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Chapter 1

Introduction

Already before the EU Directive 96/92/EG was passed in 1996, some countries in

the EU had started their liberalisation process for energy markets. So, in 1991, Nor-

way established a national power market that in 1996 turned into the multinational

power exchange Nord Pool, including all Nordic countries today.

In the US, the contemporary largest competitive wholesale electricity market,

PJM (Pennsylvania–New Jersey–Maryland electricity market), was approved in

1998 as an independent system operator (ISO); other countries like New Zealand

and Australia started with wholesale electricity markets in 1996 and 1998, respec-

tively.

But how can contracts on electricity be priced? How do electricity prices

change? What does electricity have in common with other commodities like crude

oil or even gold?

Let us give a short overview of electricity pricing literature. As there is a

vast amount of economics literature addressing the pricing of electricity and its

derivatives, we will concentrate on the following: papers that apply continuous

diffusion, jump-diffusion models or GARCH-like processes for electricity prices,

or papers that treat the pricing of derivatives like futures, forwards and simple

option contracts.1 For the treatment of the pricing of exotic derivatives like Swing

Options, see, for example, the paper of Jaillet, Ronn and Tompaidis (2001).

1Of course this review may not be complete, but we included all relevant papers known to us until the
final review of this work.
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One of the first important papers is that of Eydeland and Geman (1998). In

their article, the futures price is determined as a function of expected demand and

the futures price w of the combustible used for the generation of electricity. For

simplified assumptions, especially a normal distributed demand and a futures price

w that is a Brownian motion, the futures price for electricity is then also a Brownian

motion.

In Pirrong and Jermakyan (1999) the general idea of Eydeland and Geman

(1998) is adopted and processes for demand and fuel are specified. Data from the

PJM (Pennsylvania–New Jersey–Maryland electricity market) is used to estimate

the parameters in the model via finite difference methods.

In Bessembinder and Lemmon (2002), a specific cost function of the generator

is assumed, dependent on the demand for electricity, and profit functions for gen-

erators and retailers. The prices in this two-period modelling framework result in

market-equilibria.

Skantze and Ilic (2000) also propose an equilibrium-based model, with a futures

price that depends not only on the expectation of the spot price but also on its

variance.

Barlow (2002) models supply and demand as stochastic processes in order to

arrive at a non-linear Ornstein-Uhlenbeck process that is empirically tested on Al-

berta and California spot prices.

Also in Kanamura and Ohashi (2004), demand and supply are first modelled

separately to arrive then at a process for the equilibrium price. Its usefulness for

optimal power plant generation and risk management is illustrated.

Lucia and Schwartz (2002) suggest a model with mean reversion and seasonal

components. The model is also mentioned in Chap. 5. The authors directly model

a stochastic process for the electricity price, without using an equilibrium approach.

This kind of modelling for electricity is already employed by Pilipovic (1998),

who incorporates mean reversion in a two-factor model with a stochastic long-term

equilibrium price. The author also suggests adding seasonality components.

2



Bhanot (2000) examines electricity prices for 12 regional markets. He employs

and emphasises the importance of modelling seasonality.

Seasonality components can also be found in Elliott, Sick and Stein (2003),

Weron, Simonsen and Wilman (2003), Escribano, Peña and Villaplana (2002), Villa-

plana (2003) or Borovkova (2004), mostly exactly defined like in Lucia and Schwartz

(2002). Elliott et al. (2003) do not only model intra-year, but also intra-day seasonal

characteristics.

The models of Elliott et al. (2003), Weron et al. (2003), Escribano et al. (2002),

Villaplana (2003), Knittel and Roberts (2001), Geman and Roncoroni (2003) and

Deng (2000) all contain mean reversion and jumps. The paper of Villaplana (2003)

can be seen as an extension with jumps and seasonality of the model of Schwartz

and Smith (2000) with a short-term and a long-term factor.

While Elliott et al. (2003) use data from the Alberta Electricity Pool for their

empirical investigations, Weron et al. (2003) calibrate their model for spot price

data from the Nordic power market Nord Pool. Escribano et al. (2002) examine the

electricity markets of Argentina, New Zealand, the Nordic countries and Spain.

In the paper of Knittel and Roberts (2001), prices of the Californian electricity

market are examined. Their models include GARCH- and ARMAX-specifications

and temperature as an additional regressor.

In the meeting of the European Financial Management Association 2003 Geman

and Roncoroni (2003) presented a family of processes with mean reversion and

spikes, i.e. upward jumps that are followed by similar-sized drops. They calibrate

their models to various US-markets.

Also the model of Borovkova (2004) contains seasonality and spikes. A method

is proposed to estimate seasonal risk premia in forward curves.

Deng (2000) uses models with stochastic volatility where mean reversion appear

both in the log process and the volatility. Furthermore, he defines a second process

that is correlated with the log prices, assumed to represent, for example, prices of

fuel. Given plausible parameter values, the author prices a generation plant in a

real-option approach.
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In Huisman and Mahieu (2001), the authors argue that models with mean rever-

sion and stochastic jump processes might lead to problems in identifying the mean

reversion of the process. A model with regime jumps is proposed and applied to

various electricity and commodity markets. For the same model, De Jong and Huis-

man (2002) show how to price European options. They estimate the parameters

for their model from Dutch APX spot price data.

Koekebakker and Ollmar (2001) use principal component analysis to explain for-

ward price dynamics of the Nordic Power Market. The futures prices are smoothed

by sinusoidal prior continuous forward price functions.

Intra-day electricity prices of New Zealand are examined by Guthrie and Vide-

beck (2002) with discrete periodic auto-regression (PAR) models.

Barone-Adesi and Gigli (2002) introduce a discrete model with spikes. Bino-

mial and Monte Carlo methods are used for the pricing of American options on

electricity. The model is calibrated with spot price data from Nord Pool.

Kellerhals (2001) employs Kalman filters for his estimations. Spot and futures

prices from the Californian electricity market are examined. The author calibrates

the Heston model with stochastic volatility.2

K̊aresen and Husby (2000) also work with Kalman filters to calibrate one-factor

and multi-factor AR-models to data from Nord Pool.

The same market is examined by Fleten and Lemming (2001). They construct

a smooth term structure of futures and forward prices, employing an existing

forecast model for this market and observed bid and ask prices.

New approaches for pricing are necessary, keeping in mind the non-storability

of electricity and peculiarities of electricity prices, e.g. spikes. We adopt and

enhance promising techniques to account for these peculiarities. Our approach

is mainly based on that of Lucia and Schwartz (2002); our models belong to the

class of models introduced above that contain mean reversion and seasonality

components, enhanced by jumps. But while the models of Elliott et al. (2003),

2See Heston (1993).

4



Weron et al. (2003), Escribano et al. (2002) and Geman and Roncoroni (2003) are

calibrated with the spot price process of electricity and do not consider derivatives,

our interest lies clearly in pricing and calibrating with derivatives. Deng (2000)

uses models that lead to stochastic differential equations that can only be solved

numerically, whereas our models can be solved analytically up to non-solvable

integrals.

One purpose in this work is the employment and further development of already

existing models for electricity. A second purpose is to adjust and extend recently

proposed models for stock returns for the electricity market. Duffie, Pan and Sin-

gleton (2000) introduce stochastic processes with stochastic volatility and jumps.

The jumps do not only occur in the price process, but also in the volatility process.

The jump sizes in the volatility process are exponentially distributed.

We extend this model class further by allowing the jump sizes in the volatility

process to follow a Γ-distribution. This is a generalization of the former model

class, because Exponential distributions are a special case of Γ-distributions. The

new models are then further extended with seasonality components.

Pricing formulae for derivatives are developed for all these models and exten-

sions. Futures and forward prices are used to estimate implicit parameter values in

an empirical part of this work. The estimations for all models are also compared

by pricing options by means of Monte Carlo methodology and comparing these

theoretical model prices to the observed ones on the market. We use data from

Nord Pool, the power exchange for the Nordic countries.

In detail, the monograph is organised as follows:

The first chapter consists of this introduction.

The second chapter states how forward contracts are priced for tradable assets

and how some commodity pricing models are adjusted to this pricing approach. The

first section ends with a comment on the applicability of this approach for electricity

prices. In the second section, necessary technical preliminaries are explained. Then
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we describe how we price the futures and forwards traded at Nord Pool. The fourth

section covers our implicit estimations approach, and in the last section of the

second chapter we explain how we compute the prices of options in this market.

The third chapter is about the Nord Pool power exchange. The first section

introduces the exchange and the Nordic power market. In the second section, we

draw attention to the details of the spot market Elspot. The third section presents

the products that are traded on the financial market of Nord Pool.

In the fourth chapter, we list and discuss some descriptive statistics of the spot

price and its logarithm, of futures and forward prices, and finally, in the last section,

of option prices.

In the fifth chapter, we first present the three model groups in three sections. In

the fourth section of this chapter, the pricing equations for futures and forwards are

solved, and in the last section we comment on solutions for models with seasonal

components.

The sixth chapter shows the empirical results for the model groups. For model

groups 1 and 3, summary statistics and regression tables are shown and discussed,

out-of sample behaviour is examined and option contracts are priced. The results

for model group 2 are listed in the Appendix.

In the last chapter, we give a summary and some conclusions.
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Chapter 2

Pricing of Electricity Derivatives

This chapter starts by giving a motivation for pricing electricity derivatives, showing

the limits of asset pricing when the asset is not tradable or storable. In the second

section, some technical preliminaries are introduced. In the third section, these

help us to explain the pricing approach on which we will rely. The fourth and fifth

sections show our approach to parameter estimation and option valuation.

2.1 Pricing of Commodities

Consider a tradable asset S with price St, t ∈ R+
0 , and a forward contract on S with

price F (t, T ) and expiry T ∈ R+
0 , T ≥ t. Assume that the riskless interest rate r

is nonstochastic and constant. With a simple replication strategy, we are able to

determine the value of this forward contract:

• Period t:

– Strategy 1: lend money of value St for the risk-free rate r and buy asset

S.

– Strategy 2: buy a forward contract with expiry in T for the price F (t, T ).

The contract must be paid in T .

• Period T :

– Strategy 1: sell asset S for value ST and pay back the money that was

lent plus the payable interest. The payoff of this strategy is ST−er(T−t)St.

– Strategy 2: pay forward contract with the price agreed on in t: F (t, T ),

and receive S. Immediately sell S. The payoff is ST − F (t, T ).

7



The Law of One Price says that investment assets that have identical cash flows

must have the same price.1 So the value of F (t, T ) must be

F (t, T ) = er(T−t)St. (2.1)

The important point in this argument is the assumption of a tradable asset,

included in the notion investment asset.2 This assumption is definitely correct for

securities, but not anymore for commodities like wheat, oil, or electricity. So does

the non-validity of this equation lead to a wider range of models, like those with

mean reversion or seasonality components, see also Chap. 1. For our Model Group

2, presented in Sect. 5.2, we generalize the risk-neutralized drift for the log-prices,

that would be with equation (2.1) (r − 1
2
vt)dt, to (α + βvt)dt, see there for further

details.

The discussion above implies, that in the electricity market future and forward

contracts cannot be replicated with spot contracts. Therefore, market completeness,

regarding the futures and forward markets, can only be shown by using multiple

futures and forward contracts, depending on the assumed models. The possibility

of using a martingale measure, though, does not depend on market completeness.

Despite the lack of unique prices, for a chosen martingale measure arbitrage-free

pricing is still assured, see for example Schönbucher (2003, p. 106). See also Sect.

2.2.3.

A simple look at futures prices shows that they are sometimes above (in con-

tango) or below (in backwardation) the spot price.3 To give an example, we have

listed futures prices from the London Metal exchange from 4 May 2001 in Table

2.1.4 While most contracts tend to be in contango, the ‘Primary High Grade

1See Hull (1989, pp. 54f), who also gives necessary assumptions: (i) there are no transaction costs,
(ii) the same tax rates apply for all, (iii) there is only one risk free rate of interest, for borrowing as for
lending, and (iv) arbitrage opportunities are exploited.

2For tradable assets the equation causes the process under the Martingale measure to always have a
trend of r or rtSt, respectively, see for example the models of Bakshi, Cao and Chen (1997), or Bates
(1991).

3Contango is defined as an upward-sloping term structure of futures prices. The opposite is backwar-
dation.

4The data can be found at London Metal Exchange.
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Table 2.1. Futures Prices from the London Metal Exchange

Here is an example of commodity prices from the 4 May 2001. Listed are two different kinds of aluminium,

copper, lead, nickel, silver, tin and zinc with contract bid-ask prices for the spot market, three-months,

15-months and 27-months futures. The Primary High Grade Aluminium as well as the Nickel contracts

are in backwardation (negatively sloped with time to maturity) whereas all other metals are in contango

(with a positive slope). Source: London Metal Exchange

Daily Prices & stocks file:///D:/daily_prices.asp.html

1 of 3 27.05.2003 19:17

 
  

Sterling equivalents / Exchange Rates / Official Stock Table / LMEX Index Value / Historic Trading Data   

UK and International LME Educational Seminar dates for 2003 now released

LME Official prices, US$/tonne (US Cents/fine troy ounce - silver) for 4 May 2001 (Data >1 day old)

 Aluminium
Alloy

Primary High
Grade 

Aluminium

Copper 
Grade A

Standard 
Lead Nickel Silver Tin SHG Zinc

 Cash buyer   1,255.00    1,585.00    1,697.00    459.50    6,700.00    440.00    5,010.00    948.00  
 Cash seller &
 settlement   1,260.00    1,586.00    1,698.00    460.00    6,710.00    450.00    5,015.00    948.50  

 3-months buyer   1,280.00    1,560.00    1,716.00    476.00    6,635.00    445.00    5,060.00    968.00  

 3-months seller   1,285.00    1,560.50    1,717.00    477.00    6,645.00    455.00    5,065.00    968.50  

 15-months
buyer   1,355.00    1,548.00    1,758.00    510.00    6,350.00    445.00    5,170.00    1,003.00  

 15-months
seller   1,365.00    1,553.00    1,763.00    515.00    6,400.00    455.00    5,180.00    1,008.00  

 27-months
buyer      1,523.00    1,770.00     6,205.00    445.00     1,022.00  

 27-months
seller      1,528.00    1,775.00     6,255.00    455.00     1,027.00  

back to top

The following sterling equivalents have been calculated, on the basis of daily conversions
 

Aluminium’, for example, is in backwardation.5

An approach to explain this phenomenon is the introduction of cost-of-carry

factors and convenience yields, that in some models are constant, or can also be

stochastic.6 These factors are interpreted as extended storing costs, or the value of

having the commodity at hand as an advantage to a forward contract.7 The ‘con-

venience’ for disposing over the commodity can be worth more than interest rates

and storing costs, so situations of backwardation can be explained. In situations of

contango, interest rates and storing costs higher than the ‘convenience’ explain the

observed futures or forward prices.

5For a justification of markets that are in backwardation and an empirical analysis of US oil futures
prices, see Litzenberger and Rabinowitz (1995).

6See, for example, Brennan and Schwartz (1985) for a constant convenience yield or Gibson and
Schwartz (1990), Schwartz (1997, model 3), Miltersen and Schwartz (1998) or Hilliard and Reis (1998) for
stochastic convenience yields.

7In Hull (1989, p. 661), Cost of Carry is defined as “The storage costs plus the cost of financing an
asset minus the income earned on the asset”.
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The usefulness of the adaptation of the above replication strategy and its exten-

sions with cost-and-carry factors and convenience yields strongly depends on the

possibility and costs of storing.8

Gold and other metals may be quite easy to store, more difficult and more

expensive to store are certainly commodities like crude oil, wheat, or cocoa.9

Let us consider electricity. Is power storable at all? One could argue that the

costs for storing the resources for generating electricity, like oil or gas, or even

including the costs for disposing over generating facilities, can be considered equiv-

alent to storing costs.10 Thus, though a theoretical possibility, storing will not

be an alternative for many market participants, in addition to the difficulties in

estimating these costs.

We will address the lacking possibilities for storing electricity in two ways:

1. We do not restrict ourselves to models where (2.1) must hold, and

2. Our models try to map the seasonal behaviour of electricity prices that we

observe, see Chap. 4, and that is a result of these difficulties in storing.11

Many authors agree that models allowing commodity prices to move stochas-

tically around a long-term mean are more appropriate for commodity prices, for

example for oil or wheat. This leads to models with mean reversion.12

The idea is that production costs are in the long run fixed, but disturbed by factors

like, for example, good/bad harvests, high/low consuming rates, or over-/under-

production.

We will also address this in Chap. 5 in the context of electricity. One of our

model groups contains mean reversion.13

8Compare also with Bühler, Korn and Schöbel (2000).
9See also the comments in Ross (1997, p. 3).

10See also Deng (2000).
11See also the introduction of this monograph for models with seasonality components.
12See for example the models of Schwartz and Smith (2000), Ross (1997), Schwartz (1997) and Lien

and Strøm (1999).
13See also the introduction of this monograph for models with mean reversion.
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2.2 Technical Preliminaries

2.2.1 Kolmogorov’s Backward Equation

We begin with Kolmogorov’s Backward Equation for time-homogeneous Itô diffu-

sions and then extend it for diffusions with Poisson-distributed jump components.

Theorem 2.1 Kolmogorov’s Backward Equation (KBE)

Let (Ω,F , P ) be a probability space with filtration (Ft)t≥0. In this probability

space, let ~Xt be a time-homogeneous Itô diffusion with values in Rn, i.e. ~Xt is

defined as a stochastic differential equation of the form

d ~Xt = ~µ( ~Xt)dt + ~σ( ~Xt)d~Zt, (2.2)

with ~Xt ∈ Rn, ~µ(~x) ∈ Rn, ~σ(~x) ∈ Rn×m and a m-dimensional Brownian motion ~Zt.

Furthermore define, for f ∈ C2(Rn) with compact support, the infinitesimal

generator A of ~Xt as

Af(~x) =
∑

i

µi(~x)
∂f

∂xi

+
1

2

∑
i,j

(~σ~σ>)i,j(~x)
∂2f

∂xi∂xj

. (2.3)

(i) Define u(t, ~x) ∈ R as

u(t, ~x) = E[f( ~Xt)| ~X0 = ~x]. (2.4)

Then

Au(t, ~x) exists for all (t, ~x) ∈ [0,∞)× Rn and

Du := Au− ∂u

∂t
= 0 ∀(t, ~x) ∈ [0,∞)× Rn, (2.5)

u(0, ~x) = f(~x) ∀~x ∈ Rn. (2.6)

A is always applied to ~x → u(t, ~x) in this context.

(ii) If w(t, ~x) ∈ C1,2(R×Rn) is a bounded function also satisfying (2.5) and (2.6),

then w(t, ~x) is a solution to (2.4), i.e. w(t, ~x) = u(t, ~x) = E[f( ~Xt)| ~X0 = ~x].

Proof: See Øksendal (2000, p. 132).
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The above theorem is very important for models with time-homogeneous Itô

diffusions. For models with Poisson-jumps, though, an extension is necessary that

adjusts the infinitesimal generator A for these advanced stochastic processes. Com-

pare also with Duffie et al. (2000, pp. 9 ff and Appendix A) and Cheng and Scaillet

(2002, p. 11).

Corollary 2.2 Extension of KBE for jump diffusions

With the same assumptions as in theorem 2.1 consider a process defined by the

differential equation

d ~Xt = ~µ( ~Xt)dt + ~σ( ~Xt)d~Zt + ~J( ~Xt)dP (λ( ~Xt)), (2.7)

where the first part corresponds to the Itô diffusion of (2.2), P is a pure jump

process with intensity λ( ~Xt) : t ≥ 0 for some λ : Rn → [0,∞), and ~J( ~Xt) is the size

of the jump, conditional on a jump occurring. ~J( ~Xt) is assumed to be distributed

with density ~ν : Rn → Rm.14

Equivalently to theorem 2.1, define, for f ∈ C2(Rn) with compact support, the

infinitesimal generator A of ~Xt as

Af(~x) =
∑

i

µi(~x)
∂f

∂xi

+
1

2

∑
i,j

(~σ~σ>)i,j(~x)
∂2f

∂xi∂xj

+ λ(~x)

∫
Rn

(f(~x + ~z)− f(~x))dν(~z).

(2.8)

(i) Define u(t, ~x) ∈ R as

u(t, x) = E[f( ~Xt)| ~X0 = ~x]. (2.9)

Suppose that the following integrability conditions hold:

E[|u(t, ~x)|] < ∞ ∀t ∈ [0,∞), (2.10)

E

[(∫ t

0

(~ηs~η
>
s )ds

)1/2
]

< ∞ ∀t ∈ [0,∞), (2.11)

E

[∫ t

0

|γs|ds

]
< ∞ ∀t ∈ [0,∞), (2.12)

14See also Duffie et al. (2000).
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where15

~ηt =

(
∂u

∂x1

(t, x), . . . ,
∂u

∂xn

(t, x)

)
~σ (2.13)

and

γt = λ(~x)

∫
Rn

(u(t, ~x + ~z)− u(t, ~x))d~ν(~z). (2.14)

Then

Au(t, ~x) exists for all (t, ~x) ∈ [0,∞)× Rn and

Du := Au− ∂u

∂t
= 0 ∀(t, ~x) ∈ [0,∞)× Rn, (2.15)

u(0, ~x) = f(~x) ∀x ∈ Rn, (2.16)

analogous to KBE.

(ii) If w(t, ~x) ∈ C1,2(R × Rn) is a bounded function also satisfying (2.10), (2.11),

(2.12), (2.15) and (2.16), then w(t, ~x) is a solution to (2.9), i.e.

w(t, ~x) = u(t, ~x) = E[f( ~Xt)| ~X0 = ~x].

Proof: The proof can be derived from Duffie et al. (2000, Appendix A).

2.2.2 Characteristic Functions

Kolmogorov’s Backward Equation gives us a technique to calculate conditional ex-

pectations on the stochastic processes we model later on. We will apply this tech-

nique for characteristic functions that are defined now.

We will begin with a definition of characteristic functions and then list some

properties.

Definition 2.3 Characteristic Functions

Let Xt be a stochastic process adapted to some augmented filtration (Ft)t≥0 in

a probability space (Ω,F , P ). The conditional characteristic function of Xt is then

defined as

Φ(ω, τ, ~ϑ, Xt) := E[exp(iωXt+τ )|Ft], (2.17)

15See Cheng and Scaillet (2002, p. 11) for this more generalised formulation.
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where τ ≥ 0, i =
√
−1, ω ∈ R; and ~ϑ is the space of parameters. It can be

interpreted as the conditional expectation at time t of the exponent of the state

variable times iω, τ periods ahead.

Several properties of characteristic functions can be mentioned:

Properties

• Φ(ω, τ, ~ϑ, Xt) always exists, because

|Φ(ω, τ, ~ϑ, Xt)| = |
∫ ∞

−∞
exp(iωτXt)dF (Xt + τ)|

≤
∫ ∞

−∞
| exp(iωτXt)|dF (Xt + τ)

=

∫ ∞

−∞
dF (Xt + τ)

= 1. (2.18)

• If two stochastic processes have the same characteristic function, then they

have the same probability distribution; Φ(ω, τ, ~ϑ, Xt) and the conditional den-

sity function f(Xt+τ ; ~ϑ) of Xt+τ form a Fourier transform pair:

Φ(ω, τ, ~ϑ, Xt) =

∫ ∞

−∞
exp(iωXt+τ )f(Xt+τ ; ~ϑ)dXt+τ , (2.19)

f(Xt+τ ; ~ϑ) =
1

2π

∫ ∞

−∞
exp(−iωXt+τ )Φ(ω, τ, ~ϑ, Xt)dω. (2.20)

• Applying an Euler expansion of a complex variable to Φ(ω, τ, ~ϑ, Xt) leads to

a splitting in a real cosine term and an imaginary sine term.

• Furthermore, uncentered moments of Xt are easily obtained by differentiation.

For an application of the two latter aspects, refer, for example, to Chacko and

Viceira (2003). They use Euler expansions and calculate uncentered moments of

Xt via characteristic functions. For more properties of characteristic functions, as

for example limc→∞
1
2c

∫ c

−c
exp(−iωXt)Φ(ω, τ, ~ϑ, Xt)dt = 2π limc→∞

f(Xt+τ )
2c

= 0, see

Stuart and Ord (1987). Even more information is given in Lukacs (1970).

14



2.2.3 Martingale Measures

We will here give a definition of martingale measures and describe how we will

employ them in this work.16

Definition 2.4 In a probability space (Ω,F , P ) with filtration (Ft)t≥0, a probability

measure Q, that is equivalent to P,17 is a Martingale Measure for an arbitrary asset

X, if the equality

Xt = EQ
t [XT ] ∀ 0 ≤ t ≤ T < ∞ (2.21)

holds18 and if the Radon–Nikodym derivative dQ/dP has finite variance.19

The Martingale Measure is often called Risk-neutral Measure, because in a risk-

neutral world this measure would coincide with the real probabilities. This measure

can be very useful, for example for pricing futures, where we know that F (T, T ) ≡

ST , i.e. a futures with expiry in T has the value in T of the underlying S.20 As a

result,

F (t, T ) = EQ
t [F (T, T )] = EQ

t [ST ]. (2.22)

We can price options the same way.21 For example European calls with a value at

expiry time T of max{ST −K, 0}, where K is the strike price, can be priced as

C(t, T,K) = EQ
t [max{ST −K, 0}]. (2.23)

We will apply these relations in the next section.

The existence of a Martingale measure for all assets in a market is equivalent to

the non-existence of arbitrage opportunities, see Musiela and Rutkowski (1997, pp.

246f) and the references therein. Uniqueness, though, depends on the completeness

of the market, and completeness can be shown if all contracts can be replicated by

other contracts. As was demonstrated in Sect. 2.1 for electricity, the replication of a

futures contract is not possible with spot contracts, because storing of electricity is

16Compare e.g. with Duffie (1996, p. 108).
17The probability measures P and Q are equivalent, when for all C ∈ F holds: P (C) = 0 if and only if

Q(C) = 0.
18The notation Et is a short form of E[·|Ft], i.e. the conditional expectation with respect to the filtration

Ft, 0 ≤ t < T .
19See Duffie (1996, App. C) for Radon–Nikodym derivatives.
20For a definition of a futures contract, see Definition 3.1.
21For a definition of an options contract, see Definition 3.3.
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impossible or at least only at very high costs. Following Lucia and Schwartz (2002,

p. 12), though, standard arbitrage arguments nevertheless allow the derivation of

a risk-neutral process and also lead to the market prices of risk. As the existence

of a martingale measure only depends on the lack of arbitrage possibilities, one can

even choose in incomplete markets a martingale measure and use the fact that in

the employed pricing system arbitrage possibilities are not possible. See also e.g.

Schönbucher (2003, p. 106) and Sect. 2.1.

2.3 Pricing of Nord Pool Futures and Forwards

With this background, our approach is straightforward. In our probability space

(Ω,F , P ) with filtration (Ft)t≥0 and state variable Xt, we can define a general

version of the conditional characteristic function as

Φ(u, τ, ~ϑ, Xt) := E[exp(uXt+τ )|Ft], (2.24)

with u ∈ C, τ ∈ R+
0 .22 ~ϑ is the space of parameters.

For u ∈ iR, there is clearly no convergence problem. For u ∈ R, one has to

assure the existence of Φ(u, τ, ~ϑ, Xt), in our context at least for the value of u = 1:

for a price process defined as St := exp(Xt), we can easily see that23

Et[ST ] = Φ(1, T − t, ~ϑ, Xt). (2.25)

Let F (t, T1, Tn) be the price of a futures or forward on day t for delivery days T1

to Tn, where n ∈ N.24 The expected cash settlements, given the information until

22For our purposes, it would suffice to define a moment generating function M(s, ~ϑ, Xt) :=
E[exp(sXt+τ ), s ∈ R+, or even only to calculate Et[exp(Xt+τ )]. Nevertheless, we choose to embed our
work in a more general context, which simplifies comparisons with existing literature and the accomplish-
ments of extensions.

23For example, Bakshi and Madan (2000, p. 218) or Zhu (2000, p. 12) mentioned this relation and
proposed to set the frequency of the characteristic function to −i, which corresponds to u = 1 in our
setting. See also Deng (2000, p. 19).

24For a specification of the futures and forward contracts of the Nord Pool Financial Market, see
definitions 3.1 and 3.2. The prices are quoted as day-prices in the sense of below.
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day t, are the following:

Day T1 : F (t, T1, Tn)− Et[ST1 ]︸ ︷︷ ︸
=: Z1

Day T2 : F (t, T1, Tn)− Et[ST2 ]︸ ︷︷ ︸
=: Z2

...
...

Day Tn : F (t, T1, Tn)− Et[STn ]︸ ︷︷ ︸
=: Zn

Under the risk-neutral or Martingale measure, the present value of these settle-

ments should be zero at day t:

e−r(T1−t)Z1 + e−r(T2−t)Z1 + · · ·+ e−r(Tn−t)Zn
!
= 0

⇔ ∑n
i=1 e−r(Ti−t)F (t, T1, Tn)−

∑n
i=1 e−r(Ti−t)Et[STi

]
!
= 0. (2.26)

A constant interest rate r is assumed here.25

Solving for F (t, T1, Tn) leads to26

F (t, T1, Tn) =

∑n
i=1 e−r(Ti−t)Et[STi

]∑n
i=1 e−r(Ti−t)

=

∑n
i=1 e−r(Ti−t)Φ(1, Ti − t, ~ϑ, Xt)∑n

i=1 e−r(Ti−t)
. (2.27)

Therefore, if Φ(u, τ, ~ϑ, Xt) is known and well defined, at least for u = 1, then

the futures and forward prices are easily calculated with (2.27).27

25With this assumption and the further characteristics of the Nord Pool Futures and Forwards, see 3.3,
we can treat futures and forwards in our context as synonyms that are only differing in expiry days and
delivery periods.

26For a continuous version of this solution, see Fleten and Lemming (2001).
27Note that with (2.27) or (2.22), F (t, Ti, Ti) = Et(STi) under the Martingale measure. Now, if (2.1)

were valid, Et(STi) = F (t, Ti, Ti) = er(Ti−t)St, so the pricing of futures would be completely model-
independent (except for the assumption of constant interest rates). Implicit parameter estimations as
described in the next section would not be possible with futures and forward prices. For electricity
contracts, (2.1) needs not to hold and apparently does not hold. This can e.g. be seen in Figs. 4.6,
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2.4 Implicit Estimations

In the estimation process of this work, the parameters are implicitly estimated. The

technique follows the way employed by Bakshi et al. (1997), but, instead of options,

we use futures and forwards to determine the best fitting parameter values.

For each day t define F (t, T j
1 , T j

n) as the observed price with delivery period from

T j
1 to T j

n for all futures and forwards j = 1, . . . , N on that day, and F̂ (t, T j
1 , T j

n)

as the theoretical price determined by the respective model. Then the parameter

vector ~ϑ shall be found that minimises the mean of squared errors on day t:

MSE(t) ≡ min
~ϑ

1

N

N∑
j=1

(
F̂ (t, T j

1 , T j
n)− F (t, T j

1 , T j
n)

)2

. (2.28)

For each day in the sample, a different MSE(t), or equivalently RMSE(t) =√
MSE(t), is determined.

Although the variance is an unobservable state variable for some model groups,

the daily independent estimations allow estimating it as a regular parameter. This

implies that, in conjunction with the other parameters, we are looking for the

variance for the precise day that can best explain the observed prices.

Our calculations are all performed in Matlab 6.5. The minimisation function

used is ‘fminsearch’, the quadrature function is based on ’quad’ and ‘quadl’. These

functions are part of the core package of Matlab.

Because of possible multiple local minima in most models, the estimations often

depend on the starting points. So we always started the algorithms with reasonable

values for the parameters. Nevertheless, the global minima were probably not

always found and the estimations contain many outliers, see Chap. 6.

2.5 Pricing of Nord Pool Options

The options we consider are European-style option contracts on the traded electric-

ity forwards and Asian-style options. The latter options on the arithmetic average

of the system price were only listed until 20 April 2001.

Under the Martingale measure, the value of these contracts is for

4.7, and 4.8. Models with mean reversion or seasonality components are possible this way, as well as the
models of our Model Group 2, see also Chaps. 1 and 5.
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• European calls on forwards:

Ce(t, Te, T1, Tn, K) = e−r(Te−t)Et[max{F (Te, T1, Tn)−K, 0}], (2.29)

where Ce(t, Te, T1, Tn, K) is the call price on day t with underlying forward

price F (Te, T1, Tn) on day Te, strike K, and option expiry day Te.

• Asian calls on the system price:

Ca(t, Te, T1, Tn, K) = e−r(Te−t)Et[max{AS(T1, Tn)−K, 0}], (2.30)

where

AS(T1, Tn) = (1/n)
Tn∑

i=T1

Si (2.31)

is the average of the spot prices between T1 and Tn. The remaining parameters

are the same as for European options.

Puts are priced analogously, simply swapping the terms of the differences in the

above formulae.

Closed-form solutions for option prices with these underlyings are very complex,

if they exist at all.28 For this reason, we employ Monte Carlo methods to price the

traded option contracts in our model framework, with the parameters obtained from

our implicit estimations from futures and forwards.29

To be able to work with discrete processes, we apply Euler approximations.30

Consider a process of the form

dy(t) = a(y(t))dt + b(y(t))dZt + JdPt, (2.32)

with a Brownian motion dZt and a Poisson process dPt. J is the jump size distrib-

ution and a(y(t)) and b(y(t)) are the parameter functions. The process is approxi-

28The proceeding for European options could be as follows: Starting from the solution for F (t, T1, Tn),
the stochastic differential equation for dF could be derived via Itô’s lemma. Then, standard methods like
those that were proposed by Scott (1997) or Duffie et al. (2000) could be applied. For the pricing of Asian
options, see for example Zhang (1998).

29We do not employ observed option prices for parameter estimations, but rather for comparing different
parameter estimations and models. See also Sects. 6.1.4, 6.3.4 and Appendix A.4.

30See Kubilius and Platen (2002).
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mated via

yt = yt−1 + a(yt−1)∆t + b(yt−1)∆Zt + J∆Pt, (2.33)

where ∆Zt ∼ N [0, ∆t] and ∆Pt is approximated via a Binomial distribution

Bi[λ∆t]. We set ∆t = 1/365, corresponding to daily new available spot prices.

To price the options this way, numerous paths have to be created and the above

expectations are then simply averages of simulated returns on option contracts.

Monte Carlo simulations are a time-critical procedure. So, various variance

reduction techniques, explained in Hull (1989, pp. 411ff) and Jäckel (2002, pp.

111ff), for example, are used to be able to keep the number of different trial paths

at a reasonable level.31 We employ Antithetic Sampling and Moment Matching

techniques.

31For each model, the number of trial paths was augmented independently until a certain level of
accuracy was obtained.

20



Chapter 3

Nord Pool

Before we continue and introduce our models that we use to price futures, forwards

and options, we will now, in this chapter, take a look at the Nord Pool Power

Exchange, its physical spot market and its financial market where various power

contract types are traded.1

3.1 Nord Pool ASA and the Nordic Power Market

Nord Pool ASA operates the oldest non-mandatory power-exchange and was the

first to trade financial derivatives on electricity. The present Nordic power market

began in 1991 with a national Norwegian power market; Sweden joined in 1996,

Finland in 1998, western Denmark in 1999, and eastern Denmark in 2000.

Nord Pool offers the following services:

• A spot market, called Elspot, on which contracts for physical delivery are

traded. It is the main market for trading products that are physically deliv-

ered. Units are always the 24 hours of the next day, traded separately. Elbas

is another spot market, operating in Finland and Sweden. In Elbas, hourly

contracts, until up to one hour before delivery, are traded.

• Financial markets, called Eltermin and Eloption, where futures, forwards,

contracts for difference and options are traded.

1For more details about Nord Pool and its products see Nord Pool ASA, Nord Pool Products, Nord
Pool Information and Nord Pool Product Reports (2002), where most of the following was found. Section
3.2 is also based on Standard Terms for Trading And Clearing in Nord Pool Spot AS’ Physical Markets,
whereas Nord Pool Rulebook for The Financial Electricity Market (2002) and Nord Pool Options (2002)
were also used for Sect. 3.3. We drew heavily from these sources. Other sources are given in the sections
and subsections themselves.
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• Clearing services. Nord Pool established the Nordic Electricity Clearing House

ASA (NECH) for the clearing of financial contracts. Clearing by NECH is

obligatory for financial products traded at Nord Pool’s financial market, but

the clearing services are also offered for bilaterally traded standardised prod-

ucts.

3.1.1 Key Figures Nord Pool

The total turnover of Nord Pool in 2002 was 461 billion Norwegian Kronor (NOK)

with a volume of 3232 TWh.2 Most of the turnover consisted of clearing ser-

vices at the bilateral or over-the-counter (OTC) market with NOK 254 billion or

1747.6 TWh.

The volume traded at the financial market was 1019 TWh with a value of NOK

180 billion, on the physical market only 124 TWh were traded, with a value of NOK

27 billion. The volumes traded on the physical and the financial markets increased

by 11.9% in 2002, while the volumes that were cleared increased by 19.5%. The

cleared volumes on the bilateral market with 2089 TWh were nearly twice the

volumes of 1143 TWh directly traded on the exchange. The traded and cleared

volumes increased to a total of 3232 TWh compared to 2769 TWh in 2001; this is

a growth of 16.7%.

The average spot or system price, the price on the spot market if capacity

restrictions are ignored, was 8.1% higher in 2002 with a peak of NOK 686/MWh

while the highest price in 2001 reached NOK 633/MWh.

The highest monthly volumes traded on the spot market with 13.72 TWh were

recorded for September 2002; the highest monthly volumes traded on the financial

market already took place in April 2002 with 141.48 TWh.3

For detailed information about Nord Pool’s key figures for 2002, see Nord Pool

Press Release 02/2003 and Table 3.1.

2See Nord Pool Press Release 02/2003. The figures there are also converted to euro with an exchange
rate of 7.8 NOK/e. We cite all prices only in NOK for consistency purposes, because our empirical
investigations in Chap. 6 are performed for the prices in NOK or rather the logarithm of these prices.

3For more details about the spot price and futures / forward / option prices between October 1999
and September 2002 see Chap. 4.
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Nord Pool Key figures 2002
Activity by 
product area 2002 2001

Percent change 
2002-2001 2000 1999 1998 1997 1996

Volume traded, physical 
market (TWh) 124 112 11,2 % 97 76 57 44 41
Value of volume traded, 
physical market (NOK 
billion)

27 21 25,4 % 11 9 7 6 10

Volume, financial market 
(TWh) 1 019 910 12,0 % 359 216 89 53 43
Value, financial market 
(NOK billion) 180 157 14,5 % 43 28 13 9 11
Total volume traded 
(TWh) 1 143 1 022 11,9 % 456 292 146 97 83
Total value traded (NOK 
billion) 207 178 15,8 % 54 37 20 15 21
Volume, clearing of 
bilateral-market trade 
(TWh)

2 089 1 748 19,5 % 1 180 684 373 147

Value, clearing of bilateral-
market trade (NOK billion) 254 234 8,5 % 123 88 56 25

Total volume, traded + 
bilateral clearing (TWh) 3 232 2 769 16,7 % 1 635 975 519 244
Total value, traded + 
bilateral clearing (NOK 
billion)

461 412 11,8 % 177 124 75 40

Number of 
participantsTotal no, of participants 
as of 31 December 302 295 2,4 % 281 264 250 199 148
Avarage system 
price
Avarge system price pr 
year NOK/MWh 201 186 8,1 % 103 112 116 136 254

Highest systemprice 
NOK/MWh 686 633 8,3 % 388 226 266 262

Lowest systemprice 
NOK/MWh 81 119 -32,3 % 32 50 21 58

Highest volumes 2002 2001 2000
Volume, Elspot 1-hour 
contracts (MWh/h) Hour 
18, 2.January 

21 926 21 045 4,2 % 16 887

Daily volume, Elspot 
(TWh) 31. December 0,48 0,46 4,0 % 0,35
Weekly vol, Elspot (TWh) 
Week 51 3,15 2,87 9,8 % 2,34
Monthly vol, Elspot (TWh) 
December 13,72 11,90 15,3 % 9,70
Daily volume, Financial 
market (TWh) 22. April 21,10 13,22 59,6 % 6,89
Weekly vol, Financial 
market (TWh) Week 41 45,36 34,18 32,7 % 16,28
Monthly vol, Financial 
market (TWh) April 141,48 114,07 24,0 % 52,33
Daily vol, bilateral clearing 
(TWh) 23 October 26,81 26,70 0,4 % 19,92

Weekly vol,, bilateral 
clearing (TWh) Week 41 91,97 77,00 19,4 % 60,37

Monthly vol, bilateral 
clearing (TWh) October 330,42 241,50 36,8 % 177,81

Figure 3.1. Key Figures Nord Pool

Enclosure to Nord Pool Press Release 02/2003

3.1.2 Generation of Electricity in the Nordic Countries

The power in the different countries is produced and consumed as follows:4

• Denmark, with a population of 5.34 million people and a consumption of

about 34.61 TWh a year, uses 90% fossil fuel-based generation and 10% wind

power.

• Norway produces nearly 100% of its energy by hydropower. The country has

4.49 million inhabitants and consumes about 113.09 TWh per year.

4See also Energy Indicators per Country.
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• Sweden and Finland both use a mix of hydropower, nuclear power, and fossil

fuel-powered or thermal generation. With a population of 8.86 million people,

Sweden is the most populated of the Nordic countries, and its population

consumes about 138.91 TWh per year. Finland, with a population of 5.18

million people, consumes about 79.12 TWh a year.

All Nordic countries are still generating most of the electricity for their popula-

tions themselves, but the price for the power traded at Nord Pool reflects the price

for the cheapest capacities available in the whole region at each specific hour.

Hydropower generation can be very volatile: the volatility is about 20 TWh a

year, more than half of Denmark’s yearly consumption. And though the Nordic

power market leads to a smoothing of local power prices, there still remains a high

volatility.5 Changing water reservoir levels used for hydropower generation are

also the main reason in the Nordic market for seasonal effects in the price curve.

Low water reservoir levels in the north imply that nearly all traded electricity is

expensively produced in the southern part of the Nordic countries, resulting in high

system prices.

Trade with other European countries, i.e. with Germany, Poland and Russia,

already plays an important role, see, for example, the map of the trade between the

countries on 9 May 2003 in Fig. 3.2. It shows the exchange of electricity for this

one day in MWh. The figure 14452 on the arrow between Finland and Sweden, for

example, means that on 9 May 2003 Finland exported 14452 MWh to Sweden.

3.2 Nord Pool Spot Market

The physical power market is organised via Elspot and Elbas. Elspot is a day-ahead

market; the products traded are contracts for physical delivery on the next day.

In 1993, the Nord Pool Elspot market was established in Norway, but soon it

turned into an exchange for the whole Nordic region.

The trading is organised via an auction system. Bids for purchases and sales of

power contracts of a duration of one hour cover all hours of the following day. The

24 calculated spot prices are based on the balance of all bids and offers.

5For a graph of the system price, which is an average price ignoring capacity restrictions, see Fig. 4.1.
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Figure 3.2. Exchange of Electricity

Example of the exchange of electricity between countries belonging to the Nordic region and their neigh-

bouring countries. Shown is also the exchange between the different areas in the Nordic region. As an

example, the 9 May 2003 was chosen arbitrarily. The figure 14452 on the arrow between Finland and

Sweden, for example, means that on 9 May 2003 Finland exported 14452 MWh to Sweden. Source:Nord

Pool ASA – Market Information

Elspot is also the primary marketplace in the Nordic countries to handle pre-

dictable grid congestions. Congestions occur when the theoretical transmission

capacity on a part of the grid is reached or surpassed. Capacity constraints in the

Norwegian power grid and between the countries are controlled by a price mecha-

nism that can lead to different prices in different areas.

For Sweden and Finland, Elbas is the organised balance adjustment market. The

participants can adjust their power balances for each hour after the trade on Elspot
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is finished. As an hour-ahead market, members can trade contracts on Elbas up

until one hour before the delivery hour. New contracts are opened when the Elspot

prices for the next day have been set at 2 pm. At the same time, the trading for

the Elbas contracts ends for this day.

3.2.1 Elspot Bidding

On Elspot, the traded products are physical-delivery electricity contracts for the

following day. Contract duration is one hour or one block, depending on the type

of bid. Blocks are defined as several consecutive hours with one price.

The participants have to submit their bids for the next 24 hours on a bidding

form like shown in Table 3.1. The minimum size of the contracts is 0.1 MWh/h;

contracts are obligations for physical delivery or take-off for one hour or one block.

Bids consist of price/volume pairs. If a participant wants to purchase electricity,

a positive price has to be submitted; if he wants to sell power, the price bid must

be negative. This way, the same forms for purchase as well as for sale bids can be

used, for example to purchase power at low price levels and to sell power at high

levels. At intermediate price levels, participants normally do not want to buy or

sell, so 0 MWh/h are bid for these prices.

For each of the 24 hours, separate bids can be set. The participants can freely

set their own price steps, and between the price steps, the volumes are linearly

interpolated. See for example the bidding form in Table 3.1: if the area price

between 3 pm and 4 pm (Hour 15) would be determined at NOK 160, then the

volume the participant would sell is 60MWh + 160−150
170−150

(80 − 60)MWh = 70 MWh.

There can be 62 price steps between the price limits determined by Nord Pool.

A second example, one for the easiest bidding form, is in Table 3.2: The par-

ticipant wants to purchase 100 MWh/h for all 24 hours the next day, independent

from the price. If the 24 resulting spot prices were different, the participant would

pay a different price for each hour.

The way market participants bid depends on various factors:

• Production plans, either power generation or production of goods or services

that are very electricity-intensive.

• Demands of consumers that retailing companies are expecting.
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Table 3.1. Part of a bidding form

In bidding forms, for each of the 24 hours of a day, a separate volume can be bid for price ranges freely

chosen. For prices between the chosen price steps, the volumes are linearly interpolated. A positive volume

means that the participant wants to purchase the volume for the specified price, a negative volume means

analogously an offer of electricity for this price. The prices are in NOK, volumes in MWh/h.

Hour/Price 0 119 120 149 150 170 400 10000

1 0 0 -100 -100

...

15 100 100 0 0 -60 -80 -100 -100

16 100 100 0 0 -80 -90 -150 -150

17 90 80 0 0 -50 -70 -150 -150

...

24 0 0 -100 -100

Table 3.2. Simple bidding form

In this bidding form the participant wants to purchase 100 MWh/h from hour 1 to hour 24, for all prices

between NOK 0 and NOK 10000.

Hour/Price 0 10000

1-24 100 100

• Open positions on the OTC or bilateral market with physical delivery, or

other commitments that are influencing the need or availability of power.

The bidding results themselves then influence the further plans of the participants,

for example, the volumes of power that have to be generated the next 24 hours.

3.2.2 Calculation of the System Price

The hourly system price is calculated as the intersection between a sale and a

demand curve for each hour. The curves are determined by aggregating all sell

bids to one curve and all demand bids to the other curve. Looking back at the

individual bidding forms, the volumes purchased or sold are also determined by the

above intersection.

Examples for bid-and-ask curves and the resulting price can be viewed in Figs.

3.3, 3.4 and 3.5. The first two refer to the same day, 11 June 2002, but different

hours. Figure 3.5 shows the curves for 12 am to 1 pm on 6 September 2002.

If, after determination of an hourly system price, no constraints are violated, i.e.

the contractual flow between the bidding areas does not exceed the capacity allowed

27



Elspot purchase / sales curves

Hour 08:00 - 09:00,  11. June 2002, System Price 162.70
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NOK
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Figure 3.3. Example 1 of a bid-ask-curve on 11 June 2002

The system price is determined each hour as the intersection between the purchase and the sales curve.

For 11 June 2002, between 8 am and 9 am, the intersection is at a price of NOK 162.70/MWh at about

13000 MWh. Source: Nord Pool ASA

Elspot purchase / sales curves

Hour 17:00 - 18:00,  11. June 2002, System Price 139.17
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Figure 3.4. Example 2 of a bid-ask-curve on 11 June 2002

The system price is determined each hour as the intersection between the purchase and the sales curve.

For 11 June 2002, between 5 pm and 6 pm, the intersection is at a price of NOK 139.17/MWh at about

13400 MWh. Source: Nord Pool ASA
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Elspot purchase / sales curves

Hour 12:00 - 13:00,  6. September 2002, System Price 182.70
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Figure 3.5. Example of a bid-ask-curve on 6 September 2002

The system price is determined each hour as the intersection between the purchase and the sales curve.

For 6 September 2002, between 12 am and 1 pm, the intersection is at a price of NOK 182.70/MWh at

about 13200 MWh. Source: Nord Pool ASA

during this time, all area prices will equal the system price. In the case of possible

bottlenecks, further calculations resulting in different area prices are made.6

The average of the 24 hourly system prices is also called system price or spot

price. It serves, either directly — or indirectly for options — as the reference price

for all derivatives on the financial market. Therefore, it is of special interest for us

and will be further examined in Sect. 4.1.

3.3 Nord Pool Financial Market

The financial market, divided in Eltermin and Eloption, was established in 1993 by

Nord Pool as a forward market with physical delivery.

Since autumn 1995, all products are due to cash settlement. The trading time

horizon is up to four years. All contract positions can be held until maturity or be

closed any time via a countertrade. The continuously traded products of Nord Pool

compete with the contracts traded on the bilateral or OTC market.

6Different bidding areas that can convert into different price areas are: Norway, with various bidding
areas, Finland, Sweden and Denmark with the bidding areas Denmark East and Denmark West. See also
Fig. 3.2.
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NECH is the obligatory clearing institution for all products traded on Nord

Pool and also clears a substantial proportion of financial contracts in the bilateral

markets, see also Sect. 3.1.1.

3.3.1 Products – Overview

The products traded at Nord Pool are futures, forwards, contracts for difference and

options. The delivery time starts after expiration of the contracts, and the contracts

are settled each delivery day, futures are already settled mark-to-market from the

day on which the contract is purchased. Forward contracts accumulate the price

differences until the delivery period. Then the difference between agreed price and

market price is settled in equal shares each day. Experiences on the OTC market

and in the exchange have shown, that, for large periods, forwards without daily

settlements are preferred, while for short-time contracts mark-to-market settlement

seems to be more attractive. Therefore, the forward contracts now listed at Nord

Pool cover larger delivery periods, seasons and years, while the futures contracts

cover delivery periods of days, weeks and blocks (four or five weeks).7

The prices listed for the different contracts are quoted as price / contract day,

i.e. a week contract with a quoted price of NOK 120, for example, has a contract

value of 7 days x NOK 120 = NOK 840.

The above contracts are based on the system price. But in different areas,

there might exist different area prices. Thus, to enable better risk management

for the participants, Nord Pool offers a forward contract on the difference between

the system price and area prices. This instrument is called Contract for Difference

(CfD).8 CfDs enable the hedging of the price difference between the areas defined

by Nord Pool and the system price.9

The reference price for the options traded at Nord Pool is not the system price,

but are the prices of forward contracts, or the average of the system price for Asian-

style options, respectively. There are options on the seasonal forwards and on the

7The trade of day futures contracts is not very liquid in the time series considered in the empirical
part of this study, so the day futures are ignored.

8If in the following the term forward is used, CfDs shall be excluded.
9As CfDs are not regarded in our empirical studies, they will be ignored in the following.

30



yearly forwards as well as – until 20 April 2002 – Asian-style options on the averages

of the system price that cover the delivery times of futures.10

Every day, Nord Pool calculates closing prices for all listed products. If, for at

least ten consecutive trading days, there are no open positions in a contract series,

Nord Pool can de-list this contract.

3.3.2 Futures

Definition 3.1 Futures

A futures contract is an agreement between two parties to trade a product in the

future for a price fixed in this agreement. The price is not to be paid in advance, but

each day the changes of the market price of the product result in payments, called

mark-to-market settlements.

Nord Pool established financially settled futures in 1995. The first contracts

were listed on 25 September 1995.

The futures listed by Nord Pool are all base load contracts, for one day, one

week, or four to five weeks, called blocks. Also season contracts were listed until 30

December 1999.

Four weeks before delivery time, block contracts are split into week contracts,

and 10 days before delivery time, the week contracts are again split into day con-

tracts. When the delivery time of the contracts of a season starts, new block

contracts for the next season are listed.

Before delivery time, the contracts are daily mark-to-market settled; the differ-

ence of the closing price of a contract from one day to another is credited or debited

on the account of the contract holder.

The splitting of the contracts causes only day futures to remain on the due

dates. When they are due, they are settled with the last closing price against the

reference price, i.e. the system price of Elspot, on the delivery day.

With a futures contract, a market participant can fix the price for electricity

on a specific day. For example, assume a participant wants to buy an amount of 1

MWh/h for 24 hours on date T.11 Assume the futures price for a daily contract for

10An actual product calendar can be viewed in Nord Pool Product Calendar.
11The example can be generalised for a day futures, because all other futures split until expiry into day

futures.
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that day is F (t, T ).12 The participant can now fix the price for his power demand

on day t to F (t, T ) by entering into this contract: The settlement sums add up to

the difference F (t, T )− S(T ) until day T, if interest rates are ignored. So his costs

for purchasing the electricity are

• the price he pays on Elspot: S(T ),

• plus the gain/loss of his activity on the financial market: F (t, T )− S(T ).

This results in an effective price of his power contract of S(T ) + F (t, T )− S(T ) =

F (t, T ).

3.3.3 Forwards

Definition 3.2 Forwards

Forwards at Nord Pool are very similar to futures. The daily mark-to-market

differences are summed up as daily losses or profits, but they are not realised through

the whole trading period. Once a contract is due, it behaves similar to a futures

contract. But, the total differences between the purchasing price of the forward and

the reference prices are credited/debited on the participant’s account on the delivery

days.13

Nord Pool introduced cash settled forward contracts on 27 October 1997. They

are contracts with delivery times of seasons (Winter 1, Summer, Winter 2) and

years. In contrary to the splitting of futures, forward contracts are never split.

Assume again that a participant wants to buy an amount of 1 MWh / h for 24

hours on date T1 until Tn. Assume further the forward price for a daily contract

for that day is F (t, T1, Tn). The participant can again fix the price on day t to

F (t, T1, Tn) by entering into this contract: There is no settlement until date T1.

From then on, the sum due is F (t, T1, Tn) − S(T ) each day until Tn. So the costs

of the participant are

• the price he pays on Elspot each day: S(T1), . . . , S(Tn),

• plus the gain/loss of his activity on the financial market each day:

F (t, T1, Tn)− S(T1), . . . , F (t, T1, Tn)− S(Tn).

12To be consistent in our notations, we should write here F (t, T, T ) instead of F (t, T ).
13With these definitions of Nord Pool Futures and Forwards and the assumption of constant interest

rates, we can treat futures and forwards as synonyms that differ only in expiry days and delivery periods,
see also page 17.
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On day i, the price for the power he purchases is S(Ti) + F (t, T1, Tn) − S(Ti) ≡

F (t, T1, Tn).

If an open position in a forward contract is closed by a counter-trade, the dif-

ference of the price at the time the contract was opened to the price at the time,

when it was closed, has to be paid/is credited each day of the delivery time.

3.3.4 Options

Definition 3.3 Options

An option is the right to buy or sell an underlying contract at a previously

specified price, called strike or exercise price, on a specified date, called expiration

or exercise time.

The trading of options at Nord Pool began on 29 October 1999. Option contracts

were introduced as further instruments for price hedging and risk management.

All options are European-style. The underlyings are the different forward con-

tracts. New option series are listed on the first trading day after the exercise day

of the previous contract series.

Until 20 April 2001, Asian-style option contracts were also traded, but beyond

block 5 from 2001 with delivery time from 23 April 2001 to 20 May 2001, no new

contracts were issued. The underlying of this kind of option is always the average

of a reference price during a specified period; in Nord Pool, this is the arithmetic

average on the system price during the specified delivery time.

Options are listed for the two nearest season contracts and the two nearest year

contracts as the underlying forward contracts. Asian-style options were listed with

delivery periods equivalent to the last already split futures block contract and the

two following futures block contracts. New series are always offered on the first

trading day after the exercise day of the previous contract series. Exercise day is

the third Thursday of the month before the first delivery month of the underlying

forward. For Asian options, exercise day was the first trading day after the last day

of the period that determined the average.

Options are automatically exercised unless the holder of the option decides oth-

erwise. In this case, he is able to exercise it manually.
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The strike or exercise price is set by Nord Pool. When a series is first listed,

Nord Pool sets five different strike prices for each call and put option. One of the

strike prices is equal to the closing price of the previous day of the underlying,

rounded off to always get the same intervals. Two strike prices are set above this

price and two below. The spread between them depends on the absolute value of

the underlying:

Forward price Option spread

price < NOK 100: NOK 2,

NOK 100 < price < NOK 200: NOK 5,

NOK 200 < price: NOK 10.

So the strike prices are for example: NOK 96, NOK 98, NOK 100, NOK 105,

NOK 110, when the forward price is NOK 100; or NOK 195, NOK 200, NOK 210,

NOK 220, NOK 230, when the forward price is NOK 210.

When the underlying is traded below or above the second lowest or highest strike

price, respectively, a new contract below/above the lowest/highest exercise price is

listed the next day.14

14We do not give an example for the risk management possibilities with options here. For electricity
options they are exactly the same as for securities. For example refer to Hull (1989).
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Chapter 4

Descriptive Statistics

For the empirical work we use data supplied by Nord Pool ASA from 1 October

1999 to 30 September 2002. We choose this time interval, because options were

introduced in the Nord Pool Financial Market on 29 October 1999. Furthermore,

a three year time interval seems long enough to capture the characteristics of the

spot price and the futures and forward curves.

We will first take a look at the spot price and the logarithm of the spot price.1

In the second section, we will examine futures and forward prices, and in the last

section, we address the option contracts of Nord Pool.

The prices are all in Norwegian Kronor (NOK) per MWh.

4.1 Spot Price and Log Spot Price

We will begin with the spot price or Elspot system price and the log spot price, see

Figs. 4.1 and 4.2.2 The high volatility of the two processes is quite obvious. We

can detect evidence of seasonal behaviour of the spot price in the figures, but it is

more apparent if we examine Table 4.1, where monthly average spot and log spot

prices are listed. With some exceptions, the prices in winter are normally higher

than the prices in summer, for example in February 2001 with NOK 222.16/MWh,

compared to August 2001 with NOK 172.09/MWh.

1In the following, we will always use the term ‘log spot price’ for the logarithm of the spot price.
2For a description of the Elspot system price, see Sect. 3.2.2. Also compare the key figures in Fig. 3.1.

We examine all spot prices and not only the prices on the days when the financial market was open. This
explains having a sample of 1096 days here, while in our later daily examinations in Chap. 6 we only use
750 different samples or trading days.
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SPOTPRICEFigure 4.1. Spot Price

Spot price from 1 October 1999 to 30 September 2002. The prices are in NOK/MWh.

3

4

5

6

7

10/01/99 2/12/01 6/27/02

LOGSPOTPRICEFigure 4.2. Log Spot Price

Logarithm of the spot price from 1 October 1999 to 30 September 2002.

We can also see on Table 4.1 that the yearly average prices have grown every

year since 2000, from NOK 103.35/MWh in 2000 to NOK 186.51/MWh in 2001 to

finally NOK 201.03/MWh in 2002.3

In the histograms,4 we can see a standard deviation of 47.99 for the prices and

3Also compare with Fig. 3.1. The price of NOK 112.11/MWh for 1999 is the average price for the whole
year, while only the monthly average prices for October to December are listed, since the other months
are not in the time period regarded in this study. Analogously is the average price of NOK 201.03/MWh
in 2002 the average of the whole year 2002. At the end of 2002 the prices reached all-time maxima with
a price in December of NOK 544.34/MWh. This explains the high average price for 2002.

4See Figs. 4.3 and 4.4.
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Table 4.1. Monthly average prices

In this table, the average system prices of Nord Pool are printed. The prices are in NOK/MWh. The

average price of the year 1999 is the average price of the whole year of 1999, though only the monthly

prices of October 1999 until December 1999 are given. The same applies for the average price of 2002.

January February March April May June
1999
2000 131.65 104.46 95.59 104.32 77.99 86.21
2001 168.63 222.16 211.29 214.78 192.72 200.82
2002 194.74 158.34 143.67 132.75 114.98 121.90

July August September October November December Year
1999 134.72 125.84 140.62 112.11
2000 51.95 79.31 113.95 123.58 134.12 137.74 103.35
2001 180.25 172.09 167.20 152.90 169.84 188.97 186.51
2002 116.09 150.72 181.67 201.03
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Series: SPOTPRICE
Sample 10/01/1999 9/30/2002
Observations 1096

Mean     144.2081
Median  138.6246
Maximum  633.3642
Minimum  31.84542
Std. Dev.   47.99383
Skewness   1.440114
Kurtosis   14.03951

Jarque-Bera  5944.271
Probability  0.000000

Figure 4.3. Histogram Spot Price

Histogram of the spot price for the sample from 1 October 1999 to 30 September 2002, including some

basic statistics.

0.35 for the log prices, translating into yearly volatilities of 916.85 and 6.69. The

values for minimum and maximum are also striking. The range of the prices is

between NOK 31.85/MWh and NOK 633.36/MWh.

The mean that is higher than the median in the spot price series suggests high

outliers that have already been seen in Figs. 4.1 and 4.2. Mean and median in the

log spot prices are nearly the same with 4.91 and 4.93.

For random numbers that are i.i.d. normally distributed skewness is 0.00 and

kurtosis is 3.00; in our sample, these values are quite different for the spot prices:

(1.44, 14.03) in contrast to (-0.72, 4.66) for the log spot prices. Examining the
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Series: LOGSPOTPRICE
Sample 10/01/1999 9/30/2002
Observations 1096

Mean     4.914778
Median  4.931769
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Skewness  -0.724448
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Figure 4.4. Histogram Log Spot Price

Histogram of the log spot price for the sample from 1 October 1999 to 30 September 2002, including some

basic statistics.

Jarque–Bera statistics, the hypothesis of a normal distribution can clearly be re-

jected for both series, the statistic of the prices is even a multiple of the statistic of

the log prices.

This result is partly supported by the QQ-Plots, see Figs. 4.1 and 4.2. In Fig.

4.2, the non-normality is not apparent.
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Figure 4.1. QQ-Plot Spot Price

The empirical quantiles of the spot

price are plotted against the quantiles

of a Normal distribution.

Figure 4.2. QQ-Plot Log Spot Price

The empirical quantiles of the log spot

price are plotted against the quantiles

of a Normal distribution.
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If we once again refer to the graphs in Figs. 4.1 and 4.2, the prices seem to

be stationary, and so the results of the Augmented Dickey Fuller (ADF) tests in

Tables 4.2 and 4.3 are not surprising. The hypothesis of a unit root for the spot

price is rejected at the 1% level, for the log spot price at the 5% level. We

Table 4.2. Augmented Dickey Fuller Test for a Unit Root in the Spot Price

The report shows the results that Eviews gives for the spot prices. The hypothesis of a unit root can be

rejected at the 1% level.

Augmented Dickey-Fuller Unit Root Test on SPOTPRICE

ADF Test Statistic -4.215283     1%   Critical Value* -3.4391
    5%   Critical Value -2.8646
    10% Critical Value -2.5684

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SPOTPRICE)
Method: Least Squares
Date: 07/04/03   Time: 17:16
Sample(adjusted): 10/06/1999 9/30/2002
Included observations: 1091 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

SPOTPRICE(-1) -0.068056 0.016145 -4.215283 0.0000
D(SPOTPRICE(-1)) -0.371823 0.032182 -11.55379 0.0000
D(SPOTPRICE(-2)) -0.395578 0.033765 -11.71552 0.0000
D(SPOTPRICE(-3)) -0.087004 0.032943 -2.641031 0.0084
D(SPOTPRICE(-4)) -0.096122 0.030223 -3.180404 0.0015

C 9.941809 2.433328 4.085685 0.0000

R-squared 0.231049    Mean dependent var 0.059432
Adjusted R-squared 0.227506    S.D. dependent var 26.72542
S.E. of regression 23.48942    Akaike info criterion 9.156462
Sum squared resid 598651.9    Schwarz criterion 9.183931
Log likelihood -4988.850    F-statistic 65.20266
Durbin-Watson stat 2.023169    Prob(F-statistic) 0.000000

also performed Phillips–Perron tests. In these, the hypothesis for a unit root was

rejected at the 1% significance level for the spot price as well as for the log spot

price.

4.2 Futures and Forward Prices

Now we will focus on the futures and forward prices.5 From the range of futures

with delivery periods from days to seasons (1/3 of a year) and forwards with delivery

periods from seasons to years, we ignore daily futures because of low trading activity

on them. We also ignore Contracts for Difference (CfDs), because we are not

interested in area prices and the difference between area prices and the system

price. Therefore, during the period we regard, there remain between 19 and 29

5For a theoretical description of the contracts and an explanation of the traded products, see Sects.
3.3.2 and 3.3.3.
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Table 4.3. Augmented Dickey Fuller Test for a Unit Root in the Log Spot Price

The report shows the results that Eviews gives for the log spot prices. The hypothesis of a unit root can

be rejected at the 5% level.

Augmented Dickey-Fuller Unit Root Test on LOGSPOTPRICE

ADF Test Statistic -3.075142     1%   Critical Value* -3.4391
    5%   Critical Value -2.8646
    10% Critical Value -2.5684

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LOGSPOTPRICE)
Method: Least Squares
Date: 07/04/03   Time: 17:17
Sample(adjusted): 10/06/1999 9/30/2002
Included observations: 1091 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

LOGSPOTPRICE(-1) -0.032885 0.010694 -3.075142 0.0022
D(LOGSPOTPRICE(-1) -0.238527 0.030811 -7.741605 0.0000
D(LOGSPOTPRICE(-2) -0.287628 0.031237 -9.208076 0.0000
D(LOGSPOTPRICE(-3) -0.130532 0.030929 -4.220431 0.0000
D(LOGSPOTPRICE(-4) -0.136515 0.030070 -4.539965 0.0000

C 0.162377 0.052673 3.082745 0.0021

R-squared 0.126475    Mean dependent var 0.000378
Adjusted R-squared 0.122449    S.D. dependent var 0.125918
S.E. of regression 0.117957    Akaike info criterion -1.431510
Sum squared resid 15.09652    Schwarz criterion -1.404040
Log likelihood 786.8886    F-statistic 31.41870
Durbin-Watson stat 2.068276    Prob(F-statistic) 0.000000

futures and forwards that were listed and traded on the 750 trading days between

1 October 1999 and 30 September 2002.

To get an idea of the futures and forward prices, three graphs were plotted,

see Figs. 4.6, 4.7 and 4.8.6 In the first graph, the term structure of the futures is

plotted. In the second graph, the term structure of the season forwards, and in the

third graph, we see the term structure of the year forwards. In these graphs, one

axis represents the observation days of all prices, another axis the delivery periods of

the contracts, and the third axis is the price axis in NOK/MWh. I.e., the contracts

are plotted on a particular observation day on the x-axis, with the same price for

the whole delivery period on the y-axis. For example, refer to Fig. 4.8: If you fix

a point on the x-axis called observation date, you can always detect on the y-axis

three different year contracts lasting one year. A year contract has one price for

the whole delivery period that is one year, so we see one price on the z-axis called

Price for one contract on that day. The other graphs can be similarly understood.

For example, we can find a lot of different contracts for each observation day on

Fig. 4.6. The spot price is additionally plotted in all graphs. It can be interpreted

6We do not plot them in one figure because of intersections in the delivery time.
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Figure 4.6. Term Structure Futures

All futures prices are plotted here. One axis represents the observation days, the second the delivery

periods, and on the third axis, the prices are plotted. To draw comparisons, the spot price is added.
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Figure 4.7. Term Structure Season Forwards

All Season Forward prices are plotted here. One axis represents the observation days, the second the

delivery periods, and on the third axis, the prices are plotted. To draw comparisons, the spot price is

added.
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Figure 4.8. Term Structure Year Forwards

All Year Forward prices are plotted here. One axis represents the observation days, the second the delivery

periods, and on the third axis, the prices are plotted. To draw comparisons, the spot price is added.
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as futures for the next day. A further plot shows the whole term structure for the

randomly chosen day 17 February 2000.7
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Figure 4.9. Term Structure Futures and Forwards on 17 February 2000

The figure shows that the different contracts intersect in their delivery times. We can observe the seasonal

behaviour of the futures and season forwards, and the positive trend in the year forwards. Note that the

spot price of NOK 105.77/MWh is below the futures price of NOK 113.75/MWh of the contract that

starts four days later, on 21 February 2000.

As a comparison with the spot price shows, sudden price moves that are not

permanent are not perceived in the futures and forward prices. The insensitivity to

‘noisy’ movements in the spot becomes more obvious the longer the delivery periods

last.

Though a seasonal pattern is not clearly distinctive in the time series of the

spot price or the log spot price, partially because the time interval was quite short,

such a pattern can easily be distinguished in the term structures for the futures and

seasonal forwards curves. The yearly forwards cannot exhibit seasonal patterns,

they show clearly the phenomenon of an expected positive price trend or a risk

premium that is increasing with time to maturity, see Figs. 4.8 and 4.9.

7See Fig. 4.9.
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This is affirmed if we study the summary statistics in Table 4.4. The mean

Table 4.4. Futures and Forwards

The table shows the number of observations, mean, median and standard deviation for all futures and

forwards, split in the different contract types. Season futures were only listed until 30 December 1999, so

the number of observations is very low.

Futures 
Week

Futures 
Block

Futures 
Season All Futures

# obs. 4118 6836 72 11026
mean 148.81 151.74 146.32 150.61
median 149.38 148.82 148.88 149.00
stddev 40.24 36.81 8.06 38.05

Forwards 
Season

Forwards 
Year

All 
Forwards

All Futures 
and 

Forwards
# obs. 5270 2232 7502 18528
mean 156.07 156.41 156.17 152.86
median 152.95 158.75 153.75 151.45
stddev 25.61 17.31 23.45 33.04

value of the contracts is higher for delivery periods that are further in the future

and longer. This characteristic can be illustrated by comparing the means of the

futures with NOK 150.61/MWh with the means of the season forwards with NOK

152.95/MWh and the means of the year forwards with NOK 156.41/MWh, though

the absolute differences are not high.

Obviously, contracts with shorter delivery time, which are furthermore closer to

the observation day, have higher standard deviations. For example, the week futures

have a standard deviation of 40.24, whereas the year forwards have a standard

deviation of 17.31. On one hand this can be explained by the observation that

the short-term contracts with shorter delivery periods adopt, as already mentioned

before, more of the volatility of the spot prices than the long-term contracts with

longer delivery periods (see again Figs. 4.6, 4.7 and 4.8). Contracts with longer

delivery periods are always less volatile than contracts with shorter delivery periods.

On the other hand, this higher volatility is due to the seasonality effects in the short-

term contracts that are not observed in year futures, as also previously discussed.

Season futures, that were only traded until 30 December 1999, have for the same

reason a very low standard deviation of 8.06, because our sample of this contract

only covers two months, i.e. seasonal behaviour is not included in these prices.
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If we compare the spot prices with the contract prices of futures and for-

wards, mean and median for the spot price are NOK 144.21/MWh and NOK

138.62/MWh,8 and for the futures and forwards NOK 152.86/MWh and NOK

151.45/MWh.

The difference of spot and derivative prices is not very high, compared, for

example, with the range of different spot prices from NOK 31.85/MWh to NOK

633.36/MWh in our period of three years, see again Fig. 4.3. This suggests that

either

(i) there might be a small risk premium in the derivative prices, or

(ii) the prices are expected to rise slightly, or

(iii) both effects have an impact on the futures and forward prices, possibly in

opposite directions.

4.3 Option Prices

Now let us investigate the option prices. Unfortunately, there is no real liquid option

market until now at Nord Pool.9 Most contracts are traded very rarely, see Table

4.5, where only prices were counted when trades took place.10 It is obvious,

Table 4.5. Option Contracts: Number of Trades

The numbers refer to trades of option contracts on the exchange. The trading activity is very low.

Asian-style options were only traded from 29 October 1999 to 20 April 2001.

European Asian All
Calls 72 34 106
Puts 71 3 74
All 143 37 180

that, with these few trades, daily implicit estimations in the sense of Bakshi et al.

(1997) are not possible. In addition, it is a question, if such a small sample can be

of any empirical use at all. In any case, all examinations have to be conducted with

caution.11

8See Fig. 4.3.
9For a description of the options traded at Nord Pool see Sect. 3.3.4.

10See Nord Pool Rulebook for The Financial Electricity Market for a description how closing prices are
determined in the case of no trade.

11In Sects. 6.1.4, 6.3.4 and Appendix A.4, the data is used to assess the goodness of our estimations
from futures and forwards, but only as one of various procedures.
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Asian-style options were only traded between 29 October 1999 and 20 April

2001, that is one and a half years, but trade on calls took place only 34 times, and

trade on Asian puts took place only three times during this period. European puts

are more liquid in Nord Pool than their Asian counterparts. Between the end of

October 1999 and the end of September 2002, 72 European calls and 71 European

puts were traded. Since the time period was twice the period that Asian-style

options were traded, we can see that European options are about as liquid as were

the Asian calls. The total of closing prices of options is 180. The average we get in

750 trading days is a trading activity of about one trade every four days.

The option prices are also plotted. Figures 4.10 and 4.11 show all prices for

Figure 4.10. Term Structure European Options

One axis shows the quotient spot price / exercise price, the second axis the contract price. The different

grey shadings correspond to different expiry dates, i.e. the darker the data point, the earlier expiry. Calls

are represented as circles, puts as pluses.

calls and puts. One axis shows the quotient S/K, i.e. the actual spot price divided
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Figure 4.11. Term Structure Asian Options

One axis shows the quotient spot price / exercise price, the second axis the contract price. The different

grey shadings correspond to different expiry dates, i.e. the darker the data point, the earlier expiry. Calls

are represented as circles, puts as pluses. Asian-style puts were only traded three times, calls 34 times,

see also Table 4.5.

by the strike price, and the second axis is the axis of option prices.12 Calls are

plotted as circles, and put options are marked as pluses. Options with the same

dates of expiry have the same grey shading, i.e. the darker ones have earlier expiry

days than the lighter ones. The graphs reveal that, while most European options

are traded at the money or with a coefficient of S/K of over 100%, most Asian

options are traded at the money, i.e. with a coefficient of S/K of about 100%.

12For calls, S/K is also called moneyness, for puts, moneyness is defined as K/S. It may be a matter of
taste and is of no relevance if the quotient S/K for both, calls and puts, or moneyness is used; we decided
to use S/K.
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Chapter 5

Estimated Models

In this chapter, the models are first introduced and then Et[ST ] is calculated with

Corollary 2.2. All models directly describe the assumed process of the log prices

Xt, instead of first proposing models for the price process St and then transforming

to Xt = log(St) or equivalents.

5.1 Model Group 1 – Ornstein–Uhlenbeck Processes

The basic model for this group is an Ornstein–Uhlenbeck process (OU) already

used by Vasicek (1977) to model the term structure of interest rates. It is also

used for log prices in Schwartz (1997) in order to price and hedge copper, oil,

and gold. Furthermore, it is employed as the stochastic process that describes

the movement of log prices of oil in Bühler et al. (2000). Note also, that these

models, noted under their risk-neutral probability measures, do not evolve with

the drift term rt − 1
2
vt, as is necessary for tradable assets. See the discussion

of this topic in Sect. 2.1. For further comments on this see also the next subsection.

Model OU

The stochastic differential equation is

dXt = κ(θ −Xt)dt + σdZt, (5.1)

with Xt = log(St). The vector of parameters that has to be estimated is ~ϑ =

(κ, θ, σ), and Zt is a standard Brownian motion. The state variable Xt moves around

its long-term mean θ, and it has normal disturbances with standard deviations of σ.
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κ measures the strength of the mean reversion, it determines how fast Xt is “pulled

back” in the direction of θ.

For the valuation of electricity futures and forwards we also need the instanta-

neous risk rate r. Conforming with Nord Pool’s Clearing House NECH we chose

this rate to be a constant 6% for all models.1 Bakshi et al. (1997) include stochastic

interest rates in their models, but have to recognise that they only improve their

models for long-term options. While they regard stock options, we assume that

in our models of electricity derivatives, shifts in the interest rates have even less

impact on the prices than for derivatives on tradable assets.

Model OUJ

Our second model is based on the Ornstein–Uhlenbeck process. We get the model

dXt = κ(θ −Xt)dt + σdZt + JdPt, (5.2)

where Pt follows a Poisson distribution with intensity λ, J is the jump size that is

normally distributed with parameters µJ and σJ , and the rest is similar to model

OU. The Brownian motion, the Poisson distribution and the jump size distribution

are all pairwise uncorrelated. The ‘J’ in OUJ is used as abbreviation for ‘Jump’.

~ϑ = (κ, θ, σ, λ, µJ , σJ).

This model was chosen by Das (2002) for interest rates. He estimates the para-

meters from a time series of the Fed Funds rate via Maximum Likelihood and uses

the conditional characteristic function to calculate the moments of his process.

Models OU and OUJ were employed by Lien and Strøm (1999) for pricing

commodities. They priced wheat prices, modelling the prices like the Xt above,

whereas we consider the state variable Xt to be the log prices.

Model OUS

To improve our results, we expand the first two models to be able to map seasonal

features in our data. This model is the Ornstein–Uhlenbeck process OU, but Xt is

1See Nord Pool Rulebook for The Financial Electricity Market (2002, p. 55).
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defined as Xt = log(St−f(t)), i.e. St = f(t)+exp(Xt), where f(t) is a deterministic

function defined as

f(t) = s0 cos

(
2π

365
(t + 365s1)

)
, (5.3)

s0 and s1 being further parameters.2 With f(t), we want to map the seasonal

behaviour of electricity prices. The parameter s0 controls the deterministic amount

that the prices fluctuate over the course of the year (as a factor in front of the

cosine term, that changes continuously from -1 to 1 and back); and s1 determines

the point of the cosine where the deterministic function f(0) starts. The ‘S’ for

‘Season’ in OUS emphasises this new characteristic. The vector of parameters is

~ϑ = (κ, θ, σ, s0, s1).

The first who applied sinusoidal curves to the seasonal regularities of electricity

prices were Lucia and Schwartz (2002), see also Chap. 1. One of their models is

St = f(t) + Xt, (5.4)

with Xt defined as

dXt = −κXtdt + σdZt. (5.5)

Another model specifies the log spot price as log St = f(t) + Xt.

One of their specifications for the deterministic function f(t) is

f(t) = α + βDt + γ cos

(
2π

365
(t + δ)

)
, (5.6)

where Dt is defined as

Dt =

 1; if date t is a holiday or weekend

0; otherwise
(5.7)

2s1 is defined as lying between 0 and 1, mainly because of numerical reasons.
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The models are very similar.3 To be able to continue using the Ornstein–

Uhlenbeck process as in model OU, we chose to omit Lucia and Schwartz’s (2002) α

in (5.6). Furthermore, we do not use the dummy variable Dt, because intraweekly

patterns of the electricity prices are irrelevant for us. There are three reasons for

this:

1. When implicitly estimating from futures and forward prices, we are only es-

timating on trading, i.e. working days.

2. The delivery times of the contracts are either multiple weeks or cover large

periods such as seasons or years. Then it is irrelevant or negligible if the

contracts start or end on weekdays or weekends.

3. Introducing Dt only for holidays does not result in significant estimates.

Model OUJS

Model OUJ is extended like OU. Model OUJS is the same as model OU

with the jump component of OUJ and the seasonal component of OUS. ~ϑ =

(κ, θ, σ, λ, µJ , σJ , s0, s1).

5.2 Model Group 2 – Introducing Stochastic Volatility

With models of this group, stochastic volatility is introduced.4 We rely here on

a model that is similar to the model that is examined by Heston (1993). Some

extensions of this model with stochastic volatility are employed by Duffie et al.

(2000) in a similar form to ours. The authors suggest their models with exponential

distributed jumps in the variance process for S&P-futures. Their aim is to improve

the models used by Bakshi et al. (1997) that include stochastic volatility, jumps in

3Advanced approaches to map seasonality effects are presented for example in Anderson (1971, Chap.
4.3). Our aim in this work was to keep the number of parameters for seasonality low, to be able to
emphasize our study more on stochastic components. Furthermore, the approach taken here seemed quite
promising and was applied in similar form, apart from Lucia and Schwartz (2002), e.g. by Escribano et al.
(2002), see also Chap. 1.
Stochastic seasonality modelled with ARIMA-processes cannot be easily included in this framework, be-
cause they violate in general the Markov property. For more details on ARIMA models, see Box and
Jenkins (1976).

4Following other authors, we often speak of stochastic volatility though the stochastic process defined
is the stochastic process for the variance. Because the volatility is the square root of the variance,
transformations are straightforward, see e.g. in Heston (1993), and we will not address this topic further.
For models with explicit use of volatility see Schöbel and Zhu (1999).
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the spot price and stochastic interest rates. Our extensions of Heston (1993) can

be seen as generalisations of the models of Duffie et al. (2000).

Model H

This model with stochastic volatilities is abbreviated H because Heston (1993) was

the first to find a closed-form solution for the conditional characteristic function for

this kind of model. It is defined as follows:

dXt = (α + βvt)dt +
√

vtdZ
1
t ,

dvt = κ(θ − vt)dt + σ
√

vtdZ
2
t . (5.8)

Z1
t and Z2

t are standard Brownian motions with dZ1
t dZ

2
t = ρdt. The parameters

that have to be estimated are ~ϑ = (α, β,
√

vt, κ, θ, σ, ρ). Note that
√

vt is estimated

like a parameter.5 This means that we are looking for the daily volatility that can

explain the futures and forwards prices best, given the spot price St.

Consider the special case α = r and β = −1
2

that are implied by tradable

assets, see (2.1), and that lead to the models used for example in Bakshi et al.

(1997). Like was shown in Sect. 2.1, (2.1) does not need to hold for electricity,

and, like can easily be seen e.g. in Figs. 4.6, 4.7, and 4.8, apparently does not hold

for electricity. The variation of futures and forwards obviously cannot be explained

by the variation of interest rates. Therefore, we allow in this model group for free

parameters α and β, that are estimated in our minimization algorithm.6

Model HXJ

We extend — like in our first model group — our basic model and add jumps. In

Model HXJ, used in a similar form already by Bakshi et al. (1997), a jump with a

normal distributed jump size is added to the log spot price. XJ in the model name

5See also Bakshi et al. (1997) and Sect. 2.4.
6The first model group, presented in the last section, does not allow for the drift term (r− 1

2
)dt, neither,

but, apart from the seasonality components, we proposed a drift term with mean reversion κ(θ−Xt), see
also Sect. 5.1. Mean reversion is in accordance with other models for commodities and electricity, see e.g.
Bühler et al. (2000), Lucia and Schwartz (2002) and Chap. 1. See also the last footnote in Sect. 2.3.
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is used to express jumps in Xt.

The process is

dXt = (α + βvt)dt +
√

vtdZ
1
t + JdPt,

dvt = κ(θ − vt)dt + σ
√

vtdZ
2
t , (5.9)

where everything from model H applies and the jump component is defined

as in model OUJ, i.e. Pt follows a Poisson distribution with intensity λ and

J ∼ N(µJ , σ2
J). The correlation of the Brownian motions is defined like before

as dZ1
t dZ

2
t = ρdt. The Brownian motions are uncorrelated with the Poisson dis-

tribution and the jump size distribution. The latter two are also uncorrelated.

~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, µJ , σJ).

Model HVJ

In this model, see also Duffie et al. (2000), jumps are not modelled for the log spot

price, but for the variance process:

dXt = (α + βvt)dt +
√

vtdZ
1
t ,

dvt = κ(θ − vt)dt + σ
√

vtdZ
2
t + JdPt,

dZ1
t dZ

2
t = ρdt. (5.10)

In the model name, VJ is used to express jumps in vt. However, the jump size is

not normally distributed but rather exponentially with mean η. The correlations

are similar to the last model. ~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, η).

The domain of the exponential distribution is [0,∞), with mode at zero, and

mean and variance η and η2, respectively. η must of course be positive. An example

for a pdf of an Exponential distribution can be viewed in Fig. 5.1.

This kind of jump is very convenient for our purposes, because the jump sizes

are always positive, so the variance cannot become negative. Furthermore, the

Exponential distribution is analytically very tractable, and only one parameter

which determines mean as well as variance has to be estimated. And, it can easily

be generalised, as we can see in the next model.
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Figure 5.1. Example of an Exponential distribution

pdf of an Exponential distribution, η = 0.02.

Model HVJG

This model is the same as model HVJ, but we define here a jump size in the variance

process that is distributed ∼ Γ( 1
η
, γ). G for Gamma in the model name illustrates

this. ~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, η, γ).

The domain of the Gamma distribution is like that of the exponential distrib-

ution [0,∞), with η, γ > 0. Mean and variance are ηγ and η2γ, but the mode for

γ > 1 is not simply zero like in the exponential distribution but rather η(γ − 1).7

For examples of Gamma distributions, see the pdfs in Figs. 5.2 and 5.3.

0.005 0.01 0.015 0.02

50

100

150

200

gammaexpplot3.nb 1

Figure 5.2. Example 1 of a Gamma distribution

pdf of a Gamma distribution, (η, γ) = (0.02, 0.80).

7For the characteristics of the Gamma distribution see, for example, Resa Corporation and Licensors
(2000–2003).
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Figure 5.3. Example 2 of a Gamma distribution

pdf of a Gamma distribution, (η, γ) = (0.02, 2.6).

The following connection between the exponential and the Gamma distribution

can be pointed out:

If

Yi i.i.d. ∼ Exp(
1

η
), i = 1 . . . r, (5.11)

then
r∑

i=1

Yi ∼ Γ(
1

η
, r). (5.12)

This connection is of course only valid for r ∈ N, but γ in Γ( 1
η
, γ) is defined for

all γ ∈ R+. Thus, the Gamma distribution is not only more flexible than the

Exponential, but a Gamma distributed jump J can also be seen as the sum of

simultaneously occurring Exponential distributed jumps, or one jump with Gamma

distribution. If the model were overspecified with this extension, we would expect

estimates for γ that are close to 1.

Model HXVJ

In this model, that is again similar to one model in Duffie et al. (2000), we assume

that jumps in the log spot price and the variance process occur simultaneously.

dXt = (α + βvt)dt +
√

vtdZ
1
t + JXdPt,

dvt = κ(θ − vt)dt + σ
√

vtdZ
2
t + JvdPt

dZ1
t dZ

2
t = ρdt. (5.13)
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The jump size in the variance process is exponentially distributed with mean η.

Given a jump in vt of zv, the jump size in Xt is normally distributed with mean

µJ + ρJzv and variance σ2
J . The Poisson-distributed jump intensity and jump sizes

are uncorrelated with the Brownian motions. Jump intensity and sizes are also

uncorrelated. ~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, µJ , σJ , η, ρJ).

Note that the instantaneous correlation coefficient of jump sizes in Xt and in vt

is not ρJ , but can be calculated as8

ρJη√
σ2

J + ρ2
Jη2

. (5.14)

Model HXVJG

This model is the same as model HXVJ, but we define here again the jumps in

vt to be distributed ∼ Γ( 1
η
, γ). The vector of parameters for this model is ~ϑ =

(α, β,
√

vt, κ, θ, σ, ρ, λ, µJ , σJ , η, γ, ρJ).

The correlation coefficient of the jump sizes of simultaneous jumps in Xt and in

vt is
ρJη

√
γ√

σ2
J + ρ2

Jη2γ
. (5.15)

5.3 Model Group 3 – Stochastic Volatility and Season

In model group 3 we extend model group 2 with an additional deterministic function

to capture the seasonality of electricity prices. St = f(t) + exp(Xt), and

f(t) = s0 cos

(
2π

365
(t + 365s1)

)
, (5.16)

like first mentioned in model OUS, see p. 50. To characterize the models, they are

described with the parameter vector ~ϑ:

Model HS

~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, s0, s1).

Model HXJS

~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, µJ , σJ , s0, s1).

8See Duffie et al. (2000, p. 25).
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Model HVJS

~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, η, s0, s1).

Model HVJGS

~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, η, γ, s0, s1).

Model HXVJS

~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, µJ , σJ , η, ρJ , s0, s1).

Model HXVJGS

~ϑ = (α, β,
√

vt, κ, θ, σ, ρ, λ, µJ , σJ , η, γ, ρJ , s0, s1).

5.4 Solutions for Et[ST ]

In the next two subsections, Et[ST ] is solved for all models. We need it for the

calculation of the futures and forward prices, see (2.27).

5.4.1 Solutions for Models OU and OUJ

We restrict ourselves to the solution for model OUJ; for model OU, the solution is

then obtained by setting λ = µJ = σJ = 0.

The solution can also be derived from Das (2002) who employs a similar model

to (OUJ) for interest rates. Though he does not need the characteristic function

for his time series estimations, Φ(u, τ, ~ϑ, Xt) is used to derive the moments of the

distribution of Xt, see also Sect. 2.2.2.

In order to find a closed-form solution of the general conditional characteristic

function Φ(u, τ, ~ϑ, Xt), as defined in (2.24), we apply Corollary 2.2 for model OUJ

to obtain

DΦ = κ(θ −Xt)
∂Φ

∂Xt

+
1

2
σ2 ∂2Φ

∂X2
t

+λ

∫
R
(Φ(u, τ, ~ϑ, Xt + J)− Φ(u, τ, ~ϑ, Xt))dν(J)

−∂Φ

∂τ
!
= 0, (5.17)

and boundary condition Φ(u, 0, ~ϑ, Xt) = exp(uXt).
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Assuming that Φ(u, τ, ~ϑ, Xt) has the form Φ(u, τ, ~ϑ, Xt) = exp(A(u, τ, ~ϑ)Xt +

B(u, τ, ~ϑ)), and because the size of a jump J at time T is independent from {Xs, 0 ≤

s < T}, the following ordinary differential equations (ODE) have to be solved:

κθA(u, τ, ~ϑ) +
1

2
σ2A2(u, τ, ~ϑ)+

λ

∫
R
(exp(A(u, τ, ~ϑ)J)− 1)dν(J)− ∂B(u, τ, ~ϑ)

∂τ
!
= 0, (5.18)

−κA(u, τ, ~ϑ)− ∂A(u, τ, ~ϑ)

∂τ
!
= 0, (5.19)

with boundary conditions A(u, 0, ~ϑ)
!
= u and B(u, 0, ~ϑ)

!
= 0.

Being

E[exp(cJ)] = exp(µJc +
1

2
σ2

Jc2) (5.20)

for all c ∈ C and J ∼ N(µJ , σ2
J), and the solution of A(u, τ, ~ϑ) being

A(u, τ, ~ϑ) = ue−κτ , (5.21)

∫
R(exp(A(u, τ, ~ϑ)J)− 1)dν(J) can be simplified to

∫
R
(exp(ue−κτJ)− 1)dν(J) = exp(µJue−κτ +

1

2
σ2

Ju2e−2κτ )− 1, (5.22)

and the solution for B(u, τ, ~ϑ) is:

B(u, τ, ~ϑ) = uθ(1− e−κτ ) +
σ2u2

4κ
(1− e−2κτ )

−λτ + λ

∫ τ

0

exp(µJue−κt +
1

2
σ2

Ju2e−2κt)dt. (5.23)

The last integral must be solved numerically for u = 1. Then, as already shown in

Chap. 2, Et[ST ] = Φ(1, T − t, ~ϑ, Xt).

The following remarks are in order:

• For all models of this model group, Φ(u, τ, ~ϑ, Xt) is bounded and well-defined

for all finite parameters and κ > 0, so Et[ST ] is always finite and ∈ R.
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• Note that already for the basic model, Et[ST ] = exp(e−κτXt + (1 − e−κτ )θ +

σ2

4κ
(1− e−2κτ )), and therefore Et[ST ] is not independent from σ.

• log(Et[ST ]) will not necessarily lie between Xt and θ: 0 < e−κτ < 1 for

κ, τ > 0, and αXt + (1− α)θ is for 0 ≤ α ≤ 1 the line between Xt and θ. So

log(Et[ST ]) might be bigger than Xt and θ because and only because of the

term σ2

4κ
(1− e−2κτ ) > 0.

5.4.2 Solutions for Models HXJ, HVJ, HVJG, HXVJ and HXVJG

Without specifying any type of jumps and with ~Yt = (Xt, vt)
′, Corollary 2.2 for

Φ(u, τ, ~ϑ, ~Yt) leads to

DΦ = (α + βvt)
∂Φ

∂Xt

+ κ(θ − vt)
∂Φ

∂vt

+
1

2
vt

∂2Φ

∂X2
t

+
1

2
σ2vt

∂2Φ

∂v2
t

+ ρσvt
∂2Φ

∂Xt∂vt

+λ

∫
R2

(Φ(u, τ, ~ϑ, ~Yt + ~J)− Φ(u, τ, ~ϑ, ~Yt))dν( ~J)− ∂Φ

∂τ
!
= 0. (5.24)

Assuming that the solution for Φ(u, τ, ~ϑ, ~Yt) is

Φ(u, τ, ~ϑ, ~Yt) = exp(uXt + A(u, τ, ~ϑ)vt + B(u, τ, ~ϑ)), (5.25)

we can write (5.24) as

DΦ = (α + βvt)uΦ + κ(θ − vt)A(u, τ, ~ϑ)Φ +
1

2
vtu

2Φ

+
1

2
σ2vtA

2(u, τ, ~ϑ)Φ + ρσvtuA(u, τ, ~ϑ)Φ

+λ

∫
R2

(Φ(u, τ, ~ϑ, ~Yt + ~J)− Φ(u, τ, ~ϑ, ~Yt))dν( ~J)

−∂A(u, τ, ~ϑ)

∂τ
vtΦ−

∂B(u, τ, ~ϑ)

∂τ
Φ

!
= 0. (5.26)

The size of a jump ~J at time T is independent from {Ys, 0 ≤ s < T}, therefore we

can simplify
∫

R2(Φ(u, τ, ~ϑ, ~Yt+ ~J)−Φ(u, τ, ~ϑ, ~Yt))dν( ~J) to Φ(u, τ, ~ϑ, ~Yt)
∫

R2(exp(uJx+
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A(u, τ, ~ϑ)Jv)− 1)dν(Jx, Jv), where (Jx, Jv) are the jump sizes in the log spot price

and the variance process, respectively.

The following ODEs remain:

1

2
σ2A2(u, τ, ~ϑ) + (ρσu− κ)A(u, τ, ~ϑ)

+
1

2
u2 + βu− ∂A(u, τ, ~ϑ)

∂τ
!
= 0, (5.27)

κθA(u, τ, ~ϑ) + αu

+λ

∫
R2

(exp(uJx + A(u, τ, ~ϑ)Jv)− 1)dν(Jx, Jv)− λ

−∂B(u, τ, ~ϑ)

∂τ
!
= 0, (5.28)

with boundary conditions A(u, 0, ~ϑ)
!
= 0 and B(u, 0, ~ϑ)

!
= 0.

Ignoring
∫

R2(exp(uJx + A(u, τ, ~ϑ)Jv) − 1)dν(Jx, Jv) at first, we can apply the

solution of Heston (1993) to the rest, leading to

A(u, τ, ~ϑ) =
−h + d

σ2

(
1− edτ

1− gedτ

)
,

B(u, τ, ~ϑ) = αuτ +
κθ

σ2

(
(−h + d)τ − 2 log

(
1− gedτ

1− g

))
−λτ + λ

∫ τ

0

(∫
R2

(exp(uJx + A(u, τ, ~ϑ)Jv))dν(Jx, Jv)

)
ds,

g =
−h + d

−h− d
,

d =
√

h2 − σ2(2β + u2),

h = ρσu− κ. (5.29)

Consider the case β = −1
2

and λ = 0. Φ(1, τ, ~ϑ, Xt) reduces then to

Φ(1, τ, ~ϑ, Xt) = exp(Xt + ατ). (5.30)
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Indeed, this would imply that the futures prices only depend on α, valid for tradable

assets with α ≡ r, see (2.1). So, in our empirical studies, we test for β = −1
2
,

but unfortunately, caused by high standard errors, the results are not very clear.

Nevertheless, the estimations for β are not close to −1
2
, see Sect. 6.3.

The rest of the solution depends on the type of jump. For each model

with jump, we first calculate
∫

R2(exp(uJx + A(u, τ, ~ϑ)Jv) − 1)dν(Jx, Jv) and then∫ τ

0

(∫
R2(exp(uJx + A(u, t, ~ϑ)Jv)− 1)dν(Jx, Jv)

)
dt.

The solution of Et[ST ] is Φ(1, T − t, ~ϑ, Xt).

For models HXJ, HVJ and HXVJ compare also to Duffie et al. (2000).

Model HXJ

For this model Jx ∼ N(µJ , σ2
J) and Jv ≡ 0.

∫
R
(exp(uJx))dν(Jx) = exp(µJu +

1

2
σ2

Ju2), (5.31)

and ∫ τ

0

(∫
R
(exp(Jx))dν(Jx)

)
dt = (exp(µJ +

1

2
σ2

J))τ. (5.32)

Model HVJ

Here, Jx ≡ 0, and Jv ∼ Exp( 1
η
), equivalently to Duffie et al. (2000).

∫
R+

(exp(A(u, τ, ~ϑ)Jv))dν(Jv) =
1

1− ηA(u, τ, ~ϑ)
, (5.33)

and

∫ τ

0

(∫
R+

(exp(A(u, t, ~ϑ)Jv))dν(Jv)

)
dt =

σ2 (d (−ηk + gσ2) τ − (1− g)kη log(m))

d (ηk − σ2) (ηk − gσ2)
,

(5.34)

where

m =
(1− g)σ2

−ηk + σ2 + edτ (ηk − gσ2)
,

k = d− h. (5.35)
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Model HVJG

Similar to model HVJ, Jx ≡ 0, but Jv ∼ Γ( 1
η
, γ).

∫
R+

(exp(A(u, τ, ~ϑ)Jv))dν(Jv) = (1− ηA(u, τ, ~ϑ))−γ, (5.36)

∫ τ

0

(
(1− ηA(u, t, ~ϑ))−γ

)
dt must be solved numerically.

Model HXVJ

In this model, the jumps occur simultaneously, but the jump sizes are Jv ∼ Exp( 1
η
),

and Jx|Jv=zv ∼ N(µJ + ρJzv, σ
2
J), i.e. the distribution of the jump size in x, given

a realisation of zv of the jump in the variance process, is N(µJ + ρJzv, σ
2
J). This is

again analogous to a model in Duffie et al. (2000).

∫
R×R+

exp(uJx + A(u, τ, ~ϑ)Jv)dν(Jx, Jv)

=

∫
R+

(∫
R

exp
(
uJx + A(u, τ, ~ϑ)zv

)
dνJx|Jv=zv

)
dνJv

=

∫
R+

exp

(
(µJ + ρJzv)u +

1

2
σ2

Ju2

)
exp

(
A(u, τ, ~ϑ)zv

)
dνJv

=

∫
R+

exp

(
µJu +

1

2
σ2

Ju2

)
exp

(
uρJzv + A(u, τ, ~ϑ)zv

)
dνJv

= exp

(
µJu +

1

2
σ2

Ju2

) ∫
R+

exp
(
(uρJ + A(u, τ, ~ϑ))zv

)
dνJv

=
exp

(
µJu + 1

2
σ2

Ju2
)

1− η(uρJ + A(u, τ, ~ϑ))

=
exp

(
µJu + 1

2
σ2

Ju2
)

1− ηρJu− ηA(u, τ, ~ϑ)
. (5.37)

ν(Jx, Jv) is the common density of Jx and Jv, νJx|Jv=zv is the conditional density of

Jx, and νJv is the density of Jv.

The integral of this conditional expectation for u = 1 is

∫ τ

0

(∫
R×R+

(exp(uJx + A(u, t, ~ϑ)Jv))dν(Jx, Jv)

)
|u=1

dt = exp(µJ +
1

2
σ2

J)β(1− ηρJ),

(5.38)
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where

β(c) =
σ2 (d (−ηk + gcσ2) τ − (1− g)kη log(m(c)))

d(ηk − cσ2)(ηk − gcσ2)
,

m(c) =
(1− g)cσ2

−ηk + cσ2 + edτ (ηk − gcσ2)
,

k = d− h. (5.39)

As it can easily be seen,
∫ τ

0
Et−[exp(A(1, t, ~ϑ)Jv)]dt in (5.34) is the same as β(1).

Model HXVJG

The jump size Jv in the variance process of this model is a Gamma instead of an

Exponential, i.e. Jv ∼ Γ( 1
η
, γ). Jx is as before, i.e. Jx|Jv=zv ∼ N(µJ + ρJzv, σ

2
J) for

a given variance jump realisation zv.∫
R×R+

(exp(uJx + A(u, τ, ~ϑ)Jv))dν(Jx, Jv)

=

∫
R+

(∫
R
((exp(uJx + A(u, τ, ~ϑ)zv))dνJx|Jv=zv

)
dνJv

= (exp(µJu +
1

2
σ2

Ju2))(1− ηA(u, τ, ~ϑ))−γ. (5.40)

∫ τ

0

(
(exp(µJu + 1

2
σ2

Ju2))(1− ηA(u, t, ~ϑ))−γ
)

dt must be solved numerically.

Positivity of vt and real-valued Solutions

If 2κθ ≥ σ2, the variance vt is assured to stay positive.9 This should not only be

valid for model H and for the models with jumps in Xt, but also for the models

HVJ, HVJG, HXVJ and HXVJG, because we modelled only variance jumps with

positive sizes.

However, problems can arise for all models, if h2−σ2(2β +1) < 0, or 1−gedτ

1−g
< 0

for some or all τ .

9See Feller (1951).
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Example 5.1 Assume that α = 10, β = 10, κ = 1, θ = 10, σ = 1, ρ = 0.

Then, for u = 1, h = ρσ − κ = −1, d =
√

h2 − σ2(2β + 1) =
√
−20 = 4.4721i,

g =
−h + d

−h− d

=
1 + 4.4721i

1− 4.4721i

= −0.9048 + 0.4259i. (5.41)

For τ = 1,

A(1, 1, ~ϑ) =
1 + 4.4721i

1

(
1.2379 + 0.9713i

0.3710− 0.7774i

)
= −8.3706, (5.42)

and, for Model H,

B(1, 1, ~ϑ) = 10 +
10

1
(1 + 4.4721i− 2 log(0.9896− 0.5122i))

= 36.3583 + 62.8319i (5.43)

Φ(1, τ, ~ϑ, Xt) is then

Φ(1, τ, ~ϑ, Xt) = exp(Xt + A(1, 1, ~ϑ)vt + B(1, 1, ~ϑ))

= exp(Xt − 8.3706vt + 36.3583 + 62.8318i). (5.44)

For the models with jumps, we have more restrictions. But, as our optimisation

algorithm only considers parameters where real and finite solutions are assured for

Et[ST ], these conditions are automatically fulfilled.

5.5 Solutions for the Models with Season

If, for a model without seasonal component, Et[ST ] is known, the solution for the

respective model with a seasonal component is straightforward: Et[S
with Season
T ] =

Et[S
without Season
T ] + f(T ). Xt has to be calculated as log(St − f(t)), as already men-

tioned in the specification of model OUS.
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The problem of real and finite solutions of the models with season is the same

as of the respective models without the deterministic function f(t), and it is also

assured by the optimisation algorithm.
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Chapter 6

Empirical Results

In our empirical investigations we first examine model group 1, the four models

without stochastic volatility (models OU, OUJ, OUS and OUJS). The results of

model group 2, the models with stochastic volatility without seasonal modelling

(models H, HXJ, HVJ, HVJG, HXVJ and HXVJG) are only briefly discussed and

the results are plotted in Appendix A. In the third section, we present the results of

model group 3, the models with stochastic volatility and seasonal modelling (models

HS, HXJS, HVJS, HVJGS, HXVJS and HXVJGS).1 The chapter ends with a short

discussion of all models.

6.1 Model Group 1 (Models OU, OUJ, OUS and OUJS)

In this section, we will first compare the RMSEs2 and the summary statistics for

each parameter in each model. Then we will take a look at the regression statistics,

and finally conduct further examinations.

6.1.1 Summary Statistics

For an overview of our results, summary statistics of the four models OU, OUJ,

OUS and OUJS are shown in Table 6.1. For each model, for the RMSE and each

parameter occurring therein, mean, median and standard deviation are given.

If we examine the RMSEs in Table 6.1, we see that introducing seasonality

greatly improves the models. The RMSEs of models OUS and OUJS are less

1The models are presented in detail in Chap. 5.
2The RMSE is the root of the mean of all squared errors for a day. The squared errors for each day are

the function that was minimised in our algorithm, see (2.28). So the RMSE shows how well the models
fit the data.
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Table 6.1. Summary Statistics models OU, OUJ, OUS and OUJS

For each trading day between 01 October 1999 and 30 September 2002, all parameters for the relevant

models were independently estimated. Futures and forward contracts lead to implicit estimates minimising

the RMSE (root mean squared error) for all contracts. In this summary statistics table, mean, median

and standard deviation of each parameter as well as of the RMSE are reported. The models OU, OUJ,

OUS and OUJS refer to an Ornstein–Uhlenbeck process, an Ornstein–Uhlenbeck process with jump, with

season and with season and jump.

κ θ σ λ µJ σJ s0 s1 RMSE
Model OU
Mean 106,76 4,42 3,85 14,11
Median 6,10 4,62 2,32 13,74
Std. Dev. 397,15 1,07 7,61 3,05

Model OUJ
Mean 42,32 4,15 3,15 13,56 0,18 0,18 14,03
Median 5,65 4,39 2,29 4,36 0,12 0,12 13,85
Std. Dev. 149,58 1,07 4,51 56,29 0,36 0,19 2,98

 
Model OUS
Mean 135,54 4,80 4,29 26,57 0,64 5,31
Median 2,43 4,85 1,21 26,22 0,64 4,98
Std. Dev. 432,83 2,67 9,71 4,33 0,03 2,02

Model OUJS
Mean 145,74 4,33 2,52 27,36 0,07 0,26 25,47 0,64 5,71
Median 3,10 4,68 1,27 4,16 0,12 0,15 25,57 0,64 5,45
Std. Dev. 1501,16 1,02 5,47 113,33 0,35 0,47 5,20 0,03 2,07

than a half of the counterpart models OU and OUJ, while adding normal-distributed

jumps do not improve models OU and OUS. Since models OU and OUS are em-

bedded in models OUJ and OUJS for the limits λ → 0 or µJ → 0 and σJ → 0, the

RMSEs of the latter should be at least as good as those of OU and OUS. The poor

values can be explained by the need for calculations of numerical integrals that are

used in model OUJ as well as in model OUJS, see Sect. 5.4.1. The numerical prob-

lems are also evident if we look at the histograms in Fig. 6.1, at least for OUJS:

while this model often has lower RMSEs, there are also a lot of outliers at very high

values.

The differences between the models with and without season are also obvious

in the histograms: the models without seasonal modelling are not able to explain

observed prices up to a level that models OUS and OUJS easily can, i.e. in the

models with season, the values of the RMSEs are more focused around 4.5 to 5.0,

while in the models without seasonal modelling, most estimates seem to be around

14.

If we compare means and medians of the RMSEs in Table 6.1, they do not differ

much for either model, and also the standard deviations are in an acceptable range.
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Figure 6.1. Histograms RMSEs

The RMSEs for all estimations are plotted in a histogram for each model. The models OU, OUJ, OUS and

OUJS refer to an Ornstein–Uhlenbeck process, an Ornstein–Uhlenbeck process with jump, with season

and with season and jump.

The standard deviations diminish if we change from model OU over OUJ to OUS.

The slightly worse standard deviation for OUJS of 2.07 in comparison to 2.02 of

model OUJS is again due to the numerical problems stated before. We already

see here that modelling seasonal behaviour is very important. Jumps also could

improve the models if numerical problems could be overcome.

If we examine the parameters in Table 6.1, we see that mean and median greatly

differ for κ, λ, and, to a lesser extent, σ, µJ and σJ . The estimations do not seem

to be robust. Comparing the standard deviations supports these findings.

One of the parameters that seems to be relative stable is θ, whose means and

medians lie between 4.15 and 4.85 for all models. θ is the parameter of the long-

term mean of the time series, i.e. the log spot price. The mean and median of

the log spot price are 4.91 and 4.93, refer to Fig. 4.4. Thus, θ lies within a range

that seems reasonable. The difference can emerge from the different time horizons

of historical and implicit data, but also from risk premia. For histograms of the
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estimations of θ, see Fig. 6.2. The most robust values of θ seems to have model

OUS.
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Figure 6.2. Histograms θ

The parameter values of θ for all estimations are plotted in a histogram for each model. The models OU,

OUJ, OUS and OUJS refer to an Ornstein–Uhlenbeck process, an Ornstein–Uhlenbeck process with jump,

with season and with season and jump.

The parameter κ shows the velocity of the data to return to the long-term mean

θ. The means of κ seem quite high, but the medians that are between 2.43 for

model OUS and 6.10 for model OU are in a more encouraging range. Histograms

of the estimates can be viewed in Fig. 6.3. The histograms show that κ in models

OUS and OUJS is more biased against zero than in OU and OUJ.

The values for σ, the standard deviation of the process, are most of the times

below the standard deviation of the log spot price of 6.69 (compare to the annualized

standard deviation on p. 38). But they are quite similar for all models, higher

for OU and OUJ than for OUS and OUJS, at least in the medians. See Fig.

6.4 for histograms of the estimates. The histograms show that in OU and OUJ

the estimates are more dispersed than in the models OUS and OUJS. But some

estimates are near 6 and 7 for all models.
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Figure 6.3. Histograms κ

The parameter values of κ for all estimations are plotted in a histogram for each model. The models OU,

OUJ, OUS and OUJS refer to an Ornstein–Uhlenbeck process, an Ornstein–Uhlenbeck process with jump,

with season and with season and jump.
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Figure 6.4. Histograms σ

The parameter values of σ for all estimations are plotted in a histogram for each model. The models

OU, OUJ, OUS and OUJS refer to an Ornstein–Uhlenbeck process, an Ornstein–Uhlenbeck process with

jump, with season and with season and jump.
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λ can be interpreted as the expected number of jumps per year, and more than

four jumps (≈ the medians of models OUJ and OUJS), but less than 27 (≈ the

mean of model OUJS) seem realistic. The histograms of λ in Fig. 6.5 show that
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Figure 6.5. Histograms λJ , µJand σJ

The parameter values of λJ , µJ and σJ for all estimations are plotted in a histogram for each parameter

and for each model containing a jump. The models OUJ and OUJS refer to an Ornstein–Uhlenbeck

process with jump and to an Ornstein Uhlenbeck process with season and jump.

most estimates are very close to zero, with a second mode around 3.0 in model

OUJ.

The mean jump size µJ of model OUJ of 0.18 in the mean is much higher than

the mean of µJ in model OUJS with 0.07, but the medians in both models are

the same with 0.12. Also the standard deviations of µJ are nearly the same. For

OUJS, the mean of the σJ , that is the standard deviation of the jump size, of 0.26

is above that of OUJ with 0.18,3 but the medians again do not differ very much.

The estimations of σJ in model OUJS with a standard deviation of 0.47 are more

volatile than in model OUJ with a standard deviation for σJ of 0.19.

The histograms for µJ and σJ in Fig. 6.5 support the findings that the estimations

for OUJ and OUJS are quite similar.

The seasonality parameters s0 and s1 are quite similar in the two models. In

model OUS, s0 is 26.57 and 26.22, and this is both in mean and median slightly

higher than in model OUJS with 25.47 and 25.57. If we plot the spot price, and the

3The rounded means and medians for µJ and σJ are really the same, this is no typing error!
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spot price at t0 = 10/01/99 plus the deterministic functions, calculated from the

mean of s0 and s1 of the two models, like in Fig. 6.6, the deterministic functions of

models OUS and OUJS cannot be distinguished on the graph.
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Figure 6.6. Spot Price and Season Estimates

The spot price is plotted together with the deterministic function f(t) (+S0 − f(0)). f(t) maps the

seasonality of the spot price and is defined as f(t) = s0 cos((2π/365)(t + 365s1). S0 is the spot price on

1 October 1999. For the calculation of the deterministic function, the means of s0 and s1 are used. The

resulting curves for the two models OUS and OUJS are not distinguishable on the graph. OUS and OUJS

refer to an Ornstein–Uhlenbeck process with season and to an Ornstein Uhlenbeck process with season

and jump.

For model OUS the value of about 26.6 of s0 in Table 6.1 means, that +/- NOK

26.6 of the variation of the spot price is deterministic, i.e. predictable. The same

applies for model OUJS with +/- NOK 25.5. The parameter value of s1 indicates

on which point in the cosine function we started and so is dependent on t0, the 1

October 1999. Its value can be interpreted, that the models estimate, that the 10

January is the coldest day in the year, or at least the one with the highest electricity
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consumption.4 This seems to be a realistic estimation. The histograms in Fig. 6.7

show that the estimates for both parameters and models are robust.
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Figure 6.7. Histograms s0 and s1

The parameter values of s0 and s1 for all estimations are plotted in a histogram for each parameter and

for each model with seasonal components. The models OUS and OUJS refer to an Ornstein–Uhlenbeck

process with season and to an Ornstein Uhlenbeck process with season and jump.

4The calculation is as follows: cos((2π/365)((t0 + 29) + 365s1) = 1, or (with s1 = 0.64) t0 = 102,
computed with the Matlab date (mod 365) 29 for 1 October 1999. 1 October +102 days corresponds to
10 January.
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6.1.2 Regression Statistics

Our implicit estimations of parameters can be interpreted as nonlinear regressions

in the following way:

In a linear regression, the equation is ~Y = ~A~β + ~ε, where ~Y ∈ RN is the dependent

variable, ~A ∈ RM×N is the matrix of independent variables, ~β ∈ RM the coefficient

vector and ~ε the vector of residuals. The equation is solved by finding the minimal

~ε as min~β(~Y − ~A~β)2. In a nonlinear regression, ~A~β is replaced by f(~β), with

f : RM → RN .

If we now set ~Y to the vector of observed futures prices on day t, the parameter

vector ~ϑ = ~β and f to the vector of theoretic futures prices, i.e. our equation is

now, with the notations of Sect. 2.4,5
F̂ (t, T 1

1 , T 1
n)

F̂ (t, T 2
1 , T 2

n)

· · ·

F̂ (t, TN
1 , TN

n )

 =


F (t, T 1

1 , T 1
n ; Xt, ~ϑ))

F (t, T 2
1 , T 2

n ; Xt, ~ϑ))

· · ·

F (t, TN
1 , TN

n ; Xt, ~ϑ))

 +


ε1

ε2

· · ·

εN

 .

It is solved as

min
~ϑ

N∑
j=1

(
F̂ (t, T j

1 , T j
n)− F (t, T j

1 , T j
n; Xt, ~ϑ)

)2

.

The last equation is equivalent to N× MSE, the value we already minimized in

our implicit estimations, see (2.28). So we can understand the implicit estimations

as nonlinear regressions. The error terms εj, j = 1, . . . , N are calculated as

εj = F̂ (t, T j
1 , T j

n) − F (t, T j
1 , T j

n; Xt, ~ϑopt), where F (t, T j
1 , T j

n; Xt, ~ϑopt) are the

theoretic futures values with optimal parameter values.

We can run now the analysis done for linear regressions for our nonlinear regres-

sions. As documented for example in Eviews 3.1 Help (1999, Sect. Least Squares

(Weighted, Two-Stage, Nonlinear)), the so-determined statistical results and tests

are asymptotically valid.6

5In contrast to (2.28), we denote F (t, T 2
1 , T 2

n) as F (t, T j
1 , T j

n; Xt, ~ϑ) to stress the dependency of the

model prices of the independent variable Xt and the parameter vector ~ϑ.
6See also there for a detailed description on linear and non-linear least squares (LS or NLS, respective).

75



In the following of this subsection we will first regard the statistics of the

parameters and the F-statistic for each model. Then we will compare the additional

statistics like the R2 for all models.

Let us take a look at Tables 6.2, 6.3, 6.4 and 6.5.7 For our analysis, we chose

the median values of the regression statistics, because the mean values seemed

very biased for some parameters, caused by many high outliers. Nevertheless, the

conclusions drawn in this section would be nearly the same for the means.8 The p-

values refer to two-sided t-tests, i.e. = 0 vs. 6= 0 for parameters that are allowed to

become negative, and one-sided t-tests, i.e. ≤ 0 vs. > 0, for parameters that are by

definition positive.9 In the columns ‘sign. 5%’ and ‘sign. 1%’ are the percentages of

the estimations for the specific parameters, for that the two-sided and one-sided t-

statistics are significant at the 5% and the 1% level, respectively. ‘Mean dependent

var’ and ‘S.D. dependent var’10 correspond to the price of the futures and forward

contracts. They are therefore the same in all models, 150.83 and 19.65, respectively.

In Table 6.2 for model OU, we see that the parameter θ is significantly different

from zero, in the median as well as in a high percentage of all cases. σ is in the

median still significant at the 10% level, and in 48.67% of all days significant at the

5% level. κ seems difficult to estimate. In the median its p-value is 0.1215, and

only in 39.73% of all days, i.e. in 298 out of 750, it could be estimated as significant

at the 5% level. The F-statistic is significant in the median at the 1% level, which

means, that the hypothesis of a total misspecification of the model is rejected.

In model OUJ, see Table 6.3, the t-statistics for all parameters are very low,

the standard errors for λ with 730.96, for example, very high. Nevertheless, in the

7The calculated statistics correspond to the statistics shown in Eviews as result of LS or NLS esti-
mations. See the Eviews 3.1 Help (1999) for details. We omitted the sum of squared residuals and the
standard error of regression because of their similarity to the RMSE. Furthermore, the Durbin–Watson
statistic cannot be interpreted here in a pure time series context. The supposed regression is not on
time series, but on futures and forward series that are ordered respective their delivery periods; so the
Durbin–Watson statistic refers to the correlation between futures residuals of subsequent delivery times.

8Remember that we performed individual parameter estimations for each trading day considered (from
1 October 1999 until 30 September 2002, i.e. 750 trading days). So we also performed the regression
analysis for each of these days separately, resulting in 750 R2, for example.

9In Eviews 3.1, the given p-values are always the p-values for two-sided t-tests.
10Mean of the dependent variables and Standard Deviation of the dependent variables.
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Table 6.2. Regression Statistics Model OU

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. The model OU refers to

an Ornstein–Uhlenbeck process.

Medians Model OU

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

κ 6,10 3,73 1,20 0,1215 39,73% 22,13%

θ 4,62 0,51 9,63 0,0000 84,00% 82,93%

σ 2,32 2,46 1,46 0,0791 48,67% 40,93%

 F-Statistic Prob. sign. 5% sign. 1%

7,14 0,0041 72,00% 56,93%

R-squared 0,40  Mean dependent var 150,83

Adjusted R-squared 0,34  S.D. dependent var 19,65

Akaike info criterion 8,32  Schwarz criterion 8,47

Log likelihood -101,75  Durbin-Watson stat 1,22

median we get for θ, for example, similar values as in OU. The problem for the

estimations seems to be the extension for jumps that make numerical quadrature

procedures necessary to determine the value of integrals. The F-statistic is not so

clear as in model OU, misspecification is not rejected at the 5% level.

As already suspected when comparing the RMSEs, the introduction of season in

the models proves to be very important. In model OUS, the deterministic compo-

nents have low standard errors and very high t-statistics, see Table 6.4. In 99.87% or

96.93% of all estimations, they were significant at the 1% level. Also the F-statistic

is the highest so far. θ can again be significantly estimated, even at the 1% level in

the median, but κ and σ do not have t-statistics as good as in model OU.
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Table 6.3. Regression Statistics Model OUJ

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. The model OUJ refers

to an Ornstein–Uhlenbeck process with jump.

Medians Model OUJ

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

κ 5,65 6,47 0,70 0,245 16,67% 7,33%

θ 4,39 161,28 0,03 0,4897 1,20% 0,27%

σ 2,29 82,18 0,03 0,4873 0,80% 0,67%

λ 4,36 730,96 0,01 0,4976 0,00% 0,00%

µJ 0,12 241,71 0,0005 0,9996 0,00% 0,00%

σJ 0,12 343,97 0,0004 0,4999 0,00% 0,00%

 F-Statistic Prob. sign. 5% sign. 1%

2,58 0,0621 47,47% 33,73%

R-squared 0,41  Mean dependent var 150,83

Adjusted R-squared 0,25  S.D. dependent var 19,65

 Akaike info criterion 8,57  Schwarz criterion 8,86

Log likelihood -101,58  Durbin-Watson stat 1,23

In model OUJS, we have the same problems with the significance of the

parameters as in model OUJ, see Table 6.5. While s0 and s1, the parameters for

seasonality, are clearly significant at the 1% level in the median, all other para-

meters are not. Nevertheless, the values of the medians themselves are encouraging.

Comparing the R2 of the four models, the conclusions drawn before, regarding

the RMSEs, can be repeated: The models improve most by changing from the

models OU and OUJ to their counterparts OUS and OUJS with season. Little or
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Table 6.4. Regression Statistics Model OUS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. The model OUS refers

to an Ornstein–Uhlenbeck process with season.

Medians Model OUS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

κ 2,43 7,84 0,35 0,3637 26,80% 20,93%

θ 4,85 1,88 2,59 0,0090 61,60% 50,27%

σ 1,21 5,56 0,22 0,4160 26,13% 22,80%

s0 26,22 2,46 10,94 0,0000 99,87% 99,87%

s1 0,64 0,01 43,15 0,0000 96,93% 96,93%

 F-Statistic Prob. sign. 5% sign. 1%

60,44 0,0000 99,87% 99,87%

R-squared 0,93  Mean dependent var 150,83

Adjusted R-squared 0,91  S.D. dependent var 19,65

 Akaike info criterion 6,45  Schwarz criterion 6,70

Log likelihood -74,99  Durbin-Watson stat 1,46

no improvement is achieved by adding jumps. The Adjusted R2 changes from 0.34

in model OU to 0.91 in model OUS, while in OUJ, it diminishes to 0.25. Finally,

the model OUJS has an Adjusted R2 of 0.88.

The log likelihoods can only be compared for nested models, i.e. models OUJ

and OUS cannot be compared in this context. Again model OUS, compared

with OU and OUJS, proves to be the best, while of the triple OU, OUJ and

OUJS, model OUJS has the highest log likelihood. Also the Durbin–Watson

statistic seems to be closest to 2.00 for OUS, though 1.46 is still very low. The

Akaike Information Criterion (AIC) and the Schwarz Criterion (SC) draw the
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Table 6.5. Regression Statistics Model OUJS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. The model OUJS refers

to an Ornstein–Uhlenbeck process with jump and season.

Medians Model OUJS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

κ 3,10 8,44 0,39 0,3516 18,80% 13,87%

θ 4,68 74,93 0,06 0,4762 2,80% 1,47%

σ 1,27 54,53 0,02 0,4902 0,13% 0,13%

λ 4,16 334,86 0,01 0,4955 0,67% 0,27%

µJ 0,12 66,63 0,001 0,9988 0,13% 0,13%

σJ 0,15 104,64 0,17 0,4995 0,13% 0,13%

s0 25,57 3,46 7,67 0,0000 98,40% 95,47%

s1 0,64 0,02 31,70 0,0000 99,47% 99,47%

 F-Statistic Prob. sign. 5% sign. 1%

25,18 0,0000 94,59% 0,97%

R-squared 0,91  Mean dependent var 150,83

Adjusted R-squared 0,88  S.D. dependent var 19,65

 Akaike info criterion 6,88  Schwarz criterion 7,27

Log likelihood -77,13  Durbin-Watson stat 1,40

same conclusions: The SC, that penalises additional coefficients, has, as well as

the AIC, lower values for the models without jumps, compared to those with jumps.

If we make a short conclusion of our analysis so far, we can say that the basic

model OU can be extended to clearly better map the characteristics of the data.
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The most important improvements are the deterministic or seasonal enhancements.

According to most statistics, adding jumps does not really improve the models,

perhaps the model without seasonal modelling, OU, but not model OUS. The pa-

rameters are more difficult to estimate, the more complex the models are. This

can be seen by the increasing number of outliers in the estimates and sometimes

higher standard deviations. The problem could be the necessity to solve numerical

integrals for OUJ and OUJS in the optimisation process, see also Sect. 5.

6.1.3 Out-of-Sample Behaviour

Further analysis of the models can be done. The following can be of practical

relevance:

• How much do I misprice the contracts of today, if I use the implied parameters

of the day before (denoted in the following as ~ϑ(t-1))?

• How much do I misprice the contracts of today, if I use the median of the

implied parameters of all days before, starting at 1 October 1999 (denoted in

the following as median(~ϑ(1:t-1)))?

• How much do I misprice the contracts of today, if I use the median of all

implied parameters, estimated during the whole studied period (denoted in

the following as median(~ϑ(1:end)))?

Although the last pricing approach is no real out-of-sample consideration, it

might still be of interest to compare it with the other results.

For this examination, which is similar to Bakshi et al. (1997), we list mean,

median and standard deviation of the RMSEs. The RMSEs of Table 6.1 are again

listed for a better comparison. The results can be viewed in Table 6.6.

The following observations are in order: RMSE(~ϑ(t-1)) is always only about a

half of the values of RMSE(median(~ϑ(1:t-1))) and RMSE(median(~ϑ(1:end))). Good

models should capture the behaviour of the series over time and using more infor-

mation should lead to better results. Thus, important structure is missing in all

of these models, also in the models with seasonal modelling. With the exception

of model OU, RMSE(median(~ϑ(1:end))) gives the worst results. The parameter

estimations are changing too much to give reasonable values for the whole period.
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Table 6.6. RMSEs – Out-of-Sample

In this summary statistics table, mean, median and standard deviation of the RMSEs with the pa-

rameters determined by minimising the RMSEs are reported, the RMSEs calculated with the pa-

rameters that were optimal in the estimations of the day before, called here RMSE(~ϑ(t-1)), the

RMSEs calculated with the medians of optimal parameters from day 1 (1 October 1999) until day t-1

(RMSE(median(~ϑ(1:t-1)))), and the RMSEs calculated with the medians of optimal parameters from day

1 (1 October 1999) until the last day (30 September 2002), called RMSE(median(~ϑ(1:end))). The models

OU, OUJ, OUS and OUJS refer to an Ornstein–Uhlenbeck process, an Ornstein–Uhlenbeck process with

jump, with season and with season and jump.

RMSE RMSE(ϑ(t-1)) RMSE(median(ϑ(1:t-1))) RMSE(median(ϑ(1:end)))
OU Mean 14.11 14.79 38.58 32.07

Median 13.74 14.30 35.12 28.96
Std. Dev. 3.05 3.55 16.46 14.72

OUJ Mean 14.03 14.70 37.17 40.33
Median 13.85 14.30 32.32 38.38
Std. Dev. 2.98 3.49 17.73 16.97

OUS Mean 5.31 6.94 15.78 16.10
Median 4.98 6.02 14.05 13.77
Std. Dev. 2.02 7.35 12.08 10.28

OUJS Mean 5.71 7.07 16.59 17.59
Median 5.45 6.34 14.19 15.25
Std. Dev. 2.07 6.29 10.34 10.43

If we regard only time periods of a day, i.e. the values of RMSE(~ϑ(t-1)),

the models perform better. The values are all not far away from the RMSEs

which lead to the optimal parameters, for all models. Earlier observations are

confirmed: seasonal modelling is very important, jumps may be reasonable

to add. The results of 14.70 and 14.30 from model OUJ in RMSE(~ϑ(t-1)) in

comparison to OU with 14.79 and 14.30 are better in the mean but the same in

the median. The values of RMSE(~ϑ(t-1)) for model OUJS are higher than those

of model OUS. Regarding the standard deviations of RMSE(~ϑ(t-1)), we can say

that those of models OU and OUJ with 3.55 and 3.49 are lower than those of

OUS and OUJS with 7.35 and 6.29; so the size of the pricing errors for the first

two models does not change the amount that it does for the third and fourth model.

The conclusion is the same as before: seasonal modelling is important; jumps

cannot be estimated or are not really relevant for Ornstein–Uhlenbeck-type models.
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6.1.4 Option Pricing

We now employ models OU, OUJ, OUS and OUJS to price the European and Asian

options of Nord Pool and compare them to the observed prices. For this, we use

only option prices that were the results of real trades, see also the comments in

Sect. 4.3. The theoretical option prices are calculated by Monte Carlo simulations,

see also Sect. 2.5. The results can be seen in Table 6.7. The values that are

Table 6.7. RMSEs of option pricing

In this summary statistics table, mean, median and standard deviation of the RMSEs of the compar-

ison of calculated and observed option prices are reported. In RMSE(~ϑ(t)), the parameters of day t,

implicitly estimated by futures and forward prices, are used; in RMSE(median(~ϑ(1:t)), the medians of

all parameters until day t, implicitly estimated by futures and forward prices, are used; and finally, in

RMSE(median(~ϑ(1:end)), the medians of all parameters, implicitly estimated by futures and forward

prices, are used. The models OU, OUJ, OUS and OUJS refer to an Ornstein–Uhlenbeck process, an

Ornstein–Uhlenbeck process with jump, with season and with season and jump.

RMSE(ϑ(t)) RMSE(median((ϑ(1:t))) RMSE(median(ϑ(1:end)))
OU Mean 25.03 20.32 22.50

Median 24.08 17.48 20.83
Std. Dev. 18.07 13.14 14.79

OUJ Mean 27.56 20.52 20.23
Median 15.00 18.13 17.88
Std. Dev. 104.89 22.59 28.11

OUS Mean 26.99 20.50 23.79
Median 16.04 15.57 22.70
Std. Dev. 26.93 16.65 15.61

OUJS Mean 30.97 16.77 16.61
Median 12.32 14.04 13.87
Std. Dev. 114.96 16.78 19.15

compared are again the RMSEs, i.e. for option prices

RMSE(t) =

√√√√ 1

Nt

Nt∑
j=1

(
Ô(t, j)−O(t, j)

)2

, (6.1)

where Ô(t, j) are the theoretical option prices on day t, and O(t, j) the observed

ones, j = 1, . . . , Nt. Nt is the total number of all traded options on day t. t =

1, . . . 750, where 1 =̂ 1 October 1999 and 750 =̂ 30 September 2002.

The different listed RMSEs are similar to those in the last subsection, but we are

now using the parameters of or until the same day an option is traded. This way,
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we can assess the consistency of the models that should be able to price options as

good as futures and forwards. In RMSE(~ϑ(t)), we use the parameters estimated

implicitly by futures and forward prices on the same day a particular option is

traded. In RMSE(median(~ϑ(1:t))), we employ the medians of all parameters that

were the solutions to our implicit estimations by futures and forwards, until day t

where a particular option price is observed. In RMSE(median(~ϑ(1:end)), we rely

on the medians of all parameters estimated implicitly by futures and forwards,

even though we assume that we have even more information this way than a trader

on that market.

First note that the results for the three different RMSEs do not differ very much

as was the case in the last subsection. RMSE(~ϑ(t)) does not always have lower values

than the other two statistics, but mean and standard deviation are even always the

highest, often to an enormous extent. Though the additional information does not

improve the values of RMSE(median(~ϑ(1:t))) and RMSE(median(~ϑ(1:end))), they

also do not worsen them. But the values are always substantially higher than their

counterparts in Sect. 6.1.3.

Surprisingly, the best values are observed for the medians of OUJS. With

values of 12.32, 14.04 and 13.87 for RMSE(~ϑ(t)), RMSE(median(~ϑ(1:t))) and

RMSE(median(~ϑ(1:end))) they are clearly below the medians of OUS with 16.04,

15.57 and 22.70. Also the means, apart from RMSE(~ϑ(t)) with the worst value for

OUJS, can be classified this way.

For both models with jump, OUJ and OUJS, it can be said that their RMSEs

have the highest standard deviations, most clearly for RMSE(~ϑ(t)) with 104.89 for

OUJ and 114.96 for OUJS.

It must be clearly noted that the values of OUJ and OUS do not differ very

much. So is the mean of RMSE(~ϑ(t)) of OUJ with 27.56 higher than the mean of

OUS with 26.99, but in the median the order is the opposite: 15.00 for OUJ and

16.04 for OUS. For RMSE(median(~ϑ(1:t))) mean and median of OUJ are above

those of OUS, though only by 0.02 for the mean of RMSE(median(~ϑ(1:t))). In
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contrast, comparing the values of mean and median of RMSE(median(~ϑ(1:end))),

model OUJ performs better than model OUS.

Obviously the least favorable model in this pricing approach is OU.

With the exceptions of the median of 25.03 in RMSE(~ϑ(t)) and of 17.48 in

RMSE(median(~ϑ(1:t))), it always performs the worst, with the lowest standard

deviations.

The results in this subsection differ from the previous ones. Whereas before

model OUS, followed by OUJS, performed best, here we get the best values for

OUJS, if we ignore the mean of RMSE(~ϑ(t)). Model OUJ and OUS follow. The

inadequacy of the timely behaviour of the models does not seem to be important

for option pricing, RMSE(~ϑ(t)) is not lower than the other statistics in general.

We want to emphasise again, that only few option prices were available, so the

results must be carefully interpreted.

Concluding the whole section, we can repeat that the most important feature

in the models is the seasonal modelling. Jumps cannot clearly improve the models,

maybe because of numerical reasons. The best model so far seems to be OUS.

6.2 Model Group 2 (Models H, HXJ, HVJ, HVJG, HXVJ

and HXVJG)

The results for this model group are not discussed in detail. As was foreseeable

when comparing models OU and OUJ with OUS and OUJS in the first model

group, adding components for seasonality is essential.

So are the RMSEs for all models of this group below those of model OUS and

OUJS of model group 1, as well as below those of model group 3. They are, in fact,

near OU and OUJ of model group 1. R2 is always very low, and for models HXJ,

HXVJ and HXVJG, the Adjusted R2 is even negative. The F-statistic is never

significant at the 5% level in the median, so the hypotheses of misspecifications of

all models are not rejected.
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Nevertheless, all statistics, histograms and other tables are listed for model

group 2 as for model groups 1 and 3, and also the out-of-sample behaviour and the

option pricing fit have been conducted. All tables and histograms can be viewed in

Appendix A.

6.3 Model Group 3 (Models HS, HXJS, HVJS, HVJGS,

HXVJS and HXVJGS)

We will again, for this model group, compare the RMSEs and the summary statis-

tics for each parameter in each model. Then we will continue with the regression

statistics and end with out-of-sample calculations and option pricing.

6.3.1 Summary Statistics

The approach here is like in Sect. 6.1. We will begin with the summary statistics

and discuss the RMSEs first and then each parameter, showing all histograms also.

Examine Table 6.8 and its second part 6.9. Upon first glance of the RMSEs,

we already recognise that the models in this model group perform at least twice as

well as the models in the previous group without seasonal modelling. While the

values in models H, HXJ, HVJ, HVJG, HXVJ and HXVJG are all around 14–16

(see Table A.2 in Appendix A), in models HS, HXJS, HVJS, HVJGS, HXVJS and

HXVJGS, they are all around 5–8. This confirms the observations we already made

in Sect. 6.1, that modelling seasonality is very important.

Disappointing is that the RMSEs of this model group are not lower than those of

model group 1 with season. All the sophisticated enhancements of the Heston-type

model can only help to bring the RMSE to the same level as a simple OU-process

with season, model OUS.

Opposed to the OU-models with or without season, the H-models definitely do

improve if we add jumps. The RMSE of HS improves from 7.82 in the mean and

5.92 in the median to 6.04 and 4.96 for model HXJS, i.e. the model with jump

in the returns. HVJS, the model with an exponential-distributed jump size in the

volatility, has similar RMSEs like HXJS, with a mean of 6.02 and a median of

5.08. Model HVJGS seems even more interesting, with values of 5.33 and 4.62,
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Table 6.8. Summary Statistics models HS, HXJS, HVJS, HVJGS, HXVJS and HXVJGS

For each trading day between 01 October 1999 and 30 September 2002, all parameters for the relevant

models were independently estimated. Futures and forward contracts lead to implicit estimates min-

imising the RMSE (root mean squared error) for all contracts. In this summary statistics table, mean,

median and standard deviation of each parameter are reported, as well as of the RMSE. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

α β √v κ θ σ ρ
Model HS
Mean -2,73 0,01 2,59 98,46 5,29 0,39 0,27
Median -1,22 0,01 2,30 79,08 2,44 0,25 0,67
Std. Dev. 5,06 0,01 1,72 83,28 9,92 0,68 0,80

Model HXJS
Mean -3,15 0,001 2,36 78,19 6,31 0,41 0,42
Median -1,80 0,001 2,07 49,62 2,95 0,27 0,61
Std. Dev. 4,78 0,01 1,81 73,34 15,21 0,64 0,62

 
Model HVJS
Mean -2,78 0,002 2,63 103,76 5,18 0,50 0,02
Median -1,37 0,0001 2,33 94,31 2,69 0,36 0,08
Std. Dev. 4,71 0,02 1,96 81,77 7,69 0,77 0,77

Model HVJGS
Mean -3,32 0,002 2,29 66,24 6,04 0,34 0,28
Median -1,68 0,0004 2,07 37,01 2,99 0,24 0,46
Std. Dev. 5,92 0,02 1,69 70,71 10,17 0,45 0,68

Model HXVJS
Mean -3,22 0,001 2,52 77,99 8,29 0,33 0,36
Median -1,79 0,0004 2,12 46,98 2,99 0,26 0,54
Std. Dev. 5,24 0,01 1,96 74,83 19,66 0,31 0,62

Model HXVJGS
Mean -2,80 0,003 2,50 85,02 5,87 0,25 0,27
Median -1,78 0,002 2,11 59,53 3,10 0,20 0,45
Std. Dev. 5,87 0,01 1,87 76,84 13,62 0,26 0,63

respectively. With the lowest RMSE in mean and median, though not by a large

amount, HVJGS performs the best. Model HXVJS, with simultaneous jumps in

log spot price and volatility, comes near with mean and median of 5.37 and 4.93.

With 2.51, it even has a lower standard deviation than HVJGS and also the other

models, i.e. the pricing errors are less fluctuating than in all other models. Model

HXVJS is embedded in model HXVJGS and so the RMSE for the latter should be

lower than that of HXVJS. However, we might have ended in HXVJGS with similar
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Table 6.9. Summary Statistics models HS, HXJS, HVJS, HVJGS, HXVJS and HXVJGS – Continued

λ µJ σJ η γ ρJ s0 s1 RMSE
Model HS
Mean 22,74 0,64 7,82
Median 23,34 0,64 5,92
Std. Dev. 7,65 0,04 8,64

Model HXJS
Mean 4,83 0,08 0,20 25,90 0,64 6,04
Median 1,60 0,09 0,15 25,62 0,64 4,96
Std. Dev. 11,30 0,24 0,19 6,99 0,03 5,62

 
Model HVJS
Mean 20,31 0,10 24,90 0,64 6,02
Median 2,23 0,02 25,14 0,64 5,08
Std. Dev. 125,42 0,35 6,58 0,03 4,32

Model HVJGS
Mean 13,96 0,08 8,94 25,62 0,64 5,33
Median 3,44 0,02 2,60 25,43 0,64 4,62
Std. Dev. 66,36 0,36 24,81 5,61 0,02 4,39

Model HXVJS
Mean 8,13 0,05 0,18 0,08 0,69 25,50 0,64 5,37
Median 1,55 0,07 0,14 0,02 0,73 25,42 0,64 4,93
Std. Dev. 19,94 0,29 0,16 0,62 1,04 5,15 0,02 2,51

Model HXVJGS
Mean 3,37 0,01 0,21 0,05 6,97 0,89 25,74 0,64 5,98
Median 0,97 0,03 0,18 0,02 2,53 0,86 25,17 0,64 5,10
Std. Dev. 9,39 0,18 0,18 0,11 17,09 1,19 7,41 0,03 4,02

numerical problems like in OUJS, because here again numerical integrals had to be

solved during the optimisation process, compare to Sect. 5.4.2.11

A look at the histograms of RMSEs in Fig. 6.8 confirms the larger dispersion of

8.64 of HS compared to the other models whose standard deviations all lie around

4, with exception of HXVJS with a standard deviation of 2.51, as already noted.

This smaller deviation of model HXVJS, however, can hardly be recognised in the

histograms.

We will take a short look at each parameter. The values for α, the parameter

for the constant trend of xt, are very similar for all models, with means around

-3 and medians around -1.5. The histograms in Fig. 6.9 are, even more than for

the RMSEs, very similar and show that α was clearly estimated below zero for all

models, with a mode around -0.5 – 0. Negative estimations for α are contrary to

observations in the stock market, see e.g. the empirical investigations of Bakshi et al.

(1997). However, as we already learned in Sect. 2.1, electricity markets are different.

Since the estimations are implicit or under the Martingale-measure, there might be

11For model HVJGS, numerical integrals have to be solved, too. But in this case, these calculations do
not seem to have disturbed the results so severely.
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Figure 6.8. Histograms RMSEs

The RMSEs for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

various explanations for this phenomenon. The most obvious would be that the

market participants indeed expect the prices to fall, caused by a still continuing

liberalisation of the market or growing numbers of participants in the Nord Pool

Spot Market. An explanation could also be a negative jump risk premium, though

an economic interpretation of such a negative premium is not easy to find.

The parameter β is also part of the trend of xt, but it is the part that is de-

pendent on vt, the variance at the same time. In all markets with futures-arbitrage
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Figure 6.9. Histograms α

The parameter values of α for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

opportunities, β should be equal to −0.5, see (2.1) and Sect. 5.30. But, for all

models, it is very close to zero, in the means as well as in the medians, and the

standard deviations are not particularly high. The histograms 6.10 show that β is

around zero with a positive bias for all models, with the strongest bias for model

HS.

The variance v or vt is a very important parameter in our estimations.12 vt

12In the following we speak of the variance as well as of the volatility. Though we modelled the variance
in our processes, the parameter estimated and plotted in the tables is the volatility

√
v, the square root

of the variance. Its value is more convenient for economic interpretations.
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Figure 6.10. Histograms β

The parameter values of β for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

is a hidden state variable that can only be estimated as a parameter because we

estimate implicitly on daily data. It is directly related to the parameters κ (the

velocity of vt to return to θ), θ (the long term mean of vt), σ (the standard deviation

of vt), and even ρ (the correlation coefficient between the log prices and vt). For

the models with jumps in the variance process, also λ, η, γ, and ρJ (as indicator

for the correlation between simultaneous jumps in the log prices and the variance)

are linked to the volatility, i.e. the square root of the variance.
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For all models, mean and median of
√

v are relatively stable between 2.07 (the

median of HXJS and HVJGS) and 2.59 (the mean of HS) with all standard devia-

tions below 2.00, see Table 6.8. In the histograms in Fig. 6.11, two modes for all
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Figure 6.11. Histograms
√

v

The parameter values of
√

v for all estimations are plotted in a histogram for each model. The models

are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

models can be distinguished: the first close to zero, and the second around two.

Before we turn to κ, let us begin with θ, the value that should be the long-term

mean of the variance process. Mean and median are between 2.44 (the median of
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model HS) and 8.29 (the mean of model HXVJS) for all models. The root of these

two values is 1.56 and 2.88, and the means and medians of
√

v all lie between these

two values, which can be seen as a good indicator for well specified models. The

standard deviations of θ, however, are quite high for all models, the minimum being

at 7.69 for model HVJS and the maximum at 19.66 for HXVJS, the model where

mean, with 8.29, and median, with 2.99, already differ the most. The histograms

for θ in Fig. 6.12 confirm the observation of quite dispersed estimates.
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Figure 6.12. Histograms θ

The parameter values of θ for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Regarding κ now, we recognise a mean and median of 66.24 and 37.01, with

a standard deviation of 70.71, for model HVJGS, the model that proved to have

the lowest RMSEs. All other models estimate even higher values for κ, with a

maximum of 103.76 and 94.31 in mean and median for model HVJS. The standard

deviation for κ is, with 83.28, the highest for model HS. In the histograms in Fig.

6.13, we again notice that all models behave similarly, and we can recognise at
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Figure 6.13. Histograms κ

The parameter values of κ for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

least two modes: one close to zero, the other around 200. The value of κ expresses
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the velocity of the variance process to return to the long-term mean θ, and with a

high κ, the variance should almost immediately return to a value near θ. Since the

standard deviation of the estimations of
√

v is relatively low in comparison to our

other estimates, even high values of κ seem reasonable.

But the dispersion of v does not only depend on how fast the variance returns

to its mean θ, but, perhaps even more, on the standard deviation σ. In Table 6.8

we see values of the means and medians of σ, from 0.20 for the median of model

HXVJGS to 0.50 for the mean of model HVJS. The standard deviations of σ range

from 0.26 in model HXVJGS to 0.77 in model HVJS, i.e. the models with the

lowest/highest values in mean/median are also the models with the lowest/highest

values of the standard deviation of σ. So – as we would expect – the low dispersion

of v is accompanied by high values for κ and low values for σ. The histograms for

σ in Fig. 6.14 show a second mode near zero for all models. A value of zero would

mean, in the case of no jumps in the variance process, that there is no stochastic

volatility, or, if the models contain jumps in the volatility process, that this process

is only driven by this jump process without a diffusion component. Some estimation

results seem to suggest this.

Let us now proceed with the last parameter, apart from the seasonal parameters,

that is common to all models of this model group, ρ. Particularly interesting would

be values of -1, 0 or 1, and, indeed, for model HVJS, mean and median are, with

0.02 and 0.08, quite close to zero, meaning, that log prices and variance are nearly

uncorrelated. However, this first impression is misleading. Consider the histograms

of ρ in Fig. 6.15. We see that most estimates of ρ in model HVJS are near -1 or

1, only averaging a value near zero. So either perfect negative or perfect positive

correlation is assumed in many estimation results. All other models have means and

medians between 0.27 (the mean of model HS and HXVJGS) and 0.67 (the median

of model HS). So they are all positive. This means that high returns correspond

to a high variance and vice versa. Although this is contrary to stock markets, we

expect this behaviour. When electricity prices are very high, their fluctuation is

also relatively high. A look again at Fig. 6.15 shows that with the exception of

HVJS, correlations of -1 are relatively rare for all models.
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Figure 6.14. Histograms σ

The parameter values of σ for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

The next parameter that we consider is λ. It always represents the frequency

of jumps per year, but we have to clearly distinguish the type of jump in each

model: in model HXJS, only jumps in the log prices are modelled, in HVJS, only

exponential distributed jumps in the variance process. HVJGS is the same as model

HVJS, but the jump sizes in the variance process follow a Γ-distribution. In models

HXVJS and HXVJGS, finally, λ is the frequency of simultaneous jumps in the log

spot prices and the variance process. In the first model, the jump sizes in the
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Figure 6.15. Histograms ρ

The parameter values of ρ for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

variance process are again exponentially distributed, in HXVJGS Γ-distributed. So

the estimations are also very different: in models with jump in the log price, λ is

relatively small: the lowest values are estimated for HXVJGS with a mean 3.37

and a median 0.97. Also the standard deviation of the estimations is the smallest

for this model with 9.39. The second lowest values for λ are in model HXJS, the

model where jumps only occur in the log price. Here, mean, median and standard

deviation are 4.83, 1.60, and 11.30. The highest values occur in HVJS and HVJGS,

the models with jumps only in the variance process. The means and medians range
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there from 2.23 in the median of model HVJS to 20.31 in the mean of the same

model. Also the standard deviation for HVJS is by far the highest with 125.41. The

estimations for HVJGS seem more stable. The enormous differences in the models

are, however, not so clear in the histograms in Table 6.16. However, we can detect
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Figure 6.16. Histograms λ

The parameter values of λ for all estimations are plotted in a histogram for each model. The models are:

• HXJS: a Heston-like model with season, with a normal-distributed jump in the first state variable,

• HVJS: the same Heston-like model with season, with an exponential-distributed jump in the second

state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

that for model HXVJGS, most estimations are very close to zero, in comparison to

model HVJGS, for example.

µJ and σJ are only defined in the models with jumps in the log price, i.e. models

HXJS, HXVJS and HXVJGS. They are the parameters for the mean and standard

deviations of the normal distributed jump sizes in x. Having in mind high price

spikes of the electricity prices, i.e. sudden movements of the price to a multiple of
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its previous level, with a nearly immediate return to this level, the estimated values

are disappointing. The jumps are between 0.01 (the mean of model HXVJGS) and

0.09 (the median of model HXJS) in the mean and median for all three relevant

models. The standard deviation for µJ is also the lowest in model HXVJGS with

0.18, and the highest in model HXJS with 0.24. The histograms for µJ in Fig. 6.17

seem to show normal distributions, with a mean of the µJ of all models slightly
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Figure 6.17. Histograms µJ and σJ

The parameter values of µJ and σJ for all estimations are plotted in a histogram for each parameter and

for each model. The models are:

• HXJS: a Heston-like model with season, with a normal-distributed jump in the first state variable,

• HXVJS: the same Heston-like model with season, with a normal-distributed jump in the first state

variable and an exponential-distributed jump in the second state variable, both jumps occurring

simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

positive.

For all relevant models, the estimations of σJ seem to be very stable, around

0.2, and even their standard deviations are all very similar from 0.16 (for model

HXVJS) to 0.19 (for model HXJS). The histograms for σJ in Fig. 6.17 show, that

for all models most estimations are between 0 and 0.2; for model HXJS, the σJ even

seem to be uniformly distributed between 0 and 0.2.
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η is the mean of the exponential- or Γ-distributed jump sizes of the variance

process in models HVJS, HVJGS, HXVJS and HXVJGS. It is the lowest for model

HXVJGS with a mean of 0.05, and the highest for the model without jump in the

log price and exponentially distributed jump size in the variance process, model

HVJS. There, the value for the mean of η is 0.10. The medians are always 0.02.

The histograms in Fig. 6.18 show that for all models, a large amount of estimations
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Figure 6.18. Histograms η

The parameter values of η for all estimations are plotted in a histogram for each model. The models are:

• HVJS: a Heston-like model with season, with an exponential-distributed jump in the second state

variable,

• HVJGS: the same Heston-like model with season, with a Γ-distributed jump in the second state

variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

is close to zero.
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An exponential distribution is a Γ-distribution with the parameter γ ≡ 1.13

However, if we examine Table 6.9, the means for models HVJGS and HXVJGS are

8.94 and 6.97, respectively. The medians are also relatively far away from 1.00 with

2.60 and 2.53. But the estimations of γ are not very robust: in model HVJGS

the standard deviation of all estimations is 24.81, for model HXVJGS 17.09. The

histograms in Fig. 6.19 show high outliers for both models, up to the value of 30.
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Figure 6.19. Histograms γ

The parameter values of γ for all estimations are plotted in a histogram for each model. The models are:

• HVJGS: a Heston-like model with season, with a Γ-distributed jump in the second state variable,

• HXVJGS: the same Heston-like model with season, with a normal-distributed jump in the first

state variable and a Γ-distributed jump in the second state variable, both jumps also occurring

simultaneously.

In models with simultaneous jumps in log price and variance, the value that is

particularly interesting is ρJ , an indicator for the correlation between the simul-

taneous jumps in log price and variance. The correlations of these jumps can be

calculated with (5.14) and (5.15). So, with a mean value of ρJ of 0.69 in model

HXVJ and 0.89 in model HXVJG, we get, using also the means of the other para-

meters that are needed, correlation coefficients of 0.29 and 0.49, respectively. If we

13For an explanation of the Gamma-distribution and the parameter γ, see Sect. 5.2 p. 55 or Resa
Corporation and Licensors (2000–2003).
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employ the medians for all variables, values of 0.10 and 0.15, respectively, result.

This is a very low correlation. If simultaneous jumps in the log prices and the vari-

ance process occur, then they seem to have a low correlation. See Fig. 6.20 for the
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Figure 6.20. Histograms ρJ

The parameter values of ρJ for all estimations are plotted in a histogram for each model. The models are:

• HXVJS: a Heston-like model with season with a normal-distributed jump in the first state variable

and an exponential-distributed jump in the second state variable, both jumps occurring simulta-

neously,

• HXVJGS: the same model, but with a Γ-distributed jump in the second state variable.

histograms of ρJ , where we see that most values are positive and around a mode

near 1, translating to low correlation values.14

Now to the parameters that are responsible for capturing the seasonal behaviour

of the electricity prices, s0 and s1. These two parameters have already proven their

great importance in the OU-type models and that they are consistent to estimate.

As we have already remarked earlier, the inclusion of these seasonal components

could also reduce the RMSEs for the Heston-type models by a large amount.

Let us start with s0. Remember that in our first model group the values were

all around 25.6 to 26.5. Apart from model HS, we do have quite similar values here,

14A value of 3 for ρJ , only very rarely estimated, would lead to a correlation coefficient of 0.8, if the
other parameters are given as the means of model HXVJS.
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only a bit lower. In model HS, mean and median are 22.74 and 23.34, values that

are still not far away from the values of the other models. We perceive the highest

values in model HXJS, with a mean of 25.90 and a median of 25.62. The standard

deviations are all under 8.00; model HS has the highest standard deviation with a

value of 7.65. This shows that extending model HS does not overspecify the model,

but even leads to a better recognition of the seasonal parameters.

This is confirmed by looking at the standard deviation of s1, which is also the

highest for HS. The values of mean and median are, rounded to two digits, 0.64

for all models, as it has already been the case for s1 in models OUS and OUJS of

model group 1.

So, the histograms in Figs. 6.21 and 6.22 are not really surprising and they are

similar for all models. A graph with spot price and the spot price at t0 = 10/01/99

plus the deterministic functions, like done in Fig. 6.6 of Sect. 6.1, is omitted here

because of the similarity of the parameters.

103



18 21 24 27 30 33
0

20

40

60 HS

18 21 24 27 30 33
0

20

40

60

HXJS

18 21 24 27 30 33
0

20

40

60
HVJS

18 21 24 27 30 33
0

20

40

60

80 HVJGS

18 21 24 27 30 33
0

20

40

60

HXVJS

18 21 24 27 30 33
0

20

40

60

HXVJGS

s0

Figure 6.21. Histograms s1

The parameter values of s1 for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure 6.22. Histograms s1

The parameter values of s1 for all estimations are plotted in a histogram for each model. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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6.3.2 Regression Statistics

We will proceed with the regression statistics, examining each model in detail.

Unlike in Sect. 6.1, we will comment on all statistics at once when we discuss a

particular model, referring always to the previous models.

In Table 6.10 we see that the t-statistics are only significantly different from

zero for κ and the parameters s0 and s1 that account for the seasonal behaviour.

The same phenomenon has already been observed for s0 and s1 in models OUS

and OUJS in Sect. 6.1. Unfortunately, all other parameters are at a very low

significance level, with the worst values for α, θ, β and
√

v. The high standard

error of θ is surprising, being even higher than the standard errors of α and
√

v.

The reason for these unsatisfying values might be the difficulties of the optimisation

algorithm to find clear extrema with such a huge amount of parameters in these

highly non-linear problems. For the following models with even more parameters,

we will expect that the t-statistics and standard deviations still get worse. So the

parameter values themselves should be taken with care. In contrast, the rest of the

statistics, for example the F-test (showing the adequacy of the models) and R2 etc.

prove the relevance of the models and justify their discussion, as we will see further

on.

Thus, the F-statistic for model HS in the median is significant at the 1% level,

as it was for 87.73% of all days, i.e. 658 out of 750. R2 and the Adjusted R2 are

with 0.91 and 0.85 quite high, and also the Akaike Information Criterion (AIC)

and the Schwarz Criterion (SC) are with 7.16 and 7.61 near model OUS, that

seemed to perform best until now. The Durbin–Watson statistic is, with 1.35, still

far away from 2.00, as it was for all models before.

In model HXJS, jumps in the deseasonalised log prices were added. The results

in Table 6.11 are similar to those of model HS in Table 6.10. κ, s0 and s1 are

significant at the 1% level in 73.07%, 88.00% and 99.07% of all days, whereas all

other parameters have very low t-statistics. Again, the standard deviation for θ
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Table 6.10. Regression Statistics Model HS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HS refers to a Heston-like

model with season.

Medians Model HS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,22 247,04 0,003 0,9977 0,00% 0,00%

β 0,01 0,54 0,01 0,9919 2,53% 1,73%

√v 2,30 199,14 0,01 0,4954 3,07% 2,93%

κ 79,08 0,70 85,33 0,0000 77,47% 74,93%

θ 2,44 457,45 0,003 0,4987 2,40% 2,40%

σ 0,25 0,50 0,46 0,2871 37,73% 33,47%

ρ 0,67 0,73 1,04 0,3132 41,20% 36,80%

s0 23,34 3,51 7,03 0,0000 86,93% 81,73%

s1 0,64 0,02 28,07 0,0000 96,27% 95,07%

 F-Statistic Prob. sign. 5% sign. 1%

17,98 0,0000 90,13% 87,73%

R-squared 0,91  Mean dependent var 150,83

Adjusted R-squared 0,85  S.D. dependent var 19,65

Akaike info criterion 7,16  Schwarz criterion 7,61

Log likelihood -78,78  Durbin-Watson stat 1,35
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Table 6.11. Regression Statistics Model HXJS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HXJS refers to a Heston-

like model with season, with a normal-distributed jump in the first state variable.

Medians Model HXJS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,80 517,75 0,002 0,9986 0,13% 0,13%

β 0,001 0,54 -0,005 0,9962 1,07% 0,80%

√v 2,07 225,55 0,01 0,4971 1,47% 1,33%

κ 49,62 0,93 43,88 0,0000 76,13% 73,07%

θ 2,95 533,45 0,002 0,4989 1,33% 1,33%

σ 0,27 0,51 0,56 0,2680 37,20% 31,47%

ρ 0,61 0,94 0,62 0,5479 36,27% 33,33%

λ 1,60 590,90 0,001 0,4996 1,20% 1,20%

µJ 0,09 404,90 0,0002 0,9998 0,40% 0,27%

σJ 0,15 591,87 0,0002 0,4999 1,20% 1,20%

s0 25,62 3,70 7,52 0,0000 94,53% 88,00%

s1 0,64 0,02 28,90 0,0000 99,33% 99,07%

 F-Statistic Prob. sign. 5% sign. 1%

17,00 0,0000 92,00% 84,13%

R-squared 0,94  Mean dependent var 150,83

Adjusted R-squared 0,88  S.D. dependent var 19,65

Akaike info criterion 7,02  Schwarz criterion 7,61

Log likelihood -74,25  Durbin-Watson stat 1,50
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is very high with 533.45, like the standard deviations for α,
√

v and the jump

parameters λ, µJ and σJ .

This model seems more appropriate for the data than model HS. The F-Statistic

is also significant at the 1% level in the median and in 84.13% of all days. R2

and the Adjusted R2 are with 0.94 and 0.88 higher in model HXJS than in model

HS. The values of AIC, log likelihood and Durbin–Watson statistic favour model

HXJS, too. With 7.61, the SC is the same for both models. The Durbin–Watson

statistic and R2 are also above the values of OUS, but the other statistics are still

better for OUS.15

The following models are of particular interest, because models with jumps in

the variance process were, as far as we know, only empirically tested by Duffie et al.

(2000), who first supposed those types of jumps, themselves, while Γ-distributed

jump sizes in the variance process are introduced by us, as far as we know.

Let us start with Exponential jump sizes and model HVJS. In Table 6.12, we

again see similar t-statistics for our parameters as before, and also the high standard

errors can be perceived for the same parameters. η cannot be more significantly

estimated than µJ and σJ in model HXJS.

As for the models of this previous group, the F-statistic is significant at the

median at the 1% level. R2 is with 0.93 below the R2 of HXJS with 0.94, but the

Adjusted R2 is equal with 0.88 in both models, caused by the fact that HVJS uses

only eleven parameters, instead of twelve, the number of parameters used in model

HXJS. The values of the AIC and of the SC, that penalises additional coefficients,

are both lower for HVJS than for HXJS, with 6.98 and 7.51, so the model with

jumps in the variance process is favoured. The log likelihood in HVJS is lower than

in model HS, supporting the extension of HVJS. Also the Durbin–Watson statistic

is better for model HVJS, with 1.43, than for HS, with 1.35, but lower than for

HXJS with a value of 1.50.

15Log likelihood of models HXJS and OUS cannot be compared because HXJS is not embedded in OUS.
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Table 6.12. Regression Statistics Model HVJS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HVJS refers to a Heston-

like model with season, with an exponential-distributed jump in the second state variable.

Medians Model HVJS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,37 250,52 0,003 0,9980 0,00% 0,00%

β 0,0001 0,40 0,009 0,9932 2,13% 1,73%

√v 2,33 215,68 0,008 0,4966 0,80% 0,67%

κ 94,31 0,54 146,38 0,0000 80,00% 78,13%

θ 2,69 482,33 0,002 0,4991 0,67% 0,53%

σ 0,36 0,34 0,71 0,2372 38,40% 34,53%

ρ 0,08 0,56 0,95 0,3573 42,13% 37,87%

λ 2,23 871,82 0,001 0,4995 1,73% 1,07%

η 0,02 458,02 0,00003 0,5000 0,67% 0,67%

s0 25,14 3,37 7,99 0,0000 94,27% 88,93%

s1 0,64 0,02 30,01 0,0000 98,93% 98,67%

 F-Statistic Prob. sign. 5% sign. 1%

17,80 0,0000 93,60% 87,20%

R-squared 0,93  Mean dependent var 150,83

Adjusted R-squared 0,88  S.D. dependent var 19,65

Akaike info criterion 6,98  Schwarz criterion 7,51

Log likelihood -75,53  Durbin-Watson stat 1,43
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Now consider one of the two models with γ-sized jumps. The coefficients of

model HVJGS in Table 6.13 have similar statistics to the previous models: The

seasonal parameters s0 and s1 are the most significant ones, in 91.87% and 99.87%,

respectively, of all days, i.e. in 689 and 749 out of 750 days, they were significant at

the 1% level. The only parameter that is also significant in the median at the 1%

and even the 5% and 10%-level is κ. And though the new parameter in this model,

γ, is also not significantly estimated and has a high standard error of 231.03, at

least it diminishes the standard errors of λ and η, in comparison to model HVJS.

The F-statistic is significant at the 1% level in the median, as in the previous

models of this model group. R2 is, with 0.94, higher than in model HVJS and equal

to model HXJS, but the Adjusted R2 is the same for all three models, caused by

the penalisation of the Adjusted R2 for the extra parameter in HXJS and HVJGS.

The AIC, with 6.87, and the SC, with 7.46, slightly favour model HVJGS. The log

likelihood that can only be compared with model HS and HVJS, is with -73.91

lower for model HVJGS than for model HS with -78.78 and for model HVJS with

-75.53. The Durbin–Watson statistic is, with 1.51, closer to 2.00 than in all other

models. For some statistics, the values are even better in HVJGS than for model

OUS in Table 6.4 (in R2 and the Durbin–Watson statistic).

Now see Table 6.14 for the model with simultaneous jumps in the log price and

variance process. The comments on the t-statistics and standard deviations are

the same as for the other models of this model group, and also ρJ has a very high

standard error with 665.96.

Also, like in the other models, the F-statistic is significant at the 1% level in

the median. Though model HXJS is embedded in model HXVJS, i.e. HXVJS is

HXJS in the limit when η = 0, the R2 of model HXVJS is, with 0.93, lower than

the R2 of HXJS with 0.94. This phenomenon was already observed in Sect. 6.1

with models OU and OUJ, and OUS and OUJS, respectively. All other statistics

may be better for the less complex models because of penalisation terms for the

number of parameters. Thus all statistics of HXVJS are topped by those of HXJS

and usually by those of HVJS. Regarding these statistics, simultaneous jumps in
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Table 6.13. Regression Statistics Model HVJGS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HVJGS refers to a

Heston-like model with season, with a Γ-distributed jump in the second state variable.

Medians Model HVJGS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,68 257,45 0,004 0,9972 0,13% 0,13%

β 0,0004 0,59 0,01 0,9959 2,67% 2,27%

√v 2,07 197,41 0,01 0,4969 1,20% 1,20%

κ 37,01 0,94 39,55 0,0000 73,87% 71,33%

θ 2,99 495,13 0,003 0,4988 1,20% 1,20%

σ 0,24 0,46 0,32 0,3527 33,60% 28,40%

ρ 0,46 0,94 0,54 0,5985 34,67% 30,67%

λ 3,44 653,14 0,002 0,4990 1,20% 1,20%

η 0,02 62,52 0,0003 0,4999 1,73% 1,73%

γ 2,60 231,03 0,01 0,4962 5,47% 4,80%

s0 25,43 3,63 7,38 0,0000 96,80% 91,87%

s1 0,64 0,02 29,73 0,0000 99,87% 99,87%

 F-Statistic Prob. sign. 5% sign. 1%

17,55 0,0000 96,27% 89,47%

R-squared 0,94  Mean dependent var 150,83

Adjusted R-squared 0,88  S.D. dependent var 19,65

Akaike info criterion 6,87  Schwarz criterion 7,46

Log likelihood -73,91  Durbin-Watson stat 1,51
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Table 6.14. Regression Statistics Model HXVJS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and

the Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2)

are given for completeness. They are of course independent from the chosen model. HXVJS refers

to a Heston-like model with season, with a normal-distributed jump in the first state variable and an

exponential-distributed jump in the second state variable, both jumps occurring simultaneously.

Medians Model HXVJS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,79 691,38 0,001 0,9990 0,13% 0,00%

β 0,0004 0,52 0,005 0,9964 2,93% 2,27%

√v 2,12 341,10 0,01 0,4973 1,73% 1,60%

κ 46,98 0,87 69,70 0,0000 77,60% 74,53%

θ 2,99 681,81 0,002 0,4991 1,87% 1,73%

σ 0,26 0,46 0,46 0,3156 33,87% 27,60%

ρ 0,54 0,80 0,75 0,4659 30,13% 25,60%

λ 1,55 785,60 0,001 0,4995 1,60% 1,47%

µJ 0,07 568,35 0,0002 0,9999 1,33% 1,33%

σJ 0,14 730,06 0,0001 0,5000 1,33% 1,33%

η 0,02 573,82 0,00002 0,5000 1,33% 1,33%

ρJ 0,73 665,96 0,001 0,9994 1,33% 1,33%

s0 25,42 4,34 6,14 0,0001 92,40% 82,93%

s1 0,64 0,03 23,65 0,0000 98,67% 98,40%

 F-Statistic Prob. sign. 5% sign. 1%

11,71 0,0002 89,60% 78,93%

R-squared 0,93  Mean dependent var 150,83

Adjusted R-squared 0,85  S.D. dependent var 19,65

 Akaike info criterion 7,17  Schwarz criterion 7,85

Log likelihood -74,38  Durbin-Watson stat 1,46
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the log price and the variance process do not seem to improve the models, at least

if the jump size in the variance process is exponentially distributed. However,

remember that the values for the RMSE for this model are the lowest with model

HVJGS.

What if the jump size in the variance process is Γ-distributed? Let us consider

Table 6.15. The t-statistics and standard deviations are comparable to those of

the other models of the model group 3.

And though the F-statistic is lower than in all other models with seasonal

components, it is still significant at the 1% level, rejecting the hypothesis of

misspecification. But while the model HVJS is improved by including Γ-sized

jumps instead of Exponential ones (which results in better statistics for model

HVJGS), this is not the case when comparing HXVJS to HXVJGS. Indeed, all

statistics, for example the AIC with 7.32 in HXVJGS in comparison to 7.17 in

HXVJS, are better for model HXVJS. The same conclusions can be drawn by

comparing models HXVJGS and HVJGS.

To conclude so far, the results of the regression statistics show, as we have

already suspected in the previous subsection, that model HVJGS seems the most

promising, whereas simultaneous jumps in the log price and the variance process,

though having a low RMSE, are disappointing in the regression statistics tables,

the models are even penalised for their additional parameters.16

Before we give a final statement and compare model group 1 and model group

3, we continue with our investigations for model group 3.

16We also performed further t-tests for ρ for all models with the hypotheses ρ = −1 vs. ρ > −1 and ρ = 1
vs. ρ < 1. Furthermore, we also computed these tests for the correlation of the jump components, i.e.

ρJ η√
σ2

J
+ρ2

J
η2

for HXVJS and
ρJ η

√
γ√

σ2
J
+ρ2

J
η2γ

for HXVJGS, using the standard error of ρJ as approximation for

the standard error of the correlation. And last, we tested the hypothesis whether β = −0.5 vs. β 6= −0.5,
for all models. Unfortunately, clearer rejections were not more often possible than for the above t-tests,
again caused by the high standard errors, so we omitted these results here.
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Table 6.15. Regression Statistics Model HXVJGS

The medians of all coefficient estimates and statistics are presented. The statistics are the standard errors

for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant estimates

are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also with p-value

and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics are further

R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the Durbin–

Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are given for

completeness. They are of course independent from the chosen model. HXVJGS refers to a Heston-like

model with season, with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps occurring simultaneously.

Medians Model HXVJGS

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,78 1075,68 0,001 0,9993 0,27% 0,13%

β 0,002 0,36 0,01 0,9916 2,27% 2,00%

√v 2,11 451,50 0,004 0,4985 2,00% 1,73%

κ 59,53 0,51 109,68 0,0000 81,20% 79,33%

θ 3,10 895,90 0,001 0,4995 1,87% 1,87%

σ 0,20 0,31 0,44 0,3200 32,93% 26,13%

ρ 0,45 0,52 0,88 0,3973 36,67% 31,73%

λ 0,97 1098,20 0,0003 0,4999 2,00% 1,87%

µJ 0,03 928,76 0,0001 1,0000 0,00% 0,00%

σJ 0,18 1185,31 0,0001 0,5000 1,33% 1,33%

η 0,02 367,40 0,00003 0,5000 1,73% 1,73%

γ 2,53 664,76 0,003 0,4988 3,20% 2,80%

ρJ 0,86 634,25 0,001 0,9991 0,67% 0,40%

s0 25,17 5,23 5,00 0,0007 84,53% 72,53%

s1 0,64 0,03 20,48 0,0000 98,53% 97,47%

 F-Statistic Prob. sign. 5% sign. 1%

8,68 0,0012 79,33% 67,60%

R-squared 0,93  Mean dependent var 150,83

Adjusted R-squared 0,82  S.D. dependent var 19,65

Akaike info criterion 7,32  Schwarz criterion 8,06

Log likelihood -75,44  Durbin-Watson stat 1,45
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6.3.3 Out-of-Sample Behaviour

Like for model group 1, see Sect. 6.1.3, we show the RMSEs not only with the

optimal parameters for day t, but we computed it also with the parameters that were

optimal on day t-1 (RMSE(~ϑ(t-1))), with the medians of optimal parameters from

day 1 to t-1 (RMSE(median(~ϑ(1:t-1)))), and with the medians of all parameters

(RMSE(~ϑ(1:end))). The results are shown in Table 6.16.

Table 6.16. RMSEs – Out-of-Sample

In this summary statistics table, mean, median and standard deviation of the RMSEs are reported, with

the parameters determined by minimising the RMSEs, and the RMSEs calculated with the parameters

that were optimal in the estimations of the day before, called here RMSE(~ϑ(t-1)), the RMSEs calculated

with the medians of optimal parameters from day 1 (1 October 1999) until day t-1 (RMSE(median(~ϑ(1:t-

1)))), and the RMSEs calculated with the medians of optimal parameters from day 1 (1 October 1999)

until the last day (30 September 2002), called RMSE(median(~ϑ(1:end))). The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

RMSE RMSE(ϑ(t-1)) RMSE(median((ϑ(1:t-1))) RMSE(median(ϑ(1:end)))
HS Mean 7.82 12.15 22.16 23.04

Median 5.92 8.46 16.83 17.14
Std. Dev. 8.64 18.15 27.76 26.79

HXJS Mean 6.04 11.19 28.40 31.69
Median 4.96 7.46 24.26 29.91
Std. Dev. 5.62 18.99 22.88 20.32

HVJS Mean 6.02 11.18 23.13 23.57
Median 5.08 7.72 18.75 19.21
Std. Dev. 4.32 18.99 24.68 23.93

HVJGS Mean 5.33 10.76 28.87 34.21
Median 4.62 7.15 26.28 32.34
Std. Dev. 4.39 17.77 22.98 19.66

HXVJS Mean 5.37 10.65 29.85 30.91
Median 4.93 7.32 26.14 28.95
Std. Dev. 2.51 16.96 25.85 20.60

HXVJGS Mean 5.98 11.22 33.97 31.04
Median 5.10 7.51 32.31 29.20
Std. Dev. 4.02 17.84 20.22 20.56
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Comparing first RMSE(~ϑ(t-1)), RMSE(median(~ϑ(1:t-1))) and

RMSE(median(~ϑ(1:end))), we can draw similar conclusions as in model group 1.

For all models, RMSE(~ϑ(t-1)) is the lowest with values of a half to a third of

the other two. In addition, with exclusion of the means and medians of model

HXVJGS with 33.97 and 32.31 for RMSE(median(~ϑ(1:t-1))) and 31.04 and 29.20

for RMSE(median(~ϑ(1:end))), RMSE(median(~ϑ(1:t-1))) is always slightly lower

than RMSE(median(~ϑ(1:end))). The models are more appropriate for the data for

short time intervals than for longer periods.

Now we will look at each model. The difference in RMSE(~ϑ(t-1)) between the

models of model group 3 is not very high, the medians are in a range from 7.15

for model HVJGS to 8.46 for model HS, the means are between 10.65 for model

HXVJS and 12.15 for model HS. The standard deviations are around 18 and 19 for

all models. Though still very low, the values of RMSE(~ϑ(t-1)) are not as close to the

RMSEs that resulted in the optimisation process, as the values of RMSE(~ϑ(t-1)) in

Sect. 6.1.3. The out-of-sample fitting is worse.

The differences between the models of model group 3 are more obvious if we

look at RMSE(median(~ϑ(1:t-1))) and RMSE(median(~ϑ(1:end))). Although HS is

the worst model for RMSE(~ϑ(t-1)), it now turns out to be the clear favourite.

With means of 22.16 and 23.04 and medians of 16.83 and 17.14, the values are

clearly lower than, for example, for model HVJGS with means of 28.87 and 34.21

and medians of 26.28 and 32.43, or model HXVJS with means of 29.85 and 30.91

and medians of 26.14 and 28.95. Model HVJS seems to be the second best, with

means of 23.13 and 23.57 and medians of 18.75 and 19.21. Model HXJS has values

of the same size as HVJGS, HXVJS and HXVJGS.

If we compare the results to model group 1 up to now, the suspicion arises

that the models in model group 3 might be overspecified. For model group 1, the

models OUS and OUJS that had the best fit, i.e. the lowest RMSEs, are also the

preferred ones in the out-of-sample analysis; this is clearly not the case for models

HVJGS and HXVJS. The values here are also absolutely higher for the latter two

models than for models OUS and OUJS of model group 1. Furthermore, the models
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HVJGS and HXVJS only show a good performance for RMSE(~ϑ(t-1)); for the other

calculations they are as inappropriate as all other extensions of HS.

6.3.4 Option Pricing

The procedures followed for models HS, HXJS, HVJS, HVJGS, HXVJS and

HXVJGS are the same as for models OU, OUJ, OUS and OUJS of model group 1.

The results are listed in Table 6.17.

Table 6.17. RMSEs of option pricing

In this summary statistics table, mean, median and standard deviation of the RMSEs of the compar-

ison of calculated and observed option prices are reported. In RMSE(~ϑ(t)), the parameters of day t,

implicitly estimated by futures and forward prices, are used; in RMSE(median(~ϑ(1:t)), the medians of

all parameters until day t, implicitly estimated by futures and forward prices, are used; and finally, in

RMSE(median(~ϑ(1:end)), the medians of all parameters, implicitly estimated by futures and forward

prices, are used. The models are:

• HS: a Heston-like model with season,

• HXJS: the same model with a normal-distributed jump in the first state variable,

• HVJS: with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJS: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJGS: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

RMSE(ϑ(t)) RMSE(median((ϑ(1:t))) RMSE(median(ϑ(1:end)))
HS Mean 44.24 29.86 27.93

Median 17.48 13.39 11.72
Std. Dev. 101.14 43.07 44.01

HXJS Mean 42.86 35.11 31.86
Median 11.06 12.76 14.62
Std. Dev. 90.88 43.38 43.97

HVJS Mean 36.75 22.34 26.59
Median 12.64 7.23 8.96
Std. Dev. 51.24 43.27 46.54

HVJGS Mean 30.09 32.14 30.20
Median 8.80 12.88 10.62
Std. Dev. 37.98 43.93 44.20

HXVJS Mean 28.38 34.26 31.09
Median 8.36 12.87 13.20
Std. Dev. 37.69 43.14 43.25

HXVJGS Mean 37.76 35.34 31.21
Median 10.01 12.89 13.39
Std. Dev. 79.68 43.33 43.09
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Although it seems difficult to detect at first, the results here support the results

of Sects. 6.3.1, 6.3.2, 6.3.3, as well as showing similarities to Sect. 6.1.4.

The difference compared to the last subsection is, which agrees with Sect. 6.1.4,

that the values for RMSE(~ϑ(t)) are not always the lowest. The statistic with the

lowest values is dependent on the model: sometimes it is RMSE(median(~ϑ(1:t))),

RMSE(~ϑ(t)), or sometimes even RMSE(median(~ϑ(1:end))). The absolute values

are often lower than those of Table 6.7,and the standard deviations, ignoring some

exceptions, are higher. Also, the means are always two times or more the values of

the medians, indicating high outliers.

The model with the lowest means and medians for RMSE(median(~ϑ(1:t)))

and RMSE(median(~ϑ(1:end))) is HVJS, with values of 22.34 and 7.23 for

RMSE(median(~ϑ(1:t))) and 26.59 and 8.96 for RMSE(median(~ϑ(1:end))), re-

spectively. The mean and median of RMSE(~ϑ(t)) are 36.75 and 12.64 for this

model. RMSE(~ϑ(t)) has the lowest values for model HXVJS, with a mean of

28.38 and a median of 8.36. It is the only model for which RMSE(~ϑ(t)) has

a mean below 30.00. RMSE(median(~ϑ(1:t))) and RMSE(median(~ϑ(1:end)))

also have means below 30.00, apart from model HVJS, for model HS, with

29.86 for RMSE(median(~ϑ(1:t))) and 27.93 for RMSE(median(~ϑ(1:end))).

A further remarkable model, that seems to have acceptable values for

all of the statistics, is HVJGS, with medians of 8.80, 12.88 and 10.62 for

RMSE(~ϑ(t)), RMSE(median(~ϑ(1:t))) and RMSE(median(~ϑ(1:end))).

Thus, the results favour models HVJS, HVJGS and HXVJS, but we also get

relatively low means for RMSE(median(~ϑ(1:t))) and RMSE(median(~ϑ(1:end))) for

model HS, the clear favourite in the last subsection. The validity of the models for

short time intervals only does not play a role here, as it has already been noticed

for model group 1 in Sect. 6.1.4.
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In general, the models of this model group are often not clearly distinctive for

the quality of their results. Jumps in the variance process seem to improve model

HS, and sometimes also Γ−distributed size jumps are preferred over exponential-

distributed ones, but only if they are not combined with jumps in the deseasonalised

log prices x. Models HXJS and HXVJGS, the model with jumps in x and the model

with simultaneous jumps in x and the variance process v, with Γ-distributed jump

sizes in v, show the poorest performance.

6.4 Conclusions of Empirical Results

In this chapter, we compared various model groups. The characteristic of the first

model group was its mean reversion, i.e. the assumption that the spot price would

always move around a deterministic value θ. The basic model was extended with

jumps and with deterministic components to account for the seasonal behaviour

of electricity prices. The last extension proved to be very important while jumps

could not really improve the model, also due to numerical problems.

The basic model of our second model group was a model with stochastic volatility

like proposed by Heston (1993). This base model was extended with jumps in the

log spot price x as well as with jumps in the variance process v. The jump sizes in

v were either exponentially or Γ-distributed. The model was further extended with

simultaneous jumps in x and v, and the jumps in v again were exponentially or

Γ-distributed. The seasonal characteristics of the prices were ignored. The fitting

of all of these models did not really exceed the fitting results for model group 1

without seasonal modelling. Furthermore, not even one F-statistic was significant

at the 5% level, so we decided not to discuss the model group, but to list all figures

and tables in Appendix A.

The third model group exactly corresponds to model group 2, but with the

inclusion of seasonal modelling as was already proven to be very useful in model

group 1. This improves all results of model group 2 to the same extent that the

models in model group 1 without seasonal components were improved by adding

them. All F-statistics were then significant at the 1% level, at least at the median.

Nevertheless, the results could not clearly surpass the optimal values of model
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group 1, and in out-of-sample considerations, the models of model group 3 even

seemed to be overfitted. The absolute values in the subsection, where options were

priced, were in general better for the last model group, though the results of option

pricing have to be carefully interpreted, because the available sample of observed

option prices was very low.

The most important feature in the models were the components for the seasonal

behaviour of the spot prices. Mean reversion was only modelled in model group 1,

and it already led to results which were difficult for the complex models of model

group 3 to cope with. Moreover, signs of overfitting for this model group were

noticed in out-of-sample considerations.

For future research, we would therefore propose models that contain advanced

deterministic components for the mapping of, for example, seasonal behaviour.

Maybe other regressors like water reservoir levels could be included. Models that

include mean reversion are preferable. If no analytic solutions for models with mean

reversion in the first state variable and stochastic volatility can be found, numerical

solutions for this combination should be examined. The possibilities still remaining

are challenging.
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Chapter 7

Summary and Conclusions

The purpose of this work was twofold. The electricity market is looking for pricing

models that can explain the characteristics of its price movements with sometimes

tremendous up-moves followed soon after by down-moves to the previous levels,

movements that are also called spikes. Furthermore, we observe that for some

seasons in the year, the prices are always higher than for other seasons, in the Nordic

countries, for example, electricity is more expensive in winter than in summer,

caused by a higher consumption of heating. This was one challenge for us.

Moreover, we wanted to apply the models, that were introduced by Duffie et al.

(2000) for stock markets, for electricity. We adapted these models for electricity

prices and added components and generalisations where it seemed reasonable and

possible.

This work proceeded as follows:

First, we examined the validity of restrictions on pricing models that apply to

tradable assets for electricity prices. With less restrictions, the set of possible models

becomes larger. Futures and forward prices can be used to implicitly estimate

parameters that cannot be estimated from futures and forward prices on tradable

assets.

After having explained some preliminaries, we could present our approach for

pricing and estimation.

Next, we regarded the Nordic power exchange Nord Pool. The spot as well as

the financial market were analysed and the available products and contracts were
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explained. The spot prices and the term structure of futures/forward and option

prices were examined and visualised.

Then we presented the models which we used. We employed a model that is well

known in pricing commodities, an Ornstein–Uhlenbeck (OU) process, and extended

it in various ways: first, we added Poisson-jumps with Gaussian-distributed jump

sizes to the log prices, and then we enriched the price process with a deterministic

function responsible for catching deterministic characteristics of electricity prices,

especially seasonal characteristics.

But this was not the only model group used. We also employed a model with

stochastic volatility, similar to the one proposed by Heston (1993). Recent exten-

sions introduced by Duffie et al. (2000) for the stock market were adopted and

extended. These are jumps that occur in the volatility process, and jumps that

simultaneously occur in the log prices and in the volatility process. Whereas the

jump sizes in the volatility process, or better variance process, in Duffie et al. (2000)

are distributed with an Exponential, we also take Γ-distributions into consideration,

that are a generalisation of Exponential distributions. Furthermore, as the exten-

sions for seasonality in the OU-models were very successful, these were also applied

to the Heston-type models.

The models were all presented and the necessary calculations for estimation

and pricing were performed. Often, though, closed-form solutions are not available

and integrals had to be solved numerically.

In the next chapter, we presented the empirical results and compared the differ-

ent models and model groups using various statistics and out-of-sample considera-

tions. Also, options were priced by Monte Carlo methods and compared with the

traded option contracts in Nord Pool.

The results show the importance of the inclusion of features that can map

the seasonal behaviour of electricity prices. Mean reversion also seems important

and similar results for Heston-like processes can only be obtained by adding more

structure, as for example jumps in the volatility process. In the cases where no
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closed-form solutions were available and integrals had to be solved numerically,

the results contained high outliers. Nevertheless, if these extensions could be com-

bined with mean reversion in the log prices, further advances could be accomplished.

For further research on electricity prices, we recommend extending OU models

with more elaborate seasonal components or further regressors. Models with sto-

chastic volatility and jumps, like proposed by Duffie et al. (2000) and enhanced by

us, can be combined with mean reversion. More generalisations and extensions are

possible.

It would also be of interest to employ the model extensions of Γ-distributed

jump sizes that we introduced, for the stock market or other financial or commodity

markets. Not being specifically tailored to electricity prices, these extensions can

also improve the models of Duffie et al. (2000) for markets with tradable assets.
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Appendix A

Appendix to Empirical Results, Model Group 2

A.1 Summary Statistics

The summary statistics are in Tables A.1 and A.2, the histograms in Figs. A.1,

A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12 and A.13.
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Table A.1. Summary Statistics models H, HXJ, HVJ, HVJG, HXVJ and HXVJG

For each trading day between 01 October 1999 and 30 September 2002, all parameters for the relevant

models were independently estimated. Futures and forward contracts lead to implicit estimates min-

imising the RMSE (root mean squared error) for all contracts. In this summary statistics table, mean,

median and standard deviation of each parameter are reported, as well as of the RMSE. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

α β √v κ θ σ ρ
Model H
Mean -4,24 0,01 2,56 52,83 8,65 0,60 0,59
Median -1,01 0,01 1,90 13,50 1,86 0,44 0,95
Std. Dev. 11,57 0,02 2,76 70,01 25,81 0,71 0,65

Model HXJ
Mean -2,73 0,01 2,42 84,96 5,85 0,47 0,23
Median -0,78 0,01 2,27 39,42 1,06 0,24 0,57
Std. Dev. 9,04 0,02 1,55 84,67 25,37 0,82 0,79

Model HVJ
Mean -4,97 0,01 2,66 52,24 10,14 0,63 0,45
Median -0,96 0,01 2,20 11,81 1,66 0,29 0,71
Std. Dev. 12,19 0,02 1,82 70,47 37,30 1,34 0,69

Model HVJG
Mean -3,86 0,01 2,30 47,14 6,46 0,40 0,60
Median -0,65 0,003 1,89 10,56 1,09 0,30 0,80
Std. Dev. 8,01 0,01 1,56 68,83 13,71 0,37 0,55

Model HXVJ
Mean -3,37 0,002 2,10 37,15 6,28 0,39 0,47
Median -1,30 0,001 1,80 9,61 1,57 0,28 0,64
Std. Dev. 5,56 0,01 1,44 59,32 14,14 0,50 0,60

Model HXVJG
Mean -3,45 0,005 2,16 45,59 8,09 0,25 0,20
Median -1,54 0,003 1,81 11,08 1,68 0,16 0,28
Std. Dev. 6,42 0,02 1,99 66,78 34,37 0,53 0,59
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Table A.2. Summary Statistics models H, HXJ, HVJ, HVJG, HXVJ and HXVJG – Continued

λ µJ σJ η γ ρJ RMSE
Model H
Mean 15,31
Median 14,48
Std. Dev. 6,20

Model HXJ
Mean 3,51 0,12 0,29 16,42
Median 0,62 0,13 0,18 15,02
Std. Dev. 15,12 0,30 0,43 7,65

Model HVJ
Mean 12,15 0,28 14,65
Median 2,98 0,02 14,06
Std. Dev. 40,98 1,43 4,05

Model HVJG
Mean 7,54 0,08 18,04 14,20
Median 2,64 0,02 2,20 13,82
Std. Dev. 28,15 0,29 294,07 2,86

Model HXVJ
Mean 3,66 0,14 0,29 0,12 0,98 14,20
Median 1,00 0,13 0,20 0,03 0,86 13,86
Std. Dev. 15,77 0,22 0,39 0,96 1,37 2,79

Model HXVJG
Mean 6,24 0,07 0,24 0,06 12,69 0,67 14,45
Median 3,34 0,09 0,20 0,01 1,73 0,80 13,97
Std. Dev. 18,71 0,29 0,20 0,67 103,28 1,49 3,60
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Figure A.1. Histograms RMSEs

The RMSEs for all estimations are plotted in a histogram for each model. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.2. Histograms α

The parameter values of α for all estimations are plotted in a histogram for each model. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.3. Histograms β

The parameter values of β for all estimations are plotted in a histogram for each model. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.4. Histograms
√

v

The parameter values of
√

v for all estimations are plotted in a histogram for each model. The models

are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.5. Histograms κ

The parameter values of κ for all estimations are plotted in a histogram for each model. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.6. Histograms θ

The parameter values of θ for all estimations are plotted in a histogram for each model. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.7. Histograms σ

The parameter values of σ for all estimations are plotted in a histogram for each model. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.8. Histograms ρ

The parameter values of ρ for all estimations are plotted in a histogram for each model. The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.9. Histograms λ

The parameter values of λ for all estimations are plotted in a histogram for each model. The models are:

• HXJ: a Heston-like model with a normal-distributed jump in the first state variable,

• HVJ: the same Heston-like model with an exponential-distributed jump in the second state variable,

• HVJGS: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.10. Histograms µJ and σJ

The parameter values of µJ and σJ for all estimations are plotted in a histogram for each parameter and

for each model. The models are:

• HXJ: a Heston-like model with a normal-distributed jump in the first state variable,

• HXVJ: the same Heston-like model with a normal-distributed jump in the first state variable and

an exponential-distributed jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.11. Histograms η

The parameter values of η for all estimations are plotted in a histogram for each model. The models are:

• HVJ: a Heston-like model with an exponential-distributed jump in the second state variable,

• HVJG: the same Heston-like model with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.
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Figure A.12. Histograms γ

The parameter values of γ for all estimations are plotted in a histogram for each model. The models are:

• HVJG: a Heston-like model with a Γ-distributed jump in the second state variable,

• HXVJG: the same Heston-like model with a normal-distributed jump in the first state variable

and a Γ-distributed jump in the second state variable, both jumps also occurring simultaneously.
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Figure A.13. Histograms ρJ

The parameter values of ρJ for all estimations are plotted in a histogram for each model. The models are:

• HXVJ: a Heston-like model with a normal-distributed jump in the first state variable and an

exponential-distributed jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: the same model, but with a Γ-distributed jump in the second state variable.
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A.2 Regression Statistics

The regression statistics are in Tables A.3, A.4, A.5, A.6, A.7 and A.8.

Table A.3. Regression Statistics Model H

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. H refers to a Heston-like

model.

Medians Model H

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,01 392,52 0,002 0,9982 0,00% 0,00%

β 0,01 11,57 0,001 0,9995 0,27% 0,13%

√v 1,90 305,51 0,01 0,4976 0,08% 0,00%

κ 13,50 10,94 1,26 0,0822 48,27% 44,13%

θ 1,86 706,56 0,002 0,4991 1,87% 1,87%

σ 0,44 10,67 0,04 0,4811 16,67% 15,20%

ρ 0,95 13,67 0,06 0,9549 15,87% 13,60%

 F-Statistic Prob. sign. 5% sign. 1%

1,68 0,1934 32,80% 19,87%

R-squared 0,36  Mean dependent var 150,83

Adjusted R-squared 0,15  S.D. dependent var 19,65

Akaike info criterion 8,74  Schwarz criterion 9,08

Log likelihood -103,07  Durbin-Watson stat 1,17
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Table A.4. Regression Statistics Model HXJ

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HXJ refers to a Heston-like

model with a normal-distributed jump in the first state variable.

Medians Model HXJ

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -0,78 1381,76 0,0003 0,9997 0,27% 0,27%

β 0,01 3,02 0,0023 0,9982 1,07% 0,80%

√v 2,27 668,50 0,003 0,4989 0,08% 0,00%

κ 39,42 4,10 6,79 0,0000 61,07% 58,80%

θ 1,06 1369,34 0,0003 0,4999 0,67% 0,67%

σ 0,24 2,78 0,05 0,4810 15,20% 12,40%

ρ 0,57 3,95 0,16 0,8790 22,27% 18,00%

λ 0,62 1564,42 0,0002 0,4999 0,40% 0,40%

µJ 0,13 1310,87 0,0001 0,9999 0,00% 0,00%

σJ 0,18 1595,54 0,0001 0,5000 0,53% 0,53%

 F-Statistic Prob. sign. 5% sign. 1%

0,66 0,7342 16,67% 9,60%

R-squared 0,29  Mean dependent var 150,83

Adjusted R-squared -0,15  S.D. dependent var 19,65

Akaike info criterion 9,06  Schwarz criterion 9,55

Log likelihood -103,82  Durbin-Watson stat 1,05
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Table A.5. Regression Statistics Model HVJ

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HVJ refers to a Heston-like

model with an exponential-distributed jump in the second state variable.

Medians Model HVJ

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -0,96 520,60 0,001 0,9992 0,53% 0,40%

β 0,01 8,13 0,001 0,9993 1,60% 1,20%

√v 2,20 312,52 0,01 0,4976 0,08% 0,00%

κ 11,81 7,70 1,90 0,0343 51,60% 47,20%

θ 1,66 996,98 0,001 0,4997 1,47% 1,20%

σ 0,29 7,49 0,03 0,4867 11,20% 9,73%

ρ 0,71 10,23 0,06 0,9500 18,00% 15,20%

λ 2,98 1134,62 0,002 0,4992 1,20% 1,07%

η 0,02 779,88 0,00002 0,5000 0,67% 0,67%

 F-Statistic Prob. sign. 5% sign. 1%

1,26 0,3331 23,47% 14,40%

R-squared 0,39  Mean dependent var 150,83

Adjusted R-squared 0,08  S.D. dependent var 19,65

Akaike info criterion 8,84  Schwarz criterion 9,28

Log likelihood -102,02  Durbin-Watson stat 1,26
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Table A.6. Regression Statistics Model HVJG

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HVJG refers to a Heston-

like model with a Γ-distributed jump in the second state variable.

Medians Model HVJG

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -0,65 557,67 0,001 0,9994 0,27% 0,27%

β 0,003 14,40 0,0003 0,9998 0,93% 0,67%

√v 1,89 421,89 0,004 0,4985 0,08% 0,00%

κ 10,56 11,01 1,04 0,1482 44,53% 41,07%

θ 1,09 1031,00 0,001 0,4997 0,67% 0,67%

σ 0,30 11,63 0,03 0,4891 14,53% 12,13%

ρ 0,80 16,12 0,05 0,9611 15,47% 12,67%

λ 2,64 1210,80 0,002 0,4992 0,93% 0,93%

η 0,02 202,98 0,0001 0,5000 0,67% 0,67%

γ 2,20 510,82 0,004 0,4983 2,80% 2,40%

 F-Statistic Prob. sign. 5% sign. 1%

1,21 0,3594 20,80% 12,40%

R-squared 0,42  Mean dependent var 150,83

Adjusted R-squared 0,07  S.D. dependent var 19,65

Akaike info criterion 8,90  Schwarz criterion 9,39

Log likelihood -101,80  Durbin-Watson stat 1,33
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Table A.7. Regression Statistics Model HXVJ

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HXVJ refers to a Heston-

like model with a normal-distributed jump in the first state variable and an exponential-distributed jump

in the second state variable, both jumps occurring simultaneously.

Medians Model HXVJ

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,30 1307,78 0,001 0,9994 0,40% 0,40%

β 0,001 7,60 0,0003 0,9998 0,53% 0,40%

√v 1,80 510,16 0,003 0,4987 0,08% 0,00%

κ 9,61 7,69 1,18 0,0882 47,73% 43,87%

θ 1,57 1368,48 0,001 0,4997 2,13% 2,00%

σ 0,28 6,37 0,02 0,4903 17,20% 15,07%

ρ 0,64 9,32 0,07 0,9418 16,00% 12,53%

λ 1,00 1536,50 0,0005 0,4998 1,60% 1,60%

µJ 0,13 1315,05 0,0001 0,9999 0,00% 0,00%

σJ 0,20 1513,14 0,0001 0,5000 1,60% 1,60%

η 0,03 1126,91 0,00002 0,5000 2,13% 2,00%

ρJ 0,86 1390,21 0,001 0,9996 0,40% 0,40%

 F-Statistic Prob. sign. 5% sign. 1%

0,83 0,6187 12,40% 4,53%

R-squared 0,42  Mean dependent var 150,83

Adjusted R-squared -0,09  S.D. dependent var 19,65

 Akaike info criterion 9,08  Schwarz criterion 9,67

Log likelihood -102,01  Durbin-Watson stat 1,29
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Table A.8. Regression Statistics Model HXVJG

The medians of all coefficient estimates and statistics are presented. The statistics are the standard

errors for the parameter estimates, the t-Statistics, and their p-value. The proportions of the significant

estimates are given, at the 5% and the 1% level. Moreover, the F-Statistic for the model is plotted, also

with p-value and the proportion of significant estimates at the 5% and the 1% level. Relevant statistics

are further R2, the Adjusted R2, Akaike and Schwarz information criterions, the log likelihood and the

Durbin–Watson statistic. The mean and standard deviation of the dependent variables F (t, T1, T2) are

given for completeness. They are of course independent from the chosen model. HXVJG refers to a

Heston-like model with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps occurring simultaneously.

Medians Model HXVJG

 Name  Coefficient  Std. Error  t-Statistic Prob. sign. 5% sign. 1%

α -1,54 2018,52 0,0005 0,9996 1,07% 1,07%

β 0,003 3,35 0,001 0,9990 1,60% 0,93%

√v 1,81 712,04 0,002 0,4992 0,08% 0,00%

κ 11,08 4,03 3,24 0,0030 58,00% 52,27%

θ 1,68 1693,41 0,0004 0,4998 2,00% 1,73%

σ 0,16 3,22 0,03 0,4894 12,93% 10,67%

ρ 0,28 4,37 0,09 0,9274 16,00% 13,20%

λ 3,34 1991,49 0,001 0,4995 1,47% 1,47%

µJ 0,09 1127,66 0,0001 0,5000 0,53% 0,53%

σJ 0,20 1975,38 0,0001 0,5000 0,80% 0,67%

η 0,01 344,48 0,00003 0,5000 0,80% 0,80%

γ 1,73 582,93 0,002 0,4991 2,53% 2,00%

ρJ 0,80 595,67 0,001 0,9990 1,60% 1,20%

 F-Statistic Prob. sign. 5% sign. 1%

0,68 0,7479 8,67% 3,47%

R-squared 0,42  Mean dependent var 150,83

Adjusted R-squared -0,20  S.D. dependent var 19,65

Akaike info criterion 9,16  Schwarz criterion 9,79

Log likelihood -102,02  Durbin-Watson stat 1,27
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A.3 Out-of-Sample Behaviour

For the RMSEs with lagged estimates and medians of estimates see Table A.9.

Table A.9. RMSEs – Out-of-Sample

In this summary statistics table, mean, median and standard deviation of the RMSEs with the parameters

determined by minimising the RMSEs are reported, and the RMSEs calculated with the parameters that

were optimal in the estimations of the day before, called here RMSE(~ϑ(t-1)), the RMSEs calculated with

the medians of optimal parameters from day 1 (1 October 1999) until day t-1 (RMSE(median(~ϑ(1:t-1)))),

and the RMSEs calculated with the medians of optimal parameters from day 1 (1 October 1999) until the

last day (30 September 2002), called RMSE(median(~ϑ(1:end))). The models are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

RMSE RMSE(ϑ(t-1)) RMSE(median((ϑ(1:t-1))) RMSE(median(ϑ(1:end)))
H Mean 15.31 18.77 36.30 32.27

Median 14.48 16.20 30.10 26.73
Std. Dev. 6.20 15.35 32.71 27.55

HXJ Mean 16.42 19.53 36.80 36.77
Median 15.02 16.71 29.57 31.19
Std. Dev. 7.65 15.78 26.04 24.47

HVJ Mean 14.65 18.39 40.04 34.38
Median 14.06 15.89 35.66 30.36
Std. Dev. 4.05 14.74 31.48 28.13

HVJG Mean 14.20 17.91 39.98 33.48
Median 13.82 15.62 37.42 28.77
Std. Dev. 2.86 14.08 32.43 28.27

HXVJ Mean 14.20 17.99 48.85 47.45
Median 13.86 15.65 47.22 44.25
Std. Dev. 2.79 14.10 26.72 20.87

HXVJG Mean 14.45 18.08 43.23 42.38
Median 13.97 15.65 38.05 38.29
Std. Dev. 3.60 14.01 25.78 22.36
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A.4 Option Pricing

The results of the option pricing are in Table A.10.

Table A.10. RMSEs of option pricing

In this summary statistics table, mean, median and standard deviation of the RMSEs of the comparison

of calculated and observed option prices are reported. In RMSE(~ϑ(t)) the parameters estimated implicitly

by futures and forward prices are used, in RMSE(median(~ϑ(1:t)) the medians of all implicitly with futures

and forward prices estimated parameters until day t are used, and finally, in RMSE(median(~ϑ(1:end)),

the medians of all implicitly with futures and forward prices estimated parameters are used. The models

are:

• H: a Heston-like model,

• HXJ: the same model with a normal-distributed jump in the first state variable,

• HVJ: with an exponential-distributed jump in the second state variable,

• HVJG: with a Γ-distributed jump in the second state variable,

• HXVJ: with a normal-distributed jump in the first state variable and an exponential-distributed

jump in the second state variable, both jumps occurring simultaneously,

• HXVJG: with a normal-distributed jump in the first state variable and a Γ-distributed jump in

the second state variable, both jumps also occurring simultaneously.

RMSE(ϑ(t)) RMSE(median((ϑ(1:t))) RMSE(median(ϑ(1:end)))
H Mean 44.43 26.36 25.74

Median 14.95 10.35 9.16
Std. Dev. 180.24 43.49 46.03

HXJ Mean 47.26 21.55 23.56
Median 8.58 7.26 9.09
Std. Dev. 259.31 43.75 44.19

HVJ Mean 70.87 25.27 26.72
Median 21.11 8.29 9.57
Std. Dev. 208.80 43.61 45.46

HVJG Mean 37.40 29.08 29.57
Median 10.89 11.56 10.57
Std. Dev. 57.31 43.91 46.33

HXVJ Mean 31.68 28.83 26.98
Median 13.06 13.46 12.80
Std. Dev. 37.71 42.69 42.79

HXVJG Mean 32.83 35.10 30.48
Median 9.62 12.84 14.43
Std. Dev. 41.65 43.41 43.71
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Notation and Symbols

In the following, the most frequent notation and symbols are listed and explained.

ADF Augmented Dickey Fuller test

AIC Akaike Information Criterion

A the generator of an Itô or jump diffusion Xt

AS(T1, Tn) arithmetic average of S from T1 to Tn

billion 1, 000, 000, 000

CfD Contract for Difference

C(·), P (·), O(·) Call-, Put-, Option price

Ce(·), Pe(·), Ca(·),

Pa(·)

European-, Asian-style call or put

Cm(Rn) m-times differentiable functions from Rn to R,

with continuous m-th derivative

C1,2(R× Rn) the functions f(t, x) : R× Rn → R which are

C1 with respect to t, and C2 with respect to

x.

C complex numbers

dt infinitesimal time increment

dP infinitesimal Poisson-distributed increments

dZt infinitesimal Brownian increment
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D Du = Au− ∂u
∂t

Exp(1/η) Exponential distribution with mean η and

variance η2

E[·], E[·|·], Et[·] expectation operator, conditional expectation

f(t) deterministic function for seasonal behav-

iour of electricity prices, in our models

f(t) = s0 cos
(

2π
365

(t + 365s1)
)

F (t, T ), F (t, T1, Tn) futures or forward price

F̂ (·), Ô(·) theoretical prices of futures/forwards or op-

tions

Ft, t ≥ 0 filtration, information set up to time t

Γ(1/η, γ) Gamma or Γ-distribution with mean ηγ and

variance η2γ

H a Heston-like model

HXJ a Heston-like model with a normal-distributed

jump in the first state variable

HVJ a Heston-like model with an exponential-

distributed jump in the second state variable

HVJG a Heston-like model with a Γ-distributed jump

in the second state variable

HXVJ a Heston-like model with a normal-distributed

jump in the first state variable and an

exponential-distributed jump in the second

state variable, both jumps occurring simulta-

neously
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HXVJG a Heston-like model with a normal-distributed

jump in the first state variable and a Γ-

distributed jump in the second state variable,

both jumps also occurring simultaneously

HS, HXJS, HVJS,

HVJGS, HXVJS,

HXVJGS

the same models as H, HXJ, HVJ, HVJG,

HXVJ and HXVJG, but with additional sea-

sonal modelling

i.i.d. independently and identically distributed

i imaginary unit,
√
−1

~J , JX , Jv (randomly distributed) jump size, in X, in v

K strike or exercise price

KBE Kolmogorov’s Backward Equation

κ, θ, σ, λ, µJ , σJ , α,

β,
√

v, ρ, η, γ, ρJ , s0,

s1

parameters in models

log price, log spot

price

natural logarithm of spot price

log(·) natural logarithm

MSE Mean Squared Error

MWh, MWh/h Mega-watt Hours, Mega-watt Hours per Hour

NECH Nordic Electricity Clearing House

NOK Norwegian Kronor, monetary unit of Norway

N(µ, σ2) Gaussian distribution with mean µ and vari-

ance σ2.

N the natural numbers
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~ν, ν(Jx, Jv), νJX
, νJv density of jump size or jump sizes

OU Ornstein–Uhlenbeck process model

OUJ Ornstein–Uhlenbeck process model with jump

OUS Ornstein–Uhlenbeck process model with sea-

son

OUJS Ornstein–Uhlenbeck process model with jump

and season

OTC over-the-counter

(Ω,F , P ) probability space

pdf probability density function

prob. probability

PJM Pennsylvania–New Jersey–Maryland Electric-

ity Market

Po(λ) Poisson distribution with mean λ

Φ(·) characteristic function

RMSE Root Mean Squared Error

r riskless interest rate

R the real numbers

R+
0 the real positive numbers, including 0

Rn n-dimensional Euclidean space

Rn×m the n×m real-valued matrices

sign. 5%, sign. 1% significant at the 5% level, at the 1% level

Std. Error Standard Error

SC Schwarz Criterion

S.D. standard deviation
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S, St, S(t) asset, electricity price or stochastic process of

asset or electricity price at time t

t-stat t-statistic

t variable for time

T , T1, . . . , Tn variable for expiry/delivery day or days

TWh Tera-watt Hours

~ϑ vector of parameters

τ time to maturity, T − t

var variable

vs. versus, against

v, vt parameter for variance or variance process
√

v,
√

vt parameter for volatility

Xt, xt stochastic process, logarithm of St or loga-

rithm of St − f(t)

~Yt = (Xt, vt)
′

Zt standard Brownian motion

∀ for all

≡ equivalent to

≈ approximately

∼, Y ∼ N(µ, σ2) distributed with, Y is distributed with

N(µ, σ2)

|, A|B restricted to, A restricted to B
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