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Zusammenfassung

In dieser Dissertation werden Krylov-Verfahren und ,restarted Krylov-Verfahren“ zur Ei-
genwertberechnung von beliebigen Matrizen untersucht. Es wird gezeigt, dass das all-
gemeine restarted Krylov-Verfahren mathematisch dquivalent zum allgemeinen Zerle-
gungsalgorithmus (G R-Algorithmus) ist. Es wird bewiesen, dass ein spezielles restarted
look-ahead-Lanczos-Verfahren, angewandt auf Matrizen mit paarweise verschiedenen Ei-
genwerten, unter sehr schwachen Voraussetzungen kubisch konvergiert (/RL-Verfahren).
Ausgehend von diesen Ergebnissen wird ein neues, numerisch stabiles G R-Verfahren zur
Eigenwertberechnung von beliebigen Matrizen entwickelt (LG R-Verfahren). Dieses Ver-
fahren ist mathematisch dquivalent zu dem I RL-Verfahren. Folglich konvergiert das LG R-
Verfahren, angewandt auf Matrizen mit paarweise verschiedenen Eigenwerten, unter sehr
schwachen Voraussetzungen ebenfalls kubisch. Man beachte, dass der @) R-Algorithmus
und alle anderen numerisch stabilen G'R-Verfahren (die dem Autor bekannt sind) i.a.
quadratisch konvergieren, wenn sie auf beliebige Matrizen mit paarweise verschiedenen
Eigenwerten angewandt werden. SchlieBlich wird gezeigt, dass das LG R-Verfahren i.a.

§N3 + O(N?)
Gleitkomma-Operationen fiir die Berechnung aller Eigenwerte von vollbesetzten N x N
Matrizen und

O(N?)

Gleitkomma-Operationen fiir die Bestimmung aller Eigenwerte von Tridiagonalmatrizen
benétigt.
Wir erinnern daran, dass der (implizite) @ R-Algorithmus

10N? + O(N?)

Gleitkomma-Operationen fiir die Bestimmung aller Eigenwerte von vollbesetzten Matrizen
und 90

EN3 + O(N?)
Gleitkomma-Operationen fiir die Berechnung aller Eigenwerte von Tridiagonalmatrizen
und Hessenberg-Matrizen braucht.
Numerische Beispiele (28 Matrizen mit N < 250, IEEE-Arithmetik ,,double®) schliefen
die Arbeit ab. Bei der Durchfiithrung dieser Beispiele wurden folgende Beobachtungen
gemacht:

Konvergenz

In allen Beispielen konvergiert das LG R-Verfahren kubisch und der ) R-Algorithmus qua-
dratisch.



Gleitkomma-Operationen

Fiir vollbesetzte Matrizen und obere Hessenberg-Matrizen (mit N < 100) benétigt das
LG R-Verfahren im Durchschnitt halb so viele Gleitkomma-Operationen wie der )R-
Algorithmus.

Im Falle von Tridiagonalmatrizen braucht das LG R-Verfahren

fiir N = 50 ungefihr 1/5 der Gleitkomma-Operationen wie das QR Verfahren,

fiir N = 100 ungefihr 1/10 der Gleitkomma-Operationen wie das QR Verfahren und

fiir N = 200 ungefiihr 1/20 der Gleitkomma-Operationen wie das QR Verfahren.

Approximationsfehler

Das LG R-Verfahren liefert im Durchschnitt Eigenwertn&dherungen mit einem maximalen
relativen Fehler von 2 - 1078,
Das QQR-Verfahren erzeugt im Durchschnitt Eigenwertndherungen mit einem maximalen
relativen Fehler von 3 - 10,
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1 Introduction

In 1950, Lanczos [51] proposed a method for the reduction of a given, in general non-
Hermitian, N x N matrix A to tridiagonal form. The Lanczos algorithm generates in
step j a j x j tridiagonal matrix H) and a biorthogonal basis of the Krylov subspaces
K@, AT w) = span{w, ATw,...,(AT)U"Dw} and K(j, A,v) = span{v, Av, ..., AU=Dy}
where v and w are the given starting vectors. Lanczos recognized that this algorithm can
break down if it is applied to nonsymmetric matrices, i.e., division by 0 may occur before
a basis of an A or A" invariant Krylov subspace is constructed. If no breakdown occurs
then the Lanczos method terminates after at most s < N steps with a tridiagonal matrix
H®) that represents the restriction of A or AT to the A-invariant subspace (s, A, v)
or the AT-invariant subspace K(s, AT, w), respectively. In particular, all eigenvalues of
H®) are eigenvalues of A. The possibility of breakdowns and numerical instabilities has
brought the nonsymmetric Lanczos method into discredit, and it received little attention
until the 1980s.

Several attempts have been made to develop algorithms for tridiagonalization by elimi-
nation. In 1954, Givens [25] presented a method for reducing real symmetric matrices to
tridiagonal form by plane rotations. Five years later Householder and Bauer [41] studied
a method for the reduction of symmetric matrices to tridiagonal form using Householder
transformations I — zz?. Bauer [3] (in 1959) and La Budde [50] (in 1963) introduced
methods for the reduction of arbitrary matrices to tridiagonal form using elementary ma-
trices I — yry”. The transformation method of Strachey and Francis [71], suggested in
1961, first reduces the matrix A to a lower Hessenberg matrix H by orthogonal transfor-
mations. Then the matrix H is reduced to tridiagonal form via Gauss transformations.

We point out that the reduction of an arbitrary given square matrix to tridiagonal form is
in exact arithmetic always possible (see, e.g.,[24], [61], [42], [9]). But all known methods,
that transform general matrices to tridiagonal form, are in a certain sense mathemati-
cally equivalent to the nonsymmetric Lanczos method (see Parlett [58]). Consequently,
breakdowns (division by zero) and near breakdowns (divison by very small numbers) of
these algorithms occur, which leads to numerical instabilities.

Such breakdowns can be avoided if we do not transform to tridiagonal form but to Hes-
senberg form. This can be done with unitary transformations (e.g., Householder transfor-
mations [28]) or non-unitary transformations (e.g., Gauss transformations with pivoting
[28]).

In 1951, Arnoldi [1] studied a method which generates, when applied to a general N x N
matrix A, in step j a j x j upper Hessenberg matrix H) and an orthogonal basis of
the Krylov subspace IC(j, A, v). Here v is the given starting vector. The Arnoldi method
terminates with an upper Hessenberg matrix H(*) which represents (with respect to the
computed orthogonal basis) the restriction of A to the A-invariant subspace K(s, A,v). If
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s = N, then the Arnoldi method is mathematically equivalent to a unitary transformation
to upper Hessenberg form.

In 1954, Rutishauser [62] presented his quotient-difference (Q D) algorithm for computing
poles of various classes of functions. Furthermore he considered the QD algorithm in its
application to the function

f) = {w, (M — A)~ ') = i W);%U)

=0

and found that the data of the QD algorithm can be organized in products of bidiagonal
matrices. This led to his famous LR algorithm [63]. Rutishauser [62] and Henrici [37]
further recognized that the QD scheme can also be obtained by restarting the Lanczos
method (for more details see [56]).

The LR algorithm can break down (division by zero). To avoid breakdowns and near
breakdowns Wilkinson suggested in [79] an LR algorithm with pivoting.

In 1961, Francis [19] and Kublanovskaya [49] presented the famous QR method which is
the unitary analogue to the LR algorithm. In the following years the implicitly shifted
QR method ([79], [28]) became the state of the art as a stable and fast method for
the eigenvalue computation of full matrices. The QR method preserves the upper Hes-
senberg structure of the input matrix A but neither preserves the tridiagonal form of
non-Hermitian matrices nor the symplectic structure of matrices. For matrices with such
special structures new eigenvalue algorithms preserving these structures were developed
recently. Bunse-Gerstner studied in [7, 8, 10] an eigenvalue algorithm (HR algorithm)
which preserves sign-symmetric tridiagonal matrices. The SR algorithm, developed by
Della-Dora [16] and Bunse-Gerstner, Mehrmann and Watkins [12] preserves Hamiltonian
and symplectic matrices. In 1991, Watkins and Elsner [76, 77] introduced and studied the
concept of a generic GR algorithm which includes the QR, LR, SR and HR algorithms
as special cases. The convergence theory of the GR algorithm is based on the idea that
the GR algorithm performs nested subspace iteration with a change of coordinate system
at each step. Earlier Buurema [13] used this idea for a geometric convergence proof of
the QR algorithm. In 1997, Uhlig [74] developed a specil GR algorithm, called DQR
algorithm, which is based on hyperbolic Givens rotations. This method computes the
eigenvalues of tridiagonal matrices and preserves the tridiagonal structure.

We point out that all GR algorithms that preserve the tridiagonal structure are in a cer-
tain sense the mathematical equivalent of a restarted Lanczos method (see Chapter 6).
Hence, the instabilities of the Lanczos method transfer to these methods.

In 1999, Geist, Howell and Watkins [23] presented the BR algorithm. This is a special
G R algorithm which uses Gauss transformations and row and column pivoting. To avoid
instabilities by near-breakdowns a row-column pair is eliminated only if the multipliers
are smaller than a tolerance. The BR algorithm generates a sequence of banded upper
Hessenberg matrices. The band width depends on the choice of the tolerance and the size
of the starting matrix.



In the 1980s eigenvalue problems with large, sparse, not necessarily Hermitian N x N
matrices came into focus. Such eigenvalue problems arise, e.g., in physics, chemistry and
biology by discretising differential equations (see, e.g., [2], [67]). Typically, only few eigen-
values with specified properties (e.g. maximal real part) are wanted and the matrix A is
too large for explicit storage, but matrix vector products can be easily computed. In this
situation the known G R algorithms are not applicable or at least not efficient because
these methods require explicit storage of the matrix A and destroy in general the sparse-
ness of the matrix A. It was soon recognized that the Lanczos algorithm and the Arnoldi
algorithm are useful for sparse matrix computations because the matrix A appears only
in matrix vector products.

In 1980, Saad [64] pointed out that the Arnoldi method can be seen as an iterative
Rayleigh-Ritz projection method for the Krylov subspaces K(j, A,v) (j =1,2,...,s). In
other words, the Arnoldi matrix H) represents the orthogonal projection of A onto the
Krylov subspace K(j, A, v) with respect to the computed orthogonal basis. Furthermore
the Krylov subspaces ‘converge’ to an invariant subspace of A. Typically, after few it-
eration steps the eigenvalues of A with the largest real part are well-approximated by
cigenvalues of HU) (see, e.g., Saad [67], Jia [43]).

Saad [65] (in 1982) and Parlett, Taylor and Liu [59] (in 1985) pointed out that the non-
symmetric Lanczos method is an oblique projection method. More precisely, the Lanczos
matrices HY) (j = 1,2,...,5s) represent oblique projections of the matrix A onto the
Krylov subspace K(j, A, v). Like the Arnoldi method the Lanczos method can be seen as
an iterative method where the eigenvalues of HU) ‘converge’ to the eigenvalues of A (if
no breakdown occurs in an early step).

In 1985 Parlett, Taylor and Liu [59] classified the breakdowns of the nonsymmetric Lanc-
zos method. They found that the breakdowns fall into two classes which they called
curable and incurable. If an incurable breakdown occurs, then every eigenvalue of the
computed tridiagonal matrix H(®) is an eigenvalue of the given matrix A although no
invariant subspace is found. This is the famous ‘Mismatch Theorem’ of Taylor [59, 73].
Furthermore they developed a so-called ’look-ahead Lanczos algorithm’ which can skip
over curable breakdowns and near-breakdowns of length 2. In 1992, Gutknecht [33, 34]
derived, via orthogonal polynomials and Padé approximation, a look-ahead Lanczos algo-
rithm that can skip over curable breakdowns and near breakdowns of any length. At the
same time, Parlett [58] presented an extended two-sided Gram-Schmidt method which led
to the same look-ahead Lanczos method as Gutknecht suggested in [33, 34]. One year later
Freund, Gutknecht und Nachtigal [20] presented a practical implementation of this look-
ahead Lanczos method. In the context of formally orthogonal polynomials the look-ahead
Lanczos recursions for overcoming exact curable breakdowns were mentioned already by
Gragg [30] (in 1974) and by Draux [18] (in 1983). Gragg and Lindquist [31] used these
recursions when looking for a solution of the partial realization problem of systems theory.
The relations to systems theory were also worked out by Parlett [58], Boley and Golub [5],
and Golub, Kagstrom and Van Dooren [29]. An extensive treatment of Padé approxima-
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tion and its connection to look-ahead Lanczos methods has been presented by Hochbruck
[39], together with suggestions for making look-ahead Lanczos methods more stable and
efficient. In the review article [35] of Gutknecht and in Hochbruck’s Habilitationsschrift
[39] various (look-ahead) Lanczos-type solvers for large linear systems are discussed in
detail and ample references to earlier work are given.

Recently, Hochbruck and Lubich [40], Liesen [53] and Koch and Liesen [47] derived new
error bounds for the solution of linear systems via Krylov methods.

The main problem of Arnoldi’s method is that it becomes increasingly expensive per
iteration step. For this reason Saad [64, 66, 67] suggested to restart the Arnoldi method
after every k << N steps. There are different possibilities to choose the new starting
vector. A typical scheme is to compute the eigenvalues of the generated matrix H®*) and
divide them into wanted eigenvalues (e.g. the [ rightmost eigenvalues if we are looking
for the [ rightmost eigenvalues) and unwanted eigenvalues p; (j = 1,2,...,k —1[). In
order to damp out the unwanted eigenvalues the new starting vector is computed by
UYH) = wi(A)vY) where 1; is a polynomial with zeros p; (7 =1,2...,k —1).

Even for Lanczos methods, restarting is a good choice because reorthogonalization is in
general not necessary.

In 1992, Sorensen [70] recognized that the restarted Arnoldi method is a truncated Q)R-
algorithm. In our notation, the matrices Hi(s), generated by the restarted Arnoldi method
with shift polynomials ¢;_;, are the leading submatrices of the upper Hessenberg matrices
A;, generated by a QR algorithm using the same shift polynomials ; ;:

1 1 H(s) *
Al = Qy AQo, iz (Ai) = Qi R, Ay = Q7 AiQ; = [ i N ] (1.1)

for all 7+ € IN. Using this connection, Sorensen derived the so-called implicitly restarted
Arnoldi method. This method is mathematically equivalent to the restarted Arnoldi
method, described above, but requires much less computational effort.

In 1995, Lehoucq [52] analysed the implicitly restarted Arnoldi method and presented an
implementation of this algorithm.

The ‘implicit restart’ idea of Sorensen has been transferred to the nonsymmetric Lanczos
process by Grimme, Sorensen and Van Dooren [32] (in 1996), Benner and Falbender [4] (in
1997) and De Samblanx and Bultheel [17] (in 1998). Grimme, Sorensen and Van Dooren
used a relation between the H R algorithm and a restarted sign-symmetric Lanczos method
similar to (1.1). Benner and FaBbender used a connection between the SR algorithm and
a restarted symplectic Lanczos method similar to (1.1).
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1.1 Summary of the thesis

The main goals of this thesis are:

a) To provide a useful setting for the construction of stable and efficient Krylov sub-
space projection methods and restarted Krylov subspace projection methods.

b) To discuss the connections between restarted Krylov subspace projection methods
and GR algorithms. It turns out that GR algorithms and Krylov subspace projec-
tion methods are in the following sense mathematically equivalent: Let (H;);en be
the sequence of s X s matrices generated by a restarted Krylov subspace projection
method using the shift polynomials 1);. Then there is a GR algorithm (using the
same shift polynomials ¢;) which generates a sequence of upper Hessenberg matrices
(A;)ien such that for all i € IN the matrix H; is the leading s x s submatrix of A;,;
(similar to (1.1)).

The reverse of this statement is also valid.

¢) To prove that the restarted look-ahead Lanczos method, using Rayleigh-quotient
shifts, converges cubically under some mild conditions, when applied to an arbitrary
given N x N matrix with distinct eigenvalues.

d) To present a stable and efficient GR algorithm which is mathematically equivalent
to the restarted look-ahead Lanczos method (see b)). Notice, that (by c)) this
G R algorithm converges cubically under mild conditions when applied to any given
N x N matrix with distinct eigenvalues. We point out that the QR algorithm and all
other stable GR algorithms (known to the author) converge typically quadratically
when applied to a given N x N matrix with distinct eigenvalues.

The thesis is organized as follows: In Chapter 2 we describe the main idea of general
subspace projection methods and describe the Arnoldi method and the Lanczos method
in detail. The connection of the Arnoldi method to orthogonal projection methods and
orthogonal bases in Krylov chains is discussed. The relation between the Lanczos method
and oblique projection methods and biorthogonal basis of Krylov chains is described. A
classification of the breakdowns of the Lanczos method is given and serious breakdowns
are explained by the non-existence of biorthogonal basis in the underlying Krylov chain.
Chapter 3 follows the line of [81] presented by the author in 1997. In this chapter we
introduce a generalization of biorthogonal bases in a chain of subspaces and examine
their existence and their degrees of freedom. It turns out that these general biorthogonal
bases are fixed points of Parlett’s [58] extended Gram-Schmidt biorthogonalization algo-
rithm. Then we examine in particular general biorthogonal bases of Krylov chains. We
find that these general biorthogonal bases exist even when a curable breakdown of the
Lanczos method occurs. Furthermore we show that every general biorthogonal basis of a
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Krylov chain can be constructed by special block-three-term recursions. These recursions
are identical to the most general form of Gutknecht’s [33] (exact) look-ahead Lanczos
recursions. Whereas Gutknecht favours three-term recursions for the inner vectors, we
propose a special recursion (minimal look-ahead Lanczos recursion) which requires mini-
mal computational effort and storage. The construction of any generalized biorthogonal
basis requires exact knowledge of the degree indices. To get these indices one has to
decide, after every step, whether a certain matrix is invertible. Thus, in finite-precision
arithmetic only a subsequence of the degree indices can be determined. For this reason the
theory of generalized biorthogonal bases is extended to the case that only a subsequence
of the degree indices is known. This is done in Chapter 4. The recursions found with this
ansatz are identical to the practical look-ahead Lanczos recursions of Freund, Gutknecht
and Nachtigal [20] and Gutknecht [34]. These algorithms can skip over curable and near
breakdowns. In Chapter 4 we further present an implementation of the practical minimal
look-ahead Lanczos method and compare this method with the practical monomial look-
ahead Lanczos method.

The aim of Chapter 5 is to provide a general concept for Krylov subspace projection meth-
ods. Let an arbitrary N x N matrix A be given. We call an algorithm Krylov subspace
projection method if it generates matrices V € Maty., and H € Mat,y, such that the
column vectors of V' form a basis of the Krylov chain

K(1,A,Ve) CK(2,A,Ve)C - CK(s,A,Vey)

and there is a (not necessarily orthogonal) projection IT onto the subspace K(s, A, Vey)
such that H represents the projection of A onto this Krylov subspace (i.e. VH = ITAV).
For simplicity and clarity we collect these objects in a five tuple (A, V, I, H, s) and call this
tuple ‘Krylov tuple’. We study how to construct Krylov tuples with less effort and discuss
their degrees of freedom. Estimates for the condition numbers of the Krylov matrices V'
and eigenvalue estimates are derived. A very short and instructive proof of Taylor’s
Mismatch Theorem is presented. It is discussed how to reduce the effort of practical
look-ahead Lanczos methods by using adapted non-degenerate biorthogonal forms in the
look-ahead Lanczos process.

In Chapter 6 we study a general polynomial restarted Krylov subspace projection method
and its connection to the general GR algorithm. We prove that these methods are math-
ematically equivalent in the sense described in b) above. The convergence theorems of
Watkins and Elsner [76] for GR algorithms apply and yield (under mild conditions) the
convergence of the restarted Krylov subspace projection methods. Under some conditions
quadratic convergence is shown if the Rayleigh-quotient shift strategy (typically used for
GR algorithms) is used. Furthermore, we prove that the LR algorithm with exact row-
pivoting is, under mild conditions, mathematically equivalent to the restarted monomial
look-ahead Lanczos method when the left starting vectors wgiﬂ) are not changed:

(1+1) _

wy = w§°) and vgiﬂ) =(A- ,ui)vgi). (1.2)



1.1 Summary of the thesis 9

It is well known that the LR algorithm with Rayleigh-quotient shifts converges typically
quadratically. Consequently, the restarted monomial look-ahead Lanczos method, using
Rayleigh-quotient shifts and starting vectors of the form (1.2), converges also typically
quadratically (in exact arithmetic). But we prove in Chapter 7 that restarted practical
look-ahead Lanczos methods converge even cubically, under some mild conditions, if the
Rayleigh-quotient shift strategy is used to determine the shift polynomial ; and both
starting vectors are updated with the polynomial ¢);:

Wi = 4, (AT ) and ol = (A, (1.3)

A numerical example is given which shows that the practical restarted look-ahead Lanczos
methods are too unstable for the accurate computation of all eigenvalues. To avoid such
instabilities we develop in Chapter 8 a new stable method for the computation of look-
ahead Lanczos matrices via elimination. In each step k it is checked whether the row g}
and the column g, which have to be eliminated in this step, satisfy the condition

T~
1969l (1.4)
91| 1]
The tolerance tol € (0,1] is chosen by the user. If the inequality (1.4) holds then the
column-row pair is eliminated by a similarity transformation with an elementary matrix
I — vay! satisfying the inequality

T lgall Ngell 1)
Kol —yay') < 18( 7] + 2) + 2. (1.5)
There is a degree of freedom in the choice of the elementary matrix. We have used this
degree of freedom to find an elementary matrix with small condition number. If the
condition (1.4) is not fulfilled then we use unitary Householder transformations in the
following [ steps until the condition number of a certain [ x [ matrix D is smaller than
1/tol (‘inner steps’). If this occurs a linear equation with the matrix D has to be solved.
If the inequality (1.4) holds we continue with an row-column elimination as described
above (‘regular step’).

In Chapter 9 we suggest a restarted look-ahead Lanczos method (called RSL algorithm)
for the computation of all eigenvalues of a matrix.

In Chapter 10 we present an implicit GR algorithm which is mathematically equivalent
to the RSL algorithm. We call this method LG R algorithm. The RSL algorithm and the
LGR algorithm are based on the stable similarity look-ahead Lanczos method (described
above) and use Rayleigh-quotient shifts, starting vectors of the form (1.3), and deflation
techniques. We point out that both methods cannot break down and that an upper
bound for the condition numbers of all occuring transformations is determined by the user
(see (1.4) and (1.5)). The cubic convergence theorem for restarted look-ahead Lanczos
methods, proved in Chapter 7, transfers to the LGR and the RSL algorithm. More
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precisely, the RS L algorithm converges cubically for any given square matrix with distinct
eigenvalues if it converges at all and if the number tol is chosen (by the user) small enough.
If the chosen number tol is too large then it converges at least quadratically if it converges
at all. These convergence statements are also valid for the LG R algorithm if the condition
numbers of the product of all used transformation matrices remain bounded when the
iteration proceeds (i.e. i — 00).
We recall that the QR algorithm (using Rayleigh-quotient shifts) converges quadratically
for any given square matrix with distinct eigenvalues if it converges. We furthermore
recall that there are examples [80] for which the QR algorithm (using Rayleigh-quotient
shifts) fails to converge.
In Chapter 11 we give flop counts and discuss numerical examples to compare the LGR
and the RSL algorithms with the QR algorithm. There are different definitions of ‘flop’.
In this thesis we use the new definiton of ‘flop’ (see [28]): One flop is one floating point
operation and not an arithmetic operation of the form a + b - c.
We show that the LGR and the RSL algorithm typically require

8

gN3 + O(N?)

flops for the computation of all eigenvalues of any given N x N matrix and
O(N?)

flops for the computation of all eigenvalues of N x N Hessenberg matrices which are nearly
tridiagonal.

More precise flop estimates are also derived in Chapter 11.

In comparison we recall that the implicitly shifted QR algorithm requires typically

10N? + O(N?)
flops for the computation of all eigenvalues of an arbitrary given N x N matrix, and

?N?’ + O(N?)
flops for the computation of all eigenvalues of N x N Hessenberg matrices (see [28]).
The most important observations we have made in our numerical examples (28 matrices
with N < 250, double precision arithmetic) are the following:

In all examples we have observed cubic convergence of the LG R algorithm and quadratic
convergence of the QR algorithm. Furthermore we have observed that the RSL algorithm
does not converge in 12 out of 28 examples.

For full and upper Hessenberg matrices with N < 100 the LG R algorithm requires about
1/2 the number of flops as compared to the QR method.
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For tridiagonal matrices the LG R method requires

for N = 50 about 1/5 the number of flops of the QR method,

for N =100 about 1/10 the number of flops of the QR method,

for N = 200 about 1/20 the number of flops of the QR method.

The LG R algorithm computes eigenvalue approximations with an average maximal rela-
tive error of 2- 1078,

The QR algorithm generates eigenvalue approximations with an average maximal relative
error of 310714,

1.2 Notation

Throughout the paper we use the notation:

e R and S\ denote the real part and imaginary part of A € €, respectively.

o o7 = [x1,29,...,2y] denotes the transpose and z* = [T}, Ty, ..., Zx| the complex
conjugate transpose of
I
T
T = ) e V.
TN

o (z,y) =z"y and (z,y), = z*y.
e Let W be a subspace of €V,
Then
WH={z e |{(w,z)=0 forall weW}
and
Wt ={z € €V |(w,2), =0 forall we W}
denote the orthogonal complements of W with respect to (-,-) and (-, ), respec-
tively.
o ||z|| = Va*z and ||z]|ee = max;<i<y |7;] for z € CV.
e Maty denotes the set of complex N x N matrices and Mat,,; denotes the set of
complex k£ X [ matrices.
e Let A = [a;;] € Matyy,. Then AT = [aj;] € Mat;y; denotes the transpose and
A =A" = [a;i] € Mat;; denotes the complex conjugate transpose.
e For v € €\ {0} and A € Maty the i-th Krylov subspace is defined by

K(i, A,v) = span{v, Av,..., A" v},

e 0,in(V) denotes the minimal singular value and 0,4, (V) the maximal singular
value of a matrix V' € Mat k.
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1 INTRODUCTION

For matrices V' € Mat ., with full rank the condition number ky(V') is defined by
Ko(V) = 0maz (V) /Omin(V).

V]| = max )= ||Vz|| and ||V]|s = max|y)=1 [|VZ|[o for V € Mat y .

For every matrix V = [v;;] € Matyy, the matrix |V| € Matyyy is defined by
V] = {lvis]-

Pol; denotes the set of all polynomials with degree less than 7 + 1 and coefficients
in C.

Pol denotes the set of all polynomials with coefficients in C.
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2 Introduction to projection methods

We consider the problem of finding £ eigenvalues of a very large, sparse, not necessarily
Hermitian N x N matrix A where N >> k. Efficient algorithms for solving such eigenvalue
problems are subspace projection methods. Subspace projection methods are based on
the idea of reducing the N-dimensional eigenvalue problem to an s-dimensional eigenvalue
problem (k < s << N):

(1) Choose an s-dimensional subspace K of C".
(2) Choose a projection IT onto K.

(3) Compute the eigenvalues and eigenvectors of the linear operator H : K — K
defined by
H = ITA|.

Here A is the linear operator related to the matrix A € Maty.

The quality of the approximation depends on the subspace K and the projection IT. If
is an A-invariant subspace, then every eigenvector and eigenvalue of H is an eigenvector
and eigenvalue of A, respectively. If I is close to an A-invariant subspace and the norm
of the projection is not too large, then the eigenvalues of A are well approximated (see
Section 5.4).

For the computation of the eigenvectors and eigenvalues of H we require a matrix rep-
resentation H € Mat, of the linear operator H. Therefore we have to choose a basis

vy, Vs, ...,0s of K and determine H as the unique solution of the equation

VH=IIAV (2.1)
where V' = [v1,v9,...,v5] and II is a matrix representation of the projection IT with
respect to the standard basis eq, es, ..., ex of CV.

Consequently the matrix H depends on:

e The choice of the subspace K.
e The choice of the basis vy, vs,...,vs of the subspace K.

e The choice of the kernel of II.
In the following we choose
K=K(s, A v)

where v; € €V \ {0}. The Krylov subspace K(s, A4, v,) is a good choice for the following
reasons:
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e The construction of a basis of the Krylov subspace only requires matrix vector
products. Thus, the sparseness of the matrix A can be used.

e Krylov subspaces are good approximations to suitably chosen invariant subspaces
of A (see e.g. [66], [67], [43]).

2.1 The Arnoldi method and orthonormal bases

Now we turn to the construction of a basis of K(s, A,v;) where s is chosen such that
s < dim KC(N, A,v1). One possibility is to construct an orthonormal basis 01, s, . . ., Us.
Theoretically, this can be done by applying the Gram-Schmidt orthonormalisation method
[68] to a basis of K(s, A, v1), for example to

U1, A’Ul, A2U1, c. ,As_l’l)l. (22)

In this case we obtain the formulas:

Fori=1,2,...,5s—1

~ U1
v =
[[n]]
i
’lV)Z'+1 = A1U1 — Z<’5j, A1U1>*?7j = ([ — Hi)szl (23)
7=1

~ Vit1
V; = z .

- i

Here II; denotes the orthogonal projection onto (i, A, v;). In view of the power method
one can expect that the matrix [v1, Avy, A%vy, ..., A*~'vy] is not well-conditioned. Hence
the computation of oy, 0g, ..., s by (2.3) is, in general, not stable. A better choice is the
recursive computation of an orthonormal basis:

Fori=1,2,...,5s—1

U1
v =
[[on]]
’lA)H_l = A’Ui - Z<Uj, AUZ'>*’U]' = (I - Hz)A’Uz (24)
7j=1
S it
i+1  — ” .
" 19441

This is the Arnoldi method [1]. It generates for every j € {1,2,...,s} an orthonormal
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basis vy, vg, ..., v; of K(i, A, v1) and the upper Hessenberg matrix
(v, Avi)e (v, Avg)s -+ (o1, Avy).
: Dol (w2, Ava)s o+ (2, Avy)s
HY) = N . : € Mat;
0 o511 (vj, Avj).

satisfying the equation
v U — HjAV(j) (2.5)

where VU) = [vy,v9,...,v;] € Matyy; and Il; is the orthogonal projection on K(j, 4, v;).

Remark 2.1 The equation (2.5) can be rewritten in the more familiar form
VO = AV 6T
as described below: Using that
Im AVUD C K(j, A,v,) = ImTI;
we conclude

VOHY = LAV = LAV 11 Av,] = [AVU=D] 11, Av;)
[AV(jfl), AU]] — [O, ceey O, (I — H])A’UJ]

AV —0,...,0, (I —TI;) Auvj]

= AV — {(I — ;) Av}el

= AV — el

In the following we show that the Arnoldi vectors vy, v, ..., vs are (up to scalar factors
of modulus 1) identical with the vectors oy, 0s,..., 75 generated by the Gram-Schmidt
method applied to the sequence (2.2). For this purpose and for later use we examine the
uniqueness of orthogonal bases in a chain of subspaces

VICVyC---CV
with dimV; =i for all i € {1,2,...,s}.
Definition 2.1 (Basis of (V;)i<i<s) A sequence of vectors (v;)1<i<s with the property
V; = span{vy, vg, ..., v;}

for all 1 < i <s is called a basis of the chain (V;)i<i<s.
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Definition 2.2 (Orthogonal basis) A basis (v;)i1<i<s of (Vi)i<i<s is called orthogonal
if
<Uiavj>*:0 f07’ Z#]

The following Lemma states the degrees of freedom in the choice of a basis in a chain of
subspaces.

Lemma 2.1 Let (v;)1<i<s and (0;)1<i<s be bases of a chain (V;)1<i<s. Then there is an
wnvertible upper triangular matriz R € Mat, such that

[01, Doy ..., Ts] = 1, Va,...,v4|R.
Lemma 2.1 follows immediately from the definition of a basis of a chain of subspaces.

Theorem 2.1 (Existence and uniqueness) There is (up to scalar factors) exactly one
orthogonal basis of (V;)1<i<s-

Proof. The Gram-Schmidt orthogonalisation applied to any basis of (V;)1<i<s yields an
orthogonal basis. Thus, the existence is shown. Let (v;)1<i<s and (9;)1<;<s be orthogonal
bases of (V;)i<i<s. Define

V =Tlv,v9,...,0,] and V = [y, 0s,..., 0]

Then by Lemma 2.1 there is an invertible upper triangular matrix R such that

V =VR. (2.6)
By assumption there are invertible diagonal matrices D and D such that
V'V=D and V*V=D. (2.7)

Combining (2.6) and (2.7) we obtain the equation

R=D YR 'D.
The matrix R is upper triangular and the matrix D~(R*)~'D is lower triangular. Thus,
the matrix R is diagonal. [ ]

Theorem 2.1 implies that the Gram-Schmidt orthonormalisation method, applied to any
basis of (V;)1<i<s, generates the (up to scalar factors of modulus one) uniquely determined
orthonormal basis of (V;)1<<s-

Now we turn to the Arnoldi method. The Arnoldi method is the Gram-Schmidt orthonor-
malisation method applied to the sequence

’Ul,AUl,AUQ,...,AUs_l. (28)

It is evident that this sequence forms a basis of the Krylov chain (K(i, A, v1))1<i<s. Con-
sequently, by Theorem 2.1, the Arnoldi vectors are, up to scalar factors of modulus 1,
identical with the vectors generated by the Gram-Schmidt orthonormalisation method
applied to the sequence (2.8).
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2.2 The Lanczos method and biorthogonal bases

In the last section we have seen that the Arnoldi vectors are (up to scalar factors of
modulus 1) identical with the vectors generated by the Gram-Schmidt orthonormalisation
method applied to any basis of the Krylov chain (K(7, A, v1))1<i<s. Here v; is the starting
vector of the Arnoldi method. In this section we show that the vectors generated by the
Lanczos method are (up to scalar factors) identical with the vectors generated by the
Gram-Schmidt biorthogonalisation method applied to any basis of the pair of chains

K(1,Av) C K(2,A,v) C---CK(s,A,v)
K1,AT, wy) c K(2,AT,wy) C - C K(s, AT, wy)

where v; and w; are the starting vectors of the Lanczos method.

Definition 2.3 A sequence of pairs of subspaces (W, V;))i<i<s is called a chain of sub-
spaces if

Vi C Vo C---CV,
W, C WoC---CW,

and dimV; =i =dim W, for alli € {1,2,...,s}.

Definition 2.4 (Basis of (W, V;))1<i<s) A sequence of pairs of vectors ((w;, vi))1<i<s
with the property

V; = span{vy, vg, ..., v;}  and W; = span{w;, ws, ..., w;}

for alli € {1,2,...,s} is called basis of (Wi, Vi))1<i<s-

Definition 2.5 (Biorthogonal basis) A basis ((w;, v;))i<i<s of (Wi, Vi))1<i<s is called
biorthogonal if
(i vy =0 for i#j and (w;vi) £ 0.

Theorem 2.2 (Uniqueness) Let ((w;,v;))1<i<s and ((0;, 0;))1<i<s be biorthogonal bases
of (Wi, Vi))i<i<s.- Then there are numbers oy, 5; € €\ {0} such that

w; = ow;  and v = B0 for all 1.

Proof. Define

[’Ul,’l)g,...,’l)s], \7:[171,62,...,1)3]

<

W = [w,ws,...,wy] and W = [y, Wy, ..., 0.
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Then by Lemma 2.1 there are invertible upper triangular matrix R and R such that
V=VR and W =WR. (2.9)

By assumption there are invertible diagonal matrices D and D such that

W'Vv=D and W'V =D. (2.10)
Combining (2.9) and (2.10) we find the identity
R=D"(R")"'D.

The matrix R is upper triangular and the matrix D~*(RT)"'D is lower triangular. Hence
the matrices R and R are diagonal. ]

Next we discuss the existence of a biorthogonal basis of ((W;, V;))1<i<s. For this purpose
we require some results about the representation and existence of projections.

Lemma 2.2 (Representation of a projection) Let II € Maty be a projection onto
an i-dimensional subspace. Let V,W € Matyy; such that ImV = ImII and ImW =
(KerTI)t. Then WTV is invertible and 11 has the representation

n=vwiv)'w’.
Proof. We first show that W7V is invertible. Combining the equations

KerIINImII = {0} and Kerll= (ImW)* = Ker W’

we find
Ker W' NImV = KerIT N ImTI = {0}.

Thus, for every z € @\ {0} the vector # := Vx is not in Ker W7. Consequently W’V x
does not vanish for all vectors z € €\ {0}. This yields the invertibility of W’V

Define IT := V(W"V)='w™.

The identity

e =vw'v)y"'wivwrv)"'w’ =vw'v)"'w’ =11
shows that II is a projection. Finally the equations

Kerll = (ImW)* =KerW” = Kerll
ImI = ImV =ImIl

yield IT = I1, which proves the lemma. [ ]
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Lemma 2.3 (Existence of a projection) LetV and W be subspaces of €V of the same
dimension 1. Then the following statements are equivalent:

a) There is a projection I1 with ImII =V and KerII = W+,

b) The matriz [wy,wy, ..., w| [v1,ve,...,v; is invertible for every choice of bases
V1, Vg, ..., 0 Of V oand wy,ws, ..., w; of W.

¢) There are bases vy,vs,...,v; of V and wy,ws, ..., w; of W such that the matriz
[wy, wa, ..., wi] T [vy, ve, . .., v;] is invertible.

d) The bilinear form (-, -)|wxy is non-degenerate.

Proof. The implication a) = b) is a direct consequence of Lemma 2.2. b) = ¢) is ev-
ident. Defining IT := V(WTV)"'WT where V := [vy,vq, ..., v;] and W := [wy, wa, . .., w;]
the implication ¢) = a) is proved. Finally we prove the equivalence of ¢) and d). Let
x € W and y € V. Then there are numbers «; and [; such that

i i
T = Z QW and Y= Z Bjv;.
k=1 j=1

Considering the representation
(2, ey = D> apBi{z,y) = "WV

where o’ = (ay,ay,...,0;) and 7 = (B, 5s,...,3;) we find that {-,-)|yyxy is non-
degenerate if and only if

dTWITV £0  and  WIVB#£0

for all a, 3 € @*\ {0}. This is equivalent to the invertibility of W7V n

First we derive a necessary condition for the existence of a biorthogonal basis. Let
((wi, vi))1<i<s be a biorthogonal basis. Set

WO = [wy, w, ..., w] and VO = luy, 09, ..., 0.

Then, by definition, the matrix D® = (W®)7V ) is invertible and diagonal. Conse-
quently, by Lemma 2.2, the Gram-Schmidt projection II; = V@ (DO)={(W T with

ImIl; =V, and  Kerll; = Wi (2.11)

exists for all 7 € {1,2,...,s}. Next we show that the Gram-Schmidt biorthogonalisation
method applied to an arbitrary basis ((@;, 9;))1<i<s of (Wi, Vi))1<i<s does not break down
if the Gram-Schmidt projections defined by (2.11) exist for all i € {1,2,...,s}.
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Gram-Schmidt biorthogonalisation method
v = 07 and wy = Wy
fori=2,3,...,s

S (wy, )

v, = U — V; = (I — Hz'fl)ﬁi (212)
j=1 (wj, vj) 7
wi = w—gww—(I—HT )iy (2.13)
R g - i—1 7. .
7=1 <wj’vj> !

The Gram-Schmidt biorthogonalisation method breaks down after the i-th step if and
only if
<’w1, ’U1> 7£ O, <w2, ’U2> 7£ 0, ceey <’U)1‘,1, ’UZ',1> 7£ 0 (214)

and

Thus, the breakdown occurs if and only if 7 is the smallest number such that the matrix
[wl, W, ..., ’U)i]T[Ul, Vo, Uz']

is not invertible.

Consequently, by Lemma 2.3, the Gram-Schmidt biorthogonalisation method breaks down
after the i-th step if and only if the Gram-Schmidt projections Iy, Ils, ..., II;_; exist and
the projection II; does not exist.

These observations are summarized in Lemma 2.4 below.

Lemma 2.4 (Existence of biorthogonal bases) The following statements are equiv-
alent:

a) There is a biorthogonal basis of (W;, V;))1<i<s-
b) The Gram-Schmidt projections 11y, 11y, ... Tl exist.

¢) The Gram-Schmidt biorthogonalisation method applied to an arbitrary basis of the
chain (Wi, Vi) )1<i<s generates a biorthogonal basis.

d) The matriz [wy,ws, ..., w;]" [v1,ve,...,v;] is invertible for every choice of bases

((wi, v3))1<i<s of (W3, Vi) )1<i<s and for all j € {1,2,...,s}.

e) There is a basis ((w;, vi))1<<s of (Wi, Vi))i<i<s such that the matriz
[w, wa, ..., w;] o1, v, ..., v;] is invertible for all j € {1,2,...,s}.

f) The bilinear form (-,-)|w,xy, is non-degenerate for all j € {1,2,...,s}.
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Now we specialize to the generation of biorthogonal bases in Krylov chains. In a similar
way as we have derived the Arnoldi method from the Gram-Schmidt orthonormalisation
method we now derive the Lanczos method from the Gram-Schmidt biorthogonalisation
method.

Let two starting vectors vy, w; € @V \ {0} be given.
Algorithm 2.1
For:=1,2,...,s—1
L {wj, Avy)
| T )
: <AT’U)Z',U]'>

Wit1 = ATwz‘—Z

j=1 (wj; v;)

w; = (I — ) A w;. (2.17)

Algorithm 2.1 is the Gram-Schmidt biorthogonalisation method applied to the basis

Ul,A?)l,A’UQ, .. .,AUS,1

T T T
wl,A ’U)l,A ’U}Q,...,A Ws_1

of the Krylov chain ((K(i, AT, w1), K(i, A, v1)))1<i<s- Thus, by Lemma 2.4, Algorithm 2.1
generates the up to scalars uniquely determined biorthogonal basis of the Krylov chain
((K(E, AT, wy), K(i, A, v1)))1<i<s-

Now we show that the recursions (2.16) and (2.17) can be reduced to three-term recursions.
Indeed, the relations

ATw; € ATK(j, A", wy) = ATspan{wy,ws, ..., w;}
C span{wy, wo, ..., Wjt1}
and
v; Lspan{wy, wo, ..., w1} for i>j+2
imply
(wj, Av;) = (ATwj,v;) = 0 for i>j5+2.
By duality

<AT’LUZ', ’Uj> = <’U}i, AUj> =0 for 4 > ] + 2.
Hence the recursions (2.16) and (2.17) reduce to the three-term recursions

- Aws A
vip1 = Avi— (i Uz>’0i— (i1, U1>’Uz‘—1
<wi: Ui) <wz>1; U¢71>
(ATwz‘, Ui> <ATwi, Ui—1>
w; = ATw, — w; — Wi_1.
o ' <wiavi> ' <wi—1avi—1> -t
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Using that
<wi—1aAUi> = <ATwi—17Ui> = <ATwi—17 (I - Hz‘—l)vi>
<(I - Hi—l)TATwi—la ’Uz‘>

(wi, vi)

and (by duality)
<ATwi7 vi—1) = (Wi, v;)

we obtain
vis1 = Avp — o0 — Bivia
Wit1 = AT w; — aw; — Bw;
with
51 — O; Vo = Wy = O
w;, Av; w;, U
o lwAv) o wew)
<wi7 Uz'> <wz>1; U¢71>

These are the famous Lanczos three-term recursions.

Suppose that there is a biorthogonal basis of the chain ((K(i, AT, wy), K(i, A, v1)))1<i<s.
Then the Lanczos recursions generate a biorthogonal basis ((w;,v;))1<i<s of this chain.
The Lanczos method further generates implicitly for every j € {1,2,..., s} the tridiagonal
matrix

ar [ 0
g | 1 e &
B,
0 1 (1/]'
satisfying the equations
V) gl = HjAv(J') and W gG) = HJTATW(j) (2.18)
where V) := [vy, vg, ..., v;], WU = [wy, wy, ..., w;] € Matyy; and

I; = V(j)((W(J'))Tv(j))—l(W(j))T
is the Gram-Schmidt projection with
ImIl; = K(j, A, v1) and KerIl; = K(j, A", wy)*.
Remark 2.2 The equations (2.18) can be rewritten in the more familiar form

VOHD = AV el (2.19)
WOHD = ATWO) — w6l (2.20)
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2.2.1

Breakdowns of the Lanczos method

In the following we use the notation

m := dim (N, AT, w,), m:=dim/C(N, A, vq)

and we define for every | € IN the Hankel matrix ['; by

[ = [<w1:Ai+jU1>]0§i,j§l71-

The Lanczos method terminates after step s, if

and

(wy,v1) # 0, (wa, v2) #0,...,(ws,,vs,) # 0 (2.21)

<w5L+17U5L+1> =0. (222)

Furtheron s; denotes the termination index of the Lanczos method. The breakdowns of
the Lanczos method can be classified as follows:

1)

Regular termination: (vs, 41 = 0 or wy, 11 = 0)
If vs, +1 = 0 then by equation (2.19) the subspace span{vy, vq, ..., vs, } = K(s, A, v1)
is A-invariant and the matrix H?) represents the restriction of A to this subspace.
IC(N, A,vy) is the smallest A-invariant subspace containing v;. Hence we can con-
clude

K(N, A v1) = K(sg, A, v1).

Hence the equality s; = m holds. Similarly, if w,, ;7 = 0, then by equation (2.20)
the subspace span{w,ws, ..., w,, } = K(sp, A", w;) is AT-invariant and H®t) is
the restriction of AT to this subspace. Further the identity s; = 1 holds.

Serious breakdown: If the termination condition (2.22) is fulfilled with vy, 1 # 0
and ws, +1 # 0, then the breakdown is called ‘serious’. Notice that in this case the
Lanczos vectors do not span an A-invariant nor an A”-invariant subspace of C.
There are two different cases of a serious breakdown:

2.1) Curable breakdown: If there is a k¥ > 1 such that the Hankel matrix T'y,, is
invertible then the breakdown is called ‘curable’. In general the eigenvalues of
the generated tridiagonal matrix H2) are not eigenvalues of A, however some
eigenvalues of A are approximated (see Section 5.4).

2.2) Incurable breakdown: If the Hankel matrix 'y, is not invertible for all £ € IN
then the breakdown is called ‘incurable’. In this case each eigenvalue of H(¢r)
is an eigenvalue of A (see Theorem 5.12).
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The possibility of a curable breakdown has brought the Lanczos method into discredit.
How can we overcome such a breakdown ? By Lemma 2.4 a serious breakdown occurs if
and only if there exists no biorthogonal basis in the Krylov chain

((/C(Z, ATﬂ w1)7 K(iv A, Ul)))lfiSmL

where
my, := min{m, m}. (2.23)

Hence it is natural to develop an appropriate concept of a generalized biorthogonal basis
which even exists in the case of an curable breakdown. This is done in the following
chapter.
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3 Exact look-ahead Lanczos methods and
generalized biorthogonal bases

Chapter 3 follows the lines of [81] presented by the author in 1997.

3.1 Generalized biorthogonal bases of chains of subspaces

In the following let (Wi, Vi))i<ics be an arbitrary chain of subspaces of €~

Definition 3.1 (Generalized biorthogonal bases) A basis ((w;,v;))1<i<s of the chain
(Wi, Vi))1<i<s is called generalized biorthogonal, if D := [(w;, vj)]1<ij<s @S an invertible
block diagonal matriz with mazimal number of diagonal blocks.

In this context “mazimal” means: If ((0;,)),<,<, i5 @ basis of (Wi, V;))i<ics and D =

(@i, ;)] 1<ij<s is invertible, then the number of diagonal blocks of D is not greater than
the number of diagonal blocks in D.

This definition in fact generalizes biorthogonality because if there exists a conventional
biorthogonal basis in (W, V;))1<i<s then any basis of this chain is in the conventional
sense biorthogonal if and only if it is generalized biorthogonal.

Now we turn to the existence and construction of generalized biorthogonal bases.

The extended Gram-Schmidt biorthogonalisation method below was introduced by Parlett
[58] in 1992.

Extended Gram-Schmidt biorthogonalisation method (EGS)

k:=0; v(0) :=0; I, := 0;
repeat

Vy(ky1 = (I — Hu(k))ﬁz(k)Jrl;

Wy = (I = T ) ky 15

if v,(ky41 = 0 or wy )41 = 0 then stop := true
else

Vie := [vpeys1]; Wi = [Wygy1]; Dy = VI Wi;

1:=1;

while Dy not invertible and v(k) +i < s do
=14+ 1;
Vy(ky4i = (I — Hu(k))~3(k)+i,
Wy(k)+i = (I - H:,f(k))wu(k)ﬂa
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if D, is invertible then
v(k+1) :=v(k)+ i
k:=Fk+1;

until v(k) +1i > s or stop.
b:=k;
Here
k
= Z V;D i IWJ‘T
j=1
is the Gram-Schmidt projection with
ImILxy = Vo) and KerII,( VVL

By construction and Lemma 2.3 the EGS method applied to a basis ((@;, 0;))1<i<s of
(Wi, Vi))1<i<s generates

e the degree indices (v(k))rex of ((VVZ Vi))i<i<s which are defined as those indices
I=v(0):=0<v(l) <v(2)<...<wv() for which the bilinear form (-,-) |w,xy, is
non-degenerate

e a basis ((w;, v;))1<i<v(w) of (Wi, Vi))1<i<u(v) With the property:

DY) = Wy, Wa,... Wil [V, Vo, Vil = diag (Dy, Dy, Dy)  (3.1)
where
Vi = [0ue—1)41, Uulk—1)425 - - - Vu (k)] (3.2)
Wk = [’wy(k_l)+1; wu(k—1)+27 e :wu(k)]
Dy = W'V

for all k € {1,2,...,b}.

Now we show that the EG.S method generates a generalized biorthogonal basis if there ex-
ists one. Suppose there is a generalized biorthogonal basis ((w;, 0;))1<i<s of (Wi, Vi) )1<i<s-
Then by definiton there are indices

1=5(0):=0< (1) <2 <...<iD)
and invertible matrices lA)z € Mat;(;)—p(i—1) such that

DB = (i, 1y, . ., gy (01, Doy - . ., Do) = diag (Dy, D, ..., Dy)
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for all k € {1,2...,5}. Lemma 2.3 shows that the bilinear forms (-, -)|w,,xv,q, are
non-degenerate. Therefore the inclusion

(0(k)) o<ret © W(K))o<rs (3.5)
holds. Comparing (3.1) and (3.5), we find that

(ﬁ(k))ogkgi; = (v(k))o<k<b-

Thus, we have proved the following theorem.

Theorem 3.1 (Existence and size)
A) Existence: The following statements are equivalent:
A.1) There is a generalized biorthogonal basis of (W;, Vi))1<i<s-
A.2) The extendend Gram-Schmidt biorthogonalisation method applied to an arbitrary
basis of the chain (Wi, V;))1<i<s generates a generalized biorthogonal basis.
A.8) The bilinear form {-,-) |w.xy, is non-degenerate.

B) Size of the diagonal blocks: Let ((w;,v;))1<i<s be a generalized biorthogonal basis of
(Wi, Vi))i<i<s- Then the mazimal number ¢ of diagonal blocks of the matriz D :=
[(wi, vj)|i<ij<s = diag(Dy, Dy, ..., D,.) is equal to b, the argument of the mazimal
degree index. The k-th diagonal block Dy, has the size v(k)—v(k—1) forall1 < k < c.

Theorem 3.2 states the degrees of freedom in the choice of generalized biorthogonal
bases and explains how every generalized biorthogonal basis can be constructed from
any given generalized biorthogonal basis. By Theorem 3.1 the EGS generates a general-
ized biorthogonal basis. Throughout the rest of Section 3 let b denote the argument of
the maximal degree index and dimy := v(k) — v(k — 1).

Theorem 3.2 (Degrees of freedom) Let ((w;,v;))1<i<s be a generalized biorthogonal
basis of (Wi, Vi))i1<i<s- Let ((0;, 0;))1<i<s be a basis of (Wi, Vi))i<i<s- Then the sequence
(i, ;) )1<i<s is generalized biorthogonal if and only if the following relations hold for all
0<k<bo1,1<i<dimg:

Vy(kyri €  SPAN{Up(k)+1, Vp(k)4+2s - - - s Vu(k)+i}

wu(k)+i € Span{wu(k)Jrl: Wy(k)+25 - -+ wu(k)+z'}-

Proof. By assumption ¥, ()4 € Vik)+i = span{vi, va, ..., Uyu)4i}. Hence there exist

coefficients a; € @ such that 0,y = ZV.(’“)”

j=i ajvj. Theorem 3.1 provides the desired
identity

v(k)+i v(k)+i
Uukyi = (I = o)) V)i = aj(I = ,g)v; = > av;.

Jj=1 j=v(k)+1
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Replacing v with w, V with W and II with II7, one gets the dual statement

'LDu(k)+i € Span{wy(k)H, Wy (k)+25 - - - awu(k)Jri}-

3.2 Generalized biorthogonal bases of Krylov chains

In this section we specialize to generalized biorthogonal bases of Krylov chains.

3.2.1 Notation

o (v(k))kex denotes the degree indices of ((K(i, AT, wr), K(i, A, v1)))1<i<n -

r:=wv(b) = max{v(k) |k € K}.
e my := min {dim K(N, A, v;),dim (N, AT, w,)}.

o If ((wj,v;))1<i<s is a basis of ((K(i, AT, wy), K(i, A, v1)))1<i<s then define
VO = vy, vy,..., 01, WO = [wy, w,, ..., w), DO .= (WHTy®
Vi = [0(h—1)415 Vu(b=1)425 - - -» Vo)), Wi = [Wy(k—1)41, Wolh—1)425 - - - » Wuk)],

and Dk = (Wk)T‘/}g

For <0 let w,:=0,v,:=0, D;:=1, W, :=0, and V; := 0.

3.2.2 Construction and properties of generalized biorthogonal bases
of Krylov chains

To get a generalized biorthogonal basis of ((W;, V;))1<i<rthe EGS can be applied to any
basis of ((W;,V;))i<i<r (see Theorem 3.1). For Krylov chains it seems quite natural to
choose (((AT)"'wy, A" 'v1))1<i<,r as a basis of ((K(i, AT, wr), K(i, A, v1)))1<i<r . But on
reconsidering the conventional biorthogonal case, one would prefer another basis. Indeed,
let ((w;, v;))1<i<s, be the uniquely determined (up to scalar factors) biorthogonal basis of
(K (i, AT w1), K(i, A, v1)))1<i<s; - Then the ordinary Gram-Schmidt biorthogonalisation
method applied to the basis

(wh Ul): (ATwI: AUI); (ATw2: AU?): R (ATwstla A,Ustl)

reduces to the ordinary Lanczos three-term recursion (see Section 2.2). To imitate this
structure in the general case we define the ‘monomial look-ahead Lanczos method’ as
follows:
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Monomial look-ahead Lanczos method

Foral0 <k <b—-1
foral0 <i<wv(k+1)—wv(k)—1 if wvk)+i#0
V)it = (L= Iha)) Avyry i
Wyk)+i+1 = (f — H:Zp(k))ATwV(k)Jrz‘-

Lemma 3.1 The monomial look-ahead Lanczos method generates a generalized biorthog-

onal basis ((wz, Ui))lgig'r Of ((’C(’L, AT, ’Ll)l), IC(Z, A, Ul)))lgig'r .
Evidently Lemma 3.1 is a consequence of the definition of the monomial look-ahead Lanc-
zos method.

The following example shows that, in contrast to the biorthogonal case, the monomial
look-ahead Lanczos method need not generate the same basis as the EG.S, applied to the
Krylov sequence (((A")"twy, A 'vy))1<i<y.

Example 3.1

0
1
0

w1 = V1 =

I

Il
o OO O
o O O =
O = O O
— e

0

The matrices on the left are generated by the EGS applied to (((AT)"twy, A" v1))1<ics.
The matrices on the right are computed by the monomial look-ahead Lanczos method.

‘7(4) — [617 62; 173; 174] V(4) = [Ul’ U2, Us, ,U4]
1 1/4 0 0 L 1/4 0 0
- 1 1/4 0 -1 - 1 1/4 0 -1
- 1 1/4 -1 -1 - 1 1/4 -1 1
1 -3/4 1 -3/4 1

U4 # yvg forall veC

4 0 00 4 0 0 0

" 0 —1/4 0 0 0 —1/4 0 0
4) _ 4) —

b 0 0 01 b 0o 0 0 1

0 0 12 0 0 1 -2
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Lemma 3.2 (Properties of the monomial Lanczos vectors)

The monomial look-ahead Lanczos method generates a generalized biorthogonal basis

((wi, v3))1<i<r of (K3, AT wr), K(i, A, v1)))1<i<r with the following properties:

a) Diagonal blocks: The diagonal blocks Dy of the matriz

D(T) = (<’U}Z, 'Uj>)1§i,j§r = dzag (Dl, DQ, PP Db)

are lower antitriangular Hankel matrices

Dy

b) Inner Vectors:

Forall0<E<b-1
For all 0 <1 < dimgyy —1 the following identities hold:

Vy(k)+i+1 = Ai'Uy(k)Jrl ) Wy(k)+i+1 = (AT)iwu(k)Jrl-

¢) Incurable breakdown: An incurable breakdown occurs after step j if and only if

(w11, A1) =0  forall i€IN

or, equivalently, if j = r:= max{v(k)|k € K} < my.

Proof. First we present and proof the following three statements A,B,C:

A) If the following equations are valid for all j € {0,1,...,}

Uu(k)+j+1 = AjUy(k)H
Wykytirr = (AT wymy11
(Pu(k) 45415 Quk)+1) = 0,

then the identities

Ai+1’Uu(k)+1 = (I_Hu(k))AiJrlvu(k)Jrl
(A wygyr = (=) (AT wymye

hold.

(3.6a)
(3.6b)

Proof of A). (3.6a) and (3.6b) are dual statements. Therefore it is sufficient to show

(3.6a). Identity (3.6a) is a consequence of following relations:
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m

{(AT) (v (k), AT wi)}
= Ao € Kk), AT w) = Ker Tl
— AM,u = (- A vum)m

Vy(k)+1

m

i)
(ATYHUC(v(k), AT, w) = span{(AT)"wy, (A7) 2wy, ..., (AT)”(’“)”wl, }
C Kw(k)+i+1, A" wy)
= span{wy, ws, ..., wu(k)+i+1}
iii)
1

L
V11 € K(v(k), AT wy)” = span{wy,w,, . . ., Wy (k) } -

B) The following implications hold:

Ay = (T = Ty A oy

it1 _ _
Aty 41 = Vo(kysisn } = A" Uk 11 = Vuk)vive

. v = Wy 1o,
(AT)sz(k)Jrl = Wy(k)+i+1 (k)+1 (k)+i+2

C)Let k+1€ K and i+ 3 <wv(k+1) —v(k). If the equations
Uoiyje1 = Avygpr and  wyyrja = (A7) w41,
hold for all j € {1,2,...,i4 1} then (wy(k)4141; Vu(k)+1) vanishes for all
1e{0,1,2,...,i+1}.
Proof of C). Assuming there is an [ € {0,1,2,...,7 4 1} such that
(Wy(k) 11415 Vuk)+1) 7 0,

then there exists a minimal [ € {1,2,...,i 4 1} with this property. For this [ the Hankel
matrix

Dy, := ((wi, v7))u(ky+1<ig<v(k) 1141
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is invertible because all entries above the antidiagonal are vanishing and all entries on the
antidiagonal are different from zero. The invertibility of D} guarantees the non-degeneracy
of the bilinear form

<'7 > |/C(V(k)+l+1,AT,w1)XIC(V(k)+l+1,A,v1) .
Therefore the identity
l+1=v(k+1)—v(k)
holds which contradicts the assumption.

After these preliminary steps Lemma 3.2 can be proved easily by induction on

ie{0,1,...,v(k+1) —v(k)—3}.
For i =0 we have: If wv(k+1)—v(k) > 1, then (Wyk)+1, Vur)+1) =0

Uy(k)+1 = AOUu(k)+1
Wyky+1 = (A7) w41

Assume the statement _
Uuk)+i+1 = AUy
Wyky+j+1 = (A7) w41
<wu(k)+j+17 Uu(k)+1> =0
is true for some i > 0 and all j € {0,1,...,i}.
Now proceed to i + 1: By the induction hypothesis and statement A) we have

Ai—HUu(k)—i—l = (I_Hu(k))Ai+1Uu(k)+1
(AT)leu(k)H = (I_Hf(k))(AT)ZHwIJ(k)H-

From B) and the induction hypothesis it follows that

_ i1
Vy(k)+it2 — A Vy(k)+1

Wy(k)+i+2 = (AT)iJrlwu(k)—i—l-

Finally, statement C) together with the induction hypothesis yields

(Wy (k)i 415 Vuiky41) =0
forall j € {0,1,...,i+ 1} aslongasi+2 < v(k+1) — v(k). u

This result can be easily transferred to arbitrary generalized biorthogonal bases. Lemma
3.2 essentially reduces the construction of generalized biorthogonal bases of Krylov chains
to the calculation of the vectors wy k)1 and v, )41, called ‘regular vectors’. The next the-
orem shows that the construction of w, )41 and v,(x)41 can be reduced to the ‘look-ahead
Lanczos’ block-three-term recursions proposed by Gragg [30], Draux [18] and Gutknecht
133].
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Theorem 3.3 (Construction) Let ((w;,v;))i<i<r be a generalized biorthogonal basis of
the Krylov chain ((K(i, AT, wy), K(i, A, v1)))1<i<r . Then there are coefficients gz(’kj), fi(f;) €
C, ﬂi(k), Ozz(-k) € €\ {0} such that the following identities hold:

Forall0<k<b-1

Up(k)41 = e (A’Uu(k) — Vi(Dg) (W) " Avyy — Ui 'Uy(kf2)+1) (3.7)
Wy = ol (ATwu(k) — Wi(D)) (Vi) " AT wyy) — & wu(k—2)+1) (3.8)

forall1 <@ <dimpy — 1

a_

Up(k)+i+1 = 5z+1 <A’Uu _Zgz(—l—)l,l ’Uu(k)+l> (3.9)
=1

k A
Woyrit1 = Qi) (ATwu(k)Jrz‘ -S> wu(k)H) (3.10)
=1
where for k > 2
Yy = <pu(k—1)+17QU(k)> ) 1 £ = <pu(k)7qu(k—1)+1> . 1
(Pu(k—1)> Q(k—2)+1) agk_l) ’ (Pu(e—2)+15 Qo(e-1)) 5{19_1)

else Y :== 0 and & := 0.

Conversely, these recurrence relatzons genemte a ?enemlized biorthogonal basis for any

choice of the coefficients g\*) f €eCa e €\ {0}.

1,7 °
Proof. Lemma 3.2 together with Theorem 3.2 yield the representations (3.9) and (3.10).
(3.7) and (3.8) are dual statements. Therefore it is sufficient to show (3.7). There are
scalars f3; +)1 € C\{0} such that for every k the following identities hold:

mvy(k)+1 = (I H )A’UV

= (I - VW) (DE)- LW ENT) Ay,

= (I = Vi(Dg) (W)™ = Vier (Do) H(Wim)) Ay
k—2

= V(D) T (W) T Avy iy

= (I = Vi(Dr)"" (W)™ = Vit (D)~ (Wia) ™) Avy iy

—( = Iy k—2y) Avy(sy
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In addition we have

Avyry € AKer L) = AK(v(k — 1), AT, wy))
C  A(span{ATwy, (AT)wy, ..., (AT)E-D 1y 1)+
= Kw(k—1)—1,AT w)" (3.11)
C Kk —2), AT, w)"
= KerIl,(x—9 (3.12)

Therefore it remains to show that

Uy —2)+1 = Vie1(Dy—1) 7 (Wi—1)T Aoy

Theorem 3.2 and (3.11) yield

kal(Dkfl)_l(kal)TAUu(k) = Z a;V;

( ) (k—2)+1<i<v(k—1) (Dk 1) 1(<quUV >) (k—2)+1<i<v(k—1)
(Di—1) e —v(k—2)) Putk=1), AGu(k))
3.11)
(: (Dk 1) 'e —v(k 2))<pu(k71):QV(k72)+l>7k
= (Dp-1)” Dk 1€1%
= €1
Here
Vi = (Wy(k-1), AVy(r)) ‘
<wy(k71)a Uu(k72)+1>
Hence ( y >
Wy(k—1); AVy
Vie1 (Dg—1) M (Wio1) T Avy gy = (k1) ) Uy (k—2)+1-
<wu(k71)a 'Uy(k72)+1>
Using
1 T T
(Wy(r=1), Avyr)) = w<wu(k—1)+lavu(l~c)> + (e 1) A Wogk—1), Vo))
1
1
= w<wu(k—l)+1: Vuky) + (AT Wy k-1, Ty (e—1)Vu(r))
1

and IL,;—1v,x) = 0, the assertion follows. [
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Remark 3.1 (Ordinary Lanczos three-term recursion) If there exists a classical
biorthogonal basis in ((K(i, A", wy), (i, A,v1)))1<i<r, then the recursions in Theorem
3.3 represent the ordinary Lanczos three-term recursions.

Remark 3.2 (Breakdowns of the Lanczos and look-ahead Lanczos methods)
In terms of the indices r, s;, and mj, the breakdowns of the Lanczos and the look-ahead
Lanczos methods can be classified in a simple way. First we recall the definitions of the
indices sr,r,mr. The index s; denotes the termination index of the ordinary Lanczos
method. By Lemma 2.4 the identity

sp = max{k € {0,1,...,b} |v(k) = k}

holds.
The sequence (v(k))o<k<y denotes the degree indices of (K(i, AT, wy), K(i, A, v1))1<i<n-
The number r is defined as

r:=max{v(k)|0 <k <b} =v(b)

and my, := min{dim (N, A, v;), dim (N, AT w,)}.
As soon as one of the weak inequalities

s, ST < my

becomes strict a serious breakdown of the Lanczos method occurs. A classical biorthogonal
basis of ((K(i, AT, w1), K(i, A, v1)))1<i<i exists for I < sy, but not for [ > s;, (see Lemma
2.4). However, generalized biorthogonal bases exist up to the index [ = r.

sy, <r: (Curable breakdown) The breakdown of the ordinary Lanczos method can be
cured by using the look-ahead Lanczos recursions. A block of higher dimension
is constructed.

r <myg: (Incurable breakdown) The look-ahead Lanczos process terminates after step
r. By Lemma 2.3 an incurable breakdown occurs if and only if there is no
projection IT with

ImIT = K(N, A, v) and Ker IT = (N, AT w,)*.

The recursion formulas in Theorem 3.3 are identical with the most general case of Gut-
knecht’s [33] recursion relations for formal orthogonal polynomials. However, Gutknecht,
[33], Freund, Gutknecht and Nachtigal [20], and Gragg and Lindquist [31] favour the
special case where the inner vectors ((vs, w;))y(k)+2<i<v(k+1) are constructed in a symmetric
fashion,

9 =g forall kg, (3.13)

)
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or with symmetric three-term recursions only:

o) =% forall kyi,j and ¢ =0=f" for i—j>2. (3.14)

1, 2 2
For the computation of the regular vectors wy )11 and v,)41 the matrix Dy has to be
inverted. By Theorem 3.3 and Lemma 3.2 the best structure for Dy would be antidiagonal

*
D, =

*

Gutknecht showed in [33] how to construct inner vectors which fulfil the symmetry con-
dition (3.13) and form antidiagonal blocks. The computational work for the construction
of this basis is larger than the work for other generalized biorthogonal bases. Therefore
we do not require symmetry (3.13). Our goal is to find a generalized biorthogonal basis
which can be constructed with minimal computational work and minimal storage require-
ments. We will see that a special generalized biorthogonal basis with antidiagonal blocks
(minimal Lanczos vectors) fulfils these minimality conditions and that this minimum can
only be reached giving up condition (3.13).

3.2.3 Generalized biorthogonal bases with antidiagonal blocks

The next theorem shows how to construct bases such that the diagonal blocks belonging
to these bases have antidiagonal structure.

Theorem 3.4 (Blocks with antidiagonal structure) Let ((@;,7;))1<i<r be a gener-
alized biorthogonal basis of ((K(i, AT, w1), (i, A,v1)))i<i<r. Then there exists (up to
scalar factors) exactly one generalized biorthogonal basis ((w;, v;))1<i<r with the proper-
ties:

a) The vectors v; and ; are identical for all 1 < i <.

b) The matriz Dy has antidiagonal structure for all k € K.
Let gg,kj) be the coefficients of the v-vectors (from Theorem 3.3). Then the following recur-
sion generates the generalized biorthogonal basis ((w;, v;))1<i<r with the properties a) and
b):
Forall0<Ek<b—-1,1<i<dimyy —1

- k
Wy (k)+1 = Wy(k)+1 » Wy (k)+i+1 = ATwu(lc)—l—i - Z fz-(+)1,lwu(k)+l
l:
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where

f_(k) o k) Wi V) —it1) (k)
+1,1 ~—

(Wy(k)+is AVy(ks1))
y o fig = dimg, oy —1+2,dimng s —it1
Wy (k)1 Vp(hg1)—t41) o+ kL

(Wy(k) 15 Vu(k+1))

Proof. By Lemma 3.2 the matrix D¥*! := ((Wy(k) 14> Vu(k1)—j+1) ) 1<i,j<dimy, 1S invertible
and lower triangular. Therefore the ordinary Gram-Schmidt biorthogonalisation method
applied to the basis (W, k)4i> Vy(k+1)—i+1)1<i<dimey, (0 < k < b—1) generates the uniquely
determined (up to scalar factors) generalized biorthogonal basis ((w;, v;))1<i<s that fulfils
the conditions a) and b). Let ﬁ ,g” be the coefficients of the v-vectors from Theorem
3.3. Then the following identity holds for 2 <1 <1 < dimy,1:

(W) tis Vosry-112) | T
v 19 v —
<wu(k)+iaA'Uy(k+1)fl+1> = D) + Z gdz‘mk+1—l+2,j<wu(k)+iaUV(k)+j>
/Bdimk+1—l+2 j=1
k
= 9((12'7)nk+14+2,dz'mk+14+1<wu(k)+z‘aUu(k+1)—z‘+1>- (3.15)

Finally, equation (3.15) combined with the ordinary Gram-Schmidt biorthogonalisation
method proves the assertion

1 T ! <ATwu(k)+ia Uu(k+1)fl+1>
) Wu(k)+i+1 = A" wy +i Wy (k)+i
%@1 *) *) ; <w1/(]€)+livll(k+1)—l—|—l> )
= ATwu(k)+i

(W)t Vukr)—it1) (k) "
s <wy(k)+l,vy(k+1)—l+1> dimy g1 —14+2)(dimp4q —i+1) Pr(k)+

(wu(k)+z',AUy(k+1)>w (01
_ -
(Wy (k)41 Vu(k+1))

Let wy(x)4+1 and v, k)41 be regular vectors. By Theorem 3.4 the recursion
Vu(k)+it1 = AVu(k)i (3.16)

forall 0 < k <b—1,1 < i < dimg; — 1 determines uniquely (up to scalar factors)
a generalized biorthogonal basis with antidiagonal blocks. We call this basis minimal
Lanczos vectors. Theorem 3.4 shows that the computation of the minimal Lanczos basis
requires minimal computational work (as compared to any other basis with diagonal
blocks) for the construction of the inner vectors. A further substantial advantage of the
minimal Lanczos vectors is that the block three-term recursions for the construction of
the regular vectors w,(x)41 can be reduced to ordinary three-term recursions (see Theorem
3.5). The minimal Lanczos vectors are the uniquely determined generalized biorthogonal
basis with this property.
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Theorem 3.5 (Minimal look-ahead Lanczos method) Let o!¥), 3% € @\ {0}. The
following recursions generate the minimal Lanczos vectors:

Forall0<Ek<b-1

1 T (w1 Avw)
—— 1, = Av,p — Vy(k—
/Bik) (k)+1 (k) g <'U}y(k)—l,'l)y(k—1)+l+1> (k—=1)+1+1
1 (Wy(k—1)+15 Vu(k)) y
. v(k—2)+1
agk_l) <wu(k—1)7 Uu(k—2)+1> (k-2
1 (Wy (k) AVy(ry)
— W, = ATw, ) — Wy (f—
o) () (*) (W (k—1)+1, Vn(k)) -1+
1 (o, vue—1)+1)
- . v(k—2)+1
ﬁfkil) <wu(k—2)+17 Uu(k—1)> (k=2
forall1 <i<dimpy — 1
k
Vy(k)+i+1 = 5Z~(+)1A’Uu(k)+i
forall1 <1 < dimpy — 1
k <puk i» Aqur 1>
Wy(k)+i+1 = Oéz('+)1 <ATwy(k)+i - )+ (k) wu(k)+1) .
(Pu(k)+15 Wiks1))

Proof. The minimal Lanczos vectors satisfy, for 1 <[ < dimy; — 1, the equations

k
ﬁtgir)nk—l-i—l(ATwu(k)a Uy(k)—1) = (Wok)s Vu(k)—111) = 0 (3.17)

because of the antidiagonal structure of Dy ;. Identity (3.17), Theorem 3.4 and Theorem
3.3 yields

—k)wu(k)JriJrl = ATwu(k)Jri

: <ATpu(k)+i7 QV(k+1)fl+1>
— Wy (k)+1
=1 <p1/(k)+l: qll(k-l-l)—l-l-l)

v iaA v
<p (k)+ q (k+1)> w

= ATwy)4i —
0 <pu(k)+1:QV(k+1)>

the desired representation of the w vectors. [ ]
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Estimate of the cost of the minimal look-ahead Lanczos method: Independently
of the block size two matrix-vector multiplications and two inner products are required
per step. All other inner products can be computed recursively

1) (k—1

5dlmk i1 (W (k=1) it 1> Vn(k)—i) = Qipq )<wu(k—1)+ia'vu(k)—i+1>

for all 1 <4 < dimy — 1. To compute the regular vectors w, )11 and v, )1 three scalar-
vector multiplications and two vector additions are required. The construction of the
inner vectors wyx)4; and v,(x)4; requires two more scalar-vector multiplications and one
vector addition.

Therefore the computational work for generating the minimal Lanczos vectors increases
as block size decreases and reaches its maximum (= computational work of the ordinary
Lanczos method) if and only if there exists an ordinary biorthogonal basis of the Krylov
chain ((K(z, A", wy), K(i, A, v1)))1<i<r -

3.2.4 Structure of the generated matrices

Every look-ahead Lanczos method generates a generalized biorthogonal basis of
(K (i, AT, wy), K(i, A, 11)))1<i<r where 7 := v(b) = max{v(k)|k € K} (see Theorem 3.3).
It further generates implicitly for every j € {v(k)|k € K} upper Hessenberg matrices H)
and HU) satisfying the equations
vl = 1mAv0 (3.18)
WOy = mrATwo (3.19)

where II; is the Gram-Schmidt projection with
ImIl; = K(j,A,v1) and KerTT; = K(j, AT, w;)*.

Before we discuss how to construct the matnces H , from data computed by the look-
ahead Lanczos process, we show that HU) and HY) are similar matrices.
Using the identity

I = VWD) (W)

where DU) ;= (WU))TV ) the equations (3.18) and (3.19) become
HY = (D) {wuHT 4y 0) (3.20)
HO = (DYY=H)T(VUN)T AT ), (3.21)

Transposing the equation (3.21) and multiplying the new equation with (D@)~! from the
left and DY from the right, we obtain the identity

(D(j))flf[(j)D(j) — (D(j))fl(W(j))TAV(j) — g, (3.22)

The following Theorem 3.6 provides information about the structure of the matrix H).
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Theorem 3.6 (Block tridiagonal matrices) The matriz H™), generated by a look-
ahead Lanczos method, is block tridiagonal and unreduced upper Hessenberg

E, 4 0
O — B, Es
: Cy—1
0 B,, E,

FEach of the non-diagonal blocks By, € Matyim, | xdim, and Cy, € Matyim, xdim,,, has ezactly
one non-zero element in the upper right corner. Let gikj), ﬁz-(k) be the coefficients from
Theorem 3.3. Then the entries of the i-th column of Eyy1 are the coefficients of the
(i + 1)-st inner vector from the k-th block:

Forallk+1€e K
forallie {1,2,... dimg, — 1}

k k k k) \_
Eri1e; = (9§+)1,1a 91(+)1,2; cey 91(+)1,1'a (/81'(+)1) 1; 0, ..., O)T-

The entries of the v(k)-th column of H™ are the projection coefficients of Avyx, in other
words: Let (agk))y(k,l)ﬂgjgy(k) be the last column of Ey, cy_1 the non-zero element in

Cr—1 and by, (= (ﬂik))_l) the non-zero element in Ey. Then
v(k) *)
bevury4r = (I = T Avyry = Avygy — Y @5 V) — Cho1Up(k-2)41 -
j=v(k—1)+1
Theorem 3.6 follows directly from the equation
VWOHY = AV — {(I —11;) Av; }e!
which is evidently equivalent to the equation (3.18).

Remark 3.3 Let ((w;, v;))1<i<r and ((;, ;) )1<i<, be bases with identical v vectors. Then
the generated matrices H") and H(") are identical, too.

In the special case of inner three-term recursions (fz(];) =0 = gf’kj) for i — j > 2) the
diagonal blocks have the structure

&=
I
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The minimal look-ahead Lanczos method generates diagonal blocks of the form

The structures of the various matrices H™, D) and W H™ AV (") generated by differ-
ent look-ahead Lanczos methods are illustrated in the following example.

Example 3.2

(02 0 0 0o 0o 0 o0 | 1] 1]
0032 0 0 0 0 0 2 1/2
00 0 54 0 0 0 0 3 1/3

|00 0 0 65 0 0 0 ) 4 . 1/4
00 0 0 0 7/6 0 0 8|5 1/5
00 0 0O 0 0 87 0 6 1/6
00 0 0 0 0 0 9/8 7 0
(00 0 0 0 0 0 0 8 | [ 1/8 |

In this example the vectors w; and v; are normalised using Ozz(-k) and ﬂi(k) and the maximum
norm. The degree indices of ((K(i, AT, w1), K(i, A, v1)))1<i<s are

v(0)=0,v(1)=1,r(2)=2,v3)=6,v(4) =7 and v(5) =8.
The diagonal blocks associated with every generalized biorthogonal basis are
Dy =1[7/8], Dy=[-7/8], Dy=[3/4], Ds=][-1].

a) Ordinary Lanczos method: The ordinary Lanczos method breaks down curably after

step 2 and generates a tridiagonal matrix H® with eigenvalues that are not eigenvalues
of A:
T e 7/8 0  weyTAve 3/4  —1/8

17 8/7 0 —7/8 ~1/8 -1
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b) Minimal look-ahead Lanczos method: The minimal look-ahead Lanczos method gen-
erates the following matrices:

0 0 0 3/4]
DB — 0 0 1/2 0
0 5/12 0 0
38 0 0 0 |
[ 6/7|-1/70 0 0 o0 o 0 o0
1708710 0 0 =3/2|0 0
o730 o o =3 |21]°o0
ge_| 0| 0 |65 0 0 —15/4) 0 0
0| 0 |0 54 0 —18/5/ 0| 0
0] 0 0 0 43 =3 0] 0
0O 0 [0 0 0 1/4 |1 |-7/6
00 0 0 0 0 |67 0 |
( 3/4 |-1/8{ 0 0 0 0O 0 0 |
~1/8) =1 | 0 0 0 21/16 | 0 0
0O [ 0 |0 0 1 —=9/4| 0 | 0
(WET AV ®) = 0 0 |0 5/8 0 —15/8] 0 0
0| o [1/2 0 0 —=3/2| 0 | 0
0 [7/8)0 0 0 —9/8|3/4] 0
0 0 | 0 0 0 3/16 | 3/4 |-7/8
L 0 o 0 0 0 0 |-6/T 0 |

¢) Inner three-term recursion: Let the coefficients figc) = g(k)

;7 in Theorem 3.3 be chosen

as follows:
k k k k k k
=gt =03, =g =02 8 =gH =06
e T T
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The look-ahead Lanczos method with this symmetric inner three-term recursion gener-
ates the following matrices:

0 0 0 035
| 0 0 045 —1.20
0 038 —1.14 1.69
027 —0.99 163 —1.67
L 6/7|-17 0 0o o o o0 0 |
7| 87 0 o o —ori|lo o
0| 7/3 030 020 0 —264| 2| 0
e | 0] 0 [138 060 040 —571) 0 | 0
0] 0 | 0 161 090 —7.09| 0| 0
0] 0|0 0 191 —480| 0] 0
O 0|0 0o 0 0121 |-7/6
0 0 0o 0o o 0 |67 0 |
[ 34 |-1/8] 0 0 0 o o 0 |
“1/8] —1 | o 0 0 06| 0 0
o | o | o0 0 068 —1.69| 0 | 0
greyraye | 0| 0| 0 0m —1ss 25T |0 | o
0 | 0o | 053 —160 237 -224| 0 | 0
0 |063]-120 209 —212 137 | 0.54 | 0
0 0 | 0 0 0 0.09 | 3/4 |-7/8
0 0 0 0 0 0 |-6/7] 0 |

The following example shows the decisive influence of the starting vectors v; and w; on

the degree indices.

Example 3.3 Let A be defined as in Example 3.2. In the following we vary the starting

vectors to illustrate their influence on the degree indices.

a) Let i€ {2,3,4,5,6,7}. For every choice

vy € span{eq, e, ...

aei}a

wy € span{e;i1, €ita, - - .

aeS}
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there exists no generalized biorthogonal basis because r = 0.

Early termination:  The starting vectors wy; = e;, v; = e; yield the indices
s, =r =my = 1. Hence early termination after step 1.

Curable breakdown: If one chooses w; = e; and vy = eg then the indices are
r =my = v(l) = 8, s, = 0. Therefore no classical but a general biorthogonal
basis exists.

No breakdown: In contrast to c) the ordinary Lanczos method applied to w; =
v = Z;V:l e; generates a tridiagonal matrix (s, =7 =m = 8).

Incurable breakdown: The Lanczos method applied to the starting vectors w; =
vy =¢; (j €{2,3,4,5,6,7}) breaks down incurably after step 1 (s, =r =1 < m).
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4 Practical look-ahead Lanczos methods

The construction of any generalized biorthogonal basis of a Krylov chain requires exact
knowledge of the degree indices (v(k))rer. To get these indices one has to decide, after ev-
ery step, whether Dy, is invertible. Hence in finite precision arithmetic only a subsequence
((k))gege of the degree indices (v(k))rek can be determined. This leads to the following
definition of a basis to a subsequence (#(k)), 4. In this section let b:=max{k|k e K}
and dimy, :== v(k) — 0(k —1).

Definition 4.1 (Basis to ((k)),.x) Let (Wi, Vi))i<i<s be a chain of subspaces with
degree indices (V(k))rex and let (0(k))ep € (V(E))kex. A basis ((wi,v;))i<i<s of the
chain (Wi, Vi))i<i<s i called a basis to (0(k)),ci if the matriz D) = ((w;, v;))1<i j<s
18 block diagonal

DY = diag(Dy, D, ..., D;)

with invertible diagonal blocks Dy, of order dimy, (for k =1,2,....b).
Now we turn to the construction of a basis to ((k)),x-

Suppose there is a basis to (7(k)),cz- A slight modification of the extended Gram-
Schmidt biorthogonalisation method (see M EGS below) applied to an arbitrary basis
(s, 03))1<i<s of (Wi, V;))1<i<s yields a basis to (7(k))cz-

Modified extended Gram-Schmidt look-ahead Lanczos method (MEGS)
For k=0,1,2...,s—1

fori=1,2,...,dimy
Votyi = (L — p)) Vo) 44
Wotkyi = (I = T ) @ihy -

Here I,y is the projection onto Vi) with kernel Wﬁi(k).

Using the M EGS algorithm the results about generalized biorthogonal bases can be easily
transferred to bases to (7(k)),crx-

Theorem 4.1 (Existence) The following statements are equivalent:

a) There is a basis to (U(k)),ci of (Wi, Vi))i<i<s-
b) There is a generalized biorthogonal basis of (W;, Vi))1<i<s-

¢) The MEGS method applied to an arbitrary basis of the chain (W;, V;))i<i<s gen-
erates a basis to (U(k)),cx-



46 4 PRACTICAL LOOK-AHEAD LANCZOS METHODS

d) The bilinear form (-,-)

W.xV. 1S non-degenerate.
e) s =max{v(k) |k € K}.

f) s =max{o(k) |k € K}.

g) There is a projection I1 with

ImIT =V, and KerIT = W5,

Theorem 4.2 (Degrees of freedom) Let ((w;, v;))i<i<s be a basis to (0(k)),cx of the
chain (Wi, Vi))i1<i<s- Let (Wi, ;))1<i<s be a basis of (Wi, Vi))i<i<s- Then the sequence
(w4, 03))1<i<s 15 a basis to (D(k)),ci if and only if

Vp(kyri €  SPAN{Up(k)+1, V(k)42s - - - » Vir(k)+i }

Wpk)y+i € Span{wp(k)ﬂ, Wp(k)4+25 -+ - wﬁ(k)Jri}

foral0<k<b—1,1<i<dimy..

Notice that, by Theorem 4.2 and Theorem 3.2, the regular vectors w11, Vpr)+1 of a
basis to (0(k)),cx are regular vectors of a generalized biorthogonal basis.

In the following we specialize to Krylov chains ((K(i, AT, w1), K(i, A, v1)))1<i<s -
The relation
A/Uﬁ(k)+1' € AKer -1y € Ker Il (4.1)

yields the following recursion for the regular vector vy x)41:

Up(k)+1 = BE(r - k) Ava(ry
= g (Avpe) — Vi Dy "W Avpey — Vie1 Dty (We—1) " Avpqry)

where ") € @\ {0} and the projection (k) is defined by

Im My = K(2(k), A,v1)  and  Ker Ty = K(0(k), AT, w,) "

In the generalized biorthogonal case the term
Vi1 D (W)™ Avg

is equal to the vector vy(,_1)11 up to a scalar factor. This is not true in the case of an
arbitrary basis to (7(k)),x because in general the space K(dimy_1, A, vyx—2)+1) is not in-
variant under (I — IT;;_2)) and the space K(dimy_1, AT, ws(,_2)+1) is not invariant under
(I =TT} ). As aconsequence for the chain ((K(i, A™, wpwy 1), K(i, A, Vo) 1)) 1<i<dim .,
a basis of inner vectors ((w;, v;))s(k)+2<i<io(k+1) cannot be chosen in an arbitrary manner.
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To form inner vectors one has to choose any basis of this Krylov chain and then project
its elements by ((I —TI7,)) ,(I —TIy))). Hence, we construct the inner vectors by the
recursion

k ! k
Up(k)+i+1 -= 5z‘(+)1 (- Hﬁ(k)) (Avﬁ(k)ﬂ‘ - Z gz(+)1,j vﬁ(’f)ﬂ‘) :
=1

Using the relation (4.1) we obtain the representation (4.2) below which are the practical
look-ahead Lanczos recursions introduced by Freund, Gutknecht and Nachtigal [20]
and Gutknecht [34].

Theorem 4.3 (Construction of bases to (7(k)),.x)
Let ((wj, vi))i<i<s be a basis to (0(k)),cx- Then there are coefficients gg;),fi(’];) € € and
il ozz(k) € €\ {0} such that the following identities hold:

)

Forall0 <k<b—1

v = B (Avsey — ViDp "W Avp ey — Vi Dy (Wio) " Avggey
’U)g(k)Jrl = agk)(ATw,;(k) — Wk(DZ)_lvaAng(k) — Wk,l(Df_l)_IWT_lATwp(k)

forall1 <i < dimpy — 1
k — _
Vp(k)+i+1 — 5Z~(+)1 (A’Uﬁ(k)+i - Z gz(+)1,j Vi(k)+5 — Vi Dy IWkTAUﬁ(k)ﬂ') (4-2)
=1
k U _
Wi = alh (ATwﬁ(k)Jri - fi(—l—)l,j Wiky+j — Wi(Dy) lvaATwﬁ(k)Jri) -
=1

Conversely these recursions generate a basis ((w;, v;))i<i<s to (7(k)).c for any choice of
the coefficients gf’kj), fg;) e, ﬁz-(k), ozgk) € €\ {0}.

Every practical look-ahead Lanczos method generates implicitly, for every number j €
{0(k)|k € K}, upper Hessenberg matrices H) and HY) satisfying the equations

v gl — HjAV(j) (4.3)
1774520 2 () = HJTATV(j).

In the following theorem we describe how the matrices HU) can be constructed from data
computed in the practical look-ahead Lanczos process.
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Theorem 4.4 (Block tridiagonal matrices) The matriz H) | generated by a practi-
cal look-ahead Lanczos method, is block tridiagonal and unreduced upper Hessenberg

E G 0
H(s) _ Bl EQ
01371
0 B, , E

Every subdiagonal block By € Matgim, , xdim, has eractly one non-zero element in the

upper right corner. In general Cy, = (¢;j) is a full matriz. Let gikj), fg;) be the coefficients
used in Theorem 4.53. Then the following relations hold:

a) The entries of the v(k)-th column of H®) are the projection coefficients of Avy).

In other words: Let (ag-k)),;(k_l)ﬂgjg,;(k) be the last column of Ey and by, the non-zero
element in By. Then

(k) p(k—1)
brvsky+1 = (I — o) Avory = Avpry — a;-k)vj - Y ciomwvi-
J=p(k—1)+1 i=0(k—2)+1

b) The projection coefficients of
a_
vi= Avgy g — D 90 V4
j=1

are the entries of the (0(k) +i)-st column of H®):

o(k—1)

1 Lok
et = (I = o)V = Avpyss — 2050 0o s = D otk
Bita j=1 j=0(k—2)+1

Remark 4.1 In a similar manner as described in Section 3.2.4 we obtain the identity
H® = (D)t p), (4.5)
Here D) = (W) (),

In the following we denote the projection coefficients of ATw,;(k) by dgk), Cit(k)-

The practical monomial look-ahead Lanczos method uses the recursions from Theorem
4.3 with the coefficients gZ(’kj) = 0 and fz-(’l;-) = 0 for all k,7,7. Throughout the rest of the
paper we assume that all vectors w; and v; are normalized in Euclidean norm.
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4.1 Improvement of stability for look-ahead Lanczos methods

The block biorthogonality ((W;)"V; = 0 for ¢ # j) is used in Theorem 4.3 and Theorem
4.4. Unfortunately, in finite precision arithmetic this biorthogonality can be lost after few
steps.

In the following examples the IEEE-arithmetic ‘extended’ has been used for the compu-
tation of the inner products and the IEEE-arithmetic ‘double’ for all other computations.
The starting vectors v; and w; are given without normalization.

Example 4.1

( 0 000 O0O0OO0OO0OTO0 2 W ( 1.00 ] ( 0.06 ]
1000 0O0O0O0OO0O 4 0.28 0.41
01 000O0O0O0TO0 6 0.55 0.66
0 01 00 0O0O0O0OTCO0O 8 0.64 0.32
Ao 0001 0O0O0O0O0 10 Cwr = 0.74 = 0.85
000010000 12 0.16 0.95
0 000O0O1O0O0TO0 14 0.14 0.32
0 000O0O0OT1O0O0 16 0.12 0.59
0 000OO0O0OTO0OT1TO0 18 0.17 —1.00
L 000 0O0OO0OTO0OTO0T1T 20 J L 0.45 | L 1.00 |

The degree indices of (wy, A,vy) are: v(k) = k for 1 < k < 10. The ordinary Lanczos
method generates the diagonal blocks
Dy= 0541 Dy= —-0.006 Ds= 0.006 D= —-0.658 Ds= 0.493
Ds= —0479 D;= 0.653 Dg= —0.328 Dg= —0483 D,o = 0.284.

The first column of D' shows that the block biorthogonality has been nearly lost after
few steps

(D1We)T = [5-1071,2-10717, —7-10718 4. 10713, -3 . 10713,
8-107'°,3.107%,4-1077,1-107°,1-107].

A slow loss of block biorthogonality cannot be avoided in finite precision arithmetic.
However, a quick loss can be avoided in many cases. There are two possible reasons for a
quick loss of block biorthogonality:

1) The nearly linear dependence of vectors from different blocks.
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2) The nearly linear dependence of the two vectors Avy ) and Iy Avys).

The projection coefficients a;k),cz‘lj(k),dgk),éilj(k) from Theorems 4.3 and 4.4 provides a

simple measure for the norm of the projection IT;:

(k) © p(k—1)
Loy Avary || < > la;”| + S Jeinw]
j=p(k—1)+1 i=p(k—2)+1
=: (, (k) =: ¢2(k)
, (k) " p(k—1)
Ty AT woml] < @[+ > |G|
z:l/(k—l)—l—l . Z:fl(k—?)—l—l .
=: (,(k) =: (2 (k)
We define
1 2 1 2
1 C’u (k) 2 C’u (k) 1 C’w(k) 2 Cw(k)
fy(k) == (k) == (k) = = (k) = o
|| Avs | || Avs || || AT ws )| AT wa k)|

In general the linear independence of vectors from different blocks can be improved by
the following procedure: A regular vector is constructed only if the condition

& 2 p(k) -= max{p, (), i, (), (k). 1y (k) } (4.6)

(where £ is a constant) is fulfilled. Instead of condition (4.6) Freund, Gutknecht and
Nachtigal [20] use the check

C > ((k) := max{(, (k), G, (k), ¢, (k), G (k) }. (4.7)
Here the constant C' can be obtained from a previous run, or by setting
C := max{||Av,||, ||ATw1]|}. (4.8)

This avoids the computation of ||Avyw)|| and |[ATwy||. However, ((k)/C is a rather
crude measure for the linear independence of vectors from different blocks (see Example
4.2).

Example 4.2 Let 5,3, 74 € C.

(001 0 0] 1]

1 1 0 0
A= & ; w1 = V1 =

0 1 ~5 1 0

(000 1 | 0 |



4.1 Improvement of stability for look-ahead Lanczos methods o1

The Lanczos method applied to (wq, A, v1) generates the exact result even in finite preci-
sion arithmetic:

1 000
wWw —y@ — pi — 0100 ’ HY — 4
0 0120
I 00 01 |

a) Let C' be defined as in (4.8) and let |y2| > 1. Then check (4.7) fails after the second
step.
b) Choose £ > 1. Then the condition (4.6) is fulfilled for all v, v3,v4 € C:

(1) =0, M(4)_M (k_M k=23

- \/1+|74|2 ’ \/2+|%|2 ’

If condition (4.7) cannot be fulfilled by increasing the block size then the obvious thing
to do is continuing with that block size which has the minimal ((k)-value. Then one can
continue using the same constant C' as before or, as Freund, Gutknecht and Nachtigal
[20] proposed, one can replace C' with the minimal ((k)-value. Both possibilities have
advantages: By updating C it can be prevented in many cases that the condition (4.7)
fails in a later step. Hence storage and computational work may be saved. On the other
hand, if one does not change C' then the block biorthogonality may be improved in a later
step. As a compromise we propose the following procedure:

If the minimal value ((k) is below the upper bound ¢ - C' ( where ¢ > 1 is a constant)
then C' is replaced by ((k), otherwise C' is chosen as ¢ - C. A similar procedure can be
used to update the value £. In the rest of this section we restrict our attention to check
(4.6). To measure the block biorthogonality of a ‘finite precision basis’ to (#(k)),cx (i-e.
a sequence generated in finite precision arithmetic by the recursions of Theorem 4.3 ) we
use the measure 7 defined as

7o = max{|0;| : (i,7) ¢ {v(k— 1)+ L,v(k—1)+2,...,v(k)}* forall 1<k< b}

where D) = (0ij)1<ij<s == ({wi,v;))1<ij<s- In Example 4.1 the block biorthogonality
can be improved considerably by using check (4.6).

Example 4.3 (Continuing Example 4.1) We choose £ = 5. Then the monomial
look-ahead Lanczos method together with check (4.6) applied to the triple (wy, A, vq)
generates the diagonal blocks

D= 0541, Dy= —0.658, Dy= 0.493, Ds= —0.479
Ds= 0653, D;= —0.328, Dg= —0.482, Dy= 0.285
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—0.006 0.489
0.722 0.571

In this example the check (4.6) offers a considerable improvement of the block biorthog-
onality:
To(without (4.6)) =2.5-107%  74(with (4.6)) = 1.0 - 107°.

Condition (4.6) can be fulfilled although the block biorthogonality is nearly lost. Consider
the case where Avy) and Iy Avgy are nearly linearly dependent and have about the
same norm. Then pu(k) ~ 1 although the block biorthogonality is nearly lost after few
steps (see Example 4.4 below).

Example 4.4 Let £ > 1. Then the monomial look-ahead Lanczos method together with
(4.6) applied to
T

A:[\/i+j]1gi,jg5, wp=v1=|11 1 1 1

generates the diagonal blocks Dy = (1) for 1 < k£ < 5. In this process the condition (4.6)
is fulfilled at every step

p(1)=99-10"%  w(2)=9.9-10"Y, u(3)=96-10"1 u4)=9.7-10"L, u»)=>52-10"3

although 75 = 5.2 - 1073,

For k € {1,2,..., h— 1} we propose a further check (4.9) to guarantee that the subtraction
Avpry — Hpy) Avpry is not ill-conditioned:

U > (k) := max{oi”, 5"} (4.9)

where % .= ||(T — o)) Avpgy || 71 ol = |1 - T3 4y) AT Wiy |71 and W is a constant.

The values ﬁfk) and agk) are used to normalize the vectors wy(x)4+1 and v)41 if the con-
ditions (4.6) and (4.9) are fulfilled. Hence, check (4.9) does not cause any computational
costs if the checks (4.6) and (4.9) are passed.

Example 4.5 (Continuing Example 4.4) Let (w;, A, v;) be defined as in Example 4.4.
By using check (4.9) the maximal ¢-value can be reduced. This leads to an improvement
in block biorthogonality:

s(without (4.9)) =5.2-107°  75(with (4.9)) =2.3-10"*,
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Summarizing the checks: The k-th block is closed (i.e., a regular vector is generated)
only if

(the constant tol > 0 is chosen by the user) and the check

1>7(k):= max{@, @} (4.11)

~

holds (¢(b) := 0). If condition (4.11) cannot be fulfilled by increasing the block size we
continue with that block size dimy which produces the minimal Y (k) value. In this case
we update the values ¥ and £ as follows: Let 1(k) and p(k) be the values belonging to
the block size dimy. If the value u(k) (¢(k)) is below the upper bound ¢ - &£ (¢ - W) and
greater than p(k — 1) (¢(k — 1)) then £ (W) is replaced by the number p(k) (¢(k)). If
the upper bound ¢ - ¢ (- ¥) is smaller than the number u(k) (¢(k)) then we update & by
E:=¢-&and ¥ by ¥ :=¢- U,

4.2 A stable version of the minimal look-ahead Lanczos method

Notation:

e ¢ := relative rounding error for the computation of (w,v).

Diyy = (05)1<ij<irr = ((Wok)+is Vi) +j))1<ij<it1-

Ay = (Waky+i> AVo(ry15)-

e max is a variable which is determined by the user (or by available storage; see
procedure ‘inner step’).

The constants W, &, tol and a are chosen by the user.

Now we turn to the construction of a ‘stable’ version of the minimal look-ahead Lanczos
method.

Idea: If an inner step (k) +i is numerically an ‘exact inner step’ (i.e. D}, is numerically
singular for all 0 <[ < i — 1) then the minimal Lanczos vectors are used. If a block has
to be continued because check (4.10) of (4.11) fails the antidiagonal structure of Dy is
lost. For the residual vectors of this block any basis can be chosen. In the following we
use the monomial look-ahead Lanczos vectors as residual vectors.
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4.2.1 The stable minimal look-ahead Lanczos algorithm

procedure inner step;

procedure compute vector v(k,i);

Usk)it1 = Avsey i — VD "W Avpgy1i s

k k
51'(431 = 1/||Uz>(k)+z'+1||; Vo(k)+i+1 = /81‘(+)1U19(k)+1'+1 )
procedure compute minimal Lanczos vector w(k,);

Wk +i+1 7= A Woky4i — Al 1)/ 0 ganyWormye1 — Wi Dy ViF AT w44

(k) ._ ) — (k .
Qi = 1/||w19(k;)+i+1||1 Wp(k)+it+1 = QO Wi(k)+i+1 s

procedure compute monomial Lanczos vector w(k, 7);

Wiy 4it1 = ATwoeyri — Wi D ' ViF AT woky 14 5

k k
a§+)1 =1/ ||wﬁ(k)+z'+1||§ Wp(k)+i+1 = a§+)1wﬁ(k)+z‘+1 )

procedure compute minimal Lanczos vectors;

0:=0; 5{9&,11) = <w19(k)+17 UD(k)+g+1>§

while |6}}},)| < eand (k) + 0+ 1 < N do

0 := o+ 1; compute vectors v(k, o); 5{“(:11) = (Wi (k)+15 Vir(k)+o+1)

if [05 ) 1) < € then incurable := true
else for i := 1 to ¢ do compute minimal Lanczos vectors w(k, p);

o .
procedure compute D ;

Compute the entries of D{,,. If the absolute values of all entries above and
below the antidiagonal are not greater than e then minimalip,, := true else
minimaly,, = false. If minimaly,; = true and the absolute value of all en-
tries on the antidiagonal of Dy, are greater than a - e then singular := false else
singular := true and minimaly,, := false.

(% inner step *)
incurable := false; compute minimal Lanczos vectors;
if not incurable then
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compute D{,; j = 0;

if singular then number := 0 else number := 1;

if 0 (DY79) < tol then singular :=true
stop:=((0(k) + 0+ j+1> N) or (mazx < number));
while (singular or (4.11) not true) and not stop do

stop:=((0(k) + o+ j+ 1> N) or (mazx < number));
repeat

j :=j + 1; compute vector v(k, 0+ j);
compute monomial vector w(k, o + j)
if 0pin (D) < tol then singular :=true else singular :=false

until not singular or v(k) +o+j+1=N
if not singular then number := number + 1;

if number > 1 then

j := block size for which Y (k) is minimal;
update the values { and ¥; (k +1) :== 0(k) +o+j+1; k == k+1;
Dy := D¢

else incurable := true;

procedure regular step:;

procedure regular step for minimal Lanczos vectors;

dimy—1
Up(k)+1 = A'Uﬁ(k) - zk:O ( /5 dzmk z)(z—l—l))vﬁ(k*l)*‘“ﬂ
Vi1 (Dg—1) " (Wi 1)TAUu( k)
Wpk)+1 = ATwﬁ(k) ( 0/5]fd27171k)wu k—1)4+1 — Wi_ I(Dk 1) t(kal)TATwﬁ(k) ;
procedure regular step else;
Va1 = Avpr) — V}c(Dk)il(Wk)TAUﬁ(k) — V}cfl(Dkfl)il(kal)TAUﬁ(k) ;
o1 = ATwigy — Wi(Di) ™ (Vi) " ATwpey — Wit (D) " (Vie1) " AT wiry 5

(x regular step x)
if minimaly then regular step for minimal Lanczos vectors else regular step else;

59) = 1/[[vor)1ll; Un(k)+1 *= 5§k)vz>(k)+1 ;
®) . — 1 /1w . ) — oK) :
Gy = /||wu(k)+1||a Wp(k)+1 = O " Wp(k)+1 5
(x Stable version of the minimal look-ahead Lanczos method x)
k:=0; v(k):=0;
repeat



56 4 PRACTICAL LOOK-AHEAD LANCZOS METHODS

if £ > 1 then regular step;
inner step

until incurable or (k) = N.

4.2.2 Remarks on the implementation

In the following we give some implementation details for the computation of

Vi. Dy, "W)™ Avp i, Wi(DE) (Vi) T AT wp(r) 4 and DfZ4. Our goal is to reduce the com-
putational effort such that only two inner products have to be computed explicitly per
step. (The computational effort for the check (4.11) is omitted.)

4.2.2.1 Computation of D},

All entries of D{,, can be computed by recursion from the first row of D{,, and the
values

Afgi1y = (Wotkyris Aoy ron)  1<i<o (4.12)

which already have been computed in the procedure ‘compute minimal Lanczos vectors’.
Computation of the antidiagonal and all entries above the antidiagonal
For sum :=2to o+ 1 do

for i := 2 to sum do
. . k k)
Ji=sum —i+1; (5{-‘3 = Oéz(- )(6@71)(#1)/5](-“ .A Y(o+1) /(5"C Tot1))-

Computation of the entries below the antidiagonal
All entries from the last column of D}, vanish except the first entry. Therefore we can
compute all entries below the antidiagonal by:
[:=1;
for sum := p to 20— 2 do

[:=1+1;
for j := p downto [ do

1i=sum—7+3; u:= —AZ 1)(o+1) 5{“3/(5’“(04_1) ;
if j < o then u —u+5l 1 ]+1/ﬂ]+1,

k. (k)
O = ua; .

4.2.2.2 Computation of D{}/ for j > 1

The construction of D,ﬁfl requires only the explicit computation of the inner products

<w17(k)+g+javl7(k)+g+j+1> and <w17(k)+g+j+1avﬁ(k)+g+j+1>'
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All other entries can be constructed by recursion from D,ﬁﬂ_l and the values (4.12).

Computation of the last column
If j = 1 then for i := 1 to ¢ do d},,q) = Aj,, ) 59422
else for : := 1 to p do

k . (k) k (k) k k k .
Oi(or149) = Biv140(0Ga1)(04) /it T 01015y /O(o41) Atlor1)) 5

fori:=p+1top+j5—1do 6 (0+j+1) = 6@+1)(g+j)ﬁ£+j+l/ai+l.

Computation of the last row
For i:=1to ¢+ j do 0f, ;) = 6fg+j)(i+1)aé@j+1/ﬁz~(ﬁ.

4.2.2.3 Computation of (Wk,l)TAU,g(k), (V}g,l)TAT’wg(k), WkTA’U,)(k)+1‘, VkTATw,;(kH
for 1 >1
In view of the identities

ok

k
61z

VkTATwﬁ(k)—l— - €dimy, » WgAUﬁ(k)+i = €dimy,
2 alf
k—1 bl
dimp_11 Ldimy
(Vk—l)TATwﬁ(k) - zchlill) Edimy_1 > (Wk—l)TA’Uﬁ(k) = a(z/:rikl)ledimk—l
1 1
further inner products need not to be computed.
4.2.2.4 Computation of V;" ATw;
Only (wy(k), Avy(r)) have to be computed explicitly:
dimy, k 1
Vi A woy = Y (Zkalz eim1 + (Waok), AVa(k))dim, -
1=2 1

4.2.2.5 Computation of W, Av,,

If j =0 (i.e. Dy = D) then all entries have been computed before. If j # 0 then the

construction of the entries does not requ1re the computatlon of any further inner product:
k k—1 k=1 .

For i:=1to 0 do Azdzmk =0 z—|—11 )dimy, /az—l—l ‘A i(0+1) 61dzmk /(S g—l—l

k-1
for i:=p+1tojdo Azdzmk = 6]2—1—11 dzmk/ Z('i'l )

4.3 Comparision of the minimal look-ahead Lanczos method
and the monomial look-ahead Lanczos method
4.3.1 Computational work

Both methods require the same number of explicit computations of inner products per
step as the ordinary Lanczos method. If no exact block is constructed then the minimal
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look-ahead Lanczos method requires about the same computational effort as the monomial
look-ahead Lanczos method. However, if an exact block is constructed then the minimal
look-ahead Lanczos method requires less storage and computational work (see Section
3.2.3).

4.3.2 Numerical quality of the generated bases

In this subsection let A € Maty(IR) and v1, w; € IRY. Assume that the minimal look-
ahead Lanczos and the monomial look-ahead Lanczos method terminate after step N. If
no exact block is constructed then the two methods generate bases with similar numerical
properties. The following discussion shows that the minimal look-ahead Lanczos method
has better stability properties than the monomial look-ahead Lanczos method if an exact
block is constructed.

Theorem 4.5 shows that the left minimal Lanczos vectors w; are the normal vectors to
the hyperplanes generated by the right minimal Lanczos vectors v;.

Theorem 4.5 Let (w;,v;)i<i<n be a basis to (0(k))ker and let Dyiq be antidiagonal.
Further let Ry be the orthogonal projection onto Wt

W, :=span{v; : 1 <i <N, i#Il}.
Then the equation
(Witk)+it1> Voka1) =) Wirtk)+it1 = Ro(ht1)—iVo(kt1)—i (4.13)

holds for all0 <1,k <b—1,0<j < dimy1 —1, 0<i < dimgys — 1.

Proof. By construction wy)4it1 € Wlf(kﬂ)ﬂ- and dim WﬁL(kH)ﬂ. = N — 1. Hence the
equation span{wpk)yit1} = WﬁL(kH)ﬂ- holds, which proves the assertion. [ ]
The vectors generated by the monomial look-ahead Lanczos method do not have the

property (4.13). This observation is the key for understanding the different numerical
properties of the two methods.

4.3.2.1 Numerical properties of D,

Assume that the k-th block is exact. Then the matrices Dy (minimal Lanczos) and Dy
(monomial Lanczos) have the properties:

a) The condition number of the matrix D) (minimal Lanczos) is determined by the
quotient

cos(O(Wiky—i, Vi(k)+i))

cos(©(Wi(k)—j» Vi(k)+j))

/fz(Dk):max{ :lgi,jgdimk}.
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Here the angle ©(Wj )i, Vo(k)+i) is defined as
O(Wi(k)—is Vik)4s) := min{arccos [(z, vpky+i)| : ¢ € Wym—i, |[2]] =1}

In general the values of the angles ©(Wyky—i, Vo(k)1i) and ©(Wi)—j, Vok)+;) are of
the same magnitude.

The singular values {o; : 1 < i < p(k) — 0(k — 1)} of the matrix D) (minimal
Lanczos)

0; = || Rok)=iVok)—i|| = cos(©O(Wiey—is Vi(k)+i))
are bounded above by 1. The singular values of Dy (monomial) can become much
greater.

a) and b) indicate that in general the condition number of Dy, (minimal Lanczos) is smaller
than the condition number of D; (monomial Lanczos).

Convergence to an eigenvector of A7

The monomial inner vectors w; can converge to an eigenvector of A” although the right
vectors v; are well-conditioned (i.e. the matrix V() is well-conditioned). This leads to a
nearly singular matrix Dy (monomial Lanczos) and a very quick loss of block biorthogo-
nality. However, in the minimal look-ahead Lanczos process (or any look-ahead Lanczos
method which generates an antidiagonal block) this cannot happen if an exact block is
constructed. This observation can be stated precisely as follows.

Corollary 4.1 Let (w;, vi)i1<i<y be a basis to (0(k)),.p and let Dyyy be antidiagonal.
Further let By and W, be defined as in Theorem 4.5. Then the following identity holds for
al0<Lk<b—1,0<j7<dim;—1,0<s<dimpy —1:

(Ro(i+1)— V(14 1)—js Riok1)—iVi(kt1)—i) |

|(w,; Dj+1 Wik +i+1>|
O+ *) R (41)= Vo415 || | Rotks1)=iVs(e+1)—d |

= COS(@(Wﬁ(k-i—l)—iaWﬁ(k+1)—j))-

Here the angle @(W,;(Hl)_i, W,;(;,H_l)_j) between the hyperplanes is defined as

(z,9)
2l Iyl

OWitkt1)—i» Witkt1)—j) := arccos{| | e Wokry—i - YL Wiges1)—s}-

Corollary 4.1 shows that in the general case the condition numbers of the matrices V)
and W) are of the same magnitude. Corollary 4.1 also shows that the left vectors w;
are orthogonal if the right vectors v; are orthogonal.
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Example 4.6 (Convergence to an eigenvector of A7) Let A be defined as in Ex-
ample 4.1 and let w; = ey, v1 = e; — e3. The monomial inner vectors w; converge to an
eigenvector of AT (see Table 4.6.2).

Monomial Monomial Minimal Lanczos | Minimal Lanczos
Lanczos Lanczos
T>100,>1lor | 5<E<10 | ¥ >100, &> 11 5<€E<10
U <10% ¢>5 | without (4.9) ¥ > 100

(1) 8 9 8 9

7(2) 9 10 9 10

7(3) 10 - 10 —

70 2.6-1079 5.8-10705 3.6-1071° 6.0-10 14
Ko (D1) 6.5-10 % 3.5-10 1 2.0-10 % 3.4-10 92
Ko (W7) 6.5-10 % 1.4-10 1 5.4-10 % 1.3-10 2
ko (V1) 3.1-10 3.5-10 3.1-10 3.5-10

Ko (W (10)) 9.4-10 % 1.9-10 11 9.0-10 % 1.8-10 92
Ko (V1)) 8.1-10 0 8.8-10 90 8.1-10 90 8.8-10 00
fh (1) 1.0-10 % 1.0-10 °° 9.8-107 1.0-10 %
(1) 1.1-10 O 1.2-10 %0 1.1-10 ¢ 1.2-10 %
fh (2) 1.0-10 % 8.0-10 % 1.0-10 0 1.1-10 O
1 (2) 1.1-10 % 7.6-10 % 1.1-10 7.6-10 °°
f (3) 821070 - 82-1070 —
THE)) 1.3-10 % - 1.3-10 0 -
otV 7.5-10 08 - 8.9.10~01 -
O 1.8-10 2 - 1.8-10 02 -
al? 7.7-10701 1.2.10 10 7.8-1070! 1.7-10 O
(2) 3.9-10 0 1.9-10 0 3.9-10 1.9-10 90
Tab.4.6

This leads to nearly singular matrices Wi (monomial) and D;(monomial). The matrix
V19 (the common right vectors v;) is well-conditioned. Therefore the minimal Lanczos
vectors w; cannot converge to an eigenvector of AT. A consequence of this behaviour
is that the minimal look-ahead Lanczos method provides a better block biorthogonality
(measured by 7y) and well-conditioned matrices D™ and W) (see Table 4.6). Table
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4.6 also shows that the properties of the monomial Lanczos vectors can be improved by
using check (4.11) instead of check (4.6).

Monomial Lanczos | Minimal Lanczos
method method

(wy,ws) || 0.98752338877845 | 0.00000000000000
{(wq, w3) || 0.99994838016513 | 0.00000000000000
(w3, wyq) || 0.99999988173873 | 0.00000000000000
(wy, ws) || 0.99999999972924 | 0.00000000000000
(ws, we) || 0.99999999999938 | 0.00000000000000
(wg, wr) || 1.00000000000000 | 0.00000000000000
(wr,ws) || 1.00000000000000 | 0.00000000000000

Tab.4.6.2

Convergence to an eigenvector of A

If the inner right vectors v; converge to an eigenvector of A then, in general, the relation
4.13 between the left and right minimal Lanczos vectors the condition number of the ma-
trix Wy (minimal Lanczos) is not much better than the condition number of V;. However
the condition number of Dy (minimal Lanczos) is less than the condition numbers of Vj
and Dy (monomial). The following example demonstrates this behaviour.

Example 4.7 (Convergence to an eigenvector of A) Let (i1, A, 01) be the dual
system to (wy, A,v;) defined in Example 4.6 (i.e. w; = vy, 01 = wy, A = 4T) The
bases generated by the monomial look-ahead Lanczos method applied to (w, A, 1) and

(w1, A, v1), respectively, are identical if the right vectors v; are interchanged with the
left vectors w;. Hence (see Example 4. 6) the common minimal Lanczos and monomial v-

vectors converge to an eigenvector of A and the matrix W (monomial) is well-conditioned.
Although the left vectors @w of the minimal look-ahead Lanczos method are nearly linearly

dependent, the condition number of the matrix D; (minimal Lanczos) is less than the
condition number of the matrix generated by the monomial look-ahead Lanczos method.
The values of 7 show that the minimal look-ahead Lanczos method yields a better block
biorthogonality than the monomial look ahead Lanczos method (see Table 4.7).
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Monomial Monomial Minimal Lanczos
Lanczos Lanczos
¥>100,6>11or | 5<E<10 £>5
U <10° ¢>5 | without (4.9) ¥ > 100

(1) 8 9 8

7(2) 9 10 9

7(3) 10 - 10
ka(D1) 6.5-10 3.5-10 1! 3.0-10 97
Ko (W) 3.1-10 00 3.5.10 00 7.3-10 %
ko (V1) 6.5-10 % 1.4-10 1 6.5-10 %
Ko (W 10)) 8.1-10 90 8.8.10 90 89-10 %
Ko (V10)) 9.4-10 9 1.9-10 " 9.4-10 %
710 5.4-10705 8.0.10795 3.5-10708
fw (1) 1.1-10 1.2-10 % 8.7-107%
fiy (1) 1.0-10 % 1.0-10 % 1.0-10 %
f(2) 1.1-10 7.6-10 1.1-10 %
110 (2) 1.0-10 % 8.1-10 % 1.0-10 %
fw(3) 1.3-10 % - 1.3-10 %
110 (3) 8.2-10701 - 8.2-107%
alt 1.8-10702 - 1.0-10 9
) 7.5-10 08 - 7.5-10 %8
al? 3.9-10 0 1.9-10 % 3.9.10 0
(2) 7.7-1001 1.2-10 1° 7.7-10701

Tab.4.7

The values ((k), u(k) and (k)

If the minimal look-ahead Lanczos method and the monomial look-ahead Lanczos method
generate bases to the same indices (7(k)), .z then the following holds:

a) The minimal look-ahead Lanczos method and the monomial look-ahead Lanczos
method yield the same values ¢ (k), ¢2(k), pl(k), p2(k) and g,

b) Let the k-th block be exact. By construction of the left vectors w; of the minimal
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look-ahead Lanczos method, the vector Ang(k) is orthogonal to the vectors

Vp(k—1)+15 Up(k—1)4+25 - - - Up(k)—1-

Hence in the k-th regular step (construction of wﬁ(k)+1) we only have to force the
orthogonality against vy and the (kK — 1)-st block. This leads in many cases to a

value of o) which is smaller than the the value of " (monomial).

(. (k) is constructed as an approximation of ||[W,;D; 'Vl ATwy,||. Because of the
inner biorthogonality the values ¢ (k)(minimal Lanczos) and ||Wj, D' ViF ATw; ||
are identical if an exact block is constructed. In general, the value ¢} (k)(monomial)
do not have this property.
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5 Krylov subspace projection methods

5.1 A general concept

Up to know we have discussed the Arnoldi method and the look-ahead Lanczos methods.
What do these methods have in common 7

Both methods applied to a matrix A € Maty and a starting vector v; € @V generate
matrices V' € Matyy,, H € Matgy; (for some s < N) with the properties:

a) The column vectors of V' form a basis of the Krylov chain (KC(i, A, v1))1<i<s-
b) There is a projection IT onto K(s, A, vy) such that the equation
VH = TIAV (5.1)

holds.

In the case of the Arnoldi method the matrix IT is the orthogonal projection onto K(s, A, v1)
and in the case of the (look-ahead) Lanczos method II is the projection defined by

ImII = K(s, A, vy) and KerII = K(s, A" wy)™*

where w is the left starting vector of the (look-ahead) Lanczos method. In the following
we call methods which generate matrices V' € Maty.s and H € Mat,,,, satisfying the
conditions a) and b) above, Krylov subspace projection methods.

The Lanczos method and the Arnoldi method are ‘extremal points’ in the set of Krylov
subspace projection methods. Indeed, the Lanczos method requires minimal computa-
tional effort and storage but the generated basis can be ill-conditioned. The Arnoldi
method generates an orthogonal basis but it requires much more computational effort
and storage than the Lanczos method. Therefore we ask how to construct a Krylov
subspace projection method ‘lying’ between the Lanczos and the Arnoldi method in the
sense that it requires small computational effort and storage and the generated basis is
not ill-conditioned. The look-ahead Lanczos method is such a method. But is this really
the best method or are there other Krylov subspace projection methods which have much
better numerical properties ?

This question was the starting point for studying general Krylov subspace projection
methods. Here we do not provide an ultimate answer. But we present an appropriate
setting for the construction of stable and efficient Krylov subspace projection methods
and offer some theoretical results which are useful to distinguish good methods from bad
ones. Further we derive results which are used in Chapter 6 for convergence proofs of
restarted Krylov subspace projection methods.
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First we show that every matrix H generated by a Krylov subspace projection method
is an unreduced upper Hessenberg matrix.
As described in Remark 2.1 the equation (5.1) can be rewritten in the form

VH=AV — {(I —TI)AVe,}el

which is equivalent to
{(I —-MMAVe,}el = AV - VH.

In component notation, this equation reads

0 = Av;—>_ hjvj, i=1,2,...,5—1 (5.2)
j=1
(I — H)Avs = A’Us — Z hj,sUj (53)
j=1
where H = [h;j] and V = [vy, vg, ..., vg).

Using

vis1 € K(i+1,A v) = span{vy, vs, ..., Av;}
Avi ¢ K(i, A,v1) = span{vy, vy, ..., vi}

we conclude
hi—l—l,i 7£ 0 and hj’i =0 for j>i+1.

Hence we have proved Lemma 5.1 below.

Lemma 5.1 Every matriz H = [h; ;], generated by a Krylov subspace projection method,
18 an unreduced upper Hessenberg matriz. Furthermore the equations

hi+1’ivi+1 == AUZ' - Z hj,ivja 1= 1, 2, e, S — 1
j=1
(I —MMAv, = Avg— Z h; sv;
j=1

hold.
For simplicity and clarity we introduce ‘Krylov tuples’.

Definition 5.1 (Krylov tuple) A five-tuple (A, V,II, H,s) with A, T1 € Maty, s €
{1,2,...,N}, V € Matyys and H € Mat; is called a Krylov tuple if the column vectors of
V' form a basis of the Krylov chain (K(j, A, v1))1<j<s, 11 is a projection onto K(s, A, v1)
and VH =1I1AV.
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Hence a Krylov subspace projection method is a method which generates matrices V' €
Matyys and H € Mat, such that (A, V,II, H, s) is a Krylov tuple for an appropriate choice
of s and II.

Theorem 5.1 below clarifies the connection between matrices H and H generated by
different Krylov subspace projection methods.

Theorem 5.1 Let (A, V.11, H, s) and (4, V.11, |, s) be Krylov tuples.
Let Ve, € span{Vey}. Then the following holds:

a) There is an invertible upper triangular matriz R € Maty such that V' = VI? and
Hei= R 'HRe; fori=1,2,...,s— 1. If also I1 = II holds, then H = R-'HR.

b) If s =m:=dimK(N, A Ve,) then H= R 'HR.

Proof. By definition of a basis of a chain of subspaces there is an invertible upper
triangular matrix R € Maty such that V = VR. Using VH = IIAV we obtain VRH =
[TAVR. Hence VRHR ! = IIAV. Finally the relations

Af)jEIC(j—l—l,A,vl):ImH:Imﬂ, for j=1,2...,s—1

yield
VRHR_lei = HA‘A/GZ = [A’lA)l, A’lA)Q, ey A’lA)S_l, HA’[A)S]GZ
= [A’lA)l, A’lA)Q, ceey A’lA)S_l, ﬂA’lA)S]BZ = ﬂAVGZ
for all i € {1,2,...,s — 1} which proves a) and b). u

Now we discuss how to construct a Krylov subspace projection method or, equivalently,
how to generate a Krylov tuple step by step.

Suppose that we have already generated a Krylov tuple (A, VI, H, s). In the next step
we construct a Krylov tuple (A, V,II, H, r) with the property

. . H x
r>s, V = [V, %] and H =
* %

Such a Krylov tuple (A, V, I, H, r) is called a continuation of (A, V,TI, H, s). The following
theorem characterizes continuations of a Krylov tuple.

Theorem 5.2 Let (A, V11, H ;) and (A, V11, H, s) be Krylov tuples and s < r. Suppose
that V = [V, ]. Then (A,V,II, H,r) is a continuation of (A, V, 11, H, s) if and only if there
is a number o € © such that Ve, = a(I — I1)AVe,.
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Proof. By Lemma 5.1 the identities

s
hs+1,svs+1 = A’Us - Z hj,s’Uj
Jj=1

(I - H)A’US == AUS - Z hj’svj == A’lN)S - Z Bj7s’l~)]’
7=1

=1

hold. Thus,

hs+1,sﬁs+1 = ([ - H)Avs
which proves the theorem. [ ]

Theorem 5.2 yields the following algorithm for the construction of a continuation
(A, V,II, H,r) of a Krylov tuple (A, V,II, H, s).

Algorithm 5.1

(1) Choose r € IN such that 7 > s and r < dim (N, A, vy).
(2) Choose ;41 € €\ {0} and compute vyyq := fsy1(L — 1) Avg.

(3) For j =s+1,s+2,...,r — 1 choose coefficients iLl’j € €, Bjy1 € €\ {0} and
compute

i .
Vi1 = Bjp (Avj - hz,jvz) :
=1

(4) Vo= [Vs41, Usi2, -« -, Url, V= [V, V3).

(5) Choose an arbitrary full rank matrix W € Matyy, with the property that D :=
W*V is invertible. Define IT := VD 1W*,

(6) Put (el, Hey):= . Forj=s+1,...,r — Lset He; := Biliejn + S hujer

(7) He, = >y /Nzl,,«el where [TAv, = i1 /Nzl,,/vl.

The degrees of freedom in the construction of a continuation are the coefficients i}l,j (for
j <), the matrix W and the scaling factors 511, §;41. The factors fy;1, ;11 are usually
used to normalize the vectors v ;.

Choice of the matrix W

To reduce the costs for the computation of a full rank matrix W € Matyy, with the
property det(W*V') = 0 one can choose the following strategy:
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a) Define W := [W,W,], where the matrix W € Maty, has already been computed
to represent the projection IT = V(W*V)~'W* of the Krylov tuple (A4, V,TI, H, s).

b) The full rank matrix W, € Mat y (s is chosen such that det(W*f/) # 0.

The result is a representation VD~ W* of the projection II with
ImIl = K(r, A, Vey) and Ker II = Ker W*

where
W*v W*v,
WV WiV,

D:=W*V =

To reduce the costs for the inversion of the matrix D one can choose the full rank matrix
W, from above such that

WiV =0 and det(W5V3) # 0. (5.4)

Indeed, the condition (5.4) implies that W = [WW, W5] has full rank and D is invertible
with the representation

D! _D—lw*%D—l
0 D1

D' =

where D := W*V and D := W;V5.
Choice of the coefficients /i,
A further reduction of the costs of the inversion of D can be achieved by choosing the
coefficients h; ; such that W*V, = 0. The conditon W*V, = 0 is equivalent to IV, =

0. Thus, we obtain the following recursion for the construction of the matrix Vo, =
[Vs11, Vs, - - -, U] With the property W*V, = 0:

For j = s,s+1,...,7 — 1 choose coefficients iLl,j e, B; € €\ {0} and compute

I .
Vjy1 = ﬁj-l—l (A’Uj - Z h’l,jvl - HAUj) . (55)

[=s+1

The following theorem summarizes these observations.

Theorem 5.3 Let (A, V11, H, s) be a Krylov tuple and let V(W*V)"'W* be a represen-
tation of the projection I1. If a continuation (A, VI, H, r) is constructed by Algorithm
5.1 and the relations (5.5) and (5.4) are used instead of (3) and (5) then the matrices V,
W, W*V and II have the representations:
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a) W=[W,Wy] and V = [V, V3].

wvoo0
0 WV

b) WV =

¢) T =TI+ 11 where T := Vo (W5 V,) "' Wy
Remark 5.1 Theorem 5.3 c) is equivalent to IIV, = 0 and IIV = 0.

Remark 5.2 It is evident that in Algorithm 5.1 and Theorem 5.3 the conjugate and
transposed sign "x‘ can be replaced by the transposed sign "T".

The Arnoldi method, the Lanczos method and the look-ahead Lanczos methods are the
most popular methods which generate continuations as described in Theorem 5.3 and
Remark 5.2, respectively.

We call a Krylov tuple normalized if the column vectors of V' are normalized in Euclidean
norm || - ||.

Example 5.1 (Arnoldi Krylov tuples) The Arnoldi method (see Section 2.1) gener-
ates a sequence of normalized Krylov tuples

(A, VO I, HO 1), (A, VO 10, H?2), ..., (A, V™ 1L, H™ m)

where m = dim IC(N, A, v;) and II; is the orthogonal projection onto IC(i, A, v1). II; 41 has
the representation Il;; = II; + v;y v7, . Hence the Arnoldi method generates in the i-th
step a continuation (A, VO+Y T, HOFD i+1) of (A, V@ II;, H®, i) with the properties
described in Theorem 5.3:

vV
VY = =7
0 Vilh

and
M=I+1= VVV)Y IV V(VVe) TV = VIV 4 Vi1V 41
Here V := V() Vo := [vig1], V= [V, Va).

Example 5.2 (Lanczos Krylov tuples) The Lanczos method (see Section 2.2) gen-
erates two sequences of Krylov tuples

(A, VO T, HO 1), (A VO I, HP 2), ..., (A Ve 1,  HE sp)

SL)Y

(AT, WO T, HO 1), (AT, WO L A 2), L (AT, W 1T HG) sy )
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where TI; is the projection onto K(i, A, v;) with KerIl = K(i, AT, w,)*. The projection
IT,; has the representation

) T
L, =11+ M_
(Wit1, Vig1)
The Lanczos tuple (A,y(i+1), 1, HOHY 4 + 1) is a continuation of (4, VO T, H®  4)
and (AT, WD 11, HO+D 4 1) is a continuation of (A”, W@ TI7, H®),
The identity

e WV 0 _
WiV = = diag (01, 0, ..., s, )
0 Wi,

shows that the Lanczos method generates continuations as described in Remark 5.2. Here
Vi=VO V= [up], V= [V, Vo], W= W, Wy i= [wis1] and W = [V, V3.

Example 5.3 (Practical look-ahead Lanczos Krylov tuples)
Every (practical) look-ahead Lanczos method (see Theorem 4.3) generates two sequences

(Aa V(p(l))a Hl?(l)a H(ﬁ(l))v ’)(1))7 (Aa V(p(2))a Hﬁ(?)a H(ﬁ@))? ’)(2))7 ) (Aa V(r)a HT‘) H(T) ) ’I“)

of Krylov tuples. The projection Il is defined as in Example 5.2 and has the repre-
sentation

Moy = Woge—1y + Vi(Dp) ™ (W) "
(A, VD 11,0, H ,u(k)) is a continuation of (A, VEk-D) 1,4y, HE*-1) p(k — 1))
and (AT,W(’)(’“)),H,;(,C) H®) (k) is a continuation of the Krylov tuple
(AT, W(’Q(’“*I)),Hl,(k_l), HEE-D) 5k —1)). The following equation shows that every look-
ahead Lanczos method generates continuations as described in Remark 5.2:
(W(V(k—l)))TV(V(k—l)) 0

(W(V(k’)))TV(V(k)) = = d1ag (Dl, D, ..., Dr)
0 Wi Vi

5.2 Reducing the computational effort in the
look-ahead Lanczos process

Suppose that AT = A. Choose w; = v;. Then the Lanczos recursions for the left and right
vectors are identical. Consider the Gram-Schmidt projection II; used in the (look-ahead)
Lanczos process:

ImHZ = ,C(’i,A,Ul) (56)
KerHi = ’C(i,AT,wl)L:K(i,A,Ul)L. (57)
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Using that (ImT1;)* = Ker IT17 and (KerII;)* = Im I} we conclude

KerIl] = K(i, A v)" (5.8)
ImO] = K(i,4,v;). (5.9)

Bringing the equations (5.6)-(5.9) together we find that II' = II,. Consequently the
look-ahead Lanczos recursions for the left and right vectors are identical if the scaling
coefficients Ozz(-k) and ﬂi(k) and the coefficients for the inner vectors fi(.];-) and gZ(’kj) are chosen
such that

k k k
sz( = /81( ) and fi(.j) = gz(,j)'

Is such a reduction also possible for an arbitrary matrix A ? The answer to this question
is the subject of this section. Remember that the ordinary Lanczos method generates a
biorthogonal basis with respect to the standard bilinear form (z,7) := 27y on €~ x @".
First we discuss how we have to modify the Lanczos recursions to obtain a method which

generates a biorthogonal basis ((w;,v;))1<i<s, With respect to a given non-degenerate
bilinear form (-, )5 on €V x V.

For this purpose we recall the definitions of non-degenerate bilinear forms and biorthog-
onal bases with respect to a form (-, -)s. For later use we further generalize the concept of
degree indices (v(k))rex, generalized biorthogonal bases and basis to (#(k)),.z and list
some fundamental results about adjoint operators and representation of projections.

Definition 5.2 (Non-degenerate bilinear form) A bilinear form (-,-)s : X x Y —
C (where X and Y are vector spaces over C) is called non-degenerate if the following
implications hold:

(z,y)s =0 forallyeY) =z =0, ((x,y)s =0 for allz € X) =y = 0.
In the following (-, )5 denotes a non-degenerate bilinear form on €~ x €~

Lemma 5.2 (Representation) The form (-,-)s can be represented by an invertible ma-
triz S € Maty:
(x,y)s = z7 Sy for all z,y € CV.

Definition 5.3 (Biorthogonal basis) A basis ((w;, v:))i<i<s of (Wi, Vi))1<i<s is called
biorthogonal with respect to {-,-)s if

(wi,v5)s =0 for i#j and (w;,vi)s #0

for alli,j € {1,2,..., s}.
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Definition 5.4 (Orthogonal complement) The subspace
Wt ={ve @ | (w,v)s=0 forall weW}=(S"W)?*

is called the (right) orthogonal complement of the subspace W of @V with respect to (-, ).

Definition 5.5 (Adjoint matrix) A matriz AT € Maty is called (left-) adjoint of A €
Maty with respect to (-,-)s if

(x, Ay)s = (A*a,9)s  for all z,y € TV.

Lemma 5.3 a) Let AT be the (left-) adjoint of an arbitrary matriz A € Maty with
respect to (-,-)s. Then AT has the representation AT = (SAS™HT.

b) LetIl € Maty be a projection onto an s-dimensional subspace. Let W,V € Mat
be matrices of full rank such that KerIl = (ImW)ts and ImV = ImII. Then
II =VD'WTS where D := WTSV.

Definition 5.6 (Degree indices) The degree indices (v(k))kex of (Wi, Vi))i<i<s with
respect to (-,-)s are defined as those indices

l=v(0):=0<v(l) <v(2)<...<v()

for which the bilinear form (-, -)s|w,xv, is non-degenerate.

Remark 5.3 Let A" be the adjoint of A € Maty with respect to (-,-)s. The de-
gree indices (v(k))gex of a Krylov chain ((IC(i, A%, wy), K(i, A, v1)))1<i<s With respect
to (-,-)s are exactly those indices [ for which the matrix [(w;, v;)s]i<; < is invertible.
Here ((w;,v;))1<i<s is an arbitrary basis of ((KC(i, AT, wy), K(i, A, v1)))1<i<s-

Definition 5.7 (Basis to (0(k)),.z) Let (Wi, Vi))i<i<s be a chain of subspaces with
degree indices (v(k))rerx with respect to (-,-)s. Let (0(k))ex € (V(k))ker. A basis
((wi, vi))1<i<s of the chain (Wi, Vi))i<i<s is called a basis to ((k)), i with respect to
(-, )s if the matriz D©) = [(w;, v;)s)1<i<s is block diagonal

DY = diag(Dy, D, ..., D;)

~

with invertible diagonal blocks Dy, of order dimy (for k=1,2,...,b).
Here b:=max{k |k € K} and dimy, = v(k) — v(k — 1).

Definition 5.8 (Generalized biorthogonal basis) A basis to (0(k)),.z with respect
to (-,+)s is called generalized biorthogonal with respect to (-,-)s if (0(k))er = (V(E))kek-
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Now we turn to the construction of a biorthogonal basis of (W, V;))1<i<s with respect
to (-,-)s. Let (0;, 0;)1<i<s be a basis of a chain of subspaces (W, V;))1<i<s. Consider the
slight variation of the Gram-Schmidt biorthogonalisation method (VGS method) below.

VGS method
v = 07 and wy (= Wy
fori=2...,s
v, = (I — Hi—l)'ﬁi
Here .
Mz = Mvj

j=1 (wj, vj)s

is the projection onto V; with kernel W;"5. One easily verifies (see Section 2.2) that the
VGS method yields the (up to scalar factors) uniquely determined biorthogonal basis
((wi, v3))1<i<s of (Wi, Vi))1<i<s with respect to (-, -)g, if there is one. This leads to the
following extension of Theorem 4.1:

Lemma 5.4 (Existence of biorthogonal bases) The following statements are equiv-
alent:

a) There is a biorthogonal basis of (Wi, Vi))i<i<s with respect to (-,+)s.
b) The Gram-Schmidt projections 1y, Iy, ... Tl exist.

¢) The Gram-Schmidt biorthogonalisation method applied to an arbitrary basis of
(Wi, Vi))1<i<s generates a biorthogonal basis with respect to (-, -)s.

d) The matriz [wy, wa, ..., w;]TS[v,va,...,v;] is invertible for every choice of bases

((wi, v3))1<i<s of (Wi, Vi) )1<i<s and for all j € {1,2,...,s}.

e) There is a basis ((w;, v;))1<i<s of (Wi, Vi))1<i<s such that the matriz
[w, wa, ..., w;]TS[v1, v, ..., v;] is invertible for all j € {1,2,...,s}.

f) The bilinear form (-, -)s|w,xy, is non-degenerate for all j € {1,2,...,s}.

g) v(k) =k for all k € {1,2,...,s}.

Assume there exists a biorthogonal basis of a given chain ((K(¢, AT, wy), K(i, 4, v1)))1<i<s
with respect to a given bilinear form (-, -)s. Computing
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fori=1,2...,5s—1

Vit1 = (I - HZ)AUZ (510)
we obtain a biorthogonal basis ((w;, v;))1<i<s of ((K(i, AT, wy), K(i, A, v1)))1<i<s With re-

spect to (-,-)s. In a similar manner as described in Section 2.2 the recursions (5.10) and
(5.11) reduce to the (modified) Lanczos three-term-recursions:

<wiaAUi>S <wiavi>S
v; = Avy; — v; — Vi
o ' <wiavi>5 ' <wiflavz’fl>5 -l
- Avs T
Wig1 = A+wi—<w“ 'Uz>Swi_ <wuvz>5 Wi
<wi,’0i>s <wi—1avi—1>S

Next we show how to generate a basis to (2(k)), .z with respect to (-, -)s. Let ((10;, 0;))1<i<s
be a basis of ((W;, V;))1<i<s. Suppose there is a basis to ((k)),.z with respect to (-, -)s.
Consider the slightly modified extended Gram-Schmidt biorthogonalisation method de-
fined as follows:

VMEGS
For k=0,1,2...,s—1

fori=1,2,...,dimy

Votyi = (I — M) Vo) 44

Wykyyi = (I — H;(k))wﬁ(k)ﬂ'-
Here II, is the projection with Im Il = V and Ker Iy = W*s. The VMEGS
algorithm applied to ((W;, 7;))1<i<s yields a basis ((wi, v;))1<i<s t0 (7(k)) e -
Theorem 4.1 can be easily transferred to the situation of bases to (#(k)),cz with respect

to <', '>S:

Theorem 5.4 (Existence) Let a sequence of subspaces (W;,Vi))i<i<s be given. The
following statements are equivalent:

a) There is a basis to (D(k)),. i with respect to (-,-)s.
b) There is a generalized biorthogonal basis with respect to (-, )s.

¢) The VMEGS method applied to an arbitrary basis of the chain (Wi, V;))1<i<s gen-
erates a basis to (V(k)),c i with respect to (-,-)s.
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d) The bilinear form {-,-)s
e) s=max{v(k)|k € K}.
f) s =max{p(k) |k € K}.

WixV, 1S non-degenerate.

g) There is a projection I1 with
ImII =V, and Ker IT = W;'s.

Suppose there is a basis to (2(k)),.z- The sequence of vectors ((w;, v;))1<i<s computed
by the recursions

forallOSkﬁE—l

Vp(k)+1 = BE(1 — 5 k)) Avi iy 5.12)
k
w1 = oI =TI ) AT wgg (5.13)
forall 1 <7 < dimgy —1

Up(k)+itl = ﬁZ(Jr)l(I I (Av,, Zgzﬂ’] Vp(k ) (5.14)

i = a1 [ AT wom — S FO) o 515

Wi (k)+i+1 az—l—l( ﬁ(k)) Wi (k) Z fZ-I—l,j Wi (k)+j ( . )

7=1

forms a basis to (7(k)),ci With respect to (-,-)s. Here the coefficients f+1l,g1(+)1l eC

and O%(i)la Z(i)l € €\ {0} can be chosen arbitrarily. For numerical stability the numbers

@@1 and agﬁ)l are usually chosen such that ||v;|| =1 and ||w,|| =1 for all j.
In a similar manner as described in Chapter 4 the recursions (5.12)-(5.15) reduce to the
(modified) practical look-ahead Lanczos recursions:

Forall 0 <k <b—1
Vp(ky41 = R (Avpy — Vi Dy "W S Avyey — Vet Dty (Wi—1) TS Avg )

’U),;(k)Jrl = Ozgk) (A+w,;(k) — Wk (DZ)_lvaSTA-'_w,;(k) — Wk,1(D,Zﬂ_l)_lvkjllsTA—i—wg(k))

Vyris1 = B (Av,, ZgZHJ Usky+5 — VaDy "Wyl S Avs )

d k
Wi = o) (A+wﬁ<k>+i—2f§+)1,j Watky+; — Wi(Dy )™ 1%TSTA+wﬁ<k)+i)
i=1
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where Dy, := W[I'SV;.

The following Theorem shows that the choice of the form (-, -)s is essentially equivalent
to the choice of the starting vector w;.

Theorem 5.5 Let (A, V11, H,s) and (AT, W, I, H, s) be Krylov tuples generated by a
modified practical look ahead Lanczos method (using an arbitrary non-degenerate bilinear
form (-,-)s). Then the following holds:

a) The degree indices of (K(i, AT, Wey),K(i, A, Vey))i<i<n with respect to the form
(-,-)s are identical with the degree indices of (K(i, AT, STWey),K(i, A, Ver))i<i<n
with respect to the form (x,y) = 2Ty.

b) The ordinary practical look-ahead Lanczos method (i.e. using {-,-) = x"y) applied

to the starting vectors v, = Ve and w, = STWe, generates the Krylov tuples
(A, V11, H, 5) and (AT, STW, 1T, H, ) if the coefficients ozz(k), 51-(k), fi(,];),ggfj) and the

subsequence of the degree indeces (0(k)),cx (used in the process) are chosen as in
the modified practical look-ahead Lanczos process.

Proof. The identity
ImS™W; = STImW,; = STK(i, AT, We,)
= K(i, STAT(ST) ™', We,)
- IC(Z, A+, ’lI)l)
combined with the equations

(<W€Z’, Vej>S)1§i,j§l = WTSV = (<STW62', Vej>)1§i,j§la = 1, 2, -

yields statement a). In the following (7(k)),.; denotes the subsequence used in the
practical look-ahead Lanczos processes.
Let

(Aa V(ﬁ(l))a Hﬁ(l)a H(l)(l))a 19(1))’ (Aa V(ﬁ(Q))a Hﬁ(?)a H(ﬁ@))a 19(2))’ R (Aa V(S)a HSa H(S)a S)

and
(A+7 W(ﬁ(l))? H;(l)v fi(ﬁ(l))a 19(1))? RIS (A+7 W(S)a Hja ﬂ(S)a S)

be the Krylov tuples generated by the modified look-ahead Lanczos method.
Let
(Aa ‘7(17(1))7 1:[17(1)7 f{(ﬁ(l))a 19(1))’ (Aa V(ﬁ(Q))a 1:[17(2)7 ﬂ(ﬁ(Q))a 19(2))? ) (Aa V(S)a HSa ﬁ(S)a S)

and

(AT, W(ﬁ(l))a Hg(l)? fi(ﬁ(l))a 19(1))’ R (ATa W(s)’ ﬁT .
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be the Krylov tuples generated by the ordinary practical look-ahead Lanczos method
applied to the starting Vectors 71 = Ve, and w; = STWe;. Now we show by induction
on j that W0 = STWW | V) = V) and My = My
By choice of the starting vectors the identities v; — v; and w; = w; hold.
Assume that
7AS2 0 €D and W = gTw )
< v

for some j. Choose k € K such that v(k) < j
j = (k) +1i. Then

v(k 4+ 1). Choose i € IN such that

Mgy = V(ﬁ(k))((W(ﬁ(k)))TSV(ﬁ(k)))—l(W(ﬁ(k)))TS

= V(ﬂ(k))((W(ﬁ(k)))Tv(ﬁ(k)))*l(W(ﬂ(k)))T - ﬁﬁ(k)-

Hence the desired equations
Vern = 081~ gy (AVe, — 36, Ve,
€i+1 ﬁz—l—l( ) € — Zgz—l—l,l €o(k)+1
1=1

k i = : k =~
BT — T <AV€j - 9§+)1,z Vez?(k)+l)

=1
= ‘N/Gjﬂ
and
Wej = £+)1([ H+ )<A+W€] li;fff)l,z Weﬁ(k)H)
= o™ (I = (SVEE) (W) gy Ch)) =1 (1 (D)7 g g=1yT) <( SAS™H)TWe,
- Z £, Weaww)
=1 .
= (ST) e (1 - 11T, )(ATSTWe] Z f}f{,lsTWeﬁ(kH)
=1
= (8T) " Wejn
hold.

Finally the identity

yields H?®) = H@®) which proves the theorem. n
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Remark 5.4 (Breakdowns of the modified Lanczos and look-ahead Lanczos
methods) By Theorem 4.1 the classification of breakdowns of the the (look-ahead) Lanc-
zos methods (see Section 2.2.1 and Remark 3.2) transfers to the modified (look-ahead)
Lanczos methods simply by replacing (-,-) with (-,-)s, ‘L’ with ‘Lg’ and the transpose
sign “T" with the adjoint sign ‘+’.

For later use we note the following Lemma.

Lemma 5.5 Let (A, V11, H,s) and (A, W,II*, H,s) be generated by a (modified) prac-
tical look-ahead Lanczos method. Let (0(k))y.,<; denote the subsequence of the degree
indices used in the practical look-ahead Lanczos process. Then

H=D"'H"D
where D := W' SV = diag (D, D, ..., D;) and Dy € Maty)—p—1)-

Proof. Theorem 5.5 together with identity (4.5) proves the lemma. n

Considering the recursions (5.12)-(5.15) we find that the vectors v; and w;, generated
by a modified practical look-ahead Lanczos method, are identical (i.e. v; = w; for every
j) if the matrices A and II; ;) are self-adjoint

A=AY=(SAS )T and Ty = T0},, = (ST S )"

with respect to a non-degenerate bilinear form {(x,y)s = 27 Sy and the coefficients and
starting vectors are chosen as follows:
k k k k
g§+)1’j = 1-(+)17j, ﬂi( ) = 041( ) and v = Ww. (5.16)

The following Lemma 5.6 is due to Taussky and Zassenhaus [72]. It shows that for every
matrix A € Maty there is an invertible matrix S € Maty such that S = ST and A is
self-adjoint with respect to the form (x,y)s = 27 Sy. Of course, S is not positive definite,
in general.

Lemma 5.6 Let A € Maty. There is an invertible matriz S € Maty such that ST = S
and A = (SAS™HT.

Proof. Let J = diag (1, Ja, ..., Ji), J; € Mat;,, be a Jordan normal form of A. Then
there is an invertible matrix F such that J = FAF~!. Define

0 1
X = diag (X1, Xo, ..., Xi) where X, = € Mat;, forl; > 2
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and X; = 1 for [; = 1. Using the relations J? = X.JX and X? = I we obtain
AT =(FJF Y =F'J(F") " = FTXJX(F")"' = (FTXV)A(F'X(F")™).
Define S := FTXF. The equation ST = (FTXF)T = FIXF = S proves the lemma. m

Suppose that S € Maty is chosen such that A = (SAS™)T and S = S7. Let (v(k))rex
denote the degree indices of ((K(i, AT, v1), K(i, A4, v1)))1<i<y With respect to (z,y)s =
2TSy. Then the Gram-Schmidt projection II, ) is self-adjoint with respect to (-, -)s.
This follows from the equations (5.6)-(5.9) by replacing the transpose sign ‘77 with the
adjoint sign ‘+’ and replacing * L’ with ‘Lg . Hence the vectors v; and w; are identical
(i.e. v; = w; for every j) if the coefficients in the modified look-ahead Lanczos process
are chosen as described in (5.16).

Let (x,y) = 27 Sy be the form used in the modified look-ahead Lanczos process. Then
the look-ahead Lanczos vectors v; and w; can be chosen identical if there is a scalar v € €
such that the equation

yA = (SAS™HT (5.17)

holds. This is the content of Lemma 5.7 below.

Lemma 5.7 Choose v € € and S € Maty such that the equation (5.17) holds. Choose a
starting vector v € €V \ {0}. Set w, := vy. Choose the coefficients fi(f)u, gﬁ)u, ﬁi(_]i)l and

Ozl(i)l in the practical modified look-ahead Lanczos process such that the equations

k k k k
ﬁz(+)1 =7 O‘z(+)1 and fi(—i—)l,l =7 91(4-)1,[
are valid. Then the left and right vectors generated by the practical modified look-ahead
Lanczos method (using (-,-)s) are identical (i.e. v; = w; for all j).

Proof.

Set VW = [vy,v9,...,v;] and WU := [wy,wy, ..., w;] where v; and w; are the vectors
generated by the practical modified look-ahead Lanczos method.
We show by induction that V@) = WG for all j.
By assumption the equation V) = W) holds.
Assume the statement V) = W0 is true for some j.
Now proceed to j+1: There are numbers k € K and ¢ € IN\ {0} such that j = v(k)+i+1
and j <v(k+1).
The following equations prove the claim:

k N
Wp(k)+i+1 = 041(+)1(I - H;r(k)) <A+wﬁ(k)+i + Zfi(-l—)l,l wﬁ(k)Jrl)
=1

= o’ (I = (STyS H7T) <7Avﬁ<k>+i +3 19, Uﬁ<k>+l>

=1
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— sz(i)l (I _ (Svfz(k) ((Wf/(k))TSVf/(k))—l (Wﬁ(k))TSS—l)T)
<7Avp(k)+i + Z 79&)1,1 Uﬁ(k)Jrl)
=1

_ 7041@1(1 . (Vf/(k)((Vﬁ(k))TSVﬁ(k))—l(Vﬁ(k))TS) <A'Uﬁ(k)+z' + Z gz(i)l,z Uz?(k)+l>
=1

k : k
= BT = o) (Avagiysi + 3 9530 1 Vo +1)
=1
= Up(k)+i+1-

Example 5.4 (Choice of v and S)

a) If A= A" then choose v =1 and {(x,y)s = z7y.

b) If A= —AT then choose v = —1 and (z,y)s = 2Ty.
c) If A=4AT then choose v =i and (z,y)s = xTy.

d) Let C,D € Maty such that CT = C.

It A= then choose vy =1, S =

-DT C

Using Lemma 5.7 we obtain the following practical modified look-ahead Lanczos algo-
rithm:

Algorithm 5.2

(1) Compute S € Maty such that there is a scalar v € € satisfying the equation
yA = (SASTHT,

(2) Choose a starting vector v; € €V with ||v;]| = 1.



5.2  Reducing the computational effort in the look-ahead Lanczos process 81

(3) Forall 0 < k <b—1

Vi1 = Avpy) — VD 'S Avpy — Vi1 Dy (Vi 1) TS Avpqry

Vp(k)y+1 = ’Uﬁ(k)+1/||vz>(k)+1||

forall 1 <¢ < dimgy —1

i
k _
Vp(kyitr =  AUpr)ri — Z 9E+)1,j Vi(k)+j — VeDy 1VkTSAv,;(k)+i
j=1
Up(k)+it1 = Uﬁ(k)+1/||vﬁ(k)+i+1||-

Here Dy, := V,I'SVi. The coefficients g§_’i’1,j € C can be chosen arbitrarily.

Using Theorem 5.5 b) Algorithm 5.2 above can be rewritten in a form which requires less
computational effort:

Algorithm 5.3

(1) Compute S € Maty such that there is a scalar v € € satisfying the equation
yA = (SASHT.

oose a starting vector v, € with ||vq|| = 1. Compute w; := V1.
2) Ch i ¢V with 1. C ST

(3) Forall0< k<b—1

Vo1 = Avgwy — Ve Dy Wil Avgy — Vi 1 Dt (Wi 1) Avpy
Vp(k)+1 = Uﬁ(k)+1/||vﬁ(k)+1||

Wogkyr1 = ST V41

Wolky+1 = Wgk)+1/|[Wogk)+1]]

forall 1 <¢ < dimgy, —1

i
k _
Ustytitt = AVseyri — g§+)1,j Vsky+i — Ve D "Wl Avpry 4
=1
Vok)rit1 = Vp(k)tit1/||[Vogk) it ]|
Wokyrit1 = ST Vs)titt
Wy (k)+i+l = wz?(k)+i+1/||wl9(k)+i+1||'

Here Dy := W/I'V},. The coefficients ggﬁ)l’j € € can be chosen arbitrarily.

The special case of Algorithm 5.3 where v = 1 has been derived by Freund and Zha [21]
in 1991. They called this algorithm transpose-free look-ahead Lanczos algorithm.
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Remark 5.5 Algorithms 5.2 and 5.3 are only useful for those special classes of matrices A,
for which one can find a matrix S and a scalar ~ satisfying the equation yA = (SAS™H7
with small effort, and for which the matrix-vector products with S” can be computed
cheaply.

Let H be the matrix generated by a look-ahead Lanczos method. The following lemma
characterizes coordinate transformations leaving the matrix H unchanged.

Lemma 5.8 Let A € Maty and two starting vectors vy, w; € ™ be giwen. Choose an
invertible matriz C' € Maty. Define

b =Cuvy, iy =(CT)wy and < A=CAC

Let (A, V,1I,H,s) and (AT, W, n’, H, s) be generated by a look-ahead Lanczos method
applied to the triple (wy, A, vy).

Let (CAC~,V,II,H,s) and ((CAC—Y)T,W,TI", H,s) be generated by the same look-
ahead Lanczos method applied to the triple (i, A, o).

Then the following identities hold:

H=H, H=H, =11
V=CV and W= (CT)'W.

Lemma 5.8 can be easily proved by induction.

5.3 Condition numbers of bases

Let (A, V,11, H, s) be generated by a Krylov subspace projection method. It is of practical
interest to have estimates for the condition number x5(V'). As discussed in Section 5.1, a
Krylov subspace projection method generates, step by step, a sequence of continuations
of Krylov tuples. Hence it is natural to discuss how the condition numbers of the bases
change from one step to the next.

Estimates for the condition numbers of continuations of Krylov tuples are presented in
Theorem 5.6 below for general Krylov subspace projection methods and in Corollary 5.1
for Krylov subspace projection methods which generate continuations (A, [V, V3], I, H, )
with the property

IV, = 0. (5.18)

Recall that (practical) look-ahead Lanczos methods compute continuations with the prop-
erty (5.18) (see Section 5.1). As discussed in Section 5.1, such special Krylov subspace
projection methods are very important in practice because they require much less com-
putational effort than the methods which do not have the property (5.18).
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Theorem 5.6 Let (A,[V, Vo), 1L, H, 1) be a continuation of a normalized Krylov tuple
(A, V,11, H,s). Let 11 be an arbitrary projection with ImIl O Im V5 and KerIl 2O Im V.
Then the following relations hold:

1 B LSt i |

V) S o) oy oma(V V) < VT

To prove Theorem 5.6 we need some preparations.
Lemma 5.9 Let C,D € Maty;. If C*D = I then 1 < ||C*|| min,= || Dz||.
Lemma 5.9 is evident.

Lemma 5.10 Let (W;)i<i<r be a chain of subspaces with dimW,; = i for all i. Let
(vi)1<i<s be a basis of (Wi)i<i<s with s < r. Then there is a basis (Gi)1<i<r of (Wi)1<i<r
with the properties:

a) Gi=v; for 1 <i<s.

b) (61,69,...,6,) = (01,09,...,05,1,...,1) where &; are the singular values of the
matriz [q1, G2, - . -, ¢y and o; are the singular values of the matrixz [q1,qo, . . ., qs]
listed in an appropriate order.

Proof. Choose an arbitrary basis (w;)i<i<, of W;)i<i<,. Let N; be the orthogonal
projection on W;. Define 0; := (I — Ny)w;/||(I — N;)wg|| for i = s+1,s+2,...,7. Putting

Vi=lvy,...,04], Vo :=[0s41,...,0,] and V := [V, V5], we obtain the representation
- VXV VY, VvV 0
Vv = =
Vo'V Vo'V 0 I
which proves Lemma 5.10. [ ]

After these preliminary steps we are now set to prove Theorem 5.6.
Proof of Theorem 5.6.

Put k := dimKerIl. Cthse matriges W € Matyys and W € Matyy, such that
KerW* = KerIl and Ker W* = KerIl. The following relations a)-c) imply that the
matrix W := [W, W] has full rank.

a) ImW)t =KerW*=KerlID2ImV =ImIl (= ImW C (ImII)*).

b) (ImW)+=KerW*=Kerll (= ImW = (Kerll)').
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¢) (KerTl)* N (ImTI)* = (Ker T + Im 1)+ = {0}.
By Lemma 5.10 there are matrices V € Mat n s (k-+) V € Maty such that V = [V, V] =

[‘/; ‘/27*]7 Umin(v) — Umin([va ‘/2]): Umax(v) — O'max([‘/: Vé]) and Imv =Im ﬂ
We obtain the representation

I=VD'W* HO=VD'W* and D 'W*'V*=1I
where D := W*V, D := W*V and D := W*V. Lemma 5.9 yields:

L<|D7w mnin IVall = D7 W lowin (V) = 1D W[ owin([V. Val).  (5.19)

Using the relation W*V = 0 we have

| D WV . | D' =D 'W*VD!
0o D | 0 D!
One easily verifies that
DWW < IDTIWE| 4 | DT W - T (5.20)

The Gram-Schmidt orthogonalisation method applied to the columns of V and V gen-
erates the decompositions V = QR and V = QR where @ and @ are matrices with
orthonormal columns and R and R are invertible upper triangular matrices. Using the
fact that In@Q =ImV, ImQ = ImV, Omin(V) = Omin(R), omin(V2) = amin(V) = O’min(R),

QA = ||A]| and ||QA|| = ||A]| for arbitrary matrices A and A, we conclude

DW= RN WIQ) T < IR (W)
_ OV W e ) W ||
_ V - = (5.21)
Umin(v) O-min(‘/Q) O'min(‘/2)
and, in a similar manner
- - (7 — 10|
piw(i — iy < MU= IDI 5.22
7w ) < (.22
Combination of equation (5.19), (5.20), (5.21) and (5.22) yields the assertion. n

For Krylov subspace methods which generate continuations (A, [V, V5], 11, H, r) with the
property (5.18) we have the following estimate.
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Corollary 5.1 Let (A,[V,V3], 11, H,r) be a continuation of the normalized Krylov tuple
(A, V11, H, s) with IIV, = 0. Then

1 S L8| I P e |
O-min([‘/: ‘/2]) o Umin(v) Umin(%)

and Tmax([V, Va]) < /7.

Proof. Define II := (I — II). Then KerIIl = ImII = ImV and ImII D KerII D Im V5.
Thus, Theorem 5.6 proves the corollary. [ ]

Remark 5.6 Let (A, VI, H,s) be a normalized Krylov tuple with s < N. Choose
re{s+1,...,N}. A continuation (A, [V, V5],TI, H,r) with the properties
a) V=0 and  VyVo=1

b)
R 1

Tmin([V, V2]) = Omin(V)

HI =T and  ona((ViTR)) < V7

can be constructed as follows:

(1) vesr := (I — ) AVe,/||(I — ) AVe,]|.

(2) Apply the Gram-Schmidt orthonormalisation method to a basis of the chain
((I —IK(j, A, v541))1<j<r—s to obtain an orthonormal basis (v;)s11<j<r-
Put V5 := [vs11, Vs, - -, Ur).

(3) Choose an arbitrary full rank matrix W € Matyy, such that D := W*[V, V] is
invertible. Define IT := [V, Vo] D™'W*.

(4) Continue as described in Algorithm 5.1 (6) and (7).

We consider again a Krylov tuple (A, V,1I, H, s). Using a representation
IN=vWwrsv)"'w’s (5.23)

of the projection II, the condition number of V can be estimated in terms of ky(WTSV).
This is the content of Theorem 5.7 below. Estimates in terms of ko(W*SV') have been
derived by Parlett [58] for the look-ahead Lanczos process using the form (-, -)..

Theorem 5.7 Choose an invertible matriz S € Maty. Let (A, V,11, H, s) be a normalized
Krylov tuple. Let W € Matyys be a full rank matriz with normalized columns satisfying
the equation (5.23). Then the following estimates hold:

Omin(WESV) < /5||S|| Fmin(V) and Omin(WISV) < /51| Omin(W).  (5.24)
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Theorem 5.7 can be proved in an similar manner as [58] Theorem 10.1.

Remark 5.7 Let a matrix A € Maty and two starting vectors be given. Choose a tol-
erance tol € (0,1]. Then there is a practical look-ahead Lanczos method which generates
normalized Krylov tuples

(A, VOO Ty, HYW) (1)), (A, VIO Ty), HYOD 9(2)), ..., (A, VE) T, HO), s)

and
(A+7 W(ﬁ(l))7 H;r(l)7 H(ﬁ(l))a 19(1))7 R (A+7 W(S)a H:: H(S)a S)

such that the matrix D® := (WE)TSV () is block diagonal
DY = diag (Dy, Dy, ..., D;)

and the inequality
Omin(Dy) > tol (5.25)

holds for all k. Using Theorem 5.7 and the inequalities

Omin (D)) = min, Omin(D;) > tol (5.26)
and
Moy |l = [[VZO(D"E) = WPINTS| < VPO [(D7E) ][ (W EN) T S|
< ﬁ Is]
we find 5(k) tol 5(k) tol
i) 2 s eV 2 sy (527)
Umam(vﬁ(k)) < /s, amam(W”(’f)) </s and Moy < Slg” (5.28)
for all k € K.

5.4 Eigenvalues of the matrix H

In this section we discuss the connection between the eigenvalues of H and the eigenvalues
of A. Let a matrix A and a starting vector v; be given. The following theorem shows
that for any choice of numbers A\, Ag,..., Ay € € there is a Krylov subspace projection
method which generates (applied to A and v;) a matrix H such that Ay, Ay, ..., Ay are the
eigenvalues of H.
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Theorem 5.8 Let (v;)1<i<s be an arbitrary basis of a Krylov chain (K(i, A, v1))1<i<s with
s < m. Choose arbitrary numbers A, Aa, ..., \s € ©. Then there is a Krylov tuple
(A, V|11, H, s) such that A\, Aa, ..., s are the eigenvalues of H and V = [vy,vg, ..., Us).

The following Lemmas are used in the proof of Theorem 5.8

Lemma 5.11 Let Vy # C be a subspace of €~ . Choose arbitrary vectors ¢ € €~ \ V,
and u € V,. Then there is a projection 11 on Vs, such that 1lq = u.

Proof. By choice of ¢ and u the relation w := (¢ — u) € V, holds. Hence there is a
subspace W C €V such that w € W and V, ® W = @V, Define a projection IT by
ImII =V, and Ker Il = W. Hence

0=Tlw=TI(¢—u)=Tlg—Tlu=1Tlqg—u

which proves the assertion. [ ]

Lemma 5.12 Let (A, V11, H, s) be a Krylov tuple. Let ¢ be the characteristic polynomial
of H = [hi;]. Then the identity

d(AVe, = (I-TAVe (5.1)
= h2’1h372 e hs,s—l(l - H)AV@S

holds.

Proof. Using that

1 i—1
v; = (AVz‘—l - hl,i—l”l)
hii1

=1

we obtain inductively the representation

s—1

1
.= A Wey —
! h2,1h3,2---hs,51< “ Z”””)

=1

where p; € €. Consequently

1 s—1
(I —I)AVey = (I —IAVer — > p(I — 1) Ay,
hoihg - - hs s =1

1
— I — I A*Ve,.
hoihss - - -hS,H( ) !




88 5 KRYLOV SUBSPACE PROJECTION METHODS

Define V = [Ver, AVey, A?Vey, ..., A" Ve ] and define H by VH = TIAV. Then the
tuple (A, V,II, H, s) is a Krylov tuple. H is a Frobenius matrix

0 -+ 0 g

ﬁ: 1 iLQs
0

0 1 hy |

with characteristic polynomial ¢(x) = 2°* — 37, hisz=1. Using Lemma 5.1 we obtain

(I-TAVe, = AVe, — Y i A7Wey = ¢(A)Ve.

I=1
By Theorem 5.1 a) the matrices H and H are similar. Hence Lemma 5.12 is proved. m

Now we are set to prove Theorem 5.8.

Proof of Theorem 5.8. Define a polynomial ¢ by ¢(z) := (2 — M) (x— Ag) -+ - (x — Ag).
By Lemma 5.11 there is a projection IT on K(s, A, v) such that ¢(A)vy = (I — IT)A®vy.
Define H by VH = IIAV. By Lemma 5.12 the polynomial ¢ is the characteristic polyno-
mial of H and (A, V.11, H, s) is a Krylov tuple. [

Corollary 5.2 Let A € Maty and v; € @V be given. Choose an arbitrary unreduced
upper Hessenberg matriz H = [h; ;] € Mat, with s < m = dimIC(N, A,v1). Then there
are matrices Il and V' such that (A, V11, H, s) is a Krylov tuple and Ve; = v;.

Proof. For:=1,2,...,s — 1 set

1 [
Viy1 = <AV} - Z hz,ﬂh) .

hi+1,i =1

Choose V' := [vj,v9,...,05]. By Lemma 5.11 there is a pojection IT with ImIl =
K(s, A,v1) and

HA’US = Z hl,s’Ul-
=1

By construction the vectors vy, vy, . .., v, form a basis of the Krylov chain (KC(7, A, v1))1<i<s

and the equation
VH = [Avy, Avg, ... TTAvs] = TTAV

holds. Hence (A, V,II, H, s) is the desired Krylov tuple. [
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If the projection II is not “very oblique” (i.e., if ||TI|| is of modest size), the matrix V' is
not ill-conditioned and the gap (see (5.3) below) between K(s, A,v1) and an eigenvector
u of A is small, then u and the corresponding eigenvalue A\ are well approximated by an
eigenpair of H. This is the content of Theorem 5.9 below. We recall that the gap d(u, V)
between a vector u and a subspace V is defined as

d(u, V) := (5.3)

where IT is the orthogonal projection onto V.

Theorem 5.9 (Approximation of eigenpairs) Let (A, V,II, H,s) be a Krylov tuple.
Let N be an eigenvalue of A with corresponding eigenvector u. Suppose that u is not
orthogonal to KC(s, A,v1). Then there is a vector y with ||y|| = 1 such that the estimate

[(H = ATyl < wo(VV) VI |(A = AD)|| d(u, K(s, A, 01))
holds.

Proof. Define Il = V(V*V) 'V*. Using H = (V*V) 'W*IIAV, IIII = Il and (A—\I)u =
0 we obtain the equation

(H = XD(V*'V) 'V = (VV) WAV = XD(V*V) 1V
V)TWHITAV — AV)(V* V)™V
V)TWHIA = XDV (VV) TV
VY IWVATI(A — M)
V)"WATI(A — A)(IT = ).
Hence

I(H = ADVV) TVl < [[(VV)T VA = AD I = Dl

The assumption v L K(s, A, v;) implies that ||(V*V)~'V*u|| does not vanish.
Set y := (V*V)"'W*u/||[(V*V)~'V*u||. Using that
(V*V) v+

il

> Oppin(VV) V) and HVV)Y V| = Oppae (VV) V)

we conclude

i (VY)Y = A< (V) V) 1] = A 1]
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which proves the theorem. [ ]

Saad [66, 67] and Jia [43] showed that the gap (see (5.3)) between eigenvectors of A and
the Krylov subspace K(s, A, v1) tends to zero for increasing s. They also showed that the
convergence is particular fast for eigenvectors corresponding to eigenvalues with maximal
real part.

In view of the relation
H = HA|IC(5,A,U1)

the eigenvalues of H do not depend on the choice of the basis V' of (K(i, A, v1))1<i<s-
Therefore it is possible to derive an estimate for the approximation of the eigenvalues
which does not depend on the condition number of V. This is done in Corollary 5.3 and
Theorem 5.10 below.

Corollary 5.3 (Approximation of eigenvalues) Let (A, V,11, H, s) be a Krylov tuple.
Let \ be an eigenvalue of A with corresponding eigenvector u. Suppose that u is not
orthogonal to K(s, A,v1). Then there is a vector y with ||y|| = 1 and a matriz H, similar
to H, such that the estimate

I(H — ADyl| < IT]] [I(A = AD)|| d(u, K(s, A, vy))
holds.

Proof. Choose an orthonormal basis v1, vy, . . ., v, of (K(s, A, v1))1<i<s-
Put V= [v1va ..., 0.
Define H € Mat, by o )

VH =1IIAV.
Then (A, V,II,H, s) is a Krylov tuple and sy ((V*V)1V*) = 1.
Theorem 5.9 yields the estimate

(2 = Ayl < ([T [[(A = AD)[ d(u, K(s, A, 01)).

Finally, by Theorem 5.1, there is an invertible matrix R such that H = R 'HR. ]

Theorem 5.10 (Approximation of eigenvalues) Let (A, V.11, H,s) be a Krylov tu-
ple. Let ||Ve|| = 1. Let ¢ be the characteristic polynomial of H = [h; j]. Let J € Maty
be to Jordan normal form of A. Let F be the transformation matriz on Jordan normal
form (i.e. J=FAF"). Sety:=FVe /||FVei| = (y:)1<i<n

a) Then the estimate
|o(J)yl| < ko(F)lhoihsgg -« hg 1] [|({ — 1) AVe,|
holds.
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b) Suppose that A is diagonalizable.
J = diag()\l, )\2, ey )\N)

Put m := dim (N, A, Vey). Then there is a permuation w of the indices 1,2,..., N
such that

JZ Yr(yP(An(i) |2 < K2 (F)haphsg -+ hssal||(1 — 1) AVesl,
i=1

Dl =1
=1

and Yz # 0 fori=1,2,...,m.
Further Az(1y, Az(2), - - -, Ax(m) are the eigenvalues of of Ali(n,ave)-

Proof. Combining the equation (5.2) and the inequality

Omaz(F)|[#(A)Verl| = [[F|[[o(A)Ver]]
|FO(A)F FVer|| = | () FVe|

>
> || () FV el omin(F)

we obtain statement a).
Suppose that A is diagonalizable. Then the vector y := FVe;/||FVey|| has exactly m
non-vanishing entries. Thus, there is a permutation 7 such that

Yry 7 0 for i=1,2,...,m
Yry = 0 for i=m+1,m+2,...,N.

By construction, the identity
m
L= lyll* = X ly=o
i=1

holds. Finally the equation

proves the theorem. m

Remark 5.8 By Lemma 5.12 the equation
(I — H)ASVel = h271h3’2 e h37s_1(l — H)AVeS

holds. Hence the product |hg1hs - - hss—1]]|(I —II)AVe|| does not depend on the choice
of V. It just depends on the choice of II, A, s and the vector Ve;.
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We recall that by the Bauer-Fike Theorem (Lemma 5.13 below) the conditon number
Ko(F') is a measure for the sensitivity of the eigenvalues of a diagonalizable matrix

A = F'diag (A1, Aa, ..., Ay) F.

Lemma 5.13 (Bauer-Fike) If i is an eigenvalue of A + E € Maty and F'AF =
diag (A1, g, .., AN ), then there is an eigenvalue \; of A such that

1= Al < ma(F)[[El.

Notice, that the right hand side of the estimates of Theorem 5.10 can be used as a cheap
stopping criterion
\hoihsg - hss a||[(I =T AVe,|| < €

in a Krylov subspace projection method. Indeed, the numbers hy 1, 3o, ..., hss—1 have
already been computed while generating the Krylov tuple (A, V,II, H, s) and the number
|[(I —1I)AVe4|| is used for the construction of a continuation of (A, V,II, H, s).

If (A, V,II, H,s) is a maximal Krylov tuple (i.e. s = m := dim/C(NV, A, Ve;)) then H
is the restriction of A to the A-invariant subspace K(s, A, Ve;). Thus, the characteristic
polynomial of H is a divisor of the minimal polynomial of A. The following theorem shows
in which cases the characteristic polynomial of H is a divisor of the minimal polynomial
of A and K(s, A, Ve;) is not A-invariant.

Theorem 5.11 Let (A, V,11, H, s) be a Krylov tuple. Define v,y := (I —I1)AVe,. Then
there exists a maximal continuation (A, [V, V5], I1, H, m) with the property

. H 0
= for some Hy € Mat,,_ (5.4)
* H2
if and only if
dim IC(N, A, v541) <m —s. (5.5)

In this case the following holds:

a) The product of the characteristic polynomials of H and Ho is equal to the minimal
polynomial of Alx(n,a,ve,)-

b) dim (N, A,vs41) =m — s.

¢) The columns of the matriz Vo form a basis of the chain (K(j, A, Vs11))1<j<m—s-

In the proof of Theorem 5.11 we use the following Lemma.
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Lemma 5.14 Let ¢ € @V \ {0} and G € K(s+1,A,¢)\K(s, A, q) for some s+1 < m :=
dimKC(N, A, q). Then dim (N, A,§) > m — s.

Proof of Lemma 5.14. Assume dim/C(V, A, ¢) < m — s. Then there are polynomials
¢ and ¢ # 0 such that ¥(A)g = ¢, ¢(A)g = 0, degt) = s and deg¢p < m — s. Hence
0=1(A)p(A)g = (Yo)(A)g and deg(vp¢) < m which contradicts the definition of m. m

Proof of Theorem 5.11. B
i) Let (A,[V,Vo], 11, H,m) be a continuation with the property (5.4). Define V :=
[V, V3]. The identity VH = ILAV combined with the property (5.4) yields

Av,, € span{vsiq1, Usit, ..., Ut = ImV,

Avsj € span{uvsi1, Usqi, .., Usji1} for 7=1,2,....,m—s—1.
Thus, Im V5 is A-invariant. Therefore

K(N, A jvs41) CImV, and  dim K(N, A, vs41) < dimImV, =m — s.

ii) Let dim (N, A, vs1) < m—s. By Lemma 5.14, dim (N, A, v541) = m —s. Define
Vo = [vs41, Avsi1,s - ., A5 1y 4], The column vectors of the matrix V = [V, V4]
form a basis of the Krylov chain (K(j, A,v1))1<j<m- Define a matrix H by the
equation VH = AV. Property (5.5) yields A" *v,,, € Im V. Hence, the matrix H
has the property (5.4). Choose an arbitrary projection II onto (N, A, v). Then
the tuple (A, V,II, H,m) is a continuation of the Krylov tuple (A4, V,II, H, s) with
the desired property (5.4). [

Corollary 5.4 Let (A, V 11, H, s) be a Krylov tuple. Define vsyq := (I —I1)AVe,. Let
IIK(N, A vs41) = 0. (5.6)

Then there is a continuation (A, V I, H, m) with the property (5.4).

Proof. By assumption the following relations hold:
ImIT = K(s, A,v;) and KerlIl D (N, A4, v41).

Hence K(s, A,v1) N K(N, A,vs41) = {0}. Using the inclusions (N, A, vy) D K(s, 4, v1)
and IC(N, A, v1) D K(N, A, vs41) we obtain the inequality

dim IC(N, A, v1) > dim K(s, A, v1) + dim (N, A, vsy1).

Theorem 5.11 proves the corollary. [ ]

Example 5.5 shows that the condition (5.6) is not necessary for the existence of a con-
tinuation with the property (5.4).
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Example 5.5 Choose arbitrary numbers a,b,¢,d € € and a € € \ {0}. Put

a 0 0
A= 1 b ¢ ; V:[el]: H:[a’]
01 d

and define a projection IT by ImII = span{e;} and KerIl = span{es, ae; + e3}. Then
(A, V.11, H,1) is a Krylov tuple. Choosing V' := I, H := A and II := I, we obtain a con-
tinuation (A, V,1I, 3) with the property (5.4). But I[IC(N, A, (I — II)Ae;) = span{ae; } #
{0}

With the help of Corollary 5.4 we can prove Taylor’s Mismatch Theorem in a very short
and instructive manner. Taylor’s Mismatch Theorem has been proved by Taylor [73] in
1982. Parlett [58] explained this amazing result using Kalman’s normal form [45] in 1992.
He found that an incurable breakdown occurs only if a minimal realization of the system
(wy, A, v1) is found. Ziegler [81] proved Taylor’s Mismatch Theorem using Parlett’s idea
and a result of Kronecker [48] about the rank of infinite Hankel matrices. Gutknecht
[33] gave another proof of the Mismatch Theorem. The proof of the Mismatch Theorem
suggested below is much shorter than the proofs of Taylor [73], Gutknecht [33] and Ziegler
[81].

Theorem 5.12 (Mismatch Theorem) Let (A, V,II, H,r) and (A", W,TI", H,r) be gen-
erated by a (look-ahead) Lanczos algorithm. Suppose that an incurable breakdown occurs
after step r (i.e. T < my, see Remark 3.2). Then the characteristic polynomial of the
generated matriz H is a divisor of the minimal polynomial of the matriz A.

Proof. Recall that an incurable breakdown occurs after step s if and only if I', :=
((w1, A™v1))o<ij<i is not invertible for all I > s + 1. We show by induction on i that
1A%, ., = 0 for all i € IN. Then Corollary 5.4 proves the Mismatch Theorem.

For i = 0 we have: (I — ) A%, 1 = (I —TDv,y1 = v,41-

Assume the statement TTA7v,,; = 0 is true for some ¢ > 0 and all j € {0,1,...,1}.

Now we proceed to i+ 1: We have to show that the term ((AT)lw,, A"1v, ;) vanishes for
all 1 € {0,1,...,7 — 1}. By the induction hypothesis we have

(AT wr, A o) = (A7) wy, Avrga) = (1= TI)(AT) oy, A'v).

By the definiton of the projection II the vector (I — IT7)(AT)!* 1w, vanishes for all [ €
{0,1,...,r — 2}. Finally the identity 0 = (w,,1, Av,1) = (I — TIT)(AT) wy, A'vpyq)
yields the assertion. [ ]

Taylor’s Mismatch Theorem can be easily extended to modified (look-ahead) Lanczos
methods. This is done in Corollary 5.5
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Corollary 5.5 (Extended Mismatch Theorem)

Let (A, V.11, H,r) and (A*,W, I+, |, r) be the Krylov tuples generated by a modified
(look-ahead) Lanczos algorithm. Suppose that an incurable breakdown occurs after step
r (i.er < my, see Remark 5./). Then the characteristic polynomial of the generated
matriz H is a divisor of the minimal polynomial of the matriz A.

Further there is a mazimal continuation (A, [V, V3], I, H, m) of (A, V,I1, H,r) and a maz-
imal continuation (A, [W, Ws], 11, H,m) of (A*, W,II*, H,r) such that

H 0

* H2

H 0
* H2

and H =

(5.7)

where H € Mat,, and H € Mat,, are unreduced upper Hessenberg matrices and

m:=dimIC(N, A, Vey), m = dim (N, AT, We,).

Proof. By Theorem 5.5 there is a (look-ahead) Lanczos method which generates the
Krylov tuples (A, V,II, H,r) and (AT, S"W, 1", H,r) and breaks down incurably after
step r. Theorem 5.12 applies and it yields that the characteristic polynomial of H is a
divisor of the minimal polynomial of A. In the proof of Theorem 5.12 we have shown that
the relation (5.6) holds if an incurable breakdown occurs. Finally, by Corollary 5.4 there
are continuations with the properties (5.7). n

By Corollary 5.5 an incurable breakdown of the (modified) (look-ahead) Lanczos method
can be overcome. Theorem 5.13 below shows how to construct such a continuation.

Theorem 5.13 Let (A, V.11, H, s) be a Krylov tuple with the property (5.5) or (5.6). Then
a continuation with the property (5.4) can be constructed as follows:

(1) vsyi1:= (I — 1) Avg for an arbitrary § € €\ {0}.

(2) Choose an arbitrary Krylov subspace projection method with starting vector vsiq
to generate a Krylov tuple (A, Vo, 11, Hy, m — s).

(3) Put
H 0
G H,

0 gt
0 O

V= [V, V4, G =

(4) Choose an arbitrary projection I1 on K(N, A, vy).

A slight modification of part ii) of the proof of Theorem 5.11 proves Theorem 5.13.

Theorem 5.14 and Corollary 5.6 below state conditions which imply that no incurable
breakdown of the (modified) look-ahead Lanczos method occurs.
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Theorem 5.14 (Existence of an incurable breakdown) Let A € Maty.
Let vy, w; € €Y\ {0}. Choose an arbitrary non-degenerate bilinear form {-,-)s.
Suppose that

N = max{dim K(N, A, v;), dim (N, A", w)}.

Then no incurable breakdown of the modified look-ahead Lanczos method occurs. In other
words: Every modified look-ahead Lanczos method, applied to vy, wy, A, yields two Krylov
tuples (A, V,T1, H,r) and (AT, W,II", H,r) where

r =mp, := min{dim (N, A, v;), dim (N, A", w,)}.

Proof. By duality it is sufficient to consider the case where N = m := dim KC(N, A, v;)
is assumed.

We prove Theorem 5.14 by contradiction.

Suppose that an incurable breakdown of a modified look-ahead Lanczos method occurs
(i.e. 7 < my). Then by Corollary 5.5 there is a maximal continuation (A, [V, V5], II, H, N)
of (A, V,1I, H,r) such that

H 0
* H2

V. Vo] TA[V, V] = H = (5.8)

Defining D := WTSV, D := diag (D, Iy_,) € Maty and W := (S~ H)T([V, Vo] )T DT we
obtain the equations

WTS[V,V3]=D  and W = [W,«. (5.9)

From there, from AT = STA+(ST)! (see Lemma 5.3) and H = D 'H”D (see Lemma
5.5) we find the identity

WIATW = (DD)YV, V)T ST AT (ST ([V, Vo] HT DT (5.10)
(DY LV, V)T AT ([V, Vo] HTDT = (D7) *HT DT (5.11)

(DT)"'HTDT H x
_ _ (5.12)

0 HT 0 HI

which implies

r=my =dim (N, AT, w;). (5.13)
Identity (5.13) contradicts the assumption 7 < my, which proves the theorem. u

Corollary 5.6 Let A € Maty be an unreduced upper Hessenberg matriz. Choose vy := ey
and w; € €Y\ {0}. Choose an arbitrary non-degenerate bilinear form {-,-)s. Then no
incurable breakdown of the modified look-ahead Lanczos method occurs.
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Proof. The unreduced upper Hessenberg form of A implies the identity
]C(N, A, 61) = (EN

Hence Theorem 5.14 applies and proves the corollary. [ ]

Using Corollary 5.5 and Lemma 5.5 we find immediately Corollary 5.7 below.

Corollary 5.7 Let (A, V,11, H,r) and (AT, W, 1T, H, r) be the Krylov tuples generated by
a (modified) look-ahead Lanczos algorithm. Suppose that this algorithm terminates after
step r. Then the characteristic polynomial of the generated matrix H is a divisor of the
minimal polynomial of the matrixz A. Further the matrices H and H are similar.
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6 Restarted Krylov subspace projection methods

6.1 Restarted Krylov methods and GR algorithms

We consider again a Krylov tuple (A4, V,II, H,s) with s < m := dim (N, A, Ve;). In
Section 5.4 we have seen that the eigenvalues of H are not eigenvalues of A in general.
However the eigenvalues of largest real part are typically well approximated for a rela-
tively small number s (see [43]). If k is the number of eigenvalues that are wanted, then
the number s must be chosen much larger. In case of the Arnoldi method large s leads to
considerable computational effort, in case of the symmetric Lanczos method reorthogonal-
ization is necessary. For these reasons Saad [64] and Sorensen [70] suggested to restart the
Arnoldi method after every s << N steps with a new starting vector UYH) = wi(A)vii).
Here 1); is a polynomial used to filter out the unwanted eigenvalues.

In this Chapter we generalize the idea of Saad and Sorensen to general Krylov subspace
projection methods. Furthermore we show that the general GR method, introduced by
Watkins and Elsner [76], is in a certain sense mathematically equivalent to our restarted

general Krylov subspace projection method. First we recall the definition of the general
G R algorithm.

GR algorithm

Let A € Maty be given. A GR algorithm generates a sequence of similar matrices
(A;)ien as follows:

The matrix A; is taken to be A, or some convenient matrix similar to A, say
Al = G()AGO_I

(e.g. transformation to upper Hessenberg form or tridiagonal form).

Let A; be given. Choose a shift polynomial ¢; ; which approximates a divisor of the
characteristic polynomial of A; (e.g. choose 1;_; to be the characteristic polynomial of
the lower right-hand 2 x 2 submatrix of A;).

Next compute an invertible matrix GG; € Maty and an upper triangular matrix R; such
that

Set
Ai-l—l = GZ_IAZGl

Under some suitable conditions the sequence (A;);en tends to block triangular form or
even to upper triangular form. The QR (see [19]), LR (see [63] ), HR (see [8], [10]) and
SR (see [11], [12]) algorithms are examples of GR algorithms.

Now we turn to the definition of restarted Krylov subspace projection methods.
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Restarted Krylov subspace projection method

Let A € Maty be given. A restarted Krylov subspace projection method generates a
sequence of matrices (H;))icw, as follows:

Choose a starting vector v%o).

Choose a number sg € {1,2,...,mg} where mg := dimlC(N,A,v%O)).

Apply a Krylov subspace projection method to A and vio) to obtain a Krylov tuple
(4 V(o) (), Ho); 50)-

Let a Krylov tuple (A, Viy), 1), Hyy, si) be given.

Choose a shift polynomial v; which approximates a divisor of the characteristic polynomial
of A (e.g. choose v; to be a divisor of the characteristic polynomial of H;) ).

Next compute a new starting vector

z—l—l X ",Z)z( )
(1'+1)).

Choose a number s;1 € {1,2...,m;;1} where m; 1 := dimIC(V, A, v}

(i+1)

Apply a Krylov subspace prOJectlon method to A and ’Ul ) to obtain a new Krylov tuple

(A: Wz—l—l): H(z—l—l): H(z—l—l); 5z+1)-

Notice that the numbers s; € {1,2...,m;} can be chosen arbitrarily. We will show that
there is a GR algorithm such that for all ¢ € IN the matrix H(;_y) is the leading s; X s;
submatrix of the upper Hessenberg matrix A; generated by the same GR algorithm, in
other words:

1 4 Heay *
Ay =Gy AG), VYi1(Ai) = GiR,, Aipr = G AG, = (6.1)

* *

For shortness of notation and clarity we introduce the notion of a restarted Krylov tuple.

Definition 6.1 (Restarted Krylov tuple)

A sequence of siz-tuples ((A, Viey, ), Hiy, i, 14) )iew, @5 called a restarted Krylov tuple if
for every v € INg the ﬁve tuple (A, Vi), Uy, Huy, si) is a Krylov tuple, 1; is a polynomial
and Vz-l—l €1 = 77/)1( )

Let ’U%O) € €V \ {0} and A € Maty be given. Then a restarted Krylov subspace projection
method is a method which generates matrices V(;) and H(; such that

((A, Vigy. sy, Hsy, si5%) )iew, s a restarted Krylov tuple for an appropriate choice of I1j;
and ’QZ)Z

The following Lemma shows that the computation of the (i+1)-st starting vector V(;;1ye;
can be reduced to the computation of Vi;);(H ;) )es.
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Lemma 6.1 Let ((A, Vi), ), Hay, Sis ¥i) )ien, be a restarted Krylov tuple. Then the fol-
lowing statements hold:

a) IC(N,A, V(H_l)el) g ’C(N,A, V(i)el) fO’f’ all 1 € IN(].
b) If degy; < s; for some i, then Vii11yer = Viyvi(Hpy)e
¢) If s; =m; := dim (N, A, Viyyer) for some i, then Viiiryer = Viyhi(Hey)e

Proof. The identity

K(N, A, Viigner) = K(N, A, ¢i(A)Viyer)
= {o(A)vi(A)V; €1|¢€P01}

C {o(A)Vyer| o € Pol}
= ’C(N,A,VZ 61)

yields a). Let (A, Vi), I, Heiy, m;) be a maximal continuation of (A, Vi), Ty, Hay, 5i).-
Using that A'Vj; =V, )Hl for all [ € IN we obtain the equation

Virner = Yi(A)Viper = ©i(A)Viper = Vit (Huy e

which proves ¢). The upper Hessenberg structure of the matrix H yields, for all poly-
nomials ) with degt < s;, the representation

which proves b). u

Now we are going to show that every restarted Krylov subspace projection method can
be seen as a GR algorithm in the sense described in (6.1). To prove this we need some
preliminary steps.

Definition 6.2 A matriz A € Maty is called k-Hessenberg if A has the form

All A12
A21 A22

A=

where A1 € My is upper Hessenberg and Ay consists entirely of zeros, with the possible
exception of the single entry ayi1y in the upper right corner.

We call a k-Hessenberg matriz A unreduced, if the matriz Ay is an unreduced upper
Hessenbery.
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Remark 6.1 The concept of k-Hessenberg matrices has been introduced by Watkins and
Elsner [77]. Note that a k-Hessenberg matrix is not a band matrix.

Lemma 6.2 Let (A, V,II, H,m) be a mazimal Krylov tuple and m < N. Let C € Maty
be an invertible matriz such that F := C~'AC has the form

*

F= (6.2)

] '1j>

*

where F € Mat,, is an unreduced upper Hessenberg matriz. Suppose there s a polynomial
W with the property Ve, = Cy(F)ey. Then there is an invertible matriz G € Mat,, such

that
1
) (6.3)

CV =
0

Further there is a matriz V® € My s (n—m) with the following properties:

a) The matriz V@ has orthogonal columns and Im V@ |, Im V.

b) There is an upper triangular matriz R such that

V,.VOIR=Cy(F) and R=

R
(6.4)
0

*

Here R € Mat,, is an invertible upper triangular matriz.

X X 0«
[V, VO AV, VO] =
0

*

d) The matrices [V,V®)] and V have the same singular values.

Proof. Let the columns of V be denoted by q1,q2, ..., ¢m.
i) First we show that there is an invertible matrix R € Mat,, such that

VR =Cy(F)lei, es, ... en)- (6.5)
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By assumption the column vectors of C~'V form a basis of the Krylov chain
(C7K(j, A, C(F)en) )i<jem = (K(j, Fy1(F)er))1<j<m- The matrix F is unreduced up-
per Hessenberg. Hence K(i, F,e;) = span{ey, eq,...,¢;} fori =1,2...,m. We obtain the
relation

(F)span{eq, eq,...,e;} = Y(F)K(i, F,e;)
= K@i, F,¢(F)e)) = C 'span{q,...,q}

which proves the statement (6.5).

ii) Next we construct the ~Column vectors vy, Vg, ..., UN_m Of V@, Let o; denote the
maximal singular value of V. Set vy := ¢,,. Assume that for some 7 > 0 the vectors
Vg, V1, ..., v; have been constructed such that

C¢(F)6]+m € Wj = Span{qla <o+ 5 qm—1,00, - - avj}

forj=0,1...,7and v; L, W, for j =1,2,...,4.
We construct the vector v;,; as follows:
If C¢(F)ei+1+m g Wz then define ﬁi—l—l = C@Z)(F)ei+1+m,
otherwise choose an arbitrary o, € €V \ W;.
Set
Vip1 = /o1 (I — Op) Vi1 /||(1 — O;) Vi1 ]|
where O; is the orthogonal projection on Wi.
By construction and equation (6.5) the matrix V® has orthogonal columns, there is an
upper triangular matrix R such that the relations (6.4) hold and ImV® 1, TmV. By
assumption the equation VH = AV holds. Hence the equation ¢) is proved. Assertion d)
is a consequence of the relation

0 (0'1 [)
Finally the representation (6.3) follows from the identities (6.2) and (6.5):

C'VR = G(F)leres, - e
) (F)
0 *
) (F)
0

[e1 €2, ... €]
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Lemma 6.3 Let (A, V,ﬁ,ﬁ,m) be a maximal Krylov tuple. Then there is a matrix
V@ e My« (n—m) with the properties a),c),d) stated in Lemma 6.2.

Proof. Define ¢ := 0, C' := I. Part ii) of the proof of Lemma 6.2 yields the assertion. m

Now we are ready to prove that for every ¢ € IN the matrix H(;_y), generated by a

restarted Krylov subspace projection method, is a submatrix of the matrix A; generated
by an appropriately chosen GR algorithm.
Theorem 6.1 below states further that for every ¢ € IN the condition number of the matrix
GoG - - - G; depends only on the norm of the projection II(; and the condition number of
Vii)- These quantities can be bounded above by the user (e.g. in the practical look-ahead
Lanczos process this is done by using checks (see Theorem 5.7 and Section 4).

Theorem 6.1 Let ((A, Vi), Uy, Hpy, 5i, i) )iew, be a sequence of siz-tuples generated by
a restarted Krylov subspace projection method. Then there is a GR algorithm which gen-
erates a sequence of invertible matrices (G;)icn,, @ sequence of upper triangular matrices
(R;)iew and a sequence of matrices (A;)iew with the following properties (for i € IN):

a) Ay =Gy'AGy, Vi1 (A;) = GiR, A = G AG,.
b) Define m; := dimK(N, A, Viyer). The matriz A; is unreduced m;-Hessenberg and

H_1y is the leading s; X s; submatriz of

Ai _ H(i—l) *

(Notice that m; > s;).

c) There is an invertible upper triangular matriz R; € Mat,,, and a full rank matriz
Giy1 € Maty,, wm, , Such that

Gi: 3 Rz:

* *

éi * R1 *
0 0
d) GoGi---Giep=Viep forl=1,2,...,s;.

e) The following estimates hold if the column vectors of Vi;y are normalized:

1 < el
Umin(GOGl o G’L) - O-min(‘/(i))

+ ([ = T | (6.6)

UmaX(GOGl o Gl) < \/ﬁl < \/m_O < \/N (67)
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f) There is, for every i € IN, a mazimal continuation (A, ‘N/(Z-,l), ﬁ(i,l), ﬁ(i,l),mi,l)
of (A, Vii—1y, Hi—1y, Hii—vy, 8i—1) with the following properties:

f1) A, has the representation

A; =
0 *

ﬁ(i—l) * ] ~

f2) GoGi---Gi_iep = Vii-ne Jorl=1,2,...,m;_,

Umm(V(z‘—l)) = Umin(GlGQ e 'Gz'fl)

and .
O-mam(‘/(i—l)) = Omaxzx (G1G2 e Gifl)-

f3) Let G; be the matriz defined in c). Then

ézﬁ(z) = ﬁ(lfl)Gz and my; S mi_1.

f4) Let m be defined as min;ey, m;. Choose ig > 1 such that m;, = m. Then
the identities

Yi(Hiny) = GR; and Hg = Gglg(ifl)Gi
hold for all 1 > iy + 1.

In the following m; denotes the dimension of dim /IC(N, A, Vi;eq).

Notice that in Theorem 6.1 the numbers s; € {1,2,...,m;} can be chosen arbitrarily. We
remark further that in general the identity m; = m;,; holds for all i € INy. Indeed, by
Lemma 6.4 below the case m; # m;; occurs if and only if there is a common divisor of
the minimal polynomial of A and the shift polynomial ;.

Proof of Theorem 6.1. We prove a), b), ¢), d), f1) and f2) by induction on i.
By Remark 5.6 and Lemma 6.1 there is, for every ¢ € IN, a maximal continuation
(A, V(i), H(i), H(i), mz) of (A, V(i), H(i), H(i), Si) with the properties

1 [T

<

———— < —— =+ -1 (6.8)
Umin(v(i)) Omin(v(i)) ©

Omax(GoGhr -+ Gy) < /m; < /mg < VN. (6.9)

Applying Lemma 6.3 to the Krylov tuple (A, \7(0), 1:[((]), H o), mo) we obtain the matrices
Gy = [Vio), V?] and A; := G4 AG, which have the desired properties a)-d), f1) and £2).
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Assume there are invertible matrices G; and matrices A; which have the properties a)-d),
f1) and f2) for some ¢ > 0 and all j =0,1,...,1.

Now we proceed to 7 + 1:

Define C := GG -+ Gy, V i= Vigyr), ¢ = ¢y and F := C'AC = A;;;. Then we have

Vel = ¢(A)\7(1)61 == @Z)(A)Cel C'QZ)( )

Hence Lemma 6.2 is applicable and yields a matrix V® ¢ My« (N=m,.,) and an upper
tringular matrix R such that the following equations hold:

[V, VAR = Cy(F) (6.10)
Appg = [V, VO] 1AV, V@] = Hiivy *] (6.11)
Omin(V) = 0min([V, VO] and  01mae(V) = Omaa([V, VP]). (6.12)

Equations (6.10) and (6.11) imply the relations
(C7V,CTVEIR = (Ain)
and
Ao = [V, VO tcctAaco v, v

=V, T v@)teTt AcioT Y, o v )]

[C~'V, c7v@tA [V, v )]
Set Giyy :=[C~'V,C~'V®)]. Thus,

GoGy++-Giy1 = GoGy -+ G0V, C7'Vv )
= ClC eV = [V, V)]

which proves a)-d), f1) and f2). Combining equation (6.12) and the inequalities (6.8) and
(6.9) yields e).

By Lemma 6.1 a) the inequality m; < m; ; holds. Combining a), c) and f1) we obtain
the equation

éi * ﬁ(z) * ﬁ(ifl) * éz *
G AH—I A G ==
0 % 0 x 0 * 0 %
which yields the 1dent1ty Gi H H— G;. Thus, f3) is proved.
f3) implies H G Hl 1) G for 1> 1.
Finally a), b) and fl) 1mply the identity
77/)1(H i—1 ) * éz * Rz *
T = v(A) = GiRi =
0 * 0 % 0 %




106 6 RESTARTED KRYLOV SUBSPACE PROJECTION METHODS

which yields ¢;(H 1)) = GiR;. n

Lemma 6.4 Let ¢ # 0 be an arbitrary polynomial, v € C~ \ {0} and define m :=
dim IC(N, A, v). Then the following statements are equivalent for every l € {0,1,...,m}:

a) dimIC(N, A, p(A)v) =m —1

b) The mazimal degree of a common divisor of ¢ and the minimal polynomial of
Ale(n,ap) 15 equal to l.

Lemma 6.4 is evident.

6.2 Connections between the QR and the restarted
Arnoldi algorithms

A restarted Krylov subspace projection method is called restarted Arnoldi method if
every Krylov tuple (A, Vi), 1y, Heiy, s;) is generated by performing s; steps of the Arnoldi
method. Here s; € {1,2,...,m;} can be chosen arbitrarily. Theorem 6.2 below describes
the relations between restarted Arnoldi methods and the QR algorithm. To prove this
theorem we use the technical Lemmas 6.5 and 6.6 below.

Lemma 6.5 Let ¢ be a non-constant polynomial. Let k,s € {1,2,...,N} be arbitrary.
Let A € Maty be an unreduced k-Hessenberg matriz. Define m := dim IC(N, A, (A)ey),
r:= min{s, k,m}. Let G € Maty be an invertible matriz and let R € Matyy, be upper
triangular. Suppose that

(A)e, = GRey for 1=1,2...,s.

Then (Ge;)i<i<, is a basis of the Krylov chain (K(i, A, ¥(A)er))1<i<r-
Proof. Fori=1,2,..., min{s, k} we have

K(i, A, (A)er) = ©(A) spanfer,es, ... e}
= GRspan{ey,eq,...,e;} C G span{ej, ey, ... €}

Using that dim KC(i, A, 1(A)e;) =i for i € {1,2...,7}, we obtain
K(Za Aa ¢(A)€1) =G Span{ela €2y, 61‘}

which proves the lemma. [ ]
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Lemma 6.6 Let k < m <[ <r < N be arbitrary integers. Let C € Matyy;, G € Mat,;y,
and V € Mat ny,, be matrices of full rank. Let G be structured as follows:

G = [Gla*]a and [Glla ]

with G1 € Mat;x.m,m, and G11 € Mat,,xm.
Suppose that CGe, = Ve, for 1 <1 <k.

a) Consider the partition C = [Cy, Cy] with C; € Matyy,. Then

C1G11e; = Ve for1 <I<k.

b) Let the column vectors of Cy and the column vectors of V' be orthonormal (i.e.
V*V =1, C;Cy=1). Let k =m. Then G| and Gy, have orthonormal columns.

Proof. a) is evident. Recall that (z,y), := 2*y. Statement b) follows from the relations:

<€z‘,6j>* = <Vei7 Vej>* = (ClGnez‘,ClGnej)* = <G116i,Cfch11€j>* = <G116i7G116j>*

forall1 <1,7 <m. [
Theorem 6.2 (QR-Arnoldi) Let the tuple ((A Viiy sy Hisys 86, 13) )iew, be generated
by a restarted Arnoldi method Let (A, V g, H((]) mg, 1/)0) be a mazimal continuation
of the Krylov tuple (A, Vo) H( , S0, 1/)0) generated by the Arnoldi subspace projection

method. Let (AZ)Z@N, (Gl)lE]N, (Rl)zem be the matrices generated by the QR algorithm
with shift polynomials v; applied to the matriz A; := GO AGy, where Gy = [VO),*]. Then
for each i € IN there is a diagonal matriz D; = diag (di1, dya, . . ., din) with |d;;| = 1 for
all 7 such that the following equations hold for all i € INg:

~ HZ *
Dy A D; = v

* *

] and Ggél .- -GiDiel =Vipe, for 1<1< s,
(6.13)

Proof. In the following the tuple (A, XN/@, ﬁ(i), }N[(i), m;) denotes a maximal continuation
of (A, Viay, I1(s), Hs), 53) obtained by continuing the Arnoldi subspace projection method.
Let (4;)iengs (Gi)iew, and (R;);ew be the matrices associated with the restarted Krylov
tuple ((A, f/(i), ﬂ(i), f[(i), mi, 1;))ieN, as stated in Theorem 6.1. We prove Theorem 6.2 by
induction on #:

By definition the identities A = GO AG, and Gye; = Vioyer hold for I =1,2,. ..
Assume the equations (6.13) hold for some i € IN; and all 0<j<i.

, My.
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Now we proceed to i + 1:
By the induction hypothesis we have

GiniRivier = Y(Ai)er = (Ai)e = Gipi Rigae forl=1,2,...,m,.

Thus by Lemma 6.5 the sequences (Git1€;)1<i<m,,, and (Giy1€;)1<i<m,,, are bases of the
Krylov chain (K(j, Ait1, Giz1€1))1<j<m,.,- Choose a matric Cy € Mat y(n—m,) such that
C = [‘N/(i), (] is invertible. Put G := G417 and V := Vii1. By Theorem 6.1 the equation
CGe; = Ve holds for 1 =1,2,...,m;y;. Lemma 6.6 b), applied to the matrices C', G and
V', yields the orthonormality of the vectors

GZ’+1€1, Gi+1€2, PPN Gi+1emi+1 .

Thus we have two orthonormal bases of the same Krylov chain. By Theorem 2.1 orthonor-
mal bases of Krylov chains are unique up to scalar factors d;; with |d;;| = 1. u

Remark 6.2 Sorensen [70] developed and discussed special restarted Arnoldi methods in

1992. He used the connection between restarted Arnoldi methods and the QR algorithm
described in Theorem 6.2.

6.3 Connections between the QR and the power method
The power method is defined by

(1) Choose a starting vector o\ e @V \ {0} with ||v§0)|| = 1.

(2) Fori=0,1,2,...

Ho = () af
G+1) Avgl)
vy = oI
|| Avy”||
Setting
V=", Mg =0 (")’
and .
Pi(x) = ~ (6.14)
| Avt”]|

one easily verifies that the power method and the restarted Arnoldi method generate
identical restarted Krylov tuples if in the restarted Arnoldi process s; is chosen equal to
one and the shift polynomials ¢; are chosen as described in (6.14). Hence Theorem 6.2
describes also the relations between the power method and the QR algorithm.
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6.4 Connections between the LR and
restarted look-ahead Lanczos algorithms

In this section we describe the connections between the restarted monomial look-ahead
Lanczos method (see Section 3.2.2) and the LR algorithm with exact row-pivoting. As
described in Section 5.2, a look-ahead Lancos method generates two Krylov tuples

(A, V)11, H, 5) (AT, W, 1T, H, 5).

and (6.15)

In view of (6.15) we call a restarted Krylov subspace projection method a restarted look-
ahead Lanczos method if it generates two restarted Krylov tuples

(A, Viay, sy, Heiys 50, 0i) iy and - (AT, Wi, T, Hey, 6,90))iew,  (6.16)
where for every ¢
(A, ‘/Ei), H(i), H(i), SZ-) and (A+, W(i), H?;), H(i), SZ-) (617)

are generated by performing s; steps of a look-ahead Lanczos method. Notice that s; €
{vi(k) | k¥ € K;} can be chosen arbitrarily. (v;(k))rek, denote the degree indices of
((’C(l, A+, W(Z-)el), ,C(l, A, V(Z-)el))ISlSN.

The LR algorithm with exact row-pivoting is given by

A=A, Gic1(Ai) = X[ LiR;,  Aipr = (X[ L) T Ad(X] Ly).

L; is an invertible lower triangular matrix, R; is upper triangular and );_; is a polynomial.
X, is the permutation matrix used in the Gauss elimination process with ‘exact pivoting’
(i.e. two rows are interchanged if and only if the corresponding principal submatrix is

singular [79]).

Definition 6.3 (Gragg matrix) An unreduced upper Hessenberg matriz H € Maty is
called a Gragg matriz with indices (pu(k))o<k<s if H has the form

[ E, ¢ 0 W 0 - 0 (g1 ]
B, E « Ca
H = b where E, = w2 - € Maty,
Cy1 0
0 By,_, E, J i 0 Okl Akl |

Ik = (k) — p(k — 1), u(0) := 0 and each of the non-diagonal blocks By, € Mat,, ,  ;, and

Cy € Maty, i, has exactly one non-zero element in the upper right corner.
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Remark 6.3 The exact monomial look-ahead Lanczos method applied to an arbitrary
triple (wq, A,v1), where wy,v; denotes the starting vectors, generates a Gragg matrix
H with indices (pu(k))o<k<s = (V(k))o<k<s- Here (v(k))rex are the degree indices of the
Krylov chain ((K(j, AT, w1), K(5, A, v1)))1<j<n. Gragg [30, 31] was the first who described
the exact monomial look-ahead Lanczos recursion and the structure of the generated
matrix H.

The next Theorem shows that the LR algorithm with exact row-pivoting and the restarted
exact monomial look-ahead Lanczos method (with a special choice of shift polynomials)
generate identical sequences of matrices if some mild conditions are fulfilled.

Theorem 6.3 (LR and Lanczos) Let A € Maty be given. Choose arbitrary starting
vectors w§0), ’U%O) € €N\ {0}. Choose shift polynomials

1/32(:5) =1 for all i € IN, (6.18)

Yi(x) =z — for all i € INg (6.19)

where ; € €.
Let (Hiy)iew, denote the sequence of matrices generated by the restarted monomial look-
ahead Lanczos method with shift polynomials v; and 1 defined in (6.18) and (6.19), re-

spectively. Let (pi(k))o<k<p; denote the indices of the Gragg matriz Hyy and let H((S)

denote the principal p;(k) x pi(k) submatriz of Hy (i.e. H((S) = (ef Huyej)1<tj<pus(k))-
Assume that Hgy € Maty. Let (A;)iev be the sequence of matrices generated by the LR
algorithm with exact pivoting applied to Ay := H o) using the shift polynomials ;.
Suppose v; is not an eigenvalue of H((Z.k)) for allk € {1,2,...,b;} and for alli € INy. Then
for each i € INg there is an invertible diagonal matriz O; such that

The indices of the Gragg matrices A1 and H) are identical for every i € INg. The
indices (11;(k))o<k<s, of Hpy is given by

{ri(k) 10 <k <bi} ={pica(k) |0 <k < b} U{pia(k) =11 <k<bi} (6.21)

for every i € IN.

Remark 6.4 Theorem 6.3 implies that the restarted exact monomial look-ahead Lanczos
method, using shifts polynomials as described in Theorem 6.3, generates after at most
N — 1 steps a tridiagonal matrix Hy_1) if the conditions of Theorem 6.3 are fulfilled in

each step. The condition ‘v; is not an eigenvalue of H((Z.k))’

% € © such that |y;| > [[H{|.

can be fulfilled by choosing
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Remark 6.5 Theorem 6.3 implies that the ordinary LR algorithm without pivoting is
equivalent to the restarted ordinary Lanczos method in the sense described in Theorem
6.3. This connection is known since the LR algorithm was developed by Rutishauser [63]
in 1958.

In the proof of Theorem 6.3 and in the following Lemmas we use the permutation matrices
X and Y defined as follows: Let A be a given Gragg matrix. Let (u(k))o<k<p denote the in-
dices of A. Then we define the associated permutation matrices X = diag (X;, Xo, ..., Xp)
and YV = diag (Y3, Y5, ..., Y}) by:

Fork=1,2,...,b
if u(k) — p(k — 1) > 2 then set

0 1 0 0 10|
0
Xy = € Maty@w)—pe-1), Y = € Mat,(k)—p(k—1)
0 0 1 1 0

else put X =Y, = [1].

The following Lemmas are used in the proof of Theorem 6.3.

Lemma 6.7 Let A be a Gragg matriz with indices (pu(k))o<r<p. Let Wy = Xe,q) and
A= XAXT. Then K(i, AT ;) = Y span{ey, ey, ..., e;} for alli € {1,2,..., N}.

Inspection of the structure of A proves Lemma 6.7.

Lemma 6.8 Let ¢ be a non-constant polynomial. Let A be a Gragg matriz with indices
(1u(k))o<k<p. Define (wy, A, v1) := (eyy, A, ¥(A)er). Suppose there is a LU decomposition
of X1)(A). Then the degree indices (v(k))ker of the chain (K(j, AT, w1), K(5, A, v1))1<j<n
are:

{v(k) | ke K} =A:={uk) [ 0<k<b}U{puk)—1|1<k<b}

Proof. Define (wy, A, 9) = (Xwy, XAXT, Xv;). Using Lemma 6.7 and the equation

~

K(j, A, 1) = Xtp(A)span{ey, ez, ..., €} forj=1,2,...,N

we obtain: If the matrix I'; := (e X¢)(A)e;)1<; < is invertible and [ € A, then the matrix
(w A1) o< j<i-1 = (W] A1) o< j<i-1 18 invertible, too. By assumption the matrix I,
is invertible for [ =1,2,..., N. [ ]
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Lemma 6.9 Let A € Maty be a Gragg matriz with indices (pu(k))o<k<s- Let 1 be a
polynomial of degree 1. Suppose there is an invertible lower triangular matriz L and an
invertible upper triangular matriz R such that X1(A) = LR. Then the exact monomial
look-ahead Lanczos method applied to the triple (wy, A,v1) 1= (euq), A, ¥(A)eq) terminates
at step s = N and generates a Krylov tuple (A, V,11, H, N) with the following properties:

a) There is an invertible diagonal matriz O such that L = XV O.
b) O7'HO = (XTL)7'A(XTL).
c) The indices (fix)rer of the Gragg matriz H are
{a(k) -k e L} = {p(k) |0 <k < by U{u(k) = 1|1 <k <b}. (6.22)

Proof. By Lemma 6.8 the exact monomial look-ahead Lanczos method applied to the
triple (wy, A,v1) = (eua), 4,19 (A)e) terminates at step s = N and generates a Krylov
tuple (A, V,II, H, N) with the property ¢). The degree indices (v(k)ger of (wy, A, vy) are
identical with the indices (fi(k)ker of H. Define w; := Xwy, 97 := Xv; and A= XAXT.
Consider the Krylov tuple (fl, V,II, H, S) generated by the exact monomial look-ahead
Lanczos method applied to the triple (1, A, 01). By Lemma 5.8 and the uniqueness of the
LU decomposition of Xtp(A) it is sufficient to show that the matrix V is lower triangular.
We denote the i-th column vector of V by ;. We recall that the regular vector o, is

defined as ¥, (k)41 == (I — f[,,(k))ﬁﬁ,,(k) (up to a scalar factor). Here f[,,(k) is the projection
on K(v(k), A, iy) with kernel K(v(k), AT, 4;)*. Using Lemma 6.7 we obtain the relation

Dy(k)+1 € Im (I—ﬂ,,(k)) C Ker f[,,(k) = K(v(k), AT )t = span{ey, e, ..., e,,(k)}L (6.23)

for all £ € K\ {0}. First, we show that 0,4 € span{e,m), ey} and Oupyp1 €
span{e,+1}. The upper Hessenberg form of A yields

@u(k) € K(M(k)a Aa @1) = X¢(A)K(M(k)7 Aa 61)
Xv(A)span{e, ez, ... ey}
Xspan{ey, ey, ..., eu(k)Jrl}

= span{e, es, ..., €40} + span{e, i)} (6.24)

N

Combining relations (6.23) and (6.24), we obtain 9,u) € span{e,), €uk+1)}- Hence we
have X K K

Adyy € span{Ae,py, Aeyerny} = span{e,kw—1)41, uk)+1}-
Hence relation (6.23) yields 0,1 € span{e,u)+1}. Finally, we conclude that

Vy(k)+j € span{ﬁjfl@u(k)ﬂ} = span{e, (k)4

for j=1,2,...,u(k +1) — p(k) — 1. Thus, the matrix V is lower triangular. ]
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Lemma 6.10 Let C' € Maty be an arbitrary invertible matriz and let A; € Maty be
a Gragg matriz. (u(k))o<k<y denotes the indices of A;. Let AZ(-k) denote the principal
(k) x p(k) submatriz of A; (i.e. AE"C) = (ef Aiej)i<ij<pn))- Let Yii(z) = & — 7,4,
vio1 € €. Suppose v;_1 is not an eigenvalue of Al(-k) for all k € {1,2,...,b}. Let Hy
be the Gragg matriz generated by the exact monomial look-ahead Lanczos method applied
to the triple (wgi),fl,vgi)) = ((CT)teyqy, CA,C, Copi_1(A;)er). Then one step of the
LR algorithm with exact pivoting applied to A; generates a Gragg matriz A; 1 with the
property:

A1'+1 = O;lH(Z)Ol (625)
for a suitably chosen invertible diagonal matriz O;. The indices (ji(k)rer, of the Gragg
matriz A;11 are given by

{fi(k) |k € L} ={pu(k) |0 <k <btU{u(k) —1]1 <k <b}. (6.26)

Proof. By Lemma 5.8, Lemma 6.9 and the structure of v;_1(A;) it is sufficient to show
that there is an invertible lower triangular matrix L and an invertible upper triangular
matrix R such that X, ;(A;) = LR. Define A, = (ef Xhi1(Ai)e;)1<ij<r for all 7 €
{1,2,...,N}. The structure of X1, ;(A4;) yields for all j € {2,3,...,u(k +1) — pu(k)}
the equation

~ ~

det(A#(k)Jrj) = Qo3+ * * Oy det(Au(k))

where a4, are the entries of the Gragg matrix A; as described in Definition 6.3. Hence it

A

remains to show that det(A,y)) does not vanish. The equation

|det(A )| = |det(diag (X1, Xa, ..., Xp) (v 1] — AP))]
= [det(y 11 — AM)] £0
yields the assertion. [ ]
Now we are ready to prove Theorem 6.3.
Proof of Theorem 6.3.

Let ((AT,W(i),Hg),ﬁ(i),mi))iemo and ((A, Vi), ), Hiy, mi))iew, be generated by the
monomial look-ahead Lanczos method.
We prove Theorem 6.3 by induction on i.

Set Oy := I. By assumption the equations mg = N and A; = OalH(O)OO hold.
Assume that the equation (6.20) holds for some i > 0.

Now we proceed to i + 1:
Set C':= V(;O;. If the relations

(CT) eyny = aWirner for some o € €\ {0} (6.27)
A = CALLC! (6.28)
Ci(Aipi)er = pVirner  for some g € €\ {0} (6.29)
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hold then Lemma 6.10 applies and yields the desired equations (6.20) and (6.21).
Using Viiy1ye1 = ¥i(A)V(;)eq, the induction hypothesis and the equation A = Vi, H; )V(Z.’)l
we obtain the relations (6 28) and (6.29).

It remains to prove relation (6.27). By induction hypothesis and construction of the
monomial look-ahead Lanczos vectors, the matrices W;) and V(;) are invertible N x N
matrices. Further, by Lemma 3.2, the matrix Dy;) := W(1T) Vis) 1s block diagonal

Dy = diag (D)1, Diy2s - - - Deayp) (6.30)

and the diagonal blocks D(;) ; € Mat,, ;)—,(j—1) have antitriangular structure

( |

Hence

Dy, = : . (6.31)

K
Using D;) = W(f)V(i), the relations (6.18), (6.30), (6.31) and the induction hypothesis, we
obtain

(CT)_leﬂ(l) = W(i)D(_i)leﬂ(l) = OZW(Z-)G ’QZJ(AT)W e = CYW1+1
for some a € C \ {0}. u

6.5 Convergence of restarted Krylov subspace
projection methods

In this section we discuss the convergence properties of restarted Krylov subspace pro-
jection methods. With assistance of Theorem 6.1 we can carry over the convergence
results for GR algorithms of Watkins and Elsner [76] to the situation of Krylov subspace
projection methods.
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The following convergence theorem has two parts. In the first part it is stated under
which conditions the Krylov subspaces

Sitry 1= K(k, A, Visye1) = Vigyspan{ey, ..., e}

converge to an appropriate invariant subspace H of A. To estimate the convergence of
subspaces we use the standard metric

d(X,Y):= sup inf |z —vyl| (6.32)

TEX ||z||=1 YEY

on the set of k-dimensional subspaces of C".

In the second part it is stated that the convergence of the Krylov subspaces implies the
convergence of the matrices H;) to block triangular form if the norms of the projections
II; and the condition numbers of the matrices V(;) are bounded above. We recall that a
Krylov tuple (A4, V,II, H, s) is called normalized if ||Ve,|| =1 for all j € {1,2,...,s}.

Theorem 6.4 Let ((A, Vi), sy, Hiy, si, i) )ien, be a restarted normalized Krylov tuple.
Let m be defined as dim IC(N, A, Vyey). Assume there is a polynomial ¢ € Poly and a
sequence of scalars (o;)ien, € C\ {0} with the following properties a) and b):

a) lim; o ot = (where 1; € Poly for alli € IN )
b) There is an integer k less than min, s; such that
[D(AR)[ > [ (Aks1)] and () #0

for 7 =1,2,....,m and all 1 € IN,.
Here A\, Aa, ..., A\, are the eigenvalues of the operator A|K(N,A,V0e1) ordered so that

(A = [0(A2)[ = . = [9(Am)]-

Then for every p satisfying | (Ai1)|/|0(Ak)| < p < 1 there is a constant L and an
A-invariant subspace H of IC(N, A, Vigye1) such that

d(Siry, H) < Lp' for all i€ IN

where Sy = K(k, A, Viser). The constant L depends on the matriz A and the starting
vectors Viyyeq. It does not depend on the choice of the bases (Viie;)i<j<s; of the Krylov
chain (IC(j, A, Vise1))1<j<s;, nor on the choice of the projections Tl;.

If there are further constants Ky > 0 and Ky such that

omin(Vie)) > K and || < Ko for all i € INg (6.33)
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then the sequence (H;))icw, tends to block triangular form in the following sense:
Consider the partition

Hl(i) H{i)

Hgy = . .
H2(1) Héz)

where Hl(ll) € Maty and Héé) € Mat,, j are unreduced upper Hessenberg matrices and the

matrix Hé? € Mat,,_p)xr has at most one non-zero element in the upper right corner.
Then _
|HS)|| < Kop'  forall i€ N

where %
Ko :=L2V2N ||A| <?2 + Ky + 1) .
1

In the proof of Theorem 6.4 we use Lemma 6.11 below.

Lemma 6.11 Let (G;)ien, and (A;)iew be the matrices generated by a GR algorithm.
Let (¢;)ien, denote the shift polynomials used in the GR process. Let (o;)ien, € €\ {0}
be an arbitrary sequence. Then there is a GR algorithm that generates matrices (G;) i,
(A;)iew and uses shift polynomials (1;)ien, such that

G; =G, Ai =A; and Vi = ot
for all 1.

Proof. Using
ai—l@/)i—l(Ai) = o;1GiR; = Gi(ai—lRi)a and Ai—l—l = Gi_lAiGia

induction on 7 proves the lemma. [ ]

Proof of Theorem 6.4. The assumption b) implies that ¢); and the minimal polyno-
mial of A|IC(N,A,V(0)31) do not have a common divisor. Thus, by Lemma 6.4, the identity
m; = mg =: m holds for all 7 € IN. Recall that m; denotes the dimension of IC(N, A, Vi;)e1).
By Theorem 6.1 f) and Lemma 6.11 there is, for every ¢ € IN, a maximal normalized contin-
uation (A, f/(i), ﬁ(i), ﬁ(i), m) and a GR algorithm which generates the sequence (ﬁ(i))iem,
when applied to ﬁ(g) and the shift polynomials v; :== o;1; are used. Further by Theorem
6.1 e) the estimates (6.6) and (6.7) hold.

The convergence theorems for GR algorithms of Watkins and Elsner ([76], Theorem 6.2,
Theorem 5.4), applied to this GR algorithm, yields the claim of Theorem 6.4 if the sub-
space condition

span{ey, ea,...,ext NU = {0} (6.34)
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is fulfilled. Here U denotes the invariant subspace of ﬁ(g) associated with the eigenvalues

)‘k-l-la )‘k+2a SRR )‘m

Now we show that the subspace condition (6.34) is indeed satisfied.
The matrix H gy is unreduced upper Hessenberg. Thus the equation

K(k7l~{(0)761) = Span{ela €2, .. '76k}

holds.

Suppose there is an & € (span{ej, es, ..., e} NU) \ {0}.

The subspace (N, A, x) is the smallest A-invariant subspace containing z. By assump-
tion U is A-invariant and contains z. Consequently, the relation

K(N,Az) CU
is valid. Using Lemma 5.14 we obtain the inequality
dimU > dim (N, A, z) >m —k + 1.

This inequality contradicts the assumption dimi/ = m — k. Consequently the subspace
condition (6.34) is fulfilled. n

Example 6.1 (Restarted Arnoldi method) Let ((A4, Vi;), ), Hey, Si, ¥:) )ien, be gen-
erated by the restarted Arnoldi method. Then the equations ||I1j;)|| = 1 and 0, (Vi) =1
hold for all i € IN;. Thus, the restarted Arnoldi method converges if the conditions a)
and b) of Theorem 6.4 are satisfied.

Example 6.2 (power method) As described in Section 6.3, the power method is a
special case of the restarted Arnoldi method. Thus the power method converges if the
conditions a) and b) of Theorem 6.4 are fulfilled.

Set o 1= ||Avgi)|| and 1 (x) := . Then the equations
a; )i (r) = x = (x) for all i € INg
show that condition a) of Theorem 6.4 is fulfilled.

Example 6.3 (Restarted look-ahead Lanczos methods) A restarted practical look-
ahead Lanczos method generates two restarted Krylov tuples

(A, Vioys Ty, Hegyy 6 00))ienvy. and (AT, W T Hy, s 00) i
such that for all 7 € IN,
ka(Vi) < Ko, k(W) < Ky and  [[T)|| < Ko

where the constant K, can be chosen by the user (see Remark 5.7). Thus
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o (H()icn, tends to block triangular form if ¢); and A satisfies the conditions a) and
b) of Theorem 6.4.

o (ﬂ(i))iemo tends to block triangular form if ; and A fulfil the conditions a) and b)
of Theorem 6.4.

Choice of shifts: The polynomials v; can be used to filter out the unwanted eigenval-
ues. If k eigenvalues (of a large matrix A) with specified properties are wanted then one
can use the following strategy which was introduced by Sorensen [70] for the restarted
Arnoldi method:

Proceed from step i to step 7 + 1 as follows:
(1) Determine all eigenvalues A1, Ag, ..., A, of the matrix H(;) € Mat,,.

(2) Choose s; — k unwanted eigenvalues Ay, Ao, ..., A5, k.
Set 1hi(z) := (z = M) (z = Ag) -+ (. = Asip).
(3) Compute Vijppyer := Vi (Hey)es.
In general the polynomials v; constructed this way converge. In this case Theorem 6.4
yields linear convergence of the restarted Krylov subspace method if the conditions (6.33)

are fulfilled. In practical applications the numbers s; are chosen not much greater than
k, for the following reasons:

a) Storage requirements: The matrix Vj;) € Maty,, and the matrix Hgy € Mat,, 4,
are required for the computation of the next starting vector V;,e;.

b) Computational work: The eigenvalues of the matrix H(; have to be computed.

¢) Rounding Errors: Rounding errors accumulate with increasing s;.
If all eigenvalues of a (small) matrix A are wanted we use the following strategy:

a) Every Krylov tuple (A, Vi), ), Hi),m;) is chosen maximal (ie. s = m; =
dlm’C(N,A, V(l)el))

b) The polynomials ¢; are chosen by the generalized Rayleigh-quotient shift strategy
(known as a tool in the QR process): Choose 1); = ~;p; where p; is the characteristic

polynomial of HSY), the trailing (m; — k) x (m; — k) submatrix of
Hg = 4 . (6.35)
HQ('L) Héz)

and v; € €\ {0} can be chosen arbitrarily. For reasons of stability 7; should be used
to normalize the new starting vector Viii1yer = Vioyti(He))er
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Combining Theorem 6.1, Theorem 6.4 and the convergence theorems for GR algorithms
of Watkins and Elsner ([76], Theorem 6.3, Theorem 6.5), we can establish quadratic and
in some cases cubic convergence.

Theorem 6.5 (Quadratic and cubic convergence) Let A € Maty have distinct
eigenvalues. Let ((A, Vi, gy, Hy, mi, ¥i) )iew, be generated by a restarted Krylov sub-
space projection method applied to A. Let the polynomials 1p; € Pol,,,_x be chosen by the
generalized Rayleigh-quotient shift strategy. Suppose there is a constant Ky such that

ke(Viay) < Ko for all i € IN. (6.36)

If the sequence (H;))ic, tends to block triangular form, in the sense described in Theorem
6.4, then the convergence is quadratic. Furthermore, if there is a constant K| such that

|HE | < K\|HY|  forall i€ N (6.37)

then the convergence is cubic.

Remark 6.6 The proofs of the convergence theorems for GR algorithms ([76], Theo-
rem 6.3, Theorem 6.5) are based on the convergence of the Krylov subspaces S;y =
K(k, A, Viye1) = Viyspan{es,... ey} to a suitable invariant subspace H of A and on
versions of the Bauer-Fike theorem (see Lemma 5.13 and [76], Lemma 6.4).

Example 6.4 (Restarted Arnoldi method) Let (V{;))icn, and (H(;))iew, be the matri-
ces generated by the restarted Arnoldi method using the Rayleigh-quotient shift strategy.
Then ky(V(;) = 1 holds for all ¢ € INg. Thus, by Theorem 6.5, the restarted Arnoldi
method converges quadratically if it converges. If further A = A* then the equation

IHE| = ||HS||

holds for all + € IN. Thus, by Theorem 6.5, the convergence is even cubic.

The following Theorem states that the convergence rates for the subspaces Sy :=
K(k, A, Viiye1) and for the matrices H are identical.

Theorem 6.6 Let A € Maty have distinct eigenvalues. Let the restarted Krylov tu-
ple (A, Vioy, Iy, Hay,ma, 5) )iew, be generated by a restarted Krylov subspace projection
method using the Rayleigh-quotient shift strategy. Suppose there is a constant K, such
that

re(Viiy) < Ko for all i € IN.
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a) Assume that the sequence of matrices (HQ(?)iG]N tends to zero. Then there are con-
stants Ky and Ky and an A-invariant subspace H such that

|H | < Kid(Si 1) < Kol H3|| - for all i € IN. (6.38)
b) Assume that there is an A-invariant subspace H such that
d(Siwy,H) =0 for i— o0
then the estimates (6.38) hold.

Theorem 6.6 can be proved in a similar manner as [76] Theorem 6.3.

6.6 Implicit GR algorithms and iterated Krylov methods

To save computational work, GR algorithms are usually implemented implicitly (see
Watkins and Elsner [77]),

Implicit GR algorithm

(1) Choose an invertible matrix G, € Maty such that Al = GU_IAGO is an upper
Hessenberg matrix. Consider the partition

Aﬁ) *
N A

e
I

1
0 Al

where Ag? is unreduced upper Hessenberg for every j € {1,2,...,1;}.
Set A; = AlY.

(2) Construct two sequences of matrices (4;);en and (G;);en as follows:
Let A; be an unreduced upper Hessenberg matrix.
Choose a (shift) polynomial ¢;_;.
Compute an invertible matrix G; such that G;e; = ¢;_1(A4;)e; and the matrix
Ai+1 := G A;G; is upper Hessenberg. Consider the decomposition

[ (i+1
Agf“) *

Ay

Ai+1 =

0 A6+

L Liviliv1 |
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where Agz;’l) is unreduced upper Hessenberg for every j € {1,2,...,l;11}.

Set A = A,

Remark 6.7 The eigenvalues of the matrices A;’;) are computed as described in (2) by
setting Ay := A;’;)
To clarify the connection between restarted Krylov subspace projection methods and
implicit GR algorithms we introduce ‘iterated Krylov subspace projection methods” which
are closely related to restarted Krylov subspace projection methods and implicit GR
algorithms.

We recall that a Krylov tuple (A, V)11, H, s) is called maximal if
s=m:=K(N,A, Vey).

Iterated Krylov subspace projection method

Let A € Maty be given. Put H(_;) := A.
Choose a starting vector G(ge; € €V \ {0}.
Apply a Krylov subspace projection method to H(_;) and G(e; to obtain a maximal
Krylov tuple (H(,l), G(O), H(g), H(O), mo).
Let a maximal Krylov tuple (H;_1y, G, 1), Hiy, m;) be given.
Choose a shift polynomial v; which approximates a divisor of the characteristic polynomial
of H(i).
Next compute a new starting vector

G(i+1)61 = 7,/)1(H(1))61 .

Apply a Krylov subspace projection method to H;y and G(;41)e; to obtain a new maximal
Krylov tuple (H, Giz1y, Uiy, Hiivr), mig1).

For shortness of notation and clarity we introduce the notation of an iterated Krylov
tuple.

Definition 6.4 (Iterated Krylov tuples) Let A € Maty and Ger € CV \ {0} be
given. Put H_yy := A. A sequence of siz-tuples ((Hgi—1y, Gy, ), Hiy, ma, 1) )iew, 5
called an iterated Krylov tuple if for every i € INg the five-tuple (H; 1y, Gy, gy, Hiiy, ms)
is a mazimal Krylov tuple, 1); is a polynomial and G 1ye1 = ¥;(Hy)es.

Remark 6.8 Let Gge; € @V \ {0} and A € Maty be given. Then an iterated Krylov
subspace projection method is a method which generates matrices G(;) and H;y such that
((H(i=1y, Gy, Oy, Hey, mi, 4) )ien, is an iterated Krylov tuple for an appropriate choice
of H(z) and 77/)1
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The following theorem shows that iterated Krylov subspace projection methods and
restarted Krylov subspace projection methods generate identical matrices H; if s; is
chosen maximal (i.e. s; = m;).

Theorem 6.7 (Iterated and restarted Krylov methods)

a)

b)

Let ((Hi—1y, G, ﬂ(i), Hy,mi, i) )ien, be genemted by an iterated Krylov subspace
projection method applied to A and G

For each 1 € Ny define Viy) = G G -G(i) and choose an arbitrary projec-
tion Iy on IK(N, A, G 61) Then there is a restarted Krylov subspace projection
method whzch genemtes the tuple ((A, Viy, iy, Hiy, mi, ¥3))iew, when applied to
A and Vigye1 = Ggyer.

Conversely, let ((A, Vi), Iy, Hiy,mi, 15) )ienw, be generated by a restarted Krylov
subspace projection method applied to A and Vg)e.

Set H_yy == A and m_, := my. For each i € INy define Gy € Maty,_ xm,
by the equation Viyy = GoyG)--- Gy and choose an arbitrary projection ﬂ(i) on
K(N, H(i—1y,Ger). Then there is an iterated Krylov subspace projection method

~

which generates the tuple ((H-1y, Gy, gy, Hey, mi, ¥3))iew, when applied to A
and Ggyer = Vigyer.

Now we state the connections between iterated Krylov subspace projection methods and
implicit GR algorithms.

Theorem 6.8 (Iterated Krylov methods and implicit GR algorithms)

a)

b)

Let ((H(i-1), G, ﬂ(i), H ), mq, 1) )ies, be generated by an iterated Krylov subspace
projection method. Then there is an implicit GR algorithm which generates a se-

quence of invertible matrices (éi)iemo and a sequence of upper Hessenberg matrices
(Ai)iew such that

G (i+1)€1 = ’QZ)Z( )61, Gz = [G(i),*], (639)
~ =1 ~ ~ H(i) *
Ai+1 = G1 H(i—l)Gi7 and Ai+1 = . (640)
0

Let (Gy)ien and (A)iew be the sequences of matrices generated by an implicit
GR algorithm. Let 1); be the shift polynomials used in this implicit GR algorithm.
Then there is an iterated Krylov subspace projection method which generates a tuple

((H(Z-,l), G(i), H(i), H(Z-), mg, 1/)2-))2-611\10 such that é1 = [G(i), ] and A (i+1) H(i).

Theorem 6.7 and Theorem 6.8 follow immediately from Theorem 6.1 and Lemma 6.5.
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6.6.1 Convergence theorems

Using Theorem 6.7 and Theorem 6.8 the convergence results for restarted Krylov subspace
projection methods (Theorem 6.4 and Theorem 6.5) can be easily carried over to the
situation of implicit QR algorithms and iterated Krylov subspace projection methods,
respectively. Theorem 6.9 and Theorem 6.10 below are formulated for iterated Krylov
subspace projection methods. Using the equations (6.39) and (6.40) these convergence
theorems can be immediately reformulated for implicit GR algorithms.

Theorem 6.9 Let ((H(i-1), Gy, gy, Huy, mi, 1) )iew, be generated by an iterated Krylov
subspace projection method applied to a matriz A € Maty. Let m denote the order of H
(i.e. Hpy € Maty,). Assume there is a polynomial v € Poly and a sequence of scalars
()ien, € €\ {0} with the following properties a) and b):

a) lim; o a;1h; = 1) (where 1); € Poly for alli € IN)

b) There is an integer k less than m such that

V(M) > [P(Aea)|  and () #0

for 3 =1,2,....m and all 1 € INy.
Here A1, g, ..., Ay, are the eigenvalues of the operator Hyy = A|,C(N,A’G(O)81) ordered
so that

(A = [0(A2)[ = . = [9(Am)l-

Then for every p satisfying |(Aes+1)|/|Y(Ak)] < p < 1 there is a constant L and an
A-invariant subspace H of K(N, A, Gye1) such that

d(Siry, H) < Lp' for all i€ IN
where Sy := K(k, A, G(oye1). The constant L depends on the matriz A and the starting
vectors G;ye;.

Furthermore, if there is a constant K, such that
52(G(0)G(1) tee G(z)) S K() fOT' all 1 € H\IO (641)

then the sequence (H;))icw, tends to block triangular form in the following sense:
Consider the partition

Hl(i) H{Z)

Hy =
where Hl(ll) € Maty and Héé) € Mat,, . are unreduced upper Hessenberg matrices and the
matrix HQ(? € Mat(y,—)xx has exactly one non-zero element in the upper right corner.
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Then _ .
|HS)| < Kp' forall i€N

where
K, =2V2||A|| L K,.

Theorem 6.10 (Quadratic and cubic convergence) Let A € Maty have distinct

eigenvalues. Let ((H—1y, Gy, ey, Hey, ma, 1) )iew, be generated by an iterated Krylov
subspace projection method applied to A. Let the polynomials 1»; € Poly,._j be chosen by
the generalized Rayleigh-quotient shift strategy. Suppose there is a constant K such that

K9 (G(U)G(l) e G(z)) S K fO’f‘ all 1 € IN(). (642)

If the sequence (H;))icw, tends to block triangular form, in the sense described in Theorem
6.9, then the convergence is quadratic. Furthermore, if there is a constant Ky such that

IHY|| < Ky ||HS)|| for all i€, (6.43)

then the convergence is cubic.

Remark 6.9 In Theorems 6.7, 6.8, 6.9 and 6.10 the maximality of the Krylov tuples,
generated by the iterated Krylov subspace projection method, is necessary. Indeed, let
((Hi-1), G 12[(1-), Hy, si,1i))ien, be generated by an iterated Krylov subspace projection
method applied to a matrix A. Suppose that there is an i3 € IN; such that s;, < m; and
s; = m; := dim K(N, H;_1), Guyey) for i # ig. Then the characteristic polynomial of
H; is a divisor of the characteristic polynomial of H;y) for every ¢ > ig. In general
the eigenvalues of H(;,) are not eigenvalues of the starting matrix H_;) = A. This is
demonstrated by the following example:

Choose
2 3
A= 5 G((])el:el, 10:1
30
and shift poynomials 1);(x) = a;x. Here o; is chosen such that ||Gj1ei]| = 1. The

Arnoldi method applied to H_y = A and G(0)61 = ey yields (H(_l), G(O), 0y, Ho), my)
where

my = 2, G(O) = s H(O) = A.

Set
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Then one step of the Arnoldi method applied to H(p) and G(ye; generates the Krylov
tuple (H((]), G(l), H(l), H(l), s1) where

44

s1=142=my, Gay = Guer and Hgy = E]

Continuing the iterated Arnoldi method we obtain for all ¢ > 2 the Krylov tuple

44 44
(Hii—1y, Gy, gy, Hgy,my) = ([E]a [1], [1], [E]’ 1).

The number % is not an eigenvalue of A.
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7 Restarted practical look-ahead Lanczos methods

In this section we discuss the convergence properties of restarted practical look-ahead
Lanczos methods.

First we recall (see Example 6.3) that a restarted practical look-ahead Lanczos method
generates two restarted Krylov tuples

(A, Viay, gy, Heys 56, 0) iy and - (AT, W, TG, Hey, i, 03) i (7.1)
such that
Ko (Vigy) < Ko, ke(Wiy) <Ko and ||| < Ko foralli e INy  (7.2)

where the constant Ky, the indices s; € {1;(k) |k € K;} and the shift polynomials v; and
1; can be chosen by the user.

By Theorem 6.4 the following statements hold:

e If A and v, fulfil the conditions a) and b) of Theorem 6.4, then the sequence
(H(:))ien, tends to block triangular form at least linearly.

o If A and i; fulfil the conditions a) and b) of Theorem 6.4, then the sequence
(H(;))ien, tends to block triangular form at least linearly.

We say that a restarted look-ahead Lanczos method converges if the sequence (H;))ic,
tends to block triangular form. In the following we consider the case where the practical
look-ahead Lanczos process is carried out up to termination. In other words, s; is chosen
such that

s; = = max{v(k) |k € K;}

for all i € INy (see Remark 5.4).

We recall that the only possibility for a breakdown of a look-ahead Lanczos method is
the 'incurable breakdown* (see Remark 5.4). If no such (very unlikely) breakdown occurs
then the following equation holds:

r; = min{m;, m;} (7.3)

where

m; == dim (N, A, Viyyeq) and m; = dim (N, AT, Wer).

We say that a restarted (practical) look-ahead Lanczos method does not break down if
the equation
m; = 1T; for all 7€ INg (74)
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or the equation

~

m; =1; for all 2 € INj (75)
holds.

Applying Theorem 6.5 to the restarted practical look-ahead Lanczos methods we obtain
the following convergence theorem:.

Theorem 7.1 Let A € Maty have distinct eigenvalues. Suppose that the restarted prac-
tical look-ahead Lanczos method does not break down.

a) Let the shift polynomials 1; be chosen by the generalized Rayleigh-quotient shift
strategy. If 1o = mg and the sequence (H;))ic, tends to block triangular form, in
the sense described in Theorem 6.4, then convergence is quadratic. Furthermore, if
there is a a constant K, such that

1HE | < K || HS)) (7.6)
then convergence is cubic.

b) Let the shift polynomials 1/31 be chosen by the generalized Rayleigh-quotient shift
strategy. If ro = o and the sequence (H;))icw, tends to block triangular form then

convergence 1s quadratic. Furthermore, if there is a constant K, such that
1HE < Ko |1HS)) (7.7)
then the convergence is cubic.

Lemma 7.1 below states a sufficient condition for the restarted look-ahead Lanczos meth-
ods not to break down.

Lemma 7.1 Let A\, g, ..., Ay denote the eigenvalues of A. Assume that

~

i(\;) #0 and (X)) #0 (7.8)

for all 1 € INy and all j.
Then the equations

hold for all i € INy.
If further ro = min{mo, 7y}, then the restarted look-ahead Lanczos method does not break
down.
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Proof. Using Lemma 6.1 a) and Lemma 6.4 we obtain the equations
IC(N,A,V(i)el) = IC(N,A, V(O)el) and ,C(N, A+,W(Z')€1) = IC(N, A+,W(0)€1). (79)

Hence the equations m; = mg and m; = my hold. Finally Theorem 5.4 yields the equation
T, =Tg. |

Lemma 7.1 combined with Theorem 7.1 shows that restarted look-ahead Lanczos meth-
ods typically converge at least quadratic.

Example 7.1 (Quadratic convergence) By Theorem 6.3 the restarted monomial look-
ahead Lanczos method with shift polynomials of the form

1%1(33) = xr—" (where ~; € C)
hi(z) = 1 (7.10)

generates under mild conditions matrices H; which are diagonally similar to the matri-
ces A;11 generated by the LR algorithm with exact pivoting. The LR algorithm with
exact pivoting, using the generalized Rayleigh-quotient shift strategy, converges typically
quadratically and not cubically, if it converges at all (see [79]). Thus, the monomial look-
ahead Lanczos method converges typically quadratically and not cubically if the shift
polynomials ; are chosen by the generalized Rayleigh quotient-shift strategy and the
shift, polynomials t; are chosen as described in (7.10).

7.1 Cubic convergence

In the following we discuss how to choose the shift polynomials 1/31 and the first starting
vectors Vigye; and Wge; so that the inequalities (7.6) and (7.7) hold and the restarted
look-ahead Lanczos methods do not break down. In this situation Theorem 7.1 applies
and yields cubic convergence.

Definition 7.1 A restarted look-ahead Lanczos method is called identically restarted if the
shift polynomials 1; and 1; are chosen such that there is a scalar v; € € \ {0} satisfying
the equation

Vi = 1
for all i € INy.
Let A € Maty have distinct eigenvalues Ai, Ao, ..., Ay with eigenvectors xi,s,...,ZTy.
Let (-,-)s be a non-degenerate bilinear form. Let y1,ys, ..., yn be the eigenvectors of A™.

Let two vectors v € @V and w € @V be given. Let o; and §; be the coefficients in the
expansions

N N
v = Zaizi and w= Zﬁlyl
i=1 i=1
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Definition 7.2 The vectors v and w have ‘dual directions’ (with respect to A and {-,-)s)
if the equivalence

holds for alli € {1,2,...,N}.

Definition 7.3 The vectors v and w have ‘general directions’ (with respect to A and
(,)s) if i #0 and B; # 0 for alli € {1,2,...,N}.

Notice that the pairs of vectors (w,v) having general directions (with respect to A and
{-,")s) form an open dense set in €~ x @V. Notice further that every pair of vectors
having general directions also have dual directions.

Let W be a subspace of €. Throughout this section we use the notation
K(’L)k = K(k, A, V(Z-)el), Ié(z)k = ’C(k, A+, W(l)el)
and o
W= {w|we W}

where T is the component-wise complex conjugate of w € V. Notice that W is a subspace
of ¢V,

For later use we recall the definition of the condition number of an eigenvalue (see
e.g. [28]). Let A € Maty have distinct eigenvalues Aj, \o,..., Ay with eigenvectors

T1,To,...,TN. Let y1,vs,...,yn be the eigenvectors of A*. The number
[l il
cond(N;) == ——— (7.11)
Z |7 yil

is called the condition number of A;.

The following Theorem 7.2 states that every identically restarted practical look-ahead
Lanczos method does not break down and that convergence is cubic, if it converges at all
and if A has distinct eigenvalues, the first starting vectors V(g)e; and W e; have dual
directions and 1); is chosen by the generalized Rayleigh-quotient shift strategy.

Theorem 7.2 (Cubic convergence of the identically restarted look-ahead Lanc-
zos method) Let A € Maty have distinct eigenvalues. Choose an arbitrary non-degenerate
bilinear form (z,y)s = 27 Sy on CV x CV. Choose the first starting vectors Vioer and
Woye1 such that they have dual directions (with respect to A and (-,-)s). Then every iden-
tically restarted practical look-ahead Lanczos method does not break down and generates
two sequences of Krylov tuples

((Aa Wl)an(z)aH(Z)amla,lvbz))ZG]NO and ((A+7W(z);Hz);ﬁ(z)ymz;fd)z))zeﬂ\lo
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All eigenvalues of the matriz H;y are eigenvalues of the matriz A. The matrices H;y and
]f[(i) are similar.
Further the identity

m; := dim K(N, A, Viyer) = dim K(N, AT, W ep)

holds for all i € IN.

Suppose that the shift polynomials 1p; € Pol,,, i are chosen by the generalized Rayleigh-
quotient shift strateqy (k € {1,...,mq — 1} can be chosen arbitrarily). Consider the
partitions

O g ) Ao o
Hgyy = . N Hy=1| _.. ..
HO ) 0 g

where Hl(?, Hl(zl) € Mat, and Hé;), f[é;) € Mat,,, . Suppose that the sequence (Hé?)iemo
tends to zero. Then the following statements hold:

a) (Convergence of the subspaces)
There is a k-dimensional A-invariant subspace H and an k-dimensional A'-invariant
subspace ‘H such that

dKue,H) — 0 for i—o00
<

d(K iy, 1) Cd(Kur,H)  forall i€ N

where the constant C' depends on the matriz A, the first starting vectors Vigye; and
Wioyer and on the form (z,y)s =z Sy.

b) The sequence (ﬁé?)iemo tends to zero.

c) (Existence of regular vectors in the k + 1-st step)
There is an ig € IN such that for all i > iy the vectors Viyepr1 and Wiyegq can be
chosen as regular Lanczos vectors. In other words: The Lanczos projection Iy ;)
(Im Il ) = Kue and Ker Il ) = (Ié(i)k)LS) exists for all i > ig. For the norm of
the projection 11 ;) the estimates

1
[Tk, ll < - (7.12)

\/1 — d(/C(i)k, ST/C(i)k)Z
d(Kiks STK i) < Cr d(Koyr, H) + d(H, STH) (7.13)

hold for all © > ig.

STH is a k-dimensional A*-invariant subspace.
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The number d(H, ST?:[) is less than one and depends on the condition numbers of
the eigenvalues of A.

The constant Cy depends on the starting vectors Vigye; and Wgyei, the matriz A
and the form (x,y)s = 27 Sy.

d) (Quadratic convergence)
The sequences (Hézl))iemo, and (ﬁé?)iemo tend to zero at least quadratically.

e) (Cubic convergence)

If the vectors Viyeprr and Wiepqq (for all © > iy; iy € IN arbitrary) are chosen

as reqular Lanczos vectors then the sequences (Hé?)iE]NO, (Hg))iemo, (Flé?)iemo and

(ﬁ{;))iemo tend to zero cubically.
In the proof of Theorem 7.2 we use the following Lemmas.

Lemma 7.2 Let ((A, Viy, ), Hiy, mi, 5) )iew, and ((A+7W(z'):Hz;):H(z‘)ami:@;i))iell\lo be
generated by an identically restarted look-ahead Lanczos method. Define

q)z' = ’Q/)Z',l’g/)i,Q o "Qb() fOT' all 7 € IN.
Then, for every i € IN, there is a scalar 4; € ©\ {0} such that the identities

Vier = im1(A)Viener = @,(A)Vigyes
Wiey, = %71%71(A+)W(1‘71)61:%f1q’z‘(z4+)W(o)€1

are valid.

Proof.

By assumption, we have V(i)el == 7,/)i_1(A)‘/(i_1)61 and W(i)el = 7i—1¢i—1(A+)W(i—l)el-
Induction on 7 yields the desired identities. [ ]

Lemma 7.3 Let X, Y € Matyy (I < N) with X*X =1 and Y*Y =1 be given. Then

d(Im X,ImY) = /1 — 0 (Y* X)2.

Lemma 7.3 is proved in [28] pp. 77-78.

Lemma 7.4 Let X and Y be subspaces of @ of the same dimension. Then the following
statements hold:
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a) There is a projection T1 with Im Tl = X and Ker IT1 = Y+ if and only if d(X,Y) < 1.

In this case the inequality
1
1| < (7.14)
1—d(Xx,))?

holds. 1 is an orthogonal projection if and only if d(X,Y) = 0.

b) Let G, F € Matyy, (N > k) be matrices with InG =) and Im F = X. Then the
following estimate holds:

Omin(G*F) > Omin(G) Omin (F) /1 — d(X, V)2 (7.15)

Proof. Let k denote the dimension of X. Let X,Y € Matyy, be matrices with orthonor-
mal columns such that Im X = X and ImY = ). Applying Lemma 7.3 we have

d(X,Y) = /1 = Gpin(Y* X)2. (7.16)

Thus, the inequality d(X,)) < 1 holds if and only if the matrix Y*X is invertible. By
Lemma 2.3 there is a projection II with ImII = X and KerIl = Y+ if and only if the
matrix Y* X is invertible. In this case IT has the representation IT = X (Y*X)~'Y™*. Using
(7.16) and the inequality

1

Il = IX (X)) < |IX Iy X)) Y Y = Iy X)) 7Y = ——
1T = [|X (Y X) <X X)) Y] = [ X) ] o (VX

(7.17)
we find the desired inequality (7.14).

The projection IT is orthogonal if and only if X = ). This is the case if and only if
d(X,y) =0.

Now we turn to the proof of inequality (7.15). There are invertible matrices Ry, Ry € Maty,
such that G = YRy and F' = X R,. Using the identities G*F = R} (Y*X )Ry, 0pin(G) =
Omin(R1)s Omin(F') = Omin(R2) and the estimates (7.16), (7.17) we obtain

Tomin(GIV/1 — d(X, V) 20min (F).

Lemma 7.5 Let (A, V,II,H,s) and (A", W,II*, H,s) be Krylov tuples generated by a
look ahead Lanczos method. Let (x,y)s = xSy be the dual form used in the look-ahead
Lanczos process. Define D := WTSV. Suppose that the vectors Ve and Weyy, are
reqular Lanczos vectors. Consider the partitions

Hll H12

A~

H21 H22

Hll H12
H21 H22

A
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where Hqq, HH € Mat, and Hos, HQQ € Mat,,_r. Then

d(K(k, A, Ve,), STK(k, AT, Wey)) < 1

and the estimates
Ka(S) ko (W) ko (V)
V1= d(K(k, A, Vey), STK(s, AT, Wey) )2

| Hyo|| < k2(D) || Hai|| < [z (7.18)

hold.

Proof. By assumption Ve, and Wey,, are regular vectors. Therefore the projection
IT with ImIT = K(k, A, Ve;) and Ker IT = K(k, AT, We;)+s exists. The equation

K(s, AT, Wey)ts = (S*K(s, AT, Wey)) ™

together with Lemma 7.4 a) yields d(K(s, 4, Ve;), S*K(s, AT, We;)) < 1. By Lemma 5.5
the identity H = D~'H™"D holds and there are matrices D; € Mat;, and D, € Mat,
such that D = diag (D;, Dy). The block diagonal structure of D yields the equation

Hyy = Dl_lﬁngDQ

which implies .
[ Hysl| < [IDyHHEZHID:|| < #o (D) HZ (7.19)

Lemma 7.4 b) applied to G := STW and F :=V yields

1 1
D! = — 7.20
1D~ o (WTSV) — o (GTW) V) (7.20)
< ! (721)

Gunin (STW) Gmin (V)1 — d(K(s, A, Ver), S°K(s, AT, Wey))

Combining the relations (7.19) and (7.21) and using
||D|| S Omax (W) Umam(s) Omam(v) and Omin (ST ) Z Omin (S) Umzn(W)
we find the estimates (7.18). n

Lemma 7.6 Let KC,H be two subspaces of OV of the same dimension. Let A € Maty.
Suppose there is a subspace W of @ with the properties:

a) W2 K+H.
b) AW =W.
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Then d(AK, AH) < ko(Alw) d(IC, H)
Lemma 7.6 is evident.

Lemma 7.7 Let A € Maty have distinct eigenvalues. Let {x,y) = x7 Sy be an arbitrary
non-degenerate bilinear form. Then there is an invertible matriz Y such that YT =Y
and AT = YAY ! (see Lemma 5.6).

Define X := (S™H)TY. Then

AT = XAX L
Let H be an arbitrary A-invariant subspace. Let A\, Ag, ..., Ay be the eigenvalues of Aly.
Then H = XH is an A'-invariant subspace and \i, o, ..., N\, are the eigenvalues of
Aty
Lemma 7.7 follows immediately from Lemma 5.6. ]

Lemma 7.8 Let A have distinct eigenvalues. Let v and w be vectors with dual directions
(with respect to A and (x,y)s = ' Sy). Let ® be an arbitrary polynomial. Let 5 € C\{0}.
Let X be defined as in Lemma 7.7. Then the following statements hold:

a) The vectors ®(A)v and 5 P(AT)w have dual directions (with respect to A and (x,y)s).
b) XK(N, A, ®(A)w) = K(N, AT, ®(AT)w) = K(N, AT, 5 P(AT)w).
¢) There is a polynomial ¢ such that

w= Xgp(A) and  p(A)K(N,A,v) =K(N, A,v).

Proof. By assumption and Lemma 7.7 there are eigenvectors xy,xs,...,z; of A and
eigenvectors ¥, ya, ..., yr of AT and non-vanishing coefficients «; and 3; such that

k k
v = Zaz‘iﬂi, w = Zﬁiyi
i=1 i=1

and y; = Xua; for alli € {1,2...,k}.
Let \; be the eigenvalue of A belonging to ;. Choose a polynomial ¢ of degree k — 1 such
that

Bi

() =— fori=1,2,...,k. (7.22)

Q;

Then

p(Av = ;041‘80(14)% = ; i (Ni) T

k

k
= Y Bz = Zﬂz‘Xﬁlyz‘
i1

=1

= X 'w
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and ¢(A)|x(n,4,0) is invertible. Hence c) is proved.
Using ¢) we obtain b):

XK(N, A, 3(A)w) = Xp(A)K(N, A, d(A)w)
= XK(N, A, o(A)B(A)) = XK(N, A, B(A)p(A)v)
= K(N,XAX !, X®(A)p(A))
= K(N,XAX™", ®(XAX ") Xp(A))

— K(N, A", (A% )w)
= K(N, A%, 5 ®(A ).

Finally the identities

imply

which proves a).
]

Lemma 7.9 Let A € Maty have distinct eigenvalues. Let H be an invariant subspace
of A. Let H be the invariant subspace of AT defined in Lemma 7.7. Then the following
statements hold:

a) d(H,STH) < 1

b) There is a projection IT with InTl = H and Ker Il = H's = (STH) '

Proof. Let the matrices X, Y and S be defined as in Lemma 7.7. Then STH and H=*s
have the representations

STH = STXH=ST(ST)-"'YH=YH (7.23)
HEs = (STH): = (STR)- =VH . (7.24)

By definition A7 = Y AY !, Hence

A =YAY !
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Let A1, Ag, ..., Ax be the eigenvalues of Al3. Let z; denote the eigenvector of A belonging
to ;. Then H = span{z;,zs,...,2;}. Consider the equation
AV, =YAY YT = YAT, = \Y 1,
Consequently z; := Yz, is the eigenvector of A* belonging to the eigenvalue )\; and
YH = span{z, 29, ..., 2}
Using that z7z; = 0 for 7 # j and z]z; # 0 for all 7 we conclude that
D :=[z,29,..., 2] [x1, T2y . .., 3]

is invertible. Hence, by Lemma 2.3, the projection IT with ImII = A and KerIl = YH
exists. Finally Lemma 7.4 a) yields

d(H,YH) < 1

which, combined with (7.23), proves the lemma. [ |

Lemma 7.10 Let A € Maty have distinct eigenvalues. Choose a non-degenerate bilin-
ear form (x,9)s = 27Sy on TV x C~. Choose the starting vectors Ve, and We, such
that they have dual directions (with respect to A and (-,-)s ). Then every look-ahead
Lanczos method does not break down and generates two Krylov tuples (A, V, 11, H,m) and
(AT, W, TIT, H, m). Further the identity

m :=dim K(N, A, Ve;) = dim K(N, AT, We,) (7.25)

18 valid.

Proof. By Lemma 7.8 b) the identity (7.25) holds. Lemma 7.8 b) and ¢) together with
Lemma 7.9 b) applied to H := (N, A, Ve;) yields the existence of the Lanczos projection
IT with
ImIT = K(m, A, Vey) and Ker Il = K(m, AT, We;)*s. (7.26)
Hence the look-ahead Lanczos process does not break down (see Remark 5.4).
u

Lemma 7.11 below states that the convergence of the Krylov subspaces K, implies the
convergence of the dual Krylov subspaces Ié(i)k

Lemma 7.11 Let ‘H be an arbitrary A-invariant subspace. Let H be the AT -invariant
subspace defined in Lemma 7.7. Assume the hypothesis of Theorem 7.2. Then the in-
equality

A~

d(Kayr H) < Cd(Kgpe, H) (7.27)

holds for all i € INg. The constant C depends on the matriz A, the choice of the form
(x,9)s = 2T Sy and the choice of the first starting vectors Wiyer, Vigyer-
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Proof. Let X be defined as in Lemma 7.7. Let ®; be defined as in Lemma 7.2. Let &
denote the dimension of H.
By Lemma 7.8 there is a polynomial ¢ such that

Wer = Xo(A)Viger and P(A)K(N, A, Vigyer) = K(N, A, Vigyer). (7.28)
Using Lemma 7.2, Lemma 7.8 and equation (7.28), we obtain

) 06)

’C(z)k = K(k7A+aW( ) (k A+ (
yer) = XK(k, A, X' X0, (A) X' Wgyer)

1)

= Kk, XAX ™', 0(XAX )W

= XK(k, A, @:(A)X ' Xp(A)Vger) = XK(k, A, ¢(A)@i(A)Vig)er)

= Xp(A)K(k, A, 0;(A)Viger) = Xp(A)K(k, A, Viyer)

= Xo(A)Kp (7.29)

Now we are ready to prove the inequality (7.27). Using the equation (7.29), the relation
H = XH, Lemma 7.6, the equations (7.28) and AH C H we find

A

=

&
I

d(Xp(A) K, H) = d(Xp(A)Kiipe, XH)
r2(X) d(o(A)Kiiyr, H) = £2(X) d(0(A)Kiyr, p(A)H)
r2(X) K2 (@(Ale(v,av0e1))) Aok, H)-

ININ

Defining C' := k2 (X) k2(@(Alik(n,4,vpe1))), the lemma is proved. u
Proof of Theorem 7.2

Corollary 5.7 yields that all eigenvalues of H ;) are eigenvalues of A and that the matrices
H;y and ]f[(i) are similar.
By Lemma 7.2 the starting vectors Vi;ye; and W;)e; have, for all i € IN, the representation

V(i)el = (I)z (A)‘/(())el and W(i)el = ’%(I)Z(A+)W(0)61

where (Pz = 77/)i—1,¢}i—2 cre ’QZ)O and ’% el \ {0}

Lemma 7.8 applies and yields that for all 2 € IN the vectors V(;je; and W(;e; have dual
directions. Thus, by Lemma 7.10, the restarted look-ahead Lanczos method does not
break down and the identities

s; =m; :=dim K(N, A, Vie;) = dim K(N, AT, Wie,)

hold for all 7 € IN.

By the construction of a practical restarted look-ahead Lanczos method there is a con-
stant K such that

K/Q(‘/(Z)) < KO and KLQ(W(;)) S KO forall e IN(). (730)
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By assumption the sequence (HQ(?)ielNO tends to zero. Thus, by Theorem 6.6 there is a
k-dimensional A-invariant subspace H and there are constants K; and K, such that

|HS|| < Ky d(Kay, H) < K| HSY|| forall i€ IN. (7.31)

Consequently
d(Keiyk, H) = 0 for i — oc. (7.32)

By Lemma 7.11 there is a k-dimensional A*-invariant subspace #H and a constant C
depending on A, Wige1, Vigye1 and (-, -)g such that

~

d(Kayi, H) < Cd(Kgp, ) forall i€ IN. (7.33)
The inequality (7.33) combined with (7.32) yields
d(l@(i)k,/}:[) —0 for i — oc.
Hence, by Theorem 6.6, there is a constant K3 such that
IHD| < Kyd(K ) forall i€ IN. (7.34)
Thus, statements a) and b) of Theorem 7.2 are proved.

Now we show that there is a number 7, such that for all ¢ > iy the Lanczos projection
ch,(i) with
Im Hk,(i) = K(’L)k and Ker Hk,(i) = (K(l)k)LS

exists. In view of Lemma 7.4 a) and the identity
(Ka) ™ = (STKap) " = (STK@) ™ (7.35)

it is sufficient to prove that there is a number iy and a constant C5 such that

d(K iy, ST i) < Cs <1 forall i> i, (7.36)
Using the triangle inequality, Lemma 7.6, the inequality (7.33) and the identity

d(STH, STK i) = d(S™H, S"K i),

we find
d(Kie, STKiwy) < d(Kyw, M) + d(H, STH) + d(STH, STK iyx)
= d(Kup, H) + d(H, STH) + d(STH, STK i)
< d(Kgiyr, H) + d(H, STH) + ko(ST) d(H, Kiyr)
< d(Kuy, H) + d(H, STH) + k2(ST) C d(H, Kiyg)

(7.37)

[
Q
a
g
ES
_I_
=
B
W
S
=
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for all i € IN. Here C) := 1 + k3(ST) C. Lemma 7.9 a) yields the estimate

d(H, STH) < 1. (7.38)

Combining (7.32), (7.37) and (7.38), we find the desired inequality (7.36).
Further Lemma 7.4 combined with the identity (7.35) yields the estimates (7.12) and
(7.13).

Finally we turn to the proof of the cubic convergence of the sequences
(Hé?)ielNo’ (Hl(;))ielNoa ( Aé?)ielNo and (IA{YQ))Z'G]NO' (739)

By assumption the vectors V(;jex41 and W; ep41 are regular Lanczos vectors for all 7 > ;.
Using Lemma 7.5, Theorem 6.6 and the inequalities (7.30), (7.33) and (7.36), we obtain
the estimates

i K2(S) k2 (Wiay) k2 (Via)) | 7yt
1HE| < W O )|
Ko(S K2 ~ (3
< 28K g0
1-C2
SYK2K; . - .
< ra(5) Ko 3d(lc(i)k7%)
1—C?
S)YKZK;C
< a(5) Ko Ks d(Kiye, H) (7.40)
1-C2
SYK2K;CK ;
< RO RRCR) b (7.41)
1—C?
for all ¢ > 4.
Finally, Theorem 7.1 yields the cubic convergence of the sequences (7.39). [ ]

In the following we present and discuss a variant of the identically restarted practical
look-ahead Lanczos method:

A variant of the identically restarted practical look-ahead Lanczos method
(1) Let A € Maty be given.
(2) Choose two starting vectors vy, w; € €V \ {0}.

(3) Apply a practical look-ahead Lanczos method (using the form (z,y) = 2Ty) on A,
v1, wi to obtain two Krylov tuples

(A,V,II,H,7) and (AT, W,TI", H,r).
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(4) (Generalized Rayleigh-quotient shift): Choose a number k£ € {1,2,...,7 — 1}.
Consider the partition

Hyy Hi
H = where Hi; € Maty.
Hjy  Hy

Compute the characteristic polynomial ¢ of Hs,.
(5) Compute o = (H)e; and wl = Y(H)DTe; where D :== WTV.

(6) Apply an identically restarted practical look-ahead Lanczos method on H, v§°),
w§0). Determine the shift polynomials ¢; (for use in the restarted look-ahead Lanc-
zos process) by the generalized Rayleigh-quotient shift strategy and use the form
(x,y) = 27y in the look-ahead Lanczos process.

For shortness of notation we call this method ‘V RL method’.

Corollary 7.1 below states that the V RL method converges cubically if it converges and
if A has pairwise distinct eigenvalues. Notice that, in contrast to Theorem 7.2 (cubic
convergence of the identically restarted look-ahead Lanczos method), Corollary 7.1 does
not require the assumption that the first starting vectors have dual directions.

Corollary 7.1 (Cubic convergence of the VRL method ) Let A € Maty. Choose
arbitrary starting vectors vy, w; € €~ \ {0}. Then the VRL method generates matrices
V.W € Matyy,, H € Mat, and two restarted look-ahead Lanczos Krylov tuples

((H, Viiy, Oy, Hiy, mi, ¥i) )ien, and (HT, W(z‘),H%;),ﬁ(z‘),mi,wz‘))z‘emo-

The characteristic polynomial of the matrix H is a divisior of the minimal polynomial of
the matriz A.

The characteristic polynomial of H; is a divisor of the characteristic polynomial of H.
The matrices H;y and ﬁ(i) are similar.

Further the relations

r>m; = dim K(N, H, Vizer) = dim (N, HT, Waer) > mipq

hold for all i € IN.
Consider the partitions

HO gl ) a9 Ao
Hgy = - L Hy=1| _ .
Y Hl) A0

where Hl(?, ﬁl(zl) € Maty and Hé;), HQ(ZQ) € Mat,,, .
Suppose that the sequence (Héll))iE]NO tends to zero and that A has distinct eigenvalues.
Then the following statements hold:
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a) The sequence (ﬂé?)iemo tends to zero.

b) (Existence of regular vectors )
There is an ig € IN such that for all i > iy the vectors Viyepi1 and Wiyepyq can be
chosen as reqular Lanczos vectors. In other words: The Lanczos projection Iy ¢
(with Im Ty, 5y = K(k, H, Vise1) and KerIl, ;) = lC(k,HT,W(i)el)L) exists for all
1> 1.
Further there is a constant C such that
[Tkl < € (7.42)

for all 1 > 1.
The constant C depends on the starting vectors vy, wy, the conditon number of V
and the matriz A.

¢) (Quadratic convergence)
The sequences (HQ(ZI))iE]NO and (HQ(?)Z-G]NO tend to zero at least quadratically.

d) ( Cubic convergence)
If the vectors Viyyery 1 and Wiep (for all © > iy; i1 € IN arbitrary) are chosen
as reqular Lanczos vectors, then the sequences (Hé?)iemo, (Hg))z‘elNo, (IA{Q(?)iG]NO and
(ﬁ{;))iemo tend to zero cubically.

Remark 7.1 If the matrix A is not sparse then the V RL method requires less arithmetic
operations than the identically restarted practical look-ahead Lanczos algorithm, since the
matrix H is block tridiagonal and upper Hessenberg.

Proof. Corollary 5.7 yields that the characteristic polynomial of H is a divisor of the
minimal polynomial of A and that the characteristic polynomial of H;) is a divisor of the
minimal polynomial of H. By Lemma 5.5 the matrices H(;) and H(;, are similar.

The matrices H € Mat, and H € Mat, are unreduced upper Hessenberg matrices. Hence
the equations A

K(r,H,e;) =C" = K(r, H,e;) (7.43)

hold. Consequently, the minimal polynomial of H and the characteristic polynomial of H

are identical. R
Using HT = DTH(DT)™! (where D := WTV) (see Lemma 5.5) we obtain

K(r, HT, DTe;) = K(r, DVH(DT)}, DTe¢;) = DTK(r, H, (DY) 'DTe;) = @™ (7.44)
which implies together with (7.43) that the vectors e; and DTe; have dual directions with
respect to the matrix H and (z,y) = z”y.
Consequently, by Lemma 7.8, the vectors vio) = 1(H)e; and w%‘” = ¢)(H)D"e, have dual

directions with respect to H and (z,y) = x”y, too.
Finally, Theorem 7.2 applies and Corollary 7.1 follows. [ ]
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7.2 Numerical example

The following examples show that the identically restarted look-ahead Lanczos method
and the VRL method are unstable because of instabilities in the look-ahead Lanczos
process.

[ 000 006 —028 041 055 —0.66 064 032 085 |
0.6 095 014 —032 012 059 —0.17 0.74 0.66
060 —0.31 —0.56 0.61 033 066 093 049 0.56
A_| 096 030 -025 057 045 005 099 02| o _| 004
028 029 —1.00 004 —081 002 —045 —0.70 —0.58
088 041 —0.64 —081 —0.09 —071 000 049 0.59
017 —0.46 099 —0.24 —0.98 —0.85 —0.09 —0.63 0.02

| 059 —0.02 —045 —050 040 029 —0.17 —0.43 | | —0.27 |

(0) T
vy :[0.74 045 —035 —0.35 —046 —0.65 0.68 —0.82]

The entries of the matrix A and the starting vectors w§°) and v§°) are generated by the

random number generator (= uniform distribution in [-1,1]) of "Turbo Pascal® [6].

The matrix A has the following eigenvalues (rounded):

Eigenvalues of A (rounded)
Eigenvalue Real part Imaginary part
A1 1.94768032815462 - 10 %0 0
Xa/3 7.22771408213559 - 10~% | +3.86823730013324 - 100!
A4/ —4.63268021120600 - 10-%! | +-3.06680358938131 - 10~
A6 —1.07573663811272 - 10 9 0
A7/s —1.23547523211391 - 10 %0 | +1.23396246460755 - 10 0

The eigenvalues of the matrix A are not ill-conditioned (cond(lambda;) < 2.5 for all j, see

Definition (7.11)); The vectors v{” and w(® have general directions with respect to A and
(x,y) = 27y (see Definition 7.3). Thus, by Theorem 7.2, every identically restarted look-
ahead Lanczos method, using the generalized Rayleigh-quotient shift strategy, does not
break down and converges cubically, if it converges at all. Indeed, we observe cubic con-
vergence even of the identically restarted ordinary Lanczos method using the generalized



7.2 Numerical example 143

Rayleigh-quotient shift strategy of order two:

Eigenvalues of Héi) (ordinary Lanczos method, exact arithmetic)

i A, 320, BY ol
0 | —5.59229549963598 - 10~°" | 0.00000000000000 - 10 % | 3.107°" | —4.1079"
—3.64371917679964 - 10-°1 | 0.00000000000000 - 10 ©°
1| —4.61432540407506 - 107°! | +3.06571398605869 - 107°1 |  6-1079%2 | —7.10702

2 | —4.63268035075506 - 1091 | +3.06680350809448 - 10791 | 2-107%| 5.1079

3 | —4.63268021120600 - 1091 | +3.06680358938131 - 10791 | 3.1012 1-1012

Here

If the restarted Lanczos process is carried out in finite precision arithmetic then the
eigenvalues of HQ(? do not tend to eigenvalues of A although the eigenvalues of Hl(i)
converge to eigenvalues of A and the entries Béi) and C’éi) of H; tend to zero. Tab. 7.2.1,
Tab, 7.2.2 and Tab. 7.2.3 below show the results of the identically restarted Lanczos
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process carried out in the IEEE-arithmetic ‘extended’.

Eigenvalues of Héi) (ordinary Lanczos method, finite precision arithmetic)
i R, SPWA BY cy
0| —5.59229549963598 - 10~ ¢ 0.00000000000000 - 10 3-109 ] —4-10%
—3.64371917679964 - 1079 0.00000000000000 - 10 %
1| —4.61432540407506 - 107°! | +3.06571398605869 - 107! 6-10792 | —7-107%2
2 | —4.63268035075506 - 1079 | +3.06680350809448 - 10701 2-107% 5-1079
3 | —4.63263869946471 - 107" | £3.06690297973582 - 107! 3-10712 1-10712
4 1.97792532368542 - 10 0.00000000000000 - 10 20 2-107"| —5-107™
—1.14995739998428 - 10 %! 0.00000000000000 - 10 %

Tab.7.2.1

Eigenvalues of H\Y and H(} (finite precision arithmetic)
Eigenvalue Real part Imaginary part
AB = 2D 1.04768032815462- 10 © | 0.00000000000000 - 10
AP =AY | 7.22771408213559 - 100! | —3.86823730013324 - 100!
AP =AW | 7.22771408213559 - 100! | 3.86823730013324 - 10~
AD = AW —1.07573663811272-10 ® | 0.00000000000000 - 10 %
AB = AW —1.23547523211391 - 10 ® | —1.23396246460755 - 10
AP =AW | —1.23547523211391-10 ® |  1.23396246460755 - 10

Tab.7.2.2



7.2 Numerical example 145

Ordinary Lanczos method, finite precision arithmetic

i 0 1 2 3 4
Tmin(D(3y) 1-107% 1 2.107°" | 2.107% 2.107°"| 1.107%
Imaz(D(i)) 4-10°9% 1 7.10% | 7-10°0 ) 9-10°0 ] 9.10™
Ko (W) 4-10°0 1 9.-10% | 2.10% | 2.10° ] 1.10%
ko (Vi) 4-10°1 9.10% | 2.10% | 2.10° ] 6-10%
maxi<k<s fhw (k) 6-10 90 2.10 9 2.10 90 4-.10 % 8.10 %
maX1<k<8uv(k) 4-109 ] 2.10%9 | 2.10%| 4.109| 8§.10%
m1n1<k<7k¢6{|B )|, |C Bl 3-10000 | 4.107% | 3.107°'| 1.107%'| 4.10-02
max1<k<7k¢6{|B )|, |C N} §:10% | 2.10% | 2.10% | 6.10% | 2.10%
6 2-10717 | 3.107®| 2.10717| 3.10716| 3.107'6
38 2-1071 | 4.10°% | 2.10712| 3.1079%| 9.107%

Tab.7.2.3

The quantities p,(k), p,(k) and 7, are defined in Section 4. We recall that 7, is a
measure for the block biorthogonality of the basis ((W;)e;, Vise;j))i<j<s. generated by a
(look-ahead) Lanczos method carried out in finite-precision arithmetic.

Now we try to explain the surprising observation that the eigenvalues of Héé) do not
converge to eigenvalues of A although the eigenvalues of Hﬁ) tend to eigenvalues of A.
By Tab. 7.2.3, row 7g, the biorthogonality of the basis (We;, Vise;j)i<j<e is nearly as
good as if exact arithmetic is used in the Lanczos process. Thus, for every 7 the matrix
H 11 (ﬁnlte precision arithmetic) approximates H fl) (exact arlthmetlc) very well. The num-
bers 75 (see Tab. 7.2.3) show that the biorthogonality of the basis (Wye;, Vise;)i<j<s is
nearly destroyed for ¢ > 3. Consequently, the matrix HQ(;) (finite precision arithmetic) is a

poor approximation to Héé) (exact arithmetic) for i > 3.

Why is the number 73 much greater than the number 74 for ¢ > 3 7
We recall that

)

B = ||(I = M) AVisyex || and CL” = (I - 11} ;) AT Wye (7.45)

where D; = diag (5§i), 6§i), . (5§i)) = Wg)V(Z) and Il ;) is the Lanczos projection with



146 7 RESTARTED PRACTICAL LOOK-AHEAD LANCZOS METHODS

If B,(f) is very small then AV(; e, ~ Ilj ;) AV(;)ex. In this case the computation of

1
Viner = W(AV@% — i) AViay ex)
k

is ill-conditioned (see also Section 4). Similarly, we find that the computation of W; ey 41
is ill-conditioned if |C,(CZ)| is very small.

The numbers B and |Céi)| are very small for i > 3 (see Tab. 7.2.3). Consequently, the
computation of W e; and Vj;)e7 is ill-conditioned for ¢ > 3. This implies the quick loss
of biorthogonality (7g is not small).

By Tab.7.2.3 the matrices D;), W; and V{; are well-conditioned and the Lanczos pro-
jection Il (;) is not ‘very skew’ (i.e. [|TIj ;|| is of moderate size) for all k =1,2,...,8 and
all 7. Further

(B 100N >
Jmin {B,7, |Gy} 2 0.04

for all 4. Thus, the computation of V(;epy1 and Wyepyq is well conditioned for £ =
0,1,2,3,4,5 and all 7. This leads to very small numbers 7.

Is it possible to improve the eigenvalue approximation by using a practical look-ahead
Lanczos method ?

The identically restarted practical look-ahead Lanczos method using orthogonal inner
vectors (i.e. Wiepmy+jLWiyeswyw for 1 < 1.5 < o(k+1) —0(k), I # j) and the checks
(4.10) and (4.11) with tol = 0.01, £ = 10 and ¥ = 1-10° (see Section 4) generates the
following:

Degree indices generated in the look-ahead Lanczos process (finite precision arithmetic)
i (k) ke © W(k))kex = (k)1<k<s

0 v(k)=kfor1<k<8

1 vk)=kfor1<Ek<8

2 v(k)=kfor1<k<8

3 vk)=kfor1<k<5 ©0(6)=17 ©0(7)=38

4 vk)=kfor1<k<5 ©(6)=7 »(7)=8

Tab.7.2.4
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Eigenvalues of Héé) (look-ahead Lanczos method, finite precision arithmetic)
i R, S Ay 1 e | 11l
0 | —5.59229549963598 - 10~ | 0.00000000000000- 10 % | 3.107° | —4-10"%
—3.64371917679964 - 10-°1 | 0.00000000000000 - 10 9
1| —4.61432540407506 - 10~% | +3.06571398605869 - 1071 | 610792 | —7 .10
2 | —4.63268035075506 - 10~ | +3.06680350809448 - 107 %1 | 2.10°%| 5.10°%
3| —4.63267902841025 - 1079 | £3.06680687178604 - 1071 | 2.10 12 2-10 %
4 2.13504696626625- 10 °° | 0.00000000000000-10 % | 3.1071% | —1-10 %
—5.39106851565365 - 1071 | 0.00000000000000 - 10 9
Tab.7.2.5
Look-ahead Lanczos method, finite precision arithmetic
7 0 1 2 3 4
Omin(D(s)) 1-107%( 2.1079| 2.107%| 2.107%'| 5.107%
Omaz (D)) 4-107%0 ) 7.107% ) 7.107%%| 9.107%| 9.107%
Ko (Wia) 4-10 % 9-10 % 2-10 % 2-10 % 2-10 %2
re(Viiy) 4-10 % 9-10 % 2-10 % 2-10 % 2-10 %2
maxi<k<7 (k) 6-10 % 2-10 % 2-10 % 4-10 % 3-10 %
maxi <<z by (k) 4-10 % 2-10 % 2-10 % 4-10 % 2-10 %
Ts 2-1077 | 3.10°8| 2.10717| 3.107®| 1-107'7
Ts 2-107% | 4.10°%| 2.1072| 2.107%| 8-107%

Tab.7.2.6
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For i > 3
(E? ¢ 0o 0o 0o 0|0 0]
B B c o 0o 0|0 0
o BY EP ¢ o oo o
. Hﬁ) Hl“:) ) o o BY ED P oo o
Hy) HY o 0o o BY EY cOlch o

o 0o o o o0 EHES cf)

0 0 0o o o o |BY EY|

Comparing Tab.7.2.1, Tab.7.2.5 and Tab.7.2.3, Tab.7.2.6, we find that the eigenvalue
approximation, generated by the restarted look-ahead Lanczos method, is not better than
the eigenvalue approximation computed by the restarted ordinary Lanczos method. The
fast loss of block biorthogonality in the look-ahead Lanzos process has the same reasons
as in the ordinary Lanczos process.

In the following chapter we discuss how the instabilities in the look-ahead Lanczos process
can be avoided.
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8 Look-ahead Lanczos matrices by similarity trans-
formations

In this chapter we derive a new algorithm which uses a sequence of transformation ma-
trices to generate the look-ahead Lanczos matrices H in a stable way.

For this purpose we introduce the concept of block Hessenberg matrices of index (1¢(k))o<s<s
and block tridiagonal matrices of index ((k))o<r<p-

Definition 8.1 A matrix H € Maty is called block Hessenberg of index

0=p0)<pul)<...<ubd-1)<puld) =N (8.1)
if H has the form
a L
B, Es
H = ;» Ex € Matyg)—pe—1),  Br € Maty(ei1)— (k) x (k) u(k—1)
0 By, Ep |

and each of the non-diagonal blocks By has rank < 1.

Remark 8.1 Notice the difference between k-Hessenberg matrices (see Definiton 6.2)
and block Hessenberg matrices of index (u(k))o<k<b-

Definition 8.2 A matriz H € Maty s called block tridiagonal of index

0=p(0) < u(l) <...<pb—1)<uld) =N (8.2)
if H has the form
B O 0 |
B, E,
H= S By € Matyt)—u(k-1),  Br € Mabui)—ukyxute)-u(r-1)
e ) b—1
0 By1 Ep |

and Cy € Maty(k)—u(k-1)x p(k+1)= (k) -
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Let a matrix A € Maty be given. First we show that if there are invertible matrices
V,W € Maty and a sequence of numbers (8.1) satisfying the following relations

H = V7'AV is block Hessenberg of index (1(k))o<k<s (8.3)
H = WATW is block Hessenberg of index (pu(k))o<k<b :
D = W'V =diag(0,0y,...,0), ©; € Mat,) ui-1) (8.5)

then the matrices H and H are block tridiagonal of index (u(k))o<k<s With non-diagonal
blocks of rank < 1.

Lemma 8.1 Assume (8.3)-(8.5). Then the equation H = D *HTD holds.

Proof. By assumption the matrices W and V' are invertible. Thus D is invertible, too.
The equation

H=Vv'AV = D'WTAWH D =D YW AT™W)'D=D'HA'D
proves Lemma 8.1. [

In the following [; is defined as {; := p(j) — pu(j — 1).

Lemma 8.2 Assume (8.3)-(8.5). Then the matrices H and H are block tridiagonal with

non-diagonal blocks of rank < 1. In other words, there are vectors d§1),cz(-1) e qlt!,

d§2)’ CZ;?) € €4 and matrices Ej,Ej € Mat,, Cj,éj € Mat ., ., Bj,Bj € Maty,, i, such
that
B G 0 |
By B 1)1 42 C1 52 51
H=1 " C B=dd?)T G = {0 P HeLLd) )T (8)
.. . bel
0 B B
W2e 0 |
~ Bl EQ . . ~ ~1 A9 N _ 9 1
i= | By =AY G = {070 AP e, dYT
' Cp—1
L 0 Byy By |
(8.7)
and A
E;=0;'E]e;. (8.8)
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Proof. Using Lemma 8.1 and the block Hessenberg form of H we obtain the identity

ot o 1| & Br o |[ e 0]
71 ~
H=D'ATD = ©: B ©:

Bl

0 @,;1_{* ET || 0 O |
(0, 'ET01) (©,'B]0,) 0
o;'ETe

_ (03 E3 ©9) A (8.9)

(0,2, Bl 16y)

* (0;'Ef6y) |

By assumption, B, has rank 1 and H is block Hessenberg. Hence equation (8.9) yields
the desired identities (8.6) and (8.8). In a similar manner we obtain the identity (8.7). m

The following theorem clarifies the connection between matrices satisfying the relations
(8.3)-(8.5) and the matrices generated by a (practical) look-ahead Lanczos method.

Theorem 8.1 Let a matriz A € Maty and two starting vectors vi,w, € €~ \ {0} be

given. Suppose there are invertible matrices V,W € Maty and a sequence of numbers
0=p(0)<pl)<...<ulb—1) < ud):= N such that

Vey (1 (8.10)
We, = w (8.11)
H = VYAV s unreduced p(b — 1)-Hessenberg (8.12)
H = WATW s unreduced p(b— 1)-Hessenberg (8.13)
D WTV = diag(©1,0,,...,0), ©; € Maty)-ui-1).  (8.14)

Let HY denote the leading ju(b—1) x p(b—1) submatriz of H. Let HY denote the leading

~

pu(b—1) x pu(b — 1) submatriz of H. Consider the partitions

vV =[vh v w=[wh wo

and

where VO WM ¢ Matyyup—1). Then there is a (practical) look-ahead Lanczos method
which can be carried out at least up to step u(b—1) and which generates the Krylov tuples

A VO HD jb—1))  and (AT, WO T AD ub—1)),  (8.15)

where 11 1s the projection with

ImI = K(u(b—1),A,v;) and ImTTF = K(u(b— 1), AT, w)*t.
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Proof. The assumptions (8.10)-(8.13) imply that the column vectors of V(1) and W)
form bases of the Krylov chains (K(i, A, v1))1<i<up—1) and (K(i, A™, w1))1<i<u@-1, respec-
tively. By assumption (8.14) the sequence of vectors ((W(Me;, V(l)ei))lgigu(b—l) forms a
basis to (1(k))1<k<p—1 (see Definition 4.1). Thus there is a (practical) look-ahead Lanczos
method which generates the Krylov tuples (8.15) (see Section 4). n

Construction. Our next goal is to construct matrices H, H and V', with the properties
(8.10)-(8.14), block by block in a stable way. First we choose transformation matrices
P, € Maty and O, € Maty such that

P v, € span{e,}, O, 'w, € span{e,} (8.16)

KJQ(ONl) S tOl, KJQ(Pl) S tol (817)

and the matrices Hy := O7'ATO;, H, :== P['AP; and Dy := OT P, have the forms

E F |

H, = b , Gi=ge, g€ N O {0}
G, M,

H, = Al Al . Gi=agqel, g eI\ {0}
G, M,

D, = d1ag (@1, él), 0, € Matll

where u(1) :=1; € {1,2,..., ]Y}, E\E, € Mat,, are unreduced upper Hessenberg matri-
ces and the matrices F; and F) are of rank 1.
The constant tol is chosen by the user.

Now we proceed by induction on k.
Assume that we have already constructed transformation matrices Py, Ps, ..., P, € Maty
and Oy,0,,...,0;, € Maty and a sequence of numbers 0 =: u(0) < pu(1) < ... < u(k)
such that

rko(0;) < tol,  ky(P;) <tol  forall je{1,2,...k} (8.18)

and the matrices

H, = p};lﬁkf_ll .. .f)flAﬁlfJQ...f)k (8.19)
H, = 0;101;11 N -OflATéléz Oy (8.20)
D, = (317;@]7;1 .. .élTﬁIPQ . (8.21)
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have the forms

B G 0
B, E,
H, = o Crg ., Gy = gkelj;, gr € QN —Hk) \ {0} (8.22)
By Ep Iy
L 0 G, M,
El 61 0
B, F,
H, = L G . Gr=aiel, g € CV P\ {0} (8.23)
B By
0 ék Mk
Dk = dlag (@1, @2, ce ey @k, ék) (824)

where [, := p(k) — p(k—1), Ej, E; € Mat;, are unreduced upper Hessenberg matrices, the
matrices C;, C;, Fy and F}, are of rank 1 and the matrices B;, B; have the form

B; = diel];, B; = d}eZ where d;,d; € span{e; }.

Suppose further that O; and P; have the form
Oi — p(i—1) : . — p(i—1) (825)

fori=1,2,..., k.

In the next step (kK — k+ 1) we construct transformation matrices Ok+1 and ]5k+1 of the
form (8.25) such that

k2 (Opy1) < tol, k2 (Pry1) < tol (8.26)

and the matrices ﬁk+1, Hyy and Dy have, for an appropriate choice of the number
p(k + 1), the form (8.22), (8.23) and (8.24), respectively.
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By definition, the matrices f[k+1, Hy 1 and Dy, have the representations

8 LOOK-AHEAD LANCZOS BY SIMILARITY TRANSFORMATIONS

E, G, 0
B, Es
Hyp = P \HpPrw = Ci-1 (8.27)
B,.. E Fy Py
0 P LGy Pl My Py |
e 0 _
B, FE,
ﬁkﬂ = ON/?hﬁkOkH— C’k—l (8-28)
Biw  E FOp
| 0 Opt1Gr O, MOy |
Dy = O}, DyPyyy = diag(01,0,,...,04,0F 6P 1) (8.29)

Comparing the equations (8.22), (8.23), (8.24) with (8.27), (8.28), (8.29) we recognize
that the equations (8.22), (8.23), (8.24) hold (for the index k + 1) if the matrices Oy
and Py, fulfil the conditions:

a)
P, g € spanfe; } \ {0}. (8.30)
b)
Of 1x € span{er} \ {0},
¢) There is a number pu(k +1) € {u(k) + 1, u(k) +2,..., N} such that the matrices
Pl My, Pyt Oy MiOypi1 and OF, ©F Py, can be partitioned as follows:

(8.31)

, Eryr Fra
P My Pyq = (8.32)
Gry1 My
PR Ek—i—l Fk-i—l
Ot i MiOiq = | . K (8.33)
Gry1 My
O£+1ékpk+l = diag (@].H_l, ék—l—l) (Gk-l-l S Matlk+1). (834)

Here Ej.4, Ek+1 € Maty,, are unreduced upper Hessenberg matrices and the matrices
Gi1, Giy1 have the form

@N—u(kﬂ)).

_ T A _ A T -
Gr1 = Jk+1€4, 5 Gry1 = Jk+1€; (9r+1, G2 €
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Notice that by Lemma 8.2 and Theorem 8.1 the conditions (8.30)-(8.34) imply that the
matrices Fy; and Fj,, have rank 1.

For the solution of the eigenvalue problem Ax = Az it is sufficient to know Hj.; and
the matrices Py, Py, Py, ..., Peir. It is not necessary to know Hyq or Oy, Os, ..., Opsr.
Hence it is useful to reduce the computational effort in (8.30)-(8.34) by replacing Oy.; by
a suitable chosen matrix Q1.

By setting
go = v1, Go := wr, O =1, Qri1 = O} Orp1

and using the identity M), = (0;")"MTO! (see Lemma 8.2) we obtain the following
conditions for the matrices Py and Qx4 ( for £ > 0):

a)
dy :== P; . g1, € span{e; } \ {0}. (8.35)
b) X )
dy, := Qr+10;} gi, € span{e;} \ {0}. (8.36)

c) There is a number pu(k + 1) € {u(k) + 1, (k) + 2,..., N} such that the matrices
P My Peyr, Qi MEQry1 and QL Py can be partitioned as follows:

B Eryr Frp
P MyPyyy = (8.37)

Grs1 My

_ Ek+1 Fk+1
Qi M{ Qrsr = | . . (8.38)

Gr+1 My
Qr. 1 Pe1 = diag (Og41, Op41) (Ok+1 € Maty, ). (8.39)

Here Ej.4, Ek+1 € Maty,, are unreduced upper Hessenberg matrices and the matrices
Gi1, Giy1 have the form

_ T A _ - T p N—p(k+1
G = Jk+1€1,,, 5 Gr1 = Jk+1€4,,,, (9r+1, G+ € C ( ))-

The conditions (8.35)-(8.39) for the matrices Q1 and Py, have, compared to the con-
ditions (8.30)-(8.34) for Oy,1 and Pyy4, the following advantages:

e The computation of O, and O, requires less arithmetic operations.

e The matrix ]\kaﬂ is not needed in a later step.
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The procedure ‘generate H, V and D’ and Theorem 8.2 below summarize our observa-
tions about the construction of well-conditioned look-ahead Lanczos matrices satisfying
the relations (8.10)-(8.14).

procedure generate H, V and D

input: N € IN; A € Maty; vy,w; € @V \ {0}; tol > 1;

output: (u(k))o<k<s € IN; dyp,dp € C* (0< k <b—2);
E, € Matlk; P, € MatN_u(k_%); O, € Matlk ( 1<k<b-1 );
My, € Maty,, gs—1, gp—1 € C*;

go 1= v1; §o = wi; My == A; ©g :=I; k :=0; 1(0) == 0;
repeat

Find the smallest number
p(k+1) € {uk)+1,uk)+2,...,N}
and matrices Q11 and Py such that
ko(Qry1) < tol, Ko(Pry1) < tol (8.40)

and the conditions (8.35)-(8.39) are satisfied; ly1 1= pu(k + 1) — pu(k);
Compute d, di, Egy1, Miy1, grir, Gesr and Oy (see (8.35)-(8.39));
k:=Fk+1;

until there is no solution of the relations (8.35)-(8.40);
b:=Fk+1; u®):=N.

In the following Theorem 8.2 we describe how to construct the look-ahead Lanczos
matrices from the output of the procedure ‘generate H, V and D’.

Theorem 8.2 Let A € Maty and vy, w; € C¥\{0} be given. Let the sequences (Pr)1<k<b—1,

(Ek)1gkgbf17 (@k)lgkgbfla (dk)ogkgbfm (dk)ogkgbq, (M(k))ogkgb; My_1, gp—1 and g, be
generated by the procedure ‘generate H, V and D".
Define

Cp = (e] di){O; 'er, 1O e1}T,  Byi=dpef,, DY = diag(01,0,,...,0, 1)

B O 0 |
Bl EQ . ~ I k-1 0
HO .— : P, = p(k=1)
Ch— 0 Py
0 By o Epq |
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B, O 0
HY .= (DO HO(DOY-1H)T = B B
Cp—2
0 By, Fy |

and V) .= P Py-- -f’b_l[el,eg, ooy €uw-1)). Further define w e Mat -1y by the
equation (WNTVO) = DO Then there is a (practical) look-ahead Lanczos method
which can be carried out at least up to step u(b—1) and which generates the Krylov tuples

A VO TILHD ub—1) and (AT, WO 07, HO, 4 - 1)). (8.41)

Here 11 is the Lanczos projection (see Theorem 8.1).

If w(b — 1) = N then the equations (8.10)-(8.14) are satisfied by the matrices defined
above.
If (b — 1) < N then the following matrices satisfy the equations (8.10)-(8.14):

Vi=PP---Py,  D:=diag(DV, Ix_p-1)), W=V HTDT

and

(El 4 0 ] (E1 él 0 _

B, E, B, E,
H:= L Oy , H:= L GOy (8.42)

By Ep1 Fp Bys By Fpy

L 0 Go-1 My | L 0 Gy ML, |

where
Gy—1 = go—r€],__, Foor = {0,201 gb1 et

B = {0, ) g 1}el,  Gori=goael .

Theorem 8.2 follows immediately from Lemma 8.1 and Theorem 8.1.

Up to now we have reduced the problem of generating matrices H and V' which satisfy
the equations (8.10)-(8.14) (for an appropriate choice of W) to the solution of ‘two-block
problems’ of the following form:

Let a matrix A € Maty and vectors gg, §o € €V \ {0} be given.

Choose a number [ € {1,2,..., N} and well-conditioned matrices P € Maty, and Q) €
Maty such that the following relations hold:
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d:= P 'g, € span{e;}. (8.43)

d = Qo € span{e; }. (8.44)

¢) The matrix P~'AP has the form

E F
G M

P AP = (8.45)

where G = ge], g € €~ and E € Mat; is an unreduced upper Hessenberg matrix.

d) The matrix Q~'A”Q has the form
5 F

Q'ATQ = ) (8.46)
G M

where G = gel', g € CN! and E € Mat, is an unreduced upper Hessenberg matrix.
e) There are matrices © € Mat, and Oe Mat y_; such that
QTP = diag (©,0). (8.47)
Notice that the relations (8.36) and (8.44) are connected by go = O7 gi. In the following
g is defined by g := ©7g.
Now we turn to the solution of the two-block problem (8.43)-(8.47).

We make the ansatz
Q=0y0,-Q, P=PP P

where Qj, 75]- € Maty (for j =1,2,...,1) are invertible matrices of the form

N e

Q = e Qj2 € Maty (8.48)
0 Qjp

_ I, P

P;o= |7 7|, PpeMaty (8.49)
0 P,

and Py = Pga, Qo = Qo2. One easily veNriﬁe;s that tlge first j Cglun}n vectors of ) and P are
uniquely determined by the matrices Qq, Q1,..., Q,_1 and Py, Py, ..., P;_1, respectively.
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We start with the matrices QO and ’ﬁg. The matrices QU and 750 are used to fulfil the
conditions (8.43) and (8.44):

<= go € span{Qe:}
< o € span{Qe; }
< Qy'go € span{e;} (8.50)

Qg € span{e; }

and
P~ gy € span{e;} <= P; gy € spanfe;}. (8.51)

Suppose that we have already generated matrices Qy, O, .. ., Qj_l and Py, Py, . .. s Pi—a
(j > 1) such that

Hj = 75]'77117 75]'77127 s 7ﬁ51Aﬁ0’ 750’ T ”ijl
?’2]’ = Qj__lla Qj__l27 SR QEIATQO’ QO’ T Qj_l
have the form
g F . g F
Hj _ J J , HJ — A] AJ (852)
Qj Mj gj Mj

where £;, £; € Mat; are unreduced upper Hessenberg matrices and G; = gDel, G, = gPDel
for appropriate vectors ¢, gU) € ¢V,

Now we construct matrices Q; and P; such that #;,; and #,,; have the form (8.52).

The matrix H;,, has the representation

. g I =PaPs || & F I, P;
Hiwr = Pip=| 7 SR N s (8.53)
_ | & =PpPRG) * (8.54)
(P52'G)) *

Hence the first equation in (8.52) holds (for j +1) if and only if P; satisfys the relations
(1) & — PjP;3'G; is upper Hessenberg.

(2) Pjglgj = ajele;r for an appropriate o; € €.
Relation (1) holds for every choice of matrices P;; and Pj, because &; is upper Hessenberg
and

E; = PiPp'Gi = & — (PuPp'gW)ej.

J
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Relation (2) is equivalent to the relation

Pjalg(j) € span{e; }.

In a similar manner we obtain the condition
Q713 € spanfe;}
for the matrix Q.
Let
m := min{dim K(N, 4, go), dim (N, AT, g,)}.
Then the conditions (8.43)-(8.46) can be fulfilled for every number I € {1,2,...,m} by
choosing

Pﬁlg(j) € span{e;} (8.55)
Q95'§Y € span{ei} (8.56)
)

for j =0,1,...,1 — 1. Notice that the conditions (8.43)-(8.46) hold (if (8.55) and (8.56

are fulfilled) for every choice of matrices Pj1, Q;1 (j = 1,...,1) and for every choice of
invertible matrices P, and Q5.

The matrices Pj, and Qs are not uniquely determined by the conditons (8.55) and (8.56).
For reasons of stability and simplicity we set

Pji =0, Q1:=0 for j=1,2,...,01—1
and choose appropriate unitary Housholder matrices
Pjp = I —2x;x}, 2, € TN oyl =1
Qp = I—2yy;, 5T, |yl =1
to satisfy the conditions (8.55) and (8.56) for j =0,1,...,1 — 1.
It remains to fulfil the condition (8.47).

Define . . o )
D :=Ql \---QfPy--Pry.

Consider the equation

QP = D= | T _orpp,
Diti3 Dijia
B L, 0 Dy Ds I Pn
| Qh Qb || D D || 0 P
Dy Dy 1P + DyoPy o

o (8.57)
Q1D+ QD3 D14
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where
Dij14= QZ1(D1,1P1,1 + D, 5Pr2) + Qfg(Dz,3Pz,1 + Dy 4P2),

Dy = Dy € Maty and Dy 4, Dy 4 € Maty_y.
If D, is invertible then the equation (8.47) can be fulfilled by setting

Py = INfla Qe :=1Iny (8-58)
and
Pll = _DITIIDZ,Qi Qll = _Dl,3DlT11- (859)

For numerical stability and efficiency we choose the smallest number / such that
Umin(Dl,l) Z tOll (860)

where tol; € (0,1] is chosen by the user. Notice that ke(Dy1) < (Omin(Dy1)) ' because
Dy is, by construction, the product of unitary matrices.
An easy calculation yields the estimates

ko(P) < (1 + 7amszz,1)>2 < (1 + i)Q (8.61)
1

(Q) < (1 + m>2 < (1+ %)2 (8.62)

Putting these observations together, we obtain an algorithm (see procedure ‘generate
one block’ below) for the computation of matrices P, @ E, M;, © and vectors g, g,d,d
satisfying the relations (8.43)-(8.47).

procedure generate one block

input: N € IN; A € Maty: go, g0 € CV; tol, € (0,1];
output: [ € {1,2,...,N}; P, Q € Maty; E € Mat;; M; € Maty_;; © € Maty;
9.9 € @V d, d € span{e; };

Ho = A; 7:(0 = A", Do =TI 9(0) ‘= Yo; f](o) =00 J =0;
repeat

if j > 1 then Pj;; :=0; Q;; := 0;

Construct unitary Housholder matrices Pj, and Qjs satisfying the relations (8.55)
and (8.56); . o S o

Compute H; 1 = P; ' H;Pj; Hip = Q5 ' H;Qj; Dy := QT D;Py;

if 7 =0 then set d := ’ﬁglgg and d := Qalgo;

Ji=74+1
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until o,,(D;1) > tol; or j = N or g¥) =0 or gV =0 (8.63)
l:=j; g:= g";

if Umin(Dl,l) > tol; and [ < N then

begin

Choose Pi1; Pra, Qn and Qj as described in (8.58) and (8.59);
Compute &1, Myg1, g4, g and Dyyy (see (8.52)) )
Set B := &1, My := M1, © := Dy, SRES Diy14, 9= g(z+1)’ g:= GTﬁ(lH)

end
else Set £/ := &, © := Dy;.

Remark 8.2 The matrix D, is the product of unitary matrices. Hence sy(D;) = 1.
Notice that D; = D, if | = N.

To obtain a numerically stable algorithm we replace the relation (8.63) by
until opin(D;1) > tol; or j = N. (8.64)

We call this algorithm ‘procedure compute one block’.

Remark 8.3 If oyin(D;1) > tol for some j > min{K(N, A, go), K(N, AT, Go)} then the
procedure ‘generate one block’ and the procedure ‘compute one block’ generate identical
solutions of the relations (8.43)-(8.47).

In the other case the matrices P, Q, E, My, ©, g,3,d, CZ, computed by the procedure
‘compute one block’, do not satisfy the relations (8.43)-(8.47). However, these matrices
satisfy (8.43), (8.44), (8.47) and the relations c¢’) and d’) below.

¢’) The matrix P~'AP has the form

1 F
P AP = (8.65)
G M,
where G = ge], g € @V " and E € Mat, is an upper Hessenberg matrix.
d’) The matrix Q' A”Q has the form
;o F
Q'A"Q=1 . (8.66)
M,y

where G = gel', g€ @V and E € Mat, is an upper Hessenberg matrix.
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Implementation details

In the following we give some implementation details for the efficient computation of
Eiv1, Mit1, g and g. Assume that opin(Dy1) > tol; and I < N. By construction the
equations

- -1

S Fima _ I, Pn g F I Pn (3.67)
Giv1 Mip 0 Iny g; M, 0 In—y
| & —Png *
_ | GG : (8.68)
I g (GiPn + M)
Gi=gY and  Py=-D Dy (8.69)
hold. Using (8.57)-(8.59) and (8.67)-(8.69), we obtain the representations
S =&+ {Df,sz,zg(”}elT = [&e1, Eieq, ... Erer1, Erer + Df,llDl,Qg(l)]
Mg = M; - g(l){DlT,Q(Dl_,ll)Tel}T
g = gD = g0
g(l+1) — g(l)
and
g — éTg(lJrl) _ éTg(l) _ DIT;_IAQ(Z)
= {QI(D1\ Py + DyoPr) + QL (D 5Py + DyyP) 3’ gV
= (DysPy + Dya)"g"®
D[g" — DIy(D )" Dl
For the computation of the singular values of the matrices Dy 1, Dy1,...,D;—11 and the

generation of the singular value decomposition of the matrix D;; we use the SV D-
algorithm of Golub and Reinsch [26], [28].
Notice, that the matrix D;;; 4 need not be computed.

8.1 Reducing the computational effort

Considering equation (8.70) below we find that the procedure ‘compute one block’ and the

procedure ‘generate one block’ in general compute one dimensional solutions (i.e. | = 1)

of the two-block problem (8.43)-(8.47), (8.60) if the constant tol; is not chosen too large.
— — 1.TOT _ T _ 195 90|

Omin(D1,1) = [D1| = ey @ Per| = [(Qer)” (Per)| = ol goll (8.70)
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In this situation the matrix P, generated by the procedure ‘compute one block’, is the
product of the two elementary matrices Py and P;. Now we show how P can be chosen
as a single elementary matrix. For this purpose we solve the following problem:

Let the vectors gy and gy be given. Suppose that
90 0 # 0. (8.71)

Find invertible elementary matrices P = I — yay? and @ satisfying the relations (8.43)-
(8.47) for [ = 1.

The relations (8.45) and (8.46) are satisfied for every choice of invertible matrices P and
Q. The equation (8.47) is equivalent to the identities

5= Qes = (P1) 1 (PTQJer = O(PT) ey (8.72)

“go = Per = (@)@ P)er = Q") e (5.73)

where a, 3 € € \ {0}. Hence the conditions (8.43)-(8.46) are satisfied if and only if the
relations

P~ 'go € span{e;}

PT§y € span{e;}

Q G € spanfer}

Q" go € span{e;}
hold. Now we proceed as follows: We construct an invertible elementary matrix P =
I—~zy” satisfying the relations (8.74) and (8.75) and set @ = (P~')”. Then the equations
(8.43)-(8.47), are satisfied, too.

We recall that a matrix of the form I — yay” is invertible if and only if v(y"z) # 1. In
this case the matrix I — Axy” with

S — (8.78)

Y(y'r) -1

is the inverse of I —yxy”. The relations (8.74) and (8.75) are equivalent to the equations
(8.78)-(8.80).

NS}

ae, = go—fyx(yTgo) (8.79)
Ber = Go—vy(z" o). (8.80)

Here a, 3,7,% € €\ {0} and z,y € C".
(8.79) and (8.80) imply the identity

aff = ozelTelﬁ = gUT(P_l)TPng = gngo. (8.81)
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One easily verifies that the equations (8.79) and (8.80) hold if the identities (8.81)-(8.85)
are satisfied.

r = gy— aep (8.82)
1 = 4(yTg) (8.83)
y = go— Pe (8.84)
1 = (=" ). (8.85)

yy(zTy) = Y¥(ga go — Bet go — ael Gy + ap)
= v9(g0 90 — Be] go — el Go + gg Go)
= (yTgo + $T§0)
1 .
(= + 5) =7+7. (8.86)

Consequently, every solution a, 3,7,%4 € @\ {0}, =,y € €V of (8.81)-(8.85) is a solution
of (8.78)-(8.80).

Combining the equations (8.81)-(8.85) and using the assumption (8.71) we obtain the
equivalent system of equations:

af = g5 9o (8.87)

S T~ \—1 6{90 1
¥ = (99 9) (1-—=) (8.88)
v = (9090 — e o) (8.89)
T = go— e (8.90)
y = Go— Per (8.91)

If € €\ {0} is chosen such that

90 9o # eq Go and o #efg (8.92)

then there are uniquely determined numbers ~, %, 3 and vectors x and y satisfying the
equations (8.87)-(8.91).

Our goal is to choose the scalar a so that the matrix P = I — vay” is well-conditioned.
For this purpose we first derive a lower bound for the condition number of every invertible
matrix P € Maty satisfying the relations (8.74) and (8.75). By (8.81) there are scalars «
and 3 such that a3 = gl gy # 0,

9o ||90||
Pl > ||P = ||=|| = —— 8.93
IPI1 > [1Perll = 1211 = S0 (8.93)
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and -
P70 = NP2 NPT el = 12 = Igoll . (8.94)

196 9ol

Combining the equations (8.93) and (8.94) we obtain the estimate
llgoll lloll o] = [1goll 1|0l

ko (P) = ||IP|| 1P| = (8.95)
| | 195 9ol |96 9ol
An easy calculation yields for invertible elementary matrices P = I — yzy’ the identity
Ko(P) =a+Va? -1 (8.96)
where

L. 2 2 ( vy )
=~ lz]|* lly]| — R . 8.97
S VA ] [yl ] (8.97)

and ¥ is defined in (8.78) above. Using the relations (8.96) and (8.97) we obtain in the
case R(79) > 0 the estimates

ALl 1yl
2

In the other case (R(79) < 0) the inequalities

=1 < ro(P) <[] ll* Iyl (8.98)

2 2 2
Ll I

hold. Considering the equations (8.95), (8.98) and (8.99) we expect that the expression
1791 ||z|? |ly]|? can be bounded by a polynomial of low degree in ||gol| ||goll/|gd Go| if the
number « is appropriate chosen. Indeed, by choosing

= =2 ||gol| €"¥ %) (8.100)

ka(P) < [y3l lll* Nyl + 2 (8.99)

where gJ go = |gg gole" and e] go = |e] gole’?? (if e] go = 0 then we take @5 = 0) we obtain
the inequalities
VT = 190 9o — el ol (8.101)
— | |gg’§0|e“"1 +9 ||90|| 61(@1*@2)|6f§0|6w2 |
190 9ol + 2 {90l €1 Gol

> g5 9ol (8.102)
T
=1 _ | T= €1 90
|7| - |90 gO| |1+ 92 ||g || ei(‘pl_‘p2)|
> ¥l 11— 10
- 2 |lgoll
> 1909l (8.103)

2
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which leads to the estimate
2 || ly]I?
198 go?
2 (lgoll + lee))* (llgoll + [81)?
|9§§0|2

~ T~
(lgoll + 2lgoll)? (3ol + 2212
7 +2
196 90l

~ 2
1
< 18 <M + —) +2. (8.104)

N

r2(P) AP NIyl +2 < +2

+2

196 9ol 2
Remark 8.4 If gy, o € IR" then the relation (8.100) reads as follows:

a = =2 |lgo| €= = —2 ||go|| - signum( (e go) (95 o) ). (8.105)

In this case (go, Jo € IR™) the matrix P = I — yay” has real entries and the inequality
v > 0 holds. This leads to the estimate

p 2
ka(P) < 18 <M+;) .,
a |90T§0| 2

The procedure ‘compute one block of dimension 1’ below summarizes how to compute in
a stable and efficient way matrices P, ), E/, © and vectors g, g, d, d satisfying the relations
(8.43)-(8.47) under the assumption

T~
1901l 1190ll

where the constant toly € (0, 1] is specified by the user.
procedure compute one block of dimension 1

input: N € IN; A4 € Maty; go, Go € T\ {0}; 92 Go; [190]l;

output: P, ) € Maty; F € Mat;; M; € Maty_1; © € Maty;
g, 9 € TNt d, d € spanfe, };

begin

o= =2 lgoll €92 {where gl = g7 dole'” and ey = ] gole¥?)
B = gf o/
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d:= aey;

d:= pes; {Generation of P = I — yry? and P! = I — Aay’}
T = Jo;

el = ef go — &

Y := go;

e1y = e o — B

vi=—1/(a-ely);

7= —a/(g5 do - € );

0 :=1;

compute P~'AP and define E, M, ¢, and § by

EQT
g M

P 'AP =:

;
end .

Remark 8.5 (Stability) Considering the procedure ‘compute one block of dimension
1’ we see immediately that the computation of the numbers «, (3, d, ci, O, v and ¥ is
well-conditioned.

The relations

1 1
el g0 — | > | 2]|gol| — |1 9ol | > [|gol| > §(|61T90| + 21|g0l|) = §(|61T90| + |af)

and
T~ T~
T~ . T~ 90 90 - T~ | ipa |90 90| W2
e190— 0 = lejgo+ ———F——|=|le1 90| + F—
00— Bl = |t + g feiteen | = | 119019+ g0
_ |9¢ ol -
= |e{90| =+ 2 ﬁg(]” = |e{90| + |ﬁ|

proves that the subtractions used in the computation of the vectors x and y are well-
conditioned. Finally, the estimate (8.104) for the condition number of the matrix P
shows that the computation of Pt AP is well-conditioned if the user choose the constant
tols not to small.

Now we are set to formulate the complete algorithm for the stable and efficient compu-
tation of the look-ahead Lanczos matrices H and D.

procedure compute H and D

input: N € IN; A € Maty; vi,w; € €Y\ {0}; tol € (0,1];
output: (u(k))o<k<s € IN; H, D € Maty;
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go 1= v1; Go := wi; My := A4 O = I; k= 0; p(0) = 0;

repeat

if (|gk el/([lgell 1&]1)) > tol then

begin

compute one block of dimension 1 input: N — pu(k), My, gk, 9k, 9% Gk, ||gx]|;

lkt1 =15

end
else
begin

compute one block input:
output: lpy1, Pryr, Qrtr Errr, Mit1, Opsa;

end

pu(k +1) i= p(k) + s

until u(k+1) = N;
b:k+1, Eb l:Mb

for kL :=1to b—1 set

Cr = (€] dp){O;  er, HOT e}

By = dkelj;;
Set

By

output: Pii1, Qit1, Eig1, Mg, Orp1s Git1s Grtr,s
Ait1, dis1s

N — M(k): Mk: Gk, gk: tOl:

k415 Gkt1, Ay At

. D:=diag(0;,0,,...,0,). (8.106)

Theorem 8.3 below states the properties of the output of the procedure ‘compute H and

D

Theorem 8.3 Let H, D, (Py)1<k<p and (Qr)1<k<p be generated by the procedure ‘compute
H and D°. For k=1,2,...,b define

Pkl

Tk

0

0 -

s V:Zplpg"'pb

Py
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and W := (V=T DT. Then the relations (8.107)-(8.116) below hold.

V€1 = V1 (8107)
W€1 = w (8108)
H = V7 YAV s an upper Hessenberg matriz (8.109)

H = W 'ATW s an upper Hessenberg matriz (8.110)

D = W'V =diag(0,,0s,...,0,), ©; € Mat,j) ,;-1- (8.111)

1 1\?
V) < b(18(—+ = 2 8.112
malV) < < <t0l+2>+> (8.112)
1 1\?
ko(Q) < 18 (@*5) L2 (k=1,2,....b) (8.113)
Omin(D) > tol (8.114)
Oman(D) < 1 (8.115)
k2 (V)

W) < . 8.116
) < 20 (8.116)

Let b be the largest number such that H and H are unreduced u(l})—Hessenberg matrices.
Let HY denote the leading u(b) x p(b) submatriz of H. Let HW denote the leading

p(b) x p(b) submatriz of H. Consider the partitions
V=[O v and W= w?)

where VD WM ¢ Maty,,i)- Then there is a (practical) look-ahead Lanczos method
which generates the Krylov tuples

(AVO LAY, ub)  and (AT, WO, T A, 4(0) (8.117)

where 11 1s the projection with

Im Tl = K(u(b), A,vq)  and ImT7T = K(u(b), AT, w)*.

Theorem 8.3 follows directly from Theorem 8.1, Remark 8.2 and the estimates (8.61),
(8.62) and (8.104).

In the following we discuss the output of the procedure ‘compute H and D’ in greater
detail. Let the matrix H be generated by the procedure ‘compute H and D’. Choose the
smallest number m € {1,2,..., N} such that

HY F
G H®

H =
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where

F=0 or G=0 (8.118)

and H® € Mat,, is unreduced upper Hessenberg.
Using Lemma 8.2, Theorem 8.2, Theorem 5.14 and Corollary 5.5 we find immediately the
following cases:

a) If N = m then there is a practical look-ahead Lanczos method which generates
the matrix H") when applied to vy, wy and A. Further, if A has pairwise distinct
eigenvalues, then the vectors v; and w; have ‘general directions’ with respect to A
and (z,y) = 7y (see Definition 7.3).

b) If 41(b) = m then there is a practical look-ahead Lanczos method which generates the
matrix H") when applied to v;, wy and A.

¢) If p(b) < m then in general there is no look-ahead Lanczos method, starting from vy,
w; and A, which generates the matrix H() .

8.2 Flop count

There are at least two different definitions of ‘flop’ used in the mathematical literature:

a) Old flop: One flop is an arithmetic operation of the form a + b - ¢, i.e., a floating
point add and a floating point multiply (see e.g. [27]).

b) New flop: One flop is a single floating point operation (see e.g. [28]).

Notice that an ‘old flop’ involves two ‘new flops’. In this thesis the definition b) is used.

For every starting matrix A € Maty(IR) and for every choice of vy, w; € IR™ \ {0} and
tol € (0, 1] the procedure ‘compute H and D’ requires less than

8 7 37
§N3 + (8(15—l >s+7>N2+ (832—93+§>N
2
+ 40s® + 95 + <§l;°?,m + 0(131%)) s (8.119)

flops for the computation of the look-ahead Lanczos matrices H € Maty(IR) and D €
Maty (IR). Here and below the number [,,,,, is the size of the largest diagonal blocks E; of
the matrix H and the number s is the sum of the sizes of all diagonal blocks of H which
are not 1 x 1 matrices. In other words

lmaz = max (u(k) — p(k —1)) (8.120)

1<k<b~ /,

'

:lk
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and
s= > . (8.121)
k=1,1;#1
Notice that the identities s = 0 and l,,,,, = 1 hold if the matrix H is tridiagonal.

For later use we consider the case that the starting matrix A € Mat y(IR) and the starting
vectors vy, w; € IRY \ {0} can be partitioned as follows:

e 0 [0 ] ]
Bl EQ 0 0
A= ] ] ~ s V1 = . s w1, = . (8122)
. . 0571 . .
0 B, E; | 0| 0
where Ej € Mat;j are upper Hessenberg matrices for j = 2,..., b, the matrix F; is an

arbitrary l~1 X l~1 matrix, the matrices Bl, BQ, ... B;_, have exactly one non-zero element
in the upper right corner and vgl), wgl) e IR"'. In this situation the procedure ‘compute

H and D’ requires only

N(85% + 48l p0p + 75 +10) + 51952+ ((8]ppaz — D)lmas — 8 lmas + 18)3)
- - 9 -
+ s <§l2 e+ 30e + =0 + O(lmmlfm)) (8.123)

3 max - max 3 max

flops. The numbers s and [, are defined in (8.120) and (8.121). The number 5 is the
sum of the sizes of all diagonal blocks Ejj of A which are not 1 x 1 matrices. The number
lmag 1s the size of the largest diagonal blocks Es, Es ... E; of the matrix A. In other words

laz = max [y, (8.124)

and )
b
s= > I (8.125)

In our numerical experiments (see Subsection 11.2) the look-ahead Lanczos matrices H
are near to tridiagonal matrices ( i.e. Iy, and s are small numbers) if the number tol is
chosen small enough (e.g. for N < 100 and tol = 10~* we have observed I,,,, < 6 and
s < 8 ). Combining these observations with the expressions (8.119) and (8.123) we find
the following:

e For nearly tridiagonal starting matrices A € Maty (IR) and starting vectors vy, wy €
IR having the form (8.122) the procedure ‘compute H and D’ requires typically

O(N) (8.126)
flops.
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e For full matrices A € Maty(IR) the procedure ‘compute H and D’ requires typically

§N3 + O(N?) (8.127)

flops.

In comparison we note the flop counts of two well known methods used for the reduction
of full matrices A € Maty (IR) to upper Hessenberg form:

e The reduction to upper Hessenberg form via Housholder transformations (see e.g.
[28]) requires 10N?/3 + O(N?) flops.

e The reduction to upper Hessenberg form via Gauss transformations (see e.g. [28])
requires 4N?/3 + O(N?) flops.
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9 THE RESTARTED SIMILARITY LOOK-AHEAD LANCZOS ALGORITHM

The restarted similarity look-ahead
Lanczos algorithm

We recall (see Subsection 7.2) that the restarted look-ahead Lanczos method, discussed in
Section 7, is not a good choice for the computation of eigenvalues because of instabilities.
In the following algorithm these instabilities are avoided by using the procedure ‘compute
H and D’ (see Section 8) for the computation of the look-ahead Lanczos matrices.

Restarted similarity look-ahead Lanczos algorithm

(1)

(2)

Let A € Maty be given. Choose two starting vectors v\”, w'® € @V \ {0} and a
number tol € (0,1]. Set i :=0, k:=0, A, := A, N; := N, n(k) := 0.

Apply the procedure ‘compute H and D’ on N;, Ay, UY), wii), tol to obtain a
block tridiagonal upper Hessenberg matrix H; ) € Maty, and an invertible block
diagonal matrix D(;) € Maty;.

Choose the smallest number N;,; € {1,2,..., N;} such that

(1)
H(i-l—l) Fit)

Hiiy =
2)
Giir) Hipy
where
F(z‘+1) =0 or G(z‘+1) =0 (9.1)
and H((;J)rl) € Maty,,, is unreduced upper Hessenberg.

If N;11 < 2 then goto (5).
Compute the characteristic polynomial v; of

1 .
[H( ) (G2 D] N =1 202 Vo

the trailing 2 x 2 submatrix of H((;J)rl).
If N;x1 = N; and 7 > 1 then goto (3) else goto (4).

Compute vgiﬂ) =Y (Ak)vgi).
Compute wi ™ = wi(Af)wg).
Set i :=1+ 1.
Goto (2).

Set Agsr 1= H ).
Compute vgiﬂ) = i(Agi1)er.

Compute wiiﬂ) = Ui (AL ) [N s O]Da)el.



175

Set k:=k+ 1.
Set i :=1+ 1.

Set n(k) := 1.

Goto (2).

(5) Set Ay = H{),.
end.

Remark 9.1 (Reduction to upper Hessenberg block tridiagonal form) To reduce
the computational effort the starting matrix A is reduced in step 7+ = 0 to upper Hessenberg
block tridiagonal form (A — A;). In the following steps (i > 1) only matrices with this
structure occur.

The restarted similarity look-ahead Lanczos algorithm (described above) generates se-
quences (n(k))o<k<kos (Ak)o<k<kos (Hiis1))iex and (D )icx where ky < N and X =
{0,1,2,...} € INp. The numbers n(0) =0 < n(l) =1 < n(2) < n(3)--- < n(ky) are
those iteration indices 7 at which a block decouples (see (9.1) and (4)).

If X is a finite set then the matrix A, isa 1 x 1 or a 2 x 2 matrix. In this very unlikely
case we have computed after a finite number n(kqg) of steps at least one exact eigen-
value of the matrix A. In the other case (X = INg) there is, by Theorem 9.1 below, an
identically restarted practical look-ahead Lanczos method, using the generalized Rayleigh-
quotient shift strategy, which generates the same matrices (H(i—l—l))ieNo\{O,l,...,n(ko)—l} and

(D(i))ieNo\{0,1,....n(ko)—1} When applied to U%n(kO)), w§n(k°)) and Ay, .

Theorem 9.1 Let A € Maty. Choose starting vectors v\"), w!”) € @ \ {0}. Choose tol €
(0,1]. Let (n(k))o<k<hes (Ar)o<i<ros (Hit1))iex and (Dg)iex be the matrices computed
by the restarted similarity look-ahead Lanczos algorithm applied to vﬁ‘”, wio), A. Let Vi; be
the transformation matriz generated by the procedure ‘compute H and D’ in the i-th step
of the restarted similarity look-ahead Lanczos process. Then the characteristic polynomials
of the matrices Ay, H1y, H((Z.lll) and H((i)rl) are divisors of the characteristic polynomial
of the matriz A.

Suppose that the restarted similarity look-ahead Lanczos method does not stop in finitely
many steps (i.e X = INg). Define the matriz Wi € Maty,,, «n, by the equation Dy =
WiyViy and Hy1y := (Do) Hiny) (Do) ™"

)

Then the identities
Noko) = Ni = m; == dim K(N, Ay, Vipyer) = dim K(N, A{O, Wer) (9.2)

hold for all i € INg \ {0, 1,...,n(ky) — 1}.

Furthermore there is an identically restarted practical look-ahead Lanczos method, using
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the generalized Rayleigh-quotient shift strategy, which generates, when applied to Ag,,

U%"(ko)), wY’(kO)), the restarted Krylov tuples

((Ako» Viiy, Wiy, Hirys My ¥3) )ieNo\{0,1,..om(ko)—1}

and
((Ak Wy, H H(z—l—l mz:¢1))z€]No\{0,1, n(ko)—1} (9.3)
where I1;y = I. Further the following estimates hold for all i € INg:

1

ro(Dy) < (9-4)

Vin) < — 2 9.5

V) < ( (wi+3) +2) 05

>(Viwy)

Wi 9.6

R(We) < 20 (9.6

Finally, if the matriz A is diagonalizable then the starting vectors v%n(ko)) and wi"(ko)) have

dual directions with respect to the matriz Ay, and the form (x,y) = xTy.

Theorem 9.1 follows immediately from Theorem 8.3.

Combining Theorem 6.4, Theorem 7.2 and Theorem 9.1 we find the following convergence
properties of the restarted similarity look-ahead Lanczos method:

Theorem 9.2 (Convergence) Let (H))iew be the matrices generated by the restarted
look-ahead Lanczos method. Consider the partition

H HY HY e Mat
(@) = ; ; ) 22 2-
HY) HY

Then the following statements hold:

a) (Convergence)
If the shift polynomials 1h; fulfil the conitions a) and b) of Theorem 6.4 then the
sequence (Héll))iE]N tends to zero.

b) (Quadratic convergence)
Suppose that the sequence (Hz(i))iE]N tends to zero. Suppose further that the matrix

A has pairwise distinct eigenvalues. Then the sequence (HQ(?)Z-G]N tends to zero at
least quadratically.
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c) (Existence of regular vectors)
Suppose that the sequence (Hé?)iE]N tends to zero. Suppose further that the matriz A
has pairwise distinct eigenvalues. If the number tol € (0, 1] is chosen small enough
then there is an iy € IN such that the block diagonal matrices (Dgil)))izil can be
partitioned as follows:
D((Z.l)) = diag(@g)), @E?))) where @g)) € Mat,. (9.7)
d) (Cubic convergence)
Suppose that the sequence (Hé?)iE]N tends to zero. Suppose further that the matriz A
has pairwise distinct eigenvalues. If the number tol € (0,1] is chosen small enough
(i.e. such that (9.7) holds) then the sequences (Hé?)iem and (Hg))iem tend to zero
cubically.

In all our numerical experiments (see Subsection 11.2) we have observed that for the
choice tol = 10~* the matrices D((il)) can be partitioned as described in (9.7).

Remark 9.2 (Convergence of the QR algorithm) We recall that the QR algorithm
(with Rayleigh-quotient shifts) converges typically quadratically and not cubically when
applied to non-normal matrices. Notice further that there are starting matrices A for
which the QR algorithm with Rayleigh-quotient shifts does not converge (see e.g. [80]).

Next we present an implementation of the restarted similarity look-ahead Lanczos method
for the computation of all eigenvalues of an arbitrary N x N matrix A. For shortness of
notation we call this algorithm RSL method

This algorithm computes a sequence (ﬁ(i))ieXa (X € INg) of N x N upper Hessenberg
matrices such that there are invertible matrices GG; € Maty and matrices R; € Maty
satisfying the relations

for all i € X. The numbers K and ky(G;) depend on the number tol (see below). The
numbers tol, tols € (0, 1] are chosen by the user.

We say that the RSL algorithm converges if it terminates after finitely many steps (i.e.
X ={0,1,...,ip}). In this case the computed upper Hessenberg matrix ﬁ(ioﬂ) has the
form

- * W B, 0 0 W

N 0 H® - N B,: E,» .

Hiigt1) = - . HO = | TP ) (9.9)
0 0 HO | 0 By 1 Epy, |
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where the diagonal blocks E,; are 1 x 1 or 2 x 2 matrices for all p € {1,2,...,¢} and
ie{1,2,...,7,}

The eigenvalues of the matrix ﬁ(iﬁl) (i.e. the eigenvalues of the matrices E,;) are used
as approximations to eigenvalues of A.

An implementation of the restarted similarity look-ahead Lanczos method
(RSL algorithm)

(6)

Let A € Maty be given. Choose numbers tol, tolz € (0, 1].

Choose two starting vectors v\”, w(” € €V \ {0}.

Set i :=0, k:=0, Ay := A, Hy = A, N;:= N, j; := 0, n(k) := 0.

Set of” := 0" /||o}”|| and w{” := w’/[|wi”].

Apply the procedure ‘compute H and D’ on N;, Ay, vii), w@, tol to obtain an invert-
ible block diagonal matrix D(;) € Maty, and a block tridiagonal upper Hessenberg
matrix

[ E§i+1) C§i+1) 0
B§z‘+1) E§i+1)
H(,L'Jrl) = (i+1) € MatNl (910)
biy1—1
i+1 i+1
L 0 Blgijlzl Elgijrrl) i

of index (pi11(1))o<i<bi -

Set to zero all subdiagonal elements H;y1)(j + 1, j) that satisfy
and all submatrices C’ ) that satisfy

ISV < tols. (9.12)

Set f[(iﬂ) = f[(i) and update

)]

(1) € Mat]‘i)

Hy  * € Maty (where )

*
r7(3)
0 * H(i)

by replacing H;) with H; ).



179

(7) Find the smallest number j;11 € {ji,ji +1,..., N — 3} and the smallest number
Niy1 > 3 such that H(; 1) has one of the following forms:

H ((Z.IJ)FI) * * H ((Z.IJ)FI) 0 0

H(z‘+1) = 0 ﬂ((z)_l) 0 ) H(z‘+1) = * ﬁ((i)rl) 0
0 * H((i34)r1) 0 * H((zi)rl)

iy | Wl o | -

Hgs) 0 ﬁ((f—l)—l) * ’ Hiipy * H((z24)-1) *

0 0o |HY 0 o |HY,

+1)
Here H((le) is an unreduced N;,; X N;.; upper Hessenberg matrix and H J)r 1 is a
Jit1 X Jir1 upper Hessenberg matrix.

(8) If there are no numbers j; 11 and N, satisfying the relations (7) then goto (12).
Compute the characteristic polynomial v; of

[H i+1) (J: DINip1—1<50< N1 (9.13)

the trailing 2 x 2 submatrix of H((Z)rl

If .]z = ji+1, Ni—l—l = Nz and k 2 1 then gOtO (9)
Set Ak+1 = H((z2—|)—1)

Set n(k+1) =i+ 1.

If I; = ;11 then goto (10) else goto (11).

(9) Compute vf“ = (A}’
Compute wi ™ = @Z)Z(A{)wl .
Set 1 :=1+ 1.
Goto (3).

(10) Compute UY—H) = i(Agy1)er.
If f41(1) < Niyy then compute w{™ = y,;(A k)N, 01Dfyen

else compute w™™ = y; (AL, )es.
Set k= k41,0 :=i+1.
Goto (3).

(11) Compute v\ := ;(Api1)er.
Compute w™ := (AL, ey
Set k:=k+1,i:=1i+ 1.
Goto (3).
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Set n(ko) :==1i+ 1.
Set ¢ := 1.
end.

Remark 9.3 (Tridiagonal starting matrices) If the starting matrix A is tridiagonal
we set H(yy := A, Do) := I and do not execute (1), (3) and (4) in step i = 0.

Remark 9.4 (Real matrices) If the matrix A has real entries and the starting vectors
in (1) are chosen with real entries then the complete algorithm can be carried out in real
arithmetic.

Now we turn to the proof of the relations (9.8).

Let A € Maty. Let the starting vectors (see (1)) and the numbers tol, tolz € (0,1] be
chosen arbitrarily. Let (ﬁ(i+1))iex be the computed upper Hessenberg matrices. Let V{;
be the transformation matrix generated by the procedure ‘compute H and D’ in the i-th

step of the RSL algorithm. Define for all 1 € X

I, 0 0
Vim= | 0 Viy 0
0 IN N

Then, by construction, there is a matrix Rn(k) € Maty such that

Vn*(,i)_lﬁ(n(k_l))%(k)_l = Hewy)) + Rn(k) and ||Rn(k)|| < tol (9.14)
for all k € {1,2,...,ko}. Furthermore the equation
Vi Hingop Vi = Hin) (9.15)

holds for every i € X \ {n(1) — 1,n(2) — 1,...,n(ky) — 1}. Here and in the following
ke {0,1,2,...,ko} is the greatest number such that n(k) < i. Define for every i € X the
matrices

Gy = ‘707 G; = Vn(l)—lvn@)—l e Vn(k)—lvz'-
Using the relations (9.14) and (9.15) we find by induction on i the representation

A+ Ry = GiHin G (9.16)

where
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One easily verifies the estimate
k ~
1Rl < > #2(Gnay-) [ Bny I (9-17)
=1

Using the inequalities (9.17), k < ko < N, ||Rna 1| < tols,

ke (Gi) < HQ(Vn(U—l)@(Vn(Q)—l) - '%2(‘7n(1~c)—1)/€2(‘7z‘),

/‘62(Gn(l)—1) < /‘dz(Vn(l)—1)/€2(Vn(2)—1) e '/‘62(Vn(l—1)—1)/€2(‘7n(l)—1)

and the estimate (8.112) we obtain the inequalities

k 1 — gkl
IR < toly- ol = (7 - 1) ol

=1 1«
1 — N+1
< <% - 1) - tols (9.18)
and
Ko(Gy) < Pt < @Mt < oV (9.19)
where
=N 18<1+1>2+2 (9.20)
@ tol 2 ’ ’

Putting the relations (9.16), (9.18), (9.19) and (9.20) together we obtain the desired
representation (9.8).

Using the representation (9.8), the inequality (9.18) and the perturbation theorems of
Golub and Van Loan [28] Theorem 7.2.2, Theorem 7.2.3 we find Theorem 9.3 below.

Theorem 9.3 Let A € Maty. Choose starting vectors v\”, w¥ € € \ {0}. Choose

tol, tolg € (0,1]. Let (H(it1))icx be the sequence of upper Hessenberg matrices computed
by the RSL algorithm. Let the number « be defined by (9.20).

a) Let Q*AQ = diag (A1, Ny, ..., An) + L be a Schur decomposition of the matriz A.
Let %Y be an eigenvalue of Hi11y. Let p be the smallest positive integer such that
|L|? = 0. Then there is an eigenvalue \; of A such that

189D — \;| < max{6, 6"/}
where

1— N+1 p—1
0= (L — 1) ~toly - > ||L|IR.
k=0

11—«
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b) Suppose there is a matriz Y € Maty such that Y 'AY = diag (A, Ay, ..., A\y). Let
B be an eigenvalue of Hit1). Then there is an eigenvalue \; of A such that

(i+1) 1—aM!
13 — Al <Ko (Y) - o — 1] - tols.

Implementation details

By construction (see procedure ‘compute one block’) the matrices C](.Hl) have the form

i+1 i+1) 0 (i+1
i = iy
) (i+1) . (i+1)
and ¢;, ’ are suitable vectors. Thus the numbers ||C;™ || (see (9.12)) can
+1) ) g (i+1) (i+1)
| = ||Cj,1 | ||Cj,2 IE

+1
where cg-fl

be computed with less effort by ||C’J(

In (9) the new starting vector o{"™ is computed as follows:

Let 9;(x) = 22 + bz + ¢; be the characteristic polynomial of the matrix (9.13).
Compute y := Akvy).
Compute y := Apy + biy.

Compute v\ ==y + ¢;0l?.
(i1

The new starting vectors v, ) and wi
manner.

) in (10) and (11) are computed in a similar
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The look-ahead Lanczos GR algorithm

In this section we present a new and stable implicit G R algorithm which is mathematically
equivalent to the identically restarted practical look-ahead Lanczos algorithm discussed
in Subsection 7.1.

Look-ahead Lanczos GR algorithm

(1)

(2)

(4)

Let A € Maty be given. Choose two starting vectors v\”, wl® € @V \ {0} and a
number tol € (0,1]. Set i := 0, H ) .= A, N;:= N.

Apply the procedure ‘compute H and D’ on N;, H((il)), vii), w@, tol to obtain a
block tridiagonal upper Hessenberg matrix H; ) € Maty, and an invertible block
diagonal matrix D(; € Maty;.

Choose the smallest number N;,; € {1,2,..., N;} such that

)
H(i—l—l) F(z‘+1)

Hiy1y) =
2
Giy HEL,
where
F(i+1) =0 or G(z‘+1) =0 (10.1)

and H(( )1) € Maty,,, is unreduced upper Hessenberg.
If N;y1 < 2 then goto (4).
Compute the characteristic polynomial v; of

1
[H((Z'J)rl)(];l)] Niy1—1<jI<Niy1s

the trailing 2 x 2 submatrix of H((;J)rl).

Compute v{"T = 4 (H((;J)r yer.

Compute wYH) = @/)z((H((z)n) )y,
Set 7 :=1 + 1.
Goto (2).

0]D%e

Nit1s

Set ig =1+ 1.
end.

Let (H((le))z'ex and (H(i+1))ieX be the sequences generated by the look-ahead Lanczos
G' R method described above.
The set X = {0,1,2,...} C INp is finite, say X = {0,1,2,...,4p}, if and only if H((Z.IO)) is
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alx1ora2x 2 matrix. In this very unlikely case this algorithm has computed after a
finite number 7y of steps at least one exact eigenvalue of the matrix A.

In the other case (X = INp) there is a number 4; € INy and an identically restarted prac-
tical look-ahead Lanczos method, using the generalized Rayleigh-quotient shift strategy,
which generates the same matrices (H;41))ieno\{0,1,....;; —13 When applied to Hy;,, v%’l) and

w%m. This is the content of Theorem 10.1 below.

Theorem 10.1 Let A € Maty. Choose starting vectors v\, w® € @\ {0}. Choose
tol € (0,1]. Let (Hiy1y)iex and (Dg))icx be the matrices computed by the look-ahead
Lanczos GR algorithm applied to vi‘”, w§0), A. Let Vi) be the transformation matriz
generated by the procedure ‘compute H and D’ in the i-th step of the look-ahead Lanczos
GR process. Then the characteristic polynomials of the matrices H 1), H((ilj_l) and H((Z)_l)
are divisors of the characteristic polynomial of the matriz A.

Suppose that the look-ahead Lanczos GR algorithm does not stop in finitely many steps (i.e
X =INy). Then there is a number iy such that N; = Ny for alli € INg\{0,1,...,4;—1}.
Define the matriz W;y € Maty, by the equation Dy = Wg)V(Z)

Define further

Viey =1 Vo =VipVary Vo, W = (Vi) W (10.2)

and

A

Hiiry := (Do Hiiyny (Diiy) )" (10.3)

for alli € INg\ {0,1,...,4y — 1}.
Then the identities

Ni, = N; = m; := dim K(N, Hy,), Viger) = dim KK(N, H ), Wiyeq) (10.4)

hold for alli € INg \ {0,1,...,i; — 1}.

Furthermore, there is an identically restarted look-ahead Lanczos method, using the gener-
alized Rayleigh-quotient shift strategy, which generates, when applied to H; ), vizl), wg“),
the restarted Krylov tuples

((Hys ‘7@), iy, Hiig1y, My 1¥5) )ieNo\{0,1,..01—1 (10.5)
and . X
((H(Til), Wiy, H%;), H i1y, Miy ¥5) )ieNo\{0,1,....i1 -1} (10.6)
where I;y = I. The inequalities
1
D) < — 10.7
k2(D) < - (10.7)
(Vi) < N 18(1 +1>2+2 (10.8)
K i S . — - .
2 tol 2
Wi
(W) < 22V (109)
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are valid for all i € INy.
The following estimates hold for all i € INg \ {0,1,...,4; — 1}:

~ 1 1 2 (i_il‘i'l)
ka(Wiy) < 2501( ), (10.11)

Finally, if the matriz A is diagonalizable, then the starting vectors UYI) and le) have

dual directions with respect to the matriz Hy,y and the form (x,y) = 2Ty.

Proof. To prove that there is an identically restarted look-ahead Lanczos method, which
generates (10.5) and (10.6), it is sufficient to show a)-f) below for all i € INg\ {0,1...,i; —

1}.
a) The matrices Dy;y are invertible and equation (10.4) holds.

b) H;1) and ]f[(,qu) are unreduced upper Hessenberg matrices.

R

) VioHvry =y Hey V.-

R

d) Viyner = T/Ji(H(il))f/(i)el'

Wi

1

e) (z‘)ﬁ(iﬂ) = H%;)H(T

i1)
f) Wisnyer = ’ébi(Hgl))W(i)el'

By Theorem 8.3 the matrices Dy, (for all i € INg) are invertible, the inequalities (10.7)-
(10.9) hold (for all ¢ € INg) and the matrices H;11) and ]f[(iﬂ) are unreduced upper
Hessenberg (for i > ;) and satisfy the equations

~

H(Z'+1) = Vv(i_)lH(i)Vv(i) and H(Z'+1) = W(;)lH(j,;)W(i). (10.12)
One easily verifies the equation
WiV = WoVily Vi = Wi Vi = Do (10.13)

With assistance of the equations (10.3), (10.12) and (10.13) we find inductively the rep-
resentations

~

H(i+1) = V(Z)IH(il)‘N/(i) and H(i+1) = W(;)lﬂgl) (i) (10.14)
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Using the equations (10.3), (10.12), (10.13), (10.14), the unreduced upper Hessenberg
structure of the matrices H(; ;1) and H;;1y and the invertibility of the matrices V{; and

W(Z-) we obtain the identities

K(N,Hiy, Viper) = KN, VigHiry V' Vioer)
- ‘7(i)}C(Na Hity, ‘7(;1 ~(z‘)€1) =M (10.15)
and
/C(N, H(j;l)a I/T/v(i)el) = ’C(N, W(Z')IA{(H”W(;)I, W(i)el)
= WeK(N, Hip, W(Z-)IW(@@O = M. (10.16)

The identities (10.15) and (10.16) imply the equations (10.4).
The Lanczos projection Il; is defined by

Im Tl = K(N, H;,, Viper) and  KerIIfy = K(N, HY, Wyer) ™.

11 117

In view of the equations (10.15) and (10.16) the identity II; = I holds. Putting these
observations together we have proved a), b), ¢) and e). The equations

vilHay)Viper = (Vo Hary Vg hVer = Vigti(Hi) Vi Vioer = Viy Vi er

= V(z'+1)€1

and
T HE (7)) Dl

Gi(Hi ) Waer = i(HE ) (V) Diyer = (‘7 )" (i1
( 7;) 1VVerl

= (‘7(?)) ¢i(H(i+1))

= W(i+1)61

Z

prove d) and f). The equations (10.13) together with the estimates (10.7), (10.8) and
k2 (Vi) < Ro(Vian)Joa (Vi) - - k2(Vi) (10.17)

yield the estimates (10.10) and (10.11). Finally the equations (10.15) and (10.16) imply
that the starting vectors UYI) and le) have dual directions with respect to the matrix
H(;,y and the form (z,y) = 27y. n
We discuss common properties and an important difference between the restarted similar-
ity look-ahead Lanczos method and the look-ahead Lanczos GR algorithm: By Theorem
9.1 and Theorem 10.1 both methods generate sequences of upper Hessenberg matrices
such that there are identically restarted look-ahead Lanczos methods which generate the
identical sequences of matrices. Further the generated starting vectors have dual direc-

tions. Another common property is that the condition numbers of all transformation
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matrices used in both algorithms are bounded above by a number which is specified by
the user. Now we turn to the most important difference between these methods. In
the case of the restarted similarity look-ahead Lanczos method the condition numbers of
the transformation matrices V{;) and W(; of the accompanying identically restarted look-
ahead Lanczos method are bounded above by a number which is chosen by the user (see
Theorem 9.1). In case of the look-ahead Lanczos GR algorithm the condition numbers
of the transformation matrices ‘N/(i) and W(i) of the accompanying identically restarted
look-ahead Lanczos method may increase with i (see Theorem 10.1). Notice that the
condition numbers of the matrices \7(i) and W(i) are not relevant for the stability of the
look-ahead Lanczos G R algorithm because these matrices are not used in the look-ahead
Lanczos G R process. However, for the convergence properties of the look-ahead Lanczos
G R algorithm the condition numbers of these matrices are important. Indeed, Theorem
6.4 and Theorem 7.2 yield the following convergence results for the look-ahead Lanczos
G R algorithm:

Theorem 10.2 (Convergence) Let A € Maty be given. Choose two arbitrary starting

vectors v\¥, wl® € ©\ {0} and a number tol € (0,1]. Let (Hi41))iex be the upper

Hessenberg matrices computed by the look-ahead Lanczos GR algorithm applied to ’U%O)
w§°), A.

We recall that the look-ahead Lanczos GR algorithm terminates after a finite number iy of
steps (i.e X ={0,1,...,i0}) only if the algorithm has found at least one exact eigenvalue
of the matrixz A.

Now we turn to the other case (X = INy).

Let the number v, and let the matrices ‘7@ be defined as in Theorem 10.1.

Suppose that there is a constant K such that

)

ko (Vi) < K (10.18)
for alli € INg\ {0,1,...,4, — 1}.

Consider the partition

HY) HY) .
H(z) = . . s H2(z2) € Matz.
HQ(Z) HQ(Z)

Then the following statements hold:

a) (Convergence)
If the shift polynomials 1; fulfil the conitions a) and b) of Theorem 6.4 then the
sequence (Héll))z-em tends to zero.

b) (Quadratic convergence)
Suppose that the sequence (H2(Z1))ielN tends to zero. Suppose further that the ma-
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triz A has distinct eigenvalues. Then the sequence (Hé?)iem tends to zero at least
quadratically.

¢) (Existence of regular vectors)
Suppose that the sequence (Hé?)iE]N tends to zero. Suppose further that the matriz A
has distinct eigenvalues. If the number tol € (0, 1] is chosen small enough then there
s an iy € INg such that the block diagonal matrices (D((Z-l)))izm can be partitioned as
follows:

1 . 1 2 2
DY) = diag(©(}),0)  where 6 € Mat,. (10.19)

d) (Cubic convergence)
Suppose that the sequence (Hézl))zelN tends to zero. Suppose further that the matriz A
has distinct eigenvalues. If the number tol € (0, 1] is chosen small enough (i.e. such

that (10.19) holds) then the sequences (H2(1))1€]N and (H12))161N tend to zero cubically.

In all our numerical experiments (see Subsection 11.2) we have observed cubic convergence
of the look-ahead Lanczos GR algorithm for the choice tol = 107,

By small changes in the RSL algorithm we obtain the following implementation of the
look-ahead Lanczos GR algorithm.

An implementation of the look-ahead Lanczos GR method (LGR method)

(0) Let A € Maty be given. Choose numbers tol, tolz € (0,1].

(1) Choose two starting vectors v e @V \ {0}.

Z

()SetZ—OH( = A, Hyy == A, N;:=N, j; :=0.

(3) Set v := v /e[| and wi? = wi? /[’

(4) Apply the procedure ‘compute H and D’ on N;, H((z)), UY), wii), tol to obtain an
invertible block diagonal matrix D(;; € Maty, and a block tridiagonal upper Hes-

senberg matrix

[ E§z‘+1) C§i+1) 0
B§z‘+1) E§i+1)
H(i—l—l) = (i4+1) € MatNl (1020)
bi+171
L 0 Béfi—llzl E(Siij-_ll) i

of index (pi+1(1))o<i<bi -
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5) Set to zero all subdiagonal elements H;1)(j + 1, 7) that satisfy
(i+1)
|Hiv1)(7 + 1,5)] < tols (10.21)
and all submatrices C’j(-iﬂ) that satisfy

|| < tols. 10.22
j
(6) Set H;\1y := H;y and update

JZpS— *
(@)
Hiyy = H; x| €Maty (where ﬁ((z.l)) € Mat;,)

*
0 x HY
by replacing H; with H; ).

(7) Find the smallest number j;11 € {ji,ji +1,..., N — 3} and the smallest number
Nit1 > 3 such that H(; ;1) has one of the following forms:

H ((Z.IJ)F 1) * * H ((Z.IJ)FI) 0 0

f{(z’+1) = 0 ﬁ((z)_l) 0 ) f{(i+1) = ﬁ((i)rl) 0
0 * ﬁ((fll) 0 * f{((iB—l)—l)

H ((Z.IJ)FI) * * H ((1.1+) 1 0 *

ﬁ(iﬂ) = 0 }N[((Z)rn * 5 f{(z’+1) = * ﬁ((?rl) *
0 0 | A, 0 0|

Here ﬁ((i)rl) is an unreduced N;,; X N;.; upper Hessenberg matrix and ]5[((121) is a

Jix1 X Jiv1 upper Hessenberg matrix.

(8) If there are no numbers j;;; and N, satisfying the relations (7) then goto (11).
Compute the characteristic polynomial v; of

(2 .
[HE) (2D N =120 Vo

the trailing 2 x 2 submatrix of }N[((Z)rl)
If I; = l;+1 then goto (9) else goto (10).
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(9) Compute vlzﬂ 1/),( Z+1 Je
If 1741(1) < Niyq then compute wi“’l 1/),((H1J)rl)) )n;1: 01Dfyen

else compute wf“ T/JZ( Z+1 Je1
=1+ 1.
Goto (3).

(10) Compute vg&l) = Z/)i(ﬁ(;)rn)el-
Compute wEZH) = %((H((Z)d))T)el-
Set ¢ :=1¢41.
Goto (3).

(11) Set ig =1
end.

Remark 10.1 (Tridiagonal starting matrices) If the starting matrix A is tridiagonal
we set H(jy := A, Doy := I and do not execute (1), (3) and (4) in step 7 = 0.

Remark 10.2 (Real matrices) If the matrix A has real entries and the starting vectors
in (1) are chosen with real entries then the complete LGR algorithm does not require
complex arithmetic.

For completeness we discuss in the following the properties of the N x N upper Hessenberg
matrices (Hi;1))iex (X € INg) computed by the LG R algorithm.

Let V;) be the transformation matrices generated by the procedure ‘compute H and D’
in the i-th step of the LG R algorithm. Define

L, 0 0
Vim | 0 Vi 0 € Maty.
0 IN_N;—j;
and o )
Gy = TVoVh o Vi

Then we find, with the arguments used in the proof of (9.8), that there are matrices
R; € Maty such that

for all - € X. Here

11

K, = N*. (18 ( ! 1>2 + 2) (10.24)

ol
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and 7; is the minimal number such that N; = N4 for all 7 > 4.

One easily verifies that the matrix H; 1), generated by the LG R method, has the form
(9.9).

Finally Theorem 10.3 below states estimates for the eigenvalue approximations.
Theorem 10.3 Let A € Maty. Choose starting vectors v\”, wl® € @\ {0}. Choose

tol,tolz € (0,1]. Let (Hy1))icx be the sequence of upper Hessenberg matrices computed
by the LGR algorithm. Let the number Ko be defined as in (10.24). Then for alli € X
the following statements hold.

a) Let Q*AQ = diag (M1, Az, ..., Ax) + L be a Schur decompostion of the matriz A. Let
B be an eigenvalue of Hi11y. Let p be the smallest positive integer such that
|L|P = 0. Then there is an eigenvalue \; of A such that

804D~ \,] < max{9, 67}

where

p—1
0= K2 . tOl3 : Z ||L||k
k=0

b) Suppose there is a matriz Y € Maty such that Y YAY = diag (A, Mg, ..., \n). Let
B be an eigenvalue of Hi11y. Then there is an eigenvalue \; of A such that

18D — )| < koY) - Ky - tols.

Theorem 10.3 follows immediately from (10.23) and the perturbation theorems of Golub
and Van Loan [28] Theorem 7.2.2, Theorem 7.2.3.

Remark 10.3 For implementation details see Section 9, ‘Implementation details for the
RSL algorithm’.
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11 Comparing the RSL, LGR and (R algorithms

11.1 Flop counts

First we consider the case that the matrix A is a full N x N matrix with real entries and

the starting vectors v\”, w(® € RN \ {0} are chosen arbitrarily.

In step zero (i.e. i = 0) the matrix A is reduced in the RSL and the LGR algorithms

to upper Hessenberg block tridiagonal form (A — A;) and the next starting vectors vil)

)

and wg are computed. Using estimate (8.119) we find that step zero requires less than

gN + <8(15—l(1—)>81+7>N +<851—951+§>N

2
408898+ (S(0.)° + O ) s
+ 160 )2+ 10 412 (11.1)

flops. Here I{!) is the size of the largest diagonal blocks EJ(-I) of the computed matrix Hy)
(see (8.120)). The number s; is the sum of the sizes of all diagonal blocks of H ;) which
are not 1 x 1 matrices (see (8.121)). One easily verifies that the new starting vectors have
the forms
v w'Y
ol = ’ and wi) = b (11.2)
0 0

where U%ll) € IR? and w%ll) e RM®),

Now we are going to derive an estimate for the amount of flops required in the #-th step
(¢ > 1) of the RSL algorithm:
The i-th step of the RSL method starts with a block tridiagonal upper Hessenberg matrix
Ay (k> 1) and vectors 0!, wl? of the form
o= and wy’ = ’ (11.3)
0 0

where v@l e IR and wglf € IRHnti(1+22)
Here and in the following ¢ denotes the number of steps carried out with the starting
matrix Ag. In other words,

e=i—n(k)+1 (11.4)

where k is chosen such that n(k) <i < n(k+1).
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Using the flop count (8.123) we find immediately that the i-th step of the RSL algorithm
involves

+ 5411957,
+ 51+1(8lmax _4)l(1+1 Slmam +18)§1+1
+

8
s (5 USEDA520) + 3052

2 . .
sen (508500 + 00S (15207) )
. (11.5)

flops. Here 1(*1) is the size of the largest diagonal blocks E](.HU

ma:c
Hi1y and [{"%) is the size of the largest diagonal blocks of the matrix Aj. The number
si41 is the sum of the sizes of all diagonal blocks of H; ;) which are not 1 x 1 matrices

and

N;(852,, + 451" 4 75,1 4 10)

_I_

of the computed matrix

bn (k)

Sit1 = fnk) (1 + 2¢) + > l§‘n(k))
j=2(e+1),1" V21

where l§-n(k)) is the size of the j-th diagonal block of A;, and by is defined in (9.10).
Further, if i + 1 < n(k + 1) then f;y is defined as
fr = Ao+ 29))% + gy 1+ 22) (12108 + 8)
+ 2(1+26)? + 13(1 + 2¢) + 8(1nkN)2 _gintk)) 4 7. (11.6)

max

In the other case (i +1 = n(k + 1)) the number f; ; is defined by
fir1 = 3 pny(1 +28) + 3 (1 + 22) + 16(10F)2 470D 4 12, (11.7)

To simplify the expression (11.5) we introduce the numbers l,,45 i1 1, 6041 and 6, defined

below.

Imaz,iv1 = maX{lmam )7 17(711-;)}

60+ denotes the number of diagonal blocks of the matrix H 1y which are not 1 x 1
matrices. Finally 0;, is defined by

01 = max {0k 5+
Using the inequalities
Sit1 < Oit1lmaz,it1 and Sip1 < (1428 4+ 0i41) lmas,it (11.8)
we obtain the estimate

N;((326® 4 54e + 32i6; 41 + 807, + 2761 + 19)1 40 i1 + 10)

8
+ _5i+1l:r5na:v,i+l + 0(62622+1l;1nax ir1) + O, 1) (11.9)

3
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for the number of flops required in the ¢-th step of the RSL algorithm. Notice that
0iv1 = 0 and lyaz,i41 = 1 if the matrices Ay and H(; ) are tridiagonal.

Next we derive an estimate for the number of flops required in the i-th step (i > 1) of
the LG R algorithm:

Considering (9) and (10) in the LG R method we recognize immediately that, in contrast
to the RSL method (see (11.3), the starting vectors have for all i > 1 the forms

(%) (%)
. v . w
o= and o =| " (11.10)

0 0

where v%l)l € IR? and w§’)1 e IRH+1),
Using the flop count (8.123) and the partitions (11.10) we find that the i-th step (for
i > 1) of the LGR algorithm involves

Ni(857 1 + 4811l + T8 +10) + 5101 (1957,, + (813, — DIGED — 810), +18)5141)
8 . . .
s (GUR UGN + 3007

2 . )
s (GUD) + 0520

3
+ 16(10DY2 ) 4 g)@) 49 (11.11)

flops. Here 11 is the size of the largest diagonal blocks E](Hl) of the computed matrix
H;;1y. The number s;;; is the sum of the sizes of all diagonal blocks of H; )y which are

not 1 x 1 matrices and
b; .
G =B+ Y Y
J=4,10#1

where l](-i)
(10.20).
To simplify the expression (11.11) we use, as in the case of the RSL method, the numbers
mazit1, 00D and 6,1 defined below:

is the size of the j-th diagonal block of H(;y and the number b; is defined in

lmam,iJrl = max{lgz)am lggzp}

80+ denotes the number of diagonal blocks of the matrix H 1y which are not 1 x 1

matrices. d;,1 is defined by o
01 = max{o® o@D,

Using the estimates

Sit1 < Oit1lmaz,it1 and Siv1 < (34 0iv1)lmaz,it1 (11.12)
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the flop count (11.11) turns into
Ni(84 1540541 + 2L bnazitt + 801 g igt + 52 0is1lmag ip1 + 7 is1lmas,itr + 10)

8
+§5i+1lfnax,i+1 + O((SZ'Q—I—ll;lna:v,i—l—l) + O(lgna:c,i—i—l)' (1113)

We recall that d;1; = 0 and /4, +1 = 1 if the generated matrices are tridiagonal.

In our numerical experiments (see Subsection 9.4) we have observed that all matrices
generated by the RSL and LGR algorithms are typically nearly tridiagonal (i.e. lyazit1
and 0;,; are small numbers) if the tolerance tol is chosen small enough (e.g. for N < 100
and tol = 10~* we have observed Imaz,i+1 < 6 and ;41 < 3). Further we have observed
that in both methods on the average 2.8 iterations are required to separate a 1 X 1 or a
2 x 2 block if we choose toly = 1078 in the RSL method, tol; = 10 !¢ in the LGR method
and tol = 107" in both methods (see Subsection 11.3). Combining these observations
with the flop counts (11.9) and (11.13) we find that in both methods typically O(N) flops
are required for every step 7 > 1. Putting these results together we obtain the following:

e Let A € Maty(IR) be a nearly tridiagonal upper Hessenberg matrix with distinct
eigenvalues. If the starting vectors vy, w; € IRV \ {0} have the form (8.122) then
the RSL algorithm and the LG R algorithm require typically

O(N?) (11.14)
flops for the computation of all eigenvalues of the matrix A.

e For full matrices A € Maty(IR) with distinct eigenvalues and arbitrary starting
vectors vy, w; € IR \ {0} the RSL algorithm and the LGR algorithm typically
require

§N3 + O(N?) (11.15)

flops for the computation of all eigenvalues of the matrix A.

In the following we consider the case where A € Maty(IR) is a full matrix with distinct
eigenvalues and the computed matrices H(;11) are tridiagonal. In this important special
case we can give more detailed estimates for the flops involved in the RSL and LGR
methods. By (11.1) there are

8 55
gN3 +7TN? + EN +29 (11.16)

flops involved in step ¢ = 0, the reduction process of the matrix A to tridiagonal form.
Using (11.5), (11.6), (11.7), (11.11) and the inequalities (11.8), (11.12) we obtain the
following estimates for the i-th step (i > 1):
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o If i+ 1 < n(k) then the RSL algorithm requires
N; (32e® + 54e + 29) + 24 + 90z + 47 (11.17)
flops in the i-th step.
e If i+ 1 =n(k) then
N; (32* + 5de + 29) + 122 + 35 (11.18)
flops are necessary in the i-th step of the RSL algorithm.

e In the i-th step of the LGR method
115 N, + 47 (11.19)

flops are involved.

In the following we assume that there are €,,,, + 1 steps necessary before the first 1 x 1
or 2 x 2 block decouples. Further we suppose that the decoupling of every following 1 x 1
or 2 x 2 block requires not more than ¢,,,, steps. Under these assumptions we obtain the
results summarized below:

o If the starting matrix A € Maty(IR) and all generated matrices H; 1) are tridiag-
onal then the RSL algorithm requires not more than
16 43 92
N2 <_ 3 i) s max)
3 6ma:v + 2 6ma:v + 3 €
40 173 500
N(—=¢& — e’ —— €maz 103)
+ <3 €maz T 5 €maz T 3 € +
— 48&3 17162, — 130 &map + 112 (11.20)

flops for the computation of all eigenvalues of the matrix A.
The LG R algorithm needs not more than

115 209
- Emaz N? + <7 Emaz T 115) N — 4390 + 76 (11.21)

flops for the computation of all eigenvalues of the matrix A.

e For full matrices A € Maty(IR) and arbitrary starting vectors vy, w; € IRY \ {0}
the RSL algorithm requires not more than

8 16 43 92
—N? N? <— s — g2 = Emaz 7)
3 + 36max+26max+36 +
40 173 500 364
N P ’ 5 2 5 CSmazx —>
+ <3 Emaz T 5 Emax T 3 € + 3
— 48&3 — 1712, — 130 &map + 112 (11.22)
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flops for the computation of all eigenvalues of the matrix A if all generated matrices
H ;41 are tridiagonal.
In this situation the LG R algorithm needs not more than

209 400
— Emaz T 7)N2 + <7 Emaz T+ 7) N — 439 Emazx T 76 (1123)

flops for the computation of all eigenvalues of the matrix A.

Comparison with the QR algorithm

In the zero step of the QR method the matrix A € Maty(IR) is typically reduced to
upper Hessenberg form. This is done to save work in the subsequent iterative phase of
the QR method (see Golub and Van Loan [28], EISPACK [69]). The reduction of a full

matrix to upper Hessenberg form requires

10 11 1
—N*— —N?4+_-N-5
3 2 + 6

flops if Housholder transforms are used.

If Gauss transforms are used

4 5) 11

-N* -~ —-N?>-—=-N+3

3 2 6 +
flops are necessary (EISPACK routine ‘elmhes’). Every step in the iterative phase of the
QR method (EISPACK routine ‘hqr’) requires

10N? + 32N; — 31 (11.24)

flops where NN; is the current size of the iterated matrix.

In the following we assume that the QR method requires ,,,, + 1 steps for decoupling
the first 1 x 1 or 2 x 2 block. Further we suppose that £,,,, steps are necessary before
the next 1 x 1 or 2 x 2 block decouples. Under these assumptions we obtain the following
results for the complete QR algorithm:

e The QR algorithm does not preserve the structure of non-symmetric tridiagonal
starting matrices A € Maty (IR). For non-symmetric tridiagonal matrices and upper
Hessenberg matrices A € Maty(IR) the QR algorithm requires

10 40
3 Emaz N? + (21 & oz + 10)N? 4 (32 — Eém,m)zv — 84 & ppar — 31 (11.25)

flops for the computation of all eigenvalues of the matrix A.
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e For full matrices A € Maty(IR) the QR algorithm needs

10 9

193 40
3(5max + 1) N3 + (21 &0s + 5)N2 + (—

o — 3 Ema)N — 84Zp0, — 36 (11.26)

flops for the computation of all eigenvalues of the matrix A if Housholder transforms
are used for the reduction of A to upper Hessenberg form.

e For full matrices A € Maty(IR) the QR algorithm requires

10 4 15
(E Emar + g)N3 + (21 &z + 5)N2 + (

181 40
? - Egmam)N - 84 émax -

28 (11.27)
flops for the computation of all eigenvalues of the matrix A if Gauss transforms are
used for the reduction of A to upper Hessenberg form.

In our numerical experiments (see Subsection 11.2) the RSL algorithm and the LGR
algorithm require on the average 2.8 steps and the QR method 3.9 steps to separate a
1 x 1 ora2x2block. To compare the flop counts we suppose that all matrices H;1),
generated by the RSL and the LG R algorithms, are tridiagonal and that ¢,,,, = 2.8 and
Emaz = 3.9. Considering the expressions (11.20), (11.21), (11.22), (11.23), (11.25), (11.26)
and (11.27) we find the following estimates:

Type of the
starting matrix
A € MatN

The RSL algorithm
requires less flops than
the Gauss/QR
algorithm for all

The RSL algorithm
requires less flops than
the Housholder/QR
algorithm for all

Tridiagonal matrix
Hessenberg matrix

Full matrix

N > 26
N >33
N > 30

N > 26
N >33
N > 26

Type of the
starting matrix
A € MatN

The LGR algorithm
requires less flops than
the Gauss/QR
algorithm for all

The LG R algorithm
requires less flops than
the Housholder/QR
algorithm for all

Tridiagonal matrix
Hessenberg matrix

Full matrix

N>9
N >11
N >10

N>9
N >11
N>9
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11.2 Numerical examples

In this subsection we report the output of the RSL, LGR and the QR algorithms ap-
plied to a wide range of test matrices. Throughout this subsection we use the EISPACK
[69] implementation of the Gauss/QR method (routines hqr and elmhes). If one of these
eigenvalue algorithms requires more than 50 steps to separate one block (i.e. ¢ > 50) then
the algorithm stops and reports failure. We symbolize this case in the following tables by
the sign “x % % .

All calculations are carried out in the IEEE arithmetic double.

Example 11.1 (Random matrix (Continuation of Example 7.2)) In Example 7.2

we have discussed that the identically restarted look-ahead Lanczos method applied to

the random matrix A and the random starting vectors w%o) and vio)

[ 0.00 006 -0.28 041 055 —-0.66 0.64 0.32 ] ( 0.85 ]
0.16 095 014 -032 0.12 059 -017 0.74 0.66
-0.60 -031 -0.56 061 033 066 093 049 0.56
Ao 0.96 030 -0.25 057 —-045 -0.05 0.99 -0.22 ’ w§°) _ 0.04
028 029 -1.00 004 -081 0.02 -045 -0.70 —0.58
-088 041 -0.64 -081 -0.09 -0.71 0.00 049 0.59
017 -046 099 -0.24 -098 -085 —-0.09 -0.63 0.02
i -0.59 -0.02 -045 -050 0.40 0.29 -0.17 -0.43 | L —0.27 |

(0) T
v :[0.74 —045 —0.35 —035 —046 —0.65 0.68 —0.82]

does not generate satisfactory approximations to the eigenvalues of A although all eigen-
values of A are not ill-conditoned (cond();) < 2.5 for all j).

Eigenvalues of A (rounded)
Eigenvalue Real part Imaginary part
A1 1.94768032815462 - 10 % 0
Ao/3 7.22771408213559 - 101 | +3.86823730013324 - 10~
A4/ —4.63268021120600 - 10~ %1 | +£3.06680358938131 - 10!
A6 —1.07573663811272 - 10 % 0
A7/ —1.23547523211391 - 10 90 | +1.23396246460755 - 10 90
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The QR algorithm applied to A terminates after 19 steps and yields a sequence (i =
1,2,...,20) of upper Hessenberg matrices

A0 A0 Al Al A Al af) af)

A AD, ADY AT ADL AT AT A

- C1 |0 [0 an|an A g a9 A
1

| e ap o [0 ARAD AT Al Al

: 0| 0 o |AY Al Al Al Al

0 G(Z) H(l) 7 7 1 1

- 45 0 0 o |0 Al|ALL AYL| Af)

o
o
o
o
o
N

)

N
s

)

N
s

N

N

00 0 0 0|0 Al A{

After 8 steps of the QR algorithm, the diagonal element Héi) = Ag’% decouples. After

two further steps the diagonal block Hf) is separated. The diagonal block Héi) decouples

after 7 further steps. Finally, the diagonal blocks H fi) and Héi) are separated after 2 final
steps.

Eigenvalue of H E(,H'l) (QR algorithm)

e e AT

0]0]|—7.82414021449142 - 107t | —6- 10701
1]1|—8.85907577038759 - 10~ %1 | 4.10701
—7.92135792046678 - 10791 | —1.10"%

—1.17006050745228 - 10 %0 | —2. 10~
—1.07713461805488 - 10 %0 | 2.10792
—1.07551001687239 - 10 %0 | —3. 10~

—1.07573657360134 - 10 %0 | —1-107°7
—1.07573663811272 - 10 %0 | —1 .10~
—1.07573663811272 - 10 90 2.1028

o | NN | O | O W N
o | NN | O | O W N
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Eigenvalue of H (i+1) (QR algorithm)
. i+1 i+1 i+1
i |e ALY ALY ALY
9 |1 |—4.63268021120600 - 10~ | £3.06680358938131 - 1071 | 1.10716
10 | 2 | —4.63268021120600 - 10~ | £3.06680358938131 - 107 | 3.10732
Eigenvalues of HBZJrl (QR algorithm)
. i+1 i+1 i+1
t e §R>‘(7/8) C\Ag/B) Agl,?»)
11| 1| —7.33385958807190 - 109 | +£1.50892979473283 - 10 % | —1-10 %
12 | 2 | —1.04514365968782 - 10 % | £1.29141778406387 - 10 % | —4 .10~
13 |3 | —1.22625165471259 - 10 % | £1.22432557804061 - 10 % | —4 . 10702
14 | 4 | —1.23550411247673 - 10 %0 | 4+1.23398607940271 - 10 % | 2.107%
15 | 5 | —1.23547523240123 - 10 % | +£1.23396246537612 - 10 % | 3.107%
16 | 6 | —1.23547523211391 - 10 % | +1.23396246460755 - 10 % | 1.10~18
17 | 7| —1.23547523211391 - 10 %0 | 4+1.23396246460755 - 10 % | 4.10734
Eigenvalues of Hé” ) and H, (i+1) (QR algorithm)
i |€ Real part Imaginary part Aéﬁrl)
181 ,\gi/g” 7.22771408213560 - 10~ %1 | £3.86823730013325-10 %1 | 1-10° 1
AT 1.94768032815462 - 10 ©° | 0.00000000000000 - 10 %0
19 | 2 ,\gi/g” 7.22771408213560 - 10! | £3.86823730013323 - 10791 | 4.10"3
AT 1.94768032815462 - 10 ©° | 0.00000000000000 - 10 %0

We choose tol; = 107'2 and tol < 1073.

applied to the matrix A and the starting vectors v; ’ and wy ’,

Then the RSL and the LGR algorithms,

(0) (0)

generate two sequences of
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tridiagonal matrices

(
H(1') =
L
The RSL

11 COMPARING THE RSL, LGR AND QR ALGORITHMS
EfNc¢® oo o o 0 0
BYIED ¢l o oo o o
o ; B0 g | o)
G g oo BYEY ¢ oo 0
- F o0 o [BY EDIcP| 0o o0
() g L
0 G Hy o o o] o BYIEY Y o
o 0o o o o [BYIED ¢
o o o o oo |BY EY

method terminates after 10 steps.

steps. The LG R method requires 4 steps to separate the diagonal block

method requires 3 steps to separate the diagonal block Hy
diagonal blocks

(see below).

HO.H B and )

(%)

The LG R method terminates after 11
. The RSL

. For decoupling the remaining
both methods require the same number of steps

HY

Eigenvalues of H, E()H_l) (LGR algorithm)
ile mg’;” mff/g” BiY ch
00| —5.59229549963591 - 10~°" | 0.00000000000000 - 10 % | —4-107%2 | 3.10 9
3.64371917679969 - 10-°1 | 0.00000000000000 - 10 9°
1|1 | —4.61432540407505 - 10791 | £3.06571398605870 - 10791 | 7.107% | —5.10"%
2 | 2| —4.63268035075507 - 107" | 4+3.06680350809450 - 10~°" | —4-107% | —3.10~™
3|3 | —4.63268021120601 - 10~ °! | +3.06680358938134-10 91 | 2.10712| 3.10 12
4| 4| —4.63268021120601 - 10~°" | +3.06680358938141 - 107%" | —1-107%7 | 2-107%6
Eigenvalue of H fﬂ) (LGR algorithm)
ile )\éi+1) B§i+1) CE(,HI)
51| —1.07573663808503 - 10 % | —1-1079 | —4.1070°
6|2|—1.07573663811272 - 10 9 | —9.10"1 | 3.10°1¢
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Eigenvalues of H. ?EHI) (LGR algorithm)
w5 S B [ o
7.22771408213563 - 10~°1 | +3.86823730013325 - 10791 | 2.10798 | —1.10796
7.22771408213559 - 10701 | +3.86823730013328 - 10791 | 3.10"24 | —3.1022

Eigenvalues of

HY and HY (LGR algorithm)

) Real part Imaginary part Bi”l) C’yﬂ)

9 ,\%1) —1.23546988830601 - 10 % | +1.23398847819365 - 10 % | —5-10792 | —2.107%
AFD T 1,04766964053881 - 10 °° | 0.00000000000000 - 10

10| 2 | AR | —1.23547523211391 - 10 0 | +1.23396246460756 - 10 © | —4- 10707 | —1-10-08
APFD T 1,04768032815461 - 10 © | 0.00000000000000 - 10

11| 3 | AUEY | —1.23547523211391 - 10 0 | +1.23396246460755 - 10 © | —1-10722 | —2.10 !
AFD T 1,04768032815461 - 10 ©° | 0.00000000000000 - 10 0

Eigenvalues of H, éHl) (RSL algorithm)

s R B | g
—5.59229549963591 - 10-°1 | 0.00000000000000 - 10 % | —4.10792 | 3.10 9
3.64371917679969 - 10~°' | 0.00000000000000 - 10 °°
—4.61432540407505 - 10-%1 | £3.06571398605870 - 10 | 7-.10°%3 | —5.10" %
—4.63268035075508 - 10~°1 | 4+3.06680350809446 - 1071 | 1.1079 | —1.107%
—4.63268021120601 - 107" | +3.06680358938131 - 10~°" | 1-107'2 | 5.10"12

Eigenvalue of H iHl) (RSL algorithm)
)\éi+1) B§i+1) CE(,HI)
—1.07573669391980 - 10 9 | —2.1079 | 4.1079
—1.07573663811271-10 % | 8-1074| 6-10~!1
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Eigenvalues of HéiH) (RSL algorithm)
i+1 i+1 i+1 i+1
ie RAY 1Y ALY B{tY | ity
61| 7.22771408103133-10 %' | +£3.86823729973599 - 10 % | —=1-10"% | —=5.10%
72| 7.22771408213558 - 1070 | +3.86823730013334 - 107" | —2. 10710 | —3.107'°
Eigenvalues of Hé”l) and H i”l) (RSL algorithm)
. i+1 i+1
1| € Real part Imaginary part By ) sz )
8 |1 ,\gi/gl) —1.23547810529154 - 10 % | +£1.23395917404653 - 10 ©° | —=3-107°2 | 9.10"%
AP 1.94768607450986 - 10 © | 0.00000000000000 - 10 %

9 |2 ,\gi/gl) —1.23547523211391 - 10 % | +1.23396246460754 -10 °° | 4.10°% | —4.10"1°
AT 1.94768032815461 - 10 ©° | 0.00000000000000 - 10 %

103 ,\gi/gl) —1.23547523211391 - 10 % | +1.23396246460720-10 ° | 4-10716 | —7.10"1°
AT 1.94768032815461 - 10 ©° | 0.00000000000000 - 10 %

We observe that the eigenvalues, generated by the QR algorithm, differ from the exact
eigenvalues of the matrix A by not more than 107!5. Further the LGR method yields
eigenvalues approximations with a maximal error of 1074, The RSL method computes 6
eigenvalues approximations with errors less than 10~ and 2 eigenvalue approximations
with an error of 4 - 10713,

Counting the flops we find that the QR algorithm requires =~ 12000 flops, the LGR
algorithm uses ~ 7600 flops and the RSL method requires =~ 8400 flops.

Next we answer the question if it is possible to improve the accuracy of the eigenvalue
approximations by choosing the tolerance tol3 small enough.
We have experimented with tolerances tol3 downto 107'% (~ machine constant) and have
observed the following;:

e LGR method: For every choice of the number tol; € [107'%,107%] the LGR
algorithm terminates after 11 steps and yields the same output as for the choice
tols = 107'2, discussed above.

e RSL method: Choosing tol; = 10~!3 the RSL method terminates after 41 steps
(~ 69000 flops) and generates 6 eigenvalues approximations with errors less than
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2107 and 2 eigenvalues approximations with an error of 4 - 1072

If we choose tol; = 107 then the RSL method terminates after 43 steps (~ 73000
flops) and computes eigenvalues which differ from the exact eigenvalues of the matrix
A by not more than 2 - 1074

Choosing tolz € [107%,107%] the RSL method stops with a failure report because
it requires more than 50 steps to separate one block (i.e. £ > 50).

In all following examples we choose in the LG R process the tolerance tol; = 10716,
Further we choose the tolerance tol = 10~ in the RSL and in the LG R process and use

random starting vectors u§°), w§°) (generated by the random number generator of Turbo

Pascal [6]).

Throughout the rest of the section \; denotes an exact eigenvalue of the matrix A whereas
(; is an approximation of \;, generated by the LGR, QR and RSL algorithm, respectively.

Example 11.2 (Cyclic matrices)

0 0 1
1 . 0

A= . GMatN.
0 10|

The eigenvalues of the cyclic matrix A are the N-th complex roots of unity. All these
eigenvalues are well-conditioned (cond();) =1 for all i).
Applying the LGR, the QR and the RSL algorithm to A we obtain the results:

N x N Cyclic matrices, tol = 1074

N | Algorithm tols Maximal | Iteration | Flops Steps
(chosen) | rel. error steps | required | to separate
max; % required one block

(mean value)

LGR 1016 9.10"13 17 1.1-10* 4.3
8 QR 5.1016 26 1.8-10% 6.5
RSL 10712 4.10714 17 1.8 - 10* 4.3
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N x N Cyclic matrices, tol =10~
N | Algorithm tols Maximal | Iteration | Flops Steps
(chosen) | rel. error steps required | to separate
max; % required one block
(mean value)
LGR 1016 1-107 1 29 6.1-101 2.9
20 QR 8.10"16 43 1.3-10° 4.3
RSL 101 1-107"2 25 8.6 - 10* 2.5
LGR 10716 1-107% 69 5.8-10° 2.8
50 QR 2.10715 83 1.1-106 3.3
RSL < 10708 * Kk * Kk * ok * % %
LGR 10~16 1-107% 117 | 3.5-10° 2.3
100 QR 2.1071° 147 6.6 - 106 2.9
RSL < 10708 * Kk * Kk * ok * % %

For N = 8 N = 20 and N = 50 all matrices generated by the LGR and the RSL
method are tridiagonal. For N = 100 the LG R method computes in 113 iteration steps
tridiagonal matrices and in 4 iteration steps block tridiagonal matrices with exactly one
diagonal block of order 2 and N — 2 diagonal blocks of order 1.

Example 11.3 (Clement matrices) The Clement matrices

(0 N—1 0 0
1 N-2
A=10
1
0 N-10

€ MatN

have the eigenvalues +1, +3, ---, £(N —1) for N even and £+0, £2, ---, £(/N — 1) for odd
N (see e.g. [38], [23], [74]). These eigenvalues are ill-conditioned. It is well known that
the QR method is not able to compute accurate approximations of the inner eigenvalues
of the Clement matrices for N > 100 (see e.g. [23], [74], [7]). In contrast to that the
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LG R method generates even for N = 250 accurate approximations to all eigenvalues of
the Clement matrix (see below).

N x N Clement matrices, tol =10"*

N | Algorithm tols Maximal | Iteration | Flops Steps
(chosen) | rel. error steps | required | to separate
max; |/\‘i;i |ﬂ i required one block

(mean value)

LGR 10716 410716 10 6.1-10° 3.3

8 QR 1-1079 14 8.9-103 4.7

RSL 1013 7-10716 9 9.5-10° 3.0

LGR 1016 3-10°15 24 3.5- 10 2.7

20 QR 1-101 32 7.8-10% 3.6
RSL 10710 21071 22 8.3-10* 2.4

LGR 10716 1-107™ 53 1.7-10° 2.2

50 QR 7-1071 73 8.2-10° 3.0
RSL 1098 7-10710 50 2.9-10° 2.1

LGR 10716 51071 107 6.7-10° 2.2

100 QR 2.10793 142 6.7 - 106 2.9
RSL <1070 * % % * % % * % % * k%

LGR 10-16 6-10"14 158 1.5-108 2.1

150 QR 1-10701 255 2.0-107 2.7
RSL < 10798 * % k * % k % % sk k

LGR 1016 1-10713 208 2.5 - 106 2.1

200 QR 210101 391 | 5.0-107 2.8
RSL <1070 * % % * % % * % % * k%

LGR 1016 3-1071 259 3.9-10° 2.1

250 QR 210101 471 8.6 - 107 3.0

RSL <1078 * % ok * % ok * % % * %k
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Here all matrices generated by the LGR and the RSL algorithm are tridiagonal.

The amazing result that the LG R method computes accurate eigenvalue approximations
and the QR algorithm fails has the following reason: The LG'R method preserves in every
step the tridiagonal structure of the starting matrices. The QR algorithm destroys the
tridiagonal structure and creates in the first step a full upper Hessenberg matrix A,. The
small rounding errors which occur in the computation of the off-tridiagonal elements cause
in double precision arithmetic the huge eigenvalue error observed above.

Example 11.4 (Hyperbolic matrices) Discretizing the model parabolic equation
Up = Uy (11.28)

in an interval [0, /] with zero Dirichlet boundary conditions by an explicit difference scheme
with constant step sizes h and k we obtain the well known difference equation

i k i
u ) = (I + ﬁA> u (11.29)
where u = (u1,us,...,uy)T and A = tridiag(1,—2,1) is the ‘parabolic matrix’. The

characteristic polynomials py of the parabolic matrices A € Maty satisfy a three term
recursion. Furthermore, the Tchebysheff polynomials Uy of the second kind and the
polynomials py satisfy the equation py(2z — 2) = Uy(x) for all z € € and all N € IN.

Hadeler discussed in [36] a hyperbolic analogue of (11.28), (11.29) and introduced and
studied in this context the ‘hyperbolic matrices’

B D
A= € Mat,, (11.30)
D BT
where )
( o 0
v o _
B = . . € Mat, and D = ul € Mat,,.
[0 7 o

Indeed, consider the model hyperbolic system (Goldstein-Kac system [44], [78]) for a
correlated random walk on the real line

uf v = plu” —ut

uy —yu, = plut —u7) (11.31)
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(> 0 and v > 0) on an interval [0, (] with zero Dirichlet boundary conditions. Discretiz-
ing the hyperbolic system (11.31) with an explicit difference scheme with step sizes h and
k we obtain the difference equation

. L .
wl ) = <I + EA> u (11.32)
Toug, .o ut )" and A is the hyperbolic matrix (11.30) with

where u = (ui,u3, ..., ut uy,uy, ... u;
| derived the three term vector recursions

fi=nh-pand a = —y — fi. Hadeler [3
Qg()\) - 0, Po()\) - ]_

Qn()‘) - ﬂPn—l()\) - ’72Qn—1()\)
Pa(N) = iQu(N) = (A+ 7+ 1) Pua(N) (11.33)

for the characteristic polynomials P, of the hyperbolic matrices A. Notice that P, has
degree 2n and @), has degree 2n — 2.
Define polynomials S,,(z), R,(z) of degree n by Ry(z) =0, So(z) =1,

R,(A) = [iSu-1(2) = 7" Ru-1(2)

Sp(2) = [R,(2) — 25, 1(2). (11.34)

Then
Pa(A) = Su((A + 7+ 2)?). (11.35)
Equation (11.35) implies that the spectrum of the hyperbolic matrix A is symmetric with
respect to the line ®A = — i — . This situation is similar to the parabolic case. It is well
known that the spectrum of the parabolic matrix A = tridiag(1,—2,1) is symmetric with
respect to the line RA = —2. We remark that the hyperbolic matrices have, in contrast

to parabolic matrices, in general complex eigenvalues.

In the following we discuss for which choice of time step sizes k the difference scheme
(11.32) with parameters i = 1 and v = 2 is stable, i.e. the eigenvalues \; of the iteration
matrix

k
I+ EA (11.36)
satisfy the inequality
A <1 (11.37)

for all s.
One easily verifies that the inequality (11.37) is equivalent to

R
| Ai?

koo (11.38)
’ |
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where )\; are the eigenvalues of the hyperbolic matrix A. Computing the eigenvalues A,
and using (11.38) we find that the difference scheme (11.32) with parameters i = 1 and
v = 2 is stable if the time step size k is chosen as described below:

N 8 20 20 100

% <10.372]0.343 | 0.335 | 0.333
3 i T T T T T T ] 1 | T T ]
2 1
- . _ 05F N R
s 1 + + B a + + k
Q o
2 el
g o = o
=) =)
E 1| + + b £ + + !
B * T 05 F N - P
Sl |
3+ E 1r b
6 5 4 -3 2 -1 0 1 05 0 0.5 1
real part real part
Fig.1: Eigenvalues of the 8 x 8 hyperbolic Fig.2: Eigenvalues of the 8 x 8 iteration matrix
matrix (11.36) with k/h = 0.372
3 i T T T T T T ] l | T T ]
2t . . .
vt o5 + o4 R
g5 1t * + _ g / + + |
o + + a + +
> >
g0 g 0
g" + + @ + +
E -1f N N b E + +
o+ 05 F T .
21 _ R g
3| - 1r b
6 5 4 -3 2 -1 0 1 05 0 0.5 1
real part real part
Fig.3: Eigenvalues of the 20 x 20 hyperbolic Fig.4: Eigenvalues of the 20 x 20 iteration ma-

matrix trix (11.36) with k/h = 0.343
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E 1F + + —
o + +
>
2 + +
] H H
£ 0 + +
2 + +
E -1r * + T
i 4+t
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2+ 4
3} 4
1 1 1 1 1 1
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real part

Fig.5: Eigenvalues of the 50 x 50 hyperbolic
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05 - S
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N x N Hyperbolic matrices (y =2, p=1), tol =101
N max; | Algorithm tols Maximal | Iteration Flops Steps
cond(\;) (chosen) | rel. error steps | required | to separate
max; % required one block
(mean value)
LGR 1016 3-10°10 12 9.6 - 10° 4.0
8 1.2 QR 2.10-15 25 1.5-10* 8.3
RSL 1079 | 3-107'° 11 2.3-10 3.7
LGR 10-16 3-10~1 27 6.2 - 10* 3.0
20 1.7 QR 3-1071° 45 1.3-10° 5.0
RSL 10799 2-10°10 23 9.0 - 10* 2.6
LGR 1016 9.1079 66 6.0 - 10° 2.6
50 | 3.9 QR 92.10-13 107 | 1.5-10° 45
RSL 107% | 4-.107" 52 7.1-10° 2.0
LGR 1071% | 2.107% 123 | 3.6-10° 2.4
100 28.9 QR 2.10713 174 8.5-10° 3.4
RSL < 10798 * % % * %k * % % * % k
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N x N Hyperbolic matrices (y =2, g =1)

Block tridiagonal structure of the generated matrices

N | Algorithm | Number of | Number of diagonal blocks
iteration of order
steps 1 1213145 ] 6
8 LGR 12 8 10|0]0]0| O
RSL 6 8 10[0]0]0] O
5! 6 |1]10]0]0| O
20 LGR 26 20000101 0] 0
1 811 10]010] 0
RSL 23 20000101 0] 0
50 LGR 57 50 100101010
3 48 1110100 O
3 46 12101 00| O
2 471011100 O
1 4517111100 0
RSL 48 50100101010
4 48 1110100 O
100 LGR 104 1000|1000 O
13 98 (1 ]010]0] 0
4 9% (2 ]010]0] 0
1 9 (0] 010 1] 0
1 92 110|001

213

The following test matrices are from the collection of non-hermitian eigenvalue problems

of Bai et al. [2]
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Example 11.5 (Brusselator wave model in chemical reaction)

The system
ox . 51 821' 2
E = ﬁ@—ka—(ﬁ%—l)x—kx(y,
oy 6, 0% )
E = ﬁ%—kﬁx—m Yy (11.39)

with the initial conditions z(0, z) = x¢(2), ¥(0,2) = y¢(2) and the Dirichlet boundary
conditions z(¢,0) = z(¢t,1) = z*, y(t,0) = y(t,1) = y* is the so-called Brusselator
wave model (see [60],[67] ). This system models the concentration waves for reaction
and transport interaction of chemical solutions in a tubular reactor. The Brusselator
wave model has the stationary solution z* = «, y* = (/a. One is primarily interested
in the existence of periodic solutions This can be studied by examining the spectrum of
the Jacobian of the right-hand-side of the Brusselator system (11.39) at the stationary
solution z* = «, y* = f/a. If the rightmost eigenvalues of the Jacobian are purely
imaginary then there is a periodic solution of the Brusselator wave model. To discuss this
problem numerically, the Jacobian is discretized in the interval [0, 1] with the mesh size
h=1/(m+ 1) and the eigenvalues of the discretized Jacobian

nlT+(8—1)1 ol
q- | PTHE-Y € Maty,,
—B1 T — o?l

1
nZ

1 0y

s _
75 and ™ = ;5 7%,

are computed. Here T' = tridiag(1, —2,1) € Mat,,, 1 =

The exact eigenvalues of the Brusselator matrix A are known since there is a quadratic
relation between the eigenvalues of the matrix A and those of the parabolic matrix 7" =
tridiag(1,—2,1) (see [2]).

In the following we consider the Brusselator system (11.39) with the parameters
01 = 0.008, 02 =0.004, a =2, §=5.45. (11.40)

For small L the Jacobian has only eigenvalues with negative real parts. Following Saad
[67] the rightmost pair of eigenvalues are purely imaginary at L &~ 0.51302. To verify this
we compute the eigenvalues of the Brusselator matrices A with the parameters (11.40)
and L = 0.51302.
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imaginary part

Fig.1: Eigenvalues of the 8 x 8 Brusselator ma-
trix
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Fig.3: Eigenvalues of the 20 x 20 Brusselator
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Rightmost eigenvalues of the 20 x 20
Brusselator matrix
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6 T
++ 4 —
4 ++ ++ -
A
+ + N
+ _ 2t -
g 27 i &
o o
> >
g0 g0
[} [=))
£ £
= 2r i s o2t .
+ +
4+ 4 ++ i
it 4+ i
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Fig.5: Eigenvalues of the 50 x 50 Brusselator Fig.6: Rightmost eigenvalues of the 50 x 50
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N x N Brusselator matrices, tol = 1074
N | Algorithm tols Maximal | Iteration | Flops Steps
(chosen) | rel. error steps required | to separate
max; % required one block
(mean value)
LGR 1016 1-1071 14 9.1-10? 4.7
8 QR 1-10715 16 1.1-10* 5.3
RSL 0= | 9-107" 13 1.2 -10* 4.3
LGR 10716 5-10710 28 6.5 10* 3.1
20 QR 4.10715 40 1.2-10° 4.4
RSL 10719 1-1071 26 1.6-10° 2.8
LGR 10716 3-10°1 65 5.6 - 10° 2.5
50 QR 7-1071 79 1.1-106 2.8
RSL < 10798 * % % * % % * % % * %k
LGR 10716 3-107% 133 3.6-10° 2.5
100 QR 4-1071 144 7.6-10° 2.6
RSL < 10798 * %k * % % * % % %k k

217
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N x N Brusselator matrices
Block tridiagonal structure of the generated matrices
N | Algorithm | Number of | Number of diagonal blocks
iteration of order

steps 1 2
8 LGR 14 8 0
RSL 13 8 0
20 LGR 27 20 0
1 18 1
RSL 26 20 0
50 LGR 65 50 0
100 LGR 131 100 0
2 96 2

Example 11.6 (Ising model for ferromagnetic materials) The Ising matrices

A= KL € Maty,,

where
( E cos (3 —sin
E F
K = , L= € Maty,,

E F

L E sin (3 cos (3

cosa Sina cos sin
o ol B sinf

—sina  cosa —sinf3 cosf

arise in the analysis of the Ising model for ferromagnetic materials (see e.g. [46], [22],

[15]).
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It is well known that the eigenvalues of A are the 2m numbers that are obtained by
computing the eigenvalues of the 2 x 2 matrices

cosa  sina cos 3 —0Fsin 3
B, =
—sina cosa 6™ * sin 3 cos 3
for k =1,2,...,m, where § = ™™ One easily verifies that the matrices By, and B,,_

have identical eigenvalues. Thus the Ising matrix A € Maty,, has maximal m + 1 distinct
eigenvalues.

In the following we compute the eigenvalues of the Ising matrices with o = 7/4 and

8= /4.

T T T T T T T T T T
1r — 1r + . E
+
N
. 05r g . 05F N .
(] [
o Q
el 2
g 0 g 0
= =
£ £
T o5t - T o5t " -
N
N
1t - 1t + 7 -
1 1 1 1 1 1 1 1 1 1
02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
real part real part
Fig.1: Eigenvalues of the 8 x 8 Ising matrix Fig.2: Eigenvalues of the 20 x 20 Ising matrix
T T T T T T T T T T
1F A B 1F H+H++++++ B
+ g
+
N
. 05f e . 05F ©T
g g +
> * > 4
£ ° | g o :
(=2 + [=2) +
I & 7
E E e
05 g 05 | R .
+ +
+ ++
aF e+t T - U N -
1 1 1 1 1 1 1 1 1 1
02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
real part real part
Fig.3: Eigenvalues of the 50 x 50 Ising matrix Fig.4: Eigenvalues of the 100 x 100

Ising matrix
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N x N Ising matrices (« = 7/4, 3 =7/4), tol =101
N | Algorithm tols Maximal | Iteration | Flops Steps
(chosen) | rel. error steps required | to separate
max; % required one block
(mean value)
LGR 10716 2-1071 8 6.6 - 103 2.0
8 QR 5-1071¢ 21 4.2-103 7.0
RSL 107" | 6-107" 12 5.5-10° 4.0
LGR 10-16 210712 17 5.2 - 10* 3.0
20 QR 2.1071° 24 8.3-10* 2.7
RSL 10712 3-10712 25 5.4-10* 2.8
LGR 10716 1-10798 48 5.3-10° 2.4
20 QR 3-1071° o8 9.2-10° 2.4
RSL 1079 | 2.107" 55 5.4-10° 2.3
LGR 1071% | 2.107%7 105 | 3.6-10° 2.4
100 QR 7-1071 85 6.2 - 10° 1.7
RSL 10798 7-107% 116 3.8-10° 2.4
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N x N Ising matrices (o = 7/4, f = n/4)

Block tridiagonal structure of the generated matrices

N | Algorithm | Number of | Number of diagonal blocks
iteration of order
steps 1 1213415 6
8 LGR 8 8 |0|0]0]0| O
RSL 12 8 10|0]0]0| O
20 LGR 16 20000101 0] 0
1 811 10]010] 0
RSL 25 20000101 0] 0
50 LGR 31 50001 0]07] 0
16 48 1110100 O
1 4517111100 0
RSL 55 5000107 0] 0
100 LGR 91 1000|000 O
10 98 (1 ]010]0] 0
1 9% (2 ]010]0] 0
1 94 (3]0, 0]0] 0
1 9 (1|1 ,0]0] 0
1 92 {100 ]0 | 1
RSL 113 1000|000 O
2 98 (1 ]010]0] 0
1 9% (2 ]010]0] 0

221
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Example 11.7 (Model 2-D convection diffusion operator) Discretizing the convec-
tion diffusion Operator

Lu = —Au + 2pyuy + 2psuy — pau (11.41)

on the domain Q = [0, 1]> with v = 0 on 9% by a finite difference scheme with a 5-point
stencil on a uniform m x m grid we obtain the matrix

T (B—-1I
—-(B+ 1)1 T (B—1)1
A= € Mat,,,»
(6-11
I —(B+1)I T
with ) )
4—0 ~v-1
—v—1 4—-0 v—-1
T = € Mat,,,
v—1
—v—-1 4—-0

where 3 = pih,y = poh,0 = psh? and h = 1/(m + 1).
The exact eigenvalues of the convection diffusion matrix A are

My =4 —0+24/1 — [?cos(khm) + 24/1 — % cos(lh)

for k,1=1,2,...,m (see e.g. [2]).
The maximal condition number of the eigenvalues of the convection diffusion matrix A is

<1+5><1+7>>”T‘1
(1 B)(1—7)

In the following we compute the eigenvalues of the convection diffusion matrix A with
parameters p; = 1, p» = 2 and p3 = 30. These parameters are also used in Bai et al.
[2]. One easily verifies that for this choice of parameters the spectrum of the convection
diffusion matrix A is real.

max cond(Ag,) = (

)
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N x N Convection diffusion matrices (p; = 1, py = 2, p3 = 30), tol =10*
N maxy,; | Algorithm tols Maximal Iteration Flops Steps
cond (k) (chosen) rel. error steps | required | to separate
maxy, W required one block
(mean value)
LGR 1016 4.101 10 9.3-10% 2.5
9 5.0 QR 3.10°15 16 1.3-10* 4.0
RSL 10-10 5-10713 8 9.6 -10° 2.0
LGR 1016 2-1071 33 9.9-10* 2.2
25 7.8 QR 4.1071 36 1.4-10° 3.0
RSL < 10798 * s % * s % * s % * ok %
LGR 1016 2.107% 61 5.2-10° 2.3
49 9.8 QR 1-1071 74 9.6 - 10° 3.0
RSL < 10798 * % % * % % * %k % % k k
LGR 10-16 2.107% 136 3.8-10° 2.3
100 11.9 QR 3-1071 149 7.3-10° 3.0
RSL <107% * % % * % % * % % * % %
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11 COMPARING THE RSL, LGR AND QR ALGORITHMS

N x N Convection diffusion matrices
Block tridiagonal structure of the generated matrices
N | Algorithm | Number of | Number of diagonal blocks
iteration of order
steps 1 2 3
9 LGR 10 9 0 0
RSL 8 9 0 0
25 LGR 33 25 0 0
49 LGR 61 49 0 0
100 LGR 132 100 0 0
3 98 1 0
1 97 0 1
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11.3 Concluding remarks

In all our numerical experiments we have observed cubic convergence of the LG R algo-
rithm (for the choice tol = 10™* and tol3 = 107'%) and quadratic convergence of the QR
algorithm. Further we have observed that the RSL algorithm (with the choice tol = 107
and tolz < 1078)

e does not converge in 12 out of 28 examples
e converges cubically in 12 out of 13 numerical examples for N < 25
e converges cubically in 3 out of 6 numerical examples for N € {49,50}

e converges cubically in 1 out of 9 numerical examples for N € {100, 150, 200, 250}.

Steps:

The LG R method requires, on the average, 2.8 steps to separate a block (for N < 100).
The QR method requires, on the average, 3.9 steps to separate a block (for N < 100).
If the RSL method converges it needs about 2.8 steps to separate a block.

Flops:

The LGR algorithm requires, on the average, for all types of matrices (full, upper Hes-
senberg, tridiagonal) less flops than the QR algorithm.

For full and upper Hessenberg matrices of size 10 < N < 100 the LG'R algorithm needs
about half the number of flops as compared to the QR method.

For tridiagonal matrices (and nearly tridiagonal matrices) we expect that the LG R method
requires about

1/2 the number of flops of the QR method for N = 20,

1/5 the number of flops of the QR method for N = 50,

1/10 the number of flops of the QR method for N = 100,

1/20 the number of flops of the )R method for N = 200

(see Example 11.3).

Eigenvalue Error:

If the eigenvalues of a matrix A € Maty are not ill-conditioned then the QR algorithm
yields (in our examples) for N < 100 eigenvalue approximations with an average maximal
relative error of 3 - 107 (for details see the table below). If there are ill-conditioned
eigenvalues then the QR method can fail (see Example 11.3).

The LG R algorithm generates (in our examples) for N < 100 eigenvalue approximations
with an average maximal relative error of 2 - 1078 (for details see the table below). In 1
out of 28 numerical examples (see Example 11.4, N = 100) the LG R method yields the

maximal relative eigenvalue error of 2 - 107,

If the RSL method converges then it yields (in our examples) an average maximal relative
eigenvalue error of 2- 1077,
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Mean values
N | Algorithm | Number of Full Hessenberg Tridiagonal
steps matrix A matrix A matrix A max;
to separate | SRRSOl | Sopoxequid | fops equid | e
one block
LGR 3.4 0.76 0.72 0.69 6-10" "
8 QR 5.8 1 1 1 1-10719
(9) RSL 3.4 1.06 1.00 1.07 5-1071
LGR 2.8 0.59 0.47 0.45 9-10~1
20 QR 3.8 1 1 1 1-10714
(25) | RSL 3.3 0.86 0.66 1.06 4-10711
LGR 2.5 0.49 0.52 0.21 2.107%
50 QR 3.2 1 1 1 (6-10714),
(49) | RSL 2.1 0.56 * % 0.35 4.10710
LGR 2.4 0.49 0.53 0.1 (4-10798),
100 QR 2.8 1 1 1 (6-1071),
RSL 2.4 0.51 * % ok * ok k 7-1079

In the last column the numbers in brackets (-); are averages of only 5 out of 6 examples.
In these cases an extreme outlier has been removed.

Summarizing we find that the LG R algorithm is an efficient method to compute eigen-
value approximations of non-Hermitian matrices. On the average, it requires less flops
than the QR algorithm but it is in general not as accurate as the QQR algorithm.

Outlook: In future work the LG R method will be compared with the DQR algorithm
[74] and the BR algorithm [23].
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