und Nitridoborat-Nitride um neue Verbindungen zu bereichern, die Strukturprinzipien dieser Verbindungsklasse weiter zu erfassen und gemeinsam mit theoretischen Aspekten Zusammenhänge zwischen den Strukturen der Nitridoborate und ihren Eigenschaften aufzuklären.

Dazu wurden neben klassischen Festkörperreaktionen neue Synthesestrategien entwickelt, die einerseits zu bislang unbekannten Nitridoboraten führten, andererseits zu Präparaten, die zur exakten Strukturaufklärung von bereits bekannten Verbindungen geeignet waren. In der Arbeit wurde eine Klassifizierung der Nitridoborate anhand ihrer in Kristallstrukturen verwirklichten Nitridoborat-Einheiten vorgenommen und ein umfassender Überblick über die bislang dargestellten Nitridoborate gegeben.

Auf dem Gebiet der ternären Nitridoborate gelang die Synthese und die Strukturaufklärung der Verbindungen $Ln_4(B_2N_4)N$ (Ln = La, Ce), Nitridoborat-Nitriden mit B_2N_4 -Baueinheiten. Sie stellen die bislang fehlenden Glieder des allgemeinen Formeltyps $Ln_{3+x}(B_2N_4)N_x$ dieser Nitridoborate dar. Mit ihrer Hilfe konnte eine allgemeine Struktursystematik dieses Formeltyps abgeleitet werden.

Im System der quaternären Nitridoborate MT(BN) konnten erstmalig die Erdalkalimetallverbindungen CaNi(BN) und CaPd(BN) dargestellt und im Falle des CaNi(BN) die Kristallstruktur durch eine Röntgen-Einkristallstrukturbestimmung aufgeklärt werden. Ebenfalls für CaNi(BN) wurden Berechnungen der elektronischen Struktur auf molekularer und auf Festkörperebene durchgeführt, die zur Aufklärung der Bindungsverhältnisse des BN-Fragments in den quaternären Nitridoboraten führten. Weiter wurden in diesem System die Verbindungen LaNi(BN), CeNi(BN) und PrNi(BN) dargestellt und auf ihre magnetischen Eigenschaften hin untersucht.

Für das bereits bekannte supraleitende Nitridoborat $La_3Ni_2(BN)_2N$ wurden neue Synthesestrategien entwickelt, mit deren Hilfe es gelang, einkristalline Präparate von $La_3Ni_2(BN)_2N$ darzustellen, strukturell zu charakterisieren und auf ihre supraleitfähigen Eigenschaften hin zu untersuchen.

Neben diesen Ergebnissen an ternären und quaternären Nitridoboraten gelang die Synthese einer Familie von Nitridometallaten des Formeltyps $Ln_3T_2N_6$ mit Ln = La, Ce, Pr und T = Nb und Ta. Sie wurden anhand von Röntgen-Einkristalldaten charakterisiert und zusammen mit bereits bekannten Familien von Nitridometallaten strukturell systematisch eingeordnet. Zudem wurde mit $CaB_{4-x}C_x$ erstmalig ein Tetraborid(carbid) des Calciums durch Festkörperreaktion dargestellt und strukturell aufgeklärt. Anhand dieses Beispiels wurden die elektronischen Anforderungen an Bornetzwerke so wie sie im UB₄-Typ vorliegen, sowie der Einbau von Kohlenstoff in dieses Netzwerk diskutiert.

8 Wissenschaftliche Publikationen

 $Ln_3T_2N_6$ (Ln = La, Ce, Pr; T = Ta, Nb) a New Family of Ternary Nitrides Isotypic with a Cuprate High T_c Superconductor,

L. Cario, Z.A. Gál, T.P. Braun, F.J. DiSalvo, B. Blaschkowski, H.-J. Meyer, *J. Solid State Chem.* **2001**, *162*, 90.

Synthesis and Structure of Nitridoborate Nitrides $Ln_4(B_2N_4)N$ (Ln = La, Ce) of the Formula Type $Ln_{3+x}(B_2N_4)N_x$ (x = 0, 1, 2),

H. Jing, O. Reckeweg, B. Blaschkowski, H.-J. Meyer, Z. Anorg. Allg. Chem. 2001, 627, 774.

Electronic Conditions of Diatomic (BN) Anions in the Structure of CaNi(BN), B. Blaschkowski, H.-J. Meyer Z. Anorg. Allg. Chem. **2002**, 628, 1249, 1254.

A Solid State Metathesis Route for the Synthesis of Lanthanum Nitridoborates,H. Jing, B. Blaschkowski, H.-J. Meyer, Z. Anorg. Allg. Chem. 2002, 628, 1955.

Nitridoborate der Lanthanoide: Synthesewege, Strukturprinzipien und Eigenschaften einer neuen Verbindungsklasse,

B. Blaschkowski, H. Jing, H.-J. Meyer, Angew. Chem. 2002, 114, 3468; Angew. Chem. Int. Ed. 2002, 41, 3322.

X-Ray Single Crystal Refinement and Superconductivity of La₃Ni₂B₂N₃,
B. Blaschkowski, H.-J. Meyer, *Z. Anorg. Allg. Chem.* 2003, 629, 129.

Sol-gel synthesis and characterization of mixed-metal garnet Y₃ScAl₃GaO₁₂ (YSAGG),

I. Muliuoliene, D. Jasaitis, A. Kareiva, B. Blaschkowski, J. Glaser, H.-J. Meyer, J. Mat. Sci. Lett. 2003, 22, 349-351.

Solid State Metathesis Reactions in various applications,K. Gibson, M. Ströbele, B. Blaschkowski, J. Glaser, M. Weisser, R. Srinivasan, H.-J.Kolb, H.-J. Meyer, Z. Anorg. Allg. Chem. 2003, 629, im Druck.

9 Literaturliste

- [1] H. Hahn, R. Juza, Z. Anorg. Allg. Chem. 1940, 244, 111.
- [2] R. Juza, Z. Anorg. Allg. Chem. 1948, 257, 13.
- [3] J. Goubeau, W. Anselment, Z. Anorg. Allg. Chem. 1961, 310, 248.
- [4] T. Sato, T. Endo, S. Kashima, O. Fukunaga, M. Iwata, *J. Mater. Sci.* 1983, 18, 3054.
- [5] L. Vel, G. Demazeau, Solid State Comm. 1991, 79, 1.
- [6] R.J. Cava, H.W. Zandbergen, B. Batlogg, H. Eisaki, H. Takagi, J.J. Krajewski,
 W.F. Peck Jr., E.M. Gyorgy, S. Uchida, *Nature* 1994, 372, 245.
- [7] J. Nagamatshu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, *Nature* 2001, 410, 63.
- [8] W. Jeitschko, H. Nowotny, Monatsh. Chem. 1963, 94, 565.
- [9] P. Rogl, H. Klesnar, J. Am. Ceram. Soc. 1988, 71, 450.
- [10] K.-J. Range, M. Wildenauer, M. Andratschke, Z. Krist. 1996, 211, 815.
- [11] A. Hardy, Bull. Soc. Fr. Mineral. Cristallogr. 1968, 91, 111.
- [12] J. Curda, U. Herterich, K. Peters, M. Somer, H.G. von Schnering, Z. Kristallogr. 1994, 209, 181.
- [13] F.E. Rohrer, Dissertation, ETH Zürich 1997; F.E. Rohrer, R. Nesper, J. Solid State Chem. 1998, 135, 194.
- [14] M. Somer, W. Carrillo-Cabrera, E.M. Peters, K. Peters, H.G. von Schnering, Z. Kristallogr. 1995, 210, 779.
- [15] H. Yamane, S. Kikkawa, M. Koizumi, J. Solid State Chem. 1987, 71, 1.
- [16] H. Yamane, S. Kikkawa, H. Horiuchi, M. Koizumi, J. Solid State Chem. 1986, 65,6.
- [17] J. Evers, M. Münsterkötter, G. Oehlinger, K. Polborn, B. Sendlinger, J. Less-Common Met. 1990, 162(1), L17.

- [18] M. Wörle, H. Meyer zu Altenschildesche, R. Nesper, J. Alloys Compd. 1998, 264, 107.
- [19] H. Womelsdorf, H.-J. Meyer, Z. Anorg. Allg. Chem. 1994, 620, 262.
- [20] O. Reckeweg, *Dissertation*, Universität Tübingen 1998.
- [21] W. Carrillo-Cabrera, M. Somer, H. Peters, H.G. von Schnering, Z. Kristallogr. New Cryst. Struct. 2001, 216, 43.
- [22] F.E. Rohrer, Dissertation, ETH Zürich, 1997.
- [23] M. Somer, U. Herterich, J. Čurda, W. Carrillo-Cabrera, A. Zürn, K. Peters, H.G. von Schnering, Z. Anorg. Allg. Chem. 2000, 626, 625.
- [24] M. Häberlen, J. Glaser, H.-J. Meyer, Z. Anorg. Allg. Chem. 2002, 628, 2169.
- [25] U. Herterich, J. Curda, M. Somer, H.G. von Schnering, Z. Kristallogr. 1994, 209, 617.
- [26] H. Hiraguchi, H. Hashizume, O. Fukunaga, A. Takenaka, M. Sakata, J. Appl. Cryst. 1991, 24, 286.
- [27] H. Hiraguchi, H. Hashizume, S. Sasaki, S. Nakano, O. Fukunaga, Acta Cryst. 1993, B49, 478.
- [28] M. Häberlen, J. Glaser, H.-J. Meyer, Z. Anorg. Allg. Chem. 2002, 628, 1959.
- [29] O. Reckeweg, H.-J. Meyer, Z. Anorg. Allg. Chem. 1999, 625, 866.
- [30] H. Jing, *Dissertation*, Universität Tübingen 2002.
- [31] J. Gaudé, P. L'Haridon, J. Guyader, J. Solid State Chem. 1985, 59, 143.
- [32] H. Jing, J. Pickardt, H.-J. Meyer, Z. Anorg. Allg. Chem. 2001, 627, 2070.
- [33] H. Jing, H.-J. Meyer, Z. Anorg. Allg. Chem. 2002, 628, 1458.
- [34] M. Orth, R.-D. Hoffmann, R. Pöttgen, W. Schnick, Chem. Eur. J. 2001, 7, 2791.
- [35] O. Reckeweg, H.-J. Meyer, Angew. Chem. 1999, 111, 1714; Angew. Chem.Int. Ed. 1999, 38, 1607.
- [36] P. Rogl, H. Klesnar, J. Solid State Chem. 1992, 98, 99.
- [37] M. Orth, W. Schnick, Z. Anorg. Allg. Chem. 1999, 625, 551.

- [38] H. Jing, O. Reckeweg, B. Blaschkowski, H.-J. Meyer, Z. Anorg. Allg. Chem. 2001, 627, 774.
- [39] H. Jing, H.-J. Meyer, Z. Anorg. Allg. Chem. 2000, 626, 514.
- [40] H.W. Zandbergen, J. Jansen, R.J. Cava, J.J. Krajewski, W.F. Peck Jr., *Nature* 1994, 372, 759.
- [41] B. Blaschkowski, H. Jing, H.-Jürgen Meyer, Angew. Chem. 2002, 114, 3468;Angew. Chem. Int. Ed. 2002, 41, 3322
- [42] B. Blaschkowski, M. Häberlen, M. Neukirch, H.-J. Meyer, in Vorbereitung.
- [43] B. Blaschkowski, H.-J. Meyer, Z. Anorg. Allg. Chem. 2002, 628, 1249.
- [44] Q. Huang, B.C. Chakoumakos, A. Santoro, R.J. Cava, J.J. Krajewski, W.F. Peck Jr., *Physica C* 1995, 244, 101.
- [45] SHELXS und SHELXL innerhalb des Programmsystems SHELX 97, G.M. Sheldrick, Universität Göttingen 1997.
- [46] J. Rodriguez-Carvajal, Programm FullProf, PC-Version 3.1 c, Frankreich 1996.
- [47] YAeHMOP, extended Hückel molecular orbital package, freely available on the www at http://sourcforge.net/projects/yaehmop.
- [48] D.M. Proserpio, C. Mealli, J. Chem. Educ. 1990, 67, 399.
- [49] D.W. Jones, I.J. McColm, J. Yerkess, J. Solid State Chem. 1991, 92, 301.
- [50] R.H. Summerville, R. Hoffmann, J. Am. Chem. Soc. 1976, 78, 7240.
- [51] G.J. Miller, J. Am. Chem. Soc. 1994, 116, 6332.
- [52] J.-F. Halet, Inorg. Chem. 1994, 33, 4173.
- [53] R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski, W.F. Peck Jr., T. Siegrist,
 B. Batlogg, R.B. van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Eisaki, S. Uchida, *Nature*, 1994, 367, 252.
- [54] T. Siegrist, H.W. Zandbergen, R.J. Cava, J.J. Krajewski, W.F. Peck Jr., *Nature* 1994, 367, 254.
- [55] T. Wideman, R.J. Cava, L.G. Sneddon, Chem. Mater. 1996, 8, 2215.
- [56] R. Benz, W.H. Zachariasen, J. Nucl. Mater. 1970, 37, 109.

- [57] R. Niewa, G. Vajenie, F.J. DiSalvo, H. Luo, Y.B. Yelon, Z. Naturforsch. B 1998, 53, 63.
- [58] S. Broll, W. Jeitschko, Z. Naturforsch. B 1995, 50, 905.
- [59] WinX^{POW}, Diffraktometersoftware, Ver. 1. 2, STOE & Cie., Darmstadt, 2001.
- [60] R.J. Cava, B. Batlogg, R.B. van Dover, J.J. Krajewski, J.V. Waszczak, R.M. Fleming, W.F. Peck Jr., L.W. Rupp, P. Marsh, A.C.W.P. James, L.F. Schneemeyer, *Nature* 1990, 345, 602.
- [61] R.J. Cava, A. Santoro, J.J. Krajewski, R.M. Fleming, J.V. Waszczak, W.F. Peck Jr., P. Marsh, *Physica C* 1990, 172, 138.
- [62] K. Yamura, Q. Huang, R.J. Cava, J. Solid State Chem. 1999, 146, 277.
- [63] S.N. Ruddlesden, P. Popper, Acta Crystallogr. 1958, 11, 54.
- [64] O. Oeckler, C. Jardin, Hj. Mattausch, A. Simon, J.-F. Halet, J.-Y. Saillard, J. Bauer, Z. Anorg. Allg. Chem. 2001, 627, 1389.
- [65] M. Wörle, R. Nesper, J. Alloys Compd. 1994, 216, 75.
- [66] B. Albert, K. Schmitt, Inorg. Chem. 1999, 38, 6159.
- [67] T. Ito, T. Kasukawa, I. Higashi, Y. Satow, Jpn. Appl. Phys. 1994, 10, 11.
- [68] M.T. Garland, J.P. Wiff, J. Bauer, R. Guérin, J.-Y. Saillard, Solid State Sciences 2003, 5, 705.
- [69] W.N. Lipscomb, D. Britton, J. Chem. Phys. 1960, 33, 275.
- [70] J.J. Zuckerman, A.P. Hagen, *Inorganic Reactions and Methods*, VCH Weinheim, *Vol. 13*, 84.
- [71] R.W. Johnson, A.H. Daane, J. Chem. Phys. 1961, 65, 909.
- [72] B. Albert, K. Schmitt, Chem. Commun. 1998, 23, 2373.
- [73] B. Albert, K. Schmitt, Chem. Mater. 1999, 21, 3406.

Meine akademischen Lehrer waren:

K. Albert, E. Bayer, M. Brendle, D. Christen, H. Eckstein, G. Gauglitz, J. Gelinek, W.
Göpel, G. Häfelinger, H. Hagenmaier, M. Hanack, R. Hoffmann, V. Hoffmann, G. Jung, J.
Ihringer, S. Kemmler-Sack, D. Krug, N. Kuhn, U. Kunze, E. Lindner, I.-P. Lorenz, H.A.
Mayer, M.E. Maier, H.-J. Meyer, U. Nagel, W. Nakel, H. Oberhammer, D. Oelkrug, H.
Pauschmann, G. Pausewang, H. Pommer, W. Prandl, V. Schurig, E. Schweda, F.F. Seelig,
H. Stegmann, J. Strähle, H. Suhr, W. Voelter, K.-P. Zeller.

Lebenslauf

Name:Björn Christoph Blaschkowskigeboren am:13. Januar 1965Geburtsort:KölnFamilienstand:verheiratetStaatsangehörigkeit:deutsch

Studium und Tätigkeiten an der Eberhard-Karls-Universität in Tübingen

Mai 1999 - heute	Anfertigung einer Dissertation am Institut für Anorganische Chemie zum Thema: "Ternäre und quaternäre Nitridoborate, Synthesen, Kristallstrukturen und Eigenschaften") unter der Anleitung von Prof. Dr. HJürgen Meyer.
	Betreuung des Anorganisch-Chemischen Fortgeschrittenen- Praktikums für Chemiestudenten nach dem Diplomvorexamen.
	Betreuung der Übungsgruppen zur Vorlesung "Methoden der anorganischen Strukturchemie von Festkörpern und Molekülen" für Chemiestudenten nach dem Diplom- vorexamen.
April 1998 - April 1999	Arbeiten zur Anfertigung einer Dissertation im Bereich der Hochtemperatur-Supraleiter unter der Anleitung von Prof. Dr. S. Kemmler-Sack (abgebrochen nach dem Tode von Prof. Kemmler-Sack).
April 1998	Abschluß des Diploms mit der Diplomarbeit zu dem Thema: "(Bi, Pb)-2223-Hochtemperatursupraleiter als Sinterkörper und Bandleiter".
September 1988	Vordiplom.
April 1986	Beginn des Studiums der Chemie an der Eberhard-Karls- Universität Tübingen.
Wehrdienst	
Okt. 1984 - Dez. 1985	Wehrdienst bei dem Luftwaffenausbildungsregiment IV in Leipheim.
Schulbildung	
Mai 1984	Allgemeine Hochschulreife.
1975 - 1984	Salier-Gymnasium in Waiblingen.
1971 - 1975	Grundschule in Leverkusen and Waiblingen.

Tagungen, Auslandsaufenthalte, Weiterbildung

Juni 2003	Seminar über "Probleme in der Festkörperchemie",
	Hirschegg.
März 2003	Festkörperchemische Tagung "Hemdsärmelkolloquium", Dortmund.
März 2003	 11. Jahrestagung der Deutschen Gesellschaft f ür Kristallographie, Berlin. Vortrag und Posterpr
Juni 2002	International Symposium for Boron and Boron related Compounds, St. Petersburg (Russland). Posterpräsentation.
April 2002	Festkörperchemische Tagung "Hemdsärmelkolloquium", Köln.
Juni 2001	Seminar über "Probleme in der Festkörperchemie", Hirschegg. Vortrag.
April 2001	Festkörperchemische Tagung "Hemdsärmelkolloquium", München. Vortrag.
Nov. 2000 - Feb. 2001	Forschungsaufenthalt am Baker Laboratory der Cornell University (Ithaca, New York) bei Prof. Roald Hoffmann.
April 2000	Festkörperchemische Tagung "Hemdsärmelkolloquium", Dresden.
Juni 1999	International Symposium for Boron and Boron related Compounds, Dinard (Frankreich). Posterpräsentation.
Februar 1999	Praktischer Kurs über Neutronenbeugung am Hahn-Meitner Institut, Berlin.
1998 - 1999	Weiterbildende Kurse über Kristallographie am Institut für Kristallographie, Fakultät für Physik, Universität Tübingen.