
Mobility Studies on Siloxane–Based Inorganic–Organic Hybrid

Polymers by High Resolution Solid and Suspension State NMR

Techniques

and

Analysis of Dynamic Parameters Derived by NMR Spectroscopy

via a Neural Network

***

Mobilitätsstudien an anorganisch–organischen Hybridpolymeren

auf Siloxanbasis mittels Techniken der hochauflösenden

Festkörper– und Suspensions–NMR–Spektroskopie

und

Analyse NMR–spektroskopisch ermittelter dynamischer

Parameter mit Hilfe eines Neuronalen Netzwerkes

DISSERTATION

der Fakultät für Chemie und Pharmazie

der Eberhard–Karls–Universität Tübingen

zur Erlangung des Grades eines Doktors

der Naturwissenschaften

2001

vorgelegt von

Frank Höhn



Tag der mündlichen Prüfung: 21.12.2000

Dekan: Prof. Dr. H. Probst

1. Berichterstatter: Prof. Dr. E. Lindner

2. Berichterstatter: Prof. Dr. H. A. Mayer



Die vorliegende Arbeit wurde am

Institut für Anorganische Chemie II der

Eberhard–Karls–Universität Tübingen

unter der Leitung von Prof. Dr. rer. nat. Ekkehard Lindner

angefertigt.

Meinem Doktorvater

Herrn Prof. Dr. Ekkehard Lindner,

danke ich herzlich für die interessante Themenstellung,

die Bereitstellung ausgezeichneter Arbeitsbedingungen,

für wertvolle Anregungen und Diskussionen

sowie für sein stetes Interesse an dieser Arbeit.



Für meine Eltern, für Elke und meinen Bruder



Mein herzlicher Dank gilt Herrn Priv.–Doz. Dr. Hermann A. Mayer für die in allen Belangen

freundschaftliche Zusammenarbeit und stete Hilfsbereitschaft, zahlreiche fruchtbare

Diskussionen sowie Zuspruch und Motivation in Stunden der wissenschaftlichen Not.

Herrn Prof. Dr. Klaus Albert und allen Mitgliedern seines Arbeitskreises danke ich für die

gute Kooperation in der NMR Abteilung.

Herrn Dipl.–Inform. Thomas Hermle danke ich für die gute Zusammenarbeit, das geduldige

Anfertigen einer Vielzahl von Kohonen Karten und das Ertragen von noch mehr

Änderungswünschen.

Ich danke den 'Festkörper–NMR–Spektroskopikern' Dr. Andreas Baumann, Dr. Joachim

Büchele, Dr. Andreas Jäger und Dr. Theodor Schneller für wichtige und richtige Antworten

auf viele Fragen zur Spektrometerbedienung und vor allem Herrn Walter Schaal für die

Hilfsbereitschaft und das fachkundige Behandeln kranker Geräte in den Festkörper–NMR

Stationen.

Herrn Dr. Klaus Eichele möchte ich für die ständige Bereitschaft zu hilfreichen Diskussionen

über alle Aspekte der NMR Spektroskopie danken.

Frau Dr. Monika Förster danke ich für die Freundschaft im und um das Labor, ihrem 'eigenen'

(guten!) Geschmack in Layoutfragen, harte Begegnungen im Squash–Court und nicht zu

knapp für moralische Unterstützung.

Den ehemaligen 'Labormitinsassen' von 8M14 Dipl. Chem. Christoph Ayasse, Dr. Matthias

Günther, M. Sc. Monther Khanfar, Dr. Stefan Pautz und Dr. Markus Schmid für ein

ausgezeichnetes Arbeitsklima, wertvolle Diskussionen (sinniger und manchmal unsinniger

Themen) am Abzug und viele Glasgeräte.

Den Herren M. Sc. Monther Khanfar, Dr. Markus Schmid, Dr. Robert Veigel und Dr.

Joachim Wald 'danke' ich für "Erholung" im Computerraum und am Billardtisch.

Ferner möchte ich den Mitgliedern der Montags–Fußballgruppe M. Sc. Samer Al–Gharabli,

Dipl. Chem. Christoph Ayasse, Dipl. Ing. FH Stefan Brugger, Dr. Matthias Günther, Dr.



Thomas Leibfritz, Dr. Markus Mohr, Dipl. Chem. Thomas Salesch, Dr. Joachim Wald und M.

Sc. Ruifa Zong für das Aufhalten gegnerischer Konter, Steilpässe und meistens schmerzfreies

Fußballspielen danken.

Des weiteren danke ich Frau Roswitha Conrad, Frau Heike Dorn, Herrn Dr. Hans–Dieter

Ebert, Frau Angelika Ehmann, Frau Barbara Saller und allen anderen technischen und

wissenschaftlichen Angestellten, die am Gelingen dieser Dissertation Anteil hatten, für die

gute Zusammenarbeit und die freundschaftliche Atmosphäre im Arbeitskreis.

Nicht zuletzt möchte ich mich bei allen anderen, nichtgenannten Kolleginnen und Kollegen

der Arbeitskreise Kuhn, Lindner, Mayer und Nagel für das gute Klima in der Anorganik II,

die ständige (gefragte und nicht gefragte) Diskussionsbereitschaft und für viele erholsame

Stunden im Kaffeeraum und in der Cafeteria danken.

Mein ganz besonderer persönlicher Dank gilt meiner Freundin Elke, die mich auch in den

schwersten Momenten immer getragen und damit den größten moralischen Beitrag zum

Gelingen dieser Doktorarbeit geleistet hat.



Contents i

Contents

1. Introduction.............................................................................................................1

2. General Section – Materials and Methods .............................................................5

2.1.Materials and Methods............................................................................................ 5

2.1.1. Materials........................................................................................................ 5

2.1.2. Methods......................................................................................................... 6

2.1.2.1. Solid State NMR Spectroscopy.......................................................... 6

2.1.2.2. Suspended State NMR Spectroscopy ................................................. 9

2.1.2.3. Dynamic Deuterium NMR Spectroscopy ......................................... 10

2.1.2.4. Computational Methods................................................................... 11

3. General Section – Discussion ................................................................................22

3.1.Mobility Studies on Inorganic–Organic Hybrid Polymers ..................................... 22

3.1.1. 29Si CP/MAS NMR Spectroscopy................................................................ 22

3.1.2. 13C and 31P CP/MAS NMR Spectroscopy..................................................... 25

3.1.3. Temperature Dependent T1rH Measurements................................................ 28

3.1.4. Dynamic 2H NMR Spectroscopy.................................................................. 33

3.1.5. 1H HR/MAS and 13C CP/MAS NMR Spectroscopy in the Suspended State . 35

3.1.6. Dynamic 1H SPE/MAS NMR Spectroscopy................................................. 40

3.2.Evaluation of NMR Spectroscopic Derived Dynamic Parameters by Kohonen's Self

Organizing Feature Map ....................................................................................... 48

4. Conclusions............................................................................................................57

4.1.Mobility Studies on Inorganic–Organic Hybrid Polymers ..................................... 57

4.2.Evaluation of NMR Spectroscopic Derived Dynamic Parameters.......................... 57

5. Experimental Section ............................................................................................58

5.1.Solid State NMR Measurements ........................................................................... 58

5.2.Suspension State NMR Measurements .................................................................. 58

6. References..............................................................................................................67



Contentsii

7. Summary.....................................................................................................................67



Abbreviations and Definitions iii

Abbreviations and Definitions

2D Two–dimensional

A Peak area (synonymous with I)

ANN Artificial Neural Network

ART Adaptive Resonance Theory

ASCII American Standard Code for Information Interchange

BET Brunauer–Emmet–Teller (determination of surfaces by adsorption of nitrogen)

CP Cross–polarization

D D type silicon atom (two oxygen neighbors)

DCM Dichloromethane

Et2O Diethyl ether

EtOH Ethanol

EXAFS Extended X–ray Absorption Fine Structure (spectroscopy)

Fn Functionality

g Grams

HPDEC High power decoupling

HR High resolution

Hz Hertz

I Intensity of the NMR signal

K Kelvin

kHz Kilohertz

MAS Magic–Angle–Spinning

MeOH Methanol

MHz Megahertz

ms Millisecond

NMR Nuclear Magnetic Resonance

PC1 Principle Component 1

PC2 Principle Component 2

PCA Principle component analysis

PEG Polyethylene glycol

ppm Parts per million

Q Q type silicon atom (four oxygen neighbors)

SOM Self–Organizing Feature Map
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SPE Single pulse excitation

T T type silicon atom (three oxygen neighbors)

T1rH Proton spin–lattice relaxation time in the rotating frame

TC (Hartman–Hahn) Contact time

TXH Cross–polarization constant of the heteronucleus X

THF Tetrahydrofuran

WISE Wideline Separation (NMR spectroscopy)

z Spacer length (number of methylene units)

Greek Letters:

d Chemical shift

µ Mikro

n Frequency

t Time delay

For editorial reasons the punctuation signs '.' and ',' in Tables 2 – 20 and in the diagram

containing Figures 8 – 10, 12, and 19 – 24 are used synonymously.
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1. Introduction

One of the most important advantages of homogeneous catalysis is the possibility to

control conversions and selectivities towards the desired products. The ambition to transfer

these properties to supported catalysts in order to facilitate the separation of the reaction

products from the catalyst has not been achieved in a satisfactory way. The severe

problems of leaching of the catalyst from the polymer backbone have not been solved yet.1

In addition, the knowledge about the nature of reactive centers is mostly empirical. A

considerable improvement of the benefits in the combination of homogeneous and

heterogeneous catalysis was obtained by introducing the concept of the interphase, which

is derived from reversed phase chromatography.2–4

Interphases are systems in which a stationary phase and a mobile component penetrate

each other on a molecular scale without forming a homogeneous phase. In ideal interphase

regions reactive centers remain highly mobile and simulate the properties of a solution.

Simple recovery of catalysts by filtration and a control of activity and selectivity are

guaranteed, the leaching is largely reduced, and the reactivity can be modified by the

employment of copolymers.5

The sol–gel process6 is a versatile method capable to generate inorganic–organic

hybrid polymers with excellent swelling abilities and high accessibility for even large

substrates. If transition metal complexes are provided with T–silyl functionalities they can

be subjected to a sol–gel process to yield stationary phases.7 They consist of an inert

polysiloxane matrix, a flexible spacer and the reactive center. The mobile phase is a

gaseous, liquid or dissolved reactant or simply a solvent. The matrix located transition

metal complexes are securely incorporated into the hybrid polymer and sufficient swelling

enables the accessibility of the reactive centers.
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T–functionalized silanes of the type Fn–Si(OMe)3 serve for the generation of

stationary phases, which were subjected to the sol–gel process with or without co–

condensing agents.6–11 The functional group Fn generally represents either a ligand or a

complex and is distributed statistically across the entire carrier matrix.

Co–condensing agents are taking over the task to control the density and distance of

the reactive centers and to eventually avoid leaching.6,10,12,13 They are the components

which modulate the stationary phase from rigid to highly mobile and are also responsible

for the porosity and swelling ability of the material. Frequently applied co–condensing

agents are siloxanes such as Si(OEt)4 (Q0),14–16 MeSi(OMe)3 (T0),14,15 or Me2Si(OMe)2

(D0).14,15,17 Although copolymers with D groups reveal the desired high mobility in

interphases, they have the disadvantage to be washed out during the sol–gel process.

However, copolymers with Q groups are characterized by complementary properties. They

are rigidly anchored within the matrix and hence cannot be washed out, but they lack the

necessary mobility. By employing D–bifunctionalized silanes of the type

Me(MeO)2Si(CH2)zSi(OMe)2Me (D0–Cz–D0) recently the combination of the advantages

of D and Q co–condensing agents was successful. The resulting copolymers revealed an

optimum of cross–linkage and swelling abilities and cannot be washed out of the polymer

matrix.18–22 Novel specially designed D– and T–functionalized co–condensing agents of

the type of R'(MeO)2Si–(CH2)z–(C6R4)–(CH2)z–Si(OMe)2R' (R = H, D; R' = Me, OMe; z =

3, 4) were synthesized in order to further improve the swelling abilities of inorganic–

organic polymers and to control possible diffusion problems of large molecules.23 Very

recently similar systems, however, with less methylene units, were published by Corriu et

al. and Carr et al..24 –28

As the polymers described above are of completely amorphous nature X–ray crystal

structure analysis is not applicable to characterize their structures. The main tool to

investigate, characterize, and quantify the inorganic–organic hybrid polymers is the solid
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state NMR spectroscopy. The mobilities of polymers in the solid state and in the suspended

state, i. e. in a real interphase, can be determined and evaluated by employing dynamic

NMR spectroscopic experiments, i.e. relaxation time measurements in the solid and the

suspended state.

It is clear that the number of parameters and properties obtained by NMR

spectroscopy and other experimental methods (EXAFS, BET, etc) increases with each new

material designed. This complicates a comparison of these materials with common analytic

and statistic methods. In certain cases Artificial Neural Networks (ANNs) are better suited

to undertake this task, in fact they have been successfully used in chemistry for pattern

recognition and multivariate data analysis.29 Since the beginning of the 1980s ANNs have

become a rapidly growing field in computer science and at present a wide range of

different ANN algorithms and principles are available.30

All ANNs acquire knowledge about a certain problem from studying a set of data –

called the training data set. Two fundamentally different learning strategies can be applied:

supervised and unsupervised learning. In the first case, a set of corresponding correct

answers (desired outputs) has to be presented for the training data set. Hence the learning

procedure can employ this knowledge (that has to be possessed in advance). One of the

best known neural networks, the multi layer perceptron with error backpropagation (BPN)

follows this strategy.31 For unsupervised learning, no prior knowledge is utilized in the

training process. All information have to be extracted from the data automatically.

Adaptive Resonance Theory Networks (ART) and Kohonen's Self–Organizing Feature

Map (SOM) are examples for self–organizing unsupervised neural networks.32

In contrast to common statistical methods, ANNs are not restricted to linear

correlations or linear subspaces. They can take into account nonlinear structures and

structures of arbitrarily shaped clusters or curved manifolds. Therefore they can be applied
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effectively and efficiently for classification (identifying objects), prediction (modeling of

functional correlation), and visualization (reducing dimensions).

In the first part of this thesis the mobilities of new inorganic–organic hybrid polymers

in the solid and in the suspended state will be investigated and correlated with its physical

properties, particularly with the resulting cross–linkage. In the second part the application

of a non–supervised neural network, the so–called Kohonen's Self Organizing Feature Map

(SOM), is described to work as a tool, to visualize structure and similarities in NMR

relaxation time data sets, that characterize stationary phases that were synthesized in the

work groups of E. Lindner and H. A. Mayer. The results of this visualization are used to

compare inorganic–organic hybrid polymers that comprise different structural features and

show different mechanical properties. Based on cross–linkage (T0 – T3, D, T, and Q) and

NMR relaxation time data (TPH, T1rH) correlations of these materials are extracted, which

were not obvious beforehand.
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2. General Section – Materials and Methods

2.1. Materials and Methods

2.1.1. Materials

A perusal of Table 1 shows the diversity of the reactive centers, the spacers and the

polysiloxane matrices, which were prepared over the last years.7,15,22,23,52–55 The phosphine

ligands range from bulky to less sterically hindered mono– (1 – 3, 36, 46), bis– (70), and

trisphosphines (49) linked via one, two, and three hydrocarbon chains of different lengths,

respectively, to the polymer. The metal complexes cover the coordination geometries of cis

and trans square planar and octahedral (28, 48, 64). Moreover the metal centers are

connected to one, two, and three phosphines, respectively. The spacers not only differ in

their lengths; they also vary in their shape and polarity (alkane, PEG)(25, 52). All these

materials have been synthesized by more or less the same hydrolytic sol–gel routes, but

following the necessities of solubility of the transition metal complexes, these sol–gel

routes differ in the organic solvents employed. Commonly alcohols (MeOH, EtOH) or

ethers (THF, Et2O), rarely CH2Cl2 are applied. The utilization of solvents of different

polarity in sol–gel processing leads to hybrid polymers with different physical and possibly

different mechanical properties. In order to investigate the properties of the polymer

matrices in dependence on the solvent for the sol–gel process and the type of the linker (D

or T group) new deuterium labeled co–condensing agents have been synthesized.55

Following two different sol–gel routes, employing MeOH and THF as solvents,

respectively, they yield the inorganic–organic hybrid polymers 80 – 83. In an earlier work

similar systems (73 – 79) have been prepared for the first time, in order to investigate their

suitability as new co–condensing agents with new swelling capabilities.23
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2.1.2. Methods

2.1.2.1. Solid State NMR Spectroscopy

The inorganic–organic hybrid polymers presented in Table 1, are prepared by

hydrolytic sol–gel processes and are of amorphous nature. Thus solid state NMR

spectroscopy is the ideal tool to reveal structural and dynamic properties of these systems.

The application of multinuclear CP/MAS NMR experiments allows the characterization of

the structure of the polymer backbone, the local surroundings of the metal centers, and the

functional groups of the ligands.33–35 Considering the polymers introduced in Table 1

commonly the spin ½ nuclei 13C and 29Si – representing the polymer backbone – and 31P –

representing the reactive centers – are the subjects of investigations. By determination of

dynamic NMR parameters it is possible to quantify the solid state NMR spectra.7,36 The

results of dynamic NMR measurements permit an insight into the degrees of hydrolysis

and condensation of the polymer network and the quality of the sol–gel process applied.

In order to monitor the mobility of dry polymers measurements of the proton spin–

lattice relaxation time in the rotating frame T1rH are a common task.37 This parameter

covers a temporal range of a few milliseconds and corresponds to molecular motions in the

kHz region. It is determined by multinuclear (13C, 29Si, or 31P) CP/MAS NMR experiments

in which spin lock times are varied. T1rH can be calculated by fitting the obtained signal

intensities I(t) in dependence of the spin-lock time t of the corresponding nucleus to eq.

(1).38

HT
eII r

t

t
1)0()(

-

= (1)

If the sample polymer is built up homogeneously strong dipole–dipole coupled

protons throughout the whole system can be assumed and relaxation should be controlled

by a spin–diffusion mechanism.36,39–41 In that case the determined T1rH value will be

uniform for all protons throughout the sample.
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To obtain precise information about the mobility of molecules or molecular fragments

by examining T1rH or other relaxation times (e.g. T1, T2) the corresponding correlation

times tR must be known. tR is the mean time between molecular reorientations.33 The

relationship between the correlation time tR and the relaxation times (T1, T1rH, etc.) is

given by the correlation time curve (Figure 1).33,36,41 For temperature dependent relaxation

time measurements two cases have to be distinguished. In the slow motion regime of the

correlation time curve increasing temperatures correspond with decreasing relaxation

times. However, in the fast motion regime the relaxation times increase with rising

temperature. Therefore, temperature dependent measurements of the appropriate relaxation

time (in most cases this will be T1rH or T2) are a necessity, in order to compare the

mobilities of different polymers on a qualitative basis.

Figure 1. General behavior of relaxation times as functions of temperature. T1 is the

longitudinal or spin lattice relaxation time, T2 is the transversal or spin spin relaxation time,

T1D is the T1 relaxation in the dipolar field HD (n1 and n2 are different spectrometer

frequencies: the lower the spectrometer frequency the more the minimum of the T1 curve

(or of any other relaxation time curve) shifts to lower temperatures).33

Another parameter which reflects the mobility of a given compound is the cross–

polarization constant TXH for the heteronuclei X being under investigation.36 Figure 2

demonstrates schematically the evolution of a signal of a heteronucleus in a cross–
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polarization NMR experiment in dependence on the contact time. The signal increase is

determined by TXH – which expresses equally the magnetization speed – while the signal

decrease is determined by T1rH. The cross–polarization constant TXH is determined in the

so called 'variable contact–time experiment'.42 The quality and the speed of the

magnetization transfer from the abundant proton spin system to the dilute heteronuclei spin

system depends mainly on the amount of protons, their distance to the heteronuclei, and the

mobility of the functional group containing the heteronucleus. An estimation of the

mobility of two functional groups, therefore, is allowed only, if similar proton

surroundings are present. With increasing mobility the magnetization transfer becomes

slower, as a consequence of decreasing proton dipole–dipole interactions in the sample.

Thus higher TXH values are indicating a higher mobility.43,44

t

A
T1rH

TXH

TC

Figure 2. Schematic plot of signal intensity A versus time t in a cross polarization (CP)

NMR experiment.

In order to quantify the 29Si NMR spectra, the real signal intensities of the siloxane

subspecies of the investigated polymers (D0 – D2, T0 – T3, and Q1 – Q4)17 must be

calculated by eq. (2). The parameters T1rH, TSiH, and the signal intensities in dependence of

the contact time I(TC) have to be determined first by the above–mentioned dynamic NMR

experiments.42

( )
( )

( )SiHCHC TTTT

HSiH
C ee

TT

I
TI --

-

-

=

r

r

1

1

0

1
(2)
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In a subsequent step the degrees of condensation of the different silyl–functionalities

D, T, and Q are calculated.7,18,45

2.1.2.2. Suspended State NMR Spectroscopy

NMR spectroscopy in interphases, which means a suspended state, gains increasing

interest, because of the possibility to record spectra in a 'real' interphase. If sufficient

swelling abilities of the polymers are assumed it is possible to record 1H NMR spectra with

very good resolution, which, in the best cases, reaches the resolution of spectra recorded in

homogenous solutions.46

The necessary equipment to record NMR spectra in the suspended state is the same

that is used for recording solid state NMR spectra (see Experimental Section). 1H high

resolution MAS spectra are recorded with a simple single pulse excitation sequence and

medium fast magic angle spinning frequencies (~ 4000 Hz). By suspending the polymers

in any kind of solvent that induces swelling the dipole–dipole interactions between the

protons in the polymers are largely reduced. As a consequence the relaxation mechanisms

are no longer controlled by spin–diffusion; this means on the one hand that resolved

spectra with narrow line widths can be recorded, and on the other hand that for different

proton sites in the polymers different relaxation rates can be expected. Since swelling of

inorganic–organic hybrid polymers is less distinct compared to pure organic polymers,

week proton dipole–dipole interactions are always present. This can be utilized to perform

CP/MAS NMR experiments on interphases in order to record signals of 13C, or 31P sites.

The advantage of CP/MAS over single pulse HPDEC NMR experiments in this special

case is that signals of heteronuclei of the employed solvent are not recorded because of the

lack of a magnetization transfer to the nuclear spins of these solvent molecules.
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2.1.2.3. Dynamic Deuterium NMR Spectroscopy

2H NMR spectroscopy is a well-established technique for the evaluation of molecular

motions in various types of solids. The deuterium nucleus has a spin of 1 along with a

finite nuclear quadrupole moment. The interaction of the quadrupole moment with the

electric field gradient of the surrounding electrons gives rise to a perturbation of the

Zeeman levels which results in two transitions of different energies. In the rigid limit case,

i.e. in the absence of any molecular motion, the corresponding transition frequencies are

given by47–49

( )
2

2 2
0

3
3cos -1- sin cos 2

8

e qQ

h
n n q h q j= ± (3)

e2qQ/h and h are designated as quadrupolar coupling constant (typically 186 kHz for

an aromatic C–D bond) and the asymmetry parameter, respectively. q and j are the Euler

angles which define the orientation of the C–D bond direction with respect to the external

magnetic field B0. In a polycrystalline (rigid) solid the summation over all orientations of

the C–D bond direction results in a typical Pake pattern, as shown in Figure 3. The distance

between the perpendicular singularities is approximately d = 138 kHz (d = ¾ e2qQ/h).

Molecular motions with rate constants higher than 103 s-1 are accompanied by distinct

lineshape changes which reflect directly the type and time–scale of the underlying

motion(s). For instance, a 180o flip of a deuterated phenyl ring gives rise to a characteristic

'fast-exchange limit' 2H NMR spectrum (with k ³ 108 s-1), as demonstrated in Figure 3.



General Section – Materials and Methods 11

D

DD

D

d

     

d /4

d

5d /4

Figure 3. Typical lineshapes for a static sample (left) and 180° phenyl ring flips (right).

2.1.2.4. Computational Methods

To analyze and visualize the NMR data set comprised in Table 2, a program (kd2)

written in C was employed, implementing the well–known self–organizing feature map of

Kohonen. The NMR data were saved as ASCII and some standard data preprocessing

techniques were applied – standardizing and scaling. Some of the parameters reveal larger

values than others and it was assured, that this did not affect the evaluation – all parameters

had to be treated equally. Therefore, the mean and standard deviation of all parameters

were computed. The corresponding mean was subtracted from each value and the result

was divided by the standard deviation subsequently. After standardization each parameter

had a mean of zero and a standard deviation of one. For further processing, all values were

scaled to the desired input range of the neural network.

These data were read by 'kd2' and used to train the self–organizing feature map.

Despite the term “self–organizing”, some parameters have to be supplied to the program.

The most important parameter is the size of the desired map. For classification purposes
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there are some rules of thumb on how big (or small) the map should be. If the map is used

for visualization only, much larger maps have to be employed. Smaller maps can be

applied to verify the results afterwards. Other possible parameters include the adaptation

function, adaptation height and adaptation width at the beginning and at the end of the

training and the number of training cycles. For each of these parameters standard

parameters can be used. Best results are obtained, if the adaptation height and adaptation

width are decreased exponentially during the training.50 The resulting map is saved as

ASCII and then visualized by other programs. To analyze the quality of the maps, the

programs 'pks' and 'winnerdist' were utilized to produce component–maps, u–matrix–maps,

and distance–maps. Regarding these derived maps, statements are possible whether any

folding or defects are present and how well the compounds are distributed or separated on

the map.

In order to better visualize the inherent structures of the Kohonen maps the big and the

small map, each, have been combined with the corresponding distance–maps (Figures 25

and 28, chapter 3.2.). These distance–maps are derived of the Euclidean distances between

all the neurons on the Kohonen map. Each compound on this map is described by ten

parameters (Table 2). This can be regarded as a vector in a ten-dimensional data space

where similar compounds are found close to each other. To visualize the neighborhoods

and distribution in this data space, a mapping is required that projects the data on a two–

dimensional plane while preserving the neighborhood relationships. The Kohonen Self

Organizing Feature Map provides such a nonlinear and topology–preserving mapping.

Each position (neuron) on that two–dimensional map is associated with a weight vector

(also called codebook–vector) and represents a region in the data space. Neurons that have

the same distances on the map can have different distances in the data space. To visualize

this fact, gray levels are introduced between each two neighboring neurons on the map.

These gray levels correspond to the distances of  the neurons in the data space. Usually
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these distances are measured by the Euclidean distances. Therefore, not only information

about neighborhoods (similarities) in the data space, but also about the distances can be

visualized.

To have a closer look on the distances a similar method is the so–called u–matrix

(Unified Matrix).51 If, for every neuron of the SOM, the distances to the eight immediate

neighbors are summed up, a measure of dissimilarity between neurons in the ten–

dimensional data space is obtained. This sum of distances for every neuron can be

displayed by different gray levels and expressed as the u-matrix. Black neurons on the u-

matrix represent large distances or borders between regions in the data space, while white

neurons represent regions where neurons are located close to each other in the data space.

To justify the use of neural networks the results were compared with the most

common data evaluation method – the principle component analysis (pca). These

evaluations have been made using the commercially available product 'SPSS' with the

same preprocessed data as input.
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Table 1. Inorganic–organic hybrid polymers

entry chemical structure ideal
stoichio-

metry

ref.

1

ligand A:  

P
O

H3C
(CH2)3

Si

Ph

co-condensed with Si(OCH3)4

T:Q = 1:2 7

2

ligand B: 

P
(CH2)3O

Si

Ph

co-condensed with Si(OCH3)4

T:Q = 1:2 7

3

ligand C: 
P

O (CH2)3

O

Si

Ph

co-condensed with Si(OCH3)4

T:Q = 1:2 7

4

complex I : 

Ru
OC

H Cl

P

P~O

P~O

Si

Si
O

Si

with ligand A

co-condensed with Si(OCH3)4

T:Q = 1:6 7

5 complex I  with ligand: B, co-condensed with Si(OCH3)4 T:Q = 1:6 7

6 complex I  with ligand C, co-condensed with Si(OCH3)4 T:Q = 1:6 7

7

ligand A: 

P
O

H3C
(CH2)3

Si

Ph

co-condensed with (H3C)2Si(OCH3)2

T:D = 1:1.5 15

8

ligand D: 

P
O

H3C
(CH2)6

Si

Ph

co-condensed with (H3C)2Si(OCH3)2

T:D = 1:1.1 15

9

ligand E: 

P
O

H3C
(CH2)8

Si

Ph

co-condensed with (H3C)2Si(OCH3)2

T:D = 1:1.4 15

10 ligand A co-condensed with (H3C)Si(OCH3)3 T:T = 1:2 15

11 ligand D co-condensed with (H3C)Si(OCH3)3 T:T = 1:2 15

12 ligand E co-condensed with (H3C)Si(OCH3)3 T:T = 1:2 15
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Table 1. Continuation

13 ligand A co-condensed with Si(OCH3)4 T:Q = 1:2 15

14 ligand D co-condensed with Si(OCH3)4 T:Q = 1:2 15

15 ligand E co-condensed with Si(OCH3)4 T:Q = 1:2 15

16 complex I  with ligand A co-condensed with (H3C)2Si(OCH3)2 T:D = 3:4.6 15

17 complex I  with ligand D co-condensed with (H3C)2Si(OCH3)2 T:D = 3:3.3 15

18 complex I  with ligand E co-condensed with (H3C)2Si(OCH3)2 T:D = 3:1.5 15

19 complex I  with ligand A co-condensed with (H3C)Si(OCH3)3 T:T = 1:2 15

20 complex I  with ligand D co-condensed with (H3C)Si(OCH3)3 T:T = 1:2 15

21 complex I  with ligand E co-condensed with (H3C)Si(OCH3)3 T:T = 1:2 15

22 complex I  with ligand A co-condensed with Si(OCH3)4 T:Q = 1:2 15

23 complex I  with ligand D co-condensed with Si(OCH3)4 T:Q = 1:2 15

24 complex I  with ligand E co-condensed with Si(OCH3)4 T:Q = 1:2 15

25 ligand A co-condensed with co-condensing agent a:

Si Si(CH2)6

CH3

H3C

T:D = 1:1 18

26 ligand A co-condensed with co-condensing agent b:

Si Si(CH2)8

CH3

H3C

T:D = 1:1 18

27 ligand A co-condensed with co-condensing agent c:

Si Si(CH2)14

CH3

H3C

T:D = 1:1 18

28

complex II : 

Rh

P~O

P

CO

Si

O
Si

Cl

with ligand A

co-condensed with co-condensing agent a

T:D = 2:1 18

29 complex II  co-condensed with co-condensing agent a T:D = 1:1 18

30 complex II  co-condensed with co-condensing agent a T:D = 1:2 18

31 complex II  co-condensed with co-condensing agent a T:D = 1:4 18

32 complex II  co-condensed with co-condensing agent a T:D = 1:8 18

33 complex II  co-condensed with co-condensing agent a T:D = 1:16 18

34 complex II  co-condensed with co-condensing agent b T:D = 1:1 18

35 complex II  co-condensed with co-condensing agent c T:D = 1:1 18
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Table 1. Continuation

36

ligand F: 

Si

Si

P

O

CH3

(CH2)z

(CH2)z

co-condensed with co-condensing agent a, z = 3

T:D = 2:1 22

37

ligand G: 

Si

Si

P

O

CH3

(CH2)z

(CH2)z

co-condensed with co-condensing agent a, z = 6

T:D = 2:1 22

38 ligand G co-condensed with co-condensing agent a, z = 6 T:D = 1:1 22

39 ligand G co-condensed with co-condensing agent a, z = 6 T:D = 1:2 22

40

ligand H: 

Si

Si

P

O

CH3

(CH2)z

(CH2)z

co-condensed with co-condensing agent a, z = 8

T:D = 2:1 22

41 ligand K :

Si

Si

P

O

CH3

(CH2)z

(CH2)z

co-condensed with co-condensing agent a, z = 14

T:D = 2:1 22

42

complex III : 

Ru
PP

Cl

Si

Si

Si

Si
O O

with ligand F

co-condensed with co-condensing agent a

T:D = 4:1 22

43 complex III  with ligand G co-condensed with co condensing-agent a T:D = 4:1 22

44 complex III  with ligand H co-condensed with co condensing-agent a T:D = 4:1 22

45

complex IV : 

Ru
PP

NCCH3

Si

Si

Si

Si O

O

SbF6
-

with ligand G

co-condensed with co-condensing agent a

T:D = 1:1 22
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Table 1. Continuation

46

ligand L : 

Si

H
N C

O

H
N

P

co-condensed with co-condensing agent a

T:D = 1:5 52

47 ligand L  co-condensed with co-condensing agent d:

Si
Si

CH3 H3C

T:D = 1:5 52

48

complex VI : 

Ru
P
O O

P

Cl

Cl
Ph

CH3

Ph

H3C

SiSi (CH2)6(H2C)6

co-condensed with co-condensing agent d

T:D = 1:6 52

49

complex VII : 

P

CH2O

CH2OOH2C

P P
[M]

O

H
N

(CH2)3

N
H

(CH2)3

O

Si

Si

O

N
H

(CH2)3Si

co-condensed with itself, [M] = Mo(CO)3

T:Q = 1:0 53

50 complex VII  co-condensed with Si(OCH3)4 T:Q = 1:1 53

51 complex VII  co-condensed with Si(OCH3)4 T:Q = 1:4 53

52 complex VIII :

P

O

OO

P P
[M]

C
O

H
N

(CH2)3

O
C

N
H

(CH2)3

Si

Si

O
C

N
H

(CH2)3Si CH2(OCH2CH2)z(H2CH2CO)z H2C

CH2(OCH2CH2)z

co-condensed with itself, [M] = Mo(CO)3; z = 9

T:Q = 1:0 53

53 complex VIII  (z = 9) co-condensed with Si(OCH3)4 T:Q = 1:1 53

54 complex VIII  (z = 9) co-condensed with Si(OCH3)4 T:Q = 1:4 53

55 complex VIII  (z = 120) co-condensed with itself T:Q = 1:0 53

56 complex VIII  (z = 120) co-condensed with Si(OCH3)4 T:Q = 1:1 53

57 complex VIII  (z = 120) co-condensed with Si(OCH3)4 T:Q = 1:4 53

58 complex VIII  (z = 230) co-condensed with itself T:Q = 1:0 53

59 complex VIII  (z = 230) co-condensed with Si(OCH3)4 T:Q = 1:1 53

60 complex VIII  (z = 230) co-condensed with Si(OCH3)4 T:Q = 1:4 53
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Table 1. Continuation

61 complex VIII  (z = 270) co-condensed with itself T:Q = 1:0 53

62 complex VIII  (z = 270) co-condensed with Si(OCH3)4 T:Q = 1:1 53

63 complex VIII  (z = 270) co-condensed with Si(OCH3)4 T:Q = 1:4 53

64

complex IX : 

Si
PPh2

PPh2

Rh(CH2)3 SbF6
-

co-condensed with co-condensing agent d

T:D = 1:20 54

65

complex X: 

Si
PPh2

PPh2

Rh(CH2)6 SbF6
-

co-condensed with itself

T:D = 1:0 54

66 complex X co-condensed with co-condensing agent a T:D = 1:5 54

67 complex X co-condensed with co-condensing agent a T:D = 1:20 54

68 complex X co-condensed with co-condensing agent d T:D = 1:5 54

69 complex X co-condensed with co-condensing agent d T:D = 1:20 54

70

ligand L : 

Si
PPh2

PPh2

(CH2)6

co-condensed with co-condensing agent d

T:D = 1:5 54

71 ligand L  co-condensed with co-condensing agent d T:D = 1:10 54

72 ligand L  co-condensed with co-condensing agent a T:D = 1:10 54

73

co-condensing agent d: 

Si
Si

CH3
H3C

D:D = 1:1 23

74

co-condensing agent e: 

Si
Si

T:T = 1:1 23

75

co-condensing agent f: 

Si

Si
Me

Me D:D = 1:1 23

76 co-condensing agent d co-condensed with (H3C)Si(OCH3)3 D:T = 4:1 23

77 co-condensing agent e co-condensed with (H3C)Si(OCH3)3 T:T = 4:1 23

78 co-condensing agent f co-condensed with (H3C)Si(OCH3)3 D:T = 8:1 23

79 co-condensing agent d co-condensed with co-condensing agent e D:T = 1:1 23
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Table 1. Continuation

80

co-condensing agent g: 

Si
Si

Me
Me

D
D

D

D

sol-gel processed in MeOH

D:D = 1:1 55

81 co-condensing agent g sol-gel processed in THF D:D = 1:1 55

82

co-condensing agent h: 

Si
Si

D
D

D
D

sol-gel processed in MeOH

T:T = 1:1 55

83 co-condensing agent h sol-gel processed in THF T:T = 1:1 55

84

co-condensing agent g: 

Si
Si

D:D = 1:1 52
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Table 2. NMR Data of the compounds evaluated by the SOM

entry TPH T1rH (P) a) T1rH (Si) b) T0 c) T1 c) T2 c) T3 c) D d) T d) Q d) type e)

1 0.58 2.9 2.5 21.8 93.1 94.0 84.0 Q
2 0.23 4.4 3.7 25.9 66.7 91.0 82.0 Q
3 0.24 4.9 4.0 24.7 87.6 93.0 84.0 Q
4 0.22 5.8 5.5 32.3 68.8 86.0 83.0 Q
5 0.17 6.1 5.4 33.0 68.1 86.0 83.0 Q
6 0.18 6.2 5.4 32.3 61.5 83.0 81.0 Q
7 2.01 6.9 3.6 20.1 51.8 96.0 91.0 D
8 1.79 3.6 4.3 27.0 73.0 98.0 91.0 D
9 2.15 7.2 5.1 71.4 100.0 100.0 D
10 0.36 1.6 2.2 4.0 29.3 100.0 91.0 T
11 0.56 1.1 2.9 28.2 100.0 93.0 T
12 0.71 2.0 2.3 25.0 100.0 93.0 T
13 0.29 1.4 2.5 21.8 93.1 94.0 84.0 Q
14 0.32 1.4 1.6 25.7 69.5 91.0 86.0 Q
15 0.52 1.4 3.4 56.8 48.4 82.0 78.0 Q
16 0.22 3.8 6.0 2.4 37.4 41.4 88.0 83.0 D
17 0.2 4.3 5.1 7.5 56.7 85.1 82.0 84.0 D
18 0.23 4.5 5.1 16.7 100.0 91.7 80.0 78.0 D
19 0.2 2.8 5.2 19.6 58.9 100.0 82.0 T
20 0.21 5.6 5.4 3.2 58.1 100.0 87.0 T
21 0.20 4.1 5.2 7.4 77.8 100.0 83.0 T
22 0.23 2.6 5.5 6.5 32.3 68.8 86.0 83.0 Q
23 0.20 4.8 5.3 2.5 67.9 53.1 80.0 83.0 Q
24 0.20 4.9 5.0 39.7 36.6 83.0 80.0 Q
25 0.64 2.0 2.1 15.5 44.3 88.0 91.0 D
26 0.56 2.1 2.5 13.8 40.4 93.0 92.0 D
27 0.91 2.1 2.0 22.6 36.1 96.0 87.0 D
28 0.26 4.7 6.5 29.2 99.0 100.0 75.0 77.0 D
29 0.22 5.4 5.5 6.5 30.9 45.1 73.0 82.0 D
30 0.27 5.1 6.7 9.2 23.9 83.0 91.0 D
31 0.27 4.8 6.5 4.5 11.7 82.0 91.0 D
32 0.25 5.6 8.8 2.2 4.9 86.0 90.0 D
33 0.27 4.0 5.8 1.1 3.1 86.0 91.0 D
34 0.23 4.3 4.9 3.9 36.3 42.1 76.0 82.0 D
35 0.25 2.7 4.8 0.1 31.3 37.2 85.0 85.0 D
36 0.26 7.8 7.1 33.3 46.3 90.2 87.3 D
37 0.36 10.0 6.8 38.9 56.3 91.4 86.4 D
38 0.41 9.8 10.9 10.1 27.6 95.7 91.0 D
39 0.41 8.9 14.6 6.4 17.3 96.8 91.4 D
40 1.36 2.0 5.4 48.7 68.0 93.0 86.1 D
41 1.23 3.4 8.1 31.9 43.1 96.0 85.1 D
42 0.15 5.2 6.6 55.6 100.0 51.0 52.1 65.9 D
43 0.16 6.6 6.3 35.6 100.0 91.0 56.2 74.8 D
44 0.15 5.4 5.2 50.5 100.0 85.1 78.0 71.6 D
45 0.22 11.1 9.4 25.8 38.1 96.0 85.8 D
46 2.05 8.3 7.1 6.1 20.8 91.5 92.6 D
47 1.94 6.5 6.8 2.6 18.7 91.7 95.9 D
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Table 2. Continuation

48 0.39 7.8 7.8 7.8 10.1 98.6 85.5 D
49 0.54 5.8 5.5 48.0 92.9 100.0 41.5 49.3 T
50 0.45 6.9 5.3 21.0 44.2 47.7 2.1 42.3 94.8 Q
51 0.63 6.5 4.9 7.1 15.6 15.7 2.0 43.5 88.6 Q
52 0.95 5.1 2.6 9.8 39.4 59.2 100.0 73.0 T
53 0.43 6.9 2.3 8.9 39.4 61.4 84.1 71.4 83.7 Q
54 0.69 6.6 2.2 2.0 10.2 13.1 15.1 67.4 85.9 Q
55 0.48 1.2 2.5 2.9 37.3 100.0 89.9 T
56 0.48 1.4 2.0 3.9 51.1 100.0 87.3 88.5 Q
57 0.55 1.5 1.8 1.0 14.2 28.0 87.4 90.1 Q
58 0.37 1.3 1.6 100.0 100.0 T
59 0.53 1.9 1.5 7.4 100.0 97.7 89.6 Q
60 0.49 2.0 1.5 3.2 37.2 100.0 93.1 Q
61 0.75 1.4 1.6 100.0 100.0 T
62 0.64 1.9 1.6 100.0 100.0 89.8 Q
63 0.74 1.7 1.5 2.6 30.7 97.4 91.0 Q
64 0.74 7.6 5.6 13.3 4.3 83.3 75.1 D
65 0.20 15.0 13.7 93.1 100.0 83.8 T
66 0.93 12.0 12.7 12.5 9.8 85.5 81.5 D
67 0.65 10.2 8.0 2.9 7.7 76.1 90.9 D
68 0.61 10.1 11.8 19.7 17.7 89.4 82.4 D
69 0.26 6.8 3.3 6.6 100.0 100.0 D
70 0.42 0.6 1.4 11.2 26.6 90.0 88.0 D
71 0.41 1.73 2.6 13.4 14.2 84.0 81.0 D
72 0.32 0.46 2.3 2.1 9.4 88.0 94.0 D

a) Determined via 31P CP/MAS NMR experiments. b) Determined via 29Si CP/MAS NMR experiments.
c) T0 – T1: silyl subspecies, see ref.17,20 d) D, T, Q: degrees of condensation of the corresponding silyl

species. e) D, T, Q: D type, T type, or Q type co–condensing agent based polymers.
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3. General Section – Discussion

3.1. Mobility Studies on Inorganic–Organic Hybrid Polymers

3.1.1. 29Si CP/MAS NMR Spectroscopy

Most of the polymers listed in Table 1 (entries 1 – 45 and 49 – 72) have been

synthesized by other members of the group and were thoroughly characterized

earlier.7,15,18,22,53,54 Their NMR relaxation data are subject of the evaluation with a neural

network (see chapter 3.2).

The analysis of the 29Si CP/MAS spectra and the corresponding relaxation time

measurements (TSiH, T1rH) confirm the homogeneity of the inorganic–organic hybrid

polymers 46 – 48 and 73 – 84 (Table 1). In each case only one value for T1rH could be

determined, which is in agreement with earlier findings.7,15,18

[ppm]-120-80-40040

Si
Si

Figure 4. 29Si CP/MAS NMR spectrum of compound 84. Assignment of signals see text.

The chemical shift values at - 25.4 and - 34.3 ppm correspond to D group signals of

compound 84 (D1 and D2), the signals at - 71.1 and - 79.0 to T group signals of sol–gel

processed PhSiHCl2 (T
2 and T3) which is one of the educts of 84. The signals of the silyl
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species in the spectrum of compound 84 are shifted to higher field because of the phenyl

group attached to the silicon atom (Figure 4). In Table 3 the relative intensities of the

signals of the silyl subspecies, degrees of condensation, and if appropriate the degrees of

hydrolysis of the polymers 46 – 48 and 73 – 84 are listed.

Compounds 46 and 47 show high degrees of condensation for both the D and the T

type silyl species. In each case the solvent employed for the sol–gel process was THF.

Despite different co–condensing agents the degrees of condensation and the signals in the

29Si CP/MAS NMR spectra of 46 and 47 resemble each other very much. There seems to

be no differences concerning the kinetics in sol–gel processing of D0–(CH2)6–D0 or D0–

(CH2)3–C6H4–(CH2)3–D0 with functionalized silanes Fn–T. As a consequence the

properties of the materials behave in an equal manner (see also the results of the dynamic

NMR measurements).

Table 3. Relative I0 data, degrees of condensation and degrees of hydrolysis of the silyl
groups of polymers 46 – 48 and 73 – 84

compound relative I0 data
degree of
condensa-

tion

real
T/D
ratio

degree of
hydrolysis

[%]

D0 D1 D2 T1 T2 T3 D T

46 1.5 17.4 100 6.1 20.8 92 93 1:4.4
47 2.0 16.1 100 2.6 18.7 92 96 1:5.5
48 2.9 100 7.8 10.1 99 86 1:5.8 99
73 2.3a) 70.7a) 100a) 78 90
74 37.3a) 100a) 36.3a) 67 78
75 5.6a) 45.8a) 100a) 81 90
76 67.1 100 12.4 21.9 80 88 1:3.7 99
77 19.4a) 100a) 35.6a) 70
78 4.5a) 58.5a) 100a) 6.5a) 11.2a) 79 88 1:8.1 99
79 88.9 100 30.8 94.3 22.5 77 69 1:1.1 91
80 43.9 100 87
81 19.8 100 92
82 31.7 100 19.2 64
83 29.4 100 16.6 64
84 66,9 100 80

a) Determined via 29Si SPE/HPDEC Experiments.
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As an example for the successful application of 73 as a co–condensing agent serves

the sol–gel processed ruthenium complex 48. The initial stoichiometry of T:D = 1:6 could

be retained. The degrees of hydrolysis and condensation are very high, the solvent used in

the sol–gel process was THF.

Compounds 73 – 79 have been sol–gel processed in MeOH and show low to medium

degrees of condensation despite high degrees of hydrolysis (except 74). Nevertheless, the

initial stoichiometry of the polymers 76, 78, and 79 could be nearly retained after sol–gel

processing, that means neither D nor T groups were washed out. This is a necessary

prerequisite in order to successfully use the corresponding monomers as co–condensing

agents in 'chemistry in interphases'.

The degrees of condensation determined for 80 and 81 differ in dependence on the

solvent employed in sol–gel processing. Concerning D type co–condensing agents, THF

leads to higher degrees of condensation (usually > 85%), while the utilization of MeOH

results always in lower degrees of condensation (see also the other compounds listed in

Table 3). There seems to be no influence of the solvent on the degrees of condensation of

the T type materials 82 and 83. Mixed D/T copolymers always show higher values of

cross–linkage independent on the solvent applied for the sol–gel process.

Compound 84 is the most recent inorganic–organic hybrid polymer obtained by sol–

gel processing of the co–condensing agent [Ph(MeO)2Si(CH2)6Si(OMe)2Ph] synthesized

by T. Salesch.56 It is designed to increase the overall mobility of the polymers by

combining the flexibility of an alkyl chain with phenyl groups attached to the silicon

atoms in order to slightly reduce the cross-linkage by steric hindering. The material 84

shows a degree of condensation of 80% which is an average value for only D type

polymers. Since the sol–gel process with [Ph(MeO)2Si(CH2)6Si(OMe)2Ph] has been

carried out only in MeOH it is impossible to relate this degree of condensation to the

steric effect of the phenyl ring or the effective polarity of the silyl group. The sol–gel
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process with this educt must be carried out at least in another solvent such as THF, to

clarify this question.

The degrees of hydrolysis of the polymers 46 – 48 and 73 – 84 can be calculated

only by evaluation of the signals of the residual non hydrolyzed methoxy or ethoxy

groups in the 13C NMR spectra.57 For these calculations either the integration of HPDEC

spectra with a sufficient number of scans (> 1500) or the evaluation of spectra of a series

of contact time variation experiments can be applied.

3.1.2. 13C and 31P CP/MAS NMR Spectroscopy

13C CP/MAS NMR spectroscopy is a very useful tool to examine the organic

backbone of the polymer matrix. In the cases of compounds 46 – 48 and 73 – 84 the sol–

gel processes had no influence on the structural integrity of the organic functions of these

polymers. The 13C chemical shift values determined for these polymers in the solid state

correspond with the shifts recorded by high resolution solution NMR spectroscopy.23,56 In

Figures 5 – 7 the 13C CP/MAS NMR spectra of selected stationary phases are depicted

and the listings of the corresponding chemical shift values are given in Tables 4 – 6.

Despite the high degree of deuteration (> 80%) of 80 – 83 the magnetization transfer

from the proton to the carbon spin system is sufficient in order to cross–polarize the

aromatic carbon atoms. The signal intensities of the sites C6 and C7 did not suffer as it

can be verified in Figure 6.
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Figure 5. 13C CP/MAS NMR spectra of compounds 46 and 47 (see also Table 4).

Table 4. 13C chemical shift values of 46 and 47 a)

d 13C [ppm]

compound C1,
C1',
C3,
C3'

C2 C2' C4,
C4'

C5 C5' C6 C6',
C7

C7',
C8,

C12 –
C14

C9 C10,
C11

46 17.8 57.8 -0.3 23.1 42.3 33.0 156.7 139.0 133.2 118.5 128.4
47 17.8 57.7 -0.5 24.9 38.9 38.9 156.1 139.4 133.0 119.0 128.3

a) For labeling see Figure 5.
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Figure 6. 13C CP/MAS NMR spectrum of 80 (see also Table 5).

Table 5. 13C chemical shift values of 80

d 13C [ppm]compound
C1 C2 C3 C4 C5 C6 C7

80 49.6 -0.3 17.0 25.2 38.9 139.3 128.1
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Figure 7. 13C CP/MAS NMR spectrum of 84 (see also Table 6).
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Table 6. 13C chemical shift values of 84

d 13C [ppm]
compound

C1 C1' C2 – C4 C5 C6 C7

84 133.9 50.2 127.8 16.5 22.9 32.7

The 31P CP/MAS NMR spectra of 46 and 47 resemble each other very much. The

signals of the phosphorus atom are found at -6.3 ppm (46) and -6.7 ppm (47),

respectively. The 31P chemical shifts of these compounds are very close to that of

triphenylphosphine (~ -5 ppm in solution), which means that the urea group which is

located in the spacer of the phosphine ligand has no relevant electronic shielding effect

on the phosphorus atom. This is an important finding, since these ligands were designed

to transfer the properties of the soluble hydroformylation catalyst H(CO)Rh(PPh3)3 into

the interphase. The evidence of the catalytic activity and selectivity of the corresponding

'interphase'–Rh complex has to be brought by future experiments.

3.1.3. Temperature Dependent T1rrH Measurements

Multinuclear temperature dependent T1rH measurements in the solid state have been

applied to compounds 46, 47, and 73 – 84. This includes the detection of T1rH via 13C,

29Si, and 31P CP/MAS NMR experiments which allows an estimation of the mobilities of

different sites of the polymers. If the polymer being under investigation is built up

homogeneously the values for T1rH detected for different functional sites (via 13C, 29Si,

and 31P) must be in the same order of magnitude.

The temperature dependence of T1rH of the polymers 73 – 76 in the dry state is

depicted in Figure 8 (see also Table 7). The D type polymers 73 and 75 as well as the D/T

mixed type polymer 76 reside in the slow motion regime of the correlation time curve.

The T type compound 74 is just leaving the minimum of this curve tending to the left
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side, nevertheless an assignment to the slow or the fast motion regime is not possible

because of the only slight augmentation of T1rH in the observed temperature range.36
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Figure 8. Temperature dependence of T1rH of 73 – 76 (see also Table 7).

A correlation of the temperature dependent T1rH values with the degrees of

condensation, i.e. the cross–linkage is only possible for the D type polymers 73 and 75

and the mixed D/T copolymer 76. Mobility seems to decrease in the order 73 > 76 > 75,

which is consistent with the increase of the relative cross-linkage of the D silyl species

(73: 1.56, 76: 1.6, 75: 1.62).58 At first sight it seems to be impossible to compare 74 with

the former ones directly. Only the comparison of the T cross–linkage with the one

determined for the mixed type copolymer 76 is consistent with the found mobilities

(mobility: 74 > 76, relative cross–linkage: 2.01, 2.64, respectively).

Table 7. Temperature dependent T1rH data of 73 – 76

T1rH [ms] a) relative cross–linkage c)

Compound
294 K 303 K 313 K 323 K D T

73 3.68 2.97 2.21 1.60 1.56
74 3.45 3.60 4.48 b) 2.01
75 6.15 5.49 4.46 2.88 1.62
76 5.84 4.42 2.77 b) 1.60 2.64

a) Determined via 29Si CP/MAS NMR experiments. b) Not determined. c) See ref.58
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The behavior of compounds 80 – 83 is similar to the findings of compounds 73 and

74 (Figure 9 and Table 8). The D type polymers reside in the slow motion regime, while

the T type polymers occupy the minimum of the correlation time curve. Since 80 and 81

as well as 82 and 83 are the deuterated derivatives of 73 and 74, respectively, these

results demonstrate that the sol–gel process is reproducible and measurements and

evaluations of the relaxation times were set up correctly.
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Figure 9. Temperature dependence of T1rH of 80 – 83 (see also Table 8).

Table 8. Temperature dependent T1rH data of 80 – 83

T1rH [ms] a) relative cross–linkage
Compound

296 K 308 K 318 K 328 K D T

80 11.4 9.6 8.4 4.7 1.74
81 11.1 12.8 10.9 9.5 1.84
82 5.1 5.8 6.1 6.5 1.92
83 4.4 5.2 5.2 4.9 1.92

a) Determined via 29Si CP/MAS NMR experiments.

Compound 84 shows a lower relative cross–linkage than most of the other

copolymers (73, 75, 80, and 81) derived from D type co–condensing agents (Tables 7, 8,

and 9). The strategy of using a steric demanding group such as a phenyl ring in order to

reduce cross–linkage of the silyl species was successful. Polymer 84 resides in the slow
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motion regime of the correlation time curve but is tending towards its minimum (Figure

10). Compared to the former materials 80 and 81 the stationary phase 84 seems to be

more mobile in the dry state. As an example may serve the comparison of the 1H

SPE/MAS NMR spectra recorded of 73 (which is the non deuterated derivative of 80)

and 84 in the dry state under the same conditions (rot. freq. = 5000 Hz). The spectrum of

84 reveals a smaller spectral width than that one of 73 (Figure 11) which is in favor for

the higher mobility of 84.
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Figure 10. Temperature dependence of T1rH of 84 (see also Table 9).

Table 9. Temperature dependent T1rH data of 84

T1rH [ms] a) relative cross–linkage
Compound

294 K 320 K 355 K D T

84 6.7 3.7 3.1 1.6



General Section – Discussion32
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Figure 11. 1H SPE/MAS NMR spectra of 73 and 84 recorded under the same conditions.

The determinations of T1rH of 46 and 47 (Figure 12 and Table 10) in the dry state

have been carried out by 31P CP/MAS NMR measurements, in order to monitor the

mobilities of the phosphorus centers. According to the findings concerning the degrees of

condensation (Table 3) both polymers show a very similar dynamic behavior. On a

qualitative basis – by taking into account the slightly higher cross–linkage of the T

groups of 47 and the higher values of T1rH of 46 – one can assume that 46 is somewhat

more mobile than 47.
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Figure 12. Temperature dependence of T1rH of 46 and 47 (see also Table 10).

Table 10. Temperature dependent T1rH data of 46 and 47

T1rH [ms] a) relative cross–linkage
Compound

296 K 308 K 318 K 328 K D T

46 11.1 9.7 11.8 15.5 1.84 2.79
47 9.9 8.3 10.2 10.7 1.84 2.88

a) Determined via 31P CP/MAS NMR experiments.

3.1.4. Dynamic 2H NMR Spectroscopy

Dynamic deuteron NMR measurements of compounds 80 – 83 have been carried out

by the group of K. Müller, University of Stuttgart. Figure 13 shows four series of

temperature-dependent 2H NMR lineshapes for the inorganic–organic hybrid polymers

80, 81, 82, and 83. In the low temperature range, i.e. between 200 and 280 K, similar

lineshape changes are observed that can be attributed to 180° ring flip motions of the

deuterated phenylene rings. A closer inspection reveals distinct differences in the 2H

NMR lineshapes of the various samples depending on both the starting monomer and the

solvent used during the polymer synthesis. The additional spectral narrowing, observed at

temperatures above 280 K, indicate the onset of other motion(s) besides the ring flip

process.
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Figure 13. Experimental 2H NMR lineshapes in dependence of temperature of 80 – 83.

By comparing the 2H NMR spectra of 80/81 and 82/83 the influence of the

properties of the starting monomers can be estimated. It is found that in general the

spectral changes of the T type polymers 82 and 83 occur at higher temperatures than

those of the D type materials 80 and 81. In addition, the overall spectral widths of the

former samples are somewhat higher than those for the latter systems. Therefore, on a

qualitative basis, 82 and 83 appear to be less mobile than 80 and 81. This behavior is

attributed to the different cross-linkage of these stationary phases (Tables 3 and 8).

In addition, it is found that the solvents THF and methanol, that were used during the

sol–gel process, also have some effects on the observed 2H NMR lineshapes. The

influence of the solvent – although being relatively small – is mainly visible at

temperatures above 300 K. For instance, at 340 K the overall spectral widths of the

samples 80 and 82 (prepared in methanol) are smaller than the ones found in the

corresponding spectra of 81 and 83 (prepared in THF). This again indicates a somewhat
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higher mobility for the polymers synthesized in methanol than for those obtained from

sol–gel processing in THF. The absolute order of mobility of the polymers 80 – 83 now

can be stated; the mobility decreases in the sequence: 80 > 81 >> 82 > 83.

From lineshape simulations up to 240 K the 2H NMR signals of all polymers can be

reproduced assuming a 180° flip motion of the phenylene rings. In the case of the most

mobile polymeric matrix 80, the dramatic narrowing of the lineshape at temperatures

above 340 K leads to the assumption of additional motions – possibly an unhindered

reorientation process of the whole chain system.55,59

3.1.5. 1H HR/MAS and 13C CP/MAS NMR Spectroscopy in the Suspended State

If inorganic–organic hybrid polymers are subjected to solvents that are able to

induce swelling they enter an intermediate situation between the solid and the solution

state which is designated as an interphase. As a consequence the mobility of molecular

fragments and functional groups in the suspended state is increased exceeding by far the

mobility of the material in the solid state. Therefore NMR spectra recorded in suspension

of appropriate solvents (preferable deuterated NMR solvents) show a dramatic decrease

in linewidths and an increase of resolution. The reason for this behavior is the 'simulation'

of the solution state by fast motions of the polymer's functional groups carrying the

nuclear spins, which results in largely reduced dipole–dipole interactions of the NMR

active nuclei. The 1H single pulse excitation (SPE)/MAS spectra of 73 suspended in

CD2Cl2 and CD3OD and the corresponding spectrum in the dry state are presented in

Figure 14, in order to visualize this effect. Additionally, the influence of the polarity of

the solvent on the swelling capability of the polymer matrix is visible. As a medium polar

solvent dichloromethane (DCM) is able to induce a larger swelling of 73 than MeOH.

This results in a higher mobility of the molecular fragments of 73 in the former solvent

and in a better resolved 1H NMR spectrum. The assignment of signals to the
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corresponding functional groups is possible, especially in the case of 73 suspended in

CD2Cl2 (Table 11).
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73 in MeOH–d4
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73 in CD2Cl2
*

050 –50
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100 –100

Si

Si

Me

Me O

1

2

345

73 dry

Figure 14. 1H SPE/MAS spectra of 73 suspended in CD2Cl2 (top), MeOH–d4 (middle),

and in the dry state (bottom). *Solvent peaks; the solvent signal of CD3OD is truncated

(see also Table 11).
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Table 11. 1H chemical shift values of 73 suspended in CD2Cl2.

d 1H [ppm] a)

compound
H1 H2 H3 H4 H5 H arom.

73 3.3 0.1 0.5 1.6 2.4 6.9

a) For labeling see Figure 14 (top).

In Figure 15 the 1H SPE/MAS spectrum of 46 – as an example of a phosphine

functionalized copolymer – suspended in THF–d8 is depicted. The most mobile

functional groups of this material (methyl group of the D silyl species at 0 ppm, ethoxy

group at 1.2 and 3.6 ppm) give rise to signals, that can be assigned to the corresponding

sites easily.
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Figure 15. 1H SPE/MAS spectrum of 46 suspended in THF–d8.

As it was already mentioned (see chapter 2.1.2.2.), remaining dipole–dipole

interactions between the protons of the suspended polymers can be utilized in order to

perform 13C CP/MAS NMR experiments on these interphases. In Figure 16 the 13C

CP/MAS NMR spectrum of 47 (suspended in CD2Cl2) is depicted.
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Figure 16. 13C CP/MAS NMR spectrum of 47 suspended in CD2Cl2. 
*denotes rotational

sidebands.

The improved resolution compared with the spectrum recorded in the dry state

(Figure 5, bottom), especially in the aromatic region, is clearly visible.
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Figure 17. 13C 2D WISE NMR spectra of 75 dry (top) and suspended in CD2Cl2

(bottom).
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In order to visualize the gain of mobility if inorganic–organic hybrid polymers are

suspended in solvents of suitable polarity the 13C 2D WISE NMR spectra60 of 75 in the

dry state and suspended in DCM were recorded and are depicted in Figure 17. The

decrease of the linewidth in the 1H dimension averages to 50% which indicates a large

increase of mobility of the polymeric matrix.

The 13C CP/MAS NMR spectra of 80 – 83 suspended in DCM (Figure 18) visualize

the differences of the swelling capabilities of D and T type polymers. The D type

polymers 80 and 81 give rise to better resolved NMR spectra. This is the result of

decreasing 1H dipole–dipole interactions caused by larger swelling and a higher mobility

compared to the behavior of the T type materials 82 and 83.
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Figure 18. 13C CP/MAS NMR spectra of 80 – 83 suspended in CD2Cl2.
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3.1.6. Dynamic 1H SPE/MAS NMR Spectroscopy

Since the inorganic–organic hybrid materials 73 – 84 should serve as co–condensing

agents in the chemistry of interphases the knowledge about their dynamic behavior in the

suspended state is of great importance. Therefore, T1rH measurements of these materials

suspended in deuterated NMR solvents of different polarity (THF, DCM, and MeOH)

have been performed. Additionally the phosphine functionalized copolymers 46 and 47

have been investigated by the same methods.

The relaxation times T1rH determined for different functional sites of the above

mentioned suspended polymers are depicted in Figures 19 –24. Higher values of T1rH are

indicating a higher mobility. The determined values of T1rH in dependence on the

employed solvents and the investigated proton sites of the corresponding polymers are

listed in detail in Tables 12 – 19. As previously mentioned MeOH – as a polar solvent –

is not very well suited to induce swelling of the polysiloxane–based polymers 46, 47, 73,

75, and 80 – 83. This results in very poor spectral resolution. Therefore, signals in the 1H

NMR spectra that could not be resolved were excluded from T1rH evaluations.

In general it is found that the mobilities of the methyl groups (only in D type

polysiloxanes) and the non–hydrolyzed methoxy groups of the polymers increase most

when being suspended, as it can be verified for example in Figures 19 and 20.

Compounds 73 and 75 behave very similar, since they only differ in the length of the

aliphatic chains (Table 1). The overall mobility of 73 is somewhat higher than that of 75,

which is the result of the somewhat lower degree of condensation of 73 (Table 3).
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Figure 19. T1rH values of 73 in dependence of the 1H chemical shifts determined in

suspensions of different solvents (see also Table 12).

Table 12. T1rH data of 73 determined in suspension of different solvents

T1rH [ms]
solvent

6.9 ppm 3.3 ppm 2.4 ppm 1.6 ppm 0.5 ppm 0.1 ppm

DCM 32.0 48.4 24.3 a) 24.5 34.2
THF 38.1 57.7 28.8 30.8 28.8 39.5

MeOH 2.8 10.5 a) a) 1.8 4.8

a) Not determined because of poor swelling and resulting low spectral resolution.
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Figure 20. T1rH values of 75 in dependence of the 1H chemical shifts determined in

suspensions of different solvents (see also Table 13).
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Table 13. T1rH data of 75 determined in suspension of different solvents

T1rH [ms]
solvent

6.9 ppm 3.3 ppm 2.4 ppm 1.6 ppm 1.3 ppm 0.5 ppm 0.1 ppm

DCM 15.9 29.8 12.5 a) 14.2 14.2 19.7
THF 14.2 30.7 11.1 14.7 12.1 12.5 18.5

MeOH a) a) a) 1.2 a) a) a)

a) Not determined because of poor swelling and resulting low spectral resolution.

The stationary phases 80 and 81 (Figure 21 and Tables 14 and 15) show a slightly

different behavior than their non–deuterated derivative 73. The methylene group in the

middle of the aliphatic chain (at 1.6 ppm) is clearly more mobile than the neighbors, as

expected.
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Figure 21. T1rH values of 80 (top) and 81 (bottom) in dependence of the 1H chemical

shifts determined in suspensions of different solvents (see also Tables 14 and 15).
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Until now there is no simple explanation why this is not the case for the polymers 73

and 75. Possibly the lower degrees of condensation of 73 (and also 75) lead to different

motional modes, i.e. exciting other resonance frequencies of the monomeric building

blocks of 73 and 75.

Table 14. T1rH data of 80 determined in suspension of different solvents

T1rH [ms]
solvent

7.0 ppm 3.3 ppm 2.6 ppm 1.6 ppm 0.5 ppm 0.1 ppm

DCM 62.3 91.3 50.7 74.7 48.0 54.5
THF 21.0 36.4 14.0 27.0 14.0 30.5

MeOH 6.5 a) a) 7.1 a) 6.5

a) Not determined because of poor swelling and resulting low spectral resolution.

Table 15. T1rH data of 81 determined in suspension of different solvents

T1rH [ms]
solvent

7.0 ppm 3.3 ppm 2.5 ppm 1.5 ppm 0.5 ppm 0.1 ppm

DCM 63.0 72.0 50.0 63.0 49.0 54.0
THF 18.0 30.0 11.0 17.0 12.0 22.0

MeOH 8.3 8.5 a) 6.0 a) 3.0

a) Not determined because of poor swelling and resulting low spectral resolution.

As examples for only T type polymers 82 and 83 show the expected reduced

swelling capacity compared to 80 and 81. The corresponding values for T1rH are much

lower than those determined for the D type polymers with the same chain length, as it can

be verified in Figure 22 as well as in Tables 16 and 17 (for purposes of visualization the

scale of the ordinates in Figure 22 have not been changed). Additionally it is found that

swelling and mobility of the T type materials are larger in suspensions of THF than in

those of DCM. The T1rH values determined in DCM and MeOH interphases of 82 and 83

resemble those found by measurements in the solid state (see values at 296 K in Table 8),

which indicates a rather rigid behavior in these solvents.
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Figure 22. T1rH values of 82 (top) and 83 (bottom) in dependence of the 1H chemical

shifts determined in suspensions of different solvents (see also Tables 16 and 17).

Table 16. T1rH data of 82 determined in suspension of different solvents

T1rH [ms]
solvent

7.0 ppm 3.2 ppm 1.7 ppm 1.2 ppm 0.9 ppm

DCM 3.9 6.5 8.8 7.0 6.0
THF 6.2 40.0 15.0 35.0 40.0

MeOH 4.4 9.5 a) 3.9 a)

a) Not determined because of poor swelling and resulting low spectral resolution.

Table 17. T1rH data of 83 determined in suspension of different solvents

T1rH [ms]
solvent

7.0 ppm 3.2 ppm 1.5 ppm 1.2 ppm 0.8 ppm

DCM 3.6 4.9 5.7 6.3 5.6
THF 3.8 25.0 12.0 10.0 30.0

MeOH 4.2 10.0 a) 14.0 15.0

a) Not determined because of poor swelling and resulting low spectral resolution.
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Polymer 84 shows a good swelling behavior in the medium polar solvents THF and

DCM and the expected bad swelling in MeOH (Figure 23 and Table 18). The mobility of

the phenyl ring bound to the silicon atom (7.0 ppm) does not exceed the mobility of the

aliphatic chain. Obviously the steric hindrance is too big to allow faster motions,

compared to the methyl groups of the other D type polymers.
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Figure 23. T1rH values of 84 in dependence of the 1H chemical shifts determined in

suspensions of different solvents (see also Table 18).

Table 18. T1rH data of 84 determined in suspension of different solvents

T1rH [ms]
solvent

7.0 ppm 3.3 ppm 1.5 ppm 1.2 ppm 0.8 ppm

DCM 29.0 37.0 40.0 28.0 26.0
THF 33.0 48.0 35.0 27.0 29.0

MeOH 4.0 9.0 7.0 5.0 5.0

a) Not determined because of poor swelling and resulting low spectral resolution.

The findings for the phosphine functionalized polymers 46 and 47 are very

interesting (Figure 24 as well as Tables 19 and 20). The most mobile functional groups

are the non–hydrolyzed ethoxy group and the protons of the aromatic systems, as well as

the methyl group of the D type co–condensing agent. Most rigid are the amide protons of

the urea group and those of the neighbored methylene function. The high mobility of the

triphenylphosphine fragment is surprising; despite the rigid urea group and the short
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propyl chain it reaches the mobility of the small and flexible non hydrolyzed ethoxy

groups (Figure 24). Since this is the case concerning all three employed solvents this

effect seems to be based on the fact that the polymers are suspended, rather than on the

polarity of the solvents. The T1rH values of the MeOH interphases of 46 and 47 can be

determined without complications. These materials reveal sufficient swelling and good

resolved spectra, although the degrees of condensation of the D and the T groups of both

of the polymers are very high. Possibly the polarity of the urea group plays a major part

in the interaction of swelling and mobility of 46 and 47 in MeOH by increasing the

acceptance for this polar solvent.
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Figure 24. T1rH values of 46 (top) and 47 (bottom) in dependence of the 1H chemical

shifts determined in suspensions of different solvents (see also Tables 19 and 20).
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On a qualitative basis, concerning the average T1rH values determined in

suspensions, 46 (D0–(CH2)6–D0 as co–condensing agent) is assumed to be slightly more

mobile than 47 (D0–(CH2)3–(C6H4)–(CH2)3–D0 as co–condensing agent) which agrees

with the findings of the temperature dependent measurements (see chapter 3.1.3.).

Table 19. T1rH data of 46 determined in suspension of different solvents

T1rH [ms]
Solvent

7.1 ppm 5.3 ppm 3.7 ppm 1.7 ppm 1.2 ppm 0.9 ppm 0.1 ppm

DCM 19.5 11.8 17.5 8.8 22.0 15.7 28.0
THF 30.0 10.0 23.5 13.0 23.0 21.2 20.0

MeOH 6.0 2.1 8.0 6.0 8.0 8.0 14.0

Table 20. T1rH data of 47 determined in suspension of different solvents

T1rH [ms]
solvent

7.1 ppm 5.3 ppm 3.6 ppm 1.7 ppm 1.1 ppm 0.9 ppm 0.1 ppm

DCM 17.8 11.1 22.6 13.5 22.1 14.4 16.6
THF 21.4 7.6 23.3 13.6 24.0 18.8 16.7

MeOH 3.0 2.8 5.4 5.0 9.0 8.0 6.0
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3.2. Evaluation of NMR Spectroscopic Derived Dynamic Parameters by

Kohonen's Self Organizing Feature Map

The application of the Kohonen map (SOM) proved to be a suitable method for the

visualization of the NMR relaxation time data (Table 2, entries 1 – 72). A large number

of inorganic–organic hybrid polymers (Table 1, entries 1 – 72), that cannot be compared

to each other directly, were evaluated and sorted. Instead of numerous two–dimensional

diagrams, one map including all information was obtained (Figure 25).

The nonlinear topology–preserving Kohonen map showed clear advantages over

traditional statistical methods like principle component analysis (Figure 26). Regarding

the scatter plot of the first two principle components, the identification of two or three

clusters may be possible but it is not suitable for further interpretation.

Since a very large Kohonen map was chosen for visualization, the Euclidean

distances between neighboring neurons are rather small; therefore, these distances or the

derived u–matrix cannot be used to identify clusters automatically. Regarding the u–

matrix–map (Figure 27), no large white regions and no sharp borders are found. This

indicates that a huge variety of compounds is distributed over big parts of the data space.

Expert know–how is required to interpret and validate the map. As soon as it is reduced

to sizes that are usually used for classification, similar substances will be located on the

same neuron and a good separation with larger Euclidean distances is obtained – in this

case clusters can be identified easily (Figure 28). Comparing the smaller Kohonen map

with the one that was applied for visualization, it is possible to verify whether any

disadvantages or even errors have been acquired by employing such a large map. As it

can be verified in Figures 28 and 25, the small map agrees with the larger one, since there

is almost the same ordering (apart from being rotated or mirrored which does not have

any effect on the neighborhood relationships or the distribution).
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Figure 25. Combined large (10 ´ 9 neurons) Kohonen and distance map visualizing the

evaluation of the NMR relaxation time data of 1 – 72.
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Figure 26. Results of the principle component analysis of 1 – 72.

Despite the fact that the maps were initialized randomly and the data were sorted

randomly at the beginning of the training, a great reproducibility is found. The only

notable differences that were observed between several independent runs with the same

data, were mirrored or rotated maps, which do not affect the results.

The main criterion the compounds are sorted by the ANN is the presence or absence

of values for the degree of condensation of the D–, T–, or Q–groups. Accordingly the

output of the SOM is divided into three main sections, the D–, T–, and Q–domains

(Figure 25). It is remarkable that the D– and Q–domains are separated by a strip of only

T–co–condensed compounds. In fact, the 'T–only' co–condensed polymers show physical

and chemical properties which range between those of the D and the Q functionalized

polymers, e.g. the degree of connectivity, or the dynamic behavior.
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Figure 27. Unified matrix (u–matrix) visualizing the clustering of 1 – 72 on the large

SOM. The top left neuron corresponds to the 'entry 39 neuron' in Figure 25.

Figure 28. Combined small (4 ́ 3 neurons) Kohonen and distance map. Compared to

Figure 25 this map is mirrored along the diagonal from bottom left to top right.
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The composition of the three different domains is determined by all ten NMR

parameters and it is not straightforward to decide which are the most significant. The

distribution maps of the T1rH values measured by 29Si or 31P CP/MAS NMR spectroscopy

respectively, appear very similar (Figure 29). High T1rH values reside in the upper left

part of the Kohonen map, while the lowest T1rH values are positioned in the lower right

part.

Figure 29. Distribution–maps of T1rH(P) (left) and T1rH(Si) (right) corresponding to the

large SOM (Figure 25). The top left neurons correspond to the 'entry 39 neuron' in Figure

25.

By way of contrast, the highest TPH values are found in the upper right of the map

(see Figure 25 and 30). Thus the main criteria for the arrangement within the D–domain

are the relaxation times TPH and T1rH. A related sorting phenomenon is found in the T–

and the Q–domains. The degree of condensation of the T–groups is a parameter that

equally applies to all evaluated polymers. It influences mainly the position of the Q–type

polymers on the map, but in a more subordinate way than the values of the relaxation

times do. Very low degrees of condensation of the T–groups are found in the lower left,

while the highest degrees of condensation are found on the right side of the Kohonen

map, with the main focus on the lower right side (Figure 31).
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Figure 30. Distribution map of the TPH values of 1 – 72 (see Table 2) corresponding to

the large SOM (Figure 25). The top left neuron corresponds to the 'entry 39 neuron' in

Figure 25.

39 38 67 32 30,31
33

64 46 47 7 9

66 68 48 69 27 8

45 36 70,72 25, 26 40,41
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16 34 10 55 11,12

43 18 17 4,5
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44 28 19 20,21 2, 3 1

42 52 22 13 59,62

53 23 56 14

49 50 51 54 24 15 57 60,63

Figure 31. Distribution–map of the degrees of condensation of the T–groups. Light gray:

degrees of condensation < 75 %; dark gray: degrees of condensation > 95 %.
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Most of the co–condensed ligands appear on the upper right half of the large

Kohonen map (Figure 25) while the polymers containing co–condensed complexes

mainly occupy the lower and the left half. To explain this fact the dynamic behavior of all

compounds has to be taken into account. When the mobility of the polymers increases,

the process of magnetization transfer becomes slower and the TPH values increase (see

chapter 2.1.2.1.). In general co–condensed ligands are more mobile than co–condensed

complexes, therefore ligands should be located in regions of the map in which the highest

TPH values are found (Figures 25 and 30). In particular this is the case for the D–domain

on the Kohonen map, but also in the T– and the Q–domains a concentration of ligands in

specific areas is present.

The distribution of the polymers on the Kohonen map is influenced by their

structural and dynamic properties which are partially a result of the sol–gel process

applied. The way the sol–gel process proceeds depends on many different factors, like

solvent employed, hydrolytic or non–hydrolytic route, concentration of the reaction

partners, applied temperature, and others.6,8,61 The low range order within the polymers in

the vicinity of the metal centers and the functional groups of the ligands is determined

additionally by the molecular shape and the polarity of the educts. This may lead to

template effects, especially in the surroundings of functional groups, which will be

approximately the same if similar starting materials are employed for the sol–gel process.

Therefore the steric, structural, and dynamic (NMR) parameters of polymers prepared in

such a way must be roughly the same. The Kohonen map expresses this fact – without

having information about structural features of the polymers – by placing materials with

similar structures in close vicinity on the map or even on the same neuron, as for example

this is the case for compounds 1 and 13, 4 – 6, 7 and 9, or 59 and 62 (see more examples

in Table 1 and Figure 25). The type of co–condensing agent and especially its

stoichiometric amount in the polymer plays a major role regarding the physical properties
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of the polymers. This is the reason why 18 and the compounds 16 and 17 are separated on

the small map although their chemical structures are almost identical. The same is true for

compounds 49 and 50/51. In addition, 49 shows the lowest degree of condensation of the

'T–only' co–condensed polymers which leads to a significant different pattern of signal

intensities T0 – T3 in the 29Si NMR spectra, compared to the adjacent polymers 50 and 51.

This fact explains the high Euclidean distances between these neighboring substances and

the 'isolation' of 49. In contrast, the above explanation does not apply to compounds 1, 2,

and 3. In these cases the structure of the co–condensed ligand is the decisive factor

separating them on the small map. The larger functional groups connected to the

phosphine centers like tetrahydrofuranyl and dioxanyl in 2 and 3 versus methoxyethyl in

1 lead to a smaller mobility of the former two polymers and higher T1rH values for 2 and

3 compared to 1. The exposed position of compound 65 on the map is explained by the

remarkable high values of T1rH and the low value of TPH. Although this system is a 'T–

only' co–condensed polymer and the phosphine centers are anchored to the matrix by

only one spacer it is one of the most rigid polymers presented in this work. The high

Euclidean distances to the neighbors and its somewhat isolated position on the map

reflect this fact.

The accumulation of similar structural characteristics of the compounds residing on

neuron C2 of the small map (Figure 28) is noteworthy. In this T–domain cluster

trisphosphine complexes are gathered (19 – 21 and 55, 58, 61), likewise the ligands 10 –

12 forming the complexes 19 – 21 are present. The combination of these characteristics

(trisphosphine complexes and the same or similar ligands) leads to polymers with similar

dynamic properties. An analogous case is found on neuron D1, but the overlap of

characteristics is not as obvious as in the former case. The main feature of these polymers

(7 – 9, 40, 41, 46, and 47) assembled in this cluster is the representation of monodentate

phosphine ligands. These compounds show similar molecular dynamics, although they
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were prepared with three different co–condensing agents (Table 1) and although the

phosphine centers in 40 and 41 are double spaced, which is in contrast to the single

spaced phosphines 7 – 9, 46, and 47. Another interesting fact regarding these latter

polymers is their relation between mobility and structure. Compounds 7 – 9 each were

provided with different spacer lengths from n = 3 to n = 8, but were co–condensed with

the simple co–condensing agent (H3C)Si(OCH3)3 (D
0). In contrast the spacers in 46 and

47 are build up by a propyl chain and a rigid urea group and both phosphine ligands are

co–condensed with D type monomers of nearly the same flexibility (see Table 1).

Nevertheless the mobility of 7 – 9, 46, and 47 in the dry state is nearly the same. This

leads to the conclusion that even rigid molecules can be 'mobilized' by co–condensing

them with an appropriate co–condensing agent.

It is remarkable to see that many polymers, which are found in close vicinity on both

of the Kohonen maps and which share similar but not equal structural features, create

similar sets of dynamic NMR data (e.g. 58 and 61, 59 and 62, or 60 and 63). These results

give evidence that specific physical properties, like a high or a low mobility, is achieved

by different ways of modification of the polymers. For example the introduction of long

hydrocarbon spacers in the ligands or in the co–condensing agents and or the choice of

D–type co–condensing agents leads to highly mobile polymers.18,22 On the other hand, if

rigid systems are favored the way of spacing (two– or threefold) or the application of

other types of co–condensing agents (T–type or Q–type) are possible methods of polymer

modification (examples for rigid systems are the polymers 4 – 6, 22 – 24, or 42 – 45,

examples for highly mobile systems are the polymers 7 – 9, 25 – 27, 40, 41, 46, 47).
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4. Conclusions

4.1. Mobility Studies on Inorganic–Organic Hybrid Polymers

The results of the solid state NMR measurements of the mixed type copolymers 46 –

48 and 76 – 79 demonstrate that in each case the initial stoichiometries have been retained

during the sol–gel processing. Compound 73 proves to be an appropriate co–condensing

agent for transition metal complexes or phosphine ligands in order to build stationary

phases for chemistry in interphases, as it was proved by synthesizing 46 – 48. In each case

(46 – 48, 73 – 84) the determination of only one value for T1rH in the solid state leads to

the conclusion that the relaxation mechanisms are spin–diffusion controlled and that no

domains are formed while sol–gel processing. The temperature dependent measurements

of T1rH allow only qualitative comparisons concerning the mobilities of 46 – 48 and 73 –

84. 2H NMR experiments confirm the close relationship between the mobility of a

polymeric matrix, its starting materials (D or T type) and the solvent used for the sol–gel

process. They allow also the qualitative rating of the mobilities of the deuterated polymers

80 – 83. Determinations of T1rH in interphases of 46, 47, 73, 75, and 80 – 83 reveal that the

mobility of these polymers is increased by order of magnitudes depending on the polarity

of the solvent employed.

4.2. Evaluation of NMR Spectroscopic Derived Dynamic Parameters

Different inorganic–organic hybrid polymers (Table 1, entries 1 – 72) with a variety of

structural features are evaluated by the Self–Organizing Feature Map first implemented by

Kohonen. Ten solid state NMR derived dynamic parameters (Table 2) of each compound

are used as an input for the Artificial Neural Network. The results of approximately

100000 training steps are visualized by Kohonen maps of different size and supported by

distribution maps concerning the most important dynamic parameters (T1rH, TPH, etc).
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5. Experimental Section

5.1. Solid State NMR Measurements

The solid state NMR spectra were recorded on Bruker DSX 200 and Bruker ASX

300 multinuclear spectrometers equipped with wide bore magnets (field strengths of 4.7 T

and 7.05 T). Magic angle spinning was applied up to 10 kHz (4 mm ZrO2 rotors) and 3 – 5

kHz (7 mm ZrO2 rotors). Frequencies and standards: 13C, 50.288 MHz (4.7 T), 75.432

MHz (7.05 T), [TMS, carbonyl resonance of glycine (d = 176.0) as secondary standard];

29Si, 39.73 MHz (4.7 T), 59.595 MHz (7.05 T), (Q8M8, as secondary reference); 31P,

80.961 MHz (4.7 T), 121.442 MHz (7.05 T) [85% H3PO4, NH4H2PO4 (d = 0.8) as a

secondary reference]. The cross polarization constants TCH, TSiH, and TPH were determined

by variations of the contact time Tc (14 – 16 experiments). The proton relaxation times in

the rotating frame were measured by direct proton spin lock–t–CP experiments according

to ref.37 The relaxation parameters were obtained using the Bruker software SIMFIT and

WIN–FIT following the procedure explained in this thesis (chapter 2.1.2.1.) and given in

ref.18,20 In this references also the parameters for the 2D WISE NMR experiments were

described.

5.2. Suspension State NMR Measurements

The HR/MAS suspension state NMR spectra were recorded on a Bruker ARX 400

spectrometer equipped width a standard bore magnet (field strength 9.4 T, proton

resonance frequency 400.13 MHz, 1H, 13C inverse 4 mm probehead with a 2H–lock

channel) and on the two spectrometers described above [proton resonance frequencies

200.13 MHz (4.7 T), 300.13 MHz (7.05 T)]. The chemical shifts were referenced with

respect to TMS. The amount of sample employed was 20 mg in each cases. Deuterated

NMR solvents were purchased from Cambridge Isotope Laboratories, Inc. and used
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without further purification. The polysiloxanes were allowed to swell in the solvents at

least for one hour in the 4 mm ZrO2 rotors equipped with ceramic inserts. The rotation

frequency was 4 kHz in all cases. The T1rH values in the suspended state were determined

by a simple 90° single pulse excitation sequence with variation of the spin–lock time t.

Every experiment was performed with 16 scans.
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7. Summary

Specially designed sophisticated polymers are applied in wide areas of chemistry

today, and are implemented for example in chromatography, solid phase synthesis, or for

biochemical and medical purposes (micro or nano filters, dialysis). In most of these

applications the polymers act as a 'passive' support for the reactive centers which are

actively performing what they are assigned to do. In chemistry in interphases the polymeric

matrix is more than only a support for the reactive centers (e.g. transition metal

complexes). The polymer with the uniformly incorporated reactive centers is an entity.

This means that the overall (mechanical, physical, and chemical) properties of these

inorganic–organic hybrid polymers have to be taken into account when rating their value,

e.g. in catalytic reactions. The synthesis of siloxane–based inorganic–organic hybrid

polymers is carried out by sol–gel processing of alkoxysilyl functionalized co–condensing

agents (D0, T0, Q0, or recently developed D0–Cz–D0, D0–(CH2)z–C6H4–(CH2)z–D0

monomers, etc.) with trimethoxysilyl–(T)–functionalized ligands or transition metal

complexes. This reaction type provides mild and reproducible conditions and yields

xerogels of homogeneous composition and of completely amorphous nature. The

properties of the polymeric matrix depend highly on the way the sol–gel process is carried

out (employed solvent, concentration of the educts, temperature, etc.). The acquirement of

profound knowledge of these properties (swelling abilities, mobilities in the dry state and

in the interphase, cross–linkage) is of great importance prior these functionalized siloxanes

are employed in chemical reactions.

The first part of this thesis deals with solid state NMR spectroscopic characterizations

and mobility studies of siloxane–based inorganic–organic hybrid polymers, that were

recently synthesized by T. Salesch. These investigations were carried out in the dry and the

suspended state. In the second part of this work – in cooperation with T. Hermle, a member
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of the computing faculty of the University of Tübingen – the application of an Artificial

Neural Network in the evaluation of a large number of inorganic–organic hybrid polymers

is described, that were synthesized earlier by other members of this group. The motivation

for this task is the attempt to compare the properties of these polymers which can not be

done with conventional statistical methods, like principle component analysis. Although

the structural and dynamic features of these polymers are quite different, similarities are

present, since these compounds were synthesized by comparable sol–gel routes. The data

basis for the evaluation consists of solid state NMR spectroscopic derived dynamic

parameters and is analyzed by the so called Self–Organizing Feature Map, that was first

implemented by Kohonen.

The 13C and 29Si solid state NMR spectroscopic characterizations of the inorganic–

organic hybrid polymers revealed the structural integrity of the polymeric matrix after sol–

gel processing. The formation of homogeneous composed copolymers was confirmed by

the determination of only one value for T1rH. This is in favor for a uniform relaxation

process of the nuclear spins, controlled by spin–diffusion. It was demonstrated that the

initial stoichiometries of the D and T type monomers were retained after sol–gel

processing. This was a very important finding, since it is planned to employ D0–(CH2)3–

C6H4–(CH2)3–D0 frequently as a co–condensing agent in chemistry in interphases. The

polarity of the solvents which are used in the sol–gel processes has a large influence on the

properties of the resulting xerogels. For example the application of MeOH leads to

polymers with medium to low degrees of condensation, especially concerning only D type

polymers. Materials with high cross–linkage are obtained if THF is employed. This fact

has direct consequences for the mobilities of these polymers since a lower cross–linkage

leads to an increased mobility, and vice versa. The same was found for mixed D/T type

copolymers.
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The mobilities of the inorganic–organic hybrid polymers in the dry state were studied

by determinations of T1rH in dependence on the temperature. The deuterated polymers

were additionally investigated by dynamic 2H NMR spectroscopy. The temperature

dependent investigations of T1rH allow only qualitative comparisons of the mobilities of

the polymers. Furthermore, a direct comparison of the mobilities of only D or only T type

polymers with regard to T1rH is difficult and has to be carried out carefully. In this case

particularly the relative cross–linkage of these polymers has to be taken into account. A

strong dependence of cross–linking on the solvent employed in the sol–gel process – and

of mobility on cross–linkage – is found, regarding all investigated polymers. The

exploration of the deuterated compounds by dynamic deuteron NMR spectroscopy

additionally revealed an absolute order concerning their mobility: the D type matrixes were

definitely more mobile that the T type ones. Furthermore, the MeOH sol–gel process

derived polymers were more mobile than the THF derived materials, caused by the lower

cross–linkage.

NMR spectroscopy in the interphase (in suspensions of MeOH, THF, and DCM) first

of all revealed the swelling abilities of the investigated polymers. It was found that

swelling depends on the type of the silyl species rather than on the degrees of

condensation. Cross–linkage is the second important criterion for the swelling capability.

In all cases the 1H NMR spectra of D type polysiloxanes provided good resolved signals

that could be analyzed in order to determine the T1rH values in the interphase. T type

polymers swell little and the spectra recorded of their interphases resemble often solid state

NMR spectra. In these cases determinations of T1rH were difficult and sometimes not

advisable. Nevertheless, the T type polysiloxanes with the lowest degrees of condensation

at all and especially the mixed type copolymers could be investigated and afforded

unequivocal T1rH values for their different proton sites. In the suspended state the proton
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sites of all investigated polysiloxanes relax at different rates. This is the result of the

increased mobility of the molecular fragments and therefore decreasing dipole–dipole

interactions between the proton spins. Different mobilities for different functional sites in

the polymers are detected. It was found that terminal functionalities such as methyl,

methoxy, or ethoxy groups were most mobile, followed by methylene groups in the middle

of aliphatic chains. Surprisingly triphenylphosphine fragments in copolycondensates reveal

a similar mobility as the corresponding non–hydrolyzed ethoxy groups.

In the second part of this thesis the attempt of a classification of inorganic–organic hybrid

polymers by a neural network is described. The evaluated materials comprise sol–gel

processed transition metal complexes as well as ligands of different shapes and geometries.

Furthermore different co–condensing agents were used to generate these stationary phases.

The analysis was performed on the basis of NMR spectroscopic derived dynamic

parameters, such as the relaxation times T1rH (determined via 29Si and 31P CP/MAS NMR

spectroscopy), the cross–polarization constant TPH and the degrees of condensation of the

corresponding silyl species. The employed neural network is a Self–Organizing Feature

Map (SOM), also called Kohonen Map. This is an unsupervised learning, topology and

neighborhood relationship preserving neural network and is best suited for classification

purposes – in this case for the search of similarities between the evaluated compounds. The

results of this analysis were visualized by two–dimensional maps and supported by

corresponding distribution maps of the most important dynamic parameters. It was found

that the neurons on the large Kohonen map are divided into three areas that contain the

polysiloxanes in dependence on the type of the silyl species co–condensed with the

complexes or the ligands – the D–, T–, and Q–domains. Within the domains the

compounds are 'sorted' depending on commonly shared main features. The most important

parameters seem to be the cross–polarization constant TPH and the relaxation times T1rH as

they represent the mobility of the polysiloxanes. The other parameters are of minor
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importance and it is not easy to judge their influence on the placement of the compounds

on the Kohonen map. This means that the macromolecular properties of the polymers are

the dominant features that take a decision on the positions of the compounds on the map.

Properties such as shape or geometry are subordinate. Regarding the structural features of

these polymers, it was demonstrated that the educts must be provided with an aliphatic

chain acting as a spacer, to gain mobility. The exact location of this spacer is less important

and can be adapted to the necessities of synthesis.
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