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PREFACE

General Motivation of the Thesis

This thesis contains three separate essays which empirically investigate various aspects
of the relationship between financial markets and the real economy. The interface
of finance and macroeconomics has fascinated me ever since being exposed to the
famous book “Asset Pricing” by John Cochrane during the later stages of my studies in
Tiibingen. During my time as a doctoral student, I then had the opportunity to conduct

my own research in this field. This thesis is the summary of this work.

According to the most basic models of (financial) economics, many phenomena in
financial markets should bear a strong relationship with the macroeconomy. Probably
one of the most classical examples is the consumption-based asset pricing model,
which posits that assets should be priced according to the covariance of their returns
with consumption growth. Another example, is the predictable variation of stock
excess returns, which has generally been interpreted as evidence for time-varying
risk-premia in financial markets. The conventional (risk-based) explanation for return
predictability draws on time-variation in risk aversion over the business cycle, and

thus also emphasizes the link between financial markets and the macroeconomy.

It is fair to say, however, that — despite longstanding research efforts — understanding
the link between financial markets and the real economy still represents a major chal-
lenge for financial economists. In the past, prevalent theories of financial economics
often had trouble accounting for the empirical facts. This is exemplified most forcefully
by the empirical failure of the canonical consumption-based asset pricing model. It is

well-known that the model has difficulties explaining the high level of US stock returns
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relative to the risk free rate at reasonable level of relative risk aversion, known as
the “equity premium puzzle” (Mehra and Prescott, 1985), or to rationalize the histor-
ically high returns on value stocks relative to growth stocks (Lettau and Ludvigson,
2001b). Thus, given the empirical evidence, which often constitutes a challenge to
well-established economic theories, a better understanding of the relationship between
financial markets and the real economy is generally of major importance for both

finance and economics. In the words of Cochrane (2007, p.6 and p.91)

“The program of understanding the real, macroeconomic risks that drive
asset prices (or the proof that they do not do so at all) is not some weird

branch of finance; it is the trunk of the tree.”

“The challenge is straightforward: we need to understand what macroeco-
nomic risks underlie the “factor risk premia”, the average returns on special
portfolios that finance research uses to characterize the cross-section of

assets.”

Over time, the macro-finance literature has accumulated substantial knowledge about
several “stylized facts” which are often taken for granted by the academic community.
The major goal of the different essays contained in this thesis is to critically reassess
some of those major empirical findings in the literature. The “facts” which I put under
scrutiny include: (i) the general belief that the conventional consumption-based model
with power utility exhibits a poor performance in explaining asset prices (in particular
for size and book-to-market sorted portfolios), (ii) the predictability of stock market
excess returns — labeled as one of the “new facts” in finance by Cochrane (1999) — which
has generally been interpreted as evidence for countercyclically evolving risk premia,
and (iii) that asset prices (most prominently the slope of the yield curve) are useful
predictors of real activity. In order to investigate these separate macro-finance issues,
modern econometric tools are applied which strive to address some methodological
issues and limitations of earlier empirical work. In this way, the broad goal of my thesis

is to shed new light on some of the old questions in the macro-finance literature and to
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critically re-evaluate previous empirical findings.

Outline of the Thesis

Specifically, I investigate the following issues in this thesis: (i) The empirical perfor-
mance of the consumption-based asset pricing model when the relevant risk for an
investor is long-run consumption risk, (ii) stock return predictability in international
stock markets in the presence of model uncertainty, and (iii) the reliability and the
predictive power of the yield curve for real activity in the context of structural instabil-
ity. In the following paragraphs, I will briefly describe how each of the three different
chapters of this thesis is designed to contribute to the existing general knowledge in

the macro-finance literature.

Long-Horizon Consumption Risk

Chapter 1 (“Long-Horizon Consumption Risk and the Cross-Section of Returns: New
Tests and International Evidence”) investigates whether measuring consumption risk
over long horizons can improve the empirical performance of the Consumption CAPM

for size and value premia in international stock markets (US, UK, and Germany).

It is a well-known “fact” in macro-finance that the standard consumption-based asset
pricing model — relating contemporaneous consumption growth to asset returns — has
serious problems in explaining the cross-sectional variation of returns (e.g., Cochrane,
1996; Lettau and Ludvigson, 2001b). As a reaction to the poor economic performance of
the canonical model, a large amount of explanations and modifications have been put
forth in the literature. These extensions, for instance, include new utility functions such
as habit formation (e.g., Campbell and Cochrane, 1999) or recursive utility (Epstein
and Zin, 1989) or a departure from standard assumptions such as complete markets

(e.g., Constantinides and Duffie, 1996).

However, several recent studies exploring the basic insights of the power-utility

consumption-based paradigm have reported encouraging steps forward (Cochrane,
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2007, p.51). In particular, a recent contribution by Parker and Julliard (2005) suggests
relating asset returns to consumption growth measured over longer horizons within a
simple consumption-based framework with standard power-utility. The long-run empir-
ical setup is robust against various arguments as to why consumption expenditure may
be slow to adjust to changes in aggregate wealth. Besides, the model is closely related
to the literature on long-run consumption risk, as it implies expressions for expected re-
turns that are similar to the testable implications of long-run risk models with recursive
utility such as Hansen, Heaton, and Li (2008). By explicitly accounting for consumption
risk measured over longer horizons, Parker and Julliard’s long-horizon LH-CCAPM
successfully explains a large fraction of cross-sectional variation in expected returns

across US size and book-to-market sorted portfolios.

This chapter revisits the ability of the LH-CCAPM to explain the cross-section of
returns and contributes to the literature in several ways. First, by modifying Parker
and Julliard’s empirical approach in our econometric estimation of the asset pricing
models, we take recent methodological concerns about the strong factor structure of
value and size portfolios into account (Phalippou, 2007; Lewellen, Nagel, and Shanken,
2007). By this means, we provide a critical reassessment of the explanatory power of
the long-run consumption based asset pricing framework for the famous “value puzzle”.
Second, we provide new international evidence on the role of long-run consumption
risks for asset pricing by investigating the model’s explanatory power for the cross-
section of equity returns in the United Kingdom and Germany. Overall, our results
shed new light on the relative strengths and weaknesses of the long-run approach to

asset pricing.

The main results of chapter 1 can be summarized as follows. Under our modified
empirical approach, we find that long-horizon consumption risk falls short of providing
a complete account of the cross-section of expected returns, especially the premium on
value stocks. In this way, our findings suggest that the long-horizon consumption-based
approach falls short of resolving the famous “value premium puzzle”, as claimed in the
original paper by Parker and Julliard (2005). Nevertheless, measuring consumption

risk over longer horizons achieves other important improvements, most notably a
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reduction of risk aversion estimates. Thus, our results suggest that more plausible
parameter estimates — as opposed to lower pricing errors — can be regarded as the main

achievement of the long-horizon Consumption CAPM.

Return Predictability under Model Uncertainty

Chapter 2 (“International Stock Return Predictability under Model Uncertainty”) em-
pirically investigates the question whether excess returns on aggregate stock market
indices are predictable.! Whereas the focus of the first chapter was on the cross-
sectional variation of expected returns across different stock portfolios, the second
chapter deals with time-variation of expected returns, i.e., time-series aspects of the

link between financial markets and the macroeconomy.

Return predictability has been labeled as one of the “new facts” in finance (Cochrane,
1999) and has generally been accepted as a typical feature of stock markets. The
standard risk-based explanation is that there is time-variation in risk premia, such
that stock market participants demand a premium for holding risky assets in “bad
times” (e.g. during recessions). This issue is particularly important since it has
far-reaching consequences for empirical as well as for theoretical modeling — e.g.,
conditional asset pricing models (Jagannathan and Wang, 1996; Lettau and Ludvigson,
2001b), or intertemporal asset pricing (Campbell and Vuolteenaho, 2004; Petkova,
2006) — and other issues of practical importance such as long-run asset allocation (e.g.,

Campbell and Viceira, 2002).

Empirical studies have found a plethora of variables to be informative about future
excess returns in predictive regressions. In particular, valuation ratios (e.g., dividend
yields) and interest rate related variables (e.g., short-term interest rates as well as
default and term spreads) have featured prominently in predictive regressions, but also

macroeconomic variables — e.g., the consumption-wealth ratio by Lettau and Ludvigson

!This chapter has originally been inspired by the recent debate on return predictability triggered by the
influential paper by Goyal and Welch (2008). In the meantime, the article by Goyal and Welch (2008)
and further papers by authors joining the debate have been published in a special issue of the Review of
Financial Studies (Vol. 21, No.4, 2008).
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(2001a) or more recently the output gap by Cooper and Priestley (2006) — have been

used to predict returns.

Given the large number of variables proposed in the literature, a high amount of
uncertainty exists regarding the right choice of state variables. Moreover, the fact that
so many variables have found to be valuable predictors of returns naturally raises
the concern that the apparent predictability documented in the extant literature may
simply arise due to data-snooping rather than genuine variation of economic risk

premia.

The aim of this chapter is therefore to explore the robustness of several predictive
variables in international stock markets in the context of model uncertainty. We
follow the path set by the seminal work by Cremers (2002) and Avramov (2002) and
use Bayesian model averaging in order to account for model uncertainty. A novel
feature of the model averaging approach used in this paper is to account for a potential
finite-sample bias of the coefficients in the predictive regressions. This issue has not
previously been addressed in work on return predictability using model averaging

methods.

Drawing on an extensive international dataset covering major international stock
markets, we find that interest-rate related variables are usually among the most
prominent predictive variables, whereas valuation ratios generally perform rather
poorly. There is also some evidence that risk premia vary with the output gap. Yet,
predictability of market excess returns clearly weakens once model uncertainty is
accounted for. We also document notable differences in the degree of in-sample and
out-of-sample predictability across different international stock markets. This finding
suggests that return predictability is not a uniform and a universal feature across

international capital markets.
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The Yield Curve as a Leading Indicator under Structural Instability

The relation between financial markets and the macroeconomy is not unidirectional.
For instance, there is good reason to believe that asset prices — being forward-looking in
nature — may contain predictive content for real activity. In Chapter 3 (“A Reappraisal
of the Leading Indicator Properties of the Yield Curve in the Presence of Structural
Instability”), the relation between the two research fields are examined from a reverse

angle.

Among the financial predictive variables, the yield spread between the long- and
short-term interest rate (slope of yield curve) has generally stood out as one of the
most prominent variables. The extant literature has long since established its role
as a leading indicator for future economic activity. However, in the recent literature
concerns have been raised over the fact that the predictive performance of the term
spread may be time-variant and that predictive regressions based on the yield spread
may be subject to substantial model instability (Estrella, Rodrigues, and Schich, 2003).
For instance, the predictive power may depend on underlying factors such as the form
of the monetary policy reaction function or the relative importance of real and nominal
shocks in the economy. Both factors potentially change over time, which raises the need

to investigate the time-variation of the forecasting relationship in greater detail.

The main goal of this chapter is to investigate whether the yield spread still qualifies
as a useful leading indicator in environments characterized by model instability. For
this purpose we provide an extensive reexamination of the leading indicator properties
of the yield curve. A main feature of our approach is to focus on the time-varying out-of-
sample (OOS) forecasting properties of the yield curve. This is of particular relevance,
since one may argue that the ultimate concern of market participants and policy makers
is out-of-sample forecast accuracy as well as a good predictive performance towards the

end of the sample period.

Our general finding in this chapter is that there is a substantial time-variation in the

out-of-sample forecast performance of the yield curve for real activity. Moreover, we
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document a degradation in the predictive performance of the yield spread over the
most recent sample period which has not been shown in the literature before. This
finding holds true for all countries considered. We thus take a closer look at potential
reasons for the time-variation of predictive power and forecast breakdowns by using
several modern (in-sample) tests for parameter stability. Using these econometric
tools, we provide strong evidence for structural instabilities that affect the predictive

relationship.

Hence, we address the fundamental question whether the yield spread can still be
regarded as a reliable leading indictor in the presence of structural instability. For the
purpose of reexamining the leading indicator properties under structural change, we
use optimal window selection techniques, which are designed for forecasting in unstable
environments. We find that newly developed methods for forecasting in the presence
of structural change generally help improve forecast accuracy. However, this does not
change our conclusion that the yield curve has been losing its edge as a predictor of

real activity in recent years.






CHAPTER 1

LONG-HORIZON CONSUMPTION RISK AND THE
CROSS-SECTION OF RETURNS: NEW TESTS AND

INTERNATIONAL EVIDENCE*

ABSTRACT

This chapter investigates whether measuring consumption risk over long horizons can
improve the empirical performance of the Consumption CAPM for size and value premia
in international stock markets (US, UK, and Germany). We modify the estimation
approach of Parker and Julliard (2005) taking commonalities in size and book-to-market
sorted portfolios into account. Our results show that, contrary to the findings of Parker
and Julliard, the model falls short of providing an accurate description of the cross-
section of returns under our modified empirical approach. At the same time, however,
measuring consumption risk over longer horizons typically yields lower risk-aversion
estimates. Thus, our results suggest that more plausible parameter estimates — as
opposed to lower pricing errors — can be regarded as the main achievement of the

long-horizon Consumption CAPM.

*This chapter is based on a joint paper with Joachim Grammig (University of Tiibingen) and Michael
Schuppli (University of Miinster). A revised version of the paper is accepted for publication at the
European Journal of Finance.

10



LONG-HORIZON CONSUMPTION RISK

1.1 Introduction

Understanding the behavior of asset prices and their relation to macroeconomic risks
can be considered as one of the most fundamental issues in finance. As is well known,
however, the traditional workhorse for studying the link between financial markets
and the real economy — the consumption-based asset pricing model (CCAPM) — has
failed to explain a number of stylized facts in finance such as the equity premium
(Mehra and Prescott, 1985), asset return volatility (Grossman and Shiller, 1982) or
value and size premia in the cross-section of expected returns (Cochrane, 1996; Lettau
and Ludvigson, 2001b).! After a long series of poor empirical results starting with
Hansen and Singleton (1982, 1983), more recent studies exploring the basic insights of
the consumption-based asset pricing paradigm report encouraging advances (Cochrane,

2007, p.267).

In particular, a recent contribution by Parker and Julliard (2005) suggests to relate
asset returns to consumption growth measured over longer horizons within a simple
consumption-based framework with CRRA preferences. Such reasoning is in line with
theoretical literature on long-run consumption risk. Seminal work by Bansal and
Yaron (2004) suggests that equilibrium asset returns depend on investors’ expectations
about both short and long-run changes in consumption growth. Among other things,
this result implies that the covariance of returns with contemporaneous consumption
growth may understate the risk perceived by investors.? By explicitly accounting for
consumption risk over longer horizons, Parker and Julliard’s long-horizon (LH) CCAPM
is able to explain a large fraction of cross-sectional variation in expected returns across

US size and book-to-market sorted portfolios.3

In this paper, we provide new detailed evidence as to whether long-run consumption

!The consumption-based asset pricing model has its roots in the original articles by Rubinstein (1976), Lu-
cas (1978), and Breeden (1979). We use the terms CCAPM and consumption-based model interchangeably
in the remainder of the paper.

?Research on the long-run implications of the consumption-based asset pricing framework has constituted
a rather prominent field in recent literature [e.g. Jagannathan and Wang (2007), Bansal, Dittmar, and
Kiku (2007), Hansen, Heaton, and Li (2008) or Rangvid (2008)]. More detailed information on how our
paper is related to the extant literature is provided in Section 1.2.2.

3We will abbreviate the long-horizon CCAPM to LH-CCAPM in the remainder of the text.

11
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risk helps explain the cross-section of expected returns in international stock markets.
In particular, we modify Parker and Julliard’s empirical approach along two lines.
First, we take into account recent criticism about the widespread use of size and
book-to-market sorted portfolios in the empirical asset pricing literature (Phalippou,
2007; Lewellen, Nagel, and Shanken, 2007). In order to reduce the adverse effects
of strong commonalities in size and book-to-market sorted portfolios, we follow the
prescription of Lewellen, Nagel, and Shanken (2007) to include industry portfolios
alongside with the conventionally used size and book-to-market portfolios. Second, we
provide new international evidence by investigating the model’s explanatory power for

the cross-section of equity returns in the United Kingdom and Germany.

Our empirical findings shed new light on the relative merits of the long-horizon CCAPM
when it comes to explaining the cross-section of returns in international stock markets.
First, we find that under our modified empirical approach accounting for the strong
common factor structure in size and book-to-market sorted portfolios, the model’s
ability to account for cross-sectional variation in returns is clearly limited. This result
suggests that the good empirical performance on US test assets reported by Parker and
Julliard (2005) may be somewhat overstated. Tests with size and book-to-market sorted
portfolios from the UK and Germany further corroborate the US evidence. Second,
we find that measuring consumption risk over longer horizons typically yields lower
risk-aversion estimates. Thus, our results suggest that more plausible parameter
estimates — as opposed to a higher cross-sectional R? — can be viewed as the main

achievement of the long-horizon consumption-based approach.

Even though the long-run risk framework has important implications for the explana-
tion of risk premia and asset price fluctuations, previous empirical studies surveyed by
Bansal (2007) have almost exclusively focussed on the US stock market. By estimating
the proposed consumption-based model on UK and German portfolio returns, our paper
explores the universality of the LH-CCAPM approach and, more generally, the role of

long-run consumption risk in these markets.

This issue is particularly interesting since the countries considered in our study differ

12
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in several institutional respects. While the US and the UK for instance are known
to have a market-based financial system and high private stock-ownership, Germany
has a bank-based system and the share of stocks in the net wealth position of German
households is lower. Furthermore, some authors have argued that the well-known
US “equity premium puzzle” (i.e. the inability of the consumption based approach
to quantitatively explain the high level of aggregate stock market returns compared
to the T-Bill rate) may to some extent be due to extraordinarily high historical stock
returns in the US during the post-war period [See, e.g., the discussion in (Cochrane,
2007, p.266)].* By contrast, post WWII excess returns on the German stock market

have been somewhat lower.

The remainder of the text is structured as follows. Section 1.2 reviews the basic long-
horizon consumption risk approach and provides a discussion on the literature most
closely related to our paper. Section 1.3 describes the empirical methods used for
estimating and evaluating the different models. Section 1.4 presents our data and

discusses empirical results based on GMM estimation. Finally, Section 1.5 concludes.

1.2 The Long-Horizon Consumption Risk Framework
1.2.1 Parker and Julliard’s Basic Model

This section briefly reviews the long-horizon consumption-based asset pricing approach
put forth by Parker and Julliard (2005). As a starting point, consider the traditional
two-period consumption-based model. As is well known, the model implies Euler

equations of the following form

u'(Cyy1)

Et I:(sul(c’t) R?+1:| - 0 (11)

where u(.) denotes current-period utility, ¢ the subjective time discount factor, and Ry, ,

4Some financial economists also argue that expected excess returns are likely to be lower in the future,
thus reducing the puzzle [See e.g. Fama and French (2000), Welch (2001)].

13
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the excess return on a risky asset. Empirical tests of consumption-based models are
typically based on moment conditions implied by variants of Equation (1.1). Parker
and Julliard (2005) use the model’s first order condition for the risk-free rate between

points in time t+1 and t+1+S

W(Cr1) = 0B (Rl , 115 v/ (Criays)] (1.2)

to substitute out period t+1 marginal utility in the above Euler equation. Assuming

power utility and § ~ 1, Equation (1.1) can thus be rewritten as

E; [m, Rf 1] =0 (1.3)

where my,, = R{ H14414S (C”Clj S>ﬂ is the stochastic discount factor (SDF) and S
denotes the horizon at which consumption growth is measured. As shown by Malloy,
Moskowitz, and Vissing-Jgrgensen (2006), a very similar stochastic discount factor can
be derived in the Epstein and Zin (1989) recursive utility framework of Hansen, Heaton,
and Li (2008). Using unconditional instead of conditional moments and rearranging

yields an expression for the expected excess return

S e
Cov [mt—&-lv Ri,t—i—l]

E[m41]

E[ f,t-i—l] = - ) (14)

which is similar to the case of the standard model except that the excess return now
depends on its covariance with marginal utility growth over a longer time-horizon. In
other words, investors demand a higher risk premium on assets whose return is more
positively correlated with consumption growth over a long horizon. Parker and Julliard
(2005) refer to the covariance of an asset’s excess return with the modified SDF as

“ultimate consumption risk”.

The model’s asset pricing implications can be tested either by directly estimating the

nonlinear specification given by Equation (1.3), or by using the representation given

14
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by (1.4). Alternatively, the model can be estimated in its linearized form: Applying a
first-order log-linear approximation in the spirit of Lettau and Ludvigson (2001b) of
the SDF yields

S
My = Riit+1+s - 75R£t+1+SACt+1+Sy (1.5)

where Acii145 = In (Cyy145/Ct) represents log consumption growth from t to t+1+8S.
Hence, the model using the linearized SDF in (1.5) can be interpreted as a linear
two-factor model. Furthermore, assuming the risk-free rate to be constant between t
and t+1+S, the linear approximation reduces to a single factor model where the pricing

kernel is a function of log consumption growth over long horizons.

1.2.2 Related Literature and Further Motivation

An important aspect of the proposed long-horizon CCAPM is that, in addition to
retaining the parsimony of the power utility specification, it does not impair the basic
assumptions of the consumption-based asset pricing framework. Yet, at the same time,
the approach is consistent with various arguments why the covariance of an asset’s
return with contemporaneous consumption growth may understate its risk due to slow
consumption adjustment. First, a wide range of factors not considered in the basic
model, such as different sources of income, housing and durable goods consumption,
may enter the utility function. In this case, the utility function is non-separable in
that marginal utility with respect to one argument will always depend on the value
of the other arguments. In addition, some of the consumption goods entering the
utility function may involve a commitment (Chetty and Szeidl, 2005). Obviously, the
adjustment of durable goods and housing consumption requires households to incur
considerable transaction costs. Moreover, many services such as telecommunications
are typically subject to long-term contracts. These real-world features imply that

aggregate consumption adjustment may be slow.
Second, due to market imperfections such as costs of gathering and processing informa-
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tion, agents’ short-term behavior may deviate from utility-maximizing consumption
smoothing. In the presence of such frictions, investors may not optimally adjust con-
sumption or rebalance their portfolio if utility losses from non-optimal behavior are
small in magnitude (Cochrane, 1989). Such “near-rational” behavior appears plausible
especially in the short-run. Again, from an empirical point of view, the reaction of
consumption to changes in aggregate wealth will probably not be reflected in quarterly
observations so that long-horizon consumption growth provides a more exact measure

of perceived consumption risk.

Furthermore, the CCAPM of Parker and Julliard (2005) is closely related to a growing
body of literature suggesting that investors require a premium on long-run consump-
tion risk in asset returns. Pioneering theoretical work by Bansal and Yaron (2004)
models consumption and dividend growth as containing a small persistent predictable
component. Therefore, current shocks to expected growth will affect expectations about
consumption growth in both the short and long run. From a theoretical point of view,
the proposed consumption and dividend process can be motivated by explicitly mod-
eling a production economy as in Kaltenbrunner and Lochstoer (2007).> Bansal and
Yaron (2004) show that in an economy with Epstein-Zin investor preferences, this addi-
tional source of risk helps to explain longstanding issues in finance such as the equity
premium, low risk-free rates, high stock market volatility, and the predictive power
of price-dividend ratios for long-horizon stock returns. In addition, the long-run risk
framework has strong implications for the cross-section of expected asset returns. If rep-
resentative agents are concerned about both short and long-run consumption risk, they
will require higher risk premia on assets that are correlated with long-run consumption
growth. Modeling dividend and consumption growth as a VAR, Bansal, Dittmar, and
Lundblad (2005) determine the exposure of dividends to long-run consumption risk.
They show that this exposure helps explain a large fraction of cross-sectional variation
in returns across book-to-market, size and momentum portfolios. Other recent papers
documenting the relevance of long-run consumption risk for determining equilibrium

asset returns include Bansal, Dittmar, and Kiku (2007), Hansen, Heaton, and Li (2008),

5The existence of a persistent component in consumption and dividends is empirically confirmed by Bansal,
Kiku, and Yaron (2007).
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Malloy, Moskowitz, and Vissing-Jgrgensen (2006), and Colacito and Croce (2007).

In sum, a large body of evidence for the US suggests that consumption growth mea-
sured over longer horizons may be an important risk factor explaining cross-sectional
variation in returns. Indeed, Parker and Julliard (2005) show that the cross-sectional
R? obtained when estimating the model on 25 US book-to-market and size portfolios
increases with the horizon at which consumption growth is measured. In fact, the
non-linear model explains up to 44% of the cross-sectional variation in average excess
returns for a horizon of 11 quarters. In this respect, the model’s performance is similar
to the conditional CCAPM of Lettau and Ludvigson (2001b) and the Fama and French
(1993) three factor model. This finding seems to suggest that long-run risk may help

resolve the value premium puzzle.

Another prominent drawback of the canonical CCAPM with CRRA utility is that,
given the observed risk premia, estimated coefficients of relative risk aversion are
usually implausibly high (Hansen and Singleton, 1983). This aspect is at the center of
recent work by Rangvid (2008), who tests an international LH-CCAPM using world-
consumption growth as a risk factor on excess aggregate stock market returns from
16 developed capital markets. The author shows that risk aversion estimates for an
internationally diversified investor decrease substantially to more plausible values if
long-run consumption risk is taken into account. However, the beta-pricing version of

the model has trouble explaining the cross-section of international stock index returns.

It is important to note that his empirical approach is based on the strong assumption of
an international representative investor, integrated financial markets, and purchasing
power parity. This paper, in contrast, analyzes the ability of the LH-CCAPM to explain
the individual cross-section of stock returns in three major stock markets. Besides
requiring weaker assumptions, looking at only three countries enables us to use detailed
consumption data that distinguish expenditure on nondurable goods and services
from durable goods (rather than having to rely on measures of total consumption).
Moreover, it allows us to pin down pricing errors for individual stock portfolios formed

on characteristics such as size and book-to-market equity ratios, which have been of
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particular interest in the empirical finance literature.

1.3 Empirical Methodology

In this section we outline our empirical approach for exploring the performance of
the long-horizon consumption-based asset pricing framework. Moment restrictions
necessary to estimate any model for the stochastic discount factor by the Generalized
Method of Moments (GMM) can be derived from Euler equations similar to Equation
(1.3). Nonetheless, we opt for the slightly different GMM estimation strategy employed
by Parker and Julliard (2005), using moment conditions based on the expression
for expected excess returns in Equation (1.4). There are three reasons for doing
this: First, closely following Parker and Julliard’s approach renders our empirical
results comparable to theirs. Second, as we will illustrate below, their approach
allows us to empirically disentangle a model’s ability to explain the equity premium
from its explanatory power for cross-sectional variation in stock returns. Third, this
approach provides an intuitive interpretation of our GMM estimation results: Using the
moment restrictions in Equation (1.4) implies that the difference between empirical and
theoretical moments can be interpreted as errors in expected returns, which in turn are
proportional to pricing errors. These pricing errors will be directly comparable across

models. More specifically, consider the vector of unconditional moment restrictions

E[h(@t+17/1’57757a5)] = 07 (16)

where O, represents the data (the vector of N test asset excess returns and consump-
tion growth), whereas the model parameters are given as g (mean of the stochastic
discount factor m;,,) and s (risk aversion parameter of the representative agent).
For the nonlinear model introduced in Section 1.2.1, the (N+1) x 1 empirical moment

function A(.) is given by
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(mtSH_NS)RfH

R;_l —agLy + s R

h(Or+1, s, Vs, g) = p

My — HS
where Rf, | denotes the vector of N test asset excess returns and ¢y is an N-dimensional
vector of ones.® Notice that the point estimate for ag will be expressed in units of
expected returns. Therefore, including the parameter in the moment function in
Equation (1.7) allows us to directly determine the magnitude of a model’s implied
“equity premium puzzle”, i.e., to investigate whether a candidate model is able to

explain the overall level of test asset returns compared to the level of the risk-free rate.

We modify the estimation approach by Parker and Julliard (2005) in one important
dimension. In a recent contribution, Lewellen, Nagel, and Shanken (2007) highlight
the statistical problems associated with the common use of size and book-to-market
sorted portfolios in the empirical asset pricing literature. In particular, given the strong
factor structure of these portfolios, Lewellen, Nagel, and Shanken (2007) point out
that any model incorporating factors that are strongly correlated with SMB and HML
potentially produces a high cross-sectional R? when tested on these test assets. In
order to avoid these problems, we expand the set of test assets to include industry
portfolios along with the commonly used size and book-to-market sorted portfolios. This
implies that our modified empirical approach provides a clearly tougher challenge for

the candidate asset pricing models compared to Parker and Julliard (2005).

In addition to testing the nonlinear long-horizon consumption-based model, we also
compare the empirical performance of the linearized LH-CCAPM in Equation (1.5) to
traditional factor models such as the CAPM and the Fama and French (1993) model.
The moment function for the three candidate factor models differs slightly from the
nonlinear model, reflecting the linear approximation of the stochastic discount factor.
Let f; 1 denote the vector of k factors, i the vector of estimated factor means, and b the
vector of coefficients measuring the marginal effect of the respective factors on the SDF.

The (N+k) x 1 moment function can then be written as

5The last moment condition is intended to identify the mean of the SDF, i.e. there are N+1 moment
conditions in total.
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Ri, —asiv + Ry (fip — )b

h(@tlea,uab) Oé) = (18)
fir1—p
This moment function satisfies N+k unconditional moment restrictions given by
E[h(®t+1mu/7b7a)] = 07 (19)

which can be used to estimate the parameters of the model by GMM. In this context, it
is important to note that identification of the parameters of the linear model requires
some normalization. Using demeaned factors in the moment function in Equation 1.8
achieves this, but it also implies that we have to correct standard errors for the fact that
factor means are estimated along the way. Therefore we use the augmented moment
function in Equation 1.8, which imposes additional restrictions on the deviation of

factors from their estimated means.”

In general, the GMM framework allows for various choices of the matrix determining
the weights of individual moments in the objective function. As discussed in detail
in Cochrane (2005, Ch. 11), the particular choice of weighting matrix affects both
statistical properties and economic interpretation of the estimates: Even though second
or higher stage GMM estimates based on the optimal weighting matrix of Hansen
(1982) are efficient, they are difficult to interpret economically as they imply pricing
some random combination of reweighted portfolios. Instead, relying on first stage
estimates with equal weights compromises efficiency while maintaining the economic
interpretation of empirical tests. Therefore, our discussion of empirical results in
Section 1.4 centers on first stage GMM estimates. In addition, we also report results
from the “test of overidentifying restrictions" based on iterated GMM estimation as a
test of overall model fit. An alternative advocated by Hansen and Jagannathan (1997)
is to use the inverse of the second moment matrix of returns as a first stage weighting
matrix. This approach allows us to compute the corresponding Hansen-Jagannathan

distance, which serves as an additional metric for model comparison.

"For a detailed discussion of this issue see Cochrane (2005, Ch. 13) and Yogo (2006, Appendix C).
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1.4 Empirical Analysis
1.4.1 Data

This section provides a detailed overview of the data used in this paper. Data on
personal consumption expenditure are available from national institutions in the
respective country: the US Bureau of Economic Analysis (BEA), the UK Office for
National Statistics (ONS), and the Federal Statistical Office (Destatis) in Germany. As
is customary in the literature on consumption-based asset pricing, we use a measure
of household’s consumption of non-durable goods and services obtained from the offi-
cial statistics. We divide by quarterly population figures to express consumption in
per capita terms. Finally, all consumption time-series are deflated by the respective

consumer price index.

While data on different consumption categories (nondurables, durables and services)
are readily available at the quarterly frequency for both the US and the UK, this is not
the case for Germany. We therefore use detailed annual data on personal consumption
expenditures for different items to construct the share of nondurables and services in
total consumption per annum. In order to estimate quarterly per capita expenditure on
nondurables and services, we assign the same share to all quarterly total expenditure
observations within a given year.® Another important aspect is the effect of Germany’s
reunification on consumption data. We correct for the negative outlier in the one-period
(per capita) consumption growth rate due to the reunification using interpolation as in
Stock and Watson (2003). Longer-horizon growth rates are then based on the corrected

series.

Our choice of test assets is mainly guided by two considerations. First, our aim is
to analyze the ability of the long-horizon CCAPM to price the cross-section of stock
returns in major financial markets outside the United States. Second, following the

suggestions of Lewellen, Nagel, and Shanken (2007), we use a broad set of test assets

8We experimented with various other matching procedures including quadratic polynomials and cubic
splines, but found only negligible differences.

21



LONG-HORIZON CONSUMPTION RISK

including portfolios sorted on both book-to-market and size as well as industry. This
choice is intended to avoid problems arising from strong commonalities in size and

book-to-market sorted portfolios.

As is standard in the empirical literature, our set of test assets contains 25 US value
and size portfolios introduced by Fama and French (1993). Similar portfolios capturing
both size and value premia are constructed by Dimson, Nagel, and Quigley (2003) for
the United Kingdom® and by Schrimpf, Schroder, and Stehle (2007) for Germany. The
total number of listed stocks in the UK and Germany is much smaller than in the US.
Therefore, in both cases, stocks are sorted into merely 16 portfolios in order to avoid
potential biases in portfolio returns. For comparisons with traditional asset pricing
models such as the CAPM and the Fama and French (1993) three factor model, we
obtain data on market returns, the excess return of small over big market capitalization
firms (SMB), and the excess return of high versus low book-to-market firms (HML)

from the same sources.

Returns on ten US industry portfolios sorted according to SIC codes are available
from Kenneth French’s website.!? In case of the UK, we use seven industry portfolios
obtained from Datastream which are available for the longest possible sample period
matching the one of the other UK test assets. Our industry portfolios for the German
stock market are obtained from the German Finance Database (Deutsche Finanzdaten-
bank) maintained at the University of Karlsruhe.!! We compute excess returns on all
portfolios using a country-specific proxy for the risk-free rate: For the US and the UK,
we use a 3-month T-bill rate and, in the case of Germany, a 3-month money market rate
provided by Deutsche Bundesbank is used. Finally, we compute real returns using the

respective national consumer price index (CPI).12

9Returns on the 16 portfolios as well as Market, HML and SMB factors can be downloaded from Stefan
Nagel’s webpage: http://faculty-gsb.stanford.edu/nagel

1Ohttp ://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

HThe sample periods for test asset returns cover 1947:Q2 - 2001:Q4 for the US, 1965:Q2 - 2001:Q1 for
the UK, and 1974:Q2 - 2001:Q1 for Germany. The overall sample period, however, is longer due to the
long-horizon consumption growth (up to S) aligned to the returns: US (2004:Q3), UK (2003:Q4), GER
(2003:Q4).

12CPI data for the US, the UK and Germany are available from the BEA, the IMF International Financial
Statistics and the OECD Economic Outlook, respectively.
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1.4.2 Empirical Results: Non-Linear Model

As pointed out in Section 1.3, we estimate the nonlinear LH-CCAPM for each of the
three markets separately using the Generalized Method of Moments (GMM). Our
discussion of empirical results focuses mainly on three aspects: a candidate model’s
ability to explain the equity premium (&), the plausibility of the estimated risk-aversion
parameter (§), and the cross-sectional explanatory power as reflected by the cross-
sectional R? and pricing error plots.!® In addition, we report results from J-tests based
on iterated GMM estimates, the root mean squared error (RMSE) from first stage GMM

estimation, and the HJ-distance metric proposed by Hansen and Jagannathan (1997).

Our results for the US, reported in Table 1.1, complement the evidence in Table 1 of
Parker and Julliard (2005) and provide a reassessment of their findings under our
modified empirical approach.'* It is important to keep in mind that we use an expanded
set of test assets by adding 10 industry portfolios to the usual 25 Fama-French portfolios.
As evinced by Table 1.1, the risk-aversion estimate for the standard CCAPM (S=0) is
rather large, mirroring previous results in the literature. It is worth noting, however,
that the estimated RRA coefficient typically decreases to substantially lower values
as we move from short to long-term consumption risk. Moreover, the precision of the
estimates tends to increase with the horizon. As the significant & estimates show, a
major limitation of the LH-CCAPM is the failure to explain the “equity premium”,
i.e. the overall level of stock returns in relation to the risk-free rate. In contrast
to results reported by Parker and Julliard (2005), its magnitude hardly declines as
the consumption growth horizon increases. Thus, the model leaves unexplained a

substantial fraction of the excess return of stocks over the risk-free rate.1®

Most importantly, however, our results presented in Table 1.1 suggest that the singular

13Computation of the cross-sectional R? in the GMM estimation framework follows Jagannathan and
Wang (1996) and Parker and Julliard (2005).

Tn order to render our results comparable across countries, we limit the horizon at which long-run
consumption risk is measured to 11 quarters.

15The J-test rejects all short and long-horizon specifications of the CCAPM, which is a common finding in
the empirical asset pricing literature: Even the best performing models such as the Fama-French three
factor model are often rejected by formal statistical tests [e.g. Lettau and Ludvigson (2001b)].
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Table 1.1: Consumption Risk and US Stock Returns - Nonlinear LH-CCAPM

Horizon & o R? RMSE HJ-Dist. dJ

(std. err.)  (std. err.) (p-value) (p-value)

0 0.022 45.410 0.07 0.529 0.587 112.417
(0.005)  (59.882) (0.000) (0.000)

1 0.019 30.720 0.09 0.525 0.584 106.269
(0.005)  (29.364) (0.000) (0.000)

3 0.018 22.575 0.09 0.523 0.588 112.372
(0.006)  (22.189) (0.001) (0.000)

5 0.018 20.626 0.11 0.520 0.586 110.750
(0.005)  (18.728) (0.005) (0.000)

7 0.018 20.719 0.14 0.508 0.584 109.739
(0.005)  (15.657) (0.009) (0.000)

9 0.019 20.525 0.17 0.500 0.584 110.940
(0.004) (12.488) (0.012) (0.000)

11 0.019 20.391 0.20 0.493 0.579 107.299
(0.004)  (11.031) (0.028) (0.000)

Note: The reported values for &, 4, R?, and the Root Mean Squared Error (RMSE) are computed using

equal weights across portfolios (first stage GMM). The HJ-Distance is based on first stage GMM estimation

using the weighting matrix proposed by Hansen and Jagannathan (1997), the J-statistic on iterated GMM

estimation. The risk-free rate is assumed to be constant. The sample period is 1947:Q2 - 2001:Q4 for

returns and 1947:Q2 - 2004:Q3 for quarterly consumption.
use of size and book-to-market portfolios [as in Parker and Julliard (2005)] may over-
state the empirical performance of the long-horizon CCAPM: If we include industry
portfolios in our set of test assets, as advocated by Lewellen, Nagel, and Shanken
(2007), we only find moderate improvements of the consumption-based asset pricing
approach as the horizon of long-horizon consumption risk increases. Accordingly, the
estimated R? reaches a maximum of 20% at a horizon of eleven quarters, which is half
the value reported by Parker and Julliard (2005) for the same horizon. Therefore, the
main empirical success of the the LH-CCAPM seems to lie in more plausible estimates

of the coefficient of relative risk-aversion, while the model’s performance to explain the

value premium still remains rather poor.

Next, we provide estimation results on the performance of the LH-CCAPM for the

cross-section of returns in the UK and Germany, where previous literature on cross-
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Table 1.2: Consumption Risk and UK Stock Returns - Nonlinear LH-CCAPM

Horizon & o R? RMSE HJ-Dist. dJ

(std. err.)  (std. err.) (p-value) (p-value)

0 0.025 14.787 0.09 0.671 0.505 48.102
(0.009)  (27.133) (0.028) (0.001)

1 0.024 3.685 0.01 0.700 0.501 45.177
(0.009)  (22.583) (0.034) (0.002)

3 0.021 15.012 0.14 0.654 0.500 49.357
(0.010)  (17.637) (0.030) (0.000)

5 0.023 5.651 0.05 0.686 0.498 47.964
(0.008)  (14.625) (0.035) (0.001)

7 0.021 8.950 0.13 0.656 0.497 48.309
(0.008)  (12.054) (0.035) (0.001)

9 0.023 4.517 0.07 0.680 0.499 47.405
(0.007)  (11.782) (0.029) (0.001)

11 0.022 5.037 0.09 0.671 0.496 47.800
(0.007)  (12.011) (0.027) (0.001)

Note: The reported values for &, 4, R?, and the Root Mean Squared Error (RMSE) are computed using
equal weights across portfolios (first stage GMM). The HJ-Distance is based on first stage GMM estimation
using the weighting matrix proposed by Hansen and Jagannathan (1997), the J-statistic on iterated GMM
estimation. The risk-free rate is assumed to be constant. The sample period is 1965:Q2 - 2001:Q1 for
returns and 1965:Q2 - 2003:Q4 for quarterly consumption.
sectional tests of consumption-based asset pricing models has been rather scarce.!®
Estimation results for the UK reported in Table 1.2 largely confirm our findings for the
US. Even though the estimated coefficient of determination arrives at a peak at shorter
consumption growth horizons of 3 and 7 quarters, the overall explanatory power of the
LH-CCAPM remains comparably low. Moreover, the model cannot explain the overall
level of UK stock returns. Nevertheless, the effect of long-horizon risk on risk-aversion
estimates is again remarkable. If we measure consumption growth over a time period of

at least 5 quarters following the return, the estimated risk-aversion coefficient declines

to values around 5.

Table 1.3 summarizes the evidence on the empirical content of the long-horizon CCAPM
framework for the German stock market. The results for the LH-CCAPM in Germany

are rather in line with those for the US stock market discussed above. As evinced by the

6An exception is the work of Gao and Huang (2004), who use UK value and size portfolios, whereas
other papers such as Hyde and Sherif (2005a,b) for the UK and Lund and Engsted (1996) for Germany
estimate consumption-based models separately for each industry sector or market index.
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Table, we find that the plausibility of parameter estimates varies with the consumption
growth horizon. Most importantly, risk-aversion estimates tend to decline to more
plausible levels as we increase the time period over which consumption growth is
measured. However, this decrease is not monotonous. At the same time, the estimated

cross-sectional R? also varies with the horizon and reaches a maximum of 22% for

S=11.

Table 1.3: Consumption Risk and German Stock Returns - Nonlinear LH-CCAPM

Horizon & A R? RMSE HJ-Dist. J

(std. err.)  (std. err) (p-value) (p-value)

0 0.015 61.927 0.09 0.730 0.544 61.121
(0.009)  (31.840) (0.362) (0.000)

1 0.013 59.990 0.16 0.701 0.545 43.436
(0.008)  (36.956) (0.317) (0.017)

3 0.013 27.586 0.05 0.744 0.545 97.116
(0.008)  (37.379) (0.275) (0.000)

5 0.013 11.850 0.05 0.745 0.552 44.760
(0.008)  (27.171) (0.216) (0.013)

7 0.010 17.963 0.12 0.718 0.554 46.184
(0.006)  (19.539) (0.205) (0.009)

9 0.012 11.482 0.09 0.726 0.551 45.088
(0.006)  (16.736) (0.203) (0.012)

11 0.007 19.987 0.22 0.675 0.552 46.216
(0.004)  (17.863) (0.208) (0.009)

Note: The reported values for &, 4, R?, and the Root Mean Squared Error (RMSE) are computed using
equal weights across portfolios (first stage GMM). The HJ-Distance is based on first stage GMM estimation
using the weighting matrix proposed by Hansen and Jagannathan (1997), the J-statistic on iterated GMM
estimation. The risk-free rate is assumed to be constant. The sample period is 1974:Q2 - 2001:Q1 for
returns and 1974:Q2 - 2003:Q4 for quarterly consumption.

Interestingly, even the canonical consumption-based model does not imply an “equity
premium puzzle” for Germany. What is more, the relevant coefficient (&) is further
reduced if long-horizon consumption risk is taken into account. Overall, the results for
the UK and the German stock markets further corroborate our earlier conclusion that,
even though the ability of the LH-CCAPM to account for size and value premia is rather
limited, the modified model helps to obtain more sensible risk-aversion parameter

estimates.
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1.4.3 Empirical Results: Linearized Model

In order to facilitate comparison with traditional factor models for the stochastic
discount factor, we also estimate the linearized version of the LH-CCAPM. Tables 1.4,
1.5, and 1.6 summarize estimation results assuming a constant risk-free rate, which
implies a one-factor model where long-horizon consumption growth serves as the single
risk factor. In general, estimates are in accordance with those obtained for the nonlinear

model.

As discussed in the previous subsection, when required to price a broader cross-section
of assets, the long-horizon risk CCAPM apparently has trouble explaining US excess
returns (Table 1.4). Nevertheless, our results confirm those of Parker and Julliard (2005)
in two other regards. First, the cross-sectional R? increases considerably for longer
horizons. Second, GMM coefficient estimates suggest that the effect of consumption
growth on the representative investor’s stochastic discount factor is estimated more
precisely if consumption risk is measured over longer time periods. Moreover, the
estimate of the risk-aversion coefficient declines to more economically plausible values

as the horizon S increases.

The explanatory power of the linearized LH-CCAPM for the cross-section of returns
seems clearly weaker when tested on UK stock portfolios. Similar to estimation results
for the nonlinear specification, the coefficient of determination is highest for horizons of
3 (12%) and 7 (9%) quarters. In addition, point estimates b suggest that the SDF is not
systematically related to consumption risk, irrespective of the chosen horizon. Although
implied risk-aversion estimates have high standard errors, they exhibit a considerable

decline as we extend the horizon over which consumption risk is measured.
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Results for the linearized version of the LH-CCAPM for the German stock market
are provided in Table 1.6. As was the case for the nonlinear specification, the model
has no problem explaining the the overall level of stock returns. Taking long-horizon
risk into account improves the performance of the CCAPM in other respects. The
empirical fit as measured by R? and RMSE is best for a consumption risk horizon of
11 quarters. Moreover, implied risk aversion appears to decrease with horizon (albeit
in a non-monotonous fashion). If consumption risk is measured over 11 quarters, the
coefficient of relative risk aversion is estimated at a rather low value of 10 which is half
the point estimate obtained for the conventional CCAPM. Moreover, the significance of
b, the parameter measuring the effect of consumption growth on the SDF, is far higher

for S=11 than for the canonical CCAPM.

All together, inference for the linearized LH-CCAPM suggests that long-horizon con-
sumption risk helps improve the empirical performance of the consumption-based
model to some extent. Even though detailed empirical results differ across countries,
some common patterns emerge. Most notably, measuring consumption risk over several
quarters following the return helps to obtain much more plausible estimates of the
representative investor’s risk-aversion coefficient. This result is in accordance with

recent evidence presented by Rangvid (2008).

1.4.4 Comparison to Traditional Linear Factor Models

Empirical results for the linearized CCAPM can be directly compared to those for
the Fama and French (1993) three-factor model and the traditional CAPM, which are

summarized in Table 1.7.

Estimates for 35 US portfolios in Panel A are in line with previous evidence in the
literature [e.g. Fama and French (1993) or Lettau and Ludvigson (2001b)]: While the
Fama-French three factor model explains more than 50% of cross-sectional variation
in returns, the standard CAPM performs extremely poorly. Accordingly, as shown
in Figure 1.1, portfolio excess returns predicted by the CAPM appear to be almost

unrelated to realized average excess returns. In contrast, fitted excess returns for the
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Fama-French model and, to a lesser extent, the LH-CCAPM line up more closely to
the 45° line. At the same time, estimation results in Table 1.7 also indicate that, with
the exception of HML, none of the proposed Fama-French factors seem to significantly

affect the SDF of the representative US investor.

As illustrated in Figure 1.2, the high explanatory power of the Fama and French
(1993) model typically found for the US is even higher for the cross-section of UK stock
returns. First stage GMM estimates reveal that the model explains as much as 71%
of cross-sectional variation in returns, compared to only 6% for the CAPM and 9%
for the canonical CCAPM (S=0). However, as can be seen in Table 1.7, coefficients
measuring the marginal impact of the respective financial risk factors on the SDF are

not significant.

In the case of Germany (Panel C), the cross-sectional R? obtained for the long-run risk
model - up to about 20% at 11 quarters - is clearly qualified by the high explanatory
power of the three factor model (70%) and the CAPM (52%). Actually, the CAPM
performs surprisingly well when tested on a cross-section of 28 industry, value and
size portfolios, as reflected by significant b estimates. Nevertheless, the three factor
model performs even better in that it provides an explanation for the overall level of
returns relative to the risk-free rate and is not rejected by the test of overidentifying
restrictions at the 5% significance level. Comparing all three models in terms of their
explanatory power for German stock returns, the long-run consumption risk model does
not provide any advantages over the two traditional linear models based on financial
factors. Pricing error plots in Figure 1.3 confirm this conclusion as the magnitude of
pricing errors is considerably lower for the three-factor model of Fama and French

(1993).17

"However, models using macroeconomic factors will always be at a disadvantage to models using financial
factors (Cochrane, 2007, p.7) due to a less precise measurement of macroeconomic variables. Moreover,
these models allow for a more structural analysis of the economic determinants of risk premia, which
typically cannot be delivered by models using merely financial factors.
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Figure 1.1: Pricing Error Plots for US Stock Returns - Linearized LH-CCAPM and

Traditional Linear Factor Models
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Note: The figure compares realized excess returns on 25 value and size as well as 10 industry portfolios to those pre-
dicted by the CAPM, the Fama and French (1993) model, and the linearized LH-CCAPM (with constant risk-free rate)
at various horizons. The portfolios are depicted in the following way: e.g. S1B1 refers to stocks in the smallest size
and book-to-market Quintiles, while S5B5 refers to stocks in the largest size and book-to-market Quintiles; industry
portfolios are depicted as I plus the corresponding industry number running from 1 to 10. Fitted excess returns are

based on first stage GMM estimation with identity weighting matrix. The sample period is 1947:Q2 - 2001:Q4.
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Figure 1.2: Pricing Error Plots for UK Stock Returns - Linearized LH-CCAPM and

Traditional Linear Factor Models
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Note: The figure compares realized excess returns on 16 value and size as well as 10 industry portfolios to those
predicted by the CAPM, the Fama and French (1993) model, and the linearized LH-CCAPM (with constant risk-free
rate) at various horizons. The portfolios are depicted in the following way: e.g. S1B1 refers to stocks in the smallest
size and book-to-market Quartiles, while S4B4 refers to stocks in the largest size and book-to-market Quartiles;
industry portfolios are depicted as I plus the corresponding industry number running from 1 to 7. Fitted excess
returns are based on first stage GMM estimation with identity weighting matrix. The sample period is 1965:Q2 -
2001:Q1.
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Figure 1.3: Pricing Error Plots for German Stock Returns - Linearized LH-CCAPM and

Traditional Linear Factor Models
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Note: The figure compares realized excess returns on 16 value and size as well as 10 industry portfolios to those
predicted by the CAPM, the Fama and French (1993) model, and the linearized LH-CCAPM (with constant risk-free
rate) at various horizons. The portfolios are depicted in the following way: e.g. S1B1 refers to stocks in the smallest
size and book-to-market Quartiles, while S4B4 refers to stocks in the largest size and book-to-market Quartiles;
industry portfolios are depicted as I plus the corresponding industry number running from 1 to 12. Fitted excess
returns are based on first stage GMM estimation with identity weighting matrix. The sample period is 1974:Q2 -
2001:Q1.

Summing up, the empirical success of long-run consumption risk compared to the

canonical CCAPM in terms of cross-sectional explanatory power is qualified by the
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astonishingly good performance of the factor model of Fama and French (1993).18 At
the same time, our results for the UK and the US confirm the bad performance of the
CAPM typically found in empirical model comparisons. Surprisingly, we find that this
model explains as much as 52% of cross-sectional variation in returns across German
portfolios. In any case, measuring risk in stock returns as their covariance with long-
run consumption growth leads to some — but generally limited — improvements over
the canonical CCAPM in terms of overall empirical fit. Our results for international

stock markets show that value and size premia still remain a major challenge for the

LH-CCAPM.

1.5 Conclusion

Recent work by Parker and Julliard (2005) suggests that measuring consumption
growth over several quarters following the return substantially improves the explana-
tory power of the consumption-based asset pricing paradigm. Their modified empirical
setup is robust against various arguments as to why consumption expenditure may
be slow to adjust to innovations in aggregate wealth. Besides, their model is closely
related to the literature on long-run consumption risk, as it implies expressions for
expected returns that are similar to the testable implications of long-run risk models

with recursive utility such as Hansen, Heaton, and Li (2008).

Our work contributes to the literature on long-run consumption risks in three respects:
First, by expanding the set of test assets to include industry portfolios, we take into
account recent criticism regarding the widespread use of value and size portfolios as
test assets (Phalippou, 2007; Lewellen, Nagel, and Shanken, 2007). Under our modified
empirical approach, we find that long-horizon consumption risk falls short of providing
a complete account of the cross-section of expected returns, especially the premium on
value stocks. In this way, our findings suggest that the long-horizon consumption-based

approach does not resolve the famous "value premium puzzle”.

18A major disadvantage of Fama and French’s three factor model is that there is still no full agreement in
the literature about what the true risks underlying SMB and HML actually are. See, e.g., Petkova (2006)
for a risk-based explanation in an empirical implementation of an ICAPM in the spirit of Merton (1973).
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Second, evaluating the proposed CCAPM separately for three countries enables us to
compare results across capital markets. In this sense, our findings provide additional
out-of-sample evidence and address potential data-snooping concerns. Empirical results
for Germany and the UK indicate that measuring consumption risk over longer horizons
indeed helps increase the empirical performance of the CCAPM, albeit at modest levels.
For both markets, estimated coefficients of determination remain below those obtained

for the ad hoc factor model of Fama and French (1993).

Third, our analysis confirms the evidence of Parker and Julliard (2005), who find that
point estimates of the investor’s risk-aversion parameter vary with the time interval
over which consumption growth is measured. In line with evidence reported by Rangvid
(2008), we find that accounting for long-horizon consumption risk typically delivers
more sensible estimates. This is true for all three equity markets considered in this

study.

Summing up, accounting for long-horizon consumption risk within the CCAPM frame-
work indeed seems to improve the model’s cross-sectional explanatory power in certain
ways. On the one hand, the model still falls short of providing an accurate description
of size and value premia. On the other hand, the estimated risk aversion of an investor
who is concerned about long-run consumption risk is much lower and therefore more
plausible compared to the standard model. In this sense, long-horizon consumption risk
appears to be a more accurate measure of macroeconomic risk factors in stock returns

than contemporaneous consumption growth.
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CHAPTER 2

INTERNATIONAL STOCK RETURN PREDICTABILITY

UNDER MODEL UNCERTAINTY"

ABSTRACT

This chapter examines return predictability when the investor is uncertain about
the right state variables. A novel feature of the model averaging approach used in
this chapter is to account for finite-sample bias of the coefficients in the predictive
regressions. Drawing on an extensive international dataset, we find that interest-rate
related variables are usually among the most prominent predictive variables, whereas
valuation ratios perform rather poorly. Yet, predictability of market excess returns
weakens substantially, once model uncertainty is accounted for. We document notable
differences in the degree of in-sample and out-of-sample predictability across different
stock markets. Overall, these findings suggest that return predictability is not a

uniform and a universal feature across international capital markets.

*This chapter is based on a joint paper with Qingwei Wang (University of Mannheim and Centre for
European Economic Research).

40



RETURN PREDICTABILITY UNDER MODEL UNCERTAINTY

2.1 Introduction

Empirical studies have asserted that a plethora of variables contain information about

future excess returns in regressions of the form:

=+ ﬂ/:lit_l + U, (21)

where r; denotes the return of the aggregate stock market portfolio in excess of the
risk-free rate, and z;_; is a vector of predictive variables, such as the dividend yield, a
term spread or certain macroeconomic variables.! Statistically significant 3 coefficients
in Eq. (2.1) are interpreted as evidence for predictability and as evidence that risk

premia are time-varying.?

Given the large number of variables proposed in the literature, a typical investor is
confronted by a high degree of uncertainty on what the “right” state variables are.
Moreover, the fact that so many variables have found to be valuable predictors of
returns naturally raises the concern that the apparent predictability may well arise
due to data-snooping rather than genuine variation of economic risk premia.? The
aim of this paper is, therefore, to explore the robustness of several predictive variables
in international stock markets in the context of model uncertainty. One of the major
results of the paper is that few of the predictive variables put forth in the literature
are truly robust predictors of returns. Second, substantial differences in the degree
of in-sample and out-of-sample predictability can be observed across different stock

markets.

1See e.g. Fama and French (1988), Fama and French (1989), Campbell and Shiller (1988a), Campbell and
Shiller (1988b), Lettau and Ludvigson (2001a) etc.

?Based on the evidence for return predictability provided by the aforementioned articles, by the late 1990s
the consensus among financial economists considered expected excess returns to be time-varying. In
particular, predictability of market excess returns has been labeled as one of the “new facts in finance”
(Cochrane, 1999).

3See e.g. Bossaerts and Hillion (1999), Ferson, Sarkissian, and Simin (2003) for critical views. Most
notably, after a comprehensive out-of-sample forecast evaluation, Goyal and Welch (2008) come to the
conclusion that knowledge of different state variables is of little use for a real-time investor. They
interpret their findings as strong counterevidence against stock return predictability.
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In this paper, we follow the spirit of the seminal work by Cremers (2002) and Avramov
(2002) and use Bayesian model averaging in order to account for model uncertainty.
Unlike the classical framework, the Bayesian approach does not assume the existence
of a “true” model. By contrast, a-posteriori model probabilities can be derived for the
different candidate models, which are then used to weight the coefficients accordingly
in a composite model. In this way, model uncertainty can be accounted for in a coherent

way.

A new feature of our approach is to account for finite-sample bias of the coefficients
in the predictive regressions in a “frequentist” model averaging framework. A pure
Bayesian model averaging framework as in Cremers (2002) and Avramov (2002) re-
quires prior elicitation for the relevant parameters conditional on the different models.
The specification of prior beliefs can be a problematic task when the set of models
becomes very large.* Therefore, in order to reduce the impact of subjective prior in-
formation, we base our empirical study on Bayesian averaging of classical estimates
(BACE) as in Sala-i-Martin, Doppelhofer, and Miller (2004). BACE can be seen as a
limiting case of the Bayesian approach as the prior information becomes dominated
by the data (See Leamer, 1978). Another less-attractive feature of the pure Bayesian
model averaging approach as used by Cremers (2002) and Avramov (2002) is that it
treats the predictive variables as exogenous, an assumption which is clearly invalid in
the context of predictive regressions. How to conduct reliable inference in predictive
regressions while taking the time-series properties of the predictive variables (such
as the dividend yield) into account has been the subject of a great amount of recent
research (See for instance Stambaugh, 1999; Campbell and Yogo, 2006; Lewellen, 2004;
Amihud and Hurvich, 2004; Torous, Valkanov, and Yan, 2004; and Moon, Rubia, and
Valkanov, 2006). In order to account for problems due to the persistence of the predictive
variables, we estimate the models by classical OLS, where the coefficients are adjusted
for finite-sample bias using the approach put forth in Amihud and Hurvich (2004). The

bias-corrected coefficients in the particular models are then weighted by their posterior

4 Avramov (2002) addresses this problem using an empirical Bayes approach which uses sample data for
prior elicitation. In the Bayesian tradition, Cremers (2002) specifies subjective prior distributions based
on different skeptical or optimistic beliefs about predictability.
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model probabilities which are derived according to the BACE approach of Sala-i-Martin,
Doppelhofer, and Miller (2004).

This paper also contributes to the existing literature by conducting a comprehensive
analysis of stock return predictability in major international stock markets. It is fair to
say that the profession’s view on stock return predictability has been shaped for the
most part by empirical studies on the US stock market. However, examining other
important capital markets more closely may provide important additional insights,
especially in a controversial field such as return predictability. Moreover, investigation
of international markets also provides another way of guarding against data-snooping
concerns. We thus examine the predictive performance of nine variables in a total of
five international stock markets (France, Germany, Japan, United Kingdom, United
States). Other important recent papers which provide evidence on international stock
markets include Neeley and Weller (2000), Hjalmarsson (2004), Rapach, Wohar, and
Rangvid (2005), Paye and Timmermann (2006), Giot and Petitjean (2006) or Ang and
Bekaert (2007).> To the best of our knowledge, however, evidence on the effects of model
uncertainty for return predictability in major international stock markets has been

lacking so far.

There is a long list of variables which has been proposed in the literature on stock
return predictability. In particular, valuation ratios such as the dividend yield or the
earnings yield (e.g. Fama and French, 1988; Campbell and Shiller, 1988a; Lewellen,
2004), interest rate related variables such as short-term interest rates (e.g. Fama and
Schwert, 1977; Hodrick, 1992; Ang and Bekaert, 2007) or default and term spreads
(e.g. Campbell, 1987; Fama and French, 1989) have featured prominently in predictive
regressions. Lamont (1998) has proposed the dividend-payout ratio as a predictive
variable. The predictive power of stock market volatility has been studied by French,
Schwert, and Stambaugh (1987). Pure macroeconomic variables used in predictive

regressions include for instance the inflation rate (e.g. Fama, 1981), consumption-

®Hjalmarsson (2004) and Paye and Timmermann (2006) consider only four financial variables. Rapach,
Wohar, and Rangvid (2005) focus merely on macroeconomic variables and do not consider financial
valuation ratios. Giot and Petitjean (2006) consider finite-sample bias but do not address the issue of
model uncertainty. Their set of predictive variables is limited to five financial variables.
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wealth ratio (Lettau and Ludvigson, 2001a), price-GDP ratio (Rangvid, 2006), industrial
production growth (e.g. Fama, 1990 or Avramov, 2002), and more recently the output
gap (Cooper and Priestley, 2006). Variables motivated from a behavioral point of view
(such as stock market sentiment as in Brown and Cliff, 2005) have also been shown to

predict returns.

The brief review of the literature in the previous paragraph suggests that there is not
much consensus on what the important variables are, or, put differently, that there is a
tremendous model uncertainty in predictive regressions. In particular, some variables
may appear significant in one specification and be insignificant in others, as researchers
may only report their preferred specifications. As time elapses, more variables are sure

to be added to the list of predictors.

While in-sample predictability is a debated topic, the question whether stock returns
may be predictable out-of-sample (OOS) has been even more controversial. Empirical
results on OOS predictability are mixed. Recently, several authors — most notably
Goyal and Welch (2008) — argue against stock return predictability or time-varying
risk premia based on the lacking evidence for out-of-sample predictability.® Campbell
and Thompson (2007), however, find that once sensible restrictions are imposed on
the predictive regression coefficients, the OOS forecast performance can be improved.
It has also been argued that averaging forecasts of various models enhances out-of
sample forecast performance substantially. Avramov (2002) finds that the out-of-sample
performance of the weighted model is superior to the performance of models selected
by information criteria and better than a naive benchmark. Another aim of the paper
therefore is to look closer at the out-of-sample forecast performance of model averaging,
in particular the time-variation of OOS performance in the spirit of Goyal and Welch

(2008).

Our main results can be summarized as follows. Several notable differences with regard

to return predictability are found across countries. We find that interest rate related

6Cochrane (2006) defends predictability based on the argument that even though predictability from the
dividend-price ratio may be weak on statistical grounds, the fact that dividend growth is not predictable
at all, may be interpreted as evidence that the variation of the dividend-price ratio is informative about
future expected returns.
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variables are usually among the most robust predictive variables in international stock
markets, which corroborates recent results by Rapach, Wohar, and Rangvid (2005)
and Ang and Bekaert (2007). Valuation ratios such as the dividend yield, however,
perform rather poorly. There is also some evidence across countries that the output
gap is related to expected returns and thus that risk premia vary with the state of the
economy as pointed out recently by Cooper and Priestley (2006). The earnings yield
often appears to be a more robust predictor than the dividend yield. Yet, predictability
of market excess returns clearly weakens, once model uncertainty is accounted for. We
only find some evidence for out-of-sample predictability by model averaging methods in
the case of France but not for the remaining stock markets. Overall, our international
analysis reveals that return predictability is not a uniform and a universal feature

across international capital markets.

The remainder of the paper is structured as follows. Section II discusses the econometric
framework of predictive regressions and how model uncertainty can be accounted for
in a model averaging framework. Section III briefly discusses our data set. Empirical

findings are discussed in Section IV. Section V concludes.

2.2 Methodology

In this paper we assess predictive ability in the conventional framework of predictive
regressions. When there are multiple predictive variables (depending on the particular

model M), the predictive equation for future stock returns is given by

=+ ﬂ}:z:j;t_1 + g, (2.2)

where r; denotes the (log)-return on the market portfolio in excess of the (log) risk-free
rate and z;,;_1 is a kj-dimensional vector of predictive variables, whose dimension
and composition depends on the particular model M;. In total, we utilize ~ different

predictive variables which results in 2% different subsets, i.e. vectors of predictive
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variables xj;,—1 (j =1,---,2"). §; is a k;-dimensional vector of regression coefficients
on the predictive variables. As is common in the extant literature, the vector of

predictive variables is assumed to follow a first-order VAR:

Tjit = O + ®jxj—1 + V- (2.3)

©, is a kj-dimensional intercept and ®; is a k; x k; matrix with all eigenvalues smaller
than one in absolute value to ensure stationarity of the process. The errors (u;;,v;,)’

are 1.i.d. multivariate normal with mean zero.

2.2.1 Accounting for Model Uncertainty

We want to put ourselves in the position of an investor who is confronted by the
voluminous literature on evidence for stock return predictability, yet is uncertain about
which variables are actually of importance. In such a context, a Bayesian framework
is attractive, since model uncertainty can be considered coherently. In a classical
framework, however, the search for the “true model” usually implies running a series of
model specification tests. Moreover, a classical approach is less appealing, because once
a single model is determined, information in the remaining 2 — 1 models is neglected.
The approach taken in this paper is to combine the Bayesian feature of model averaging
with coefficients estimated by classical OLS (BACE approach put forth by Sala-i-Martin,
Doppelhofer, and Miller 2004).” The major advantage is that the BACE approach
allows us correct for finite-sample bias of predictive slope coefficients, which is an issue
previously neglected in the Bayesian model averaging literature as noted for instance
by Stock and Watson 2004, p.34. Moreover, the approach largely avoids the drawback
of the dependence on prior distributions (See Sala-i-Martin, Doppelhofer, and Miller
2004).

We explore the usefulness of k = 9 candidate predictive variables in total, which implies

that 2% = 512 different model combinations are assessed. In a Bayesian framework,

"Bayesian and classical results are numerically identical when diffuse priors are specified.
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posterior probabilities p(M;|y) for each model j = 1,...,2" can be derived. These
posterior model probabilities are used in the Bayesian model averaging framework as

weights of the composite model:

.
EBly = p(M;ly)B;ly, (2.4)

j=1

where (3;|y denotes the posterior mean of the predictive coefficients in the jth model. In
the same way, the posterior standard deviation in the composite model is obtained from

the corresponding diagonal element of the matrix

2K

Var(Bly) = Y p(M;ly)[Var(Bily) + (8; — EIBly]) (85 — EBly))']- (2.5)

J=1

Note that the posterior variance of the composite model in Eq. (2.5) contains essentially
two components: the first term in the brackets accounts for estimation risk, whereas
the second measures the variation of the predictive coefficients across the different

models and thus accounts for model uncertainty.®

For determining the weights, the marginal likelihood for the different models M; must
be computed.? In the pure BMA framework, analytical solutions can be found only for
certain prior distribution families.1? In the “frequentist” model averaging framework of
Sala-i-Martin, Doppelhofer, and Miller (2004), however, the marginal likelihood of a
particular model is approximated using the Schwarz criterion as exp(—0.5BIC};). The

posterior model probability for M; can then be derived as

8Following Avramov (2002), we report posterior standard deviations with and without adjustment for
model uncertainty in order to demonstrate the effects of accounting for model uncertainty in the inference.

9Mathematically, the marginal likelihoods can be obtained by integrating out the parameters from the
combination of the likelihood and the prior conditional on the model.

0 Avramov (2002), for instance, uses an “empirical Bayes” approach for prior elicitation, which uses
data-information from the sample in order to determine the prior specification. Yet, such an approach
can be criticized for using information of the dependent variable, which violates the rules of probability
necessary for conditioning (Fernandez, Ley, and Steel, 2001).
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p(M)exp(—0.5BIC;
p(Mly) = M eenl D
Y img p(M;)exp(—0.5BIC;)

(2.6)

where p(M ) denotes the probability assigned to model j a-priori. As discussed in Sala-
i-Martin, Doppelhofer, and Miller (2004), this formula can be derived in a standard
g-prior framework taking the limit as the data-information increases relative to the
prior information. Thus, using posterior model probabilities as in Eq. (2.6) essentially

implies using a prior that becomes dominated by the data.

2.2.2 Finite-sample Bias in Predictive Regressions

In the following we outline our approach to correct for finite-sample bias in the BACE
framework. In order to provide some intuition on the econometric problems arising
from predictive variables which are not exogenous but rather predetermined, we first

briefly review the single predictor case by Stambaugh (1999)

re =a+ Bri-1 + €, 2.7
where r; denotes the (log)-return on the market portfolio in excess of the (log) risk-free

rate and x;_; is a predictive variable such as the dividend yield. The predictive variable

itself is modeled as a first-order autoregressive process

Ty = 0+ PLt—1 + ft. (28)
The errors in Eq. (2.7) and Eq. (2.8) are assumed to be i.i.d. jointly normally distributed.

Stambaugh (1999) then derives an analytical formula for the finite-sample bias of the

predictive coefficient

E(B—B) =vE(p—p), (2.9)
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g

where v = =5 is the ratio of the covariance of the errors in both equations (o.¢) and

o
the Varianceg(ag) of the error term &; . As Eq. (2.9) shows, the bias of the predictive
coefficients arises from the (downward) bias of the autoregressive parameter for the
predictive variable p in combination with the correlation of the innovations in the
predictive variable & and the error term ¢; in the predictive equation. The latter effect
can be particularly severe in the case of valuation ratios (where the covariance between
the shocks o is typically strongly negative, which results in an upward bias of B). A
bias-corrected estimator 3% = 3 + (14 3p)/n, where n denotes the sample size and 7 is

a sample estimate of v, has been used e.g. by Giot and Petitjean (2006) in the single

predictor case.

Since this paper is concerned about the issue of model uncertainty involving a mul-
tiplicity of variables, we work with the generalized case of multiple predictors as in
Eq. (2.2) and Eq. (2.3). In order to obtain a bias-corrected estimator for the vector of
predictive coefficients 3; in Eq. (2.2), we use the method recently put forth by Amihud

and Hurvich (2004). Their approach amounts to running an augmented regression

re = o+ /Bgmj;t_l + ¢;-1/]C-,t +ejt, (2.10)

which is equivalent to running the predictive regression in Eq. (2.2) augmented by
a corrected k; x 1 residual series v§,. As shown by Amihud and Hurvich (2004), this
procedure yields an unbiased estimator Bjc for the vector of predictive coefficients. The
residual series v§, = z;; — ((:)5 + (i)?arj;t_l) is based on a reduced-bias estimator for
the autoregressive parameters (i>j in the multivariate autoregressive model in Eq.
(2.3). Our estimate of ti)j follows the approach put forth by Amihud and Hurvich
(2004) for the case when ®; is constrained to be diagonal.!! Hence, the different series
x;t (¢ =1,---,k;) are considered separately. The individual error series are computed
as y]ct’ =, — 65 — p§z’, . The autoregressive parameters are adjusted according to

finite-sample bias by p¢ = p; + (1 + 3p;)/n + 3(1 + 3p;)/n®. The reduced bias-estimator

1 Allowing for a non-diagonal structure raises the need to estimate a multiplicity of parameters, in
particular as k; increases. This may result in a degradation of performance (See Amihud and Hurvich
(2004)). We therefore impose a diagonal structure.
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Bj is then obtained by regressing stock excess returns on the set of k; lagged predictive
and the corrected error proxies y;t (t=1,---,k;j). Standard errors for @; are adjusted

for the two-step procedure as proposed in Amihud and Hurvich (2004).

2.3 Empirical Results
2.3.1 Data

Our dataset comprises monthly and quarterly data for five international stock markets:
France, Germany, Japan, United Kingdom and the United States. The dependent
variables are (log) returns on broad stock indices in excess of the (log) short-term
interest rate. Monthly summary statistics on the dependent variables and the predictive

variables can be found in Table 2.1.

We assemble a data set of nine financial and macroeconomic predictive variables for
the different international stock markets. The following variables comprise our set of

predictors:

Interest rate variables: Difference between the yield on long-term government bonds
and the three-month interest rate (term spread, TRM), short term interest rate
relative to its 12-month backward-looking moving average (RTB), long-term gov-
ernment bond yield relative to its 12-month backward-looking moving average

(RBR).

Valuation Ratios and other Financial Variables: Dividends paid over the past 12
months in relation to the current price (dividend yield, LDY) and earnings over
the past 12 months in relation to the current price (earnings yield, LEY), both in
logs. (Log) realized stock market volatility (LRV).

Macro Variables: Annual inflation rate (INF) based upon the Consumer Price Index,
annual industrial production growth (IPG), estimate of the output gap obtained
by the HP-filter (GAP).
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The selection of variables is guided mainly by the previous US literature, as well as data
availability. The main economic motivation for the different variables is that they are
considered to be informative about future expected aggregate cash-flows in the economy
or the discount rate applied to these cash-flows.!? Hence, these variables have typically
also featured prominently as state variables in empirical tests of intertemporal asset

pricing models, e.g. Campbell (1996) or Campbell and Vuolteenaho (2004).

Table 2.1: Summary Statistics, Monthly
France: 1973:02-2005:10

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN  0.0044 1.0938 -0.0677 -0.0654 5.1294 0.9889 -6.1797 -3.3346 -2.5178  0.0456
STD 0.0621  1.2517 1.4400 0.8517 4.0892 4.4328 0.7752  0.3515  0.3275  2.8689
AC(1) 0.0798  0.9207 0.9171 0.9237 0.9966 0.8737 0.5835 0.9782  0.9673  0.8598

Germany: 1974:02-2004:12

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0031 1.3726 -0.1960 -0.0943 2.8285 1.2246 -6.5848 -3.7179 -2.7080 -0.1855
STD 0.0513 1.6839 1.1858 0.6146 1.8475 4.0470 0.9695 0.3530 0.2514  2.8891
AC(1) 0.0872  0.9723 0.9566  0.9054 0.9777 0.8178 0.7488  0.9824  0.9568  0.8354

Japan: 1973:02-2005:11

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0016 0.6874 -0.0750 -0.0850 3.0833 2.1889 -6.5518 -4.5379 -3.5609 -0.0424
STD 0.0522 1.1971 1.1642 0.6554 4.6170 6.2448 1.0202 0.5050  0.4687  4.1581
AC(1) 0.0838 09518 0.9611  0.9066 0.9890 0.9426 0.7242  0.9930  0.9905  0.9402

United Kingdom: 1973:01-2005:11

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0037 0.7989 -0.0258 -0.0796 6.6242 1.1718 -6.4382 -3.1629 -2.5142  0.0887
STD 0.0566  2.1353 1.5307 0.8933 5.2741 4.0886 0.8087  0.2748  0.3977  2.7035
AC(1) 0.1092 09774 0.9268 0.9089 0.9930 0.8562 0.6812  0.9747 0.9856  0.8691

United States: 1958:01-2005:12

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
MEAN 0.0044 1.6348 0.0000 0.0126 4.0387 3.0665 -6.6934 -3.5011 -2.7798 -0.1089
STD 0.0423 1.4360 1.1069 0.6257 2.7614 4.8664 0.8540 0.3962  0.3923  3.0940
AC(1) 0.0282 0.9493 0.9000 0.8764 0.9936 0.9609 0.8188  0.9920  0.9926  0.9637

Note: The table reports summary statistics of (log) market excess returns (EXRET) and predictive
variables in five international stock markets. MEAN, STD, AC(1) denote the mean, standard deviation and
first-order autocorrelation coefficient respectively. The set of predictors comprises the term spread (TRM),
the short-term interest rate relative to its 12-month moving average (RTB), a long-term government
bond yield relative to its 12-month moving average (RBR), annual inflation rate (INF), annual growth of
industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield (LDY), (log) earnings yield
(LEY), output gap (GAP).

Due to data availability, the different sample periods differ across markets. For most

countries, the sample periods start in the early 1970s and end in mid 2000. The US

2Subsets of these variables are used for instance in Fama and Schwert (1977), Fama (1981), Fama and
French (1988), Campbell and Shiller (1988a), Fama and French (1989)), Fama (1990), Hodrick (1992),
Avramov (2002), Cremers (2002), Lewellen (2004), Rapach, Wohar, and Rangvid (2005), Cooper and
Priestley (2006), Pastor and Stambaugh (2006), Ang and Bekaert (2007).
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sample already starts in the late 1950s. Unfortunately, a default spread based on the
yield difference of BAA and AAA rated corporate bonds (as used e.g. by Avramov 2002
or Cremers 2002) does not exist in the different international markets outside the US in
a reasonable quality. For further detailed information on data sources and construction

the reader is referred to Appendix A.

Table 2.1 provides monthly summary statistics on the mean, standard deviation and
first-order autocorrelation of the particular state variables. The autocorrelation co-
efficients in the table show that some series, in particular valuation ratios and the
inflation rate, exhibit a fairly strong degree of persistence. For this reason, taking the
time series properties and potential finite-sample biases into account — as we do in this

study — seems to be warranted.

2.3.2 In-sample Results: Return Predictability in International Stock Mar-
kets

First, we discuss the results of the in-sample analysis of return predictability in
international stock markets. The only subjective element of the BACE approach is
the choice of the a-priori expected model size k, i.e. the researcher’s belief of how
many variables are a-priori likely to be included in the predictive model. We choose
a rather moderate specification of this hyperparameter, consistent with the principle
of parsimony prevailing in econometrics. We therefore set the a-priori expected model
size to k = 2 variables.!® This implies a prior probability of inclusion of 7 = 2/x = 0.2
for each variable. The choice of the expected model size is linked to the a-priori model
probability p(M ) which is given as p(M;) = 7% (1 — )"~k 14 Tt is important to note
that a prior probability of inclusion smaller than 0.5 amounts to an a-priori down
weighting of larger model specifications. This implies an additional penalty for highly
parameterized models beside the penalty implied by the degree of freedom adjustment

of the BIC.

13We discuss the sensitivity of the results to this choice of hyperparameter in section 3.3.

4In principle, one could also specify different prior probabilities of inclusion for the different variables
based on economic considerations.
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The tables for the different stock markets, which will be discussed in the following, are
all organized in the same way. Panel A and C are based on monthly data while Panel B
and D present results for quarterly data. Panel A and B report results for the composite
model with bias-corrected slope coefficients. 7|y denotes the posterior probability of
inclusion for each variable. The posterior probability of inclusion is defined as the total
sum of the posterior probabilities of all models, in which the particular variable is
included; it is computed as C'P, where C is a 2" x x matrix denoting inclusion (exclusion)
of a particular variable in model j by 1 (0), and P is a 2" x 1 vector containing the
posterior model probabilities p(M,|y). Posterior means of the predictive coefficients in
the weighted model based on Eq. (2.4) are reported in the second column of Panels A/B.
The third and fourth column report posterior Bayesian t-ratios. Following Avramov
(2002), we report both t-ratios based on posterior standard deviations which ignore
model uncertainty and t-ratios adjusted for model uncertainty (see discussion in Section

2).

We also assess the robustness of the different predictive variables according to two
other criteria. In Panels A/B we report the proportion of cases when the coefficient on a
particular variable (every time it is included in one of the j = 1,--- , 2" models) has the
same sign as the posterior mean in the composite model (denoted as sgn prob. in the
tables). Furthermore, we also report the fraction of cases across the different models
when a classical t-statistic for the particular variable is greater than two in absolute
value. This statistic serves as another indicator of the robustness or fragility of a
particular predictive variable (Sala-i-Martin, Doppelhofer, and Miller, 2004). Panels C
and D, presents the five top-performing model specifications which receive the highest
posterior probability of all models. The models are defined by inclusion (1) or exclusion
(0) of the specific variable. Moreover, the corresponding posterior model probabilities

and the adjusted R? of the five top models are also reported.
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France

Estimation results for the French stock market are provided in Table 2.2. As Panel
A (monthly predictive regressions) shows, the only variable for which the posterior
probability of inclusion 7|y rises, compared to the prior probability of inclusion, is
the relative bond rate RBR. In the case of the other variables, inspection of the data
leads us to retract our prior opinion about their usefulness. Panel C reports monthly
results for the five best-performing model specifications. After having seen the data,
the model which includes RBR as a single predictive variable receives a posterior
model probability of more than 50%, which is greatly higher than the one of the next
best model specifications. A negative relation of the realative bond rate and expected
excess returns is reasonable from an economic point of view, given that higher yields
on long-term bonds are typically reflected in a higher level of corporate loan rates and
thus may have a negative impact on subsequent real activity. The relative bond rate

together with the output gap is also significant according to a posterior t-ratio.

Robustness of a particular variable can also be assessed by the sign certainty probability
which measures the fraction of cases where the coefficient on the particular variable
(when included in one of the 2¢ Models) has the same sign as its coefficient in the
weighted model. According to this criterion, the relative bond rate is again rather
successful. The relative bond rate (RBR), the term spread (TRM), industrial production
growth (IPG) and the output gap (GAP) all have sign certainty probabilities exceeding
90%, whereas several other popular predictors such as the dividend yield perform
clearly worse. However, Table 2.2 also makes clear that none of the variables remains

significant when the additional variability of estimates across models is accounted for.'®

Panels B and D show that the evidence for predictability in the French stock market
is somewhat weaker in the quarterly case. Again, only the relative bond rate receives

a posterior probability of inclusion larger than 0.2. It is also worth noting that the

5This is a general result which holds for almost all predictive variables and almost all stock markets
considered. In this way, we provide evidence consistent with Avramov (2002) that predictive regressions
in finance are subject to a great deal of model uncertainty. Avramov also finds that many variables
which appear to be significant, lose their significance once model uncertainty is considered.
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earnings yield performs relatively well in-terms of sign certainty in the quarterly case.

Germany

Table 2.3 provides estimation results for the German stock market. As can be seen
in Panel A and C of Table 2.3, predictability of monthly stock returns is fairly weak
on statistical grounds. The case for predictability is clearly less pronounced than in
the French stock market discussed in the previous subsection. The model receiving
the highest posterior probability is the one without any lagged state variables (i.i.d.
case). None of the variables in the monthly model receives a higher posterior inclusion
probability compared to the prior inclusion probability of 7 = 0.2. Among the variables
considered only the relative bond rate (RBR) and the output gap (GAP) may be consid-
ered as significant according to a Bayesian t-ratio, but this does not hold true when the

dispersion of coefficients across models is considered.

Similar to the French case, the relative bond rate is rather important in the quarterly
regressions (Panel B of Table 2.3) where the probability of inclusion rises after having
seen the data. Evidence for predictability with quarterly data is somewhat stronger
than for monthly data. This can be seen from the result in Panel D that the most
likely quarterly model is now the one which includes the relative bond rate. This model
achieves an adjusted R? of about 5% in the quarterly regressions, which is quite high
for the stock return predictability literature. Several variables appear quite robust
with regard to sign certainty: The term spread (TRM), the relative bond rate (RBR),
industrial production growth (IPG), and the two valuation ratios (LDY, LEY) have the
same sign as the posterior mean in the composite model in more than 90% of all models

in which they are included.
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Japan

Results for the Japanese stock market are given in Table 2.4. As for Germany, there
is no compelling evidence that monthly stock returns in Japan are predictable: The
model with clearly the highest posterior probability in Panel C is the model with no
explanatory variables (i.i.d.-model). The output gap (GAP) and the relative bond rate
(RBR) are somewhat marginally important, but their explanatory power is fairly low.
Note also that industrial production growth (IPG) and inflation (INF) are quite robust

in terms of sign certainty probability.

With quarterly data, the evidence for predictability is even more modest. Again the
model which does not include any predictors receives the highest probability a-posteriori.
Only the output gap receives a higher posterior probability of inclusion than expected
a-priori (Panel D of Table 2.4). However, model uncertainty again plays a substantial
role as evinced by the adjusted Bayesian t-ratios. It is also worth noting that according
to the sign certainty measure, the output gap must be considered as a rather fragile

predictor.

United Kingdom

Table 2.5 reveals, that both for monthly and quarterly predictive regressions, the case
for return predictability in the United Kingdom is quite weak. Panel C shows, that
the largest posterior probability in the monthly regressions is assigned to the i.i.d.-
model (as in the case of monthly regressions for Germany and Japan). Contrary to
the countries discussed so far, interest rate variables do not show up among the most
prominent predictors, which confirms the recent findings by Giot and Petitjean (2006)
based on univariate return prediction models. By contrast, the dividend yield (LDY) has
some predictive content for future stock returns in the UK. Yet, as before, accounting
for model uncertainty greatly reduces the evidence for predictability and explanatory

power of return prediction models in the UK is rather low.
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United States

As shown by Table 2.6, evidence for in-sample return predictability is clearly stronger
in the US compared to other international stock markets such as Germany, Japan
or the UK. Variables which appear important after having seen the data include the
relative bond rate (RBR) and, most notably, the output gap (GAP). The output gap is the
only variable which can be considered as a significant predictor once model uncertainty
is accounted for. It receives a posterior probability of inclusion of more than 80%, which
is a substantial upward revision of the prior probability of inclusion.'® The output gap
also appears to be a less fragile predictor in the US compared to the other countries. It
is also worth noting that the earnings yield (LEY) provides more explanatory power
than the dividend yield (LDY). Several other variables — such as the relative bond
rate (RBR), inflation (INF), and industrial production growth (IPG) — are important
when model uncertainty is ignored, but lose their significance once model uncertainty

is considered.

When we consider predictive models at a quarterly horizon, the output gap (GAP) again
appears as an important variable a-posteriori and also survives the model uncertainty
adjustment. Also note that the relative bond rate is less important in the quarterly
regressions. Panels A and B further show that the earnings yield appears to be very
robust with regard to sign certainty, which holds both in the monthly and the quarterly

models.

16Thus, our results corroborate the results of the recent paper by Cooper and Priestley (2006) who find
that risk-premia are varying with the output-gap. Good economic conditions as measured by the output
gap are associated with low risk premia.
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RETURN PREDICTABILITY UNDER MODEL UNCERTAINTY

2.3.3 Sensitivity to the Choice of Hyperparameter

The previous discussion of in-sample predictability and differences in the relevance of
particular predictors across countries was based on a fairly moderate expected model
size of two variables. In this sub-section, we analyze the robustness of our main
findings to the specific choice of this hyperparameter & which is linked to the prior
probability of inclusion 7. For this purpose, we check whether our earlier conclusions
on the relevance of a particular variable — as measured by a posterior probability of
inclusion 7|y exceeding the prior probability of inclusion 7 — are affected by the choice
of the expected model size. Table 2.7 reports posterior probabilities of inclusion of
the predictor variables for different prior probabilities of inclusion 7 corresponding to

model sizes with k£ = 2, 4, 6 and 8 variables.

As shown in Table 2.7, our main conclusions on the relevance of a specific predictor
are largely unaffected by the choice of the expected model size. Panel A for France, for
instance shows that the relative bond rate can be considered an important predictor for
almost all choices of prior probabilities of inclusion. There is not a single case where
another predictive variable becomes relevant for a different choice of 7 , i.e. that there
is an upward revision of the probability of inclusion after having seen the data. The
same result holds true for the German (Panel B) and the British (Panel D) stock market.
Results on the usefulness of the output gap in Japan are only slightly dependent on the
choice of 7w but no other variable shows an upward revision of the probability of inclusion
for different choices of hyperparameters. Results for quarterly predictive regressions
for the US stock market (Panel E) are also largely unaffected. In the monthly case,
however, the earnings yield and the inflation rate play a more prominent role in larger
models, while the relative bond rate only serves as a significant predictor in the case of

small expected model sizes.
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Table 2.7: Sensitivity, Hyperparameter Expected Model Size

Monthly Quarterly
T 0.222 0.444 0.667 0.889 0.222 0.444 0.667 0.889
Panel A: France
TRM 0.033 0.080 0.167 0.376 0.036 0.085 0.167 0.362
RTB 0.042 0.066 0.112 0.282 0.064 0.103 0.170 0.359
RBR 0.743 0.819 0.857 0.908 0.641 0.745 0.805 0.878
INF 0.017 0.043 0.098 0.299 0.021 0.054 0.122 0.348
IPG 0.017 0.049 0.125 0.422 0.030 0.069 0.145 0.383
LRV 0.042 0.113 0.250 0.597 0.031 0.082 0.182 0.475
LDY 0.003 0.004 0.005 0.006 0.015 0.020 0.027 0.055
LEY 0.003 0.004 0.006 0.008 0.018 0.033 0.056 0.107
GAP 0.116 0.174 0.280 0.592 0.129 0.194 0.291 0.538
Panel B: Germany
TRM 0.029 0.070 0.139 0.324 0.038 0.090 0.175 0.362
RTB 0.025 0.057 0.109 0.283 0.043 0.087 0.164 0.380
RBR 0.188 0.358 0.529 0.763 0.467 0.649 0.770 0.902
INF 0.015 0.039 0.088 0.241 0.026 0.069 0.155 0.419
IPG 0.017 0.047 0.110 0.344 0.031 0.085 0.204 0.552
LRV 0.021 0.054 0.115 0.271 0.039 0.098 0.198 0.418
LDY 0.005 0.010 0.017 0.033 0.007 0.011 0.014 0.024
LEY 0.013 0.033 0.069 0.171 0.027 0.063 0.124 0.275
GAP 0.089 0.182 0.300 0.553 0.144 0.255 0.413 0.731
Panel C: Japan
TRM 0.015 0.039 0.091 0.287 0.023 0.062 0.142 0.395
RTB 0.055 0.093 0.142 0.308 0.035 0.080 0.157 0.390
RBR 0.192 0.307 0.410 0.616 0.048 0.102 0.189 0.452
INF 0.030 0.071 0.147 0.391 0.026 0.067 0.145 0.372
IPG 0.023 0.072 0.174 0.473 0.041 0.125 0.287 0.651
LRV 0.022 0.062 0.145 0.399 0.025 0.065 0.134 0.295
LDY 0.003 0.004 0.006 0.008 0.017 0.029 0.039 0.071
LEY 0.005 0.008 0.011 0.009 0.020 0.032 0.036 0.044
GAP 0.256 0.419 0.572 0.804 0.309 0.535 0.718 0.890
Panel D: UK
TRM 0.017 0.043 0.094 0.266 0.029 0.071 0.155 0.460
RTB 0.014 0.035 0.085 0.298 0.018 0.043 0.102 0.402
RBR 0.026 0.061 0.126 0.346 0.026 0.066 0.152 0.476
INF 0.016 0.041 0.094 0.300 0.023 0.052 0.112 0.356
IPG 0.021 0.071 0.184 0.506 0.023 0.061 0.139 0.401
LRV 0.021 0.052 0.111 0.310 0.033 0.091 0.199 0.470
LDY 0.203 0.347 0.438 0.453 0.559 0.704 0.782 0.886
LEY 0.043 0.073 0.090 0.098 0.083 0.109 0.131 0.222
GAP 0.073 0.149 0.255 0.488 0.041 0.059 0.086 0.236
Panel E: UsS
TRM 0.014 0.036 0.081 0.238 0.022 0.058 0.132 0.336
RTB 0.025 0.048 0.098 0.260 0.025 0.059 0.129 0.330
RBR 0.302 0.399 0.438 0.567 0.060 0.133 0.264 0.518
INF 0.086 0.349 0.684 0.928 0.011 0.037 0.123 0.429
IPG 0.059 0.208 0.389 0.570 0.028 0.061 0.121 0.277
LRV 0.010 0.028 0.059 0.113 0.067 0.171 0.364 0.750
LDY 0.030 0.088 0.207 0.501 0.001 0.001 0.002 0.011
LEY 0.117 0.415 0.754 0.957 0.006 0.019 0.069 0.230
GAP 0.805 0.734 0.663 0.722 0.938 0.956 0.964 0.982

Note: The table contains detailed results on the sensitivity of estimation results with respect to the choice
of the expected model size. For different prior probabilities of inclusion 7 corresponding to model sizes
with 2, 4, 6 and 8 variables the posterior probabilities of inclusion are reported. The predictors include
the term spread (TRM), the short-term interest rate relative to its 12-month moving average (RTB), a
long-term government bond yield relative to its 12-month moving average (RBR), annual inflation rate
(INF), annual growth of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield
(LDY), (log) earnings yield (LEY), output gap (GAP).
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2.3.4 Out-of-Sample Analysis of Return Predictability

The question whether predictability of stock returns exists out-of-sample (OOS) has
been a much debated topic and results in the literature are mixed.1” There are several
theoretical reasons why OOS performance of stock return prediction models may be
poor. Cochrane (2006), for instance shows by simulations that even in a world where
risk premia are truely time-varying, the results of Goyal and Welch (2008) will occur
frequently. Inoue and Kilian (2004) argue that in-sample predictability tests are more
powerful than out-of sample tests and are therefore more trustworthy when assessing
the existence of a predictive relationship. Another reason for poor OOS predictability
may be temporal instability of the return prediction models.'® We address the latter
issue by studying the time-variation of OOS forecast errors in international stock

markets using Net-SSE plots in the spirit of Goyal and Welch (2008).

It is not the purpose of this paper to discuss the entire debate in the literature or to
take a particular side. Rather, we are interested in a thorough investigation of the
performance of model averaging in the context of OOS predictability of excess returns.
Avramov (2002), for instance, argues that averaging the forecasts of the different
competing models in a Bayesian model averaging framework can substantially improve
the out-of-sample forecast performance. Therefore, the main motivation of our analysis
in this subsection is to reassess the findings by Avramov (2002) in the context of major

international stock markets.

For the purpose of evaluating OOS forecast performance, we estimate the 2 models
using a recursive scheme. The first ten years are used as initialization period. After-
wards, the models are estimated recursively. We compare the performance of several
(conditional) models to the results of an unconditional (or naive) benchmark model
which takes the prevailing historical mean as the forecast of the future excess return.

The model-based forecasts include Bayesian averaging of OLS coefficients adjusted

"The recent predictability debate has been spurred by the question whether the documented (limited)
in-sample predictability is of any use for an investor in real-time. See the different conclusions obtained
by e.g. Goyal and Welch (2008) and Campbell and Thompson (2007).

18See also the recent papers by Paye and Timmermann (2006), Dangl, Halling, and Randl (2006) and
Ravazzolo, Paap, van Dijk, and Franses (2006).
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for finite-sample bias (BACE-adj), a conventional Bayesian model averaging approach
(BMA) with g-prior specification!?, the individual model which receives the highest
posterior model probability according to BMA (denoted as TOP), and an all-inclusive
specification (ALL). Following Bossaerts and Hillion (1999), we also assess the per-
formance of individual models selected by the conventional model selection criteria:
Akaike criterion (AIC), Schwarz criterion (BIC), as well as the adjusted R2. The corre-
sponding (pseudo-) OOS forecasts are then evaluated according to several criteria for

assessing forecast accuracy.

Table 2.8 reports the results of the evaluation of OOS performance for our international
set of stock markets. The evaluation of forecast accuracy uses standard criteria. ME
denotes the mean prediction error. Testing the significance of the ME amounts to
testing the unbiasedness of the forecasts. Theil’s U (TU) is the ratio of the mean
square prediction error (MSPE) of the particular model-based forecast to the one of the
naive benchmark model.?° In order to provide an evaluation of directional accuracy of
forecasts obtained by model averaging, we also report the fraction of times the direction
of the dependent variable is correctly predicted by the model (denoted as Hit in the
table). PT denotes the test-statistic for directional accuracy proposed by Pesaran and
Timmermann (1992). Net-SSE plots are depicted in Figure 2.1. These graphs display
the cumulated sum of the squared forecast errors of the benchmark model minus the
squared forecast errors of the model of interest. One can use these plots to infer how the
OOS performance of the predictive model evolves over time and where major forecast
breakdowns occur. Periods where the line in the graph is upward sloping represent
times when the conditional model outperforms the naive model in terms of squared

forecast errors.

As the evaluation of the monthly forecasts in Table 2.8 shows, out-of-sample predictabil-

The approach is similar to Cremers (2002). However, rather than motivating the g hyperparameter
from economic reasoning, we follow recommended practice and set this parameter to g = max{n, k*} ",
where n denotes the sample size (See Fernandez, Ley, and Steel 2001 or Koop 2003).

20Note that TU is merely a descriptive criterion. In the case of nested models, the mean square prediction
error MSPE of the smaller nested model is expected to be smaller than the MSPE under the null of equal
predictive power, a point raised by Clark and West (2007). This is due to the fact that the larger model
needs to estimate parameters which are zero in population, which introduces noise in the forecasts.
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Table 2.8: Estimation Results: Out-of-sample, Monthly

Panel A: France
BACE-adj BMA TOP All AIC BIC R?
ME 0.0010 0.0014 0.0015 -0.0050 -0.0012 0.0015 -0.0035
t-stat 0.2845 0.4114 0.4190 -1.4247 -0.3421 0.4314 -1.0058
TU 0.9947 0.9959 0.9993 1.0025 1.0019 0.9986  1.0035
Hit 0.5978 0.5941 0.5646 0.5830 0.5535 0.5720 0.5720
PT 1.0524 0.9375 0.3858 0.9105 0.3264 0.6230 0.6579
Panel B: Germany
BACE-adj BMA TOP All AIC BIC R?
ME -0.0003 -0.0003 -0.0003 -0.0040 -0.0017 -0.0003 -0.0039
t-stat -0.0693 -0.0837 -0.0883 -1.0591 -0.4659 -0.0924 -1.0324
TU 1.0034 1.0038 1.0087 1.0278 1.0221 1.0085 1.0309
Hit 0.5221 0.5181 0.5100 0.5542 0.4940 0.5100 0.5221
PT -0.6551 -0.7653 -0.6806 0.8108 -1.0818 -0.6806 -0.2041
Panel C: Japan
BACE-adj BMA TOP All AIC BIC R?
ME -0.0010 -0.0013 -0.0021 -0.0011 -0.0029 -0.0021 -0.0011
t-stat -0.2827 -0.3769 -0.5894 -0.3138 -0.8317 -0.6030 -0.3255
TU 1.0034 1.0047 1.0034 1.0095 1.0095 1.0038 1.0054
Hit 0.5257 0.5257 0.5037 0.4853 0.5037 0.5037  0.5257
PT -0.1541 -0.1541 -0.5811 -0.9397 -0.4146 -0.5811 0.4359
Panel D: UK
BACE-adj BMA TOP All AIC BIC R?
ME 0.0023 0.0047 0.0083 0.0112 0.0104 0.0083 0.0114
t-stat 0.8009 1.6394 2.8486 3.8104  3.5598 2.8549 3.8779
TU 1.0032 1.0093 1.0287 1.0517 1.0390 1.0289 1.0495
Hit 0.5678 0.4396 0.4322 0.4542 0.4359 0.4322 0.4322
PT 0.0810 -2.0820 -0.9730 0.0165 -0.5822 -0.9730 -0.5855
Panel E: USs
BACE-adj BMA TOP All AIC BIC R?
ME -0.0005 -0.0005 0.0007 -0.0009 0.0006 0.0007 -0.0003
t-stat -0.2439 -0.2472  0.3159 -0.4444 0.2806 0.3149 -0.1522
TU 1.0010 1.0009 1.0129 1.0118 1.0065 1.0115 1.0117
Hit 0.5507 0.5485 0.5088 0.5220 0.4934 0.5066 0.5132
PT 0.6817 0.6526 -0.2493 0.0433 -0.8345 -0.3297 -0.1500

Note: The table reports evaluation results of out-of-sample performance of different predictive models (monthly data).
After 10 years of initialization, the models are estimated recursively. BACE-adj uses the forecasts of the weighted
model whose coefficients are adjusted for finite-sample bias. BMA is based on a pure Bayesian model averaging
framework with a g-prior specification. TOP denotes the forecast by the model specification which receives the highest
posterior model probability according to BMA. ALL is the all-inclusive specification. AIC, BIC, R? are based on the
best models selected by the Akaike, Schwarz criterion or adjusted R?, respectively. ME denotes the mean prediction
error (t-statistic reported below). TU is the ratio of the root mean square error of the particular model-based forecast
to the one of the naive benchmark model. Hit denotes the fraction of times the direction of the dependent variable is
correctly predicted by the model. PT denotes the test-statistic for directional accuracy by Pesaran and Timmermann
(1992).
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ity of monthly stock returns is generally very limited. Moreover, notable differences
of OOS return predictability can be detected across countries. Table 2.8 also shows
that the BACE approach with bias adjustment generally compares rather favorably
in terms of forecast accuracy compared to conventional Bayesian model averaging for

most stock markets.

The results for the French stock market, presented in Panel A of Table 2.8, show some
evidence for out-of-sample predictability. This is consistent with the in-sample results
for the composite model, where also the evidence was stronger compared to other
capital markets (such as the UK or Germany). Panel A also shows that model averaging
approaches (BACE-adj, BMA) typically outperform the naive model and model selection
criteria in terms of MSPE, i.e. have a Theil’s U (TU) smaller than one. All model-based
forecasts generally appear to be unbiased for the French case. The Net-SSE plot (a)
in Figure 2.1 shows the relative OOS performance of the forecasts produced by the
BACE-adj model over time.2! As shown by the graph, the model has produced lower
squared forecast errors relative to the benchmark up to about 2000. In the aftermath
of the climax of the internet boom no outperformance relative to the naive benchmark

can be detected anymore.

In the case of Germany (Panel B of Table 2.8), BACE-adj and BMA generally do a
better job compared to other model specifications, but are not able to outperform the
i.i.d. model in terms of MSPE. This is consistent with the modest results for in-sample
predictability in Table 2.3, where little evidence for return predictability was detected
at a monthly horizon. The Net-SSE plot (b) in Figure 2.1 shows that OOS predictability
has been clearly stronger in the 1990s, where lagged state variables contributed to
lower squared prediction errors relative to the benchmark. Also note that, similar to
the French case, return prediction models did not provide better forecast accuracy than

the benchmark since the height of the new economy boom until the end of the sample.

For the Japanese stock market the case for OOS predictability is also fairly weak, as

Panel C of Table 2.8 reveals: forecasts of the naive model generally produce a lower

2INet-SSE plots based on the BMA approach are generally quite similar.
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MSPE than models conditioning on predictive variables. This is confirmed by the
Net-SSE plot (c) of Figure 2.1. The plot shows a decline of OOS forecast performance of
the weighted model forecast from the early 1990s onwards. Analogously to Germany
and Japan, OOS predictability in the United Kingdom (Panel D of Table 2.8) is very
poor. Moreover, the United Kingdom is the only stock market where conditional
models produce forecasts with a substantial bias (however less pronounced when model
averaging techniques are used). Also note that the model averaging methods (BACE-adj
and BMA) again outperform the other selection criteria but fail to outperform the naive

model in terms of mean-square prediction error.

Evaluation results for the US stock market are given in Panel E of Table 2.8. Contrary
to the in-sample regressions, out-of-sample predictability of US excess returns is rather
poor. Hence, our OOS results are more in line with Goyal and Welch (2008) than
Avramov (2002). The Net-SSE plot for the United States in (e) of Figure 2.1 illustrates
the time-variation in the degree of OOS predictability. In particular, a steady decline
of predictability since the late 1980s can be recognized. This is consistent with other
studies for the US documenting poor return predictability over the 1990s (e.g. Paye
and Timmermann, 2006; Ang and Bekaert, 2007).

Results for quarterly market excess returns are quite similar to the monthly case and
are therefore provided in the Appendix B. We do not find much evidence that OOS
predictability increases with the horizon of the forecast. Quite to the contrary, OOS
predictability is somewhat weaker than the OOS predictability in the monthly case
(e.g. for the US). Again, France is the only stock market where out-of-sample return
predictability by model averaging methods can be observed (Panel A of Table 2.9).
Results for the German stock market (Panel B of Table 2.9) are quite similar to the
monthly case. However, modest evidence of market timing possibility can be found
for quarterly models. This happens in particular for highly parameterized models (i.e.
ALL, AIC, R?), with significant PT-statistics at the 10% level. Quarterly results for
Japan (Panel C) and UK (Panel D) are very similar to the monthly case. For the US
stock market (Panel E), evidence for OOS predictability with quarterly data is weaker
compared to the monthly case. According to the Net-SSE plot for the US in Figure 2.2,
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Figure 2.1: Time-variation of Out-of-sample Performance, Net-SSE Plots, Monthly

Dynamic 00S Performance: Composite Reduced—bios Model Dynamic OOS Performance: Composite Reduced—bias Model
o o
I =}
o T o
1=} =}
© o
= o
aor 1 S
S o
o 8
b= =)
ar q w St
& o o S
7ot 1 i
- =g
<
2 §7 ) z 8|
d S
e 1
©
2T ] 5
s 7
©
=}
sl o SL. v v
o 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 O‘ 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
Year Year
(a) France (b) Germany
Dynamic 00S Performance: Composite Reduced—biaos Model Dynamic O0S Performance: Composite Reduced—bios Model
N —
= =}
=) 5}
S o
o
=) o
= o
3 S
1=}
©
o
<
1=} o
3 % St
» 8 o9
| o |
@ © o
z z
o
o
=} <
S 3l
! S
© T
g
S
T
o ©
= o
ol vy ol vy
o‘ 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 (‘) 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004
Year Year
(c) Japan (d) United Kingdom

Dynamic O0S Performance: Composite Reduced—bias Model

Net—SSE
0.006 0.010 0.014 0.018

-0.002

1970 1974 1978 1982 1986 1990 1994 1998 2002 2006

Year

(e) United States

Note: The figure shows Net-SSE plots for the aggregate stock market following Goyal and Welch (2003). Net-SSE
is the cumulated difference of squared forecast errors of the unconditional benchmark model (i.i.d. model) and the
conditional model (BACE-adj): Net-SSE(r) = Ez—:l(eic,i — egt), where ey, is the forecast error of the uncondi-
tional benchmark, and e. ¢ is the error of the conditional model. A decrease of the slope represents a better forecast
performance of the unconditional model at the particular point in time.
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a substantial forecast breakdown can be detected in the aftermath of the first oil price
shock (around 1974). As evinced by Figure 2.2, OOS performance of return prediction
models in the US has been poor over most of the 1990s consistent with previous studies

mentioned before.

2.4 Conclusion

This paper explores stock return predictability in international stock markets in the
context of model uncertainty. A Bayesian averaging of classical estimates (BACE)
approach is used to account for the tremendous uncertainty of a typical investor
in order to find out what the important predictive variables are. This approach is
combined with a finite-sample bias correction which accounts for the persistence of
the usually employed state variables. Using a comprehensive dataset for international
stock markets allows us to gain fresh insights into the empirical evidence for return

predictability, which has so far been mainly based on results for the US stock market.

We find substantial differences across countries in terms of return predictability. Evi-
dence for in-sample predictability is stronger for France and the United States compared
to the other countries. In the French case also a (modest amount) of out-of-sample
predictability can be detected. Out-of-sample predictability by model averaging meth-
ods appears to be more accurate for monthly than for quarterly data. Consistent with
Avramov (2002), we find that model averaging often produces better OOS forecasts
than individual models based on selection criteria. Nevertheless, we also document
a substantial amount of time-variation of OOS forecast performance by averaged

forecasts.

Two variables appear to be quite robust predictors across countries: the relative bond
rate and the output gap. The latter is the only variable which also remains a significant
predictor of market excess returns in the US, once model uncertainty is accounted
for. The earnings yield often appears to be a more robust predictive variable than

the dividend yield. In general, however, our results show that evidence for in-sample
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predictability for the excess returns in international equity markets is substantially

weakened once model uncertainty is accounted for.

The model averaging approach accounting for finite-sample bias employed in this paper
may be useful beyond the context of return predictability. In the field of macroeconomic
forecasting (e.g. inflation or real activity), for instance, also a large amount of model
uncertainty exists and the typical predictors often exhibit a fairly strong degree of
persistence (cf. Stock and Watson, 2004). Moreover, another promising subject for future
research would be to link the evidence for time-variation in expected returns with the
cross-sectional variation of expected returns. An international analysis under model
uncertainty with size and book-to-market sorted portfolios may provide additional

insights into the particular risks which are relevant to investors.

72



RETURN PREDICTABILITY UNDER MODEL UNCERTAINTY

Appendix A. Data Description

This section of the appendix provides a more detailed description of the stock returns
as well as the predictive variables used in our analysis. The original data are monthly
but we also report estimation results using quarterly data. Information on the sample

periods for the international stock markets can be found in Table 2.1.

Excess returns: The dependent variables for the international stock markets are
taken from various sources. In the case of Germany, the return on the DAFOX is
used, which is a broad stock index published for research purposes by Karlsruher
Kapitalmarktdatenbank. It comprises all German stocks traded in the top segment
(Amtlicher Handel) of the Frankfurt stock exchange. For the US, the value-weighted
return on the CRSP market portfolio is employed.?? For the other stock markets, we
use broad stock market indexes by Datastream. Excess returns are constructed by
subtracting a risk-free rate proxy. When available, a 3-month T-Bill is used as the risk-
free rate proxy. Otherwise, a three-month money market rate is used. Interest rates are
taken from the Reuters-Ecowin database. In the case of Germany, the money market
rate for three-month deposits obtained from the time series database of Deutsche

Bundesbank is used as our proxy for the risk-free rate.

Interest rate related variables: The term spread (TRM) is defined as the difference
of the yield on long-term government bonds and the short-term interest rate (3-month).
The necessary yield curve and interest rate data were obtained from the time series
databases of Deutsche Bundesbank (Germany), St. Louis Fed (USA), Econstats (France,
United Kingdom and Japan). Following much of the extant literature, the relative
short-term interest rate (RTB) is calculated as the short-term interest rate minus its
12-month backward looking moving average. The relative long-term bond rate (RBR)
is calculated as the long-term government bond yield minus its 12-month backward

looking moving average.

2We would like to thank Amit Goyal and Ivo Welch for providing these data on their webpages.
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Valuation ratios and other financial variables: The time series of dividend yields
(LDY) and earnings yield (LEY) are defined as dividends (earnings) over the past 12
months in relation to the current price. Both series are used in logs, which improves
their time-series properties as noted by Lewellen (2004). The US data are taken from
Amit Goyal’s webpage, while the rest of the valuation ratios refer to the broad stock
market indexes provided by Datastream. Realized stock market volatility (LRV) is

computed as the sum of the squared daily stock returns and is also used in logs.

Macroeconomic variables: The annual inflation rate (INF) is calculated from the
seasonally -adjusted Consumer Price Index (CPI). Another macroeconomic variable is
the annual growth rate of industrial production (IPG). The time series of the CPI as
well as industrial production for the calculation of industrial production growth (IPG)
and the output gap (OPG) measure are taken from the IMF/IFS database and were
obtained from Reuters-Ecowin. Following Cooper and Priestley (2006), we construct
the output gap measure by applying the filter by HP-filter to the logarithmic series of
industrial production. As in Cooper and Priestley (2006), the smoothing parameter
is set to 128800 for the monthly data and 1600 for the quarterly data. The cyclical

component of the series is taken as the output gap.

Appendix B. Out-of-Sample Results at the Quarterly Hori-

zon
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Table 2.9: Estimation Results: Out-of-sample, Quarterly

Panel A: France
BACE-adj BMA TOP All AIC BIC R?
ME -0.0007 0.0045 0.0055 -0.0198 -0.0083 0.0029 -0.0131
t-stat -0.0608 0.3652 0.4345 -1.6140 -0.6705 0.2270 -1.0596
TU 0.9864 0.9914 1.0158 1.0020 1.0054 1.0173 1.0060
Hit 0.7416 0.6966 0.6517 0.7079 0.7303 0.6629 0.6966
PT 0.6404 0.1086 0.1834 0.6767 1.1980 0.2841 0.7432
Panel B: Germany
BACE-adj BMA TOP All AIC BIC R?
ME -0.0021 -0.0016  0.0026 -0.0090 -0.0016 0.0036 -0.0055
t-stat -0.1628 -0.1235 0.1933 -0.6634 -0.1179 0.2764 -0.4104
TU 1.0004 1.0012 1.0031 1.0343 1.0032 0.9985 1.0192
Hit 0.5926 0.5926 0.5679 0.6420 0.6296 0.5432 0.6173
PT 0.1036 0.1036 0.7742 1.6455 1.8985 0.5957  1.4920
Panel C: Japan
BACE-adj BMA TOP All AIC BIC R?
ME -0.0077 -0.0078 -0.0071 -0.0104 -0.0087 -0.0068 -0.0071
t-stat -0.6123 -0.6179 -0.5535 -0.8190 -0.6875 -0.5282 -0.5553
TU 1.0040 1.0053 1.0210 1.0197 1.0106 1.0270 1.0188
Hit 0.5955 0.6067 0.5955 0.4944 0.6180 0.5955 0.5618
PT -0.2404 -0.1190 -0.2404 -1.1983 0.7746 -0.2404 0.0810
Panel D: UK
BACE-adj BMA TOP All AIC BIC R?
ME 0.0081 0.0171 0.0300 0.0273 0.0271 0.0310 0.0261
t-stat 0.8604 1.8151 3.1203 2.6937 2.7411 3.1558 2.6423
TU 1.0092 1.0260 1.0839 1.1266 1.1010 1.1075 1.0970
Hit 0.7191 0.5955 0.5056 0.5281 0.5056 0.4944 0.5169
PT 0.0000 -0.1719 0.8151 1.0346 0.6477 0.7056 0.7572
Panel E: USs
BACE-adj BMA TOP All AIC BIC R?
ME -0.0003 0.0013  0.0025 -0.0026 0.0035 0.0036 0.0017
t-stat -0.0430 0.1880 0.3643 -0.3642 0.5132 0.5137 0.2491
TU 1.0252 1.0233 1.0307 1.0453 1.0155 1.0285  1.0287
Hit 0.6333 0.5933 0.5867 0.5600 0.5933 0.5933  0.5867
PT 0.2928 -0.4239 0.2397 -0.5101 1.0035 0.5237 0.4235

Note: The table reports evaluation results of out-of-sample performance of different predictive models (quarterly data).
After 10 years of initialization, the models are estimated recursively. BACE-adj uses the forecasts of the weighted
model whose coefficients are adjusted for finite-sample bias. BMA is based on a pure Bayesian model averaging
framework with a g-prior specification. TOP denotes the forecast by the model specification which receives the highest
posterior model probability according to BMA. ALL is the all-inclusive specification. AIC, BIC, R? are based on the
best models selected by the Akaike, Schwarz criterion or adjusted R?, respectively. ME denotes the mean prediction
error (t-statistic reported below). TU is the ratio of the root mean square error of the particular model-based forecast
to the one of the naive benchmark model. Hit denotes the fraction of times the direction of the dependent variable is
correctly predicted by the model. PT denotes the test-statistic for directional accuracy by Pesaran and Timmermann
(1992).
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Figure 2.2: Net-SSE Plots, Quarterly
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Note: The figure shows Net-SSE plots for the aggregate stock market following Goyal and Welch (2008).
Net-SSE is the cumulated difference of squared forecast errors of the unconditional benchmark model
(i.i.d. model) and the conditional model (BACE-adj): Net-SSE(7) = 3"7_, (eZ., — €2 ,), where e, is the
forecast error of the unconditional benchmark, and e. ; is the error of the conditional model. A decrease of
the slope represents a better forecast performance of the unconditional model at the particular point in
time.
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CHAPTER 3

A REAPPRAISAL OF THE LEADING INDICATOR
PROPERTIES OF THE YIELD CURVE IN THE

PRESENCE OF STRUCTURAL INSTABILITY"

ABSTRACT

This chapter provides an extensive reexamination of the leading indicator properties of
the yield curve. We study whether the yield spread still qualifies as a useful predictor
of real activity in the presence of model instability and forecast breakdowns. Multiple
break tests provide strong evidence for structural change and allow us to pin down the
exact dates associated with these breaks. We find that window selection methods newly
developed for forecasting in the presence of structural change offer some improvements
in terms of forecast accuracy. Overall, our results strongly suggest, however, that the

yield curve has been losing its edge as a predictor of output growth in recent years.

*This chapter is based on a joint paper with Qingwei Wang (University of Mannheim and Centre for Euro-
pean Economic Research). A revised version of the paper is accepted for publication in the International
Journal of Forecasting.
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3.1 Introduction

The slope of the yield curve is one of the most widely followed economic variables.
The alertness of professional economists, market watchers and central bankers can
largely be ascribed to the bulk of empirical literature which has documented the term
spread’s usefulness for predicting future GDP growth.! However, recently concerns
have been raised over the fact that the predictive performance of the term spread
may be time-variant and that predictive regressions based on the yield spread may
suffer from parameter instability (e.g. Estrella, Rodrigues, and Schich, 2003; Stock and
Watson, 2003; Giacomini and Rossi, 2006).

The main goal of this paper is therefore to investigate whether the yield spread still
qualifies as a useful leading indicator in environments characterized by model insta-
bility. We mainly focus on two issues in the paper: i) the out-of-sample (OOS) forecast
performance of the yield spread (slope of the yield curve) for real activity and, of par-
ticular importance, how this OOS predictive performance evolves over time. ii) we
investigate whether newly developed window selection techniques for environments
characterized by structural breaks (put forth in a recent article by Pesaran and Tim-
mermann, 2007) may help enhance the empirical performance of the yield curve for
forecasting. Given the major focus of the previous literature on the empirical relation-
ship between the yield curve and subsequent output growth in the US, we consider
international data from Canada, Germany, and the UK as additional “hold-out samples”

to examine the usefulness of the yield curve as a leading indicator.?

While the in-sample predictive performance of the yield curve is well studied and
established, the time-varying nature of the relationship is comparatively unexplored

and has only received attention in recent years. A major motivation of this paper

!The general finding in the literature is that an inverted yield curve precedes periods of slow economic
growth (See e.g. the contributions by Harvey, 1989; Stock and Watson, 1989; Estrella and Hardouvelis,
1991; Hamilton and Kim, 2002, etc.).

2Several papers have shown that the yield spread also serves as a significant predictor for real activity in
countries outside the US (See e.g. Jorion and Mishkin, 1991; Plosser and Rouwenhorst, 1994; Bernard
and Gerlach, 1998; Stock and Watson, 2003; Benati and Goodhart, 2007). In the same vein, our paper also
provides insights through an international perspective. This can help mitigate potential data-snooping
concerns due to repeated visits of the US dataset.
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is therefore to take a closer look at the time-varying forecasting performance of the
yield curve for real output growth. The main economic rationale for the yield spread’s
predictive power is that it serves as an indicator for the effectiveness of monetary policy
or the stance of the monetary policy (See e.g. Estrella, Rodrigues, and Schich, 2003).
If the central bank raises short-term interest rates and market participants expect
this policy to be effective in curbing inflation in the long run, long-term rates (averages
of future expected short rates according to the expectations hypothesis) should rise
in a smaller proportion. Thus, a restrictive monetary policy tends to flatten the yield
curve and at the same time slows down the economy.? However, there are strong
theoretical reasons to believe that the relationship may vary over time. As noted by
Estrella, Rodrigues, and Schich (2003), for instance, the predictive power may depend
on underlying factors such as the form of the monetary policy reaction function or the
relative importance of real and nominal shocks in the economy. Both factors may be
subject to variation over time, which raises the need to investigate the time-variation

of the forecasting relationship in greater detail.

As yet, most of the papers addressing the issue of model instability focus on an in-
sample analysis of time-varying predictive ability, using mainly sub-sample analysis
(e.g. Stock and Watson, 2003), parameter stability tests (e.g. Estrella, Rodrigues, and
Schich, 2003) or time-varying parameter models (e.g. Benati and Goodhart, 2007).
However, one may argue that the ultimate concern for market participants and policy
makers is out-of-sample forecast accuracy as well as a good predictive performance
towards the end of the sample period. Hence, our paper distinguishes itself from the
remaining literature with its explicit focus on the time-varying out-of-sample (OOS)
forecasting properties of the yield curve. We first illustrate the dynamics of forecasting
ability via diagnostic plots displaying the evolution of squared forecast errors over time
compared to those of a benchmark model. This approach has recently been put forth by
Goyal and Welch (2008) in the field of stock return predictability. Using these tools, we
document a substantial amount of time-variation in the OOS predictive accuracy of the

yield spread which has not previously been shown in the literature. Our findings also

3See Estrella (2005) for a formal rational expectations model providing a theoretical account of the
relationship.
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suggest that the relative OOS forecast accuracy of models based on the yield spread
has diminished substantially towards the end of the sample period, which holds true in

almost all countries considered.

We thus take a deeper look at potential reasons for this degradation of predictive power
and forecast breakdowns by running several modern (in-sample) tests for parameter
stability in order to back up the OOS evidence by further formal tests. In particular,
we apply the structural break test by Elliott and Miiller (2006) — testing the null of
parameter stability against the alternative of an unknown number of breaks — as well
as structural break tests allowing for multiple breaks developed by Bai and Perron
(1998, 2003). These tests largely corroborate our out-of-sample results. We find that
the relation of the yield curve and output growth is subject to substantial instabilities

in all countries considered.

Hence, it seems natural to investigate whether methods of optimal forecast window
selection — which have recently been put forth by Pesaran and Timmermann (2007)
for situations where structural breaks are present — yield a better forecast accuracy
when the predictive regressions are plagued by parameter instabilities. According
to our findings, these optimal window selection methods typically do a good job in
reducing the bias of forecast errors. There is also some (though not uniform) evidence
on improvements regarding forecast error variance. However, our main finding that
the OOS forecast capacity of the yield curve has diminished towards the end of the
sample period at an international level still holds under these modified forecasting
schemes. Hence, accounting for the existence of structural breaks via optimal window
selection methods does not suffice to prevent the poor performance of the yield spread

as a leading indicator over most of the 1990s.

The remainder of this paper is structured as follows. Section 3.2 contains a brief
overview of our data and provides a reexamination of the leading indicator properties
of the yield spread. The main focus is the assessment of time-varying out-of-sample
forecast power. In Section 3.3 we discuss the results of structural break tests and

the forecast performance of window selection methods designed for environments
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characterized by model instability. This allows us to judge whether the yield curve
still qualifies as a useful leading indicator in environments characterized by structural

change. Section 3.5 concludes.

3.2 The Predictive Power of the Yield Spread: A Reexam-

ination

This section reexamines the predictive power of the yield spread for real activity in
Canada, Germany, the UK and the US.* First, we corroborate the typical result in
literature that the yield spread is a significant and strong (in-sample) predictor of
real output growth over horizons k£ = 4,...,8 quarters. This result is confirmed by
out-of-sample evaluation statistics. Most importantly, however, we document a strong
degree of time-variation in the OOS predictive performance and present evidence of a
degradation in the relative OOS forecast performance of the yield spread in all countries

considered.

3.2.1 Data Overview

Our dataset comprises time series of real GDP, three-month interest rates i*"°"*, long-
term government bond yields /"9 for Canada, Germany, the United Kingdom, and
the United States. Data were obtained mainly from the following sources: national
central banks, Datastream (national sources as well as the IMF-IFS database), and
Reuters-Ecowin. The sample period ranges from 1962:Q1 to 2006:Q2. During this
sample period the necessary data are available for all four countries, which facilitates a
cross-country comparison of the leading indicator properties of the yield curve. Further
detailed information on the data, their sources and data transformation is provided in

Appendix 3.5.

*In this section we also lay out several of the econometric techniques used in the paper. They include
bootstrap-based inference in (in-sample) predictive regressions as well as the OOS forecast evaluation
methods applied in the paper.
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3.2.2 In-sample Predictive Regressions

Following the vast majority of the extant literature (e.g Estrella and Hardouvelis, 1991;
Stock and Watson, 2003), we use predictive regressions in order to investigate the
informational content of the yield curve for future real GDP growth. The predictive
regression is based on the direct multi-step forecasting approach and takes the following

form:

Yprr = Bo + ﬁizt + 553% + € p k- (3.1)

Y, denotes the (log) growth rate of real GDP from ¢ to ¢ + &, y, . = (400/k) In(Y;1/Y3),
where Y; is the level of real GDP as of period ¢. We refer to y,_ , as cumulative real GDP
growth hereafter. z; contains the specific yield curve variable we are interested in. Our
main focus is on the term spread, which is defined as the difference of the long term
government bond yield and the short term interest rate: /"9 — "'t 1, represents (a
vector of) additional control variables. In particular, we use the lagged quarterly growth
rate of real GDP as an additional predictor as in Stock and Watson (2003) in order to
judge the predictive content of the yield curve beyond the information contained in the

past history of the dependent variable.

Despite the apparent simplicity of the predictive linear regression in Equation (3.1),
the approach is plagued by econometric problems due to overlapping observations of
the dependent variable. A common remedy for this problem is to use kernel-based
HAC standard errors, e.g. according to Hansen and Hodrick (1980) or Newey and West
(1987), which are robust against heteroskedasticity and serial correlation. Although
these commonly applied estimators of the long-run covariance matrix deliver consistent
estimates, recent evidence suggests that they do not perform well in small sample sizes
typically encountered in predictive regressions (See e.g. Goncalves and White, 2005;

Ang and Bekaert, 2007). We therefore use a moving block bootstrap (MBB) methodology
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which is particularly suitable in a finite-sample setting with dependent data.?

Table 3.1 presents estimation results on the predictive power of the term spread for
Canada, Germany, the UK, and the US. The sample period is 1962:Q1-2006:Q2. All
estimation results are based on models including a constant and lagged output growth
(for the sake of brevity only the estimated coefficient on the term spread B?S is reported).
The term spread is defined as the difference between the long term interest rate and

the three-month interest rate.

Panel A of Table 3.1 displays results when the dependent variable is defined as cu-
mulative real GDP growth, and when the forecasting horizons (denoted by k) are 4,
6 and 8 quarters. Besides the conventional statistics, we also provide a “bootstrap
p-value” for the R? of the predictive regression (denoted as %[R? > R?] in the table)
which is calculated as the fraction of times that the adjusted R? in bootstrap samples
(generated under the null of no predictability) exceeds the adjusted R? of the regres-
sion.® Overall, we obtain the well-known picture from previous studies. The term
spread has a significant (in-sample) predictive power for real activity. The coefficient
on the term spread ﬁlTS is positive and significant, which holds across all countries
and (almost) all considered forecasting horizons. Similarly, the adjusted R? shows the
model’s significant predictive ability. The predictive power appears to be particularly
strong in the case of Canada and Germany, where the term spread’s coefficient is highly
significant even for horizons up to 8 quarters. Note, however, that the predictive power
of the yield spread is relatively weak in the UK and refers only to a horizon below 8

quarters.

Although cumulative GDP growth is commonly used as the dependent variable, it is

also interesting to consider marginal GDP growth as the dependent variable, since one

®In a simulation study, Goncalves and White (2005) show that inference based on the MBB may be
considerably more accurate in small samples compared to standard kernel-based HAC standard errors.
Contrary to a parametric bootstrap (as used e.g. by Kilian (1999) for inference in predictive regressions),
the MBB is a non-parametric bootstrap which draws blocks of re-sampled observations randomly with
replacement from the time series of original observations. As recommended by Goncalves and White
(2005), we use a data-driven block length, following the procedure by Andrews (1991).

6In this context, we use a parametric bootstrapping scheme based on an assumed DGP for the predictors
as individual AR(1)-processes (see e.g. Kilian, 1999; Mark, 1995; Rapach, Wohar, and Rangvid, 2005, for
similar approaches).
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can assess how far into the future the predictive power of the yield curve can reach
(e.g. Estrella and Hardouvelis, 1991; Dotsey, 1998; Hamilton and Kim, 2002). Marginal
GDP growth is defined as vy 4—p 41 = 400/h[In(Yi4i/Yiik—n)]. Our results in Table
1 (Panel B) focus on marginal GDP growth over the past four quarters (h = 4) and

forecasting horizons of k = 6, 8 and 10 quarters.”

As depicted in Table 3.1 (Panel B), the marginal predictive power of the term spread
declines substantially when the predictive horizon increases. The adjusted R? and the
significance of the coefficients indicate that the predictive power refers mostly to a
horizon up to 8 quarters and vanishes at the 10 quarter horizon. Again, the weakest
results are observed for the UK, where the information in the yield spread refers only

to a shorter horizon up to 6 quarters.

3.2.3 Out-of-sample Performance

We now investigate the capacity of the yield curve to predict real activity out-of-sample
(O0NK). The first 10 years (1962:Q1-1972:Q1) are used as an initialization period for the
models, afterwards forecasts are generated using a recursive scheme (i.e., an expanding
forecasting window). This provides us with n = T — m — k — 1 OOS forecasts of real
GDP growth, where m represents the length of the initialization period and T denotes

the overall sample size.

In Table 3.2 and Table 3.5 we provide several forecast evaluation statistics. First, we
report the mean forecast error and the corresponding bootstrapped standard error (also
based on the MBB). A significant mean forecast error can be interpreted as evidence
against the hypothesis of forecast unbiasedness. We also report results from traditional
Mincer-Zarnowitz (1969) regressions, where the realizations of real GDP growth are
regressed on a constant and the corresponding forecasts. According to these statistics,

the better the forecasting model, the closer the intercept a should be to zero and the

"By definition, the results for cumulative GDP growth and marginal GDP growth are the same if both &
and h are set to four, so we omit a forecast horizon of ¥ = 4 in Panel B of Table 1.
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slope b should be to one.® Another simple descriptive measure of forecast evaluation is
Theil’s U, which is the ratio of the root-mean squared error (RMSE) of the prediction
model to the RMSE of the benchmark model. As is common in the literature nowadays
(e.g. Stock and Watson, 2003 or Ang, Piazzesi, and Wei, 2006) we use an AR(1) as the
benchmark. If the forecast of the model is superior to the benchmark (given a quadratic

loss), Theil’s U should be less than one.

We mainly base our inference regarding superior OOS predictability on the test recently
proposed by Clark and West (2007). This test is designed for comparing a parsimonious
null model to a larger model which nests the null model, as is the case in our context.
The central idea of the Clark-West test is to adjust the mean squared forecast error
of the larger unrestricted model.? In our context, we test whether the difference of
the mean squared forecast error (MSFE) of the AR(1)- benchmark model (Model 0) 53
and the adjusted mean squared forecast error 57 —adj of the model of interest (Model 1)
is equal to zero against the alternative of superior forecast accuracy of the prediction
model (one-sided test). Clark and West (2007) suggest to adjust the MSFE of the larger

model as follows

T—k T—k
. . _ (1 - 2(0 (1
U%—adJ = n! E (Yeyr — ft(,tzrk)z —n! E : (ft(,tzi—k; - ft(,tzrk)Qﬂ (3.2)
t=m+1 t=m+1

where the GDP growth forecast (k-quarter ahead) based on the information set at time
t is denoted as ft(gk for the case of the (unrestricted) model of interest and ft(le . for the
case of the benchmark model. n is the number of OOS predictions: n = T'—m—k—1. Note

that the first term in Equation (3.2) corresponds to the usual mean squared forecast

8However, it is well-known that the condition @ = 0,5 = 1 only represents a necessary but not sufficient
condition for unbiasedness (Clements and Hendry, 1998, p.57). Hence, we do not report results of the
joint test but merely report Mincer-Zarnowitz regression results along with the direct test whether the
mean forecast error is equal to zero.

9The reason for the adjustment put forth by Clark and West (2007) is that — under the null hypothesis
that the additional regressors in the larger model are not necessary for forecasting — there is the need to
estimate parameters of the unrestricted model that are zero in population, which introduces noise in the
forecast.
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error of the (unrestricted) model of interest, and the second term is the adjustment

term discussed above. In order to test whether Clark-West’s MSFE-adj (defined as

62 — 62—adj) is equal to zero, we again use the MBB for inference to take account of

serial correlation.?

Table 3.2: Out-of-Sample Performance of the Yield Spread: Forecast Evaluation Statis-
tics

Horizon: k=4 CAN GER UK US

Mean Forecast Error -1.12 0.27) -0.63 (0.31) -0.07 (0.43) -1.23 (0.25)
Theil’s U 0.87 0.85 1.05 0.97

MSFE-adj 3.59%* 2.94%% 0.22 3.TTH**
Mincer-Zarnowitz: a -0.81 (0.81) 0.38 (0.66) 227 (0.87) -0.12 (0.64)
Mincer-Zarnowitz: b 0.93 (0.16) 0.61 (0.20) 0.01 (0.33) 0.74 (0.12)
Mincer-Zarnowitz: R> 0.38 0.15 0.00 0.38

Horizon: k=6 CAN GER UK US

Mean Forecast Error -1.24 (0.28) -0.73 0.37) -0.17 (0.58) -1.22 (0.30)
Theil’s U 0.88 0.84 1.07 0.97

MSFE-adj 2.92%* 2. 7THH* 0.01 2.97%%*
Mincer-Zarnowitz: a -0.80 (1.02) 0.60 0.67) 2.74 (0.87) -0.24 (0.73)
Mincer-Zarnowitz: b 0.90 (0.21) 049 (0.18) -0.23 (0.29) 0.76 (0.14)
Mincer-Zarnowitz: R> 0.38 0.12 0.01 0.38

Horizon: k=8 CAN GER UK US

Mean Forecast Error -1.27 (0.25) -0.76 (0.38) -0.18 (0.54) -1.02 (0.22)
Theil’s U 0.90 0.83 1.09 0.93

MSFE-adj 2.17** 2.22%%* -0.27 2.17%%*
Mincer-Zarnowitz: a -0.84 (1.28) 0.55 (0.65) 3.31 (0.85) -0.28 (0.81)
Mincer-Zarnowitz: b 0.90 0.27) 0.50 (0.18) -0.45 (0.30) 0.82 0.17)
Mincer-Zarnowitz: R> 0.34 0.12 0.05 0.35

Note: This table presents various evaluation statistics of out-of-sample forecast performance of the yield spread for real activity. A recursive forecasting
scheme is used. The first 10 years (1962:Q1-1972:Q1) are used as initialization period. Theil’s U is the ratio of the RMSE of the models based on the term
spread and the RMSE of the AR(1)-benchmark model. MSFE-adj is the difference of the MSFE of the benchmark and the adjusted mean squared forecast
error according to Clark and West (2007) (¥, **, *** denotes significance of Clark-West’s test statistic for testing equal predictive performance at the 10%, 5%,
and the 1% level). Coefficients and R? of Mincer-Zarnowitz regressions are also reported. Bootstrapped standard errors (MBB with 99,999 replications) are
given in parentheses.

Table 3.2 summarizes the results of OOS forecast evaluation for the model with cumula-
tive real GDP growth (over forecast horizons of £ = 4, ..., 8) as the dependent variable
and a constant, the term spread and lagged output growth as regressors. Inspection of
Table 3.2 reveals that forecasts based on the yield spread are usually upward biased.
In all countries (except the UK) a significant overprediction of real output growth

can be detected. However, Theil’s U and the Clark/West test indicate a superior out-

Y Critical values from the standard normal distribution can be used to test the significance of MSFE-adj.
Simulations in Clark and West (2007) show that their test using MSFE-adj with standard normal critical
values is as accurate as other competing tests, while the power is as good or better.
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of-sample performance of the model including the spread over the benchmark model
for Canada, Germany and the United States. The poor out-of-sample performance
in the United Kingdom does not come as a surprise, given its comparatively weak
in-sample performance in Table 1. For the other three countries, the success of the yield
spread for out-of-sample forecasting is evident even for forecast horizons of 8 quarters.
The findings in Table 3.2 broadly corroborate results of OOS forecasting experiments
conducted elsewhere in the literature (e.g. Stock and Watson, 2003; Duarte, Venetis,
and Paya, 2005; Giacomini and Rossi, 2006) which have typically concluded that there
is a good OOS forecast performance of models using the yield spread relative to the

benchmark model.

As discussed before, however, there are several reasons to conjecture that the forecasting
relationship may be time-varying. Thus, in the following we shed some light on time-
variation of the relative OOS performance of the yield spread as a predictor of real
activity. This allows us to reexamine the yield curve’s usefulness as a leading indicator
in particular towards the end of the sample period, which is of ultimate concern for
market participants. We investigate the time-variation of OOS performance using
diagnostic plots, which are motivated by the recent work of Goyal and Welch (2008)
in the context of stock return predictability.!! To our knowledge such an analysis —
making the relative forecast performance over time transparent — has been lacking in

the literature so far.

Following Goyal and Welch (2008), we plot the cumulative sum of squared forecast

errors from a benchmark model minus the squared errors from the prediction model

T1

Net — SSE(7, 71) = Z [(Yern — ft(glk)Q = Yegr — f’t(;lk)Q], (3.3)

t=T0

where 7 is the starting date and 7; is the end date at which the Net-SSE is evaluated.

ft(fizrk ( ft(z_k) are forecasts generated by the benchmark model (term spread model).

1n an extensive analysis for the US stock market, Goyal and Welch (2008) question the existence of stock
return predictability based on their finding of poor OOS performance over time.
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When Net-SSE is above the zero horizontal line, it indicates that the model of interest
outperforms the benchmark model (i.e. by producing lower squared forecast errors)
up to the period 71. This graph is a rather informative diagnostic for comparing the

relative performance of competing models over time.

Figure 3.1 (based on a forecast horizon of 4 quarters) depicts how the OOS performance
of prediction models using the term spread model evolves over time relative to the AR(1)
benchmark. All four panels in Figure 3.1 indicate a strong time-variation of the forecast
performance. More concretely, Canada, US, and Germany all experience a rather good
forecast performance of the term spread in the early sub-sample period (1970s and
1980s). In these periods, models including the yield spread typically outperformed
the AR(1)-benchmark in terms of forecast accuracy. However, as the Net-SSE plots
forcefully demonstrate, for Canada (a) and the US (d) the OOS forecast performance
has deteriorated thereafter. Clearly, this calls into question the practical usefulness
of the yield spread as a predictor of real activity in those countries in the most recent
period. Similarly, in the case of Germany (b) no clear improvements of including the
yield spread in prediction models can be observed over the 1990s. As depicted by
the Net-SSE plot for the United Kingdom, the term spread has generally proved to
be a rather poor predictor out-of-sample throughout almost the whole sample period.
However, there are some periods (early 1980s and early 1990s) in which including the

term spread actually lowered squared forecast errors.

These results extend previous findings of a degradation of predictive performance of the
yield curve in the United States (already noted by Dotsey, 1998 or Stock and Watson,
2003) by adding an international perspective and by making forecast breakdowns
more transparent through an explicit focus on OOS forecasting. Having illustrated
the time-variation of the OOS performance and forecast breakdowns, it thus seems
natural to investigate the role of structural breaks for periods of breakdowns of forecast

performance in greater detail. This is the purpose of the next section.
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Figure 3.1: Time-varying Forecast Performance, Net-SSE, k=4
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Note: The figure shows Net-SSE plots following Goyal and Welch (2008). Net-SSE is the cumulated
difference of squared forecast errors of AR(1) benchmark model and the prediction model including the
yield spread and lagged GDP growth: Net-SSE(79, 1) = ZZ;TO (ef.y — €r.¢), where e, is the forecast error

of the benchmark, and e, ; is the error of the prediction model. A decrease of the slope represents a better
forecast performance of the benchmark model at the particular point in time.
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3.3 Empirical Analysis of Model Instability and Forecast

Breakdowns

We now investigate the stability of the empirical relationship between the yield curve
and real activity. First, we briefly outline empirical methods, i.e., structural break tests
allowing for multiple breaks and forecast window selection methods in the presence
of breaks. Our empirical results reported in this section provide strong evidence that,
indeed, the relationship between the yield spread and output growth is subject to
substantial structural change in all countries of this study. Newly proposed window
selection methods offer improvements by reducing the bias of forecast errors and (in
some cases) forecast error variance. Nevertheless, using these methods is not enough to

prevent the deterioration of predictive power of the yield spread in the recent period.

3.3.1 Econometric Methods: Structural Break Tests and Window Selection

for Forecasting

Predictive regressions for output growth using the yield spread as in Equation (3.1)
may be subject to potential structural instability. In particular, different monetary
policy regimes (e.g., whether the central bank is more concerned by the output gap or
deviations of inflation from the target) could be the reason for such a structural change
affecting the predictive relation. When structural change is strong enough, standard
inference becomes misleading. Moreover, the question of how to select the estimation
window in the presence of structural breaks arises, which is of ultimate importance

from a forecaster’s perspective.

Contrary to previous papers (Estrella, Rodrigues, and Schich, 2003; Giacomini and
Rossi, 2006), we consider recently developed structural break tests allowing for multiple
structural breaks at an unknown date under the alternative. These tests have been
developed by Bai and Perron in a series of articles (Bai and Perron, 1998, Bai and

Perron, 2003, and Bai and Perron, 2006) and allow us to pin down the dates associated
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with the identified (multiple) breaks.!? More concretely, by allowing the parameters in
Equation (3.1) to vary across r + 1 regimes, we consider a predictive regression of the

following form:

Yivr = ﬁé,j + 617]-% + ﬁédﬂﬁt + €1y k- (t = T’j—l +1,..., Tj) (3.4)

where j = 1,..,7 + 1, and r is the number of breaks in the linear regression. Note
that Equation (3.4) implies a splitting of the sample into » partitions. For each of
the r partitions within the set of admissible partitions, the least squares estimates of
B; s (1 =0,1,2) and the corresponding sum of squared residuals are obtained. Then, the
break date estimates 71, ..., 7, are selected as the ones globally minimizing the sum of
squared residuals. Bai and Perron (1998) also consider a test of the null hypothesis of
breaks against the alternative [ + 1 breaks by proposing a SupF'(I + 1|I) test statistic.
If the reduction of the sum of squared residuals is significant, the null hypothesis of |

breaks is rejected in favor of the alternative of [ + 1 breaks.

Sometimes interest lies on the question whether there is general instability of the
relationship and not on the exact number of breaks. To test the null hypothesis of
no break against an alternative hypothesis of an unknown number of breaks up to a
given upper bound R, Bai and Perron (1998) propose two double maximum statistics.
The double maximum statistics have weights a, reflecting priors on how likely various

numbers of breaks r might occur

Dmax = maxi<y<r a,SupFr(r). (3.5)

There are no precise theoretical guidelines about the choice of a,.. A simple and obvious
candidate is to use a uniform weight, which leads to the so-called “UDmax" statistic.

Alternatively, weights can be chosen such that the marginal p-values are equal across

12Neither tests used by Estrella, Rodrigues, and Schich (2003) [supLM-Test by Andrews (1993) and PR-test
by Ghysels, Guay, and Hall (1997)] nor the ones conducted by Giacomini and Rossi (2006) allow for
multiple breaks in the predictive relationship.
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values of r (See Bai and Perron, 1998, p.59). This version of double maximum statistic

is labeled as “WDmax".

Based on an extensive simulation study, Bai and Perron (2006) recommend a preferred
strategy for structural break testing in the presence of multiples breaks. First, the
UDmax and WDmax statistics are used to detect whether at least one break is present.
If this is the case, then the number of breaks / is identified by an examination of
the SupF'(l + 1|l) tests, where [ is associated with the break dates that minimize the
global sum of squared residuals. We closely adhere to this strategy in our empirical

application.

A simulation study conducted by Paye and Timmermann (2006) finds that the UDmax
as well as the SupF statistic can have size distortions under some circumstances.!?
They find, instead, that the structural break test recently proposed by Elliott and
Muiller (2006) performs better in those cases. Drawing on the similarities between the
concepts of “structural breaks" and “random coefficients", Elliott and Miiller (2006)
propose to test the null hypothesis that 3, = 0 for any ¢, where 3 = (3 + 3,) against the
alternative hypothesis 3, # 0 for some ¢ > 1. This test statistic is easy to compute and

is labeled as qL/\L For the purpose of completeness, we also provide the qL/\L statistic in

addition to the Bai-Perron tests.1*

When forecasting time series by predictive regressions that are subject to structural
breaks, care has to be taken since breaks can severely affect the model’s out-of-sample
performance. This difficulty can be addressed by a careful selection of the estimation
window. Intuitively, one should estimate the model only with the data available after
the most recent break. However, as pointed out in a recent article by Pesaran and
Timmermann (2007), this conventional wisdom is not necessarily optimal since there

can be a tradeoff between forecast error bias and forecast error variance. Theoretical

3More concretely, they consider a predictive regression, where the regressors follow an AR(1) process.
When the predictors are persistent and the innovations in the predictive regression and those of the
AR(1) regression are strongly correlated, size distortions of the tests can be substantial.

14A detailed description of the steps for computing q/L\L can be found in Elliott and Miiller (2006, p.914). We
use the GAUSS code provided by David E. Rapach for running the structural break tests. We thank David
E. Rapach for providing the code via his web page: http://pages.slu.edu/faculty/rapachde/Research.htm
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and simulation results by Pesaran and Timmermann (2007) suggest that the forecasting

performance can typically be improved if (some) pre-break information is included.

However, there is typically a substantial estimation uncertainty regarding the exact
timing and the size of breaks in real-time, particularly when the breaks occur close to
the boundary of the data. For this reason, Pesaran and Timmermann (2007) propose
several forecast schemes which are based on a combination of forecasts from different
estimation windows, instead of a single estimation window.'® These approaches require
a minimum of w observations for estimating the parameters of the forecasting models.
The last © observations of the estimation period are reserved for a (“pseudo”) OOS
evaluation of the different forecasts based on different sizes of the estimation window.
For each potential starting point w of the estimation window, a set of forecasts is
generated which are evaluated according to their MSFE within the evaluation window
&. Then one can combine forecasts from different estimation windows f, k> Where
the weights are proportional to the inverse of the associated (“pseudo") MSFE in the

evaluation window

fwezghted< (:)) — (3.6)

e ( ko MSFE(wlt,0)~")
S MSFE(wlt, o)t

A more parsimonious approach is to put equal weight on all forecasts regardless of
the corresponding MSFE, which means that no evaluation of the forecasts within the
evaluation window & is needed. We denote the equally weighted forecast as “pooled
forecast". As noted by Pesaran and Timmermann (2007), the MSFE-weighted forecast
and the pooled forecast may work better if the breaks are small. Alternatively, one can
use a weight of one for the forecast based on the estimation window w which produces
the lowest MSFE within the evaluation window, and a weight of zero for all other
forecasts. This (so-called) “cross-validation" approach is more likely to work well if

there is a single break which is well defined and large.

5Pesaran and Timmermann (2007) provide simulation results which show that their combination ap-
proaches often work better than methods ignoring the presence of breaks. This is in line with the typical
result in the forecasting literature that forecast combinations often improve upon a single forecast (See
e.g., Timmermann, 2006).
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3.3.2 Empirical Results

Table 3.3 provides estimation results for different structural break tests. The predictive
regression of real GDP growth includes a constant, the term spread, and lagged GDP

growth as regressors, and the sample period covers 1962:Q1-2006:Q2 for all countries.

In Panel A, the qL/\L statistic proposed by Elliott and Miiller (2006) and the UDMax
and WDmax statistics proposed by Bai and Perron (1998) test the null hypothesis of no
break against the alternative hypothesis of at least one break. All three test statistics
are significant at the 1% level for all countries. This provides strong evidence that the
predictive relationship between the yield spread and GDP growth has been affected by

structural change during our sample period.

Given the strong evidence for structural breaks, we follow the recommendation by Bai
and Perron (2006) and conduct SupF'(I + 1|I) tests to identify the number and timing
of structural breaks.'® Panel B reports the results of these tests. According to the
SupF (I + 1|1) tests, three breaks are detected for Canada and the UK, and four breaks

are found for Germany and the US.

Table 3.4 reports estimated break dates and the associated confidence intervals.!” When
taking a closer look at estimated break dates, several interesting patterns emerge. Some
of the estimated break dates can be linked to particular phases of the business cycle,
well-known unanticipated events (such as the German reunification) or changes in the
monetary regime. For example, two out of the three break dates (1980:Q4 and 1990:Q4)
for Canada are very close to the particular peaks of the business cycle, as reported in
Demers and MacDonald (2007). For Germany, the break dates identified in 1989:Q4
and 1993:Q3 may be linked to the German unification, which is a typical example
of a real shock, and the turmoil in the European Monetary System after Germany’s

reunification boom. The break in 1999:Q2 in Germany can be ascribed to the European

16We impose the maximum number of breaks R to be five, and chose a trimming parameter of 0.15 for the
construction and critical values of these tests, as recommended by Bai and Perron (2006).

I"Results of structural break tests for other horizons also indicate substantial instability. The results are
not reported for the sake of brevity but can be provided by the authors upon request.
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Monetary Union. In the case of the UK, the break identified in 1997:Q3 could be related
to the regain of the independence of the Bank of England. Structural breaks found in
the United States seem to be mostly related to business cycle turning points rather
than monetary regimes. All four break dates identified by the tests are close to either a

peak or a trough dated by NBER’s Business Cycle Dating Committee.!®

Overall, our findings on the timing of breaks for Germany and the US are somewhat
different from the results of Estrella, Rodrigues, and Schich (2003) who found no
evidence for breaks in Germany and only weak evidence in the case of the US. Their
results are obtained by applying the supLM-Test of Andrews (1993) and the PR-test of
Ghysels, Guay, and Hall (1997) to a sample from January 1967 and December 1997.
They also impose a rather large trimming parameter (25%), which implies that breaks
in the more recent period could not be detected. By contrast, our results are based on
more powerful recently developed tests which allow for multiple structural breaks.'®
It is noteworthy, however, that we detect a break in 1983:Q4 for the US which is very
close to the (single) break identified in Estrella, Rodrigues, and Schich (2003). We
find additional breaks in 1991:Q4 and 1999:Q1, which were not possible for Estrella,
Rodrigues, and Schich (2003) to detect given their sample period, trimming parameter
and methodology. Similarly, the two breaks (1993:Q3 and 1999:Q2) which we find in
the case of Germany could not be detected by Estrella, Rodrigues, and Schich (2003) for

the same reason.

Given the strong evidence for structural breaks affecting the in-sample predictive re-
gression, a natural question appears: how is the out-of-sample forecasting performance
affected by these breaks? We address this question by using forecast combination
methods with different window lengths put forth by Pesaran and Timmermann (2007)

for forecasting in the presence of structural change.

Table 3.5 presents an evaluation of the out-of-sample performance using various forecast

schemes: a standard recursive scheme (no combination, expanding window size),

18See http://www.nber.org/cycles/cyclesmain.html

YMoreover, we also have a longer sample period available and impose a smaller trimming parameter.
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MSFE-weighted forecast combination (weighted forecasts from different estimation
windows with weights determined by the inverse of the MSFE in the evaluation
window), cross-validation (forecast from the single window with the lowest MSFE in
the evaluation period) and pooled forecast (average of forecasts based on different

estimation windows).2°

The results for forecast window selection methods in the presence of breaks are rather
similar for Canada, Germany and US. All these combination schemes typically produce
forecasts with a substantially reduced bias. This is what should be expected given
the arguments in Pesaran and Timmermann (2007, p.138-139). However, only rather
modest improvements can be found in terms of forecast error variance as evinced by
Theil’s U or other evaluation statistics. Among the combination schemes, the pooled
forecast tends to generate a rather small forecast error variance, although it often
has a larger bias. The cross-validation approach — only based on a forecast using a
single estimation window — is typically the most fragile.?! Despite reducing the bias
in forecast errors, our results suggest that accounting for structural breaks by using
optimal window selection methods is not sufficient to prevent the deterioration of OOS
forecast accuracy of the yield spread documented in the previous section. Indeed, also
when these more sophisticated forecasting schemes are used, the degradation of OOS

forecast performance of the yield spread still continues to hold, as evinced by Figure 3.2.

The minimum window length was set to 12 observations (3 years), the evaluation period was set to 16
observations (4 years).

Z1This finding links to the general result in the forecasting literature that simple combination approaches
often produce better forecasts compared to single forecasts or very sophisticated combination approaches
(See e.g. Timmermann, 2006).
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Figure 3.2: Time-varying Forecast Performance (Net-SSE), Window Selection Methods
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Note: The figure shows Net-SSE plots for forecasts based on different window selection methods.
The forecast horizon is 4 quarters. Net-SSE is the cumulated difference of squared forecast errors
of AR(1) benchmark model and the prediction model including the yield spread and lagged GDP growth:
Net-SSE (70, 71) = Z;m (ef;t - efmt), where e, is the forecast error of the benchmark, and e, is the
error of the prediction model. A decrease of the slope represents a better forecast performance of the
benchmark model at the particular point in time.

3.4 The Role of Other Yield Curve Information

The findings of the previous section suggest that the term spread has been losing its

edge as a leading indicator in recent years. Hence, the question emerges whether this
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finding applies to the yield curve as a whole. There are several reasons why other
components of the yield curve may contain information for future real activity beyond
the yield spread. First, it can be shown that the term spread can be expressed as
the sum of a (risk-neutral) expectations hypothesis component and a term premium
component (See e.g. Hamilton and Kim, 2002). Hence, simply using the slope of the
yield curve for forecasting implies that potentially useful information contained by the
yield curve could be neglected.?? Second, the level of the short rate could be considered
as an alternative measure of the stance of the monetary policy, which may also qualify

as a useful predictor as emphasized by Ang, Piazzesi, and Wei (2006).

Therefore, in order to study the role of additional yield curve information for forecasting
real activity, we investigate the role of the short rate as well as a measure of time-
varying bond return risk premia. This allows us to analyze whether using these
variables in predictive regressions with or without the yield spread can be beneficial
from a forecasting perspective. Following Wright (2006), we use the bond return
forecasting factor by Cochrane and Piazzesi (2005) (denoted as CP-factor) as our proxy
for time-varying bond risk premia. Hence, our risk premia proxy is a measure of bond
return risk premia instead of the yield risk premia, which would be needed to decompose
the yield spread. We choose to use bond return risk premia instead of theoretically
more desirable yield risk premia in the face of substantial estimation uncertainties
associated with (long-end) yield curve decompositions (See Cochrane and Piazzesi, 2007
for further details). Moreover, as noted by Wright (2006), the Cochrane-Piazzesi factor
is correlated with term premia estimates obtained by other alternative methods (based

on (arbitrage-free) affine term structure models).

Table 3.6 displays estimation results of alternative model specifications. The sample

period covers 1972:Q4-2006:Q2 (Canada, Germany, US) and 1979:Q1-2006:Q2 (UK).23

2Hamilton and Kim (2002), for instance, decompose the predictive power of the term spread into an
expectations hypothesis and a term premium component using instrumental variables to identify the
expected path of future short rates. However, their approach using leads of short-term interest rates
cannot be used for real-time forecasting, which is the focus of this paper.

2The sample periods are restricted by the availability of zero bond data covering a whole range of
maturities. Note that data on zero bond yields for Canada (necessary to compute bond risk premia) are
only available from official sources for a rather short period. For this reason we omit models including
the CP-factor from the table in the case of Canada.
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As shown by the table, the short rate appears as a significant predictor of real activity
for every country considered. The negative coefficient is consistent with the reasoning
that an increase of short rate imposes higher costs of investment and is associated with
a subsequent slowdown of economic growth. In case of the UK it is noteworthy that the
short rate outperforms the term spread in terms of the predictive R?. When combining
the term spread with the short rate, however, we find that the short rate typically
tends to lose much its predictive ability while the spread in most cases maintains its
predictive power, consistent with Plosser and Rouwenhorst (1994). Similarly, bond risk
premia (as proxied by the Cochrane/Piazzesi factor) generally have a rather limited
predictive content. Only in the US we find a significant effect of bond return risk premia
which disappears however when the term spread is controlled for. These (in-sample)
findings suggest that the major informational content of the yield curve for real activity

refers to the slope.

In order to judge the usefulness of alternative yield curve variables for OOS forecasting,
we provide evaluation statistics in Table 3.7 for the different model specifications. The
table shows that the short rate (Model 2) produces forecasts outperforming the naive
model (Theil’s U smaller than one and significant Clark-West statistics) similar to
the yield spread. The table shows further, however, that forecasts using the yield
spread (Model 1) tend to be more accurate. A notable exception, is the UK where
there is evidence that the short rate is the better yield curve variable for forecasting.
Including both the spread and the short rate generally leads to a degradation in
forecast performance. Similarly, the forecast performance of models including return

risk premia (Models 3 and 5) is not encouraging.

Based on both in-sample and out-of-sample results, we conclude that the short rate and
bond risk premia generally have a rather limited predictive ability and that the term
spread typically plays a dominant role.?* This implies that accounting for additional

yield curve information is unlikely to prevent the deterioration of the predictive content

24Regarding our conclusions on the role of the short rate, our results differ from those of Ang, Piazzesi,
and Wei (2006), who found an increased role of the short rate as a predictor of US output growth in
recent years. Our results are more in line with Plosser and Rouwenhorst (1994), which suggests that
the short rate plays a different role in models imposing no-arbitrage restrictions as in Ang, Piazzesi, and
Wei (2006).
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Table 3.7: Out-of-Sample Forecast Evaluation: Yield Spread and other Yield Curve

Variables
Model (1) CAN GER UK US
Mean Forecast Error -1.12 (0.25) -0.63 (0.30) -0.07 (-0.50) -1.23 (0.26)
Theil’s U 0.87 0.85 1.05 0.97
MSFE-adj 3.59%* 2.94%* 0.22 3.77***
Mincer-Zarnowitz: a -0.81 (0.81) 0.38 0.66) 2.27 0.87) -0.12 (0.64)
Mincer-Zarnowitz: b 0.93 (0.16) 0.61 (0.20) 0.01 (0.33) 0.74 (0.12)
Mincer-Zarnowitz: R? 0.38 0.15 0.00 0.38
Model (2) CAN GER UK US
Mean Forecast Error -0.52 (0.59) -1.06 (0.34) 0.36 (0.43) 0.20 (0.65)
Theil’s U 0.90 0.93 0.90 1.05
MSFE-adj 5.13** 3.71%* 5.18%* 5.66%*
Mincer-Zarnowitz: a 0.92 0.92) 0.27 (0.56) 1.16 (0.53) 1.81 (0.46)
Mincer-Zarnowitz: b 0.59 (0.21) 0.56 (0.15) 0.59 (0.17) 043 (0.10)
Mincer-Zarnowitz: R> 0.20 0.21 0.26 0.21
Model (3) CAN GER UK US
Mean Forecast Error -1.14 (0.32) -0.25 (0.41) -0.45 (0.38)
Theil’s U 1.00 1.00 1.01
MSFE-adj -0.02 0.09* -0.01
Mincer-Zarnowitz: a 1.73 (1.95) 3.95 (1.22) 2.09 (1.08)
Mincer-Zarnowitz: b 0.07 0.69) -0.64 (0.50) 0.26 (0.33)
Mincer-Zarnowitz: R? 0.00 0.02 0.01
Model (4) CAN GER UK US
Mean Forecast Error -0.56 (0.48) -0.90 (0.39) 0.33 (0.40) -0.45 (0.58)
Theil’s U 0.90 0.95 0.91 1.02
MSFE-adj 5.46%* 4.45%* 5.14%* 6.67+*
Mincer-Zarnowitz: a 0.90 (0.87) 0.61 (0.51) 1.19 (0.54) 1.36 (0.43)
Mincer-Zarnowitz: b 0.59 (0.20) 0.47 (0.12) 0.56 (0.17) 047 (0.09)
Mincer-Zarnowitz: R? 0.22 0.18 0.25 0.32
Model (5) CAN GER UK US
Mean Forecast Error -0.61 (0.37) -0.06 (0.49) -1.21 (0.23)
Theil’s U 0.86 1.05 0.97
MSFE-adj 3.09%* 0.20 3.72%%%
Mincer-Zarnowitz: a 0.52 (0.63) 2.31 (0.87) -0.08 (0.62)
Mincer-Zarnowitz: b 0.56 (0.19) 0.00 (0.30) 0.73 (0.12)
Mincer-Zarnowitz: R? 0.14 0.00 0.37

Note: This table presents various statistics of forecast evaluation (forecast horizon k=4 quarters). Different model
specifications based on different yield curve variables (term spread, short rate, return risk premia) are estimated.
The model specifications are given as

(1) Const, Term Spread, Lagged Output Growth
(2) Const, Short Rate, Lagged Output Growth

(3) Const, Bond Return Risk Premia (Cochrane-Piazzesi Factor), Lagged Output Growth
(4) Const, Term Spread, Short rate, Lagged Output Growth
(5) Const, Term Spread, Bond Return Risk Premia (Cochrane-Piazzesi Factor), Lagged Output Growth
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of the yield curve for real activity in the recent period.

3.5 Conclusion

In this paper we study whether the yield curve can still be regarded as a useful leading
indicator in forecasting environments characterized by structural change. Studying
the out-of-sample forecast accuracy of models using the yield spread over time relative
to a naive benchmark model, we are able to identify periods of particularly good and
bad performance. Our general finding is that there is a substantial degradation in the
out-of-sample forecast performance of the yield curve for real activity. This result holds

for all countries considered in the study (Canada, Germany, UK, and the US).

Another contribution of our paper is to investigate how parameter stability affects the
forecasting relationship. Using structural break tests allowing for multiple breaks
under the alternative, we find clear evidence for instabilities and are able to pin
down the dates associated with structural change. Moreover, we consider how to
optimally choose the forecasting estimation window in the presence of such breaks. For
this purpose, we use newly developed forecast combination methods by Pesaran and
Timmermann (2007) which also use pre-break information for forecasting. While these
methods help reduce the bias of forecast errors, they only produce minor improvements
in terms of a reduced forecast error variance. Hence, our overall results suggest that
the relationship of the yield curve and real activity has become clearly weaker in recent

years at the international level.

Our work can still be extended along the following lines. In particular, it would be
interesting to investigate further whether the model instabilities and time-variation
of out-of-sample forecast performance identified in this paper can be explained by
monetary regime shifts or by rather different aspects such as declining output volatility.
Another promising area would be to disentangle yield risk premia from the expectations-
hypothesis component of the yield spread [building upon the earlier work by Hamilton
and Kim (2002)]. The existing literature still falls short of an analysis whether sepa-
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rating the effects is helpful for out-of-sample forecast accuracy. For this purpose, yield
risk premia are needed, which can be reliably estimated in real-time without much
estimation error. Given the substantial estimation uncertainties noted by Cochrane
and Piazzesi (2007), obtaining such decompositions still poses a great challenge. We

leave these interesting issues for future research.
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Appendix A: Data Description

Table 3.8: Details on Data Construction

Variable

Data Source

Details on Data Construction ‘

Panel A: Canada

Real GDP

Long-term interest rate

Short-term interest rate

Datastream

Datastream/IMF-IFS

Datastream/IMF-IFS

Seasonally adjusted time series of real GDP from
Statistics Canada.

Long-term government bond yield (10 years to ma-
turity) from Statistics Canada

Three-month T-bill rate.

Panel B: Germany

Real GDP

Long-term interest rate

Short-term interest rate

Reuters-Ecowin

Datastream/IMF-IFS

Datastream/IMF-IFS

Seasonally adjusted time series of real GDP (Stat.
Bundesamt). The outlier in the growth rate of real
GDP due to the reunification (1991:Q1) is adjusted
by interpolation as in Stock and Watson (2003):
the corresponding observation is replaced by the
median of the three previous and the three follow-
ing observations. Long-horizon growth rates are
calculated using the one-step growth rates.

Long term government bond yield (9-10 years to
maturity)

Three-month Money Market Rate calculated from
Bundesbank data.

Panel C: UK

Real GDP

Long-term interest rate

Short-term interest rate

Datastream

Datastream/IMF-IFS

Datastream/IMF-IFS

Seasonally adjusted time series of real GDP
growth (ONS).

Long term government bond yield (20 years to ma-
turity).

Treasury-bill rate calculated from Bank of Eng-
land data.

Panel D: USA

Real GDP

Long-term interest rate

Short-term interest rate

Datastream

Federal Reserve

Federal Reserve

Seasonally adjusted time series of real GDP
growth (BEA).

Market yield on U.S. Treasury securities with 10-
year constant maturity

Three-month Treasury-bill rate. Monthly data are
transformed into quarterly data.

Note: The sample period is usually 1962:Q1-2006:Q2 unless otherwise indicated.



THE YIELD CURVE AS A LEADING INDICATOR UNDER STRUCTURAL INSTABILITY

Appendix B: Estimating Return Risk Premia

This section provides a brief description on the estimation of our measure of time-
varying bond risk premia, which is the bond return forecast factor by Cochrane and
Piazzesi (2005) (so called CP-factor). First, it is useful to define (one-year) holding
period returns (i.e. from t to t+4 quarters) on longer term bonds with n years to maturity

as hprlg_’& = pﬁj) — p,g"), where p,§”> denotes the log price of a bond maturing in n years.

By subtracting the one-year interest rate, excess returns rxiﬁ = hprt(_?4 - yt(l) are

obtained.

Under the expectations hypothesis, bond excess returns should not be predictable. As

shown by Cochrane and Piazzesi (2005), building on previous results by Fama and

Bliss (1987), a single combination of forward rates ft(o’l), ce ft(mfl’m) is a significant

predictor of (one-year) bond excess returns of bonds of all maturities (n = 2,...,m):2®
ol — G 4 GO L g gl ) 3.7

where ft(n_l’n) are forward rates implied by the yield curve: ft(n_l’") = pgn_l) — p§”>. The

CP-factor as of period ¢ is obtained as the fitted values of a regression of the average of
rz{"), over all maturities (n = 2, ...,m) on the term structure of forward rates.26 Thus,
the CP-factor can be regarded as a measure of (one-year) bond return risk premia. In
order to avoid look-ahead bias and to make sure that only information truly available
to the forecaster as of period ¢ is used, we use a recursively fitted CP-factor as the

measure of return risk premia.

% Drawing on the Fama/Bliss yield curve data, Cochrane and Piazzesi (2005) consider maturities ranging
from 2 to 5 years. Tang and Xia (2005) and Cochrane and Piazzesi (2007) also show that the main results
extend to longer maturities and other datasets.

%1n our implementation, we follow Tang and Xia (2005) in our selection of forward rates ( ft(o’l), ,5(2’3>,

ffg’lo)) due to multicollinearity problems when neighboring forwards rates are used. See also Cochrane
and Piazzesi (2007) for more details on this issue.
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GENERAL CONCLUSIONS

In this thesis various aspects of the relationship between financial markets and the
macroeconomy were explored from an empirical perspective. The goal was to shed new

light on three different macro-finance issues.

The first chapter investigated the performance of the consumption-based asset pricing
model when the relevant consumption risk is measured over long-horizons. There are
several reasons suggesting that long-run consumption risk is relevant for asset pricing.
For instance, measurement issues, non-separabilities or infrequent consumption ad-
justment imply that long-horizon consumption growth — as advocated by Parker and
Julliard (2005) — may serve as a better measure of consumption risk than contempo-
raneous consumption growth. Contrary to Parker and Julliard (2005), our empirical
asset pricing tests take into account the recent critique of asset pricing tests raised
by Lewellen, Nagel, and Shanken (2007) as well as their suggested remedies. Our
results generally suggest that more plausible parameter estimates rather than a bet-
ter fit for the cross-section can be regarded as the major success of the long-horizon

consumption-based model.

There are several fields of research which are promising to explore in the future based
on the findings in chapter one. First, from a theoretical perspective it may be desirable
to base the empirical analysis on moment conditions derived from a preference-based
approach with Epstein/Zin utility and a process for consumption growth exhibiting a
small predictable component as in Hansen, Heaton, and Li (2008). In light of the fact
that the long-run risk framework has been very popular in recent years and several
authors have argued that it helps solving long-standing asset pricing puzzles, it may be

very promising to bring this model to an international asset pricing context. It may
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also be very useful to gain a better understanding of the long-run risk framework by
studying predictive regressions for long-run consumption growth by common factors of

portfolio returns. I am currently exploring these novel issues in another piece of work.

In the second chapter, I investigated the predictability of excess returns in international
stock markets. The vast literature on return predictability has identified a large amount
of variables which have been found to predict returns. However, often it is assumed that
the investor selects a-priori the particular variables or a particular combination of these
variables for predicting returns. This is a rather restrictive assumption, since there is
no guarantee that the combination of variables that the investor chooses is the right
one. Thus, in this chapter, I use a Bayesian model averaging framework in order to
account for the uncertainty about the relevance of a particular variable or combination
of variables for predicting returns. In addition, my empirical approach accounts for
potential biases arising from the strong persistence of the typical predictor variables.
Based on an extensive international dataset, I document notable differences in the
degree of return predictability across different stock markets. Overall, the findings of
this chapter suggest that return predictability is not a uniform and a universal feature

across international capital markets.

There are several potentially interesting directions for further research based on the
findings reported in the second chapter of the thesis. Thus far, my analysis was based
on a rather conventional set of predictor variables, mainly due to restrictions of data-
availability for international equity markets. In recent years, however, a plethora of
macro variables has been motivated as predictors for returns.?” It would be interesting
to investigate the robustness of predictive relations and model uncertainty using these
newly proposed predictors. Another interesting field would be to study the performance
of alternative bias correction methods in a comprehensive Monte Carlo study. Many
alternative approaches have been put forth in the literature and the empirical setups

typically differ (single vs. multiple predictors, one-step vs. multi-step forecasting etc.).

ZTThese variables include e.g. the consumption-wealth ratio by Lettau and Ludvigson (2001a), the housing
collateral as in Lustig and van Nieuwerburgh (2005), the price-output ratio by Rangvid (2006), the labor
income to consumption ratio of Santos and Veronesi (2006) or the expenditure share on non-housing
consumption by Piazzesi, Schneider, and Tuzel (2007).
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Hence, more knowledge on the accuracy of the different methods in the different setups

would be of very useful for future empirical research.

Chapter 3 investigated the predictive properties of the yield curve for real GDP growth
in the context of structural instability. This issue is of particular relevance since the
so-called term spread (difference between long-term and short-term interest rates)
is commonly perceived as one of the most prominent predictors of real activity. In
particular, the purpose of this chapter was to study whether the yield spread still
qualifies as a useful predictor of real activity in environments characterized by model
instability and forecast breakdowns. Using multiple break tests, this chapter provided
strong evidence that the predictive relation has been subject to substantial structural
change. Moreover, the findings suggest that window selection methods newly developed
for forecasting in the presence of structural change offer some improvements in terms
of forecast accuracy. Overall, the results reported in this chapter strongly suggest,
however, that the yield curve has been losing its edge as a predictor of output growth in

recent years.

The work in chapter 3 could still be extended along the following lines. One interesting
avenue would be to investigate in greater detail whether the model instabilities and
time-variation of out-of-sample forecast performance identified in chapter 3 can be
explained by changes in monetary regimes or by rather different aspects such as
declining output volatility. Another promising area would be to disentangle yield risk
premia from the expectations-hypothesis component of the yield spread in order to
investigate whether separating their contributions is helpful for better out-of-sample
prediction. For this purpose, yield risk premia are needed, which can be reliably

estimated in real-time without much estimation error.28

Overall, the thesis provides a critical reassessment of existing empirical findings
and facts in the macro-finance literature. A general theme of my results is that
some major findings or “facts” which are often taken for granted in the literature are

substantially attenuated once we put the finding under scrutiny using an appropriate

20ne possibility to obtain model-free estimates of yield risk premia could be to use a VAR-approach as in
Ludvigson and Ng (2007).
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econometric methodology. As outlined in the paragraphs above — though there may
have been progress in some regards — many challenges and interesting issues still
remain unresolved in the macro-finance literature. Seeking answers to these research

questions constitutes an interesting agenda for future research.
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