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Introduction

Problems worthy of attack

prove their worth by hitting back.

P. Hein 1

Between 1942 and 1950, E. Hille [Hil42], [Hil48], K. Yosida [Yos48] and many others

created the theory of strongly continuous semigroups on Banach spaces in order to

treat initial value problems for partial differential equations. By now, their theory is

well established, and its applications reach well beyond the classical field of partial

differential equations.

However, from the very beginning many situations occured in which the correspond-

ing semigroup is not strongly continuous or the underlying space is not a Banach

space. In order to deal with such phenomena, already E. Hille and R. S. Phillips

[HP57] introduced a whole range of semigroups on Banach spaces having weaker con-

tinuity properties. On the other hand, I. Miyadera [Miy59], H. Komatsu [Kom64],

T. Kōmura [Kōm68], S. Ōuchi [Ōuc73], K. Yosida [Yos74], and others generalized

the theory to strongly continuous semigroups on locally convex spaces. It seems,

however, that both theories have found relatively few applications.

In contrast and motivated by concrete applications, many authors considered semi-

groups on Banach spaces which are strongly continuous for a topology weaker than

the norm topology. We mention, e.g., adjoint semigroups (e.g., [BR79], [Nee92]) or

implemented semigroups as occuring in [BR79, Section 3.2]. Motivated by stochastic

differential equations on Banach spaces, S. Cerrai [Cer94] introduced weakly contin-

uous semigroups which were subsequently applied to transition semigroups like the

(infinite dimensional) Ornstein–Uhlenbeck semigroup (see, e.g., [DPZ92]). Finally,

we mention work by J. R. Dorroh and J. W. Neuberger (e.g., [DN93], [DN96]) who

“linearized” a flow (φt)t≥0 on a metric space Ω and introduced its Lie generator as

1Danish poet and scientist (1905–1996)



2 Introduction

the generator of a linear operator semigroup on Cb(Ω) which is strongly continuous

with respect to the finest locally convex topology agreeing with the compact–open

topology on norm bounded sets.

To treat these semigroups, generation theorems and approximation results have

been developed.

The aim of this thesis is to put these individual results into a general framework. To

that purpose, we propose the concept of bi–continuous semigroups on spaces with two

topologies. We show that these semigroups allow, as in the case of C0–semigroups, a

systematic theory including Hille–Yosida and Trotter–Kato type theorems. A long

series of applications shows the flexibility and strength of our theory.

In Chapter 1 we consider Banach spaces endowed with an additional locally con-

vex Hausdorff topology τ which is coarser than the norm topology and such that

the topological dual (X, τ)′ is norming for (X, ‖ · ‖). On such spaces we define

bi–continuous semigroups (T (t))t≥0 as semigroups consisting of bounded linear op-

erators which are locally bi–equicontinuous for τ (see Definition 1.2) and such that

the orbit maps

R+ 3 t 7→ T (t)x ∈ X

are τ–continuous. For such a bi–continuous semigroup (T (t))t≥0 we show the exis-

tence of its τ–Laplace transform

R(λ)x :=

∫ ∞

0

e−λtT (t)xdt = ‖ · ‖ – lim
a→∞

(
τ–

∫ a

0

e−λtT (t)xdt

)
, x ∈ X.(1)

From R(λ) we obtain the generator of (T (t))t≥0 as a Hille–Yosida operator defined

on a τ–dense subspace of the Banach space X. Finally, the relation between bi–

continuous semigroups, integrated semigroups and Hille–Yosida operators yields a

characterization of the generator of a bi–continuous semigroup in form of a general-

ized Hille–Yosida theorem (Theorem 1.28).

In Chapter 2 we study the convergence of sequences of bi–continuous semigroups.

We use our results from Chapter 1 in order to establish approximation theorems

of Trotter–Kato type. Based on these results, we then obtain an explicit formula

for bi–continuous semigroups in form of a generalization of the Chernoff Product

Formula (Proposition 2.9). We use this formula to state the Post–Widder Inver-

sion Formula for bi–continuous semigroups in terms of the powers of the resolvent
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of its generator (Corollary 2.10). Finally, we show that under stability and consis-

tency conditions on two bi–continuous semigroups, the closure of the sum of their

generators is a generator and the perturbed semigroup can be represented by the

Lie–Trotter Product Formula (Corollary 2.11).

In order to check the applicability of our approach, we discuss in Chapter 3 a series

of examples of the previous results.

First, we give a survey on locally equicontinuous semigroups as treated, e.g., in

[Kom64], [Kōm68], [Ōuc73], K. Yosida [Yos74], which can be viewed as bi–continuous

semigroups in many concrete situations.

In Section 3.2, we reproduce results by J. R. Dorroh and J. W. Neuberger [DN93],

[DN96] by verifying that semigroups on Cb(Ω) which are induced by flows are bi–

continuous for the topology of compact convergence. In particular, we give a sim-

plified proof for their generation theorem for such semigroups on Cb(Ω) and give

conditions implying the Lie–Trotter Product Formula for this class of semigroups

(Proposition 3.8). This formula is then illustrated by an example (Example 3.9).

In Section 3.3 we concentrate on the Ornstein–Uhlenbeck semigroup which has

been intensively studied by many authors, e.g., [DPZ92],[CDP93], [Cer94], [CG95],

[DPL95], [Pri99], [TZ]. Using the results by S. Cerrai [Cer94] we show that the

Ornstein–Uhlenbeck semigroup on Cb(H), H Hilbert space, is bi–continuous. Hence,

our Hille-Yosida Theorem and our approximation results apply. Further, based on

joint work with A. Albanese [AK00], we show that the Lie–Trotter Product Formula

holds for these semigroup on Cb(Rn) if we take a locally convex topology finer than

the compact–open topology.

In Section 3.4 we look at implemented semigroups on Banach spaces of bounded

linear operators which have been studied, e.g., in [GN81], [Pho91], [ARS94], [PS98],

[Alb99], [Alb]. We show that these semigroups fit into the theory of bi–continuous

semigroups by using the strong operator topology on L(X, Y ), X,Y Banach spaces.

Moreover, we state the Lie–Trotter Product Formula for these semigroups.

Finally, we look at adjoint semigroups on the topological dual X ′ of a Banach space

X assuming that the corresponding semigroup on X is strongly continuous. Every

such adjoint semigroup is bi–continuous with respect to the weak? topology. More-

over, we characterize adjoint semigroups, which are bi–continuous with respect to

the Mackey topology on X ′.

For the reader’s convenience, the Appendix contains some results on Laplace trans-
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form methods for evolution equations which are needed in Chapter 1.
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Chapter 1

Bi–continuous semigroups,

generators and resolvents

As mentioned in the introduction, for many applications of operator semigroups

strong continuity with respect to the norm of a Banach space is a too strong require-

ment. Instead, a “weaker” strong continuity with respect to some locally convex

topology holds in many interesting cases (see Chapter 3). We take this observation

as motivation to introduce bi–continuous semigroups on a Banach space X.

1.1 Bi–continuous semigroups

In order to define bi–continuous semigroups, we assume that our underlying space

X satisfies the following conditions.

Assumptions 1.1. Let (X, ‖ · ‖) be a Banach space with topological dual X ′, and

let τ be a locally convex topology on X with the following properties.

1. The space (X, τ) is sequentially complete on ‖ · ‖–bounded sets, i.e., every

‖ · ‖–bounded τ–Cauchy sequence converges in (X, τ).

2. The topology τ is Hausdorff and coarser than the ‖ · ‖–topology.

3. The space (X, τ)′ is norming for (X, ‖ · ‖), i.e.,

‖x‖ = sup{| < x, φ > | φ ∈ (X, τ)′ and ‖φ‖(X,‖·‖)′ ≤ 1} for all x ∈ X.
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Comment. The notion of a norming space was introduced by J. Lindenstrauss

and L. Tzafriri in [LT70, p. 29]. Clearly, Assumption 1.1.3 implies that (X, τ)′

separates the points of X. On the other hand, separation of points does not imply

that (X, τ)′ is norming for (X, ‖ · ‖). As a simple example, let X := (l∞, |||·|||) be

the space of norm bounded, real sequences endowed with the norm |||·||| defined as

|||x||| := 2‖x‖∞ := 2 supn∈N |xn|, x := (xn)n∈N ∈ l∞. Additionally, we take the

weak topology σ(l∞, l1), where l1 ⊂ l∞′ denotes the space of absolutely summable

sequences. It is easy to see that (l∞, σ(l∞, l1)) is sequentially complete on |||·|||–
bounded sets, and l1 separates the points of l∞. Now, we take x := (1, 1, ...) ∈ l∞

and suppose that l1 is norming for (l∞, |||·|||). Then

2 = |||x||| = sup{| < x, y > | : y ∈ l1, ‖y‖(l∞,‖|·‖|)′ ≤ 1}
≤ sup{| < x, y > | : y ∈ l1, ‖y‖(l∞,‖·‖∞)′ ≤ 1}
= 1,

which is a contradiction to our assumption.

In the following we denote by L(X) the space of bounded linear operators on (X, ‖·‖),
and Pτ denotes a family of seminorms inducing the locally convex topology τ on X.

Since τ is coarser than the ‖ · ‖–topology, we assume without loss of generality that

p(x) ≤ ‖x‖ for all x ∈ X and p ∈ Pτ . For the definition of bi–continuous semigroups,

we require a specific relation between the semigroup operators and the τ–topology.

Definition 1.2. An operator family {T (t) : t ≥ 0} ⊆ L(X) is called (globally)

bi–equicontinuous if for every ‖ · ‖–bounded sequence (xn)n∈N ⊆ X which is τ–

convergent to x ∈ X we have

τ– lim
n→∞

(T (t)(xn − x)) = 0

uniformly for all t ≥ 0.

It is called locally bi–equicontinuous if for every t0 ≥ 0 the subset

{T (t) : 0 ≤ t ≤ t0} is bi–equicontinuous.

Definition 1.3. An operator family {T (t) : t ≥ 0} ⊆ L(X) is called a bi–

continuous semigroup (with respect to τ and of type ω) if the following conditions

hold.

(i) T (0) = Id and T (t+ s) = T (t)T (s) for all s, t ≥ 0.
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(ii) The operators T (t) are exponentially bounded, i.e., ‖T (t)‖L(X) ≤Meωt

for all t ≥ 0 and some constants M ≥ 1 and ω ∈ R.

(iii) (T (t))t≥0 is strongly τ–continuous, i.e., the map

R+ 3 t 7−→ T (t)x ∈ X

is τ–continuous for each x ∈ X.

(iv) (T (t))t≥0 is locally bi–equicontinuous.

For a bi–continuous semigroup (T (t))t≥0 we call

ω0 := ω0(T (·)) := inf{ω ∈ R : there exists M ≥ 1 such that

‖T (t)‖ ≤Meωt for all t ≥ 0}
(1.1)

its growth bound. We call (T (t))t≥0 bounded if we can take ω = 0 in Definition

1.3(ii), and contractive if ω = 0 and M = 1 is possible.

Clearly, every strongly continuous semigroup on a Banach space is a bi–continuous

semigroup with respect to τ = ‖ · ‖ (see [EN00, Ch. I, Def. 5.1]). We now list

interesting examples of bi–continuous semigroups most of which will be discussed in

detail in Chapter 3 below.

• evolution semigroups as in [CL99], [EN00, Ch. VI, Sec. 9b] but defined on the

space Cb(R, X) (e.g., [Sch96, Sec. 5.3, Thm. 5.6]),

• semigroups canonically extended from X to the sequence space l∞(X) as in

[NP00],

• semigroups induced by flows (e.g., [DN96], see Section 3.2 below),

• the Ornstein–Uhlenbeck semigroup on Cb(H) (e.g., [DPZ92], [Cer94], [DPL95],

see Section 3.3 below),

• adjoint semigroups (e.g., [Nee92], see Section 3.5 below), and

• implemented semigroups (e.g., [BR79, Section 3.2], [ARS94], see Section 3.4

below).

We now state some important consequences of the above definition.
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Proposition 1.4. Let (T (t))t≥0 be a bi-continuous semigroup of type ω on X. Then

the following properties hold.

(a) For every a ≥ 0 and λ ∈ C there exists the operator Ra(λ) : X −→ X defined

as

Ra(λ)x :=

∫ a

0

e−λtT (t)xdt(1.2)

for all x ∈ X. The integral has to be understood as a τ–Riemann integral

(sometimes denoted by τ–
∫ a

0
e−λtT (t)xdt).

(b) The rescaled semigroup (e−αtT (t))t≥0 is globally bi–equicontinuous for every

α > ω.

Proof. Assertion (a) is an immediate consequence of Assumptions 1.1 and Def-

inition 1.3. Indeed, for fixed λ ∈ C and a ≥ 0, ξx(·) := e−λ·T (·)x is a uniformly

τ–continuous X–valued function on the interval [0, a] for all x ∈ X. Therefore, the

Riemann sums S(ξx(·),∆) defined as

S(ξx(·),∆) :=
n∑

k=1

ξx(t
′
k)(tk − tk−1),

∆ : 0 = t0 ≤ t′1 ≤ t1 ≤ ... ≤ t′n ≤ tn = a,

form a τ–Cauchy net. Taking

S(ξx(·),∆n) :=
a

n

n∑
k=1

ξx(a
k

n
), n = 1, 2, ...

we obtain an equivalent ‖ · ‖–bounded τ–Cauchy sequence. Since (X, τ) is sequen-

tially complete on ‖ · ‖–bounded sets, S(ξx(·),∆n) converges, and hence ξx(·) =

e−λ·T (·)x is Riemann integrable for all x ∈ X (cf. [Kom64, Prop. 1.1]).

To prove property (b), let α > ω, ε > 0, p ∈ Pτ , and (xn)n∈N ⊆ X be a ‖ · ‖–bounded

sequence which is τ–convergent to x ∈ X. Then there exists t0 ≥ 0 such that

sup
t>t0

p(e−αtT (t)(xn − x)) ≤ sup
t>t0

e−αt‖T (t)(xn − x)‖

≤ sup
t>t0

e(ω−α)tM(‖xn‖+ ‖x‖)

≤ ε

2

for all n ∈ N.
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Further, by Definition 1.3(iv), there exists n0 ∈ N such that

sup
0≤t≤t0

p(e−αtT (t)(xn − x)) ≤ ε

2

for all n ≥ n0. Therefore,

sup
t≥0

p(e−αtT (t)(xn − x)) ≤ sup
0≤t≤t0

p(e−αtT (t)(xn − x)) + sup
t>t0

p(e−αtT (t)(xn − x))

≤ ε

2
+ sup

t>t0

e−αt‖T (t)(xn − x)‖

≤ ε

for all n ≥ n0. 2

Remark 1.5. (a) The semigroup law, the τ–continuity of the map t 7→ T (t)x at 0

and local bi–equicontinuity imply the τ–continuity at every point in R+. To see this,

let t0 > 0, x ∈ X and p ∈ Pτ . Then (T (1/n)x)n∈N ⊆ X is a ‖ · ‖–bounded sequence

which is τ–convergent to x by the τ–continuity at 0. By Definition 1.3(ii),(iv), we

obtain that p(T (t)(T (1/n)x − x)) → 0 uniformly for 0 ≤ t ≤ t0 as n → ∞, and

therefore p(T (t0 +h)x−T (t0)x) converges to 0 as h↘ 0, and by the same argument

as h↗ 0 which implies the continuity at t0.

(b) In [Kōm68, Prop. 1.1] (cf. [Sch80, Ch. III, Thm. 4.2]) it is shown that on

a barreled1 locally convex vector space (X, τ) conditions (i)–(iii) in Definition 1.3

automatically imply that (T (t))t≥0 is locally equicontinuous, i.e., for any fixed

t0 > 0 and for any continuous seminorm p ∈ Pτ there exists a continuous seminorm

q ∈ Pτ such that

p(T (t)x) ≤ q(x)

for all x ∈ X and uniformly for 0 ≤ t ≤ t0. Therefore, condition (iv) in Definition

1.3 is satisfied automatically.

In the following we give first an example of a bi–continuous semigroup which is not

locally equicontinuous in the sense of the definition given in Remark 1.5(b). Further,

1A locally convex vector space is barreled if each absorbing, absolutely convex and closed
subset is a neighborhood of zero.
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we show that the translation semigroup on Cb(R) is not bi–continuous with respect

to the topology of pointwise convergence. However, bi–continuity holds if we use

the topology of uniform convergence on compact intervals.

Examples 1.6. (a) Let X be the space Cb(R) endowed with the supremum norm

‖ · ‖∞ and the topology τc of uniform convergence on compact subsets of R. Clearly,

(Cb(R), τc) is sequentially complete on ‖ · ‖∞–bounded sets, τc is coarser than the

‖ · ‖∞–topology, Hausdorff, and, since the topological dual (Cb(R), τc)
′ contains the

point measures, it is norming for (Cb(R), ‖ · ‖∞). On this space we consider the

diffusion semigroup (T (t))t≥0 defined as

T (t)f(x) =

∫
R
f(y)N (x, t)dy, x ∈ R, f ∈ Cb(R), t > 0,

where N (x, t) denotes the Gauss measure with mean x and variance t defined via

the probability density gx,t on R defined as

gx,t(y) :=
1√
4πt

e
−(y−x)2

4t

for all y ∈ R. This semigroup is a bi–continuous semigroup with respect to τc.

In fact, (T (t))t≥0 is a contraction semigroup on Cb(R) and for f ∈ Cb(R), ε > 0,

and a compact subset K ⊆ R there exists δε,K > 0 such that |y| < δε,K implies

|f(x + y) − f(x)| ≤ ε for all x ∈ K. Therefore, by the Chebyshev inequality (see

[Bau92, Ch. II, Lemma 20.1]), we have

sup
x∈K

|T (t)f(x)− f(x)|

≤ sup
x∈K

∫
{|y|<δε,K}

|f(x+ y)− f(x)|N (0, t)dy + 2‖f‖∞
1√
4πt

∫
{|y|≥δε,K}

e
−|y|2

4t dy

≤ ε+ t
2‖f‖∞
δ2
ε,K

,

which yields the strong τ–continuity of (T (t))t≥0 at 0. Next, we show that (T (t))t≥0 is

locally bi–equicontinuous. To that purpose, let K ⊂ R be compact, t0 ≥ 0, and

ε > 0. Then there exists a compact subset Kε ⊆ R such that

N (x, t)(Kε) ≥ 1− ε

uniformly for x ∈ K and 0 ≤ t ≤ t0.
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Fix a function f ∈ Cb(R) and a ‖ · ‖∞–bounded sequence (fn)n∈N ⊆ Cb(R) which is

τc–convergent to f . Therefore, there exists n0 ∈ N such that

sup
x∈Kε

|fn(x)− f(x)| ≤ ε

for all n ≥ n0. Thus

sup
x∈K

|T (t)(fn(x)− f(x))|

≤ sup
x∈K

∫
Kε

|fn(y)− f(y)|N (x, t)dy + sup
x∈K

∫
{Kε

|fn(y)− f(y)|N (x, t)dy

≤ ε+ (‖fn‖∞ + ‖f‖∞)ε

uniformly for 0 ≤ t ≤ t0, and hence (T (t))t≥0 is locally bi–equicontinuous.

By Definition 1.3 it follows that (T (t))t≥0 is bi–continuous.

However, (T (t))t≥0 is not locally equicontinuous in the sense of the definition given

in Remark 1.5 (cf. Definition 3.1 in Chapter 3). Suppose the contrary, then for

every t0 ≥ 0 and K ⊂ R compact there would exist a compact subset K0 ⊂ R such

that

sup
x∈K

|T (t)f(x)| ≤ sup
x∈K0

|f(x)|

for all f ∈ Cb(R) and uniformly for 0 ≤ t ≤ t0. This must also be true for any

function 0 < g ∈ Cb(R) such that g(x) = 0 for all x in the interval [a, b] containing

K0. Therefore supx∈K0
|g(x)| = 0, but

sup
x∈K

|T (t)g(x)| = sup
x∈K

|
∫

R\[a,b]

g(y)N (x, t)dy| > 0

because of the strict positivity of the integrand. This is a contradiction to our as-

sumption.

(b) LetX be the space Cb(R) endowed with the supremum norm ‖·‖∞ and the topol-

ogy τp of pointwise convergence. By the same argument as in (a) (Cb(R), τp) satisfies

Assumptions 1.1. We consider the (left)translation semigroup (T (t))t≥0 defined as

T (t)f(x) := f(x+ t), x ∈ R, f ∈ Cb(R), t ≥ 0.

It does not satisfy the property of local bi–equicontinuity. This can be easily seen

by taking a sequence (fn)n∈N ⊆ Cb(R) defined for n ≥ 2 as

fn(x) :=

max (1− n2|x− 1
n
|, 0) if x ∈ [0, 1],

0 else.
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Then (fn)n∈N is a ‖ · ‖∞–bounded sequence, and limn→∞ fn(x) = 0 for all x ∈ R.

However, since T ( 1
n
)fn(0) = 1 for all n ≥ 2, the semigroup (T (t))t≥0 is not locally

equicontinuous. Hence (T (t))t≥0 is not bi–continuous with respect to τp. However, if

we take the finer topology τc as in (a), then it is easy to see that conditions (i)–(iv)

in Definition 1.3 hold, hence (T (t))t≥0 is bi–continuous with respect to τc.

1.2 Generators and resolvents

We now assume that (T (t))t≥0 is a bi–continuous semigroup on X, where X satisfies

Assumptions 1.1. Since the space (X, τ)′ is norming for (X, ‖ · ‖), we obtain that

the τ–Laplace transform R(λ) defined as in (1) becomes a ‖ · ‖–bounded operator

satisfying the Hille–Yosida estimates. This observation will lead us to the generator

of a bi–continuous semigroup whose resolvent coincides with R(λ).

First, we collect some elementary properties of these resolvents. We remark that

the results of Lemma 1.7, Proposition 1.9 and 1.12 have already appeared in [Alb99,

Ch. 2] in the context of implemented semigroups.

For ω ∈ R we set Λω := {λ ∈ C : Reλ > ω}.

Lemma 1.7. Let (T (t))t≥0 be a bi–continuous semigroup on X. Then the following

properties hold.

(a) Let λ ∈ C and a ≥ 0. Then Ra(λ) ∈ L(X) and

R(λ) := lim
a→∞

Ra(λ)(1.3)

for λ ∈ Λω0 exists with respect to the operator norm and satisfies the estimate

‖R(λ)‖L(X) ≤
M

Reλ− ω

for all λ ∈ Λω, ω > ω0, and some constant M ≥ 1.

(b) For every x ∈ X we have

τ– lim
ω<λ→∞

λR(λ)x = x.
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Proof. (a) Let a ≥ 0, λ ∈ C, and x ∈ X. Since (X, τ)′ is norming for (X, ‖ · ‖),
we have with Φ := {φ ∈ (X, τ)′ : ‖φ‖(X,‖·‖)′ ≤ 1} that

‖Ra(λ)x‖ = sup
φ∈Φ

| <
∫ a

0

e−λtT (t)xdt, φ > |

= sup
φ∈Φ

|
∫ a

0

e−λt < T (t)x, φ > dt|

≤M‖x‖
∫ a

0

e−(Reλ−ω)tdt

≤ M

Reλ− ω
‖x‖.

Therefore assertion (a) holds.

(b) Let x ∈ X, p ∈ Pτ , and ε > 0. There exists δε > 0 such that 0 ≤ t < δε implies

p(T (t)x− x) < ε. Thus, we have

p(λR(λ)x− x) = p

(∫ ∞

0

λe−λtT (t)xdt−
∫ ∞

0

λe−λtxdt

)
≤ p

(∫ δε

0

λe−λt(T (t)x− x)dt

)
+ p

(∫ ∞

δε

λe−λt(T (t)x− x)dt

)
=: T1 + T2 .

For the term T2 we obtain with Φ as above that

T2 ≤ sup
φ∈Φ

| <
∫ ∞

δε

λe−λt(T (t)x− x)dt, φ > |

≤ sup
φ∈Φ

∫ ∞

δε

λe−λt| < T (t)x− x, φ > |dt

≤ ‖x‖
[
M

λ

λ− ω
e(ω−λ)δε + e−λδε

]
,

which converges to zero as λ tends to infinity. For the term T1 we obtain

T1 ≤
∫ δε

0

λe−λtp(T (t)x− x)dt ≤ ε

∫ ∞

0

λe−λtdt = ε,

which concludes the proof. 2

To the operators (R(λ))λ∈Λω0
we can now associate an operator whose resolvent

coincides with (R(λ))λ∈Λω0
. To that purpose, we first give some basic results of
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pseudoresolvents which will be needed to further develop our theory (see [EN00,

Ch. III, Sec. 4.a]).

Definition 1.8. Let X be a Banach space, Λ ⊂ C, and consider operators J (λ) ∈
L(X) for each λ ∈ Λ. The family {J (λ) : λ ∈ Λ} is called a pseudoresolvent if

J (λ)− J (µ) = (µ− λ)J (λ)J (µ)(RE)

holds for all µ, λ ∈ Λ.

By the resolvent equation (RE) we obtain the following elementary properties of

pseudoresolvents (see [EN00, Ch. III, Prop. 4.6]).

Proposition 1.9. Let {J (λ) : λ ∈ Λ} be a pseudoresolvent on a Banach space X.

Then J (λ)J (µ) = J (µ)J (λ), kerJ (λ) = kerJ (µ) and rgJ (λ) = rgJ (µ) hold for

all λ, µ ∈ Λ.

Moreover, the following assertions are equivalent.

(i) There exists a closed operator (A,D(A)) such that Λ ⊂ ρ(A) and

J (λ) = R(λ,A) for all λ ∈ Λ.

(ii) kerJ (λ) = {0} for some/all λ ∈ Λ.

For the following, we recall that X satisfies Assumptions 1.1.

Definition 1.10. A subset M ⊆ X is called bi–dense if for every x ∈ X there

exists a ‖ · ‖–bounded sequence (xn)n∈N ⊆M which is τ–convergent to x.

With the above definition a particular case of Proposition 1.9 is stated in the fol-

lowing corollary.

Corollary 1.11. Let {J (λ) : λ ∈ Λ} be a pseudoresolvent on X and assume that

Λ contains an unbounded sequence (λn)n∈N. If

τ– lim
n−→∞

λnJ (λn)x = x for all x ∈ X,(1.4)

then {J (λ) : λ ∈ Λ} is a resolvent.

In particular, (1.4) holds if rgJ (λ) is bi–dense,

‖λnJ (λn)‖ ≤M(1.5)

for some constant M ≥ 0 and all n ∈ N, and the family {λnJ (λn) : n ∈ N} is

bi–equicontinuous.
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Proof. For x ∈ kerJ (λ) we have x ∈ kerJ (λn) for all n ∈ N and τ −
limn→∞ λnJ (λn)x = 0. Since τ is Hausdorff, it follows x = 0. Applying Propo-

sition 1.9 the first assertion holds. Next, estimate (1.5) and the resolvent equation

imply limn→∞ ‖(λnJ (λn)− Id)J (µ)‖ = 0 for fixed µ ∈ Λ. Therefore, we have

‖ · ‖– lim
n→∞

λnJ (λn)y = y

for all y ∈ rgJ (µ). Let x ∈ X, ε > 0, and p ∈ Pτ . Since rgJ (µ) is bi–dense, there

exists a ‖ · ‖–bounded sequence (yk)k∈N ⊆ rgJ (µ) and k0 ∈ N such that

p(yk − x) ≤ ε

3

for all k ≥ k0. The bi–equicontinuity of the family {λnJ (λn) : n ∈ N} implies that

there exists k̃0 ≥ k0 such that

p(λnJ (λn)(yk − x)) ≤ ε

3

for all k ≥ k̃0 and uniformly for n ∈ N. Thus, there exists n0 ∈ N such that

p(λnJ (λn)x− x)

≤ p(λnJ (λn)(x− yk̃0
)) + ‖λnJ (λn)yk̃0

− yk̃0
‖+ p(yk̃0

− x)

≤ ε

for all n ≥ n0. 2

Let now (T (t))t≥0 be a bi–continuous semigroup onX and ω0 its growth bound as de-

fined in (1.1). Applying the results above to the corresponding operators R(λ)λ∈Λω0

defined in (1.3), we obtain the following.

Proposition 1.12. The family of operators (R(λ))λ∈Λω0
is a resolvent.

Proof. Let λ 6= µ ∈ Λω0 . We assume without loss of generality that λ > µ and
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obtain

R(µ)x−R(λ)x

λ− µ

=

∫ ∞

0

e(µ−λ)tdt R(µ)x−
∫ ∞

0

e(µ−λ)t

(λ− µ)
e−µtT (t)x dt

=

∫ ∞

0

e(µ−λ)t

∫ ∞

0

e−µsT (s)x ds dt−
[
e(µ−λ)t

λ− µ

∫ t

0

e−µsT (s)x ds

]t=∞

t=0

−
∫ ∞

0

e(µ−λ)t

∫ t

0

e−µsT (s)x ds dt

=

∫ ∞

0

e(µ−λ)t

∫ ∞

t

e−µsT (s)x ds dt

=

∫ ∞

0

e−λt

∫ ∞

0

e−µsT (s)T (t)x ds dt

= R(λ)R(µ)x

for all x ∈ X. Therefore, (R(λ))λ∈Λω0
is a pseudoresolvent by Definition 1.8. By

Lemma 1.7(b) we obtain the injectivity of the operators R(λ). In fact, for x ∈
kerR(λ) and an unbounded sequence (λn)n∈N ⊂ Λω0 ∩ R+, we have x ∈ kerR(λn)

for all n ∈ N and τ– limn→∞ λnR(λn)x = 0. Since τ is Hausdorff, it follows x = 0.

Proposition 1.9 concludes the proof. 2

We observe that, by Proposition 1.12, the map Λω0 3 λ 7→ R(λ) ∈ L(X) is holo-

morphic and

dk

dλk
R(λ)x = (−1)kk!R(λ)k+1x(1.6)

for all x ∈ X, k ∈ N, and λ ∈ Λω0 (see [EN00, Ch. IV, Prop. 1.3]).

The above observations allow the definition of the generator of a bi–continuous

semigroup.

Definition 1.13. The generator A : D(A) ⊆ X −→ X of a bi–continuous semi-

group (T (t))t≥0 on X is the unique operator on X such that its resolvent R(λ,A)

is

R(λ,A)x =

∫ ∞

0

e−λtT (t)xdt(1.7)

for all λ ∈ Λω0 and x ∈ X.
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As a first consequence, we obtain that these generators satisfy the Hille–Yosida

estimates.

Proposition 1.14. Let (A,D(A)) be the generator of a bi–continuous semigroup

(T (t))t≥0 of type ω on X. Then we have

dk

dλk
R(λ,A)x = (−1)k

∫ ∞

0

tke−λtT (t)xdt(1.8)

for all x ∈ X, k ∈ N and λ ∈ Λω0. In particular, there exists for each ω > ω0 a

constant M ≥ 1 such that

‖R(λ,A)k‖ ≤ M

(Reλ− ω)k

for all k ∈ N and λ ∈ Λω.

Proof. Let x ∈ X, λ ∈ Λω, ω > ω0, and Φ := {φ ∈ (X, τ)′ : ‖φ‖X′ ≤ 1}. Since

the space (X, τ)′ is norming for (X, ‖ · ‖), for every µ ∈ Λω we have∥∥∥∥R(µ)x−R(λ)x

µ− λ
+

∫ ∞

0

te−λtT (t)xdt

∥∥∥∥
≤ sup

φ∈Φ

∫ ∞

0

∣∣∣∣e−µt − e−λt

µ− λ
+ te−λt

∣∣∣∣ | < T (t)x, φ > |dt

≤M‖x‖
∫ ∞

0

∣∣∣∣e−µt − e−λt

µ− λ
+ te−λt

∣∣∣∣ eωtdt,

(1.9)

which converges to zero as µ tends to λ as a consequence of Lebesgue’s dominated

convergence theorem. Via induction we obtain the desired equality. Further, (1.6)

and (1.8) imply

‖R(λ)kx‖ ≤ sup
φ∈Φ

1

(n− 1)!

∫ ∞

0

tk−1|e−λt < T (t)x, φ > |dt

≤ M

(n− 1)!
‖x‖

∫ ∞

0

tk−1e(ω−Reλ)tdt

=
M

(Reλ− ω)k
‖x‖

(1.10)

for all x ∈ X and λ ∈ Λω. 2

Proposition 1.14 says that generators of bi–continuous semigroups are Hille–Yosida

operators (see [EN00, Ch. II, Def. 3.22] and Section 1.3 below).
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Following, e.g., [Yos74, Ch. IX, Sec. 3], [Kōm68, p. 260], [DS57, Ch. VIII, Def.

1.6], [EN00, Ch. II, Def. 1.2], another way to introduce the generator (Aτ , D(Aτ ))

of a bi–continuous semigroup (T (t))t≥0 would be to define

Aτx := τ– lim
t↘0

T (t)x− x

t

for all x ∈ D(Aτ ) := {x ∈ X : τ– lim
t↘0

T (t)x− x

t
exists in X}.

(1.11)

In general, i.e., if we are not in the setting of bi–continuous semigroups, the operators

Aτ and A, defined as in Definition 1.13, do not coincide. This can be seen in the

following example.

Example 1.15. Let C(R) be the space of continuous functions endowed with the

compact-open topology τc. We consider the multiplication semigroup (Tq(t))t≥0

defined as

Tq(t)f := etqf, t ≥ 0, f ∈ C(R),

for some function q ∈ C(R). It can be easily verified that (Tq(t))t≥0 is strongly

τc–continuous, and its generator is given by

Aτcf = τc– lim
t↘0

Tq(t)f − f

t
= q · f for all f ∈ D(Aτc) = C(R).

However, if q is an unbounded function, the integral
∫∞

0
e−λtTq(t)xdt does not always

exist and the operator A cannot be defined as in Definition 1.13.

However, in the setting of bi–continuous semigroups, the operators (Aτ , D(Aτ )) and

(A,D(A)) coincide. To see this, we first look at the following fundamental properties

of the operator (Aτ , D(Aτ )) (cf. [Kōm68, Prop. 1.2, 1.4]).

Proposition 1.16. Let (T (t))t≥0 be a bi–continuous semigroup on X and

(Aτ , D(Aτ )) as above. Then the following properties hold.

(a) If x ∈ D(Aτ ), then T (t)x ∈ D(Aτ ) for all t ≥ 0, T(t)x is continuously differ-

entiable in t with respect to the topology τ , and

d

dt
T (t)x = AτT (t)x = T (t)Aτx

for all t ≥ 0.
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(b) An element x ∈ X belongs to D(Aτ ) and Aτx = y if and only if

T (t)x− x =

∫ t

0

T (s)yds(1.12)

for all t ≥ 0.

(c) The operator (Aτ , D(Aτ )) is bi–closed, i.e.,

for all sequences (xn)n∈N ⊆ D(Aτ ) with (xn)n∈N and (Aτxn)n∈N ‖ · ‖–bounded,

xn
τ−→ x ∈ X and Aτxn

τ−→ y ∈ X we have x ∈ D(Aτ ) and Aτx = y.

Proof. (a) If x ∈ D(Aτ ), then for t ≥ 0 we have

T (t)Aτx = lim
h↘0

T (t+ h)x− T (t)x

h
= lim

h↘0

(T (h)− Id)T (t)x

h
,

which shows that T (t)x ∈ D(Aτ ) and the right derivative d+

dt
T (t)x exists. Thus we

have

d+

dt
T (t)x = AτT (t)x = T (t)Aτx.

Let now φ ∈ (X, τ)′. Then

d+

dt
< T (t)x, φ >=<

d+

dt
T (t)x, φ >=< T (t)Aτx, φ >,

which implies the continuity in t of d+

dt
< T (t)x, φ >. Therefore, applying Dini’s

Lemma from [Yos74, p. 239], < T (t)x, φ > is differentiable in t and

d

dt
< T (t)x, φ >=< T (t)Aτx, φ > .

Since (T (t))t≥0 is bi–continuous, the integral
∫ t

0
T (s)Aτxds exists in X, and we

obtain

< T (t)x− x, φ > =

∫ t

0

d

ds
< T (s)x, φ > ds

=

∫ t

0

< T (s)Aτx, φ > ds

=<

∫ t

0

T (s)Aτxds, φ > .
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Hence,

T (t)x− x =

∫ t

0

T (s)Aτxds(1.13)

for all t ≥ 0, and T (t)x is differentiable in t with

d

dt
T (t)x = T (t)Aτx.

(b) Let x ∈ D(Aτ ) and Aτx = y. Then equation (1.13) yields the assertion. On the

other hand, let x ∈ X and x = T (t)x−
∫ t

0
T (s)yds for all t ≥ 0. Then

τ– lim
t↘0

T (t)x− x

t
= τ– lim

t↘0

1

t

∫ t

0

T (s)y = y,

and hence x ∈ D(Aτ ) and Aτx = y.

(c) Let (xn)n∈N ⊆ D(Aτ ) be a ‖ · ‖–bounded sequence which is τ–convergent to

x ∈ X and (Aτxn)n∈N ⊆ X be ‖ · ‖–bounded and τ–convergent to y ∈ X. Then, by

Theorem 1.17 and assertion (b), we obtain

T (t)xn − xn =

∫ t

0

T (s)Aτxnds

for all t ≥ 0. Using the local bi–equicontinuity of (T (t))t≥0, we have

T (t)x− x =

∫ t

0

T (s)yds.

Therefore, again by Theorem 1.17 and assertion (b), x ∈ D(Aτ ) and Aτx = y,

i.e., (Aτ , D(Aτ )) is bi–closed. 2

Theorem 1.17. Let (T (t))t≥0 be a bi–continuous semigroup on X with generator

(A,D(A)) and define (Aτ , D(Aτ )) as in (1.11). Then A = Aτ .

Proof. We show first that A ⊂ Aτ . For x ∈ X and λ ∈ Λω0 we have

T (h)− Id

h
R(λ,A)x =

(eλh − 1)

h

∫ ∞

0

e−λtT (t)xdt− eλh

h

∫ h

0

e−λtT (t)xdt,

which converges to λR(λ,A)x− x = AR(λ,A)x as h↘ 0. Thus A ⊂ Aτ .

On the other hand, for x ∈ D(Aτ ) we define y := (λ − Aτ )x. By Proposition 1.16

we have

Aτ

∫ ∞

0

e−λtT (t)xdt =

∫ ∞

0

e−λtT (t)Aτxdt.
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Therefore, we obtain

R(λ,A)y = (λ− Aτ )

∫ ∞

0

e−λtT (t)xdt = (λ− Aτ )R(λ,A)x = x,

and hence Aτ ⊂ A. 2

Proposition 1.18. Let (A,D(A)) be the generator of a bi–continuous semigroup

(T (t))t≥0 of type ω on X. Then the following properties hold.

(a) The generator (A,D(A)) is bi–closed.

(b) The domain of A is bi–dense (see Definition 1.10) in X.

(c) Let D ⊆ D(A) be a bi–dense subset in X. Then R(λ,A)D,λ > α > ω, is

bi–dense in D(A).

(d) The subspace X0 := D(A)
‖·‖

⊆ X is (T (t))t≥0–invariant and (T (t)|X0
)t≥0 is

the strongly continuous semigroup on X0 generated by the part 2 of A in X0.

Proof. Assertion (a) follows directly from Proposition 1.16(c) and Theorem 1.17.

(b) Let x ∈ X. By Lemma 1.7 the sequence (xn)n∈N ⊆ D(A) defined as

xn :=

nR(n,A)x if n > ω ,

0 else,

is ‖ · ‖–bounded and τ–convergent to x.

To prove (c), let x ∈ D(A), λ > α > ω, ε > 0, and p ∈ Pτ . There exists z ∈ X such

that R(λ,A)z = x. Since D is bi–dense in X, there exists a ‖ · ‖–bounded sequence

(yn)n∈N ⊆ D and n0 ∈ N such that

p(yn − z) ≤ ε

for all n ≥ n0. Further, the sequence (R(λ,A)yn)n∈N is ‖ · ‖–bounded, and, by the

bi–continuity of (T (t))t≥0, we obtain that there exists ñ0 ≥ n0 such that

p(R(λ,A)yn − x) = p(R(λ,A)(yn − z)) ≤
∫ ∞

0

e−(λ−α)tp(e−αtT (t)(yn − z))dt ≤ ε

for all n ≥ ñ0.

2The part of A in Y ↪→ X is the operator A| defined as A|y := Ay with domain
D(A|) := {D(A) ∩ Y : Ay ∈ Y }.
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Assertion (d) is a consequence of Proposition 1.14 and [EN00, Ch. II, Cor. 3.21].

2

Combining Formulas (1.6) and (1.8) we obtain the following additional properties

of the powers of the resolvent operators R(λ,A), λ ∈ Λω0 (cf. [Cer94, Prop. 3.5] in

the context of her “weakly continuous semigroups on Cub(H)”).

Proposition 1.19. Let (T (t))t≥0 be a bi–continuous semigroup of type ω on X with

generator (A,D(A)). Then the operators λkR(λ,A)k, λ > ω0, k ∈ N, have the

following properties.

(a) τ– limλ→∞ λkR(λ,A)kx = x for all x ∈ X and k ∈ N.

(b) Let (xn)n∈N ⊆ X be a ‖ · ‖–bounded sequence which is τ–convergent to x ∈ X.

Let α > ω. Then

τ– lim
n→∞

(λ− α)kR(λ,A)k(xn − x) = 0(1.14)

uniformly for k ∈ N and λ > α.

Proof. (a) Without loss of generality we suppose that (T (t))t≥0 is ‖ · ‖–bounded.

Let x ∈ X, k ∈ N, ε > 0, and p ∈ Pτ . There exists δε > 0 such that 0 ≤ t < δε

implies p(T (t)x − x) < ε
2
. Formula (1.6) and (1.8) imply that there exists λ0 > ω0

such that

p(λkR(λ,A)kx− x)

≤ p

(
λk

(k − 1)!

∫ δε

0

tk−1e−λt(T (t)x− x)dt

)
+ p

(
λk

(k − 1)!

∫ ∞

δε

tk−1e−λt(T (t)x− x)dt

)
≤ ε

2

λk

(k − 1)!

∫ δε

0

tk−1e−λtdt+ (1 +M)‖x‖ λk

(k − 1)!

∫ ∞

δε

tk−1e−λtdt

≤ ε

2
+ (1 +M)‖x‖

{
λk

(k − 1)!
δk−1
ε e−λδε + ...+ λδεe

−λδε + e−λδε

}
≤ ε

for all λ ≥ λ0 and some constant M ≥ 1.

(b) Let ε > 0, p ∈ Pτ , and α > ω. By Proposition 1.4(b) we obtain that the rescaled
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semigroup (e−αtT (t))t≥0 is globally bi–equicontinuous. Hence, by Formula (1.6) and

(1.8), there exists n0 ∈ N such that

p((λ− α)kR(λ,A)k(xn − x)) ≤ (λ− α)k

(k − 1)!

∫ ∞

0

tk−1e−(λ−α)tp(e−αtT (t)(xn − x))dt

≤ ε

for all n ≥ n0 and uniformly for k ∈ N and λ > α. 2

In the following we introduce the notion of a bi–core for a linear operator. This

terminology will be useful for the approximation theory treated in Chapter 2.

Definition 1.20. A subspace D of the domain of a linear operator A : D(A) ⊆
X −→ X is called a bi–core for A if for all x ∈ D(A) there exists a sequence

(xn)n∈N ⊆ D such that (xn)n∈N and (Axn)n∈N are ‖ · ‖–bounded, and limn→∞ xn = x

with respect to the topology induced by the family P̃τ of continuous seminorms defined

as p̃(x) := p(x) + p(Ax) for all x ∈ D(A) and p ∈ Pτ .

The following is a criterion for subspaces to be a bi–core for the generator of a

bi–continuous semigroup analogous to [EN00, Ch. II, Prop. 1.7].

Proposition 1.21. Let (A,D(A)) be the generator of a bi–continuous semigroup

(T (t))t≥0 and D be a subspace of D(A) which is invariant under the semigroup

(T (t))t≥0. If for every x ∈ X there exists a sequence (xn)n∈N ⊆ D such that (xn)n∈N

and (Axn)n∈N are ‖ · ‖–bounded and τ– limn→∞ xn = x, then D is a bi–core for A.

Proof. Let x ∈ D(A). By assumption there exists a sequence (xn)n∈N ⊆ D which

is τ–convergent to x and (xn)n∈N and (Axn)n∈N are ‖ · ‖–bounded. By Proposition

1.16(a) for each n ∈ N the map R+ 3 s 7→ T (s)xn ∈ D is continuous with respect to

the system of seminorms P̃τ occuring in Definition 1.20. It follows that
∫ t

0
T (s)xnds,

being a Riemann integral, belongs to the closure of D with respect to the topology

induced by the family of seminorms P̃τ . Similarly, the P̃τ–continuity of R+ 3 s 7→
T (s)x for x ∈ D(A) and Proposition 1.16(b) imply for p̃ ∈ P̃τ that

p̃

(
1

t

∫ t

0

T (s)xds− x

)
= p

(
1

t

∫ t

0

T (s)xds− x

)
+ p

(
1

t

∫ t

0

T (s)Axds− Ax

)
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converges to zero as t tends to zero, and

p̃

(
1

t

∫ t

0

T (s)xnds−
1

t

∫ t

0

T (s)xds

)
converges to zero as n tends to infinity for each t > 0. Therefore, for every ε > 0

there exists t > 0 and n ∈ N such that

p̃

(
1

t

∫ t

0

T (s)xnds− x

)
≤ ε,

and hence x ∈ DP̃τ
. 2

1.3 Hille-Yosida operators

In Proposition 1.14 we showed that bi–continuous semigroups on a Banach space X

are generated by Hille–Yosida operators. Such operators generate strongly continu-

ous semigroups on the closure of their domains (see Proposition 1.18(d)) and, e.g.,

from the result of R. Nagel and E. Sinestrari [NS70], we conclude that the original

space X is a closed subspace of the extrapolated Favard space F0 (see below for the

definition of F0).

First, we briefly recall the definition of a Hille–Yosida operator (see [EN00, Ch. II,

3.22]) and construct the associated Sobolev tower (see [NS70], [NNR96] for more

details).

Definition 1.22. An operator (A,D(A)) on a Banach space X is called a Hille–

Yosida operator (of type ω) if there exists ω ∈ R such that (ω,∞) ⊂ ρ(A) and

‖R(λ,A)k‖ ≤ M

(λ− ω)k

for all k ∈ N, λ > ω and some M ≥ 1.

For the following construction we assume (without loss of generality) that ω < 0.

It is well known (see [EN00, Ch. III, Cor. 3.21]) that the part A0 of A in X0 :=

D(A)
‖·‖X

is the generator of a strongly continuous semigroup (T0(t))t≥0 on X0. To

this semigroup and its generator we associate the following spaces:

(i) the domain space X1 := D(A0) with norm ‖x‖1 := ‖A0x‖ for x ∈ X0.
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(ii) the extrapolation space X−1 := (X0, ‖ · ‖−1)
∼ with ‖x‖−1 := ‖A−1

0 x‖
for x ∈ X0.

(iii) the Favard space F1 of (T0(t))t≥0 defined as

F1 := {x ∈ X0 : sup
t>0

1

t
‖T0(t)x− x‖ <∞}

with norm

‖x‖F1 := sup
t>0

1

t
‖T0(t)x− x‖ .

By continuity the semigroup (T0(t))t≥0 can be extended to a strongly continuous

semigroup (T−1(t))t≥0 on X−1 := (X0, ‖ ·‖−1)
∼ and its generator A−1 is an extension

of A with domain D(A−1) = X0. Therefore, we define

(iv) the extrapolated Favard space F0 with respect to (T−1(t))t≥0 in analogy to

(iii).

The semigroup (T−1(t))t≥0 leaves F1 and F0 invariant, but is not strongly continuous

on these Banach spaces. We collect these facts in the following diagram, and call it

the Sobolev tower associated to the Hille–Yosida operator A (see [NS70]).

Proposition 1.23. For a Hille–Yosida operator (A,D(A)) on a Banach space X

and with the above definitions one has the following situation.

X−1

T−1(t) - X−1

I@@ ���

F0
- F0

X

6

- X
?

��� I@@

X0

6

T0(t) - X0

?

I@@ ���

F1
- F1

D(A)

6

- D(A)
?

��� I@@

D(A0)

6

T1(t) - D(A0)
?
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Moreover, one has the inclusions

D(A0) ⊆ D(A) ⊆ F1 ↪→ X0 ⊆ X ⊆ F0 ↪→ X−1 .

As a consequence the space X is always sandwiched between X0 and the extrapo-

lated Favard space F0.

A certain converse of this statements also holds and follows directly from the defi-

nitions.

Corollary 1.24. Under the above assumptions let Y be a closed subspace of F0

containing X0. Then the part of A−1 in Y is a Hille–Yosida operator on Y .

Corollary 1.25. If X is reflexive, then every Hille–Yosida operator on X is already

the generator of a strongly continuous semigroup. In particular, every bi–continuous

semigroup on X is already strongly continuous for the norm topology.

Proof. By [EN00, Ch. II, Cor. 5.21] we obtain F1 = D(A0) and F0 = X0. Hence,

by Proposition 1.23, the semigroup (T−1(t)|X )t≥0 = (T0(t))t≥0 is strongly continuous.

2

In general, the spaceX need not be invariant under (T−1(t))t≥0 (see [Nee92, Example

3.1.18]) and therefore, there is no semigroup on it. However, X is (T−1(t))t≥0–

invariant if and only if D(A) is (T0(t))t≥0–invariant. For instance, this is fulfilled if

X = F0.

At this point it may be interesting to look for topologies on X for which (T−1(t)|X )t≥0

becomes continuous. In Section 3.5 we will give some answers to this problem.

1.4 Integrated semigroups

In this section we collect some results concerning integrated semigroups on Banach

spaces and their relation to strongly continuous semigroups and Hille–Yosida opera-

tors, respectively. Integrated semigroups were introduced by W. Arendt in [Are87a].

For further informations we refer to the book of W. Arendt et al. [ABHN] and the

references therein.

First, we recall the definition of the generator of an integrated semigroup.

Definition 1.26. We call an operator A on a Banach space X the generator of an

integrated semigroup if there exists a strongly continuous function F : R+ −→
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L(X) such that ω := inf{λ ∈ R :
∫∞

0
e−λtF (t)xdt exists for all x ∈ X} < ∞,

(ω,∞) ⊆ ρ(A) and

R(λ,A)x = λ

∫ ∞

0

e−λtF (t)xdt(1.15)

for all x ∈ X and λ > ω.

If instead of (1.15) the equality

R(λ,A) =

∫ ∞

0

e−λtF (t)dt, λ > ω,

holds, then (F (t))t≥0 is a strongly continuous semigroup on X(see [ABHN, Thm.

3.1.5]).

Mainly as a consequence of Widder’s Theorem A.3, a Hille–Yosida operator is always

the generator of an integrated semigroup with the following additional properties

(see [ABHN, Section 3.3]).

Proposition 1.27. Let A be a Hille–Yosida operator of type ω on X and denote

X0 = D(A)
‖·‖

. Then there exists an integrated semigroup F on X possessing the

following properties.

(a) The map R+ 3 t 7→ F (t)x ∈ X is continuously differentiable with respect to

the norm for all x ∈ D(A). The operator family (F ′(t)|X0
)t≥0 is a strongly

continuous semigroup on X0.

(b) The integrated semigroup F is given by

F (t) = lim
k→∞

(−1)(k + 1)

∫ ∞

k
t

skR(s, A)k+2ds(1.16)

for all t > 0, F (0) = 0, and ‖F (t+h)−F (t)‖ ≤M
∫ t+h

t
eωrdr for all t, h ≥ 0.

Proof. Since (A,D(A)) is a Hille–Yosida operator, we are able to apply Widder’s

Theorem A.3 to the function

(ω,∞) 3 λ 7→ R(λ,A) ∈ L(X).

Therefore, we obtain that there exists a Lipschitz continuous function F : R+ −→
L(X) satisfying F (0) = 0, ‖F (t + h) − F (t)‖ ≤ M

∫ t+h

t
eωrdr for all t, h > 0 and

some constant M ≥ 1, and

R(λ,A)x =

∫ ∞

0

λe−λtF (t)xdt(1.17)
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for all λ > ω and x ∈ X. Thus, F is an integrated semigroup with generator

(A,D(A)). Applying the approximation formula for integrated semigroups from

[HN93] (see Theorem A.5), we obtain assertion (b).

By [EN00, Ch. III, Cor. 3.21]) the part A0 of A in X0 is the generator of a strongly

continuous semigroup (T0(t))t≥0 on X0. On the other hand, applying Lemma A.4,

we obtain

F (t)x− tx =

∫ t

0

F (s)Axds(1.18)

for all x ∈ D(A). Therefore, the map R+ 3 t 7→ F (t)x ∈ X is continuously

differentiable with respect to the norm for all x ∈ D(A), and integration by parts

yields

R(λ,A)x =

∫ ∞

0

e−λtF ′(t)xdt(1.19)

for all λ > ω and x ∈ D(A). Note that F ′(t) has a bounded extension to X0 by part

(b). Thus F ′(t) coincides with T0(t) on X0. 2

1.5 A generation theorem

We are now able to state the desired relation between bi–continuous semigroups, in-

tegrated semigroups and Hille–Yosida operators in form of a generalized Hille–Yosida

theorem for bi–continuous semigroups. This theorem puts in a general framework

the Hille–Yosida type theorems due to S. Cerrai for weakly continuous semigroups

([Cer94], see Section 3.3), due to J. R. Dorroh and J. W. Neuberger for semigroups

induced by flows ([DN96], see Section 3.2), and due to O. Bratelli and D. W. Robin-

son for adjoint semigroups ([BR79, Thm. 3.1.10], see Section 3.5).

Let X satisfy Assumptions 1.1.

Theorem 1.28. Let A : D(A) ⊆ X −→ X be a linear operator and denote X0 =

D(A)
‖·‖

. Then the following assertions are equivalent.

(a) (A,D(A)) generates a bi–continuous semigroup (T (t))t≥0 (of type ω) on X.

(b) (A,D(A)) is a bi–densely defined Hille–Yosida operator of type ω, and the

family {(s − α)kR(s, A)k : k ∈ N, s > α} is bi–equicontinuous for every

α > ω.
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(c) There exists an integrated semigroup F satisfying the following conditions.

(i) F (·)x ∈ C1(R+, (X, ‖ · ‖)) for all x ∈ D(A), (F ′(t)|X0
)t≥0 exists and is a

strongly continuous semigroup on X0.

(ii) F (·)x ∈ C1(R+, (X, τ)) for all x ∈ X.

(iii) The operator family (F ′(t))t≥0 is locally bi–equicontinuous.

(iv) F ′(t), t ≥ 0, is exponentially bounded on X.

(v) For all λ > ω and x ∈ X we have

R(λ,A)x =

∫ ∞

0

e−λtF ′(t)xdt.

Proof. (b) ⇒ (c) First, we assume ω < 0.

As a consequence of Proposition 1.27 there exists an integrated semigroup F satis-

fying assertion (i).

To prove (ii) we consider, for x ∈ X and t ≥ 0, the sequence (Dm(x, t))m∈N ⊆ X

defined as

Dm(x, t) :=
F (t+ 1/m)x− F (t)x

1/m

for allm ∈ N. As a consequence of Proposition 1.27(b) this sequence is ‖·‖–bounded.

It remains to prove that it is a τ–Cauchy sequence. Let x ∈ X, ε > 0, p ∈ Pτ . By

the assumptions there exists a ‖ · ‖–bounded sequence (xn)n∈N ⊆ D(A) which is

τ–convergent to x and there exists n0 ∈ N such that

p(skR(s, A)k(x− xn)) ≤ ε

3
(1.20)

for all n ≥ n0 and uniformly for s ≥ 0 and k ∈ N. Applying estimate (1.20) and
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Proposition 1.27(b) we obtain

p

(
F (t+ 1/m)− F (t)

1/m
(x− xn)

)
= p

(
lim
k→∞

m

[
(k + 1)

∫ ∞

k
t

skR(s, A)k+2(x− xn)ds

− (k + 1)

∫ ∞

k
t+1/m

skR(s, A)k+2(x− xn)ds ])

= p

m lim
k→∞

(k + 1)

∫ k
t

k
t+1/m

skR(s, A)k+2(x− xn)ds


≤ ε

3
m lim

k→∞
(k + 1)

[
−1

s

]k
t

s=
k

t+1/m

=
ε

3
lim
k→∞

(1 +
1

k
)

=
ε

3

(1.21)

for all n ≥ n0 and uniformly for m ∈ N and t ≥ 0.

Since (i) is valid, (Dm(xn, t))m∈N is a τ–Cauchy sequence for all n ∈ N. Therefore,

there exists m0 ∈ N such that

p

(
F (t+ 1/m)x− F (t)x

1/m
− F (t+ 1/l)x− F (t)x

1/l

)
≤ p

(
F (t+ 1/m)− F (t)

1/m
(x− xn0)

)
+ p

(
F (t+ 1/m)xn0 − F (t)xn0

1/m
− F (t+ 1/l)xn0 − F (t)xn0

1/l

)
+ p

(
F (t+ 1/l)− F (t)

1/l
(x− xn0)

)
≤ ε

for all m, l ≥ m0. Since (X, τ) is sequentially complete on ‖ · ‖–bounded sets, the

map (t 7→ F (t)x) is differentiable with respect to τ for all x ∈ X.

Before proving that its derivative is continuous we show assertion (iii).

Clearly, by estimate (1.21), the operator family {F ′(t) : t ≥ 0} is globally bi–

equicontinuous.
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Next, we show the τ–continuity of F ′(·)x for all x ∈ X. To that purpose, let x ∈ X,

t0 ≥ 0, ε > 0, and p ∈ Pτ . Further, let (xn)n∈N ⊆ D(A) be a ‖ · ‖–bounded sequence

which is τ–convergent to x ∈ X. Since F ′(·)x is τ–continuous for all x ∈ D(A), we

obtain that there exists δε > 0 depending on n such that |t− t0| ≤ δε implies

p(F ′(t)xn − F ′(t0)xn) ≤ ε

3
.

Again with estimate (1.21) there exists n0 ∈ N such that |t− t0| ≤ δε implies

p(F ′(t)x− F ′(t0)x) ≤ p(F ′(t)(x− xn0)) + p(F ′(t)xn0 − F ′(t0)xn0)

+ p(F ′(t0)(xn0 − x))

≤ ε.

Therefore, assertion (ii) is shown.

Property (iv) holds by Proposition 1.27(b) and the fact that (X, τ)′ is norming for

(X, ‖ · ‖). In fact, for Φ := {φ ∈ (X, τ)′ : ‖φ‖ ≤ 1} we have

‖F ′(t)x‖ = sup
φ∈Φ

| < τ– lim
h→0+

Dh,tx, φ > |

= sup
φ∈Φ

| lim
h→0+

< Dh,tx, φ > |

≤M‖x‖ lim
h↘0

1

h

∫ t+h

t

eωsds

= Meωt‖x‖

for all x ∈ X.

To prove (v), we note first that the sequential completeness of (X, τ) on ‖·‖–bounded

sets implies that

τ −
∫ a

0

e−λtF ′(t)xdt

exists for all a ≥ 0, λ > ω, and x ∈ X.

Since (X, τ)′ is norming for (X, ‖ · ‖), we obtain as in the proof of Lemma 1.7(a)

that

τ −
∫ ∞

0

e−λtF ′(t)xdt

exists.
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It remains to prove that

R(λ,A)x =

∫ ∞

0

e−λtF ′(t)xdt(1.22)

for all x ∈ X and λ > ω. To show this, let x ∈ X, ε > 0. By assumption there

exists a ‖ · ‖–bounded sequence (xn)n∈N ⊆ D(A) and n0 ∈ N such that

p(R(λ,A)(x− xn)) ≤ ε

2

for all n ≥ n0. Since F is an integrated semigroup, we obtain by Proposition A.1

p

(
R(λ,A)x−

∫ ∞

0

e−λtF ′(t)xdt

)
≤ p(R(λ,A)(x− xn0)) + p

(∫ ∞

0

e−λtF ′(t)(xn0 − x)dt

)
≤ ε.

Therefore, assertion (v) holds.

By a rescaling argument we obtain the desired properties (i)–(v) for arbitrary ω ∈ R.

(c) ⇒ (a) We define first

T (t)x := F ′(t)x = τ– lim
h↘0

F (t+ h)x− F (t)x

h
, x ∈ X, t ≥ 0.

By assumption (c) it remains to show that the semigroup law on X holds. By (i)

the semigroup law already holds on X0. Further, let x ∈ X and t, s ≥ 0. By the

same arguments as in the proof of Proposition 1.7(b) and equality (iv) there exists

a ‖ · ‖–bounded sequence (xn)n∈N ⊆ D(A) which is τ–convergent to x such that

T (t+ s)xn = T (t)T (s)xn

for all t, s ≥ 0 and n ∈ N, and

τ– lim
n→∞

T (t+ s)xn = T (t+ s)x.

Since (T (s)xn)n∈N is ‖ · ‖–bounded and τ–convergent, we also obtain

τ– lim
n→∞

T (t)T (s)xn = T (t)T (s)x.

The topology τ is Hausdorff, therefore the limit is unique and the semigroup law

holds for (T (t))t≥0 . By the same way we obtain T (0) = Id.
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(a) ⇒ (b) If we have a bi–continuous semigroup (T (t))t≥0, assertion (b) follows

directly from Proposition 1.14, Proposition 1.18 and Proposition 1.19. 2

This characterization of the generators of bi–continuous semigroups will play an

essential role in the following chapter to establish approximation results for bi–

continuous semigroups. A concrete application of Theorem 1.28 is given in Section

3.2.





Chapter 2

Approximation of bi–continuous

semigroups

In this chapter we study the convergence of sequences of bi–continuous semigroups

(Tk(t))t≥0 on a Banach space X with two topologies (see Assumptions 1.1). To that

purpose, we need to impose stability conditions on (Tk(t))t≥0 which are the basis

for generalized Trotter–Kato theorems. Results on approximation theory on locally

convex spaces can be found, e.g., in [Yos74] for equicontinuous semigroups, [Buc68]

for semigroups on Fréchet spaces, and [Ōuc73], [AK00] for locally equicontinuous

semigroups. For the classical results on C0–semigroups we refer to [Dav80], [Gol85],

[Paz92], [EN00] and the references therein. We present first a version in which

we obtain the convergence of (Tk(t))t≥0 to a bi–continuous semigroup (T (t))t≥0 by

assuming that R(λ,Ak) is pointwise ‖·‖–convergent to the resolvent of the generator

A of (T (t))t≥0 on a ‖ · ‖–dense subset of D(A)
‖·‖

. A second approximation theorem,

more valuable for the applications, permits us to conclude that an operator A is the

generator of a bi–continuous semigroup only by assuming that a sequence (Ak)k∈N

of generators converges to it.

We then use our results to obtain a Chernoff Product Formula which, in the C0–case,

goes back to [Che68]. From this formula we then deduce the Post–Widder Inversion

Formula representing a bi–continuous semigroup in terms of the resolvents of its

generator.

A classical result of S. Lie around 1900 says that for n × n–matrices A and B the
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exponential of their sum is

et(A+B) = lim
k→∞

(
eAt/keBt/k

)k
for all t ∈ R. The extension of this formula to generators A and B of strongly con-

tinuous semigroups on Banach spaces was first considered by H. F. Trotter [Tro59],

and then, e.g., by P. R. Chernoff [Che68], [Che74]. In this thesis we obtain such a

Lie–Trotter Product Formula for bi–continuous semigroups as a consequence of the

Chernoff Product Formula.

Moreover, in combination with Section 3.3, we give an answer to a question re-

cently asked by G. Da Prato at the Trento EVEQ 2000 conference in the context of

semigroups corresponding to evolution equations for convex gradient systems (see

[DP00]).

2.1 Generalized Trotter–Kato theorems

We now investigate the relation between the convergence of bi–continuous semi-

groups, their resolvents and generators. To that purpose, we first introduce the

notion of uniformly bi–continuous semigroups which will play the role of the stabil-

ity condition essential for the subsequent approximation theory.

As in Chapter 1 we assume that the underlying space X satisfies Assumptions 1.1,

Pτ denotes a family of seminorms inducing the locally convex topology τ on X,

assuming, without loss of generality, that p(x) ≤ ‖x‖ for all x ∈ X and p ∈ Pτ .

Definition 2.1. Let (Tk(t))t≥0, k ∈ N, be bi–continuous semigroups on X. They are

called uniformly bi–continuous (of type ω) if the following conditions hold.

(i) ‖Tk(t)‖ ≤Meωt for all t ≥ 0 and k ∈ N and some constants M ≥ 1, ω ∈ R.

(ii) (Tk(t))t≥0 are locally bi–equicontinuous uniformly for k ∈ N, i.e., for every

t0 ≥ 0 and for every ‖·‖–bounded sequence (xn)n∈N ⊆ X which is τ–convergent

to x ∈ X we have that

τ– lim
n→∞

(Tk(t)(xn − x)) = 0

uniformly for 0 ≤ t ≤ t0 and k ∈ N.
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Lemma 2.2. Let (Tk(t))t≥0, k ∈ N, be uniformly bi–continuous semigroups (of type

ω) with generators Ak. Then, for every ‖ · ‖–bounded sequence (xn)n∈N ⊆ X which

is τ–convergent to x ∈ X and for every α > ω, we have

τ– lim
n→∞

e−αtTk(t)(xn − x) = 0(2.1)

uniformly for all k ∈ N and t ≥ 0, and

τ– lim
n→∞

(λ− α)lR(λ,Ak)
l(xn − x) = 0(2.2)

uniformly for l, k ∈ N and λ > α.

Proof. Assertion (2.1) is an easy consequence of Proposition 1.4(b) and Definition

2.1. To prove the second assertion, let x ∈ X, ε > 0, p ∈ Pτ , α > ω, and (xn)n∈N ⊆ X

be a ‖ · ‖–bounded sequence which is τ–convergent to x. Combining (2.1) and

Formula (1.6) from Chapter 1, we obtain, in analogy to the proof of Proposition

1.19(b), that there exists n0 ∈ N such that

p((λ− α)lR(λ,Ak)
l(xn − x)) ≤ (λ− α)l

(l − 1)!

∫ ∞

0

tl−1e−(λ−α)tp(e−αtTk(t)(xn − x))dt

≤ ε

for all n ≥ n0 and uniformly for k, l ∈ N and λ > α. Therefore, assertion (2.2)

holds. 2

We are now able to state the generalization of what in [EN00, Ch.III, Sec. 4] is

called the First Trotter–Kato Approximation Theorem.

Theorem 2.3. Let (Tk(t))t≥0, k ∈ N, and (T (t))t≥0 be uniformly bi–continuous semi-

groups (of type ω) on X with generators Ak and A, respectively, and let D be a

‖ · ‖–dense subset of D(A)
‖·‖

.

If

R(λ0, Ak)x
‖·‖−→ R(λ0, A)x

for all x ∈ D and some λ0 > α > ω as k →∞, then

Tk(t)x
τ−→ T (t)x

for all x ∈ X as k → ∞. Moreover, the convergence is uniform for t in compact

intervals of R+.
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Proof. Let t0 ≥ 0. The first step is to show that

τ– lim
k→∞

(Tk(t)− T (t))R(λ0, A)y = 0(2.3)

for all y ∈ D and uniformly for 0 ≤ t ≤ t0. The proof is similar to the one given in

[Paz92, Thm. 3.4.2]. For y ∈ D, 0 ≤ t ≤ t0 and p ∈ Pτ , we have

p((Tk(t)− T (t))R(λ0, A)y)

≤ p(Tk(t)(R(λ0, A)−R(λ0, Ak))y)

+ p(R(λ0, Ak)(Tk(t)− T (t))y) + p((R(λ0, Ak)−R(λ0, A))T (t)y)

≤ ‖Tk(t)(R(λ0, A)−R(λ0, Ak))y‖
+ p(R(λ0, Ak)(Tk(t)− T (t))y) + ‖(R(λ0, Ak)−R(λ0, A))T (t)y‖

=: ak(t) + bk(t) + ck(t).

(2.4)

Since ‖Tk(t)‖ ≤ C for all 0 ≤ t ≤ t0 and some constant C > 0, it follows that

ak(t) → 0 uniformly on [0, t0] as k → ∞. Further, the ‖ · ‖–continuity of the map

t 7→ T (t)y by Proposition 1.27 implies that the set {T (t)y : 0 ≤ t ≤ t0} ⊆ D(A) is

‖ · ‖–compact. By the ‖ · ‖–density of D in D(A)
‖·‖

, we obtain, by [Sch80, Ch. III,

Thm. 4.5], ck(t) → 0 uniformly on [0, t0] as k →∞.

It remains to prove that bk(t) → 0 uniformly on [0, t0] as k →∞. To show this, we

consider, for each t ∈ [0, t0], k ∈ N, and y ∈ D, the map

[0, t] 3 s 7→ Tk(t− s)R(λ0, Ak)T (s)R(λ0, A)y ∈ D(Ak)

which is τ–differentiable in [0, t], and its derivative is given by

[0, t] 3 s 7→ −Tk(t− s)AkR(λ0, Ak)T (s)R(λ0, A)y

+ Tk(t− s)R(λ0, Ak)T (s)AR(λ0, A)y ∈ X.

Consequently, for each t ∈ [0, t0] and y ∈ D we have

p(R(λ0, Ak)(Tk(t)− T (t))R(λ0, A)y)

≤
∫ t

0

p(Tk(t− s)[−AkR(λ0, Ak)T (s) +R(λ0, Ak)T (s)A]R(λ0, A)y)ds

=

∫ t

0

p(Tk(t− s){[Id− λ0R(λ0, Ak)]R(λ0, A)

+R(λ0, Ak)[λ0R(λ0, A)− Id]}T (s)y)ds

≤ C

∫ t0

0

‖[R(λ0, A)−R(λ0, Ak)]T (s)y‖ds,
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which converges to zero uniformly on [0, t0] as k →∞ by assumption and the same

compactness argument as above. Therefore,

R(λ0, Ak)(Tk(t)− T (t))y
τ−→ 0

for all y ∈ R(λ0, A)D uniformly on [0, t0] as k →∞.

By (2.4) and Proposition 1.18(c) we obtain

τ– lim
k→∞

(Tk(t)− T (t))R(λ0, A)y = 0

for all y ∈ D and uniformly for 0 ≤ t ≤ t0. It follows that

Tk(t)x
τ−→ T (t)x

for all x ∈ R(λ0, A)D and uniformly for 0 ≤ t ≤ t0.

Now, let x ∈ X, ε > 0 and p ∈ Pτ . Since D(A) is bi–dense in X and D is ‖ · ‖–dense

in D(A), there exists a ‖ · ‖–bounded sequence (xn)n∈N ⊆ D which is τ–convergent

to x. By the stability condition from Definition 2.1(ii) there exists n0 ∈ N such that

p((Tk(t)− T (t))(xn − x)) ≤ ε

for all n ≥ n0 and uniformly for k ∈ N and 0 ≤ t ≤ t0. Applying Proposition

1.18(c), there exists a sequence (yn)n∈N ⊆ D such that (R(λ0, A)yn)n∈N ⊆ D(A) is

‖ · ‖–bounded and τ–convergent to xn0 ∈ D. Thus, there exists ñ0 ≥ n0 such that

p((Tk(t)− T (t))(x− xn0)) + p((Tk(t)− T (t))(xn0 −R(λ0, A)yn)) ≤ 2ε

3

for all n ≥ ñ0 and uniformly for k ∈ N and 0 ≤ t ≤ t0. By (2.3) there exists k0 ∈ N
such that

p((Tk(t)− T (t))R(λ0, A)yñ0) ≤
ε

3

for all k ≥ k0 and uniformly for 0 ≤ t ≤ t0, and hence

p(Tk(t)x− T (t)x) ≤ p((Tk(t)− T (t))(x− xn0))

+ p((Tk(t)− T (t))(xn0 −R(λ0, A)yñ0))

+ p((Tk(t)− T (t))R(λ0, A)yñ0)

≤ ε

for all k ≥ k0 and uniformly for 0 ≤ t ≤ t0. 2
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Remark 2.4. 1) Let (Tk(t))t≥0, k ∈ N, and (T (t))t≥0 be uniformly bi–continuous

semigroups on X with generators Ak and A, respectively. If

Tk(t)x
τ−→ T (t)x

for all x ∈ X as k → ∞ uniformly for t in compact intervals of R+, then for

λ > α > ω, p ∈ Pτ and x ∈ X, we obtain

p(R(λ,Ak)x−R(λ,A)x) ≤
∫ ∞

0

e−λtp(Tk(t)x− T (t)x)dt,

which converges to zero as k →∞ by Lebesgue’s dominated convergence theorem.

2) Let (Tk(t))t≥0, k ∈ N, and (T (t))t≥0 be uniformly bi–continuous semigroups on X

with generators Ak and A, respectively, such that

(?) for each t0 > 0 and p ∈ Pτ there exists q ∈ Pτ such that p(Tk(t)x) ≤ q(x) for

all 0 ≤ t ≤ t0, x ∈ X and uniformly for k ∈ N.

Then we obtain as in the proof of Theorem 2.3 that the τ–convergence of R(λ0, Ak)x

to R(λ0, A)x for all x ∈ X implies that Tk(t)x
τ−→ T (t)x for all x ∈ X as k → ∞

and uniformly for t in compact intervals of R+ (cf. [Yos74, Ch. IX, Thm. 12.1],

[AK00, Thm. 15]).

It remains an open question if condition (?) is redundant.

Before proving the second approximation result we restate Proposition III. 4.4 from

[EN00] replacing the norm convergence by τ–convergence.

Lemma 2.5. Let (Tk(t))t≥0, k ∈ N, be uniformly bi–continuous semigroups (of type

ω) on X with generators (Ak, D(Ak)). If

τ– lim
k→∞

R(λ0, Ak)x

exists for all x ∈ X and some λ0 > ω, then

R(λ)x := τ– lim
k→∞

R(λ,Ak)x

exists for all x ∈ X and Reλ > ω and defines a pseudoresolvent.
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Proof. By [EN00, Ch. IV, Prop. 1.3] R(λ,Ak)x has a power series expansion

around λ0 given by

R(λ,Ak)x =
∑
j≥0

(λ− λ0)
jR(λ0, Ak)

j+1x,

where the series converges in X uniformly for k ∈ N if |λ − λ0| ≤ ε(λ0 − ω) for

each 0 < ε < 1. We now show that τ − limk→∞R(λ,Ak)x exists for all λ with

|λ − λ0| ≤ ε(λ0 − ω). Since X is sequentially complete on ‖ · ‖–bounded sets, it

is sufficient to prove that {R(λ,Ak)x}k∈N is a τ–Cauchy sequence in X. To that

purpose, let p ∈ Pτ and ε > 0. There exists h0 ∈ N such that

p

(∑
j>h0

(λ− λ0)
j(R(λ0, Ak)

j+1 −R(λ0, Al)
j+1)x

)
≤ ε

2

for all k, l ≥ h0. Further, using Lemma 2.2, {R(λ0, Ak)
jx}k∈N is a τ–Cauchy se-

quence in X for all j ∈ N, and hence there exists n0 ≥ h0 such that

p(R(λ,Ak)x−R(λ,Al)x)

= p

(∑
j≥0

(λ− λ0)
j(R(λ0, Ak)

j+1 −R(λ0, Al)
j+1)x

)

≤
h0∑

j=0

(λ− λ0)
jp(R(λ0, Ak)

j+1x−R(λ0, Al)
j+1x) +

ε

2

≤ ε

for all k, l ≥ n0.

Furthermore, the above considerations imply that the set of all λ ∈ C with Reλ > ω

such that limk→∞R(λ,Ak)x exists for all x ∈ X is open and relatively closed (cf.

[EN00, Ch. III, Prop. 4.4]). Therefore, it coincides with the set {λ ∈ C : Reλ > ω}.
Clearly, the resolvent equation (RE)1 also holds for the operators R(λ), Reλ > ω.

This concludes the proof. 2

In the following main result we extend the above considerations by giving conditions

such that the convergence of R(λ0, Ak)x to some limit implies that this limit is the

resolvent of a suitable generator. Moreover, we obtain that the convergence of a

sequence of generators to an operator already implies that it is a generator.
1see Definition 1.8
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Theorem 2.6. Let (Tk(t))t≥0, k ∈ N, be uniformly bi–continuous semigroups (of

type ω) on X with generators (Ak, D(Ak)). Consider for some λ0 > α > ω the

following assertions.

(a) There exists a bi–densely defined operator (A,D(A)) such that Akx
‖·‖−→ Ax

for all x in a bi–core2 D for A and rg(λ0 − A) is bi–dense in X.

(b) There exists an operator R ∈ L(X) such that R(λ0, Ak)x
‖·‖−→ Rx for all x in

a subset of rgR which is bi–dense in X.

(c) There exists a bi–continuous semigroup (T (t))t≥0 with generator (B,D(B))

such that

Tk(t)x
τ−→ T (t)x

for all x ∈ X and uniformly for t in compact intervals of R+.

Then, the implications

(a) =⇒ (b) =⇒ (c)

hold.

In particular, if (a) holds, then the bi–closure A
τ

of A is equal to B.

Before proving the theorem we state the following simple lemma.

Lemma 2.7. Let (C,D(C)) be a bi–continuous operator, i.e., for all sequences

(xn)n∈N ⊆ D(C) with (xn)n∈N and (Cxn)n∈N ‖ · ‖–bounded and xn
τ−→ x ∈ X

we have Cxn
τ−→ Cx. If C is bi–closed, then its domain D(C) is bi–closed.

We are now able to prove Theorem 2.6.

Proof. (a) ⇒ (b) Take y := (λ0 − A)x, x ∈ D. Then

R(λ0, Ak)y = R(λ0, Ak)[(λ0 − Ak)x− (λ0 − Ak)x+ (λ0 − A)x]

= x+R(λ0, Ak)[Akx− Ax],
(2.5)

which converges to x =: Ry as k → ∞. Moreover, rgR contains D. Since D

is a bi–core for A and D(A) is bi–dense in X, we have that D is bi–dense in X,

2see Definition 1.20
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and hence rgR is bi–dense in X. It remains to show that the operator R can be

‖·‖–continuously extended to X. To that purpose, we show that for x ∈ X the ‖·‖–
bounded sequence (R(λ0, Ak)x)k∈N is a τ–Cauchy sequence. Let x ∈ X, p ∈ Pτ , and

ε > 0. Since rg(λ0 − A) is bi–dense in X, there exists a sequence (zn)n∈N ⊆ D(A)

and n0 ∈ N such that

p(x− (λ0 − A)zn) ≤ ε

2

for all n ≥ n0. Further, since D is a bi–core for A, there exists a ‖ · ‖–bounded

sequence yn := (λ0 − A)xn, xn ∈ D,n ∈ N, and ñ0 ≥ n0 such that

p(x− yn) ≤ p(x− (λ0 − A)zn0) + p((λ0 − A)zn0 − yn) ≤ ε

for all n ≥ ñ0. By Lemma 2.2, there exists n̂ ∈ N such that

p(R(λ0, Ak)(x− yn)) ≤ ε

3
(2.6)

for all n ≥ n̂ and uniformly for k ∈ N. With equation (2.5) there exists k0 ∈ N such

that

p(R(λ0, Ak)x−R(λ0, Al)x)

≤ p(R(λ0, Ak)(x− yn0)) + ‖R(λ0, Ak)yn0 −R(λ0, Al)yn0‖
+ p(R(λ0, Al)(yn0 − x))

≤ ε

(2.7)

for all k, l ≥ k0. Thus,

τ– lim
k→∞

R(λ0, Ak)x =: Rx

exists for all x ∈ X. Since (X, τ)′ is norming for (X, ‖ · ‖), we have for

Φ := {φ ∈ (X, τ)′ : ‖φ‖(X,‖·‖)′ ≤ 1} that

‖Rx‖ = ‖τ– lim
k→∞

R(λ0, Ak)x‖ = sup
φ∈Φ

| lim
k→∞

< R(λ0, Ak)x, φ > | ≤ 1

λ0 − ω
‖x‖

for all x ∈ X, and therefore R ∈ L(X).

(b) ⇒ (c) As in (2.6) and (2.7), we obtain that τ– limk→∞R(λ0, Ak)x exists for all

x ∈ X and for some λ0 > α > ω. Without loss of generality we assume α = 0. By

Lemma 2.5 we obtain that

R(λ)x := τ– lim
k→∞

R(λ,Ak)x
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exists for all x ∈ X and λ > 0 and defines a pseudoresolvent. This pseudoresolvent

has a bi–dense range rgR(λ) = rgR in X, and

‖λR(λ)‖ ≤M

for all λ > 0 and some constant M ≥ 1. Since

R(λ)lx = τ– lim
k→∞

R(λ,Ak)
lx

for all x ∈ X and l ∈ N, we have

‖λlR(λ)l‖ ≤M

for all λ > 0 and l ∈ N. Let now (xn)n∈N ⊆ X be a ‖ · ‖–bounded sequence which

is τ–convergent to x ∈ X. Further, let p ∈ Pτ , ε > 0. By Lemma 2.2 there exists

n0 ∈ N such that

p(λlR(λ,Ak)
l(x− xn)) ≤ ε

for all n ≥ n0 and uniformly for k, l ∈ N and λ > 0, and hence

p(λlR(λ)l(x− xn)) ≤ ε

for all n ≥ n0 and uniformly for λ > 0 and l ∈ N. Applying Corollary 1.11, we obtain

the existence of a bi–densely defined operator (B,D(B)) such that R(λ) = R(λ,B)

for all λ > 0. It satisfies

‖λlR(λ,B)l‖ ≤M

for all λ > 0 and l ∈ N, and the operator family {λlR(λ,B)l : λ > 0, l ∈ N}
is bi–equicontinuous. Applying Theorem 1.28 we obtain that (B,D(B)) generates

a bi–continuous semigroup (T (t))t≥0. We can now apply Theorem 2.3 in order to

conclude that

Tk(t)x
τ−→ T (t)x

for all x ∈ X as k → ∞. Moreover, the convergence is uniform for t in compact

intervals of R+.

In the final step, we show that condition (a) implies A
τ

= B. Since R(λ0, B) = R,
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we have R(λ0, B)(λ0 − A)x = x for all x ∈ D, and hence D ⊆ D(B). We now take

x ∈ D(A). Since D is a bi–core for A, there exists a sequence (xn)n∈N ⊆ D ⊆ D(B)

such that (xn)n∈N and (Axn)n∈N are ‖·‖–bounded, xn
τ−→ x and Axn

τ−→ Ax. Since

Bxn = Axn for every n ∈ N, we obtain Bxn
τ−→ Ax. By Proposition 1.18(a) the

operator B is bi–closed. Therefore, x ∈ D(B) and Bx = Ax. Thus, we have shown

that D(A) ⊆ D(B) and Bx = Ax for all x ∈ D(A).

Moreover, (λ0−A)−1 exists and its bi–closure (λ0−A
τ
)−1 is contained in R(λ0, B).

Since R(λ0, B) is bi–continuous, we obtain that (λ0 − A
τ
)−1 is bi–continuous. Fur-

ther, the domain D((λ0 − A
τ
)−1) contains the range rg(λ0 − A) which is bi–dense

in X by assumption. Applying Lemma 2.7, this implies that D((λ0 − A
τ
)−1) = X.

Consequently, we obtain R(λ0, B) = R(λ0, A
τ
), and therefore A

τ
= B. 2

2.2 Approximation formulas

We apply our approximation results to obtain a generalization of the Chernoff Prod-

uct Formula to bi–continuous semigroups. Based on this formula we easily obtain

the Post–Widder Formula representing a bi–continuous semigroup by products of

the resolvents of its generator. Moreover, this leads to the Lie–Trotter Product For-

mula for a bi–continuous semigroup whose generator is the sum of two generators.

First, we recall Lemma III.5.1 from [EN00].

Lemma 2.8. Let S ∈ L(X). Assume that ‖Sm‖ ≤ M for all m ∈ N and some

constant M ≥ 1. Then we have

‖en(S−Id)x− Snx‖ ≤
√
n‖Sx− x‖

for all x ∈ X and n ∈ N.
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Proposition 2.9. Let V : R+ −→ L(X) satisfy the following conditions.

(i) V (0) = Id.

(ii) ‖V (t)m‖ ≤ Memωt for all t ≥ 0,m ∈ N, and some constants M ≥ 1 and

ω ∈ R.

(iii) The operator family {V (t)m : t ≥ 0} is locally bi–equicontinuous uniformly for

m ∈ N.

(iv) Ax := ‖ · ‖– lims↘0
V (s)x−x

s
exists for all x ∈ D ⊆ X, where D and (λ0 − A)D

are bi–dense subsets in X for some λ0 > α > ω.

Then the bi–closure A
τ

of A generates a bi–continuous semigroup (T (t))t≥0 which is

given by the Chernoff Product Formula, i.e.,

T (t)x = τ– lim
k→∞

[
V ( t

k
)
]k
x

for all x ∈ X and uniformly for t in compact intervals of R+.

Proof. Without loss of generality we assume ω = 0. For s > 0 we define

Ak :=
V ( s

k
)− Id
s
k

∈ L(X), k ∈ N,

and observe that Akx
‖·‖−→ Ax for all x ∈ D as k → ∞. Since the operators Ak are

bounded, the semigroups (etAk)t≥0 are uniformly continuous and satisfy

‖etAk‖ ≤ e−
tk
s

∞∑
m=0

(
tk
s

)m
m!

‖[V ( s
k
)]m‖ ≤M

for all t ≥ 0 and some M ≥ 1. Moreover, by assumption (iii), for every ‖·‖–bounded

sequence (xn)n∈N ⊆ X which is τ–convergent to x ∈ X we have for ε > 0 and p ∈ Pτ

that there exists n0 ∈ N such that

p([V ( s
k
)]m(xn − x)) ≤ ε

for all n ≥ n0 and uniformly for k,m ∈ N. Hence,

p(etAk(xn − x)) ≤ e−
tk
s

∞∑
m=0

(
tk
s

)m
m!

p([V ( s
k
)]m(xn − x)) ≤ ε
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for all n ≥ n0 and uniformly for k ∈ N and t ≥ 0. Therefore, the semigroups

(etAk)t≥0 are bi–equicontinuous uniformly for k ∈ N, and hence, according to Defini-

tion 2.1, uniformly bi–continuous. Consequently, the assumptions of Theorem 2.6(a)

are satisfied, and we obtain that the bi–closure A
τ

of A generates a bi–continuous

semigroup (T (t))t≥0 such that

etAkx
τ−→ T (t)x(2.8)

for all x ∈ X as k →∞, where the convergence is uniform for t in compact intervals

of R+. Further, by Lemma 2.8, we have

‖etAky − V ( t
k
)ky‖ ≤ tM√

k
‖Aky‖(2.9)

for all y ∈ D. This converges to zero as k →∞ uniformly for t in compact intervals

of R+.

Finally, let x ∈ X, 0 ≤ t ≤ t0, p ∈ Pτ and ε > 0. By assumption (iii) and (iv) there

exists a ‖ · ‖–bounded sequence (yn)n∈N ⊆ D which is τ–convergent to x, and there

exists n0 ∈ N such that

p(T (t)(x− yn)) + p(V ( t
k
)k(yn − x)) ≤ ε

2
(2.10)

for all n ≥ n0, uniformly for k ∈ N and 0 ≤ t ≤ t0. Combining (2.8)–(2.10) we can

conclude that there exists k0 ∈ N such that

p(T (t)x− V ( t
k
)kx) ≤ p(T (t)(x− yn0)) + p(T (t)yn0 − V ( t

k
)kyn0)

+ p(V ( t
k
)k(yn0 − x))

≤ ε

2
+ ‖etAkyn0 − V ( t

k
)kyn0‖

≤ ε

for all k ≥ k0 uniformly for 0 ≤ t ≤ t0. Therefore, (T (t))t≥0 is given by the Chernoff

Product Formula and the proof is complete. 2

Corollary 2.10. For every bi–continuous semigroup (T (t))t≥0 of type ω on X with

generator (A,D(A)) the Post–Widder Inversion Formula holds, i.e.,

T (t)x = τ– lim
k→∞

[
k
t
R(k

t
, A)
]k
x(2.11)

for all x ∈ X and uniformly for t in compact intervals of R+.



48 Approximation of bi–continuous semigroups

Proof. Let us assume without loss of generality that (T (t))t≥0 is of type ω < 0

and define

V (t) :=


Id if t = 0,

1
t
R(1

t
, A) if t ∈ (0,− 1

ω
),

0 if t ≥ − 1
ω
.

Then, the map V : R+ −→ L((X, ‖ · ‖)) possess the following properties.

(i) V (0) = Id.

(ii) ‖V (t)m‖ ≤ M
(1−tω)m ≤M for all t > 0,m ∈ N, and some constant M ≥ 1.

(iii) Let t0 ≥ 0, p ∈ Pτ , and (xn)n∈N ⊆ X be a ‖ · ‖–bounded sequence which is

τ–convergent to x ∈ X. Then, by Proposition 1.19(b), we obtain

p(V (t)m(x− xn)) = p(
[

1
t
R(1

t
, A)
]m

(x− xn)) → 0

uniformly for m ∈ N and t > 0 as n→∞.

(iv) Since the part A0 of A in D(A)
‖·‖

is the generator of (T (t))t≥0 restricted to

D(A)
‖·‖

(cf. Chapter 1, Section 1.3), we obtain that D(A0) and (λ0−A)D(A0)

are bi–dense in X. Moreover, for x ∈ D(A0) we have

‖ · ‖– lim
t↘0

V (t)x− x

t
= ‖ · ‖– lim

t↘0

1
t
R(1

t
, A)Ax = Ax.

Therefore, taking D := D(A0), we obtain that assumptions (i)–(iv) of Proposition

2.9 are fulfilled. Thus, (T (t))t≥0 is given by

T (t)x = τ– lim
k→∞

[
V ( t

k
)
]k
x = τ– lim

k→∞

[
k
t
R(k

t
, A)
]k
x

for all x ∈ X and uniformly for t in compact intervals of R+. 2

The next corollary states that under stability and consistency conditions on two

bi–continuous semigroups generated by A and B, respectively, the closure of the

sum of A and B is a generator and the perturbed semigroup can be represented by

the so–called Lie–Trotter Product Formula. For results on the classical Lie–Trotter

Product Formula for C0–semigroups we refer to [Tro59], [Gol70], [Kat78], [Che74],

[EN00], [KW00], [KW] and the references therein.
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Corollary 2.11. Let (T (t))t≥0 and (S(t))t≥0 be bi–continuous semigroups on X with

generators (A,D(A)) and (B,D(B)), respectively. Assume the following stability

conditions.

(i) ‖[T ( t
m

)S( t
m

)]m‖ ≤Meωt for all t ≥ 0, and some constants M ≥ 1, ω ∈ R.

(ii) The operator family {[T ( t
m

)S( t
m

)]m : t ≥ 0} is locally bi–equicontinuous uni-

formly for m ∈ N.

Consider the sum A+B on a subspace D ⊆ D(A0)∩D(B0), where D(A0) and D(B0)

denote the domains of the parts A0 and B0 of A and B in D(A)
‖·‖

and D(B)
‖·‖

,

respectively, and assume that D and (λ0 − A − B)D are bi–dense in X for some

λ0 > α > ω. Then the bi–closure of A + B exists and generates a bi–continuous

semigroup (U(t))t≥0 given by the Lie–Trotter Product Formula, i.e.,

U(t)x = τ– lim
k→∞

[
T ( t

k
)S( t

k
)
]k
x,(2.12)

where the limit exists for all x ∈ X and uniformly for t in compact intervals in R+.

Proof. We define V (t) := T (t)S(t) for t ≥ 0. Then

‖ · ‖– lim
t↘0

V (t)x− x

t
= Ax+Bx

for all x ∈ D. The assertion is now a consequence of Proposition 2.9. 2

Concrete examples are given in Section 3.2, 3.3.2 and 3.4 below.





Chapter 3

Applications

In this chapter we apply the general results obtained in the previous chapters to

classes of semigroups which do not fit into the classical theory of C0–semigroups.

Here, we concentrate on such examples for which, due to their importance, different

theories, including Hille–Yosida type theorems, had been developed. For instance,

we retrieve the theory of semigroups induced by flows introduced by J. R. Dorroh

and J. W. Neuberger, e.g. in [DN93], the theory of weakly continuous semigroups

introduced by S. Cerrai and F. Gozzi, e.g. in [Cer94], [CG95] to treat the Ornstein–

Uhlenbeck semigroup on Cb(H), and the theory of adjoint semigroups, as studied

systematically in [Nee92].

Our aim is to verify that these semigroups are bi–continuous. This will lead to

a unification, and therefore to a more systematic treatment of these semigroups.

Moreover, we will obtain, even in these special cases, new approximation results.

Finally, we mention the theory of π–semigroups on Cb(H), H a Hilbert space, due

to E. Priola [Pri99], which does not completely fit into our theory of bi–continuous

semigroups. However, it seems that there is no example known of a π–semigroup

which is not already a bi–continuous semigroup for some canonical topology on

Cb(H).
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3.1 A survey on locally equicontinuous

semigroups

In order to deal with phenomena in which the underlying space is not a Banach

space, L. Schwartz [Sch57] already in 1957 generalized the classical Hille–Yosida the-

orem to semigroups on complete locally convex spaces. Thereafter, many authors

studied operator semigroups on locally convex spaces and tried to develop a system-

atical theory parallel to the one in Banach spaces (e.g. [Kom64], [Kōm68], [Ōuc73],

[Yos74]). The theory divides basically into two classes of semigroups: equicontinu-

ous and locally equicontinuous semigroups, respectively, and it suffices to suppose

that the underlying vector space is sequentially complete.

Definition 3.1. Let (X, τ) be a sequentially complete locally convex space (where

Pτ is a family of seminorms inducing τ) and {T (t) : t ≥ 0} be a family of con-

tinuous linear operators on X. The family (T (t))t≥0 is called an equicontinuous

semigroup if

(i) T (0) = Id and T (t+ s) = T (t)T (s) for all s, t ≥ 0.

(ii) (T (t))t≥0 is strongly τ–continuous, i.e., R+ 3 t 7→ T (t)x ∈ X is τ–continuous

for all x ∈ X.

(iii) For each seminorm p ∈ Pτ there exists q ∈ Pτ such that

p(T (t)x) ≤ q(x)

for all t ≥ 0 and x ∈ X.

The family (T (t))t≥0 is called quasi–equicontinuous if {e−αtT (t) : t ≥ 0} is

equicontinuous for some α > 0, and it is called locally equicontinuous if instead

of (iii) the following condition is satisfied.

(iii’) For each t0 > 0 the subset {T (t) : 0 ≤ t ≤ t0} is equicontinuous.

The generator (A,D(A)) of (T (t))t≥0 is defined as

Ax := lim
t↘0

T (t)x− x

t
(3.1)

with domain D(A) := {x ∈ X : limt↘0
T (t)x−x

t
exists}.
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Starting from the results of L. Schwartz, J. Miyadera [Miy59] developed a theory for

semigroups on Fréchet spaces including a generation result for quasi–equicontinuous

semigroups. Following his approach, A. B. Buche [Buc68] added to this theory cer-

tain approximation results. Parallel, H. Komatsu [Kom64], S. Ôharu [Ôha66], R. T.

Moore [Moo71a], [Moo71b], and K. Yosida [Yos74] generalized the theory to sequen-

tially complete spaces. Finally, we mention a paper by Y. H. Choe [Cho85] in which

so–called calibrations are used for a reformulation of the Hille–Yosida theorem for

equicontinuous semigroups.

This theory depends heavily on the fact that for an equicontinuous semigroup

(T (t))t≥0 with generator A on a sequentially complete locally convex space X,

its Laplace transform defined as

τ–

∫ ∞

0

e−λtT (t)xdt

exists for all x ∈ X and λ ∈ C with Reλ > 0 and coincides with (λ− A)−1x.

On the other hand, if equicontinuity fails, this integral representation may no longer

hold. For instance, let (T (t))t≥0 be the left translation semigroup on the space C(R)

of all continuous functions on R endowed with the topology of uniform convergence

on bounded subsets. Then (T (t))t≥0 is not equicontinuous, its Laplace transform

does not exist for any λ ∈ C, and its generator given by A = d
dx

has empty resolvent

set.

To avoid these difficulties, T. Kōmura [Kōm68] introduced the “generalized resol-

vent” for such locally equicontinuous semigroups. She obtained a Hille–Yosida the-

orem for locally equicontinuous semigroups on sequentially complete locally convex

spaces by giving conditions on such a generalized resolvent (see [Kōm68, Thm.3]).

Since this type of resolvent is difficult to treat, S. Ōuchi [Ōuc73] used “asymptotic

resolvents” instead to state a simplified generation theorem of Hille–Yosida type

[Ōuc73, Thm. 2.1]. Following this approach, C. Grosu proved in [Gro86] a version

of the Trotter–Kato theorem for continuous (or, in some cases, even bounded) gen-

erators of locally equicontinuous semigroups in Fréchet–Schwartz spaces.

In a recent work with A. Albanese [AK00] we prove Trotter–Kato theorems and the

Lie–Trotter product formula for locally equicontinuous semigroups in the general

setting of sequentially complete locally convex spaces with no additional assump-

tion on the generator. Therefore, we substantially improve the results of C. Grosu

[Gro86] and add a missing piece to the theory of locally equicontinuous semigroups.
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For the perturbation theory of locally equicontinuous semigroups we refer to [Dem73]

and [Dem74] where perturbations by relatively bounded operators are treated. Fur-

ther, continuous perturbations are considered by L. Wenzel [Wen85] and an appli-

cation to the Boltzmann equation on a space of distributions and on a Lp
loc–space,

respectively, can be found in [Wen87] and [Wen89].

Although the theory of operator semigroups on locally convex spaces is well estab-

lished, it seems that there are only very few serious applications of this theory. In

addition, no systematic qualitative theory has been developed, certainly due to the

lack of an appropriate spectral theory.

However, in many concrete situation the underlying space is indeed a Banach space

(X, ‖ · ‖), but has an additional locally convex topology τ satisfying Assumptions

1.1 from Chapter 1. Moreover, the equicontinuous (resp. locally equicontinuous)

semigroups to be considered on (X, τ) are exponentially norm bounded. This leads

us to bi–continuous semigroups as treated in Chapter 1 and 2.

Proposition 3.2. Let (X, ‖ · ‖) be a Banach space, τ be a locally convex topology

on X satisfying Assumptions 1.1, and let {T (t) : t ≥ 0} ⊆ L(X) be a locally

equicontinuous semigroup on (X, τ) such that ‖T (t)‖ ≤Meωt for all t ≥ 0 and some

constants M ≥ 1, ω ∈ R. Then (T (t))t≥0 is a bi–continuous semigroup on X with

respect to τ .

The proof is a trivial consequence of Definition 1.3 and Definition 3.1. In addition,

by Lemma 1.7, the resolvent of the generator (A,D(A)) of such a semigroup is given

by

R(λ,A)x = τ–

∫ ∞

0

e−λtT (t)xdt

for all x ∈ X and Reλ > ω for some ω ∈ R, and is a norm bounded operator. In

particular, the theory developed in Chapter 1 and 2 applies.

In the following, however, we concentrate on more concrete situations occuring in

the literature.



3.2 Semigroups induced by flows 55

3.2 Semigroups induced by flows

Around 1970, J. W. Neuberger [Neu72], [Neu73] and D. L. Lovelady [Lov75] started

a theory of nonlinear, jointly continuous semigroups (flows) on a metric space Ω in

terms of their Lie generator. Following S. Lie, the main idea was to define an asso-

ciated linear semigroup, the semigroup induced by the flow, on the Banach space X

of bounded, continuous functions on Ω. This semigroup, in general, is not strongly

continuous for the supremum norm. However, there exists a locally convex topology

on X such that strong continuity holds. To treat this class of semigroups, J. W.

Neuberger proved a generation theorem and a representation formula.

20 years later, in joint work by J. R. Dorroh and J. W. Neuberger [DN93], [DN96]

a complete characterization of the Lie generator of a jointly continuous flow on a

complete, separable, metric space Ω was established, and an exponential formula

in terms of the powers of the resolvents of its Lie generator was found. The main

step towards these results was, using a result by F. D. Sentilles [Sen72], to find the

“right” locally convex topology on the space Cb(Ω) of bounded, continuous func-

tions on Ω, for which the associated linear semigroup becomes strongly continuous.

More recently, in [DN00] and [Neu00] even the adjoint of such a semigroup has been

considered on the topological dual (Cb(Ω), β)′, β defined as below.

For our purpose it is now essential to note that the space Cb(Ω) is a Banach space

for the supremum norm ‖ · ‖∞, but has an additional locally convex topology β de-

fined as the finest locally convex topology on Cb(Ω) agreeing with the compact–open

topology τc on ‖ · ‖∞–bounded sets. By a result of F. D. Sentilles [Sen72] a sequence

in Cb(Ω) converges with respect to β if and only if it is ‖·‖–bounded and convergent

with respect to τc.

Using the norm and the β–topology we show that these Dorroh–Neuberger semi-

groups fit into the theory of bi–continuous semigroups. Further, we give a short

proof of the generation result stated in [DN96] using our Theorem 1.28 and the

Post–Widder Formula given in Corollary 2.10.

As a first step, we verify that the space Cb(Ω) endowed with ‖ · ‖∞ and β satisfies

Assumptions 1.1. Clearly, the topology β is coarser than the ‖ · ‖∞–topology, is

Hausdorff, sequentially complete on ‖ · ‖∞–bounded sets, and the topological dual

(Cb(Ω), β)′ contains the point measures which implies that the space (Cb(Ω), β)′ is
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norming for (Cb(Ω), ‖ · ‖∞). Therefore, Assumptions 1.1 are fulfilled.

We now give some basic definitions taken from [DN96] and [Nag86, Ch. B.II, Sec. 3].

Definition 3.3. a) A jointly continuous flow ( or semigroup of jointly continuous

transformations) on a topological space Ω is a mapping φ : (t, x) 7→ φt(x) from

R+ × Ω −→ Ω such that

(i) φ0 = id, φtφs = φt+s for all t, s ≥ 0.

(ii) The mapping (t, x) 7→ φt(x) is jointly continuous from R+ × Ω into Ω.

b) The Lie generator of a jointly continuous flow φ is the linear operator A in

Cb(Ω) consisting of all ordered pairs (f, g) such that f, g ∈ Cb(Ω) and

g(x) = lim
t↘0

f(φt(x))− f(x)

t

for all x ∈ Ω.

c) A linear operator (A,D(A)) on Cb(Ω) is called a derivation if f, g ∈ D(A)

implies fg ∈ D(A) and A(fg) = fAg + gAf .

d) The (linear) semigroup (T (t))t≥0 on Cb(Ω) defined as

T (t)f := f ◦ φt(3.2)

for all f ∈ Cb(Ω) and t ≥ 0 is called the semigroup induced by the (jointly

continuous) flow φ.

It is clear that {T (t) : t ≥ 0} ⊆ L(Cb(Ω)) and ‖T (t)‖ ≤ 1 for all t ≥ 0.

Moreover, (T (t))t≥0 is a semigroup which, if Ω is compact, is strongly continuous on

(Cb(Ω), ‖·‖∞) (see [Nag86, Ch. B.II, Lemma 3.2]). In the general case, the following

continuity properties hold (see [DN93, Thm. 2.1, 2.2 ]).

Proposition 3.4. Let (T (t))t≥0 be the semigroup induced by the jointly continuous

flow φ on Cb(Ω). Then (T (t))t≥0 has the following properties.

(i) (T (t))t≥0 is strongly β–continuous.

(ii) (T (t))t≥0 is locally equicontinuous with respect to β in the sense of Definition

3.1.
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As an immediate consequence of Proposition 3.2 and Proposition 3.4 we obtain the

following.

Proposition 3.5. Let φ be a jointly continuous flow on Ω and (T (t))t≥0 be the

semigroup induced by φ on Cb(Ω). Then (T (t))t≥0 is a bi–continuous contraction

semigroup with respect to the topology β.

We note that, by Theorem 1.17, the generator (A,D(A)) of (T (t))t≥0 is given by

Af = β– lim
t↘0

T (t)f − f

t

for all f ∈ D(A) = {f ∈ Cb(Ω) : β– lim
t↘0

T (t)f − f

t
exists in Cb(Ω)}.

(3.3)

This generator (A,D(A)) coincides with the Lie generator of the flow φ (see [DN96,

Prop. 2.4]).

Proposition 3.6. Let φ be a jointly continuous flow and let f, g ∈ Cb(Ω). Then the

following assertions are equivalent.

(i) g(x) = limt↘0
f(φt(x))−f(x)

t
for all x ∈ Ω.

(ii) g = β– limt↘0
f◦φt−f

t
.

Proof. Since β is finer than the topology of pointwise convergence on Cb(Ω),

assertion (ii) implies (i).

(i) ⇒ (ii) Since φ is a jointly continuous flow, the semigroup (T (t))t≥0 is well defined

on Cb(Ω), and, by Proposition 3.5, bi–continuous with respect to β. Let (A,D(A))

denote its generator. Applying Proposition 1.16(b) and Theorem 1.17, we obtain

that

T (t)f − f = β–

∫ t

0

T (s)gds(3.4)

for all t ≥ 0. This implies (ii). 2

We can now apply Theorem 1.28 to obtain a generation theorem for bi–continuous

contraction semigroups induced by jointly continuous flows. Moreover, by Proposi-

tion 3.6, this yields a characterization of the Lie generator of a jointly continuous

flow thereby reproving the results in [DN96, Thm. 3.1, 3.2].
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Theorem 3.7. Let A : D(A) ⊆ Cb(Ω) −→ Cb(Ω) be a linear operator. Then the

following assertions are equivalent.

(a) The operator A is the Lie generator of a jointly continuous flow φ on Ω.

(b) (A,D(A)) is a derivation and generates a bi–continuous contraction semigroup

(T (t))t≥0 on Cb(Ω) with respect to β which is induced by a jointly continuous

flow φ.

(c) (A,D(A)) is a bi–densely defined Hille–Yosida operator of type 0 and a deriva-

tion, and the family {(s − α)kRk(s, A) : k ∈ N, s ≥ α} is bi–equicontinuous

for every α > 0.

Furthermore, if A is the Lie generator of a jointly continuous flow φ, then

f ◦ φt = β– lim
k→∞

[
k
t
R(k

t
, A)
]k
f(3.5)

for all f ∈ Cb(Ω) and uniformly for t in compact intervals of R+.

Proof. (a) ⇒ (b) It is easy to see that the Lie generator of a jointly continuous

flow φ on Ω is a derivation. Defining T (t)f := f ◦φt for all f ∈ Cb(Ω) and t ≥ 0, we

obtain, by Proposition 3.5, that (T (t))t≥0 is a bi–continuous contraction semigroup

on Cb(Ω) with respect to β. Let (B,D(B)) denote its generator. Combining (3.3)

and Proposition 3.6, we have A = B. Therefore, (b) holds.

(b) ⇒ (c) If (b) holds, Theorem 1.28 leads to assertion (c).

(c) ⇒ (a) By Theorem 1.28 we obtain that there exists a bi–continuous semigroup

(T (t))t≥0 on Cb(Ω) with respect to β. We show that each operator T (t) is a multi-

plicative homomorphism, i.e., we have

T (t)(fg) = T (t)f · T (t)g(3.6)

for all t > 0 and f, g ∈ Cb(Ω). Indeed, for f, g ∈ D(A) we define a function

η : [0, t] −→ Cb(Ω) by

η(s) := T (t− s)[T (s)f · T (s)g],

which is differentiable with respect to β by Proposition 1.16. Then η(0) = T (t)(f ·g)
and η(t) = T (t)f · T (t)g. Since A is a derivation, we have η′(s) = 0 for s ∈ [0, t].

Hence, η(0) = η(t) and T (t)(fg) = T (t)f · T (t)g. The bi–density of D(A) yields
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equation (3.6) for all f, g ∈ Cb(Ω).

Since (T (t))t≥0 consists of multiplicative homomorphisms, there exists, by [DN93,

Prop. 1.6], for each x ∈ Ω a unique y ∈ Ω such that T (t)f(x) = f(y) for all

f ∈ Cb(Ω). Thus, (T (t))t≥0 is a contraction semigroup, and, for every t ≥ 0, we can

define a flow φ from Ω into Ω as

f(φt(x)) := T (t)f(x)

for all f ∈ Cb(Ω), x ∈ Ω. This flow is jointly continuous from R+ × Ω → Ω by The-

orem 3.3 stated in [DN93]. Further, by Theorem 1.17, the generator of (T (t))t≥0 is

given by

Af = β– lim
t↘0

f ◦ φt − f

t
,

and, by Proposition 3.6, this is equivalent to the fact that A is the Lie generator of

the flow φ. This concludes the proof of the equivalent assertions.

Finally, if A is the Lie generator of a jointly continuous flow φ, then implication

(a) ⇒ (b) and the Post–Widder Formula in Corollary 2.10 imply the approximation

of the semigroup (T (t))t≥0 by the powers of the resolvents of A as stated in (3.5).

2

Using the Lie–Trotter Product Formula stated in Proposition 2.11, we obtain the

following product formula for two semigroups induced by flows.

Proposition 3.8. Let (T (t))t≥0 and (S(t))t≥0 be bi–continuous semigroups on Cb(Ω)

which are induced by jointly continuous flows φ and ψ, and generated by (A,D(A))

and (B,D(B)), respectively. Suppose that for every t0 > 0 and compact subset

K ⊆ Ω there exists a compact subset K̃ ⊆ Ω such that[
ψt/mφt/m

]m
K ⊆ K̃(3.7)

for all t ∈ [0, t0] and m ∈ N. If there exists a subset D ⊆ D(A0) ∩ D(B0), where

D(A0) and D(B0) denote the domains of the parts A0 and B0 of A and B in D(A)
‖·‖

and D(B)
‖·‖

, respectively, such that D and (λ0 − A − B)D are bi–dense in Cb(Ω),

then the bi–closure of A+B generates a bi–continuous semigroup (U(t))t≥0 on Cb(Ω)

which is induced by a jointly continuous flow ξ such that

U(t)f = f ◦ ξt = β– lim
m→∞

f ◦ [ψt/mφt/m]m

for all f ∈ Cb(Ω) and uniformly for t in compact intervals of R+.
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Proof. First, we recall that, by [Sen72], the β–convergence of a ‖ · ‖–bounded

sequence in Cb(Ω) is equivalent to its τc–convergence. Clearly, the semigroups

(T (t))t≥0 and (S(t))t≥0 consist of contractions, hence

‖[T ( t
m

)S( t
m

)]m‖ ≤ 1(3.8)

for all t ≥ 0 and m ∈ N.

Next, we show that the operator family {[T ( t
m

)S( t
m

)]m : t ≥ 0} is locally bi–

equicontinuous uniformly for m ∈ N. Let t0 ≥ 0 and (fn)n∈N ⊆ Cb(Ω) be a ‖ · ‖∞–

bounded sequence which is β–convergent to f ∈ Cb(Ω). Therefore, (fn)n∈N is τc–

convergent to f . Hence, for each compact subset K ⊂ Ω there exists a compact

subset K̃ ⊂ Ω such that

sup
x∈K

|[T ( t
m

)S( t
m

)]m(fn(x)− f(x))| = sup
x∈K

|fn([ψt/mφt/m]m(x))− f([ψt/mφt/m]m(x))|

≤ sup
x∈K̃

|fn(x)− f(x)|,

which converges to zero uniformly for t ∈ [0, t0] and m ∈ N as n → ∞. With

estimate (3.8) this implies that {[T ( t
m

)S( t
m

)]m : t ≥ 0} is locally bi–equicontinuous

uniformly for m ∈ N.

Thus, we are able to apply Corollary 2.11 and obtain a bi–continuous semigroup

(U(t))t≥0 on (Cb(Ω), β) generated by the bi–closure of A + B such that the Lie–

Trotter Product Formula holds. Furthermore, using the same arguments as in the

proof of Theorem 3.7, we obtain the existence of a jointly continuous flow ξ on Ω

such that U(t)f = f ◦ ξt for all f ∈ Cb(Ω). 2

Example 3.9. To illustrate the above proposition, we consider on Cb(R) the oper-

ators (A,D(A)) and (B,D(B)) defined as

Af(x) := x2/3f ′(x)

for all x ∈ R and f ∈ D(A) := {f ∈ Cb(R) : Af ∈ Cb(R)}, and

Bf(x) := xf ′(x)

for all x ∈ R and f ∈ D(B) := {f ∈ Cb(R) : Bf ∈ Cb(R)}. Then, the operator

(A,D(A)) generates the semigroup (T (t))t≥0 given by

T (t)f(x) = f((x1/3 + t/3)3) =: (f ◦ φt)(x)
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for all x ∈ R, f ∈ Cb(R) and t ≥ 0, which is bi–continuous with respect to β and is

induced by the jointly continuous flow φ with φt(x) = (x1/3 + t/3)3.

The operator (B,D(B)) generates the semigroup (S(t)t≥0 given by

S(t)f(x) = f(etx) =: (f ◦ ψt)(x)

for all x ∈ R, f ∈ Cb(R) and t ≥ 0, which is bi–continuous with respect to β and

induced by the jointly continuous flow ψ with ψt(x) = etx.

By induction we obtain

[ψt/mφt/m]m(x) =

[
e

t
3x

1
3 +

t

3m

m∑
k=1

e
kt
3m

]3

(3.9)

for all x ∈ R, t ≥ 0 and m ∈ N. Since t
3m

∑m
k=1 e

kt
3m ≤ t

3
e

t
3 for all m ∈ N and

t ≥ 0, the products [ψt/mφt/m]m map a fixed compact subset K ⊆ R into some

fixed compact subset K̃ of R. Moreover, the Schwartz space S(R) is contained in

C1
0(R), the space of continuously differentiable functions vanishing at infinity, and

therefore S(R) ⊆ D(A0) ∩D(B0). Furthermore, by solving an ordinary differential

equation, there exists λ0 > 0 such that (λ0−A−B)S(R) is bi–dense in Cb(R). Thus,

the assumptions of Proposition 3.8 are fulfilled, and we obtain that the bi–closure

of A + B generates a semigroup (U(t))t≥0 on Cb(Ω) which is induced by a jointly

continuous flow ξ such that

U(t)f = f ◦ ξt = β– lim
m→∞

f ◦ [ψt/mφt/m]m

for all f ∈ Cb(Ω) and uniformly for t in compact intervals of R+.

Moreover, in this case the flow ξ is given explicitly by

ξt(x) = et
(
x1/3 + 1− e−t/3

)3
for all t ≥ 0 and x ∈ R. In fact, using formula (3.9), we obtain

t

3m

m∑
k=1

e
kt
3m =

t
(
e

t(m+1)
3m − e

t
3m

)
3m
(
e

t
3m − 1

)
for all t ≥ 0 and m ∈ N, which converges to e

t
3 − 1 as m → ∞ for all t ≥ 0.

Therefore,

lim
m→∞

[ψt/mφt/m]m(x) = et(x1/3 + 1− e−t/3)3

for all t ≥ 0 and x ∈ R.
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3.3 The Ornstein–Uhlenbeck semigroup

In this section we start from the stochastic equation dX(t) = AX(t)dt+ dW (t),

X(0) = x,
(3.10)

where A is the generator of a strongly continuous semigroup (S(t))t≥0 on a separable

Hilbert space H, W is an H–valued Q–Wiener process for a self–adjoint, positive,

bounded linear operator Q on H, and x ∈ H.

We now look at the Ornstein–Uhlenbeck semigroup (or transition semigroup) cor-

responding to equation (3.10) which is given by

P (t)f(x) = E(f(X(t, x)))

for all f ∈ Cb(H), x ∈ H and t ≥ 0, and has been studied by many authors, e.g.,

[DPZ92],[CDP93], [Cer94], [CG95], [DPL95], [Pri99], [TZ].

Our aim is to show that the Ornstein–Uhlenbeck semigroup on Cb(H) is bi–con-

tinuous with respect to the compact–open topology. Further, we apply Corollary

2.11 and obtain that the Ornstein–Uhlenbeck semigroup on Cb(Rn) is given by the

Lie–Trotter Product Formula with respect to a locally convex topology finer than

the compact–open topology.

3.3.1 The Ornstein–Uhlenbeck semigroup on Cb(H)

Let A be the generator of a strongly continuous semigroup (S(t))t≥0 on a separa-

ble Hilbert space H, Q be a self–adjoint, positive, bounded linear operator on H.

Further, let Q(t), t ≥ 0, be the so–called covariance operator defined by

Q(t)x :=

∫ t

0

S(r)QS(r)′xdr

for all x ∈ H and t ≥ 0, where (S(t)′)t≥0 is the adjoint semigroup of (S(t))t≥0 .

Suppose that each Q(t) is of trace class1 operator. Then the Gaussian measures

N (S(t)x,Q(t)) with mean S(t)x and covariance Q(t) exist for all t ≥ 0 and x ∈ H

1A bounded linear operator Q on a separable Hilbert space H is called trace class
if tr|Q| :=

∑
n≥1〈φn, |A|φn〉 < ∞, where {φn : n ≥ 1} is an orthonormal basis for H (cf. [RS72,

p. 207]).
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(see [DPZ92, Ch. I, Sec. 2.3.2]). The Ornstein–Uhlenbeck semigroup on Cb(H), the

space of bounded and continuous functions on H, is defined as

P (t)f(x) := E(f(X(t, x))) =

∫
H

f(y)N (S(t)x,Q(t))dy

for all f ∈ Cb(H), x ∈ H and t ≥ 0.

In general, (P (t))t≥0 is not strongly continuous on Cb(H) with respect to the supre-

mum norm (see [Cer94], [DPL95]). However, using the results stated in [Cer94],

it turns out that this semigroup is bi–continuous on Cb(H) with respect to the

compact–open topology.

Proposition 3.10. Under the above assumptions, the Ornstein–Uhlenbeck semi-

group (P (t))t≥0 is a bi–continuous contraction semigroup with respect to the compact–

open topology τc on Cb(H).

Proof. It is easy to see that Cb(H) endowed with the supremum norm ‖·‖ and the

compact–open topology τc satisfies Assumptions 1.1. Clearly, (P (t))t≥0 consists of

bounded linear operators on Cb(H) and ‖P (t)‖ ≤ 1 for all t ≥ 0. By the same way

as in [Cer94, Proposition 6.2] we show now the strong τc–continuity of (P (t))t≥0.

Let f ∈ Cb(H), K ⊆ H compact, and ε > 0. Since f is uniformly continuous on K

and (S(t))t≥0 strongly continuous on H, there exists δ(K) > 0 and t0 ≥ 0 such that

sup
x∈K

|f(y + S(t)x)− f(y)| ≤ ε

2

for all ‖y‖ ≤ δ(K) and t ≤ t0. Thus, there exists t̃ ≤ t0 such that

sup
x∈K

|P (t)f(x)− f(x)| ≤ sup
x∈K

|
∫
‖y‖≤δ(K)

|f(y + S(t)x)− f(y)|N (0, Q(t))dy

+ 2‖f‖∞
∫
‖y‖>δ(K)

N (0, Q(t))dy

≤ ε

2
+

2‖f‖∞
δ(K)2

Tr Q(t)

≤ ε

for all t ≤ t̃.

It remains to show that (P (t))t≥0 is locally bi–equicontinuous. Let K ⊆ H be a

compact set, t0 ≥ 0, ε > 0, and (fn)n∈N ⊆ Cb(H) be a ‖ · ‖–bounded sequence which

is τc–convergent to f ∈ Cb(H). The tightness of the family of probability measures

{N (S(t)x,Q(t)) : 0 ≤ t ≤ t0, x ∈ K}
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proved, e.g., in [Cer94, Lemma 6.3] implies that there exists a compact subset K̃ ⊆ H

such that

1−N (S(t)x,Q(t))(K̃) ≤ ε

for all 0 ≤ t ≤ t0 and x ∈ K. Therefore, there exists n0 ∈ N such that

sup
x∈K

|P (t)(fn(x)− f(x))| ≤ sup
x∈K

∫
K̃

|fn(y)− f(y)|N (S(t)x,Q(t))dy

+ sup
x∈K

∫
{K̃

|fn(y)− f(y)|N (S(t)x,Q(t))dy

≤ ε+ (‖fn‖∞ + ‖f‖∞)ε

for all n ≥ n0 and uniformly for 0 ≤ t ≤ t0. This concludes the proof. 2

3.3.2 The Lie–Trotter Product Formula for the Ornstein–

Uhlenbeck semigroup on Cb(Rn)

In this subsection we show that the Lie–Trotter Product Formula given in Corollary

2.11 can be applied to the Ornstein–Uhlenbeck semigroup on Cb(Rn). This is joint

work with A. Albanese [AK00].

Let A := (aij) be a symmetric, positive definite matrix, and B := (bij) ∈ L(Rn). In

this case, the generator of the Ornstein–Uhlenbeck semigroup can be written as

Of(x) :=
n∑

i,j=1

aijDijf(x) +
n∑

i,j=1

bijxjDif(x)

=: 〈∇, A∇f(x)〉+ 〈Bx,∇f(x)〉
=: Af(x) + Bf(x)

(3.11)

for all f ∈ S(Rn), x ∈ Rn, ∇ := ( ∂
∂x1
, . . . , ∂

∂xn
) (cf. [DPL95]). The Ornstein–

Uhlenbeck semigroup (P(t))t≥0 generated by O has the following representation

(see [DPL95]):

(P(t)f)(x) =

 1
(2π)n/2(det Qt)1/2

∫
Rn e

− 〈Q−1
t y,y〉

2 f(etBx− y)dy, if t > 0,

f(x), if t = 0,
(3.12)
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for all f ∈ Cb(Rn) and x ∈ Rn, where Qt :=
∫ t

0
esBAesB′

ds.

From (3.11) we see that the generator O is the sum of two simpler generators A
and B. However, since (P(t))t≥0 is not strongly continuous on (Cb(Rn), ‖ · ‖∞)),

Lie–Trotter’s Product Formula in its classical formulation does not apply. It is our

aim to show that (P(t))t≥0 still can be obtained via a Lie–Trotter Product Formula

from the semigroups generated by A and B.

As a first step, we show that Cb(Rn) can be endowed with a suitable locally convex

Hausdorff topology τ finer than the compact–open topology such that (Cb(Rn), τ)

becomes sequentially complete on ‖ · ‖∞–bounded sets. Then, this space satisfies

Assumptions 1.1, and (P(t))t≥0 is bi–continuous on it.

To show this, we construct the appropriate topology τ by taking a family Pτ of

seminorms on Cb(Rn) generating a locally convex topology τ on Cb(Rn) such that

the inclusion maps

(Cb(Rn), ‖ · ‖∞) ↪→ (Cb(Rn), τ) ↪→ (Cb(Rn), τc)

are continuous, where τc denotes the compact–open topology on Cb(Rn). (This

construction of Pτ is similar to the one given in [Gig93, Sec. 2].) Denote by C0(Rn)

the space of continuous functions vanishing at infinity and let

Γ := {γ ∈ C0(Rn) : γ > 0, lim
‖x‖→∞

‖x‖2γ(x) exists in R}.

Clearly, Γ is nonempty. Indeed, each function defined as

γ(x) :=

l if ‖x‖ ≤ r,

lr2

‖x‖2 if ‖x‖ > r,
(3.13)

with l, r > 0 arbitrary, belongs to Γ. Moreover, if (Dm)m∈N is an exhaustion of

Rn (i.e., Dm is compact, Dm ⊂ Dm+1 for all m ∈ N, and
⋃∞

m=0Dm = Rn), and

(γm)m∈N ⊆ C0(Rn) such that

0 ≤ γm ≤ 1 on Rn, γm = 1 on Dm−1 and γm = 0 on Rn \Dm

for all m ∈ N, then each function defined as

γ0(x) :=
∞∑

m=1

1

2lm
γm(x)(3.14)
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for x ∈ Rn belongs to Γ too, where (lm)m∈N is an increasing sequence of integers

such that lm ≥ max{m, d(0, Dm)} and lm ∈ N for all m ∈ N.

Furthermore, we have the following property.

(i) Let A be a non–zero, real matrix and γ ∈ Γ. For each s > 0 the function γ̃s

defined as

γ̃s(x) := sup
0≤t≤s

γ(e−t‖A‖x), x ∈ Rn,

belongs to Γ and satisfies γ ≤ γ̃s.

We now consider the family of seminorms Pτ := {pγ : γ ∈ Γ} on Cb(Rn) defined as

pγ(f) := sup
x∈Rn

γ(x)|f(x)| for all f ∈ Cb(Rn).

Clearly, Pτ generates a locally convex topology τ coarser than the topology of uni-

form convergence on Rn. Since for each γ ∈ Γ there exists M := supx∈Rn γ(x) > 0

such that

pγ(f) = sup
x∈Rn

γ(x)|f(x)| ≤M‖f‖∞

for all f ∈ Cb(Rn), the inclusion map (Cb(Rn), ‖ · ‖∞) ↪→ (Cb(Rn), τ) is continuous.

Also the inclusion map (Cb(Rn), τ) ↪→ (Cb(Rn), τc) is continuous. Indeed, for each

m ∈ N there exists γ ∈ Γ, where γ is given as in (3.13) with l = 1 and r = m, such

that

sup
‖x‖≤m

|f(x)| ≤ sup
x∈Rn

γ(x)|f(x)| = pγ(f)

for all f ∈ Cb(Rn).

Moreover, by repeating the proof in [Gig93, Prop. 2.3, 2.4] with minor changes and

using functions γ defined as in (3.14), we obtain the following.

(ii) The space C0(Rn) is bi–dense in (Cb(Rn), τ).

(iii) The space (Cb(Rn), τ) is sequentially complete on ‖ · ‖∞–bounded sets.

Hence Cb(Rn) satisfies Assumptions 1.1.

We now show that the closure of (A,S(Rn)) and (B,S(Rn)) from (3.11) are gener-

ators of bi–continuous semigroups on Cb(Rn) with respect to τ .
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Proposition 3.11. The semigroup (S(t))t≥0 given by

(S(t)f)(x) = f(etBx) for t ≥ 0, f ∈ Cb(Rn), x ∈ Rn(3.15)

is bi–continuous on Cb(Rn) with respect to τ and its generator coincides with the

bi–closure of the operator

Bf(x) :=
n∑

i,j=1

bijxjDif(x) = 〈Bx,∇f(x)〉

defined for every f ∈ S(Rn).

Proof. It is easy to see that S(t) ∈ L(Cb(Rn)) and ‖S(t)‖ ≤ 1 for all t ≥ 0.

Further, for each compact subset K ⊂ Rn we have

lim
t↘0

sup
x∈K

‖etBx− x‖ = 0.(3.16)

Let f ∈ Cb(Rn), M := supx∈Rn |f(x)|, γ ∈ Γ and ε > 0. There exists r > 0 such

that 0 < γ(x) < ε
4M

for all x ∈ Rn with ‖x‖ > r. Thus,

sup
‖x‖>r

γ(x)|f(etBx)− f(x)| ≤ ε

4M
sup
‖x‖>r

|f(etBx)− f(x)| ≤ ε

4M
2M =

ε

2(3.17)

for all t ≥ 0. Now, let K := {x ∈ Rn : ‖x‖ ≤ r} and 0 < d := maxx∈K γ(x) < ∞.

Then, by (3.16), there exists δ > 0 such that

sup
‖x‖≤r

|f(etBx)− f(x)| < ε

2d

for all t ∈]0, δ[, and hence

sup
‖x‖≤r

γ(x)|f(etBx)− f(x)| ≤ d sup
‖x‖≤r

|f(etBx)− f(x)| < d
ε

2d
=
ε

2(3.18)

for all t ∈]0, δ[.

Combining (3.17) and (3.18), we obtain

τ– lim
t↘0

S(t)f = f(3.19)

for all f ∈ Cb(Rn).

Next, we show the local equicontinuity of (S(t))t≥0. Let s > 0 and γ ∈ Γ and take

γ̃s(y) := sup0≤t≤s γ(e
−tBy), y ∈ Rn, so that γ̃ ∈ Γ by (i).
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Then we have

pγ(S(t)f) = sup
x∈Rn

γ(x)|f(etBx)| ≤ sup
y∈Rn

γ̃s(y)|f(y)| = pγ̃s(f)(3.20)

for all f ∈ Cb(Rn) and 0 ≤ t ≤ s. Combining (3.19), (3.20) and Proposition 3.2, we

obtain that (S(t))t≥0 is bi–continuous.

Let (B̃, D(B̃)) be the generator of (S(t))t≥0. For f ∈ S(Rn) we consider g :=

f − Bf ∈ S(Rn). Then, using Lemma 1.7 and integration by parts, we obtain

R(1, B̃)g(x) =

∫ ∞

0

e−tf(etBx)dt−
∫ ∞

0

e−t〈BetBx,∇f(etBx)〉dt

= f(x).

Therefore, S(Rn) ⊂ D(B̃). On the other hand, S(Rn) is invariant under (S(t))t≥0

and bi–dense in (Cb(Rn), τ). So, it is a bi–core by Proposition 1.21. This completes

the proof. 2

Proposition 3.12. The semigroup (T (t))t≥0 given by

(T (t)f)(x) =


((2πt)n/2(detA)1/2)−1

·
∫

Rn exp
(
− 1

2t
〈A−1(x− y), (x− y)〉

)
f(y)dy if t > 0,

f(x) if t = 0

for all t ≥ 0, f ∈ Cb(Rn) and x ∈ Rn is bi–continuous on Cb(Rn) with respect to τ

and its generator coincides with the bi–closure of the operator

Af(x) :=
1

2

n∑
i,j=1

aijDijf(x) = 〈∇, A∇f(x)〉

defined for every f ∈ S(Rn).

Proof. Clearly, T (t) ∈ L(Cb(Rn)) and ‖T (t)‖ ≤ 1 for all t ≥ 0. We now prove

the local equicontinuity of (T (t))t≥0 with respect to τ . Let γ ∈ Γ, f ∈ Cb(Rn), and

x ∈ Rn.
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Then

γ(x)|T (t)f(x)|

≤ γ(x)

(2πt)n/2(detA)1/2

∫
Rn

exp

(
− 1

2t
< 〈A−1(x− y), (x− y)〉

)
· (1 + ‖y‖2)

|f(y)|
1 + ‖y‖2

dy

≤ γ(x)

(2πt)n/2(detA)1/2

∫
Rn

exp

(
− 1

2t
〈A−1(x− y), (x− y)〉

)
(1 + ‖y‖2)dy

· sup
z∈Rn

|f(z)|
1 + ‖z‖2

≤ γ(x)(1 + ‖x‖2 + nt‖A‖2) sup
z∈Rn

|f(z)|
1 + ‖z‖2

≤M(1 + t) sup
z∈Rn

|f(z)|
1 + ‖z‖2

,

where M := 2 max{Mγ, n‖A‖2} with Mγ := supx∈Rn(1 + ‖x‖2)γ(x) <∞.

Put γ̃(z) := M
1+‖z‖2 , z ∈ Rn, so that γ̃ ∈ Γ. It follows that

pγ(T (t)f) ≤ (1 + t)pγ̃(f)(3.21)

for all f ∈ Cb(Rn). Therefore, (T (t))t≥0 is locally equicontinuous on (Cb(Rn), τ).

Since (T (t))t≥0 is strongly continuous on (C0(Rn), ‖ · ‖∞) (see [CDP93]), we have

τ– lim
t↘0

T (t)f = f

for all f ∈ C0(Rn), since τ is coarser than ‖ · ‖∞. Now, let f ∈ Cb(Rn), γ ∈ Γ, and

ε > 0. Since C0(Rn) is dense in (Cb(Rn), τ), there exists f0 ∈ C0(Rn) such that

pγ̃(f − f0) <
ε

4
,

where γ̃ ∈ Γ is taken as in the above inequality (3.21). Moreover, there exists

0 < δε < 1 such that

pγ(T (t)f0 − f0) <
ε

4
for all 0 < t < δε. Therefore,

pγ(T (t)f − f) ≤ pγ(T (t)(f − f0)) + pγ(T (t)f0 − f0) + pγ(f0 − f)

≤ (1 + t)pγ̃(f − f0) +
ε

4
+ pγ̃(f0 − f)

< ε

for all 0 < t < δε.
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Hence,

τ– lim
t↘0

T (t)f = f

for all f ∈ Cb(Rn). By Proposition 3.2 we obtain that (T (t))t≥0 is bi–continuous.

Let (Ã, D(Ã)) be the generator of (T (t))t≥0. Note that (T (t))t≥0 is strongly contin-

uous on C0(Rn) with the ‖ ·‖–closure of (A,S(Rn)) as its generator. Further, S(Rn)

is invariant under (T (t))t≥0, and hence S(Rn) ⊂ D(Ã). On the other hand, S(Rn)

is bi–dense in (Cb(Rn), τ). So, it is a bi–core by Proposition 1.21. This completes

the proof. 2

With the previous propositions we are now able to approximate (P(t))t≥0 by the

Lie–Trotter products of (T (t))t≥0 and (S(t))t≥0.

Theorem 3.13. Let (T (t))t≥0 and (S(t))t≥0 be the bi–continuous semigroups on

Cb(Rn) given in Proposition 3.11 and 3.12 and generated by (A, D(A)) and (B, D(B)),

respectively. Then the Ornstein–Uhlenbeck semigroup on Cb(Rn) given by (3.12) is

bi–continuous with respect to τ , generated by the bi–closure of A+B, and represented

by the Lie–Trotter product formula, i.e.,

P(t)f = τ– lim
n→∞

[
T ( t

n
)S( t

n
)
]n
f

for all f ∈ Cb(Rn) and uniformly for t in compact intervals of R+.

Proof. Clearly, ‖[T (t)S(t)]m‖ ≤ 1 for all t ≥ 0,m ∈ N. Let m ∈ N, t ≥ 0,

f ∈ Cb(Rn), and x ∈ Rn. Then

[T (t)S(t)]m f(x) =

1

(2πt)nm/2(detA)m/2

∫
Rn

exp

(
− 1

2t
〈A−1(x− y1), (x− y1)〉

)
dy1

m−1∏
i=2

∫
Rn

exp

(
− 1

2t
〈A−1(etByi−1 − yi), (e

tByi−1 − yi)〉
)
dyi

·
∫

Rn

exp

(
− 1

2t
〈A−1(etBym−1 − ym), (etBym−1 − ym)〉

)
f(etBym)dym.

Put lt := (2πt)n/2(detA)1/2 and let γ ∈ Γ.
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It follows that

γ(x) |[T (t)S(t)]m f(x)|

≤ γ(x)

lmt

∫
Rn

exp

(
− 1

2t
〈A−1(x− y1), (x− y1)〉

)
dy1

m−1∏
i=2

∫
Rn

exp

(
− 1

2t
〈A−1(etByi−1 − yi), (e

tByi−1 − yi)〉
)
dyi

·
∫

Rn

exp

(
− 1

2t
〈A−1(etBym−1 − ym), (etBym−1 − ym)〉

)
· (1 + ‖ym‖2)

|f(etBym)|
1 + ‖ym‖2

dym

≤ γ(x)

lmt
sup
z∈Rn

|f(etBz)|
1 + ‖z‖2

·
∫

Rn

exp

(
− 1

2t
〈A−1(x− y1), (x− y1)〉

)
dy1

·
m−1∏
i=2

∫
Rn

exp

(
− 1

2t
〈A−1(etByi−1 − yi), (e

tByi−1 − yi)〉
)
dyi

·
∫

Rn

exp

(
− 1

2t
〈A−1(etBym−1 − ym), (etBym−1 − ym)〉

)
· (1 + ‖ym‖2)dym.

(3.22)

Now, fix s > 0 and put γ̃0(z) := supz∈Rn
1

1+‖e−tBz‖2 , z ∈ Rn, so that γ̃0 ∈ Γ by (i).

Then, by (3.22), we obtain that for 0 ≤ t ≤ s

γ(x) |[T (t)S(t)]m f(x)|

≤ γ(x)

lmt
sup
z∈Rn

γ̃0(z)|f(z)|

·
∫

Rn

exp

(
− 1

2t
〈A−1(x− y1), (x− y1)〉

)
dy1

m−1∏
i=2

∫
Rn

exp

(
− 1

2t
〈A−1(etByi−1 − yi), (e

tByi−1 − yi)〉
)
dyi

·
∫

Rn

exp

(
− 1

2t
〈A−1(etBym−1 − ym), (etBym−1 − ym)〉

)
(1 + ‖ym‖2)dym
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≤ sup
z∈Rn

γ̃0(z)|f(z)|

·
(
γ(x) +

γ(x)

lmt

∫
Rn

exp

(
− 1

2t
〈A−1(x− y1), (x− y1)〉

)
dy1

m−2∏
i=2

∫
Rn

exp

(
− 1

2t
〈A−1(etByi−1 − yi), (e

tByi−1 − yi)〉
)
dyi

·
∫

Rn

exp

(
− 1

2t
〈A−1(etBym−2 − ym−1), (e

tBym−2 − ym−1)〉
)

· (‖etBym−1‖2 + nt‖A‖2)ltdym−1

)
≤ sup

z∈Rn

γ̃0(z)|f(z)|

·
(
γ(x)(1 + nt‖A‖2) +

γ(x)e2t‖B‖

lm−1
t

∫
Rn

exp

(
− 1

2t
〈A−1(x− y1), (x− y1)〉

)
dy1

m−2∏
i=2

∫
Rn

exp

(
− 1

2t
〈A−1(etByi−1 − yi), (e

tByi−1 − yi)〉
)
dyi

·
∫

Rn

exp

(
− 1

2t
〈A−1(etBym−2 − ym−1), (e

tBym−2 − ym−1)〉
)
‖ym−1‖2dym−1

)
≤ sup

z∈Rn

γ̃0(z)|f(z)| γ(x)(1 +mnt‖A‖2 + e2mt‖B‖‖x‖2),

and hence

(3.23) γ(x) |[T (t)S(t)]m f(x)|
≤ sup

z∈Rn

γ̃0(z)|f(z)| γ(x)(1 +mnt‖A‖2 + e2mt‖B‖‖x‖2).

Take w := max{2‖B‖, 1} which is independent of γ, s and f , and

M := 2 max{Mγ, n‖A‖2} with Mγ := supx∈Rn(1 + ‖x‖2)γ(x) < ∞. It follows by

(3.23) that there exists γ̃ := Mγ̃0 ∈ Γ such that

pγ ([T (t)S(t)]m f) ≤ emwtpγ̃(f)

for all f ∈ Cb(Rn), 0 ≤ t ≤ s and m ∈ N. Since γ and s were arbitrary, we conclude

that there exists w ∈ R+ such that for γ ∈ Γ and s > 0 there exists γ̃ ∈ Γ such that

pγ

([
T ( t

m
)S( t

m
)
]m
f
)
≤ ewtpγ̃(f)
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for all f ∈ Cb(Rn), 0 ≤ t ≤ s, and m ∈ N.

Therefore, the family {[T ( t
m

)S( t
m

)]m : t ≥ 0} is locally bi–equicontinuous uniformly

for m ∈ N.

As stated in (ii) at the beginning of this subsection, the Schwartz space S(Rn) is

bi–dense in (Cb(Rn), τ). Moreover, it is a subset of D(A0) ∩ D(B0), where D(A0)

and D(B0) denote the domains of the parts A0 and B0 of A and B in C0(Rn). On

C0(Rn) the Ornstein–Uhlenbeck semigroup (P(t))t≥0 is strongly continuous and is

represented by the Lie–Trotter Product Formula (see [KW, Prop. 12]). In particular,

its generator coincides with A+ B restricted to S(Rn). Hence, by the invariance of

the Schwartz space under (P(t))t≥0, we obtain that (λ − A − B)S(Rn) is bi–dense

in (Cb(Rn), τ) for λ > 0. Applying Corollary 2.11 we obtain that the bi–closure

of A + B generates the bi–continuous semigroup (P(t))t≥0 on Cb(Rn) given by the

Lie–Trotter product formula

P(t)f = τ– lim
m→∞

[
T ( t

m
)S( t

m
)
]m
f

for all f ∈ Cb(Rn) and uniformly for t in compact intervals of Rn. 2

3.4 Implemented semigroups

In this section we look at so–called implemented semigroups, which are of interest,

e. g., in the context of operator equations of the form

AX +XB = Y, X ∈ X ,

where X := L(X,Y ), X, Y Banach spaces, and A and B are generators of strongly

continuous semigroups (T (t))t≥0 and (S(t))t≥0 on X and Y , respectively. Such

equations have been studied, e.g., in [GN81], [Pho91], [ARS94], [PS98], [CL99, Sec.

4.4], [Alb99], [Alb]. Moreover, implemented semigroups are the natural semigroups

on operator algebras such as L(H), H Hilbert space, or more general C?–algebras

(see [BR79]).

On the Banach space X = L(X,Y ) endowed with the operator norm ‖ · ‖X we

consider the operator family {U(t) : t ≥ 0} defined as

U(t)X := T (t)XS(t), t ≥ 0, X ∈ X .(3.24)
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Clearly, U(t) ∈ L(X ) for all t ≥ 0 and U(0) = IdX , U(t + s) = U(t)U(s) for all

t, s ≥ 0. The semigroup (U(t))t≥0 given in (3.24) is called implemented semi-

group on X with implementing semigroups (T (t))t≥0 and (S(t))t≥0 .

The following lemma gives the relation between the growth bound of the imple-

mented semigroup and its implementing semigroups (T (t))t≥0 and (S(t))t≥0 (see

[Alb99, Lemma 4.4.1]).

Lemma 3.14. The growth bound ω0(U(·)) of (U(t))t≥0 is given by

ω0(U(·)) = ω0(T (·)) + ω0(S(·)),

where ω0(T (·)) and ω0(S(·)) denote the growth bound of the semigroups (T (t))t≥0

and (S(t))t≥0 , respectively.

Proof. Clearly, ‖U(t)X‖ ≤ ‖T (t)‖ ‖S(t)‖ ‖X‖ for all X ∈ X .

On the other hand, let Φ := {φ ∈ (Y, ‖ · ‖)′ : ‖φ‖ ≤ 1}, then we have

‖S(t)‖ ‖T (t)‖ = sup{| < S(t)y, φ > | : y ∈ Y with ‖y‖Y ≤ 1 and φ ∈ Φ} ‖T (t)‖
= sup{‖T (t) < S(t)y, φ > x‖ : ‖y‖Y ≤ 1, ‖x‖X ≤ 1, φ ∈ Φ}
≤ sup

‖X‖X≤1

‖T (t)XS(t)‖X

= ‖U(t)‖,

and hence ‖S(t)‖ ‖T (t)‖ = ‖U(t)‖ for all t ≥ 0. Therefore, applying [EN00, Ch.

IV, Prop. 2.2], we obtain

ω0(U(·)) = lim
t→∞

1

t
log(‖T (t)‖ ‖S(t)‖) = ω0(T (·)) + ω0(S(·)).

2

If the implementing semigroups (T (t))t≥0 and (S(t))t≥0 are uniformly continuous,

one can verify that the corresponding implemented semigroup is also uniformly

continuous. However, if the implementing semigroups (T (t))t≥0 and (S(t))t≥0 are

only strongly continuous, the implemented semigroup is not strongly continuous in

general.

Example 3.15. On X = Y = L1(R,C) we define (T (t))t∈R as the left translation

group defined as T (t)f(s) := f(s+t) for all s, t,∈ R and f ∈ X. The group (S(t))t∈R
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is taken as S(t)f(s) := T (t)f(s) for all f ∈ X and s, t ∈ R.

Now, we consider the operator X ∈ L(X) defined as Xf := χ[0,1]f for all f ∈ X, and

choose a real–valued sequence (fn)n∈N ⊆ X such that ‖fn‖1 = 1 and the support of

fn is contained in [0, 1/n] for all n ∈ N. We then have

‖U( 1
n
)Xfn −Xfn‖1 = ‖χ[1/n,1+1/n]fn − χ[0,1]fn‖1 = ‖fn‖1 = 1.

Thus, the implemented semigroup is not strongly continuous (cf. [Alb99, Beispiel

1.2.1]).

However, if we endow X with the strong operator topology τstop, which is induced by

a family of seminorms Pτstop := {px : x ∈ X} where px is defined as px(X) := ‖Xx‖Y

for all X ∈ X , then the implemented semigroups fit into the theory of bi–continuous

semigroups.

To show this, we verify first that the space X satisfies Assumptions 1.1. Clearly,

the strong operator topology τstop is coarser than the norm topology and Haus-

dorff. Further, (X , τstop) is sequentially complete on norm bounded sets. Indeed, let

(Xn)n∈N be a ‖ · ‖X–bounded τstop–Cauchy–sequence in X , i.e., there exists M ≥ 0

such that supn∈N ‖Xn‖ ≤ M and for x ∈ X and for ε > 0 there exists n0 ∈ N such

that ‖Xnx−Xmx‖ = px(Xn −Xm) < ε for all n,m ≥ n0. Therefore, (Xnx)n∈N is a

Cauchy–sequence in (X, ‖·‖X), and henceXx := limn→∞Xnx andX is a linear oper-

ator from X into Y . Further, ‖Xx‖ = limn→∞ ‖Xnx‖ ≤ supn∈N ‖Xn‖ ‖x‖ ≤M‖x‖.
Finally, since the mappings ψφ,x : X 7→< Xx, φ > belong to the dual (X , τstop)

′ with

‖ψφ,x‖X ′ ≤ 1 for all x ∈ X with ‖x‖X ≤ 1 and φ ∈ Y ′ with ‖φ‖Y ′ ≤ 1, the dual

(X , τstop)
′ is norming for (X , ‖ · ‖X ).

Proposition 3.16. Let (U(t))t≥0 be a semigroup on X implemented by strongly

continuous semigroups (T (t))t≥0 and (S(t))t≥0 on Banach spaces X and Y , re-

spectively. Then the implemented semigroup (U(t))t≥0 is a bi–continuous semigroup

with respect to τstop.

Proof. As mentioned above, (U(t))t≥0 consists of bounded linear operators on X
and the semigroup law holds. Now, let t0 ≥ 0, X ∈ X , y ∈ Y , and h ∈ R such that

t0 − h ≥ 0. We then have

U(t0 + h)Xy − U(t0)Xy = T (t0 + h)XS(t0 + h)y − T (t0)XS(t0)y

= T (t0 + h)X(S(t0 + h)y − S(t0)y)

+ (T (t0 + h)− T (t0))XS(t0)y,
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which converges to zero as h→ 0 with respect to the norm on X.

Moreover, for every t0 > 0 and every ‖·‖X–bounded sequence (Xn)n∈N ⊆ X which is

τstop–convergent to X ∈ X , it follows that for all px ∈ Pτstop there exists a constant

M ≥ 0 such that

sup
0≤t≤t0

px(U(t)(Xn −X)) = sup
0≤t≤t0

‖T (t)(Xn −X)S(t)x‖Y

≤M sup
0≤t≤t0

‖(Xn −X)S(t)x‖Y .
(3.25)

By the strong continuity of the semigroups (T (t))t≥0 and (S(t))t≥0 and the fact

that Xn −X converges uniformly on compact sets, it follows that (3.25) converges

to zero as n → ∞, i.e., (U(t))t≥0 is locally bi–equicontinuous. This completes the

proof. 2

As a consequence we obtain that the characterization theorem from Chapter 1 and

the approximation theorems from Chapter 2 hold for implemented semigroups. For

a detailed description of their generators (and domains) we refer to [Alb]. Here, we

only state the Lie–Trotter Product Formula for implemented semigroups.

Proposition 3.17. Let (U(t))t≥0 and (V(t))t≥0 be implemented semigroups on X
generated by (A, D(A)) and (B, D(B)), respectively. satisfying the following stability

condition.

‖[U(t)V(t)]m‖ ≤Meωt(3.26)

for all t ≥ 0,m ∈ N, and some constants M ≥ 1, ω ∈ R. Consider the sum A + B
on a subspace D ⊆ D(A0)∩D(B0), where D(A0) and D(B0) denote the domains of

the parts A0 and B0 of A and B in D(A)
‖·‖

and D(B)
‖·‖

, respectively, and assume

that D and (λ0 − A − B)D are bi–dense in X for some λ0 > α > ω. Then the

bi–closure of A+ B exists and generates a bi–continuous semigroup (W(t))t≥0 with

respect to τstop given by

W(t)X = τstop– lim
k→∞

[
U( t

k
)V( t

k
)
]k
X,(3.27)

where the limit exists for all X ∈ X and uniformly for t in compact intervals in R+.

Proof. Let (TV (t))t≥0 and (SV (t))t≥0 denote the implementing semigroups of

(V(t))t≥0, t0 ≥ 0 and (Xn)n∈N ⊆ X be a ‖ · ‖X–bounded sequence which is τstop–

convergent to X ∈ X . It follows that for all px ∈ Pτstop there exist constants
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C, C̃,M ≥ 0 such that

sup
0≤t≤t0

px([U( t
m

)V( t
m

)]m(Xn −X))

≤ sup
0≤t≤t0

‖[U( t
m

)V( t
m

)]m−1U( t
m

)‖‖V( t
m

)(Xn −X)‖

≤ sup
0≤t≤t0

Me
tω
m ‖U( t

m
)‖ sup

0≤t≤a
‖V( t

m
)(Xn −X)‖

≤ C sup
0≤t≤t0

‖TV (t)(Xn −X)SV (t)x‖Y

≤ C̃ sup
0≤t≤t0

‖(Xn −X)S(t)x‖Y ,

which converges to zero as n→∞ uniformly for all m ∈ N.

Therefore, the assumptions of Corollary 2.11 are satisfied and the assertion holds.

2

For instance, the stability condition in (3.26) is fulfilled if ω0(U(·)) = ω0(T (·)) +

ω0(S(·)) ≤ 0.

3.5 Adjoint semigroups

The general theory of adjoint semigroups was initiated by W. Feller [Fel53] and R. S.

Phillips [Phi55]. In [BR79, Sec. 3.1.2-3.1.5] a generation result and an approxima-

tion theory has been developed, and we refer to the book of J. van Neerven [Nee92]

where a systematic exposition of the theory of adjoint semigroups is given.

3.5.1 Bi–continuous adjoint semigroups

Let X be a Banach space and X ′ its topological dual. We denote by σ(X,X ′) the

weak topology on X and by σ(X ′, X) the weak∗ topology on X ′. For a strongly

continuous semigroup (T (t))t≥0 on X its adjoint semigroup (T (t)′)t≥0, consisting

of all adjoint operators T (t)′ on the dual X ′, is not strongly continuous in general.

An example is provided by the left translation group on L1(R). Its adjoint is the

right translation group on L∞(R) which is not strongly continuous (see [EN00, Ch.

I, Sec. 4.c]).

However, in our first result we show that every adjoint semigroup (T (t)′)t≥0 is bi–

continuous with respect to σ(X ′, X), hence the results from Chapter 1 and 2 apply.
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To show this we note that X ′ endowed with the norm ‖ · ‖X′ and the topology

σ(X ′, X) satisfies Assumptions 1.1.

Proposition 3.18. Let (T (t))t≥0 be a strongly continuous semigroup on X. Then

(T (t)′)t≥0 is a bi–continuous semigroup on X ′ with respect to σ(X ′, X).

Proof. Clearly, (T (t)′)t≥0 is a semigroup which is exponentially bounded. Since

(T (t))t≥0 is strongly continuous on X, we have

| < T (t)′x′ − T (s)′x′, x > | = | < x′, T (t)x− T (s)x > | ≤ ‖x′‖ ‖T (t)x− T (s)x‖

for all x ∈ X, x′ ∈ X ′ and t, s ≥ 0, and hence (T (t)′)t≥0 is σ(X ′, X)–continuous.

Let now t0 ≥ 0 and (x′n)n∈N ⊆ X ′ be a ‖ · ‖–bounded sequence which is σ(X ′, X)–

convergent to x′ ∈ X ′. Then,

| < T (t)′(x′n − x′), x > | = | < x′n − x′, T (t)x > |

for all x ∈ X which converges to zero as n → ∞ uniformly for 0 ≤ t ≤ t0 by

the compactness of {T (t)x : 0 ≤ t ≤ t0}. Therefore, (T (t)′)t≥0 is a bi–continuous

semigroup with respect to σ(X ′, X). 2

3.5.2 A characterization of Mackey–continuous semigroups

on dual spaces

It is a natural question to look for topologies on X ′ coarser than the norm topology

but finer than the weak∗ topology for which the adjoint semigroup (T (t)′)t≥0 still is

continuous. A natural candidate for this purpose is the Mackey topology τ(X ′, X)

on X ′. This topology is defined by the family Pτ of seminorms pS on X ′ with

pS(x′) := sup
x∈S

| < x′, x > |

for all x′ ∈ X ′ and S ∈ Σ, the family of all (convex, see [Sch80, Ch. II, 4.3])

σ(X,X ′)–compact subsets of X. By the Mackey–Arens theorem [Sch80, Ch. IV,

Thm. 3.2] this topology is the finest locally convex topology on X ′ such that all

τ(X ′, X)–continuous functionals belong to X.

Proposition 3.19. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach

space X and τ(X ′, X) the Mackey topology on the dual space X ′. Then the following

assertions are equivalent.
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(a) For every S ∈ Σ ⋃
0≤t≤1

T (t)S ∈ Σ.(3.28)

(b) The adjoint semigroup (T (t)′)t≥0 is τ(X ′, X)–continuous on the dual space X ′.

Proof. (a) ⇒ (b) First, we prove that the subspace of X ′ defined by

E := {x′ ∈ X ′ : τ − lim
t↓0

(T (t)′x′ − x′) = 0}

is σ(X ′, X)–dense in X ′ and therefore τ–dense in X ′ since all τ(X ′, X)–continuous

functionals belong to X.

Let x′ ∈ X ′ and 0 < r ≤ 1. We define a linear form x′r on X by

< x′r, x >=
1

r

∫ r

0

< T (s)′x′, x > ds for x ∈ X .

Then x′r is bounded and therefore x′r ∈ X ′. Furthermore, the set

D := {x′r : 0 < r ≤ 1, x′ ∈ X ′}

is σ(X ′, X)–dense in X ′ because (T (t)′)t≥0 is σ(X ′, X)–continuous. Moreover, for

S ∈ Σ there exists a constant M ≥ 1 such that

sup
x∈S

| < T (t)′x′r − x′r, x > |(3.29)

= sup
x∈S

|1
r
T (t)′

∫ r

0

< T (s)′x′, x > ds− 1

r

∫ r

0

< T (s)′x′, x > ds|

≤ sup
x∈S

{
|1
r

∫ t+r

r

< T (s)′x′, x > ds|+ |1
r

∫ t

0

< T (s)′x′, x > ds|
}

≤ 2t

r
M‖x′‖ sup

x∈S
‖x‖,(3.30)

where supx∈S ‖x‖ < ∞. This implies that (3.30) converges to zero as t ↘ 0. Thus

D ⊆ E which implies that E is τ–dense in X ′.

Finally, we prove the τ–continuity of (T (t)′)t≥0 on X ′. Let S ∈ Σ and ε > 0. By

assumption (3.28) we have

S ⊆
⋃

0≤t≤1

T (t)S =: S1 ∈ Σ .
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Since E is σ(X ′, X)–dense in X ′, there exists a linear form x′0 ∈ E such that

sup
x∈S1

| < x′ − x′0, x > | ≤ ε .

Moreover, since x′0 ∈ E, there exists t0 > 0 such that

sup
x∈S

| < T (t)′x′0, x > − < x′0, x > | ≤ ε

for each 0 ≤ t ≤ t0. Hence,

sup
x∈S

| < T (t)′x′, x > − < x′, x > |

= sup
x∈S

| < T (t)′x′, x > − < T (t)′x′0, x >

+ < T (t)′x′0, x > − < x′0, x > + < x′0 − x′, x > |

≤ sup
x∈S

| < T (t)′x′, x > − < T (t)′x′0, x > |+ 2ε

= sup
x∈S

| < x′ − x′0, T (t)x > |+ 2ε

≤ sup
x∈S1

| < x′ − x′0, x > |+ 2ε

≤ 3ε .

(b) ⇒ (a) Let S ⊆ X be relatively weakly compact. By the Eberlein–Šmulian

theorem ([DS57, Chap. V.6.1, Thm. 1]) it suffices to show that S1 :=
⋃

0≤t≤1 T (t)S

is weakly sequentially compact. Let (xn)n∈N ⊆ S1 such that xn = T (tn)yn with

(tn)n∈N ⊆ [0, 1] and (yn)n∈N ⊆ S. Since [0, 1] is compact and S is relatively weakly

compact, by passing to subsequences, we have that tnk
→ t0 for some t0 ∈ [0, 1], and

ynk
→ y0 with respect to the weak topology for some y0 ∈ S. To simplify matters, we

denote these subsequences by (tn)n∈N and (yn)n∈N. We claim that T (tn)yn → T (t0)y0

as n→∞ with respect to the weak topology. To that purpose, we observe that

T (tn)yn − T (t0)y0 = T (tn)yn − T (t0)yn + T (t0)yn − T (t0)y0(3.31)

for all n ∈ N. Since T (t0) is norm, and hence weakly continuous, we obtain

σ(X,X ′)– lim
n→∞

T (t0)yn = T (t0)y0.(3.32)
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Moreover, H := {ym : m ∈ N} is a relatively weakly compact subset of X. There-

fore, by assumption, we have

sup
y∈H

| < T (tn)y − T (t0)y, x
′ > | = sup

m∈N
| < T (tn)ym − T (t0)ym, x

′ > |,

which converges to zero as n→∞, and this implies that

lim
n→∞

< T (tn)yn − T (t0)yn, x
′ >= 0.

Combining (3.31) and (3.32) concludes the proof. 2

Take now the adjoint (T (t)′)t≥0 of a strongly continuous semigroup (T (t))t≥0 and

assume that it is τ(X ′, X)–continuous. It is then locally bi–equicontinuous with

respect to τ(X ′, X). In fact, take t0 ≥ 0, (x′n)n∈N ⊆ X ′ a ‖ · ‖X′-bounded sequence

which is τ(X ′, X)–convergent to x ∈ X ′, and S ∈ Σ. We then obtain, by Proposition

3.19, that St0 :=
⋃

0≤t≤t0
T (t)S ∈ Σ, and therefore

sup
x∈S

| < T (t)′(x′n − x′), x > | = sup
x∈S

| < x′n − x, T (t)x > | = sup
x∈St0

| < x′n − x, x > | ,

which converges to zero as n→∞ uniformly for 0 ≤ t ≤ t0.

Since evidently X ′ with τ(X ′, X) satisfies Assumptions 1.1, we obtain the following

result.

Proposition 3.20. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach

space X and take τ(X ′, X) the Mackey topology on the dual space X ′. If the adjoint

semigroup (T (t)′)t≥0 is τ(X ′, X)–continuous, then it is a bi–continuous semigroup

with respect to τ(X ′, X).

Remark 3.21. a) If τ is any locally convex topology on X ′ which is given by a

saturated2 family Σ of relatively σ(X,X ′)–compact subsets of X, one shows, as in

the proof of Proposition 3.19, that the adjoint semigroup (T (t)′)t≥0 is τ–continuous

on X ′ if and only if ⋃
0≤t≤1

T (t)S ∈ Σ

2A family ∅ 6= Σ of bounded subsets of a locally convex space is called saturated if it contains
arbitrary subsets and all scalar multiples of each of its members, and it contains the closed, convex,
circled hull of the union of each finite subfamily (see [Sch80, Ch. III, p. 81])
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for all S ∈ Σ.

b) Condition (3.28) is trivially satisfied if τ is the σ(X ′, X)–topology or if τ is the

locally convex topology of uniform convergence on sets formed by the ranges of all

null sequences in X (cf. [Sch80, p. 151]).

As an example we show the Mackey–continuity of the translation group on L∞(R).

Example 3.22. Let (L(t))t∈R be the left translation group on L1(R). Then the right

translation group (R(t))t∈R is bi–continuous on L∞(R) with respect to the Mackey

topology τ(L∞, L1).

By Proposition 3.19, it suffices to show that assumption (3.28) is satisfied with re-

spect to the Mackey topology, i.e., for Σ the family of all σ(L1(R), L∞(R))–compact

subsets of L1(R). To show this, we first recall that, by a result of Dunford–Pettis

(see [DU77, p. 76]), a subset S of L1(R) is relatively weakly compact if and only if

S is ‖ · ‖–bounded and
∀ε > 0 ∃δ > 0 such that

∀Ω ⊂ R with Lebesgue measure λ(Ω) < δ one has∫
Ω
|f(s)|ds < ε ∀f ∈ S .

(3.33)

Let S ⊆ L1(R) be relatively weakly compact. Then S is ‖ · ‖–bounded and hence

‖L(t)f‖ = ‖f‖ ≤ sup
f∈S

‖f‖ <∞

for all t ∈ R and f ∈ S. This means that

S1 :=
⋃

0≤t≤1

L(t)S

is ‖ · ‖–bounded. It remains to show that S1 satisfies condition (3.33). Since S is

relatively weakly compact and the Lebesgue measure is translation invariant, we

have
∀ε > 0 ∃δ > 0 such that

∀Ω ⊂ R with λ(Ω) < δ :∫
Ω
|L(t)f(s)|ds =

∫
Ω
|f(s+ t)|ds =

∫
Ω−t

|f(s)|ds < ε ∀f ∈ S ∀t ∈ R .

This completes the proof.
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Remark 3.23. If we take the multiplication semigroup (T (t))t≥0 on L1(R) generated

by A = Miq for q : R −→ R a measurable and locally integrable function, then, the

adjoint semigroup (T (t)′)t≥0 is bi–continuous on L∞(R) with respect to the Mackey

topology τ(L∞, L1). In fact, by the same way as in Example 3.22, for a relatively

weakly compact subset S ⊂ L1(R) we have
∀ε > 0 ∃δ > 0 such that

∀Ω ⊂ R with λ(Ω) < δ :∫
Ω
|T (t)f(s)|ds =

∫
Ω
|eiq(s)f(s)|ds =

∫
Ω
|f(s)|ds < ε ∀f ∈ S ∀t ∈ R ,

which yields the assertion.

Since the geometric condition (3.28) stated in Proposition 3.28 is hard to verify,

we look for conditions on the semigroup (T (t))t≥0 implying (3.28). It is an easy

consequence of the Eberlein–Šmulian theorem ([DS57, Chap. V.6.1, Thm. 1]) that

if the map (t, x) 7→ T (t)x is weakly sequentially jointly continuous, we obtain that⋃
0≤t≤1

T (t)S

is relatively weakly compact for every relatively weakly compact subset S ⊆ X. By

Proposition 3.19 this implies the Mackey continuity of (T (t)′)t≥0 inX ′. Furthermore,

it turns out that the local bi–equicontinuity of (T (t))t≥0 with respect to σ(X,X ′)

already implies that the map (t, x) 7→ T (t)x is weakly sequentially jointly continuous.

Proposition 3.24. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach

space X. If (T (t))t≥0 is locally bi–equicontinuous with respect to σ(X,X ′), then

the adjoint semigroup (T (t)′)t≥0 on X ′ is bi–continuous with respect to the Mackey

topology.

Proof. By the previous considerations it remains to show that the local bi–equi-

continuity of (T (t))t≥0 with respect to σ(X,X ′) implies that the map (t, x) 7→ T (t)x

is jointly weakly sequentially continuous. To that purpose, let (tn)n∈N ⊆ [0, 1] be a

sequence which converges to t0 ∈ [0, 1] and (xn)n∈N ⊆ X converges to x0 ∈ X with

respect to σ(X,X ′). By the principle of uniform boundedness the sequence (xn)n∈N

is ‖ · ‖–bounded. Let ε > 0. There exists n0 ∈ N such that tn ∈ [ε− t0, ε+ t0] for all

n ≥ n0. Therefore, we have, by the local bi–equicontinuity of (T (t))t≥0 with respect

to σ(X,X ′), that there exists ñ0 ≥ n0 such that

sup
tn∈[ε−t0,ε+t0]

| < T (tn)(yn − y0), x
′ > | ≤ ε

2
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for all x′ ∈ X ′ and n ≥ ñ0. Hence, using the strong σ(X,X ′)–continuity of (T (t))t≥0 ,

we obtain

| < T (tn)yn − T (t0)y0, x
′ > |

≤ | < T (tn)(yn − y0), x
′ > |+ | < T (tn)y0 − T (t0)y0, x

′ > |
≤ ε

for all x′ ∈ X ′ and n ≥ ñ0. This concludes the proof. 2



Appendix A

Laplace transform methods

In this appendix we collect some results needed for the generalized Hille–Yosida

Theorem 1.28. For a systematic treatment and much more informations we refer to

the monograph to [ABHN].

In the following let X be a Banach space.

Proposition A.1. Let F : [a, b] −→ X and g : [a, b] −→ C. If F is an antiderivative

of an L1–function f and g ∈ C([a, b]), then
∫ b

a
g(t)dF (t) is equal to the Bochner inte-

gral
∫ b

a
g(t)f(t)dt. If F is continuous and g absolutely continuous, then

∫ b

a
F (s)dg(s)

is equal to the Bochner integral
∫ b

a
F (s)g′(s)ds.

To state the main result of the Laplace–Stieltjes transform theory, we define for

functions r ∈ C∞((0,∞), X) the norm

‖r‖W := sup
k∈N

sup
λ>0

‖λk+1 1

k!
r(k)(λ)‖

and the Widder space

C
(∞)
W ((0,∞), X) := {r ∈ C∞((0,∞), X) : ‖r‖W <∞}.

This is a Banach space, and we obtain the following result due to D. V. Widder

[Wid36] in the numerical case and to W. Arendt [Are87b] in the vector–valued case

(see also [BN94]).

Theorem A.2. The Laplace–Stieltjes transform

LS : Lip0([0,∞), X) −→ C
(∞)
W ((0,∞), X)
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defined as

LS F (λ) :=

∫ ∞

0

e−λtdF (t)

for F ∈ Lip0([0,∞), X) is an isometric isomorphism.

To adapt this results to functions with exponential growth, we define, for ω ∈ R,

the Banach space

Lipω([0,∞), X) := {F : [0,∞) → X | F (0) = 0 and

‖F (t+ h)− F (t)‖ ≤M

∫ t+h

t

eωsds

for all t, h > 0 and some M > 0}

endowed with the norm

‖F‖Lip(ω) := inf{M : ‖F (t+ h)− F (t)‖ ≤M

∫ t+h

t

eωsds for all t, h > 0},

and CW ((ω,∞), X) the space of all functions r ∈ C∞((ω,∞), X) with the norm

‖r‖W := sup
k∈N

sup
λ>ω

‖(λ− ω)k+1 1
k!
r(k)(λ)‖ <∞.

By using a “shift” procedure we obtain the following reformulation of Widder’s

Theorem (cf. [ABHN, Thm. 2.5.1]).

Theorem A.3. Let M > 0, ω ∈ R, and r ∈ C∞((ω,∞), X). Then the following

assertions are equivalent.

(i) ‖(λ− ω)k+1 1
k!
r(k)(λ)‖ ≤M for all λ > ω and k ∈ N.

(ii) There exists F : [0,∞) −→ X satisfying F (0) = 0 and

‖F (t+ h)− F (t)‖ ≤M

∫ t+h

t

eωrdr(A.1)

for all t, h > 0 such that

r(λ) =

∫ ∞

0

e−λtdF (t)

for all λ > ω.
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Lemma A.4. Let A be a Hille–Yosida operator on a Banach space X. Then there

exists a function F ∈ Lipω([0,∞),L(X)) such that

F (t)x− tx =

∫ t

0

F (s)Axds(A.2)

for all x ∈ D(A).

Proof. Since A is a Hille–Yosida operator, we are able to apply Widder’s Theorem

A.3 to the function

(ω,∞) 3 λ 7→ R(λ,A) ∈ L(X).

Therefore, we obtain a function F ∈ Lipω([0,∞),L(X)) such that

R(λ,A) =

∫ ∞

0

e−λtdF (t)

for all λ > ω. Hence, by Proposition A.1, we obtain

R(λ,A)x = ‖ · ‖ −
∫ ∞

0

λe−λtF (t)xdt(A.3)

for all λ > ω and x ∈ X. Now, let x ∈ D(A). By the closedness of A, equation

(A.3), and integration by parts, we have

λ2

∫ ∞

0

e−λttxdt = x = λR(λ,A)x−R(λ,A)Ax

= λ2

∫ ∞

0

e−λtF (t)xdt− λ

∫ ∞

0

e−λtF (t)Axdt

= λ2

∫ ∞

0

e−λt[F (t)x−
∫ t

0

F (s)Axds]dt.

Thus, by the uniqueness of the Laplace transform [ABHN, Ch. I, Thm. 1.5.3], we

obtain the desired formula (A.2). 2

Finally, we mention an approximation result for functions in Lipω([0,∞), X) (see

[HN93, Thm. 2.7]).

Theorem A.5. Let M,ω ≥ 0 and r(·) ∈ C
(∞)
W ((ω,∞), X) satisfying Widder’s

growth condition supλ>ω | 1
k!

(λ − ω)k+1r(k)(λ)| ≤ C for some C > 0 and all k ∈ N.
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Then

F (t) : = lim
k→∞

(−1)k 1
k!

(
k
t

)k+1
(

r(λ)
λ

)(k)

λ=
k
t

= lim
k→∞

k∑
i=0

(−1)i 1
i!

(
k
t

)i
r(i)
(

k
t

)
= lim

k→∞
(−1)k 1

k!

∫ ∞

k
t

skr(k+1)(s)ds

exists for all t > 0, limt↘0 F (t) = 0, ‖F (t+ h)− F (t)‖ ≤Mheω(t+h) for all t, h ≥ 0

and

r(λ) = λ

∫ ∞

0

e−λtF (t)dt

for all λ > ω.



Bibliography

[ABHN] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector–Valued

Laplace Transforms and Cauchy Problems, Monographs in Mathematics,
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[Moo71a] R. T. Moore, Generation of equicontinuous semigroups by hermitian and

sectorial operators I, Bull. Amer. Math. Soc. 77 (1971), 224–229.

[Moo71b] R. T. Moore, Generation of equicontinuous semigroups by hermitian and

sectorial operators II, Bull. Amer. Math. Soc. 77 (1971), 368–373.

[Nag86] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lect.

Notes Math., vol. 1184, Springer-Verlag, 1986.

[Nee92] J. M. A. A. van Neerven, The Adjoint of a Semigroup, Lect. Notes Math.,

vol. 1529, Springer-Verlag, 1992.

[Neu72] J. W. Neuberger, Lie generators for strongly continuous equiuniformly

continuous one–parameter semigroups on a metric space, Indiana Univ.

Math. J. 21 (1972), 961–971.

[Neu73] J. W. Neuberger, Lie generators for one–parameter semigroups of trans-

formations, J. Reine Angew. Math. 258 (1973), 133–136.

[Neu00] J. W. Neuberger, A complete theory for jointly continuous nonlinear semi-

groups on a complete separable metric space, preprint, 2000.

[NNR96] R. Nagel, G. Nickel, and S. Romanelli, Identification of extrapolation

spaces for unbounded operators, Quaestiones Math. 19 (1996), 83–100.

[NP00] R. Nagel and J. Poland, The critical spectrum of a strongly continuous

semigroup, Adv. Math. 152 (2000), 120–133.

[NS70] R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential

equations for Hille-Yosida operators, Functional Analysis Proc. Essen

Conference (K. D. Bierstedt and A. Pietsch and W. M. Ruess and D.

Vogt, eds.), Marcel Dekker, Inc., 1994, 51–70.
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[Ōuc73] S. Ōuchi, Semi–groups of operators in locally convex spaces, J. Math. Soc.

Japan 2 (1973), 265–276.

[Paz92] A. Pazy, Semigroups of Linear Operators and Applications to Partial Dif-

ferential Equations, Springer–Verlag, 1992.

[Phi55] R. S. Phillips, The adjoint semi–group, Pacific J. Math. 5 (1955), 269–283.

[Pho91] V. Q. Phong, The operator equation AX − XB = C with unbounded

operators A and B and related abstract Cauchy problems, Math. Z. 208

(1991), 567–588.

[Pri99] E. Priola, On a class of Markov type semigroups in spaces of uniformly

continuous and bounded functions, Studia Math. 136 (1999), 271–295.
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Zusammenfassung in deutscher

Sprache

Das Ziel der vorliegenden Arbeit ist es, Klassen von Halbgruppen auf Banachräumen,

die nur für eine schwächere Topologie als die Normtopologie stark stetig sind, in einer

umfassenden Theorie zu behandeln. Hierzu führen wir das Konzept der bi–stetigen

Halbgruppen ein.

Das erste Kapitel ist der Charakterisierung bi–stetiger Halbgruppen durch ein Hille–

Yosida–Theorem gewidmet.

Im zweiten Kapitel studieren wir die Konvergenz von Folgen bi–stetiger Halbgrup-

pen und entwickeln verallgemeinerte Trotter–Kato–Theoreme. Basierend auf diesen

Resultaten erhalten wir anschließend eine explizite Darstellung bi–stetiger Halb-

gruppen in Form einer Chernoff–Produktformel. Diese Resultate werden dann be-

nutzt, um die Post–Widder–Umkehrformel für bi–stetige Halbgruppen zu bewei-

sen. Schließlich zeigen wir, dass unter
”
Stabilitäts”–und

”
Konsistenzbedingungen”

an zwei bi–stetige Halbgruppen der Abschluss der Summe ihrer Generatoren wieder

ein Generator ist, und die gestörte Halbgruppe durch die Lie–Trotter–Produktformel

dargestellt werden kann.

Um die Stärke unseres Zugangs zu demonstrieren, diskutieren wir im dritten Kapitel

Beispiele und Anwendungen der in den ersten beiden Kapiteln entwickelten Resul-

tate. Zuerst geben wir einen Überblick über lokalgleichstetige Halbgruppen (siehe

z.B. [Kom64], [Kōm68], [Ōuc73], K. Yosida [Yos74]), die in konkreten Situationen

als bi–stetige Halbgruppen angesehen werden können. Basierend auf Arbeiten von

J. R. Dorroh und J. W. Neuberger [DN93], [DN96] verifizieren wir in Abschnitt

3.2, dass Halbgruppen auf Cb(Ω), die von Flüssen induziert werden, bi–stetig sind.

Insbesondere geben wir einen vereinfachten Beweis des Erzeugungstheorems und

Bedingungen an, welche die Lie–Trotter–Produktformel für diese Halbgruppen im-

plizieren.



Danach konzentrieren wir uns in Abschnitt 3.3 auf die Ornstein–Uhlenbeck–Halb-

gruppe, die intensiv z.B. in [DPZ92],[CDP93], [Cer94], [CG95], [DPL95], [Pri99]und

[TZ] studiert wurde. Wir zeigen, dass diese Halbgruppe auf Cb(H), H Hilbert, bi–

stetig ist, wobei H ein Hilbertraum ist. Basierend auf einer gemeinsamen Arbeit mit

A. Albanese [AK00] gelingt es, diese Halbgruppen auf Cb(Rn), versehen mit einer

lokalkonvexen Topologie, die feiner ist als die kompakt–offene Topologie, durch die

Lie–Trotter–Produktformel zu repräsentieren.

In Abschnitt 3.4 betrachten wir implementierte Halbgruppen auf L(X, Y ), wobei

X, Y Banachräume sind, wie sie z.B. in [BR79], [GN81], [Pho91], [ARS94], [PS98],

[Alb99] und [Alb] auftreten. Wir zeigen, dass diese für die starke Operatortopologie

in die Theorie der bi–stetigen Halbgruppen passen.

In Abschnitt 3.5 betrachten wir adjungierte Halbgruppen (siehe [BR79], [Nee92]) auf

dem topologischen Dual X ′ eines Banachraumes X unter der Annahme, dass die ur-

sprüngliche Halbgruppe auf X stark stetig ist. Unter diesen Annahmen ist jede sol-

che adjungierte Halbgruppe bi–stetig bezüglich der schwach?–Topologie. Weiter cha-

rakterisieren wir Mackey–stetige adjungierte Halbgruppen, die bi–stetig bezüglich

der Mackey–Topologie auf X ′ sind.


