Platzpräferenz und Metabolismus

von Enantiomeren

der Party-Drogen MDMA und MDE

bei der Ratte

Dissertation

der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines Doktors der Naturwissenschaften

2002

vorgelegt von

Anja Meyer

Tag der mündlichen Prüfung:

Dekan:

1. Berichterstatter:

2 Berichterstatter:

15.05.2002

Prof Dr. H. Probst Prof. Dr. K.-A. Kovar Prof. Dr. W. Schmidt Für meine Familie und Jörg

Erfahrung ist eine nützliche Sache. Leider macht man sie immer kurz nachdem man sie braucht. (Unbekannt)

Die vorliegende Arbeit wurde unter der Leitung von Prof. Dr. K.-A. Kovar in der Zeit von April 1999 bis Mai 2002 am Pharmazeutischen Institut der Eberhard-Karls-Universität Tübingen durchgeführt.

Meinem Doktorvater, Herrn Prof. Dr. K.-A. Kovar, danke ich für die Anregungen, Diskussionen und freundliche Unterstützung bei der Durchführung meiner Arbeit.

Herrn Prof. Dr. W. Schmidt mit seiner gesamten Neuropharmakologischen Abteilung der Eberhard-Karls-Universität Tübingen will ich ebenfalls für die gute Zusammenarbeit, die hilfreichen Diskussionen und die Unterstützung meiner Arbeit danken.

Für die immer vorhandene Diskussionsbereitschaft, die freundschaftliche Atmosphäre und Unterstützung möchte ich allen Mitgliedern meines Arbeitskreises meinen aller herzlichsten Dank aussprechen. Besonders Frau Wellsow, Herrn Graser und Frau Dr. Roos, die mich täglich im gemeinsamen Zimmer aushalten mussten.

Für das sorgfältige und schnelle Korrekturlesen dieser Arbeit bedanke ich mich recht herzlich bei meiner Mutter und Frau Silke Nagel.

Für die immer währende mentale Unterstützung und das ständige Daumendrücken danke ich ganz besonders Herrn Jörg Meißel, Frau Silke Nagel und insbesondere meiner gesamten Familie. Teile dieser Arbeit wurde und werden veröffentlicht bzw. vorgestellt:

- Meyer A, Mayerhofer A, Kovar K.-A., Schmidt W.J." Influence of the isomers on rewarding effects of the abused drugs MDMA ("ectsacy") and MDE ("eve") measured as conditioned place preference". Posterpräsentation im Rahmen der 43. Frühjahrstagung der Deutschen Gesellschaft für Pharmakologie und Toxikologie (DGPT) in Mainz und Veröffentlichung in Naunyn Schmiedeberg's Archives of Pharmacology; Supl. 1 to Vol 365; März 2002
- Schmidt W.J., Mayerhofer A., Meyer A, Kovar K.-A. "Unique antiparkinsonian activity of Ecstacy". Vortrag und Abstract-Veröffentlichung in Naunyn Schmiedeberg's Archives of Pharmacology; Supl. 1 to Vol 365; März 2002
- Schmidt, W.J., Mayerhofer, A., Meyer, A. & Kovar, K.-A. "In search for the anti-parkinsonian component of Ecstasy" (eingereicht)
- Meyer A, Mayerhofer A, Kovar K.-A., Schmidt W.J. Rewarding effects of the isomers of MDMA ("ecstacy") and MDE ("eve") measured as conditioned place preference in rats. (eingereicht)

Darüber hinausgehend sind folgende Veröffentlichungen in Vorbereitung:

- Mayerhofer, A., Meyer, A., Kovar, K.-A. & Schmidt, W.J. "Influence of social environment on the extinction and reinstatement of conditioned place preference to MDMA (" Ecstasy ")" (in Vorbereitung)
- Meyer, A.; Kovar, K.A. "Enantioselective metabolism of MDMA ("ecstacy") and MDE ("eve") isomers in rat brain and blood" (in Vorbereitung)

Inhaltsverzeichnis

1 Zusammenfassung	1
2 Einleitung	2
2.1 Rauschgiftsituation in Deutschland	2
2.2. Party-Drogen der Ecstacy-Reihe	3
2.3 Entaktogene	5
2.3.1 Allgemeine Eigenschaften	5
2.3.2 Enantioselektive Eigenschaften	5
2.3.3 Wirkmechanismus und Neurotoxizität	6
2.3.4 Allgemeine Metabolisierung	8
2.3.5 Enantioselektive Metabolisierung von Entaktogenen	9
2.4 Problemstellung	11
3 Neurochemische Grundlagen des Belohnungssystems	13
3.1 Anatomie und Funktion des Gehirns	13
3.2 Neurotransmitter des Gehirns	14
3.2.1 Acetylcholin	14
3.2.2 Noradrenalin und Dopamin	14
3.2.3 Serotonin	14
3.3 Biologische Bedeutung des Belohnungssystems	15
3.4 Neurochemie und Funktion des präfrontalen Cortex	16
3.5 Neurochemie und Funktion des Striatums	16
4 Platzpräferenzversuche	18
4.1 Assoziatives Lernverhalten am Tier	18
4.2 Platzpräferenzversuche	19
4.3 Allgemeine Vorbemerkung zum Versuchsdesign und Studienaufbau	21
4.4 Vorversuch Amphetamin vs. MDMA.	22
4.5 Einfluss der Isolation auf die CPP unter MDMA	24
4.6 Platzpräferenzversuch nach Gabe des racemischer MDMA und seiner	
Enantiomere	25
4.7 Platzpräferenzversuch nach Gabe des rac. MDE und seiner Enantiomere	27
5 Methode zur Quantifizierung aus Plasma und Gehirngewebe	28
5.1 Konjugatspaltung	28
5.2 Proteinfällung	28

5.3 Festphasenextraktion	. 29
5.4 Interner Standard	. 29
5.5 HPLC-FD-Kopplung	. 31
5.5.1 Allgemeines Messprinzip der Fluorimetrie	. 31
5.5.2 Chirale Trennung mittels HPLC	. 31
5.5.3 Entwicklung der verwendeten Fließmittel	. 32
6 Untersuchung der Plasma- und Gehirngewebeproben aus den	
Platzpräferenzversuchen	. 37
6.1 Vorbemerkungen	. 37
6.2 Vorbereitung der Plasma- und Gehirngewebeproben	. 37
6.3 MDMA-Versuch	. 37
6.4 MDE-Versuch	. 43
7 Zusammenfassende Diskussion und Schlussfolgerung	. 48
7.1 Diskussion der Platzpräferenzversuche	. 48
7.2 Diskussion der Metabolismusuntersuchungen	. 49
8 Experimenteller Teil	. 52
8.1 Materialien	. 52
8.1.1 Chemikalien und Reagenzien	. 52
8.1.2 HPLC- und Extraktionssäulen	. 52
8.1.3 Geräte	. 53
8.1.3.1 ¹ H-NMR-Spektroskopie	. 53
8.1.3.2 Schmelzpunktbestimmung	. 53
8.1.3.3 pH-Wertbestimmung	. 53
8.1.3.4 Waage	. 53
8.1.3.5 Zentrifuge	. 53
8.1.3.6 Homogenisator	. 53
8.1.3.7 Festphasenextraktion	. 54
8.1.3.8 HPLC-Fluoreszenz	. 54
8.1.3.9 Platzpräferenz-Anlage	. 54
8.1.3.10 Versuchstiere	. 54
8.1.3.11 Rattenplasma bzwgewebe	. 55
8.2 Synthesevorschrift N-Ethyl-4-hydroxy-3-methoxymethamphetamin (HMMA)	. 56
8.2.1 Vorwort zur Synthese von HMMA	. 56

8.2.2 Synthesevorschrift von N-Methyl-3-Hydroxy-4-methoxyamphetamin	
(HMMA)	. 57
8.2.2.1 2-Methoxy-4-(2-nitrophenyl)-phenol (4-Hydroxy-3-methoxyphenyl-2-	-
methyl-2-nitrostyren (HMNS))	. 57
8.2.2.2 1-(4-Hydroxy-3-methoxy-phenyl)-propan-2-on (4-Hyxdroxy-3-metho	xy-
phenylaceton (HMPA))	. 57
8.2.2.3 4-(2-Methylamino-propyl)-2-methoxy-phenol (N-Methyl-4-hydroxy-3-	-
methoxy-amphetamin (HMMA))	. 58
8.2.3 Spektroskopie	. 59
8.2.3.1 UV-Chromatogramm der synthetisierten Substanz HMMA	. 59
8.2.3.2 H ¹ -NMR-Spektroskopie der synthetisierten Substanz HMMA	. 60
8.3 Platzpräferenzversuche	. 61
8.3.1 Tierhaltung und Nahrung	. 61
8.3.2 Allgemeines Versuchsdesign	. 61
8.3.2.1 Versuchsdesign Vergleich racemisches MDMA vs. DL-Amphetamin	. 62
8.3.2.2. Versuchsdesign des Isolations-Versuchs	. 63
8.3.2.3 Versuchsdesign des MDMA-Versuchs	. 64
8.3.2.4 Versuchsdesign des MDE-Versuchs	. 65
8.4 Finale Operation der Tiere	. 66
8.4.1 Substanzgabe und Betäubung	. 66
8.4.2 Vollblutentnahme	. 67
8.4.3 Gewebeentnahme	. 67
8.5 Methoden zur Quantifizierung in Plasma und Gehirngewebe	. 67
8.5.1 Probenvorbereitung	. 67
8.5.1.1 Plasma	. 67
8.5.1.2 Gehirngewebe	. 68
8.5.2 Enzymatische Hydrolyse	. 68
8.5.2.1 Reinigung der ß-Glucuronidase / Arylsulfatase	. 68
8.5.2.2 Glucuronidspaltung	. 68
8.5.3 Plasmaproteinfällung	. 68
8.5.4 Festphasenextraktion	. 69
8.5.5 Verwendete Lösungen	. 69
8.5.6 Standardlösungen (Plasma, Gehirn)	. 70
8.5.7 HPLC-Fluoreszenzbestimmung für MDMA-Proben	. 70

8.5.8 HPLC-Fluoreszenzbestimmung für MDE-Proben	71
8.6 Validierung der HPLC-Gehaltsbestimmungen	71
8.6.1 Allgemeine Vorgehensweise bei der Validierung einer Methode	71
8.6.2 Festlegung des Arbeitsbereiches	71
8.6.3 Prüfung auf Normalverteilung	72
8.6.4 Überprüfung auf Linearität	74
8.6.5 Wiederfindung	76
8.6.6 Präzision	78
8.6.7 Richtigkeit	78
8.6.8 Theoretische Bestimmungs- und Nachweisgrenze	78
8.6.10 Vertrauensbereich	78
8.6.11 Robustheit	78
8.7 Platzpräferenz-Einzelwerte aller Versuche	78
8.7.1 Daten des Vergleichs (R/S)-MDMA versus DL-Amphetamin	78
8.7.1.1 Baseline	78
8.7.1.2 Testtag	78
8.7.2 Daten des Isolationsversuchs	78
8.7.2.1 Baselinetag	78
8.7.2.2 Testtag	78
8.7.3 Daten des MDMA-Versuchs	78
8.7.3.1 Baselinetag	78
8.7.3.2 Testtag	78
8.7.4 Daten des MDE-Versuchs	78
8.7.4.1 Baselinetag	78
8.7.4.2 Testtag	78
8.8 Einzelwerte der Konzentrationen des MDMA-Versuchs	78
8.8.1 Racemische MDMA-Gruppe	78
8.8.1.1 Cortexwerte	78
8.8.1.2 Striatumwerte	78
8.8.1.3 Plasmawerte	78
8.8.2 (R)-MDMA-Gruppe	78
8.8.2.1 Cortexwerte	78
8.8.2.2 Striatumwerte	78
8.8.2.3 Plasmawerte	78

8.8.3 (S)-MDMA-Gruppe	78
8.8.3.1 Cortexwerte	78
8.8.3.2 Striatumwerte	78
8.8.3.3 Plasmawerte	78
8.9 Einzelwerte der Konzentrationen des MDE-Versuchs	78
8.9.1 Racemische MDE-Gruppe	78
8.9.1.1 Cortexwerte	78
8.9.1.2 Striatumwerte	78
8.9.1.3 Plasmawerte	78
8.9.2 (R)-MDE-Gruppe	78
8.9.2.1 Cortexwerte	78
8.9.2.2 Striatumwerte	78
8.9.2.3 Plasmawerte	78
8.9.3 (S)-MDE-Gruppe	78
8.9.3.1 Cortexwerte	78
8.9.3.2 Striatumwerte	78
8.9.3.3 Plasmawerte	78
9 Literaturverzeichnis	78

Abkürzungsverzeichnis

ACh	Acetylcholin
ACN	Acetronitril
AUC	Area under the curve
BfArM	Bundesinstitut für Arzneimittel und Medizinprodukte
BtmG	Betäubungsmittelgesetz
CBA	Carboxypropyl
СВН	Cellobiohydrolase
C _{max}	Maximale Plasmakonzentration
COMT	Catecholamin-O-Methyl-Transferase
CPP	conditioned place preference
CYP	Cytochrom P 450-Familie
DHA	3,4-Dihydroxyamphetamin
DHE	N-Ethyl-3,4-dihydroxyamphetamin
DHMA	3,4-Dihydroxyamphetamin
ECD	Elektro-chemische Detektion
EDTA	Ethylendiamintetraessigsäure
FD	Fluoreszenz-Detektor
FPE	Festphasenextraktion
FT	Fourier-Transformation
g u	unterer Grenzwert
g _o	oberer Grenzwert
GC	Gaschromatographie
GÜG	Grundstoffüberwachungsgesetz
HME	N-Ethyl-4-hydroxy-3-methoxyamphetamin
HMA	4-Hydroxy-3-methoxyamphetamin
HMMA	N-Methyl-4-hydroxy-3-methoxyamphetamin
HPLC	High performance liquid chromatography
	(Hochdruckflüüsigchromatographie)
5-HIAA	5-Hydroxyindole-acetic acid (5-Hydroxyindolessigsäure)
5-HT	Serotonin
ICH	International Conference on Harmonization

il	infralimbisch
i.p.	intraperitoneal
IS	Interner Standard
LSD	Lysergsäurediethylamid
MDA	3,4-Methylendioxyamphetamin
MDE	N-Ethyl-3,4- methylendioxyamphetamin
MDMA	N-Methyl-3,4-methylendioxyamphetamin
mdT	mediodorsaler Thalamus
mPFC	Medialer präfrontaler Cortex
MS	Massenspektrometrie
MW	Mittelwert
Na-EDTA	Di-Natrium-ethylendiamintetraessigsäure
NAS	Nucleus accumbens septi
NEMDBA	N-Ethyl-3,4-methylendioxybenzylamin
NPMDPEA	N-Proply-3,4-methylendioxyphenylethylamin
NMR	Nuclear Magnetic Resonance Spectroscopy
PBS	Posphat buffered Saline (phosphatgepufferte physiologische
	Kochsalzlösung)
PEG	Polyethylenglycol
pl	prälimbisch
R	Spannweite
S.C.	Subcutan
SD	Standardabweichung
S _{rel}	relative Standardabweichung
SPE	solid phase extraction (vgl. FPE)
THMA	Trihydroxymetamfetamin
t _{max}	Zeitpunkt der maximalen Plasmakonzentration
UV	Ultraviolett-Spektroskopie
VK	Varianzkoeffizient
VTA	Ventrales tegmentales Areal
ХВ	Bestimmungsgrenze
XN	Nachweisgrenze

1 Zusammenfassung

Amphetaminderivate der Ecstacy-Gruppe wie MDMA und MDE gehören zu den derzeit bevorzugt konsumierten illegalen Suchtstoffen in Europa. Amphetamine sind optisch aktive Substanzen, die in der Regel als Racemate eingesetzt werden, obwohl Enantiomere allgemeinen in biologischen Systemen im unterschiedliche pharmakologische und pharmakokinetische Eigenschaften aufweisen. Bisher war noch nicht bekannt, ob diese Differenzen in den Eigenschaften von MDMA und MDE auch auf ein unterschiedliches Abhängigkeitspotential und damit auf einen unterschiedlichen belohnenden Effekt im Platzpräferenzversuch auch auf die Enantiomere auszudehnen sind. Aus diesem Grund wurde im Vorfeld die belohnende Wirkung von rac. MDMA im Rahmen eines Platzpräferenzversuches an Sprague-Dawley-Ratten untersucht. Dabei stellte sich die erwartete signifikante Platzpräferenz von rac. MDMA zunächst nicht ein. Nach gründlicher Sichtung der vorhandenen Literatur zu diesem Themengebiet wurde festgestellt, dass die meisten Arbeitsgruppen eine isolierte Tierhaltung der sozialen Gruppenhaltung vorzogen. Daraufhin wurde der Frage nachgegangen, ob die isolierte Tierhaltung der an sich sozial lebenden Ratten einen Einfluss auf den belohnenden Effekt der Serotoninfreisetzenden Substanzen der Ecstacyreihe hat oder nicht. Ein und zwei Wochen isolierte Sprague-Dawley-Ratten zeigten im Gegensatz zu sozial gehaltenen Tieren nach Konditionierung mit 5 mg/kg Körpergewicht rac. MDMA eine signifikante Platzpräferenz. Bei den nun folgenden Platzpräferenzversuchen mit zwei Wochen zuvor isolierten Tieren stellte sich heraus, dass sowohl die Enantiomeren wie auch das Racemat eine positive signifikante Platzpräferenz aufwiesen und in Bezug auf die Dosis und ihren belohnenden Effekt äquipotent sind d.h. beide Enantiomere tragen gleichermaßen dazu bei. Im Gegensatz dazu wurde weder für die Enantiomere noch für das Racemat des weniger toxischen MDE eine signifikante Platzpräferenz erreicht. Dies belegt die geringere Potenz von MDE im Vergleich zum MDMA.

Für die Probenvorbereitung der guantitativen Analyse der Metaboliten von MDMA und MDE wurden das homogenisierte Gehirngewebe und das Plasma einer Glucuronidspaltung, Plasmaproteinfällung und anschließenden Festphasenextraktion unterzogen. Die Proben wurden mit Hilfe der HPLC/FD-Kopplung analysiert. MDMA lässt im Cortex und Striatum ein ähnliches Metabolisierungsmuster erkennen. Es trat dabei eine erhöhte Konzentration des Metaboliten MDA gegenüber HMMA auf. Im Plasma waren beide Metaboliten im ungefähr gleichen Verhältnis vorzufinden, d.h. das Metabolisierungsmuster im Plasma unterscheidet sich von dem im Gehirn. Dies kann auf eine weitere Metabolisierung im Gehirn zurückgeführt werden. Die MDMA-Proben lagen sowohl im Gehirn, wie auch im Plasma verhältnismäßig stark metabolisiert wobei die höhere (S)-Metabolitenkonzentration vor, auffiel. Infolgedessen kann man von einer enantioselektiven Metabolisierung ausgehen. Im Gegensatz dazu wurde bei den racemischen MDE-Proben im Plasma gegenüber dem Gehirngewebe umgekehrtes Enantiomerenverhältnis ein der Ausgangssubstanzen festgestellt: Im Plasma fand man mehr (R)- als (S)-MDE. Die klassischen MDE-Metaboliten, HME und MDA, waren kaum detektierbar. Der bei den MDMA-Proben entdeckte Überschuss an (S)-MDA konnte nicht ausgemacht werden, ein möglicher Hinweis auf die geringere Toxizität von MDE. Das vermehrte Auftreten des Dihydroxymetaboliten als Vorstufe von HMMA und des (S)-MDA-Metaboliten nach MDMA-Gabe dürfte die deutlich höhere Toxizität von MDMA gegenüber MDE erklären.

2 Einleitung

2.1 Rauschgiftsituation in Deutschland

Cannabis ist die am weitesten verbreitete illegale Droge in der Europäischen Union. Der Verbrauch anderer illegaler Drogen ist weit weniger üblich [1].

Ecstacy ist auf dem bundesdeutschen Drogenmarkt erst seit Anfang der 90er Jahre von Bedeutung. Die Lebenszeitprävalenz (d.h. der Konsum im Verlauf eines menschlichen Lebens) von 5,5% bei den 18- bis 24-jährigen jungen Erwachsenen in Westdeutschland (18-34 Jahre: 3,3%) zeigt, dass Ecstacy von einer kleinen Gruppe hauptsächlich junger Menschen in erheblichem Maße konsumiert wird. Die Entwicklung in Westdeutschland zeigt aber, dass die Lebenszeitprävalenz seit 1995 stabil geblieben ist. In Ostdeutschland dagegen zeigt sie in der Gruppe der 18- bis 24-jährigen seit 1997 (2,4%) eine weitere Zunahme der Konsumerfahrung (2000: 4,1%; 18-34 Jahre: 5,1%)[2].

Die Fallzahlen im polizeilichen Bereich weisen eine Zunahme im Jahr 2000 für Ecstacy auf. Die Anzahl der Sicherstellungen und auch die Zahl der Ecstacykonsumenten, die wegen ihres Drogenkonsums erstmals polizeilich auffällig waren, ist 2000 deutlich angestiegen. Abbildung 2-1 zeigt die ansteigende Entwicklung von 1997 bis 2000; Abbildung 2-2 zeigt dagegen die ansteigenden Sicherstellungen.

Abb 2-2: Entwicklung der Sicherstellung von Seiten der Polizei (1997 bis 2000)

2.2. Party-Drogen der Ecstacy-Reihe

Die Phenylalkylamine lassen sich auf Grund ihrer unterschiedlichen pharmakologischen Eigenschaften in 3 Gruppen unterteilen. Zum einen in die Gruppe der Amphetamin-Derivate, die den Neurotransmittern Adrenalin und Noradrenalin ähnlich sind, zum anderen in die Gruppe der Halluzinogene und zum dritten in die Gruppe der Entaktogene.

Abb. 2-3: Einteilung der Phenylalkylamine auf Grund ihrer pharmakologischen Eigenschaften

Während Amphetamine durch ihre zentralstimulierenden Eigenschaften leistungssteigernd wirken, lösen die Derivate der Mescalin-Gruppe halluzinogene Wirkungen ähnlich dem LSD aus.

Seit Beginn der 90er Jahre sind Methylendioxymethamphetamine, also die Entaktogene, zur dominierenden Gruppe innerhalb der synthetischen Suchtstoffe der 2. Generation (Party-Drugs) geworden und damit in der Drogenszene etabliert. Dazu zählen vor allem die Homologen MDA (3,4-Methylendioxyamphetamin), MDMA (N-Methyl-3,4-methylendioxyamphetamin, "Ecstacy", "Adam", "XTC") und MDE (N-Ethyl-3,4-methylendioxyamphetamin, "Eve").

Alle Substanzen unterliegen dem Betäubungsmittelgesetz (BtMG) und sind als nicht verschreibungs- bzw. nicht verkehrsfähige Substanzen der Anlage I aufgeführt. Als erster Vertreter dieser Gruppe wurde 1910 MDA synthetisiert [3].

Darauf folgte dann 1914 MDMA [4]. Die Darstellung von MDE dagegen erfolgte erst 1980 [5].

Abb. 2-4: Derivate der Ecstasyreihe

2.3 Entaktogene

2.3.1 Allgemeine Eigenschaften

Der Begriff Entaktogene wurde von Nichols geprägt und stellte eine neu entdeckte psychtotrope Stoffklasse mit neuer Wirkqualität dar [6]. Der Begriff "Entaktogen" kommt aus dem Griechischen (en und genein) und dem Lateinischen (tactus) und kann mit "im Inneren ein Gefühl auslösen" übersetzt werden. Das bedeutet, dass diese Substanzklasse die Bereitschaft und Fähigkeit erhöht, persönliche Kontakte zu knüpfen und eigene Probleme leichter zu lösen. Zudem wird noch die Kontaktfreudigkeit und die Kommunikationsbereitschaft verstärkt. Weiter wird die Entspannung erhöht und ein "ozeanisches" Gefühl ausgelöst, welches in vielen Veröffentlichungen beschrieben wird [7-9].

Den positiven Wirkungen stehen jedoch eine Reihe von unerwünschten Nebenwirkungen gegenüber [10]. Im zentralen Nervensystem lassen sich im Tierversuch Störungen des Serotoningleichgewichts beziehungsweise ein Untergang serotonerger Neurone beobachten [11-13]. Als klinische Komplikationen sind bisher vor allem psychiatrische Akutsymptome [14], Intoxikationspsychosen [15] und anhaltende psychiatrische Folgeerkrankungen aufgetreten. Außerdem treten vegetative Effekte wie Hyperthermie auf, die zu schweren internistischen Komplikationen wie Rhabdomolyse und Nierenversagen [16, 17] führen können. Bei MDE sind solche Zwischenfälle nicht bekannt. Selbst hohe Dosen von bis zu 40 mg/kg Körpergewicht bewirken bei Ratten im Gegensatz zu MDMA und MDA keine Langzeitabnahme der corticalen Serotonin (5-HT) -Konzentrationen [18, 19].

2.3.2 Enantioselektive Eigenschaften

An optisch reinem 3,4-Methylendimethoxymethamphetamin (MDMA) wurde gezeigt, dass das (R)-Enantiomer im Tierversuch halluzinogene Effekte auslöst, während das (S)-Enantiomer amphetaminartige Eigenschaften hat [20, 21]. Beide Enantiomere des MDMA sind biologisch aktiv, jedoch unterschiedlich hinsichtlich ihrer Effekte. Das (R)-Enantiomer ist den klassisch halluzinogenen Substanzen ähnlich. Das (S)-Enantiomer ist in der annähernd gleichen Dosis wirksam, hat jedoch keine halluzinogene Wirkung, sondern Effekte auf Gefühl und Einfühlungsvermögen, also entaktogene Eigenschaften. Es wirkt in ungefähr der halben Dosierung wie das Racemat. (S)-MDMA ist stärker aktiv als das (R)-Enantiomer. Bei mit racemischem MDMA trainierten Ratten wurde das (S)-Enantiomer des racemisches MDA als der wirksamere Enantiomer identifiziert [20].

2.3.3 Wirkmechanismus und Neurotoxizität

hemmen die Serotoninwiederaufnahme Entaktogene am präsynaptischen Transporter und setzen Serotonin aus den vesikulären Speichern frei [22-24]. Außerdem wirken sie antagonistisch am präsynaptischen α_2 -Rezeptor, was zu einer Serotonin-Freisetzung führt. Zudem weiteren hemmen sie die Tryptophanhydroxylase, welche für die Biosynthese von Serotonin aus L-Tryptophan notwendig ist. Auch Noradrenalin und Dopamin werden vermehrt ausgeschüttet und ihre Wiederaufnahme gehemmt [23, 25].

Mayerhofer et al. [12] hat die Langzeiteffekte subchronischer MDMA-Effekte auf verschiedene Gehirnregionen untersucht. Er konnte einen reduzierten Serotoninspiegel im gesamten Vorderhirn nachweisen und im Nucleus accumbens einen verminderten Noradrenalinspiegel. Bei einer Behandlung über vier Wochen mit MDMA, konnte auch ein Anstieg an Dopamin gefunden werden, der in Zusammenhang mit dem Serotonin- und Noradrenalinspiegel stehen könnte und durch Verschiebung der Neurotransmitter-Balance zwischen den verschiedenen Arealen zu erklären ist. Diese Langzeiteffekte stehen in Kontrast zu den Akuteffekten, was in Einklang mit den psychischen Veränderungen nach dauerhafter MDMA-Gabe steht.

(R)-MDMA und (R)-MDA binden mit etwa dreifach höherer Affinität als ihre (S)-Enantiomere an Serotonin 5-HT₂- und 5-HT₁-Rezeptoren [26]. Nichols et al. zeigte 1982 [27], dass die (R)-Enantiomere von MDMA und MDA weniger Serotonin freisetzen als die (S)-Enantiomere. Auch bei der Wiederaufnahmehemmung von Serotonin in die Synapsen des Rattenhirns sind die (S)-Enantiomere die wirksameren von MDA, MDMA und Amphetamin [28].

Für MDA und MDMA konnte eine Dopaminfreisetzung durch das Racemat sowie durch die Enantiomere im Tierversuch nachgewiesen werden. In beiden Fällen konnte festgestellt werden, dass das (S)-Enantiomer das wirksamere ist [11]. Da die Vorbehandlung mit Fluoxetin, einem Serotonin-Wiederaufnahmehemmer, die Freisetzung von Dopamin durch (S)-MDMA abgeschwächt hat, kann vermutet werden, dass die Dopaminfreisetzung in indirektem Zusammenhang mit der Serotoninfreisetzung steht [29]. Die Wiederaufnahmeuntersuchungen von Dopamin in die Synapsen des Striatums bei der Ratte haben gezeigt, dass die (S)-Enantiomere von MDA und MDMA die wirksameren Wiederaufnahmehemmer sind als ihre (R)-Enantiomere [28]. Auch die Wiederaufnahmehemmung von Noradrenalin ist bei den (S)-Enantiomeren von MDA und MDMA intensiver als bei den dazugehörigen (R)-Enantiomeren [28].

Die Neurotoxizität der Entaktogene auf serotonerge und dopaminerge Neuronen ist auf Grund des starken Missbrauchpotentials von großem Interesse. Die Neurotoxizität geht mit der Fähigkeit der Derivate einher, in welchem Umfang sie Katecholamine freisetzen. Außerdem wird das Auftreten von Parkinsonsymptomen mit dem Konsum von Ecstacyderivaten in Zusammenhang gebracht [30, 31]. Die im Körper gebildeten Dihydroxymetabolite werden als mögliche Ursache für die Neurotoxizität diskutiert [32, 33]. Schmidt beschrieb [18], dass nach Gabe der jeweiligen Enantiomere von MDMA bei beiden zunächst eine reversible Serotonin-Freisetzung stattfindet. In der Langzeitbeobachtung zeigte sich, dass nur das (S)-Enantiomer den Serotonin-Spiegel senkt, was mit einem Untergang von Serotonin-Neuronen zu erklären ist.

Stereotype Verhaltensweisen werden auf dopamin- bzw serotoninabhängige Mechanismen zurückgeführt. (S)-MDMA verursacht bei Ratten ein 5 bis 10 mal stärkeres stereotypes Verhalten als das (R)-Enantiomer [34]. Büchler und Kovar [35, 36] konnten bei Humanversuchen mit den jeweiligen Enantiomeren des MDE ebenfalls enantioselektive Unterschiede feststellen. Während (R)-MDE keine psychotropen Eigenschaften entfaltete, bewirkte das (S)-Enantiomer den eigentlich entaktogenen Effekt, indem es ein starkes inneres Glücksgefühl mit erhöhtem Mitteilungsdrang und einer inneren Ruhe auslöste. Darüber hinaus zeigte nur (S)-MDE kardiophysiologische Auswirkungen wie Blutdruck- und Herzfrequenzanstieg.

In den aufgeführten Studien wurde generell festgestellt, dass die (S)-Enantiomere der Methylendioxyamphetamin-Derivate eine stärkere Wirksamkeit hinsichtlich ihrer entaktogenen Eigenschaften besitzen.

2.3.4 Allgemeine Metabolisierung

Der Metabolismus wurde am Beispiel von MDE durch Ensslin mittels GC-MS aufgeklärt (Abb 2.5) [37]. In erster Linie handelt es sich dabei um eine Demethylenisierung, welche wiederum zu einem Dihydroxyderivat führt. Dieser Metabolisierungsschritt erfolgt mit Hilfe des Enzyms CYP 2D6 aus der Cytochrom P450 – Familie [38-41]. Durch die Methylierung der phenolischen OH-Gruppe in Position 3 des N-Ethyl-3,4-dihydroxyamphetamins (DHE) entsteht der Hauptmetabolit N-Ethyl-4-hydroxy-3-methoxyamphetamin (HME). Ein weiterer Metabolisierungsweg erfolgt über die Desalkylierung der Ethylseitenkette, wodurch MDA entsteht. Auch der Metabolit MDA kann eine Demethylenisierung erfahren, so dass hier letztendlich nach Methylierung 4-Hydroxy-3-methoxyamphetamin (HMA) entsteht. Die Metaboliten mit einer freien OH-Gruppe werden zur besseren renalen Elimination mit Glucuronsäure oder aktivem Sulfat konjugiert. MDE selber wird zu ca 20% unmetabolisiert ausgeschieden, der Hauptmetabolit HME dagegen zu 60% bezogen auf die Ausgangsmenge MDE. MDA entsteht zu 3%; HMA ist im Urin mit 1% vertreten. Die restlichen Prozent verteilt sich auf weitere Metabolite [37, 42].

Abb 2-5: Metabolisierung nach MDE [37]

Abb. 2-6: Metabolisierung von MDMA [43, 44]

2.3.5 Enantioselektive Metabolisierung von Entaktogenen

Nach Fütterung von racemischem MDMA wurde im Rattenurin von Lim und Foltz mehr (R)-MDMA und (R)-HMMA gefunden, als die entsprechenden (S)-Enantiomere [45]. Nach Gabe des racemischen MDA wurde von dieser Arbeitsgruppe jedoch eine höhere Konzentration an (S)-MDA und (S)-HMA, der ringgeöffnete Metabolit von MDA, im Rattenurin ausgemacht. Im Gegensatz dazu hat Matsushima 1998 eine erhöhte Ausscheidung vom (R)-Enantiomer nach Verfütterung des racemischen MDAs nachgewiesen [46]. Außerdem fanden sie heraus, dass nach Fütterung von MDMA ebenfalls mehr (R)-Enantiomer ausgeschieden wurde. Bei der Analyse auf den Metaboliten MDA nach Gabe von MDMA wurde allerdings das (S)-Enantiomer in verhältnismäßig größeren Mengen gefunden. Auch Plasmauntersuchungen nach intravenöser Gabe von MDMA wurden durchgeführt [47]. Dabei wurde ebenfalls mehr (R)-MDMA und mehr (S)-Enantiomer des Metaboliten MDA entdeckt. Nach Gabe des (S)-MDMA konnte Cho et al. [48] in vivo an Ratten nachweisen, dass die Plasmakonzentration von MDA höher war als nach (R)-MDMA-Gabe. An Rattenlebermikrosomen wurde in vitro von den selben Autoren allerdings genau das Gegenteil herausgefunden. Hier wurde nach Gabe von (R)-MDMA eine erhöhte Elimination festgestellt.

An acht männlichen Probanden wurde der Befund aus dem Tierversuch für eine stereoselektive Metabolisierung durch Fallon et al. [49] untermauert. Nach Gabe des racemischen MDMA waren die Plasma- und Urinkonzentrationen des (R)-Enantiomers größer. Nach Gabe von racemischem MDA war die Konzentration des (S)-Enantiomers erhöht. Auch andere Arbeitsgruppen weisen Befunde in der gleichen Richtung nach [50]. Die N-Demethylierung kann also als ein stereoselektiver Vorgang angesehen werden.

Nach oraler Gabe von 140 mg racemischem MDE zeigten Brunnenberg und Kovar [51] dass zwar weniger (S)-Enantiomer im Serum zu finden war, aber dafür stellten sie eine größere Konzentration an (S)-Enantiomer des Hauptmetaboliten HME fest. Auf Grund dieser Befunde wurde eine bevorzugte Metabolisierung des (S)-Enantiomers von MDE vermutet. Büchler [35, 36] stellte nach oraler Gabe der (R)bzw (S)-Enantiomere von MDE an ebenfalls männliche Probanden fest, dass deutliche Unterschiede bei der Metabolisierung zu finden waren. (S)-MDE zeigte bei allen Probanden geringere Konzentrationen als das (R)-Enantiomer. Umgekehrt wies der Hauptmetabolit (S)-HME größere AUC-, c_{max}- und t_{max}-Werte auf als das (R)-Enantiomer. Das durch Desalkylierung im Laufe der Metabolisierung entstandene MDA zeigte keine signifikanten Unterschiede bezüglich der Enantiomere. Allerdings wird dieser Metabolit sehr schnell wieder ausgeschieden und daher unterscheidet sich die AUC über den gesamten Messzeitraum der Untersuchung bei Büchler nicht. Zusammenfassend kann festgestellt werden, dass eine enantioselektive Metabolisierung der Ecstacy-Analoga sehr wahrscheinlich ist. Die (S)-Enantiomere der Ecstacy-Reihe sind die entaktogen wirksame Komponente der Racemate, wohingegen die (R)-Enantiomere eine eher halluzinogene Wirkung haben. Das Bild des Metabolitenmusters der einzelnen Substanzen ist jedoch noch nicht genau geklärt und wirft noch viele Fragen auf, da die bisher herausgefundenen Ergebnisse sehr unterschiedlich sind.

2.4 Problemstellung

Amphetamin und seine verwandten psychoaktiven Substanzen unterscheiden sich in ihren pharmakologischen Eigenschaften. Viele Untersuchungen zur Pharmakologie von Ecstacyderivaten wurden mit Hilfe von Tierversuchen unternommen [34, 52, 11, 28]. Man konnte aber nie feststellen, ob ein Unterschied in der Tierhaltung im grundsätzlichen Verhalten bei Verhaltensversuchen wie der Platzpräferenz mit Ecstacyderivaten eine Rolle spielt. Das Lernen von Platzpräferenz oder Platzaversion wird als ein Tiermodell zur Untersuchung der emotionalen Wirkung von Pharmaka und ähnlichem genutzt. Wird einer Ratte wiederholt eine bestimmte Behandlung (systemische Injektion einer bestimmten Substanz, Nahrung, aversiver Reiz) in einer bestimmten Umgebung angeboten, so lernt die Ratte, diese Umgebung mit der Wirkung der verabreichten Behandlung zu assoziieren. Ist diese Behandlung emotional angenehm, so wird diese Umgebung in Zukunft vermehrt aufgesucht. Bei einer aversiven Behandlung wird dieser Raum zukünftig gemieden. Dieses Phänomen wird im Tiermodell des Place-Aversion-Learnings und des Place-Preference-Learnings ausgenutzt. Mit Hilfe dieser Tiermodelle können die emotionalen Wirkungen von Behandlungen getestet werden, aber auch die neuronalen Grundlagen von angenehmen und unangenehmen Emotionen. Ziel des Versuches ist es, die Rolle bestimmter Transmitter oder Substanzen im Belohnungsbzw. Bestrafungsystem zu bestimmen.

Bisher wurde nur untersucht, ob die Tierhaltung prinzipiell einen Einfluss auf die Neurotransmitterspiegel im Gehirn hat [53-56]. Das wurde für Dopamin und Serotonin nachgewiesen. Zwar haben viele Arbeitsgruppen Unterschiede in den Auswirkungen der enantioselektiven Gabe von Ecstacyderivaten am Menschen und am Tier festgestellt [35, 11, 45, 46, 28], jedoch keine Angaben zum Abhängigkeitspotential von MDMA und MDE auf Grund der konditionierten Platzpräferenz gemacht.

Die enantioselektive Metabolisierung wurde bereits von mehreren Arbeitsgruppen untersucht [51, 49, 47], meistens wurde aber nur die Metabolisierung in Plasma und Urin erfasst. Die Metabolisierung im Gehirngewebe wurde nicht genau beobachten, obwohl sie vermutlich in engem Zusammenhang mit der Neurotoxizität und der am Menschen unterschiedlichen Wirkung der Enantiomere steht. Johnson et al [32] haben die Vermutung aufgestellt, dass für die Neurotoxizität primär die Dihydroxyderivate der Ecstacyreihe verantwortlich zu machen sind, welche im Laufe der Metabolisierung vor den Methoxyhydroxyderivaten entstehen [51, 37]. Schmidt [18] beschrieb dagegen 1987, dass bei dem (S)-MDA-Metaboliten nach Gabe von MDMA eine größere Neurotoxizität auftritt, als beim Enantiomer. Daher sollte geklärt werden, ob die Metaboliten-Konzentration beider Verbindungen mit der unterschiedlichen Toxizität in Einklang zu bringen ist. Außerdem könnte der Metabolismus im Gehirn einen Einfluss auf das Ergebnis der Untersuchungen bei der Platzpräferenz haben.

Das Ziel dieser Arbeit ist es daher, das Suchtpotential der Enantiomere von MDMA und MDE mit Hilfe konditionierter Platzpräferenz zu untersuchen und in Zusammenhang mit dem sozialen Umfeld der Tiere zu bringen.

Ein anderer Teil der Arbeit will den enantioselektiven Metabolismus in Gehirn und Plasma vergleichen, um eventuelle Rückschlüsse auf die Enantioselektivität und die Neurotoxizität zu ziehen.

3 Neurochemische Grundlagen des Belohnungssystems

3.1 Anatomie und Funktion des Gehirns

Das Gehirn ist das komplexeste Organ eines Organismus. Es gehört zum zentralnervösen System und ist für die Steuerung der Körperfunktionen zuständig. Es ist aber auch verantwortlich für das Lernen, das Denken, für das Speichern und Abrufen von Erinnerungen. Niedere Hirnfunktionen, wie die Regelung der Bluttemperatur oder der Atemfrequenz, sind unbewusst ablaufende Prozesse. Dafür sind Kleinhirn, Thalamus und die Medulla oblongata verantwortlich. Die höheren Hirnfunktionen dagegen umfassen die motorischen und sensorischen Repräsentationen und die kognitiven Fähigkeiten mit Sprache, Lernen und Gedächtnis. Dafür ist vor allem die Hirnrinde (Cortex) verantwortlich.

Abb. 3-1: Schematische Darstellung des Gehirns

3.2 Neurotransmitter des Gehirns

Die wichtigsten Neurotransmitter im Gehirn sind Acetylcholin, Noradrenalin, Dopamin, Serotonin sowie exzitatorische und inhibitorische Aminosäuren.

3.2.1 Acetylcholin

Acetylcholin (ACh) wurde zuerst als Transmitter im peripheren Nervensystem entdeckt. Große ACh-Mengen finden sich aber auch im Gehirngewebe. Die Zellkörper acteylcholinerger Neurone liegen im Nucleus basalis und im Septum. Sie projizieren zum Cortex bzw. zum Hippocampus. Im Striatum gibt es Interneurone.

3.2.2 Noradrenalin und Dopamin

Noradrenalin, Adrenalin und Dopamin bezeichnet man als Catecholamine. Dopamin und Noradrenalin werden über einen Katalyseschritt der Tyrosinhydoxylase synthetisiert. Das Noradrenalin hat im Gehirn die Funktion, abhängig von der Neurotransmittermenge, das Verhalten und die Psyche zu prägen.

Noradrenerge Zellkörper befinden sich im Locus cerulius in der Nähe der Pons. Von dort projizieren die Bahnen aufsteigend und innervieren alle darüber liegenden Gebiete.

Dopaminerge Bahnen entspringen der Substantia nigra. Sie projizieren weniger diffus als andere Neurotransmitter. Man unterscheidet nigrostriatale, VTA accumbens und präfrontaler Cortex- Projektionen (mesolimbisch) Dopamin steuert Gefühle und das Belohnungssystem. Außerdem ist es am Denkvermögen und an der Integration Emotionen beteiligt. Der Neurotransmitter Dopamin ist relevant im von Zusammenhang Motivation, Aufmerksamkeit, von Lernen, Schizophrenie. Parkinsonscher Krankheit und Depression. Für das Themengebiet Sucht ist er von besonderem Interesse, da Dopamin derjenige Botenstoff ist der am häufigsten in Verbindung gebracht wird mit motivationalem Mechanismen, Verstärkung und Belohnung.

3.2.3 Serotonin

Serotonin wurde zum ersten Mal als zentralnervöser Neurotransmitter untersucht, als man die Ähnlichkeit von LSD und Serotonin feststellte. Serotonin entspringt den Raphe-Kernen, die zwischen Medulla oblongata und Mittelhirn liegen. Serotonerge Bahnen innervieren, genau wie die noradrenergen Bahnen alle darüber liegenden Gebiete. Serotonin wirkt aktivitäts- und verhaltensdämpfend. Die serotonergen Bahnen laufen parallel zu den noradrenergen Bahnen; allerdings sind die Wirkungen entgegengesetzt.

3.3 Biologische Bedeutung des Belohnungssystems

Positive, also belohnende, und negative, also bestrafende, Reize sind für einen Organismus wichtig für das Überleben. Diese Reize müssen richtig wahrgenommen und bewertet werden, um die richtigen Konsequenzen zu ziehen und in Zukunft bei erneutem Auftreten dieses Reizes richtig zu reagieren. Belohnende Reize wirken dabei positiv verstärkend, das heißt, der Organismus wird versuchen diesen Reiz erneut aufzusuchen. Wenn ein Tier zum Beispiel an einer bestimmten Stelle in der Umwelt Futter findet, wird es erneut diese Stelle aufsuchen, in der Erwartung dort auch noch mal Futter zu finden. Das Entgegengesetzte gilt für die bestrafenden Reize [57, 58]. Das Tier wird versuchen, dem negativen Reiz zu entgehen, indem es sich in der gleichen Situation, die den negativen Reiz ausgelöst hat, anders verhält oder diese Situation ganz zu vermeiden versucht.

Auch Suchtmittel, wie Amphetamin, haben zum Teil eine positive belohnende Wirkung. Auch bei Ihnen versucht das Tier, die Situation wieder hervorzurufen oder an der Ort zurück zu gehen, an dem es das letzte Mal die entsprechende Substanz bekommen hat [59]. Allerdings gibt es bei der Steuerung des Verhaltens bei Suchtmitteln keinen Kontrollmechanismus. Die durch das Suchtmittel erzeugten Reize sind so stark, dass das Suchtmittel weiter eingenommen wird, obwohl kein biologischer Bedarf mehr besteht [60]. Diese von Kontrollmechanismus losgelöste wiederholte Einnahme von Suchtmitteln nennt man Sucht [61].

Seit langem geht man davon aus, dass das Dopamin-System eine wesentliche Rolle im zentralnervösen Belohnungssystem spielt [62]. Dopaminerge Neuronen mit ihrem Zellkern im ventralen tegmentalen Areal (VTA) des Mittelhirns projizieren vor allem zum Nucleus accumbens septi (NAS). Der zweite Projektionsweg aber geht in die kortikalen und subkortikalen Vorderhirnstrukturen, wie den medialen präfrontalen Cortex (mPFC) und der Amygdala. Auch andere Transmitter, wie das Glutamat, spielen eine wichtige Rolle in der belohnenden Wirkung von Suchtmitteln und anderen Substanzen [63]. Glutamat interagiert mit Dopamin in mehreren Bereichen des Gehirns und bestimmt so auf wesentliche Art und Weise das Belohnungssystem mit [64]. 16

3.4 Neurochemie und Funktion des präfrontalen Cortex

Unter dem medialen präfrontalen Cortex (mPFC) versteht man präfrontale Areale, die glutamaterge Eingänge (Afferenzen) vom mediodorsalen Thalamus (mdT) erhalten [65]. Aus cytologischer Sicht kann man den mPFC nicht klar von den benachbarten kortikalen Gebieten unterscheiden. Nach der gebräuchlichsten Gliederung dieser Region unterteilt sich der mPFC der Ratte in das infralimbische (il), das prälimbische (pl) und den anterioren cingulären Cortex.

Den mPFC charakterisiert außerdem, dass er einer der wenigen kortikalen Regionen ist, der aus dem Mittelhirn dopaminerg innerviert wird [66]. Die Innervation ist besonders dicht im ventralen Teil des mPFC (il und pl). Weitere bedeutende Afferenzen (Eingänge) zum präfrontalen Cortex bilden Fasern, die Monoamine als Transmitter führen. Diese Afferenzen sind noradrenerge Fasern vom Locus coeruleus und serotonerge Fasern aus den Raphe-Kernen des Mittelhirns.

3.5 Neurochemie und Funktion des Striatums

Auf Querschnitten des Gehirns lassen sich neben der Hirnrinde (Cortex) weitere Gebiete grauer Substanz im Marklager der Großhirnhemisphäre erkennen, die sogenannten Basalganglien. Zu den eigentlichen Basalganglien werden nur der Nucleus caudatus, das Putamen sowie der Globus pallidus gerechnet. Da der Nucleus caudatus und das Putamen durch zahlreiche streifenförmige Zellbrücken verbunden sind, haben sie gemeinsam den Namen Corpus striatum (Streifenkörper) erhalten. Beim Auftreten eines gelernten Reizes wird die Erwartung wachgerufen und die Handlung durchgeführt, um die erwartete Belohnung zu erhalten oder der Bestrafung zu entgehen. Dieses Lernen benutzt anfangs deklarative Gedächtnisprozesse, die einzelne Reize und das Erlangen der Belohnung speichern, wird aber schnell in eine prozedurale Gedächtnisform überführt. Damit sind vor allem die Basalganglien die möglichen Substrate. Dopaminzellen in den Basalganglien reagieren auf Belohnung während des Lernens, verlieren aber später diese Antwort und reagieren dann auf den gelernten Reiz, der die Belohnung voraussagt [67]. Offensichtlich sind diese Nervenzellen mit dem Erkennen dieser für das Lernen so zentralen Reize beschäftigt. Eine Blockade des Einflusses dieser Dopaminzellen auf andere Teile der Basalganglien beeinträchtigt das Lernen erheblich. Im ventralen Striatum, einem anderen Teil der Basalganglien, werden einige Nervenzellen sehr aktiv, wenn eine Belohnung nach Erscheinen des Reizes erwartet wird [68].

Abb. 3-2: Abbildung eines Gehirn-Querschnittes mit Striatum

4 Platzpräferenzversuche

4.1 Assoziatives Lernverhalten am Tier

Die Begriffe "Lernen", "Instinkt" oder "Motivation" werden sehr vielseitig in der Umgangssprache verwendet. Daher ist es nötig, den Begriff "Lernen" sinnvoll zu definieren. Sehr allgemein formuliert könnte man Lernen als eine durch Erfahrung bewirkte, adaptive Veränderung im Verhalten definieren. Mit adaptiv wird dabei ausgedrückt, dass die Verhaltensänderung des Individuums zu einer Verbesserung des Verhaltens hinsichtlich des Überlebens der Art führt. Außerdem muss die Veränderung als ein messbarer Unterschied im Verhalten vor und nach einem im Experiment herbeigeführten Ereignis erkennbar sein.

Beim Lernen unterscheidet man ganz allgemein zwischen einfachem oder nichtassoziativem Lernen, wie Gewöhnung (Habituation) oder Sensitivierung. Von Gewöhnung spricht man, wenn bei wiederholter Reizung eine auftretende Verhaltensantwort abgeschwächt wird. Wenn das Lebewesen auf alle Reize jederzeit reagieren würde, dann wäre sein Gehirn mit Reizen überflutet und nicht mehr in der Lage, alle Informationen effektiv zu verarbeiten. Im Gegensatz dazu handelt es sich bei der Sensitivierung um eine Erhöhung beziehungsweise Verstärkung eines Verhaltens aufgrund eines zusätzlichen starken oder unter Umständen sogar schädlichen Reizes. Im Vergleich zum einfachen Lernen gibt es dann noch den Begriff des assoziativen Lernens. Darunter versteht man die instrumentelle oder operante und die klassische Konditionierung. Die operante Konditionierung wurde Anfang dieses Jahrhunderts von den amerikanischen Psychologen Edward Lee Thorndike und Burrhus Frederic Skinner [57, 58] beschrieben. Bei der instrumentellen Konditionierung soll das Tier eine Aufgabe oder ein Problem lösen, zum Beispiel das Drücken eines Hebels oder das Zurechtfinden in einem Labyrinth. Da das Tier lernt, die Aufgabe durch aktives Handeln zu lösen und dafür belohnt zu werden, nennt man diese Art der Dressur auch instrumentelle oder operante Konditionierung. Bei der klassischen Konditionierung dagegen verbindet das Tier in seiner Verhaltensantwort einen neutralen Reiz mit einem Belohnungs- oder Strafreiz. Das bekannteste Beispiel dafür sind die Hunde von I. Pawlow Anfang des 20.ten Jahrhunderts. Normalerweise beginnt ein Hund bereits beim Anblick eines Stückes angebotenen Fleisches zu speicheln, das ist der sogenannte unbedingte Reflex. Nachdem eine Zeitlang kurz vor Darbietung des Fleischstückes eine Glocke geläutet wurde, fängt der Hund bereits beim Ertönen der Glocke an zu speicheln, das wiederum ist der bedingte Reflex. Genau dieser Effekt trifft bei der konditionierten Platzpräferenz auf.

Als vierte Variante des Lernens gilt das komplexe Lernen von Primaten und Menschen. Damit werden Prozesse, die über das einfache Lernen von Assoziationen oder das Reagieren auf die Folgen eines Handelns hinausgehen. Es beinhaltet die Fähigkeit eines Lebenswesens, beispielweise bei der Problemlösung mehrere Möglichkeiten im Geiste durchzuspielen und abstrakt zu denken und ein Problem zu begreifen. In Versuchen mit Schimpansen erkannte man, dass sie Probleme begreifen und ihr Handeln durch geistige Hypothesen vorwegnehmen können. Um an eine Banane heranzukommen, die von der Decke hing, bauten sie aus herum liegenden Kisten einen Turm. Dieses Verhalten war ein Hinweis dafür, dass Primaten neben den Menschen die Fähigkeit zu komplexem Lernen besitzen.

4.2 Platzpräferenzversuche

Das Modell der Platzpräferenz beruht auf dem klassischen Prinzip der Konditionierung. Als unkonditionierter Stimulus dient die Wirkung einer Substanz, die dem Tier verabreicht wird. Der konditionierte Stimulus ist eine klar definierte Umgebung, die in unserem Fall aus einem Kompartiment mit einer charakteristischen Wandfärbung besteht. Während eines Konditionierungs-Versuchs wird das Tier wiederholt nach Substanzinjektion in ein Kompartiment mit der Wandmusterung A gesetzt und im Wechsel dazu nach einer Placeboinjektion in ein Kompartiment mit der Wandmusterung B. Dieser tägliche Wechsel der Kompartimente und damit auch der Injektionen wird 8 Tage lang durchgeführt. Wenn die zu untersuchende Substanz einen belohnenden Effekt für das Tier hervorruft, dann wird es im Laufe der Konditionierung lernen, die belohnende Substanz mit der entsprechenden Wandmusterung zu assoziieren. Wenn man dem Tier nach erfolgter Konditionierung die Möglichkeit gibt, sich entweder im Kompartiment mit der Wandmusterung A oder mit der Wandmusterung B aufzuhalten, wird das Muster A als konditionierter Stimulus agieren und ein Annäherungsverhalten auslösen, d.h. das Tier wird sich vorzugsweise im Kompartiment A aufhalten. Diesen Effekt nennt man eine Präferenz für das Kompartiment A, also eine konditioniert Platzpräferenz (CPP, conditioned place preference) [69, 70]. Entsprechend Entgegengesetztes gilt für aversiv wirkende Behandlungen, wobei dann auch von Aversion oder konditionierter Platzaversion gesprochen wird. Dieses Modell wird vor allem deswegen als interessant eingestuft, weil es als gesichert gilt [71, 72], dass auch beim menschlichen Suchtverhalten klassische Konditionierungsprozesse eine große Rolle spielen. Außerdem hat das Modell den Vorteil gegenüber operanten Modellen, dass motorische Effekte von Testsubstanzen das Versuchsergebnis kaum beeinflussen können, da die Tiere in der Regel im unbehandelten Zustand getestet werden [69].

Abb. 4-1: Schematische Platzpräferenzbox für die konditionierte Platzpräferenz

4.3 Allgemeine Vorbemerkung zum Versuchsdesign und Studienaufbau

Platzpräferenzversuche wurden mit Ecstacyderivaten bereits von vielen Gruppen durchgeführt [73, 22]. Dabei wurde in den meisten Fällen ein seit längerer Zeit etabliertes Versuchsdesign mit kleinen Abwandlungen verwendet.

Für jedes der von uns durchgeführten Experimente wurden jeweils 30 beziehungsweise 40 männliche Ratten des Sprague-Dawley-Stamms mit einem Durchschnittsgewicht von 220 g genommen. Nach Ankunft der Tiere wurden sie in ihren Wohnkäfigen untergebracht und dort für einen Zeitraum von 2 Wochen zur Eingewöhnung gelassen. Dabei bekamen die Tiere jeden Tag 12g eines handelsüblichen Nagerfutters und Wasser *ad libidum*. Die Tiere wurden einem 12-Stunden-Tageszyklus ausgesetzt, bei dem um 7.00 Uhr das Licht anbeziehungsweise ausgemacht wurde. Nach 2 Wochen Eingewöhnung wurden die Tiere im Versuch eingesetzt.

Die Platzpräferenzversuche lassen sich in drei Phasen unterteilen. Die erste Phase ist der sogenannte Baselinetag. Dabei hatten sie die Möglichkeit, sich in allen drei Kompartimenten der Platzpräferenzboxen, also den Boxen A und B und der Mitte, ohne Substanzgabe für 15 Minuten frei zu bewegen und die Boxen nach freiem Willen zu erforschen. Die Aufenthaltsdauer in den jeweiligen Kompartimenten wurde vom Computer mit Hilfe 1 cm über dem Boden befindlichen Lichtschranken aufgezeichnet und ausgewertet. Die zweite Phase der Platzpräferenz wird im allgemeinen als Konditionierungsphase bezeichnet, welche eine Dauer von 8 Tagen hat. In dieser Phase bekommen die Tiere abwechselnd die zu untersuchende Substanz und alternierend eine Placebogabe. Für diesen Zweck wurden sie zuerst gewogen und die Substanz ihrem Gewicht entsprechend in Spritzen aufgezogen. Die Ratten wurden subcutan (s.c.) in die Nackenfalten gespritzt und dann für 10 Minuten erneut in ihren Wohnkäfig gesetzt, um den Wirkeintritt abzuwarten. Anschließend an diese 10 Minuten wurden die Tiere statistisch verteilt in die der Substanz entsprechenden Kompartimente der Boxen gesetzt und dort für 30 Minuten gelassen. Am dazu alternierenden Tag wurde den Tieren die physiologische phosphatgepufferte Kochsalzlösung (PBS) anstelle der Substanz gespritzt und nach abermals 10 Minuten in ihrem Wohnkäfig wurden sie in die jeweils gegenüberliegende Box mit der anderen Wandfärbung gesetzt und dort abermals für 30 Minuten gelassen. Nach Beendigung der zweiten Phase wurde den Tieren in der dritten Phase, dem Testtag, keine Substanz verabreicht. Sie wurden erneut in die wieder frei zugänglichen Kompartimente der Boxen gesetzt und hatten wie am Baselinetag die Möglichkeit sich für 15 Minuten frei in den Kompartimenten zu bewegen. Dabei wurden erneut die Aufenthaltdauer der Tiere in den jeweiligen Kompartimenten aufgezeichnet und ausgewertet. Durch einen Vergleich der Zeiten in den Kompartimenten am Baselinetag und am Testtag konnte dann durch statistische Berechnungen festgestellt werden, ob eine Präferenz oder Aversion vorlag.

Abb. 4-2: Fließschema der Platzpräferenzversuche

4.4 Vorversuch Amphetamin vs. MDMA.

Viele Arbeitsgruppen haben von belohnenden Effekten bei racemischem MDMA berichtet (reviewed in [74]), welche in Übereinstimmung mit der Wirkung von amphetaminähnlichen Substanzen sind. Daher war es unsere Absicht zuerst den belohnenden Effekt von racemischem MDMA im Vergleich zu der klassisch psychostimulierenden Substanz Amphetamin mit Hilfe der Platzpräferenz zu untersuchen.

Dazu wurde das Racemat von MDMA zu 5 mg/mL in Phosphatgepufferter Saline (PBS) gelöst und dann dem Tier in einer Dosis von 1mL/kg Körpergewicht verabreicht. Das Amphetamin wurde ebenfalls in phosphatgepufferter Saline gelöst mit einer Konzentration zu 4 mg/mL und dann ebenfalls zu 1 mL/kg Körpergewicht gespritzt. Diese Dosierung der Substanzen entspricht den gängigen Konzentrationen in der Literatur [75, 76, 22]. Die Kontrollguppe bekam reine gepufferte Salinelösung, genau wie die Substanzgruppen an den Placebotagen der Konditionierung.
Unerwarteter Weise konnte bei uns die von anderen Arbeitsgruppen untersuchte signifikante Platzpräferenz für racemisches MDMA [73, 75] nicht nachgewiesen werden, sondern nur für DL-Amphetamin (Abb. 4.3). Auf Grund der Ergebnisse der anderen Arbeitsgruppen im Vergleich zu unseren Ergebnissen, versuchten wir Unterschiede im Versuchsdesign zu finden, welche die Unstimmigkeit der Ergebnisse erklären könnte. Wir fanden heraus, dass viele der anderen Platzpräferenzversuche über Ecstacy-Derivate mit isoliert gehaltenen Tieren durchgeführt wurden, was einen großen Effekt auf die Ergebnisse der Versuche haben kann.

Abb. 4-3: Platzpräferenz von racemischem MDMA im Vergleich zu racemischem Amphetamin und Saline; Tiere in Gruppenhaltung.

4.5 Einfluss der Isolation auf die CPP unter MDMA

Beim Vergleich der Literaturstellen konnten wir feststellen, dass die meisten Arbeitsgruppen ihre Tiere in isolierter Haltung hielten, während unsere Tiere in sozialer Gruppenhaltung á 5 Tiere pro Käfig untergebracht waren. Verschiedene Forschergruppen berichten, dass der Tyrosin-Metabolismus der isolierten Ratten reduziert ist, dies schlägt sich in einem erniedrigten Serotoninspiegel nieder. Da dieser Effekt von dem Gehirnareal und der Isolationsdauer abhängt [77], wurden von uns im darauffolgenden Versuch verschiedene Isolationszeiträume mit ihren Effekt auf die Platzpräferenz verglichen. Wir haben Tiere des gleichen Stamms für diesen Versuch verwendet, wie sie auch im vorangegangen Vergleich von razemischem MDMA und DL-Amphetamin der Fall war. Es wurden abermals 40 männliche Tiere des Sprague-Dawley-Stamms genommen und entweder in Gruppenhaltung á 5 Tiere oder für ein, zwei oder drei Wochen isoliert gehalten. Anschließend wurden sie in den Versuch eingesetzt, der vom Design gleich durchgeführt wurde, wie der Vergleich der Substanzen razemischem MDMA und DL-Amphetamin. Auch hier betrug die Dosierung des razemischem MDMA die oben genannte Dosierung von 5 mg/mL in Saline und der verabreichten Menge von 1 mL/kg Körpergewicht. Die Ergebnisse dieses Versuches bestätigten unsere Annahme, dass durch die unterschiedliche Tierhaltung auch ein anderes Ergebnis bei der Platzpräferenz zu erwarten war. Bei diesem Vergleich der Tierhaltung in bezug auf die Platzpräferenz konnte ein eindeutig signifikanter Unterschied zwischen der isolierten Haltung und der sozialen Gruppenhaltung erkannt werden (Abb. 4.4). Ratten, die vor dem Versuch ein oder zwei Wochen isoliert gehalten worden waren, zeigten eine hochsignifikante Platzpräferenz. Im Gegensatz dazu wiesen in Gruppe gehaltene Tiere und Tiere, die drei Wochen isoliert waren, keine Signifikanz auf. Aus Grund dieser Ergebnisse, entschieden wir uns dazu, bei allen folgenden Versuchen die Tiere in 2-wöchiger Isolation zu halten.

Abb. 4-4: Platzpräferenz nach rac. MDMA-Gabe; Vergleich der Tiere in unterschiedlichen Isolationszeiträumen

4.6 Platzpräferenzversuch nach Gabe des racemischer MDMA und seiner Enantiomere

Da sowohl racemisches MDMA, wie auch racemisches MDE Serotoninfreisetzer sind, aber Unterschiede in der Freisetzung von Dopamin zeigen [6], wollten wir mögliche Unterschiede zwischen diesen beiden Substanzen feststellen. Außerdem sind sowohl MDMA, wie auch MDE chirale Substanzen mit eventuell unterschiedlichem Abhängigkeitspotential und daher über Enantiomere verfügen, wollten wir gleich in einem Zug auch noch die Racemate in ihrer Wirkung mit den entsprechenden Enantiomere vergleichen. Aus diesem Grund stellten wir vier Gruppen à 10 Tiere zusammen, die einmal eine Placebogabe bekamen und zum anderen das Racemat, das (R)-Enantiomer und das (S)-Enantiomer der jeweiligen Substanz.

Für den MDMA-Versuch nahmen wir die gleichen Versuchsbedingungen wie in den vorangegangenen Platzpräferenzversuchen, also einen Baselinetag, 8 Tage Konditionierung und einen Testtag zum Schluss. MDMA wurde im eigenen Arbeitskreis synthetisiert und enantiomerenrein getrennt [35]. Das Racemat wurde in

einer Dosierung von 5 mg/mL in phosphatgepufferter Saline gelöst und dann dem Tier in einer Dosierung von 1mL/kg Körpergewicht verabreicht. Die Enantiomere wurden ebenfalls zu 5 mg/mL in gepufferter Saline gelöst und dann ebenfalls zu 1mL/kg Körpergewicht gespritzt. Es wurde die gleiche Dosierung für Racemat und Enantiomere gewählt, da eine vergleichbarer belohnender Effekt der Enantiomere zu erwarten war. Die Kontrollgruppe bekam hier auch reine phosphatgepufferte Salinelösung.

Bei der Untersuchung auf die unterschiedlichen Platzpräferenzen der Enantiomere im Vergleich zum Racemat stellte sich eindeutig heraus, dass die Dauer des Aufenthaltes im belohnten Kompartiment im Vergleich zur Baseline signifikant länger war. Dieser positive Ausfall der Platzpräferenz gilt sowohl für das Racemat, wie auch für die homologe Menge an Enantiomer (Abb. 4.5). Das Ergebnis stimmt mit den in der Literatur beschriebenen Signifikanz des Racemats überein [76, 22]. Allerdings stimmt dieses Ergebnis nicht mit den in Humanversuchen gefunden Resultaten überein, da dort eindeutige Unterschiede in der entaktogenen Wirkung der jeweiligen Enantiomer von MDE beschrieben wurden [35, 36].

4.7 Platzpräferenzversuch nach Gabe des rac. MDE und seiner Enantiomere

Beim MDE-Versuch schließlich wurden genau die gleichen Voraussetzungen gewählt wie beim vorangegangenen MDMA-Versuch, nur dass hier das Racemat und die Enantiomere von MDE genommen wurde. Auch das Versuchsdesign und die Haltung der Tiere wurde vom MDMA-Versuch übernommen. Das bedeutet, dass man das Ergebnis dieses Versuchs genau mit dem Ergebnis des MDMA-Versuchs vergleichen kann, da die gleichen Dosierungen eingesetzt wurden.

Im Vergleich zum MDMA-Versuch wurde in diesem Platzpräferenzversuch eine viel schwächere Platzpräferenz nach der Konditionierung gefunden. Weder das Racemat noch die Enantiomere von MDE zeigten eine signifikante Platzpräferenz. Allerdings zeigte bei den statistischen Berechnungen die zweifaktorielle ANOVA eine Signifikanz. Der dadurch erlaubterweise durchgeführte post-hoc Test (Fisher's LSD Test) zeigte, dass tatsächlich keine Signifikanz vorhanden war und man daher höchstens von einem Trend oder einer Tendenz sprechen konnte.

Abb. 4-6: Platzpräferenz nach Gabe des rac. MDE im Vergleich zu (R)- bzw- (S)-MDE; Tiere nach 2-wöchiger Isolation

5 Methode zur Quantifizierung aus Plasma und Gehirngewebe

5.1 Konjugatspaltung

Das aus der Schnecke Helix Pomatia stammende Enzymgemisch ß-Glucuronidase / Arylsulfatase ist durch seine Gewinnung stark mit Begleitsubstanzen verunreinigt, welche bei der chromatographischen Trennung Schwierigkeiten machen können. Die Reinigung ist daher ein notwendiger Schritt, der mit Hilfe einer Sephadex G25-Säule durchgeführt wird. Nach der Reinigung des konzentrierten Enzymgemisches wird eine definierte Menge des gereinigten Enzyms der Probe beigemischt und über einen Zeitraum von 24 Stunden in einem Wasserbad bei 37°C stehen gelassen. Innerhalb dieser 24 Stunden hat das Enzym die Möglichkeit, das im Körper als Glucuronide oder Sulfate vorliegenden HMMA bzw. HME der untersuchten Substanzen MDMA und MDE zu spalten [51, 35]. Durch diese Spaltung der gebundenen Form wurde die Detektion mittels Fluoreszenzdetektor bei der Hochdruckflüssigchromatographie ermöglicht.

5.2 Proteinfällung

Nach dem Abzentrifugieren der festen Blutköperchen bei 10000 g für 15 Minuten verbleiben im Plasma immer noch lösliche Proteine, die manchmal Probleme bei der Extraktion hervorrufen können. Die Substanzen sind zum einen selber in Plasmaproteinbindungen gebunden und stehen damit einer Extraktion nicht zur Verfügung; außerdem wird die Viskosität der Probe durch das Vorhandensein von Plasmaproteinen erhöht und zum dritten kann es durch die Proteine zu einem erhöhten Matrixeffekt während der Extraktion kommen. Die Proteinfällung der Plasmaproben kann aus diesen wichtigen Gründen nicht umgangen werden. Der grundlegende Mechanismus der Proteinfällung wurde von Harris 1980 beschrieben [78].Durch Temperaturerhöhung, pH-Werte, die Verwendung von organischen Lösemitteln oder Polymeren (in den meisten Fällen werden Polyethylenglycole mit einem mittleren Molekulargewicht von 6000 bis 20000 verwendet) kommt es zu einer Denaturierung der Plasmaproteine. Diese können dann in einem weiteren Aufbereitungsschritt durch Filtration oder abzentrifugieren vom Rest der Probe

getrennt werden [51, 35]. Die überstehende Lösung wird der weiteren Extraktion zugeführt.

5.3 Festphasenextraktion

Die Festphasenextraktion (Solid Phase Extraction, SPE) hat sich in den letzten Jahren als eine bewährte Methode zur Probenaufbereitung gezeigt. Bei der SPE handelt es sich um eine einfache Methode, die ohne großen apparativen Aufwand durchgeführt werden kann. Dabei werden die zu analysierenden Substanzen durch verschiedene Wasch- und Elutionsschritte von der Matrix getrennt und dann in einer bestimmten Menge bidestilliertem Wasser wieder aufgenommen. In unserem Fall wurde die CBA-Säule, welche ein Kationenaustauscher ist, zuerst mit Acetonitril, verdünnter Salzsäure und einem Natriumacetatpuffer konditioniert. Anschließend wurde die Probe aufgegeben und die dabei enthaltenen störenden Verunreinigungen mit Wasser und einem Wasser-Methanol-Gemisch herausgewaschen. Als Elutionsmittel diente bei uns eine Mischung aus Acetonitril und verdünnter Salzsäure. Die Salzsäure wurde verwendet, da eine starke Mineralsäure in der Lage ist, die an die stationäre Phase gebundenen Amphetamine durch Protonen zu ersetzen und damit von der Säule zu lösen. Nach Elution der Amphetaminderivate wurden diese unter einer schonenden Stickstoffatmosphäre zur Trockene eingedampft und dann in 250µL bidestilliertem Wasser aufgenommen, um die Konzentration in der Probe um das Vierfache zu steigern und damit die sehr geringen Dosierungen leichter detektierbar zu machen.

5.4 Interner Standard

Bei der Quantifizierung aus biologischem Material ist es notwendig einen internen Standard zu benutzen. Dieser interne Standard hat diverse Vorteile: zum einen kann durch ihn über die ganze Dauer des Verfahrens überprüft werden, ob die Methode in sich robust ist. Dies wird getan, in dem man immer die gleiche Menge internen Standard zu setzt und diesen dann durch die Kontrolle seiner Peakfläche (area under the curve; AUC) und die Retentionszeit kontrolliert. Außerdem kann man durch den internen Standard Schwankungen, die durch die Methode entstehen können ausgleichen, in dem zur endgültigen Auswertung der Daten bei der Kalibration und den Realproben nicht die einfache AUC ausgewertet wird, sondern der Quotient aus Peakfläche Substanz zu Peakfläche Interner Standard. Er dient also zur Peakflächenkorrektur. Diese Korrektur vereinfacht die Auswertung, da durch die mehrstufige Probenvorbereitung mit einem verhältnismäßig hohen Verlust an Substanz zu rechnen ist. Durch den Internen Standard kann die Wiederfindungsrate erhöht werden, und die Methode an sich wird valider.

Durch diesen vielfältigen Einsatz des internen Standards muss er auch verschiedene Bedingungen erfüllen. Zum einen sollte er zu der zu bestimmenden Substanzen strukturverwandt sein; andererseits darf es aber keine Substanz sein, die durch den Metabolismus oder durch sonstige Zersetzungsmechanismen aus den zu untersuchenden Substanzen entstehen könnte. Auch die Wiederfindungsrate sollte den zu bestimmenden Amphetaminderivaten ähnlich sein, damit die Qualität der Extraktion direkt verglichen werden kann. Eine weitere wichtige Voraussetzung für den interne Standard ist, dass er eine Retentionszeit haben sollte, die einerseits nicht zu weit von den zu bestimmenden Substanzen weg sein sollte, andererseits darf er das Chromatogramm der Substanzen nicht stören.

Aus diesen Gründen wurde für die MDE-Proben N-Ethyl-3,4methylendioxybenzylamin-HCI (NEMDBA) genommen. Für die MDMA-Proben haben wir uns auf Grund der oben genannten erwünschten Voraussetzungen für N-Propyl-3,4-methylendioxyphenethylamin-HCI (NPMDPEA) entschieden.

Abb. 5-1: Ausgewählte interne Standards NEMDBA und NPMDPEA

Die als interner Standard verwendeten Substanzen wurden im eigenen Arbeitskreis synthetisiert und qualitativ identifiziert [35].

5.5 HPLC-FD-Kopplung

5.5.1 Allgemeines Messprinzip der Fluorimetrie

Im Unterschied zur Photometrie wird in der Fluorimetrie die Strahlungsintensität der Emissionsstrahlung senkrecht zur Richtung der Anregungswellenlänge gemessen. Um den Rest des Anregungslichtes (Streulicht) zu entfernen, wird ein Monochromator vorgeschaltet. Als Lichtquelle dienen meistens Hochdruck-Gasentladungslampen (bei unserer Merck-Anlage handelt es sich dabei um eine Xenonlampe). Um Fluoreszenz bei einer Substanz herbeizuführen, muss das Elektronensystem dieser Substanz zuerst durch Lichtabsorption angeregt werden. Nach dem Gesetz von Stoke erfordern die Elektronenübergänge zur Anregung mehr Energie als in Form von Strahlungsenergie wieder frei wird. Das Fluroeszenzspektrum ist im Vergleich zum Absorptionsspektrum zu längeren Wellenlängen verschoben. Die Fluoreszenzintensität ist der Intensität des eingestrahlten Lichtes proportional. Das Fluoreszenzspektrum erhält man durch die eingestrahlten Fluoreszenzlichtes in Abhängigkeit von der Messung des Wellenlänge. Die Fluorimetrie hat anderen Verfahren gegenüber den Vorteil, dass sie sich durch eine hohe Messgenauigkeit und eine hohe Selektivität auszeichnet.

Da alle im Rahmen der Versuche gewonnen Proben eine Eigenfluoreszenz aufzeigten und die Konzentrationsbereiche im unteren ng/mL-Bereich quantifiziert werden sollte, wurde die direkte fluorimetrische Detektion eingesetzt [79, 80].

5.5.2 Chirale Trennung mittels HPLC

Als stationäre Phase für die chirale Trennung der Enantiomere von (R)- bzw (S)-MDMA, MDE, HMMA, HME und MDA wurde Cellobiohydrolase (CBH), eine stationäre Proteinphase eingesetzt. Es handelt sich dabei um ein saures Glykoprotein, welches kovalent auf Silicaaldehyd gebunden vorliegt. Die Proteinphasen sind hoch selektiv, haben aber eine geringe Kapazität. Großen Einfluss auf die Trennleistung und Stabilität der Retentionszeiten haben pH-Wert, Ionenstärke, verwendeter Puffer, Ionenpaarreagenz und organische Modifier.

5.5.3 Entwicklung der verwendeten Fließmittel

Im Laufe dieser Arbeit wurden die von Brunnenberg und Büchler entwickelten Methoden dahin gehend variiert, dass alle sechs zu quantifizierenden Substanzen (R)- und (S)-MDMA, sowie die Enantiomere von HMMA, MDA und der interne Standard nebeneinander auf der CBH-Säule bestimmbar wurden. Die Anregungswellenlänge betrug bei beiden Bestimmungsmethoden, sowohl der MDMA-Gruppe, wie auch der MDE-Gruppe, 286 nm. Als Emissionswellenlänge wurde genau wie in der Methode von Büchler 322 nm gewählt. In Tabelle 5.1 werden die beiden Methoden verglichen hinsichtlich ihres Fließmittels und aller weiteren Parameter.

Parameter	Methode für	Methode für
	MDE-Proben	MDMA-Proben
pH-Wert	6,44	6,70
Flussrate	0,7 mL/min	0,7mL/min
Organ. Lösungsmittelanteil	7% Isopropanol	8% Methanol
Pufferlösung	20mM NaH ₂ PO ₄	20mM NaH ₂ PO ₄
Säulenofentemperatur	17°C	16°C
Detektions-Wellenlängen	Fluoreszenz	Fluoreszenz
Bestimmbare Methoden	MDE, HME, MDA	MDMA, HMMA, MDA

Tab 5.1: Vergleich der HPLC-Methoden für MDMA und M	DE
---	----

Abb. 5-2: Chromatogramm einer gespikten MDMA-Probe mit allen zu bestimmenden Substanzen und den dazugehörigen Retentionszeiten. Retentionszeiten: t_R NPMDPEA = 4,01; t_R (R)-HMMA = 6,35; t_R (S)-HMMA = 7,11; t_R (R)-MDMA = 10,39; t_R (S)-MDMA = 13,40; t_R (R)-MDA = 15,23; t_R (S)-MDA = 19,64

Abb. 5-3: Chromatogramm einer gespikten MDE-Probe mit allen zu bestimmenden Substanzen. Retentionszeiten: t_R (R)-HME = 6,36; t_R (S)-HME = 7,11; t_R (R)-MDE = 9,11; t_R (S)-MDE = 11,01; t_R (R)-MDA = 15,21; t_R (S)-MDA = 19,84; t_R NEMDBA = 26,85.

Abb. 5-4: Chromatogramm einer aufbereiteten Realprobe der (S)-MDMA-Gruppe in Plasma. Retentionszeiten: t_R NPMDBEA = 4,34; t_R (S)-MDMA = 13,63; t_R (S)-MDA = 19,94.

Abb. 5-5: Chromatogramm einer aufbereiteten Realprobe vom Cortex der (S)-MDMA-Gruppe. Retentionszeiten: t_R NPMDBEA = 4,18; t_R (S)-MDMA = 13,65; t_R (S)-MDA = 19,77.

Abb. 5-6: Chromatogramm einer aufbereiteten Realprobe vom Striatum der (S)-MDMA-Gruppe. Retentionszeiten: t_R NPMDBEA = 4,09; t_R (S)-MDMA = 13,49; t_R (S)-MDA = 19,71.

Abb. 5-7: Chromatogramm einer aufbereiteten Realprobe von Plasma aus der racemischen MDE-Gruppe. Retentionszeiten: t_R (R)-MDE = 10,02; t_R (S)-MDE = 11,78; t_R NEMDBA = 27,01.

Abb. 5-8: Chromatogramm einer aufbereiteten Realprobe vom Cortex der racemischen MDE-Gruppe. Retentionszeiten: t_R (R)-MDE = 9,45; t_R (S)-MDE = 10,98; t_R NEMDBA = 26,97.

Abb. 5-9: Chromatogramm einer aufbereiteten Realprobe vom Striatum der racemischen MDE-Gruppe Retentionszeiten: t_R (R)-MDE = 9,24; t_R (S)-MDE = 11,07; t_R NEMDBA = 25,23.

6 Untersuchung der Plasma- und Gehirngewebeproben aus den Platzpräferenzversuchen

6.1 Vorbemerkungen

Mit den Untersuchungen der Plasma-, Cortex- und Striatumproben der in den Platzpräferenzversuchen verwendeten Tiere des MDMA- und MDE-Versuchs sollte der Frage der enantioselektiven Metabolisierung in Gehirn und Plasma nachgegangen werden. Zusätzlich sollte untersucht werden, ob auf Grund der Metabolisierungsprodukte eine Erklärung für die unterschiedliche Neurotoxizität der Ecstacy-Derivate, die bereits in der Einleitung erwähnt wurde, zu finden ist [19].

6.2 Vorbereitung der Plasma- und Gehirngewebeproben

Nach den durchgeführten Platzpräferenzversuchen wurden die Tiere über einen Zeitraum von zwei Wochen in ihren Wohnkäfigen gehalten. In diesem Zeitraum bekamen sie - wie bereits während des Platzpräferenzversuches - täglich eine Ration von 12 g kommerziellem Rattenfutter und Wasser ad libidum. Nach diesen zwei Wochen wurden die Tiere erneut gewogen und dann mit einer ihrem Körpergewicht entsprechenden Konzentration eines Analgetikums (Rompun®; Xylazin 20 mg/ml) und eines Narkotikums (Ketanest ®, Ketamin 50 mg/ml) betäubt. Den auf diese Weise betäubten Tieren wurden anschließend die Gewebe- und Blutproben entnommen.

6.3 MDMA-Versuch

Bei der Untersuchung der Plasma- und Gehirngewebeproben der MDMA-Tiere lagen ähnliche Verhältnise in Bezug auf das Metabolitenmuster in den beiden Gehirnregionen Cortex und Striatum vor. Beim Vergleich des Racemats mit seinen Enantiomeren wurde ebenfalls ein vergleichbares Bild der Metabolisierung entdeckt. Das korreliert mit den Befunden aus den Platzpräferenzversuchen, bei denen zwar eine geringere Dosierung von 5 mg/kg Körpergewicht anstelle der hier verwendeten 20 mg/kg Körpergewicht verabreicht wurde, aber auch dort konnte kein Unterschied zwischen den Enantiomeren und ihrem Racemat gefunden werden. Die Enantiomere sind in ihrer belohnenden Wirkung äquipotent und haben keinen additiven oder gar potentierenden Effekt, wenn sie als Racemat gegeben werden.

Bei der Metabolisierung der Ausgangssubstanz MDMA nach racemischer Gabe wurde in allen Gewebetypen eine verstärkte Metabolisierung und damit eine geringere Konzentration von (R)-MDMA gefunden. Die für diese Substanzklasse typischen Metaboliten wie racemisches HMMA und MDA beziehungsweise deren Enantiomere wurden sowohl im Gehirn wie in den Plasmaproben detektiert. Der Hauptmetabolit bei MDMA-Gabe ist in diesen Ergebnissen das MDA, da sowohl bei Verabreichung des Racemats oder der Enantiomere die höchste Konzentrationen der untersuchten Metaboliten beim MDA vorliegt. In den Proben des Gehirngewebes und dem Plasma existiert bei Gabe des Racemats von MDMA eine deutliche Tendenz zum (S)-Enantiomer des MDA. Der Metabolit HMMA dagegen ist in nur sehr geringen Konzentrationen in allen Gewebeproben aufzufinden.

Abb. 6-1: Metabolisierung im Cortex nach Gabe von 20 mg /kg Körpergewicht racemischem MDMA

Abb. 6-2: Metabolisierung im Striatum nach Gabe von 20 mg /kg Körpergewicht racemischem MDMA

Abb. 6-3: Metabolisierung im Plasma nach Gabe von 20 mg /kg Körpergewicht racemischem MDMA

Abb. 6-4: Metabolisierung im Cortex nach Gabe von 20 mg /kg Körpergewicht (R)-MDMA

Abb. 6-5: Metabolisierung im Striatum nach Gabe von 20 mg /kg Körpergewicht (R)-MDMA

Abb. 6-6: Metabolisierung im Plasma nach Gabe von 20 mg /kg Körpergewicht (R)-MDMA

Abb. 7-7: Metabolisierung im Cortex nach Gabe von 20 mg /kg Körpergewicht (S)-MDMA

Abb. 6-8: Metabolisierung im Striatum nach Gabe von 20 mg /kg Körpergewicht (S)-MDMA

Abb. 6-9: Metabolisierung im Plasma nach Gabe von 20 mg /kg Körpergewicht (S)-MDMA

6.4 MDE-Versuch

Bei den aus dem MDE-Platzpräferenzversuch hervorgegangenen Proben wurde im Vergleich zu den MDMA-Proben ebenfalls kein Unterschied zwischen der Gabe des Racemats und den Enantiomeren gefunden. Sowohl das racemische MDE, wie die Enantiomere (R)- und (S)-MDE wurden in gleicher Konzentration wie im MDMA-Versuch verabreicht. Die Enantiomere und ihr Racemat waren auch in ihrem Metabolisierungsmuster ebenso wie in ihrem belohnenden Effekt bei der Platzpräferenz vergleichbar (Abb. 6.10 – 6.18).

Im Vergleich zu den MDMA-Proben konnte hier jedoch weder im Gehirn, noch im Plasma eine vergleichbar hohe Konzentration an Metaboliten gefunden werden; die Metabolisierungsrate von MDE war insgesamt geringer als von MDMA. Im Cortex und Striatum ist die Konzentration des detektierten (R)-MDE niedriger als die Konzentration von (S)-MDE. Im Plasma ist das Konzentrationsverhältnis genau umgekehrt. Zwischen den Konzentrationen von (R)- bzw. (S)-HME und (R)- bzw. (S)-MDA besteht kein signifikanter Unterschied im Gegensatz zu den MDMA-Proben. Dieser Effekt könnte mit der geringeren Neurotoxizität des MDE-Derivats im Gegensatz zum MDMA stehen.

Abb. 6-10: Metabolisierung im Cortex nach Gabe von 20 mg /kg Körpergewicht racemischem MDE

Abb. 6-11: Metabolisierung im Striatum nach Gabe von 20 mg /kg Körpergewicht racemischem MDE

Abb. 6-12: Metabolisierung im Plasma nach Gabe von 20 mg /kg Körpergewicht racemischem MDE

Abb. 6-13: Metabolisierung im Cortex nach Gabe von 20 mg /kg Körpergewicht (R)-MDE

Abb. 6-14: Metabolisierung im Striatum nach Gabe von 20 mg /kg Körpergewicht (R)-MDE

Abb. 6-15: Metabolisierung im Plasma nach Gabe von 20 mg /kg Körpergewicht (R)-MDE

Abb. 6-16: Metabolisierung im Cortex nach Gabe von 20 mg /kg Körpergewicht (S)-MDE

Abb. 6-17: Metabolisierung im Striatum nach Gabe von 20 mg /kg Körpergewicht (S)-MDE

Abb. 6-18: Metabolisierung im Plasma nach Gabe von 20 mg /kg Körpergewicht (S)-MDE

7 Zusammenfassende Diskussion und Schlussfolgerung

7.1 Diskussion der Platzpräferenzversuche

Die vorliegende Arbeit untersucht verhaltenspharmakologische Aspekte des Belohnungssystems im Zusammenhang mit den Methylendioxyderivaten und deren jeweiligen Enantiomeren. Während Dopamin als Haupttransmitter in diesem System betrachtet wird, ist die Funktion anderer Transmitter wie das Serotonin vergleichsweise wenig bekannt. In diesem Zusammenhang ist bisher noch nicht geklärt, wie die unterschiedlich am Menschen wirkenden Enantiomere von MDMA und MDE [35, 36] sich im Vergleich zu ihren Racematen in ihrer psychotropen Wirkung an der Ratte im Platzpräferenzversuch verhalten.

Beim Nacharbeiten der Platzpräferenzversuche von Bilsky und Marona-Lewicka [73, 75, 76, 22] konnte keine Signifikanz für racemisches MDMA im Gegensatz zu rac. Amfetamin festgestellt werden (vgl. Abb. 4-3). Aus diesem Grund wurde nach Unterschieden im Versuchsdesign gesucht und Differenzen in der isolierten bzw. nicht isolierten Tierhaltung ausgemacht. Es wurde vermutet und letztendlich auch bestätigt, dass das soziale Umfeld der Tiere einen großen Effekt auf die Versuchsergebnisse hat (vgl. Abb 4-4).

Ratten, die zuvor ein oder zwei Wochen isoliert gehalten worden waren, zeigten nunmehr eine hochsignifikante Platzpräferenz. Nach Rilke et al. [77] steht die Änderung der Haltungsart bei den Ratten in Zusammenhang mit einem schnellen Abfall des Serotoninspiegels in Striatum und Cortex. Somit hat MDMA als Serotoninreleaser bei vorher isolierten Tieren mit niedrigerem Serotoninspiegel einen deutlichen Effekt auf die Platzpräferenz. Dieser Effekt geht bei drei Wochen isolierten Tieren wieder zurück (vgl. Abb. 4-4). Nach dieser Zeit steigt entsprechend Rilke et al der Serotoninspiegels [77, 81] infolge eines Gewöhnungsprozesses des Gehirns an den Isolationszustand wieder langsam an. Nicht auszuschließen ist, dass die Beobachtung auf die geringe Anzahl der Tiere zurückzuführen ist. Zusammenfassend wird konstatiert, dass die Art der Tierhaltung einen direkten Einfluss auf den belohnenden Effekt im Rahmen der Platzpräferenz bei MDMA hat. Aus diesem Grunde wurde bei allen anschließenden Platzpräferenzversuchen die isolierte Tierhaltung über einen Zeitraum von 2 Wochen zur Vorbereitung gewählt.

Beim anschließenden MDMA-Versuch wurde der belohnende Effekt des racemischen MDMA mit dem der beiden Enantiomeren verglichen. Dabei stellte sich heraus, dass das Racemat wie beide Enantiomere bei gleicher Dosierung (5 mg/kg Körpergewicht) eine signifikante Platzpräferenz aufwiesen. Beide Enantiomere tragen gleichermaßen zur Wirkung bei und unterscheiden sich nicht vom Racemat. Konträr dazu wurde von Nichols and Lyon et al. [82, 6] durch Microdialyse von Entaktogenen stereospezifischen Wechselwirkungen mit den Rezeptoren gezeigt Auch in den Selbstversuchen von Shulgin [83] wird von Unterschieden der jeweiligen Enantiomeren in der entaktogenen Wirkung berichtet.

Im Gegensatz zum MDMA-Versuch konnte beim racemischen MDE und seinen Enantiomeren keine signifikante Platzpräferenz festgestellt werden, allenfalls ist eine vergleichbare Tendenz aller drei Substanzen erkennbar (s. Abb. 4-5). Diese deutet auf einen geringeren belohnenden Effekt des MDE im Vergleich zum MDMA hin. In den Humanversuchen wurden eindeutige Unterschiede in der entaktogenen Wirkung der jeweiligen Enantiomeren nachgewiesen [35, 36].

Nach diesen Ergebnissen dürften die belohnenden Effekte von racemischem MDMA bzw. MDE und deren Enantiomeren von der entaktogenen Wirkung abzukoppeln sein.

7.2 Diskussion der Metabolismusuntersuchungen

Die Analyse der zu guantifizierenden Substanzen aus den Gehirngewebe- und Plasmaproben der MDE-Gruppe wurde nach der bereits in unserem Arbeitskreis entwickelten enantioselektiven Methode [51, 351 durchgeführt. Die Probenvorbereitung erfolgte nach enzymatischer Glucuronidspaltung und einer nur bei den Plasmaproben durchgeführten Plasmaproteinspaltung durch Trennung an Kationenaustauscher, der die Substanzen selektiv und mit hoher einem Wiederfindungsrate aus den biologischen Matrices extrahierte. Für die quantitative HPLC-Bestimmung der MDMA- und MDE-Proben aus dem Gehirngeweben und Plasma wurde die gleiche chirale Proteinphase CBH eingesetzt, wie sie bereits erfolgreich bei den MDE-Proben von Büchler [35] verwendet worden war. Als fluorimetrische war möglich, da bei der Anregungswellenlänge von λ = 286 allen 6 zu bestimmenden Substanzen eine Eigenfluoreszenz aufwiesen, die bei λ = 322 abstrahlte. Als interne Standards wurden die bereits von Büchler für die MDE-Proben eingesetzte Substanz NEMDBA genommen. Für die MDMA-Proben wurde das in unserem Arbeitskreis synthetisierte NPMDPEA verwendet. Beide Substanzen erfüllten alle Ansprüche die an einen Internen Standard gerichtet sind [84, 85].

MDMA läßt im Cortex und Striatum ein ähnliches Metabolisierungsmuster erkennen. Es trat dabei ein erhöhte Konzentration an dem Metaboliten MDA gegenüber HMMA auf. Im Plasma waren beide Metaboliten im ungefähr gleichen Verhältnis vorzufinden, d.h. das Metabolisierungsmuster im Plasma unterscheidet sich von dem im Gehirn. Dies kann auf eine weitere Metabolisierung im Gehirn zurückgeführt werden. Dadurch ist auch die erhöhte Konzentration an (S)-MDA erklärbar. Da die Probenentnahme bei allen Tieren zum gleichen Zeitpunkt nach ca. 40 Minuten nach Substanzgabe erfolgte, sind die Metabolisierungsmuster nur als Momentaufnahme anzusehen.

Die MDMA-Proben lagen sowohl im Gehirn, wie auch im Plasma verhältnismäßig stark metabolisiert vor, wobei die höhere (S)-Metabolitenkonzentration auffiel. Das entspricht den Beobachtungen von Fallon et al. [49], die ebenfalls nach Racematgabe eine geringere AUC-Werte und Halbwertszeit von (S)-MDMA und dementsprechend eine erhöhte Konzentration an (S)-MDA in Humanproben fanden. Infolgedessen kann man von einer enantioselektiven Metabolisierung ausgehen.

Im Gegensatz dazu wurde bei den racemischen MDE-Proben im Plasma gegenüber dem Gehirngewebe ein umgekehrtes Enantiomerenverhältnis der Ausgangssubstanzen festgestellt: Im Plasma fand man mehr (R)- als (S)-MDE.

Die klassischen MDE-Metaboliten, HME und MDA, waren kaum detektierbar. Der bei den MDMA-Proben entdeckte Überschuss an (S)-MDA konnte nicht ausgemacht werden, ein möglicher Hinweis auf die geringere Toxizität von MDE. Dementsprechend fanden auch Büchler et al [35, 36] über den gesamten Kinetikzeitverlauf von Humanproben keinen Unterschied der AUC-Werte von (R)und (S)-MDA. Obwohl die maximale Blutkonzentration schneller beim (S)-MDA erreicht wird und die Elimination rascher erfolgt. Wie beim MDMA könnte man auch beim MDE einen enantioselektiven Metabolismus annehmen. Büchler [35] ging nach seinen Ergebnissen davon aus, dass die metabolisierenden Enzyme der Cytochrom P 450-Familie eine Stereoselektivität besitzen, da unabhängig von der Ab- oder Anwesenheit des CYP2D6 ähnliche Urin- und Plasmaspiegel vorliegen. Als mögliche Ursache wird auch eine enantioselektive Passage der Blut-Hirn-Schranke diskutiert [51], da bei MDE im Plasma und Gehirngewebe ein unterschiedliches Enantiomerenverhältnis vorliegt. Sowohl Kreth [38] also auch Tucker [40] konnten in vitro weder für MDE noch MDMA eine enantioselektive Metabolisierung beweisen. Der Vergleich von in vitro und in vivo Methoden stellt aber immer noch ein Problem dar, da die Substratkonzentrationen, die in diesen Versuchen eingesetzt werden, zu unterschiedlich zum direkten Vergleich sind. Beweis für eine solche enantioselektive Metabolisierung für MDE konnten im vorliegenden Tierversuch bisher nicht erbracht werden, auch wenn die Humanversuche von Brunnenberg [51] und Büchler [35] dafür sprechen.

MDMA ist im Vergleich zu MDE das toxischere Derivat [24]. Dafür werden im Wesentlichen zwei Gründe angeführt: zum Einen die erhöhte Konzentration an Dihydroxymetaboliten nach Johnson et al [32] und zum Anderen die erhöhte Konzentration an (S)-MDA nach Schmidt et al [18].

Beide Theorien schließen einander nicht aus und werden durch die vorliegende Arbeit bestätigt, denn die Dihydroxymetaboliten als Vorstufe von HMMA und der (S)-MDA-Metabolit werden vermehrt bei racemischer MDMA-Gabe gebildet.

Zusammenfassend ist festzustellen, dass alle Ziele der Arbeit erreicht wurden. Racemat und beide Enantiomere wiesen bei gleicher Dosierung (5 mg/kg Körpergewicht) eine vergleichbare Platzpräferenz auf. Die belohnenden Effekte sind von der entaktogenen Wirkung abzukoppeln. In den vorliegenden Tierversuchen ist die enantioselektive Metabolisierung von MDMA eindeutig, bei MDE kann der enantioselektive Übergang durch die Blut-Hirn-Schranke nicht ausgeschlossen werden. Das vermehrte Auftreten des Dihydroxymetaboliten als Vorstufe von HMMA und des (S)-MDA-Metaboliten nach MDMA-Gabe dürfte die deutlich höhere Toxizität von MDMA gegenüber MDE erklären.

8 Experimenteller Teil

8.1 Materialien

8.1.1 Chemikalien und Reagenzien

Die Racemate von MDMA, MDE und MDA wurden im eigenen Arbeitskreis synthetisiert [37]. Die dazugehörige Enantiomerentrennung erfolgte nach einer in unserem Arbeitskreis entwickelten Methode [35].

Die für analytische Zwecke verwendeten Chemikalien, Reagenzien und Lösungsmittel entsprachen p.a.-Qualität und wurden von den Firmen Aldrich, Fluka, Merck und Sigma bezogen. Bidestilliertes Wasser für die HPLC wurde im Technologischen Institut der Universität Tübingen hergestellt.

8.1.2 HPLC- und Extraktionssäulen

Firma ChromTech (Hängersten, Schweden):

Chiral-CBH Guard Column 10 x 3,0 mm; 5 µm (HPLC-Vorsäule) Chiral CBH 150 x 4,0 mm; 5µm (HPLC-Trennsäule)

Firma Pharmacia (Freiburg):

PD-10[®] Säule, gefüllt mit Sephadex-G-25M Material

Firma ICT GmbH (Bad Homburg):

Isolute CBA[®]-Säulen (200 mg; 3 mL Säulenreservoir)

8.1.3 Geräte

8.1.3.1 ¹H-NMR-Spektroskopie

Das H¹-NMR der synthetisierten Substanz HMMA wurde mit einem Gerät der Firma Bruker NMR 200 Avance (System: DPX 200) aufgenommen. Der Messkopf war ein 5mm Dual 13C/1H Z32251037.

8.1.3.2 Schmelzpunktbestimmung

Die Schmelzpunkte der Synthese und Synthesezwischenprodukte wurden durch ein Gerät der Firma Gallenkamp der Seriennummer 90/02/215 ermittelt.

8.1.3.3 pH-Wertbestimmung

Die Einstellung der pH-Werte für die HPLC-Puffer wurde mit einem Mikroprozessor pH-Meter pH 320 der WTW durchgeführt.

8.1.3.4 Waage

Das Auswägen der Chemikalien für die analytischen Methoden erfolgte mit einer SBA/SBC-Laborwaage der Firma Scaltec.

8.1.3.5 Zentrifuge

Die Zentrifugation der Proteinfällung aus Plasma erfolgte mit Hilfe einer EPA 8 Zentrifuge der Firma Hettich, Tuttlingen.

8.1.3.6 Homogenisator

Bei dem Homogenisator handelte es sich um einen Stabshomogenisator der Firma Labortechnik.

8.1.3.7 Festphasenextraktion

Für die Extraktion der Plasma- und Gewebeproben mittels Festphasenextraktion wurde eine VAC Elu-Vakuum Arbeitsstation der Firma Analytichem International & ICC mit zehn Extraktionsplätzen und Vakuum Controller eingesetzt.

8.1.3.8 HPLC-Fluoreszenz

Die HPLC-Station umfasste eine Gradienten-Pumpe L6200, einen LaChrom Autosampler L 7200 und einen LaChrom Fluoreszenz-Detektor L 7480 der Firma Merck. Außerdem wurde zum Klimatisieren der Säule auf 18°C ein Techlab Chromatographie Säulenofen verwendet. Die Auswertung der Chromatogramme erfolgte durch ein D 7000 Interface-Modul und der D 7000 HPLC-Manager Software der Firma Merck.

8.1.3.9 Platzpräferenz-Anlage

Die Platzpräferenz-Anlage umfasste 6 Boxen mit jeweils einer Höhe der Kammern von 29,5 cm und einer Breite von 25 cm. Die Boxen unterteilen sich in jeweils 3 Unterboxen, zwei Konditionierungskammern mit einer Länge von 31 cm und einem mittleren Kompartiment mit einer Länge von 11 cm. Die Infrarot-Messstellen befinden sich ca. 1 cm über dem Boden. Die Platzpräferenz-Anlage wurde von der Firma TSE, Bad Homburg, Deutschland geliefert. Die Versuche wurden mit der dazugehörigen Software der Firma TSE ausgewertet.

8.1.3.10 Versuchstiere

Die für alle Platzpräferenzversuche verwendeten Ratten waren vom Sprague-Dawley-Typ und männlichen Geschlechts. Sie hatten alle ein Durchschnittsgewicht von ca. 220 g pro Tier. Sie wurden gezüchtet und ausgeliefert von der Firma Charles River Laboratories, Sulzfeld, Deutschland.

8.1.3.11 Rattenplasma bzw. -gewebe

Das zur Methodenentwicklung und Validierung verwendete Rattenplasma von Sprague-Dawley-Ratten wurde von der Firma Charles River Laboratories, Sulzfeld geliefert. Das Leergewebe vom Rattengehirn wurde aus eigenen Tierbeständen gewonnen, wobei die Tiere alle dem gleichen Genpool entstammen und Sprague-Dawley-Ratten waren.

Das Plasma wurde in Volumina zu 2 mL portioniert und bei – 20°C tiefgefroren. Das Gehirngewebe wurde portioniert á ca. 50 mg und in 1 mL bidestilliertem Wasser homogenisiert und ebenfalls bei –20°C tiefgefroren.

8.2 Synthesevorschrift N-Ethyl-4-hydroxy-3methoxymethamphetamin (HMMA)

8.2.1 Vorwort zur Synthese von HMMA

In Analogie zur HME-Synthese von Büchler 2001 [35] im eigenen Arbeitskreis wurde ebenfalls die reduktive Aminierung gewählt. Ausgehend von Vanillin wird zunächst mit Ammoniumacetat und Nitroethan in Eisessig umgesetzt. Dabei entsteht das Nitrostyrenderivat, welches anschließend mit Eisen, Eisen-III-chlorid und Salzsäure in ein Phenylacetonderivat überführt wird. Dieses wird daraufhin einer reduktiven Aminierung mit Methylammoniumchlorid und Natriumcyanoborhydrid in wasserfreiem Methanol unterzogen.

Abb. 8-1: Syntheseweg für HMMA

8.2.2 Synthesevorschrift von N-Methyl-3-Hydroxy-4methoxyamphetamin (HMMA)

8.2.2.1 2-Methoxy-4-(2-nitrophenyl)-phenol (4-Hydroxy-3methoxyphenyl-2-methyl-2-nitrostyren (HMNS))

85,5 g Vanillin (0,5625 mol) und 130 g Ammoniumacetat (1,7 mol) werden in 400 mL Eisessig gelöst; daraufhin werden 130 mL Nitroethan (1,68 mol) zugetropft. Der Ansatz wird bei 80 °C für 3 h unter Rückfluß erhitzt. Danach wird die tiefrote Lösung in 1000mL Eiswasser gegeben und 30 min kräftig gerührt; der orangerote Niederschlag wird abfiltriert und mit 300 mL Eiswasser gewaschen (der Essigsäuregeruch sollte nicht mehr wahrnehmbar sein). Die entstandenen gelbroten Kristalle werden in Wasser/Methanol umkristallisiert.

 M_r (HMNS) = 209,20 g/mol Summenformel (HMNS) = $C_{10}H_{11}NO_4$ Schmelzpunkt = 99 °C Ausbeute (HMNS) = 49,58 g (42,13%)

8.2.2.2 1-(4-Hydroxy-3-methoxy-phenyl)-propan-2-on (4-Hyxdroxy-3-methoxy-phenylaceton (HMPA))

49,58 g (237 mmol) 4-Hydroxy-3-methoxy-α-methyl-nitrostyren werden in 190 mL Wasser suspendiert und mit 190 g (1060 mmol) Eisenpulver und 5,85 g Eisen-IIIchlorid mit einem KPG-Rührer intensiv gerührt. Innerhalb der nächsten Stunde werden 87 mL konz. HCI zugetropft. Danach wird der Ansatz unter Rückfluß 6 Stunden bei T = 90 °C erwärmt und gerührt. Anschließend wird das abgekühlte Reaktionsgemisch 6 mal mit 200 mL Toluol extrahiert, um das entstandene 4-Hydroxy-3-methoxy-phenylaceton in die organische Phase zu überführen, die dabei rot wird. Um die Toluolphase von Nebenprodukten zu reinigen, wird sie mit 2M Salzsäure durch Extraktion gewaschen, bis die wässrige Salzsäurephase farblos bleibt. Danach wird die organische Phase mit 2 mal 200 mL Wasser ausgeschüttelt. Die Toluolphase über Natriumsulfat getrocknet und zur Trockene eingedampft. Das zurückbleibende, gelbliche Öl wird gewogen und dann in wasserfreiem Methanol aufgenommen. M_r (HMPA)= 180,19 g/mol Summenformel (HMPA) = $C_{10}H_{12}O_4$ Siedebereich (HMPA)= 93-94 °C Ausbeute (HMPA) = 32,7 g (76,57 %)

8.2.2.3 4-(2-Methylamino-propyl)-2-methoxy-phenol (N-Methyl-4hydroxy-3-methoxy-amphetamin (HMMA))

40,5 g Methylaminhydrochlorid (601 mmol), 32,7 g HMPA (179,85 mmol) und 8 g Natriumcyanoborhydrid (129,6 mmol) werden in 500 mL wasserfreiem Methanol 72 h bei Zimmertemperatur gerührt. Der pH-Wert wird während dieser Zeit mit konzentrierter Salzsäure auf 7 eingestellt. Nach Beendigung der Reaktion werden 500 mL Wasser und 33 mL konz. Salzsäure zu dem Ansatz gegeben. Darauf läßt man das Gemisch mindestens 4 Stunden rühren, bis kein Cyanwasserstoffgas mehr entsteht. Dann wird die Lösung mit 4 x 100 mL Dichlormethan gewaschen und die organische Phase verworfen. Die wäßrige Phase wird mit 15 %-iger Natronlauge alkalisiert und auf pH 9,8 eingestellt. Nach längerem Rühren entsteht ein Niederschlag, der abfiltriert wird. Ferner wird die Lösung mit 3 x 200 mL Diethylether ausgeschüttelt, die darauf eingeengt wird. Die organische Phase wird über Natriumsulfat getrocknet und darauf im Vakuum eingeengt. Der feste Rückstand wird in Aceton aufgenommen, mit dem Niederschlag der Alkalisierung vereinigt und mit konzentrierter Salzsäure vorsichtig unter Kühlung neutralisiert. Der sich bildende HMMA-HCI Niederschlag wird für 24 Stunden zur Vervollständigung der Fällung im belassen. Die entstandenen Kristalle werden abfiltriert Eisfach und im Trockenschrank getrocknet. Zur Aufreinigung wird HMMA-HCI aus Isopropanol umkristallisiert und in Diethylether unter Rühren gewaschen.

 M_r (HMMA-HCI) = 228,71 g/mol M_r (HMMA Base) = 195,26 g/mol Summenformel (HMMA-HCI) = $C_{11}H_{17}NO_2$ -HCI Schmelzpunkt (HMMA-HCI) = Ausbeute (HMMA-HCI) = 4,79 g (3,48 %)
8.2.3 Spektroskopie

8.2.3.1 UV-Chromatogramm der synthetisierten Substanz HMMA

Abb. 8-2: UV-Chromatogramm der synthetisierten Substanz HMMA-HCI

8.2.3.2 H¹-NMR-Spektroskopie der synthetisierten Substanz HMMA

Abb. 8-3: H¹-NMR des synthetisierten HMMA-HCI

Tab. 8.1: Zuordnung der H¹-Resonanzen in D₂O gemessen

δ (ppm)	Zuordnung
1,1	RCH-CH ₃
2,5	NH-CH ₃
2,5	-CH-N-
3,3	-CH ₂ -
3,6	-O-CH ₃
4,6	H ₂ O/D ₂ O
6,7	Aromat mit 3 freien H

Die NH₂ und OH-Gruppe ist durch den Austausch mit Deuterium nicht zu sehen, daher nur 15 H-Atome anstelle von 17 H-Atomen zu sehen.

8.3 Platzpräferenzversuche

8.3.1 Tierhaltung und Nahrung

Die Tiere wurden in Standard-Plexiglaskäfigen gehalten. Sie hatten einen 12-Stunden-Tag/Nacht-Rhythmus, bei dem um 7.00 Uhr das Licht anging. Während dem Versuch bekamen die Tiere Wasser *ad libitum* und einmal am Tag (um ca 16 Uhr) 12 g pro Tier eines Standard-Nagerfutters.

8.3.2 Allgemeines Versuchsdesign

Die Tiere wurden über einen Zeitraum von 2 Wochen nach Ankunft an die neue Umgebung gewöhnt, in dem sie während dieser Zeit in ihren Wohnkäfigen belassen wurden. Während der letzten 5 Tage wurde jedes Tier ca 10 Minuten gehandelt, das heißt dass mit den Tieren gespielt wurde, um sie an die menschlichen Hand zu gewöhnen.

Am ersten Versuchstag wurden die Ratten einzeln für 15 Minuten in die Platzpräferenzbox gesetzt. Dabei hatten sie freien Auslauf in allen drei Kompartimenten (Box A, Mitte und Box B). Dieser Tag wurde von uns als "Baseline" bezeichnet. An diesem Tag sind schon Präferenzen von Tieren in die eine oder andere Kammer zu erkennen und damit auch noch durch eine andere statistische Verteilung auf die belohnte Kammer zu korrigieren. Die gelaufene Strecke und die Dauer des Aufenthalts in den jeweiligen Kompartimenten wurde vom Computer mit Hilfe der Software aufgezeichnet.

Ab dem nächsten Tag wurden die Tiere 8 Tage alternierend mit Placebo beziehungsweise der jeweiligen Substanz gespritzt. Nach dem Spritzen wurden die Tiere 10 Minuten wieder in ihren Wohnkäfig verbracht und dann in die vorher statistisch verteilte und festgelegte Box gesetzt. Dazu wurden die Tiere für 30 Minuten in die belohnte Kammer (Bsp.: Box A) an einem Tag mit belohnender Substanz gesetzt. An einem Placebo-Tag wurde das Tier dann in die entsprechend gegenüberliegende Box (Bsp. Box B) gesetzt.

Nach 8 Tagen wurde dann der Testtag angesetzt und dabei hatten die Tiere abermals freien Auslauf für 15 Minuten in allen drei Kompartimenten (Box A, Mitte und Box B). Die Daten wurden erneut mit dem Computer aufgezeichnet.

8.3.2.1 Versuchsdesign Vergleich racemisches MDMA vs. DL-Amphetamin

Tab. 8.2: Versuchsdesign Vorversuch racemisches MDMA vs. DL-Amphetamin

Tag(e) nach Ankunft	Experiment	Tier-Gruppe	Substanzgabe
der Tiere			und -name
0	Verteilen auf die	Alle 40 Tiere	Keine
	Wohnkäfige(à 5 Tiere		Substanzgabe
	pro Käfig)		
8-13	Handeln der Tiere und	Alle 40 Tiere	Keine
	Nummerierung		Substanzgabe
14	Baseline	Alle 40 Tiere	Keine
			Substanzgabe
15, 17, 19, 21	Konditionierung	Alle 40 Tiere	Mit rac. MDMA,
		(in Gruppen á 10	DL-Amphetamin
		Tiere)	bzw. Palcebo
16, 18, 20, 22	Konditionieren	Alle 40 Tiere	Alle Tiere mit
		(in Gruppen á 10	Placebo
		Tiere)	
23	Testtag	Alle 40 Tiere	Keine
			Substanzgabe

8.3.2.2. Versuchsdesign des Isolations-Versuchs

Tab. 8.3: Versuchsdesign des Isolations-Versuchs

Tag(e) nach Ankunft	Experiment	Tier-Gruppe	Substanzgabe
der Tiere			und -name
0	Verteilen auf die	Alle 40 Tiere	Keine
	Wohnkäfige(6 mal á 5		Substanzgabe
	Tiere pro Käfig; 10		
	Tiere Einzelhaltung)		
8-14	insgesamt 20 Tiere	Alle 40 Tiere	Keine
	Einzelhaltung,		Substanzgabe
	restliche 20 Tiere (á 5		
	pro Käfig)		
15-21	Alle 30 Tiere in	Alle 40 Tiere	Keine
	Einzelhaltung; 2 mal á		Substanzgabe
	5 Tiere in einem Käfig		
15-21	Handeln der Tiere und	Alle 40 Tiere	Keine
	Nummerierung		Substanzgabe
22	Baseline	Alle 40 Tiere	Keine
			Substanzgabe
23, 25, 27, 29	Konditionierung	Alle 40 Tiere	Mit rac. MDMA
		(in Gruppen á 10	bzw Palcebo
		Tiere)	
24, 26, 28, 30	Konditionieren	Alle 40 Tiere	Alle Tiere mit
		(in Gruppen á 10	Placebo
		Tiere)	
31	Testtag	Alle 40 Tiere	Keine
			Substanzgabe

8.3.2.3 Versuchsdesign des MDMA-Versuchs

Tab. 8.4: Versuchsdesign des MDMA-Versuchs

Tag(e) nach	Experiment	Tier-Gruppe	Substanzgabe
Ankunft der Tiere			und -name
0	Verteilen auf die	Alle 40 Tiere	Keine
	Wohnkäfige(Einzelhaltung)		Substanzgabe
8-13	Handeln der Tiere und	Alle 40 Tiere	Keine
	Nummerierung		Substanzgabe
14	Baseline	Alle 40 Tiere	Keine
			Substanzgabe
15, 17, 19, 21	Konditionierung	Alle 40 Tiere	Mit rac., (R)- ,
		(in Gruppen á 10	(S)-MDMA bzw
		Tiere)	Palcebo
16, 18, 20, 22	Konditionieren	Alle 40 Tiere	Alle Tiere mit
		(in Gruppen á 10	Placebo
		Tiere)	
23	Testtag	Alle 40 Tiere	Keine
			Substanzgabe
24-38	Auswaschen der	Alle 40 Tiere	Keine
	Substanzkonzentrationen		Substanzgabe
	im Blut		
39-43	Dekapitation der Tiere mit	Alle 40 Tiere	Substanz, je
	Gewebe- und		nach vorheriger
	Plasmaentnahme		Gruppenzuordnu
			ng
			1

8.3.2.4 Versuchsdesign des MDE-Versuchs

Tab. 8.5: Versuchsdesign des MDE-Versuchs

xperiment		Tier-Gruppe	Substanzgabe
			und -name
erteilen auf	die	Alle 40 Tiere	Keine
′ohnkäfige(Einzelhal	tung)		Substanzgabe
andeln der Tiere	und	Alle 40 Tiere	Keine
ummerierung			Substanzgabe
aseline		Alle 40 Tiere	Keine
			Substanzgabe
onditionierung		Alle 40 Tiere	Mit rac., (R)- , (S)-
		(in Gruppen a	á MDE bzw
		10 Tiere)	Palcebo
onditionieren		Alle 40 Tiere	Alle Tiere mit
		(in Gruppen a	á Placebo
		10 Tiere)	
esttag		Alle 40 Tiere	Keine
			Substanzgabe
uswaschen	der	Alle 40 Tiere	Keine
ubstanzkonzentratio	nen		Substanzgabe
า Blut			
ekapitation der Tier	e mit	Alle 40 Tiere	Substanz, je nach
ewebe-	und		vorheriger
asmaentnahme			Gruppenzuordnun
			g
	rteilen auf ohnkäfige(Einzelhal ndeln der Tiere mmerierung seline nditionierung nditionieren sttag swaschen bstanzkonzentratio Blut kapitation der Tiere swebe- asmaentnahme	rteilen auf die ohnkäfige(Einzelhaltung) ndeln der Tiere und mmerierung seline nditionierung nditionieren sttag swaschen der bstanzkonzentrationen Blut kapitation der Tiere mit ewebe- und asmaentnahme	rteilen auf die Alle 40 Tiere phnkäfige(Einzelhaltung) ndeln der Tiere und Alle 40 Tiere mmerierung seline Alle 40 Tiere (in Gruppen a 10 Tiere) nditionieren Alle 40 Tiere (in Gruppen a 10 Tiere) sttag Alle 40 Tiere (in Gruppen a 10 Tiere) sttag Alle 40 Tiere swaschen der Alle 40 Tiere bstanzkonzentrationen Blut kapitation der Tiere mit ewebe- und asmaentnahme

8.4 Finale Operation der Tiere

8.4.1 Substanzgabe und Betäubung

Den Tieren wurden bestimmte Dosen der jeweiligen Substanzen verabreicht (Tab. 8.6)

Tab.	8.6:	Tabelle der	verabreichten	Substanzmengen	zur Betäubung	der Tiere

Tiergruppe	Substanzme	enge	Rompun®		Ketanest ®	
Rac. MDMA	20	mg/kg	5	mg/kg	100	mg/kg
	Körpergewic	ht	Körpergewi	cht	Körpergewi	icht
R-MDMA	10	mg/kg	5	mg/kg	100	mg/kg
	Körpergewic	ht	Körpergewi	cht	Körpergewi	icht
S-MDMA	10	mg/kg	5	mg/kg	100	mg/kg
	Körpergewic	ht	Körpergewi	cht	Körpergewi	icht
Rac MDE	20	mg/kg	5	mg/kg	100	mg/kg
	Körpergewic	ht	Körpergewi	cht	Körpergewi	icht
R-MDE	10	mg/kg	5	mg/kg	100	mg/kg
	Körpergewicht		Körpergewi	cht	Körpergewi	icht
S-MDE	10	mg/kg	5	mg/kg	100	mg/kg
	Körpergewic	ht	Körpergewi	cht	Körpergewi	icht

Anschließend wurden sie für 10 Minuten erneut in Ihren Wohnkäfig verbracht, um ein Optimum an Wirkung zu erzielen.

Nach Erreichen des Wirkoptimums der Ecstacy-Derivate bekamen die Tiere eine Dosis von 5 mg/kg Körpergewicht Rompun® (Xylazin 20 mg/mL) zur Analgesie i.p. gespritzt und direkt anschließend 100 mg/kg Körpergewicht Ketanest® (Ketamin 50mg/mL) zur Betäubung.

8.4.2 Vollblutentnahme

Das betäubte Tier (s. 8.4.1) wurde auf einer blanken Operationsgrundlage fixiert. Darauf folgte eine Öffnung des Bauchraums mit einer OP-Schere und das Durchtrennen des Rippenbogens und des Zwerchfells. Das Vollblut wurde nach Freilegen des Herzens direkt aus der linken Kammer des Herzens mit einer 1 mL Spritze entnommen. In dieser Spritze befanden sich bereits 0,1 mL Na-Heparin®, also 10% des Gesamtvolumens. Diese Mischung aus Vollblut und Heparin wurde mit Hilfe eines *Wortexers* gemischt und in flüssigem Stickstoff schockgefrostet.

8.4.3 Gewebeentnahme

Die Tiere wurden durch Dekapitation mit Hilfe einer Guillotine getötet. Die Gehirne wurden schnell herauspräpariert und ca. 60 Sekunden in eiskalter Saline abgekühlt. Anschließend wurde das Gehirn auf einem gekühlten Schneideblock aus Aluminium unter Verwendung von Einweg-Mikrotomklingen in ca. 1,5mm dicke Scheiben geschnitten [86]. Aus diesen Scheiben wurden die relevanten Areale (posteriores, anteriores Striatum und der präfrontale Cortex) mit einem Mikroskalpell entnommen. Die Proben wurden sofort in ein Kryo-Röhrchen überführt, gewogen und in flüssigem Stickstoff schockgefrostet.

8.5 Methoden zur Quantifizierung in Plasma und Gehirngewebe

8.5.1 Probenvorbereitung

8.5.1.1 Plasma

Die mit Na-Heparin (10%) versetzten Vollblutproben wurde in flüssigem Stickstoff schockgefrostet und dann bei –20°C aufbewahrt.

Vor der Benutzung zur Probenaufbereitung wurden die Proben bei Raumtemperatur aufgetaut und anschließend bei 1100 g bzw 4500 U/min zentrifugiert. Der Überstand wurde in der Glucuronidspaltung eingesetzt.

8.5.1.2 Gehirngewebe

Das bei der finalen Operation den Ratten entnommene Gehirngewebe aus Striatum und Cortex wurde frisch gewogen und in flüssigem Stickstoff schockgefrostet.

Vor Gebrauch der Proben wurde das Gewebe bei Raumtemperatur aufgetaut, mit jeweils 1 mL bidestilliertem Wasser für 15 sec mit einem Stabhomogenisator homogenisiert und anschließend bei 10.000 g für 1 Minute zentrifugiert. Der Überstand wurde dann der Glucuronidspaltung zugeführt.

8.5.2 Enzymatische Hydrolyse

8.5.2.1 Reinigung der ß-Glucuronidase / Arylsulfatase

Eine PD10[®]-Säule (Füllmaterial Sephadex G25[®]) wird als erstes mit 25 mL eines 0,1 M Natriumacetatpuffers (pH 5,2) konditioniert. Anschließend werden 200µL ß-Glucuronidase/Arylsulfatase auf die Säule gegeben und mit 2,3 mL eines 0,1 M Natriumacetatpuffers (pH 5,2) gewaschen. Die Elution des gereinigten Enzymgemisches erfolgt mit 1 mL eines 0,1M Natriumacetatpuffers (pH 5,2). Das Eluat stellt die gereinigte Enzymlösung dar, mit der dann bei der Glucuronidspaltung weiter gearbeitet wird. Im Anschluß wird die Säule mit 25 mL 0,1 M Natriumacetatpuffer (pH 5,2) regeneriert.

8.5.2.2 Glucuronidspaltung

Die Plasma- bzw. Gewebeproben (Probevolumen 1 mL) werden mit 875 µL eines 0,1 M Natriumacetatpuffers (pH 5,2) versetzt. Dazu werden 125 µL der gereinigten Enzymlösung gegeben.

Diese Mischung wird dann in einem Wasserbad bei 37°C für 24 Stunden stehen gelassen.

8.5.3 Plasmaproteinfällung

Nach der Glucuronidspaltung wird die anfallende Plasmalösung mit 1,0 mL einer 20%igen Polyethylenglycol 6000-Lösung versetzt und im Anschluss 5 Minuten im Eisbad gekühlt. Danach wird der Ansatz 5 Minuten bei 7000 U/min und T=20°C zentrifugiert. Der Überstand wird der Festphasenextraktion zugeführt.

8.5.4 Festphasenextraktion

Eine Isolute CBA [®] 200 mg-Säule wird mit 1 mL Acetonitril und 1mL 0,1M Salzsäure konditioniert und dann mit 3 mL eines 0,1 M Natriumacetatpuffers (pH 6,5) äquilibriert. Anschließend wird die Plasmaproben nach der Plasmaproteinfällung beziehungsweise die Gewebeprobe nach der Konjugatspaltung auf die Säule gegeben. Nach dem Probenauftrag wird die Säule zuerst mit 2 mL Wasser und dann 2 mL eines Wasser-Methanol-Gemisches (75/25) gewaschen. Die Elution erfolgt mit 2 mL einer Mischung aus 8 Teilen Acetonitril und 2 Teilen 0,5 M Salzsäure.

Die eluierte Lösung wird unter Stickstoffatmosphäre und 45°C zur Trockene eingeengt und dann in 250µL Wasser aufgenommen.

8.5.5 Verwendete Lösungen

Tab. 8.7: Auflistung des verwendeten Lösungen

Name der Lösung	Probenart	Substanzgruppe
1,0 N Natriumacetatpuffer	Plasma	MDE-Gruppe
рН 5,2	Gehirngewebe	MDMA-Gruppe
1,0 N Natriumacetatpuffer	Plasma	MDE-Gruppe
рН 6,5	Gehirngewebe	MDMA-Gruppe
PEG 6000-Lösung	Plasma	MDE-Gruppe
20:80		MDMA-Gruppe
Standardlösung	Plasmaproben	MDMA-Gruppe
NPMDPEA	Gewebeproben	
Standardlösung NEMDBA	Plasmaproben	MDE-Gruppe
	Gewebeproben	
HCI 0,5N	Plasmaproben	MDE-Gruppe
	Gewebeproben	MDMA-Gruppe
ACN/HCI 0,5N	Plasmaproben	MDE-Gruppe
8:2	Gewebeproben	MDMA-Gruppe

8.5.6 Standardlösungen (Plasma, Gehirn)

Standardlösungen wurden verwendet und hergestellt, um die Proben für die Methodenentwicklung und die Validierung zu spiken. Die synthetisierten Substanzen racemisches MDE-HCI, MDMA-HCI, MDA-HCI, HMMA-HCI und HME-HCL wurden mit definierten Mengen abgewogen und auf ein bestimmtes Volumen mit bidestilliertem Wasser aufgefüllt. Zur Minimierung des Aufwandes wurden die Racemate der jeweiligen Substanzen verwendet, um dann enantioselektiv bestimmt zu werden.

Für das Plasma und die Gewebeproben wurden die gleichen Standardlösungen hergestellt.

Es wurden von jeder oben erwähnten Substanz 10,0 mg genau eingewogen und dann auf 100,0 mL mit bidestilliertem Wasser aufgefüllt. Aus diesen Stammlösungen wurden mit einer Eppendorf-Pipette jeweils Aliquote entnommen und mit Leerplasma bzw Leergehirngewebe auf 1,0 mL aufgefüllt. Mit diesen gespikten Proben wurde dann für jede Substanz die Validierung über den kompletten Arbeitsbereich durchgeführt.

8.5.7 HPLC-Fluoreszenzbestimmung für MDMA-Proben

Als Säule wurde eine Chiral-CBH 150 x 4,0 mm; 5µm mit einer Vorsäule Chiral-CBH 10 x 3,0 mm; 5µm verwendet.

Das bei diesen Proben verwendete Fließmittel bestand aus 20mM Natriumdihydrogenphosphat, 50µM Di-Natrium-ethylendiamintetraessigsäure (Na-EDTA) und 8 % Methanol (v/v) bei einem pH-Wert von 6,70.

Die Flussrate für die HPLC-Pumpe betrug 0,7 mL/min und der sich dabei aufbauende Druck in der Anlage hatte die Höhe von 94 bar.

Die Detektion erfolgte bei einer Extinktionswellenlänge von λ = 286 nm und einer Emissionswellenlänge von λ = 322 nm.

Ein Menge von 100µL wurde in die Anlage eingespritzt.

8.5.8 HPLC-Fluoreszenzbestimmung für MDE-Proben

Als Säule wurde eine Chiral-CBH 150 x 4,0 mm;5µm mit einer Vorsäule Chiral-CBH 10 x 3,0 mm; 5µm verwendet.

Das bei diesen Proben verwendete Fließmittel bestand aus 20mM Natriumdihydrogenphosphat, 50µM Di-natrium-ethylendiamintetraessigsäure (Na-EDTA) und 7 % Isopropanol (v/v) bei einem pH-Wert von 6,44.

Die Flussrate für die HPLC-Pumpe betrug 0,7 mL/min und der sich dabei aufbauende Druck in der Anlage hatte die Höhe von 92 bar.

Die Detektion erfolgte bei einer Extinktionswellenlänge von λ = 286 nm und einer Emissionswellenlänge von λ = 322 nm.

Ein Menge von 100µL wurde in die Anlage eingespritzt.

8.6 Validierung der HPLC-Gehaltsbestimmungen

8.6.1 Allgemeine Vorgehensweise bei der Validierung einer Methode

Bei der Validierung einer Methode muss am Anfang überlegt werden, welche Frage ich mit der anschließend kalibrierten Methode erfassen will und welche Anforderungen daraus an Richtigkeit und Präzision des Analysenvorfahrens zu stellen sind. Die Kalibrierung wurde nach Funk [85], Kromidas [87] und den ICH-Guidelines [84] zur Validierung von Analysenmethoden durchgeführt. Die Auswertung der Chromatogramme erfolgt über die Peakfläche.

8.6.2 Festlegung des Arbeitsbereiches

Für jede zu bestimmende Substanz, die im Laufe dieser Bestimmung quantifiziert werden musste, wurde ein Arbeitsbereich festgelegt und definiert. Der Arbeitsbereich sollte so festgelegt werde, dass sich die zu erwartende Konzentration der Probe in der Mitte der Kalibriergerade befindet. Die 5 zu bestimmenden Messpunkte pro Kalibrierfunktion waren äquidistant. Dabei werden der oberste, der mittlere und der unterste Punkt auf der Kalibriergerade mit Hilfe einer 10-fach Bestimmung gemessen. Die Werte dazwischen werden nur dreifach bestimmt. Der Arbeitsbereich von MDE und MDMA wurde getrennt, da sonst die Anforderung an die Varianzhomogenität nach Funk [85] nicht erfüllt waren.

	Arbeitsbereich	Plasma	Arbeitsbereich Gewebe
Substanz	(ng/mL)		(ng/g)
(R)-MDE	10-50 und 50-500		10-50 und 50-500
(S)-MDE	10-50 und 50-500		10-50 und 50-500
(R)-HME	10-50		10-50
(S)-HME	10-50		10-50
(R)-MDA	10-100		10-100
(S)-MDA	10-100		10-100
(R)-MDMA	10-50 und 50-500		10-50 und 50-500
(S)-MDMA	10-50 und 50-500		10-50 und 50-500
(R)-HMMA	10-50		10-50
(S)-HMMA	10-50		10-50
(R)-MDA	10-100		10-100
(S)-MDA	10-100		10-100

Tab. 8.8: Arbeitsbereichfestlegung für alle zu bestimmenden Substanzen

8.6.3 Prüfung auf Normalverteilung

Für eine ganze Reihe an statistischen Berechnungen, wie zum Beispiel dem F-Test werden normalverteilte Daten vorausgesetzt. Die Normalverteilung ist eine Wahrscheinlichkeitsverteilung von Messwerten, bei der nur zufällige Fehler auftreten und die Messwerte von der Standardabweichung und dem Mittelwert abhängen. Zur Prüfung auf Normalverteilung wurde der Test nach David durchgeführt. Dabei wird der Quotient aus der Spannweite R (größter Wert – kleinster Wert) und der Standardabweichung s gebildet. Wenn sich der Wert innerhalb der von David vorgegebenen Grenzwerte befindet, dann sind sie mit einer Wahrscheinlichkeit > 99% normalverteilt [88]. Die Prüfung wurde für alle Arbeitsbereiche an den oberen und unteren Grenzen des Arbeitsbereichs durchgeführt. An der unteren Grenze ist der Grenzwert g_u = 2,51. An der oberen Grenze dagegen g_o = 4,24.

Substanz	Arbeitsbereich	Matrix	Untere	Obere Grenze
			Grenze	
(R)-MDMA	10 – 50 ng/mL	Plasma	3,11	2,67
(R)-MDMA	50 – 500 ng/mL	Plasma	2,67	3,33
(S)-MDMA	10 – 50 ng/mL	Plasma	3,88	2,58
(S)-MDMA	50 – 500 ng/mL	Plasma	2,59	2,98
(R)-HMMA	10 – 50 ng/mL	Plasma	2,58	3,47
(S)-HMMA	10 – 50 ng/mL	Plasma	2,94	2,65
(R)-MDA	10 – 100 ng/mL	Plasma	3,27	3,34
(S)-MDA	10 – 100 ng/mL	Plasma	3,56	3,25
(R)-MDMA	10 – 50 ng/g	Gehirngewebe	2,52	3,31
(R)-MDMA	50 – 500 ng/g	Gehirngewebe	3,31	3,30
(S)-MDMA	10 – 50 ng/g	Gehirngewebe	2,78	2,95
(S)-MDMA	50 – 500 ng/g	Gehirngewebe	2,94	3,06
(R)-HMMA	10 – 50 ng/g	Gehirngewebe	2,61	3,01
(S)-HMMA	10 – 50 ng/g	Gehirngewebe	2,72	2,62
(R)-MDA	10 – 100 ng/g	Gehirngewebe	3,12	2,86
(S)-MDA	10 – 100 ng/g	Gehirngewebe	2,45	3,73

Tab 8.9: Prüfung auf Normalverteilung nach David für die MDMA-Kalibrierung

Substanz	Arbeitsbereich	Matrix	Untere	Obere Grenze
			Grenze	
(R)-MDE	10 – 50 ng/mL	Plasma	3,29	2,55
(R)-MDE	50 – 500 ng/mL	Plasma	2,55	3,40
(S)-MDE	10 – 50 ng/mL	Plasma	3,33	3,16
(S)-MDE	50 – 500 ng/mL	Plasma	3,16	2,80
(R)-HME	10 – 50 ng/mL	Plasma	3,27	2,68
(S)-HME	10 – 50 ng/mL	Plasma	2,82	2,57
(R)-MDA	10 – 100 ng/mL	Plasma	3,47	3,54
(S)-MDA	10 – 100 ng/mL	Plasma	2,58	3,41
(R)-MDE	10 – 50 ng/g	Gehirngewebe	3,18	3,62
(R)-MDE	50 – 500 ng/g	Gehirngewebe	3,62	2,98
(S)-MDE	10 – 50 ng/g	Gehirngewebe	3,70	3,52
(S)-MDE	50 – 500 ng/g	Gehirngewebe	3,52	2,83
(R)-HME	10 – 50 ng/g	Gehirngewebe	2,55	2,60
(S)-HME	10 – 50 ng/g	Gehirngewebe	2,68	2,64
(R)-MDA	10 – 100 ng/g	Gehirngewebe	3,66	2,56
(S)-MDA	10 – 100 ng/g	Gehirngewebe	3,54	2,52

Tab 8.10: Prüfung auf Normalverteilung nach David für die MDE-Kalibrierung

Sämtliche berechneten Werte liegen innerhalb der von David vorgegebenen Schranken. Daher kann man bei allen Daten von Normalverteilung ausgehen.

8.6.4 Überprüfung auf Linearität

Unter Linearität versteht man die Fähigkeit einer Methode, innerhalb eines gegebenen Konzentrationsbereichs Ergebnisse zu liefern, die der Konzentration des Analyten direkt proportional sind [88]. Für die Prüfung auf Linearität gibt es verschiedene Möglichkeiten: Zum einen eine visuelle Überprüfung, wobei hier nur grobe Abweichungen erkannt werden. Zweitens kann geprüft werden, welches mathematische Modell den Zusammenhang Konzentration – Signal am besten beschreibt. Zur objektiven Entscheidung, ob Linearität vorliegt, dient der Mandeltest, wobei er auf die Signifikanz der Verringerung der Restvarianz geprüft wird. Der

berechnete Prüfwert wird mit einem tabellierten F-Wert verglichen. Wenn der berechnete Prüfwert über diesem Tabellenwert liegt, dann muss versucht werden, auf anderem Wege eine Linearität zu erreichen. Aus den zwei Reststandardabweichungen wird die Differenz der Abweichungsvarianzen DS berechnet:

 $DS^{2} = (N-2) sy_{1}^{2} - (N-3) sy_{2}^{2}$

mit: DS² Differenz der Abweichungsvarianzen

sy₁ Reststandardabweichung der linearen Funktion

sy₂ Reststandardabweichung der quadratischen Funktion

N Anzahl der Messungen, d.h. Anzahl der Konzentrationen bzw bei Mehrfachbestimmungen deren Mittelwerte

Substanz	Arbeitsbereich	Matrix	Mandeltest	Korrelations-
				koeffizient
(R)-MDMA	10 - 50 ng/mL	Plasma	4,48	0,9845
(S)-MDMA	10 - 50 ng/mL	Plasma	0,02	0,9848
(R)-MDMA	50 - 500 ng/mL	Plasma	0,85	0,9979
(S)-MDMA	50 - 500 ng/mL	Plasma	4,2	0,9964
(R)-HMMA	10 - 50 ng/mL	Plasma	0,1	0,9985
(S)-HMMA	10 - 50 ng/mL	Plasma	0,25	0,9896
(R)-MDA	10 - 50 ng/mL	Plasma	0,64	0,9937
(S)-MDA	10 - 50 ng/mL	Plasma	1,33	0,9946
(R)-MDMA	10 - 50 ng/g	Gehirngewebe	1,53	0,9916
(S)-MDMA	10 - 50 ng/g	Gehirngewebe	0,71	0,9897
(R)-MDMA	50 - 500 ng/g	Gehirngewebe	0,85	0,9965
(S)-MDMA	50 - 500 ng/g	Gehirngewebe	2,22	0,9981
(R)-HMMA	10 - 50 ng/g	Gehirngewebe	0,08	0,9867
(S)-HMMA	10 - 50 ng/g	Gehirngewebe	4,08	0,9938
(R)-MDA	10 - 50 ng/g	Gehirngewebe	3,65	0,9948
(S)-MDA	10 - 50 ng/g	Gehirngewebe	3,5	0,9969

	Tab.	8.11:	: Mandel-P	rüfwerte ur	nd Korrel	ationskoeffiz	zient der	MDMA-K	Calibrierfur	htion
--	------	-------	------------	-------------	-----------	---------------	-----------	--------	--------------	-------

Substanz	Arbeitsbereich	Matrix	Mandeltest	Korrelations-
				koeffizient
(R)-MDE	10 - 50 ng/mL	Plasma	3.88	0,9865
(S)-MDE	10 - 50 ng/mL	Plasma	2,69	0,9957
(R)-MDE	50 - 500 ng/mL	Plasma	1,09	0,9968
(S)-MDE	50 - 500 ng/mL	Plasma	2,87	0,9865
(R)-HME	10 - 50 ng/mL	Plasma	0,2	0,9979
(S)-HME	10 - 50 ng/mL	Plasma	0,09	0,9982
(R)-MDA	10 - 50 ng/mL	Plasma	0,24	0,9979
(S)-MDA	10 - 50 ng/mL	Plasma	1,23	0,9862
(R)-MDE	10 - 50 ng/g	Gehirngewebe	2,65	0,9943
(S)-MDE	10 - 50 ng/g	Gehirngewebe	0,86	0,9956
(R)-MDE	50 - 500 ng/g	Gehirngewebe	1,53	0,9967
(S)-MDE	50 - 500 ng/g	Gehirngewebe	2,53	0,9879
(R)-HME	10 - 50 ng/g	Gehirngewebe	2,92	0,9928
(S)-HME	10 - 50 ng/g	Gehirngewebe	3,85	0,9956
(R)-MDA	10 - 50 ng/g	Gehirngewebe	1,75	0,9975
(S)-MDA	10 - 50 ng/g	Gehirngewebe	0,49	0,9869

Tab. 8.12: Mandel-Prüfwerte und Korrelationskoeffizient der MDE-Kalibrierfunktion

8.6.5 Wiederfindung

Die Wiederfindung oder Wiederfindungsrate ist das Verhältnis zwischen dem Mittelwert der Wiederholungsmessungen zum richtigen Wert der Analyten in der Probe. Der Idealwert ist 100%. Mit Hilfe der Wiederfindung kann die gesamte Methode beurteilt werden. Denn, wird der Idealwert von 100% tatsächlich gefunden, dann ist die Selektivität, die Richtigkeit und die Robustheit auf einmal bewiesen [87]. Die Wiederfindungsrate wurde für jeden der fünf Messpunkte jeder Kalibrierfunktion bestimmt, indem die gemessenen Matrixmessungen (gemessener Wert) durch die wässrigen Standardlösungen (richtiger Wert) dividiert wurden und dann in Prozent umgerechnet wurden. Die prozentualen Wiederfindungsraten werden in den Tab. 8.13-30 aufgeführt.

Konzentration des	(R)-MDMA	(S)-MDMA
Arbeitsbereiches (ng/g)		
10	96,3	91,9
20	92,6	92,5
30	93,1	93,8
40	94,5	94,8
50	96,8	93,5
Mittelwert (%)	94,66	93,3
Standardabweichung	1,87	1,13

 Tab. 8.13: Wiederfindung von (R)- und (S)-MDMA in Gewebe (10 - 50 ng/g)

Tab. 8.14: Wiederfindung von (R)- und (S)-MDMA in Gewebe (50 - 500 ng/g)

Konzentration des	(R)-MDMA	(S)-MDMA
Arbeitsbereiches (ng/g)		
50	95,6	93,9
162,5	94,3	94,1
275	94,8	96,8
387,5	95	97,2
500	97,6	97,5
Mittelwert (%)	95,46	95,9
Standardabweichung	1,28	1,75

Tab. 8.15: Wiederfindung von (R)- und (S)-HMMA in Gewebe
--

Konzentration des	(R)-HMMA	(S)-HMMA
Arbeitsbereiches (ng/g)		
10	97,5	95,1
20	96,4	96
30	98,6	97,8
40	93,6	94,2
50	94,2	96,6
Mittelwert (%)	96,06	95,92
Standardabweichung	2,13	1,37

Konzentration des	(R)-MDA	(S)-MDA
Arbeitsbereiches (ng/g)		
10	96,4	98,7
32,5	96	98
55	93,6	100,1
77,5	92,8	94,6
100	94,8	96,8
Mittelwert (%)	94,72	97,64
Standardabweichung	1,53	2,08

Tab. 8.16: Wiederfindung von (R)- und (S)-MDA in Gewebe

Tab. 8.17: Wiederfindung von (R)- und (S)-MDMA in Plasma (10 - 50 ng/mL)

Konzentration des		
Arbeitsbereiches (ng/mL)		
10	98,5	94,3
20	92,6	95,3
30	94,6	94,6
40	93	91,2
50	95,7	96,7
Mittelwert (%)	94,88	94,42
Standardabweichung	2,38	2,02

Tab. 8.18: Wiederfindung von (R)- und	d (S)-MDMA in Plasma (50 - 500 ng/mL)
---------------------------------------	---------------------------------------

Konzentration des	(R)-MDMA	(S)-MDMA
Arbeitsbereiches (ng/mL)		
50	96,7	95,4
162,5	94,4	97,3
275	93,1	96,7
387,5	90,6	96,9
500	95,5	98,6
Mittelwert (%)	94,06	96,98
Standardabweichung	2,35	1,15

Konzentration des	(R)-HMMA	(S)-HMMA
Arbeitsbereiches (ng/mL)		
10	91	93,2
20	95,6	94,2
30	93,4	96,5
40	97,6	92,1
50	96,2	95,9
Mittelwert (%)	94,76	94,38
Standardabweichung	2,59	1,83

Tab. 8.19: Wiederfindung von (R)- und (S)-HMMA in Plasma

Tab. 8.20: Wiederfindung von (R)- und (S)-MDA in Plasma

Konzentration des	(R)-MDA	(S)-MDA
Arbeitsbereiches (ng/mL)		
10	95,4	93,7
32,5	92,9	92,8
55	92,6	92,6
77,5	94,6	94,9
100	96,2	95,6
Mittelwert (%)	94,54	93,92
Standardabweichung	1,33	1,31

Konzentration	des	NPMDPEA in Gewebe	NPMDPEA in Plasma
Arbeitsbereiches	(ng/g		
bzw. ng/mL)			
600		96,3	96,5
600		94,5	97,6
600		98,2	94
600		92,9	95,6
600		96,5	98,4
Mittelwert (%)		95,68	96,42
Standardabweichung		2,03	1,72

Konzentration des	(R)-MDE	(S)-MDE
Arbeitsbereiches (ng/g)		
10	93,6	94,2
20	95,7	92,4
30	96,3	93,8
40	97,2	92,6
50	96,2	94,9
Mittelwert (%)	95,8	93,58
Standardabweichung	1,34	1,06

Tab. 8.22: Wiederfindung von (R)- und (S)-MDE in Gewebe (10 - 50 ng/g)

Tab. 8.23: Wiederfindung von (R)- und (S)-MDE in Gewebe (50 - 500 ng/g)

Konzentration des	(R)-MDE	(S)-MDE
Arbeitsbereiches (ng/g)		
50	95,7	95,6
162,5	93,1	94,3
275	92,6	97,2
387,5	94,8	92,6
500	96,5	94,6
Mittelwert (%)	94,54	94,86
Standardabweichung	1,67	1,7

Tab. 8.24: Wiederfindung von	(R)- und (S)-HME in Gewebe
------------------------------	----------------------------

Konzentration des	(R)-HME	(S)-HME
Arbeitsbereiches (ng/g)		
10	91,6	94,6
20	95,8	90,9
30	95,1	91,8
40	94,6	97,6
50	93,7	96
Mittelwert (%)	94,16	94,18
Standardabweichung	1,62	2,81

Konzentration des	(R)-MDA	(S)-MDA
Arbeitsbereiches (ng/g)		
10	94,2	94,5
32,5	97,6	98,6
55	93,9	96,7
77,5	94	96
100	97,6	93,5
Mittelwert (%)	95,46	95,86
Standardabweichung	1,96	1,89

Tab. 8.25: Wiederfindung von (R)- und (S)-MDA in Gewebe

Tab. 8.26: Wiederfindung von (R)- und (S)-MDE in Plasma (10 - 50 ng/mL)

Konzentration des	(R)-MDE	(S)-MDE
Arbeitsbereiches (ng/mL)		
10	96,7	94,6
20	97,1	97,2
30	93,3	96,3
40	96,9	92,4
50	95,2	92,6
Mittelwert (%)	95,84	94,62
Standardabweichung	1,61	2,15

Tab. 8.27: Wiederfindung von	(R)- und (S)-MDE in	Plasma (50 - 500 ng/mL)
------------------------------	---------------------	-------------------------

Konzentration des	(R)-MDE	(S)-MDE
Arbeitsbereiches (ng/mL)		
50	90,5	95,6
162,5	92	93,2
275	95,6	91,9
387,5	93,9	95,6
500	94,8	94,8
Mittelwert (%)	93,36	94,22
Standardabweichung	2,09	1,63

Konzentration des	(R)-HME	(S)-HME
Arbeitsbereiches (ng/mL)		
10	93,4	97,6
20	92,1	95,2
30	93	93,4
40	95,6	96
50	94,8	96,2
Mittelwert (%)	93,78	95,68
Standardabweichung	1,41	1,54

Tab. 8.28: Wiederfindung von (R)- und (S)-HME in Plasma

Tab. 8.29: Wiederfindung von (R)- und (S)-MDA in Plasma

Konzentration des	(R)-MDA	(S)-MDA
Arbeitsbereiches (ng/mL)		
10	93,1	94,8
32,5	94,3	96,5
55	96,7	93,5
77,5	94,6	95,7
100	96,8	98,6
Mittelwert (%)	95,1	95,82
Standardabweichung	1,61	1,91

Tab. 8.30: Wiederfindung von NEMDBA in Gewebe und Plasm	ıa
---	----

Konzentration	des	NEMDBA in Gewebe	NEMDBA in Plasma
Arbeitsbereiches	(ng/g		
bzw. ng/mL)			
200		96,5	96,5
200		94,8	97
200		96,5	95,9
200		98,5	93,5
200		96,7	94,6
Mittelwert (%)		96,6	95
Standardabweichung		1,31	1,43

8.6.6 Präzision

Die Präzision ist das Maß für die Streuung von Analysenergebnissen, durch die zufällige Fehler erfasst werden. Als Maß dient die relative Standardabweichung s, welche mit dem Varianzkoeffizient VK identisch ist. Zur Präzisionsberechnung an den oberen und unteren Grenzen des Arbeitsbereiches wurden die Einzelwerte der Zehnfachbestimmung benutzt. Bei Quantifizierung aus biologischem Material sollte der Fehler der Präzision nicht größer als 15 % sein.

Substanz	Arbeitsbereich	Matrix	Präzision an	Präzision an
			der unteren	der oberen
			Grenze	Grenze
(R)-MDMA	10 - 50 ng/mL	Plasma	1,85	1,59
(S)-MDMA	10 - 50 ng/mL	Plasma	12,20	2,11
(R)-MDMA	50 - 500 ng/mL	Plasma	12,84	8,39
(S)-MDMA	50 - 500 ng/mL	Plasma	8,39	2,34
(R)-HMMA	10 - 50 ng/mL	Plasma	8,06	3,15
(S)-HMMA	10 - 50 ng/mL	Plasma	13,09	3,28
(R)-MDA	10 - 50 ng/mL	Plasma	12,97	7,11
(S)-MDA	10 - 50 ng/mL	Plasma	4,31	2,40
(R)-MDMA	10 - 50 ng/g	Gehirngewebe	3,92	11,13
(S)-MDMA	10 - 50 ng/g	Gehirngewebe	11,13	7,90
(R)-MDMA	50 - 500 ng/g	Gehirngewebe	13,45	12,48
(S)-MDMA	50 - 500 ng/g	Gehirngewebe	12,48	12,02
(R)-HMMA	10 - 50 ng/g	Gehirngewebe	6,63	7,52
(S)-HMMA	10 - 50 ng/g	Gehirngewebe	8,47	11,48
(R)-MDA	10 - 50 ng/g	Gehirngewebe	7,39	2,85
(S)-MDA	10 - 50 ng/g	Gehirngewebe	4,57	7,23

Tab. 8.31: Präzisionswerte für die MDMA-Proben

Substanz	Arbeitsbereich	Matrix	Präzision an	Präzision an
			der unteren	der oberen
			Grenze	Grenze
(R)-MDE	10 - 50 ng/mL	Plasma	2,72	2,41
(S)-MDE	10 - 50 ng/mL	Plasma	2,41	2,49
(R)-MDE	50 - 500 ng/mL	Plasma	2,32	5,14
(S)-MDE	50 - 500 ng/mL	Plasma	5,14	5,08
(R)-HME	10 - 50 ng/mL	Plasma	6,95	4,82
(S)-HME	10 - 50 ng/mL	Plasma	12,19	3,52
(R)-MDA	10 - 50 ng/mL	Plasma	3,97	7,48
(S)-MDA	10 - 50 ng/mL	Plasma	7,35	8,00
(R)-MDE	10 - 50 ng/g	Gehirngewebe	2,26	3,57
(S)-MDE	10 - 50 ng/g	Gehirngewebe	11,61	7,74
(R)-MDE	50 - 500 ng/g	Gehirngewebe	7,17	11,36
(S)-MDE	50 - 500 ng/g	Gehirngewebe	12,36	5,61
(R)-HME	10 - 50 ng/g	Gehirngewebe	6,36	6,92
(S)-HME	10 - 50 ng/g	Gehirngewebe	9,95	4,70
(R)-MDA	10 - 50 ng/g	Gehirngewebe	12,53	11,39
(S)-MDA	10 - 50 ng/g	Gehirngewebe	7,19	5,61

Tab. 8.32: Präzisionswerte für die MDE-Proben

8.6.7 Richtigkeit

Die Richtigkeit oder systemische Abweichung ist ein Maß für die Übereinstimmung zwischen dem aus der Regressionsanalyse erhaltenen Mittelwert und dem wahren Wert. Die Richtigkeit wurde mit jeweils 10 Proben im unteren, mittleren und oberen Bereich überprüft [87]. Angegeben wird die relative systemische Abweichung in Prozent. Bei Quantifizierungen aus biologischem Material sollten die prozentuale Fehler der Richtigkeit nicht über 15 % liegen.

Substanz	Arbeitsbereich	Matrix	Richtigkeit an	Richtigkeit an
			den unteren	den oberen
			Messwerten	Messwerten
(R)-MDMA	10 - 50 ng/mL	Plasma	6,70	4,40
(S)-MDMA	10 - 50 ng/mL	Plasma	4,84	6,80
(R)-MDMA	50 - 500 ng/mL	Plasma	5,17	7,18
(S)-MDMA	50 - 500 ng/mL	Plasma	1,81	9,76
(R)-HMMA	10 - 50 ng/mL	Plasma	7,18	11,42
(S)-HMMA	10 - 50 ng/mL	Plasma	6,70	9,24
(R)-MDA	10 - 50 ng/mL	Plasma	3,83	2,71
(S)-MDA	10 - 50 ng/mL	Plasma	4,91	6,20
(R)-MDMA	10 - 50 ng/g	Gehirngewebe	2,83	0,99
(S)-MDMA	10 - 50 ng/g	Gehirngewebe	6,80	1,74
(R)-MDMA	50 - 500 ng/g	Gehirngewebe	2,66	2,83
(S)-MDMA	50 - 500 ng/g	Gehirngewebe	1,86	6,78
(R)-HMMA	10 - 50 ng/g	Gehirngewebe	2,15	0,57
(S)-HMMA	10 - 50 ng/g	Gehirngewebe	5,82	4,03
(R)-MDA	10 - 50 ng/g	Gehirngewebe	3,61	0,93
(S)-MDA	10 - 50 ng/g	Gehirngewebe	2,00	5,13

Tab. 8.33: Richtigkeit der vermessenen MDMA-Proben

Substanz	Arbeitsbereich	Matrix	Richtigkeit an	Richtigkeit an
			den unteren	den oberen
			Messwerten	Messwerten
(R)-MDE	10 - 50 ng/mL	Plasma	4,17	5,02
(S)-MDE	10 - 50 ng/mL	Plasma	9,46	3,41
(R)-MDE	50 - 500 ng/mL	Plasma	5,70	1,37
(S)-MDE	50 - 500 ng/mL	Plasma	0,50	5,19
(R)-HME	10 - 50 ng/mL	Plasma	7,25	3,53
(S)-HME	10 - 50 ng/mL	Plasma	8,03	7,00
(R)-MDA	10 - 50 ng/mL	Plasma	9,83	3,33
(S)-MDA	10 - 50 ng/mL	Plasma	4,71	9,44
(R)-MDE	10 - 50 ng/g	Gehirngewebe	9,80	8,59
(S)-MDE	10 - 50 ng/g	Gehirngewebe	9,04	3,37
(R)-MDE	50 - 500 ng/g	Gehirngewebe	5,78	9,44
(S)-MDE	50 - 500 ng/g	Gehirngewebe	4,83	8,65
(R)-HME	10 - 50 ng/g	Gehirngewebe	9,31	7,13
(S)-HME	10 - 50 ng/g	Gehirngewebe	7,41	3,41
(R)-MDA	10 - 50 ng/g	Gehirngewebe	6,86	6,92
(S)-MDA	10 - 50 ng/g	Gehirngewebe	2,99	4,85

Tab. 8.34: Richtigkeit der MDE-Proben

8.6.8 Theoretische Bestimmungs- und Nachweisgrenze

Die kleinste Menge beziehungsweise Konzentration eines Stoffes, die mit einer geforderten statistischen Sicherheit bei einmaliger Analyse mit einem Fehlerrisiko von 5% qualitativ nachgewiesen werden kann, wird als Nachweisgrenzen definiert. Unter der Bestimmungsgrenze dagegen versteht man ebenso die Menge beziehungsweise Konzentration eines Stoffes, die mit einer geforderten statistischen Sicherheit bei einmaliger Analyse mit einem Fehlerrisiko kleiner oder gleich 5% quantitativ nachgewiesen werden kann [89]. Die Nachweis- (XN) und Bestimmungsgrenze (XB) wurden rechnerisch aus den Kalibrierdaten ermittelt [85].

Substanz	Arbeitsbereich	Matrix	Theoretische	Theoretische
			Nachweisgrenze	Bestimmungsgrenz
			(XN) in ng/mL	e (XB) in ng/mL
			bzw. ng/g	bzw. ng/g
(R)-MDMA	10 - 50 ng/mL	Plasma	6,98	5,16
(S)-MDMA	10 - 50 ng/mL	Plasma	8,62	6,79
(R)-MDMA	50 -500 ng/mL	Plasma	49,67	40,23
(S)-MDMA	50 -500 ng/mL	Plasma	48,61	41,68
(R)-HMA	10 - 50 ng/mL	Plasma	7,34	4,96
(S)-HMMA	10 - 50 ng/mL	Plasma	6,98	5,98
(R)-MDA	10 - 50 ng/mL	Plasma	8,91	6,65
(S)-MDA	10 - 50 ng/mL	Plasma	7,86	5,69
(R)-MDMA	10 - 50 ng/g	Gehirngewebe	8,57	4,87
(S)-MDMA	10 - 50 ng/g	Gehirngewebe	8,69	5,25
(R)-MDMA	50 - 500 ng/g	Gehirngewebe	47,58	42,68
(S)-MDMA	50 - 500 ng/g	Gehirngewebe	49,93	39,68
(R)-HMA	10 - 50 ng/g	Gehirngewebe	8,67	6,91
(S)-HMMA	10 - 50 ng/g	Gehirngewebe	8,69	7,37
(R)-MDA	10 - 50 ng/g	Gehirngewebe	9,67	4,69
(S)-MDA	10 - 50 ng/g	Gehirngewebe	9,37	5,67

Tab.8.35: Theoretische Bestimmungs- und Nachweisgrenze der MDMA-Proben

Substanz	Arbeitsbereich	Matrix	Theoretische	Theoretische
			Nachweisgrenze	Bestimmungsgre
			(XN) in ng/mL	nze (XB) in
			bzw. ng/g	ng/mL
				bzw. ng/g
(R)-MDE	10 - 50 ng/mL	Plasma	6,95	4,69
(S)-MDE	10 - 50 ng/mL	Plasma	9,62	5,67
(R)-MDE	50 -500 ng/mL	Plasma	48,64	42,68
(S)-MDE	50 -500 ng/mL	Plasma	49,52	39,68
(R)-HME	10 - 50 ng/mL	Plasma	8,51	5,62
(S)-HME	10 - 50 ng/mL	Plasma	9,47	4,81
(R)-MDA	10 - 50 ng/mL	Plasma	8,64	6,68
(S)-MDA	10 - 50 ng/mL	Plasma	8,75	5,94
(R)-MDE	10 - 50 ng/g	Gehirngewebe	8,57	5,61
(S)-MDE	10 - 50 ng/g	Gehirngewebe	8,61	4,83
(R)-MDE	50 - 500 ng/g	Gehirngewebe	49,73	43,84
(S)-MDE	50 - 500 ng/g	Gehirngewebe	49,58	41,94
(R)-HME	10 - 50 ng/g	Gehirngewebe	9,67	6,91
(S)-HME	10 - 50 ng/g	Gehirngewebe	9,41	5,64
(R)-MDA	10 - 50 ng/g	Gehirngewebe	8,64	4,69
(S)-MDA	10 - 50 ng/g	Gehirngewebe	8,29	5,67

Tab.8.36: Theoretische Bestimmungs- und Nachweisgrenze der MDE-Proben

8.6.10 Vertrauensbereich

Um aus einer unbekannten Probe über eine Kalibrierfunktion die wahrscheinlichste Konzentration zu berechnen, wird die Umkehrfunktion des Kalibrierfunktion gebildet. Der Analysenfaktor setzt sich jedoch hierbei aus dem Fehler bei der Bestimmung des zu analysierenden Wertes und dem Fehler aus der Kalibrierfunktion zusammen. Die Quadrate der Fehler summieren sich. Aus dem Fehlerfortpflanzungsgesetz folgt ein durch zwei Hyperbeläste begrenzter Vertrauensbereich (Prognoseintervall). Der Vertrauensbereich ist umso größer, je weiter man vom Datenschwerpunkt entfernt ist (Fehlertrompete).

8.6.11 Robustheit

Unter der Robustheit einer Methode versteht man das Ausmaß der Unabhängigkeit eines Ergebnisses von der Änderung aller relevanten Parameter, die Einfluss ausüben können. Deshalb gehört sich eigentlich nicht zur Methodenkalibrierung, sondern bereits zur Methodenentwicklung. Dennoch wurden die beiden verwendeten HPLC-Methoden während ihrer Nutzung ständig auf ihre Robustheit hin geprüft. Dieses wurde mit Hilfe einer Referenzlösung, die alle zu bestimmenden Substanzen enthielt, durchgeführt. Alle 10 Proben wurde diese Standardlösung injiziert und ihre Daten auf Retentionszeit und Peakfläche überprüft.

Tab 8.37: Robustheit der Peakflächen und Retentionszeiten der MDMA- und MDE-Proben

	Relative	Relative
	Standardabweichung AUC	Standardabweichung
		Retentionszeit
(R)-MDMA	1,56%	1,08%
(S)-MDMA	0,98%	1,42%
(R)-HMMA	1,52%	1,11%
(S)-HMMA	2,13%	1,68%
(R)-MDA	0,88%	1,73%
(S)-MDA	1,57%	2,16%
(R)-MDE	2,35%	1,69%
(S)-MDE	2,19%	0,97%
(R)-HME	1,49%	2,24%
(S)-HME	1,86%	1,94%
(R)-MDA	1,49%	1,34%
(S)-MDA	1,49%	1,73%

8.7 Platzpräferenz-Einzelwerte aller Versuche

8.7.1 Daten des Vergleichs (R/S)-MDMA versus DL-Amphetamin

8.7.1.1 Baseline

Tab. 8.38: Daten des Vergleichs racemisches MDMA gegen DL-Amphetamin amBaselinetag der Saline-Gruppe

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	Saline	304548	363698	231754	-59150
5	Saline	260466	287016	352518	-26550
7	Saline	201416	326428	372156	-125012
11	Saline	347222	226522	326256	120700
14	Saline	368050	306532	225418	61518
18	Saline	261010	234598	404392	26412
20	Saline	306250	303750	290000	2500
22	Saline	458694	189234	252072	269460
26	Saline	360488	236376	303136	124112
29	Saline	359084	270172	270744	88912
Mittelwert:		322723	274433	302845	48290
Standardabw	eichung:	72182	53049	60150	111299

16775

19135

35196

Relative Standardabweichung: 22826

Tab. 8.39: Daten des Vergleichs racemisches MDMA gegen DL-Amphetamin amBaselinetag der MDMA-Gruppe

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	MDMA	258180	177244	464576	80936
4	MDMA	443604	242380	214016	201224
8	MDMA	290056	278036	331908	12020
10	MDMA	224342	248444	427214	-24102
12	MDMA	328812	270458	300730	58354
16	MDMA	224510	423856	251634	-199346
19	MDMA	214350	201210	484440	13140
23	MDMA	327598	157048	415354	170550
25	MDMA	318580	321886	259534	-3306
27	MDMA	289860	398180	211960	-108320
	•		1		

Mittelwert:	291989	287390	336137	20115
Standardabweichung:	68821	91335	104176	119196
Relative Standardabweichung:	21763	28883	32943	32943

Tab. 8.40: Daten des Vergleichs racemisches MDMA gegen DL-Amphetamin amBaselinetag der Amphetamin-Gruppe

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	Amphetamin	195684	98226	606090	97458
6	Amphetamin	363830	251460	284710	112370
9	Amphetamin	223422	408476	268102	-185054
13	Amphetamin	332706	371358	195936	-38652
15	Amphetamin	297698	290910	311392	6788
17	Amphetamin	177552	521206	201242	-343654
21	Amphetamin	301080	367590	231330	-66510
24	Amphetamin	221388	153502	525110	67886
28	Amphetamin	228514	305102	366384	-76588
30	Amphetamin	263556	300230	336214	-36674
L	1	1	1	1	1

Mittelwert:	260543	306806	332651	-46263
Standardabweichung:	61409	122264	135852	137779
Relative Standardabweichung:	19419	38663	42960	43569

8.7.1.2 Testtag

Tab. 8.41: Daten des Vergleichs racemisches MDMA gegen DL-Amphetamin amTesttag der Saline-Gruppe

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	Saline	348126	167346	384528	180780
5	Saline	304714	442410	152876	-137696
7	Saline	307698	349458	242844	-41760
11	Saline	428186	281192	190622	146994
14	Saline	581758	212028	106214	369730
18	Saline	250722	307828	341450	-57106
20	Saline	180088	518930	200982	-338842
22	Saline	726396	75024	98580	651372
26	Saline	282908	428714	188378	-145806
29	Saline	171050	548556	180394	-377506

Mittelwert:	358165	333149	208687	25016
Standardabweichung:	176360	154338	92527	318253
Relative Standardabweichung:	55770	48806	29259	100640

Tab. 8.42: Daten des Vergleichs racemisches MDMA gegen DL-Amphetamin amTesttag der MDMA-Gruppe

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	MDMA	442426	174056	283518	268370
4	MDMA	183520	207674	508806	-24154
8	MDMA	262428	517284	120288	-254856
10	MDMA	261100	117476	521424	143624
12	MDMA	574660	198132	127208	376528
16	MDMA	385632	355192	159176	30440
19	MDMA	279444	478356	142200	-198912
23	MDMA	311384	246334	342282	65050
25	MDMA	587508	115336	197156	472172
27	MDMA	175670	477050	247280	-301380

Mittelwert:	346377	2886889	264934	57688
Standardabweichung:	147840	155347	150049	263561
Relative Standardabweichung:	46751	49125	47450	83345
Tab. 8.43: Daten des Vergleichs racemisches MDMA gegen DL-Amphetamin amTesttag der Amphetamin-Gruppe

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	Amphetamin	286560	186722	426718	99838
6	Amphetamin	306564	370648	222788	-64084
9	Amphetamin	547270	99924	252806	447346
13	Amphetamin	495764	162032	242204	333732
15	Amphetamin	237694	118854	543452	118840
17	Amphetamin	235774	458862	205364	-223088
21	Amphetamin	458232	291482	150286	166750
24	Amphetamin	674830	79584	145586	595246
28	Amphetamin	321626	300390	277984	21236
30	Amphetamin	383536	344842	171622	38694
		·	-		-

Mittelwert:	394785	241334	263881	153451
Standardabweichung:	145616	129610	127362	244509
Relative Standardabweichung:	46048	40986	40275	77320

8.7.2 Daten des Isolationsversuchs

8.7.2.1 Baselinetag

Tab. 8.44: Daten des Vergleichs verschiedener sozialer Umfelde (Isolationsversuch)am Baselinetag der gruppegehaltenen Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	Gruppe	418634	258856	222510	159778
5	Gruppe	401990	266374	231636	135616
8	Gruppe	330934	335342	233724	-4408
12	Gruppe	378366	333522	188112	44844
19	Gruppe	300716	459792	139492	-159076
23	Gruppe	290458	412562	196980	-122104
26	Gruppe	169904	406682	323414	-236778
30	Gruppe	275620	230464	393916	45156
34	Gruppe	541722	243438	114840	298284
37	Gruppe	274554	315232	310214	-40678
L	1		1	1	1

Mittelwert:	338290	326336	235484	12063
Standardabweichung:	101981	79000	85699	161053
Relative Standardabweichung:	32249	24982	27100	50929

Tab. 8.45: Daten des Vergleichs verschiedener sozialer Umfelde (Isolationsversuch)am Baselinetag der 1 Woche isolierten Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	1 Woche	326368	279158	294474	47210
9	1 Woche	289162	391458	219380	-102296
10	1 Woche	434008	294692	171300	139316
11	1 Woche	431786	259348	208866	172438
18	1 Woche	269308	379780	250912	-110472
24	1 Woche	419798	286778	193424	133020
25	1 Woche	373628	266432	259940	107196
27	1 Woche	322398	270990	306612	51408
33	1 Woche	372662	301664	225674	70998
36	1 Woche	201474	558236	140290	-356762
				-	
Mittalwort:		344500	328851	222082	15206

Mittelwert:	344509	328854	227087	15206
Standardabweichung:	76688	92707	52371	161891
Relative Standardabweichung:	24251	29316	16561	51194

Tab. 8.46: Daten des Vergleichs verschiedener sozialer Umfelde (Isolationsversuch)am Baselinetag der 2 Woche isolierten Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
4	2 Wochen	330478	379796	189726	-49318
7	2 Wochen	296844	440178	162978	-143334
13	2 Wochen	332506	322118	245376	10388
16	2 Wochen	326170	318856	254974	7314
20	2 Wochen	214416	414954	270630	-200538
22	2 Wochen	378920	253668	267412	125252
29	2 Wochen	328646	331388	239966	-2742
31	2 Wochen	409436	348798	141766	60638
35	2 Wochen	300940	334596	264464	-33656
38	2 Wochen	410090	350622	139288	59468
L	ı	1	1	1	1

Mittelwert:	332845	349497	217658	-16653
Standardabweichung:	58083	52545	53544	96966
Relative Standardabweichung:	18368	16616	16932	30663

Tab. 8.47: Daten des Vergleichs verschiedener sozialer Umfelde (Isolationsversuch)am Baselinetag der 3 Woche isolierten Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	3 Wochen	308380	334872	256748	-26492
6	3 Wochen	349230	333416	217354	15814
14	3 Wochen	411638	266612	221750	145026
15	3 Wochen	227534	345806	326660	-118272
17	3 Wochen	287318	472794	139888	-185476
21	3 Wochen	283572	218758	397670	64814
28	3 Wochen	367574	337092	195334	30482
32	3 Wochen	279570	362766	257664	-83196
39	3 Wochen	264758	393332	241910	-128574
40	3 Wochen	402978	293480	203542	109498
				·	
Mittelwert:		318255	335893	245852	-17638

Standardabweichung:

Relative Standardabweichung:

8.7.2.2 Testtag

Tab.8.48:: Daten des Vergleichs verschiedener sozialer Umfelde(Isolationsversuch) am Testtag der gruppengehaltenen Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	Gruppe	555070	159012	185918	396058
5	Gruppe	242588	589956	67456	-347368
8	Gruppe	561664	275038	63298	286626
12	Gruppe	489424	62720	347856	426704
19	Gruppe	372680	354362	172958	18318
23	Gruppe	319286	269706	311008	49580
26	Gruppe	220112	440360	239528	-220248
30	Gruppe	40882	245634	613484	-204752
34	Gruppe	266840	348244	284916	-81404
37	Gruppe	483570	122786	293644	360784

Mittelwert:	355212	286782	258007	68430
Standardabweichung:	168720	156131	158147	283813
Relative Standardabweichung:	53354	49373	50137	89750

Tab. 8.49: Daten des Vergleichs verschiedener sozialer Umfelde (Isolationsversuch)am Testtag der 1 Woche isoliert gehaltenen Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer-
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	1 Woche	723634	79054	97312	644580
9	1 Woche	359954	400448	139598	-40494
10	1 Woche	268834	448950	182216	-180116
11	1 Woche	7220	571796	320984	-564576
18	1 Woche	199608	559084	141308	-359476
24	1 Woche	91220	464382	344398	-373162
25	1 Woche	303526	154748	441726	148778
27	1 Woche	126332	663910	109758	-537578
33	1 Woche	452538	262458	185004	190080
36	1 Woche	217756	520062	162182	-302306

Mittelwert:	275062	412489	212499	-137427
Standardabweichung:	204778	190304	115529	378090
Relative Standardabweichung:	64756	60179	36533	119562

Tab. 8.50: Daten des Vergleichs verschiedener sozialer Umfelde (Isolationsversuch)am Testtag der 2 Wochen isoliert gehaltenen Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
4	2 Wochen	567198	156926	175876	410272
7	2 Wochen	686836	76882	136282	609954
13	2 Wochen	761284	84704	54012	676580
16	2 Wochen	123978	609166	166856	-485188
20	2 Wochen	134456	153520	612024	-19064
22	2 Wochen	355944	182880	361176	173064
29	2 Wochen	656532	6114	237354	650418
31	2 Wochen	463006	305636	131358	157370
35	2 Wochen	342420	376396	181184	-33976
38	2 Wochen	365166	414892	119942	-49726
	1	1	1	1	

Mittelwert:	445682	236712	228458	208970
Standardabweichung:	221820	186412	166571	376917
Relative Standardabweichung:	70146	58949	52674	119192

Tab. 8.51: Daten des Vergleichs verschiedener sozialer Umfelde (Isolationsversuch)am Testtag der 3 Wochen isoliert gehaltenen Tiere

Tier-	Verabreichte	Aufenthalt in	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	3 Wochen	12834	0	887166	12834
6	3 Wochen	628	37386	823340	-36758
14	3 Wochen	113580	39632	208348	73948
15	3 Wochen	186402	59521	195940	126881
17	3 Wochen	24864	116664	8118	-91800
21	3 Wochen	700700	3887	103436	696813
28	3 Wochen	34456	187296	273302	-152840
32	3 Wochen	239792	27322	105226	212470
39	3 Wochen	4214	203686	589050	-199472
40	3 Wochen	40315	223364	391594	-183049

Mittelwert:	135779	89876	358552	42903
Standardabweichung:	214834	86001	308764	266105
Relative Standardabweichung:	67936	27196	97640	84182

8.7.3 Daten des MDMA-Versuchs

8.7.3.1 Baselinetag

Tab. 8.52: Daten des MDMA-Versuchs der Saline-Gruppe am Baselinetag

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
4	Saline	417696	344050	138254	73646
7	Saline	229100	438694	232206	-209594
13	Saline	283922	276932	339146	6990
16	Saline	277648	469376	152976	-191728
20	Saline	368014	268842	263144	99172
22	Saline	346618	299596	253786	47022
29	Saline	437184	300044	162772	137140
31	Saline	404288	336508	159204	67780
35	Saline	320982	335498	243520	-14516
38	Saline	339348	362478	198174	-23130
	1	1	1	1	1

Mittelwert:	342480	343202	214318	-722
Standardabweichung:	66729	65997	63421	116595
Relative Standardabweichung:	21101	20870	20056	36871

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer-
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	Rac. MDMA	202836	290510	406654	-87674
5	Rac. MDMA	312472	324370	263158	-11898
8	Rac. MDMA	275720	288888	335392	-13168
12	Rac. MDMA	456016	323036	120948	132980
19	Rac. MDMA	333110	383830	183060	-50720
23	Rac. MDMA	342988	388452	168560	-45464
26	Rac. MDMA	345856	288308	265836	57548
30	Rac. MDMA	338932	365990	195078	-27058
34	Rac. MDMA	395262	332564	172174	62698
37	Rac. MDMA	211484	251640	436876	-40156
Mittelwert:		321468	323759	254774	-2291
Standardaby	weichung:	77022	45259	107398	66550

Relative Standardabweichung: 24356

Tab.8.53:Daten des MDMA-Versuchs der razemischen MDMA-Gruppe amBaselinetag

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	(R)-MDMA	286452	389794	223754	-103342
9	(R)-MDMA	368624	293388	237988	75236
10	(R)-MDMA	329110	262628	308262	66482
11	(R)-MDMA	349736	328958	221306	20778
18	(R)-MDMA	386006	332562	181432	53444
24	(R)-MDMA	419764	286790	193446	132974
25	(R)-MDMA	292888	379452	227660	-86564
27	(R)-MDMA	317794	330898	251308	-13104
33	(R)-MDMA	356312	354278	189410	2034
36	(R)-MDMA	290314	415878	193808	-125564
	1	1	1	1	1

|--|

Mittelwert:	339700	337463	222837	2237
Standardabweichung:	44504	48515	37863	85059
Relative Standardabweichung:	14073	15342	11973	26898

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	(S)-MDMA	333344	315828	250828	17516
6	(S)-MDMA	295668	270334	333998	25334
14	(S)-MDMA	381998	316942	201060	65056
15	(S)-MDMA	258828	432224	208948	-173396
17	(S)-MDMA	342540	352836	204624	-10296
21	(S)-MDMA	321750	312008	266242	9742
28	(S)-MDMA	438162	296886	164952	141276
32	(S)-MDMA	362850	279928	257222	82922
39	(S)-MDMA	381368	341972	176660	39396
40	(S)-MDMA	375006	362900	162094	12106
L	1	1	1	1	1

	Tab.	8.55: Daten	des MDMA	-Versuchs	der (S)-Ml	DMA-Gruppe a	m Baselinetag
--	------	-------------	----------	-----------	------------	--------------	---------------

Mittelwert:	349151	328186	222633	20966
Standardabweichung:	50507	47167	54138	81367
Relative Standardabweichung:	15972	14916	17120	25731

8.7.3.2 Testtag

Tab. 8.56: Daten des MDMA-Versuchs der Saline-Gruppe am Testtag

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
4	Saline	339602	249986	310412	89616
7	Saline	110790	473544	315666	-362754
13	Saline	449978	151030	298992	298948
16	Saline	201928	310854	387218	-108926
20	Saline	306068	329540	264392	-23472
22	Saline	418250	148142	333608	270108
29	Saline	236080	440170	223750	-204090
31	Saline	391334	286196	222470	105138
35	Saline	452278	244896	202826	207382
38	Saline	206708	525220	168072	-318512

Mittelwert:	311302	315958	272741	-4656
Standardabweichung:	118576	129063	67988	238354
Relative Standardabweichung:	37497	40813	21500	75374

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	Rac. MDMA	256832	227822	415346	29010
5	Rac. MDMA	460550	280802	158648	179748
8	Rac. MDMA	365058	264090	270852	100968
12	Rac. MDMA	307366	316288	276346	-8922
19	Rac. MDMA	207958	381734	310308	-173776
23	Rac. MDMA	645608	143166	111226	502442
26	Rac. MDMA	141862	473710	284428	-331848
30	Rac. MDMA	460566	188424	251010	272142
34	Rac. MDMA	722436	95304	82260	627132
37	Rac. MDMA	152168	594564	153268	-442396
		•			
Mittelwert:		372040	296590	231369	75450

Tab. 8.57: Daten des MDMA-Versuchs der racemischen MDMA-Gruppe am Testtag

Mittelwert:	372040	296590	231369	75450
Standardabweichung:	199733	152602	102696	340316
Relative Standardabweichung:	63161	48257	32475	107617

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer-
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	(R)-MDMA	563824	136552	199624	427272
9	(R)-MDMA	265316	376778	257906	-111462
10	(R)-MDMA	277090	359798	263112	-82708
11	(R)-MDMA	642886	118434	138680	524452
18	(R)-MDMA	244398	382320	273282	-137922
24	(R)-MDMA	284948	109328	505724	175620
25	(R)-MDMA	326236	321960	251804	4276
27	(R)-MDMA	167586	536242	196172	-368656
33	(R)-MDMA	410578	176730	312692	233848
36	(R)-MDMA	197636	485872	216492	-288236
L	1	1	1	I	1
Mittolwort [.]		338050	300401	261540	37648

|--|

Mittelwert:	338050	300401	261549	37648
Standardabweichung:	155874	155749	98726	295570
Relative Standardabweichung:	49292	49252	31220	93468

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	(S)-MDMA	535998	133044	230958	402954
6	(S)-MDMA	194898	469270	235832	-274372
14	(S)-MDMA	473574	178448	247978	295126
15	(S)-MDMA	418572	222102	259326	196470
17	(S)-MDMA	149742	567284	182974	-417542
21	(S)-MDMA	363280	236196	300524	127084
28	(S)-MDMA	338578	278192	283230	60386
32	(S)-MDMA	561432	141690	196878	419742
39	(S)-MDMA	262116	292038	345846	-29922
40	(S)-MDMA	411268	380958	107774	30310
Mittelwert:		370946	289922	239132	81024

Tab. 8.59: Daten des MDMA-Versuchs der (S)-MDMA-Gruppe am Testtag

Mittelwert:	370946	289922	239132	81024
Standardabweichung:	137771	142992	66549	272812
Relative Standardabweichung:	43567	45218	21045	86271

8.7.4 Daten des MDE-Versuchs

8.7.4.1 Baselinetag

Tab. 8.60: Daten des MDE-Versuchs der Saline-Gruppe am Baselinetag

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer-
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
4	Saline	28860	607574	263566	-578714
7	Saline	231512	371392	297096	-139880
13	Saline	407882	320356	171762	87526
16	Saline	398306	326258	175436	72048
20	Saline	290708	474928	134364	-184220
22	Saline	333834	350032	216134	-16198
29	Saline	635602	50488	213910	585114
31	Saline	320004	361660	218336	-41656
35	Saline	362270	328636	209094	33634
38	Saline	384460	392014	123526	-7554

Mittelwert:	339344	358334	202322	-18990
Standardabweichung:	152498	139532	53587	287364
Relative Standardabweichung:	48224	44124	16946	90873

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	Rac. MDE	343594	426488	129918	-82894
5	Rac. MDE	322638	418548	158814	-95910
8	Rac. MDE	264766	351656	283578	-86890
12	Rac. MDE	348454	250988	300558	97466
19	Rac. MDE	617442	70330	212228	547112
23	Rac. MDE	350426	360952	188622	-10526
26	Rac. MDE	470594	278876	150530	191718
30	Rac. MDE	421100	371946	106954	49154
34	Rac. MDE	64440	574554	261006	-510114
37	Rac. MDE	262038	277932	360030	-15894
L	1	1	1	1	1

Tab. 8.61: Daten des MDE-Versuchs der razemischen MDE-Gruppe am Baselinetag

Mittelwert:	346549	338227	215224	8322
Standardabweichung:	144662	132691	83068	264892
Relative Standardabweichung:	45746	41961	26268	83766

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	(R)-MDE	401990	266374	231636	135616
9	(R)-MDE	330934	335342	233724	-4408
10	(R)-MDE	333522	378366	188112	-44844
11	(R)-MDE	459792	300716	139492	159076
18	(R)-MDE	412562	290458	196980	122104
24	(R)-MDE	406682	169904	323414	236778
25	(R)-MDE	230464	275620	393916	-45156
27	(R)-MDE	243438	541722	114840	-298284
33	(R)-MDE	315232	274554	310214	40678
36	(R)-MDE	258856	418634	222510	-159778
L	1	1	1	1	1

Tab. 8.62: Daten des MDE-Versuchs	der (R)-MDE-Gruppe	am Baselinetag
-----------------------------------	--------------------	----------------

Mittelwert:	339347	325169	235484	14178
Standardabweichung:	79264	101625	85699	160861
Relative Standardabweichung:	25065	32137	27100	50869

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	(S)-MDE	492588	231782	175630	260806
6	(S)-MDE	273604	464576	161820	-190972
14	(S)-MDE	26766	600040	273194	-573274
15	(S)-MDE	384588	326610	188802	57978
17	(S)-MDE	369376	345766	184858	23610
21	(S)-MDE	422788	323778	153434	99010
28	(S)-MDE	264804	495676	139520	-230872
32	(S)-MDE	404374	268784	226842	135590
39	(S)-MDE	668976	59388	171636	609588
40	(S)-MDE	280050	303468	316482	-23418
			•	•	•

Tab. 8.63: Daten des MDE-Versuchs	der (S)-MDE-Gruppe am	Baselinetag
-----------------------------------	-----------------------	-------------

Mittelwert:	358791	341987	199222	16805
Standardabweichung:	167862	150802	56447	314088
Relative Standardabweichung:	53083	47688	17850	99323

8.7.4.2 Testtag

Tab. 8.64: Daten des MDE-Versuchs der Saline-Gruppe am Testtag

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
4	Saline	45430	411428	443142	-365998
7	Saline	227568	376554	295878	-148986
13	Saline	591782	216316	91902	375466
16	Saline	266562	379962	253476	-113400
20	Saline	334182	451288	114530	-117106
22	Saline	308020	273934	318046	34086
29	Saline	506342	112444	281214	393898
31	Saline	524678	201394	173928	323284
35	Saline	420198	278436	201366	141762
38	Saline	278680	515806	105514	-237126

Mittelwert:	350344	321756	227900	28588
Standardabweichung:	163352	125807	111812	269256
Relative Standardabweichung:	51656	39784	35358	85159

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
1	Rac. MDE	214262	599940	85798	-385678
5	Rac. MDE	228378	450316	221306	-221938
8	Rac. MDE	249232	598942	51826	-349710
12	Rac. MDE	463950	242422	193628	221528
19	Rac. MDE	393484	87938	418578	305546
23	Rac. MDE	536918	292710	70372	244208
26	Rac. MDE	465120	279224	155656	185896
30	Rac. MDE	581190	199828	118982	381362
34	Rac. MDE	78488	430262	391250	-351774
37	Rac. MDE	143032	438308	318660	-295276
L	1	1	I	1	1

Tab. 8.65: Daten des MDE-Versuchs der racemischen MDE-Gruppe am Tes

Mittelwert:	335405	361989	202606	-26584
Standardabweichung:	174582	169444	132996	317321
Relative Standardabweichung:	55208	53823	42057	100346

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer-
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
2	(R)-MDE	591092	146346	162562	444746
9	(R)-MDE	527414	97684	274902	429730
10	(R)-MDE	453438	273290	173272	180148
11	(R)-MDE	351968	240554	307478	111414
18	(R)-MDE	331464	338098	230438	-6634
24	(R)-MDE	102482	562088	235430	-459606
25	(R)-MDE	287346	310598	302056	-23252
27	(R)-MDE	203754	469584	226662	-265830
33	(R)-MDE	430666	279788	189546	150878
36	(R)-MDE	205108	541398	153494	-336290
Mittelwert:		348473	325943	225584	22530

Tab. 8.66: Daten des MDE-Versuchs der (R)-MDE-Gruppe am Testtag

Mittelwert:	348473	325943	225584	22530
Standardabweichung:	154454	156259	56088	305614
Relative Standardabweichung:	48843	49414	17737	96644

Tier-	Verabreichte	Aufenthalt	Aufenthalt in	Aufenthalt im	Platzpräf.
Nummer	Substanz	in belohnter	unbelohnter	mittleren	(belohnte
		Kammer	Kammer	Kompartiment	Kammer–
		(msec)	(msec)	(msec)	unbelohnte
					Kammer)
					(msec)
3	(S)-MDE	626990	179554	93456	447436
6	(S)-MDE	253632	364160	282208	-110528
14	(S)-MDE	35704	555212	309084	-519508
15	(S)-MDE	391512	260860	247628	130652
17	(S)-MDE	440428	252036	207536	188392
21	(S)-MDE	522944	260750	116306	262194
28	(S)-MDE	249596	466588	183816	-216992
32	(S)-MDE	462852	210032	227116	252820
39	(S)-MDE	488634	147502	263864	341132
40	(S)-MDE	345928	360026	194046	-14098
Mittelwert:		381822	305672	212506	76150

Tab. 8.67: Daten des MDE-Versuchs der (S)-MDE-Gruppe am Testtag

Mittelwert:	381822	305672	212506	76150
Standardabweichung:	168829	129749	69030	293105
Relative Standardabweichung:	53388	41030	21829	92688

8.8 Einzelwerte der Konzentrationen des MDMA-Versuchs

8.8.1 Racemische MDMA-Gruppe

8.8.1.1 Cortexwerte

 Tab 8.68:
 Endkonzentrationen der racemischen MDMA-Gruppe im Cortex

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
	Ronzen-		Ronzen-	Ronzen-	Ronzen-	Ronzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
1	6162,3	6254,8	0	0	5828,2	12873,4
5	5806,4	8518,7	0	0	7739,0	17104,5
8	2104,9	3476,7	0	0	6041,3	12021,9
12	7852,9	10482,6	0	0	7309,7	16442,4
19	9255,4	9358,9	260,4	360,6	6549,4	14112,3
23	9412,2	2047,9	447,3	344,4	8643,1	20262,5
26	7573,4	10243,3	3471,1	3164,7	7629,8	17149,
30	3792,5	7688,5	268,4	224,4	5345,3	12554,8
34	10164,4	10461,8	158,6	389,6	5226,6	10191,7
37	12012,9	11220,6	284,5	275,5	5554,6	11564,4
Mittelwert:	3137,6	7975,4	205,2	475,9	6586,7	14427,8
Standard-						
abweichung	: 7695,3	3140,6	1158,3	958,9	1178,4	3173,3
Rel. Standa	rd-					
abweichung	: 2433,5	993,1	366,3	303,3	1178,4	1003,5

8.8.1.2 Striatumwerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
1	290,7	7535,7	344,7	401,8	8435,3	18547,1
5	7686,5	2828,1	0	0	0	0
8	6272,2	2446,5	4256,5	3574,2	7235,7	16815,7
12	303,9	6855,0	318,4	407,3	8303,0	19413,7
19	2916,1	7875,7	5031,	743,8	8035,9	15695,1
23	29658,7	856,3	7597,7	6533,5	0	0
26	450,9	4537,0	1458,2	1651,1	7837,4	18311,8
30	5240,0	1793,6	336,7	427,6	8824,9	20164,6
34	1358,8	5747,2	3309,40	2912,9	6764,9	11026,2
37	1710,3	7381,2	2774,3	2502,1	7981,8	17917,6
Mittelwert:	4272,9	4614,4	2342,8	1915,5	6341,9	13789,2
Standard-						
abweichung	g: 9641,4	2961,1	2736,2	2036,0	3392,9	7696,5
Rel. Standa	ird-					
abweichung	j: 3048,9	936,4	865,3	643,8	1072,9	2433,9

Tab.	8.69: Endkonzentration	on der racemischen l	MDMA-Gruppe in	n Striatum
I UN.				1 Othatam

8.8.1.3 Plasmawerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/mL	ng/mL	ng/mL	ng/mL	ng/mL	ng/mL
1	103,0	992,9	952,2	1133,6	0	0
5	106,0	1133,8	75,2	85,	0	0
8	109,2	1283,2	43,7	82,2	0	1250,
12	99,1	813,4	18,0	20,3	783,5	766,3
19	0	0	0	0	0	0
23	0	0	0	0	0	0
26	103,4	757,0	0	0	0	31,4
30	109,3	1408,7	5,6	6,4	0	55,3
34	150,8	947,1	0	0	0	609,3
37	105,5	1028,4	8,7	11,3	59,9	108,4
Mittelwert:	88,7	836,5	110,4	133,9	84,4	282,2
Standard-						
abweichung	g: 49,0	482,5	296,8	352,8	246,4	440,1
Rel. Standa	ird-					
abweichung	g: 15,5	152,6	93,9	111,6	77,9	139,2

Tab. 8.70: Endkonzentration der racemischen MDMA-Gruppe im Plasma

8.8.2 (R)-MDMA-Gruppe

abweichung: 10605,3 0

8.8.2.1 Cortexwerte

Tab. 8.71: Endkonzentration der (R)-MDMA-Gruppe im Cortex

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
2	3141,7	0	286,7	0	5814,2	0
9	598,5	0	268,2	0	5620,4	0
10	1109,5	0	0	0	0	0
11	106199,5	0	0	0	0	0
18	1073,7	0	196,9	0	0	0
24	1890,0	0	0	0	0	0
25	1386,3	0	0	0	6272,5	0
27	578,5	0	0	0	6418,0	0
33	3949,6	0	0	0	7270,9	0
36	1982,5	0	244,8	0	5310,0	0
Mittelwert:	10934,7	0	99,7	0	3670,6	0
Standard-						
abweichung	j: 33536,8	0	130,6	0	3201,7	0
Rel. Standa	ırd-					

41,3

0

1012,5

0

8.8.2.2 Striatumwerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
2	6245,2	0	396,5	0	7790,4	0
9	6037,6	0	0	0	8279,4	0
10	4195,0	0	311,9	0	7769,7	0
11	3356,4	0	3510,2	0	6943,5	0
1	3079,4	0	306,7	0	7110,1	0
24	5895,0	0	0	0	4966,0	0
25	8613,2	0	1724,5	0	8031,7	0
27	1327,3	0	380,1	0	7331,4	0
33	6056,7	0	296,0	0	6879,1	0
36	7686,4	0	284,6	0	8082,1	0
	I	I				
Mittelwert:	5249,2	0	325,9	0	7318,4	0
Standard-						
abweichung	j: 2229,2	0	1286,5	0	963,4	0
Rel. Standa	ird-					
abweichung	g: 704,9	0	406,8	0	304,6	0

Tab. 8.72: Endkonzentration der (R)-MDMA-Gruppe im Striatum

8.8.2.3 Plasmawerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/mL	ng/mL	ng/mL	ng/mL	ng/mL	ng/mL
2	100,6	0	7,6	0	18,3	0
9	100,1	0	0	0	10,8	0
10	105,3	0	0	0	7,1	0
11	93,3	0	4,6	0	25,4	0
18	107,9	0	0	0	24,4	0
24	101,6	0	0	0	24,4	0
25	105,9	0	13,8	0	11,2	0
27	0	0	47,0	0	20,5	0
33	102,8	0	0	0	10,3	0
36	98,7	0	0	0	14,8	0
Mittelwert:	101,8	0	8,1	0	5,7	0
Standard-						
abweichung: 4,4		0	15,4	0	17,1	0
Rel. Standard-						
abweichung: 1,4		0	4,9	0	5,4	0

Tab. 8.73: Endkonzentration der (R)-MDMA-Gruppe im Plasma

8.8.3 (S)-MDMA-Gruppe

8.8.3.1 Cortexwerte

Tab. 8.74: Endkonzentration der (S)-MDMA-Gruppe im Cortex

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
3	0	4666,9	0	1707,1	0	14341,6
6	0	4750,2	0	1252,1	0	11926,2
14	0	4183,5	0	1230,4	0	12200,5
15	0	1197,0	0	1845,6	0	11523,2
17	0	2728,0	0	1098,8	0	14165,3
21	0	1351,0	0	8932,2	0	0
28	0	1430,8	0	2122,0	0	8533,5
32	0	3270,3	0	2191,4	0	0
39	0	3089,9	0	1005,0	0	14001,6
40	0	402,8	0	1434,8	0	18630,6
	L	I	L	L		
Mittelwert:	0	2707,1	0	2281,9	0	10532,3
Standard-						
abweichung	j: 0	1553,4	0	2373,3	0	6118,2
Rel. Standard-						
abweichung	j: 0	491,2	0	750,5	0	1934,7

8.8.3.2 Striatumwerte

		1				
Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
3	0	1813,3	0	3043,2	0	14298,1
6	0	1311,8	0	2321,3	0	20552,0
14	0	2414,9	0	1602,1	0	19872,3
15	0	3948,7	0	2776,3	0	19613,4
17	0	836,4	0	9044,0	0	16993,7
21	0	55,2	0	1098,9	0	17014,6
28	0	160,4	0	3296,8	0	11844,4
32	0	2038,2	0	1383,8	0	20954,5
39	0	758,6	0	1008,4	0	16756,5
40	0	333,6	0	1438,0	0	16512,6
Mittelwert:	0	1061,7	0	2701,3	0	17441,3
Standard-						
abweichung	j: 0	1517,8	0	2376,4	0	2897,6
Rel. Standard-						
abweichung	j: 0	479,9	0	751,5	0	916,3

Tab. 8.75: Endkonzentration der (S)-MDMA-Gruppe im Striatum

8.8.3.3 Plasmawerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDMA in	MDMA in	HMMA in	HMMA in	MDA in	MDA in
	ng/mL	ng/mL	ng/mL	ng/mL	ng/mL	ng/mL
3	0	691,2	0	883,7	0	0
6	0	77,4	0	0	0	0
14	0	349,7	0	0	0	16,4
15	0	671,4	0	1,8	0	19,8
17	0	719,5	0	60,8	0	7,6
21	0	486,4	0	21,1	0	39,2
28	0	798,7	0	1,2	0	0
32	0	0	0	3663,8	0	0
39	0	0	0	1986,5	0	0
40	0	514,7	0	18,4	0	39,2
	<u>,</u>					
Mittelwert:	0	430,9	0	663,5	0	12,2
Standard-						
abweichung	j: 0	308,6	0	1236,2	0	16,0
Rel. Standard-						
abweichung	j: 0	97,6	0	390,9	0	5,1

8.9 Einzelwerte der Konzentrationen des MDE-Versuchs

8.9.1 Racemische MDE-Gruppe

8.9.1.1 Cortexwerte

Tab. 8.77: Endkonzentration der racemischen MDE-Gruppe im Cortex

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE	MDE	HME	HME	MDA	MDA
	in ng/g					
1	6733,9	11135,1	432,5	295,4	230,3	0,5
5	4811,2	7660,3	0	0	0	0
8	8781,2	14620,2	0	0	0	39,3
12	3820,5	6893,2	110,9	189,2	265,5	0
19	7071,6	11085,6	0	0	0	0
23	2836,7	5113,0	0	0	0	0
26	6762,4	10360,7	0	0	257,2	62,9
30	5319,6	9053,8	0	0	0	164,7
34	3985,5	6547,6	0	0	213,9	122,8
37	4480,8	5534,8	0	0	0	0
Mittelwert:	5460,4	8800,5	54,3	48,5	39,7	20,6
Standard-						
abweichung: 1828,5		3005,8	137,4	105,2	125,6	65,0
Rel. Standard-						
abweichung: 578,2		950,5	43,4	33,3	39,7	25,6

8.9.1.2 Striatumwerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE	MDE in	HME in	HME in	MDA in	MDA in
	in ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
1	6977,3	12645,6	257,9	169,7	4496,4	55,7
5	6095,4	11372,9	234,7	0	0	113,1
8	7676,3	12641,6	111,7	0	0	10,6
12	2350,4	5476,9	0	572,9	700,5	0
19	5786,7	11060,5	0	0	420,8	167,3
23	2237,9	8276,9	181,2	272,4	0	204,3
26	4577,5	7724,7	127,6	125,1	61,1	0
30	3780,3	4927,6	391,6	264,2	0	414,5
34	1532,3	3591,6	0	620,1	0	46,9
37	1742,3	3931,5	0	0	0	154,8
Mittelwert	: 4275,7	8265,0	130,5	95,1	471,5	65,3
Standard-						
abweichung: 2275,4		3583,0	135,9	300,2	1440,2	163,7
Rel. Standard-						
abweichu	ng: 719,5	1133,0	43,0	94,9	455,4	51,8

Tab. 8.78: Endkonzentration der racemischen MDE-Gruppe im Striatum
8.9.1.3 Plasmawerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE in	MDE in	HME in	HME in	MDA in	MDA in
	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
1	1770,8	588,2	29,2	11,8	0	18,5
5	976,3	641,4	19,5	6,8	12,1	13,1
8	1102,2	471,2	57,3	37,8	0	23,3
12	442,0	530,4	28,5	12,0	0	13,7
19	1882,1	607,6	32,0	21,2	0	13,3
23	779,9	141,9	123,3	0	97,8	0
26	0	0	0	0	0	0
30	1870,2	605,5	13,0	0,6	0	12,2
34	2037,3	634,7	14,0	3,8	0	11,3
37	771,8	610,9	12,0	2,6	0	8,8
Mittelwert	: 1007,3	483,2	32,9	9,7	11,0	11,5
Standard-						
abweichu	ng: 927,8	225,6	35,4	12,0	30,7	7,2
Rel. Stand	dard-					
abweichu	ng: 293,4	71,3	11,2	3,8	9,7	2,3

Tab. 8.79: Endkonzentration der racemischen MDE-Gruppe im Plasma

8.9.2 (R)-MDE-Gruppe

8.9.2.1 Cortexwerte

Rel. Standard-

abweichung: 1164,6

0

Tab. 8.80: Endkonzentration der (R)-MDE-Gruppe im Cortex

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE in	MDE in	HME in	HME in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
2	10297,1	0	0	0	609,9	0
9	11823,9	0	0	0	798,1	0
10	16585,9	0	154,9	0	838,8	0
11	8856,5	0	310,9	0	917,5	0
18	12685,4	0	182,4	0	70,0	0
24	2885,8	0	28076,4	0	0	0
25	10894,3	0	0	0	519,2	0
27	13608,4	0	0	0	95,6	0
33	14233,5	0	148,8	0	535,2	0
36	11069,9	0	0	0	62,2	0
	I	I				
Mittelwert:	11294,1	0	2887,3	0	399,1	0
Standard-						
abweichung: 3682,7		0	8851,2	0	413,1	0

2799,0

0

0

130,6

8.9.2.2 Striatumwerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE in	MDE in	HME in	HME in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
2	11450,2	0	229,9	0	875,8	0
9	13188,7	0	711,5	0	1667,7	0
10	19017,3	0	580,3	0	2625,0	0
11	12912,5	0	128,5	0	670,1	0
18	14885,1	0	1272,5	0	671,7	0
24	14403,4	0	0	0	1681,8	0
25	12294,6	0	369,4	0	421,0	0
27	12435,0	0	373,4	0	156,0	0
33	15222,3	0	295,9	0	1573,0	0
36	9666,7	0	189,4	0	4,1	0
Mittelwert:	13547,6	0	415,1	0	919,2	0
Standard-						
abweichung: 1539,5		0	366,4	0	965,8	0
Rel. Standard-						
abweichung: 803,1		0	115,9	0	305,4	0

Tab. 8.81: Endkonzentration der (R)-MDE-Gruppe im Striatum

8.9.2.3 Plasmawerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE in	MDE in	HME in	HME in	MDA in	MDA in
	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
2	2105,7	0	40,9	0	16,9	0
9	2046,3	0	38,7	0	0	0
10	3131,6	0	114,2	0	59,7	0
11	3235,1	0	72,1	0	99,4	0
18	50739,3	0	85,4	0	130,3	0
24	2908,8	0	88,9	0	112,5	0
25	2378,4	0	41,5	0	48,3	0
27	2718,1	0	68,0	0	48,4	0
33	2782,2	0	57,8	0	68,9	0
36	2061,7	0	56,8	0	55,5	0
Mittelwert:	7410,7	0	66,5	0	64,0	0
Standard-						
abweichung: 15230,4		0	25,0	0	40,7	0
Rel. Standard-						
abweichung: 4816,3		0	7,7	0	12,9	0

Tab. 8.82: Endkonzentration der (R)-MDE-Gruppe im Plasma

8.9.3 (S)-MDE-Gruppe

8.9.3.1 Cortexwerte

Tab. 8.83: Endkonzentration der (S)-MDE-Gruppe im Cortex

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE in	MDE in	HME in	HME in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
3	0	6420,1	0	2335,5	0	18,7
6	0	5242,0	0	2202,4	0	30,2
14	0	14564,1	0	2695,7	0	103,6
15	0	6734,8	0	2234,8	0	1094,6
17	0	7174,6	0	2104,6	0	72,8
21	0	10566,7	0	2397,5	0	79,67
28	0	13893,6	0	2035,6	0	72,2
32	0	4116,6	0	0	0	83,4
39	0	4525,5	0	0	0	69,5
40	0	3786,4	0	0	0	116,9
	I	I		I		
Mittelwert:	0	7702,4	0	1600,6	0	82,7
Standard-						
abweichung	j: 0	3955,5	0	1118,9	0	362,8
Rel. Standard-						
abweichung	g: 0	1250,9	0	353,8	0	114,7

8.9.3.2 Striatumwerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE in	MDE in	HME in	HME in	MDA in	MDA in
	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
3	0	11577,4	0	150,5	0	330,2
6	0	7106,3	0	81,0	0	173,6
14	0	9865,9	0	174,2	0	110,1
15	0	9195,6	0	60,0	0	147,1
17	0	10491,6	0	0	0	208,4
21	0	8005,6	0	947,7	0	143,7
28	0	13105,7	0	35,4	0	55,3
32	0	8161,6	0	115,9	0	4,6
39	0	3171,4	0	214,0	0	47,6
40	0	4397,9	0	200,7	0	144,2
Mittelwert:	0	8507,9	0	14,9	0	87,1
Standard-						
abweichung	j: 0	3064,5	0	343,2	0	144,3
Rel. Standard-						
abweichung	j: 0	969,1	0	108,5	0	45,6

Tab. 8.84: Endkonzentration der (S)-MDE-Gruppe im Striatum

8.9.3.3 Plasmawerte

Tier-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-	Konzen-
Nummer	tration (R)-	tration (S)-	tration (R)-	tration (S)-	tration (R)-	tration (S)-
	MDE in	MDE in	HME in	HME in	MDA in	MDA in
	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml	ng/ml
3	0	566,0	0	66,8	0	16,7
6	0	715,0	0	78,5	0	65,5
14	0	550,1	0	9,9	0	12,2
15	0	599,5	0	29,8	0	14,3
17	0	657,3	0	68,0	0	18,8
21	0	670,8	0	9,1	0	12,7
28	0	788,6	0	53,0	0	19,8
32	0	657,6	0	15,0	0	14,7
39	0	0	0	0	0	0
40	0	467,3	0	12,9	0	9,7
Mittelwert:	0	567,3	0	34,3	0	18,5
Standard-						
abweichung	j: 0	218,8	0	29,3	0	17,5
Rel. Standa	rd-					
abweichung	j: 0	69,2	0	9,3	0	5,5

Tab. 8.85: Endkonzentration der (S)-MDE-Gruppe im Plasma

Literaturverzeichnis

[1] Drogensucht, E.B.f.D.u. 2001 - Jahresbericht über den Stand der Drogenprobelmatik in der Europäischen Union. 2001; 1-66.

[2] Gesundheit, B.f. Drogen- und Suchtbericht 2001. http://www.bmgesundheit.de/themen/drogen/anualreport/2001 Annual Report DE fi nal.pdf. 2001; 1-125.

[3] Mannich, C. and Jacobsohn, W. Über Oxyphenyl-alkylamine und Sioxyphenylalkylamine. Ber Dtsch CHem Ges. 1910; 43: 189-192.

[4] Merck, E. Deutsches Patent. 1914; 284: 350.

[5] Braun, U., Shulgin, A.T., and Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J Pharm Sc. 1980; 69: 192-195.

[6] Nichols, D.E. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs. 1986; 18: 305-313.

[7] Gouzoulis-Mayfrank, E., Hermle, L., Kovar, K., and Sass, H. Die Entacotgene
 "Ecstacy" (MDMA), "Eve" (MDE) und andere ringsubstituierte
 Methamphetaminderivate. Nervenarzt. 1996; 67: 369-380.

[8] Hermle, L., Spitzer, M., Borchardt, D., Kovar, K., and Gouzoulis, E. Psychological effects of MDE in normal subjects. Are entactogens a new class of psychoactive agents? Neuropsychopharmacology. 1993; 8: 171-176.

[9] Kovar, K.-A., Rösch, C., Rupp, A., and Hermle, L. Synthetische Suchtstoffe der 2. Generation (sog. Designer Drugs). Pharm Unserer Zeit. 1990; 19: 99-107.

[10] Hegadoren, K., Baker, G., and Bourin, M. 3,4-Methylenedioxy analogues of amphetamine: defining the risks to humans. Neurosci Biobehav Rev. 1999; 23.

[11] Johnson, M.P., Hoffman, A.J., and Nichols, D.E. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol. 1986; 132: 269-276.

[12] Mayerhofer, A., Kovar, K.A., and Schmidt, W.J. Changes in serotonin, dopamine and noradrenaline levels in striatum and nucleus accumbens after

9

repeated administration of the abused drug MDMA in rats. Neurosci Lett. 2001; 308: 99-102.

[13] Meltzer, H.Y. The role of serotonin in antipsychotic drug action. Neuropsychopharmacology. 1999; 21: 106-115.

[14] Whitaker-Azmitia, P. and Aronson, T. "Ecstasy" (MDMA)-induced panic. Am J Psychiatry. 1989; 146: 119.

[15] Hayner, G. and McKinney, H. MDMA. The dark side of ecstasy. J Psychoactive Drugs. 1986; 18: 341-347.

[16] Henry, J., Jeffreys, K., and Dawling, S. Toxicity and deaths from 3,4methylenedioxymethamphetamine ("ecstasy"). Lancet. 1992; 340: 384-387.

[17] Schifano, F. and Magni, G. MDMA ("ecstasy") abuse: psychopathological features and craving for chocolate: a case series. Biol Psychiatry. 1994; 36: 763-767.

[18] Schmidt, C. Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther. 1987; 240: 1-7.

[19] Schmidt, C.J. Acute administration of methylenedioxymethamphetamine: comparison with the neurochemical effects of its N-demethyl and N-ethyl analogs. Eur J Pharmacol. 1987; 136: 81-8.

[20] Glennon, R.A. and Young, R. Further investigation of the discriminative stimulus properties of MDA. Pharm Biochem Behav. 1984; 20: 501-505.

[21] Nichols, D.E., AJ, H., Oberlender, R.A., Jacob, P., and Shulgin, A.T. Derivatives of 1-(1,3-benzodioxyol-5-yl)-2-butanamine. Representatives of a novel therapeutic class. J Med Chem. 1986; 29: 2009-2015.

[22] Marona-Lewicka, D., Rhee, G.S., Sprague, J.E., and Nichols, D.E. Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol Biochem Behav. 1996; 53: 99-105.

[23] Nichols, D., Marona-Lewicka, D., Huang, X., and Johnson, M. Novel serotonergic agents. Drug Des Discov. 1993; 9: 299-312.

[24] Ricaurte, G.A., Finnegan, K.F., Nichols, D.E., DeLanney, L.E., Irwin, I., and Langston, J.W. 3,4-Methylenedioxyethylamphetamine (MDE), a novel analogue of MDMA, produces long-lasting depletion of serotonin in the rat brain. Eur J Pharmacol. 1987; 137: 265-268.

[25] Rudnick, G. and Wall, S.C. The molecular mechanism of "ecstasy" [3,4methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci U S A. 1992; 89: 1817-1821. [26] Lyon, R.A., RA, G., and Titler, M. 3,4-Methylenedioxymethamphetamine (MDMA): Stereoselective interactions at $5-HT_1$ and $5-HT_2$ receptors. Psychopharmacology. 1986; 88: 525-526.

[27] Nichols, D.E., Lloyd, D.H., AJ, H., Nichols, M.B., and Yim, G.K. effects of certain halluciogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J Med Chem. 1982; 25: 530-534.

[28] Steele, T.D., Nichols, D.E., and Yim, G.K. Stereochemical effects of 3,4methylenedioxymethamphetamine (MDMA) and related amphetamine derivatives on inhibition of uptake of [3H]monoamines into synaptosomes from different regions of rat brain. Biochem Pharmacol. 1987; 36: 2297-2303.

[29] Callaway, C.W., M, J., Gold, L.H., Nichols, D.E., and Geyer, M.A. Amphetamine derivatives induce locomotor hyperactivity by acting as indirect serotonin agonist. Psychopharmacology. 1991; 104: 293-301.

[30] Colado, M., O'Shea, E., Granados, R., Esteban, B., Martin, A., and Green, A. Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') administration. Br J Pharmacol. 1999; 126: 911-924.

[31] Mintzer, S., Hickenbottom, S., and Gilman, S. Parkinsonism after taking ecstasy. N Engl J Med. 1999; 340: 1443.

[32] Johnson, M., Elayan, I., Hanson, G., Foltz, R., Gibb, J., and Lim, H. Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihydroxymethamphetamine, two metabolites of 3,4-methylenedioxymethamphetamine, on central serotonergic and dopaminergic systems. J Pharmacol Exp Ther. 1992; 261: 447-453.

[33] Kovar, K. Chemistry and pharmacology of hallucinogens, entactogens and stimulants. Pharmacopsychiatry. 1998; 31.

[34] Hiramatsu, M., Nabeshima, T., Kameyama, T., Maeda, Y., and Cho, A. The effect of optical isomers of 3,4-methylenedioxymethamphetamine (MDMA) on stereotyped behaviour in rats. Pharmacol Biochem Behav. 1989; 33: 343-347.

[35] Buechler, J. Stereoselektive Gewinnung, Analytik und Pharmakokinetik der Enantiomere des Ecstacy-Analogons N-Ethyl-3,4-methylendioxyamphetamin (MDE) und seiner Hauptmetabolite. Dissertation. Eberhard-Karls-Universität, Tübingen. 2000.

[36] Spitzer, M., Franke, B., Walter, H., Buechler, J., Wunderlich, A.P., Schwab, M., Kovar, K.A., Hermle, L., and Gron, G. Enantio-selective cognitive and brain activation

effects of N-ethyl-3,4-methylenedioxyamphetamine in humans. Neuropharmacology. 2001; 41: 263-271.

[37] Ensslin, H.K., Maurer, H.H., Gouzoulis, E., Hermle, L., and Kovar, K.A. Metabolism of racemic 3,4-methylenedioxyethylamphetamine in humans. Isolation, identification, quantification, and synthesis of urinary metabolites. Drug Metab Dispos. 1996; 24: 813-820.

[38] Kreth, K., Kovar, K., Schwab, M., and Zanger, U. Identification of the human cytochromes P450 involved in the oxidative metabolism of "Ecstasy"-related designer drugs. Biochem Pharmacol. 2000; 15: 1563-1571.

[39] Maurer, H., Bickeboeller-Friedrich, J., Kraemer, T., and Peters, F. Toxicokinetics and analytical toxicology of amphetamine-derived designer drugs ('Ecstasy'). Toxicol Lett. 2000; 112-113: 133-142.

[40] Tucker, G., Lennard, M., Ellis, S., Woods, H., Cho, A., Lin, L., Hiratsuka, A., Schmitz, D., and Chu, T. The demethylenation of methylenedioxymethamphetamine ("ecstasy") by debrisoquine hydroxylase (CYP2D6). Biochem Pharmacol. 1994; 29: 1151-1156.

[41] Wu, D., Otton, S., Inaba, T., Kalow, W., and Sellers, E. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol. 1997; 53: 1605-1612.

[42] Gouzoulis-Mayfrank, E., Thelen, B., Habermeyer, E., Kunert, H., Kovar, K., Lindenblatt, H., Hermle, L., Spitzer, M., and Sass, H. Psychopathological, neuroendocrine and autonomic effects of 3,4-methylenedioxyethylamphetamine (MDE), psilocybin and d-methamphetamine in healthy volunteers. Results of an experimental double-blind placebo-controlled study. Psychopharmacology (Berl). 1999; 142: 41-50.

[43] Chu, T., Kumagi, Y., DiStefano, E.W., and Cho, A. Disposition of Methyleneioxyamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochemical Pharmacology. 19961; 51: 789-796.

[44] Ortuno, J., Pizarro, N., Farre, M., Mas, M., Segura, J., Cami, J., Brenneisen, R., and de la Torre, R. Quantification of 3,4-Methylenedioxymethamphetamine and its metabolites in plasma and urine by gas chromatography with nitrogen-phosphorus detection. J Chromatogr B Biomed Sci Appl. 1999; 723: 221-232.

[45] Lim, H.K., Su, Z., and Foltz, R.L. Stereoselective disposition: enantioselective quantitation of 3,4-(methylenedioxy) methamphetamine and three of its metabolites by gas chromatography/electron capture negative ion chemical ionization mass spectrometry. Biol Mass Spectrom. 1993; 22: 403-411.

[46] Matsushima, K., Nagai, T., and Kamiyama, S. Optical isomer analysis of 3,4methylene-dioxyamphetamine analogues and their stereoselective disposition in rats. J Anal Toxicol. 1998; 22: 33-39.

[47] Fitzgerald, R.L., Blanke, R.V., and Poklis, A. Stereoselective pharmacokinetics of 3,4-methylenedioxymethamphetamine in the rat. Chriality. 1990; 2: 241-248.

[48] Cho, A.K., Hiramatsu, M., Distefano, E.W., Chang, A.S., and Jenden, D.J. Stereochemical differences in the metabolism of 3,4methylenedioxymethamphetamine in vivo and in vitro: a pharmacokinetic analysis. Drug Metab Dispos. 1990; 18: 686-691.

[49] Fallon, J.K., Kicman, A.T., Henry, J.A., Milligan, P.J., Cowan, D.A., and Hutt, A.J. Stereospecific analysis and enantiomeric disposition of 3, 4methylenedioxymethamphetamine (Ecstasy) in humans. Clin Chem. 1999; 45: 1058-1069.

[50] Lanz, M., Brenneisen, R., and Thormann, W. Enantioselective determination of 3,4-methylene-dioxymethamphetamine and two of its metabolites in human urine by cyclodextrin-modified capillary zone electrophoresis. Electrophoresis. 1997; 18: 1035-1043.

[51] Brunnenberg, M. and Kovar, K.A. Stereospecific analysis of ecstasy-like Nethyl-3,4-methylenedioxyamphetamine and its metabolites in humans. J Chromatogr B Biomed Sci Appl. 2001; 10: 9-18.

[52] Johnson, M., Letter, A.A., Merchant, K., Hanson, G.R., and Gibb, J.W. Effects of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine isomers on central serotonergic, dopaminergic and nigral neurotensin systems of the rat. J Pharmacol Exp Ther. 1988; 244: 977-982.

 [53] Heidbreder, C.A., Weiss, I.C., Domeney, A.M., Pryce, C., Homberg, J., Hedou,
 G., Feldon, J., Moran, M.C., and Nelson, P. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience. 2000; 100: 749-768. [54] Heinz, A. Serotonerge Dysfunktion als Folge sozialer Isolation - Bedeutung für die Entstehung von Aggression und Alkoholabhängigkeit. Nervenarzt. 1999; 70: 780-789.

[55] Howes, S.R., Dalley, J.W., Morrison, C.H., Robbins, T.W., and Everitt, B.J. Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology (Berl). 2000; 151: 55-63.

[56] Lewis, M.H., Gluck, J.P., Beauchamp, A.J., Keresztury, M.F., and Mailman, R.B. Long-term effects of early social isolation in Macaca mulatta: changes in dopamine receptor function following apomorphine challenge. Brain Res. 1990; 513: 67-73.

[57] Skinner, B.F. The behaviour of organisms. Appleton-Century-Crofts, New York. 1938.

[58] Thorndike, E.L. Animal intelligence: an experimental study of the associative processes in animals. Psychol Monogr. 1898; 8: 1-109.

[59] White, N. and Milner, P. The psychobiology of reinforcers. Annu Rev Psychol. 1992; 43: 443-471.

[60] Nesse, R.M. and Berridge, K.C. Psychoactive drug use in evolutionary perspective. Science. 1997; 278: 63-66.

[61] Wolffgramm, J. and Heyne, A. From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res. 1995; 70: 77-94.

[62] Wise, R. Catecholamine theories of reward: a critical review. Brain Res. 1978; 152: 215-247.

[63] Bardo, M. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol. 1998; 12: 37-67.

[64] Schmidt, W.J. and Kretschmer, B.D. Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci Biobehav Rev. 1997; 21: 381-392.

[65] Uylings, H.B. and van Eden, C.G. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res. 1990; 85: 31-62.

[66] Berger, B., Gaspar, P., and Verney, C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 1991; 14: 21-27.

[67] Ljungberg, T., Apicella, P., and Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol. 1992; 67: 145-163.

[68] Schultz, W., Apicella, P., Scarnati, E., and Ljungberg, T. Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci. 1992; 12: 4595-4610.

[69] Carr, G.D., Fibiger, H.C., and Phillips, A.G. Conditioned place preference as a measure of drug reward. In: Liebmann, J.M. und Cooper, S.J. (eds.) The Neuropharmacological Basis of Reward. Clarendon Press, Oxford. 1989; 264-319.

[70] Tzschentke, T.M. Measuring reward with conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 1998; 56: 613-672.

[71] O'Brien, C.P. Experimental analysis of conditioning factors in human narcotic addiction. Pharmacol. Rev. 1975; 27: 533-543.

[72] O'Brien, C.P., Childress, A.R., Ehrmann, R., and Robbins, S.J. Conditioning factors in drug abuse: can they explain complusion? J. Psychopharmacol. 1998; 12: 15-22.

[73] Bilsky, E.J., Hubbell, C.L., Delconte, J.D., and Reid, L.D. MDMA produces a conditioned place preference and elicits ejaculation in male rats: a modulatory role for the endogenous opioids. Pharmacol Biochem Behav. 1991; 40: 443-447.

[74] Hoffman, D.C. The use of place conditioning in studying the neuropharmacology of drug reinforcement. Brain Res Bull. 1989; 23: 373-387.

[75] Bilsky, E.J., Hui, Y., Hubbell, C.L., and Reid, L.D. Methylenedioxymethamphetamine's Capacity to Establish Place Preferences and Modify Intake of an Alcoholic Beverage. Pharm Biochem Behav. 1990; 37: 633-638.

[76] Bilsky, E.J., Marglin, S.H., and Reid, L.D. Using antagonists to assess neurochemical coding of a drug's ability to establish a conditioned place preference. Pharmacol Biochem Behav. 1990; 37: 425-431.

[77] Rilke, O., Freier, D., Jahkel, M., and Oehler, J. Dynamic alterations of serotonergic metabolism and receptors during social isolation of low- and high-active mice. Pharmacol Biochem Behav. 1998; 59: 891-896.

[78] Harris, E.L.V. Protein purification methods: a practical approach. IRL-Press at Oxford University. 1980.

[79] Sadeghipour, F. and Veuthey, J.L. Sensitive and selective determination of methylenedioxylated amphetamines by high-performance liquid chromatography with fluorimetric detection. J Chromatogr A. 1997; 787: 137-143.

[80] Tagliaro, F., De Battisti, Z., Groppi, A., Nakahara, Y., Scarcella, D., Valentini, R., and Marigo, M. High sensitivity simultaneous determination in hair of the major constituents of ecstasy (3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylene-dioxyethylamphetamine) by high-performance liquid chromatography with direct fluorescence detection. J Chromatogr B Biomed Sci Appl. 1999; 723: 195-202.

[81] Rilke, O., Jahkel, M., and Oehler, J. Dopaminergic parameters during social isolation in low- and high-active mice. Pharmacol Biochem Behav. 1998; 60: 499-505.

[82] Lyon, R.A., RA, G., and Titler, M. 1986.

[83] Shulgin, A.T. Stereospecific requirements for hallucinogenesis. J Pharm Pharmacol. 1973; 25: 271-272.

[84] International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use. Step 3: Guideline on Validation of Analytical Procedures: Methology. 1996.

[85] Funk, W., Damann, V., Vonderheid, C., and Oehlmann, G. Statistische Methoden in der Wasseranalytik. 1. Aufl. Weinheim: VCH;. 1985.

[86] Heffner, T.G., Hartman, J.A., and Seiden, L.S. A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav. 1980; 13: 453-456.

[87] Kromidas, S. Validierung in der Analytik. 1. Aufl. Weinheim; 1999.

[88] Sachs, L. Angewandte Statistik. 7. Aufl. Berlin, Heidelberg. Springer. 1992.

[89] Koch, O.G. and Koch-Gedic, G.A. Handbuch der Spurenanalyse, Teil 1. 2.Auflage. Berlin, Heidelberg, New York: Springer. 1974.

Meine akademischen Lehrer der Ausbildung zum approbierten Apotheker waren neben Herrn Prof. K.-A. Kovar die Damen und Herren Professoren und Dozenten:

- H. J. Roth Pharmazeutische Chemie
- K.-A. Kovar Pharmazeutische Chemie
- J. E. Schultz Pharmazeutischen Chemie
- P. C. Schmidt Pharmazeutischen Technologie
- E. Reinhard Pharmazeutische Biologie
- L. Heide Pharmazeutische Biologie
- H. P. T. Ammon Pharmakologie
- G. Drews Pharmakologie
- G. Döring Mikrobiologie
- G. Gauglitz Physikalische Chemie
- H. Pommer Mathematik für Pharmazeuten
- P. Grabmayr Physik

Lebenslauf

Meyer
Anja
09.02.1972
Tübingen
ledig
deutsch

Ausbildung:

1978-1982	Eduard-Spranger-Schule, Reutlingen
1982-1991	Isolde-Kurz-Gymnasium, Reutlingen
1991	Abitur
1991-1994	Naturwissenschaftliche Akademie Prof. Dr. Grübler, Isny im Allgäu
	Ausbildung zur Pharmazeutisch-technischen Assistentin
1994	Praktikum zur Pharmazeutisch-technischen Assistentin in der
	Schwanen-Apotheke, Stuttgart
1994-1998	Studium der Pharmazie an der Universität Tübingen
09/1996	1. Abschnitt der Pharmazeutischen Prüfung
04/1998	2. Abschnitt der Pharmazeutischen Prüfung
1998-1999	Pharmaziepraktikum in der Schwanen-Apotheke, Dachau
07/1999	3. Abschnitt der Pharmazeutischen Prüfung und Approbation
1999-2002	Anfertigung der vorliegenden Arbeit mit dem Titel
	Pharmazeutischen Institut der Eberhard-Karls-Universität unter der Leitung von Herrn Prof. Dr. KA. Kovar
Ab 1999	Weiterbildung zur Fachapothekerin für Pharmazeutische Analytik

Berufliche Tätigkeiten:

1994	PtA-Praktikum in der Schwanen-Apotheke, Stuttgart
1994-1997	Aushilfs-PTA in der Hans-Jakob-Apotheke, Hagnau
1998-1999	Pharmazie-Praktikum in der Schwanen-Apotheke, Stuttgar
1999-2002	Wissenschaftliche Angestellte am Pharmazeutischen Institut
	Tübingen
1999-2002	Vertretung als Apothekerin in der Bahnhof-Apotheke, Reutlingen