16

“The Imp’ortance of Being Lazy”—
Using Lazy Evaluation to Process
Queries to HPSG Grammars

THILO GOTZ AND WALT DETMAR MEURERS

16.1 Introduction

- Linguistic theories formulated in the archit
- precise and explicit since HPSQ provides
’ However, when querying a faithful imple
~ theory, the large data structures specified can make it hard to see the
relevant aspects of the reply given by the system. Furthermore, the
system spends much time applying constraints which can never fail just
to be able to enumerate specific answers. In thig paper we want to
describe lazy evaluation as the result of an off-line compilation technique.
 This method of evaluation can be used to answer queries to an HPSG
system so that only the relevant aspects are checked and output.
The paper is organized as follows. The next section describes three
different ways to check grammaticality. In Section 16.3, we introduce our
lazy compilation method and compare it to a more standard compilation.

We examine the theoretical properties of our approach in Section 16.4
“and conclude in Section 16.5.

ecture of HPSQG can be very
a formally well-defined setup.
mentation of such an explicit

i

'16.2 Three Ways to Check Grammaticality
Formally speaking,

a HPSG grammar consists of a signature defining
the linguistic ontolo

gy and a theory describing the grammatical objects.

he authors are listed alphabeticall
‘e anonymous reviewers for helpfu

y. We would like to thank Dale Gerdemann and
I comments.

Lezical and Constructional Aspects of Linguistic Ezplanation.
Sert Webelhuth, Jean-Pierre Koenig, and Andreas Kathol.
~Opyright © 1998, Stanford University.

249

i
|
|
|
=.
!
|

250 / THILO GOTZ AND WALT DETMAR MEURERS

A grammar G admits some term ¢ just in case G has a model that
satisfies ¢.
Checking Grammaticality I: Enumerating models The simplest
possibility to answer a query to a HPSG grammar is to construct the
models of the grammar which satisfy the query and enumerate all pos-
gibilities. The algorithm proposed in Ch. 15 of Carpenter 1992 is an
example for this method. It is implemented in the type constraint part
of the ALE 2.0 system (Carpenter and Penn 1994). Another computa-
tional system which can proceed in this way is TFS (Emele and' Zajac
1990).} Since such systems give full models as answers to queries, no
additional knowledge of the signature or theory is needed to interpret
the answers. N
While enumerating models is a correct way to check grammaticality,
it has a severe disadvantage: The answers are not compact in the sense
that much information which could be left underspecified is made fully
explicit. This concerns in particular information that could be deduced
from the signature. For example, when querying an English HPSG
grammar for the lexical entry of a finite past tense verb like walked, a
system under the simple approach enumerates solutions for every person
and number assignment instead of leaving those agreement properties
underspecified in the answer.?
Checking Grammaticality II: Satisfying all constraints of t‘he
theory We can avoid explicit model construction by using constra,mlt
solving techniques. This can be thought of as ‘enriching’ the query until
all theory constraints are satisfied. For the example of walked above
this means that no agreement information is provided in the answer
if there are no grammar constraints on the agreement features of that
lexical entry. Computational approaches implementing this approach
are, for example, the compiler described in Gotz and Meurers 1995 or
the WildLIFE system (Ait-Kaci et al. 1994) . Since these systems an-
swer queries with descriptions satisfying both theory and query, and not
with full models,® to interpret the replies the user needs to fill in some
ontological information from the signature.

1The TFS system in version 6.1 (1994) has several evaluation options, including.an
undocumented “lazy narrowing” mode, which seems to implement a lazy evaluation
strategy similar to that described in this paper.)

2Gince ALE uses an open world interpretation of the type hierarchy only all appro-
priate attributes, but not the different subtypes will be filled in. However, sltanda.rd
HPSG (Pollard and Sag 1994) uses a closed world interpretation of t.he type hierarchy.
Cf. Gerdemann and King 1993 and Meurers 1994 for some diacussxo.n.

3Some approaches even remove information deducible from the signature to keep
datastructures small (Gétz 1994).

THE IMPORTANCE OF BEING Lazy / 251

While this mode of processing queries does improve on the first ap-
proach, there still are many cases in which the system does more than
necessary. Consider the lexical entry of an auxiliary verb employing
an argument raising technique in the style of Hinrichs and Nakazawa
(1989). Such entries are being used in most current HPSG theories for
German, Dutch, French, or Italian. The idea is to specify the auxil-
iary to subcategorize for a verbal complement plus those arguments of
that verbal complement which have not yet been saturated. As a result,
the lexical entry of the auxiliary subcategorizes for an underspecified
number of arguments. If the raised arguments have to obey grammar
constraints, e.g., in the theory of Hinrichs and Nakazawa (1994) they
are required to be non-verbal signs, this results in an infinite number of
solutions to the query for such a lexical entry. The reason is that the
constraints enforced by the theory need to be checked on each member
of the subcategorization list, and the list is of underspecified length.

The example points out a problematic aspect of the second approach
to answer queries: the system checks constraints which can never clash
with the information specified in the query. To avoid making these
checks, we propose to use a lazy evaluation technique.

Checking Grammaticality I1I: Lazy evaluation The basic idea of
lazy evaluation is that nodes with more information content should be
preferred in evaluation over nodes with less information content. This
suggests an on-line strategy for goal selection based on the idea of lazi-
ness. However, we would like to take a compilation approach to laziness.
Instead of reordering goals on-line, we compute off-line which nodes need
to checked at all to guarantee there is a solution. This means that our
on-line proof strategy is exactly identical to the non-lazy case, but it
needs to do less work.

Lazy compilation can quite easily be integrated, e.g., into the compi-
lation method translating HPSG theories into definite clause programs
described in Gotz and Meurers 1995. In the next section we discuss a
small HPSG example to illustrate this.

Theoretically, on the other hand, lazy evaluation changes our per-
spective on program semantics. Whereas the programs previously had
the property of persistence (any term subsumed by a solution was also
a solution), the compilation technique for lazy evaluation abandons this
property to be able to compute more efficiently. It simply demands that
if ¢ is a solution and there are terms more specific than ¢, then some
of these more specific terms must also be solutions. Such an interpre-
tation is only correct if we impose a well-formedness condition on our
grammars. This idea is due to Ait-Kaci et al. (1993), who impose a

252 / THILO GOTZ AND WALT DETMAR MEURERS

strong syntactic restriction on their theories, which will be discussed in
Section 16.4.1. We replace this restriction by a weaker semantic one,
which demands that the grammar has some model where every type has
a non-empty denotation. From the viewpoint of the user of such a sys-
tem this means that not every instantiation of an answer given by the
system actually is grammatical. We will illustrate this in Section 16.3.2.

16.3 An HPSG Example

To illustrate the second and third method to check grammaticality in-
troduced in the last section, we want to discuss a small HPSG example:
a grammar dealing with part of the agreement paradigm of German
adjectives discussed by Pollard and Sag (1994, 64-67).* The grammar
deals with the adjectival agreement pattern shown in Figure 1.

| fem masc
strong | kleine Sorge kleiner Erfolg
weak | (die) kleine Sorge (der) kleine Erfolg

FIGURE 1 Part of the paradigm of nominative adjectives

The signature of our example grammar is shown in Figure 2.

T

sign head gender decl list
[decl}

PHON list DECL /\ /\ /\

HEAD head /\ masc fern weak strong [ne-list e-list
CENDER gender {adj]noun HD string

- TL kst
word [phrase
HEAD-DTR 8ign

ADJ-DTR sign

MOD sign

FIGURE 2 The signature

In Figure 3 the lexicon is defined. Tt contains lexical entries for the
adjective klein (‘small’) and for the nouns Erfolg (‘success’) and Sorge
(‘worry’). Note that the entry for the female form of the adjective,
kleine, is underspecified for the declension pattern.

Figure 4 shows a head-adjunct ID schema including the effect of

“4The small example grammar presented here only serves to illustrate the different
methods of checking grammaticality. It differs in many respect from the linguistic
theory developed by Pollard and Sag (1994, 88-91).

THE IMPORTANCE OF BEING Lazy / 253

A7 PHON <kleme>
PHON <kleme>

i
word = |ypap adj V' lueaD [aj] v
weak

DECL
GENDER fem
GENDER masc

PHON <kleiner> -
PHON <Erfolg> PHON <Sorge>
adj v/ v
HEAD HEAD noun HEAD noun
DECL strong
| GENDER masc GENDER fem

GENDER masc

FIGURE 3 The word principle

the HFP and the Semantics Principle to percolate the gender (which
normally is part of the content’s index).

PHON <|>
HEAD
GENDER
PHON
phrase — |HEAD-DTR HEAD
GENDER
PHON <>
ADJ-DTR HEAD | MOD
GENDER.

FIGURE 4 A simple head-adjunct ID schema

Finally, a principle is included to ensure that the declension class of
the modified head is identical to that of the modifier.

MOD | HEAD | DECL

adj —
J DECL

FIGURE 5 A principle for adjective declension

The tree in Figure 6 is an example for an agreement mismatch in

254 / TuiLo GOtz AND WALT DETMAR MEURERS

a structure with two adjectives.® The above grammar correctly rules

out this ungrammatical example, since the principle in Figure 5 enforces
tags 3 and 3’ in the description of kleine to be identical, which results
in an inconsistent structure.

% [PHON <kleine kleiner Effoi!g>:l

HEAD
A H
PHON <kleine> 5| PHON < kleiner Erfolg>
ady HEAD

HEAD |DECL [3lweak

MOD [2] HEAD | DECL }

A H
PHON <kleiner> PHON < Erfolg>
adj HEAD [Hnoun

HEAD |DECL [Blstrong

MOD [HEAD | DECL]

FIGURE 6 An example for an agreement mismatch

16.3.1 Non-Lazy Compilation

In the following, we first show how the grammar defined above is com-
piled in a setup checking grammaticality by method I1. In Section 16.3.2
we then discuss how the grammar code produced by a compiler for lazi-
ness differs and how this changes processing.

A compiler, such as the one described in Gtz and Meurers 1995,
takes the HPSG grammar defined in the last section, determines which
nodes in a structure of a certain type need to be checked, and produces
code for checking these nodes. More specifically, this compiler translates
constraints into clauses whose bodies are just tags that occur in the head
of the clause. In the following we’re interested in the question which
nodes should be checked.

Figure 7 shows our example grammar ‘in compiled form’.® The nodes
which need to be checked are indicated with double boxes. For example,
to make sure that a word with phonology kleiner is grammatical, we need
to check that the adjective head value meets the principle for adjective
declension. In Figure 7 this is marked by tag .

Now that we have a compiled grammar, let us take a look at how a

5The GENDER values are left out for space reasons. They are all masc.

SWe here ignore the optimizations discussed in Gétz and Meurers 1995 since they
are independent of the lazy evaluation issue discussed in this paper. Briefly said,
the compiled example grammar produced by the optimized version of the compiler

THE IMPORTANCE OF BEING Lazy / 255

) PHON <kleine>
PHON <k£eme>

word — ; ; v o [E] e
HEAD ‘ld.T HEAR DECL weak

GENDER femn
GENDER masc

PHON <kleme*r>
PHON <Erfolg>

.
V | ugap [aj V' | uEAD noun

DECL sirong
GENDER masc

GENDER masc

_PHON <S orge>

| A 1 |

v HEAD noun
| GENDER fern
PHON <|> 1
HEAD
GENDER
PHON
= 3
e HEAD-DTR [5]| HEAD
GENDER
PHON <>
z
ap3-pTR () o MOD
GENDER
5 MOD [HEAD [DECL H
aa; —r

DECL

FIGURE 7 The compiled example grammar

query is processed. Figure 8 shows the trace of the query for a word,
i.e., a lexical entry. In the first step, the constraint on word is applied.
There are several disjuncts; we take the first one, the lexical entry for
kleine (leaving a choice point behind). The disjunct chosen contains the
tag [@, a call to the definition of adj. Upon execution of that call in

would not include the tags [Z]], [E], and [&], since those nodes will be checked when
the word constraint is checked on node [[]. The same holds for [

256 / THILO GOTZ AND WALT DETMAR MEURERS

word
?- query(word) . ~ wom! " PHON <k£eme>
4 1 HEAD adj

QENDER fem

[word

PHON <k£ez‘ne>
adj

2 HEAD MOD [HEAD I:DECL H

fuy

DECL

| GENDER. fem

word

PHON <klez‘ne>

adj
PHON <kle@'ne>
a
3 HEAD MOD | ggap Z 4
DECL
GENDER fem
DECL)

| GENDER fem

FIGURE 8 The trace of a query for a word

step 2, we unify in the definition of adj, which adds [&F], a call to sign,
to the goal list to ensure that the sign below the MOD attribute is also
a grammatical sign. Executing the call to sign, we again have a choice,
this time between the two constrained subtypes word and phrase. So in
step 3 we again choose the first disjunct of word, which brings us into
a state where we again have to check that the adj at satisfies the
grammar - and we see that we’re in an infinite loop.

To obtain some answer, e.g., in step 1 we can chose another disjunct
in the definition of word such as the lexical entry of either noun instead
of the lexical entry of an adjective. There are no calls in the lexical
entry of these nouns and there are none left on our goal list, so in the
next state we're done. However, such a ‘correct’ order in which to try

THE IMPORTANCE OF BEING Lazy / 257

disjuncts needs to be specified by hand and in any case the system will
still find infinitely many solutions for the above example.

16.3.2 Lazy Compilation

The lazy compilation method is almost the same, except that no nodes
without features are marked. As mentioned in the beginning, the on-
line proof strategy is identical to the non-lazy case, but since less nodes
are marked, it needs to do less work. Essentially, the lazy compilation
algorithm can be described as follows:

For each ¢t — @ in the theory
For each node g in ® (except the root node)
If the type of g subsumes a constrained type and
at least one feature is defined on g
Then mark g

For the example grammar in Figure 7, this means that the indices
and go away. The intuition derives from the property we require
grammars to obey for lazy compilation: type consistency. A grammar
is type consistent iff it has a model where every type has a non-empty
denotation. If there are no features defined on a node, then by type con-
sistency, models satisfying that node exist and we don’t need to search
any further. We will take a closer look at this condition in Section 16.4.

Returning to the example, consider the lexical entry for the feminine
form of the adjective klein repeated in Figure 9a.

PHON <kleme> PHON <kleme>
& |upap o,dj b | uEap adj
GENDER fem GENDER fem

FIGURE 9 Normal and lazily compiled lexical entry of feminine klein

The HEAD value is specified to be adj, a constrained type. However,
there is no feature specified for the HEAD value, and so the entry in
the grammar after lazy compilation is simply as shown in Figure 9b.
In the lazy approach, a query is also processed by the lazy compiler.
This leads to interesting behavior: If we pose the same query as in the
last section (Figure 8), namely just word, the system immediately comes
back with the answer word, without further instantiating the query. This
is because, by type consistency, objects of type word are known to exist,
and no further inferences are necessary. We have to be more specific if
we want to see a specific word. Figure 10 shows what happens if ask
for a word with the PHON value <kleine>. With the lazily compiled

258 / THILO GOTZ AND WALT DETMAR MEURERS

P word
e . ~
query(PHON <kleine>) 0 i <kleéne>
word
el PHON <klez‘ne>
1 HEAD adj

GENDER fern

FIGURE 10 The evaluation of a more specific query

grammar, we don’t go into an infinite loop anymore on the unspecified
HEAD value. Thus, our method of lazy evaluation not only results in an
efficiency increase, but actually leads to better termination properties.
Of course, lazy compilation can not solve all termination problems. The
problem remains for the masculine form of klein, whose compiled form
is still as shown in Figure 11, since the HEAD value has the feature
DECL specified.

PHON < kleine>

adj
HEAD
DECL strong

GENDER masc

FIGURE 11 The lazily compiled lexical entry of the masculine form of klein

Reconsider the answer the system gave to the query in Figure 10.
We know that our grammar contains a constraint on the type adj which
has not been applied to the answer. In fact, precisely this constraint
was at the basis of the infinite loop in non-lazy evaluation. The user
therefore has to be aware of the fact that only certain adj objects are
grammatical and that this information is not provided in the answer.
The system only checks on nodes with features since those nodes are the
only ones that can lead to an inconsistency.

16.4 Theoretical Aspects

In this section, we will briefly look at the theoretical aspects of the
proof method proposed in this paper. Specifically, we will compare our
approach to the one of Ait-Kaci et al. (1993), from which we differ in
two respects:

THE IMPORTANCE OF BEING Lazy / 259

e Qur basic formalism is different. We use a closed world interpreta-
tion of the type hierarchy, and we allow disjunction and negation.
The basic formalism we employ therefore is the same as that used
in standard HPSG. This difference has consequences for the well-
formedness condition on grammars we propose as an alternative
to the one given by Aft-Kaci et al. (1993).

o We compile the information about lazy evaluation off-line. The
actual proof method is then very similar to SLD resolution. Aft-
Kaci et al. (1993) use a more sophisticated, on-line method. Qur
method is essentially a simplification of theirs.

From a theoretical point of view, the most interesting aspect of a lazy
evaluation method is its soundness. Since we do less work in our proofs,
we need to ensure that we don’t stop resolving too early. We must make
sure that when our proof terminates, there are no contradictions hidden
in the search space that we just didn’t get to because of our laziness.
The example theory in Figure 12 will illustrate that lazy evaluation is
not sound in general.

T

el ba[G]

H

[a] b bool
F b G +
: /\

FIGURE 12 Unsoundness of lazy evaluation for non-type consistent grammars

B

FICGURE 13 A query for the unsoundness example

Consider the query in Figure 13. OQur method will say that there’s
nothing to prove here: There are no constraints on a, and the b node is
a terminal node and thus it does not need to be checked. However, the
constraint on b is clearly inconsistent. There can never be any models
of this grammar with objects of type b in them. By the appropriateness
conditions it follows that there can not be any objects of type a, either.
So our proof system should really come back with the answer no.

260 / TuiLOo GOTZ AND WALT DETMAR MEURERS

Ait-Kaci et al. (1993) solve this problem by giving a sufficient syn-
tactic condition for grammars that ensures soundness, i.e., by restricting
the class of grammars that they can handle. Indeed, it is very hard to
imagine a lazy proof system that is sound for all grammars. We will
thus also restrict our attention to a proper subset of possible gram-
mars. However, instead of using the syntactic restriction of Ait-Kaci
et al. (1993), called well-formedness, which we suggest below to be too
strong for HPSG grammars, we will use a weaker semantic one. We say
that a grammar is type consistent iff for every type £, there is a model
of the grammar that contains at least one object of type t. That is a
very reasonable restriction, since one might expect the grammar writer
not to introduce any types that never denote anything. One can show
that our lazy resolution method is sound with respect to type consistent
grammars.

16.4.1 Well-Formedness vs. Type Consistency

The condition of type consistency is properly weaker than that of well-
formedness, the syntactic condition of Ait-Kaci et al. (1993). Every
grammar that is well-formed is also type consistent, but not vice versa.
We conjecture that the soundness result of Ait-Kaci et al. (1993) also
holds for theories that are only type consistent. However, the stronger
syntactic condition has the advantage of being checkable—it is decidable
if a given theory is well-formed or not. It is in general undecidable if a
theory is type consistent. But note that it is also undecidable whether a
given theory can be transformed into an equivalent one that meets the
syntactic condition of Ait-Kaci et al. (1993). For theoretical consider-
ations, it is still useful to use our semantic restriction, since it is the
weakest possible condition for soundness of the kind of lazy evaluation
that we use, i.e., it is a necessary condition. We can thus try to find
weaker, checkable sufficient conditions that are more suitable for the
kind of linguistic applications that we have in mind. As long as they
entail type consistency, they will always guarantee soundness of lazy
constraint solving.

We will now illustrate the difference between well-formedness and
type consistency with two examples. The first one is trivial and shows
the general idea, the second one is more practical and involves disjunc-
tion. Simplifying somewhat, the condition of well-formedness requires
that for each consequent in the grammar, unfolding the type constraints
for each node exactly once would not add any new information, i.e., the
new consequent is logically equivalent to the old one.

Suppose we have a type hierarchy of types a, b and ¢, which are min-
imally ordered such that a subsumes b and c. Consider the constraint

Tus IMPORTANCE OF BEING LaAzy / 261

shown in Figure 14. This theory is not well-formed (unfolding the node
labeled b will bump the node labeled a to b), but it is type consis-
tent. Moreover, the theory can not be brought into well-formed format
through partial evaluation: the process will not terminate. However,

one could substitute the equivalent b — [F b] to obtain a well-formed

theory.
b
F a

FIGURE 14 A theory that is not well-formed

A more realistic example is the junk slot encoding of the append
relation (Ait-Kaci 1984). We here assume an appropriate extension of
the well-formedness condition to disjunctive theories.

ARGl <[H] | 1>
ARG2
ARGL () ArG3 <[H] | [T2]>
append — ARG2 v append
ARG3 ARG1
JUNK
ARG2
ARG3

FIGURE 15 The junk-slot encoding of append

The theory in Figure 15 is not well-formed, although type consistent.
Consider what happens if we try to unfold this type definition with
respect to itself as shown in Figure 16. Unfortunately, the result is still
not well-formed, and indeed we can not get a well-formed type constraint
for append by unfolding or any other transformation.

We conclude that in a setup without disjunction and with open-world
reasoning, like the one originally proposed by Ait-Kaci et al. (1993), well-
formedness is a useful strengthening of type consistency. In a HPSG
setup, using closed world reasoning and disjunction”, well-formedness
appears to be too strong. Therefore, a more liberal syntactic restriction

"Note that disjunction does not increase the expressive power of a system under
closed world reasoning, since disjunction can be expressed via the fype hierarchy.
This is different in an open world setup, where disjunction is needed to enforce a
choice of subtypes.

262 / THILO GOTZ AND WALT DETMAR MEURERS

[ARGl ()
append — ARG2 v)
| ARG3
(ARGl <@ | [T 1
ARG2
ArRG3 <[H | [L21>
[append J
arcl [Ti<[E1] | (T3>
append ARG2
one | ARG [T1)() ARG [T2l<[H]] | [T4]>
ARG2 append
ARES JUNK ael
ARG2
ARG3

FIGURE 16 The junk-slot encoding of append after one unfolding step

needs to be found. In the meantime, the grammar writer needs to ensure
that our semantic condition, type consistency, is met.

16.5 Conclusion

In this paper, we have discussed three possibilities to answer queries to
a HPSG grammar. We described a compiler that takes a HPSG gram-
mar and compiles it such that standard evaluation yields a lazy strategy.
Lazy evaluation in our approach therefore is not an on-line goal reorder-
ing strategy, but the result of an optimizing compiler. This removes the
overhead of on-line goal reordering from processing. We showed that
lazy compilation has advantages both for efficiency of processing and
the termination properties of HPSG grammars.

Theoretically, we justified our approach by giving the weakest pos-
sible condition that guarantees soundness of lazy evaluation: type con-
sistency. We argued that this simplifies the search for stronger, check-
able conditions. One only needs to show that a candidate condition is
stronger than type consistency; no separate soundness proof is required.

The lazy compiler described has has been fully implemented as part
of the ConTroll system (Gotz et al. 1997). So far it has been tested with
two complex HPSG grammars for German: one implementing the the-
ory proposed in Pollard 1996 and the other focusing on the phenomena
of aux-flip and PVP-topicalization Hinrichs and Nakazawa 1989, 1994.

THE IMPORTANCE OF BEING Lazy / 263

Lazy evaluation for these grammars led to efficiency gains of up to 30%
compared to the non-lazy approach described in Gétz and Meurers 1995.

References

Att-Kaci, Hassan. 1984. A Lattice Theoretic Approach to Computation Based
on a Calculus of Partially Ordered Type Structures. Doctoral dissertation,
University of Pennsylvania.

Ait-Kaci, Hassan, Bruno Dumant, Richard Meyer, Andreas Podelski, and Pe-
ter van Roy. 1994. The Wild LIFE Handbook (prepublication edition).
Technical report. Digital Equipment Corporation.

Ait-Kaci, Hassan, Andreas Podelski, and Seth Copen Goldstein. 1993. Order-
Sorted Theory Unification. Technical Report 32. Digital Equipment Cor-
poration.

Carpenter, Bob. 1992. The Logic of Typed Feature Structures - With Appli-
cations to Unification Grammars, Logic Programs and Constraint Resolu-
tion. New York: Cambridge University Press.

Carpenter, Bob, and Gerald Penn. 1994. ALE—The Attribute Logic Engine,
User’s Guide, Version 2.0.1, December 1994. Technical report. Carnegie
Mellon University: Computational Linguistics Program, Philosophy De-
partment.

Emele, Martin, and Rémi Zajac. 1990. Typed Unification Grammars. In Pro-
ceedings of the 13th Conference on Computational Linguistics (COLING),
ed. Hans Karlgreen. Helsinki.

Gerdemann, Dale, and Paul John King. 1993. Typed Feature Structures for
Expressing and Computationally Implementing Feature Cooccurrence Re-
strictions. In Proceedings of 4. Fachtagung der Sektion Computerlinguistik
der Deutschen Gesellschaft fir Sprachwissenschaft, 33-39.

Gétz, Thilo. 1994. A Normal Form for Typed Feature Structures. Arbeitspa-
piere des SFB 340 Nr. 40. Universitat Tiibingen.

Gétz, Thilo, Detmar Meurers, and Dale Gerdemann. 1997. The ConTroll
Manual (ConTroll v.1.08, Xtroll v.5.083). Seminar fiir Sprachwissenschaft,
Universitat Tiibingen.

Gotz, Thilo, and Walt Detmar Meurers. 1995. Compiling HPSG Type Con-
straints into Definite Clause Programs. [n Proceedings of the Thirty-Third
Annual Meeting of the ACL. Boston. Association for Computational Lin-
guistics.

Hinrichs, Erhard, and Tsuneko Nakazawa. 1989. Review of Word Order and
Constituent Structure by Hans Uszkoreit. Language 65:141-149.

Hinrichs, Erhard W., and Tsuneko Nakazawa. 1994. Partial-VP and Split-NP
Topicalization in German - An HPSG Analysis. In: Erhard W. Hinrichs,
W. Detmar Meurers, and Tsuneko Nakazawa: Partial-VP and Split-NP
Topicalization in German—An HPSG Analysis and its Implementation.
Arbeitspapiere des SFB 340 Nr. 58, Universitat Tiibingen.

264 / THILO GOTZ AND WALT DETMAR MEURERS

Meurers, W. Detmar. 1994. On Implementing an HPSG Theory—Aspects
of the Logical Architecture, the Formalization, and the Implementation
of Head-Driven Phrase Structure Grammars. In: Erhard W. Hinrichs,
W. Detmar Meurers, and Tsuneko Nakazawa: Partial-VP and Split-NP
Topicalization in German—An HPSG Analysis and its Implementation.
Arbeitspapiere des SFB 340 Nr. 58, Universitdt Tlbingen.

Pollard, Carl. 1996. On Head Non-Movement. In Discontinuous Constituency,
ed. Harry Bunt and Arthur van Horck. Berlin, New York: Mouton de
Gruyter. (published version of a ms. dated January 1990).

Pollard, Carl, and Ivan Sag. 1994. Head-Driven Phrase Structure Grammar.
University of Chicago Press.

17

Inside-Out Constraints and
Description Languages for HPSG

JEAN-PIERRE KOENIG

An important contrast between most current syntactic frameworks and
Head-Driven Phrase Structure Grammar or Lexical Functional Gram-
mar (hereafter HPSG and LFG respectively) is the common insistence
of the latter two on the need to distinguish between the mathematical
structures which model utterance types and the logical formulas which
describe these structures (see Kaplan and Bresnan 1982, Pollard and
Sag 1994, Kaplan 1995 inter alia). Grammars are viewed as sets of
constraints expressed in a description language whose denotata serve as
models of linguistic utterances. In such frameworks, it is possible to
change the description language—and the possible grammars which can
be written within it—without altering the modeling domain (the linguis-
tic ontology). In this paper, I present a particular class of examples for
which this distinction between the modeling domain and the formulas
which describe it proves crucial. My goals are two-fold. Empirically, I
wish to argue for the need to include a kind of constraints in our mod-
els of natural language only sparsely mentioned in previous literature.
Methodologically, I want to illustrate the usefulness to linguistic theo-
rizing of the afore mentioned distinction by showing how modeling this
new kind of constraints does not require an enrichment of our linguistic
ontology, but a change in our descriptive metalanguage.

17.1 A Few Examples of Inside-Out Constraints

The class of phenomena with which I am concerned is best introduced
by looking back at the notion of subcategorization, first discussed within
generative linguistics in Chomsky 1965. The basic idea was that it is

Lexzical and Constructional Aspects of Linguistic Ezplanation.
Gert Webelhuth, Jean-Pierre Koenig, and Andreas Kathol.
Copyright © 1998, Stanford University.

265

