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Chapter 1

Introduction

Topology studies topological spaces up to homeomorphism or up to homotopy
equivalence. Algebraic topology associates algebraic objects to spaces such that
for homeomorphic (or even homotopy equivalent) spaces the associated objects are
isomorphic. Algebra often allows to draw conclusions which would be hard to get
by topological means, e.g., about non-existence of maps with certain properties
between two given spaces.

For manifolds, one often has more structure: smooth structures, Riemannian
metrics, ... , which sometimes allow to draw global (topological) information. A
kind of geometric structures, which seem to be particularly useful for the topolog-
ical study of manifolds, at least in low dimensions, are (G, X)-structures in the
sense of Thurston, i.e., locally homogeneous metrics.

In dimensions 2 and 3, the most complicated and interesting manifolds admit
hyperbolic structures, i.e., (G, X)-structures with X = H™ (the hyperbolic space)
and G = Isom (H™) (its isometry group). (More precisely: all surfaces of genus
> 2 are hyperbolic, and conjecturally all 3-manifolds can be decomposed as con-
nected sum and cut along mi-injective tori into pieces which are either hyperbolic
or are quite simple, namely finitely covered by an S!-bundle.)

In dimensions > 3, hyperbolic structures on a manifold are unique up to isom-
etry, by Mostow’s rigidity theorem. Therefore, geometric invariants arising from
the hyperbolic metric, such as its volume, are topological invariants. It follows
actually from the Chern-Gauf-Bonnet theorem that in even dimensions (including
surfaces) hyperbolic volume is proportional to the Euler characteristic x. In odd
dimensions, x vanishes by Poincare duality, and one might consider hyperbolic
volume as a good replacement. Of course, there are plenty of topological invari-
ants, but according to [61] ”one gets a feeling that volume is a very good measure
for the complexity” of a 3-manifold, and that the ordinal structure (of the set of
hyperbolic volumes as a subset of R, ) ”is really inherent in 3-manifolds.”
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4 CHAPTER 1. INTRODUCTION

Hyperbolic volume is a homotopy invariant and one might ask whether it is
definable in terms of algebraic topology. Such a homotopy invariant was indeed
defined by Gromov for all (compact, orientable, connected) manifolds: the

T T

simplicial volume || M,0M |:= inf {Z | a; |: Z%’Ui repres. [M, BM]} ,
where [M, OM] is the image of the relative fundamental cycle in H gy, a1y (M, OM; R).
The definition extends to arbitrary compact manifolds, see page 11.

The Gromov-Thurston theorem states: if int (M) admits a hyperbolic met-
ric of finite volume Vol (M), then | M,0M |= VinVol (M), where V,, is the
volume of a regular ideal simplex in H", i.e., a constant depending only on di-
mension n. More generally, for any (G, X) one has a constant V (G, X) such that
| M,0M ||=V (G,X)Vol (M) whenever M has a (G, X)-structure. For many
”simple” structures this constant is actually zero, e.g., if G is solvable.

The simplicial volume quantifies the topological complexity of manifolds. In-
deed, define a partial order on the set of n-manifolds by: M; > My if there exists a
degree 1 map from M; to My. Then the simplicial volume is an order-preserving
map from the set of n-manifolds to the nonnegative reals. More generally, if
there is a degree d map from M; to My, then || My1,0M; ||> d || M2,0M; |.
As mentioned above, algebraic topology is often useful for finding restrictions on
mappings between given spaces. However, it is hard to get such quantitative re-
strictions from non-numerical algebraic invariants.

Another use of the simplicial volume is that it relates to rigidity questions and
somehow clarifies how a manifold’s topology determines its hyperbolic geometry.
It was used for Thurston’s version of Mostow rigidity: any map f : My — My
between finite-volume hyperbolic manifolds satisfying vol (M1) = deg (f) vol (M)
can be homotoped into a normal form, namely a locally isometric covering.



In spite of its relatively unassuming definition, the simplicial volume is quite
hard to calculate. Gromov developped the theory of bounded cohomology to prove
various vanishing results for the simplicial volume. He proved that:

- if M is connected and m M, m10M are amenable (e.g., virtually solvable),

then | M,0M ||=0,
- if M admits a nontrivial (not necessarily free) S!-action, then || M,0M |= 0,

- if My, M5 are closed manifolds of dimension > 3,

then || MyfM; |[=| My || + || My |-

On the other hand, he proved nontriviality of | M,0M || if int (M) admits a
complete metric with —b? < sectional curvature < —a? < 0 and finite volume, and
gave the exact formula for finite-volume hyperbolic manifolds mentioned above.
To describe results about the simplicial volume obtained in the last 20 years, there
are triviality results such as || M™ ||= 0 if M™ admits an amenable cover with n-
dimensional nerve ([26],[35]) and a generalization for complex varieties ([64]), and
nontriviality results as [55] for compact quotients of SL,R/SO,, [56] for bases
of flat bundles with nontrivial Euler class and [33] for surface bundles with fiber
genus > 2. In a different direction, bounded cohomology has shown more applica-
tions than the simplicial volume, in particular in dynamics of group actions (see
the relevant chapters of [45] for an overview), the most striking application being
that the second bounded cohomology of a group classifies its representations in
Homeo™ (S') up to topological semi-conjugacy ([22]).

In section 2.3. we discuss bounded cohomology and simplicial volume of Lefschetz
fibrations. The results are not related to the rest of this thesis, but we think that
they should be of some independent interest. We show

Theorem 1: If m: M — B is a Lefschetz fibration with fiber Fy, vanishing cycles
V1,---,0r C Fy, reqular values B' C B and monodromy p : mB' — Mapy ., then
the real Euler class € is bounded if and only if {(g) (v;) : g € mB',i=1,...,r} is
an incomplete curve system.

This gives a generalization to the results of [47], [22], [33], that surface bundles
have bounded Euler class and, hence, positive simplicial volume.

Boundedness of the Euler class is a sufficient condition for a Lefschetz fibration,
with base and fiber of genus > 2, to have positive simplicial volume.

To generally determine triviality /nontriviality of the simplicial volume for Lef-
schetz fibrations (with base and fiber of genus > 2) it would be necessary to have
a criterion for (un)boundedness of eg U m*wp, the cup-product of the real Euler
class with the pulled-back volume form of the base.



6 CHAPTER 1. INTRODUCTION

Generally spoken, we study in this dissertation simplicial volume relative to
codimension 1 objects.

On the one hand we study the behaviour of simplicial volume with respect
to cut and paste, i.e., we wish to compare | Mp,0MFp || to || M,0M ||, where
F C M is a properly embedded (n-1)-submanifold and My := M — N (F) for a
regular neighborhood N (F).

On the other hand, we will study the foliated Gromov norm of codimension 1
foliations, which seems to be a good invariant to quantify the branching of folia-
tions.

Cut and paste.

It is not hard to see that simplicial volume of surfaces is additive w.r.t. glueing
along boundaries. For 3-manifolds, things become much more complicated, and
there doesn’t seem to exist a general formula for the behaviour of simplicial vol-
ume of 3-manifolds w.r.t. glueing along surfaces of genus > 2. As a special case
of lemma, 11 and 12 cited below, we will get that simplicial volume of 3-manifolds
is additive w.r.t. glueing along mi-injective tori and superadditive w.r.t. glueing
along mi-injective annuli. (In the special case that all boundary components of
the 3-manifolds are tori, a stronger statement was proved by Soma in [57]. Any-
way, his proof relies in an essential way on a statement of Thurston which seems
not so easy to prove.)

We want to remind what the glueing problem is about.

The inequality || Mp,0Mp ||<|| M,0M || translates to the following statement:
there exist fundamental cycles of M, with /*-norm arbitrarily close to | M,0M ||,
which can be split into fundmamental cycles for the components of M, i.e., which
don’t invoke simplices cut into pieces by F.

In turn, the inequality || Mp,OMp ||>|| M,0M | has the following meaning: there
exist fundamental cycles for the components of My, with ['-norm arbitrarily close
to the simplicial volume, which fit together at the boundary components of Mg,
i.e., their boundaries cancel against each other.

Tori and annuli are distinguished from surfaces of genus > 2 by the property
that they have amenable fundamental groups. In fact, Gromov already showed
in [26] that simplicial volume of closed manifolds is additive w.r.t. "amenable
glueings” (see the introduction to chapter 3 for a precise definition), and he in-
dicated that there are analogous results for glueing non-closed manifolds along
parts of their boundaries. We use methods introduced by Gromov to write proofs
of the following lemmata 11-12 (put together in theorem 2), which imply in par-
ticular: simplicial volume of manifolds with boundary is additive w.r.t. glueing
along amenable 7-injective closed (n-1)-manifolds and superadditive w.r.t. glue-



ing along amenable 7i-injective (n-1)-manifolds with boundary.

Lemma 11(i): Let My, Mo be two compact, connected n-manifolds, Ay, As
(n-1)-dimensional submanifolds of OMy resp. OMa, f : A1 — Ao a homeomor-
phism and M = My Uy My the glued manifold.

If f. maps ker (w1 A1 — w1 My) isomorphically to ker (m1 Ay — w1 Ms), and if

im (m Ay — w1 My) is amenable, then || M,0M ||>|| M1,0M; || + || My, 0My ||.
Lemma 11(ii): Let My be a compact, connected n-manifold, no component of
which is a 1-dimensional closed intervall, Ay, As disjoint (n-1)-dimensional sub-
manifolds of OMy, f : A1 — As a homeomorphism and M = My/f the glued
manifold.

If im (m1 A1 — m M) is amenable, then | M,0M ||>| My,0M; |.

Lemma 12: Let My be a (possibly disconnected) compact manifold, A1, Ay con-
nected components of OMy, f : A1 — As a homeomorphism, M = M/ f the glued
manifold. Assume that one has, for i = 1,2, connected sets A; C A, C M such
that m A, are amenable, then || M,0M ||<| My,0M; |.

It is not possible to give general formulae or just inequalities for glueing along
non-amenable boundaries without restricting to special assumptions. In the case
of 3-manifolds, it follows easily from the geometrisation of manifolds with non-
spherical boundary, that all questions reduce to hyperbolic manifolds (with pos-
sibly infinite volume). We will consider the special case that the hyperbolic man-
ifolds admit a hyperbolic metric with totally geodesic boundary and cusps. (See
the introduction to chapter 5 for a precise definition. In dimension 3, these are
the manifolds admitting a hyperbolic metric such that the boundary components
of genus > 2 are totally geodesic and the ends corresponding to torus boundary
components are complete and of finite volume, i.e. cusps.) One motivation to
study this special case is that any hyperbolic 3-manifold with 7-injective bound-
ary can be cut along m-injective annuli into pieces which admit such a hyperbolic
metric with totally geodesic boundary and cusps.

In the case of no cups, the following theorem 4 is equivalent to the theorem of

Jungreis in [36]. Our proof of the general case builds on similar basic ideas, but
is technically much more involved. We will give some rough explanations to the
proof at the end of the introduction.
Theorem 4: Let n > 3 and let My, My be compact n-manifolds with boundaries
OM; = OyM; U 01 M;, such that M; — OyM; admit incomplete hyperbolic metrics of
finite volume such that 0y M; are totally geodesic boundaries and the ends corre-
sponding to OgM; are complete. If Oy M; are not empty, f : 01 M1 — 01 M is an
isometry and M = My Uy My, then

| M, 0M |[<|| My,0M; || + || Ma,0Ms || .

The same statement holds if one glues only along some connected components
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of 01 M;. One also has an analogous statement if two totally geodesic boundary
components of the same hyperbolic manifold are glued by an isometry.

A reformulation of theorem 4 says that || My, 0M; ||> VLnVol (M) holds when
Mj is a hyperbolic manifold of dimension > 3 with non-empty totally geodesic
boundary and cusps. It remains open whether this lower bound is optimal.

In the case of 3-manifolds, theorem 4 serves as main step for the more general:
Theorem 5: For a compact 3-manifold M, || DM ||< 2 || M,0M || holds
if and only if || OM ||> 0, i.e., if OM consists not only of spheres and tori.

Here, DM is the manifold obtained by glueing two differently oriented copies
of M via the identity of 9M. Note that || DM ||< 2 || M,0M || trivially holds.
(One should read the inequality | DM ||< 2 || M,0M || as follows: a fundamental
cycle of DM with [*-norm sufficiently close to || DM || necessarily has to invoke
simplices which are sort of transversal to the surface OM C DM.)

Another (direct) corollary from theorem 4 and Mostow rigidity is that (under
the assumptions of theorem 4), in dimensions > 4, we get the same inequality for
any homeomorphisms f. This theorem seems to be hardly available by topological
methods. The same statement in dimension 3 is unlikely to hold:

Question: If My, My are hyperbolic 3-manifolds with totally geodesic boundary
and f : OM; — OMj is pseudo-Anosov, then is lim,_, || My Ugn My ||= 00 ?

Foliated Gromov norm.
The leaf space of a codimension 1 foliation F is a (non-Hausdorff) 1-manifold.
We consider the leaf space of the induced foliation F on the universal cover M.
According to [20], the leaf space of F is an order tree (with 71 M acting upon), if
F is a taut foliation on a 3-manifold. This motivates the study of group actions
on order trees. The following notion was introduced by Calegari in [11].

The Gromov norm of a foliation/lamination F on a manifold M is

(s T
|| M,0M ||F:=1inf {Z | a; |: Zaiai represents [M,0M],o; transversal to .7-"} .
i=1 i=1

One major motivation is that the difference | M,0M || — || M,0M || seems
to quantify the amount of branching of the leaf space of F. (There had been
another kind of foliated Gromov norm defined by Connes, cf., [27], [28]. His
definition worked only for foliations with transverse measures. However, most
foliations don’t admit a transversal measure, i.e., the leaf space of F is just an
order tree, without metric structure.)

Calegari proved:
- || M ||g=|| M ||, if M is a closed 3-manifold, F is taut and the leaf space of F
is branched in at most one direction, and
- || M ||#>|| M ||, if M is a closed hyperbolic 3-manifold and F is an asymptoti-
cally separated lamination.



Here, a lamination of H? is called asymptotically separated if there exists two
geodesic planes on distinct sides of some leaf of F. This is, for example, satisfied
for one quasigeodesic leaf.

The first statement generalizes easily to manifolds with boundary (lemma 34).
The second statement, which in the closed case follows with a relatively short
argument from Jungreis theorem, becomes more technical if one has to control
the foliation in the cusps; we discuss the argument at the end of the introduction.
We prove the extension to the cusped case in the following theorem, where a (quite
small) class of finite-volume hyperbolic 3-manifolds has to be excluded.

Theorem 6: If the interior of M is a hyperbolic 3-manifold of finite volume
which is not Gieseking-like, and if F is an asymptotically separated lamination,
then

I M,0M [[<|| M,0M |5 .

Here, M is called Gieseking-like if it has a hyperbolic structure of finite volume
such that the cusp set of M contains the cusp set of the Gieseking manifold, i.e.,

Q (\/—3) U {oc} in the ideal boundary of the upper half-space model.

A conjecture of Fenley would imply that all foliations of finite-volume hyper-
bolic 3-manifolds with branching in both directions are asymptotically separated.
Hence, theorem 6 suggests a conjectural branching criterion for foliations F
on finite-volume hyperbolic 3-manifolds M: F branches in both directions iff
| M,0M ||<|| M,0M |z

To show the strength of theorem 6, we mention the following special case,
which gives a topological criterion to decide whether a surface in a hyperbolic
manifold is a virtual fiber:

Corollary 11: If int (M) is a finite-volume hyperbolic 3-manifold which is not
Gieseking-like and F' C M is a compact, properly embedded m;-injective surface,
then F is a virtual fiber if and only if || M,0M || z=|| M,0M |.

This corollary is a reflection of the Thurston-Bonahon dichotomy: F' is either
a virtual fiber or quasigeodesic.
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We want to give an overview to the proofs of theorems 4 and 6.
These theorems can actually be regarded as statements about properties of ”ef-
ficient fundamental cycles” on finite-volume hyperbolic manifolds. Namely, they
mean that a relative fundamental cycle of M with ['-norm sufficiently close to
|| M,0M || can not fulfill any of the following two conditions:

e respect a given totally geodesic surface F' in M, in the sense that it splits
into relative fundamental cycles for the components of My,

e be transversal to an asymptotically separated lamination.

Our approach is to study limits of sequences ¢, of fundamental cycles with '-norm
smaller than || M, M | +e. Such sequences can degenerate in two ways:

- simplices degenerate to ideal simplices,

- singular chains (i.e., finite linear combinations of simplices) degenerate to signed
measures on the space of simplices.

The natural notion of convergence is then weak-*-convergence of signed mea-
sures. Unfortunately, the space of ideal simplices (even of straight ideal simplices)
is not Hausdorff. However, we show that we can restrict to consider chains consist-
ing of nondegenerate straight simplices, and that this space is metrisable, hence,
weak-*-limits of bounded sequences exist.

The limits are actually supported on the set of regular ideal simplices, which
is the same as I'\Isom (H™), T being the deck group of the covering H" — M.
In dimensions > 3, the cycle property forces invariance under a reflection group,
thus making these limits treatable by ergodic theory.

The reader will recognise Jungreis approach in [36] (up to the technicality that
he does not restrict to nondegenerate simplices, which turns his proof of lemma
26 more involved). In the case of cusped hyperbolic manifolds, our approach is
parallel, but the details become more technical.

For example, the fact that the limiting objects are cycles (hence, invariant
under a reflection group), which comes for free in the closed case, is not obvious
in the finite-volume case.

In fact, we will need an appropriate definition of the sequences ¢, : we exhaust
int (M) by the e-thick parts M ), consider relative fundamental cycles of M
as relative fundamental cycles of M|¢ o, straighten them and consider the limits
p. It is convincing (and we prove it in lemmata 22-24) that the boundaries of
the straightened relative fundamental cycles ”escape to infinity” and therefore
disappear in the limit.

The outcome in the closed case was that the limiting signed measure p has
to be the "smearing cycle” smr (i.e., equidistribution of regular ideal simplices
with signs according to orientation, see the introduction to chapter 4). In the
finite-volume case, one also has the possibility of measures supported on sets of
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simplices with all vertices in cusps. We show that y ”decomposes” (in the sense
of ergodic decomposition) into these two kinds of signed measures.

The proof of theorem 4 can then be described as follows: assume, y* would
vanish on S = {simplices cut into pieces by F'}. Then the ergodic decomposition
of 41 can not invoke smr because smr does not vanish on S%. Hence, u* should be
supported on the set of simplices with all vertices in cusps of M. But, as a limit
of cycles respecting F', p has to have simplices with boundary faces in F in its
support. However, F' does not have cusps. (This explanation is quite convincing,
but we should mention that it will need some work to make a proof out of it. We
do not want to discuss the arising technical problems here, but refer to section
4.4.)

Also the proof of theorem 6 gets rather technical. However, the basic idea
is again quite simple: it follows from well-known facts about finite-covolume
groups I' C Isom (H 3) that I'-invariant, asymptotically separated laminations
F can’t be transversal to all regular ideal regular ideal simplices in H™ and,
actually, there are 3 half-spaces Hy, H1, Hy such that 3-simplices with vertices
vy € Hy,v1 € Hy,vo € Ho,vs arbitrary, can’t be transversal to F. This, together
with Jungreis theorem, gives a proof of Calegari’s result, i.e., theorem 6 for closed
manifolds. The problem arising in the cusped case is, roughly, that, starting
with a relative fundamental cycle transversal to F, we know the chains ¢, to be
transversal to F only on the €/-thick part for some ¢ slightly larger than €, and
this makes some annoying technicalities unavoidable.

Convention: If M is nonorientable, define || M,0M |:= 3 | M,0M ||,

where M is the orientable double cover of M. If M is disconnected, define

| M,0oM |:= X || M;,0M; ||, where My,..., M, are the connected compo-
nents of M. Everything we discuss will easily reduce to orientable, connected
manifolds, and we will do this reduction without mentioning. Moreover, if not
stated differently, hyperbolic manifolds are supposed to be complete, that is, to
be quotients I'\ H" for some discrete subgroup I' C Isom (H").

An dieser Stelle gilt mein besonderer Dank Herrn Professor Bernhard Leeb fur die
Betreuung dieser Arbeit. Den Mitgliedern des Arbeitsbereiches Geometrie danke
ich fiur das gute Arbeitsklima an unserem Institut.

Das Studienjahr 1997/98 konnte ich mit einem Stipendium des CROUS an der
Universitat Toulouse 8 verbringen. Ich danke besonders Herrn Professor Michel
Boileau fir Diskussionen, aus denen sich viele der in dieser Arbeit behandelten
Probleme ergaben.

Weiterhin bedanke ich mich bei Herrn Professor Elmar Vogt fur einige subtile
Hinweise zu einer friheren Fassung von Kapitel 3.
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Chapter 2

Simplicial volume and bounded
cohomology

The first two sections of this chapter serve to introduce definitions and known
results and to provide the reader with some background knowledge which might
be helpful for reading the following chapters. (They contain nothing new.) The
third section contains a study of Lefschetz fibrations. We included it, although it
is only superficially related to the rest of this thesis, since it should be of inde-
pendent interest.

2.1 Definitions and examples

Simplicial volume. For a topological space X, denote
k
Cn(X;R) = {Znai i €ER 051 Ay — X}
i=1

its n-th chain group, the real vector space generated by singular n-simplices in X.
We will consider the /'-norm

k k
1> rioi =Y i |-
=1 iz

There is the boundary operator 9, : Cy, (X; R) — C,_1 (X; R) defined by mapping
each singular simplex to its boundary and linear extension. The singular homology
is defined as

H, (X;R) = ker (0y) /im (Op+1) -

13
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For an element ¢ € C, (X;R) N kern (0,) we denote its equivalence class [c] €
H, (X; R). We use the ['-norm on C,, (X; R) to define a pseudonorm on H,, (X; R)
as

I hll=inf{llcl:[c] = h},
the so-called Gromov norm.
To get an invariant of closed, oriented, connected n-manifolds M, consider its fun-
damental class [M], that is, the image of a generator of H,, (M; Z) ~ Z under the
canonical morphism H,, (M; Z) — H, (M;R), and define the simplicial volume

| M [|=[] [M] |

as the Gromov-norm of the fundamental class.

For a closed, connected, non-oriented manifold M define || M |= 3 | M ||,
where M is the orientation cover of M. For any closed manifold M define

| M ||= XK, || M; ||, where M, ..., M are the connected components of M.
Relative simplicial volume. There is a relative version of the above construction.
For a pair (X, Y) of topological spaces consider Cy, (X,Y; R) = Cy, (X; R) /Cy, (Y; R)
with the quotient norm. The boundary operator 9, maps Cy, (X,Y; R) to Cr—1 (X,Y; R)
and one defines Hy, (X,Y; R) = ker (0p) /im (Op4+1) and || b ||=inf {|| c||: [¢] = h}
for h € H, (X,Y; R).

For a compact, oriented, connected n-manifolds M with boundary dM, consider
its fundamental class [M, 9M], that is, the image of a generator of H,, (M,0M; Z) ~
Z under the canonical morphism H, (M,0M;Z) — H, (M,0M;R), and define
the simplicial volume || M, 0M ||=|| [M, 0M] || as the Gromov-norm of the relative
fundamental class. Again this definition extends to non-orientable, disconnected,
compact manifolds.

Bounded cohomology. For a topological space X, define its n-th cochain group
C"(X;R)=Hom (C, (X,R);R)
and the subgroup of bounded cochains
Cy (X) ={f € C" (X5 R) : sup{| f (o) |: 0 : Ay = X} < o0}.

The norm || f ||eo= sup{| f(0) |:0: A, = X} is defined on C} (X). Let the
coboundary 4, : C™ (X; R) — C™"! (X; R) be the dual operator to d,41. It maps
CP (X) to CF*! (X). We define the bounded cohomology

Hy (X) = ker (5n Icg<x)) [im (5%1 |c:-1<X))

with the pseudonorm induced by || . ||cc-
The inclusion Cf' (X) — C™ (X; R) induces the canonical homomorphism
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Hy (X) — Hi (X; R).

Relative bounded cohomology. For a pair (X,Y) of topological spaces consider
Cp(X,Y) =Cy(X)/Cp (Y) with the quotient norm. The boundary operator 4,
maps CP' (X,Y) to CJ ' (X,Y) and one defines

Hy (X,Y) = ker (8n lopx,v)) /im (8n-1 lop 1)

Duality between homology and cohomology. We have, by definition, a
duality between C! (X) and the completion of Cy, (X; R) with respect to the ['-
norm. This duality descends to the homology level as follows.

Theorem :The pseudonorm on bounded cohomology is dual to the Gromov norm
on homology: if B € Hy (M;R) and h € H, (M;R) satisfy < ,h >= 1, then
I ll= b
Proof: ”% <|| A || is obvious. We prove the opposite inequality.

Recall that the value of a cohomology class 8 on a cycle is well defined, i.e.
does not depend on the representative of 5. Hence we may define f : ker (0) N
Ci.(M;R) - R by f(z) := B(z). By the Hahn-Banach theorem, there is
w: Cy (M; R) — R such that w restricts to f on ker (9) and that | w ||=|| f ||co=
sup{B(z) :|| z ||= 1}. We claim that w is a representative of g in H} (M; R).
Since the cohomology class of a cocycle is determined by its values on all cycles, we
get that [w]— 3 is in the kernel of H (M; R) — H* (M; R). To show that [w]—f§ =
0, we consider the decomposition C,, (M; R) = ker (0,)®Cy, (M; R) /ker (0,). For
any representative b € 8 € Hy (M; R) we have that w—b vanishes on the first direct
summand, hence corresponds to a bounded morphism g : C, (M; R) /ker (0,,) —
R. Using the canonical isomorphism C,, (M; R) /ker (0,) =~ im (0,), and extend-
ing trivially on C,,_1 (M;R) /im (8,), we get g € C"~! (M; R) with 6g = w — b.
O

Corollary: Let M be a closed oriented connected n-dimensional manifold, and
define its cohomological fundamental class as the (unique) class p € H™ (M;R),
which satisfies f([M]) = 1. Then | M ||= m
We will mainly use the following two special cases.
Let M be an n-dimensional closed, oriented, connected manifold.
Vanishing simplicial volume.
If H (M) =0, then || M ||= 0.
Positive simplicial volume.
If H (M) — H™ (M; R) is surjective, then || M ||> 0.

Properties of simplicial volume and bounded cohomology - an overview.
For a topological space X let f : X — K (mX,1) be the classifying map of the
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fundamental group. It induces an isometric isomorphism H} (mX) ~ Hj (X).
This shows that the simplicial volume of simply connected manifolds vanishes.
More generally, Gromov and Ivanov show

Theorem: If m; M is amenable, then Hy (M) =0 for x > 1. Hence, || M ||= 0.

On the other hand, Gromov and Mineyev show

Theorem: If G is word-hyperbolic, then H; (G) — H* (G;R) is surjective for
* > 2. Hence, if M is aspherical and m M word-hyperbolic, then Hy (M) —
H* (M; R) is surjective for * > 2 and || M™22 ||> 0.

More information can be deduced from the following two theorems of Gromov:
Theorem: If My and My have dimension > 3, and MMy is their connected
sum, then || Mi§jMy [|=|| My || + || Ma |-

Theorem: For any m,n € N there is a constant Cy, ,, such that, if My and M,
have dimension m and n, then the inequalities || My ||| Mz ||<|| M1 x My ||<
Crn || My ||| Ma || hold.

Proof of the product inequality: The upper bound is due to the fact that there
exists a special triangulation for the product of simplices such that two products
equipped with this triangulation always fit together at the corresponding bound-
ary faces. The lower bound follows from the inequality || a U 8 ||<|| « ||| B ||
for the cup product of two bounded cohomology class. One should note that the
theorem still holds true if M; has boundary and M5 is closed, but that in general
there is no lower bound on || M; x Ms,d (M; x Ms) || if both M; and M> have
nonempty boundary.

2.2 Volume and nonpositive curvature

A Riemannian manifold M is called a symmetric space if, for any £ € M, exists
an isometry I : M — M such that I (z) = =z and DI, = —Id. A symmetric
space is termed irreducible if it is not a product of two symmetric spaces. It is
well-known that irreducible symmetric spaces are of one of the following 3 types:
- symmetric spaces of compact type,

- euclidean spaces,

- symmetric spaces of noncompact type.

In terms of the sectional curvature K, these types are distinguished as follows:
euclidean spaces satisfy K = 0, symmetric spaces of compact type satisfy K > 0,
symmetric spaces of noncompact type satisfy K < 0.

It is well-known that, for M a compact manifold, || M ||= 0 holds if the universal
cover M is a symmetric space of compact type or an euclidean space.
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Conjecture 1 (Gromouv): Let M be a compact Riemannian manifold such that
its universal cover M is an irreducible symmetric space of noncompact type. Then
|| M ||> 0.

This conjecture is known to be correct for rk (M) =1 (i.e. K <0) by [26], [34],

and for M = SL,R/SO,, by [55].

For an ordered finite set of vertices in a nonpositively curved aspherical space M
one may define the straight simplex with vertices {vo,...,v,} by succesively
forming the geodesic cone. That is, we succesively define 0g,01,...,0, by oy =
vo and 0,4 : A™' — M is defined on the standard simplex A"™t! > A" by

the condition that o,41 (fg,...,t,41) is the point on the (unique) geodesic from
¢ by
o (1_t3+1,..., e~

vp4+1. (Note that this construction depends on the order of vertices, if M has
nonconstant sectional curvature.) Gromov’s conjecture reformulates as follows:

) to vp41 which has distance t,41dist (vp41,0, (Ay)) from

Conjecture 2 :Let M be an n-dimensional irreducible symmetric space of non-
compact type. Then there is a constant C = C (M) sucht that vol (A) < C holds

for any straight n-simplez A in M.

Proof of ”conjecture 2 = conjecture 1”: Let Ele a;o; represent the fundamental
class of M. For each g; let G; be the symmetric group on the vertices of ¢;. For
each g € G; we get a straight simplex strg (0;) of volume smaller than C. The
cycle Y8, > gea; ﬁstrg (0;) represents the fundamental class of M. Hence,

Vol (M) =Yk, > geG; m—iil—)!vol (stry (o)) < C ¥ | a; |. Since this is true for

any representative of the fundamental class, we get || M ||> Vol (M). O

Simplices in spaces of nonpositive curvature. Let M be a Riemannian
manifold of nonpositive curvature. Let A be a straight simplex in X with vertices
(v, .-,V V41,---,Vk). Let Biyq,..., By be the Busemann functions associated
to the geodesics joining v; to vj41,. .., vx. The vector fields Z; = —gradB; generate
flows ¥i. We certainly have

AcC Utz+1207---7tk20qjtk s \Iltz+1 (Al) )
where Al is the straight simplex spanned by vy, ..., v; in this order. Define
AL k—l1
T: A" x[0,00)" "> M
by T (yatH-la .. atk) = \Ijtk .. \PtH—l (y)

Let X1,...,X; be an ON-reper in < Z;,1,...,Z >-C TA!. Extend it to an ON-
reper {X1,...,X,} with X;y = Zpq and Xpq; = Zii + 35 = 0 Ly Ziy
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for suitable coefficients. Choose coordinates yi,...,4; on A such that aiw =
Xi+ 51 bijZ;. For the volume form w on M we get
T*Ww = f (yl, “ee 7yl7tl+17 ce ,tk) dy1 “ee dyldtl+1 A dtk with
0 0
=w| T, s | =det(A),
f (T Oy T*atk> )
where A is the matrix with entries a;; = ¢ (T*aiyi,Xj) for i < [ and a;; =

g (T*B%,Xj) for ¢+ > [ + 1. Note that the volume form on the base simplex

satisfies dvola: = %dyl ...dy; with B > 1, (B > 1 is an elementary, but nontriv-
ial, exercise), implying that vol (A) < [... [ [a: det (A) dvolailpidtyy - . . diy.

Negatively curved manifolds. If there is a negative upper bound on the
sectional curvature, the above argument can be used to give an upper bound on
the volume of straight simplices in M. Namely, one can use the Jacobi equations
to bound det (A) in terms of the curvature bound. (Essentially this argument, up
to the use of Busemann functions, was given in [34].) To consider nonpositively
curved symmetric spaces of higher rank, we indicate a proof of the fact that the
simplicial volume of the product of negatvely curved closed manifolds is positive.
(This is, of course, well-known: it was proved by a different argument in [34], and
clearly the shortest proof uses the cup product as in the last theorem of section
2.1.) For simplicity, we restrict to a special straight simplex in H? x H?, but note
that the argument, of course, can be generalized to straight simplices in products
of negatvely curved manifolds.

Toy example: H? x H?.
For simplicity, we consider the following situation: vy, v1,v2 are nonideal vertices
contained in the same H? x {y}, v3 and v, are arbitrary ideal vertices. Let ¢ and
c’ be the geodesics from vy to v3 resp. vy. Note that any unit speed geodesic ¢ in
H? x H? can be written in the form c¢(t) = (ci (at),cz (Bt)) with o + 2 =1,
with unit speed geodesics c1, ¢ in H?.
By [4], p-30, the corresponding Busemann functions satisfy B, = aB,, + 5Bc,-
We denote Ul (z,y) the flow corresponding to c.
Note that 4T (z,y) = —gradB, (¥’ (z,y)) =
— agradBe, (¥ (z,y),) — BgradBe, (¥} (z,y),) = af ¥, (z) +BETL, (v),

implying
yot 0
Uh=|( :

In H?, the Jacobi equation has a particularly simple form, giving that Z
tangent to c satisfies UL, Z = Z,¥! Z+ =171
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In this special case of products, we can choose an ON-basis which is easier to

work with: choose bases {X XY, YL}( — of Ty, H? x H? such that
.y

X tangent to ci, Y tangent to co. Let 6; be the angle between ¢; and ¢} in H?.
Then we get

SULX = 05X = (003201 + sin201e_°‘s) X + sinbicosby (e~ —1) X+

\I!tXJ‘ Ule oty — ot (sin@wosﬁl (e_als — 1) X + (sin291 + 0052916_0"5) XJ‘) }

Analogously for Y, Y+,
Calculating the matrix A with respect to this easier ON-reper, we get that A is a
block matrix, one block having determinant

e {cosQGSinQH (1 + 6720"5) +e s (00340 + sin40) — sin®0cos®6 (efa’s — 1)2}

_ iy . _ _ A
= g8 (00320+sm29) =e e @8

and the other block by analogous calculations having determinant e~Pte=F's,

Hence,
det (A) = e~(+Dle—(a'+8)s

We conclude vol (A%) < [no [ [ e (@tBle= (@ +8)s dsdtdvol oo = (A2).

ﬁ ﬁﬂ,vol
(G,X)-manifolds. Let V,, be the volume of a regular ideal simplex in hyper-
bolic n-space H". By the Haagerup-Munkholm theorem, any straight simplex
in H™ has volume smaller than V,,. As explained on page 15, this implies that
|| M ||> VOl(M) holds for all closed hyperbolic n-manifolds. This inequality is in
fact an equahty by the Gromov-Thurston theorem, whose proof we will outline in
subsection 4.1.4: | M ||= Vo‘l/gnM).

A conjecture of Gromov, which seems still to be open, states that in any Rieman-
nian manifold of sectional curvature < —1 straight simplices should have volume
smaller than V,,. This would again imply || M ||> M for such manifolds.
According to [61], for any model geometry geometry (G X) there is a constant C
such that || M ||= CVol (M) holds for all manifolds M modelled on (G, X). I
many cases this constant is zero. For geometries with G-invariant metrics of sec-
tional curvature < —1, such as rank-1 symmetric spaces of noncompact type after
suitable rescaling, % is bounded above by the maximal volume of ideal simplices,
with equality only for H".
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2.3 Lefschetz fibrations
This section is devoted to the proof of

Theorem 1 Let m : M — B be a Lefschetz fibration with fiber Fy, vanishing
cycles vi,...,v, C Fy, and monodromy p : mB' — Mapg .. Then the following
two statements are equivalent:

(i) The real Euler class € is bounded.

(i) {p(g) (v;): g € mB',i=1,...,r} is an incomplete curve system.

We will give all the basic definitions concerning Lefschetz fibrations and Euler class
below. Here, to explain the notions used in theorem 1, in particular the notion
of incomplete curve system, we recall that a Lefschetz fibration 7 : M — B with
regular values B’ C B and an identification F, ~ =1 (b) for some b € B, is
given by the monodromy p : mB' — Mapg . which sends a fixed system of loops
c1,-...,¢ to Dehn twists at so-called vanishing cycles vy, ..., v,.

Moreover recall that Map, . acts on 71 (F, ), and hence on the Gromov-boundary
aooﬂ' 1 (Z, *)

Definition 1 Let X be a closed surface. A (possibly infinite) set of curves {c;};cr
on ¥ is called an incomplete curve system, if there ezist two points p # q €
Ocom1 (2, %) which are fized points of the Dehn twist at ¢;, for all i € I.

The notation ’incomplete curved system’ is motivated by the following observa-
tion: If {c;},.; is a set of curves on ¥ and we have a curve ¢ C ¥ which is not
null-homotopic and which does not intersect any c;, then {c;};.; is an incomplete
curve system in the sense of definition 1.

Concerning the simplicial volume we get the following corollary:
Corollary: Let m : M — B is a Lefschetz fibration with fiber Fy, vanishing cycles
v1,...,0 C Fy and monodromy p : mB' — Mapg .. Assume that base and have
fiber have genus > 2, and that {p(g) (v;) : g € mB',i =1,...,r}is an incomplete
curve system. Then || M ||> 0.

To put theorem 1 into context, we mention that Gromov proved, among other
results, that (real) characteristic classes in H* (BG‘S;R), for G° an algebraic
subgroup of GL (n, R) equipped with the discrete topology, are bounded. This
generalized the classical Milnor-Sullivan theorem that Euler classes of flat affine
bundles are bounded. A well-known theorem of Morita says that the Euler class e
of a surface bundle is bounded. Theorem 1 generalizes this to give a precise con-
dition under which the Euler class of a Lefschetz fibration is bounded. Morita’s
theorem was applied by Hoster and Kotschick to prove that surface bundles with
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base and fiber of genus > 2 have positive simplicial volume (In particular, this
provided the first examples of manifolds with positive simplicial volume but not
admitting negatively curved metrics.) The proof of the corollary is a straightfor-
ward generalization of their argument.

We start with recalling the necessary definitions.

Lefschetz fibrations. A smooth map # : M — B from a smooth (closed,
oriented, connected) 4-manifold M to a smooth (closed, oriented, oriented) 2-
manifold B is said to be a Lefschetz fibration, if it is surjective and dx is sur-
jective except at finitely many critical points {p1,...,px} =: C C M, having the
property that there are complex coordinate charts (agreeing with the orientations
of M and B), U; around p; and V; around 7 (p;), such that in these charts f is of
the form f (z1,22) = 22 + 22, see [24]. After a small homotopy the critical points
are in distinct fibers, we assume this to hold for the rest of the paper.

The preimages of points in B — 7 (C) are called regular fibers. It follows from
the definition that all regular fibers are diffeomorphic and that the restriction
7 =7 |y M' = B' to M' := 7 'x (M — C) is a smooth fiber bundle over
B':= B—n (C). Let X, be the regular fiber, a closed surface of genus g, and let, for
an arbitrary point * € ¥y, be Map, . the group of diffeomorphisms f : ¥, — 3
with f (%) = * modulo homotopies fixing *. It is well-known, cf. [47], that for
any surface bundle one gets a monodromy p : m M’ — Map, ., which factors
over w1 B'. Tt follows from the local structure of Lefschetz fibrations that, for a
simple loop ¢; surrounding 7 (p;) in B, p(c¢;) is the Dehn twist at some closed
curve v; C Xg4, the 'vanishing cycle’.

Euler class of Lefschetz fibrations. For a topological space X, and a rank-
2-vector bundle £ over X, one has an associated Euler class e (¢) € H? (X; Z).

If 7: M — B is a Lefschetz fibration, we may consider the tangent bundle of
the fibers, T'F', except at points of C, where this is not well defined. We get a rank-
2-vector bundle L' over M — C with euler class ¢’ := e(TF) € H>(M - C; Z).
By a standard application of the Mayer-Vietoris sequence, there is an isomorphism
i*: H2(M; Z) — H% (M — C; Z) induced by the inclusion. Hence, e := (i*) ‘¢’ €
H? (M; Z) is well-defined. In what follows we will denote e as the Euler class of the
Lefschetz fibration # : M — B. It is actually true (but we will not need it) that
there exists a rank-2-vector bundle £ over M such that & |p;—c~ TF. It is the pull-
back of the universal complex line bundle, pulled back via the map f : M — C' P>
corresponding to e € H2 (M; Z) under the bijection H? (M; Z) ~ [M, CP>).

S'-bundles associated to surface bundles. For any surface bundle 7' :
M' — B' we may, after fixing a Riemannian metric, consider UTF, the unit tan-
gent bundle of the fibers. This S'-bundle is, according to [47], equivalent to the flat
Homeo™ (S')-bundle with monodromy wp, where 0 : Map, . — Homeo™ (S1)
is constructed as follows. For f € Map, . let f. : 1 (5g,%) = 71 (X4, %) be the
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induced map of fundamental groups, and Oy, f+« the extension of f, to the Gromov
boundary 0,71 (X4, *). It is well-known that O f, is a homeomorphism and that
there is a canonical homeomorphism Oy (34, %) =~ S*. (This works if 73, is
Gromov-hyperbolic, that is, for ¢ > 2. If ¥ = T2, we homotope f to a map
g : T? — T? which has a linear lift § : R? — R? and consider its action on the
space of rays starting in 0, which is homeomorphic to S*. It is easy to see that
Morita’s argument carries over. If ¥ = S?, there is nothing to do.)
One should be aware that the extension of UT'F to M — C' is not flat: a loop
surrounding a singular fiber is trivial in 7 (M — C) but its monodromy is a Dehn
twist, giving a nontrivial homeomorphism of S*.
Bounded Cohomology. It will be important for us to distinguish between
bounded cohomology with integer coefficients, Hb2 (X; Z), and bounded cohomol-
ogy with real coefficients, HbQ (X;R). To avoid too complicated notation, we use
the following convention: for 8 € H* (X; Z), we denote 8 € H* (X; R) its image
under the canonical homomorphism H* (X;Z) — H* (X;R). Also, we will not
distinguish between Hy (X; R) and Hy (m X; R).

A cohomology class f € H* (X; Z) is called bounded if it belongs to the image
of the canonical homomorphism Hj (X;R) — H*(X; R).
We will use the following two facts. (A) is proved in Bouarich’s thesis, see [10].
(B) is proved in [21].

(A): If1 - N - T — G — 1 is an exact sequence of groups, then there is an
exact sequence

0 — H?(G;R) — H? (T;R) — H? (N;R)® — H} (G;R).

(B): For any group T', there is an exact sequence, natural with respect to group
homomorphisms,

H'(T;R/Z) — H{ (T;Z) — HE (T;R) .

Universal Euler class ([22]). There is a class x € H? (Homeo™ S'; Z) such
that, for any representation p : 7y M — Homeo™ S associated to a surface bundle
with Euler class e, one has p*x = e. By the explicit construction in [47] or [22], x
is bounded. By the main result of [22], representations p : I' — Homeo™ (S!) are
determined up to semi-conjugacy by their Euler class in H? (I'; Z). In particular,
p*x=0€H f (T'; Z) implies that p is semi-conjugate to the trivial representation.

It follows from boundedness of the universal Euler class that surface bundles
have bounded Euler class. The general statement, theorem 1, will follow from the
next lemmas which will be proved in sections 2.3.1 and 2.3.2.

Lemma 1: Let w: M — B be a Lefschetz fibration with monodromy p and Euler
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class e. Let V := ker (mB' — m B) and ey the Euler class of the restriction p |y .
Then € is bounded if and only if ey € ker (H} (V;Z) — HZ (V; R)).

Lemma 2: Let T" be a group, A a (possibly infinite) set of generators of T', and
p:T' = Mapgy . a representation such that all elements of A are mapped to Dehn
twists. The the following two statements are equivalent:

(i) the Euler class of p belongs to the kernel of the canonical homomorphism
H?(T;Z) — H (T; R),

(ii) § e Fiz (9m0p (7)) > 2.

Proof of Theorem 1: Assume that the Lefschetz fibration 7 has at least one
critical point. Then B’ is a punctured surface, m; B’ is a free group, and V =
ker (m1B" — m B) is a subgroup, with a set of generators given by

A={getlg™",... 9ct g7 g emB'},

where ¢1,...,c, represent simple loops around the punctures. (V is actually a
free group, but we will not need this fact.)

The monodromy p : 1 B" — Mapy . maps ¢; to Dehn twists at the vanishing
cycles v;. It follows that all elements of A are mapped to Dehn twists, since
p(geig™) = p(g9) p(ci) p(g)~" is the Dehn twist at p(g) (vi)-

Let p |y be the restriction of the monodromy to V and ey be the Eu-
ler class of p |y. According to lemma 1, € is bounded if and only if ey €
ker (HZ(V;Z) — H? (V;R)). We have just checked that T := V satisfies the as-
sumptions of lemma 2. Hence € is bounded if and only if §Nycy Fiz (Osop (7)) > 2.
Since A generates V, we have Nycy Fiz (Ocop (7)) = NyeaF iz (Osop (7)), implying
theorem 1. O

2.3.1 Criteria for bounded Euler class

In this section, we derive necessary and sufficient conditions for the Euler class of
a Lefschetz fibration to be bounded.

Recall that, for a Lefschetz fibration = : M — B with critical points C,

B':= B—7(C) and M' := =1 (B'), we have a monodromy map p : m B’ —
Homeo" (S') with Euler class ¢/ € H? (m1B'; Z). We will consider the subgroup
V := ker (m;B" = w1 B) and will denote ey € H? (V; Z) the Euler class of p |v.

Lemma 1 Let w : M — B be a Lefschetz fibration with Fuler class e. Then € is
bounded if and only if ey € ker (HZ (V;Z) — HZ (V;R)).
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Proof:  From boundedness of i*€ and the commutative diagram

HE (M;R) ~~ HE (M';R)

>k
H?(M;:R) — H?(M'; R)
we see that € is bounded if and only if €, € H? (M'; R) is in the image of
i*: H? (M;R) — HZ (M'; R).
We consider the exact sequence 1 - N — mM' — mM — 1, with N := keri,.
Bouarich’s exact sequence (A) implies that €, € im (:*) if and only if the restric-
tion of e} to N is trivial in the bounded cohomology of N.

We have a commutative diagram

1 1 1
1 > ker - N -V > 1
4 4
771F ‘771MI ‘7‘{'13/ > 1

with all rows and columns being exact sequences.

A few remarks are in order about well-definedness of the involved homomor-
phisms.The second line is the long exact homotopy sequences of the surface
bundle M’ — B'. Inclusion maps ker (N — V) to ker (myM' — m B'), hence
ker (N — V) C w1 F.Clearly, the projection maps N to ker (mB' — mB) = V.
Surjectivity of this homomorphism does not follow from the commutative dia-
gram, but is easy to see geometrically. Indeed, each simple loop ¢; surrounding a
puncture can be lifted to an element ¢ € N, just working in coordinate charts.
For g € m B, we fix some lift § € 7M. Then §é;§~ ' is an element of N, pro-
jecting to gc;g~!. Since V is generated by elements of the form gc;g~!, we have
surjectivity.

It is clear from the construction in [47] that the restriction of the representation
mM' — Homeo™ (Sl) to m F is trivial. In particular, the restriction of €, to
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ker (N — V) is trivial. Applying Bouarich’s exact sequence (A) to the first row,
we get an exact sequence

0 — H; (V;R) = Hy (N;R) — Hy (ker; R)

and we conclude that €}, |y has a preimage e} € H? (V;R) and that €, |y= 0 if
and only if € =0 € H? (V; R). O

2.3.2 Mapping class groups generated by Dehn twists

Lemma 2 : Let T be a group, A a (possibly infinite) set of generators of ', and
p:T' = Mapgy . a representation such that all elements of A are mapped to Dehn
twists. The the following two statements are equivalent:

(i) the Euler class of p belongs to the kernel of the canonical homomorphism
H (T3 Z) — HE (T3 ),

(ii) § e Fiz (9oop (1)) > 2.

Proof: ~ For v € Alet j, : Z — I' be the homomorphism such that j, (1) = 7.
By (B) (section 1), we have a commutative diagram

M,eaH' (Z; R/Z) — WyeaHE (Z; Z) — el (Z; R)
II j:; II j:; II j;
H' (T;R/Z)

Hj (T; Z) Hj (T3 R),

where the isomorphism
HE(Z;Z)~R/Z ~ H' (Z;R/Z)

follows from prop. 3.1. in [22].

Let e € HZ (T;Z) be the Euler class of p. Its image Jye € H}(Z;Z) is the
Euler class of of the representation pj, : Z — Mapy, mapping 1 to the Dehn
twist p (7). By theorem A3 in [22], the isomorphism H? (Z; Z) ~ R/Z maps Jye
to the rotation number of Jyop (7). The rotation number of a Dehn twist is zero,
since it has fixed points on S!, hence jye =0 for ally € A.

Now assume that e belongs to the kernel of the canonical homomorphism
H?(T;Z) — HE (T; R). It follows that e € H? (T'; Z) has a preimage

Ec H' (T;R/Z).

Since A generates I, the homomorphism IT 5% : H' (T; R/Z) — ,e4H' (Z;R/Z)
is injective. With the commutativity of the leftmost square and II jle = 0, this
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implies ¥ = 0. Therefore, also e = 0. That means, we have shown that under the
assumptions of lemma 2 the equivalence e € ker (H? (I'; Z) — HZ (T;R)) < e =0
holds.

According to [22], e = 0 implies that p is semi-conjugate to the trivial repre-
sentation, that is, there is a (not necessarily continuous) map h : S — S, lifting
to an increasing degree-1 map h : R — R, such that

p(Y) h(z) = h(x)

holds for all ¥ € T and all z € S*. In particular, for any (!) v € T’ we get that the
image of h consists only of fixed points of Juop (7).
Since h can not be constant, this implies that

i Nyer Fiz (Osop (7)) > 2.

On the other hand, if p # ¢ are fixed points of Oxp (y) for all v € T', we denote
by I, and I the connected components of S' — {p, ¢} and define h : S — S! by
h(p) =p,h(I1) =q,h(q) = q,h(I2) = p. h semi-conjugates p to id, hence e = 0.
O

Fixed points of Dehn twists

Here we want to prove the observation after definition 1, to get a more workable
criterion for bounded Euler class.

Let ¥ be a closed surface, * € ¥, and f : ¥ — X a homeomorphism with
[ (¥) = x. We denote f, : m1 (2, %) — 71 (%, %) the induced homomorphism, and
Osofx : ST — S the homeomorphism of the Gromov-boundary 9,1 (X, *) ~ S*,
as in chapter 1. Let Fiz (0xfs) = {p € S': s fx (p) = p} be the set of fixed
points on the Gromov-boundary.

Observation: Let X e a closed, oriented, hyperbolic surface and {c;};c 4 a
(possibly infinite) set of simple closed curves on X. Let t; be the Dehn twist at c;.
Assume there exists a (not necessarily closed) nonconstant geodesic ¢ on X which is
not null-homotopic and which does not intersect any c;. Then §Nic 4 Fiz (Osot;) >
2.

Proof:  Fix % € ¥ projecting to * € ¥. For f : & — ¥ with f (x) = *, the
(unique) lift f of f to the universal cover ¥ ~ H? (with f(¥) = %) is a quasi-
isometry of H2 and induces a homeomorphism 8u f of 950 H? ~ S* which agrees
with Oy f«, as is well-known.

Assume * € c. There is a unique geodesic ¢ C H? projecting to ¢ and
passing through *. Let p and ¢ be the ideal boundary points of ¢. Since ¢
does mnot intersect c;, we have t; |.= id, implying that #; |;= id and therefore
Oooti (p) = P, Onoti (@) = g for all i € A.
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2.3.3 Conclusions

It remains an open question which Lefschetz fibrations have positive simplicial
volume. A sufficient condition is the following:

Lemma 3 Let m: M — B be a Lefschetz fibration with regular fiber F' such that
- genus(B) > 2, genus(F) > 2, and

- the real Euler class e € H? (M; R) is bounded,

Then || M || is positive.

Proof:  The proof is a minor generalisation of the argument in [33].
We work with de Rham-cohomology. Define 7, : H? (M) — H°(B) by 7, =
Dglﬂ*DM, where Dp resp. Djs are the Poincare duality maps. One has
< m*aUpf,c >=< aUmf,mc > for any o, 8 € H*,c € H,. Like in [33] one gets,
with wp € H? (B; R) satisfying [ wp =1,

| eUn*wp (M) <] ellll wp Il M |I=]l e |l 5 II M I
Note that e \ﬂ_1ﬂ(c) is the Euler class of the tangent bundle to the regular fibers,
hence e ([F]) = x (F) is the Euler characteristic of the regular fiber.
e U m*wp is a multiple of the volume form. Therefore its value on [M] doesn’t
depend on the zero-volume set 7! (C). Hence,

eUntwp (M) =] Jy p-in(c)eUmws |=| fp_nicyme Uws |
Using, for b € B, < m.e, [b] >=< m.e, i [F] =< e, [F] >= x (F),
we get | eUn*wgp ([M]) [=| x (F) [pws |,
and we conclude || M ||>] x (F) ||| B | ﬁ O

Corollary 1 Let m : M — B is a Lefschetz fibration with fiber Fy, vanishing
cycles vi,...,v, C Fy, reqular values B' C B and monodromy p : m1B' — Mapg .
Assume that base and have fiber have genus > 2, and that there exists a geodesic
c on Fy, such that cNp () (vi) =0 for all v € m B’ and all vanishing cycles v;.
Then || M ||> 0.

Proof: It follows from the proof of theorem 1 that €, the image of e in H? (M; R),
is bounded. By genus(B) > 2, wp is bounded. Hence, e U 7*wp is bounded, and
we conclude with lemma 3. O
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Chapter 3

Bounded cohomology and
amenable glueings

This chapter is devoted to the study of the behaviour of simplicial volume with
respect to cut and paste. That means, we are given an (n-1)-submanifold F C M
with 0F C OM, and we wish to compare || Mp, OMFp || to || M,0M ||. Here, Mp
denotes the manifold obtained by cutting off F', that is My := M — N (F) for a
regular neighborhood N (F) of F.

|| M,0M || may be strictly smaller than || Mp,0Mp ||, as there may be fun-
damental cycles of M which are not the images of fundamental cycles of Mg. For
example, we showed in chapter 4 and 5 that | Mp,OMFp ||>| M,0M || if int (M)
is a hyperbolic n-manifold of finite volume, n > 3, and F is a closed geodesic
hypersurface. On the other hand, somewhat counter-intuitively, || M,0M || may
be strictly larger than || Mp,0Mp ||, as fundamental cycles for My need not fit
together at the copies of F'.

For theorem 2, we consider the case that F' is amenable, and prove:
Theorem 2: Let M7, My be two compact n-manifolds, Ay C OMy resp.As C OMy
(n-1)-dimensional submanifolds, f : Ay — Ay a homeomorphism, M = M; Uy M,
the glued manifold. If m1 A1, w1 Ao are amenable and f,. restricts to an isomor-
phism f* : ker (71'1A1 — 71'1M1) — ker (7T1A2 — 7T1M2),
then | M, 0M | >|| My, 0M; || + || Ma, 0M, ||
If moreover A1, As are connected components of OMy resp. Mo,
then || M,OM ||=| My, M, | + | My, M, ||
We prove analogous facts if A1, As are in the boundary of the same manifold M.
Applied to 3-manifolds, theorem 2 means that simplicial volume is additive with
respect to glueing along incompressible tori and superadditive with respect to
glueing along incompressible annuli. In the special case that the boundary of the
3-manifolds consists of tori, Soma proved in [57] that simplicial volume is additive

29
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with respect to glueing incompressible tori or annuli. We think that our proof,
apart from being a generalisation to manifolds with arbitrary boundary, should
be of interest because the proof in [57] heavily relies on theorem 6.5.5. from
Thurston’s lecture notes, of which no published proof is available so far.

Later, in chapter 5, we consider the special case of doubling a manifold, that
is of glueing two (differently oriented) copies of M by the identity of OM. Here,
two fundamental cycles of M, corresponding to opposite orientations, fit together
at OM to give a fundamental cycle of DM, hence || DM ||< 2 || M,0M || trivially
holds. We give precise conditions for 3-manifolds to satisfy the strict inequality.
Theorem 5: Let M be a manifold of dimension n < 3. Then
| DM ||< 2 || M,0M || if and only if || OM ||> 0.

Theorem 5 will, using geometrization of 3-manifolds, follow from theorem 4 to-
gether with application of theorem 2 to 3-manifolds with boundary.

The chapter is organized as follows. Section 3.1. gives the necessary facts
about multicomplexes. We usually refer to [26] where it contains complete proofs
and just fix notations in a way useful for later chapters. Section 3.2. discusses
treelike multicomplexes. The proved results are the same which are needed in
[26] to prove results about glueing manifolds without boundary, our contribution
consisting in writing complete proofs for the ideas indicated in section 3.5. of [26].
Theorem 2 is finally proved in section 3.3.

It might be helpful for the reader that we give some non-rigorous motivation for
the proof of theorem 2. Let us consider a toy example. We glue two manifolds M;
and M to get M1V My. (This is not a manifold but one may define a fundamental
class in the obvious way.) We want to show || My V My ||>|| My || + || Mz ||, thus
we have to find an efficient way to map representatives of [M; V Ms] to a sum
of representatives of [M;] and of [M3]. That means, we look for a chain map r,
leftinverse to the inclusions, which maps simplices in M7 V M5 to simplices either
in My or in M.

The universal cover of My V Ms is a tree-like complex made from copies of
M, and M,. In a tree, any nondegenerate tripel of vertices has a unique central
point, belonging to all three geodesics between the vertices. More generally, in a
tree-like complex, one might try to construct a central simplex associated to any
nondegenerate tupel of at least three points. For example, if M; and My admitted
hyperbolic metrics, one would have unique geodesics between two vertices in M;
or M, hence also in the tree-like complex, and one can actually show that, for a
nondegenerate tupel of vertices, the associated set of geodesics intersects the full
1-skeleton of exactly one top-dimensional simplex. This ’central’ simplex belongs
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to a copy of M; or Ms. It is then easy to define r.

There is clearly no such construction for arbitrary manifolds. However, we
show in section 3.2. that this construction can be done if M; and My are as-
pherical, minimally complete multicomplexes. Such multicomplexes have in fact
several features in common with hyperbolic spaces. The theorem that we ac-
tually prove in section 3.2. is a generalization of the above. We consider not
only multicomplexes glued at one vertex, but glueing multicomplexes along an
arbitrary submulticomplex with the additional condition that a suitable group
G acts with certain transitivity properties on the submulticomplex along which
the glueing is performed, and we do the above construction not for simplices but
for G-orbits of simplices. (It might be tempting to consider the quotients with
respect to the G-action to reduce the glueing to a generalized wedge. However,
this would raise technical problems related to the fact that these quotients are
not multicomplexes.)

It should be noted that in the case of glueing two closed manifolds, [26],3.5.
avoids the use of multicomplexes by using the classifying spaces of the fundamen-
tal groups, where the corresponding constructions are easier. This construction
generalizes to manifolds with boundary only if one were to consider manifolds
with exactly one boundary component.

Technically, the line of argument is as follows. To any space X, one associates
an aspherical, minimally complete multicomplex K (X). Its simplicial bounded
cohomology Hy (K (X)) is isometrically isomorphic to the singular bounded coho-
mology H; (X). Bounded cohomology is a device that admits to dualize problems
about the simplicial volume. We show in 3.3.1., using the isometric isomorphisms
between bounded cohomology groups, that the glueing problem for manifolds
My, M> can be translated into an analogous problem for the aspherical, mini-
mally complete multicomplexes K (M), K (Ma).

If M is a manifold obtained by glueing along A, one lets act a large amenable
group IT5s (A), which consists of all homotopy classes in M of pathes in A. This
group action satisfies the transitivity properties needed to apply the results of
section 3.2., i.e. to solve the glueing problem for the associated multicomplexes,
and hence also for the original manifolds. In the proofs we will always have to
distinguish two cases: the ”amalgamated” case, where two manifolds are glued
along parts of their boundary, and the "HNN”-case, where the glueing is performed
by identifying two boundary subsets of one manifold.

Convention: For simplicity, we assume all manifolds to be oriented.
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3.1 Multicomplexes

3.1.1 Definitions

Definition 2 : A multicomplex K consists of the following data:
- Simplices: a set V' and, for any finite ordered subset F' = {vg,...,vp} CV
with | F |> 2, a (possibly empty) set Iy,
such that for any permutation 7 : F; — Fy there is a bijection I : Ip, — If,,
- Face maps: for any finite ordered set F = {vg,...,v,} CV a family of maps

{dj Ip = IF*{”f}}ongn'

The elements of V' are the 0-simplices or vertices of K. The pairs o = (F, i) with
| F |=n and i € Ir are the n-simplices of K. The j-th face of an n-simplex (F, 1)
is given by 0; (F, ) := (F — {v;},d; (F)).

Let K; be the union of j-simplices and K™ the n-skeleton of K, that is the union
Uo<j<n K.

The geometric realization | K | of K is defined as follows:
| K | is the set of pairs {(A,4) : ¢ € I, }, where A : V' — [0, 1] are maps such that
Ywev A(v) =1and Fy = {v € V: A(v) > 0} is finite.
The set of all A with a given F)\ and a given 7 € IF, is canonically identified with
a standard simplex and herits a topology via this identification. We consider the
topology on | K | defined such that a set is closed if its intersection with each
simplex is closed.

Definition 3 We call a multicompler minimally complete, or m.c.m. for short,
if the following holds: whenever o : A —| K | is a singular simplez, such that do
is a simplex of K, then o is homotopic relative OA to a unique simplex in K.

If o is an n-simplex, its n-1-skeleton is the set {Jyo,...,0,0}. By recursion, we
define that the n-k-skeleton o,,_; of an n-simplex o is the union of the n-k-skeleta
of the simplices belonging to the n-k+1-skeleton of o.

Definition 4 We call a multicomplex K aspherical if all simplices o # 7 in K
satisfy o1 # 1.

Orientation: Let 7 : F; — F, be a permutation of finite sets and 7 € I,. We say
that (F1,7) and (F», I (i)) have the same orientation if 7 is even, and that they
have different orientation if 7 is odd.

A submulticomplex L of a multicomplex K consists of a subset of the set of
simplices closed under face maps. (K, L) is a pair of multicomplexes if K is a
multicomplex and L is a submulticomplex of K. A group G acts simplicially on
a pair of multicomplexes (K, L) if it acts on the set of simplices of K, mapping
simplices in L to simplices in L, such that the action commutes with all face maps.
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3.1.2 Bounded Cohomology

For a multicomplex K, let F; (K) be the R-vector space with basis the set of j-
simplices of K. Let O; (K) be the subspace generated by the set {o — sign (7) 7 (o)}
where o runs over all j-simplices, 7 runs over all permutations, and =« (F,7) :=

(7 (F), I (i)). Define the j-th chain group C; (K) = F; (K) /O; (K).

Let C7 (K) = Hompg (C; (K), R).

If (K, L) is a pair of multicomplexes, we get an inclusion C; (L) — C; (K) and
we define C7 (K, L) := {w € C7 (K) : w(c) = 0 for all ¢ € C; (L)} with the norm ||

W [|oo:= sup {w (c) : o j-simplex} on C? (K, L). Let C} (K,L) := {w € C7 (K, L) :|| w |l oo< 00}.
The coboundary operator preserves Cy (K, L), hence induces maps ¢; : Cf (K, L) —
Ci™ (X,Y). Define the bounded cohomology of (K, L) by H (K, L) := kerd} /ims; *.
Il - loo induces a pseudo-norm || . || on Hy (K, L).

For the bounded cohomology of topological spaces, we refer to [35]. When dealing
with a pair of multicomplexes (K, L), we will distinguish between H; (K, L) and
Hy (| K |,| L|). Since any bounded singular cochain is in particular a bounded
simplicial cochain, we have an inclusion h : Cj (| K |) = Cj (K).

Proposition 1 (Isometry lemma, [26], S.43): If K is a connected minimally
complete multicomplex with infinitely many vertices, then h* : Hy (| K |) — Hy (K)
18 an isometric isomorphism.

For an n-dimensional compact, connected, orientable manifold let 83s be the
unique class in H" (M, M) such that < Sy, [M,0M] >= 1.
By duality (section 2.1.), || M,0M ||= m In particular, | M,0M ||= 0 if and
only if im (H}' (M,0M) — H" (M,0M)) = 0.

It can be shown ([26],[35]) that the bounded cohomology and its pseudonorm
depend only on the fundamental group. This works also for pairs (X,Y), if
mY — mX is injective. In particular, one has:

Lemma 4 : If M and N are compact manifolds with incompressible boundary of
the same dimension and there exists a map f : (M,0M) — (N,0N) inducing an
isomorphism of pairs of fundamental groups, then | M,0M ||=deg (f) || N,ON ||.

3.1.3 Aspherical multicomplexes

Proposition 2 (/26], p.46): Let X be a topological space. Then there is an
aspherical m.c.m. K (X) such that:

(i) X is the set of vertices of K (X). Hence, we have an inclusion i : X — K (X).
(ii) There is an isometric isomorphism I : Hy (K (X)) — Hy (X).

Warning: It will be convenient for us to use notation different from Gromov’s,
since we will make use of a certain functoriality of K (X). So one should be
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aware that our K (X) corresponds to K/I'; in Gromov’s notation, as well as
that our K (X) will correspond to Gromov’s K or K (X). According to [26],
| K (X) | is actually an aspherical topological space. We will only need that
K (X) is aspherical in the sense of definition 3, what will follow from the geometric
description of K (X).

Because it will be of importance in the proof of lemma 11 and 12, we mention
that I is constructed as the following composition:

*—1 3

a1y (5 () 2wy (& 00) 2w (1 & 00))) Lo 515 (0.

Here, h* is the isomorphism from proposition 1, p and j are described in the
geometrical description below.

A proof of proposition 2 is given in [26]. Because it will be crucial for the proof
of theorem 2, we recall the geometrical description of K (X) as it can be read off
the constructions in [26].

Geometrical description of K (X): For a topological space X, K (X) is
the multicomplex defined as follows. Its 0-skeleton is {z : x € X'}. Its 1-skeleton
is {({w,y} i)rx#FyeX,i € I{w’y}} where I, 3 is the set of homotopy classes
relative {0, 1} of maps from [0, 1] to X mapping 0 to z and 1 to y. Having defined
the n-1-skeleton of K (X), the n-simplices of K (X) are the pairs ({2, ..., Z,},1)
with zg,...,z, € X and ¢ a homotopy class relative JA™ of mappings from the
standard simplex A" to X, taking the i-th vertex of A" into z; for i = 0,...,n
and the n-1-skeleton of A™ into the n-1-skeleton of K (X).

In particular, we have a canonical inclusion j : X — K (X), identifying X with
the 0-skeleton of K (X).

Geometrical description of K (X): The multicomplex K (X) is obtained
from K (X) by identifying, via simplicial maps, all n-simplices with a common
n-1-skeleton, for all n > 2, succesively in order of increasing dimension.

In particular, we have a canonical projection p : K (X) — K (X).

Proposition 3 : Let Y C X be a subspace, such that m (Y,y) — 71 (X,y) is
injective for ally € Y. Then K (Y) is a submulticomplez of K (X).
I:Hy (K(X),K(Y)) = H; (X,Y) is an isometric isomorphism.

Proof:  If two distinct 1-simplices in Y mapped to the same 1-simplex in X,
the corresponding pathes in Y would be in ker (mY — m X). By asphericity,
simplices are determined by their 1-skeleton and the first claim follows. From the
five lemma, I is an isomorphism. Therefore, it must be an isometry, since I and
I~! are composed by maps of norm < 1. O
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3.1.4 Amenable Groups and Averaging

Definition 5 : For a group T' let B(I') be the space of bounded real-valued

functions on T'. T is called amenable if there is a U'-invariant linear functional
Av: B(T') = R such that inf (f) < Av (f) < sup (f) holds for all f € B(T).

If a group G acts simplicially on a pair of multicomplexes (K, L), we denote
Cy <KG,LG) ={ceCy(K,L):gc=cforall g€ G},

5? = 6 |C;;(KG,LG) a.nd

Hy (K, L) := kerd® [imdC .

Lemma 5 : (i) If an amenable group T acts on a pair of multicomplezes (K, L),
and p: Cy (KF,LF) — Cy (K, L) is the inclusion, then there is a homomorphism
Av: Hf (K,L) — Hj (KF,LF) such that Avop* =1id and || Av ||= 1.

(ii) If, moreover, all elements of T' are homotopic to the identity in the category
of continuous maps of pairs of spaces (| K |,| L |), then p* o Av = id.

Proof: : The proof of (i) works, for L = (), the same way as for singular bounded
cohomology in [26],p.39. In the relative setting, if L # @, Av still is an isometry
because of || Av ||< 1, p* ||[< 1 and Avp* = id, and it is an isomorphism as
a consequence of the five lemma. Part (ii) follows from the homotopy lemma,
[26],p.42 and is implicit in [26],p.46,cor.D. O

3.1.5 Group actions on multicomplexes

In the following, (X,Y’) will be a pair of topological spaces. For a path v : [0,1] —
X, we denote by [v] its homotopy class in X relative {0,1}.

Definition 6 : Define IIx (V) :=

{([’71]""’[772]) in€N,7,. ., [0’1] _>Ya{71 (0)""37Tl (O)} :{71 (1)""1’)%(1)}}'
IIx (Y) is a group with respect to the following product:
{nls-- Ml - bl =Aln =l - D= vl bl s - bl 4] -2 Dald

where * denotes the concatenation of pathes and ¢4 > 0 is chosen such that we
have: 7; (1) = 7;(0) for 1 < j < and 7; (1) # 7 (0) for j > i+ 1,k > i+ 1.
(Such an i exists for a unique reindexing of the elements in the unordered sets
{nl;--- [yml} and {11, -, [val})

Action of IIx (Y) on K (X):
To define an action of ITx (Y) on the 0-skeleton of K (X)), we recall that
i: X — K (X) maps X bijectively to K (X),. For g = {[m],---,[m]} € Ox (Y),
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we define gi (71 (0)) =i (71 (1)),---,9i (7 (0)) = i (7 (1)) and gi(v) = i(v) if
0 & {1(0),-. 7 (O}

As a next step, we extend this to an action on the 1-skeleton of K (X). Recall that
1-simplices [o] in K (X) correspond to homotopy classes [o] of pathes o : [0,1] —
X. Let g = {[m],---,[m]} € IIx (Y). For a l-simplex [o] define g[o] = [o] if
5(0) & {71 (0,7 (0} and & (1) & {1 (0) ..., (O)}. If 7 (0) = 7 (0) and
o (1) differs from all 7; (0), define g [o] to be the 1-simplex of K (X) corresponding
to the homotopy class of the concatenation o * i (7;), where 7; (¢) := ; (1 — t) for
t €[0,1]. If (1) = 7 (0) and o (0) differs from all y; (0), define g[o] as the
1-simplex corresponding to the homotopy class of i (v;) * o. If o (0) = 7; (0) and
o (1) =v; (0), define go to be the 1-simplex corresponding to the homotopy class
of i (yj) *x o %4 (7;). All these definitions were independent of the choice of o in its
homotopy class relative {0,1}.

To define the action of IIx (Y) on all of K (X), we claim that for a simplex
o € K (X) with 1-skeleton o1, and g € IIx (Y), there exists some simplex in
K (X) with 1-skeleton goi. Since K (X) is aspherical, this will allow a unique
extension of the group action from K (X), to K (X). To prove the claim, observe
the following: if g is a path in X connecting vy to v, and if o is a simplex in
K (X) represented by a singular simplex & in X with 0-th vertex v, then & can
clearly be homotoped so that one gets a singular simplex in X with 0-th vertex
vg, leaving the other vertices fixed, so that we get a simplex whose 1-skeleton is
go1. Argueing succesively, we get the claim for general g € IIx (Y).

Definition 7 : Let (K,L) be a pair of multicomplezes. Let {e1,...,e,} and
{€},... e} be two n-tuples of 1-simplices in K with vertices in L. We say that
{e1,...,en} and {€},... e} are L-related, if there are 1-simplices f1,..., fm in
L such that

- the vertices f1(0), f1 (1), fm (0), fin (1) of f1,..., fm are all distinct and are

in bijection with the set of vertices of e1,...,en,€},... el (note that m < 2n, we

' Cno
do not assume the vertices of the e;’s and €,’s to be distinct)
- the concatenations fkeifle;_l (with fy, fi uniquely selected such that the vertices

match) represent the identity in m K.

The following observation is obvious from the construction.

Lemma 6 : Let (X,Y) be a pair of spaces such that mY — mX is injective.
Then the action of Ilx (Y) on K (X) is transitive on K (Y)-related 1-simplices
with vertices in K (Y). That is, if e and ey are K (Y)-related 1-simplices in
K (X), then ezists g € Ilx (Y') with ge; = es.
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3.1.6 An application of averaging

Lemma 7 : If A C X is a subspace such that im (m (A,z) —» m (X, z)) is
amenable for all x € A, then Ix (A) is amenable.

Proof:  There is an exact sequence

1 = @yeaim(m(4,y) > m(X,y)) = Ix (A4) = Permypy (A) — 1, where
Permy;y, are the permutations with finite support.

It is well known that a group is amenable if any finitely generated subgroup is
amenable. All finitely supported permutations have finite order. It follows that
any finitely generated subgroup of Perm s;, (A) is finite and therefore amenable.
Also any finitely generated subgroup of @,cy im (71 (4,y) — 71 (X,y)) is con-
tained in a finite sum of amenable groups and is therefore amenable. Thus ITx (A)
is an amenable extension of an amenable group and, hence, is amenable. O

For € € R define a norm on C, (X,Y) by || z ||=|| z || +€ || 9z ||. We get
an induced pseudonorm || . ||¢ on H, (X,Y).

More generally, if A is a union of connected components of Y, we define a norm
on relative cycles of Cy (X,Y) by || z |2=|| z || +€ || 8z |a|| and consider the
induced pseudonorm || . ||4 on H, (X,Y).

Proposition 4 : If im (7w (A,y) — 71 (X,y)) is amenable for all y € A, then
| B I=Il B |2 for all h € H, (X,Y).

Proof: : With the additional assumption A = Y, proposition 4 becomes the
equivalence theorem in [26], p.57. To get the general claim, we give a straigtfor-
ward modification of Gromov’s proof.

We consider the dual norm on bounded cohomology, which, by the Hahn-
Banach theorem, is induced from the dual norm on the relative cocycles. We will
show that || ¢ ||2=]| c || for relative cocycles c.

By propositions 1 and 2, we may assume that we are working with the complex
of antisymmetric simplicial cochains of K (X). By lemma 2, we may assume the
cochains to be invariant under the action of the amenable group IIx (A). Hence,
we may assume that the relative cocycle ¢ factors over (), where () is the quotient of
F, (K (X)) /F, (K (Y)) under the relations @ = —o and ao = o for alla € IIx (4)
and all simplices o, where & is o with the opposite orientation. We can define in an
obvious way analogs of our norms on the dual of @ and we get then || c ||=|| % ||
and || ¢ |A=]| ¢ |2, where c? is c considered as a map from Q to R.

But in @), any simplex ¢ with an edge in A becomes trivial, because there
is some element of IIx (A) mapping o to @. Hence, for any relative cycle z €
C. (X,Y), the image of 9z |4 in Q is trivial. Hence, || ¢¥ | and || c? |2 agree.O



38CHAPTER 3. BOUNDED COHOMOLOGY AND AMENABLE GLUEINGS

Corollary 2 : If M is a compact manifold, A a union of connected components of
OM, and im (m (A,z) — 71 (M, x)) is amenable for all x € A, then for any e > 0
exists a representative z of [M,0M| with || z ||<|| M,0M || +€ and || 9z |a||< e.

3.2 Retraction in aspherical treelike complexes

If a group G acts simplicially on a multicomplex M, then C, (M) /G are abelian
groups with well-defined boundary operator, even though M/G may not be a
multicomplex. (An instructive example for the latter phenomenon is the action
of G =1Ix (X) on K (X), for a topological space X.)

3.2.1 The ’amalgamated’ case

Lemma 8 : Assume that (M, M'),(K,K'),(L,L") are pairs of path-connected,
minimally complete submulticomplezes, such that

(i) K, L are submulticomplezes of M, with inclusions ix : K — M,iy, : L — M,
(i) My = Ko U Ly,

(iii) A :== KN L is a submulticomplex, m A — m K and m A — m L are injective,
(1v) the inclusion K UL — M induces an isomorphism w1 (K U L) — m (M),
(v) K and L are aspherical in the sense of definition 3,

(vi) K'=M'NK,L' =M'nN L.

Assume moreover that a group G acts simplicially on (M, M') such that

(vii) G maps (K,K') to (K,K') and (L,L") to (L,L"),

(viii) G acts transitively on A-related tuples of 1-simplices.

Then there is a relative chain map r : G\Cx (M, M') — G\Ci (K, K")®G\C. (L, L")
in degrees * > 2 such that

- if Go is the orbit of a simplex in M, then r(Go) either is the G-orbit of a
simplex in K or the G-orbit of a simplex in L,

- T’iK* = IidG\C*(K,K’)a T’iL* = Z'dG\C*(L,L’)'

Proof: ~ We consider first the case M’ = {).

The plan of the proof is as follows: let ¢ be a simplex in M, let & be a
lift to the universal cover M, and let vg,...,v, € My be the vertices of 5. To
each pair {v;,v;} we associate a family of 'minimizing’ pathes {p ({afj } ; {hzj})}
parametrised by vertices af)j s a%ij € Ap and by elements h;g of m K or m L
satisfying conditions described below. Associated to {vy,...,v,} and these fami-
lies of 'minimizing’ pathes, we construct a family of ’central’ simplices
{% ({a;j} : {hzj}) C M} and their projections {7’ ({afj} ; {hzj}) C M}, which
actually lie in K or L. We show then that all 7 ({afj} ; {h?}), associated to
a fixed &, belong to the same G-orbit, and that also the simplices associated to
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either g6 with ¢ € m{ M or to go with ¢ € G belong to the same G-orbit. We
define then r (Go) = GT.

Assumption (iv) implies that the universal cover K UL is a submulticomplex
of the universal cover M. Assumption (ii) together with assumption (iv) gives
that the 0-skeleton of K U L is the whole 0-skeleton of M.

Let 7 : KUL — K UL be the projection. We will need a specific section s of 7
on the 1-skeleton

s:(KUL), - (KUL),

oc—s(o)=0

defined as follows:

Fix a vertex p € Ag and some lift p € Ay C M. For any vertex v of K U L,
there is some edge e € K; U L; connecting p to v, because K and L are complete.
There are unique lifts € and ¥ such that € has boundary points p and . This
defines ~ on the 0-skeleton, and also on some 1-simplices. Now, for all other
1-simplices e € K1 U Ly with boundary points v and w, possibly v = p, we fix the
unique lift € in K U L with 0-th vertex . (Note that in K U L there are no edges
with one vertex in Ky — Ag, the other vertex in Ly — Ap.)

It should be noted: if e has vertices vy and v, then € has vertices vy and hqv;
with, a priori, by € w1 (K U L). Assume that e is an edge in K. We have a unique
edge connecting v1 to hivi. This edge projects to an edge f with both vertices v;.
Since vy, as a vertex of e, belongs to K, we conclude that f € K;. This implies
hi € mK C m (K UL). In a similar way, if e is an edge in L, we conclude that
hy, € m L.

As a consequence, we get the following observation.

(A): if gé is an edge with boundary points hgUy and hiv1, then g = hy and

hlho_1 is either 1, or an element of m K, or an element of w1 L.

Indeed, we have just seen this for g = 1. The general case follows after applying
g~ ! to gé.

Moreover, if g1€7 is a 1-simplex with boundary points hg1791 and h11911, and go2€a
is a 1-simplex with boundary points hgoUg2 and hi2912, then:

(B): if g1€1 and g2€2 have a common boundary point ht = h11011 = hga¥o2,

then one of the following two possibilities holds:

-v €A or

- hallhn and hazlhlg either belong both to w1 K or belong both to w1 L.
Indeed, if v € A, then v is not adjacent to both, edges of K and edges of L.
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Minimizing pathes:

Let vy, v1 be vertices of KUL. By a path from vy to v; we mean a sequence
of 1-simplices eq,..., e, such that vy is a vertex of ey, e; and e;11 have a vertex
in common for 1 <7 <7 —1 and, v; is a vertex of e,.

Given two vertices v1,vo € Mj, they belong to (KAJL)O because of (iii) and
(v), and we may represent them as vy = g1w1,v9 = gowy with g; € m (K U L)
and w; € (KUL), for i =1,2.

m (K UL) = mK %z,4 m L is an amalgamated product, hence glggl either
belongs to m A or it can be decomposed as gig, ' = hy...hp, where h; are
elements of 7 K — m A or mL — mA and, h; € m K iff h;11 € mL. Such an
expression is called a normal form of gig;*. If hy...h,, and B} ...k are two
normal forms of g;g5 ! then necessarily | = m and for s = 1,...,m belong h; and
h! to the same equivalence class modulo m A.

We call a path eg, ..., ey 1 from g1w; to gowe minimizing if it satisfies the
following;:

there is a normal form 9192_1 = h1...h, and a set of vertices ag, ..., am € Ay,
with a; # a1 for 1 =0,...,m — 1, such that:
- eg has vertices gows and godp,
- e; has vertices hy—it1 ... hmgeam—; and hyy—jyo ... hpgotm_ip1 forie =1,...,m

- em+1 has vertices gi1w; and giayp.

One should note that all these edges exist in K U L because all neighboring points
project to distinct points in K resp. L and can therefore be joined by an edge
in K resp. L, by completeness. Moreover, the construction should be understood
such that we skip ey resp. ey, 41 if wo € A resp. wy € A.

It follows from (A) and (B), that these pathes are length-minimizing in the
sense of being exactly the pathes with a minimum number of edges between v;
and vy. Since this latter characterisation depends only on v; and vo, we conclude:
for different sections s; and sg, there is a bijection between the corresponding sets
of minimizing pathes from v; to vs.

Since K and L are universal covers of minimally complete multicomplexes,
there is at most one edge between two vertices, and therefore a path of length m
becomes uniquely determined after fixing its m + 1 vertices. Hence, after fixing
ag,---,0; € Ag and a normal form gng_1 = hy ...y, Wwe get a unique path, to
be denoted p (ag, ..., am;hiy.-., hp)-

We note for later reference the following obvious observations:

(C1) Subpathes of minimizing pathes are minimizing.

(C2) If ey, ..., ex is a minimizing path, ey projects to an edge in K, ex.1 projects
to an edge in L, ey and exi1 have a common vertex, then ei,...,ex,exy1 @S a
minimizing path.
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Intersection with simplices:
Given a set of vertices {v;},,, We consider the set

U PG ={k:1<i<j<nrbePii},
0<i,j<n

where P (i, j) is the set of minimizing paths from v; to v;.

Let 7 be any simplex in K U L. We claim that {7’ N rfj : rfj €EP (z',j)} is the

full 1-skeleton of a subsimplex of 7. We have to check the following claim:

Zf [33, y] ’ [Z, w] €T ﬂ UijP (ZaJ)) then also [.’,C, Z] ) [:L'a w] 3

ly, 2] and [y, w] belong to 71 U P (7,7).
Indeed, assume that there is a minimizing path {eg, ..., en+1} with e; having ver-
tices hm—it1 .- hmg20m—; and hpm_jy2 ... hpga@m—_;4+1 for ¢ = 1,...,m such that
[x,y] = €, that iS, T = hme—l ---thQamfl and Yy = hmfl+2 .. -thZame—l-
Assume also that there is a minimizing path {66, .. .,e’m,} with analogous no-
tations such that [z,w] = e}, that is z = hy,_,. ... b ,g5a,_p and w =
h;n’fl’—k? aee h{m’géa{m'fl'—}—l' .

Note that all simplices in K U L project to simplices in K or in L. As-
sume that 7 projects to K. By the discussion preceding observation (A), this
means that hp,—;41 and h;n’—l’—l—l belong both to m K — mA. Tt follows that
Pty hn 142, iy _ s Py 4 belong to m L — m A. But this implies, for exam-
ple, that [z, z] is part of some minimizing path, namely the path

{eoy.-- €1 1,[T,2],€p_1y--- €0} -

In a similar way, we see that [x,w], [y,z] and [y,w] belong to the intersection of
7 with minimizing pathes between suitable pairs of v;’s.
The same argument works if 7 projects to L.

’Central’ simplices:

We are given vertices vy = gouy, - - . ,Vn = gnWpn € ]\710, n > 2. -
We claim: if we fix, for each index pair {7,5}, a normal form gigj_1 =h?... hidis
vertices agj, ... ,a%l,j € Ap, and the minimizing path p;; € P (i, j),

then there is at most one n-dimensional simplex 7 € KUL

such that the intersection of 7 with Ug<; j<npij is the 1-skeleton

of an n-dimensional simplex, i.e., is the full 1-skeleton of 7.
(In fact, for such an n-simplex to exist, the h;;’s as well as the a;;’s have to satisfy
obvious compatibilty conditions. We will not make use of these explicit conditions
in our proof.)

We prove the claim. Assume there are two such simplices 71 # 7o with

dim (71) = dim (T2) = n. By assumption (vi), it suffices to show that 7; and
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7o have the same 1-skeleta. We have to distinguish the cases that 7; and 7o have
no common vertex or that they have a common subsimplex.

Assume first that 7 and 7» have no vertex in common. In the following,
'minimizing path’ will mean the unique minimizing path with respect to our fixed
choice of normal forms and of vertices in A. We will frequently use the following
fact: each edge of 7| (resp. 72) is contained in the minimizing path from v; to v;
for a unique pair {,j} of indices. This is true by a counting argument: there
are @ minimizing pathes and @ edges of 71, each edge belongs to some
minimizing path by assumption, and no minimizing path can have two consecutive
edges projecting both to K or both to L, by the definition of normal forms.

For each k and [/, the minimizing path from vy to v; passes through 71 as well
as through 7. Let [w}, w}] resp. [w?,w?] be the intersections of this minimizing
path with 7; resp. 7To.

We claim: all minimizing pathes from v, to some v; with i # k pass through
wj and w}. To prove the claim, note that, by (C1), the subpath from vy, to wj
is minimizing, that is, the corresponding sequence hi, ..., hy, is a normal form
(for I, h;) with Ay, € m L if 7 projects to K or vice versa. It follows from the
definition of normal forms that also H;’;’;lhi is a normal form if Ay, € m K is the
element corresponding to an edge of K having w,lC as a vertex. Since normal forms
are unique up to multiplication of the h;’s with elements of m A, we conclude
that there is no minimizing path from vy to some vertex of 7 which does not
pass through w,lc. By the same argument, all minimizing pathes from vy to some
vertex of 79 have to pass through w,%. In particular, they have to contain the
unique minimizing path from w; to w} as a subpath, by (C1). This, in turn,
implies that all minimizing pathes from vy to any v;,¢ # k, contain the minimizing
path from w,i to 111,2C and, in particular, contain the same edge of 71. But, by the
above counting argument, it may not happen that several minimizing pathes pass

through the same edge of 71. This gives the contradiction.

Vg
1 1 2
W W Wy u
. T
T1 2

VA ’U,L'

It remains to discuss the case that 7; and 7» have a proper boundary face in
common. Let wy be a vertex of 7y which is not a vertex of 79 and w; a vertex of
both, 7y and 79. After reindexing, there are, by the above counting argument, vy
and v; such that the minimizing path from vy, to v; contains the edge [wg, w;] C 71.
By the same argument as above, all minimizing pathes from vy to any v; pass
through wy, as well as through w;, that is, they all contain the edge [wy, w;] giving
a contradiction. This finishes the proof of the claim. Since it will be used again in
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the proof that r is a chain map, we write down the following observation, which
we have just proved.
(D): If vy, ...,v, € My are vertices of M, then their central simplex 7 to

some choice of {hfcj} , {aﬁj}, if it exists, has vertices wy, ..., w, such that

or any it and j the minimizing path from v; to v; passes through w; and w;.
J J

We denote by 7 ({afj} ; {h;g}) the projection of 7 to K U L.

Next we claim: if we still are given vy = gowp, ...,y = Gy € Mg, but vary
ag, - - - ,&m € Ap and the normal forms gigj’1 = hzij . h%ij, then all 7 ({agj} ; {hg})
belong to the same G-orbit.

Let us consider 7 ({al} ; {hf}) and T ({a;} ; {hfg}) The same argument
which showed uniqueness of 7 ({al} ; {h;g }) lets us conclude that, representing the

vertices of 7 ({al} { }) as Yodo, - - - , Yndn and the vertices of 7 ({ai} : {h;f}) as
Y0a0’, - - -, Yhdy', we must have vy = 7y, ..., = 7,- Hence, corresponding edges
of 7 are A-related in the sense of definition 4 and belong, by assumption (viii), to
the same G-orbit.

Now we consider 7 ({al} ; {h?}) and 7 ({al} ; {hzj'}), where gigj_1 = hij o hY =
RY' ... 4" are different normal forms. Since we may argue succesively, it suffices
to consider the case that different normal forms occur for only one index pair 4, j.
For the same reason, it suffices to consider the case that thereis 1 < s < m—1 such
that A’ = Y a_l,hﬂl = ahy,; and h;J' = h;’ otherwise. Now, from the above
construction, it follows that one of the following two possibilities takes place:

- if h;j .hi géj dfj ; and hl - .. hi géj &;j are not vertices of 7 ({ ”'} {h”})

then 7 ({af {17} = 7 ({ ”’} )

- if one resp. both of h;ﬁ hid g a;’ ; and hl+1 .hi g7 a;’ are vertices of 7 ({afj} " {h? }),
then 7 ({a?} ; {hzjl}) has n resp. n—1 vertices in common with 7 ({ ”} ; {h”}),
and has moreover as remaining vertices one or both of W .. Rg¥a’ | and
hl+1 hZ] Z] .. . .. .

It follows that the 1-skeleta of 7 ({a?} ; {hzj }) and 7 ({a?} : {hf'}), considered
as tuples of 1-simplices, are A-related in the sense of definition 4. Indeed, that
the concatenations are trivial in m; (K U L) follows from the assumption that K

and L are aspherical in the sense of definition 3, which forces the concatenations
to bound a 2-simplex resp. a union of two 2-simplices. By assumption (viii), we

get that 7 ({al} ; {h?}) and 7 ({al} ; {hfg'}) belong to the same G-orbit.
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Retraction in treelike complex:

We are going to define r. Given an n-simplex o € M, n > 2, we consider a lift
& € M which projects to o. Its vertices vy, . .. v, belong to MO = (KUL)O.
Now we run the above constructions with vy, ..., v, and look for simplices 7 with
dim (1) = n.

If there is no simplex 7 with dim (7) = n, we define r (0) = 0. Otherwise, there
is a unique G-orbit of simplices {g7 : g € G} with dim (g7) = n for all g € G, and
we define r (Go) := GT.

We have to check that the definition of r does not depend on the choice of &
neither on the choice of ¢ in its G-orbit.

Observe the following: if f : M — M is a simplicial self-map of the universal
cover, such that 7f maps K to K and L to L, then f maps minimizing pathes from
v; to vj to minimizing pathes from f(v)tof (vj). Hence, simplices 7 intersecting
the family of minimizing pathes associated to v, ..., v, in the full 1-skeleton of an
n-simplex are mapped by f to simplices f (7) intersecting the family of minimizing
pathes associated to f (vg) , ..., f (v,) in the full 1-skeleton of an n-simplex. Thus,
if 7 belongs to the family of 'central’ simplices associated to some simplex &, then
f (7) belongs to the family of ’central’ simplices associated to f (&).

We conclude: 7 (Go) does not depend on the choice of ¢ in its G-orbit, neither
on the choice of &, for fixed o, in the orbit of the deck group.

Finally, the two desired conditions are clearly satisfied:
we have constructed 7 with the help of the condition that it is a simplex in K’UL,
hence r (o) = 7 is a simplex either in K or in L. If o is a simplex in K or L, then
clearly r (o) = o, hence r is leftinverse to ix, and ip..

Compatibility with J-operator:

It remains to show that r is a chain map, i.e., that 9r (Go) = r (Gdo) holds
for all simplices ¢ in M.

First we consider the case r (Go) # 0.
Let vg,...,v, be the vertices of a lift &, and {h;cj}, {a?j} such that a central
simplex 7 exists. It is obvious, if we consider the set of vertices without vy and
the corresponding restricted sets of normal forms and vertices, that we get the
k-th face of 7 as a central simplex. That implies r (GOyo) = 7 (Go) for all k,
and hence r (Gdo) = 0r (Go).

We consider now the case r (Go) = 0.
If r (GOgo) = 0 for all faces Oiyo of o, we conclude r (Gdo) = 0.
So assume that for some face 9o of o we have r (GOyo) = G7 for some (n-1)-
simplex 7. That means that, for the vertices vy, ...,Vk—1,Vg+1,--.,vn and some
choice of {h¥ }, {a?} we have the central simplex 7. Here, the h% and a;’ are only

chosen for i # k,j # k. By observation (D), 7 has vertices wg, . . . , Wg—1, W, - - - , Wp,
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such that the minimizing path from v; to w; passes through w; for all 7 # k # j.
For i # k consider the set P/, of the minimizing pathes from vj to w;. There
exists some vertex v, with the property that for each i exists a path in P}, con-
taining [v, w;] as last edge. If v were not one of wy, ..., wg—1, Wkt1,--.,Wn, then
this would give us a central simplex to the vertices vg,...,V5_1,Vk, Vkt15-- -, Un,
contradicting the assumption. Hence v = w; for some j. But this implies that the
central simplices to vg,...,vk_1,Vk+1,--.,Vn are exactly the central simplices to
V0y--+5Vj—1,Vj41,.-.,Vpn, and the corresponding simplices have the same orienta-
tion if and only if j — k is odd. Therefore, r (0y0) cancels against r (0j0). As we
find such a j for any k with r (Oyo) # 0, we get r (do) = 0.
Vo
7 (vo,v1,v2)

= 7 (vg,v1,v3)
V2

7 (vo, v2,v3)
=T ('Ul,’UQ,'U,?,)
v ——— .

Relative construction:

Finally, we consider the general case M’ # (. For the universal cover 7 :
M — M denote the subcomplex M’ := n~! (M'). Since A C M, the definition of
'minimizing pathes’ implies that, for z,y € M(’), all minimizing pathes from z to
y are subsets of M'. As a consequence, for vy, ..., v, € M('), any central simplex,
if it exists, must belong to M’. Hence, r C M'NK =K' or7 C M'NL = L.
This proves that 7 induces a chain map r: C, (M, M') — C\ (K, K') ® C, (L, L"),
finishing the proof of lemma 8. m|

Corollary 3 : Let (M,M"),(K,K'), (L, L") satisfy all assumptions of lemma 8.
Let v1 € HY (K,K'") ,v2 € H} (L, L") be bounded cohomology classes, p > 3, such
that the action of G fizes v1 and vo. Then exists a class vy € Hg’ (M, M'") satisfying
| v I maz{|| v1 ll,|| 72 |}, such that the restrictions to K and L give back v,
and o and that v is fized by G.

Proof:  Let c; resp. ca be bounded cocycles representing 7y; resp. y2. To define
a bounded cocycle ¢, it suffices to define its value on simplices. So let o be a
simplex in M. Define:

-c(o):==c1 (r (o)) if r (Go) € G\C (K),

-c(o):=co(r(0)) if r(Go) € G\Cx (L),

- c(o) :== 0 else.

If p > 3, we get an induced map in bounded cohomology. Indeed, let ¢; —é = 0by,
¢y — Gy = Oby for (bounded) relative (p-1)-cochains by, by and define again b (1)
as by (r (7)), b (r (1)) or 0 according to whether 7 (7) is in G\Cs (K), in G\C\ (L)
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or 0. (This definition would not work for p = 2.) An obvious calculation yields
c—¢=0b.

All claims of the corollary are obvious except possibly that ¢ is indeed a relative
cocycle, i.e., that dc vanishes on (p+1)-simplices in M'. Assume w.l.o.g. that
r (o) € Cy (K'). Then ¢ (0r (0)) = 0 because c; is a relative cocycle and, therefore
dc (o) = c(00) =c1 (r (o)) =c1 (0r (o)) =0. O

3.2.2 The "HNN’-case

Lemma 9 : Assume that (K,K') is a pair of path-connected, minimally com-
plete multicomplezes, and that A1, As are disjoint minimally complete submulti-
complezes of K' such that there exists a simplicial isomorphism F : Ay — As.
Let (L,L') be the pair of multicomplezes obtained from (K, K') by identifying o
and F (o) for all simplices o in Ay and let P : (K,K') — (L, L) be the canonical
projection.

Moreover let (M, M") be a pair of multicomplezes. Assume that

(i) L is a submulticomplex of M with inclusion ir, : L — M,

(it) Mo = Lo,

(iii) m A1 — m K and m Ay — m K are injective,

(iv) the inclusion L — M induces an isomorphism m L — m M,

(v) K and L are aspherical in the sense of definition 3,

(vi)L' = M' N L.

Assume moreover that a group G acts simplicially on (M,M') as well as on
(K, K'") such that

(vii) the action of G commutes with i, P, as well as with F,

(viii) G acts transitively on j-simplices of A1, for any j > 0.

Then there is a relative chain map r : G\Cy (M, M') — G\C. (K, K') in degrees
x > 2 such that

- if Go is the G-orbit of a simplex in M, then r (Go) is the G-orbit of a simplex
n K,

- T’iL*P* = idG\C’*(K,K’)-

Proof:  The proof of lemma 9 parallels in several aspects the proof of lemma
8. We will then be somewhat briefer in the explanations.
By (iv), the universal covering L is a submulticomplex of M. By (ii) and (iv),
Lo = M.
Denote A the image of A; (or Ay) in L C M. Fix a vertex p € A and some lift
p. A vertex v € Ly is the image of some vertex of K, to be denoted v by abuse of
notation. There is some edge in K with boundary points p and v, because K is
complete. Its image under the projection P is an edge in L with boundary points
p and v. There are unique lifts ¢ € L; and & € Lo such that é has boundary
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points p and 9. If v happens to be in A, we construct € and ¥ by choosing an edge
e which remains in A. This is possible because A is complete.

Recall that 71 L is an HNN-extension of 71 K. We consider m; K as subgroup of
m L and denote by ¢ the extending element of

mL=<mK,t| tlat = F.a Ya e mA>.

If e € L; is an edge with boundary points v and w, we fix the unique lift € € L
with O-th vertex ©. It will be crucial that the 1-th vertex of € is then necessarily of
the form gw for some w € Ly with either g € my K or g = ¢t. This is true because:
the edge f with vertices w and gw projects to a closed edge in L, which is either
the image of a closed edge in K or the image of an edge in K with endpoints
b € Ay, c € Ay such that F (b) = c. In the first case, g € 71 K, in the second case

g =1.

We have defined a map ~: L' — L, satisfying

(A): if gé is an edge with boundary points hgUy and hiv1, then g = hy and
hlhal is either 1 or is an element of m1 K or equals t.
Moreover, if g1 €7 is a 1-simplex with boundary points hg19p1 and h11911, and ga€a
is a 1-simplex with boundary points hgo¥g2 and hi2912, then:

(B): if g161 and go€2 have a common boundary point ht = hy1911 = ho2002,

then one of the following two possibilities holds:

-v €A or

- hallhn and h521h12 belong both to m1 K or equal both t.

Minimizing pathes:

Given two vertices vy, v € My = Lo, we may represent them as v; = g1, vy =
gowe with ¢g; € m L and w; € My for ¢ = 1,2. w1 L is an HNN-extension of 71 K,
hence g1 g5 ! has an expression 9195 Y = hy...hy with h; € m K or h; € t such
that h; € m K implies h;11 ¢ m K. (But we allow h; = h;;1 = t.) This expres-
sion, which we will call a normal form, is unique up to compatible changes of
the h; € m K in their equivalence class modulo 71 A.

We call a path ey, ..., e, minimizing if there are ayg, ..., a, € A and a normal
form glggl = h1 ...~y such that
- eg has vertices gows and g¢oa,

- e; has vertices hyy—i11 - - - hpgod and hyy—jyo ... hypged fori=1,...,m,

- em+1 has vertices gyw; and g;a.

One should note that the above edges exist in E, since K is complete. The
construction should be understood that we skip ey resp. ep41 if wy € A resp.
wy € A.

It follows from (A) and (B), that these pathes are length-minimizing in the sense
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of being exactly the pathes between v; and vo with a minimum number of edges.
Since this latter characterisation depends only on v; and vy, we conclude: for
different sections, there is a bijection between the corresponding sets of minimizing
pathes from vy to vs.

Since there is at most one edge between two vertices, a minimizing path be-
comes uniquely determined after fixing its vertices. So the only freedom in the
choice of the minimizing path consists
- in the choice of ayp,...,a,,, and
- in the choice of the h; in their equivalence class modulo 71 A.

The unique path corresponding to such a choice will be denoted p (ag, . - . , @3 b1, - - -

Intersection with simplices:

Let vg,...,vn be vertices of L. Defining P (,5) like in the proof of lemma 5,

we want to check that, for any simplex 7 in L, {7’ N rfj : rfj epP (i,j)} is the full
1-skeleton of some subsimplex of 7.
Assume that [z,y] and [z,w] are edges of 7, with z = hy, 41 ... hpged, y =
Pm—iy2. - hmg2l, z = hyy_poy ... hy,g5a" and w = h_yoo ... hig5a’. By the
discussion preceding observation (A), we get that h,,_;y2 and h,, ;. either be-
long both to m; K — w1 A or are both equal to ¢, and that the other of these two
posibilities must hold true for hp, 11, hm 143, b 1, hyy_po 5. This implies
that [z, z] is part of the minimizing path eq, ..., e, [z, 2], €, ..., e, similarly for
the other edges.

’Central’ simplices:

We are given vertices vg = goWo, - - - , U = gnty € MO, n > 2.
We fix ag,...,a,, € Ag and normal forms gigj’1 = hY. h%” Hence, we have
unique minimizing pathes p;; from v; to v;. Then there is at most one n-
dimensional simplex 7 € L such that the intersection of 7 with Ug<; j<npij
is the 1-skeleton of an n-dimensional simplex, i.e., is the full 1-skeleton of 7.
This is proved by literally the same argument as in the corresponding part of the
proof of lemma, 5, to which we refer.
We point out that the edges of 7 are of the form [howy, h1W;] with h1h0_1 emkK.
Indeed, the definition of minimizing pathes implies that either hihy l'e mK or
hihgy 1 — +. But the latter case would contradict the assumption n > 2, because
then [hoo, thowy] would be the only edge in 7 having howg as a vertex.
We consider the projection 7/ of 7 to L. By construction, the edges of 7/ are pro-
jections of 1-simplices of K. Assumption (v) implies then that 7’ is the projection
of some simplex 7 € K.
The resulting simplex in K will be denoted as 7 ({a?j } ; {hij }) Literally the

same argument as in the proof of lemma 5 shows: if we fix vg,...,v,, but vary
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ag, - - -, 0y € Ag and the normal forms gz-gj_1 = hij e h%ij ,then all 7 ({afj} ; {h?})
belong to the same G-orbit.

Retraction in treelike complex:

Given an n-simplex o € M, we consider a lift & € M with vertices V0y -« 3 Uny
and we let 7 (Go) = G7 if the above construction gives the G-orbit of a simplex
7 with dim (1) = n, otherwise we define 7 (Go) = 0. The definition of r does
neither depend on the choice of the lift & nor on the choice of ¢ in its G-orbit,
and it satisfies the two desired conditions.

The same argument as in the proof of lemma 5 shows that r (Gdo) = Gor (Go).
From the assumptions follows A C M’. It is then clear from the definition that
minimizing pathes between points of M’ remain in M’'. Thus r maps C, (M') to
C. (KNP~IM') = C, (K'). |

In an analogous manner to corollary 5, we conclude

Corollary 4 Let (M,M'),(K,K"),(L,L") satisfy all assumptions of lemma 9.
Denote P the composition of the projection K — L with the inclusion L — M.
Let v, € Hg) (K, K") be a bounded cohomology class, p > 3, such that the action
of G fizes y1. Then egists a class v € Hi (M, M'), satisfying || v ||<|| 71 ||, such
that P*y = 71 and that v is fized by G.

3.3 Glueing along amenable boundaries

3.3.1 Dualizing the problem

Lemma 10 : (i): Let My, My be two compact n-manifolds with boundary, A1, Ao
connected (n-1)-dimensional submanifolds of My resp. OMs, f : A1 — Az a
homeomorphism, M = M; Uy My the glued manifold, A C M the image of the
Ai; and jl : (M1,8M1) — (M,8MUA),j2 : (MQ,@MQ) — (M,8MUA) the
inclusions.

Assume that the following holds: For all vi € HJ} (My,0My),7v2 € H' (M2, 0M>)
one can find v € Hy (M,0M U A) such that jiy = vyi,j37 = 72 and || v ||<
maz {|| 1 |, [ y2 II}-

Then || M,0M ||>[| My,0M || + || M2,0Ms, ||.

(ii): Let My be a compact n-manifold with boundary, Ay, As disjoint connected
(n-1)-dimensional submanifolds of OMi, f : A1 — As a homeomorphism, M =
Mi/f the glued manifold, A C M the image of the A;, and P : (My,0M;) —
(M,0M U A) the canonical projection.

Assume that the following holds: For all vi € Hy (My,0M;) one can find v €
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Hp (M,0M U A) such that P*y =, and || v [|<|| 71 ||.
Then || M,0M ||>|| M1,0M; |-

Proof:  (i): First consider the case that M; and M> have nontrivial simplicial
volume. Then, by 3.1.2., the relative fundamental cocycles have preimages 81 €
HZL (M1,8M1) and ﬁg € ng (MQ,BMQ). Consider for i = 1,2

vi == M;, OM; || B;

By 3.1.2., we have || v; ||= 1.

By assumption, we get v € HJ' (M, 0M U A) satisfying || v ||[< maz {|| v |, | %2 ||} =
Land jiy = 1,737 = Ye-

Let ¢ : (M,0M) — (M,0M U A) be the inclusion. In H, (M,0M U A) we
have i, [M, 8M] = 1, [M1,8M1] + 72, [MQ,aMQ].

Hence,

'y ([M,0M]) = 1 ([My, 0My]) + 2 ([Mz, OMa]) =|| My, 0M, || + || M2, M, ||

Thus, 8 = |‘M1’6M1||i||M278M2||2'*7 is the relative fundamental cocycle of (M, 0M)
and, by || B ||< and duality follows || M,0M ||>|| M;,0M; |
+ || Mz, 0Ms ||

Now consider the case || M1,0M; ||# 0 and || My, 0My ||= 0. Consider
72 = 0 and again v =|| M,0M; || p» € Hy (Mi,0M;). Then we find v €
H} (M,0M U A) with jiy = v1,j57 =0and || v ||[<|| 71 |- The same way as in the
first case we get that mi*v represents ( and thus || M,0M ||>| My,0M; ||.
Finally the case || M1,0M; ||=| Ma,0M, ||= 0 is trivial anyway.

(ii): We suppose || My,0M; ||# 0, since otherwise the claim is trivially true. Then
the relative fundamental cocycle has preimage 1 € Hj' (My,0M;). Consider
v =[| My, 0M; | Br. By 1.2, || 3 [= 1.

We find v € H} (M,0M U A) satisfying || v ||<|| 71 ||= 1 and P*y = ;.

Let ¢ : (M,0M) — (M,0M UA) be the inclusion. In H, (M,0M U A)
we have i, [M,0M] = P,[M;,0M;]. Hence, i*y[M,0M] = vP,[M;,0M;] =
P*’)’ [M1,8M1] =7 [M1,8M1] :H M1,8M1 ||
Thus, 8 = mi*y is the relative fundamental class of (M,0M) and by
| B lI< m and duality follows || M,0M ||>|| M1,0M; ||. O

1
(| M1,0Mi[+]|M2,0 Ma||

3.3.2 Multicomplexes associated to glueings

The ’amalgamated’ case.

We are going to consider the following situation: Xi, Xy are topological spaces,
Ay C X1,Ay C X5 path-connected subspaces, f : A1 — Ao is a homeomorphism
such that f, : m A1 — m Ao restricts to an isomorphism from ker (m; A; — m X1)
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to ker (7T1A2 — 7T1X2). Let X = X Uy Xo.

The assumption on f, implies that 71 X1, m X5 inject into 71 X. By proposition
3, it follows that
- (i) K (X1) and K (X3) are submulticomplexes of K (X).

Concerning the 0-skeleta, we have
- (i) K(X)y=X=X1UXy = K (X1),UK (X2),.

Let A = X1 N X5 be the intersection of X; and X5 as subspaces of X. There
is an obvious homomorphism 7 A — 7 X. Hence, there is a map from K (A) to
K (X1)NK (X3), the intersection of K (X;) and K (X3) in K (X), which identifies
pathes in A whose composition gives an element of ker (m; A — 7 X). Since this
projection kills exactly the kernel of m K (A;) — m K (X;) we get that
- (lll) 1 (K (Xl) NK (XQ)) injects into 7('1K (Xl) resp. ’/T1K (XQ)

In particular, m; (K (X1) U K (X32)) is the amalgamated product of m K (X;) ~

m1 X1 and m K (X9) ~ m X, amalgamated over m (K (X1) N K (X2)) ~ im (m A; = mX;).
But this amalgamated product is isomorphic to m X ~ 7 K (X) and we conclude

- (iv) the inclusion K (X;) U K (X3) — K (X) induces an isomorphism of funda-

mental groups.

Moreover, it follows from proposition 2 that
- (v) K (X1) and K (X3) are aspherical,
and we clearly have
-(vi) K] =K(X;)NK'C K (X) fori=1,2,
where K] is the image of K (4;) in K (X;) and K’ is the image of K (A) in K (X).
Finally, from injectivity of mX; — @ X, one gets that the canonical map
IIx, (A;) — IIx (A) is an isomorphism for ¢ = 1,2. Consider the action of
G =1IIx (A) on K (X).
- (vil) G maps K (X;) to K (X;) and K] to K] for i =1,2.
As a consequence, the action of IIx (A) on K (X) preserves K (X1) N K (X3) C
K (X). Even though m; (X; N X3) may not inject into 7 X, analogously to lemma
6, we get:
- (viii) G acts transitively on (K (X1) N K (X32))-related tuples of 1-simplices in
K (X).

The "HNN’-case.

Let X; be a topological space, A1, Ao path-connected subspaces of X1, f: A1 —

As a homeomorphism such that f, restricts to an isomorphism from ker (7141 — m X71)
to ker (m Az — mX1). Let X = X1/~, where z; ~ z9 if 1 € Aj,z2 € A and

zo = f(x1)-
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We have canonical, not necessarily injective, maps from K (A;) and K (43)
to K (X;). For brevity, let us denote K] C K (X;) the image of the map from
K (4;), for i =1,2.

f induces a simplicial isomorphism F : K] — K. Let L be the multicomplex
obtained from K (X1) by identifying o and F (o) for any simplex o in K].
We have then

(i) a canonical embedding iy, : L — K (X).

Indeed, the map K (X;) — K (X), induced by the projection, factors over L.
One checks easily:

(i) K (X), = Lo,

(iii) m K] —» m K (X1) and m K5 — 7 K (X;) are injective,

(iv) the inclusion L — K (X)) induces an isomorphism of m;’s,

(v) K (X) and L are aspherical in the sense of definition 3.

Let A be the image of A; in X and K’ the image of K (A) in K (X). Then
(vi) the projection from K (X;) to L maps K to K'.

Finally, m; X is an HNN-extension of 71X, i.e. mX; — m X is injective,
and one gets that the canonical map Ilx, (4;) — IIx (A) is an isomorphism for
i = 1,2. Consider the action of G = IIx (4) on K (X). We use the isomorphisms
IIx, (A1) ~ IIx (A) ~ IIx, (A2) to get identifications with G and observe that
after these identifications the action of G commutes with F'. Moreover,

(vii) the action of G commutes with iz, P, where P : K (X;) — L is the canonical
projection.

Similarly to lemma 6, we get

(viii) G acts transitively on K'-related tuples of 1-simplices in K (X).

3.3.3 Proof of Theorem 2

In this section, we prove superadditivity for simplicial volume of manifolds with
boundary with respect to glueing along amenable subsets of the boundary. A
similar result for open manifolds is the Cutting-off-theorem in [26]. One should
note that, at least for manifolds with boundary, the opposite inequality need not
hold. As a counterexample one may glue solid tori along disks to get a handlebody.

Lemma 11 : (i): Let My, My be two compact, connected n-manifolds, A1, As (n-
1)-dimensional submanifolds of OMy resp.OMs, f : A1 — Ay a homeomorphism
and M = My Uy My the glued manifold.

If f. maps ker (m1 A1 — w1 My) isomorphically to ker (m1 As — w1 Ms), and if

im (m Ay — w1 My) is amenable, then || M,0M ||>| M1,0M; || + || My, 0My ||.
(ii): Let My be a compact, connected n-manifold, no component of which is a
1-dimensional closed intervall, Ay, Ay disjoint (n-1)-dimensional submanifolds of
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OMy, f: A1 — Ay a homeomorphism and M = M1 /f the glued manifold.
Ifim (w1 A1 — m M) is amenable, and f, : ker (my A1 — m1 My) — ker (w1 Ay — w1 M)
is an isomorphism, then || M,0M ||>|| Mi,0M; |.

Proof:  (i): For manifolds of dimensions < 2 one checks easily that there is no
counterexample. So we are going to assume that n > 3.

We want to check the assumption of lemma 10. We can restrict to the case that
A; and A, are path-connected, since we may argue succesively for their path-
connected components.

First, we make the restrictive assumption that m 0M; and m A; should
inject into mM; for ¢+ = 1,2. We will show afterwards how to handle the
general case. The advantage of this assumption is that, by proposition 3, we
may assume K (0M;) to be a submulticomplex of K (M;) and K (OM U A) to be
a submulticomplex of K (M). Denoting by j1, jo, k1, ke the embeddings and by
1,1, I, the isometric isomorphisms from prop. 2(ii), we claim that the following
diagram commutes.

2

D Hp (M, 00;) — 22 Hp (v,0M U 4)
=1
Ll I

Kt © k3

D Hi (K (My) . K (9My)) HP (K (M), K (0M U A))

To see that the diagram commutes, recall that I was constructed as a compo-
sition T = S*h*p*. S* was induced by an embedding S : X — K (X), hence
Sigf = j*S* follows from the obvious embedding relation j;S; = Sj. Also,
hiji = j*h* follows from the fact that h* is induced by an inclusion of chain
complexes. Finally, p* is induced by the projection p : K (X) — K (X) described
in 3.1.3. which clearly commutes with the inclusions coming from proposition 3.

Consider the following commutative diagram:

ko kg

2
P Hy (K (M), K (9M)) - Hy (K (M), K (0M U A))
=1

p1 @PQ[ p

kT @ k3 or
— p

o (K (Mi)HMi( i) K (8Mi)HMi(Ai) K (M)HM(A) VK (OM U A)HM(A)
\ b
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By lemma 6, Iz, (A1), (A2), 5 (A) are amenable. Hence, by lemma 5(i),
p1,p2, p have left inverses Avy, Avo, Av of norm = 1. For i=1,2 define

vii= Av; (L) oy € Hy (K (M;)™49) K (9ag) ™4 (49).

They satisfy || v [|=I| i [|
It follows from the discussion in 3.3.2. that we can apply lemma 8 and corollary
5. Hence, we get

v € Hy (K (M)"™W K, (oM)W,

satistying ||/ [1< maz {1 || 7 I} = maz | 3 Il, | v |} and
kiy' =~} for i=1,2.
Let

v = Ip*y € H} (M,0M)

It satisfies || v [|=[ v |< maz {|| y |, || 72 [[} = 1 and

iy = jiIp*y = Likip*y' = Liptkiy' = Lipi Avy (B) .

It is easy to see that Iy, (A;) are connected and that the actions of IIyy, (4;)
on K (M;) are continuous. Hence, all elements of IT, (A4;) are, as mappings from
K (M;) to itself, homotopic to the identity. From part (ii) of lemma 5, we get
that p} o Av; = id. Hence, we obtain j{vy = ;. The same way, 757 = 7.

Thus, we have checked the assumptions of lemma, 10.

We are now going to consider the general case, i.e., we do not assume any
longer injectivity of fundamental groups.

Let Y C X with ker (mY — mX) # 0. In this case, K (Y') doesn’t embed into
K (X). However, K (.) is clearly functorial in the sense that continuous mappings
Y — X induce simplicial maps K (Y) — K (X). In particular, the embedding
induces simplicial maps f : K (Y) — K (X) and f : K (Y) — K (X). We consider
its image f (K (Y)) as a submulticomplex of K (X).

We want to show that there are maps

H: Hy (K (X),f(K(Y)) —» H (X,Y)

H:Hy (X,Y) — Hy (K (X), f (K (Y)))

of norm < 1. (They are not isomorphisms, even though we will have HH = id.)
To this behalf, we explain more in detail the construction of ™' = Avoh* 0 S*

in proposition 2.

S* is induced by a weak homotopy equivalence S : Kx — X, which is homotopy

inverse to the inclusion j. From the definition of S on [26], p.42, it is clear that

S maps f(f(y) to Y. Hence S induces a map S* of norm < 1 from H} (X,Y)
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to Hy (| Kx || f (Rv) [)-

The isomorphism Av : H' (Kx) — Hf (K (X)) is induced by averaging over
the amenable group I'; /T, where I'; is the group of simplicial automorphisms
which are the identity on the i-skeleton, cf. [26], p.46. We get a map Av :
HP (I"{X, i (Ky)) — H" (Kx, f (Ky)) which has norm < 1 by definition of the
averaging.

Finally, by proposition 1 we get an isometry h* : H} (| Kx || f(f(y) |) —

Hp (RX,JF (Ry)). Hence, we may define H = Avoh*oS* and H = j*o(h*)_lop*.

We will call Hy, Hy, H and Hy, Hy, H the maps corresponding to (X,Y) =
(M1,8M1) , (MQ, 8M2) resp. (M, oM U A)

The action of I14, (M;) on K (M;) preserves f (K (0M;)). We get the commu-
tative diagram

2 s -
@ Hy (M, 0M;) < 1 © 72 HI (M, M U A)
=1
E@El H
N o k@ k3 .
P Hy (K (M), f (K (0M;))) Hy (K (M), f(K (@MU A)))
=1
Pl GBp%[ p*

2 * *
@H{f (K (Mi)HMi(Ai) K (6MZ-)HMi(Ai)) M H (K (M)HM(A) LK (OM U A)HM(A)) '
=1

One checks easily that all arguments in the first part of the proof go through,
finishing the proof of part (i).

(ii): In dimensions < 2 we check that the closed interval is the only connected
counterexample. Assume then n > 3. Again we may suppose A, A, connected.
We will again assume that w1 (0M;) — 71 (M7) and 7 (OM U A) — 71 (M) are
injective. The generalisation to the case of compressible boundary follows then
by arguments completely analogous to those in the proof of part (i).

Like in part (i), we get a commutative diagram, where P, @, R are the obvious



56CHAPTER 3. BOUNDED COHOMOLOGY AND AMENABLE GLUEINGS

projections.
P*
HP (M, 0M,) - HP (M,0M U 4)

I I

R*
Hy (K (M), K (0My)) Hy' (K (M), K (M U A))

b1 p

Q*

Hp (K (M) 41949 | g (o) i04)) 2 g (i () e | K (91)Te ()
Given v, € Hy (My,0M;), define
vy = Andy € Hy (K (M) (i02) g (o) (41042))
We check that the assumptions of corollary 6 are satisfied and get
v € H} (K (M)A g (BM)HM(A)) .

Then define v := Ipy' € H (M,0M U A). Analogously to the proof of part (i)
we get that P*y = and || v ||<|| 71 || holds.
Thus, we can apply lemma 10 to finish the proof. O

Lemma 12 :

i) Let My, My be compact manifolds, A1 resp. Ay connected components of OM;
resp. OMy and assume that there exist connected sets A; C M; with A} D A; and
m AL amenable. Let f : Ay — A be a homeomorphism and M = My U My/f the
glued manifold. Then || M,0M ||<|| My,0M; || + || M2, 0Ms ||.

i1) Let M' be a compact manifold, A1, As connected components of OM' with m A;
amenable. Let f : Ay — A be a homeomorphism and M = M'/f the glued
manifold. Then || M,0M ||<|| M',oM"||.

Proof: i) is reduced to i) via the homeomorphism M = M'U;q4,0)4(,1) (41 x T).
(Note that || A; x I, A; x {0,1} ||= 0, since 71 A; is amenable.)

To prove i), we need the following reformulation of a theorem of Matsumoto-
Morita. For a space X and ¢ € N let C; (X) be the group of singular chains and
B, (X) the subgroup of boundaries. By theorem 2.8. of [43] the following two
statements are equivalent:

a) there exists a number K > 0 such that for any boundary z € By (X) there is a



3.3. GLUEING ALONG AMENABLE BOUNDARIES o7

chain ¢ € Cyy1 (X) satisfying dc =z and || ¢ ||< K || z ||,
b) the homomorphism H;)H'l (X) — HIT(X) is injective.
Now let > a;o; and 37, b;T; be representatives of [M1, 0M;] and [Ma, OMs]
with
m
>l ai ||| My, 0M; || +e
i=1
and

n
> 1 < My, OM; || +e.
=1

By proposition 4 we may suppose that 9 (3"i; a;jo;) |a, € Cx (0M;) and 0 (2?21 bjrj) |4, €
C, (0M3) have norm smaller than 5%. (Note that m A; — 71 M; factors over 71 Aj,
hence has amenable image.)

Let A’ be the image of A} in M. As m A’ is amenable, HI'' (4’) = 0 for
g > 0 ([26],[35]), hence, H,;’H'l (A") — HITL(AL) is clearly injective and we get a
constant K with the property in a).
Therefore, we find ¢ € C, (4") C C, (M) with || ¢ ||< € and

dc=20 (Zaiai + ijTj) .
i=1 j=1

Then z = Y ;% a;0; + Z?Zl bj; —c € Cy (M Uy My) is a fundamental cycle
of norm smaller than || My, 0M; || + || Ma,0Ms || +3e. O
Remark: The assumption of lemma 12 is in particular satisfied if im (w1 0M; — w1 M)
and im (w1 0Ms — w1 M) are amenable and the (singular) compression disks can
be chosen to be disjoint. For 3-manifolds M;, by a theorem of Jaco, cf. [4], there
is A) ¢ M; with m AL = im (mA; — mM;) if im (m1A; — m1M;) is finitely pre-
sented.

Theorem 2 :

(i):Let M1, My be two compact n-manifolds, Ay resp.Ay connected components of
OM; resp.OMs, f: Ay — Az a homeomorphism, M = M; Uy M the glued mani-
fold.

If m1 A1 and w1 Ao are amenable

and fy : ker (m Ay — m M) — ker (w1 Ag — w1 Ms) is an isomorphism,

then | M, OM |[=|| My, OM, || + | My, oM, ||

(ii): Let My be a compact n-manifold, no connected component of M; a 1-
dimensional closed intervall, A1, Ao connected components of OMy, f : Ay — Ag
a homeomorphism, M = My /f the glued manifold.
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If m Ay is amenable and f, : ker (my A1 — mMy) — ker (m Ay — mMy) is an
isomorphism, then | M,0M ||=| My,0M; ||.

Proof:  Theorem 2 follows from lemma 11 and 12. O

Corollary 5 : (i) Let A be a properly embedded annulus in a compact 3-manifold
M. If im (m A1 — miMa) = im (m1 Ay — m1Ma) for the two images A1, As of A
in My, then | Ma,0M4 ||<|| M,0M ||.

(1i) Let T be an embedded torus in a compact 3-manifold M. If

im (mTy — m Mr) = im (mTy — 7M7) for the two images T1, Ty of T in Mr,
then

| Mr, 0Mz | =|| M,0M ||.

Remark: If @M consists of tori and A is an incompressible annulus, then even
|| Ma,0M4 ||=|| M || holds by a theorem of [57].

In [57], a version of corollary 7 has been proved for the special case that OM
consists of tori. The principal ingredient in the proof is the following statement:
Proposition 5 ([57], Lemma 1): Let M be a compact 3-manifold whose boundary
OM consists of tori and H be a 3-dimensional compact submanifold of int (M).
Suppose int (H) is a hyperbolic 3-manifold and OH is incompressible in M .Then
we have || M,0M ||>|| H,0H ||.

In [61], this proposition is stated for closed M as theorem 6.5.5. without writing
a proof. In [57], it is then derived for M with toral boundary, using the doubling
argument, see the proof of lemma 1 in [57].

Hence, our proof seems to be the first written proof of corollary 7 and proposition
5. (It is easy to see that corollary 7 implies proposition 5.)

We want to mention that, according to Agol, an alternative proof of proposition
5 (hence, corollary 7) should be possible using the methods of [1].

We refer to [57] to see that corollary 7 actually allows to compute the simplicial
volumes of all Haken 3-manifolds with (possibly empty) toral boundary.

3.3.4 Counterexamples

The first example shows that the condition ker (m1 A1 — w1 My) = ker (w1 As — 71 Mo)
in lemma 11 can not be weakened.

Example 1: Dehn fillings
Let K be a knot in S3 such that S — K admits a hyperbolic metric of finite
volume. Let V C S? be a regular neighborhood of K. 0V is a torus, hence, 7,0V
is amenable. But

| S*=0<||S* =V, 0V | +| V,0V | .
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More generally, it is known([1]) that
| M,0M |<|| M =V, 0VUOM ||=|| M —V,0VUOM || + || V,0V |

holds if both int (M) and int (M — V') admit a hyperbolic metric of finite volume,
ie., if M is obtained by performing hyperbolic Dehn filling at M — V.

Lemma 11 does not apply because the meridian of 3V maps to zero in m V', but
it doesn’t so in m (S® — V) resp. m (M — V).

The second example shows that the assumption ’A; connected’ in lemma 12 can
not be weakened to assume only A; C A.. (In particular, one can not just glue
along an amenable subset A; C OM;.)

Example 2: Heegard splittings
Any 3-manifold can be decomposed into two handlebodies H and H', to be iden-
tified along their boundaries. Let g be the genus of H and H' and consider a set
of properly embedded disks Dy,..., Dy, C H' such that H' — U?_,V; is a 3-ball B,
where V; are disjoint open regular neighborhoods of D;. Denote A; = V; N 0H'.
M is then obtained as follows: Vi,...,V, are glued to H along the annuli A;,
afterwards B is glued along its whole boundary.
Of course, || V;,0V; ||= 0 and || B,dB ||= 0. Thus, if lemma 12 were applicable
to the annuli 4;, we would get that || M,0M ||<|| Hy,0Hy ||.
But there are 3-manifolds of arbitrarily large simplicial volume which admit Hee-
gard splittings of a given genus. To give an explicit example, let f be a pseudo-
Anosov diffeomorphism on a surface of genus g, and let M,, be the mapping tori of
the iterates f™. By Thurstons hyperbolization theorem, M; is hyperbolic. Hence,
|| M1 ||> 0 and || M, ||=n | M || becomes arbitrarily large. On the other hand,
all M,, admit a Heegardsplitting of genus 2g+1.
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Chapter 4

Fundamental cycles of
hyperbolic manifolds

The simplicial volume of finite-volume hyperbolic manifolds can be calculated by
the Gromov-Thurston theorem.

Proposition 5 If the interior of a manifold M admits a (complete) hyperbolic
metric of finite volume, then || M,0M ||= V%Vol (M). Here, V,, is the volume of
a regular ideal simplex in H™.

However, there does not exist a fundamental cycle with /!-norm equal to
VLnVol (M), i.e., realizing the infimum of the /'-norm over all cycles represent-
ing the fundamental class. To construct a "cycle” which has exactly this norm,
one has to:

- admit cycles in the measure homology,

- admit ideal simplices.

In this setting, Gromov constructed a (signed) measure cycle smr := i (ut —p),
the so-called smearing cycle, where ut and p~ are the equidistributions on the
set of positively resp. negatively oriented regular ideal simplices. (Precisely, the
set of ordered regular ideal simplices has to be identified with Isom (H™) =
Isom™ (H™) U Isom™ (H™), and pu™* corresponds after this identification to the
Haar measure Haar, whereas i~ corresponds to r* Haar, where r is an orientation-
reversing isometry.) This measure cycle has ”I'-norm” (total variation) equal to
7= Vol (M).

It is not hard to approximate smr by measure cycles on authentic (non-ideal)
simplices: the set of all regular simplices of fixed edgelength R can be identified
with Isom (H™), and then consider ﬁ (Haar — r*Haar) after this identification.
For R — oo, we approach smr.

It seems, however, not to be proved, that measure homology is isometric to
singular homology. Hence, to prove the Gromov-Thurston theorem, one has to

61
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approximate smr by authentic singular chains, i.e., finite linear combinations of
(nonideal) simplices. This was done in [26], a detailled proof can be found in [6].

Technically, the main part of this chapter is devoted to the question whether
there exist sequences of fundamental cycles with /'-norms converging to V%Vol (N)
which do not approximate Gromov’s smearing cycle.

In dimension 2, it is actually easy to see that there are very many different
possible limits of such sequences. This is not the case in dimensions > 3. For
closed manifolds of dimension > 3, it was shown in [36] by Jungreis that any such
sequence must converge to Gromov’s smearing cycle. For finite-volume manifolds,
there are slightly more possibilities, e.g., finite covers of the Gieseking manifold can
be triangulated by ideal simplices of volume V3 but, as a result of our analysis, we
will also obtain severe restrictions on the possible limits for finite-volume manifolds
of dimensions > 3. The reason behind this dichotomy between dimension 2 and
dimensions > 3 is the elementary fact that in hyperbolic space of dimensions
n > 3, a regular ideal (n-1)-simplex is the boundary face of only two regular ideal
n-simplices.

4.1 Preliminaries

This section is organized as follows. In subsections 4.1.1, 4.1.2 and 4.1.3 we just
collect definitions and facts needed later. Subsection 4.1.4 is of some impor-
tance: there we discuss the exact setting in which we will discuss convergence
of fundamental cycles and give some motivation why this is the right setting to
get meaningful results. Subsection 4.1.5 just explains the proof of the Gromov-
Thurston theorem (for closed manifolds) and thereby introduces some notation.
The actual proof of theorem 3 will be given in sections 4.2 up to 4.4.

4.1.1 Hyperbolic manifolds
Hyperbolic geometry

We recall some basic facts ([39], [6], [4]).

Hyperbolic space. We consider the Poincare model of the n-dimensional
hyperbolic space H™. This is the open unit ball D" := {z € R" : dgy (z,0) < 1}
with the Riemannian metric

4
g (IU, U)) = 5 5 9Eucl (Ua w)
<1 - dEucl ("Ea 0) )

for all v,w € T, D", where gg, denotes the Euclidean scalar product on 7,D".
We denote Isom (H™) the group of isometries of H", Isom™ (H™) the subgroup
of orientation-preserving isometries. There is a unique geodesic between any two
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points of H™. Let d (z,y) be the length of the geodesic from z € H" to y € H".
d defines a metric on H". g : [a,b] — H™ is a geodesic if and only if it is subset
of an Euclidean circle orthogonal to " ! = {z € R" : dgye (7,0) = 1}. At some
point (the definition of straightening of simplices), it will be more convenient to
work with the projective model of H": it is D™ with the Riemannian metric g
defined by the condition that the map ¢ : (D", Eucl) — (D", g) defined by

z) = 2dguc (IE,O)
#lz): ([dEud (a:,O)]2+1)

is an isometry. (D", g) is isometric to H", and it has the convenient property that
its geodesics are exactly the geodesics of (D", Eucl).

Ideal boundary. A geodesic g : [0,w) — H" is called a geodesic ray if
lim— 009 (t) doesn’t exist. Two geodesic rays g1 and g9 are said to be equivalent
if there exists some constant C such that to any point £ € g; there is some y € g9
with d(z,y) < C and vice versa. The set of equivalence classes is denoted by
OsocH™, it is called the ideal boundary of H". In other words, each equivalence
class of geodesic rays is a point in 8, H™. The union H" := H" UQJxH" is given a
topology such that H™ is open and inherits its own topology, and neighborhoods
of p € O,H"™ are obtained in the following way: choose g in the class p, V a
neighborhood of ¢’ (0) in the unit sphere of Ty)H™ and r > 0. The sets

U(g,V,r):={g1 (¢) : g1 geodesic ray, g1 (0) = g (0),g} (0) € V,t >r}U
U{p € OcH" : p is represented by a geodesic ray g1 with g1 (0) =g (0),4} (0) € V'}

for varying g, V,r form a fundaental system of neighborhoods of p.

Any two points z,y € H" can be joined by a unique geodesic. In both models
of hyperbolic space, S" ! := {zx € R" : dpyq (z,0) = 1} can in a canonical way
be identified with 0, H", and this identification is a homeomorphism. Moreover,
D" :={r € R" : dpya (z,0) < 1} is homeomorphic to H™.

An ideal simplex is a geodesic simplex with vertices in O, H™.

Straight simplices. We use the projective model of H" to define what
the straight simplex with vertices v,,...,v; € H™ is: it is the singular simplex
7 : A; — H"™ defined by 7 (E;-:O zjej) = Z;":o zjvj, where eg,...,e; are the
vertieces of the standard simplex A’. Note that all faces of 7 are geodesic faces.

Isometry group. We denote Isom (H™) the group of isometries of H™,
Isom™ (H™) the subgroup of orientation-preserving isometries.

The Iwasawa decomposition G = KAN of G = Isom™ (H™) can be con-
structed as follows: fix some vy, € OcH™ and some p € H". Then we may take
K to be the group of orientation-preserving isometries fixing p, A the group of
translations along the geodesic through p and v, and N the group of translations
along the horosphere through p and vy.



64CHAPTER 4. FUNDAMENTAL CYCLES OF HYPERBOLIC MANIFOLDS

Hyperbolic manifolds

We call a manifold M hyperbolic if it is homeomorphic to I'\H" for a discrete,
torsion-free subgroup I' C Isom (H™). This is equivalent to the condition that
M admits a complete metric of sectional curvature constantly —1. (If M is ori-
entable, we actually have I' C Isom™ (H™).) In chapter 5, we will also talk about
incomplete hyperbolic manifolds with totally geodesic boundary. We give the
definition of this notion in section 5.1.

For a Riemannian manifold N, and a,b € R U oo, one defines N, =
{r € N:a<inj(z) <b}.

It follows from the Margulis lemma, see chapter D of [6], that for a finite-
volume hyperbolic manifold IV there exists some ¢ s.t. one has a homeomorphism
he : (N,0N) — (N[Qoo], BN[€7OO]) for any € < €.

Moreqver, for all € < €p one has that N is convex in the fol}owing sense: if
k1 A* = ON[¢o] C N is a singular simplex, then str (k) maps A® to Npg .

Note: if n = dim (N), then H, (N, N[O,e];R) ~ R (for any € such that
Nig,q is not empty). In fact, the isomorphism is induced by the map algvol :
Cp (N , N[O’d) — R, where algvol (o) for a singular simplex o is its algebraic vol-
ume w.r.t the hyperbolic metric, i.e. the integral of o*dvol over the standard
simplex.

We will need the following fact: Tf vol (N) < oo, then limc o Vol (Njgq) = 0.

Volume of simplices

Definition 8 : For a hyperbolic manifold N, denote SLE9 (N) the set of ordered
regular ideal simplices in N, equipped with the well-defined action of Isom (H™).

To see that the I'som (H™)-action is well-defined, note that o € Sy (N) has lifts

Y6 € Soo (H™) with v € m N and some fixed lift & and that, for g € Isom (H™),

og can be defined as the projection of y6¢g to N, which does not depend on 7.
Given two regular ideal n-simplices Ay and A in H", with fixed orderings of

their vertices, there is a unique g € Isom (H™) mapping A to A.

Hence, fixing a reference simplex Ay, we have an I'som (H™)-equivariant bijection

I:879 (H™) — Isom (H")

between the set of ordered regular ideal n-simplices and Isom (H™), this bijection
being unique up to the choice of Ay, i.e., up to multiplication with a fixed element
of Isom (H™).

As another consequence, all regular ideal n-simplices in H™ have the same
volume, to be denoted V,.



4.1. PRELIMINARIES 65

By [29], any straight n-simplex o in H" satisfies Vol (¢) <V}, and equality is
achieved only for regular ideal simplices, i.e., o € S{Y.

If N = I'\ H" is a hyperbolic manifold, I descends to an Isom (H™)-equivariant
bijection

I:8%9(N)— I'\Isom (H")

between the set of ordered regular ideal n-simplices and T'\Isom (H"), this bi-
jection being unique up to the choice of the reference simplex Ay, i.e., up to
multiplication with a fixed element of Isom (H").

4.1.2 Ergodic theory
Unipotent actions

Let G be a simple Lie group. (The only examples we need are Isom™ (H™).)
It is well-known that G can be decomposed as KAN, for a compact group K,
an abelian group A and a nilpotent group N. (This means that K, A, N are
subgroups of G, and each g € G uniquely decomposes as g = kan with k € K,a €
A,n € N.) We have given an explicit dexcription of this Iwasawa decomposition
for G = Isom™ (H™) in 4.1.1.
Given a simple Lie group G with an Iwasawa decomposition G = K AN, there is
a right hand action of N on G, defined by

(kan)n' := ka (nn') for k € K,a € A,n,n' € N.
The next lemma follows from [13]. It is nowadays a special case of the Ragunathan
conjecture, which was proved by Ratner. (We will only need G = Isom™ (H")).

Lemma 13 : Let G=KAN be the Iwasawa decomposition of a simple Lie group
of R-rank 1, and I’ C G a discrete subgroup of finite covolume. If u is a finite N-
invariant ergodic measure on I'\G, then p is either a multiple of the Haar measure
or it is determined on a compact N -orbit.

For completeness, we give the proof of the following lemma, which is similar to
theorem 4.4. of [14]:

Lemma 14 : Let G=KAN be the Iwasawa decomposition of a simple Lie group
of R-rank 1, and T C G a discrete subgroup of finite covolume. Let N' C N be
a subgroup such that N/N' is compact. Then any N'-invariant ergodic measure

on D\@G is either a multiple of the Haar measure or is determined on a compact
N -orbit.

Proof: By Moore-equivalence, ergodic measures for the N'-action on I'\G corre-
spond to ergodic measures for the action of I' on G/N’. Consider, therefore, u as
a measure on G/N’, ergodic with respect to the I'-action. Let pr : G/N' — G/N
be the projection. Since N/N' is compact, we have a locally finite measure pr,u
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on G/N which is easily seen to be ergodic with respect to the I'-action. By
lemma 10 and Moore-equivalence, pr,u must either be the Haar measure or cor-
respond to an N-invariant measure on I'\G' which is determined on a compact
orbit I'\I'gN C I'\Isom (H™).

If pryp = Haar measure, it follows easily that u is absolutely continuous with
respect to the Haar measure and then one gets, from ergodicity of the I'-action
(theorem 7 in [46]), that y is a multiple of the Haar measure.

In the second case, pr.y must be determined on the I'-orbit of some gN €
G/N. Therefore, y is determined on the I' x N-orbit of gN' € G/N'. By Moore-
equivalence we get a measure determined on the compact N-orbit. O

Ergodic decomposition

Let a group G act on a topological space X. A probability measure p is called
ergodic if any G-invariant set has measure 0 or 1. Denote £ the set ergodic G-
invariant measures on X.
We define a o-algebra A on€ as the smallest o-algebra with the following property:
fa:€E—-R
p— p(A)
Lemma 15 : Let a group G act on a complete separable metric space X. If
there exists a G-invariant probability measure on X, then the set £ of ergodic
G-invariant measures on X 1is not empty and there is a decomposition map [ :
X =E.

A decomposition map is a G-invariant map 8 : X — &, which is

- measurable with respect to A,

- satisfies e ({z € X : B(z) =e}) =1 forall e € £ and,

- for all G-invariant probability measures y and Borel sets A C X holds

p) = [ Bl@) (W) du(a).

For a proof of lemma 15, see theorem 4.2. in [63].

for all Borel sets A C X is measurable.

For later reference we state the following lemma, part (i) of which is known as
Alaoglu’s theorem, whereas a proof of part (ii) can be found in lemma 3.2. of [14].

Lemma 16 : (i) Any weak-*-bounded sequence of signed regular finite mea-
sures on a locally compact metric space has an accumulation point in the weak-*-
topology.

(i) If p is the weak-*-limit of a sequence py, of measures on a space X, andU C X
is an open subset, then p (U) < liminf u, (U).

Moreover, we recall that the support of a measure y on X is defined as the
complement of the largest open set U C X with the property u (U) = 0.
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Regular ideal reflection groups

Proposition 6 : Let n > 4, and let T be a regular ideal n-simplex in hyperbolic
n-space H™. Let T be the subgroup of Isom (H™) generated by the reflections in
the faces of T. Then T is dense in Isom (H™).

Proof:  As a first step we prove that I" is not discrete.

Let v5 be an ideal vertex of T' and I the intersection of I' with the stabiliser
of vy. I stabilises horospheres centered at vs. The induced Riemannian met-
rics on horospheres are euclidean, hence, IV can be considered as a subgroup of
Isom (E™71), the isometry group of euclidean n-1-space. I is generated by the
reflections in the codimension 1 faces of T”, where T” is a regular n-1-simplex in
euclidean n-1-space E" 1. We show that I can’t be discrete in Isom (E™71).

Let vg be a vertex of 7' and T'y C I the stabiliser of vg. We consider T'g
as a subgroup of Isom (S"_Q), S"~2 being the sphere with center vy and radius
1. T intersects $"~2 in a regular spherical n-2-simplex T" of edgelengths %.
Ty C Isom (S™72) is the subgroup of Isom (S"~2) generated by the reflections in
the faces of T". We shall prove that I'g can’t be discrete in Isom (S"_Q).

Let a be the dihedral angle of T". Tt is easy to see, using the spherical cosine
law, that cos(a) = -15. Consider two faces b and c. Letting R, R, be the
reflections at ¢ and b, we want to show first that one can find k such that the
angle between ¢ and (RyR.)" (c u

is smaller than Z.
Let n = 4. Then cos (a) =

5
241
cos (ba) = —= > cos <E> .

~—

. By computation, it follows

Wl

243 5
The same way, if n > 4, one uses again cos (@) = —L;. For n=>5, we get cos (5a) =
278 > cos (Z), and for n=6: cos (5a) = 2521 > cos (Z). For n=7, cos (5) as well

as cos (4) are smaller than cos (Z), but we get cos (9a) = 10022218 > cos (Z).

Finally, for all n > 8, we get cos (4a) = Mﬁ_fﬁlﬂ > 11— % > % > cos (§).
Assume I'y were discrete. Let R be the union of all ye, where v € 'y and e is
a codimension 1 hyperplane through one of the faces of T”. Each closure of a
connected component of S"2 — R forms a fundamental domain for T'y. It is clear
that none of the codimensionl hyperplanes passing through the faces of 7" can
intersect the interior of a fundamental domain (because otherwise two interior
points of the fundamental domain would be mapped to each other under the
reflection). That means that 7" is actually composed by components of S™ 2 — R.
Considering a fundamental domain which has b N ¢ as a codimension 2 face, we
get that the dihedral angle (of the fundamental simplex) at b ¢ has to be smaller

than %
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Recall from the classification of spherical reflection groups, [12]: if 'y C
Isom (S"?) is a discrete group generated by reflections, then there is a fun-
damental simplex A, such that I'y is generated by reflections in the faces of A.
One can enumerate the fundamental simplices actually giving rise to discrete
groups. In particular, the only simplex giving rise to a discrete reflection group
with some angle smaller than % is the 2-simplex with angles 7, 7, . Hence, look-
ing at the tesselation of S? obtained from the (2,2,m)-reflection group, we have to
check whether one finds an equilateral triangle with edgelength £ composed by
fundamental triangles.

However, the tesselation of S2, obtained from the (2,2,m)-reflection group
looks as follows: it has 2m+2 vertices a,b,vy,...,v2,; and 2m+1 lines (great
circles), one of them passing through all v;, the other ones passing through a,b

and exactly one of the v;. It is then clear, that any nondegenerate triangle invokes

as vertices a,b and one of the v;, hence, has interior angles 7,7, %r for some
Il €{1,...,m}. Thus we don’t find the equilateral triangle whose angle « satisfies

cos (a) = %.

We conclude now that T is dense in Isom (S™2).

The closure Iy is a closed subgroup, hence, a Lie subgroup of dimension > 1. In
particular, it contains some connected 1-dimensional Lie group S. All connected 1-
dimensional subgroups of Isom (S"2) are of the form S = (05 () : ¢ € [0, 27]),
where s is some codimension 2 subspace of R ! and O (¢) is the rotation of
angle ¢ which fixes s.

We call a set {E;},.;, o of codimension 2 subspaces of R""! in general
position if there exists a basis e1,...,en—1 of R"! such that each F; is spanned
by e; and e;4+1. It is well known and easy to prove that, if Fq,...,E,_o are
in general position, then each element g € I'som (S"2) = O,_1 is a product
g =gi...9gx for some k € N, where each g; is of the form g; = Op (¢;) with
ij€{1,...,n—2} and ¢; € [0, 27]. ’

Let s be a codimension 2 subspace such that S; C Ty. For any v € I'y we have
Sys =Ssy! C To. Choosing n-3 elements ; € T'g such that the ;s (and s) are
in general position, we conclude that Ty = O, 1.

We show that I' is dense in Isom (R"1).

Recall that Isom (R™ — 1) is the semidirect product of O, 1 and R"™!, where
multiplication is defined by (A4,b) (A",b') = (AA’, Ab' +b) for A, A’ € O,_1 and
bt € R*L.
We just proved IV D (O, _1,0). Now, we take some v € I'” with y (0) # 0, i.e.,
v = (A4,b) with b # 0.
Then I" D A"y~ D v (0y-1,0) v~ = (Op_1,b).
On the other hand, I” D Ty D (0,_1,0) (4,b).
For any b’ with || b ||=|| b ||, we find (4,0) € (O,,_1,0) C I with (4,0)b=1'.
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Hence, we have 7' := (4,0)y € TV with 4/ (0) = . By the argument before we

conclude IV D (O,_1,b'), whenever || & ||=|| b |
But, by the same reasoning (replacing 0 by b), we can argue that I D
(Op—1,b"), whenever || 8" — b ||=|| 0 — b ||. In particular, for any positive num-

ber r < 2 || b ||, we find some b” with || ¥ ||= 7, such that I" D (O, 1,b").
But then we have just shown that T’ O (Oy_1,b) actually holds for any b’ with
[0 |=r<2]b]. _

Continuing this reasoning, we show inductively for any k¥ € N that I' D
(On—1,b'), whenever || & ||< 2¥ || b ||.Hence, T is dense in Isom®" 1.

Finally, we show that I is dense in Isom (H").

Using the identification of Isom (H™) with the set of ON-repers in H", our claim
is: given two repers t; = (p,u1,...,uy) and to = (g, w1, ..., w,) we find an element
of T mapping t; to ts.

Let v1 and v9 be two ideal vertices of . When H is a horosphere centered at
an ideal vertex of T, we have just proved that T D Isom (H). One easily finds
horospheres Hi, Ho, Hs such that H; and Hjs are centered at v1, Ho is centered at
v9, p € Hy, q € H3, H; intersects Hy and H» intersects H3. Denote p1 := H{ N Ho
and po := Hs N Hy. We find h; € Isom (H;), i = 1,2,3, such that hy (p) =
p1,he (p1) = po2,hs (p2) = q. Recall that Stab(p2) is generated by Stab(ps2) N
Isom (Hy) and Stab(p2) N Isom (Hy). Hence, we find g € T N Stab (pz) with
ghohy (t1) = h3_1 (t2). This means that hsghohy maps t; to t2 and this finishes
the proof.

O

4.1.3 Algebraic topology
Measure homology

For a manifold M, let C° (Ak,M ) be the space of singular simplices in M,
topologized by the compact-open-topology. Let Cy (M) be the vector space of
all signed Borel measures y on C° (A’“, M ) which have compact support and fi-

nite total variation. Let 7; : A¥ — AF~1 be the i-th face map. It induces a map
0 = (n}), : Cp (M) — Cp_1 (M). We define the boundary operator 8 := Y% ; 9;,
to make C, (M) a chain complex. We denote the homology groups of this chain
complex by H, (M).

We have an obvious inclusion j : Cy (M) — C, (M), where C, (M) are the sin-
gular chains, considered as finite linear combination of atomic measures. Clearly,
j is a chain map. Zastrow’s theorem 3.4. in [68] says that we get an isomorphism
Js t He (M) = Hy (M).

The I'-norm on C, (M) extends to a norm on C, (M), and we get an induced
pseudonorm on H, (M). Thurston conjectured in [62] that the isomorphism j,
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should be an isometry. There seems not to exist a proof of this conjecture so far.
However, if M is a closed hyperbolic n-manifold, it follows from the proof of the
Gromov-Thurston theorem that j,, : H, (M) — H, (M) is an isometry.

Intersection numbers

Let M be a connected oriented n-manifold and M’ an n-submanifold with bound-
ary. Assume that My := M — M' is compact and homotopy equivalent to M,
hence, that H; (M) =~ H; (M,).

By excision, we have isomorphisms H; (M, M') =~ H; (My, 0Mj).

Poincare duality gives us isomorphisms PD; : H; (M, M'; R) — H"™* (M; R) and
PD,: H;(M;R) — H" *(M,M';R) for i = 0,...,n. We use the cup product
U: H (M,M";R) ® H" " (M;R) — H°(M;R) = R to define an intersection
product i : H; (M, M") ® H,_; (M) — R via the equality

) (al,aQ) = PDs (al) U PDy (az)

for a1 € H; (M,M') and a9 € H,,_; (M).

On the other hand, there is an intersection number defined in differential
topology (for M, M' smooth) as follows: Let N; be an i-dimensional compact
oriented smooth submanifold of M, such that N; C M’, and let Ny be an (n-i)-
dimensional closed oriented smooth submanifold of M. Assume that N; and No
are transversal, i.e., for any x € Ny N Ny is Ty M = T, N1 & T, No. 1t follows that
N7 N Ny is a finite number of points x1,...,2,. For any £ € N1 N Ng, let e1,...,¢;
be a positively oriented basis of T, N1 and e;41,...,e, a positively oriented basis
of T, Ny and define the local intersection number at = by

lig (N1, N2) == { L:e1..., e, positively oriented } ’

—1:e,...,e, negatively oriented

where orientation of {e1,...,€;,€i4+1,...,€,} is meant w.r.t. the given orien-
tation of T, M. The intersection number of N7 and N5 is then defined as

i(Ni,No) = > lig (N1, Ny).
TEN1NN2

N; represents a relative homology class n1 € H; (M, M'), and N> represents a
homology class no € H,_; (M). It is well known that 7 (ni,ns) = i (N7, No).
In particular, if [M, M'] is the (real) relative fundamental cycle, i.e., the image
of the orientation class [M] € H, (M;Z) under H, (M;Z) — H, (M,M';Z) —
H, (M,M'; R), we get for any point z € M:

i([M’MI] [z]) =i (M,z) =1,
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where [z] € Hy (M; R) is the homology class of the point z.

One should generalise the differential-topological definition of intersection num-
ber as follows: if o1, 09 are transversal smooth singular simplices, then we get with
the same definition a local intersection number at all € im (o1) U im (02) and,
hence, a global intersection number. By linear extension, we get an intersection
number i’ of singular chains. One should note, however, that for singular chains
c] = Zéc:l a1;01; and ¢; = Ele a1;01; the equality i’ (c1,c2) = i ([e1],[e2]) holds
only if for all 7, j all intersection points = € im (o1;) U im (02;) are in the images
of the interiors of o1; and o;.

We are interested in the special case of co = z, where £ means the 0-simplex
mapped to the point x € M. Transversality of an n-simplex ¢ to £ means just
that do is an isomorphism at all y € 0! (z), and the local intersection number
is Y yeco—1(z) Sign (do (y)). If o is not transversal to z, we have do = 0 at all
y € 0! (z), so we can make the following definition:

Definition 9 : Let N be an oriented differentiable n-manifold. For a differen-
tiable simplex o : A™ — N, and x € N, define

b, (o) = Z sign do (y) -

yeo~1(z)
For a singular chain ¢ = Y;_, a;04, let @5 (c) = Y i1 ai®y (07)-

It is probably well-known that the generalised differential-topological intersec-
tion number coincides with the algebraic-topological one, i.e., that i (a1,a2) =
i’ (a1,a2) holds for all a; € H; (M, M') ,ay € H,_; (M), where one has to define
i’ in an appropriate way, namely admitting only representatives such that all in-
tersection points belong to the interiors of the corresponding simplices. However,
we are not aware of any reference, so we give a proof, stating actually only the
case ag = [z] € Hy (M), since this is the case we are interested in. The reader will
convince himself that the same proof works in general.

Lemma 17 : Let M be a connected, oriented n-manifold, M' an n-submanifold
with boundary, such that M — M' is compact. Let ¢ = Y i a;7; be a singular n-
chain representing the relative fundamental class [M, M']. Assume that all 7; are
immersed smooth n-simplices. Then @, (c) = 1 holds for almost all z € M — M.

Proof:  Let K = U_jim (97;). K is of measure zero, by Sard’s lemma.

We want to show that ®, (c), as a function of z, is constant on M — (M' U K).
It is obvious that it is locally constant on M — (M' U K), since all 7; are either
locally diffeomorphic. It remains to prove: for all z € K Nint (M — M), there is
a neighborhood U of z in M such that ®_ (c) is constant on U N (M — K).
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The point x is contained in the image of finitely many (n-1)-simplices &1, . . . , K,
which are boundary faces of some 7;,,...,7;,. (Note that the 7;;’s needn’t be dis-
tinct and that there might be further 7;’s containing z in the interior of their im-
age.) Since 0} _; a;7; invokes only simplices whose image is contained in Njg ¢,
we necessarily have that all 7;,,...,7;, cancel each other, i.e., there is a parti-
tion of {i1,...,%;} in some subsets, such that for each of these subsets of indices
the sum of the corresponding coefficients a;;, multiplied with a sign according to
orientation of 7;;, adds up to zero.

This clearly implies that ® is constant in the intersection of a small neigh-
borhood of x with the complement of K and, hence, also constant on all of
M — (M'UK).

We now prove that this constant doesn’t depend on the representative of the
relative fundamental class. This implies that the constant must be 1, since one
can choose a triangulation as representative of the relative fundamental class. (By
Whitehead’s theorem, smooth manifolds admit triangulations.)

If ¢ and ¢ are different representatives of [M, M'], we have that c— ¢ = dw+t
for some w € Cpq1 (M — M') and t € C,, (M'). Because dw is a cycle, the same
argument as above gives that ® (Ow) is a.e. constant on all of M. The constant
must be zero, since Jw has compact support in the noncompact manifold M.
That means that @, (c) — @, (¢') = ®, (¢) for almost all z € M. But &, (¢t) =0
for all z € int (M — M'). O

4.1.4 Fundamental cycles
Convergence of fundamental cycles - some motivating remarks

A major point of this chapter will be to consider limiting objects of sequences
of relative fundamental cycles of a finite-volume hyperbolic manifold N with -
norms approximating the simplicial volume. It is quite clear that there do not
exist relative fundamental cycles actually having I'-norm equal to VinVol (N).
Hence, the limits of such sequences can’t be just singular chains. What we are
going to do is to embed the singular chain complex into a larger space, where
any bounded sequence has accumulation points. A straightforward idea would be
to use the inclusion j : Cp, (N) — C, (N) and to consider weak-* accumulation
points in C, (N). This works perfectly well, however it is easy to see that the
weak-* limits are just trivial measures. The reason is roughly the following: a
singular chain with /!-norm close to V%Vol (N) has to have a very large part of its
mass on simplices o with vol (str (o)) quite close to V,,. If we consider a compact
set of simplices, it will have some upper bound (better than V},) on val (str (.)).
Hence, it will contribute very few to an almost efficient fundamental cycle, and
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the limiting measure will actually vanish on this set of simplices.

Therefore, to get nontrivial accumulation points, we are obliged to consider
the larger space of simplices which might be ideal, i.e., whose lifts to H™ might
have vertices in 0, H". This, however, raises another problem: the space of ideal
simplices in N = I'\H" is not Hausdorff, and there is no theorem guaranteeing
existence of weak-* accumulation points for signed measures on non-Hausdorff
spaces.

Straightening chains

Let pg,...,p; be points in H™. The straight simplex (po,...,p;) is defined as the
barycentric parametrization of the geodesic simplex having vertices py, . . . , p;. For
a simplex o in H", we denote by Str(co) the straight simplex with the same vertices
as 0. A straight simplex in a hyperbolic manifold N = I'\H" is the image of a
straight simplex in H™ under the projection p : H® — I'\H" = N. For a simplex
o in N, its straightening Str (o) is defined as p (Str (6)), where & is a simplex
in H™ projecting to o. Since straightening in H” commutes with isometries, the
definition of Str (o) doesn’t depend on the choice of 5.

Finally, the straightening of a singular chain ¢c=3"7_, a;o; is defined as
Str(c) = >%_, a;Str (o). Str(c) is homologous to ¢, and clearly || Str (c) ||<|| ¢ ||
for any ¢ € Cy (N). (Str (c) may possibly have smaller norm than ¢, since different
simplices may have the same straightenings.)

Alternating chains

The symmetric group Sy+1 acts on the standard n-simplex A™: any permutation
7 of vertices can be realised by an affine map f; : A™ — A" For a singular
simplex o : A" — N let alt (0) := > rcg, ., sgn (7) 0 fz, and for a singular chain
¢ = Y1y a;0; define alt (c) := Y_;_; a;alt (o;). Clearly, || alt (c) | <] ¢ ||

Nondegenerate chains

Let N be a hyperbolic manifold. We call a straight i-simplex o : A - N
degenerate if two of its vertices are mapped to the same point, nondegenerate
otherwise.

Lemma 18 : Let N be a hyperbolic n-manifold, N' a convez subset. Lety ;.1 a;o;
Cp (N,N'; R) be a relative n-cycle. Then there is a subset of indices J C I such
that all oj with j € J are non-degenerate and }_ ;¢ ; a;o; is relatively homologous

to EZ'GI a;0;.

Proof:  Let K C I be the subset of indices such that {oy : k € K} are all degen-
erate simplices. We claim that >, - i aroy is relatively 0-homologous. For this, it
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is sufficient to show that it is a relative cycle, since it is obvious that vol (¢) = 0
for degenerate simplices o.

The degenerate faces of )¢ x aro) cancel each other (relatively), since they
cancel in 0 (3¢ a;0;) and they can’t cancel against faces of nondegenerate sim-
plices.

The nondegenerate faces of degenerate simplices cancel anyway: if (a, v1,...,vy)
and (b,v1,...,v,) are nondegenerate faces of a degenerate simplex, then necessar-
ily @ = b. Thus this face contributes twice to the boundary, with opposite signs.O

Hence, to any relative n-cycle ¢ € Cy, (N, N'; R) with N’ C N convex and
n = dim (N), we find ¢’ € C,, (N, N'; R) homologous to ¢ in C, (N, N'; R), such
that || ¢ ||<|| ¢ || and ¢ is an alternating linear combination of nondegenerate
straight simplices.

Straight chains as measures

We explained in 4.1.3. that singular chains may be considered as atomic mea-
sures on the space of singular simplices, thus getting a homomorphism C, (M) —
C« (M). As we said, to get nontrivial results, we should consider not only C, (M),
but measures on the space of possibly ideal simplices. Since it is hard to prove
existence of accumulation points in this measure space, we will consider measures
on smaller sets of simplices.

Let N be a hyperbolic manifold. The set of nondegenerate, possibly ideal,
straight i-simplices in N = '\H" is

SSZ (N) = F\{(p()aapz) Poy---5Di Emapj ?épk lfj 7& k}a

where g € T" acts by g (po, - --,pn) = (9P0,- - -, gPn)-

Denote M (SS; (IV)) the space of signed regular measures on S.S; (N). Straight
singular chains ¢ = 377, ajo; € C; (N;R), with all o; nondegenerate, can be
considered as discrete signed measures on SS; (N) defined by

c(B)y= ) laj]

{j:0;CB}

for any Borel set B C SS; (N).
Let n = dim (N). To apply Alaoglu’s theorem to M (SS, (N)), we need to
know that SS, (V) is locally compact (which is obvious) and metrizable.

Lemma 19 : Let N be a hyperbolic manifold. Then SS,, (N) is metrizable.
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Proof: ~ We have to show that I'-orbits on H?:Om — D are closed, D being
the set of degenerate straight simplices. On the complement of H?:()Boom this
follows from proper discontinuity of the I'-action on H™.

To any n-tupel (v, ...,v,—1) € H?;&aoom of distinct points that T'-orbits on
I%_oH™ — D are closed, D being the set of degenerate straight simplices. On the
complement of H;‘ZOBOOW this follows from proper discontinuity of the I'-action
on H".

To any n-tupel (vg,...,vn_1) € H?;éaoom of distinct points corresponds a
unique v, € OxoH" such that (vg,...,v,) is a positively oriented regular ideal
n-simplex. Together with the identification in 3.1.1.3, we get a I'-equivariant
homeomorphism
H?;(}aoom— D — Isom™ (H"). T acts properly discontinuously on Isom™ (H™),
as well as on H?;&@oom — D, even more on H;‘:OBOOW —D. O

4.1.5 Gromov-Thurston theorem

We outline the proof of the Gromov-Thurston theorem, for closed hyperbolic man-
ifolds. This should be helpful as a motivation for the following sections, and serves
in particular to introduce several notions which will show up in the proof of the-
orem 3. The presentation follows in parts that of [40].

Proposition 6: Let M be a closed hyperbolic manifold. Then || M,0M |=
V%Vol (M). Here, V,, is the volume of a regular ideal simplex in H™.

Proof: Let C5" (M;R) C C, (M;R) be the subcomplex generated by straight
simplices. Straightening of simplices,

str: Cy, (M;R) — C" (M R)

gives a chain homotopy inverse of the inclusion. Hence, it induces an isomorphism
of homology groups, of norm 1.
Let n = dim (M). The composed isomorphism

H,(M,R) — H" (M;R) — R
1
vol(M)
classes. Every straight cycle representing the fundamental class [M] must cover all
of M. Since each of its simplices covers volume < V;, (by the Haagerup-Munkholm
theorem in section 4.1.1), such a straight cycle representing the fundamental class

has {'-norm larger than %iw) This shows || M ||> %5\/1)

is given by integrating dvol over straight cycles representing homology
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Let CJeosstr (M; R) be the complex of measure chains, that is, of compactly
supported signed measures on the space of straight simplices of M. Note that a
signed measure on the space of straight simplices is compactly supported iff it is
supported on simplices with a common diameter bound. The total variation of
signed measures generalizes the ['-norm on singular chains.

Let D be a measurable fundamental domain for the action of I' = m M on
M = H". Since M is compact, D may be choosen to have finite diameter. Choose
a I'-orbit I'z and let the (non-continuous) retraction

r:H" - I'z

be the equivariant measurable map which, for each v € I', collapses each translate
vD to the unique orbit point yz contained in it. We use this map on the level of
vertices to define a map on the level of straight simplices inducing a map

wiggle : CT¢* (M; R) — C*" (M; R)

which has norm < 1 and is a chain homotopy inverse to the inclusion. One should
note that wiggle indeed maps compactly supported signed measures to finite linear
combinations of straight simplices because there are only finitely many straight
simplices with a given diameter bound and all vertices in I'z.

Consider the space S;°Y (M) of ordered regular geodesic n-simplices with side
length L in (M). There is a Isom (H™)-equivariant bijection

Ip : 879 (H™) — Isom (H"),
descending to a bijection
I, : 87 (M) — I'\Isom (H").

It is well-known that T'som™ (H™) is unimodular, i.e. that it admits a biinvariant
Haar measure, descending to a finite measure put on '\Isom™ (H™). To get a
signed measure on allo of Isom (H™), consider

with p~ := r*u™ for an arbitrary fixed reflection r € Isom ™~ (H™). Note that p is
preserved by I'som™ (H™), but changes its sign under the action of Isom™ (H").
We use the bijection I to define a signed measures

pr = % (4 — )

with
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on S7% (M). pr is a cycle of norm 1 in C€455% (M R), representing ﬁ(éML) [M],
where v (L) is the volume of a regular geodesic n-simplices with edge-length L in

H"™. It follows that
vol (M) wiggle (pr)

represents the fundamental class in H, (M; R). Since it has norm < %LM)E, and

l'L.mL_)oo'U (L) == V’I’La we get || M ||S vf)l((ll/\;[)'

It is worth pointing out that %%Zwiggle (pr) weak-*-converges to

vol (M) . 1 _
én )wzggle (5 (udo — uoo)> :

where ,uoio are the measures defined on S%¢9 (M), the space of ordered regular ideal
n-simplices in M, by pulling back the Haar measure via the I'som (H")-equivariant
bijection Hy, : ST (H™) — Isom (H™).

4.2 Degeneration

The aim of this section is to give a precise definition of efficient fundamental
chains in the case of compact manifolds with boundary admitting a complete
finite-volume hyperbolic on its interior, and to show, through a series of lemmata,
that efficient fundamental chains are signed measures on the set of regular ideal
simplices, invariant under the action of a certain group R C Isom (H").

4.2.1 Efficient fundamental cycles

For a closed hyperbolic manifold, the Gromov-Thurston theorem gives | N ||=
V%LVOZ (N). In particular, for any ¢ > 0, there is some fundamental cycle d.
satisfying
€
de |[<|| N || +—.
. 1IN I+

By 4.1.4, we can replace d. by a homologous alternating chain ¢, consisting of
nondegenerate straight simplices, without increasing the ['-norm. To speak
about limits of sequences of ¢, it will be convenient to regard them as elements of
some space with compact balls, namely the space of signed measures on SS,, (N) =

I\ (H;-LZOW — D) with the weak-*-topology, as in 4.1.4. (The reader might won-

der why we don’t consider them as signed measures on I'\ (H;‘ZOH n— D), where

balls are still weak-*-compact. The point is that in this space, the weak-*-limits
of the ¢, would just be trivial measures, what does not imply much.)
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Jungreis results from [36], for closed hyperbolic manifolds of dimension > 3,
can be phrased as follows:
- any sequence of ¢, with e — 0 converges,
- the limit y is supported on the set of regular ideal simplices, to be identified
with Tsom (H™), and
- up to a multiplicative factor one has y = u™ — u~ with 4+ the Haar measure on
Isom™ (H") and p~ = r*u™ for an arbitrary orientation reversing r € I'som (H™).

The aim of this chapter is to generalize these results to finite-volume hyper-
bolic manifolds. For these cusped hyperbolic manifolds, there arises a technical
problem: we wish to consider chains representing the relative fundamental class
of a manifold with boundary, but we have a hyperbolic metric (and a notion of
straightening) only on the interior. In the following, we will get around this prob-
lem and analyse the possible limits.

Recall from 4.1.1 that there is some ¢ s.t. for any € < ¢y there is a homeo-
morphism h¢ : (N,0N) — (N[e,oo],BN[e,oo]). Let, for € < €y, de € Cp, (N,ON; R)
be some relative fundamental cycle satisfying

€
| de lI<I| N,ON || +--
and consider he,d, € Cy, (N[e,oo}, ON|c oo R). Let

exc: Cy, (N[e,oo},aN[e,oo];R) - Cy (N, N[O,e];R)
be the excision morphism, and let
Str: Cy, (N, N[O,e]) — Ch (N, N[O,e])

be the morphism induced by str, straightening of chains, which is well defined
because Njg o is convex. Then consider

ce 1= Str (exc (hesde)) € Cp, (int (N), N5 R) .

The following notion of efficient fundamental chains will be the topic of interest
in this chapter.

Definition 10 : Let N be a compact manifold with a given hyperbolic metric
on its interior. A signed measure u on SSy (N) is called an efficient fun-
damental chain if there exists a sequence of € with ¢ — 0 and a sequence of
de € C, (N,0ON; R) representing the relative fundamental cycle, such that
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(i) d¢ are alternating chains invoking only nondegenerate simplices,
(i) they satisfy the inequality || d¢ ||<|| N,ON || +3+, and

(7ii) the sequence c. := Str (exc (hed,)) € Cp (z'nt (N) ,N[O,e];R) converges to
in the weak-*-topology of the space of signed measures on SSy, (int (N)).

Lemma 20 : Let N be a compact manifold supporting a complete hyperbolic
metric on its interior. Then there is at least one efficient fundamental chain.

Proof: By definition of the simplicial volume there exists a sequence of represen-
tatives of the relative fundamental class, satisfying the inequality (ii) in definition
9, for ¢ — 0. By the arguments in 4.1.4 we may assume that also condition (i) is
satisfied for this sequence d.. Let ¢, = Str (exc (he.d, ) and regard this sequence of
singular straight chains as a sequence c, of signed measures on the locally compact
metric space SSy, (N) as in 4.1.4. The sequence ¢, is bounded by its definition
and, hence, lemma 16(i) guarantees the existence of a weak-*-accumulation point

. O

We recall that excision and straightening, as well as the homeomorphism A,
induce isomorphisms in relative homology. Hence, any c. represents the relative
fundamental class in H, (z'nt (N), Npo,q; R). From lemma 17 follows (see defini-
tion 8 for ®,):

Lemma 21 : Let N be a manifold and Ny C N be a codimenson 0 submanifold,
such that N — Ny is compact, and let cc be a representative of the relative funda-
mental class [z'nt (N) ,N[O,e]]. Then @4 (cc) =1 holds for almost all z € N o)

Let, for § > 0,
Ss:={0 €8S, (N):vol (o) <V, —6}.

A priori, efficient fundamental chains y are signed measures on SSy, (N) = Uy, »>0 S§-
The following lemma 22 shows that they are actually supported on S§.

Lemma 22 : Let N be a compact manifold admitting a complete finite-volume
hyperbolic metric on its interior. Then any efficient fundamental chain is sup-
ported on the set of straight simplices of volume V,, (= the set of regular ideal
simplices).

Proof:  Any subset A C Sy can be written as a countable union A = U;cnyA;
such that each A; is contained in S, for a suitable ¢;. It suffices therefore to show
that pu* (S¢) = 0 holds for any ¢ > 0. This, in turn, follows with lemma 16(ii) if
we can prove lime — chc (Ser) = 0 for any € > 0, because Sy is open.
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From lemma 21, we conclude [y ®; (c.) dvol (z) > Vol (N[e,oo}).
But [y ®; (co) dvol (z) = Y i_; ai [y Py (04) dvol (z) = Yi_; asalgvol (o), where
algvol (o;) is Vol (o;) with a sign according to orientation. In particular,

3" lai| Vol (0:) > Vol (N[em]) .

On the other hand, we want ¢, = Y a;0; to satisfy V, >~ | a; |< Vol (N) + .
Substracting the two inequalities yields

>l | (Vo= Vol () < e+ Vol (Npgq) -

We get ¢ + Vol (Nygq) a> 3 | a; | (Vo — Vol ()
= Zi:Vol(ai)ZVn—e’ | a; | (Vn —Vol (GZ)) + Ez’:Vol(ai)<Vn—e’ | a; | (Vn — Vol (02))
> Zi:Vol(ai)<Vn—e’ | a; | (Vn — Vol (UZ))
> ¢ Ei:Vol((n)<an€’ ‘ a; |
= €' (¢ (Se) + e (Se)).
From lim._,q Vol (N[O,e]) = 0, we conclude lime — Oc¢ (S¢) = 0. O

We will use lemma 22 to consider efficient fundamental chains as signed mea-
sures on SLE9 (N) (definition 7).

The following lemma 23 states that efficient fundamental chains are not triv-
ial (what is of course important to make nontrivial use of them). It is at this
point where we use that we admit also ideal simplices.

Lemma 23 : If N is a compact manifold admitting a complete finite-volume
hyperbolic metric on its interior, and p an efficient fundamental chain on N,
then p # 0.

Proof:  Choose f : S§S,, (N) — [0, 1], which is zero on some Sy and is one on the
complement of some Ss. As a function on SSy, (N), f is compactly supported.
Hence, p (f) = lime—ce (f) which does not vanish by the arguments in the proof
of lemma 22. O

Although efficient fundamental chains are constructed as limits of relative cy-
cles, the following lemma shows that they are actual cycles. Intuitively spoken,
their boundary escapes to infinity.

Lemma 24 : Let N be a compact manifold whose interior admits acomplete
hyperbolic metric of finite volume. If u is an efficient fundamental chain, then

(Op)" = (8p) =0.
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Proof:  Denote by SS? (N) the set of (possibly ideal) i-simplices intersecting the
interior of N o]. Since heide is a relative fundamental cycle, we clearly have,
with n = dim (N):

B C S§87"!(N) measurable = 8 (he.do)® (B) = 0.
If ¢ < €, we have N1 D Njoq, implying 0 (he «d)F(B) = 0 for all B C
SSP—L(N).
Since Ny () is convex and c, is defined by straightening, we get that, for all € <k,
B C S8 ! (N) measurable = 803 (B)=0.

When dp™ is a weak-* accumulation point of a sequence dcE, we conclude
Ou* (B) = 0 for all measurable sets B contained in some SS™~! (N) by part (ii)
of lemma, 16, since we may consider them as subsets of an open set still contained
in some slightly larger SS?~! (N).
But clearly, U2, SS% ™! (N) is the set of all (even ideal) (n-1)-simplices, hence
k

the claim of the lemma. O

Remark: In the case of closed manifolds, lemma 24, of course, an immediate
consequence of the fact that 0 is a bounded operator.

T148¢

Ay

‘ T9lq

4.2.2 Invariance under ideal reflection group

We have shown that efficient fundamental chains are measure cycles on the set of
regular ideal simplices. In this subsection we sue the observation that regular ideal
simplices in '\ H™ are in bijection with I'\Tsom (H™) to traduce the cycle condi-
tion du* = 0 into the condition that the corresponding measures on I'\Tsom (H™)
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are invariant under the right-hand action of some group R~ C Isom (H"). (Of
course, there is no difference between left-hand and right-hand actions. The point
is that " and R' commute, i.e., act form different sides.)

Since we have an ordering of the vertices of a simplex A, we can speak of the
i-th face of A, the codimension 1-face not containing the i-th vertex.

Definition 11 : Fiz a regular ideal simplex Ay and, fori=0,...,n, let r; be the
reflection in the i-th face of Ag. Let R C Isom (H™) be the subgroup generated by
T0y...,Tn and let RT = RN Isom™ (H™).

We have got that u* are measure cycles supported on S7¢9 (N), the set of
regular ideal simplices. As explained in 4.1.1, after fixing some regular ideal
simplex Ag in H", we have an Isom (H™)-equivariant bijection I : ST (N) —
T'\Isom (H™). We use this bijection to consider u* as measures on T'\Isom (H™).

We will use the convention that g € I'som (H™) corresponds to the simplex
gl\g, i.e., we let Isom (H™), and in particular T', act from the left. It will be
important to note that, after this identification, the right-hand action of R cor-
responds to the following operation on the set of regular ideal simplices: r; maps
a simplex to the simplex obtained by reflection in its i-th face. This is clear from
the picture on page 81.

Lemma 25 : For n > 3, efficient fundamental chains are invariant under the
right-hand action of Rt on T'\Isom (H").

Note: If A = g/ for some g € I'\Isom (H"), then the reflection s; in the i-th
face of A maps A = g/ to gr; (Ag). In other words, the choice of another ref-
erence simplex changes the identification with Isom (H™) by left multiplication
with g € Isom (H"), but doesn’t alter the right-hand action of R on I'som (H™).
This implies that the truth of lemma 25 is independent of the choice of Ag.

Lemma 25 follows from

Lemma 26 : In dimensions n > 3, a signed alternating measure p on the set of
mazimal volume simplices is a cycle iff rf (n) = —p for alli=0,...,n.

Proof:  If n > 3, then for any ordered regular ideal (n-1)-simplex 7, there are
exactly two ordered regular ideal n-simplices, TZ-+ and 7; , having 7 as i-th face.
(By the way, this is the only point entering the proofs of our theorems which uses
n > 3.) We fix them such that 7; is positively oriented. For a measurable set
B C {ordered regular ideal (n-1)-simplices} define

B{":{T*:TEB} andBZ-_Z{T-_:TEB}.

1 1
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Since p is determined on the set of regular ideal n-simplices, we have that

ou(B) = > (1) (55 (B)
=0

K3

(1) (1 (5) + 4 (557)).

We may assume that 4 is alternating, in particular 7}, u = (—1)1’71C 1, where 7 is
induced by the affine map realizing the transposition of the i-th and k-th vertex.
If 1 — k is even, m;;, maps Bi+ to B,j and B; to B, . If i — k is odd, m;; maps B;L
to B, and B; to B,j. Therefore, we get

ou(B) = (n+1) (u(BF) +u(B;))

2

for all i € {0,...,n}.

In particular Ou (B) = 0 holds if and only if y4 (Bj') =—u (BZ_) fori=0,...,n.
The action of r; maps B;r bijectively to B;” and vice versa. Thus, du = 0

implies that rju = —p holds, at least for sets of the form Bi+ or B;". But, clearly,

any measurable set of ordered regular ideal n-simplices is the union of two sets

having this form for suitable measurable sets, so the claim follows. a

Remark: A different, but in our opinion considerably more involved, proof of
the same fact is given in lemma 2.2. of [36].

4.3 Decomposition of efficient fundamental cycles

The aim of this section is to give a decomposition of efficient fundamental chains
into measures which can be explicitly described. Such a decomposition exists in
dimensions > 3, and in dimensions > 4 it will actually be trivial.

If n > 4, then the group generated by reflections in the faces of a regular
ideal n-simplex in H™ is dense in Isom (H™). We get from lemma 25 that efficient
fundamental cycles are invariant under the right-hand action of Isom™ (H™). This
implies that they are a multiple of Haar — r*Haar, where Haar is the Haar
measure on Isom™ (H™).

In the following we will discuss the case n = 3.

Back to the situation of section 4.2. Let v be an ideal vertex of the reference
simplex Ag. Let N, C Isom™ (H") be the subgroup of parabolic isometries
fixing v. As in the 4.1.2, we may consider N, as the N-factor in the Iwasawa
decomposition Isom™ (H") = K,A,N,. (That means we use v € 9o H" and
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some arbitrary p € H™ to construct the Iwasawa decomposition. In the following,
we will fix some arbitrary p € H™ but consider various v € 0, H", therefore the
labelling of the Iwasawa decompositions.)

Instead of RT, we consider only the subgroup 7T} generated by products of
even numbers of reflections in those faces of Ag which contain v. y is, of course,
also invariant under the smaller group 7). If n=3, then 7T contains a subgroup Tj,
which is a cocompact subgroup of N, (this is easy to see, cf. [36]). Thus, in any
case, we have proved that p is invariant under some cocompact lattice T, C N,.

The signed measure p decomposes as a difference of two measures p* and
1~ . We rescale u* to probability measures 7it, to be able to apply the ergodic
decomposition from subsection 4.1.2.

Ergodic decomposition. ™ and 7z~ are invariant under the right-hand action
of T,. From lemma 15, we get that the restrictions of 7™ to T'\Isom™ (H™), have
decomposition maps with respect to the action of T,

BE :T\Isom™ (H™) — E.

Here, £ is the set of ergodic T),-invariant measures on I'\Isom™ (H"). From lemma
14, we get that £ consists of Haar (the Haar measure, rescaled to a probability
measure) and measures determined on compact N,-orbits. The latter class can
be better characterized by help of the following well-known lemma.

Lemma 27 : An orbit gN, is compact in I'\Isom (H™) iff all simplices gnl
with n € N, have its ideal vertex gv in a parabolic fized point of I

Proof: ~ Parametrise elements of N, as u(s),s € R" ! (identifying a stabi-
lized horosphere with euclidean (n-1)-space). The N,-orbit of g on I'\Isom (H")
is compact if and only if, for all s € R* !, one finds v € T and ¢ € R such
that gu (ts) = g. This v is then conjugated to u(ts) and, in particular, is
parabolic, i.e., has only one fixed point. The fixed point of v must be g (v), since
vg (v) = gu (ts) (v) = g (v). The other implication is straightforward. O

To summarize, we have the following statement:
For any vertex v of the reference simplex Ay, the ergodic decomposition of the
rescaled 7iT with respect to the right-hand action of T}, uses the Haar measure
and measures determined on the set of those simplices gAy which have
the vertex gv in a parabolic fixed point of I'.

4.4 Non-transversal fundamental cycles

Definition 12 : For a hyperbolic manifold N and a two-sided codimension-1 sub-
manifold FF C N call
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- Sﬁusp the set of positively oriented ideal i-simplices with all vertices in parabolic
fized points of N, and

- S}} the set of (possibly ideal) positively oriented i-simplices that intersect F
transversally.

Here, a simplex ¢ is said to intersect F' transversally if it intersects both compo-
nents of any regular neighborhood of F.

Lemma 28 : If F is a two-sided totally geodesic codimension-1-submanifold, then
St N {regular ideal simplices} C {regular ideal simplices}
has positive Haar measure.

Proof: It is easy to see that S N {regular ideal simplices} is an open, non-
empty subset of {regular ideal simplices}. O

Theorem 3 : Let N be a compact manifold of dimension n > 3 such that int (N)
admits a hyperbolic metric of finite volume, and let F C N be a closed totally

geodesic codimension-1-submanifold.
If p is an efficient fundamental cycle (with p™ |fsom+(ny7 0), then p™ (SE) # 0.

Proof: ~ Very roughly, the idea is the following: If y* (S%) vanishes, then the
Haar measure can only give a zero contribution to the ergodic decomposition of
pT, hence, pt is supported on S7,,. In particular, u* vanishes on the set of
simplices with boundary faces in F', and this will give a contradiction.

Rescale pt | Isom+(mn) t0 a probability measure .
Assume for some totally geodesic surface F we had gt (S%) = p* (S%) = 0.

Let v be a vertex of the reference simplex Ay. Using the ergodic decomposition
with respect to the T,-action on I'\G = T'\Isom™ (H") yields

0= (5p)= [ B (6) (P (5) > s (a) (SE) diT* (9)

/gEF\G:ﬂv(g):Haar

-/ Haar (S}) dji* () = Haar (p) [ di* (9)
9€T\G:Bv(g)=Haar 9€T\G:By(g)=Haar

By lemma 28, Haar (S}) # 0 and, thus,

/ ait (9) = 0.
geT\G:By(9)=Haar

We will conclude that ut is determined on Stusp Dy means of lemma 29, which

we state separately because it will be of independent use in chapter 6.
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Definition 13 : Let ' C G = Isom™ (H™) be a cocompact discrete subgroup,
v € OuoH™, T, C Isom™ (H") the subgroup defined in section 4.8 and B a decom-
position map for the right-hand action of Ty, as defined in 4.3. Let

H,={g €I'\G: B, (9) = Haar}.

Lemma 29 : Let vy,...,v, be the vertices of a reqular ideal simplex in H" and
T a probability measure on T\G := T'\Isom™ (H™), invariant with respect to the
right-hand action of R™. If pt (H,,) = 0 fori =0,...,n, then u" is supported
on S%

cusp*
Proof: : Let
A;={g € T\G : gv; is cusp of I'}
and
B; ={g € I'\G : I'\I'gyN,, is compact }.
We have

where the second equality holds by lemma 27.
If e is a T),- ergodic measure supported on a compact N,,-orbit, then

€ (F\G — BZ) = 0.

Thus (abbreviating 8, := Sy, (9)),

7+ (0\G — B,) = / B, (T\G — B;) di* (g)
I\G

- / B, (T\G — B;) di™ (g) + By (T\G — B;) dfi* (g)
Hy, '\G—Hy,

= Haar (0\G = B) it (Hu) + | o PTG = B) d (g)
= Haar (I'\G — B;) 0 + 0dut(g)=0

I'\G—Hy,

and, therefore,

n
A (T\G = Shuy) = B (UjoT\G = B)) < > (T\G = Bi) =0,
1=0

We are now going to finish the proof of theorem 3:
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We know (from the proof of lemma 21) that @, (cf) > @, (c.) > 1 for all
T € Nigoo]- F is a closed totally geodesic hypersurface. Therefore F' C N o
for sufficiently small e. We conclude @, (¢) > 1 for all z € F.

For x € N let S7 be the set of straight n-simplices A containing z in their
Vi

image. Define R := Ny > 0. A straight n-simplex can’t cover £ more than R
times, hence ¢ (S?) > }% for all z € F. We claim that this implies p* (S?) > }—12
for all x € F.

Namely, since the complement of S7 is open, we can apply part (ii) of lemma
16 to get
ut (T (_oH7™ — D) — 82) < ¢t (T\ (_gH" — D) - S7). Hence,
wt (89) > pt D\ (oo H™ - D)) — ¢t (P\ (I H" — D)) + 4
To control pt (I‘\ (H;-’Zom - D)) —cf (I‘\ (H?:()m - D)), choose (for some
fixed €1 < €3) a continuous function f with values in [0,1] which is zero on S,
and is one on the complement of S.,, where S, is the set of simplices of volume
smaller than V,, — ¢; as in the proof of lemma 22.
f has compact support (this is by the way the point where we use that we are
working on II7_o H™ — D rather then IT}_,H™ — D). Hence, " (f) — ¢} (f) tends

to zero by the definition of weak-*-convergence. But u™ (F\ (H?:om - D))
equals p* (f) and the difference between ¢ (1"\ (H?:Om — D)) and cf (f) is

certainly smaller than ¢ (S, ), which tends to zero by the argument in the proof of
lemma 22. Thus, for sufficiently small ¢, the difference u+ (r\ (H;LZOW - D)) -

cr (I‘\ (H?:Om - D)) becomes as small as one wishes. Hence put (57) > +.

But F is totally geodesic and so the set of straight simplices containing some
x € F consists of two kinds of simplices:

-simplices intersecting F transversally, and
-simplices with a vertex in F.

p vanishes on the second set, since it is determined on S7,,., and the closed

totally geodesic hypersurface F' can’t have cusps. Thus, we obtain

pt(SENSE) >

=

and, consequently, p* (S%) > }% > 0. ]
Remark: If u® |r5om+(gn)= 0, then u~ |1som+(mny7 0 by lemma 26 and lemma
23, and we get with an analogous proof u~ (S%) # 0.



88CHAPTER 4. FUNDAMENTAL CYCLES OF HYPERBOLIC MANIFOLDS

4.5 A remark on rigidity

Call a hyperbolic manifold M = I'\H" Gieseking-like, if there is a regular ideal
triangulation of H™ s.t. all ideal vertices of this triangulation are parabolic fixed
points of T', see page 107. One deduces from the results of this chapter:

Rigidity of efficient fundamental cycles: If M has a hyperbolic structure
of finite volume which is not Gieseking-like, then the only efficient fundamental
cycles are Gromov’s smearing cycles.

We will provide the proof of this fact in the course of the proof of theorem 6,
see page 109.

We want to end this chapter with a remark about why this is a restatement
of rigidity of hyperbolic structures.

Mostow’s rigidity theorem: Let My, Ms be compact manifolds, of the same
dimension n > 3, such that their interiors admits hyperbolic metrics of finite
volume. If f : My — My is a homotopy equivalence, then there is an isometry
g : My — My which is homotopic to f.

Mostow’s proof used ergodic theory and analysis of quasiconformal mappings,
cf., [61], and it actually applied not only to H", but to all rank-1 symmetric
spaces of noncompact type. One of Gromov’s motivations to consider the simpli-
cial volume was to give a more topological proof of this theorem for the special
case of real hyperbolic manifolds.

The following facts are (in the case of closed manifolds) not too hard to show, cf.,
[61],[6], (in the non-closed case one needs for the first fact also [51]):

- if f is a homotopy equivalence, then its lift f : H™ — H™ extends to a continuous
map 0o H™ — 8xo H™, satisfying f. (v) f = fv for all y € m M,

- assume that there exists an isometry ¢ € Isom (H™) such that ¢ |5 _pn=
f |oo, ., then there is an isometry F' : M; — M, with F = ¢ such that F
and f are homotopic.

In view of these two facts, the proof of Mostow’s rigidity reduces to the proof
of the following statement: If f : My — M> is a homotopy equivalence, then exists
an isometry g € Isom (H") such that q s gn= f |o, fn-

Gromov observed, cf., [61] that (in dimensions n > 3) a map g : O H"™ —
OJooH™ is an extension of an isometry g € Isom (H") iff it maps (the vertices of)
regular ideal simplices to (the vertices of) regular ideal simplices.

Hence, a statement equivalent to Mostow rigidity is the following: If f is a
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homotopy equivalence between finite-volume hyperbolic manifolds of dimension
> 3, then f maps regular ideal simplices to regular ideal simplices.

M; and Ms have equal simplicial volume, since they are homotopy equivalent.
If ¢, is a sequence of a (straight, nondegenerate) cycles representing [M;, M|
with {!-norm converging to || My, 0M; ||, then the I'-norms of f, (c.) converge to
|| M2,0M; ||, because of | f. (cc) |<| ¢ |- Hence, f. maps efficient fundamental
cycles to efficient fundamental cycles.

Hence, if My and M» are not Gieseking-like, we get as a consequence of the
"rigidity of efficient fundamental cycles”: f maps regular ideal simplices to regu-
lar ideal simplices and it preserves the ”equidistribution” on the space of regular
ideal simplices. (This would, of course, also follow from Mostow rigidity, since an
isometry clearly preserves the equidistribution.)
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Chapter 5

3-manifolds of higher genus
boundary

We recollect the structure theory of 3-manifolds, which will be needed in section
5.2. We assume to have a compact orientable 3-manifold M.

By Kneser’s theorem, any compact 3-manifold is a connected sum of finitely
many ”prime factors”, c.f., [30], 3.15. If M is orientable, then the prime factors
are irreducible or $? x S', by [30], 3.13., where a 3-manifold is termed irreducible
if each embedded 2-sphere bounds an embedded 3-ball in M.

Any 3-manifold can be cut along finitely many disks to get pieces which have
incompressible (i.e., 71-injective) boundary. Indeed if M is not incompressible,
then by Papakyriakopoulos theorem, c.f., [30], 4.2., there is a properly embedded
disk in M such that its boundary represents a nontrivial element in 7;0M. We
cut M along this disk. If the obtained manifold still does not have incompressible
boundary, we find another disk and cut again. Cutting 3-manifolds along disks
increases the Euler characteristic of the boundary. Hence, the processus of cutting
along disks has to stop after finitely many steps.

Now let M be a compact irreducible 3-manifold with incompressible boundary.

We use the Jaco-Shalen-Johannson theorem to decompose M, following [48].
In section 2 of [48], there is defined a so-called W-decomposition, which is a family
of disjoint properly embedded incompressible tori and annuli. Denoting M; the
connected manifolds obtained after cutting M along the tori and annuli from the
W-decomposition, proposition 3.2. of [48] asserts that the M; are either Seifert
fibered (i.e., finitely covered by S'-bundles), I-bundles or ”simple”, where simple
in the terminology of [48] means that any properly immersed incompressible torus
or annulus can be isotoped into dM;.

By Thurston’s hyperbolization theorem, the simple pieces admit a hyperbolic
metric. Moreover, we have

91
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Proposition 8 ([62], Theorem 3): Let M be a hyperbolic manifold such that
int (M) admits a complete hyperbolic metric. There is a totally geodesic surface
in int (M) for each non-torus component of OM if and only if any incompressible,
properly embedded annulus is boundary-parallel and OM 1is incompressible.
(Note that the condition ”OM incompressible”, missing in [62], is necessary to
exclude handlebodies. It is needed in the proof to guarantee that DM is irre-
ducible.)

Therefore the ”simple” pieces admit an (incomplete) hyperbolic metric such
that the toral boundary components correspond to cusps and the boundary com-
ponents of higher genus are totally geodesic.

5.1 Hyperbolic manifolds with geodesic boundary

If M is a hyperbolic manifold, define its convex core to be the minimal closed con-
vex subset of M whose embedding induces a homotopy equivalence. The boundary
of the convex core is a hyperbolic surface which, in general, will be pleated. M is
said to "have totally geodesic boundary” if the convex core is homeomorphic to
M and its boundary is totally geodesic. Note that we admit that the convex core
may have cusps. In dimension 3, the totally geodesic boundary (as well as the
boundary of the convex core of any geometrically finite hyperbolic 3-manifold)
consists of all non-torus components of the topological boundary 0M.

Although hyperbolic structures of infinite volume are not rigid, it follows eas-
ily from Mostow’s rigidity theorem that on a manifold of dimension > 3, there
can be at most one hyperbolic metric gy admitting totally geodesic boundary.
In particular, the volume of the convex core with respect to the metric gg is a
topological invariant. Actually, it was shown in [9] that go minimizes the volume
of the convex core among all hyperbolic metrics on M.

oM
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Lemma 30 : Let M be a compact 2-manifold with boundary OM = 0gM U 01 M,
such that M — Oy M admits an incomplete hyperbolic metric of finite volume with
01 M totally geodesic and the ends corresponding to OgM complete. Then

1
| M,0M ||= — Vol (M).
Va

Proof: Tt is well-known that any (possibly bounded) surface of non-positive Eu-
ler characteristic satisfies || M,0M ||= —2x (M). By the GauBi-Bonnet-formula,
this is the same as 1Vol (M). O

Corollary 6 : Let n > 3 and let M be a compact n-manifold with boundary
OM = OyM UM, such that M — OyM admits an incomplete hyperbolic metric
of finite volume with 01 M totally geodesic and the ends corresponding to yM
complete. Then,

1
| M,0M ||> —Vol (M).
Vn

Proof: || M,0M ||> V%Vol (M) follows from the familiar argument that funda-
mental cycles can be straightened to invoke only simplices of volume smaller than
V,, or, equivalently, from the trivial inequality | DM ||< 2 || M,0M ||.

Suppose we had equality. Glue two differently oriented copies of M via id |sns
to get N = DM. The incomplete metrics can be glued along the totally geodesic
boundary and, hence, we have that IV is a complete hyperbolic manifold of finite
volume Vol (N) =2V ol (M). A relative fundamental cycle for M of norm smaller
than V%Vol (M) + § fits together with its reflection to give a relative fundamental
cycle ¢, on N of I!-norm smaller than ZVLnVol (M)+e= V%Vol (N) +e, consisting
of simplices which do not intersect transversally the totally geodesic surface OM C
N. That means c/* (S%,,) = 0, what implies ¢ (S3,,) = 0, since h. may be the
identity close to 9M C N and because straightening in DM preserves the set of
simplices not intersecting transversally the totally geodesic surface O M.

By lemma 20, we have some accumulation point y of {c.} for a sequence of
e tending to zero. Similarly to lemma 28, it is easy to see that S3,, is open in
SSyn (N). Hence, we can apply part (ii) of lemma 16 to get pu* (S5,,) = 0. But
this contradicts theorem 3. O

Theorem 4 : (a) Let n > 3 and let M;,i = 1,2 be compact n-manifolds with
boundaries OM; = 0y M; U 01 M;, such that M; — Oy M; admit incomplete hyperbolic
metrics of finite volume with 01 M; totally geodesic and the ends corresponding to
OoM; complete. If ) M; C 01 M; are non-empty sets of connected components of
O1M;, f: 01 My — 01 My is an isometry, and M = M; Uy My, then

| M,0M ||<|| My,0My || + || Mg, 0M; || .
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(b) Let n > 3 and let My be a compact n-manifold with boundary 0My = 8y My U
01 My, such that My — JyMy admits an incomplete hyperbolic metric of finite
volume with Oy My totally geodesic and the ends corresponding to Oy M; complete.
If 1My C 01 My is a non-empty set of connected components of 01 My, and f :
01 My — 01 My is an orientation-reversing involutive isometry of 8} My exchanging
the connected components by pairs, then, letting M = M,/ f,

| M, M [[<|| Mo, Mo || -

Proof:  (a) The incomplete hyperbolic metrics on M; and My glue together to
give a complete hyperbolic metric on M of volume Vol (M) = Vol (M;)+V ol (My).
By the Gromov-Thurston theorem, we know that || M,0M ||= VinVol (M) and,
by corollary 8, we have || M;, 0M; ||> VinVol (M;). The claim follows.

The proof of (b) is similar. O

Corollary 7 : Let n > 4, and let My, Ms, My and 0} M; satisfy all assumptions
of theorem 3.
If f:0,M; — 01 My is a homeomorphism, then
| My Uy My, (My Uy My) |<I| My, 00y || + || Mo, OM |1
If f : 1My — 01 My is an orientation-reversing involutive homeomorphism of

01 My exchanging the boundary components by pairs, then
| Mo/ f,0(Mo/f) |I<|l Mo, 0Mo ||.

Proof:  Since the totally geodesic boundary is a hyperbolic manifold of dimen-
sion > 3, f is homotopic to an isometry g by Mostow rigidity. By homotopy
equivalence, || My Uy Mo>, 8(M1 Uy MQ) ||=|| M Ug M>,0 (M1 Ug MQ) ||,

resp. || Mo/ f, 0 (Mo/f) ||=Il Mo/g,0 (Mo/g) ||. Then apply theorem 4. O

5.2 Doubling 3-manifolds

For an oriented manifold M, let DM denote the double of M, defined by glueing
two differently oriented copies of M via the identity of M. Tt is trivial that
|| DM ||< 2 || M,0M ||. Theorem 2 implies: if M is a compact 3-manifold with
|| OM ||= 0, then | DM ||=2 || M,0M ||. We will show that this is actually an
if-and-only-if condition.

Theorem 5 : If M is a compact 3-manifold with || OM ||> 0, then
| DM ||<2 || M,0M ||.

Proof:  First, we want to reduce the claim to compact irreducible manifolds. For
this purpose, note that || MMy, 0 (M1§Ms) ||=|| M1, 0M; || + || M2, 0M, || holds
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also for manifolds with boundary (of dimension > 3). Indeed, defining a funda-
mental class of the wedge M7V My as [My V My,0 (M1 V Ms)] := i1, [My,0M1] +
i9y [Ma, 0My], for the inclusions 41 : M1 — My V My and i9 : My — My V My, we
can define the simplicial volume || M1V My, 0 (M1 V My) || as the infimum over the
I*-norms of relative cycles representing [M7 V M, (M7 V M3)] and it is implicit
in the proof of theorem 2 that with this definition || M; V My, 0 (M1 V M) ||=

|| My,0M;q || + || Ma,0M> || holds. Consider the projection from MM, to
M7 V My which pinches the connecting sphere to a point. It induces an isomor-
phism of fundamental groups (this is the point, where dimension > 3 is needed)
and has degree 1. By the same argument as in the proof of lemma 1, we get
| MyMy, 0 (MifMy) [|=]| My v M, (My v M) |.

In the same way we get more generally that identification of pairs of points in
manifolds does not change the simplicial volume. In particular one has
| D (Mi§M2) ||=|| DM || + || DM ||.

Any compact 3-manifold is a connected sum of 3-manifolds which are either
irreducible or S* x 2. Since || S x $? ||= 0, we can reduce the claim to irreducible
3-manifolds because of || D (M1§Ms) ||=|| DM; || + || DM, || and
| MMy, 0 (M1§My) ||=|| My, 0M, || + || M2,0Ms ||.

By the discussion at the beginning of this chapter, we can cut M along
properly embedded disks and incompressible properly embedded annuli and tori
such that the obtained pieces are either Seifert fibered, I-bundles or ”simple”,
where the ”simple” pieces admit an (incomplete) hyperbolic metric such that the
toral boundary components correspond to cusps and the boundary components
of higher genus are totally geodesic.

We argue that these pieces M; satisfy the claim of theorem 5. For a Seifert
fibration, the boundary consists of tori, hence, there is nothing to prove. If M; is
an I-bundle, then DM is an S'-bundle and || DM; ||= 0 holds by corollary 6.5.3
of [61]. (But, if || 0M; ||> 0, then || M; ||> 3 || 0M; |> 0 by the argument on
page 97.) Finally, if M; is ”simple” and || dM; ||> 0, then the totally geodesic
boundary of the hyperbolic structure is non-empty (not all boundary components
can correspond to cusps), and || DM; ||< 2 || M;, OM; || holds by theorem 4.

If M is a compact irreducible 3-manifold with || OM ||> 0, then clearly
|| OM; ||> 0 holds for at least one of the pieces in its Jaco-Shalen-Johannson de-
composition. To finish the proof of theorem 5, we still need the following lemma
31, where MF is defined as in the introduction.

Lemma 31 : Let M be a compact 3-manifold and F' an incompressible, properly

embedded annulus, torus or disk.
If | D (My) |< 2 || Mg, Mg ||, then | DM ||< 2 | M,0M ||

Proof:  The claim follows from corollary 7 if F' is a torus.
From now on, consider F' = A an annulus.
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The claim will follow from the somewhat paradoxical observation that
| M4, 0M 4 ||<|| M,0M ||, but || D (M) [[>|| DM |

DMy, is obtained from DM by cutting off an incompressible torus 7' = DA
and identifying afterwards in a different way the pairs of incompressible annuli
which are halves” of the same copy of T. In other words (D (M4))y4 = (DM).
Look at the following picture, where dimension has been lowered by one.

Hence, we get | D (My) ||>|| (DM), ||=|| DM ||, what implies the claim of
lemma 31 because of || M4, 0M4 ||<|| M,0M |.
If F' is a disk, the argument is the same O

This finishes the proof of theorem 5. O
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Handlebodies.
Note that for any n-dimensional compact manifold holds:
| M,0M ||> 1 || &M |. Namely, the boundary operator 9 : H, (M,0M) —
H,,_1 (0M) maps the relative fundamental class [M, M| to the fundamental class
[OM]. It is obvious that || 0 ||< n + 1. For a representative ) ;_, a;0; of [M,0M]
one even gets || 90X i1 a;0; ||< n || Xi—; a;o; ||, because each o; has to have at
least one face not in @M, cancelling against some other face.
Let H, denote the 3-dimensional handlebody of genus g. Hy is a (g-1)-fold covering
of Hy, hence, || Hy,0Hy ||= C (g —1). From the above argument follows C > %.
(In fact, we showed in [38], by constructing triangulations of handlebodies, that
5<C<3)

The double of H, is the g-fold connected sum S? x S'f...45? x S!, whose
simplicial volume vanishes. This shows that there may be manifolds M of arbi-
trarily large simplicial volume with || DM ||= 0.

In fact, we can give a precise condition when || DM ||= 0 holds for a compact
3-manifold M. Recall from the introduction of this chapter that any compact
3-manifold can be cut along disks into finitely many pieces M; which have incom-
pressible boundary. We claim that || DM ||= 0 if and only if all these M; have
a Jaco-Shalen-Johannson-decomposition without ”simple” pieces in the sense of
[48].

Namely, if M; has a JSJ-decomposition without simple pieces, one easily gets
|| DM; ||= 0, thus, DM; is a graph manifold by [57]. DM is obtained from UDM;
by cutting off some 3-balls and identifying their boundaries in pairs. By the same
argument as in the proof of lemma 4 in [57], DM is then a graph manifold and
| DM ||=o.

To prove the other implication, assume that M; had a "simple” piece H, on
which we put a hyperbolic metric with totally geodesic boundary. Inside DM
this gives us a submanifold H’, obtained from two copies of H by glueing via the
identity on a submanifold of OH. Clearly, H' admits a hyperbolic metric with
totally geodesic boundary. From proposition 8, one can conclude || DM ||> 0.
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Chapter 6

Gromov norm and branching of
laminations

In this chapter, we always consider foliations/laminations of codimension 1.
For more background on the Gromov norm of foliations (and foliations in general),
we refer to [11].

Definition 14 : Let M be a manifold, possibly with boundary, and F a lamina-
tion of M. Define

T T
|| M,0M ||F:=inf {Z | a; |: Zaiai € [M,0M],o0; transversal to .7-'}.
i=1 =1

Here, a simplex o is said to be transversal to the lamination F, if the induced
lamination F |, is topologically conjugate to the subset of a foliation of o by level
sets of an affine map f: o0 — R.

A typical example for non-transversality of a tetrahedron A to a lamination F is
the following: let ej, ez, e3 be the three edges of a face 7 C A. If F |, contains
three lines which connect respectively e; to es, es to eg and e3 to ey, then A can’t
be transversal to F.

99
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Remark: If F is not transversal to M nor contains 0M as a leaf, then
|| M,0M | = oo. Otherwise the foliated Gromov norm is finite. In the fol-
lowing, we will always assume that F is transversal to @M or that M is a leaf
of F.

6.1 Gromov norm of confoliations

This section will not be used in the following two sections. Its content is to gener-
alize the notion of foliated Gromov norm to contact structures and confoliations,
as it was suggested in one of the concluding remarks in [11]. We define a Gromov
norm for contact structures and a Gromov norm for confoliations (which does
not necessarily agree with the foliated Gromov norm resp. the Gromov norm of
contact structures if the confoliation happens to be a foliation resp. a contact
structure). We calculate this confoliated Gromov norm in some examples. Exam-
ples of confoliations with non-trivial Gromov norm can be obtained by perturbing
asymptotically separated foliations on hyperbolic manifolds (see section 6.3) via
the Eliashberg-Thurston theorem (example 4). In principle, we think that, once
a classification of contact structures on hyperbolic manifolds will be at hand (a
first step being done in [31]), it should be possible to use the results of section 4
to decide which contact structures have trivial or nontrivial Gromov norm, in a
similar spirit as it will be done for foliations in section 6.3.

Let M be a smooth closed oriented 2n-1-manifold with volume form dwvol. A
plane field is a 2n-2-dimensional subbundle £ of TM. It may be represented as
¢ = kera for a 1-form a. ¢ is a positive confoliation if & A (da)™ ™ = fdvol with
f > 0 everywhere. It is a positive contact structure if f > 0 everywhere. The
term ’confoliation’ resp. ’contact structure’ will in the following mean positive
confoliations resp. positive contact structures.

In what follows we restrict to the case of 3-manifolds, that is n = 2.

If o is a smooth singular simplex in M and & a confoliation, then £ N T0o is a
vector field, hence integrable. We say that ¢ is in general position to ¢ if

- its 1-skeleton is transverse to &,

- ¢ NTJo vanishes exactly in two vertices of o.

If £ happens to be a contact structure, we say that o is transversal to £ if it is in
general position and any point in Jdo belongs to a flowline connecting the zeroes
of ENTOoo.

Remark: If £ is a contact structure on M and x € M, there exists a coordi-
nate neighborhood of z in which ¢ = dzo,_1 — Z?;ll dxo;_1dzo;, by the Darboux
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lemma. Any straight simplex contained in this neighborhood is transversal to &.

Definition 15 For a confoliation & on a smooth closed oriented manifold M let
ct (M;R) be the subspace of the singular chain complex Cy (M; R) generated by
singular simplices in general position to £.

The inclusion C¢ (M; R) — C, (M; R) commutes with the boundary operator and
induces hence a morphism of homology groups.

Definition 16 For a confoliation & on a smooth closed oriented manifold M and
a homology class h € H, (M;R) define the confoliated Gromov-norm || h ||¢ as
the infimum of Y%, | a; | over all cycles ¥ a;0; € Ce (M; R), representing h in
H, (M;R).

In particular, || h ||¢= occ if h & im (Hf (M;R) — H, (M;R)).

Definition 17 For a confoliation €& on a smooth closed oriented manifold M de-
fine || M ||¢ as the confoliated Gromov-norm of the fundamental class [M] €
H3 (M, R)

It is maybe worth pointing out that, if £ happens to be tangential to a foliation
F, one has | M ||z>|| M ||¢ (but not necessarily equality). Hence, || M ||¢ is a
weaker invariant in this case. In particular, the following lemma 32 holds, for this
weaker invariant, without the additional assumption on tautness in lemma 2.2.3.
of [11].

Lemma 32 Let &; be a sequence of confoliations converging to .
Then || b |l¢> limsup || b [|¢; -

Proof: ~ Morally the lemma is due to the fact that the singular foliation, induced
by a confoliation on a codimension-1 face, can only have elliptic singularities. The
picture that flow-lines flow from one singularity to another can only happen for
flow-lines connecting vertices of the simplex.

Let >, a;0; with 37 | a; |[<|| h ||¢ +€ and o; in general position to &. It suffices to
show that o; is in general position to §;, if §; is sufficiently close to &.

The first condition is clearly satisfied: if the 1-skeleton is transversal to &, there
is a positive lower bound on the angle formed with £, hence a slightly weaker
positive bound on the angle formed with &;.

To check the second condition it suffices to note that a foliation of the boundary
of a 3-simplex having elliptic singularities other than the vertices could not be
transversal to the 1-skeleton (and that a small deformation of the standard foli-
ation on S? necessarily has two eliptic singularities close to the north and south
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pole.) O

Gromov norm of contact structures. As for foliations, one can also for
contact structures define an invariant that is finer as the Gromov norm of con-
foliations. (This definition was suggested in one of the final remarks of [11].)
Namely, let C&“ (M; R) C C¢(M;R) C C, (M;R) be the subsace generated by
all simplices transversal to £ and carry along the obvious analoga of the above
definitions to define | M ||gt Clearly, | M ||¢<|| M ||gt

Examples

Example 1: Tight contact structures on T3.
Any tight contact structure £ on the 3-torus satisfies

172 =11 T° fl¢= 0.

Indeed, by a theorem of Giroux, for any tight contact structure & on T2 =
R?/Z? x R/27Z exists an integer n such that ¢ is isotopic to the contact structure
¢, defined as kernel of a,, = cos (n)dz + sin (nf)dy. Consider f : T3 — T3
defined by f (z,y,0) = (2z,2y,6). One checks that f*a, = 2a,. Hence, for all
v € &, we get ay, (fuv) = 2ay, (v) =0, Le., fiv € &,.

Consider any fundamental cycle Y ;_; a;0; transversal to &,. (Since straight sim-
plices contained in a Darboux neighborhood are transversal to &, such a funda-
mental cycle can be produced by subdividing a given fundamental cycle sufficiently
often and straightening, by a standard argument invoking the Lebesgue number
of a finite Darboux cover.) All f (o;) are transversal to f.&, = &,. On the other
hand, deg (f) = 4, hence 4% St aif (0;) is a sequence of fundamental cycles,
transversal to &,, with /'-norm tending to zero if k goes to infinity.

Example 2: Contact structures on S°, tight and overtwisted.
All tight contact structures on S3 are isotopic to the standard contact structure
¢. Introducing polar coordinates on S C R? x R2, we can write
¢ = ker (r?d¢y + r3d¢s). The map f : 2 — S3 defined by f (r1,¢1,72, ¢2) =
(r1,2¢1,72,2¢2) preserves & and has degree 4. The same argument as in example
1 allows to conclude that
| 8% fle=0.

The same argument works also for the family of overtwisted contact structures &,,
considered in [25], which is obtained from & by Lutz modification (Dehn chirurgie)
at a Hopf circle. This exhibits a family &, of overtwisted contact structures with
trivial Gromov norm || S ||¢, = 0.
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Example 3: Extremal contact structures on hyperbolic surface bundles.

Let M3 be a X2-bundle over S' admitting a hyperbolic metric (i.e. the monodromy
f : X% - %2 is a pseudo-Anosov surface diffeomorphism). It is well known
that for the Euler class e (£) of any contact structure & one has the inequality
| e(€) |<] x(2) |. A contact structure is called extremal if equality holds. We
claim: if £ is extremal, then || M ||¢=|| M ||

Indeed, according to [31], there exist isotopies 1; such that 1; (£) converges to F,
the foliation by fibers. By lemma 32 and lemma 34 this implies

| M [|=[] M [| 7= Lim || M [|ly;e=[| M [l¢ -

Example 4: Contact structures with nontrivial Gromov norm.

Let M be a closed hyperbolic 3-manifold and F an asymptotically separated
foliation on M. According to [16], there exists a sequence of contact structures
converging geometrically to F. We claim that || M |¢>|| M || if £ is sufficiently
close to F.

Indeed, if a fundamental cycle has I!-norm sufficiently close to || M ||, then it
contains some simplex one of whose 2-faces T is a triangle (singularly) foliated in
such a way that to any two edges of T' there exist leaves joining them as in the
remark after definition 12. (This will follow from the arguments in section 6.3.)
If ¢ is close to F, one can control the distance between an orbit of ¢ |r and the
orbit (with the same initial point) of F |7 (because the orbit remains a finite time
in T'). In particular, if ¢ is sufficiently close to F, then we have, for any pair of
edges of T, a leaf of ¢ |7 joining them. Hence, the simplex with 2-face T is not
transversal to €.

Confoliated bounded cohomology

Let M be a smooth closed oriented manifold and ¢ a confoliation on M. Define
a (not necessarily finite) norm || 8 ||¢ for singular cochains 8 € C* (M; R) as the
supremum of (o) over all singular simplices o which are in general position to
§. Define Cf (M;R) = {8 € C* (M; R) || B ||¢< oo}. The coboundary operator §
preserves C¢ (M;R), hence we may define

Hf (M;R) = (ker5 N CE (M; R)) / (im5 N C§ (M; R)) .
The norm || . [|¢ induces a pseudonorm on H{ (M; R).

Lemma 33 Let € H; (M;R) and h € H, (M;R) satisfy < 8,h >= 1.

1
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Proof: m <|| h ||¢ is obvious. We prove the opposite inequality.

Recall that the value of a cohomology class 8 on a cycle is well defined, i.e.
does not depend on the representative of 5. Hence we may define f : ker (0) N
Ce(M;R) — R by f(z) := B(z). By the Hahn-Banach theorem, there is
w : C¢ (M; R) = R such that w restricts to f on ker (0) and that || w ||¢=|| f [lo=
sup{B (z) :|| z ||= 1}. We claim that w is a representative of § in H¢ (M; R).
Since the cohomology class of a cocycle is determined by its values on all cycles, we
get that [w]—f is in the kernel of H¢ (M; R) — H* (M; R). To show that [w] -8 =
0, we consider the decomposition C§ (M; R) = ker (0,)®CS (M; R) /ker (8,,). For
any representative b € 8 € H¢ (M; R) we have that w—b vanishes on the first direct
summand, hence corresponds to a bounded morphism g : C§ (M; R) /ker (0,) —
R. Using the canonical isomorphism C§ (M; R) /ker (0,) =~ im (8y), and extend-
ing trivially on Cfl_l (M; R) [/im (0y,), we get g € Cg‘fl (M;R) with dg = w — b.
a

Corollary 8 : If Hg”fl (M;R) =0, then || M [|¢= 0.
If H?"fl (M;R) — H> ' (M;R) is surjective, then || M ||¢> 0.

If the confoliation £ happens to be either a contact structure or the tangent field of
a foliation F, one can modify the above definition in an obvious way to construct
contact bounded cohomology H, g “* or foliated bounded cohomology HZ (cf., [11]).
The above statements and their proof carry literally over.

6.2 One-sided branching

Let M be a compact, orientable 3-manifold with incompressible boundary.

Call a foliation (of a manifold with boundary) taut if it contains a circle or an arc,
transversal to @M, which intersects every leaf transversally. That means simply
that the glued foliation of the double DM is taut in the usual sense.

Leaves of taut foliations are mi-injective. This follows for closed manifolds from
Novikovs theorem, since taut foliations have no Reeb component and, for man-
ifolds with boundary it is easily deduced by doubling (using the injectivity of
moOM — m M )

For a foliation finitely covered by the product foliation of §2 x S', the leaf space
of the pull-back foliation F on the universal cover M is clearly the real line R.
Otherwise, by the Reeb stability theorem applied to the double DM, no leaf is
a sphere. Hence, mi-injectivity of the leaves implies that (the interior of) M is
foliated by planes.

By Palmeira’s theorem in [49], we conclude that int(M) is homeomorphic to R?
and that, up to homeomorphism, F is a foliation of R by planes, where every
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plane is properly embedded and separates R? into two half-spaces.

Hence, we can apply [20] to equip the leaf space of F with the structure of an order
tree, where the vertices correspond to the leaves and two vertices are joined by a
segment if there is a transversal arc joining the corresponding leaves. (Compare
[20] for the definition of ”order tree”.)

F is then called R-covered, one-sided branched, or two-sided branched accord-
ing to whether the leaf space of F, considered as an order tree, is R, branched
in one direction, or branched in both directions. For example, perturbations of
surface bundles over S' are R-covered.

Since an order tree is orientable, we get a partial order on the set of leaves.
Two leaves are called comparable if they are comparable with respect to this
partial order, i.e., if there is a transversal arc in M joining them.

Lemma 34 : If F is a sublamination of an R-covered or one-sided branched taut
foliation on a 3-manifold M, then

| M,0M ||=[| M,0M ||F .

Proof:  This is shown in theorems 2.2.10 and 2.5.9 of [11], assuming that M is
closed. However, the proof works also for manifolds with boundary.

Indeed, since OM is either transversal to F or is a leaf of F, the straightening
defined in lemma 2.2.8 of [11], for chains with vertices on comparable leaves, is
the identity on C, (0M). This implies, in particular, the claim for R-covered
foliations. In the case of one-sided branching (say in positive direction), the
argument in 2.5.9 of [11] was then to isotope a chosen lift of the finite singular
chain in M in the negative direction until its vertices are on comparable leaves.
(This has to be done 7 M-equivariantly in the sense that the projection to M
stays a relative cycle.) If 9M is a leaf of F, then one can leave all vertices on OM
fixed and only isotope the other vertices. If @M is transversal to F, the isotopy
can clearly be performed in such a way that vertices on M are isotoped inside
oM.

Hence, in any case, the straightening maps C, (0M) to C, (O0M) and, by the
five lemma, it induces the identity map in relative homology. Thus, it maps
relative fundamental cycles to relative fundamental cycles transversal to F, not
increasing the I'-norm. O
In particular, the foliated Gromov norm is a stronger invariant than the Godbillon-
Vey invariant. For example, the stable foliation F of the geodesic flow on the unit
tangent bundle 7" (T\H 2) of some hyperbolic surface M = I'\H? is R-covered,
hence || M ||z= 0, but the Godbillon-Vey invariant is proportional to the volume
of T\ H?, hence can be arbitrarily large.
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6.3 Asymptotically separated laminations

Definition 18 : Let int (M) be hyperbolic and let F be a lamination of M. Let
F |mt(M) be the covering lamination of H3. F is called asymptotically separated

if, for some leaf F € F, there are two geodesic 2-planes on distinct sides of F.

We include a proof of the following lemma, implicit in [11], for lack of an explicit
reference and because it might help to understand the idea behind theorem 6.

Lemma 35 : If F is an asymptotically separated lamination of a finite-volume
hyperbolic manifold M =T\H", then F is two-sided branched.

Proof:  Let F be the leaf of F, satisfying that there exist half-spaces U; and U,
in its complement. Let H be the complement of Uy (i.e. F C H) and let H; and
H, be disjoint half-spaces in Us.

IfT' C Isom™ (H™) has finite covolume, then it is well-known that the T-orbits
on the space of pairs of distinct points in 0o H™ are dense.

In particular, fixing some arbitrary v € I" with fixed points p1, p2, one finds
conjugates of v in I', such that their fixed points come arbitrarily close to two
given points g1 # ¢z in 0, H™. (Namely, conjugate with elements of I' which map
p1 close to g1 and po close to go.)

It follows that, in a finite-covolume subgroup I' C Isom™ (H"), to any given
disk D C 0, H", one finds loxodromic isometries with both fixed points in this
disk. Let aj resp. ag be such loxodromic isometries with both fixed points in
Oso H1 resp. both fixed points in O, Ho. Loxodromic isometries map any set in
the complement of a neighborhood of the repelling fixed point, after sufficiently
many iterations, inside any neighborhood of the attracting fixed point. Hence,
replacing a; and as by sufficiently large powers, we get that oy (F') C H; and
a9 (F ) C Hs.
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Since F is [-invariant, we have found incomparable leaves o (F) and s (F)
above F' and, by analogous arguments, we also get incomparable leaves below F'.
O
Remark: A conjecture of Fenley would imply that a foliation (of a finite-volume
hyperbolic 3-manifold int (M)) is two-sided branched if and only if it is asymp-
totically separated, see the discussion in chapter 2.5. of [11]. Namely, Calegari
proves that a two-sided branched foliation (on an arbitrary hyperbolic manifold)
either is asymptotically separated or the leaves have as limit sets all of Ooo H3. On
the other hand, Fenley conjectures that for foliations of finite-volume hyperbolic
manifolds (which are transversal to the boundary dM), the limit set of a leaf can
be all of 0, H? only if F is R-covered.

The following definition is to describe the exceptional case in theorem 6:

Definition 19 : A 3-manifold is Gieseking-like if it has a hyperbolic structure
M = T\H? of finite volume such that Q (w) U {0} C OsH? are parabolic fized
points of T'.

Here, we have used the upper half space model of H3, and identified the ideal
boundary with C' U {oc}. w = % + @ is the 4th vertex of a regular ideal sim-
plex with vertices 0,1, co. The condition is, of course, equivalent to the condition
that T is conjugate to a discrete subgroup of PSLy@Q (w) after the identification
of Isom™ (H?) with PSLyC. One doesn’t know any example of a Gieseking-like
manifold which is not a finite cover of the Gieseking manifold (communicated to

the author by Alan Reid, see also [41]).

The following theorem 5 is the extension of Theorem 2.4.5 in [11] to the cusped
case. The restriction to not Gieseking-like manifolds is necessary as shown by
the following example: finite covers of the Gieseking manifold are surface bundles
over S with pseudo-Anosov monodromy. Take an invariant lamination for the
pseudo-Anosov map and suspend it to a lamination of the surface bundle. (It is
well-known that such a lamination can actually be completed to a foliation of the
surface bundle.) The suspended lamination is asymptotically separated and it is
transversal to the ideal triangulation by simplices of volume V3.
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Theorem 6 : If the interior of M is a hyperbolic n-manifold of finite volume
which is not Gieseking-like, n > 3, and if F is an asymptotically separated lami-
nation, then

| M,0M ||<|| M,0M |5 .

Proof:

We want to give an outline of the proof. We will show that there exist three half-
spaces Dy, D1, Dy such that the following holds: whenever a straight simplex has
at least one vertex in each of Dy, D1, Dy, it can’t be transversal to F. Assuming
|| M,0M ||z=|| M,0M ||, we had an efficient fundamental cycle y which actually
comes from a sequence of fundamental cycles transversal to F. If M is closed, one
gets easily that y® have to vanish on the set of those ideal simplices with at least
one vertex in each of 0y Dy, Oso D1, 000 D2. If M has cusps, we still get the slightly
weaker statement that u* have to vanish on the set of those ideal simplices with
at least one vertex in each of 0Dy — P, 0s0cD1 — P, 05 D2 — P, where P is the
set of parabolic fixed points of I'. We can then use our knowledge of u to derive
a contradiction.

Let F be a leaf which has the property in the definition of ”asymptotically
separated”, i.e., there are half-spaces U; and Us in disjoint components of H> — F.
We choose in Us two smaller disjoint half-spaces H; and Hs. Like in the proof
of lemma, 35, one finds loxodromic isometries a; € I' with both fixed points in
Hy and ay € T' with both fixed points in Hy. Replacing, if necessary, a; and
ao by sufficiently large powers, we arrange that oy (U1) C Hy and s (Uy) C Ho,
and that F, a1 (F),ay (F) are disjoint. Letting Dy = Uy, D1 = a3 (U;), and,
Dy = a3 (Uy), the remark after definition 13 tells us that there is no tetrahedron
transversal to F with one vertex in each of Dy, Dy and Ds.

For the convenience of the reader, we first explain the proof for closed man-
ifolds. Assume that we have straight fundamental cycles ¢, transversal to F,
with || ce ||<|| M || +€, and that u is the weak-*-limit of ¢.. Denoting by V the
open set of straight (possibly ideal) simplices with one vertex in each of Dy, Dy
and Do, we have just seen that transversality to F implies ¢ (V) = 0. This im-
plies 4% (V) = 0, contradicting the fact that u* is the Haar measure. (A similar
argument was given by Calegari in 2.4.5 of [11].)

Now we are going to consider hyperbolic manifolds of finite volume. Let
P C 0xH? be the parabolic fixed points of T and H, = p—! (M[O,e]) C H?3 the
preimage of the e-thin part. It is the union of horoballs centered at the points of
P. For § sufficiently small, Dy — Hs, D; — Hs and Dy — H; are nonempty. Fix
such a 6. Let

V= { simplices which have vertices vg € Dy — Hs,v1 € D1 — Hj,v9 € Dy — Fg} ,
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where we admit ideal simplices.
We have seen that simplices in V' are not transversal to . Moreover, we define

W = {str(c);0 €V}
and
U = { positive regular ideal simplices (vg,v1,v2,v3) : v; € OsocD; — P for i =0,1,2}.

Now suppose we had the equality || M,0M ||=| M,0M ||r. We will stick to
the notations of chapter 4. Take some transversal relative fundamental cycle ¢,
of norm smaller than || M,0M || +€ and make it, via the homeomorphism A, to
a relative fundamental cycle d. := he, (c}) of the e-thick part, which is transversal
to the foliation h. (F). We may arrange h, to be the identity on the €'-thick part
for € close to e. Then, the lift of d. to H™ is transversal to F outside Hy. By
choosing € sufficiently small, one may make this exceptional set H. as small as
one wishes.

Decompose V' as a countable union V' = U2, V;, where V; C V is the open
subset of (possibly ideal) positively oriented simplices o satisfying o N H1 =
0. (The union is all of V' because any ideal or non-ideal simplex with vertices
outside Hs must remain outside some H; for sufficiently large i.) Let W; =
{str (o) : 0 € V;}. For € sufficiently small (such that ¢ < 1), we have d£ (V;) =0,
since d, is transversal to F outside H1 and V; consists of simplices which do not
intersect H1 and which are not transvlersal to F. As a consequence, cgc (W;) =0,
with ¢, == str (exc(de)). If p is the weak-* limit of the sequence ¢, with € — 0,
we get u® (W;) = 0 by the openness of W; and part (ii) of lemma, 16.

W = {str(o);o € V} is a countable increasing union W = U2, W;. Hence
pt (W) =0. U C W implies

pE (U) =0.

On the other hand, U has nontrivial Haar measure. Indeed, Isom™ (H?) cor-
responds to ordered triples of points in 05 H?3, because any such ordered triple is
the set of first three vertices for a unique ordered regular ideal simplex. Hence,
the set of positive regular ideal simplices, with v; € 0, D; for ¢ = 0,1,2, corre-
sponds to an open set of positive Haar measure in Isom™ (H 3). Clearly, a discrete
subgroup of Isom™ (H?) has a countable number of parabolic fixed points. Thus,
U has positive Haar measure.
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Recall the notation from section 4.3: v € OooH? is an arbitrary vertex of the
reference simplex Aj and 3, (g) is the ergodic component of g € T'\G with respect
to the T),-action. We define

H,={gel'\G:py(9) =Haar}.

Haar (U) # 0 implies p* (H,) = 0. Indeed, from lemma 14 and lemma 27 we
know that the complement of H, in SL¢9 (M) is the set of simplices gAy with the
vertex gv in a parabolic fixed point of T'. T' has a countable number of parabolic
fixed points and, therefore, this complement is a set of trivial Haar measure. Thus,

Haar (UN H,) = Haar (U) >0

and we apply the ergodic decomposition from section 4.3 to get

0= u* (UNH,) = Haar (U N H,) p* (H,)

which implies

wr (Hy) =0.

This discussion applies to all vertices v; of the reference simplex Ajy. By lemma
29, we can conclude that u* are determined on Sgusp.

In particular, since p # 0, there necessarily are regular simplices with all ver-
tices in parabolic fixed points. By lemma 26, y is invariant up to sign under
the right-hand action of the regular ideal reflection group R (defined in section
4.3). Hence, there must even be a R-invariant family of regular ideal simplices
with vertices in parabolic fixed points. That means, after conjugating with an
isometry, @ (w) U {oc} must be parabolic fixed points of T'. O
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A surface F' in a 3-manifold M is called a virtual fiber if there is some finite
cover p: M — M and some fibration F — M — S* with F isotopic to p~! (F).
A theorem of Thurston and Bonahon asserts that a properly embedded compact
m1-injective surface in a finite-volume hyperbolic 3-manifold is either quasigeodesic
or a virtual fiber.

Corollary 9 : If the interior of M is a hyperbolic 3-manifold of finite volume
which is not Gieseking-like and F C M is a properly embedded compact m1-
injective surface, then F is a virtual fiber if and only if | M,0M || z=|| M,0M ||.

Proof:  Again, the case of closed M is due to Calegari, cf. theorem 4.1.4 in [11].
If F is (virtually) the fiber of a fibration over S!, the claim follows from lemma 34.
If not, F C M must be a quasigeodesic surface in virtue of the Thurston-Bonahon
theorem. In particular, it remains in bounded distance from some totally geodesic
surface. Hence, F forms an asymptotically separated lamination and we can apply
theorem 6. O
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Chapter 7

Zusammenfassung

Wir betrachten, wie sich das simpliziale Volumen || M,0M || einer Mannig-
faltigkeit (mit Rand) M relativ zu Kodimension 1-Objekten verhilt.

In Kapitel 3 diskutieren wir, wie sich das simpliziale Volumen &ndert,wenn
man Mannigfaltigkeiten entlang amenabler Untermannigfaltigkeiten des Randes
verklebt. Wir zeigen:

Satz 2: Seien My, My kompakte n-Mannigfaltigkeiten, Ay bzw. Ay (n-1)-dimensionale
Untermannigfaltigkeiten von OMy bzw. OMs, f : Ay — Ay ein Homdomorphismus
und M = My Uy My die durch Verkleben mit f erhaltene Manngfaltigkeit.

Wenn 71 A1, m1 Ay mittelbar sind, und f, : ker (m1 Ay — w1 My) — ker (w1 Ay — w1 M)
ein Isomorphismus ist, dann ist || M,0OM ||>|| M1OM; || + || M2, 0M; ||.

Wenn auflerdem A1, As Zusammenhangskomponenten von OMy bzw. OMs sind,
dann ist | M,0M ||=| My, M, || + || M, OM, |.

Wir beweisen die analoge Ungleichung/Gleichung fiir den Fall, daf§ A; und A5 im
Rand derselbe Mannigfaltigkeit M; liegen.

Insbesondere ist simpliziales Volumen von 3-Mannigfaltigkeiten additiv fur Verkleben
inkompressibler Tori und superadditiv fir Verkleben inkompressibler Zylinder.

Kapitel 4 diskutiert Mannigfaltigkeiten, die eine hyperbolische Metrik von
endlichem Volumen tragen. Wir betrachten Folgen von Fundamentalzykeln, deren
I'-Norm gegen || M,0M || konvergiert. Im Grenzfall degenerieren diese zu sig-
nierten Maflen, getragen auf der Menge der reguliren idealen Simplizes. Wir
bezeichnen diese Grenzwerte als ”effiziente Fundamentalzykel” und beweisen:
Satz 3: Sei M eine kompakte Mannigfaltigkeit der Dimension > 3, deren In-
neres eine hyperbolische Metrik von endlichem Volumen trdgt. Sei FF C M eine
geschlossene totalgeoddatische Kodimension 1-Untermannigfaltigkeit. Wenn u ein
effizienter Fundamentalzykel ist, dann ist p* (S%) # 0 oder u~ (S%) # 0.
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Hierbei bezeichnet S7 die Menge derjenigen Simplizes, die von F' in verschiedene
Stiicke zerschnitten werden.

Tatsachlich beweisen wir wesentlich stirkere Aussagen iiber effiziente Fundamen-
talzykel. Insbesondere erhalten wir, wenn M nicht Gieseking-dhnlich ist, daf es
nur einen effizienten Fundamentalzykel gibt: die signierte Gleichverteilung auf
reguldren idealen Simplizes. Das ist eine interessante Starrheitseigenschaft und
wird eine grofie Rolle beim Beweis von Satz 6 spielen. (Eine hyperbolische Man-
nigfaltigkeit M heifit Gieseking-ahnlich, wenn alle Ecken einer reguliren idealen
Triangulierung des H™ Spitzen von M sind; die einzigen bekannten Beispiele sind
kommensurabel zum Komplement des Achterknotens in S3.)

In Kapitel 5 benutzen wir die Resultate aus Kapitel 3 und 4, sowie Ge-
ometrisierung von 3-Mannigfaltigkeiten, um zu beweisen:
Satz 5: Sei M eine Mannigfaltigkeit der Dimension < 3. Dann gilt
| DM ||< 2 || M,0M || genau dann, wenn || OM ||> 0.
Im Fall hyperbolischer Mannigfaltigkeiten mit totalgeodatischem Rand haben wir
den folgenden allgemeineren
Satz 4: Sei n > 3 und My, My kompakte n-Mannigfaltigkeiten mit Randern
OM; = yM; U 01 M;, so daff M; — Oy M; hyperbolische Metriken von endlichem
Volumen mit totalgeoddtischem Rand 01 M; tragen. Seien 0} M; nichtleere Mengen
von Zusammenhangskomponenten von o M;, f : My — &My eine Isometrie,
und M = My Uy My. Dann ist || M,0M ||<|| M1,0M; || + || M2,0Ms, ||.
Auch hier beweisen wir eine analoge Aussage fir den Fall, dafl die beiden zu
verklebenden Randkomponenten zum Rand derselben Mannigfaltigkeit M; gehoren.

Kapitel 6 behandelt die Gromov-Norm von Blatterungen und Laminierungen.
Satz 6: Sei M eine 3-Mannigfaltigkeit, deren Inneres eine hyperbolische Metrik
von endlichem Volumen tragt. M sei nicht Gieseking-ahnlich. Wenn F eine
asymptotisch separierte Laminierung ist, dann ist || M,0M ||z>| M,0M ||.
Dieser Satz bestatigt die Calegari-Vermutung fiir eine weitere grofie Klasse von
Blatterungen. Diese besagt: wenn F eine Blatterung einer 3-Mannigfaltigkeit
M ist, deren Inneres eine hyperbolische Metrik von endlichem Volumen tragt,
dann verzweigt der Blattraum von F in beiden Richtungen genau dann, wenn
| M, 0M || 7> M,0M || gilt.

Nur oberflichlich mit den anderen Kapiteln verbunden ist Sektion 2.3. Dort
betrachten wir die Euler-Klasse von Lefschetzfaserungen und geben eine dquivalente
Bedingung dafiir an, dass sie ein Urbild in der (reellen) beschrankten Kohomolo-
gie hat. Als Korollar bekommen wir eine hinreichende Bedingung fiir positives
simpliziales Volumen von Lefschetzfaserungen.



