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Abstract

This thesis discusses ways to employ a certain mathematical characterization of similarity, kernel

functions, and machine learning techniques building on it to abstract from data-oriented models of
language.

A prominent task in machine learning and in linguistic modeling is the classification of data
items, the recognition of grammatical features. A bit more complex is the modeling of surface-to-
surface relations, e.g. in inflectional paradigms. These morphological changes reflect the underlying
grammatical features.

Traditional rule-based approaches to feature recognition and inflection fail to explain local reg-
ularities within the so-called exceptions. Many linguistic domains exhibit islands of reliability (Al-
bright 2002) both within classes of exceptions and the regular cases. For its best-studied instance,
the debate on the proper treatment of this phenomenon is known as the past tense debate (see Pinker
and Ullman 2002).

More recent models (along with the increase in available computational power) adapted data-
orientation, first in the shape of prototypes, and later as full-fledged exemplar models. These model
grammar as the collective episodic memory of a speaker’s experience with language. New utterances
are classified or generated in proportional analogy (de Saussure 1916) to previous ones: if two
pairs of linguistic items instantiate the same grammatical relation, the proportion of the first pair is
analogous to that of the second.

Analogy crucially relies on a notion of similarity. Similar linguistic items are more likely to be
classified alike. Learning paradigmatic relations via proportional analogy goes beyond learning as
classification (Pirrelli and Yvon 1999, Albright 2008). It extends to surface-level outputs.

Kernels are a mathematical formulation of similarity. Essentially, they are an inner product in a
feature space, where each dimension is an observable feature of the data items. Kernel methods are
closely related to exemplar models (Ashby and Alfonso-Reese 1995, Jäkel et al. 2008), and they are
successful in cognitive modeling, mostly outside linguistics. In this thesis I devise methods to gen-
erate linguistic models using Kernel Principal Component Analysis (KPCA; Schölkopf and Smola
2002). I cover models of classification (predicting the gender of German nouns) and of production
(predicting the plural form).

Models of production require a model’s output, which is a representation in the continuous fea-
ture space, to be mapped onto a discrete valid data item. I devise a general strategy of the required
pre-imaging for complex data, which incrementally approximates the desired item, and instantiate
this strategy for the data type of strings.

I compare KPCA to a variant including weights on data items, Weighted KPCA (Wang et al.
2005). I prove WKPCA’s equivalence to a KPCA performed on a data set where weights are simu-
lated via multiple identical entries of data items. In the experiments, WKPCA performs inferior to
KPCA, probably due to over-generalization of the most frequent patterns.



Further, I investigate the linguistic interpretation of the principal components. These form the
orthogonal basis of the feature space as calculated by KPCA. It turns out that — as is often the
case with data-orientation — they do not represent abstract, scientific, human-readable descriptions
of linguistic problems. I also discuss rotations of the principal components as alternative bases. I
devise a method of rotation towards abstract features which retains all variation within these features
in a low-dimensional model. By this I obtain a two-dimensional model of German gender, in which
the three genders form clusters. While this is a practical model, it is still not an interpretable one.

Most models presented here are morphological in nature. In the syntactic domain, I extend the
implementation of grammaticality as planar languages (Clark et al. 2006) from string languages to
trees, using a tree kernel (Collins and Duffy 2001a,b).



Zusammenfassung

Diese Dissertation behandelt verschiedene Möglichkeiten, mittels einer bestimmten mathemati-
schen Charakterisierung von Ähnlichkeit, Kernel-Funktionen, und darauf aufbauenden maschinellen
Lernverfahren über datenorientierte Sprachmodelle zu abstrahieren.

Die Klassifizierung von Datenpunkten, ist eine der häufigsten Anwendungen maschinellen Ler-
nens, und auch in der Linguistik findet sie als Erkennung grammatischer Eigenschaften Anwendung.
Konzeptuell anspruchsvoller ist es, die Beziehung zwischen sprachlichen Ausdrücken zu model-
lieren. So realisieren zum Beispiel Wörter innerhalb eines Flexionsparadigmas die verschiedenen
Merkmale, entlang derer flektiert wird.

Ausnahmen und gerade auch systematische Ausnahmen stellen sowohl in der Merkmalserken-
nung als auch in der Flexion die traditionellen regelbasierten Erklärungsansätze in Frage. Nicht
nur innerhalb der Ausnahmen, sondern auch für die als einheitlich erachteten regelmäßigen Fäl-
le, sind sogenannte islands of reliability (Albright 2002), kleine Gruppen ähnlicher Ausdrücke mit
daraus folgenden ähnlichen Eigenschaften, beschrieben. Wegen der in der Literatur oft studierten
Vergangenheitsform englischer Verben trägt die Debatte um die angemessene Behandlung dieses
Phänomens den Namen past tense debate (siehe Pinker and Ullman 2002).

Spätere Modelle orientierten sich — angesichts steigender Rechenkraft — mehr und mehr an Da-
ten, zuerst in Gestalt von Prototypen, und zuletzt als ausgewachsene Exemplarmodelle. Als Gram-

matik gilt darin das gesammelte episodische Gedächtnis des Sprechers für Sprache. Neue Äußerun-
gen werden in proportioneller Analogie (de Saussure 1916) zu den alten verstanden beziehungsweise
gebildet: Wenn zwei Paare sprachlicher Ausdrücke den selben grammatischen Bezug untereinander
haben, dann ist auch ihr Bezug hinsichtlich ihrer Form ähnlich.

Analogie basiert auf einem Konzept der Ähnlichkeit. Ähnliche sprachliche Ausdrücke verhalten
sich ähnlich, gehören eher den selben Klassen an und flektieren ähnlich. Paradigmatische Beziehun-
gen zwischen Wörtern zu lernen geht über simple Klassifizierung hinaus (Pirrelli and Yvon 1999,
Albright 2008), weil hier nicht abstrakte Merkmale gesucht sind, sondern ganze Wortformen.

Mit Kernel-Funktionen lässt sich Ähnlichkeit formalisieren. Im Wesentlichen handelt es sich bei
ihnen um ein inneres Produkt in einem aus den beobachtbaren Merkmalen sprachlicher Ausdrücke
aufgespannten Raum. Kernelmethoden stehen in einem engen Verhältnis zu Exemplarmodellen (As-
hby and Alfonso-Reese 1995, Jäkel et al. 2008) und werden — meist außerhalb der Linguistik —
erfolgreich zur kognitiven Modellierung eingesetzt. Deswegen entwickele ich in dieser Dissertation
Methoden um mittels kernelisierter Hauptkomponentenanalyse (Kernel Principal Component Ana-

lysis, KPCA; Schölkopf and Smola 2002) Modelle von Sprache zu erstellen. Dabei decke ich sowohl
Klassifizierungs- (am Beispiel des Genus im Deutschen) als auch Produktionsmodelle (am Beispiel
des Plurals) ab.

In Produktionsmodellen muss das jeweilige Ergebnis, ein Punkt im stetigen Merkmalsraum, zu-
sätzlich auf einen diskreten, gültigen Ausdruck abgebildet werden. Zu diesem Zweck gebe ich eine



allgemeine Pre-Imaging-Strategie für komplexe Daten an, die den Zielausdruck schrittweise annä-
hert. Ich exemplifiziere sie für Zeichenketten (strings, also Wörter).

Ich vergleiche die KPCA mit ihrer gewichteten Variante, Weighted KPCA (Wang et al. 2005). Ich
zeige, dass die WKPCA zu einer KPCA über einen erweiterten Datensatz, in dem jeder Ausdruck
gemäß seiner Häufigkeit mehrfach vorkommt, äquivalent ist. In den Anwendungen unterliegt die
WKPCA jedoch der KPCA, was daran liegen mag, dass sie ohnehin schon häufige Muster überge-
neralisiert.

Ferner untersuche ich die linguistische Interpretation der Hauptkomponenten. Diese sind die per
KPCA berechnete, orthogonale Basis des Merkmalsraumes. Wie so oft in datenorientierten Ansät-
zen stellt sich heraus, dass sie keine abstrakt-wissenschaftlichen, menschenlesbaren Beschreibungen
des jeweiligen linguistischen Problems sind. Ich erwäge Drehungen der Basis, um andere Interpreta-
tionen zu ermöglichen, und stelle eine Rotation auf die grammatischen Merkmale vor, die sämtliche
Variation bezüglich dieser Merkmale in einem niedrigdimensionalen Modell darstellt. Dadurch er-
halte ich ein beispielsweise zwei-dimensionales Modell, in welchem die drei Genera des Deutschen
Cluster bilden. Obschon nützlich, ist diese Ebene immer noch nicht linguistisch interpretierbar.

Die meisten hier vorgestellten Modelle sind morphologischer Natur. Hinsichtlich der Syntax
erweitere ich unter Verwendung einer Kernelfunktion über Bäume (Collins and Duffy 2001a,b) den
Begriff der Grammatikalität im Sinne der planaren Sprachen (Clark et al. 2006) von Zeichenketten
auf Baumdarstellung.
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Chapter 1

Introduction

1.1 Overview

This thesis is centered around the notion of similarity: its mathematical characterization on the one
hand, and its role in analogical models of linguistic proportions on the other hand. It brings the
state-of-the-art formalization of similarity in machine learning to data-oriented linguistics.

A measure of similarity is needed in any analogical reasoning and other types of cognitive mod-
eling. A current trend in machine learning (ML) and artificial intelligence is based on similarity
measures: so-called kernel methods (Schölkopf and Smola 2002). These ML methods are success-
fully applied to classification and recognition tasks. In this thesis, I also propose production tasks:
kernel-based models outputting full word forms. Kernel methods are general enough to extend to
any cognitive ability of humans which is based on association and similarity of episodic memories.

A prominent human cognitive ability is language. As a linguist, I like to point to language as
the one ability that truly distinguishes our species from others. Its scientific description involves
classification, recognition and production tasks. Applying kernel methods to linguistics suggests
itself, for all their success in related fields. Also, as I will argue, they abstract over what is already
being done in linguistics. There have been some initial proposals for doing so (discussed in section
2.3), but the general picture is still missing. For the ML practitioner, this thesis shall demonstrate
some new ways of applying their successful and well-founded methods to the interesting domain of
natural language.

The corresponding trend in linguistics is both very old and new. Old is the notion of analogy,
going back at least to de Saussure (1916): If two linguistic items (words etc.) are similar, they
behave in a similar way. That means, they are likely to have the same properties, to be used in
similar contexts, or to be inflected analogically: The way they relate to the rest of the language will
be similar.

This chapter sets up a wide range of linguistic classification problems (section 1.2). Classification
is the easiest instance of a mapping from linguistic items into a target space. Following connection-
ism (Rumelhart and McClelland 1986, among others; see section 2.1.3), this will be modeled by
analogy. If two words are similar on the surface (i.e., by their directly observable properties), then
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they are likely to belong into the same class and to share abstract (grammatical1) features.
Considering not only two words, but a larger (training) data set, this translates into an input space

where words are located according to their pairwise similarities. Test items not in the training set do
not necessarily fall into the same space, since they may be independent of the training data. They
can be projected onto that space, again according to their similarity. From their position within the
data space they can inherit class labels and other abstract properties from their neighbors.

Similarity will be modeled very generally with a kernel function (section 2.2). The kernel is
meant to capture all the psycholinguistic intuitions and insights about similarity. Kernel methods are
closely related to exemplar models (Jäkel et al. 2009). The method to be used here is Kernel Principal
Component Analysis (KPCA, Schölkopf and Smola 2002), and a variant sensitive to frequencies of
data items, Weighted KPCA (Wang et al. 2005). It treats data items as points in a feature space,
and derives an orthogonal basis for this space. In this space, analogical proportion can be modeled
(section 2.4.3). I thus pursue a psycholinguistic approach with quantitative means.

In the light of modern machine learning, linguistics has often done explicitly what is done im-
plicitly in a kernel: list all the properties of an item. It is the main goal of this thesis to show how
linguistic models can be formulated using kernels — to show how the methodology that comes with
kernels applies to linguistic data. The methods for non-deterministic, analogy-based classification
and mapping tasks to be presented in this thesis are best suited for inflectional morphology, which I
will concentrate on.

1.1.1 How to read this thesis

This thesis is primarily aimed at (computational) linguists, both with and without knowledge of
kernel methods. I intend to provide a practical introduction to kernel methods for linguistics. The
presented exemplary applications will be of limited interest to the general linguist; they are merely a
proof of concept, although not bad in what they do. The methods can be applied to similar problems,
also in other languages, but I have to leave the broader empirical evaluation to future research.

The appendix hosts all mathematical details, definitions, technical descriptions of data prepa-
ration and encoding issues, and algorithms. It is intended to serve as a manual for the methods
developed here.

All URL’s given in this thesis were accessible and had the described content in March/April
2011. Naturally, I cannot guarantee their future content or accessibility.

1.2 The task

This section outlines the range of linguistic tasks to be addressed in this thesis. All these tasks are
mappings from some linguistic domain into another, the co-domain. In the simplest case, the co-
domain is a fixed set of classes, or mutually exclusive hidden features. Most related work has been
concerned with classifications.

1Abstract features in linguistics, at least the ones I will be considering in this thesis, are all grammatical features.
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Analogical proportion (de Saussure 1916) views mappings as parallel (1.2.2): Similar items are
mapped alike. This is captured in exemplar models (2.1.1). The section thereafter (2.1.3) discusses
abstractions of those.

1.2.1 Classification

Classification is a popular task in machine learning and artificial intelligence. A set of objects is
divided into pre-defined classes, as posited by the researcher. Class membership is a hidden feature,
that is, it is not deterministic, but it may be deducible from the surface appearance of an object. Also
in linguistics, classes and hidden (grammatical) features are widely in use.

Which features these are depends on the domain (e.g., words or sentences), on the language and
on the concrete task. Examples are number, gender, person, case, aspect, tense and many more.
They are posited by linguists, and they are needed to explain the ungrammaticality of utterances,
where features are in conflict. That is to say, grammatical features can be observed indirectly, and
they make sense as a parsimonious explanation of observable linguistic behavior.

Positing features is mainly a task for the researcher, although it is possible to learn feature ge-
ometries automatically. For now, I presuppose feature geometries for each given mapping task. Two
linguistic tasks related to hidden features are relevant to this thesis: extracting (recognizing) and
changing (inflecting for) features .

1.2.1.1 Extracting features

Given a surface form, the task is to determine the hidden features. In order for them to have an impact
on grammaticality, they need to have some exponent, some overt marking. Otherwise they cannot
be observed directly.2 Isolating languages exhibit (by definition) a one-to-one mapping: Each word
carries exactly one feature. Classification reduces to lexical look-up. In agglutinative languages,
there is a separate morpheme for each grammatical feature; again this belongs to the characterization
of this language type. Features can be extracted by parsing the word into morphemes, and looking
up their meaning in the lexicon.

In inflectional (or fusional) languages, the situation is more interesting. Grammatical features
may surface as internal changes to the stem. For example, umlaut is a marker of plural in Ger-
man (cf. its remnants in English: foot — feet). However, plural is also expressed by other means
(mostly affixes), and umlaut is an exponent of other grammatical features as well: It appears in the
comparative and superlative of adjectives, in diminutives, and more.

So the relation between features and surface form is not a unique function in either direction.
While there are deterministic morphological processes also in inflectional languages, there are these
non-deterministic cases. Native speakers are able to master them, and on unseen words they agree
at a level above chance, leaving the linguist at a loss to explain this. Chapter 3 is dedicated to this.

2A border case is the null morpheme, and overt, yet empty marker. Its existence follows from the feature geometry,
that is, from its position in the given paradigm.



4 CHAPTER 1. INTRODUCTION

As a concrete example, take the gender of German nouns. Unless already known, deducing
gender is a non-deterministic task. There are three classes (three possible values for gender), and
every word falls into exactly one of them.

There appears to be a paradox: On the one hand, one tries to predict gender from surface forms.
On the other hand, gender is informative beyond the surface form, e.g. in inflection (see section
1.2.1.2 below). The answer is that gender, base form, and inflected form are correlated. Gender of
German nouns — to the dismay of language learners — is neither negligible nor redundant. Gender
is an integral part of the lexical entry of a German noun. And still, the high correlation (which
is also found among different native speakers in nonce word elicitation tasks) calls for a linguistic
explanation.

1.2.1.2 Changing features

Keeping some properties of a word constant (such as the lemma), certain other features can be
changed (such as number). Such changes to words are a key property of inflectional languages.
This goes beyond classification (Pirrelli and Yvon 1999). In chapter 6 I build productive models of
inflection.

A given word form has to be specified for all features appropriate to its part of speech. On the
surface level, there can be no underspecification, yet there can be ambiguity. Some features are
lexical, while for others a word can be inflected. An example of the former is gender of German
nouns, an example of the latter is number. Note that this status depends on part of speech, and
on other features: German adjectives do inflect for gender, but only if their number is singular.
English distinguishes gender only with the pronouns (again, only in singular), and never inflects for
it. For other parts of speech, such as verbs, gender is meaningless. Thus there are interdependencies
between grammatical features.

As already mentioned above, there are several exponents of nominal plural in German. In fact,
the choice of morpheme is non-deterministic, and still native speakers are able to extend their knowl-
edge to unknown words, on whose inflection they agree more than could be predicted by either a
random process or by a default rule. The special problem with the German plural is that the de-
fault case (suffixing -s) only covers 3% of the lexicon (see section 6.4.1). Such minority defaults

challenge the idea of rule-based explanations.
Both feature extraction and inflection are mapping tasks. Extraction maps surface forms to ab-

stract features, inflection maps surface forms to other surface forms (chapter 6). The linguistic
intuition behind such mappings is that the hidden feature or inflected form can partially be predicted
from what is known, although the process is in general non-deterministic. Gender is not directly
marked at the surface level, yet it is predictable, at least to some degree (3.2.4).

1.2.1.3 Other classifications

The hidden features and abstract classes mentioned so far are mostly situated in morphology, because
ignoring them results in ill-formed words. Classes are posited on other levels of linguistic analysis
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as well.
In phonology, phonemes are described as feature bundles. There is, however, not a learning task

involved: The set of phonemes needed to describe a certain language is always closed, so there are
no unknown data items. In phonetics, where sounds are described not by abstract features but by
physical measurements (vowel formants, durations, . . . ), classification is useful. Sounds could be
classified feature by feature (each feature may take several mutually exclusive values), or as a whole
(the pre-defined phonemes being the classes).

Among grammatical features, morphological ones determine inflectional forms: tense, number,
aspect and so on. Morpho-syntactic features are not expressed by inflection, but inherent to a
word, such as number for singularetanta, and gender for German nouns. Ungrammaticality then
arises from other words having the wrong inflectional form, via (non-)agreement. Hence the term
morpho-syntactic. Also, lemmatization (mapping inflected forms to a set of base forms or lemmas)
and part-of-speech (POS) tagging (mapping words to a pre-defined set of POS labels) are mapping
tasks.

Another type of inherent features are inflectional classes. These are used to describe lexically
determined, different ways of expressing the same morphological feature. However, these classes
differ from the usual hidden features. Gender has a fixed set of values for a given language, and the
values are checked via agreement, thereby being observable. On the contrary, inflectional classes
neither have to be a closed set nor do they stand in agreement to anything. They are merely de-
scriptive, and not necessarily part of the grammatical description of a language.3 A special instance
of inflectional classes is the distinction of inflectional patterns into regular and irregular ones: The
allophonic realizations of the English past tense (/-t/, /-d/, /-@d/) are considered regular, while
everything else is labeled irregular.

The classification of words into inflectional classes can then be considered the non-deterministic
pre-processing step to a deterministic second step: Once the class is known, the according rule
realizes the surface form.

Classifications also exist in higher-level descriptions of language. Syntactically, sequences of
words (or of POS labels) may form constituents and receive a phrase label (parsing). In a later
chapter (7) I will come back to syntax. As a final example, yet not claiming exhaustivity at all,
language recognition is a mapping, too: from texts to languages.

1.2.2 Analogical proportion

The domain can be considered unbounded: The generalization of a model has to be tested on pre-
viously unseen words. Typically, one investigates open word classes (content words) or other un-
bounded domains (sentences etc.). In order to generalize a model to unseen words, one has to look
at input-output pairs in the context of other pairs instantiating the same relation.

3A side remark: Noun classes (as in Bantu languages) are much more like gender: A closed set of lexically deter-
mined features, therefore an indispensable grammatical property of a word. They do determine inflection, but they are
not inflectional classes in the purely descriptive sense.
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This is captured by the notion of analogical proportion. In modern linguistics, this goes at least
back to de Saussure (1916). Albright (2008) gives the following definition:

(1.1) Four-part notation: A:B :: X:Y

“Whatever the relationship is between A and B, it should also hold between X and Y”

There are two basic types of relations between the different layers of annotation which are of
interest here, identifiable by the ontological status of the co-domain. Assume that the domain always
is a set of linguistic items. These are the real-world objects of linguistic investigation (or, rather,
transcriptions thereof). Now the co-domain can either be of the same type. An instance of such
a relation are word forms within an inflectional paradigm. The second type of the co-domain is
abstract features posited by linguists. For instance, linguistic objects have grammatical properties,
or fall into abstract classes (see 1.2.1).

For linguistic modeling, mapping tasks follow from this: First, from words to inflected forms.
This is production. Second, from linguistic objects to abstract features. This is classification. There
are more layers of annotation, more mapping tasks, but analogy-based models are most apt to de-
scribe these two.

Albright notes that the proportion extends from pairs to tuples. These encompass all layers of
linguistic annotation to a linguistic object. For words, part of that is their inflectional paradigm. In
a similar way, paradigm-based proportional analogy is defined in Pirrelli and Yvon (1999). They
illustrate it like this:

(1.2) (drink, Present) : (drank, Past) :: (sink, Present) : (sank, Past)

Positions within the paradigm (that is, inflected forms) are identified by their grammatical fea-
tures, here: tense. Not only pairs of paradigms stand in analogical proportion, all paradigms of
verbal inflection do:

(1.3) (drink, Present) : (drank, Past) :: (sink, Present) : (sank, Past) ::4 . . . :: . . .

A model trained on 1.3 could be presented with a task formulated as 1.4:

(1.4) (drink, Present) : (drank, Past) :: . . . :: (stink, Present) : (X, Past)

Assume that “stink” has not been in the training set. It is treated according to the similarity
of its present tense form to (present tense forms of) the training data. Now assume that past tense
formation behaves analogically, thus the past tense of “stink” is similar to the past tense forms of
words to which “stink” is similar in present tense. The question is how to formalize this notion.
In the next section, I will discuss the network models of Rumelhart and McClelland (1986) and
Plunkett et al. (Plunkett and Nakisa 1997, Plunkett and Juola 1999), and in chapter 6 I present my
own model for this task.

4The relation of analogical proportion (::) is transitive and symmetrical.
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1.2.2.1 Beyond classification

Linguistics is full of ever more complex tasks which could also be treated analogically. Assume
that similar sentences have similar syntactic structures, similar meanings, or similar translations into
another language. Analogical models for these tasks circumvent any rules, any grammar. They learn
solely by example. In this thesis, I give only one example beyond morphology: Grammaticality is
checked via similarity to other grammatical data items in section 7.2. The methods presented and
introduced in this thesis can in principle be applied to all these tasks. They are of course limited at
least by the upper bound of what analogy can actually explain about these linguistic processes.

1.2.3 Conclusion

Classification has been extensively studied in psychology and cognition (see Shepard 1987). The
models tested in numerous experiments range from rule-based approaches via prototype models to
fully distributed exemplar models and artificial neural networks, in that chronological order. Sev-
eral factors have driven the development of new models. First, the notion of an exception made it
necessary to extend purely rule-based models.

Second, sub-regularities within the exceptions have questioned the basic distinction between
regular and irregular cases. A necessity for storing ever more prototypes was found, down to single
exemplars. The impact of an exemplar on classification has often been modeled as dependent on
the mutual similarity of the exemplar and the item to be classified: More similar stored items have
a greater impact on the classification of the test item. This leads to clusters of similar items all
belonging to the same class, so-called islands of reliability (Albright 2002).

Third, the increase in computational power made exemplar models feasible. Models always try
to make the most of the available architectures, and so will the models presented here.

Classification has not only been studied in psychology, but also in linguistics as a field within
cognition. There are linguistic classification and mapping tasks that are non-deterministic, yet learn-
able to some degree by native speakers. This calls for formal models and/or explanations. The basic
insight is that new words are treated analogically to known words. The same topics apply here: the
rule vs. exception debate (to be discussed in more detail as the past tense debate in chapter 6.1),
prototype and exemplar models, effects of similarity, islands of reliability. Graded judgment studies
have found graded grammaticality of regular and irregular inflections (see e.g. Albright and Hayes
2003).

Among linguistic classification tasks, the morphology of inflectional languages is most inter-
esting to the methods that I discuss in this thesis. The general idea is to infer morphological and
morpho-syntactic features of previously unseen words based on their similarity to known words.
Similarity is surface-oriented, and it is calculated as an aggregate value over all observable features
and parts of the words, as discussed in detail in section 2.2.

This relies on the hypothesis that surface and hidden features are not arbitrary, but correlated. The
hypothesis is backed by elicitation studies, where native speakers achieve agreement above chance
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on the hidden features of nonce words. This does not only hold for hidden features. It can be easily
extended to inferring inflected word forms. These tasks are defined in chapter 6.

Gender assignment studies tell us that new or nonce words receive gender based on surface (or
otherwise known) features, or based on their similarity to known words (Schwichtenberg and Schiller
2004). The two views are interchangeable: Surface features are an intermediate layer between a
single item and the training data or exemplar pool. Similarity is the sharing of features. Therefore
the models of classification (and all models going beyond that) in this thesis are based on similarity
functions between linguistic items.

In the following sections, I discuss models for classification and production tasks.

1.3 Main theses

Let me divide the theses put forward here into three parts: assumptions, which I will briefly mo-
tivate, yet not test; hypotheses to be examined; and claimed contributions to machine learning for
linguistics.

1.3.1 Assumptions

The main work of this thesis is only meaningful given a few assumptions. They are argued for
elsewhere, and although the reader may not share all of them, I kindly ask him5 to adopt them for
the time reading.

Human language performance is based on analogy.

Read this as “certain parts of human language performance”. By language performance I will un-
derstand any operation applied to a linguistic item, be it the assignment of a class to a known or a
new word or the free production or re-production of an inflected word form. This is the performing
of mappings.

Other mappings, such as translating into another language, turning a statement into a question,
basically everything where two layers of linguistic annotation are involved, are possible, but the
explanatory value of analogy is likely to be low here.

Analogy is to be modeled via surface similarity.

Analogy needs at least four items to be instantiated: Two surface forms which each stand in a certain
relation to an item on a hidden layer. The surface and hidden forms are part of a linguistic space, and
thus related within that space by a measure of similarity. In classification and production tasks the
hidden features or correct outputs are to be predicted. They are therefore not accessible as features
of the input. Any model of analogy must be based on the surface layer.

5Male pronouns are used in this thesis for simplicity and shall refer to men and women alike.
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Similarity can be modeled by the sharing of features.

This is just the state of the art in data-oriented linguistic modeling. Features in this sense are either
abstract properties of the data items, or concrete, primitive/atomic sub-structures.

Kernels are a mathematical way to compute measures of similarity.

As claimed by the advocates of kernels (Schölkopf and Smola 2002, ch. 1).

Kernel methods are applicable to language.

This applicability is the starting point of my thesis, and it is one side of the meeting of method and
data: It is possible to use kernels. The other side is the appropriateness of their use in linguistics.
This not a prerequisite for writing this thesis, but rather its main hypothesis to be tested.

This thesis is not an overview of kernel methods applied outside linguistics. The usual applica-
tion of kernel methods is in classifications, and these also exist in linguistics. See section 3.2 for
an application. I proceed from there to show that more than just classifications can be modeled by
kernel methods.

1.3.2 Hypotheses

I will argue for the following main hypotheses.

Kernel methods are currently the appropriate way to abstract over exemplar models.

Linguists build similarity-based models (such as exemplar models), and similarity is based on the
sharing of features (as assumed above). Other models bypass the notion of similarity and use explicit
feature listings directly (see the reviews in section 2.1).

As stated above, the applicability of kernels is a necessary, yet not sufficient condition, to actually
apply them. To make it sufficient, I need to point out that kernels are the state-of-the-art for modeling
similarity in machine learning.

Using a kernel function has advantages over using features explicitly. First of all, such models
need only the kernel as a black box, no representation of the features. Kernels are very versatile.
Even large lists of possible features are easy to be handled. In this sense, the algorithm for a given
kernel resembles an algorithm for multiplication of sparse vectors.

Kernels enjoy some closure properties (appendix A; Shawe-Taylor and Cristianini 2004, p. 75).
This allows combining evidence from multiple layers of annotation, each equipped with an appro-
priate kernel. Although I do not explore these ways to enrich kernels in this thesis, it shows the
flexibility the researcher has in defining a kernel.
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Kernel Principal Component Analysis builds useful models.

Kernel-based models are close to connectionism and exemplar models, as shown by Ashby and
Alfonso-Reese (1995) and Jäkel et al. (2008). Therefore it is reasonable to try to abstract from them
using a kernel.

A kernel itself is not a model of a data set. But the feature space it induces is. In order to access
the feature space and define objects (decision margins, or a basis), a kernelized factor analysis is
needed. One of them is Kernel Principal Component Analysis (Schölkopf and Smola 2002). It
seemed a logical choice, although its main purpose, identifying the principal components of the data
set, turned out to be

In this thesis, I build reasonably competitive models with KPCA. Sometimes, performance could
be boosted by using a larger data set, but the computational effort prevents this.

PCA extracts interpretable features.

PCA is meant to extract features (or factors) in form of the principal components. These are not
the hidden or abstract features pre-specified by the linguist. A priori one could assume that the
principal components do define similar features, and this assumption will be tested. It will turn
out that interpreting the extracted factors is hard; I claim that they are meaningless for theoretical
linguistics (see section 2.3.4.3). Other possibilities are briefly discussed in the outlook ( section 8.2).

Chapter 4 discusses various methods to rotate the factors in order to facilitate interpretation. This
achieves lower-dimensional models for classification tasks (as exemplified in 4.4), but still leaves the
factors linguistically meaningless. Thus this hypothesis will be refuted.

1.3.3 Contributions

I intend to contribute the following methods and models to the field of data-oriented linguistics:

How to use kernels in linguistics.

While kernels have been previously used in linguistics (for a comprehensive overview see section
2.3), this thesis offers a wide range of possible models with kernels, with several first-of-their-kind
applications. Besides the usual classification tasks, it is possible to use kernel-based models for
inflection and other linguistic processes.

Rotations for Kernel PCA.

Factor rotations are standard practice, at least for non-kernelized methods. VARIMAX (Kaiser 1958),
the most popular rotation method, maximizes the variance of the explicit factor loadings. Yet with
kernels, these are no longer directly accessible. To my knowledge rotations for Kernel PCA have
not been discussed yet. In chapter 4 I will do that.
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Competitive, state-of-the-art models.

The models built for the various linguistic tasks (German gender assignment, 3.2; German nominal
plural, 6.4; English past tense, 6.5) are purely data-oriented, mathematically precise and perform
competitively compared to existing models in the literature.



Chapter 2

Methods

This chapter presents the most important methods for building models of analogical proportion. Sec-
tion 2.1 deals with models operating on explicit feature representations. These can be circumvented
by the use of a kernel function (2.2). Machine learning algorithms that can be re-formulated in terms
of a kernel are discussed in section 2.3. The final section (2.4) is devoted to the main method of this
thesis, Kernel Principal Component Analysis (Schölkopf and Smola 2002), and an extension to it,
Weighted KPCA (Wang et al. 2005).

2.1 Explicit feature methods

The formalization of linguistic phenomena began with rule-based models, in the spirit of Chomskyan
linguistics. Models were optimized with respect to storage: minimal sets of non-redundant rules. It is
no coincidence that this reflects the computational capabilities of the time. In the following decades,
psychologists working on cognitive models (mostly of classification) abandoned rules, suggested
prototypes, and finally dropped parsimony altogether and accepted that human cognition is based
on a vast episodic memory (exemplar theory; see Nosofsky 1986). This knowledge is modeled as a
network not unlike (a simplification of) the brain, in which exemplars and their properties are linked.
This line of research is known as connectionism (Rumelhart and McClelland 1986, see section 2.1.3).
Again, this goes along with the development of computers. With the advent of large digital data sets
and matching computational power, the findings from psychology could finally be incorporated into
linguistic models. Since around 1990, this is the predominant approach for similarity-based models
in linguistics. It is still true today that models are designed to utilize current computer technology.
The present thesis is no exception to that.

I will come back to linguistic proportions other than classifications such as inflection, where the
output are fully-specified word forms. Unlike inflectional classes, these are not commonly modeled
by analogy and therefore especially interesting. Classification1 is a much more widely known and
well-studied task. It serves well for the purposes of an introduction.

The study of classification usually is mediated via language, simply because the experimenter

1Or categorization, as it is also called. The terms are usually interchangeable.
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and the subject communicate. There are ways to circumvent language here, if deemed necessary.
The direct way is to name classes of objects. The mental model is then probed by asking the subject
to either name objects in the real world (“What is this?”) or to verify classifications (“Is this a . . . ?”).
The denotation of the name is the real-world extension of the class. As to the intension, the mental
model that determines classification, models diverge.

Some models assume rules. They derive the class of an item from its observable properties,
with the exception of a default rule, which has an empty antecedent. Such an explanation typically
identifies reliable patterns. E.g., one model of German gender (Köpcke 1988; discussed in detail
in section 3.3.1) makes use of selected patterns, and phonological, morphological and semantic
features. As I will argue, these patterns already blur the distinction between rules and data-oriented
models.

Some models derive rules from data. In machine learning, decision boundaries are learned (see
section 3.3.3). Other models assume more concrete representations. An item is compared to proto-

types of the classes, or, in the case of a full exemplar model, to all stored instances of all classes.
A prototype is an abstraction over the set of all class members. An item is assigned to the class to
whose members it is most similar. Exemplar models are discussed shortly, in section 2.1.1.

More recent models, e.g. neural networks, bypass the level of items and learn the mapping
from observable properties to class labels. Typically, there is an input node denoting the presence
or absence of each property, and an output node for each class. Network models are discussed in
section 2.1.3.

In exemplar and network models, the outcome is not discrete: All classes are activated to some
degree. This is in line with human subject agreement rates, or assignment probabilities. All these
models are instantiations of analogical learning: learning by example, according to pairwise similar-
ities of exemplars. Perceived similarity is grounded in shared surface properties, and these properties
also form the antecedent of classification rules. In that sense classification is always a mapping from
observable properties to classes.

I now proceed to exemplar models.

2.1.1 Exemplar models

An analogy-based model has two layers: input and output. As a first, conceptually simple instance I
choose words as inputs and grammatical features as output.

(2.1) The task: from words to their hidden featuresWordsHidden features
In a psycholinguistic sense, a given word form is associated with certain abstract features, mark-

ing the difference to its base form. It is not necessary to assume that the native speaker is aware of
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a combination of a stem and a suffix, or that he derives the morphological features via any sort of
rule. That is why Baayen et al. (2011) speak of amorphous morphology (see section 2.1.5). Still,
the listener will be able to avoid clashes of grammatical features (and thus obey congruence etc.),
so it is necessary to assume that he has some (subconscious) conceptualization of them, and the
encounter of a word form will, subconsciously, activate these concepts. He is also able to correctly
treat previously unseen word forms, and even novel word formations. This treatment is not random,
but a generalization of his implicit knowledge of the language.

Linguistic items are more likely to be treated analogically if they are similar. This requires a
notion of similarity. Classifying a new data item further requires a set of data items (exemplars) and
an algorithm to turn the set of pairwise similarities to a class output. Nosofsky (1986) can serve as a
reference for exemplar models. The architecture is depicted in 2.2

(2.2) Exemplar models InputSimilarityWords (exemplars)Class labels
Let R be the set of all data items (of a certain linguistic type), and (a1, . . . , an) ∈ Rn a vector of

exemplars in R. Let {ci} be a classification of R based on a similarity function f : R × R → R≥0,
i.e. f yields a similarity value for any pair of items, and for any item x ∈ R there is a unique class ci
that contains x. The probability of an item x ∈ R being assigned class ci is given by:

(2.3)

pci(x) =

∑
j : aj∈ci f(x, aj)∑n

j=1 f(x, aj)

pci is the similarity to all instances of class ci normalized by the overall similarity. As a response
for x, the class with highest probability is chosen:

(2.4)
c(x) := arg max

ci
pci(x)

In Nosofsky’s formula there also are bias weights for each class. I leave them out, because they
have no counterpart in the models to be discussed later on. Within the exemplar model however
they are necessary to discount frequent classes, as the model is highly sensitive to frequencies in the
input. Every item x ∈ R will be mapped to exactly one class c(x), therefore the space R is divided
into regions corresponding to each class. More frequent classes will be stronger attractors, if not



2.1. EXPLICIT FEATURE METHODS 15

discounted. Similarly, weights could be attached to each item in −→a . The class weights are then just
a special case, with equal weights for items of the same class.

In Nosofsky (1986) — and throughout the psychological study of classification (see Shepard
1987) — there is a division of labor between the classification algorithm (see the definition in 2.3)
and the measure of similarity. Alternative classification algorithms are prototype models, where each
class is represented by its mean, and decision boundaries. Nosofsky and Zaki (2002), Nosofsky
and Stanton (2005) discuss their relation to exemplar models and conclude that the latter are more
adequate.

What remains to be specified is the similarity function f . Earlier experiments had suggested that
similarity decays asymptotically with perceived distance. Nosofsky (1986) thus derives similarity
from a distance metric d, via an exponential or a Gaussian function:

(2.5)
∀x, y ∈ R : f(x, y) := e−d(x,y)s

with s = 1 for the exponential and s = 2 for the Gaussian function.

In order to compute distance, Nosofsky employs a ‘multidimensional perceptual representation’,
that is essentially a vector of explicit perceivable features, which are possibly weighted. Each feature
corresponds to one dimension in the multidimensional representation. The distance on a single
dimension simply is the difference of the values two items take. This crucially assumes numerical
values.2 The aggregate value over m features is calculated with a Minkowski r-metric:

(2.6) Let φ(x) list the features of any x ∈ R, such that φk(x) is its kth feature.

∀x, y ∈ R : d(x, y) :=

(
m∑
k=1

|φk(x)− φk(y)|r
) 1

r

Again, I left out the feature weights. The Minkowski r-metric is a generalization of distance
measures. It represents Euclidean distance with r = 2 and the city block metric with r = 1. Thus
distance is an aggregate value over explicit feature representations, and similarity is a function of
distance.

(2.7) Exemplar model with distance/similarity function

2The treatment of other data types is an instance of a kernel, see section 2.2.3.
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e metri
Distan
es to the exemplarsSimilaritiesClass labels
Exemplar models have been and are successful in describing human classification behavior. In

the following I discuss several possibilities to abstract over exemplar models. I call a method an
abstraction if the model is computed, not trained, and if the final model does not refer to interme-
diate layers. One of them is found in artificial neural networks (sec. 2.1.4). Another leads to Naive
discriminative learning (Baayen et al. 2011), discussed in section 2.1.5. And finally, Kernel Prin-
cipal Component Analysis (Schölkopf and Smola 2002; sec. 2.4) is used in this thesis as such an
abstraction of exemplar models.

2.1.2 Spreading Activation

The process of inferring features can be described in terms of activation spreading through a network:
Surface features are activated by listening, and they activate nodes representing higher-level features.
The simplest spreading activation model is as follows: Associate each word in the training data with
all its features. This model will correctly recognize known words, but it cannot handle unseen words
and will grow proportionally to the number of seen words. It fails to generalize.

(2.8) Lexical lookup of hidden features InputIdentityWordsHidden features
A first step in generalizing is to treat an unseen word analogically, that is, to treat it as similar

words are treated. Given a measure of similarity between words, each known word will receive
activation in proportion to similarity, and pass it on to their features. The result will not be exact,
since not all words will activate the same features. The result will rather be a distribution of activation
over all features, with the relative activation strengths depending on the similarities. As an example,
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a word being more similar to plural words will get more activation for plural than for singular. Thus
an unseen word can be classified by analogy, based on similarity.

The next step is to explicate similarity. Storing pairwise similarities of words cannot be used for
generalization, since the similarity values would need to be known. In order for similarity to work
associatively (by spreading activation), it needs to be based on identity at a lower level, a level of
surface features. For now take as an example unigrams and bigrams: substrings of length 1 or 2. In
section 2.2.3.1, I discuss different possibilities of surface features for words.

(2.9) Activation spreading through shared surface featuresInputSurfa
e features (binary) ModelWords (a
tivations)Hidden features (a
tivations)
The complete spreading activation model now consists of the following layers: input, surface

features, seen words, hidden features. The input word activates all its unigrams and bigrams as
features. It is straightforward to decompose a word in such a manner. Unigrams and bigrams then
activate the pool of known words, resulting in an activation distribution over the pool: each word
will receive as many incoming active connections as it shares surface features with the input word.
Activation is passed on to the layer of hidden features, so the more similar words have greater
influence. One could normalize over mutually exclusive features such as singular/plural, resulting in
an activation distribution over the potential values. Features are thus recognized in a fuzzy way.

Here one needs to make a distinction: for mutually exclusive features, choose the value with the
highest activation. For others, set a threshold (cf. appendix D.1). Further processing could operate
on either the fuzzy representation (in order to resolve the ambiguity at a higher level) or on the
disambiguated one.

This process of analogy is cumulative: Every training item will add its contribution. This bears
some disadvantages. First, frequent features will be overrepresented. Second, even items from the
training set are not mapped uniquely to their features. Consider testing a training item. Similarity to
itself is maximal, but that does not give us the same morphological features the item originally had,
because it also enjoys similarity to other words, which in turn add up to the features. The inferred
features from an already seen item depend on the rest of the pool. Thus recognition is imperfect.

A possible solution is to train weights for every connection in the network. Training weights
means to learn the influence each surface feature has on each hidden feature. Thereby the layer of
words can be circumvented (sec. 2.1.3): activation can spread directly from the surface layer to the
layer of hidden features. Adding intermediate layers then leads to artificial neural networks (sec.
2.1.4).
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2.1.3 Connectionism

The network architecture without a layer for words is depicted in ex. 2.10. It bypasses the layer
of words, and directly learns weighted connections from surface to hidden features. The input is
encoded, that is, mapped to a feature vector with binary values, where each position in the vector
can activate one input node of the network. Activation spreads according to the weights, such that
each output node receives an activation value (in R).

(2.10) Connectionist network InputSurfa
e features (binary) ModelHidden features (a
tivations)
The weights are trained from a training data set in order to faithfully associate all training items

with their correct features. Networks can also assign outputs to unseen inputs (not from the training
set), and they allow for these inputs to be treated in analogy to the the training items. This is in line
with the native speakers’ abilities.

A classical instance of such a model is devised by Rumelhart and McClelland (1986) for learning
the past tense of English verbs (also see section 6.5). It first encodes base forms in a ‘Wickelfeature’
representation (after Wickelgren 1969), which I will explain shortly. This layer is fully connected
to a layer consisting of the same features, representing the past tense form, which has to be further
decoded into an actual word. The architecture is shown in ex. 2.11.

(2.11) Rumelhart and McClelland (1986) Base formWi
kelfeatures (base form) ModelWi
kelfeatures (past tense)Past tense form
The network is formed by the two inner layers; the encoding and decoding steps are separate.

The Wickelfeature representation is rather complex. Initially, the input is written as a sequence of
‘Wickelphones’. These are phonemes in context: one phoneme in each direction, where a word edge
is denoted by a sentinel #.

(2.12) Wickelphone representation for /kæt/ (cat):

{ #kæ, kæt, æt# }
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Essentially, these features are trigrams. In theory, the network is supposed to learn patterns such
as IN#→ æN# for a certain subclass of irregular verbs, and mappings to @d# etc. for regular verbs.
The practical problem is that there are over 40,000 possible trigrams, resulting in more than 1.6×109

weights to be learned. This is highly impractical. Most important, it has far too many degrees of
freedom.

Rumelhart and McClelland therefore devise a set of 10 binary phonetic features to describe
every phoneme,3 plus a marker for the sentinel #. They then map trigrams to feature triples (e.g.
stop - vowel - stop for cat), and cut down the set of feature triples to 460. Finally, a word
is represented both on the input and the output side by the presence or absence of each of these
460 feature triples. Considerably fewer weights (4602 = 211600) have to be learned. The model is
trained on 420 high- and medium-frequency verbs of English, and tested on 86 low-frequency verbs.
It achieves to correctly predict 90% of the feature triples for regular verbs, and 85% of the irregulars.

Now 90% of the features do not yet make an output. This representation has to be decoded.
In Rumelhart and McClelland’s algorithm for doing so, trigrams compete to explain feature triples.
The more feature triples a trigram covers, the safer it is to assume that it actually appears in the
output. These features become unavailable for the competing trigrams, which continue to compete
for the remaining features. This process can eliminate incompatible features and lead to a cleaner
representation in trigrams, which can be evaluated against the desired output in terms of correctly
predicted trigrams.

These trigrams are not in any particular order, because sequential information is only inherently
stored in the trigram representation. With a further restriction that the trigrams have to form a
consistent sequence, fully specified forms can be returned for previously unseen verbs. This is an
instance of pre-imaging, a concept which will be discussed later (sec. 2.4.4): finding a discrete output
when all that is available is an activation over features.

The Wickelfeature representation’s complexity is due to the need to reduce the number of weights
when training a network. An alternative input representation, which is more direct and yet needs
fewer input nodes, is shown in the next section; a generalization for which the number of features is
irrelevant is found with kernels (section 2.2).

2.1.4 Artificial neural networks

Ways to reduce the number of weights to be trained include imposing restrictions on the connections,
and cumulating information. Cumulation is achieved by fully connecting part of the input nodes
to a set of internal nodes. These are in turn connected to the output. There may be any sort of
internal architecture, although for computational reasons one usually restricts models to feedforward

networks. These do not have cycles, and there exist efficient algorithms to train the weights. The
architecture is shown in ex. 2.13, the difference to the previous model being the internal layer of
nodes.

3Ten features do not totally suffice, leading to a few identically represented phonemes.
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(2.13) Artificial neural network InputSurfa
e features (binary) Trained networkInternal layer of nodesHidden features (a
tivations)
Artificial neural networks are a way to abstract over exemplars, and therefore an instance of

connectionism. With internal layers, they even abstract away from the original input features. An
internal layer is supposed to contain a compressed representation of the input, from which the ex-
traction of hidden features can be learned much more efficiently. The output layer usually comprises
one node per abstract class to be activated. Such a network is exemplified by MacWhinney et al.
(1989), discussed in 3.3.2.

The input in networks such as the one used by MacWhinney et al. (1989) is represented by
hand-selected features, or by a general scheme such as the Wickelfeatures. Another approach is the
one taken by Plunkett and Nakisa (1997) and Hahn and Nakisa (2000). They employ a template of
consonant and vowel slots. Let us call this a CV-template. See example 2.14.

(2.14) Word-to-template alignment example for the German noun “Quaste” (tassel) taken from
(Hahn and Nakisa 2000):

VCVCVCVCVCVCVCVC

_______k_v&s_t@_

Each symbol in the phonemic representation stands for a vector of 15 binary features, yielding
240 binary input nodes in total. Empty slots (_) are represented by a vector of zeros. Note that
the word is right-aligned within the template, leaving some slots open. This representation is much
more legible than the Wickelfeatures, it contains total information on the order of phonemes, and it
needs only half the input nodes.

Hahn and Nakisa (2000) map German singular nouns to binary vectors via the template, and train
a network to classify them into 15 German plural classes. I will come back to their model in section
6.4.7.

Right-alignment has one problem besides the empty slots: When suffixing a vowel, all preceding
phonemes have to shift to the left. Plunkett and Nakisa (1997) use left-alignment. The problem
of aligning phonemes to slots is discussed by Bullinaria (1997). In some template approaches (see
below), there are not enough slots, so some phonemes are dropped from the representation. Such
templates are a mix between a faithful representation of the input and hand-selected features.

Plunkett and Nakisa (1997) employ a template similar to the one in ex. 2.14 for Arabic plural
formation. They find that the phonological form of the singular is a good predictor of plural type.



2.1. EXPLICIT FEATURE METHODS 21

For plural formation, they train a neural network. 95.8% of the (859) seen words could be predicted
correctly by a network with 200 hidden units.

Plunkett and Juola (1999) use a CCCVVCCC template for monosyllabic verbs and nouns, with
center-alignment, to predict plurals for nouns and past tense forms for verbs. With 16 binary phonetic
features to describe every phoneme of English, there are 128 input nodes, and the same amount of
output features. If there are two syllables, the first one is dropped. See the further discussion in sec.
6.5.2.

The actual output of such a network is a vector of relative activations of the output nodes. This is
interpreted slot by slot: For each slot in the template, the nearest proper phoneme is found, including
the empty phoneme (_). This again is a form of pre-imaging (see above).

The models of Rumelhart and McClelland (1986), Plunkett and Nakisa (1997), Plunkett and
Juola (1999) allow for returning fully specified output forms, not only activations of classes. They
thus instantiate paradigmatic analogical proportion (Albright 2008, Pirrelli and Yvon 1999). This is
achieved by mapping words to binary vectors, learning a mapping to a likewise representation of the
output, and mapping this back to a word.

In this thesis I suggest that both on the input and on the output side kernels simplify matters
greatly by abstracting over the explicit feature vectors and their alignment problems. This also
allows for variable word lengths, other data structures than words, and more flexible and elegant
pre-imaging (see sec. 6.2.1). Instead of networks, a kernelized factor analysis is needed (sec. 2.4).

The disadvantages of networks are in the input representation (the problem of aligning phonemes
to slots, see Bullinaria 1997), their rather arbitrary internal architecture (one has to choose the num-
ber of layers and hidden nodes) and in the iterative training process: At the first shot, a network does
not even model the training data. There are mathematically more appealing alternatives.

In terms of classifications, there also is one model to circumvent the need to train weights, to
be discussed next: a method which directly computes the weights in a setting similar to the one
discussed above (sec. 2.1.3).

2.1.5 Naive discriminative learning

Naive discriminative learning (Baayen et al. 2011) abstracts over the intermediate layer of seen
words. The task is to map inputs onto outputs. Inputs are words, or, for practical purposes, their
representation on the second layer: an activation vector over unigrams and bigrams. Each position
in the vector denotes presence (1) or absence (0) of a feature. Alternatively, it could denote the
number of times the feature occurs. The first option is used by Baayen et al. (2011), whereas I will
prefer counts.

Only two layers remain: surface and hidden features, called cues and outcomes. The mapping
between the two can be captured in a single matrix of cue-to-outcome weights. This bypasses the
word layer.

(2.15) Mapping from surface to hidden features (Baayen et al. 2011)
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e features (binary) ModelTransformation matrixHidden features (a
tivations)
2.1.5.1 Method

Naive discriminative learning builds upon the asymptotic final state of a model of learning. It thus
bypasses the whole learning process, and directly computes the final weighting matrix. The learning
model is the Rescorla-Wagner model (Wagner and Rescorla 1972), a popular and successful model
in psychology. In each step, the model is presented with a data item comprised of cues and outcomes
(surface and hidden features). The association strength (the weight) between a cue and any outcome
increases whenever the outcome is also present. Regardless of the presence of the outcome, associ-
ation strengths decay for each cue present. This decay depends on other cues competing to explain
the outcome: The more competitors, and the stronger their association, the higher the decay.

This model changes with every data item, and thus does not converge in general. However a
stable state can be defined such that the expected change (by randomly drawing a data item from the
data set) for all weights is 0. This equilibrium state of the Rescorla-Wagner model was derived by
Danks (2003), and its characterization is surprisingly simple. I adapt the definitions from Baayen
et al.’s appendix in appendix F. A short overview is presented here.

Assume a set of cues (surface features) and a set of outcomes (hidden features). Let C be a
matrix of cue co-occurrences: Ci,j is the number of times the cues ci and cj appear together in a
data item. Note that these are data tokens, not just types. Frequencies are easily incorporated (see
appendix F). Similarly, letO be a matrix of cue-outcome co-occurrences: Oi,j is the number of times
cue ci and outcome oj appear together. The weighting matrix W now is the solution of CW = O.4

Cues and outcomes are fully connected, with W defining the weights between every cue and every
feature. This corresponds to a simple network with one input layer (surface) and one output layer
(hidden features; see figure 2.15).

For a testing item, the vector of outcomes is now computed by multiplying the cues (the surface
feature vector) by W . The matrix correctly maps the training data if the chosen surface features are
expressive enough.5 If not, and for unseen testing data, the activations of hidden features are to be
seen as relative to each other; the highest ones are to be assumed present (cf. the pre-imaging already
mentioned in section 2.1.3)

The method is called naive because the outcomes are implicitly assumed to be independent. They
are not conditioned on each other.

4This can be computed via the inverse of C if C is invertible, or as its pseudoinverse.
5That is, again, if C is invertible.



2.1. EXPLICIT FEATURE METHODS 23

2.1.5.2 Walkthrough

The method is easy to implement, given a way to enumerate the features of a word. The remainder
of this section walks through the original toy example in the appendix of Baayen et al., in a little
more detail.6 There are explicit surface (2.16) and hidden (2.17) feature vectors. Additionally, each
word comes with a frequency (2.18). F is a square matrix with the frequencies on its diagonal, and
0 otherwise.

(2.16) Surface features (unigrams) A:

hand hands land lands and sad as lad lads lass

a 1 1 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 0 1 1 0
h 1 1 0 0 0 0 0 0 0 0
l 0 0 1 1 0 0 0 1 1 1
n 1 1 1 1 1 0 0 0 0 0
s 0 1 0 1 0 1 1 0 1 1

(2.17) Hidden features B:

hand hands land lands and sad as lad lads lass

and 0 0 0 0 1 0 0 0 0 0
lass 0 0 0 0 0 0 0 0 0 1
sad 0 0 0 0 0 1 0 0 0 0
as 0 0 0 0 0 0 1 0 0 0
land 0 0 1 1 0 0 0 0 0 0
plural 0 1 0 1 0 0 0 0 1 0
lad 0 0 0 0 0 0 0 1 1 0
hand 1 1 0 0 0 0 0 0 0 0

(2.18) Word frequencies f ; F is a diagonal matrix containing these values.

hand hands land lands and sad as lad lads lass

10 20 8 3 35 18 35 102 54 134

Given all these, the model calculates the weights W from AFAT ×W = AFBT (2.19).

6There is a minor difference. In the latest available version of their paper, a count of 0 s for ‘lads’ underlies the
subsequent calculation. This may differ from the final, published version of Baayen et al. (2011). Therefore my matrix
W , given in table 2.19, will differ from theirs.
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(2.19) Weights W :

and lass sad as land plural lad hand

a 0.208 0.274 0.066 0.726 -0.208 -1.066 -0.066 0.000
d -0.024 -0.798 0.226 -0.202 0.024 0.774 0.774 0.000
h -0.759 0.078 -0.163 -0.078 -0.241 0.163 0.163 1.000
l -0.171 0.545 -0.284 -0.545 0.171 0.284 0.284 0.000
n 0.623 0.389 -0.235 -0.389 0.377 0.235 -0.765 0.000
s -0.072 0.087 0.159 -0.087 0.072 0.841 -0.159 0.000

Features are reconstructed from surface forms via B′ = ATW (2.20).

(2.20) Reconstructed hidden features B′:

hand hands land lands and sad as lad lads lass

and 0.048 -0.024 0.635 0.564 0.807 0.112 0.136 0.012 -0.060 -0.036
lass -0.058 0.029 0.409 0.496 -0.136 -0.437 0.361 0.020 0.108 0.906
sad -0.106 0.053 -0.226 -0.067 0.058 0.451 0.225 0.008 0.167 -0.059
as 0.058 -0.029 -0.409 -0.496 0.136 0.437 0.639 -0.020 -0.108 0.094
land -0.048 0.024 0.365 0.437 0.194 -0.112 -0.136 -0.012 0.060 0.036
plural 0.106 0.947 0.226 1.067 -0.058 0.549 -0.225 -0.008 0.833 0.059
lad 0.106 -0.053 0.226 0.067 -0.058 0.549 -0.225 0.992 0.833 0.059
hand 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

First note that 6 surface features are not enough to fully capture the data. Even for the known
data points, recall is not perfect. The surface feature h uniquely identifies the lexeme hand. All other
values are mere approximations.

The lexical hidden features could extend to other inflectional forms. The abstract feature plural

is heavily influenced by the small data set: s, the plural marker, is not even a reliable cue to plural.
Remember that surface features are either present or absent, and thus take as values 0 or 1.

Changing this to occurrence counts only gives lass a count of 2 s. This facilitates the recognition
of words containing s, but hinders the recognition of plural (see 2.21), because the feature s is now
even less of a cue to plural.

(2.21) Reconstructed hidden features, giving lass a count of 2 s:

hand hands land lands and sad as lad lads lass

and -0.008 0.004 0.635 0.647 0.799 0.154 0.121 -0.022 -0.010 -0.032
lass -0.161 0.080 0.320 0.561 -0.121 -0.254 0.252 -0.054 0.187 0.934
sad -0.153 0.077 -0.315 -0.086 0.079 0.592 0.131 -0.032 0.197 -0.034
as 0.161 -0.080 -0.320 -0.561 0.121 0.254 0.748 0.054 -0.187 0.066
land 0.008 -0.004 0.365 0.353 0.201 -0.154 -0.121 0.022 0.010 0.032
plural 0.314 0.843 -0.005 0.524 0.042 0.663 -0.383 0.087 0.616 0.100
lad 0.153 -0.077 0.315 0.086 -0.079 0.408 -0.131 1.032 0.803 0.034
hand 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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2.1.5.3 Applications

Baayen et al. (2011) model self-paced reading times and visual lexical decision in Serbian and
English. Cues are unigrams and bigrams, and outcomes are both lemmas and morphological features
(case and number, for Serbian). The models maximize the expected probabilities of outcomes given
the cues. Delays in reading and identification are successfully attributed to competing outcomes.

They call the model an instance of amorphous morphology, because morphological features are
inferred from surface forms without the intermediate notion of a morpheme. This allows for model-
ing allophonic realizations of a morphological feature (one feature to many different exponents) as
well as homophones (many features to one surface form).

Baayen (submitted) develops a model for the English dative alternation. In English, dative con-
structions are either of the type “gave Mary a book” (two NPs) or of the type “gave a book to Mary”
(NP-PP). The choice is known to depend on definiteness, animacy, the pronominal status of the con-
stituents, their lengths and others. Baayen uses these as cues, and the two constructions as outcomes.
The model’s predictions are 92% accurate.

2.1.5.4 Conclusion

Naive discriminative learning is superior to networks in that it does not need training of weights. It
also incorporates frequencies, but is inflexible with regard to the choice of surface features because
they need to be listed explicitly. The cue-by-cue matrix could become prohibitively large.

In 2.4.6, I compare the model discussed here to a kernel-based model of the same toy data.

2.2 Kernels

2.2.1 Similarity functions

In exemplar models, a similarity function f is used to calculate similarity values for any pair of
items (see section 2.1.1). Nosofsky (1986) defined similarity in terms of surface features. Likewise,
network models (section 2.1.4) represent inputs as feature vectors. The consensus is that the simi-

larity of complex, structured objects can be defined in terms of identity of their parts or otherwise
observable features.

The Wickelfeatures of Rumelhart and McClelland (1986), the CV-templates of Plunkett and
Nakisa (1997), Plunkett and Juola (1999), Hahn and Nakisa (2000), and the matrices of Baayen
et al. (2011) are designed to satisfy a constraint for concise representations. In machine learning,
one usually does not know beforehand which features will be informative, so it is a general strategy
to use as many as are extractable from the data. Instead of representing a data item within the model
as a vector ofm surface features, it can be treated as a vector of similarities to n training items. Given
m > n, the latter option is more feasible. Similarity functions hide the explicit feature vectors, and
thus are preferable whenever the number of features is large.
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2.2.2 Definition of kernels

Kernels are a general class of similarity functions (Schölkopf and Smola 2002, Shawe-Taylor and
Cristianini 2004), which typically build upon surface features. Let φ : R → Rm be the implicit

mapping of data items to the m-dimensional vector representing their surface features. A kernel
k : R×R→ R is defined as the inner product of feature vectors: ∀x, y ∈ R : k(x, y) := 〈φ(x), φ(y)〉.

Consider the example from the previous section (2.1.5.2). The matrix A in 2.16 gives the surface
features for all data items: The ith column in A is the feature vector φ(ai). The kernel defined by
φ is calculated as k(ai, aj) := AT

1:m,iA1:m,j . The matrix of all kernel values K = ATA is called the
Gram matrix (or kernel matrix). For the example, it is given in 2.22.

(2.22) Gram matrix K for the data set:

hand hands land lands and sad as lad lads lass

hand 4 4 3 3 3 2 1 2 2 1
hands 4 5 3 4 3 3 2 2 3 2
land 3 3 4 4 3 2 1 3 3 2
lands 3 4 4 5 3 3 2 3 4 3
and 4 3 4 3 3 2 1 2 2 1
sad 2 3 2 3 2 3 2 2 3 2
as 1 2 1 2 1 2 2 1 2 2
lad 2 2 3 3 2 2 1 3 3 2
lads 2 3 3 4 2 3 2 3 4 3
lass 1 2 2 3 1 2 2 2 3 3

The Gram matrix has the properties of being symmetric and positive semi-definite, and all sym-
metric positive semi-definite matrices K can be decomposed into ATA, where A is a features-by-
items (m× n) matrix. See Shawe-Taylor and Cristianini (2004, p. 57f.) and appendix B for the full
definitions and the proof. This decomposition is not unique: different feature vectors can result in
the same vector products.

For every similarity function and every data set there is a Gram matrix. If this matrix is positive
semi-definite the similarity function is a kernel: there is guaranteed to be a mapping φ such that A
is the column-wise concatenation of feature vectors φ(ai). The definition of a kernel in terms of the
positive semi-definiteness of its Gram matrices is therefore equivalent to the definition in terms of
its implicit feature mapping φ. The features are immediate if the kernel was defined via an explicit
feature mapping φ in the first place, and in this thesis I will be looking at such cases only.

In the general case, the feature mapping is implicit because the features do not need to be known.
For kernels obtained e.g. by combining existing kernels (see appendix A.1), features can be made
explicit: the feature vectors of the sum of two kernels are the concatenation of the respective feature
vectors, and the features of the product of two kernels are the pairs of the original features.

Features — as devised by the researcher — do not need to take numerical values, but they can
be internally complex. For example, a phoneme can be a feature, but it is not a number. The set of



2.2. KERNELS 27

values a feature can take defines a certain value type. One can get a numerical value by applying an
inner kernel formulated over this type. An inner kernel for phonemes could be defined on (binary)
phonetic features. This nesting of kernels allows for treating structured data, and it is called a
convolution kernel (Haussler 1999). Any nesting bottoms out to the identity of sub-features which
are decomposed no further.

2.2.2.1 Conclusion

Kernels are customizable: They encode the researcher’s intuition and knowledge and experimen-
tal insights about what constitutes similarity in a given domain. They characterize the surface of
(linguistic) objects, their observable properties: phonemes of a word, but also any annotation that
is available (syntactic structures etc.). These properties are the implicit features of the kernel. As
kernels compute measures of similarity of data items, they are an essential part in analogy-based
models. This is in line with exemplar models.

Kernels are a high-level approach to computing similarity, as opposed to inner products of ex-
plicit feature vectors. They allow useful data analysis and machine learning methods to be applied
to structured data (2.3). Is linguistic data representable by numerical vectors, or is it rather to be
called structured data? I suppose semanticists, syntacticians, phonologists and most other linguists
would prefer the high-level approach, and see their work in determining the structure of linguistic
objects. Sometimes, in phonetics and psycholinguistics, one actually works with numerical data
(reaction times, event-related potentials, formant frequencies, . . . ). Even then, similarity would not
most readily be captured by inner products, and even if it was, kernels fare no worse computationally
because the explicit computation is always possible.

2.2.3 Kernels for linguistic data

Typical linguistic data structures are strings (words or sentences) and graphs, and among the latter
especially trees. A cumulative notion of similarity for these is to use counts of shared sub-structures
as features. These features do not need to be binary. In fact it makes sense to count occurrences
of sub-structures. This allows for distinguishing items with more or fewer occurrences of a certain
sub-structure.

Section 2.2.3.1 exemplifies the construction of a kernel for words, by taking the parts of a word
as its features, choosing an appropriate decomposition of words into parts. The resulting kernel is a
typical instance of a string kernel. These are the best-known type of kernel for structured data (cf.
Shawe-Taylor and Cristianini 2004, ch. 11). Section 2.2.3.2 presents a kernel for trees, following
Collins and Duffy (2001a).

2.2.3.1 String kernels

In many applications in this thesis and in general, the linguistic objects in question will be strings of
some sort, e.g. words or sentences. Strings and sequences are also used as a means of representation



28 CHAPTER 2. METHODS

outside of linguistics, and therefore there is a large variety of string kernels available.
In the example applications to come, I need a kernel on words, capturing what makes words

similar in a linguistic sense. Also refer to the definitions in appendix A.2.
A word is recognized by its surface features. Representing a word as a string, those features are

its substrings/subsequences. Substrings are sequences of letters which appear in the same order as in
the whole word. Subsequences are contiguous substrings, better known as n-grams in computational
linguistics. One may want to restrict the features in size, say to substrings of a length equal to n, or
at most n.

(2.23) As an example, take the words tree and tear and a 3-gram kernel (and read that as “up to
3”-gram: unigrams, bigrams, and trigrams). The features are:
t,r,e,e,tr,re,ee,tre,ree and t,e,a,r,te,ea,ar,tea,ear, respectively.
Note that the features are not binary (“contains e”), but that they count occurrences.

The kernel value of tree and tear is the number of pairs of identical features. The t of
tree and the t of tear are such a pair, and so are the r’s. The first e of tree and the e of
tear are, and there is another pair with the second e of tree. The two words share no bi-
or trigram. In sum, that is a kernel value of 4.

n-grams can be enumerated (primarily by length, secondarily by alphabet), thus an explicit vector
representation is possible given an upper bound on the length n. The similarity of two words is the
inner product of these vectors, but it can be calculated much more efficiently. The size of the vectors
grows exponentially with n, while most values are 0: a word consists of a fairly small number of
different n-grams. The algorithm for calculating the kernel value is given in the appendix (A.2). It
does not need the explicit feature vectors to be stored and multiplied, and thus is much more efficient.

Preliminary experiments led me to favor subsequences (n-grams) over substrings. The cases
studied here require local information only.7 There is, however, not a best length for n-grams.
Choosing n too large results in data sparseness (lots of unseen n-grams), choosing it too small
misses relevant patterns. Unigrams, for example, don’t know anything about the order of letters in
a word.8 On the other hand, unigrams turn out to be very reliable, because they are not affected by
data sparseness.

For higher n-grams the situation is reversed: 4-grams easily identify known words, but charac-
terizing unknown words only by known 4-grams easily creates a situation where every trigram of a
word is well attested, but none of the 4-grams is, so that the word would have zero similarity to any
other. Therefore, I will never give up the simpler, more reliable information. In practice that means,
when I say n-gram kernel, I really mean up-to-n-gram kernel. Thus a 4-gram string kernel will have
as features all uni-, bi-, tri- and 4-grams of a word. And since this is the only string kernel I use, the
term string kernel will refer to n-gram kernels in particular.

7In other cases, non-local information could be useful: A language with frontness vowel harmony would lack vowel
sequences of mixed frontness.

8And even higher n-grams are ambiguous in pathological cases, see lemma 6 in appendix A.2.
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In the following n will often be a parameter, and I will examine its influence on model accuracy.
The upper limit I set on n is 6, quite arbitrarily.

Substring features are oblivious of their position within the string. This is both a benefit, since it
allows for more abstract descriptions of strings, and a disadvantage, when the position actually does
play a role. It is both easy and generally useful to additionally encode the edges of a string with a
sentinel. Here I use the symbol ’#’ (see section 3.1). n-grams covering the sentinel are positional
now, but no other features are.

A final remark: n-grams refer to the units a string is composed of. For words, the unigrams are
the letters; for phonetic transcriptions, single phonemes (with diacritics); and for sentences, words.

2.2.3.2 Tree kernels

A kernel for trees can be devised in a very similar fashion (Collins and Duffy 2001b). A character-
ization of its substructures is needed; they will serve as the features. Data-oriented parsing (DOP;
Bod 1998) employs all contiguous subtrees as substructures, with the condition that of each node,
either all or none of the daughters are contained. Definitions for trees, subtrees and Collins and
Duffy’s algorithm for computing the tree kernel are found in appendix A.3. An example follows.

Similar to the string kernel above, the features of this tree kernel are contiguous. Corresponding
to the bound n on their length, we can employ a height bound h, either as exactly h or as up-to-h.
For the example, I choose subtrees up to a height of 3. Height is defined as the number of nodes in
the longest path within a tree.

(2.24) Consider the following syntactic tree:9

VP

qqqqqqq
MMMMMMM

NP V′

qqqqqqq
MMMMMMM

John V0 NP

loves Mary

Its subtrees of height 3 are:

VP

qqqqqqq
MMMMMMM

NP V′

qqqqqqq
MMMMMMM

V0 NP

VP

qqqqqqq
MMMMMMM

NP V′

John

VP

qqqqqqq
MMMMMMM

NP V′

qqqqqqq
MMMMMMM

John V0 NP

9The example is taken from the documentation of xyling.sty by Ralf Vogel, which was used to draw this tree.
See http://www.ling.uni-potsdam.de/~rvogel/xyling/

http://www.ling.uni-potsdam.de/~rvogel/xyling/
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V′

qqqqqqq
MMMMMMM

V0 NP

loves Mary

V′

qqqqqqq
MMMMMMM

V0 NP

loves

V′

qqqqqqq
MMMMMMM

V0 NP

Mary

Height 2 trees are context-free productions:

VP

qqqqqqq
MMMMMMM

NP V′

V′

qqqqqqq
MMMMMMM

V0 NP

NP

John

NP

Mary

V0

loves

And height 1 tress are all nodes: John, Mary, loves, NP, V0, V′, VP.

The kernel then is the sum of shared features. For two subtrees to be identical, there needs to be
a mapping (a homomorphism) from the nodes of one subtree to the other preserving all dominance
and precedence relations. Subtrees are counted, not binary features. They could be enumerated and
listed in a vector to compute the inner product, but the algorithm (see A.3) by Collins and Duffy is
more efficient.

I will use this kernel in 7.2.2. A larger variety of tree kernels is discussed in Costa Florêncio
(2007).

2.2.3.3 Other kernels

Examples of the linguistic objects are anything from the phoneme via words, phrases, sentences,
utterances, texts, up to whole languages. In order to feed them into a kernel, formalizations of
these are needed: IPA characters or phonetic feature bundles, strings of letters or of IPA characters,
phrase-structure trees, attribute-value-matrices of Head-Driven Phrase Structure Grammar (HPSG),
lambda-terms etc. It is the linguist’s task to mathematically define similarity on objects of the same
type. Following the general scheme of a kernel, this can be done by identifying sub-structures —
in the fashion of data-oriented parsing (Bod 1998) — and using them as features. In a way similar
to DOP being extended to other syntactic annotation schemes (see e.g. Arnold and Linardaki 2007),
kernels can be defined for such structures.

2.2.4 Why linguistics needs kernels

In a nutshell, these are the reasons to use kernels in linguistic modeling (cf. Jäkel et al. 2009):

• They are an active field of research in machine learning.

• They are successful in cognitive modeling (mostly classification), and language is an important
part of cognition.

• They are mathematically well-founded and generalize explicit implementations of similarity,
as used in various linguistic data-driven and exemplar-based models.
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• They are modular: any kernel-based method (see 2.3) can use any kernel.

To conclude: It is the right time to apply the methodology recently established in machine learn-
ing to new challenges in another field, linguistics.

In this thesis, I formulate kernel-based models for some tasks in linguistics, which have already
been described using similarity as given by explicit feature representations. Naturally, this begins
with the easier tasks, first of all classification, the most basic task in machine learning, which is
also found on all layers of linguistic data. It is not to be expected that kernels as a new method
will improve the performance of these models, because they are already optimized with respect to
performance.

The current task is to accommodate the previously established knowledge in a kernel. Howev-
er building kernel models for these tasks lays the ground for more complex applications, such as
production tasks, which are discussed in chapter 6. Previous analogy-based models for these tasks
are rare and complicated (see 2.1.4). I consider kernel methods to be the natural formulation of the
same ideas with today’s methodology. That is to say, their authors would have used kernels, had they
been available to them. In that sense I hope for the present thesis to build a useful bridge between
linguistic modeling and current ML.

2.3 Implicit feature methods

This section discusses learning algorithms operating on kernel vectors and their relevant predeces-
sors operating on explicit feature vectors, with respect to their usage in linguistics. The main method
of this thesis, Kernel Principal Component Analysis, is given a separate section (2.4).

The methods in 2.1 calculate similarity directly from explicit surface feature representations,
or derive hidden features from surface feature co-occurrences. In kernel methods all calculations
involving feature vectors φ(x) are inner products of them. The calculation is done via the kernel (see
2.2.2).

Kernel methods usually derive from an equivalent method working on explicit feature vectors.
Many machine learning algorithms turned out not to need the actual feature vectors, but only the
inner product in the space spanned by these features (Schölkopf and Smola 2002). Replacing the
inner product by a kernel is known as the kernel trick.

The methods I present here are applied both with and without kernels. The difference only comes
into play when results need to be interpreted: then, the required (surface or hidden) features have to
be made explicit.

Kernel methods are generally not specific to a certain field of application, or to a certain data
type. This is crucial in bringing them to new applications, such as in linguistics. Inside the kernel
are the researcher’s insights and intuitions about the nature of the data. He decides what constitutes
similarity in a given case.
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2.3.1 Preliminaries

Via an appropriate kernel, the information given in a set of even “interestingly structured” data
(in their ‘questions for future research’, Jäkel et al. (2009) explicitly mention strings and trees as
representations for sentences) is reduced to a kernel matrix. This matrix is the “central data type of
all kernel-based algorithms” (Shawe-Taylor and Cristianini 2004). A kernel method is an algorithm
operating on the kernel matrix. The general structure is given in 2.25, adapted from fig. 2.4 in
Shawe-Taylor and Cristianini (2004).

(2.25) Overview of kernel methods Data (matrix)Kernel fun
tionKernel matrixPattern analysisPattern
The kernel matrix is a bottleneck in the flow of information. The two sides of the informational

bottleneck are independent of each other: any kernel can be combined with any kernel method
(Jäkel et al. 2009, Shawe-Taylor and Cristianini 2004). Hence kernel methods are modular. They
keep apart the data analysis method and the characterization of similarity.

In general, kernel methods are learning algorithms for detecting linear patterns in the feature
space. The feature extracting function φ may extract non-linear features. For example, φ could
extract the square value of some measurable surface feature. Consequently the detected patterns do
not need to be linear in the original space. They are linear only in the space of extracted features.

Let φj(x) extract the jth feature of a data item x ∈ R. A perceptron defines a linear decision
boundary in feature space, given by weights wj ranging over the training set. These weights are
trained or computed to optimally divide the data set into members and non-members of a class. x
is a member of a class C if the linear combination of its features (their weighted sum) exceeds a
threshold b (cf. Jäkel et al. 2009):

(2.26) A perceptron:

p(x) :=
m∑
j=1

wjφj(x)

p(x) ≥ b→ x ∈ C
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According to the representer theorem (Schölkopf and Smola 2002), the optimal weights wj can
be expressed as a linear combination of features of training items xi ∈ A. The weight wj is the sum
of the values of the jth feature, weighted by a weighting vector u, over all training data.

(2.27)

wj =
n∑

i=1

uiφj(xi)

Combining the definition with the representer theorem, the perceptron can be re-formulated in
terms of products of features, and consequently in terms of a kernel k defined by the feature mapping
φ (Jäkel et al. 2009):

(2.28)

p(x) =
n∑

i=1

ui

m∑
j=1

φj(xi)φj(x) =
n∑

i=1

uik(x, xi) = uT
−→
k (x)

The perceptron now derives class membership via a weighting u of the kernel vector for x. This
model both instantiates a decision boundary and is exemplar-based, as argued by Jäkel et al. (2009).
Kernel-based decision boundary models are discussed in section 2.3.2.

2.3.1.1 Factor analysis

The following sections discuss various instances of factor analyses. Here I give a short overview of
their general architecture.

Both in explicit feature models and in kernel models, the data spans a vector space. Kernel
methods are operations in the m-dimensional feature space, where each feature is a dimension. By
the implicit feature mapping φ, each data item is mapped to a vector in the feature space. One
can extend the data set to the set of linear combinations of data vectors, the data space, expecting
every point in this space to be a possible data item.10 If centered, n data items can only span a
n− 1-dimensional space.

In many conceivable applications, the number of features m exceeds n. Then, the data space is
a subspace of the feature space. This means that not all points in feature space are also points in the
data space, and thus there are unattested combinations of features.

It is a step of abstraction to identify the subspace of the feature space in which the data lie. If
less than n − 1 dimensions suffice, the data was redundant. Then the true variation of the data and
possibly a more concise description of each data point is found with a low-dimensional basis for the
data subspace.

Factor analyses (such as Latent Semantic Analysis (2.3.3.1), Independent Component Analysis

(2.3.5) and Principal Component Analysis (2.3.4)) derive a basis for this data subspace, which is
orthogonal in terms of items as well as in terms of the implicit feature vectors. The basis vectors can
be given as (not necessarily unique) linear combinations of data items, establishing orthogonality by

10Respectively, their pre-images; see section 2.4.4.



34 CHAPTER 2. METHODS

items, and they can be extended to (unique) linear combinations of features (via multiplication with
the feature vector for each item, given by φ). This establishes orthogonality by features.

If features are taken to be implicit only, the basis vectors need to be given in terms of data items.
A point in the data space can then be given as a vector of coordinates in this basis, or, equivalently,
as a linear combination of data items (possibly including itself, and not necessarily uniquely). The
basis vectors are sometimes called the ‘hidden features’ of the data set. I will abstain from using
this term in this sense, since they are unlike surface features or what I call the hidden features (the
grammatical features posited by the linguist); they are neither empirical nor theoretical constructs,
they are merely mathematically derived from the data set. Yet by the very name factor analyses are
meant to derive analyzable, interpretable factors. This issue is further discussed in section 2.3.4.3.

Again assuming implicit surface features, new data items need to be projected into the data sub-
space according to their kernel vector because no other information is accessible (shown for Kernel
PCA in section 2.4.1 and in appendix B). If a new item is linearly independent from the training data
some information (such as previously unseen features or unseen combinations of features) will be
lost in the projection, because its actual image in the feature space lies outside the subspace. We then
only get an approximation of the actual image. This can also be a benefit, because it may abstract
over noise and other artifacts in the data.

Data items can thus be represented in several different ways: First, by an explicit feature vector.
Second, by their kernel vector, that is, as a vector of similarity values. This is a very indirect char-
acterization of a data item. Thirdly, they are represented as linear combinations of the training data.
This is much more direct, almost like a building instruction. Each known data item is paired with a
coefficient: Take this amount of this item, subtract that amount of that item, and so on.

This characterization attempts to model a data item in terms of the kernel’s implicit features. Yet
all features are included in this construction process, also the ones which are not included in φ, but
only in the extractor of hidden features ψ. Technically ψ does not differ from φ. φ lists observable
features, ψ lists additional features posited by the linguist. It is his choice which features to declare
observable and which not, and this choice depends on the task. The kernel is defined by φ, so the
features in ψ are not available to it. By this definition, kernel values cannot take into account the
similarity of hidden features, only that of surface features.

From the description as a linear combination of the data the new item now also receives features
from ψ, according to their respective coefficients. This is indirect, because the description is only
based on the similarities according to φ. Yet it allows inferring the hidden features, founded in
surface similarity. Similar to an exemplar model, where a new item inherits its properties from the
items it is most similar to, in factor analyses it inherits them from those items needed to construct it.

2.3.2 Support Vector Machines

By far the most common application of kernels are instances of Support Vector Machines (SVMs).
Cristianini and Shawe-Taylor (2000) give an introduction and overview. SVMs find a hyperplane
separating the feature space into two classes of data items. This hyperplane is defined by a vector w
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which is perpendicular to it. It is thus given as the set of vectors x satisfying w · x− b = 0, where w
defines the orientation of the hyperplane and b

|w| is its distance to the origin. The decision boundary
and the margins are shown in fig. 2.29.

(2.29) Support Vectors11

Parallel to the decision boundary are the marginsw·x−b = 1 (positive margin) andw·x−b = −1

(negative margin). w and b are chosen to maximize the margin 1
|w| . Then w · x − b ≥ 1 for all x

belonging into the one class, and and w ·x− b ≤ −1 for the others. The support vectors are the data
items lying on the margins. As a decision boundary model, SVMs are an extension to perceptrons.

Of course such a solution can only be achieved if the data is in fact linearly separable. A soft

margin SVM (Cortes and Vapnik 1995) finds a hyperplane that minimizes how far data items lie on
the wrong side of the respective (positive or negative) margin.

Non-kernelized SVMs operate on explicit feature vectors x. The first advantage of kernels now
is that the hyperplane does not need to be linear in the initial feature space, because a kernel can be
defined as a (non-linear) function over these initial features. If an appropriate kernel can be defined,
it induces a feature space where the data can be separated linearly.12 Generally, non-linearity is
preferred to be put in the kernel as opposed to the learning algorithm, since linear learning algorithms
are much more efficient.

The second advantage is that non-vectorial data can be treated as well, by defining a kernel over
them. In both cases, place data items x by their features φ(x). The inner products are now replaced
by kernel computations.

11http://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png, with
a correction by P. Buch.

12This is trivial if the kernel has access to class memberships. Let φ(x) be 〈1〉 if x belongs to the class, and 〈0〉
otherwise. The data items fall onto two points (1 and 0) in the 1-dimensional feature space, where they can be separated
linearly.

http://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
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2.3.2.1 Applications in linguistics

As classification tasks are abundant, so are SVM approaches. I can only name a few examples.

Text categorization. Documents are characterized by the words they contain (bag-of-lemmas ker-
nel, Joachims 1998) or viewed as word sequences, captured by string kernels (Lodhi et al. 2002).

Relation extraction. Relation extraction is a very active field of research, and it is being tried
with lots of different kernels, see Zelenko et al. (2003), Culotta and Sorensen (2004), Bunescu and
Mooney (2005a,b) and many more. Syntactic relations between words (given by a tree fragment, a
dependency path, or simple co-occurrence at a certain distance) are mapped to semantic relations.

Semantic role labeling. Moschitti et al. (2006) define a kernel on syntactic structures relating
predicates to their arguments in order to classify the latter by semantic role.

Co-reference resolution. Versley et al. (2008) employ different kernels over the syntactic envi-
ronment of pairs of NPs to predict (by SVMs) whether they are co-referent, that is, whether they
denote the same entity; and for instances of the pronoun “it”, whether it is expletive or not.

Morphological classes. Nastase and Popescu (2009) use SVMs to separate German plural classes.
A detailed discussion is given later when I compare it to a KPCA model of German plural (3.3.3).

Parse ranking. In a series of papers (2001a, 2001b, 2002), Collins and Duffy demonstrate the
use of kernels over syntactic trees or descriptions from Lexical-Functional Grammar (LFG) to rank
a set of candidate parses for a given sentence. Training data are pairs of sentences and correct or
incorrect parses; a perceptron (closely related to SVMs) then identifies a boundary (hyperplane in
the feature space) separating the two classes. This model explicitly learns from negative data, having
two classes (grammatical vs. ungrammatical). Candidates are ranked according to their distance to
the separating hyperplane. Collins and Duffy extend the model to part-of-speech tagging and named
entity recognition, with appropriately defined kernels. Their model is further discussed in section
7.1.

Semantic parsing. Kate (2007) defines a set of semantic relations and trains an SVM for each to
classify portions of sentences. An Earley-style chart parser then derives a semantic structure (for a
natural language query).

2.3.2.2 Conclusion

Decision margins (as in SVMs) describe classes in terms of their boundaries. Classification is done
by calculating on which side of the boundary an item resides. This resembles rule-based approaches
more than exemplar models. In exemplar models, classes (and other abstract features) are determined
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by an item’s closeness to others, not by its distance to a derived construct (the boundary). These
two views might lead to the very same classifications — both are mathematical abstractions over
classification. Nosofsky and Stanton (2005) conclude in their experiments that exemplar models
better predict human behavior than decision boundaries.

2.3.3 Distributional Semantic Models

Distributional Semantic Models characterize the meaning of a word by the contexts it appears in.
Contexts for semantic classification usually are documents (and not only sentences), so meaning is
rendered as topic-relatedness. Words appearing in the same contexts are conceived as conceptually
similar.

The basic data type of such models is a document-by-term occurrence matrix: the entries denote
how often each term (a word, excluding a list of stop words) occurs in each document. Thus every
term is encoded as a vector over documents, and likewise every document is encoded as a vector
over terms (the so-called bag of words representation). The representations for terms (or documents)
can be compared to each other, resulting in pairwise distances or similarities, which in turn can be
used in clustering etc.

A recent discussion of DSMs is given by Turney and Pantel (2010). These models are used to
find synonyms (Landauer and Dumais 1997), to predict the strength of priming between two words
(Lund and Burgess 1996), or to classify nouns into a pre-defined set of semantic classes (Levy et al.
1998).

On the syntactic side, the environment of a word is not a whole document (to which it is supposed
to be topic-related), but a window of surrounding words (or similar local features). Levy et al. (1998)
conducted a second experiment in which they classify words into 12 part-of-speech classes.

2.3.3.1 Latent Semantic Analysis

Factor analyses calculate a basis of the feature space, that is, a set of (in most variants: orthogonal)
vectors. Representing a data item relative to this basis has advantages over the original feature
vector (here: occurrences over documents): the representation is usually shorter, and the factors are
uncorrelated.

The original surface features denote occurrences in documents. The ith feature thus reads as
“probably related to the topic of document i”, which is not a meaningful semantic characterization.
The extracted, orthogonal vectors are intended to be more meaningful. They are interpreted as the
latent features (not to be confused with the hidden features; in the terminology used here, hidden
features are the ones stipulated by the researcher) of the data; however I argue that this notion of
features is not very meaningful in linguistics (2.3.4.3). Nevertheless, it is useful for characterizing
data items by just a few prominent properties, as employed in Latent Semantic Analysis and related
approaches.

Latent Semantic Analysis (LSA; Deerwester et al. 1990) is a Singular Value Decomposition
(SVD) of a word-by-document occurrence matrixA. Compared to the previously mentioned explicit
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feature matrices (m features by n data items), this matrix has the documents as items (columns), and
the features are counts how often a certain word occurs in it. Conversely, the transpose of A has
words as data items, and they are characterized by the documents they occur in.

A is first centered by subtracting the mean value of each feature, and then decomposed via SVD
as A = UΣV T , where U (V ) are the m × m left (resp. n × n right) singular vectors, and Σ is a
m × n matrix with the non-negative singular values on the diagonal. The singular vectors serve a
twofold purpose: V rotates the word representations A onto its latent dimensions, which are given
in U (times the singular values); and conversely U rotates the document representations onto V :

(2.30) Word representations: A′ = AV = UΣV TV = UΣ

Document representations: (A′)T = ATU = (UΣV T )TU = V ΣUTU = V Σ

The Euclidean distance or the cosine of the angle between two feature vectors (both usually
work) is taken as a measure of distance. Thereby one can cluster words by meaning. Clustering is
a useful application independent of the actual interpretations of the latent dimensions. Some latent
dimensions turn out as highly correlated with some semantic concepts. However, the dimensions
are more of a practical value in the clustering of words than in the decomposition of meaning. For
this purpose, one only looks at the few most informative dimensions. Most informative are those
with highest singular values. This reduction of dimension further reduces the number of features
needed to represent the distributional properties of a term. Distributional properties are taken to be
indicative of semantic properties in distributional semantics. In that sense LSA extracts the meaning
of words.

2.3.3.2 Kernel LSA

Cristianini et al. (2002) reformulate LSA to work on a document-by-document matrix, obtained by
multiplying the document-by-term matrix by its inverse. If a document’s explicit features are the
terms occurring in it, then the cells of this matrix are vector products of document representations.
Now this is the definition of a kernel, and thus the matrix is a kernel matrix. Essentially, this method
then is kernel LSA. Cristianini et al. (2002) demonstrate it for text classification.

2.3.3.3 Hyperspace Analogue to Language

Lund and Burgess (1996) define another instance of DSM, Hyperspace Analogue to Language

(HAL). The initial feature representation of a word counts other words preceding or succeeding
within a certain, narrow window (of 5 words). Out of these, the 200 most variant ones are chosen,
because they are most informative. Preceding and succeeding occurrences are counted separately, so
there are 400 features in the final surface representation. Lund and Burgess’s definition of distance
is Euclidean, or — more generally — the Minkowski r-metric.

Local lexical co-occurrences reflect both syntactic and semantic restrictions. In theory, the latent
dimensions (obtained via a factor analysis) should denote such restrictions, but in practice interpre-
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tation is much harder. Therefore HAL also better serves for purposes of visualization (by projecting
the data into a 2-dimensional space) or clustering than of interpretation.

2.3.4 Principal Component Analysis

Principal Component Analysis (PCA) (PCA; Jolliffe 1986/2002) is a very common form of factor
analysis. In a multi-dimensional feature space, it identifies a direction along which the data max-
imally varies. PCA calls this direction with maximum variance the ‘first principal component’ of
the data set, and removes this variance. This is achieved by a projection, which can be thought of
as flattening the cloud of data points along this dimension. In the remaining subspace, all vectors
are orthogonal to the one just projected away. Out of these, PCA again finds the one with maxi-
mal (remaining) variance: the second principal component. This process is continued until there is
no variation left in the data set. This leads to a unique13 solution for each data set. The principal
components thus form an orthogonal basis of the data space, and they are ordered by the amount of
variance they describe.

2.3.4.1 Definition

A data matrix A, where each of the n columns denotes a data item and each of the m rows denotes
a feature, is first centered. This is done by subtracting the mean feature vector from every data item.
In the following, I will denote the centered matrix with entries Ai,j − 1

n

∑n
k=1Ai,k by A again. Then

∀i ≤ m :
∑n

j=1Ai,j = 0.
In feature space, this is a translation of all data items. Centering is important because it causes

the origin of the basis to be calculated to lie within the data space. Beforehand the center was the
null feature vector, which in most conceivable applications is not a description of a valid data item.
Thus the center lies outside the subspace of the data within the feature space. If that is the case, at
least one dimension in feature space which is perpendicular to the data subspace is needed, pointing
from the origin into the space. This dimension describes variation which is not present in the data.
Every data item would need to have the same value along this dimension, and thus it is meaningless.
Other values describe points outside the data space.

After centering, the feature co-occurrence matrix AAT is decomposed as AAT = U∆UT , where
U contains the principal components and ∆ is a diagonal matrix with the (non-negative real) eigen-
values on the diagonal, in descending order. Let r be the number of non-zero eigenvalues, Ur the
matrix containing only the principal components corresponding to those, and ∆r accordingly.

The decomposition is done via SVD: A = UΣV T → AAT = UΣV T (UΣV T )T = UΣΣTUT .
The eigenvalues are the (point-wise) squares of the singular values: ∆ = Σ2. Hence there is an
immediate connection between PCA and LSA. Each column of U defines a principal component

as a linear combination of surface features. The surface representations of data items can thus be
rotated onto the factors via A′ := UTA, just as in LSA. This is a change of basis, from features to

13Unique up to arbitrary rotations of directions with identical variance.
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factors.

2.3.4.2 Reducing the dimension

The ordering of principal components can be exploited to get a smaller model, by discarding low-
ranked components. To do so, Ur is replaced by the l principal components with highest eigenvalue
Ul, for some l < r. Each data item is then described in l factors. With only a fraction of the original
components some models still achieve nearly the same accuracy as the full model (for an example,
see 4.1.1).

Knowing a data item’s position on more dimensions pins it down more precisely, with smaller
gains from each following component. At some point, the explanatory value drops below that of
a single exemplar. This is a reasonable point to cut off. Principal components below this point
are merely cosmetic. They tweak a data item’s representation up to a 100% fit, which often is not
needed.

If we assume noisy data, a full fit is not even wanted. We expect the higher components to
capture the real variation in the data, and the lower ones to account for imprecision of measurement
and other noise. PCA has been successfully applied to restoring data sets where random noise was
added.

A linguistic model with as many dimensions as there are data items has little explanatory value.
The aim is a model as small as possible, and as large as necessary to capture the data.

2.3.4.3 Interpretation of the principal components

It is appealing to get the inherent dimensions of variation within a data set, using PCA. Yet it is
important to be aware of what these dimensions mean. Even more important is to know what they
cannot be.

Along a dimension of maximal variance, the data is maximally spread. It is by no means neces-
sary that there are dense clusters of items at either side (although such a case would point PCA to
establishing this dimension as a principal component). PCA does not identify clusters, and neither
will it posit or prove the existence of abstract classes.

Principal components are sensitive to frequencies. Therefore they heavily depend on the data
and cannot denote immutable categorical properties of (linguistic) data. Every new data item will
shift the components a little bit. This might be a reasonable assumption in a cognitive model (every
experience changes our mental representations), but it does not yield scientific abstractions.

Data items receive a representation as a vector over principal components, yet the interpretation
that a data item is composed of them (as a sort of building blocks) is misleading. All components
are needed, so it is not the case that ontologically ‘smaller’ items (shorter words etc.) contain less
‘components’, and the components are needed to various degrees. This continuity of possible values
is incompatible with an atomic interpretation. Also, no one would claim that a linguistic item is
composed of as many parts as the linguistic space it resides in has dimensions.
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The uninterpretability as claimed here only applies to principal components, not to dimensions
of the (linguistic) spaces in general. The space as a whole is used successfully in every application
in this thesis. Other factors can be obtained, for example by rotating the existing ones (see 4.2).
Factor rotations (section 4.2) will yield more useful dimensions, yet a ‘building block’ interpretation
will be almost impossible to obtain, as I will argue for in 4.5: Even for a minimalistic example with
pre-defined building blocks, these can only be approximated.

In conclusion, there is no theoretical linguistic interpretation to principal components. The max-
imum of variance in the data is not a linguistic category. There might be applications in linguistics
where variance plays a role, e.g. in phonetics, but this is not the case in traditional phonology, mor-
phology, syntax and semantics. Maybe this instantiates a more general problem: that data-orientation
is in fact necessary, and that abstract categories of language never become unambiguously manifest
on the surface and therefore can only be posited in an abstract way. Any change in frequency in the
data will immediately distort the established categories. Data-oriented models acknowledge that the
mental representations of language contain no abstractions.

2.3.4.4 Applications in linguistics

There are only a few applications of Principal Component Analysis in linguistics. I know of one
with kernels (see 2.4.7) and two without.

Lexical typology. Jäger (2010, to appear) classifies color terms cross-linguistically using PCA
on explicit vectors representing the area in the physical space of colors which a certain color term
denotes in a certain language/idiolect. The color space is given in the form of the 330 Munsell color
chips. Native speakers of unwritten languages all around the world were asked to name these colors
(World Color Survey, Cook et al. 2005).

For 1771 speakers (from 102 languages) the data set is complete for all 330 chips. They used a
total number of 1601 color terms. These are the data points. Each has 330 features: The number of
speakers who used this term for that color.

Arguably, to know the denotation of a color term, one does not need to know 330 features. Jäger
uses PCA to extract the most relevant factors, and finds that the first 15 of them explain 91.6% of
the variation across color terms. Discarding the others hopefully removes annotation errors, but also
non-significant inter-speaker variation, and retains the universally significant tendencies.

Across languages, a distinction between red/yellow and green/blue is most dominant. It is in
the nature of principal components to be twofold partitions of the feature space; they do not denote
single colors. In order to obtain interpretable results, Jäger (to appear) applied a factor rotation
(VARIMAX, Kaiser 1958; see 4.2.2) which maximizes the correlation of the factors with the surface
features. The resulting 15 dimensions denote 10 of the 11 ‘universal colors’ (except gray, which was
underrepresented in the data), and 5 additional shades.

PCA can thus be used to identify cross-linguistically stable semantic concepts as subspaces of
the semantic space (here: subareas of the color space).
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Visualization of linguistic spaces. Plunkett and Nakisa (1997) visualize the distribution of Arabic
plural classes in the space of singular nouns in two dimensions. These dimensions are the first two
principal components of a PCA on explicit surface feature vectors of singular nouns. This represen-
tation captures as much variance in the data as possible. Nouns fall into clusters corresponding to
the number of syllables, and there appears to be some correlation between a noun’s position in this
two-dimensional space and its plural class.

KPCA was not available back then, otherwise a kernel would have been a better choice than
the explicit feature vector. However, they continue to predict fully specified plural forms with an
artificial neural network, and therefore they need explicit input features. Their paper is not only
noteworthy for the use of PCA, but also for a connectionist method for predicting output forms (see
section 2.1.4). It is thus the direct predecessor of my KPCA models of inflection in chapter 6, where
I combine the ideas in employing KPCA directly to predict plural forms instead of just their class.

2.3.5 Independent Component Analysis

Independent Component Analysis (ICA; Hyvärinen et al. 2001) is a factor analysis similar to LSA.
There is a kernelized variant (Bach and Jordan 2003), but I am not aware of linguistic applications.
So in this sketch I describe standard ICA, following Honkela et al. (2010).

Remember that LSA is an SVD of a features-by-words matrix: A = UΣV T . U contains the
latent dimensions of the semantic space. These form a basis of this space, but as also argued
by Honkela et al., p. 286, they are hard to interpret. Another basis for the same space could be
more meaningful, and it can be obtained by rotating the vectors (cf. sections 2.4.5.1 and 4.2) in U :
U = RW , where R is a rotation matrix and W contains independent factors. ICA performs this
decomposition of U according to a criterion of independence of the factors.14 The vectors in W
span the same space as the latent semantic dimensions, but by the independence criterion they are
supposed to be more interpretable.

As in LSA, the number of latent dimensions can be reduced by retaining only the ones with
highest singular value. This vastly reduces computation time. A similar point will be made in 4.2.
Instead of SVD, PCA can be used to obtain a set of initial factors. In any case, ICA needs orthogonal
factors as an input. This is generally not given, so either SVD or PCA is needed. Additionally, these
methods allow for reducing the dimension.

2.3.5.1 Applications in linguistics

ICA is used by Honkela et al. (2010) to obtain multi-dimensional, semantic representations for words
from the environments they occur in. The feature matrix A contains explicit feature vectors for
each word. Features are co-occurrence counts for 200 other words, separated into preceding and
succeeding occurrences. This yields 400 features in total. Only occurrences within a fixed window

14This criterion is the kurtosis of the factors, not the variance as in SVD or PCA; a similar, yet higher order measure.
Kurtosis is the ‘peakedness’ of a distribution, with a Gaussian having a kurtosis of 0. According to Calderone (2008),
ICA maximizes the ‘non-gaussianity’ of the factors. Refer to Hyvärinen et al. (2001) for details.
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size (e.g. 5) count, and closer distances count more (e.g., 1 for a distance of 5 linearly increasing to
5 for a distance of 1).

The 200 words are chosen to be the ones with maximal variation; that is, the ones which are
most informative. This preparation step is an initial reduction of dimension, but it also exemplifies
the constraints imposed by explicit feature vectors.

Taking the nearer vicinity of a word as features leads to a representation which does not cap-
ture topic-relatedness (as in LSA, where all other words in the document are features), but local
distributional patterns. These patterns roughly correspond to word classes (part-of-speech), and to
selectional preferences between heads and arguments. The feature space is thus not a semantic (or
topic) space, but more of a syntactic space.

Data points (words) can be represented using a small number of independent components. Hon-
kela et al. visualize the coordinate a word receives in the space spanned by these components using
bar plots. Presumably similar words are represented similarly, so they are close in the syntactic-
semantic space. There is a component correlating with being an adjective, and one for being a verb;
such that adjectives and verbs take a high value on the respective dimension. Similarly, Honkela and
Hyvärinen (2004) also only give tentative results.

Calderone (2008) identifies linguistically meaningful factors in Italian verb forms, using a sample
of 51 verb forms. Each letter is a data item, and its surrounding letters (a window of 5 to the left
and 5 to the right, including a special symbol for positions lying outside the word) are encoded as
its features in a binary vector. These features are first condensed to 50 principal components (using
PCA). ICA then rotates these factors. The resulting factors are manually examined and visualized
to show that they (or at least some of them) are highly correlated with either a verbal stem (that is,
words derived from that stem receive a high absolute value on this dimension) or a morphological
feature, such as ‘first person plural’.

This correlation is mediated by the surface features: The factor denotes a set of surface features,
which appear in a certain morpheme, which in turn is the exponent of a grammatical feature. It is
important to notice that these grammatical features were not available to the method; in a sense,
those morphemes were discovered. This is due to the concatenative nature of the data set: A sample
of stems combined with suffixes. ICA seems to be able to extract a separate dimension for each stem
and each morpheme.

Lagus et al. (2004) characterize Finnish morphemes by their distribution. A corpus of Finnish
words is semi-automatically parsed into morphemes; the 3759 most frequent ones act as the da-
ta items. The 505 most common words plus an end-of-word boundary are the features. For each
data item, it is counted how often it is immediately followed by each of them. This gives a 506-
dimensional initial representation for each data point, which is again reduced to 50 principal com-
ponents. After applying ICA, the rotated factors reportedly are correlated with certain syntactic,
semantic or morpho-phonological properties. An example of the latter would be frontness of vow-
els, which due to vowel harmony sorts morphemes into two classes; however, this is only tentatively
given as an interpretation. Two factors are interpreted by visual inspection.
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2.3.5.2 Conclusion

While this review is not complete and Väyrynen and Honkela (2005) conclude that ICA is superior
to unrotated SVD (that is, classical LSA), the implementations discussed here only convey tentative
results and visual inspections. ICA acknowledges the problems in interpreting latent semantic di-
mensions, and offers rotation as a solution to obtain another, more meaningful basis of the semantic
space. I will come back to rotations in 4.2. The studies cited here restrict the context, so that also
syntactic and morphological features play a role. This can be thought of some sort of latent syntactic

analysis.

2.3.6 Conclusion

Many learning algorithms have been re-formulated in terms of inner products of feature vectors. The
resulting kernel methods are state of the art in machine learning. Kernels make features implicit,
which allows for more flexibility, up to a virtually unlimited number of features. This would be
unfeasible in neural networks and the like.

Connectionist methods integrate the similarity measure into the model. Kernel methods separate
the two and thus are modular. Any knowledge about the domain can be hidden from the learning
algorithm. This is superior to designing the internal layers of an artificial neural network.

At the same time, kernel methods are closely related to exemplar models (Ashby and Alfonso-
Reese 1995, Jäkel et al. 2008): They operate on the kernel vector, the vector of pairwise similarities
to all stored exemplars. Therefore kernel methods are a valid mathematical abstraction over such
cognitive models.

2.4 Kernel Principal Component Analysis

What makes PCA especially interesting is its reformulation for kernels (Kernel PCA / KPCA,
Schölkopf and Smola 2002, Schölkopf et al. 1997, Shawe-Taylor and Cristianini 2004), because
explicit feature vectors are no longer necessary. The kernel implicitly defines a feature space: Each
data item is implicitly given as a vector of its features, and this vector is its coordinate in a space
where each feature is a dimension. Now usually we have far more features than data items, and to
tell apart n data items, at most n − 1 dimensions are needed. The data items fall into a subspace of
the feature space. Every point in it can be expressed as a linear combination of data items. KPCA
calculates a basis for this subspace.

KPCA is very popular in machine learning, yet somewhat under-represented in linguistics. The
only linguistic application (Clark et al. 2006, Costa Florêncio 2007) is discussed in 2.4.7. I conclude
that there is a large gap between kernelized factor analyses and linguistics; and I intend to lay some
groundwork here. In section 2.4.2, I discuss the incorporation of frequencies into KPCA. To this
end, I discuss Weighted Kernel PCA (Wang et al. 2005), which fulfills the requirement of being
equivalent to a standard KPCA on an artificially extended data set simulating frequencies, where
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identical items occur several times. This will be proven in appendix C.
KPCA will be the central method of this thesis. This choice is mainly due to its popularity in ML

— PCA is called the “perhaps [. . . ] most common feature extraction algorithm” by Schölkopf and
Smola (2002, p. 19) — and its accessibility to the non-expert15, among kernelized factor analyses.

2.4.1 Definition

Here I only sketch KPCA; the full definitions are found in appendix B.
Let A be the data matrix with n columns containing the implicit feature vectors φ(ai) for each

data item ai (0 < i ≤ n). Then ATA = K, the kernel matrix, because its entries are inner products
of the feature vectors. In KPCA, the kernel matrix is centered, such that each row (and by symmetry,
each column) adds up to 0. Then it is decomposed as Q∆QT , where ∆ is the diagonal matrix
of eigenvalues in descending order, and Q are the corresponding eigenvectors. Define α as the
eigenvectors normalized by the inverse square roots of their respective eigenvalues. The principal
components are then given as linear combinations of A: U = Aα := AQ∆−

1
2 .

Let r be the number of non-zero eigenvalues. Then Ur are the r principal components. It consists
of implicit feature vectors, but these are never used explicitly. The r new dimensions of a data item
z are given as αT

(−→
k (−→a , z)−Kv

)
, where v is an averaging vector (a column vector with values 1

n

everywhere) and
−→
k (−→a , z) is the kernel vector for z. Left multiplication with α yields the coefficients

ζ of a linear combination of data items. This linear combination is a description of z in terms of the
data set. From this representation, the hidden features of z may be inferred (2.4.3). For example
applications, see 2.4.6 and 3.1.

2.4.2 Weighted Kernel Principal Component Analysis

A main purpose of many machine learning techniques in linguistics is to incorporate frequency data
into the model, in order to explain or model effects of frequency in natural language. In factor
analyses, it is desirable to have frequency-sensitive factors, which shift towards heavier clusters of
items. It does not matter whether this cluster consists of many highly similar items or of numerous
instances of one and the same type: The effect shall be the same.

2.4.2.1 Doing it explicitly

One way to mimic this behavior in KPCA is to multiply each row and column of the kernel matrix
by the frequency of the respective data item. Let this kernel matrix be the expanded kernel matrix.
It is computed via an expansion matrix P , with item frequencies f1 to fn, the sum of which is
s :=

∑n
i=1 fi.

15Which I, after writing this thesis, still consider myself.
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(2.31)

P =



1 · · · 1︸ ︷︷ ︸
f1

0 · · · · · · · · · 0

0 · · · 0 1 · · · 1︸ ︷︷ ︸
f2

...

... . . . ...
0 · · · · · · · · · 0 1 · · · 1︸ ︷︷ ︸

fn


︸ ︷︷ ︸

s

P duplicates rows/columns: left multiplication with the transpose of P and right multiplication
with P takes the n-by-n kernel matrix to its expanded (s-by-s) version, just as if each data item
had been in the data set several times, according to its frequency. The expanded kernel matrix now
contains many duplicate entries. It is obviously much larger than the original matrix. It is centered
and decomposed as in ordinary KPCA. Consequently, storage and computation will be more costly.16

The principal components necessarily contain identical coefficients for identical items. They are
expressed in terms of the expanded data set. In order to interpret them with respect to the original
data set, they are summed up item by item. This is done via left multiplication with P . The principal
components thus derived shall be the standard against which to evaluate the alternatives.

2.4.2.2 Reformulation

Alternatively, it is possible to include the appropriate frequency factors into KPCA in some way
such that the resulting principal components (and eigenvalues) are the same. This technique is
called Weighted Kernel Principal Component Analysis, or WKPCA, for short (Wang et al. 2005).
As usual, the definitions — and my proof of equivalence of WKPCA and KPCA on the expanded
kernel matrix — are in appendix C. Here I will give a brief introduction and the intuitions behind
WKPCA.

The most reasonable place to apply frequencies is in the averaging factor, W (such that the
weighted and centered matrix MW equals WKW T ).

(2.32)

W :=

(
In,n −

1

s
f

1
2f

1
2
T
)
diag(f

1
2 )

WKW T =

(
In,n −

1

s
f

1
2f

1
2
T
)
diag(f

1
2 )Kdiag(f

1
2 )

(
In,n −

1

s
f

1
2f

1
2
T
)

Note that W is n-by-n and not s-by-s, although of course 1
s

is used for averaging. In a first step,
the kernel matrix is weighted by multiplying it with the square root of the frequencies both from the
left and from the right. The remainder of W then is symmetric (W is not):

(
In,n − 1

s
f

1
2f

1
2
T
)

=

16An already computation-heavy procedure such as eigenvalue decomposition cannot afford this while still being
practical.
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(
In,n − 1

s
f

1
2f

1
2
T
)T

. This part is similar to KPCA’s centering matrix V . It contains of the identity,
and subtracts not a uniform average, but an average weighted by (the pairwise products of the square
roots of the) frequencies.

W is not a true centering factor. It is only a substitute for the centering factor of the expanded
kernel matrix. Consequently the kernel matrix M appears not to be centered. The sums of each
row (or column) are not 0, because this summing implicitly assumes equal weights. However M is
centered with respect to the weighting.

In deriving principal components equivalent to an expanded KPCA as described above, α needs
to be adjusted as follows.

(2.33)
αWr := W TQW∆

− 1
2

r

Note that if the equivalent is done in standard KPCA (multiplication with V T ) its principal com-
ponents remain unchanged since they are already centered: α = Q∆−

1
2 = V TQ∆−

1
2 . For the same

reason as with W above, the principal components of WKPCA are — after multiplication with W T

— not orthogonal with respect to the data types; they are orthogonal with respect to the data tokens.
This can be seen from the fact that the same principal components are derived from the expand-
ed kernel matrix, which shall be proven in the appendix (appendix C, lemma 13). This proof of
equivalence then justifies the definitions of W and αW .

Computationally, WKPCA is only slightly more expensive (one more matrix multiplication)
than unweighted KPCA. Compared to an expanded KPCA, it saves both time and space, while
arriving at the same solution. It is therefore a valid technique to incorporate frequencies into KPCA.
Frequencies do not have to be integers; I expect WKPCA to be well-behaved on the positive reals. I
will not explore the effects of negative frequencies here.

WKPCA is exemplarily applied in section 3.2.3 to a KPCA model of gender assignment in
German, and in section 4.1 in conjunction with dimension reduction. The general hypothesis is that
weighted data result in better performance, because they more naturally model the native speaker’s
experience with language.

2.4.3 Feature inference

Given a set of linguistic objects (training set) and a kernel over their surface features, KPCA calcu-
lates the feature space in which all these objects lie. A test item is represented as a linear combination
of the training items. Its features are a linear combination of the features of the data items. Now
assume that the hidden features are correlated to the surface features. As the linear combination is
constructed to best approach a test item, I interpret it also as an attempt to reconstruct its hidden
features. Then not only the surface features can be read off, but also the hidden features.

Given a hidden-features-by-items matrix B, the hidden features of a linear combination with
coefficients ζ are given by Bζ . There is thus is a direct and exact computation of the inferred



48 CHAPTER 2. METHODS

features (see lemma 9 in appendix B). In network models, a weighting has to be trained from the
layer of activation strengths of words to the output layer.

(2.34) Architecture of feature inference with KPCAInputKernel (features impli
it)Similarities(kernel ve
tor)Conversion Kernel PCA ModelLinear 
ombinationof training itemsHidden features
In Naive discriminative learning (Baayen et al. 2011), the input is the explicit surface feature

vector. Using the kernel vector skips over the layer of surface features.
The KPCA inference model relates to the explicit model (2.9) via their input vectors. Both are

vectors over the training set. In the explicit model, it is an activation vector depending on the pairwise
similarities: The more similar, the higher the activation. If activation spreads via (unweighted17)
surface features, then each activation equals the sum of features shared by a word and the input.
This computation is already an instance of a kernel, so in that case the vector is a kernel vector, as in
the KPCA model.

Using a kernel has several advantages. Surface features do not have to be stored explicitly, thus
we do not have to handle huge feature vectors. The kernel within the method can be replaced easily,
so the method is modular. In fact, everything linguistic is in the kernel. The measure of similarity is
entirely up to the researcher, as long as it fulfills the requirements of a kernel.

Continuous features can be simply read off the linear combination. The particularities of discrete
features are discussed next.

2.4.4 Interpretation of points in the feature space: Pre-images

A point p in feature space is either given explicitly in surface features, or implicitly in terms of the
principal components. The latter is equivalent to a representation as a linear combination of the
training data, by multiplying the coordinates of a data item with α. Now we want to map p back into
the original space, to its pre-image. This is immediate if that point represents a known data item. In
other cases, an item has to be computed (Schölkopf and Smola 2002, ch. 18.1).

17Technically, the features in a kernel can be weighted.
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One has to distinguish the case of continuous features from the case of discrete features. For
every feature, p has a value according to the coefficients of the linear combination and the (known)
values for this feature of each training item. If the feature is continuous (e.g., it represents a duration,
or a formant value), the image in the original space can just take this value.

If however the original space only allows discrete values for that feature — as is the case with
class membership — one has to pick a value. If they are mutually exclusive, their proportions will
add up to 1. This can be seen as follows: it is true of the data mean, because it is true of every
single item. Furthermore, there is no variation with respect to this, so the principal components only
change the proportions of the different, mutually exclusive labels, not their sum. For an example,
see 3.1.

The closer the test item is to instances of a certain class, the more its representation will rely
on these, and thus it will receive more of that class label than of the other(s). Then a majority vote
suffices: Take the label with the highest proportion. See the definitions in appendix D.

In linguistics, as in many other fields, one often deals with data more complex than just bundles
of independent features. Explicit feature representations are unfeasible because of their length. Take
strings as an example, and consider the string kernel defined in 2.2.3.1. The features of a sequence
are its subsequences. These n-grams overlap (for n > 1) and therefore they cannot be evaluated
independently. For example, the features ab and ac cannot be combined into a single word without
introducing further bigrams.

Mapping a data item into the data space, which is a subspace of the feature space, means that
the item’s image is not necessarily lossless: Its actual feature representation is projected into the
subspace. Conversely, a pre-image cannot be a perfect representation of a point in feature space,
although for a different reason: The feature space is a continuous interpolation of admissible feature
combinations, yet the actual data items need discrete feature values, at least for the types of features
considered here (n-grams etc.).

A point in the feature space can assume any value of a feature. Consider a binary feature, that is,
a feature which in any given data item is either present or absent, with no option in between. Both
including it in and excluding it from the pre-image comes with a penalty. Say the feature’s value is
0.6. Then including it adds 0.4 more of that feature than there should have been. Excluding it might
even be the better option if that feature implies (in the original space) other features with even lower
values. As an example consider a large n-gram, which implies all its substrings. Pre-imaging (the
process of finding a pre-image) is always a compromise.

The infinitely many, yet enumerable items in a discrete data space will serve as a pre-image for a
given point p to various degrees of goodness. Next, I will define this goodness based on the kernel,
along with a general algorithm to search the data space iteratively for the one data item that fits best
as a pre-image.
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2.4.4.1 A general purpose pre-imager for discrete, complex data

This section describes a general purpose genetic algorithm for finding an optimal pre-image in a dis-
crete space of structurally complex data. A more mathematical description can be found in appendix
D.2.

Let the pre-image for a point p in feature space (expressed as a linear combination of the data
set: p := −→a ζ) be defined as the item x in the data space such that x is closest to p. The distance
in the feature space is calculated via the kernel as

√
k(x, x) + k(p, p)− 2k(x, p) (see lemma 1 in

appendix A). Thus its features do not have to be made explicit. If the distance is 0, then x and y are
equal (by definition of distance).

Candidates pre-images x can be sorted according to their distance to p. One now needs a method
to enumerate all candidates, i.e. all possible data items, to find the optimal one. Usually the data
space will be infinite, so one also needs an abortion criterion which stops the search once a suf-
ficiently close fit is found. However this strategy is very inefficient: enumerating the candidates
consumes a lot of time. A dynamic search of the data space is better: the order of the enumeration is
changed based on the evaluation of previous candidates. Basically, this calls for a genetic algorithm.

A genetic algorithm consists of two phases: mutation and selection. Mutation is the genera-
tion of new candidates based on previous candidates, and selection is the evaluation of candidates
(via the distance). For simplicity, consider selecting only the one best candidate of each generation,
mutations of which will form the next generation. Mutations are copies of the original with mini-
mal changes. These minimal changes will be data-specific. For strings, but basically also for any
structured data type, these might be insertions, deletions and substitutions (see the special-purpose
string pre-imager in 6.2.1). They should be defined such that a candidate does not have too many
descendants, and that the descendants cover all the relevant directions in which the pre-image could
be improved: The immediate search space should be dense.

A strong assumption of this strategy is monotonicity. Only the best candidate is used to gener-
ate new candidates, and the search will be aborted if a certain new generation cannot provide any
improvement over the previous candidate, declaring it the optimal pre-image. The minimal changes
need to be general enough to avoid local maxima, although that risk always exists. Local maxima
can be avoided by allowing several changes simultaneously (thus providing a look-ahead), at the cost
of many more candidates to be considered. Monotonicity is a severe restriction, yet it provides an
easy abortion criterion. In the applications of the string pre-imager (chapter 6) it proved reasonable.

Another important factor for the length of the search is the choice of the initial candidate. Most
structural data types will provide a (near-)empty or minimal item. Starting there means building the
pre-image from scratch. Depending on the task, a good guess of the initial candidate will massively
reduce the number of generations necessary to find a winner, while at the same time avoiding all the
errors (local maxima) that could be introduced by the longer search path.18

For lack of a perfect all-purpose pre-imaging method, one needs to find appropriate minimal edits

18As an example from biological evolution, take the appendix: Introduced at a much earlier generation, its removal
would make us a better pre-image of the ‘ideal’ human. Yet the immediate search space (the next generation) is not
dense: This minimal change is not included.
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and initial items for every given application of the method. The markup pre-imager (5.2) is highly
adapted to its purpose: A clever (actually, an obvious) choice of the initial item, and a minimal set
of changes.

Asymptotic improvements ad infinitum are conceivable, but not very likely. The kernels used
in this thesis, and most linguistic kernels in general, are convolution kernels (Haussler 1999): They
compute similarity as a sum of the similarity of sub-structures. At some level, similarity is not re-
cursively defined anymore, so it bottoms out to identity of atomic features. Asymptotic pre-imaging
would mean adding more and more sub-structures, leading to ever larger candidates. Normalization
of the kernel penalizes that. So the pre-imaging algorithm will usually terminate, although there
might be pathological cases (choices of kernel function) in which this is not always the case.

2.4.5 Linguistic interpretation of factors

The space spanned by the data can be interpreted in comparison to the full feature space (as the set
of ‘legal’ or ‘grammatical’ feature combinations; cf. also 7.2). The methods discussed so far (LSA,
ICA, PCA) also give an orthogonal basis for this space, so the question arises how to interpret the
basis vectors. In LSA, they are called the ‘latent semantic dimensions’, and they are intended to
denote semantic concepts. ICA hopes to find linguistically meaningful semantic, morpho-syntactic
and phonological features, depending on the surface features chosen. PCA extracts dimensions
sorted by the amount of data variation they capture.

For non-kernelized PCA, I have discussed the shortcomings of principal components as linguis-
tically meaningful entities in section 2.3.4.3. Other vectors in the data space might be more inter-
pretable. This directly leads to rotations (2.4.5.1 here, and 4.2 later), as already exemplified by ICA,
which is a rotation of an SVD. The additional problem with KPCA, both regarding the interpretation
and rotations, is that the basis vectors are given as linear combinations of data items.

Dimension reduction of non-kernelized PCA (2.3.4.2) can be directly applied to Kernel PCA.
There are no differences.

2.4.5.1 Factor rotations

Maximal variance is not the only criterion for determining a basis of feature space. The basis vectors
can be rotated, retaining orthogonality, in order to meet other needs. As mentioned in 2.3.5 and
2.3.4.3, dimensions of maximal variance are not naturally interpretable. Rotations are meant to
improve the interpretability; however the interpretation of independent components (ICA) is still
difficult.

To my knowledge, all rotations work on explicit feature vectors. Therefore they are not directly
applicable to kernel methods. In a later section (4.2) I will discuss rotations in more detail, address
the problem of rotations in combination with kernel methods, and introduce a special rotation with
respect to hidden features. This rotation maximizes the variance of the hidden features, and thus
identifies dimensions which span a subspace of the data space, such that all variation of the hidden
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features falls into that subspace. Therefore this rotation enforces a certain (pre-defined) interpreta-
tion.

One such application will identify two dimensions in surface variation of German nouns related
to gender (4.4). They highly depend on the training set and are such that they do what they are
made for; they do not mean anything beyond that. Thus not even this rotation leads to linguistically
interpretable dimensions. In 4.5 I conclude that with a lot of effort one can enforce linguistic meaning
(albeit only when it is pre-defined).

2.4.6 Comparison to Naive discriminative learning

Naive discriminative learning (Baayen et al. 2011) is similar to (W)KPCA. It also infers hidden
features from surface features, and derives a transformation matrix to map data items to their hidden
features. The main difference is that it does not use a kernel (and it is unclear to me how it could
be modified in that way). The method is somewhat simpler, yet less flexible. For as long as explicit
feature vectors are practical (explicit trigrams possibly count into tens of thousands), its results are
very comparable to the KPCA method.

Next I show a special case of the model, which turns out to be identical to a treatment of the same
data with the PCA method. This continues the example given in section 2.1.5.2. Table 2.35 shows
the reconstructed hidden features when all words have the same frequency. The main difference to
table 2.20 is that lands receives a full plural value (marked in bold). That value had been less
important before, when lands had very low frequency compared to the other data items.

(2.35) Reconstructed hidden features, without frequencies:

and lass sad as land plural lad hand

hand 0.0909 -0.0000 -0.0909 -0.0000 -0.0909 0.0909 0.0909 1.0000
hands -0.0909 -0.0000 0.0909 -0.0000 0.0909 0.9091 -0.0909 1.0000
land 0.2727 0.0909 -0.1818 -0.0909 0.7273 0.1818 0.1818 0.0000
lands 0.0909 0.0909 -0.0000 -0.0909 0.9091 1.0000 0.0000 0.0000
and 0.6364 -0.1818 0.1818 0.1818 0.3636 -0.1818 -0.1818 0.0000
sad 0.1818 -0.1818 0.6364 0.1818 -0.1818 0.3636 0.3636 0.0000
as 0.1818 0.3636 0.1818 0.6364 -0.1818 -0.1818 -0.1818 0.0000
lad -0.0000 0.0909 0.0909 -0.0909 0.0000 -0.0909 0.9091 0.0000
lads -0.1818 0.0909 0.2727 -0.0909 0.1818 0.7273 0.7273 0.0000
lass -0.1818 0.6364 -0.1818 0.3636 0.1818 0.1818 0.1818 0.0000

For comparison, I implemented the same data set with a unigram19 kernel in a KPCA model.
The results are exactly the same (2.35). Given enough features,20 both models can reliably recall the
hidden features of the training data.

19Presence of features, not counts. This makes a difference for lass only. I implemented this by simply writing las
instead of lass.

20Enough features means a invertible cue co-occurrence matrix, or a full rank surface feature (or kernel) matrix, in
which case both models are exact, see appendix F.
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In the general case with frequencies, I compared the results of Naive discriminative learning
(section 2.1.5.2) to a Weighted KPCA model (2.4.2), using the same vector of frequencies. Ev-
erything else is the same as in the KPCA model. WKPCA’s results are exactly those shown for
Naive discriminative learning (2.20). Thus at least empirically in this example, the two methods are
equivalent.

Naive discriminative learning is characterized by the feature co-occurrence matrix AAT ; KPCA
operates on the kernel matrix ATA. This is at the same time the main similarity and the main
difference of the methods. As for the differences, the former is easier to calculate for few surface
features and the latter for many.

Baayen et al.’s model is the latest word in explicit-feature models and should be preferred over
e.g. networks. Both models do not need training; they compute the hidden features. There is the
additional flexibility of kernels, both on the input and the output side. For models of inflection (6.4)
explicit features (on the ‘hidden’ side) are not useful. Yet in many cases the question of explicit vs.
implicit features remains one of personal choice, and of further research. The latter would uncover
the close relationship of the models as witnessed by the results in 2.35.

2.4.7 Previous applications of KPCA

The only application of a kernelized factor analysis (a factor analysis the computation of which has
been re-cast in terms of inner products) to a linguistic problem that I know of is Clark et al. (2006).
The authors use a string kernel PCA to define the subspace all training items fall into, and consider all
points within grammatical. The subspace is called a planar language. Clark et al. test this notion of
grammaticality on a number of artificial languages ranging from regular to mildly context-sensitive
complexity. Basically, if the implicit features have occurred before (in similar proportions), then a
test item will fall into the hyperplane. Unwitnessed features and violations of feature proportions
will lead to ungrammaticality.

This application is not even a classification, since it only knows one class: grammatical items. It
learns from positive data only, and thus stands in contrast to Collins and Duffy’s method, which has
an explicit class of negative examples.

Costa Florêncio (2007) extends the notion of planar languages to tree kernels, but does not apply
them. Further discussion of Clark et al. (2006) is found in section 7.2, where I apply tree kernels to
tree representations of the languages studied in Clark et al. (2006).

2.4.8 Conclusion

The method outlined in this section sums up as follows. Linguistic objects can be arranged in a
high-dimensional space according to their pairwise similarities, using KPCA. Similarity is calculated
via a kernel function, which implements the researcher’s notion of similarity for the given type of
linguistic object. The kernel is defined on the surface features only, leaving the other features as
hidden. Via its kernel vector (with respect to the training data), a test item can be projected into the
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feature space, where it is expressed as a linear combination of training items. Because the kernel
vector captures similarities, this embodies a model of analogy.

Assuming that the unaccessible, hidden features (class membership, grammatical features, and
even its inflectional forms) behave analogously to surface features, they can be simply read off the
linear combination. This is the main idea of this thesis: To infer those properties via analogy. If
the features are discrete, and not continuous, it is necessary to find the closest possible value for the
feature in order to obtain a valid pre-image.

I argue that this formalization of analogical reasoning is appropriate for linguistic models. It is
data-oriented in that it abstracts from exemplar models. The method is modular, the calculation is
exact, and the models are linear. The close connection between kernel methods and exemplar models
was worked out by Ashby and Alfonso-Reese (1995) and is further backed up by Jäkel et al. (2008).
In that sense, kernel-based models instantiate connectionism.

Although the model is used to classify data items, it does not directly define decision bound-
aries,21 and thereby it differs from SVMs. The definiteness with which an item is assigned to a
certain class depends on how close it is to instances of that class, and not on how far it is away from
a boundary.

Still, this model of analogical proportion is opaque. It does extract the relevant information
(as witnessed by its ability to perfectly reconstruct the training data), but it remains linguistically
meaningless how it does so.

21The boundary would be given by the set of points in feature space with a loading of 0.5 for each class feature. In a
multi-class scenario, this would be the set of all points the two highest class loadings of which are equal. These form a
boundary, because in that case there is no unique winner.



Chapter 3

Classification

Classification is a well-studied task, and the prototypical application of machine learning. In 1.2.1, I
have already introduced the concept: Given a training set and a test item, a model is to determine into
which of two (or more) pre-defined classes the test item belongs. Being able to do so above chance
level is taken as evidence that the model has learned something from the data. It is then probed for
its internal representations, in order to interpret its modeling of the classes. In most cases, this means
a comparison to rule-based or descriptive approaches.

As the prototypical application of machine learning techniques, classification is the first test case
for the KPCA method (2.4.3). As a linguistic example, I chose nominal gender in German. Sec-
ond language learners of German tend to ask for ‘the rules’ of gender assignment. To some degree,
it is predictable from the surface form of nouns, as evidenced by native speakers’ above chance
agreement on novel words, but there are few observations which could be called ‘rules’ (3.3.1).
Prediction cannot be perfect, since gender is an integral part of a noun; it distinguishes otherwise
identical words and therefore it has to be learned just as any other property (e.g. a phonemic dif-
ference). Those properties are not fully independent, and it is their dependencies which are to be
addressed.

I exemplify the KPCA method for classification in an extensive walkthrough (3.1). Afterwards
I apply the very same method on a larger scale (3.2). It is necessary to keep the two apart, because
a small model is no model of a native speaker’s knowledge, and a large model cannot be walked
through.

3.1 Walkthrough

It is the bane of data-driven methods that only a lot of data points will give reasonable results. So
either a model performs badly, or it is unsuitable as a detailed example. This section demonstrates
the inner workings of the method by a small example, not regarding performance. The following
section (3.2.2) then treats the method as a black box, and applies it to a larger data set. The task and
data format are identical; the two experiments only differ in size.
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3.1.1 The data

As data, I choose 10 German nouns, which have some similarity and yet cover all three genders. I
split them into 9 training items and 1 test item.

(3.1) Training data −→a , all-lowercase and edge-marked, with gender annotation (m for masculine, f
for feminine, n for neuter):

orthography transcription gender

#blau# blaU n
#traum# traUm m
#tau# taU n
#baum# baUm m
#raum# raUm m
#sau# saU f
#frau# fraU f
#pfau# pfaU m
#stau# staU m

#saum# saUm m

The mapping from words to hidden features can be written as a matrix (3.2):

(3.2) Hidden feature matrix B:

blau traum tau baum raum sau frau pfau stau

masculine 0 1 0 1 1 0 0 1 1
feminine 0 0 0 0 0 1 1 0 0
neuter 1 0 1 0 0 0 0 0 0

The data set does not contain ambiguous words. One might add the masculine word “Tau” (dew),
in order to have some ambiguity. However this would not add anything substantial to the example.

3.1.2 Procedure

The method divides into a training and a testing phase. In the training phase, a model of the training
data is calculated. In the testing phase, it is used for classification. The training phase tries to find
a new orthogonal basis for the space the data items lie in. This space is defined by their mutual
distances/similarities, and the similarity is defined by the kernel.

Kernel and kernel matrix

I choose a bigram kernel (see 2.2.3.1 and appendix A.2). The kernel matrix (3.3) is the table of
kernel values for all item pairs. (3.4) then is the centered kernel matrix: The kernel values for each
item are 0 on average. See appendix B for the details.
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(3.3) Kernel matrix K:

blau traum tau baum raum sau frau pfau stau

blau 13 7 8 9 7 8 8 8 8
traum 7 15 9 10 12 7 9 7 8
tau 8 9 11 7 7 8 8 8 10
baum 9 10 7 13 10 7 7 7 7
raum 7 12 7 10 13 7 9 7 7
sau 8 7 8 7 7 11 8 8 10
frau 8 9 8 7 9 8 13 9 8
pfau 8 7 8 7 7 8 9 13 8
stau 8 8 10 7 7 10 8 8 13

(3.4) Centered kernel matrix:

blau traum tau baum raum sau frau pfau stau

blau 4.740 -2.148 -0.259 0.629 -1.592 -0.037 -0.592 -0.148 -0.592
traum -2.148 4.963 -0.148 0.740 2.518 -1.925 -0.481 -2.037 -1.481
tau -0.259 -0.148 2.740 -1.370 -1.592 -0.037 -0.592 -0.148 1.407
baum 0.629 0.740 -1.370 4.518 1.296 -1.148 -1.703 -1.259 -1.703
raum -1.592 2.518 -1.592 1.296 4.074 -1.370 0.074 -1.481 -1.925
sau -0.037 -1.925 -0.037 -1.148 -1.370 3.185 -0.370 0.074 1.629
frau -0.592 -0.481 -0.592 -1.703 0.074 -0.370 4.074 0.518 -0.925
pfau -0.148 -2.037 -0.148 -1.259 -1.481 0.074 0.518 4.963 -0.481
stau -0.592 -1.481 1.407 -1.703 -1.925 1.629 -0.925 -0.481 4.074

Principal components

PCA now calculates the principal components of the data set represented as linear combinations α
of the training data, shown in matrix 3.5.

(3.5) Principal components α

pc1 pc2 pc3 pc4 pc5 pc6 pc7 pc8

blau 0.054 0.249 -0.019 0.194 0.165 -0.264 0.118 0.120
traum -0.150 -0.119 -0.047 -0.030 0.171 -0.211 -0.280 0.429
tau 0.053 -0.084 -0.096 -0.034 0.290 0.128 -0.079 -0.612
baum -0.098 0.192 -0.072 -0.126 -0.102 0.427 -0.154 0.014
raum -0.142 -0.033 0.037 0.017 -0.159 -0.196 0.464 -0.385
sau 0.087 -0.025 -0.069 0.029 -0.308 -0.248 -0.436 -0.168
frau 0.010 -0.085 0.218 0.293 -0.022 0.297 -0.087 0.077
pfau 0.084 0.016 0.226 -0.330 0.037 -0.086 0.056 0.108
stau 0.101 -0.109 -0.178 -0.011 -0.072 0.153 0.399 0.415

Eigenvalue 11.940 7.018 6.476 3.957 3.573 1.875 1.430 1.062
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How to read them:

• Each of the 8 columns describes one principal component. Each row stands for one data
item. The values (coefficients) denote how much of a data item is contained in a principal
component.

• The principal components are orthogonal: The inner product of any two columns is always 0.
This is a necessary condition for their independence.

• The principal components are sorted by the variance the data has in their respective directions,
that is, by descending eigenvalue.

• The coefficients’ squares do not add up to 1, so the principal components are not unit vectors
in terms of data items, only in terms of features (see 3.6 and its discussion). Orthogonal unit
vectors form an orthonormal basis of a subspace. Here, the subspace is the space spanned by
the training data.

• Any rotation of this set of vectors is also an orthonormal basis of this subspace. This particular
basis is special in that the first basis vector captures the maximal variance within the data; the
second captures the maximum of the remaining variance; and so on.

These components are not aligned to exemplary items (prototypes). In the lower-ranked principal
components there are some higher coefficients. Those can be interpreted as catering to the partic-
ularities of those few data items. The higher-ranked principal components identify more general
distinctions within the data. Such general properties are not exemplified by single data items, but by
a combination of many, which in turn will all have rather low coefficients, but add up to exhibit a
certain property. Which these properties are can better be seen when features are made explicit, as
shown for the first (3.6) and second (3.7) principal component. These representations are obtained
by weighting the explicit feature listings of the data items (A) with the coefficients of the respective
component.

(3.6) Features of the first principal component (AαT
1 ):

−0.392× m, m#, um
−0.282× r, ra
−0.151× tr
−0.142× #r
0.102× st
0.155× ta
0.189× s, #s
0.392× u#

(3.7) Features of the second principal component:

−0.314× t
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−0.239× ra, r
−0.205× #t
−0.195× ta
−0.135× s, #s
−0.120× tr
−0.101× st
0.193× ba
0.250× l, la, bl
0.442× b, #b

How to read the explicit feature representation of principal components:

• Features are ordered by coefficients. Coefficients tell how much of a certain feature the prin-
cipal component contains. Having a value of x on that dimension means taking x times the
coefficient for all the features.

• I left out features with small coefficients (cut-off at±0.1), and collapsed features with identical
coefficients to one line.

• The first principal component is a distinction between words ending in aum# and those ending
in au#. However, this choice is not independent of other features. No linear combination of
the training data can simply denote this one distinction. Other features come into play, and
the overall variance is maximized. Here, this leads to the aum#-side also being loaded for
features that occurred together with it: r and ra appear in two out of three words in aum#.
Likewise, the other side contains features correlated with au#.

• Note that in the linear combination representation of the component (3.5), the three words in
aum have negative coefficients, and no other. This directly leads to a cumulated high negative
value for m,um,um# in the feature representation.

• a,u,au do not appear because they are never subject to variation (see 3.1.2).

• The second principal component is a further distinction of the data set under the premise that
it be orthogonal to the first. It separates out the words with b,#b and l.

• The length of the component (sum of the squares of all coefficients, including the small ones
I left out) is 1. Hence, the basis vectors are scaled to unit size.

• The vectors are orthogonal because the inner product of any two of them (sum of the products
of all coefficients) is 0.

Also under explicit feature representations, the components are hard to interpret. This is due to
the criterion of maximal variation. Alternatives (other orthonormal bases, obtained by rotation) are
presented in chapter 4, section 4.2. Another way to visualize the components is to look at the values
each data item takes on those dimensions. The first two are the most important, and so the data items
can be plotted on a plane (figure 3.1).

How to read the visual representation:
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Figure 3.1: Feature space (first two dimensions) of the dummy data set

• The items to the left are the ones ending in aum#, as identified by the first principal component.
Those two also fitting to the secondary features of the component enjoy more of it (and are
further to the left). The negative value on the axis multiplied by the feature coefficients gives
a positive occurrence of that feature, just as needed.

• The upper items are the ones starting with #b (second principal component). #blau# also
has the secondary feature l, and thus is higher in the plot.

• All other items form a cluster, since they are only marginally distinguishable on the first two
dimensions. The lower-ranked dimensions of variation will keep them apart, and account for
their features and differences.

It seems quite arbitrary which feature combinations are important — and thus identified by higher
principal components — and which are not. Here, this is merely an artifact of the data due to PCA
being sensitive to particularities of the data set.

Center

Besides the principal components, PCA relies on the average of the data, the center. It is like a
principal component in that it is expressed as a weighted sum of data items. The weights are all 1/9,
because this is how the average is calculated. It differs from the principal components in that it is
not a dimension along that items can take different values. Its representation in explicit features is
given in 3.8.

(3.8) Explicit features of the center:

0.111× la, #f, bl, fa, ba, fr, sa, pf, #p, #r, st, tr, l, p
0.222× #b, ta, #s, #t, f, b, s
0.333× m#, ra, m, um, t, r



3.1. WALKTHROUGH 61

0.667× u#
1.000× au, a, u
2.000× #

How to read the center:

• I collapsed lines with the same value. So the first line contains all features which occur once
in the data set (1/9), and so on.

• Descriptions of points in feature space start at the center, having the values given in 3.8. De-
viations from the center in a direction given by any of the principal components will change
that.

• The bigram au and its unigrams appear once on average. This does not immediately say they
occur exactly once per word. The centered data however has no variation at all with respect to
those features, and hence there is no principal component which is loaded for these features.
So no principal component can change the number of occurrences of au.

• The double occurrence of the sentinel is similar, however not an artifact of the data, but of the
method, since every word has two of them.

Recall and precision

Now that the model has been built and extensively discussed, it is time to put it to use. For each data
item, the model maps its kernel vector to a linear combination of training items (see appendix, A).
The model is such that it has perfect accuracy on the training data. It maps all seen data items to
themselves (more precisely: a linear combination containing 1.0 of themselves and 0.0 of all other
items). Inferring the hidden features is trivial: They stay as they are.

Mapping an unseen test item cannot be trivial, since it cannot be mapped to itself. It is mapped
to a feature space representation, the best one possible under the model. Input to the mapping is
the kernel vector (3.9), here for the test item #saum#, output is a linear combination of the training
items (3.10).

(3.9) Kernel vector1 for saum given the data set (
−→
k (−→a ,#saum#)T ):

blau traum tau baum raum sau frau pfau stau

saum 7 10 7 10 10 10 7 7 9

(3.10) Linear combination of training data approximating saum

blau traum tau baum raum sau frau pfau stau

coefficient -0.185 0.239 -0.294 0.334 0.202 0.865 -0.227 -0.006 0.071

1The kernel vector is by definition (definition 4 in appendix A) a column vector. In matrix multiplications, it becomes
clear whether it is needed as a column or a row vector. The formulas in the appendix take care of that by transposing
vectors when needed.
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One has to keep in mind that — given the little data the model has — the linear combination is
only an approximation of the surface properties of the word saum. Let the accuracy of the approxi-
mation be measured as the normalized kernel value between the approximation and the actual item
(see appendix A.1.3), in order to yield a value between 0 and 1. Here, is is 0.965. However, none
of the features of #saum# are new, as all unigrams and bigrams of it are in the training set. Only
their relative proportions are new, because in the model, the property of beginning with sau does
not combine freely with ending with aum. Here is how to read the linear combination:

• The coefficients add up to 1.

• #saum# is mainly composed of #sau#, as it contains 86% of this word. Note two things:
First, it is not fully contained because of their different right edge. Second, although their
pairwise kernel value is the highest in #saum#’s kernel vector (3.9), it does not need nearly
as much of the other words with which it shares the same similarity of 10. This is again to
say that the kernel vector is not a good representation of a word, but the linear combination
achieved via KPCA is.

• Other positive contributions to the word are those providing the final m. Together, they add
up to 77.7% of an m. In that respect, the representation can only approximate the word. The
model simply does not allow for free variation with respect to whether a word with nucleus au
ends in m# because a lot more evidence is needed for establishing the independence of these
two features. In all principal components, these features still are correlated.

• Finally, the m#-words introduced irrelevant n-grams, which need to be counter-balanced by
components with negative coefficients. So #tau# counters the t of #traum#, and so on.
Again, the approximation cannot be precise. It is just the best the model allows for.

As with the principal components, the linear combination can be made explicit:

(3.11) Feature representation of the approximation of the test item #saum#

−0.234× f
−0.228× #f, fr
−0.223× ta
−0.186× l, bl, la
−0.054× #t
0.017× t
0.071× st
0.149× b, #b
0.203× #r
0.215× r, ra
0.223× u#
0.240× tr
0.334× ba
0.777× m, um, m#
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Figure 3.2: Feature space of the dummy data set plus test item

0.865× sa
0.937× s, #s
1.000× au, a, u
2.000× #

This is how to read the feature representation:

• Only a few things are certain about the word: its edges, and au. The rest is just the best
approximation the model is capable of: It is hindered by the negative correlation of #s and
aum# (and their respective sub-features) in the data.

• One can safely ignore features with negative coefficients, as the nature of the data does not
allow that.

• Each positive coefficient can be taken as the amount to which the feature is contained in the
(approximation of the) word.

• By taking a cut-off at 0.5 (where there luckily is a large gap), only and all those features
present in #saum# remain.

A visual representation of the situation is given in figure 3.2. In addition to fig. 3.1, here the data
points are marked for gender. The only notable correlation between the points and their gender is
that all three words to the left (ending in aum#) are masculine. And so is the test word #saum#.
However, it is drawn to the right by its close similarity to other words starting with #s. Accordingly,
it receives mixed signals as to its gender. Each word contributes its gender according to its coefficient
in the linear combination (the vector in 3.10). Summing over these contributions, one obtains the
gender loadings in 3.12. This summation is defined as the multiplication of the items-by-hidden-
features matrix B (3.2) by the (transposed) coefficient vector (3.10).
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(3.12) Gender loadings:

0.842× masculine
0.638× feminine
−0.480× neuter

This is how to interpret the approximated gender value:

• First note that the values add up to 1, as every word has exactly 1 gender value. This is similar
to every word containing the bigram au exactly once as seen earlier.

• Then wonder about the negative estimation for neuter gender, and the resulting high values
elsewhere. This is a result from neuter words only being used with negative coefficients; an
artifact of the data. Such output is not ruled out in general, but the extreme case witnessed in
the example is clearly due to data sparseness.

• This prohibits readings where the gender loadings could be read as probabilities or as activa-
tions, which is tempting, since they add up to 1. Both readings do not accommodate negative
values.

• Finally, it would be the prediction of the model that this word receive masculine gender, as
contributed by the many masculine words in m#. Feminine gender is a close runner-up, but
this is only due to a single data item very similar to the test item (#sau#).2 Given more data,
a newly seen word does not have to rely on single words to be represented. Then, and this is
the general hope, the gender loadings of words beginning with #sa will level out, whereas the
loading of words ending in aum# will always have a bias for masculine gender.

3.1.2.1 Discussion

In conclusion, there is a slight preference for the right gender of the test item. Of course, nothing is
to be expected from such a small data set. The reader might want to consult his intuitions on another
test item: #flaum#. In case he is fluent in German, he might consider a non-word similar to those
in the training set. Again, the model would receive mixed signals from the onset and the of the
coda of the word. Given enough data, patterns truly hinting at gender would become more stable,
while other features of the word can be approximated neutral to gender. Given data exhausting the
feature space (here: all combinations of onsets and codas), an independence of onset and gender
could be established. However, the language experience of a native speaker hardly ever can prove
such independence.

Connectionism assumes that nothing is independent, and that every language experience will
shift the model, and so will the addition of new words here. It is a far shot to say that PCA derives a
connectionist model, but I am claiming exactly that.

2Albright and Hayes (2003) argue against such influences. Only if a certain critical mass is reached, a small group of
very similar words can spread their particular feature value to other words in their vicinity, in case the general vicinity is
dominated by words with a different value. This is then called an island of reliability.
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A drawback of the method is in approximating both surface and hidden features also with neg-
ative coefficients. A new word is never simply a sum of previous knowledge. On the contrary: The
new word #saum# is presented along the lines of “just like #sau#, but without the final u#; very
much like the group #traum#,#raum#,#baum#; but not at all like #tau#”. To turn such a
description back into an actual word requires a pre-imager (6.2.1). A more thorough interpretation
of such representations is given at the end of the chapter (3.4).

Next, I will look at the large-scale performance of the model, and its ability to predict gender
from surface forms.

3.2 Case study: gender in German

A case to study the prediction of abstract features on is nominal gender in German. In this section, I
apply the method defined in 2.4.3 and exemplified in great detail in 3.1 to a large training set.

German gender is a good case to study. First, the co-domain of the mapping is a set of just a few,
mutually exclusive class labels (masculine, feminine and neuter). Therefore it is a good
instance of a classification problem.

Second, it has been a subject of study many times; Köpcke (1988, see 3.3.1) and MacWhinney
et al. (1989, see 3.3.2) are explicitly discussed later. Citations therein consider gender assignment
“entirely arbitrary” (Maratsos and Chalkley 1980) or “rule-governed, but exceedingly complex”
(Mugdan 1977). The first position goes back to the fact that gender is an indispensable property of a
German noun. It cannot be left underspecified, it sometimes is the only way to tell two words apart
(“der See”, lake, vs. “die See”, sea), and except for dialectal variation every noun in the lexicon has
exactly one correct gender.

New words may have any gender, however here if not rules then at least restrictions kick in. If
a new word is the result of a morphological process (derivation, conversion e.g. of verbs), the final
morpheme will mostly determine gender. In addition, there are pseudo-suffixes and other phonolog-
ical (and also semantic) properties which prefer a certain gender. Cues of diverging predictive power
lead to a model based on such cues (surface features), which I discuss in 3.3.1. Preferences are grad-
ual, but altogether, gender assignment is not at all random. There is inter-annotator agreement far
above chance level,3 but the regularities of gender assignment are hard to capture, if at all. A more
elaborate treatment of sub-regularities, exceptions, and regularities within exceptions will asymp-
totically improve the predictions of a rule-based model. It can be called “exceedingly complex”,
because there is no end to ever more fine-grained distinctions, down to single exceptional words.
Exemplar models, or abstractions thereof (such as the KPCA model), are needed to capture such
cases. Given the (partial) arbitrariness of gender, one needs to examine how much of the variation
can be predicted using a formal model.

The data and its particularities are discussed in 3.2.1 before the actual experiment in 3.2.2. The

3This is my personal judgment both as a linguist and as a native speaker. However I was unable to find relevant
linguistic studies supporting that claim.
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model achieves up to 82% correct gender assignment, given enough data and informative enough
features. Special attention is payed to morphological information (3.2.2.2).

3.2.1 The data

Theoretically, the training data is all the words a German native speaker knows, and the testing data
would be loan words, neologisms and words simply unknown to the speaker. In the first two cases,
native speakers need to agree on a gender, and they do so successfully, yet not perfectly by using
their previous language experience. In the third case, even native speakers will err. Assigning gender
is not a deterministic task.

In practice, I use data from CELEX (Baayen et al. 1996, see appendix G.2), divided into training
and testing data, thus rendering a part of the words as unknown, while at the same time knowing
their actual gender for automatic evaluation. Every noun is represented by a data item containing
three pieces of information (3.13): its orthographic form, its phonemic transcription, and its gender.
The actual representations the model uses are all-lower-case and contain the edge-of-word sentinels.
For legibility, I will use the human-readable forms here.

(3.13)
orth. phon. gender

human-readable Gang [’gaN] masculine
machine-readable #gang# #’gaN# 1

There are 13873 non-compound nouns in the corpus. The gender distribution is as follows:

(3.14) Gender frequencies (types):

gender all words polymorphemic words

feminine 0.470 0.607
masculine 0.367 0.280
neuter 0.163 0.113

This suggests a simple baseline of 47% accuracy by always choosing feminine.4 This high per-
centage is due to the many derivations in the database, many of which carry a morpheme determining
feminine gender. This is backed up by the distributions for polymorphemic words: They are even
more skewed towards feminine. This is however not an estimate of token frequencies.

3.2.1.1 Ambiguity

For several reasons, a word can have several gender values: dialectal variation or semantic distinct-
ness. There is virtually no free variation. If there is a distinction relevant to the problem at hand, a
distinction will be made, and if it is irrelevant, the problem will be ignored.

Gender sometimes distinguishes words, such as “der See, die See” (lake / sea). In the current
model, this is bound to cause an error, but if the representation contained semantic information, the

4This is not a valid strategy in learning German, yet one that is commonly suspected to be employed by Italian native
speakers.
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words could be kept apart in recalling them, since the model is capable of perfect recall. Yet they
are too close phonetically to induce a difference in prediction anywhere else.

Also, “die Leiter, der Leiter” (ladder, leader) differ in gender. Feminine words in -er are not
uncommon, yet -er also serves to create masculine nomina agentis (cf. English: ladder is monomor-
phemic, leader contains a suffix -er). While semantic information would introduce a difference here,
the real cause is in the morphological structure. Thus I add morphological information to the model
as provided by CELEX.

(3.15)
orth. phon gender morph.

Leiter ’laI.t@r masculine leit+er
Leiter ’laI.t@r feminine Leiter

“der Leiter” is morphological complex, containing the derivative morpheme -er bearing mascu-
line gender and the verb stem “leit-” (to lead). “die Leiter” is monomorphemic. On this level of
annotation, the two words are distinguishable. All that matters is that the kernel calculates a lesser
similarity between the two than between one of them and itself.

Dialectal variation is exemplified by “die Butter” (butter; standard German) and “der Butter”
(Swabian). CELEX only covers standard German, ruling out such a case. In appendix G.2, I list
all words in the data having more than one gender (except where the two words are semantically
distinct). This variation then is idiolectal, not dialectal: The collective native speakers of German
have not agreed on a gender here. A given native speaker might have a clear opinion on a certain
gender here and be surprised that others do not share it; or he might be unsure himself, mostly
because he will never have used or even heard that word. To avoid confusion here I picked only the
first gender given.

In another case CELEX misses the difference between “der Teil” and “das Teil” (part/fraction

vs. part/component). Native speakers sometimes do confuse the two, although their meanings are
in fact disjoint. Adding just a little noise to a model might provide exactly that, because of their
phonological identity and semantic confusability.

3.2.1.2 Morphological annotation in CELEX

CELEX’ morphological annotation also has its drawbacks. Even unproductive nominalizations with-
out derivative morphemes are given as the corresponding verbal stem: The morphology of “Aus-
gang” (exit) is given as ausgeh (to leave). This stem lacks all phonological cues to gender present
in the noun. Also, the prefix is not identified as a morpheme. The strive for verbal stems goes as
far as positing injiz+ion for “Injektion” (injection), decomposing Latin derivations. The corre-
sponding verb is “injizieren” (to inject; derived regularly from the Latin stem via the suffix -ieren),
although this derivation is not transparent nowadays. English “to inject” derives from the past par-
ticiple stem, and so does the nominalization “injection”.

An especially curious case is found with the various nominalizations of “trinken” (to drink). “das
Getränk”, “der Trunk”, “der Trank” (all meaning drink) and “die Tränke” (drinking trough) all have
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Figure 3.3: Gender assignment precision

trink (or ge+trink) as their morphological analysis. It is precisely the type of nominalization
that determines gender. This is true for (almost) all derivational suffixes; vowel mutations yield
monosyllabic words, which is a cue towards masculine (see the two different ablaut patterns, which
nonetheless both end up being masculine; cf. 3.3.1).

The list could be continued with more design choices in CELEX which distort the prediction of
gender. However I consider the deviations from the surface to be largely systematic, and I therefore
expect that a model built on these representations will not be considerably worse.

Models are built on the orthographic, phonemic and morphological form. All are strings, so I
will use a string kernel on both of them, more precisely, the n-gram kernel with varying values for
n, as argued for in section 2.2.3.1.

3.2.2 Experiment

I conducted experiments with different training set sizes: 10, 100, 1000, 2000. 10 is supposed to
yield some sort of baseline, because nothing will really be learned from 10 items. 2000 items are a
bound set by the implementation, both in terms of memory usage (> 1GB) and computation time. I
looked at n-grams from 1 to 6. Remember that when testing a certain n, I also include all smaller
n-grams as features. All combinations of training set sizes and n are run on 10 different, randomly
chosen portions of the data.5 The results given in 3.16-3.19 are average percentages of correct gender
assignments on unseen words. Figure 3.3 shows the results graphically.

56 different values for the n-gram parameter, three different annotations levels, and ten-fold cross-validation lead to
180 separate KPCAs on 2000 data items each.
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(3.16) Training items: 10

ngram 1 2 3 4 5 6

orth 0.389 0.434 0.430 0.432 0.423 0.422
phon 0.371 0.411 0.411 0.405 0.397 0.384
morph 0.388 0.428 0.429 0.432 0.434 0.429

(3.17) Training items: 100

ngram 1 2 3 4 5 6

orth 0.519 0.597 0.661 0.670 0.668 0.663
phon 0.523 0.618 0.666 0.674 0.676 0.676
morph 0.523 0.620 0.687 0.688 0.679 0.672

(3.18) Training items: 1000

ngram 1 2 3 4 5 6

orth 0.604 0.700 0.717 0.789 0.809 0.807
phon 0.631 0.682 0.771 0.817 0.820 0.815
morph 0.601 0.735 0.725 0.800 0.810 0.815

(3.19) Training items: 2000

ngram 1 2 3 4 5 6

orth 0.614 0.760 0.482 0.790 0.816 0.822
phon 0.659 0.771 0.682 0.808 0.809 0.807
morph 0.608 0.780 0.519 0.793 0.822 0.818

Interpretation and discussion of these results:

• The curves in figure 3.3 correspond, from bottom to top, to the training set sizes, from small
to large. Thus performance increases with training data.

• The minimal model (10 items) reaches 40% accuracy.

• Even 100 training items improve the model considerably.

• There is only a small difference between 1000 and 20006 training items. The model reaches
an upper bound here.

• Larger n-grams improve performance. The model stagnates after 5-grams, because larger
features are so rare they are not useful in classifying unseen items.

• The small decline for higher values of n found with the small training sets is marginal, but
might be attributed to overtraining: The model is not likely to see any of the larger n-grams
from the training set again in the testing data. Such an effect would also appear for even larger
n-grams with the larger data sets.

6And 3000, by manual inspection of single runs with a set this large.
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• There is no apparent difference in the performance of models trained on orthographic, phone-
mic and morphological data, respectively.

• Most striking in the results is the drop in accuracy with trigrams at 2000 training items. It
appears only with trigrams and large training sets. I have no explanation to offer, not even a
highly speculative one.

A gender assignment is considered correct if the the gender value with the highest loading is the
correct one. It does happen that this highest loading is no more than 0.4. Remember that the loadings
add up to 1, since every noun has exactly one gender value. A loading might also be as high as 1.2.
This is the case for points beyond the cluster centers. Other values then are below zero, in line with
the sum of 1. Another way to look at the accuracy is to add the loadings assigned to the respective
correct values. This undoes the effect of taking the gender with highest loading and discarding the
others, by taking them at their original value. This also reintroduces the lost loadings of the correct
gender in mis-classifications. With a 4-gram kernel and 2000 training items, the sum of loadings of
the correct gender (of 100 training items) is 65.5. That means the assignment is still twice as good
as chance (33%), and better than the baseline “all feminine”.

The confusion matrix (3.20) shows how often which gender was classified as which; based on a
model from 2000 training items, with a 4-gram kernel on the orthography, tested on 1000 items.

(3.20) Gender confusion matrix:

classified as
masculine feminine neuter accuracy

masculine 281 33 33 0.810
feminine 42 449 9 0.898
neuter 55 11 87 0.569

Feminine nouns are classified correctly most often. This is facilitated by the many morphologi-
cally marked feminine nouns. Neuter nouns are often (55) mistaken for being masculine. This is not
unexpected, considering the intuitions of native speakers, also witnessed by the large list of words
with masculine or neuter gender (see G.2): 62 words in the corpus are ambiguous between the two.
Remember that this is not intra-, but inter-speaker variation. This is evidence of an inherent confus-
ability of the two. Also, 33 masculine nouns are classified as neutral, adding up to 88 confusions.
The 75 (33+42) cases of masculine/feminine confusion are more than one would expect by the same
reasoning: Only 14 words are ambiguous between the two. Feminine/neuter confusion is lowest
(9 + 11 = 20), just as expected. In this respect, the model behaves reasonably in its errors.

3.2.2.1 Interpretation of the principal components

The model constructs a feature space: All items are placed according to their pairwise similarities,
as given by the kernel. Each test item is mapped into feature space, to a point where its pairwise
similarities to the training items are best met. From this, I inferred its gender. However this point
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Figure 3.4: Plot of 1000 training items along the first two principal components

is not meant to be a representation of gender, only one of the surface form, in terms of the kernel’s
implicit features. This section looks at the principal components in more detail, but only to conclude
that while at first glance they might contain relevant information, they in fact are linguistically void.
Also refer to section 2.3.4.3.

First remember that principal components are sorted by descending variance, that is, the training
items are dispersed more widely on the higher components. In the naive interpretation of PCA, these
are the more important ones, whereas the lower ones only capture minuscule deviations of training
items from the expected form, pinning them down to their exact values. I will show in section 4.1
that the lower components can be discarded without loss of much information. The best way to
visualize the feature space then is to plot all training items along the two most important principal
components, i.e., the first two, as is done in figure 3.4.

The plot basically shows three clusters: There is a main cluster centered around the origin,
containing words of all three genders. Color represents gender: red for feminine, blue for masculine,
and brown for neuter. Two clusters stand out, one along each of the two components. Notably, there
are almost only feminine nouns in these clusters. As we will see, this is an artifact of the data. The
following listings show the highest absolute feature loadings of the two principal components.

(3.21) First principal component:

−0.2247× @
−0.1927× r
−0.1364× @r
−0.0974× r#
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−0.0947× @r#
. . .
0.1077× atsi:
0.1130× ats
0.1329× tsi:o:
0.1352× si:o:
0.1352× si:o:n
0.1367× i:o:n#
0.1370× o:n#
0.1406× at
0.1421× i:o:n
0.1422× i:o:
0.1435× n#
0.1446× o:n
0.1563× tsi:
0.1611× si:
0.1854× o:
0.2022× ts
0.2322× a
0.2621× i:
0.2669× n
0.2820× s
0.3873× t

(3.22) Second principal component:

−0.2190× @
−0.1032× @#
. . .
0.1310× rUN
0.1310× rUN#
0.1379× rU
0.1456× i:
0.1601× r
0.3529× UN#
0.3546× UN
0.3571× N#
0.3675× N
0.3791× U

The first component can be summarized as a distinction between words ending in @r# and those
ending in tion# (with a strong preference for ation#). Both happen to be gender determining
derivational morphemes. However, this interpretation is distorted: Words do not decide whether
they have this hidden feature (interpreting the principal component as such), they take very different
values along the dimension, admittedly with a large gap. If the dimension denoted the morpheme
-tion, then all words with this morpheme should have the same value along the dimension. This is
clearly not the case.



3.2. CASE STUDY: GENDER IN GERMAN 73

The centers of mass of the clusters are around the values −0.5 and 2 on the first dimension.
Again, there is no interpretation of having the feature (1) or not (0). This is impossible due to
centering: The origin of all dimensions is the mean of the data. This pretty much prohibits any
interpretation in which a component denotes a feature which is either present (once or several times)
or absent.

There is a simple reason for the shape of the first component: Given the many derivations in
tion#, it happens to be most informative of all to know to which extent a word has these features.
@r# then is sort of the opposite: the diametrically opposed pole to tion#. Were frequencies
different in the corpus, other distinctions might have been more informative than this one. The
component denotes neither of the two endings; it is merely a reflection of n-gram frequencies in the
data.

A very similar picture is given by the second principal component. It contains n-grams related
to UN# on the one hand (I have listed only a very few of them), out of which rUN# is particularly
loaded, and @# on the other hand. The different loadings, the dispersion of data points along the
dimension, the connection to to frequencies in the data, they all argue against a direct interpretation.

These two dimension are highly correlated with morphemes, because those morphemes are high-
ly frequent. This is the only reason. From these morphemes follows the correlation with feminine
gender. They do not denote feminine gender, for several reasons, most importantly for that there
are already two dimensions which could claim that job. The correlation between components and
gender is maximized in section 4.4 via rotation of the basis of feature space, but still there is no easy
interpretation.

The dimensions of maximal variation within the set of German singular nouns are not hidden
features in a linguistic sense (gender, morphemes), although they highly correlate with them due to
biases in the data. Neither are they building blocks, because of the continuity of values along the
dimensions: Building blocks are something discrete (cf. 2.3.4.3).

3.2.2.2 Morphological Information

In the previous experiment, there was no observable benefit from morphological analysis. The mor-
phologically disambiguated cases (“Leiter”) are too rare. I repeated the experiment on morphologi-
cally complex nouns only. There are 6642 such nouns in the corpus, out of which I randomly chose
1000 for training and 100 for testing. A model was built using 4-gram kernels on orthography and
morphology, respectively. Accuracy goes up to 94/95%. There is no advantage for the morphologi-
cal annotation, because there are no words with competing morphological analyses in the data. One
analysis of “Leiter” is monomorphemic, and such cases were not included in the data. As said, they
are too rare anyways. 3.23 shows the remaining errors.

(3.23) Analysis of errors using a kernel on the morphology (6 out of 100):
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word morphology gender predicted status

kastrat kastr+at m n ambiguous morpheme
streusel streu+sel m n ambiguous morpheme
handbreit hand+breit f m headless compound
disputant disput+ant m n error
zusprechung zusprech+ung m f annotation error
komponente kompon+ente f m error

Analysis of errors using a kernel on the orthography (5 out of 100):

word morphology gender predicted status

kastrat kastr+at m n ambiguous morpheme
getränk ge+trink n f error
streusel streu+sel m n ambiguous morpheme
zusprechung zusprech+ung m f annotation error
verhältnis verhalt+nis n f ambiguous morpheme

Several errors are accounted for by the gender ambiguity of the morpheme. Not all deriva-
tional morphemes uniquely specify gender. Another error is a clear mistake in the database. In
kompon+ente (component), the feminine pseudo-suffix -e cannot outweigh the 4-gram +ent,
which clearly calls for masculine gender. “Handbreit” (a hand’s breadth) is a strange compound
with an adjectival head. The gender seems to be inherited from the noun “Hand” (hand), something
which the model was entirely unprepared for, and rightfully so. And finally, some errors remain
without reasonable explanation. Curiously, it is not the morphological kernel which mis-classifies
the aforementioned “Getränk”.

Gender can be learned from morphologically complex nouns more easily because of gender-
determining derivational morphemes. Having the morpheme boundaries then is of no advantage.

3.2.3 Weighting the data

The previous experiments have treated all input data alike, of equal weight towards the model. Next, I
will show Weighted KPCA’s (2.4.2 and appendix C) performance in comparison to plain unweighted
KPCA. I applied “add 1”-smoothing to the data: Adding 1 to each frequency in order to avoid zeros.
An item with zero frequency would otherwise result in a kernel matrix of reduced rank. The results
(for a slightly smaller setting than above, in terms of parameter combinations) are given in 3.24-3.25.
The unexplained problem with trigrams is reproduced.

(3.24) Training items: 1000

ngram 2 3 4 5

orth
weighted 0.544 0.640 0.694 0.706
unweighted 0.714 0.640 0.694 0.706

phon
weighted 0.580 0.694 0.736 0.726
unweighted 0.646 0.694 0.736 0.726
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(3.25) Training items: 2000

ngram 2 3 4 5

orth
weighted 0.614 0.460 0.732 0.728
unweighted 0.754 0.464 0.734 0.728

phon
weighted 0.660 0.670 0.790 0.784
unweighted 0.764 0.668 0.790 0.784

WKPCA appears to be at a disadvantage for limited n-grams. Note that WKPCA is only equiva-
lent to a KPCA over an expanded kernel matrix, so they may very well be different in outcome. Here,
bigrams do not suffice to recognize relevant patterns, so in the weighted version the description of a
test item will over-use more frequent words because those similarities weighted higher. Apparently
with limited features it is better not to rely on frequencies, but to take all data items into account
alike.

For fully informative n-grams, KPCA and WKPCA achieve the same performance. After all
they both describe the same data space. They merely differ in the basis (the principal components)
they derive. Using the full rank, that is, making use of all available information, the whole space is
preserved and thus there can hardly be a difference. The anticipated advantage of WKPCA would
have to be found in its first principal components being even more important than KPCA’s. Therefore
I compare KPCA and WKPCA again in section 4.1, under reduced dimension.

3.2.4 Conclusion

Using the KPCA method, gender of previously unseen German nouns can be predicted with over
80% accuracy given as little as 1000 randomly chosen nouns. A comparison to other methods on
similar tasks is given in section 3.3. For a comparison with human performance on non-words I could
not find any study; the one by Schwichtenberg and Schiller (2004) is too specific. They show in an
empirical study, that semantic classes heavily influence human gender assignment to non-words, e.g.
predators being mostly masculine. These effects can override phonological cues. That means gender
correlates with semantics. This is also found by Konishi (1993). Köpcke and Zubin (1984) find that
the gender differences in words ending in ‘-mut’ (a cognate of mood) correlate with extroversion
(masculine) / introversion (feminine): “der Hochmut” (pride) vs. “die Demut” (humility).

I did not take into account semantic information. A possible way of doing that is deriving similar-
ity measures from an ontology, reformulated as a kernel and added to the surface kernel.7 From this
one would expect as model capable of similar behavior as reported in Schwichtenberg and Schiller
(2004): Assigning different gender to surface-identical words for semantic reasons. As the model
gives relative loadings for each gender, one might even hope to model the difference between clear
and not so clear cases, as evidenced by human judgment.

The sample of performance values is too small and the models are too susceptible to the data,
so it makes no sense to check their difference for statistical significance. Fixing the kernel and the

7The sum of two kernels is again a kernel, see appendix A.1.1.
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data set size, performance still varies given different training and/or testing sets. In order to interpret
this variation, the data would have to be balanced in various ways. This would not add anything of
interest to this thesis. I chose to just give the average values of ten runs, ensuring comparability by
using the same data selection with each kernel. Also, the absolute performance rates are not to be
taken too exactly, since they depend on the data.

This model shows that analogical reasoning (as in an exemplar model) in assigning gender can
be made mathematically explicit using kernel methods. It however does not imply a default. Such
an interpretation would be part of the pre-imager: In case the model’s answer is inconclusive (say,
the highest loading for a gender is below 0.5), choose masculine.

While I do not provide further models as part of this thesis to back up the claim that this method
for analogical classification can be applied generally, its generality and flexibility very much suggests
so. The trick is in the appropriate characterization of similarity, which has to be encoded as a kernel.
Semantic cues etc. can be added to the kernel as features, so by this flexibility of kernels the linguist
can define similarity to his or her needs. And already with a simple, general-purpose n-gram kernel,
the results are competitive.

3.3 Comparisons

This section methodologically compares the KPCA method for gender assignment to similar ap-
proaches from the literature.

3.3.1 Rule-based models

Linguistics as any science welcomes parsimonious models. If there is a task to map data points
(words) onto abstract features, then the smallest possible model is that of a rule, thus identifying
some abstract, underlying truth behind the data, like a natural law. Now the whole point of connec-
tionism is that language simply does not work this way. Abstract classes as posited by linguists are
meaningful, from which it follows that they are not redundant. Hence rules will never describe the
full data set. Nevertheless they are a good approximation, because the can correctly and parsimo-
niously handle large, regular portions of the data.

Rules take the form of deriving an abstract feature from some observable variable. The larger
the domain of a rule, the more likely it is to have exceptions. It is in the nature of linguistic data,
that there will be exceptions, and regularities among the exceptions. Thus a rule can be considered
a reasonable abstraction over the data even if it partially makes wrong predictions, at the benefit of
being concise. Rules are thus violable or overridable by other rules.

Such a model for German gender is attempted by Köpcke (1988), who identifies the most reliable
surface cues for gender assignment. These are already a step away from rules and towards exemplar-
based models. The cues are (as cited by MacWhinney et al. 1989):

(3.26) Phonological cues:
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masculine: umlaut, tr-/dr-, -@l, -n, CV-, CCV-, CCCV-, -VC, -VCC, -VCCC, sC-/SC-,
monosyllabic

feminine: -[frikative]t (e.g., “Bucht”), -@

masculine/neuter: -s

Here C stands for any consonant, V for any vowel, [fricative] for any fricative. Hyphens identify
the cues as word-initial or word-final.

Observe that these are merely cues, not rules. Whereas in other classification problems, single
rules can capture large portions of the data, this is hardly the case for gender of German nouns. Some
cues are quite reliable, such as -@, but “Riese” [ri:z@] is masculine. For virtually any cue, there are
numerous counterexamples. Enumerating them or even statistically evaluating the validity of each
and every phonological cue would not significantly improve support for this conclusion: Cues are
not rules.

The cues exert a default for masculine: All non-empty onsets and codas counts towards it. For
many words, these are the only cues applicable. Masculine cues are also redundant, e.g. the CCV-
pattern is also instantiated by the cues tr-/dr- and sC-/SC-. Other cues are contrary: -[frikative]t is a
relatively good cue for feminine, but it is also an instance of -VCC (masculine).

Then, some words exhibit many cues: “Schrift” [SrIft] fulfills four cues for masculine (SC-, CCV,
-VCC, monosyllabic) and one for feminine (-[fricative]t). Since it is feminine one could conclude
that a hierarchical ordering or a relative weighting of the cues is called for. Furthermore, it is unclear
how to evaluate the only cue for neuter (-s), since it is also a cue for masculine. To avoid further
discussion, I grant the description a best case application: Whenever I (manually) evaluate words
according to the cues, I will pick just the ones pointing to the correct gender; leaving aside whether
this could be formalized.

(3.27) Morphological cues: suffixes determining gender

masculine: -ling, -ent, -er, -eur, . . .

feminine: -ei, -ie, -ik, -in, -ion, -ität, -sis, -ung, . . .

neuter: -lein, -ment, -ell, -chen, -en (de-verbal nouns), -um, . . .

Unlike the phonological ones the morphological cues are given in their orthographic form. These
lists are not exhaustive: When in manual evaluation I encountered other suffixes in the data, I added
them accordingly. Not all of them are productive, and many of them derive from foreign suffixes
(-eur from French, many others from Latin and Greek). Some of them resemble non-suffixes: There
are regular words ending in -er (“Leiter”, f.), -ei (“Brei”, m.), -ung (“Dung”, m.) etc. where this
letter/sound sequence is not a morpheme. Apart from that, morphemes are quite reliable. Some
morpheme such as -är, -tum, -nis, -mut did not enter the list, since their gender is not deterministic
(see also Köpcke and Zubin 1984).
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Correctly applying the morphological cues thus requires a correct morphological analysis of the
word, plus inherent knowledge about even non-productive pseudo-morphemes from French, Greek
and Latin. Given that, they are the most reliable source of gender information.

Finally, there are a few semantic cues.

(3.28) Semantic cues:

• sex (masculine/feminine)

• young human or animal (“Kind”): neuter

• hyperonyms (“Tier”): neuter

These cues are less reliable than they are reasonable. Although gender originally reflected sex,
it is nowadays a mostly abstract grammatical feature. The cues are also in conflict with each other:
“Junge” (boy) is masculine, “Junge” (young animal of certain species: cub, hatchling) is neuter.
Note the clash with the cue -@ for feminine. Anyone who has ever heard of German gender will
know “Mädchen”, and will be able to figure out the feature clash for himself.

Semantic cues hardly ever apply, since most things are genderless. I did not use semantic cues
in manual evaluation.

Comparison

I compared the application of the cue set with the KPCA method, with 1000 training items and a
3-gram kernel. I evaluated both on the testing data in G.2.1. Evaluation of the cue-based method
was done manually, since most cues are hard to formalize, their relative strength is undetermined,
the morphological cue list was incomplete etc. In case of a clash or doubt I used the cues lead-
ing to the correct gender, thus granting the model the possibility of a specification without further
complications. In particular, I made the following choices:

• All gender determining suffixes were used, even if they not appeared in the list.

• I assumed full morphological analysis, and knowledge of all unambiguous morphemes, even
if they were not listed in the original cues.

• The cues are far from being mutually exclusive. If they differ, I relied on the “correct” ones.

• Semantic cues were not applicable within the testing data.

• The phonological cues exert a default for masculine, and thus I chose masculine if all else
failed.

The last choice is in contrast to the most frequent gender (feminine). This is the true strength of
the rule-based model: Many correct assignments were due to the default. Many feminine words are
derivations, and these are already covered by the morphological cues.
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On the test list (appendix G.2.1), Köpcke’s cues, applied as described above, correctly classify
81%, whereas the KPCA model only gets 77%. 14 errors were shared, and neither model predicts
a subset of the correct predictions of the other. The KPCA model sometimes has the correct gender
as a close runner-up (but this might also be the case for false values in correct predictions). For
example, “Orientale” (Oriental) has very similar values for masculine and feminine, and in fact it
can be both. Such an interpretation could also be possible under certain weightings of the cues.

The rule-based model profits from guaranteed correct results on gender determining morphemes,
however it has no way of dealing with the ambiguous ones. A data-oriented method first needs to
see each morpheme at least once in the data. This requires either a large or an intentionally balanced
data set.

The KPCA model can deal with incorrectly assigned words by including them into the model,
just as a rule-based model can keep a list of exceptions. The advantage of a KPCA model here is that
all items are treated alike, and that so-called exceptions are abstracted over in the very same way as
all other items are. This theoretically allows capturing regularities on all levels.

Both methods fare badly with regard to neuter gender. Köpcke’s phonological cues virtually
never point to neuter, and neuter words mostly bear the cues for masculine. Both methods fail to
predict an annotation error (“Haft” is indeed feminine, see the list).

Conclusion

Some cues (tr-/dr-) are very specific and exemplified only by a few words. They could only be
learned given huge amounts of data containing at least a few positive instances of the pattern. Iden-
tifying subregularities at this level of detail is in fact already data-oriented. tr-/dr- has never been
claimed to be a regular marker of masculine gender.

All phonological cues from Köpcke are violable, not absolute. It remains unclear to me how cue
conflicts are resolved, be it with a weighting or a hierarchical ordering. The nature of the problem
rather calls for a data-oriented approach: There are regularities and sub-regularities down to single
exceptions, but no rule with a clear domain of application. This is true for the phonological and
semantic cues, however most derivational morphemes do determine gender. Where this is not the
case, the distribution of two genders for one morpheme was suggested to depend on subtle semantic
similarities, dividing the words derived by the morpheme into two groups (Köpcke and Zubin 1984).

With its hand-selected cues, full access to morphemes, the strong default for masculine, and
good will in the application of the cues (which cue takes precedence over which), the rule-based
model has less errors than the KPCA model, both on monomorphemic and polymorphemic words.
Only with neuter words, the latter has an advantage, due to the lack of non-morphological cues for
neuter. In theory, data-oriented models are able to learn all the cues as abstractions over the data.
So why does the proposed KPCA method fail to do so? First of all, with more data it approaches
performance at around 80%, just as the cues. With even more data, covering the full experience of a
native speaker, as also underlies the cues, this is not likely to rise significantly. Higher accuracy (or
inter-annotator agreement for nonce words) could to my reckoning only be achieved by more levels
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of annotation, e.g. explicit semantic information (see Schwichtenberg and Schiller 2004 for a related
study). A kernel on this other level of annotation can be added to the surface kernel. Kernels enjoy
modularity here.

If analogy by surface similarity is the right approach to gender assignment, then a n-gram kernel
is still only a first shot at a measure of similarity. Fortunately, the KPCA method itself does not
depend on the choice of kernel; other measures can be plugged in, modeled according to what
by psycholinguistic insight constitutes similarity. Given its generality and flexibility, the KPCA
model holds the promise of being able to do better than rules. As it stands, it is only almost as
good, but mathematically precise and generalizable to all other classification problems, and open to
improvement (with different kernels).

3.3.2 Neuronal Networks

Networks are a possibility to model the mapping of words to their hidden features (2.1.4). A study
both using networks and treating a problem close to German gender assignment is MacWhinney
et al. (1989). As input nodes, they compare Köpcke’s cues to explicit surface feature vectors. Their
output comprises number, case and gender. This is not rendered explicitly, but implicit as the task
is to choose the correct definite article. The 24 possible combinations of 2 numbers, 4 cases and 3
genders are covered by only 6 different forms of the definite article, as seen in 3.29. As gender is
not distinguished in plural, this immediately boils down to only 16 combinations.

(3.29) German definite article:

masc. fem. neut. plural

Nominative der die das die
Genitive des der des der
Dative dem der dem den
Accusative den die das die

Their training and testing data is derived from a 80,000 words corpus of spoken German, by
taking all noun lemmas which appeared at least 15 times (102 different nouns) and placing them in
different contexts. The contexts are represented by 17 input nodes encoding different word order
configurations, prepositions and verb types. There are 20 possible contexts (that is, 20 combinations
of the context features). Each word is shown in a number of randomly chosen, yet different contexts
according to its relative frequency, ranging from 1 to 17 (out of 20). This yields 305 training items
(noun-context combinations) in total.

I assume this training set is lexically far less diverse than the word list I extracted from CELEX
(appendix, G.2), for two reasons. First, it is taken from spoken language, which would reduce
the amount of technical terms etc. Second, the frequency cut-off reduces the set to the 102 most
frequent nouns, all of which presumably are in the core lexicon. Online word lists8 are usually

8E.g. provided by the University of Leipzig, http://wortschatz.uni-leipzig.de/html/wliste.
html

http://wortschatz.uni-leipzig.de/html/wliste.html
http://wortschatz.uni-leipzig.de/html/wliste.html
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derived from newspaper text, as evidenced by many words typical of news, which however rarely
appear in spoken language.9 For the learning task this means the data is rather homogeneous, quite
contrary to CELEX.

Testing data are the unseen contexts for all words, and new words. Given 102 words times 20
contexts, minus the 305 training combinations, this leaves 1735 testing items. The new words are
the next 48 by frequency, that is, those appearing 10 to 14 times in the corpus. They were put into
all 20 contexts, yielding 960 additional training items.

Models 1 & 2

Their models 1 and 2 employ Köpcke’s explicit phonological, morphological and semantic cues
(see 3.3.1). A node for each is activated if the cue is present for a given word, and not activated if
absent. An artificial means of full distinction is implemented by 11 nodes: Different combinations
of activations encode each lemma.

The context is specified by further input nodes. The model has 20 hidden nodes to learn from
the cues and lemma codes (every node is connected to all 20 hidden nodes), and 10 hidden nodes to
learn a compressed representation of contexts (again, fully connected). The two groups of hidden
nodes then are brought together by a second hidden layer of 7 nodes, which in turn are connected to
the 6 output nodes, one for each of the forms of the definite article (der, die, das, dem, den, des).

The model is trained on the 305 training items, until it masters that set (for details, see there).
It achieves 92% accuracy on the first training set (unseen combinations) and 61% on the second
(unseen words). The first result suffers from words with unknown gender: Not all observations
(context as input, definite article as output) identify gender. For example, a plural environment will
never reveal the gender of a word. In the first test set there are all unseen contexts, hence also the
ones requiring knowledge of gender. In these cases, even a model that performed perfectly on the
training set is likely to fail.

The second training set tries to disentangle the contributions of two sets of input nodes: The
lemma code and the cues. It might be that the model only learns from the lemmas, and does not need
to look at the cues at all. The model’s performance on unknown words, for which there is no known
lemma code, drops to 61%. This suggests it learned little from the cues. In order to further test this,
a second model was set up, forcing the model to learn from the cues by omitting the lemma codes.
Performance significantly dropped even when accounting for the cases where lemma codes were
only meant to disambiguate words of different gender, yet with identical cues. Thus MacWhinney
et al. conclude that cues are not sufficient.

In a third model they take a step towards greater flexibility of input representations, thereby also
alleviating the need for lemma codes, because words will become fully distinguished by their surface
features.

9Out of the 20 most frequent (see http://de.wikipedia.org/wiki/Liste_der_häufigsten_
Wörter_der_deutschen_Sprache), these would be: Prozent, Million, Deutschland, Berlin, Unternehmen, Mil-
liarde, Regierung, Land, with several others being common in everyday language, yet still overrepresented in newspaper
text.

http://de.wikipedia.org/wiki/Liste_der_h�ufigsten_W�rter_der_deutschen_Sprache
http://de.wikipedia.org/wiki/Liste_der_h�ufigsten_W�rter_der_deutschen_Sprache
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Model 3

The third model employs vectors of explicit surface features as inputs. These replace the morpho-
logical and phonological cues; the semantic cues and of course the context representations remain.
The model achieves to predict the correct article in 93,6% of first set of test cases (111 errors out of
1735 unseen testing words). No results are given for the second training set, the unseen words.

The words are input as a vector of features. Each feature is either present or absent, and if present
activates its input node. The features chosen by MacWhinney et al. directly encode the phonological
form of a word. The vector is a concatenation of 13 feature vectors, each standing for a phoneme in
a certain position:

1. Up to three consonants in the initial consonant cluster,

2. up to two vowels in the first vowel cluster,

3. up to three consonants in the medial consonant cluster,

4. up to two vowels in the last vowel cluster,

5. up to three consonants in the final consonant cluster.

Empty positions are padded with empty phonemes, excessive phonemes (not corresponding to
any of the positions mentioned) are discarded. Now, phonemes are not features. Each phoneme
is encoded by a vector of 10 features such as [voice], taking as value present or absent. These
feature vectors are appended to form the full 130-node surface feature vector encoding (supposedly
relevant parts of) any input word.

These 130 nodes — along with the semantic cues — are connected to only 20 nodes in the first
hidden layer, and also in all other respects model 3 is just like model 1 and 2. It goes to show that
manually selected cues are of no advantage over a general description of the input, combined with a
learning method (such as a network).

3.3.2.1 Comparison

It is difficult to compare MacWhinney et al.’s result to the pure gender assignment in section 3.2.
Gender is irrelevant in plural; all three genders take the same articles, only depending on case. Case
was sufficiently represented in the input nodes for the contexts. Also in the singular it is not always
necessary to distinguish gender: In dative and genitive, masculine and neuter nouns coincide in
choice of article. Assume that number and case are sufficiently encoded, so that the accuracy of the
method only really depends on its ability to predict (or recall) gender. Then, model 1’s recall of 92%
and precision of 61%, and model 3’s recall of 93,6% (no generalization to unseen words is given)
could stand for their ability to predict gender. Note that recall is evaluated on seen words in unseen
contexts, and that errors here are the result of training contexts for these words which did not reveal
their gender. In these cases, recalling a seen word’s gender is impossible. As I cannot estimate the
impact of this problem, the recall rates are not easy to compare to my results.
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For precision, there is only model 1, and 61% do not impress. Yet the training data of only 102
nouns will not have sufficed to learn the influences of all cues. Note that the problem of how conflicts
between cues are to be solved (cf. 3.3.1) was left for the network to sort out.

From my perspective a full comparison between a network with explicit input features and the
KPCA method is not worthwhile, because 1. PCA arrives at a mathematically precise solution for
perfect recall immediately, whereas MacWhinney et al.’s networks needed to be trained for at least
50 epochs and 2. a kernel has much more flexibility.

The use of explicit feature vectors as input to a network is also found in Plunkett and Nakisa
(1997), Plunkett and Juola (1999), Hahn and Nakisa (2000) (see 2.1.4). Other models using explicit
features (Naive discriminative learning, Baayen et al. 2011, see 2.1.5) need to deal with large, sparse
feature vectors/matrices. In network approaches, each new input feature adds a new node and a
weight to be trained. Furthermore, the method requires an elaborate pre-processing by aligning the
features with the right slots. The model is thus very sensitive to the position of a feature, and will
not generalize beyond that. This is known as the alignment problem (Bullinaria 1997). The implicit
features of a kernel are not bound to a certain position. This is both an advantage and a disadvantage;
to overcome the latter at least partially I introduced the edge-of-word sentinels.

It is possible to make a kernel sensitive to the positions of its implicit features, by considering two
features identical only if they also appear at the same place. This place may be defined relatively (see
word edges) or in absolute terms, that is, bound to a certain input node. Any explicit feature vector
can immediately be used in a kernel method, by taking vector products as the kernel. Kernels are a
generalization of explicit feature vectors. And with methods such as PCA or Naive discriminative
learning (see section 2.1.5) one achieves the same as with a network — mapping inputs to outputs —
in a mathematically precise way. In this respect, they can take the place of connectionist networks.

3.3.3 Support Vector Machines

Support Vector Machines (SVMs) are the standard way to classify with kernels (see 2.3.2 and Cris-
tianini and Shawe-Taylor 2000). Nastase and Popescu (2009) use it to predict gender in German and
Romanian. They achieve 72.36% in 10-fold cross-validation on a training set of 1731 nouns. This
figure stays behind the results presented here for several reasons.

The nouns are encoded as concatenations of bundles of 28 binary phonetic features, more than in
other approaches (16 for Hahn and Nakisa 2000; etc.). Segments are not assigned to slots, because
this is not necessary in combination with a kernel. In contrast, the explicit binarization is only needed
in network models. It is a central claim of this thesis that kernels overcome the need for this. Nastase
and Popescu concatenate the explicit features into a string and use an (up-to-)n-gram kernel on this.
This appears to me as a very naive application of a kernel.

It remains unclear to me whether they put an upper bound on the substring length n. This would
have to be high, because even a single phoneme spans 28 positions in the input representations.
Phoneme boundaries are not marked, only word edges (and leaving them out reportedly decreases
the performance to 66.91%). Considering this, the kernel counts many shared subsequences aligned
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at different places within a phoneme (or across phoneme boundaries). In these subsequences, the
individual 1s and 0s denote completely different phonetic features. They are thus not identical at all
and should not count towards the kernel value.

This artificially boosts the number of shared features, which leads to an exceptionally peaked ker-
nel: Very high self-similarities as opposed to kernel values between non-identical items. So Nastase
and Popescu normalize the kernel value (see appendix A), as a way to overcome this. Normalized
kernels however do not allow to restore hidden feature counts. In preliminary experiments I found
that this makes them unsuitable for feature inference.

In conclusion it seems that this implementation of SVMs to gender classification does not make
proper use of kernels, mostly in that it counts entirely unrelated substrings towards similarity. The
performance of 72% then shows that even naive kernels will learn quite a bit. Maybe this is due to
accidentally shared features occurring evenly distributed.

3.4 Conclusion

Data-oriented classification, that has been traditionally done with neural networks, can nowadays be
abstracted over by several methods. Naive discriminative learning, as described in 2.1.5, directly
calculates the weighting matrix from surface features to hidden features. There is no training of
weights involved. It also abstracts over the layer of exemplars (words) stored in memory. The other
method is the KPCA model presented here. It emphasizes the word layer, and abstracts over the
surface feature layer. Both models are useful in classification / identification of hidden features.
With kernels, surface similarity can be defined more flexibly, which holds some promise for future
advancements. The model can be applied to any classification task based on analogy, by defining a
measure of relevant surface similarity (the kernel).

As shown in 3.2, a KPCA model of German nouns successfully predicts gender, in as far as
gender is predictable. It can learn phonological and morphological cues, given enough data, but it
does not (directly) exhibit a default. This is where it falls behind a rule-based model (3.3.1). Its
advantages are that it can be built automatically, that it can learn any exception parsimoniously (that
is, with at most one more principal component), and that it will improve if given more data.

It outperforms the only other kernel-based model of German gender, the SVM model of Nastase
and Popescu (2009, see 3.3.3), however mostly due to naive design decisions in the latter. There was
no useful interpretation to the principal components; this is addressed in the next chapter.

The dimensions of maximal variation within the German noun data highly correlate with the
morphemes -ung and -tion (3.2.2.1). This is not to say that KPCA could used to identify mor-
phemes: It is simply the high frequency of these morphemes that make it reasonable to first divide
the data set by asking whether a word contains one or the other morpheme. The frequency in turn
is an artifact of the corpus. If the corpus was balanced, or represented token frequencies, the result
would be different.

Also note that the components only seem to denote these morphemes: They also contain arbitrary
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features which happen to be correlated. In the component for -tion, a (and atio, and so on) is
contained to 50%, because many words ending in -tion actually end in ation. Also the essential
features of tion (tio, . . . ) are contained to various degrees. The component is not only used for
this morpheme, but everywhere these features appear. It is a pure artifact of the data set.



Chapter 4

Interpretation of the factors

This chapter is about interpreting the model, following up the observations in 3.2.2.1. The interpre-
tation of a principal component (2.3.4.3) hinges on the criteria defining its extraction: orthogonal to
all others, and capturing the maximum of remaining surface variation. This leads to two methods,
which are discussed in this chapter: Reduction of the set of principal components to the most relevant
ones (cf. 2.3.4.2), and rotation of the principal components with respect to alternative criteria.

Principal component analysis is often used to reduce the dimension of a data set. This is done by
discarding the principal components with lowest eigenvalue. Depending on the type of data, these
are considered noise or otherwise less relevant information. In the case of the CELEX database,
and the model developed in 4.4, annotation errors and exceptional patterns are hard to tell apart
(due to the partial arbitrariness). Components capturing these are important for perfect recall, but
a pattern instantiated by only a single word need not be part of the generalizing model. In section
4.1 I demonstrate that in fact the predictive power of the model is contained in the higher principal
components, and that a lot of the less relevant ones can be discarded. Instead of describing the data
by itself, storing each and every exemplar, the data points are now represented by a few concepts,
the remaining, information-bearing basis vectors. Thus we arrive at a conceptually smaller model.1

However note that the principal components are ordered by their explanatory value towards sur-
face forms, not towards gender. Now a large variation in surface form might very well be correlated
with gender variation, but this is not necessarily the case. Low-ranked principal components might
cover large gender variation, so discarding them results in a worse model of gender. Furthermore,
they represent just one out of infinitely many bases of the feature space: Other vectors within that
space might give far better gender prediction. PCA as a feature extraction method does not identify
linguistically meaningful features from the set of German nouns, and this would be true for many
similar linguistic spaces.

The linguist has already identified and annotated gender as a hidden feature. The goal of this
chapter is to identify components related to gender. There are three different values for gender, so in
order to keep them apart, two dimensions are needed at least. That two dimensions do indeed suffice

1In terms of storage space, the representation is larger: Each vector is given as a linear combination of the data items,
so not only the whole data set needs to be stored, but also the weighting factors.
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will be shown later (4.4). The means for identifying these dimensions is rotation (4.2). The original
and popular VARIMAX (Kaiser 1958) rotation for non-kernelized PCA does not apply to Kernel
PCA (4.2.2). I will formulate a rotation criterion which leads to very few maximally gender-loaded
components (4.2.3), rendering the rest neutral towards gender.

Along these two components, all gender variation can be depicted. Knowing the similarity of
a new item towards all training data (its kernel vector), these are the only two dimensions to be
looked at in order to predict its gender (to the extent possible). So these dimensions are extractors of

hidden features. Necessarily, training items of the same gender are indistinguishable within the plane
spanned by those two dimensions (4.3). Unseen testing items will fall anywhere in the plane, forming
clusters around the three exact gender points. Clusters will overlap due to gender assignment errors
and gender arbitrariness. However, all mis-classified data can be incorporated into a new model,
thus giving all those data items perfect recall.

The two dimensions of gender variation are maximally informative regarding gender, capturing
all gender variation within the data and retaining the full predictive power of the model. The method
presented here provides gender extractors which are practical, and as few and as precise as they can
be. Still, they are not linguistically interpretable, because of what they are made for: If they are to
perfectly recall the training data, then they will be most over-fitted to the particularities of the data.
They do not define abstract rules of gender assignment. Rather they are very concrete, data-oriented
descriptions.

This chapter is structured as follows: Section 4.1 shows how much of the relevant information is
contained in subsets of varying size of the most explanatory dimensions of variation (the principal
components with highest eigenvalue). In section 2.3.4.3 I argue that principal components generally
are not interpretable as features of the data because of their definition of variance. This problem
is usually tackled by rotating the principal components. Section 4.2 discusses VARIMAX rotation
(4.2.2), and argues for another rotation (4.2.3) motivated by a different criterion of variance. As
usual, I give a detailed walkthrough using the example from 3.1 in 4.3. Section 4.4 then gives the
results for the large data set. In section 4.5 I show the limits of factor rotations: Even under ideal
conditions, they cannot extract any knowledge (meaningful factors) beyond what was previously
known. The final discussion is in 4.6.

4.1 Dimensionality reduction

So far, I employed all principal components at the same time, so the model did not benefit from their
ordering. In the following, I first show how cutting off the principal components affects the model’s
accuracy. 20% of the components restore the gender assignment of 80% of the data items. Then,
I will show that the ordering of components is actually ignorant of gender, since the kernel did not
know anything about it (section 3.1). Other components might capture gender variation far better
than this. In fact, I will rotate the extracted principal components so that only a very few of them (in
fact, only two) are related to gender, while the others are not. This is done by a variant of VARIMAX
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Figure 4.1: Gender assignment accuracy

(4.2.2).

4.1.1 Experiment

From the experiment in 3.2, I pick out a representative setting (4-gram kernel on the orthography,
2000 data items), and show the effect of reducing the number of dimensions in figure 4.1. The results
are averages over 10 runs with different, randomly selected data. I compare KPCA to Weighted
KPCA (2.4.2). The assumption is that the first few principal components of WKPCA would contain
more important information than the same amount of components from unweighted KPCA. Several
observations are to be made:

• A prediction is counted as correct if the correct gender received a higher value than the two
others (simple majority). Therefore results are robust to the loss of some information: Only
after discarding a certain number of principal components, the outcome for a given word will
change, if at all.

• There are usually around 1994 dimensions, due to redundancy (as seen from the kernel’s
limited n-grams) in the data.

• Discarding half of the principal components (those with lowest explanatory value) actually
leads to a slight increase in precision. These components do not capture general tendencies,
only particularities of certain data items. These are not needed in generalizing to unseen data.
As it turns out, it may even be harmful because of over-fitting.

• With only the 200 principal components of highest eigenvalue, the unweighted model is still
at peak performance, that is, at least as good as with all principal components.
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• With fewer and fewer components, the model approaches its baseline.

• The weighted model coincides with the unweighted in the case of full rank, and it approaches
the same baseline. Everywhere else it performs worse.

4.1.2 Discussion

The performance of the method hardly increases beyond 1000 items of training data (see 3.2). At
2000 items, 200 principal components still capture nearly all its predictive power. I assume 200
principal components will be enough even for a larger data set. This benefit of PCA, the filtering
of dimensions by variance, has been put to good use here. As we are going to see, all gender
variation actually falls into a two-dimensional subspace (4.4), but it is far easier to extract these two
dimensions by rotating 400, not 2000 dimensions (4.4.2).

Weighted Kernel Principal Component Analysis did not hold up to expectations. It appears to
be the case that a model actually benefits from treating all data alike, such that it can cover more
cases. Relying more on the more frequent cases will lead a model to favor the most frequent cases,
and consequently it will be at a disadvantage for the rarer patterns. After all, exemplar models are
about explaining sub- and irregularities. One might say that the WKPCA model is overtrained. As
mentioned in connection with exemplar models (2.1.1), frequent classes rather need to be discounted

than boosted. This is contrary to what WKPCA does.
This concludes my discussion of WKPCA. There might be other domains of application where its

frequency-sensitive properties actually lead to a model closer to human performance. These results
are not to say that human judgments do not exhibit frequency effects; but it does suggest that humans
(here: native speakers of German in guessing the gender of a noun) do make use of infrequent
patterns, and are not influenced by different patterns in direct proportion to their frequencies.

4.2 Rotations

As seen earlier (2.3.4.3, 3.1.2 and 3.2.2.1), the principal components are hard to interpret. In particu-
lar, they have no linguistic meaning, they just denote dimensions along which the data is spread most
widely. Another basis of the same feature space may be more useful. This basis retains orthogonality
and the feature space spanned.

4.2.1 Preliminaries

Principal components are chosen to maximize a certain criterion of variation: Each component, in
turn, captures the maximum of the remaining variation (cf. 2.3.4). This notion does not lead to easily
interpretable components. A component is a dimension in feature space, given as a vector from the
origin to a certain point. This point is expressed as a weighted combination of (images of) data items.
Typically, every item only plays a minor role in expressing the component. This means that PCA
does not extract prototypes, nor are the principal components exemplified by only a few exemplars.
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The flip side of expressing components with data items is expressing data items with compo-
nents: Locating a data item in feature space. That is, characterizing it by the values it takes on each
basis vector. Again, it will typically not be just a few factors with high values and all the others near
zero. Therefore the notion of a component is misleading. Data items are not composed of a few com-
ponents (possibly even in whole numbers; also see 4.5). Small items do not need less components
to be characterized. Those descriptions are not parsimonious at all. Rather, principal components
are correction terms: Starting from the mean of the data, they approximate the item component by
component.

Latent semantic analysis (LSA; Deerwester et al. 1990; see also a similar variant with Indepen-
dent Component Analysis, ICA, Honkela et al. 2010) achieves recognizably similar descriptions for
similar items. High values or low values on some specific subset of the factors characterize a cluster
of items. One finds that some factors are correlated with certain semantic classes, but they do not
denote these classes. Results are often interpreted just by manual inspection (see 2.3.5.1).

This uninterpretability of principal components is due to their aim: They are axes of maximal
variation, in the high-dimensional cloud of data item images. They do not necessarily point to
clusters within the data, they are two-fold distinctions between groups of clusters. They are nothing
like what the researcher would have posited as ‘hidden features’ in the data.

Two properties of the factors need to be retained: Their independence (orthogonality), and the
space they span. Now any rotation of an orthonormal basis still spans the same space. A step in
increasing interpretability of principal components is rotating them, according to another criterion
of variance — not the one maximized by PCA. The standard way to do that is VARIMAX (Kaiser
1958), an algorithm for variation maximization. Other rotations, some of which generalize to non-
orthogonal solutions, are beyond the scope of this thesis.

This chapter proceeds as follows: I argue that classical variation maximization cannot provide
more interpretable components (4.2.2), in this case: components which are informative with respect
to gender. I then reformulate the variation criterion (4.2.3), such that it will maximize the variance of
gender loadings within the components. By an algorithm very similar to VARIMAX, the orthonormal
basis obtained by the PCA on the German noun data can be rotated such that two components span
the plane in which all gender variation lies. All other components will be orthogonal to that, and thus
totally unrelated to gender. Then, in order to predict gender, only these two components have to be
looked at. The precision remains the same, compared to the model with full principal components.

4.2.2 VARIMAX rotation

The main incentive for a factor analysis such as PCA is to reduce the wealth of surface features to a
fewer number of independent factors. VARIMAX addresses the interpretability of these factors. The
intended interpretation is such that each factor can be described in terms of a combination of a few
surface features, bearing a high loading each. All other features then hopefully have loadings close
to zero. Then the factor denotes a bundle of features, and this is in fact human-readable, and maybe
even linguistically meaningful. The definition and an algorithm are found in appendix E.1.
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The criterion of variance used in VARIMAX is the sum over the variance of (squared) feature
loadings within each component. So components with largely diverging loadings are preferred: at
best, they have some very highly loaded features and zero loadings elsewhere. The general algorithm
proceeds by rotating principal components in pairs (within the plane they span), until no rotation of
any pair can further increase the criterion.

To my knowledge, the particularities of applying VARIMAX to the kernelized variant of PCA (that
is, Kernel PCA) have not been discussed in the literature.2 Rotation and kernels exclude each other,
due to the variance criterion being defined on explicit surface feature loadings. Principal components
are not expressed in terms of feature loadings, but as item loadings. One could maximize these,
with the intention of obtaining prototype-like factors. The problem is that the data items (words) are
larger than the features one might want to extract (relevant properties/parts of words). These features
cannot be expressed as prototypes. Thus VARIMAX by items is not what I want.3

There is a third type of loading that directly leads to useful components. As said earlier (2.3.4.3)
and as will be shown in the walkthrough (4.3), the principal components of the space of German
nouns are unsystematically loaded for gender, because this was not accessible to the kernel. It is the
variance of these loadings that needs to be maximized, as explained next.

4.2.3 Rotation towards features

I now present a rotation method closely related to VARIMAX, yet operating neither on explicit surface
features nor on item loadings, but on loadings of hidden features. This rotation towards features will
result in components interpretable with respect to those (and only those) features.

Every component is loaded for each gender. These loadings are obtained by multiplying the
components (represented as linear combinations of training items) by the hidden feature matrix (see
appendix B, definition 26). This takes items to their hidden features, and thus combinations of items
to loadings of features. We get a components-by-hidden-features loading matrix.

As in VARIMAX, loadings are now squared, and the variance within features is calculated: fea-
tures shall be highly present in a few components, and near zero in all others. These variances are
summed over all components. This opposes to a component-wise calculation, where each component
shall have a few distinctive features, as in VARIMAX. The difference is due to the relative numbers
of factors and features. One usually has more surface features than factors, and therefore each factor
can pick its features (VARIMAX). On the other hand, there are comparably few hidden features, at
least in the scenarios I envision. Thus the hidden features pick their factors (rotation towards hidden
features).

The algorithm shown in appendix E.2 now rotates the basis given by the principal components
such that this sum becomes maximal. It does so by locally maximizing the sum of variances for
two components, pair by pair, and starting over at the beginning as long as the score improves. This

2The text books (Schölkopf and Smola 2002, Shawe-Taylor and Cristianini 2004) do not mention rotations. I would
be grateful for any relevant reference.

3A similar argumentation applies to ICA: It is a rotation of the components of an SVD, and it requires explicit
features. Thus it cannot be directly combined with a kernel.
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method directly borrows from VARIMAX. The derivation of the optimal rotation vector for each pair
of components is also given in the appendix; it is a matter of setting up the appropriate equation and
solving it, and therefore of no explanatory value here.

It turns out (see the application in 4.3 and 4.4) that it is optimal to concentrate all variance onto
as few components as possible.

4.2.4 Reducing the dimension

If one is no longer interested in surface variation beyond what is needed to explain the hidden fea-
tures, one can discard all components with zero hidden feature loadings, and only retain the dimen-
sions of hidden feature variation. The number of remaining dimensions is bounded by the number
of hidden features (minus one). Data items (both seen and unseen) projected onto the remaining
dimensions will completely retain their hidden features. These dimensions span the space of all
variation within the hidden features.

Data items which are indistinguishable with regard to their hidden features have to occupy the
same point in this reduced data space. Within such a point, there is no surface variation at all; and
only a small amount of surface variation is captured in the reduced space. The remaining surface
variation is captured by the other dimensions, which can be discarded for the purposes of extracting
the hidden features.

4.3 Walkthrough

This section demonstrates the rotation of principal component towards hidden features, using the
example from the last walkthrough (3.1). 9 training items and a bigram kernel yield (in general)
8 principal components. However, they are initially blind to gender. Therefore they are rotated in
order to maximize the variance of their gender loadings. The gender loadings of the components 4.1
are obtained by multiplying them (3.5) by the matrix of hidden features 3.2.

(4.1) Gender loadings of the original principal components

data item pc1 pc2 pc3 pc4 pc5 pc6 pc7 pc8

masculine -0.205 -0.054 -0.033 -0.482 -0.125 0.086 0.484 0.582
feminine 0.097 -0.110 0.149 0.322 -0.331 0.049 -0.523 -0.091
neuter 0.107 0.164 -0.116 0.159 0.456 -0.136 0.038 -0.491

Every component is loaded for gender, in an unsystematic way. The components do not tell
anything about gender specifically. A better distribution would be one where few components have
high gender loadings and all others only low loadings. This is captured by the revised variance
criterion (4.2.3; calculates as 0.032 here), and the revised rotation algorithm (appendix E.2) finds the
following two vectors in feature space, describing the plane of all variation in gender (4.2).

(4.2) Gender loadings after rotation
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pc1′ pc2′

masculine -0.003 -0.936
feminine 0.572 0.463
neuter -0.569 0.472

The solution found by the rotation algorithm is one where one component (pc1′) separates femi-
nine and neuter, and another (pc2′) distinguishes masculine from the two. Remember that masculine
was the predominant gender in the data set (5 out of 9). The new vectors are nearly symmetric; that
is, they have two loadings with the same absolute value. Note that the sum of gender contributions
by those vectors is 0. This is because the data was centered, that is, the mean was subtracted. The
mean gender is [0.555 m, 0.222 f, 0.222 n], with a sum of exactly 1 gender feature per data item.
There is no variation with respect to the sum of the gender values in the data. Therefore no vector
can change the sum. The origin of the principal components is not the null item, but the mean item.
On the vector describing the data mean every item is forced to take the value 1. Otherwise they could
describe words with several gender values, or none at all.

All other dimensions are neutral towards gender, i.e. they have 0 gender loadings. The gender
of a noun (from the training set) never depends on the value it takes on one of these dimensions.
Instead, its gender is fully described in only two dimensions. These two dimensions describe the
plane of gender variation. The variance of gender loadings now is 0.113.

Seen data items have perfect recognition. They will be mapped to one of three points within the
plane; see 4.2. Unseen data items may lie anywhere, although the better-than-chance performance of
gender prediction (see the full experiment in 4.4) requires that they will not be randomly distributed.
See also figure 4.3.

(4.3) First two rotated principal components

data item pc1′ pc2′

blau -0.210 0.036
traum 0.149 -0.137
tau -0.358 0.436
baum 0.139 -0.061
raum -0.265 -0.026
sau 0.324 0.342
frau 0.248 0.121
pfau -0.030 -0.226
stau 0.002 -0.485

All basis vectors have been rotated; all have changed their gender loadings. Thus they no longer
describe the dimensions of maximal variation in the input data. Their order and the eigenvalues
become meaningless. Their numbering is unrelated to the the numbering of the original components:
It is not necessarily the case that pc1′ is obtained from pc1, and so on.



94 CHAPTER 4. INTERPRETATION OF THE FACTORS

The two dimensions of gender variation are orthogonal with respect to gender, as their product
shows. This is in addition to their already established orthogonality by items (see also 4.3) and by
implicit features (via Kernel PCA).

When determining gender, one can now safely disregard all unrelated dimensions. The data
items are mapped onto their two gender-bearing dimensions as follows:

(4.4) Neuter: #blau#, #tau#

Coordinates: [-0.8707, 0.5967]
Gender loadings: [-0.555 m, -0.222 f , 0.777 n]
plus mean: [0, 0, 1]

Features:
−0.181× st
−0.148× #s
−0.148× s
−0.101× tr
0.178× um, m, m#
0.192× ra, r
0.268× #b
0.268× b
0.316× la, bl, l
0.326× #r
0.401× t
0.502× ta
0.582× #t
0.821× u#

(4.5) Masculine: #traum#, and all others

Coordinates: [-0.0038, -0.4745]
Gender loadings: [0.444 m, -0.222 f , -0.222 n]
plus mean: [1, 0, 0]

Features:
0.124× #r
0.139× ba
0.175× tr
0.218× #p, p, pf, fa
0.234× #b, b
0.247× ta
0.270× f
0.289× #s, s
0.341× st
0.352× ra, r
0.422× t
0.439× um, m, m#
0.560× u#
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Figure 4.2: Feature space of the dummy data, after rotation

(4.6) Feminine: #sau#, and all others

Coordinates: [0.8803, 0.5896]
Gender loadings: [-0.555 m, 0.777 f , -0.222 n]
plus mean: [0, 1, 0]

Features:
−0.172× st
−0.138× #r
−0.120× ta
0.145× #b, b
0.161× tr
0.198× ba
0.214× #t
0.221× um, m, m#
0.352× f
0.401× #f, fr
0.425× ra, r
0.425× #s, s
0.598× sa
0.778× u#

All nouns of the same gender are mapped onto the same representation. As seen from their gen-
der feature, there is is simply no distinction. The three points given are not really prototypes of the
respective gender. They are not even averages, because averages would be correlated. The surface
features described by these points are merely by-products of the necessary requirements (orthog-
onality of the basis, perfect recall of the training data). All seen words of a given gender digress
from that point in many ways, namely in the 6 remaining dimensions, which all are orthogonal to
the plane of gender variation.
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These representations are not only the contributions by the two dimensions; they are a full recon-
struction restricted to those two dimensions. In practice that only means the mean has already been
added to them. From the lists, I omitted the ubiquitous a, u, au (all 1.0) and the sentinels # (2.0).

The test item, #saum#, is placed according to its inferred gender. The two gender-bearing
dimensions assign to it the very same distribution over the three genders as the 8 initial components
did. It is far away from neuter, and a bit closer to masculine than to feminine. Compared to fig.
3.2, it is much easier to see these relations in fig. 4.2, because each gender forms a maximally tight
cluster, and is not distributed all over the first two dimensions.

Summary

The initial 8 principal components are arbitrarily loaded for gender, since gender was unavailable
to the kernel. When supplied with gender information, the basis vectors can be rotated in order
to maximize the variance within their gender loadings. The variance criterion is formulated such
that a few components will grab all the gender variation, while the others become neutral towards
gender. After rotation, there are exactly 2 dimensions spanning the plane of gender variation, and
6 remaining dimensions taking care of surface variation. All seen data items are mapped onto one
of three points in that plane; one for each gender. The unseen item is mapped such that all relative
similarity is preserved.

4.4 The two-dimensional variation of German gender

I now apply rotation towards gender-identifying dimensions to a larger data set. Following the
practice in 4.1.1, I use 2000 training items and a 4-gram kernel, comparing the orthographic and
phonological input representations. First, a Kernel PCA is performed as in the gender prediction
experiment (3.2). Then, the dimensions are rotated as described in 4.2.3 in order to identify the
plane of gender variation. The model is tested on 100 unseen items before and after rotation. As
observed before, the precision stays the same, because the extracted gender loadings are the same,
whether it is with all dimensions or just the two capturing all gender variation.

4.4.1 Results

4.4.1.1 Orthography

The experiment on orthographic data finds 1990 dimensions of variation in the space of German
singular nouns. The variance of gender loadings as calculated by the new criterion is very low, but
can be maximized by rotation. 1988 of the new basis vectors have zero gender variation, because
they are neutral towards gender. The other two have very high variation, as shown in 4.7. The exact
values do not matter. The model predicted 75% of the unseen test items correctly. Figure 4.3 shows
the clustering visually: Each gender is centered around its exact point as is needed for the particular
training set. 25% of the points lie too far off, and are falsely recognized as members of another class.
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Figure 4.3: Orthographical gender clusters

Dimensions: 1990

Variance of gender loadings: 0.0036

Variance after rotation: 0.9717

Precision: 0.75

(4.7) Gender loadings after rotation, orthographic

pc1′ pc2′

masculine -5.8880 -0.6848
feminine 2.1833 4.3179
neuter 3.7046 -3.6331

4.4.1.2 Transcription

For the experiment on phonological transcriptions, results are very similar; see the visualization in
4.4.

Dimensions: 1991

Variance of gender loadings: 0.0021

Variance after rotation: 0.7213
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Figure 4.4: Phonological gender clusters

Precision: 0.78

(4.8) Gender loadings after rotation, phonological

pc1′ pc2′

masculine -5.4800 -0.1820
feminine 2.5432 3.8923
neuter 2.9368 -3.7103

The main conclusion is that there is in fact a two-dimensional subspace of the space of German
nouns (as induced by a kernel over their surface forms) describing all gender variation, and that
the the three genders are not randomly distributed in that plane. They form clusters around center
points, which each represent all seen instances of one gender. The clusters overlap, leading to the
misclassification of some of the unknown nouns. Reasons for mis-classifications are discussed in
3.2.2. An upper bound for prediction is given by the informativeness of gender: If it were perfectly
predictable, then it would carry no information. Yet it is an integral property of German nouns.

There is no significant difference between the two data representations (orthography and phonol-
ogy). The extracted dimensions of gender variation are very similar (see 4.4 and 4.3). This is to be
expected, given the correlation between the two annotation layers.

4.4.2 Discussion

The successful reduction to just 2 dimensions in the case of gender – placing the 3 values in a plane
— hinges on the implementation of the algorithm (see appendix E), but given enough precision it
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was always achieved in my experiments. This is also true in combination with reduced dimension
(4.1): When first reducing the number of dimensions, the rotation will still identify exactly two
dimensions capturing all the gender variation within the lower-dimensional subspace of the kernel-
induced feature space. Given that the rotation algorithm is computationally costly, and that the
number of pairwise rotations grows quadratically with the number of principal components, reducing
the principal components to start with is an effective and legitimate way to speed up the computation.
Following 4.1, 400 dimensions are enough for the given task.

The resulting plane of gender variation highly depends on the training set, since it is meant to
exactly represent all training items. A more general model is obtained by first reducing the dimen-
sion. Still the components are arbitrary in the sense that they can be rotated within the plane. Their
item and feature loadings are such that the component does what it does; there is no immediate in-
terpretation. This is to say that this model does not extract the ‘rules’ of German gender. It is only
a perfect (100% accuracy on training data) abstraction over the training data capable of 80% correct
prediction. They can assign gender to an unseen word based on its similarities to all known words.
They do not provide a human-readable explanation of how they do it.

It is even the case that similarity to a feminine word can hint towards neuter: The data set con-
tained zession (cession), which is a strong indicator for neuter, probably because of its beginning
#ze (as in “Zelt”, n., tent). There are enough words ending in ion# such that even the word
zession itself will be mapped to the feminine center point. This shows that the composition of
the new dimensions is not even necessarily predictable by gender itself. Quite the contrary, it is very
arbitrary and specific to the training data.

4.5 Uninterpretability of factors

In this section I discuss a few simple examples with respect to the interpretability of factors. The
point is to show what can be done at all with rotation towards features (4.2.3).

4.5.1 A very simple example

Consider the following language (a set of strings of fixed length):

(4.9)
L1 = {a, b}6

A unigram KPCA (with 1000 items) derives a single principal component, which models the
ratio between the two features.

(4.10)

feature pc 1

a -0.725
b 0.689

eigenvalue 3176.5
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The values of the feature loadings derive from normalization: The sum of their squares equals
1. Their absolute values are not equal because of the random sampling of the language. PCA is
sensitive to frequencies, and therefore it cannot conclude that a and b should be treated alike.

In the next language, I relax the length constraint.

(4.11)
L2 = {a, b}i, 0 < i ≤ 12

Again on 1000 items, a unigram KPCA finds two factors:

(4.12)

feature pc 1 pc 2

a 0.679 0.730
b 0.748 -0.682

eigenvalue 5880.7 3261.7

The first principal component adds both as and bs. Thus it sorts items by size. It is slightly off
being symmetric, because of the random sample of data items. The second component serves the
same purpose as the one from the previous example (4.10)

Intuitively, the items are composed of as and bs, and not of a size parameter and a ratio param-
eter, although this is precisely what KPCA thinks is the best way to explain the data. The data falls
into a plane with is spanned by the features a and b. Any pair of orthogonal vectors in that plane is
a valid basis, e.g. the ones given above (4.12). So rotations might reveal a more interpretable basis.
VARIMAX by items only adjusts the vectors minimally. Their interpretation stays the same.

Rotation towards features needs explicit features. Let the symbols of the alphabet be the ‘hid-
den’ features,4 and B the items-by-alphabet matrix of hidden feature counts. Then Bi,j denotes the
occurrence count of the jth symbol in item i. The rotation now enforces one factor for a and one
for b, because in the constellation below (4.13) the loadings are maximally variant within a feature.5

Thus KPCA with rotation manages to find the trivial solution.

(4.13)
feature pc 1 pc 2

a 1.002 0.000
b 0.000 1.005

4.5.2 A not so simple example

In the last example, surface and hidden features were identical. This led to the circular conclusion
that the (surface) features are the (hidden, or extracted) features. The situation becomes less clear if
we add information to the kernel. Nothing changes about the nature of the data when I use a bigram
kernel (not including unigrams), but the principal components do change.

4They are both surface and hidden features now.
5Here this coincides with the loadings also being maximally variant within each factor, but this is not what the

algorithm maximizes.
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(4.14)

feature pc 1 pc 2 pc 3 pc 4

aa -0.407 -0.767 -0.482 0.015
ab -0.516 -0.039 0.473 -0.715
ba -0.512 -0.017 0.502 0.698
bb -0.549 0.638 -0.538 0.000

eigenvalue 2966.2 2450.7 1259.2 233.9

The first factor denotes the size of the item, because all features have the same sign.6 The fol-
lowing factors model the ratios between the surface features. This is not much different from the
situation with unigrams. VARIMAX (by items) applies similarly and does not improve the inter-
pretability. After rotation towards the explicit features a and b, two factors remain loaded for them,
defining the plane of a-to-b ratios (cf. the unigram KPCA, 4.5.1).

(4.15)

feature factor 1 factor 2

aa -0.856 0.147
ab -0.345 -0.359
ba -0.335 -0.369
bb 0.145 -0.844

a -1.248 -0.162
b -0.156 -1.263

Note that while the two factors are of course orthogonal in terms of their bigram features, this is
not true with respect to the unigrams. Also, the secondary feature of a factor does not reduce to 0.
This is similar when including unigrams in the kernel.

In this last example the relevant features (unigrams) were specified explicitly. A final option is
to include all surface features of the up-to-2-gram kernel, and rotate towards them.

(4.16)

feature factor 1 factor 2 factor 3 factor 4 factor 5

aa -0.408 -0.408 -0.408 -0.408 0.408
ab -0.118 -0.118 -0.118 0.881 0.118
ba -0.118 -0.118 0.881 -0.118 0.118
bb -0.118 -0.118 -0.118 -0.118 -0.881
a 0.118 0.881 0.118 0.118 -0.118
b -0.881 0.118 0.118 0.118 -0.118

This result is unsatisfactory. In no way it shows the true nature of the data: that it is composed of
two atomic elements. If at least the dimension is known beforehand, the principal components can
be restricted before rotation.

6The orientation of components is arbitrary.



102 CHAPTER 4. INTERPRETATION OF THE FACTORS

(4.17)

feature factor 1 factor 2

aa 0.532 -0.121
ab 0.201 0.205
ba 0.209 0.205
bb -0.127 0.528
a 0.784 0.030
b 0.030 0.788

Looking only at the unigram loadings, this comes close to the desired result. In order to obtain
it, one needs to know which or how many features underlie the data, and even then the result is only
an approximation.

4.5.3 Discussion

Maximization of the variation of features does extract the subspace into which the relevant variation
falls; yet it cannot guarantee that the basis vectors actually align perfectly with the features. In the
examples above the model was hard pressed to find even the simplistic structure of the language over
an alphabet of two letters (which supposedly is the alphabet itself). Arbitrary properties of the data
(from random sampling) lead to variation. This is meaningful regarding the unigrams, but bigrams
are only a by-product of the language definition above. Principal components describe exactly these
arbitrary properties of the data. This variation is not noise, but genuine, so it is not filtered out by
PCA.

There are other options to rotate the vectors, other criteria to maximize. I cannot exclude that
some dimensions in a syntactic feature space are actually meaningful, but my findings advise against
looking for them via PCA and (orthogonal) rotations. Another idea would be that building blocks
simply are not orthogonal, but non-orthogonal rotations go well beyond this thesis.

4.6 Conclusion

In this chapter, I have first shown that the ordering of dimensions as given by KPCA can be ex-
ploited to generate a smaller model of the input space. Principal components with low eigenvalues
explain only very little variance in the data, that is, only minor deviations of just a few items in
the training data from what can be described with the more important dimensions. Discarding this
highly data-specific information does not lead to an immediate drop in performance. Actually, even
an improvement is possible due to the application of more general patterns.

The principal components are only unsystematically related to gender, since the kernel had no
access to this hidden feature. They only describe surface variation. This is of no interest to theoretical
linguistics. A standard trick to facilitate interpretation of principal components is to rotate them, e.g.
with VARIMAX. For Kernel PCA, this would be variation by items, and this is not what one wants.

The method described here does not establish hidden features. It remains to be seen whether
kernel-based methods can identify features without knowing them in advance. Presupposing them,
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the principal components are loaded for them in various degrees. This is exploited as a new criterion
of variance: The basis vectors are rotated such that a few of them cover all gender variation, while the
rest is neutral towards gender. A vector/direction is neutral towards gender if the linear combinations
of training items which describes it adds up to a zero value for each gender. The total sum of 0 is
already guaranteed by the model: The mean introduces a total gender value sum of 1, and moving an
item along the principal components can only change the proportions, not the fact that every word
within the model has exactly one gender value.

This new rotation identifies the minimal necessary number of dimensions to describe the vari-
ation of hidden features. 3 different gender values can be placed into a plane. This plane is suc-
cessfully and reliably identified. Words of one gender fall onto the same point in this plane. From
this point, they inherit some of their surface features. In this respect, words of the same gender
look identical. However, these features do not present meaningful surface properties for words of a
certain gender. The other dimensions take care of the actual surface shape of the words.

This new two-dimensional model predicts the same gender values for all testing items as the full
model. The testing items form loose clusters around the unique points for each gender. Thus two
dimensions suffice to extract all information about the gender of an unseen word, to the best ability
of the kernel-induced model.

Rotation towards abstract classes introduces an additional level of orthogonality. Consider the
“naive” basis (4.3): It is orthogonal in terms of data items, and nothing else. KPCA finds a basis
orthogonal in the space of implicit surface features. Crucially, it retains orthogonality by items. The
rotation finds a new basis within feature space, such that the new basis vectors are orthogonal also
by abstract classes. It retains the previously established orthogonality. Hence the final vectors are
orthogonal by items, by surface features, and by abstract features.

As an alternative, consider KPCA with a kernel on gender. Let it be a simple identity kernel: 1
for identical gender, and 0 otherwise. This will also yield a two-dimensional plane, in which each
gender occupies a unique point. This is so because as seen from the gender identity kernel, there
is absolutely no way to distinguish words with identical gender. Then note that the two principal
components of this KPCA cannot be orthogonal by surface features, since this level of description
did not enter the model anywhere. This is analogous to gender being irrelevant in the original KPCA
on surface representations. That means, a KPCA with a gender kernel cannot give the same result as
KPCA plus rotation.

The ordering of principal components by data variance is lost in the process. As I argued in
2.3.4.3, there is no use for this in theoretical linguistics anyway. The ordering can however be used
to reduce the dimension before rotation. This facilitates the process of rotation, and it reduces over-
fitting of the model. As seen in 4.1.1, performance can improve with the discarding of low-ranked
fine-tuning dimensions. Reducing the dimensional limits the predictive power, but no more is lost
by rotation.

Over-fitting also means that any additional data can be accommodated in the model. It will
always be specific to the training data. The shape of the components is a direct consequence of this,
and therefore they will never encode a static (unchanged under additional data), abstract model of
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gender. It is a live and active model of performance, solely driven by experience, as opposed to a
model of competence.

Another idea to get some interpretation out of the two dimensions of gender variation would be
to rotate them within the plane, according to a fourth criterion yet to be formulated, the three other
criteria being the three orthogonality requirements already in place.

4.6.1 Outlook

Rotation towards hidden features can be applied to the abundance of abstract classes and grammat-
ical features employed in the formal description of language (see 1.2.1). It identifies the relevant
subspace of variation within the hidden features, as opposed to the full space of surface variation.
Yet the hidden features have to be pre-defined by the researcher; they are not suggested by the model.

The method for rotation is iterative. It slowly converges towards optimal vectors. There might be
a way to obtain a stable state directly from the criterion of variance, by finding an optimal solution
analytically. This I have to leave to a mathematician. As the overall method now contains an iterative
step, it loses some of its appeal as being exact, in comparison to networks, which have to be trained
iteratively.

Rotations towards other criteria are conceivable. Some rotation methods find oblique solutions,
that is, they do not insist on the orthogonality of hidden features. Such a model would then be free
to posit any linear combination of training items as a hidden feature. In the current case, there could
be a solution with one dimension per gender class. As they span a plane, each of them could then be
expressed by the other two.



Chapter 5

Markup

In this chapter, a feature space model of a set of words is used to map unannotated word forms
onto the corresponding annotations (specifically stress marks and syllable boundaries). The need to
find concrete outcomes for the fuzzy representations returned by the method introduces pre-imaging

methods.

5.1 Introduction

In inferring abstract features, a model maps from the data points into a small set. In the end, the
method shall be flexible enough to allow the same complexity in the co-domain as in the domain.
This chapter takes a little step in that direction, introducing the relevant concepts. A trivial case of
equal complexity is a mapping from words to themselves. Nothing is to be learned from that. By
adding a little markup, such as stress marks and syllable boundaries, to a word, the co-domain is
still very similar to the domain. Every word is mapped to a copy of itself, with just a few symbols
introduced.

In this chapter, I will start from a KPCA model of a set of phonological transcriptions, just as
done in the previous chapters. These transcriptions lack syllable boundaries and stress marks, the
placement of which is the hidden feature of each word. This placement is encoded by the fully
specified transcription. So the full form is the set of hidden features, and the form bare of markup is
the set of surface features. We can adopt this as a general view: There are only maximally specified
entries in the data set, but depending on the task only a part of the entry is accessible. In the case of
abstract features (chapter 3), the surface forms are easy to separate from the hidden features. Markers
such as syllable boundaries are inserted into the word, so separating the layers is more difficult.

A kernel always is a certain view on the data. It models the distinction between surface and
hidden features: All features implicit in the kernel are surface features, and we may choose to hide
any features we want from the kernel. In the case of markup, I chose to represent this hiding directly:
by having separate forms with and without markup. Then, the usual string kernel can work on the
surface representations without having to explicitly ignore markup.1 I will use n-gram kernels on

1Contiguous n-grams interrupted by markup are not represented contiguously, which would require a different kernel
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both representations.
Remember that the representation returned for an unseen test item is fuzzy. It is a combination

of training items, thus somewhere in between them. The place of the stress mark will thus not be
unambiguous, but a distribution over possible places. Given that each training item has exactly one
main stress, every linear combination will also have exactly one. The task is then to find the optimal

place. Placing a single symbol into a string is the simplest form of markup. Just like identifying
gender by majority vote (see 2.4.4 and appendix D), it is a form of pre-imaging: Finding a discrete
value for a fuzzy representation.

The markup pre-imager is discussed in section 5.2. There will be no walkthrough for the methods
of this chapter. The method of mapping unseen data items into feature space is identical to the one
discussed earlier (3.1) String pre-imaging is introduced in 5.2 and demonstrated later, in the next
chapter (6.3.3), because the examples in this chapter are too simplistic. This chapter presents results
for stress annotation and syllabification in 5.3, and concludes in 5.4.

5.2 A pre-Imager for markup

Points in feature space are not interpretable results if the the original space is discrete. One needs
to find the discrete value closest to the point in feature space. In the case of abstract features, this
pre-imaging was done via exhaustive listing of all possible values (the three gender values). Each of
them had a loading, and the one with highest loading was chosen.

Here the pre-images are strings themselves. The set of all strings over a finite alphabet is enumer-
able (e.g. by increasing length), but infinite. Upon encountering a close match there is no guarantee
that it is in fact the closest possible. A more efficient strategy of searching the original space is called
for.

Furthermore, the outcomes are not features, and therefore do not come with a loading, which
could be directly used to compare the closeness to the point in feature space. Here, the kernel can
help. The kernel value of an item and a linear combination of items is the weighted sum of the
pairwise kernel values (appendix, A.1.4). Now one could maximize the kernel value ad infinitum

by adding ever more stress marks and characters. A penalty for excessive material is given by
normalizing the kernel (appendix A.1.3): Only a perfect match will have a kernel value of 1, all
others will be below, sorted by proximity.

I employ an iterative search of the original space. The general algorithm for string pre-images is
given in the appendix (D.3). It proceeds in minimal edits to the previously best approximation. As
minimal edits I choose insertions, deletions and substitutions of single characters (as in Levenshtein
distance). In the current application of markup, one in fact only needs insertions, if one starts not
from an empty string but from the input item. The insertion can take place anywhere in the string,2 so
the number of items to check in each step linearly depends on both the number of insertable symbols

implementation. Conceptually they are equal.
2Further specialization of a pre-imaging method could impose linguistic restrictions here. For now, I keep the method

as general as possible. The method is expected to sort out unattested placements.
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and the length of the string.
There are good reasons not to start from the empty string. First, it takes many more steps to

reach the optimal solution. Second, most characters of the output are already known. Each step
bears the risk of running into a local maximum. A local maximum is such that no minimal edit will
improve the kernel value, but at least one of these edits in combination with further edits would.
Since markup only requires single, local edits, this is not really an issue here. I will discuss it in
more detail in 6.2.1, where more general string pre-images are needed.

With the right choice of an initial item (the input itself) and minimal edits (insertion of a marker
’ or ., at any position in the string), the search space can be reduced significantly while at the
same time avoiding local maxima. In stress placement, the correct solution can be found in just a
single step; for syllabification, each step can introduce a syllable boundary in a correct place. Main
stress placement exemplifies single symbol insertion in section 5.3.1, syllabification shows multiple
symbol insertion in section 5.3.2. Section 5.3.3 explores different possibilities to do both, and section
5.4 discusses the findings.

5.3 Experiments

I compare different combinations of stress placement and syllabification tasks. The training set are
1000 randomly chosen polysyllabic words from the CELEX fraction described in 3.2.1 and appendix
G.2: German non-compound nouns. Additional 100 words were chosen randomly as testing data.
The average syllable count is 3.003 for polysyllabic words and 2.832 for all words.

Different n-gram kernels are compared. Unigrams are useless here, as they do not know anything
about the order of characters and therefore cannot identify places within the string. The general idea
behind using an n-gram kernel to identify insertion sites for syllable boundaries is that this task is
usually solvable locally, as also witnessed by the approaches discussed in 5.3.2.1.

Syllabification is needed orthographically in typesetting (line breaks), and linguistically in split-
ting phonetic transcriptions into smaller parts. Syllables are a universal concept in human languages,
and their perceived boundaries depend (deterministically) on a language’s phonology. Sometimes,
morphology may override phonology: Morpheme boundaries may be indicated by syllable bound-
aries. This is true for certain morphemes (with stems being more likely to exhibit this feature) in
certain languages; others, such as French, re-syllabify coda consonants into the onset of the follow-
ing word if it starts with a vowel. To my knowledge, syllable boundaries are never phonemic, that
is, a different syllabification will never change the meaning of a word (unless this goes hand in hand
with its morphological structure). Therefore, syllabification is deterministic.

Likewise, n-grams may identify the syllable carrying main stress. This is however a more global
phenomenon, as it may depend on a syllable’s distance to the word edge (depending on the language).
While many languages exhibit clear patterns of main stress assignment (e.g. word-initial stress as
in Finnish), others are more complicated (sensitive to syllable weight etc.). In contrast to syllable
boundaries, stress may be phonemic at least in some languages. Although German has very few
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minimal pairs only contrasting in stress ([’te:.no:r], tenor vs. [te:.’no:r], tenor (singing voice)), stress
is often assumed to be lexical at least in a class of exceptional cases (see e.g. Féry 1998).

In German, main stress correlates with syllable weight: stressed syllables are always heavy. This
leads to tense, long vowels in stressed open (coda-less) syllables. In the CELEX data all vowels in
open syllables are annotated as being long (see the example just given), so the assignment task is not
trivial given the phonetic form.

Each task (syllabification and stress assignment) is described and its results are discussed in one
of the following sections. The results are cumulated in table 5.1.

(5.1) Percentage correct markups:

ngram 2 3 4 5 6

stress 0.637 0.623 0.610 0.612 0.619
stress (with syllables) 0.658 0.673 0.653 0.638 0.637
syllabification 0.815 0.807 0.759 0.727 0.712
simultaneous 0.515 0.548 0.521 0.498 0.494
consecutive 0.553 0.547 0.516 0.494 0.489
iterative 0.589 0.518 0.513 0.501 0.491

5.3.1 Stress placement

Placing a single symbol into a word is the smallest change possible. The first application, main
stress placement, does just that. Unseen test items shall inherit the position of the stress mark from
words they are similar to on the surface, as measured by the kernel. They are mapped onto a point in
feature space, that is, they are represented as a linear combination of words with stress marks such
that the same combination of their unmarked counterparts best approximates the test item.

This linear combination will have many n-gram features with stress marks, in the vicinity of
different characters, with different loadings. Placing a stress mark at any position within the word
will match some of them. The pre-imaging method described above will find the placement which
maximizes the similarity (the distance in the feature space) to the linear combination. It will however
not stop there, as it is a general iterative method and does not enforce the uniqueness of main stress.
An item with several stress marks will fall outside the training space (as captured by PCA), but its
distance will be minimal. So in order to accommodate other features, more stress marks might be
inserted. This is done until no improvement is possible.

Main stress is predicted correctly in 63.7% of the words with a 2-gram kernel, and 65.8% when
syllable boundaries are present in the input. Performance is generally lower for kernels with larger
features, with occasional exceptions for trigrams. A disadvantage of large features is their sparsity:
Most larger n-grams including a stress mark have not been observed in the training data. Stress
marks occurred only in 1000 context, once in each training item. Only small context windows
are frequent enough to allow abstractions. Wherever stress is placed, it produces a lot of unseen
n-grams, thus effectively increasing the distance. This problem is best tackled with more data.
However doubling the training set did not improve performance. Many unseen contexts remain.



5.3. EXPERIMENTS 109

Stress placement improves slightly with syllable boundaries. They reduce the number of possible
sites, although misplacements are still possible. tr is a good onset for a stressed syllable, but if it
is actually str, then placing the stress mark before t is wrong. A syllable boundary (or word edge
sentinel) before str favors the correct placement, because every word in the training set has the
feature .’ or #’, which would not be given by the incorrect placement.

Main stress is not a local effect, but all kernel features are local. Therefore, the method sometimes
locally decides to stress a syllable irrespective of other stressed syllables. There is of course the
generalization that every word has exactly one main stress, but placing a stress mark where it is called
for outweighs violating that. Additional stress marks do appear where secondary stress fits (and
reasonably so): #’SpItsby:b@’rai# (Spitzbüberei, rascality), #’StUka’tu:r# (Stuckatur,
plastering). Thus the method tries to treat the problem locally.

In the CELEX annotation of German, all open syllables have long vowels, regardless of stress.
Some of them are stressed, and some are not. Now vowel length is usually a good predictor of stress.
This potential is totally blurred by the annotation. With a word like #’i:zo:p# (Ysop, hyssop),
the method has to guess where to put stress, and it guessed wrong. Then again, stress and vowel
length in German are only highly correlated, without clear evidence as to which is primary (lexical).
Just as unclear is the status of unstressed full vowels; they do not contrast length. So an annotation
with short unstressed vowels in open syllables would have been viable. However, this discussion is
irrelevant to this thesis. It remains to be said that the model’s performance could have been better on
a different annotation.

5.3.2 Syllabification

The method only really features its iterative nature in the placement of several symbols. In syllabifi-
cation, the method will first identify the most reliable place for a syllable boundary, and continue to
identify others, until no improvement is possible. Syllabification is a strictly local task, as opposed
to main stress placement. So the n-gram kernels are far better suited for it. With a feature width of
maximally 2 the model achieves correct syllabifications for 81.5% of the training words.

A typical error is to accept a syllable end without realizing that the remainder is not a full syllable:
#i:.zo:.p# and #ky:.n.hait# (Kühnheit, daringness) both receive a syllable boundary after
a long vowel, which locally makes sense. When inflected (plural #i:.zo:.p@#, forms of the base
adjective #ky:n# such as #ky:.n@r#), this is where a syllable boundary appears. Phonologically,
the final consonant might be placed into an extrasyllabic position as the potential onset of a following
syllable. In that sense, the assignment is reasonable. The model however fails to correctly learn the
omission of a syllable end when the following material is rendered as a coda.

The converse of this situation with long vowels is found with short vowels. Short vowels appear
before coda consonants, or geminates. In the CELEX annotation, geminates are represented by a
single consonant after the syllable boundary. Nothing marks them as geminates but the fact that they
are preceded by a short vowel and not followed by another consonant. This creates the situation that
sometimes short vowels seem to appear in open syllables. The model learns this and places a syllable
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boundary too much: #O.k.tant# (Oktant, octant). A similar thing happens with complex codas:
#zEn.f.t@# (Sänfte, sedan chair). Here, both n.f and f.t are good syllable breaking points.
They outweigh the non-syllable .f..

5.3.2.1 Discussion

80% accuracy on syllabification is not a notable result at all, because I assumed syllable boundaries
not to be phonemic. Optimality Theory (Prince and Smolensky 1993/2004) posits a universal, vio-
lable alignment constraint of different linguistic layers, to be instantiated with orientation (left edge
vs. right edge) and affected layer. In the current case it aligns morphemes with syllables: For every
left edge of a morpheme, there shall be a left edge of a syllable. While it goes too far to discuss
here to what extent this constraint applies in German, it gives an explanation for phonetically odd,
morphologically motivated syllabifications. Mostly this involves onsetless syllables, and the inser-
tion of a glottal stop, which is neither written nor given in the phonemic annotation: “Halbinsel”
(peninsula) is [halp.PIn.z@l], not [hal.bIn.z@l].

In this sense, syllable boundaries distinguish meaning. If the morphemic structure of a German
word is known, syllabification is deterministic. Unfortunately there is no easy way to incorporate the
morphological annotation of CELEX (see G.2) into the phonological annotation. This would reduce
the rate of errors.

Daelemans and van den Bosch (1992) build a model for a closely related task: Hyphenation of
Dutch words. Hyphenation is the orthographic reflection of syllabification, with only minor dif-
ferences.3 Daelemans and van den Bosch train an exemplar-based model on 19,000 Dutch words,
which gets 98.3% of all hyphens right. Word accuracy then is a little lower, because even the in-
correctly hyphenated words will have boundaries in some of the right places. They used 7-grams to
compare words. Dutch behaves similar to German in the relevant respects. The main difference to
the KPCA method then is in training size. PCA is mathematically more costly, which I why I usually
train on only 2000 words.

Bouma (2002) starts out with a hand-coded set of hyphenation rules for Dutch (implemented as
a finite state automaton) and achieves 94.5% right away. The model is further improved by learning
exceptional patterns from 260,000 words from the Dutch portion of the CELEX database (Baayen
et al. 1996; 90% of their data set of 290,000 words), then achieving 98.17%. As for German, one
needs to know the morpheme structure in order to fully predict syllabification. Neither is given in
the training data, so the rules basically learn morpheme boundaries, where otherwise the syllable
boundary would have been misplaced. Bouma goes on to train his model on short n-gram patterns
as used in TEX’s syllabification (Liang 1983), which are extracted from huge data sets. Both models
achieve hyphen accuracy above 99%.

Schmid et al. (2007) train a Hidden Markov Model (HMM) on the phonological annotations of
300,000 German words from CELEX. This is again syllabification, not hyphenation. Their “one-

3There are additional constraints on hyphenation concerning the fluency of writing: Do not strand single letters (even
if they form a syllable of their own), do not split digraphs, and so on.
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vowel-per-syllable constraint” enforces the correct number of syllables. Assignment is 99.85% cor-
rect using a context size of 5 preceding phonemes. This compares to using 6-grams (including the
phoneme in question). The remaining errors are attributed to unrecognized morpheme boundaries,
incorrect annotations, loanwords with rare phonemes, and very few real syllabification errors. This
proves that syllabification is perfectly learnable from enough data.

An HMM needs smoothing, otherwise the model would return a zero probability whenever it
encounters unseen n-grams. KPCA models do not ‘crash’ the same way; unseen features simply
do not add to the overall similarity. One might consider smoothing in the kernel (adding at least
something even if the feature is unknown), but I see no immediate need for this. Thus KPCA does
not need an additional and arbitrary smoothing parameter, which I consider an advantage.

For better comparison with these methods, I ran another KPCA modeling on 2000 data items us-
ing a 4-gram kernel, this time also including monosyllabic words. The latter are not trivial, because
the model might erroneously introduce syllable boundaries. I altered the pre-imager to reject sylla-
bles without nuclei, thus mimicking one half of the one-vowel-per-syllable constraint. The other half
is to reject syllables with more than one nucleus (vowels separated by at least one consonant). The
first constraint can be checked at each step of the iterative pre-imaging process; the latter cannot.
Not implementing it seemed not to cause any additional errors.

The performance goes up to 95%, as compared to the previous 81.5%. Remaining errors are
due to the very same reasons as listed by Schmid et al. and cited above. Taking the training set
sizes (2000 vs. 300,000) into account, this compares quite favorably. The approaches discussed here
outperform the KPCA model mainly due to their larger data set. In its current implementation, the
KPCA method simply is not capable of handling such data masses.

There is however an objection to hard-wiring constraints into the pre-imager (or into the HMM):
Such linguistic constraints should follow from the model. They should not be imposed on it. In
the original experiment (5.1), I chose to keep the pre-imager as general as possible, so that any
implicit knowledge about syllables would have to be learned. As the comparison to the model with

the one-vowel-per-syllable constraint shows, this results in three times more errors. Eventually, with
more data, the constraint should follow implicitly. However, even when training on the full CELEX
database Schmid et al. relied on the constraint as a filter against errors.

5.3.3 Stress and syllables

I identified three possibilities to mark words for both stress and syllables. The first does it simultane-
ously, the second separates the phases and intermediately fixes a pre-image with syllables only, and
the third performs the last approximation not on basis of the surface similarity, but on the similarity
of syllabified forms. An upper bound for their performance is set by the the previous models’ ability
to separately predict the two types of annotation.



112 CHAPTER 5. MARKUP

Simultaneous markup

Stress and syllable prediction can be done simultaneously. The set of insertable symbols comprises
both the stress mark and the syllable boundary. The order of placement does not really matter; it
depends on which gives the best increase in the kernel value. Everything that has been said about the
two separate tasks applies here. Errors accumulate, and so the model achieves a mere 51.5%, again
with the 2-gram kernel, as in stress placement. This is close to the hypothetical 51.9% predicted by
multiplying the individual performances on stress and syllable boundary prediction.

Consecutive markup

Inserting stress marks and syllable boundaries as in the simultaneous markup can be split into two
phases. First, a syllabified pre-image is found as in the syllabification task (5.3.2). In fact, in the
modeling I use the very same outcomes as found there. These are then the initial items for the stress
marking phase. I call this the consecutive method for multiple markup.

Unlike stress placement with syllabified forms (second experiment of 5.3.1), the initial item is
not the correct one, but the prediction of the first phase. So all incorrect syllabifications will lead to
incorrect final outcomes. On the remaining 81.5% correct intermediate outputs (see syllabification),
it might perform as well as 65.8% (see stress assignment), but this was done with a KPCA on
syllabified forms. This is done properly in the next section. Here, the linear combination is taken
from the surface KPCA, and the syllabification phase does not add any information to it. Yet the
correctly predicted 55.3% outperform even the maximally expected 53.6% (65.8% of 81.5%). This
is better than the simultaneous method, and it shows that stress prediction on correctly syllabified
words is easier than it is on average.

Iterative markup

The second phase of the consecutive method mixes input annotations: The linear combination was
calculated by the Kernel KPCA on unmarked data, while the new initial item now already is syllabi-
fied. To properly benefit from the syllabified model of stress prediction, another KPCA is necessary.
This model does not pass one linear combination through the phases of markup; it calculates a new
approximation after each step of pre-imaging. This I call the iterative method.

One KPCA is performed on the unmarked training data, and another on the same data syllabified.
The first phase is identical to the syllabification task, and thus to the first phase of the consecutive
method. The syllabified pre-image is projected into the feature space of the second KPCA, and a
pre-image with stress is found. This is identical to the second stress assignment experiment. This
method achieves 58.9%, outperforming the two other combined prediction methods. As expected,
this is worse than the two separate models.
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5.4 Conclusion

This chapter provided a step from the prediction of abstract features to more concrete outputs, name-
ly by adding information to strings. Following the main theme of the thesis, this is done via analogy:
a test item receives its markup proportionally from the training items needed to represent that test
item.

Pre-imaging methods were employed to convert the fuzzy feature space representation of a newly
parsed item into a valid, discrete form of the space of annotated words. The pre-imagers were
tailored towards the tasks in two ways: First, the initial item was chosen to minimize the number of
steps necessary. Second, the minimal operations were restricted: only insertions of only the relevant
symbols. This vastly reduces the search space, and makes string pre-imaging feasible. In chapter 6
I will use the very same pre-imager with less restrictions. More restrictions are possible, by hard-
wiring linguistic knowledge into the pre-imager. However this defeats the generality of the method.
In terms of human cognition this is the question of language-specific functionality. It is favorable to
explain linguistic capabilities with more general-purpose mechanisms.

I also discussed several ways to predict multiple layers of annotation: simultaneously by giving
the pre-imager all necessary symbols at the same time, consecutively by first finishing one annota-
tion layer and then the other, or iteratively by performing a second KPCA on the intermediate layer.
I chose syllable annotation as the primary layer and main stress marks as the secondary layer, fol-
lowing linguistic intuition. To extend this method to other tasks the linguistics, layers have to be
pre-ordered by the researcher, or their most effective order could be determined experimentally.

In the example chosen, the overall precision was higher than the combined precision on the
individual annotation layers, but only for the consecutive and the iterative method. From this I
conclude that those can benefit from easy words: If it is easily syllabified, then stress assignment
is more likely to be correct than on average. This explains how they outperform the predicted,
combined precision. However, this seems not to be in effect with simultaneous annotation. Therefore
I have to assume that the latter introduces additional errors due to the more complex pre-imaging
process, bringing it back to the predicted level of performance.

The consecutive method only uses the KPCA model from the previous step. The further increase
in performance seen with the iterative method then shows that each step should be grounded on a
KPCA on the level of annotation in question.

n-grams are widely in use for similar prediction tasks. For example, all three approaches dis-
cussed in 5.3.2.1 use them. The kernelized method presented here allows maximal flexibility in
the choice of surface features. I only used n-gram kernels here, but certain tasks might very well
benefit from other surface features. The generalization over certain classes of phonemes is only
implicit here, since different phonemes bear no similarity. A more sophisticated kernel could take
into account the similarities of phonemes,4 and thus more directly establish phoneme classes such as
consonants and vowels. After all, the consonant-vowel skeleton of a word already determines stress

4I have done preliminary experiments with such a kernel. Some issues remained unresolved, so I excluded it from
this thesis.
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and syllables to a large extent.
Syllabification of German words essentially is a solved problem (see 5.3.2.1), given enough

training data. The KPCA method is not feasible for such large data sets, because the decomposition
of a 300,000-by-300,000 kernel matrix is beyond available computational power. Arguably, there is
a lot of redundancy in the data set, so the eigenvalues of the principal components would quickly de-
cline. Most of the models predictive power could presumably be captured with only a few thousand
dimensions.

In conclusion, the KPCA model cannot yet compete computationally with well-established meth-
ods such as the ones discussed in 5.3.2.1. It is at an advantage when explicit feature listings are
unfeasible and when more flexibility of features is called for.

5.4.1 Outlook

The initial results with relatively small training sets (2000 vs. 300,000) show that a lot can be learned
with these simple models. Markup models can be built for any linguistic layer, and, as shown, also
for any cascade of layers. For each layer, a specialized kernel and pre-imager is needed. Here I only
used n-gram kernels; kernels on the consonant-vowel skeleton of words might be helpful in more
efficiently generalizing over the data.

Another type of markup is transcription (see also Pirrelli and Yvon 1999): Mapping from the
orthographic annotation layer to the phonological, and vice versa. Initial experiments show that
the model benefits from more data. The results crucially depend on the pre-imager, which is more
complex than the ones used here and in the next chapter (6.2.1): It needs to replace each orthographic
symbol with a phonetic symbol (approximately). The number of steps is thus linear in the length
of words. This opens up many possible dead ends (local maxima) for the pre-imager. I leave these
results to future papers.



Chapter 6

Relating spaces: mappings and paradigms

The previous chapters have shown mappings onto abstract features and, less abstractly, onto enriched
(annotated) versions of data items. This chapter now takes a further step and allows full flexibility in
the co-domain: Both the the domain and the co-domain are the word space. Again, a mapping is to
be learned based on similarity. As before, Kernel PCA models will be built on a training set in the
domain, and unseen data items will be mapped into a feature space. The hidden features, however,
will be inflectional forms. In order to pin them down, the pre-imaging process as presented in 5.2
needs to be made more flexible.

Learning by analogy does not only apply to learning abstract features. Learning paradigmatic
relations via proportional analogy goes beyond learning as classification (Pirrelli and Yvon 1999).
It extends to surface-level outputs. Words are linguistically related to other words, e.g. within an
inflectional paradigm.

Paradigms for different words are analogous to each other, in that a paradigm for a certain part-
of-speech always specifies the same slots (cf. de Saussure 1916). To simplify matters, consider
only the relation between two forms in the paradigm: a so-called base form, and an inflected form.
There is reasonable hope that this relation is systematic to at least some extent, when comparing
different lemmas. Across languages one finds systematic rules, or several classes, with exceptions
and sub-regularities. This calls for data-oriented models.

The paradigms I will be looking at are instantiations of inflectional morphology. The relation
between rule-based and data-oriented models for inflectional morphology is discussed as the past

tense debate (see 6.1), since irregular verbs in English are a classical case of study. This case is
however largely dominated by a class of regular verbs, and sub-regularities within the exceptions are
only instantiated by very few examples. There are far more interesting cases with minority defaults:
The regular case does not coincide with the most frequent case. This is really a point in favor of
data-oriented modeling, since rules have a very low coverage under such circumstances. In this
chapter, I discuss English past tense as the classical example (6.5) and German nominal plural as an
especially notorious case (6.4).

The accuracy of the KPCA models depends on having an appropriate pre-imager, since the space
of all possible words needs to be searched systematically and goal-oriented. Such a pre-imager
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is presented in 6.2.1, building on the one from last chapter (5.2). It proceeds iteratively, deleting
or inserting symbols as necessary. Necessity is determined by the difference in symbols. This is
calculated using a kernel on those symbols as features (that is, a simple unigram kernel), calculating
the difference in loading for each feature between pre-image candidate items and the target (a point
in feature space). The features have to be made explicit, but this is no concern with a unigram kernel.

The dimensions of the model describe surface variation, as usual, so they are not more inter-
pretable than they were before (3.2.2.1). Note that I will be using the same data set for German
plural prediction that I used in gender prediction (3.2). Since the variation in the output layer (plural
forms) is about the same as in the input (singular forms), rotation (4.2) does not apply. See 6.4.5.1 for
a discussion. To obtain a classification of the exponents of plural in German, I classify the changes
from singular to plural. This can be done via a trick with the kernel, by performing a KPCA on
singular-plural pairs (6.6), where the singular is counted as negative. The complete item will then be
characterized by the list of feature differences. This is the same method as was just outlined for the
pre-imager (unigram differences).

This difference kernel applies in general to all pairs of items which can be described by the same
kernel, that is, by the same implicit features. To my knowledge, this is a novel application of kernels.

This chapter begins with an introduction to the task, learning inflectional morphology via propor-
tional analogy (6.1). The KPCA feature inference method of the previous chapters is adapted to the
task in 6.2, paying special attention to the pre-imaging method (6.2.1). A walkthrough is given for
the German plural task (6.3), which is then executed in full (6.4). In addition, I look at the original
task, English past tense (6.5). Section 6.6 uses the difference kernel to extract the classes of German
plural formations. Section 6.7 concludes.

6.1 Paradigms and the Past Tense Debate

Traditionally seen, morphological processes follow rules, except — of course — for their exceptions.
In modeling a language, one might simply list them, which seems to suffice for languages like En-
glish. However, already in the English past tense, this misses the regularities within the exceptions:
irregular verbs tend to cluster into small groups with similar inflectional patterns (for an overview,
see Keuleers and Sandra 2003). It certainly fails to explain minority default inflections such as Ara-
bic (McCarthy and Prince 1990) or German plural formation, where the linguistically established
regular case amounts for only 25% (Arabic) respectively 6% (German) of tokens in corpora (Plun-
kett and Nakisa 1997, Marcus et al. 1995). The discussion of improvements to the simplistic view is
known as the past tense debate (see Pinker and Ullman 2002).

Proponents of rule-based (dual-route) models are e.g. Pinker and Prince (1998) and Marcus et al.
(1995). Alternatives often come in the fashion of connectionism, which denies the strict separation
into regular and exceptional cases and favors a single mechanism (single-route; Nakisa and Hahn
1996, Hahn and Nakisa 2000, Rumelhart and McClelland 1986, McClelland and Patterson 2002,
among others; see Plunkett and Nakisa 1997, for Arabic). Rules only emerge as epiphenomena. In
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this thesis, I follow a connectionist approach (see also the introduction, 1).
Connectionist models rely on similarity values (e.g., exemplar models) and/or surface feature

representations (e.g. in networks, where each input node encodes a binary surface feature). At
the current state of the art in machine learning it is only consequential to explore kernels for this
task: Similarity and inference algorithm are strictly separated in kernel methods, and any measure
of similarity can be used, without having to refer to explicit surface features. Kernel methods then
are mathematically precise and do not have to be trained. In theory, this should yield computable
and adequate models of inference via analogy.

In this thesis I explore only one kernel method (KPCA), and the question whether it holds up to
this expectation. So far, a model for inferring abstract features has been built (3.2.2). In the current
chapter, I extend the KPCA method for abstract feature prediction (2.4.3) to prediction of inflectional
forms. The paradigms of unseen words can thus be modeled solely by analogy to existing words.

An interesting case to study is German plural formation, for its several competing classes, where
the default class covers only a minority. A linguistic description of the data reveals a plethora of
influences, mostly in terms of similarity to other words. With the general KPCA method, I will build
a model of German plural, achieving up to 77% accuracy on unseen nouns.

6.2 Method

This section describes how to employ the KPCA method for inflection by analogy. In that sense
KPCA instantiates connectionism. The task is to compute a plural form, given the singular form of
a word. The main assumption behind an analogical model is that a singular form relates to other
singular words just as its plural form does to other plural words. Using KPCA with a kernel over
singular forms, the singular form is given as a linear combination of singular words. Now the plural
form can be estimated as a linear combination of plural forms, namely the plural forms of the same
words, with the same coefficients.

The coordinates of the singular form in the feature space of singular forms can be calculated
from its kernel vector. The plural form is estimated as having the same coordinates in the feature
space of plural forms. From this point, a pre-image is to be drawn.

The method generalizes in a straightforward manner. Whenever there is multi-level annotated
training data, and only partially annotated testing data, one can infer the missing levels by assuming
that the relation between data items is similar on all levels. Further examples are mentioned in
section 8.2. All the linguistic knowledge, all what constitutes similarity in the researcher’s eye, goes
into the kernel — and kernels are already available for many levels of linguistic annotation (see
2.2.3.3). New and different kernels can be defined with ease.

The trickier problem is that usually in theoretical linguistics the data spaces are discrete, while
linear combinations of the training items are not.1 Each data type does not only need a kernel,

1One might imagine applications in phonetics, where there are continuous variables such as formant values and
phoneme durations; and similar tasks.
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but also a pre-imaging algorithm which makes the general pre-image problem (finding the best
discrete approximation of a non-discrete representation) computable. Because of the computational
complexity it pays off to carefully design the pre-imager. In section 5.2, I devised a special-purpose
pre-imager for markup insertion. In the following section (6.2.1), I extend it to be applicable to
inflectional tasks.

6.2.1 A pre-imager for inflection

Section 2.4.4 introduced the pre-imaging problem and a general-purpose pre-imager (also see ap-
pendix D.2). It proceeds stepwise and monotonously. An initial item can be chosen in order to
reduce the estimated number of steps, before a solution is found. This choice is highly task-specific.
In each step, the current best item is modified according to a set of minimal operations, each intro-
ducing none (if not applicable), one (if uniquely applicable) or several candidates. These candidates
are close neighbors to the current item. They are evaluated via their distance to the target (see lem-
ma 1 in appendix A) — the point in feature space that is to be approximated. Only the best one is
pursued. As a result the algorithm is monotonous. If no candidate exceeds the current item, then this
is the final output.

A crucial factor is the choice of the initial item. In finding a pre-image for a linear combination of
strings, starting at the empty string is tedious. For the present purposes it is legitimate to make use of
linguistic knowledge: the inflected form is close to the base form, since they (most often) share the
stem. Choosing the base form as the initial item guarantees a short number of steps and (thereby)
avoids local maxima elsewhere in search space. In inflectional morphology, the pre-imager will
have to deal mostly with affixes, but also with some internal changes (umlaut, stem grades, vowel
harmony etc.). These changes determine the necessary operations.

The pre-imager for inflection will have as minimal operations insertions and deletions of single
characters. As opposed to the markup pre-imager, these characters are not only the markup symbols,
but the full alphabet (or the set of phonetic symbols, depending on the annotation). As with the
markup pre-imager, this one will employ unigram differences to prune the search space. These
are extracted explicitly from the current candidate in relation to the target. Only those symbols are
deleted/inserted for which the count in the current item and the target differs significantly (say, above
0.5 or below −0.5).

Insertions and deletions together yield substitutions. The intermediate form (after applying one
of them) is somewhat unnatural and might lead to a premature abortion of pre-imaging with an in-
complete output, because crossing it violates monotonicity. See 6.3.4 for an example and discussion.

To sum up: The pre-imager for inflection starts at the base form, looks which unigrams are
missing or excessive, and inserts or deletes them accordingly, such that with each step the current
candidate comes closer to the target, until there is no more improvement. This pre-imager will be
used throughout this chapter.
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6.3 Walkthrough

This section uses the same data as the previous walkthroughs, and extends the feature inferring
method (3.1) to inflection as described in 6.2. I repeat the data set in 6.1.

6.3.1 Data

(6.1) Training and testing data (repeated from 3.1):

singular orth. plural orth. sg. phon. pl. phon gender

#blau# #blaus# blaU blaUs n
#traum# #träume# traUm trOYm@ m
#tau# #taue# taU taU@ n
#baum# #bäume# baUm bOYm@ m
#raum# #räume# raUm rOYm@ m
#sau# #säue# saU sOY@ f
#frau# #frauen# fraU fraU@n f
#pfau# #pfauen# pfaU pfaU@n m
#stau# #staus# staU staUs m

#saum# #säume# saUm sOYm@ m

Of the plural exponents — which are to be discussed in section 6.4.1 — four are witnessed in
the data: Three morphemes (-e, -en, -s) and umlaut. Earlier I needed all three genders represented,
now the data set manages to provide a broad variety of plural inflection. This is not necessary for
the current purpose, but nice to have.

6.3.2 Mapping the data into feature space

A bigram kernel PCA is performed on the training data, identical to the one in the previous walk-
through using the same data set. See section 3.1 for the details. The principal components are of
course identical to previous run. PCA guarantees that.

The feature space image of the test item #saum# is the same as before, only that now the hidden
feature is the plural form, not gender.

(6.2) Linear combination of training data approximating #saum# (repeated from 3.10, now with
plurals)

0.865× sau, säue
0.334× baum, bäume
0.239× traum, träume
0.202× raum, räume
0.071× stau, staus
−0.006× pfau, pfauen
−0.185× blau, blaus
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−0.227× frau, frauen
−0.294× tau, taue

This image is the point in feature space closest to saum, written as a linear combination of
training items. Of course this closeness (0.965 in terms of the normalized kernel value between
original and image) could only be evaluated on the surface, that is, on the singular form. The
assumption now is that the plural of saum is similar to the plural forms of the words it is similar
to. Just as gender in section 3.1, the hidden features of the test item are inherited from the linear
combination. In this case, the hidden features are the plural forms. Now there is no immediate
way to see which word is described by 6.2. This is the pre-image problem. I now go through the
specialized solution suggested for inflection and similar string-altering processes.

Multiplication and addition of word forms is undefined. In order to decompose them we look
at them via a kernel. The surface kernel lends itself also for this layer of annotation. Its implicit
features (unigrams and bigrams) can be multiplied and added. This results in the feature listing in
6.3. Features with an absolute value below 0.5 are not shown.

(6.3) Implicit hidden features of 6.2 (by the bigram kernel):

−0.6427× au
−0.6427× a
0.7769× me
0.7769× m
0.7769× um
0.8227× s
0.8657× sä
0.9371× #s
1.000× u
1.114× e
1.348× e#
1.642× äu
1.642× ä
2.000× #

6.3.3 Pre-imaging

The pre-image problem still is apparent: This is supposed to describe a German plural noun to the
best of the models abilities, yet there are no words with fractional or negative features. Intuitively,
one might read the description as follows.

• All relevant features are contained with a coefficient near 1. Other positive contributions to
the word fall under the threshold of 0.5.

• The negative features clearly set the plural apart from a form without umlaut. The extreme
values are due to the small model. A larger model would predict values around 0 if it was sure
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about umlaut; and small positive values if it reserves some probability mass for a non-umlaut
plural.

• Conversely, the umlaut features are over-represented (larger than 1).

• Manually, the output can be reconstructed by plugging bigrams with high positive loadings
together. In the example given, #s,sä,äu,um,me,e# lead to a unique solution, even the
correct one: #säume#. In the general case, pre-imaging will not be that easy. Also, ad-hoc
estimation is not a general purpose method.

The general pre-image problem applied to this case translates as finding a word (a sequence of
letters from the alphabet, edge-marked with the sentinels) as close as possible to this fuzzy descrip-
tion. In practice, a search algorithm is needed to identify that word, because the space of possible
words is infinite.

The specialized pre-imager starts from the input (a reasonable trick for inflection) and proceeds
in single steps of insertions and deletions. Which symbols are to be deleted follows from the feature
differences between the input and the estimated plural. Unigrams suffice, since the pre-imager inserts
or deletes only single symbols. The unigram differences are given in 6.4, also with a threshold of
0.5.

(6.4) Unigram differences between image and initial item:

1.1144× e
−1.6427× a
1.6427× ä

The unigram differences here induce three pending operations: deletion of a, and insertion of ä
and e. This is exactly what is needed. The order of these operations is not important; the pre-imager
will find one which maximizes the initial gains (best operation first). The sites of the operations do
matter. The deletion has a fixed site, since there is only one a in the word. For the insertions, the
pre-imager will try all possibilities and pick the best ones. it then takes the following steps:

(6.5) Trace of the pre-imager:

Current item distance operation

#saum# 4.303 initial item
#saäum# 3.558 insert ä
#säum# 2.765 delete a
#säume# 1.778 insert e

• Per definition, the distance decreases with each step.

• #saum# is the initial item, with low fit.
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• Out of the three pending operations, the insertion of ä is the most fruitful. It adds the loading
of 1.6427 twice to the kernel value between the candidate and the target, once for the unigram
and once for the bigram äu. Also, it introduces the unseen (and unwanted) bigram aä, an
unavoidable side-effect of the minimal operations. This is repaired in the next step.

• A deletion adds to the overall score in two ways: First, it removes an unwanted unigram feature
difference. Second, this deletion creates the new bigram sä by removing the blocking a.

• The insertion of e finishes the pre-imaging, even at the right result. There is no minimal
operation that could improve the output, so we have arrived at least at a local maximum.
Although there is no proof, it is very likely that it in fact is global.

This finishes the demonstration of inflection via a KPCA model with the help of string pre-
imaging.

6.3.4 Discussion

Finding a feature space image for a test item in order to infer its hidden features is just the same for
inflection as it is for classification. KPCA models can handle both. The tricky thing about infinite,
yet discrete co-domains (e.g. the set of plural nouns) is finding that discrete point, when all one has
is a linear combination of training items. This walkthrough showed how a pre-imager specialized
to small changes to strings solves the problem for German plural inflection. The following section
(6.4) evaluates this finding on a larger scale. I conclude this walkthrough with a discussion of some
properties of the pre-imager.

The intermediate candidate #saäum# has some disadvantages. Technically, the unseen features
caused by the simultaneous presence of a and ä could make this step impossible: While the unigram
difference feature calls for the insertion of ä, it might cause so many unseen larger n-grams that no
improvement is possible. The same might then be true for first deleting a, which also introduces
undesired n-grams. Together, the two operations improve the pre-image; it cannot be guaranteed
that they will always to so even when applied consequently.

Linguistically, the process would be described as umlauting the vowel, and definitely not as
separate deletion and insertion. One could allow a search depth of more than one minimal operation.
This however defeats the purpose of minimal operations, and it allows totally unrelated operations
to be checked simultaneously for their combined benefit. A more well-behaved extension of the
pre-imager includes a replace operation. This is useful in a general purpose string pre-imager, and I
have used it in previous versions. It enlarges the immediate search space (the number of candidates
reachable with one operation), but it does so moderately.

In combination with the operation selection by unigram difference, one would have to decide
which operations go in pairs and which do not. This is a linguistic decision, and I wanted to keep
the pre-imager theory-neutral. There are ways to proceed from here, creating special purpose pre-
imagers; even learning a set of admissible operations from the data set. These include learning
methods other than PCA, and therefore do not belong into this thesis.
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The pre-imager works well without a replace operation on the German plural data. Therefore I
chose to keep the simpler pre-imager with only insertion and deletion.

There are yet more particularities of the pre-imager which deserve some discussion. It is possible
to remove pending operations after they are applied, so they are not applied again. If that is needed,
one might want to adjust their loadings: add 1 to pending deletions, delete 1 from pending insertions.
Thus the pre-imager could apply them again, until they either fall below a threshold or do not lead
to an improvement any more. The version here uses the latter method, the brute-force option. This
again is a point for fine-tuning a pre-imager.

With pre-imagers there is always a trade-off between generality and specialization. Specialized
kernels might run into local maxima, but when a solution can usually be found in a small number
of well-restricted steps (as is mostly the case for inflection), they are to be preferred. They can
be enriched with additional linguistic knowledge to prune the search space. General purpose pre-
imagers are usually much slower because of a vastly larger search space.

6.4 German plural

This experiment takes the previous walkthrough (6.3) to the full data set. Section 6.4.1 explains the
linguistic complexity of nominal plural in German, and why similarity-based models are appropriate.
Particularities of the data are discussed in 6.4.3. The experiments (6.4.4) include a reduction of
dimension (6.4.5) as in 4.1 and the plural prediction task (6.4.6). A rotation as in 4.4 does not apply
(6.4.5.1).

6.4.1 German plural morphology

The German nominal plural has received some attention within the past tense debate (Marcus et al.
1995, Nakisa and Hahn 1996, Hahn and Nakisa 2000, and others). This is due to the existence of
many classes, only one of which satisfies the criteria for being a default. In contrast to English plural
or English past tense, it is not the majority class.

(6.6) Plural frequencies of non-compound nouns. Data from Hahn and Nakisa (2000), examples
partially from Köpcke (1988).
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Examples
Morpheme Frequency Percentage masculine feminine neuter

+@n 2646 30.775 Bär(en) Tür(en) Alkali(en)
+n 1555 18.086 Bauer(n) Schwester(n) Auge(n)

+∅ 1992 23.168 Adler — Fenster
+∅ +umlaut 35 0.407 Bruder, Brüder Tochter, Töchter Kloster, Klöster

+@ 1178 13.701 Fisch(e) Kenntnis(se) Jahr(e)
+@ +umlaut 239 2.780 Sohn, Söhne Kuh, Kühe Floß, Flöße

+s 571 6.641 Park(s) Mutti(s) Auto(s)

+@r 36 0.419 Geist(er) — Kind(er)
+@r +umlaut 54 0.628 Wald, Wälder — Volk, Völker

Um→@n 95 1.105 — — Datum, Daten
a→@n 81 0.942 — Pizza, Pizzen —
Us→@n 69 0.803 Radius, Radien — Virus, Viren
Um→a 40 0.465 — — Signum, Signa

+i@n 6 0.070 — — Privileg(ien)

Table 6.6 shows the distribution of different plural morphemes in German, as presented in Hahn
and Nakisa (2000) for the non-compound nouns in the CELEX2 database (Baayen et al. 1996). Their
method of identifying non-compounds slightly differs from mine, yet this should not distort the main
picture. Some of the morphemes are given as substitutions, denoted by→.

+s is the default plural morpheme, or rather a “last resort” (see Marcus et al. 1995). It applies
to loan words, truncations, abbreviations, zero conversions and so on. It preserves the phonology
of the word it attaches to, while the other morphemes may introduce syllable boundaries, undo final
devoicing, or even alter the stem (umlaut). Thus one might say that +s more analytical than the other
morphemes. It is faithful to the stem at the cost of violating well-formedness: That a German plural
form shall end in a Schwa syllable, which is true for most other forms. This condition crucially
restricts the applicability of the null morpheme (to stems which already end in a Schwa syllable)
and governs the allomorphic distribution of +n/+@n. There are other restrictions of the application
of +n/+@/+er/+∅, which I will turn to in a moment. The crucial consequence here is that neither of
them qualifies as a default.

There are hardly any banning conditions on +s. Yet it only applies to 6.6% of the word types in
CELEX (and similar figures have been found for tokens in texts; see Marcus et al. 1995). So how is
the application of the alleged default plural morpheme restricted? For one, by the lexicon: Existing
forms block the rule. However, traditional rule-and-exception morphology would have to list 93% of
the German nominal lexicon as exceptions. This is clearly a case against that view. Second, by the
well-formedness condition: Words, which for lack of an accepted plural had to take +s, are slowly
being adapted into the German language. The most prominent example is internal re-analysis of
words into stem plus affix, such that the affix can be dropped in plural. @n then directly attaches to
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the stem: see the a/Um/Us→@n-rule2 re-analyzing Latinate nouns. This values the well-formedness
condition above faithfulness.

Already from the Latinate plurals (original +a or adapted +@n) it can be seen that there are classes
within the non-default plurals. I will call them non-default rather than irregular, because the latter
term is misleading. Although they are not fully predictable, they are far from being arbitrary and
depend on various factors. I will give a few here, some specifically for the German plural, some
more general.

Gender

Feminine nouns never take +@r or +∅ (Köpcke 1988), and umlaut+∅ only in two instances (“Mütter”,
“Töchter”). Köpcke suggests that the latter is due to the definite article, which is the same for plural
(all genders) and feminine singular, and thus with a null morpheme there would be no overt plural
marking at all. Umlaut+@ is marginal with neuter words (ibid.).

Derivational suffixes

Suffixes (e.g. “-heit”, “-ling”, “-schaft”) determine the inflection.

Phonetic restrictions

+@ cannot apply if the stem already ends in a Schwa syllable. +s cannot apply if the word already
ends in /s/ (‘s’ /s/, ‘z’ /ţ/, ‘x’ /ks/).

Phonetic similarity

The most established factor in connectionist models is direct (surface) similarity to other exemplars.
Even dual-route advocates sometimes model sub-regularities within the exceptions by similarity.
However, Albright and Hayes (2003) show that these effects are by no means restricted to non-
defaults: Regular forms clusters, too.

Orthographic similarity

In a study on Dutch plurals, Keuleers et al. (2007) found that speakers are also influenced by similarly
written words. This comes into play with heterographic homophones.

Semantic similarity

Ramscar (2001, 2002) showed that the elicited inflection of nonce verbs with phonological similarity
to both regular and irregular verbs depended on perceived semantic similarity to those. However, this
appears only in combination with phonology; there is no proof for a productive connection between
meaning and regularity.

2Partly extended to o: “Konto, Kontos/Konten”
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Köpcke (1988) further mentions animacy as a factor for the German plural.

6.4.2 Discussion

Although there are some clear-cut gaps due to phonological principles (e.g. the ban on subsequent
Schwa syllables3), morphology (no +@r in feminine nouns), and the lexicon (suffixes), most explana-
tory factors only express tendencies in the guise of similarity to other words and not rules. As such,
they could be dismissed from a pure competence model. Yet non-word studies (Köpcke 1988) show
that native speakers make use of such knowledge when judging or producing novel words. From
large sets of regularly inflected words over small regions of quasi-regular non-default classes down
to single exceptions treated lexically, there is no convincing evidence for a boundary between the
rule(s) and the exceptions.

This all calls for a connectionist model able to capture several factors simultaneously, preferably
in a modular fashion. I will now turn to the available data, before I lay out such a model. However,
I will only be looking at a single factor in the present paper: the singular form. This is meant to
primarily capture surface similarity, because arguably the singular form is most telling in predicting
the actual shape of the plural: They tend to be very similar, except for a little suffix.

6.4.3 The data

The data is the same as used earlier (3.2.1): From the CELEX database (Baayen et al. 1996), I
compiled a list of 13872 German non-compound nouns, of which there were both a (nominative)
singular and a (nominative) plural form, in orthography and phonetic transcription. My particular
implementation of compounds identified only and all noun-noun compounds by a simple heuris-
tic: Two uppercase letters in the morphological analysis. All forms were enriched by an explicit
word edge marker, #. This was to facilitate recognition of processes happening at word boundaries.
Finally, all orthographic forms are converted to lower case. For more details, refer to appendix G.2.

CELEX has its downsides. It is somewhat prescriptive in its plural forms, often taking foreign
plurals for loan words, along with the original pronunciation. This extends the set of phonemes to
at least all French and English vowels. The transcription is phonemic, paying attention to certain
rules (final devoicing, spirantization of /g/ after /i/), but not to all (no distinction between palatal
and dorsal fricatives, orthographically ‘ch’). So it is neither an underlying nor a surface form.

Further exploitable features are three classes of proper nouns, gender, syllable structure, mor-
phological structure, stress, and more. The task at hand is the prediction of the plural form (both
orthographically and phonetically), and any of these factors might contribute to the model. However,
I did not include them yet. Similar points are being made by Hahn and Nakisa (2000).

Furthermore, I do not presuppose a fixed set of inflectional classes. This would give rise to a
learning problem from singular form to abstract class, e.g. as in Hahn and Nakisa (2000), or as in

3This ban is not undominated in derivation (“Zauberer”, sorcerer) and adjectival inflection (“sichererer”, a safer
one).
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gender prediction (3.2). In line with connectionism such classes only exist as an abstraction of the
data, and they would have to follow from the model. I believe the production of actual plural forms
to be the more challenging and more insightful task.

6.4.4 Experiments

This section presents some experiments using the proposed method. The first experiment builds an
initial model of the data and examines recall of words under restriction of the available information,
thus condensing the model. The second experiment compares orthography to phonetic transcription.
All experiments consist of a training phase and a testing phase. Training equals performing the
KPCA; testing means to project every test item into feature space and calculate a pre-image.

6.4.5 Reducing the dimension

Section 4.1 showed that not all principal components are needed to faithfully remember the gender
of each training item. Here, I test the same for plural forms. For this, I first build an exemplary model
of German plural, using 2000 training items, 50 test items, and a 4-gram kernel on the orthographic
annotation level. This is my usual exemplary model, only this time I reduced the test items by a
factor of 2 to speed up the evaluation. 10 such models are built to obtain an average result. In the
full prediction task (6.4.6) I will compare parameter settings; here it suffices to have just one model.

Information is spread unequally among the principal components. They are sorted by explana-
tory potential. A way to compress the result of the KPCA is to leave out components with low
eigenvalue. A cut-off, as examined in this experiment, limits the available information not to the
most informative single exemplars, but to principal components.

The model starts out with a KPCA on the training data. Each test item is mapped onto a point in
feature space. This image cannot be interpreted directly as a plural word form, because the space of
words is not continuous. The pre-imager for inflected word-forms (see 6.2.1 for the description, and
6.3 for an application in detail) now has to find a word as close as possible to the image in feature
space. Only exact matches count.

With the same model, the evaluation is done by looking at all dimensions of the images in feature
space and at restricted sets of dimensions, first discarding the lowest ones. Thus information is lost,
leading to a decline in accuracy. The results are shown in figure 6.1.

The model starts out with around 80% correctly predicted forms. This value is not to be inter-
preted here; see the next experiment for a discussion. For now, it is just a point of reference: the
model’s performance under full information. The full rank of the models (number of dimensions)
is between 1991 and 1997, with an average of 1994.3. Thus there is very little redundancy in 2000
data items as seen through a 4-gram kernel. At 1200 components, the model still reproduces as
many forms correctly as the full model. As discussed in 4.1.1, this might also be due to the loss
of information on too specific patterns, thus correctly applying a more general pattern, while at the
same time some words start to produce erroneous forms. Performance with 400 components still is
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Figure 6.1: Plural prediction

at 74.4%, but after that the model drops towards zero.
It is hard to give a baseline. Random insertion and deletion of characters will almost never lead

to a correct output. A better baseline is identity: Keeping the singular form as a plural form. Zero
morphology applies to 18.2% of the words in my corpus.4 The model drops below that, because
with only a few principal components left it is not even able to correctly represent the singular form.
It will thus distort the initial item, away from identity.

6.4.5.1 Rotation

For abstract features, a solution to retain all information relevant to the task was found in rotating
the principal component basis, so that some contained this information, and the others were totally
ignorant of the abstract features in question. This worked well for gender (4.4). However it cannot
work directly for the current case, because the classes are not mutually exclusive abstract labels.
Umlaut can occur together with some of the morphemes, +@n and +n are in allophonic distribution,
and so on. The rotation as described in 4 applies only when classes have been pre-defined.

Furthermore, to specify the singular forms exactly, almost as many factors as training items
are needed. The dimension reduction shows that about half of the principal components can be
discarded safely. The plural forms now are as complex as the singular forms. To specify them, just
as many principal components are needed. The order of principal components as given by KPCA
is already optimized for representing singular forms; it will not be too far from optimal for plural
forms, because they are very similar. Thus there is no room for improvement.

4Nakisa and Hahn (1996) report a type frequency of 16.840% in CELEX, and 23.168% for non-compound nouns.
The difference is due to the extraction of non-compounds.
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Figure 6.2: Plural prediction accuracy

6.4.6 Prediction

This is the full experiment on plural word form prediction. It compares different sizes of training data
(10 as a baseline, 100, 1000, 2000, and 3000) and different kernels (n-gram kernels with n ranging
from 2 to 6) on the two different annotations: orthography and phonology. The training sets are
randomly chosen, one set for each size, to be used with each kernel. This maximizes comparability.

A KPCA is performed for each training set and kernel. Each test item is mapped into the feature
space based on its kernel vector, and consequently mapped back into the space of words using the
pre-imager (6.2.1). The pre-image is considered correct if it exactly matches the plural form given
in CELEX.

(6.7) Training items: 100

ngram 2 3 4 5 6

orth 0.273 0.132 0.066 0.049 0.026
phon 0.236 0.096 0.044 0.026 0.021

Training items: 1000

ngram 2 3 4 5 6

orth 0.641 0.711 0.685 0.623 0.575
phon 0.636 0.730 0.666 0.597 0.529

Training items: 2000
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ngram 2 3 4 5 6

orth 0.698 0.403 0.776 0.737 0.711
phon 0.719 0.711 0.764 0.717 0.685

Training items: 3000 (1 run only)

ngram 2 3 4 5 6

orth 0.71 0.53 0.81 0.77 0.77
phon 0.73 0.60 0.76 0.72 0.70

For each kernel and training set, the average rate (over ten runs) of correctly produced outputs is
shown. Only for 3000 training items, I ran a single experiment with each kernel.

As the task was not to simply choose a morpheme out of a given set, there are more error classes
than just this. A few are due to local maxima in pre-imaging. In others, rare or unseen n-grams were
avoided at the cost of distorting the word. For example, wunsch might receive a plural wuünsche
as a compromise between u and ü for lack of an n-gram wü.

Most erroneous forms are actually quite close to the intended or at least to a possible form.
Possible orthographic forms are often tricked by one of the many loan words in CELEX: If read as
a German word, the plural makes sense: “Korps” produced “Korpse” (correctly to be pronounced
ko:r, not kOrp). For most errors, there is some sort of explanation. I expect results to improve on
more data. However, the current implementation cannot cope with the full data set, in terms of
computational effort.

The phonological models have special problems. Some possible forms are due to final devoicing:
As the plural is not formed from an underlying form, but from the singular surface form, there is
no way to tell whether a final obstruent should be voiced in the plural. Interestingly, there was both
over- and underapplication of undoing final devoicing.

Bigrams sometimes are ambiguous: Whether the plural of törin (fool (female)) is rendered
correctly as törinnen or incorrectly as törinenn, it has the same bigrams. This simple model
has no means of distinguishing the two, and will consider both correct. This is also the reason why
I do not use unigrams: The order of letters is totally random then.

6.4.6.1 Discussion

The model is able to fully recall seen data items. The performance on unseen data looks promising.
The errors divide into real errors and possible forms. There is no automatic way to separate the two.
Manual inspection showed 16% errors for orthography and 11% errors for phonology (at a run on
3000 training items, 4-gram kernel), the remainder being morphologically possible plural forms.

Possible means, the wrong suffix (and/or umlaut) was chosen, but had this been an unknown
word to a native speaker, he could not clearly have rejected it.5 Overgeneralizations included many
exponents, even o→@n and +@r.

5Using the my judgment. In several cases even, the model and I agreed, in contrast to CELEX (“Verhalt, ??Verhal-
ter/Verhalte”, “Tribun, ??Tribunen/Tribune”).
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In comparison with the diversity of elicited plural forms in (Köpcke 1988, table 3), the model
fares quite well concerning the correct and possible forms. However, native speakers do not run into
local maxima. Their broader data basis enables them to accept more possible n-grams and words.
This reduces their nonsense output to near-zero.

It can be said that the model actually employs a default: Identity. Starting with the singular
form prevented many errors from happening at all, especially with null morphemes. This might
be counted as avoidance of plural marking, which is found predominantly in early first language
acquisition (Bittner and Köpcke 2001). Note that this is only avoidance of overt morphological
marking, as these forms often appear with a quantifier.

The model cannot be reduced to a few inflectional classes, because at the same time it is a
model of singular nouns in German. There is no separate mechanism preserving the stem (except
for the choice of the initial item). It simultaneously models the choice of morpheme, allomorphy
(+(@)n), and double marking (umlaut + suffix). In fact, none of these are totally independent. Hence,
abstract classes can never be separated from their instances, both in connectionist models and from
a psycholinguistic perspective. In the present model, there is no clear cut (by manual inspection of
the eigenvalues) between components modeling general tendencies (rules) and those responsible for
so-called exceptions.

According to Marcus et al. (1995), the default plural arises especially when association fails (loan
words, conversions, proper names). This could very well be a valid strategy for the language learner.
Yet +s is not the only class which is overgeneralized in first language acquisition (Bittner and Köpcke
2001). Adult speakers have been exposed to all cases calling for a default plural often enough, so that
a rule and an association-based model do not differ in their predictions. Association will however
not be solely on a phonemic level; an according kernel would have to consider structural information
as well. Consider as an example a zero conversion:

(6.8) [N Tiefe ]+n (depth(s)) vs. [N [A tief ]]+s (low pressure area(s))

In section 6.4.1 I have argued that +s is the most analytical among the plural suffixes. This
is the basis for its wide applicability. A truly synthetic process such as umlaut cannot reach into
internal structure: “Hochs/*Höhen” (high pressure area(s)). A kernel-based model could generalize
the pattern [X[Y . . . ]] → [X[Y . . . ]]+s, thus assigning +s to all conversions. Prediction then depends
on the analysis given.

6.4.7 Comparison

Kovic et al. (2008) do a psycholinguistic study, with an underlying set of 5 rules:

1. -e for monosyllabic masculine nouns

2. -n for feminine nouns ending in -e

3. -er for all monosyllabic neuter nouns



132 CHAPTER 6. RELATING SPACES: MAPPINGS AND PARADIGMS

4. -∅ for masculine and neuter nouns ending in -er/-el/-en

5. -s elsewhere

There is no percentage of coverage reported. The lack of any rules for umlaut makes this ap-
proach unfeasible. Although these ‘rules’ describe large sub-regularities, they are not without ex-
ceptions: “Mann, Männer” is an exception to rule 1, “Hemd, Hemden” and “Heft, Hefte” to rule 3.
Rules 2 and 4 appear pretty stable, but rule 5, the default, comes far too early.

Mugdan (1977) is the classical rule-based approach to German nominal plural, with 15 rules/patterns
and 21 classes of exceptions (cf. Köpcke 1988). So, more patterns can be extracted, and by this spe-
cialization towards surface features the account becomes data-oriented. Köpcke’s study involves
elicitation of plural forms for non-words. He constructed nouns of several types, including some
with a clear cue (such as a derivational morpheme, or feminine nouns ending in -e) and other types
for which a more diverse response is to be expected (cueless, monosyllabic nouns of any gender).
Highest agreement (99%) is found with the morpheme -schaft (-ship), lowest with neuter monosyl-
labic nouns (40%). As agreement, I take the percentage of the most frequently elicited plural class,
which would have to be considered ‘correct’ or ‘grammatical’. Köpcke distinguishes only the five
suffixes as classes here, since umlaut is very rare in novel productions. Weighted by items, the aver-
age agreement is 71.48%. Now this weighting surely does not reflect the real distribution of types;
the precise reason for why there is so much disagreement with some types is that these are rare.
Therefore I do not consider these 71.48% the expected inter-annotator agreement on German plural
formation, I only take it as a lower bound and rather expect it to be around 80%, maybe even higher.

In comparison with other connectionist implementations (nearest neighbor: 71%, Nosofsky’s
Generalized Context Model (Nosofsky 1986): 74%, three-layer back-propagation network: 81%; all
from Hahn and Nakisa 2000) my model is competitive (81% on 3000 training items with a 4-gram
kernel), but those are predictions of the plural class (out of 15 abstract classes, see table 6.6), not
of the actual output! All ‘wrong’ forms are ‘possible’ by definition. Hahn and Nakisa trained their
models on 8598 data items, which even leaves some space for improvement to the present model.
The items are represented by 240 features: 16 phoneme slots with 15 phonetic features each. The
slots are aligned with respect to the right edge of the word, which means that by affixation the
representation of the plural form is shifted to the left. This means the model cannot even pass the
stem through unchanged. See Bullinaria (1997) for discussion of this ‘alignment problem’, which I
hope is overcome by the use of kernels.

The KPCA model is a viable competitor to network models (Hahn and Nakisa 2000).

• It has the same performance (81%) on roughly 1/3 of the training data.

• It directly produces the output forms, instead of only classifying them.

• It only uses letters/phonetic symbols, so there is space for improvement by looking at the
features directly, as done with the network.6

6However, in preliminary tests, a phonetic feature kernel produced errors such as /-z/ as a compromise between -s
and -n, although word final /z/ is impossible due to final devoicing.
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• It abstracts over the alignment problem.

Taatgen (2001) employs the ACT-R model, which separates into a declarative memory, where
exemplars are stored for retrieval, and a procedural part, which provides an inflection analogical to
the most similar exemplar in memory. He trains the model on 472 high-frequency nouns of German,
and achieves around 90% in the end. The model has had a chance to see all items by then, so this is
testing on the training set.

Daelemans (2002) trains a model on 25,168 nouns, with native plurals (first 9 lines of table 6.6)
only. These are also taken from CELEX, so by the number I assume compounds are still included.
Nouns are represented by hand-selected features: a CV-template of the phonemes of the last two
syllables, and gender. Conflating the -@n and -n plural (predictable allophones), there are 8 output
classes. Surprisingly, the model achieves 75% correct classifications with only 200 training items,
and goes up as far as 95% with 20,000 items. The model is tested on the remaining 5168 nouns.
van den Bosch (2002) reports similar results, but points to Daelemans (2002) for all details.

Other model (including mine) mis-classify four times as many unseen words, and native speakers
can only agree up to a certain degree. The figure of 95% correct generalizations is meaningless unless
one can show that human subjects are capable of such performance. Daelemans’s model benefits
from the lack of foreign plurals (about 3%, see table 6.6), from the presence of compounds, which
means that unseen words actually have been seen, from gender information, from classification into
8 classes instead of predicting forms, maybe even from the hand-selected features being superior to
general n-gram features, and from the larger training set. Still, I find it difficult to accept their results
at face value. Outperforming native speakers (75% vs. 71.48%, see above) on only 200 training
items cannot be possible.

The KPCA model fares quite well in comparison with others, with the one exception of Daele-
mans (2002). This is good enough for a proof of concept. At the same time, it models fully specified
word forms, and therefore naturally needs more input data. This is rarely attempted (see 2.1.4), and
in this respect the KPCA model is the best at hand.

6.5 Experiment: English past tense

Naturally, the English past tense is the classical example discussed in the English past tense debate.
So it makes sense to apply the KPCA model to this problem. The data consists of 5866 English
verbs (no auxiliaries) from the CELEX database. I also excluded complex verbs containing a space
(“let in”) or a hyphen (“window-shop”). For details, see appendix G.1. There are 311 irregular verbs
in the data set.

Regularly inflected English verbs form both their simple past tense form and their past participle
orthographically by adding -(e)d. A few things are to be learned: the alternation between -ed and
simply -d, which is governed by the presence of an e; where to apply gemination of the final conso-
nant (fit — fitted); the change from -y to -ied if it is not part of a diphthong (play — played vs. cry
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— cried). Phonetically, the suffix is realized as [t] after voiceless consonants (missed [mIst]), [Id]

after voiced plosives (needed [ni:dId]), and [d] elsewhere.
Irregular verbs mostly exhibit stem vowel mutations (see — saw). Also, the past tense form and

the participle may differ. There are some, yet very small subregularities: a class of zero marking
(put, let, cut), and patterns such as sing — sang — sung going back to regular classes of inflection
by vowel mutation (ablaut) in the common ancestor of English and German.

The task consists not only in classifying a verb as regular or irregular, but also in applying all
the necessary orthographic/phonological changes. A first experiment looks at regular verbs only.
The second experiment then shows that from just a few irregular verbs nothing is to be generalized:
unknown irregular verbs are always regularized. On the other hand, the model is able to learn any
exception, since it can perfectly replicate the training set.

6.5.1 Experiments

Regular verbs

As usual, I used different n-gram kernels, both on the orthographic and phonemic layer, 2000 train-
ing items, and 100 test items. Average results from 10 runs are given below.

(6.9)
ngram 2 3 4 5 6

orth 0.927 0.920 0.943 0.932 0.929
phon 0.985 0.987 0.979 0.974 0.967

Typical errors of the orthographic pre-imager:

• Erroneous duplications: dine — dinned, void — voidded, regroup — regroupped

• Local maxima: remedy — remed. Here, only one step is required to reach an ending in -ed.
Locally, this step is optimal.

• Unseen n-grams: lynch — lnched. It is better to leave out rare features.

• Double markings: backpedal — backedpedalled.

Errors of the phonological model:

• Local maxima: voId. This already ends in -Id.

• Unseen n-grams: fr6 (froth).

• Double markings: skeItIdbO:dId (skateboarded), blaIndIdf@UldId (blindfolded).

• Wrong place: k6ndIdIsEnd (condissended), k@UIdIdInsaId (coincided), ri:dIdw3:d (rewarded).
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Figure 6.3: Past tense prediction accuracy

The method has an inherent problem with finding the correct place for morphemes, because of
the position-independent n-gram features. This also leads to the double markings. For ‘skateboard’,
the model will find a representation employing ‘skate’ and ‘board’ (ideally, that is, if these words
appear in the training set; combinations of other words otherwise, just as these two would have
been approximated). Both words would then throw their past tense exponents into the ring, and the
pre-imager will make the best of it, which might not be correct.

Experiment including irregular verbs

The second experiment is just like first one, only that irregular verbs were allowed both in the training
and the testing set.

(6.10)
ngram 2 3 4 5 6

orth 0.891 0.729 0.899 0.892 0.893
phon 0.905 0.827 0.911 0.897 0.887

Errors on orthography:

• Regularizations: catched, strived, selled, weared, forsweared. This is the main error source.

• Rare n-grams: pinnpointed, dissatisified, jinexed. These are ‘repaired’ by insertions.

• Erroneous duplications: reinned, steelled.

Errors on phonology:
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• Local maxima: blaInd (blinded), ri:d (redid), p@sweId (persuaded).

• Rare n-grams: d6m@taIzd (dogmatized), prEstgæNd (pressganged), leIdIsaIzd (laicized/"leI.I.saIzd,
with a very rare II-sequence), b3:dnd (burthen; due to a heavy influence from “burden”), and
more.7

• Regularizations: swE@d (sweared).

Different, randomly chosen data sets were used, so the results do not tell how the other represen-
tation would have dealt with the errors of the other.

Many of the forms being inflected regularly contain evidence towards irregularity to a small
degree. I found cases where this surfaces. In the orthographic variant, ‘bang’ is so close to forms
of the -ing/-ang/-ung sub-regularity that the initial item ‘bang’ itself already is a local maximum. In
the phonemic variant, /stINk/ realizes both the morpheme and a vowel change: /st2Nkt/.8 There are
two possible interpretations of such a case. One is of model-inherent nature: The point in feature
space identified as the past tense of /stINk/ is actually a linear combination of /stINkt/ and /st2Nk/.
Trying to approximate both with a single word results in the hybrid /st2Nkt/. However, extending the
search space to combinations of words is unfeasible unless one already knows the possible forms.
Then one could extract coefficients for each form and interpret them as probabilities or as a measure
of acceptance.

The second interpretation of the hybrid form is a linguistic one, where a grammatical function
is actually marked twice. This is e.g. the case for the past tense of German auxiliaries: “konnte”
(could) has a vowel mutation and the preterite suffix.9

6.5.2 Discussion

Orthography is more problematic than phonology because of the doubling of consonants, which
is hard to learn for the model. Besides the linguistic difficulties, there are problems inherent to
the method: Both models dislike unseen n-grams (a problem of strict data-orientation), run into
some local maxima (especially when the initial item already looks roughly like a past tense form;
a problem of the pre-imaging method), and exhibit misplacements and double-markings (a problem
of the implicit feature representation by the kernel). These problems can be reduced by training on
more data.

When also including irregular forms, these are largely outweighed by the regular verbs. Even a
nonce word constructed to fall into the let/put/. . . class (‘lut’) is regularized more often than not.

On the larger data set, the advantage of phonemic annotation disappears, without an obvious
explanation. Performance is around 90%. This compares to 80% reported by Plunkett and Juola
(1999, fig. 6) on unseen verbs using a network. The input is encoded by 128 nodes, 16 binary
phonemic features for each slot in a CCCVVCCC template. This general method is described in

7Curiously, all (and only) these words are also unknown to my automatic spell-checker.
8Plunkett and Juola (1999) also report automatic generation of forms such as ‘tooked’.
9Historically, it is the vowel in present tense that is mutated.



6.5. EXPERIMENT: ENGLISH PAST TENSE 137

more detail in 2.1.4. They model only monosyllabic verbs, so their data set is limited to 946 verbs.
Therefore the models’ performances are not directly comparable.

As any strict data-oriented method which does not classify, but gives full output forms, the
template method also needs to learn all possible features of the stem and may encounter unseen
n-grams. Also, the output feature vector may not describe an actual sound; Plunkett & Juola use a
segment-by-segment pre-imager, finding for each feature bundle the closest English phoneme.

I consider 90% to be a rather low performance, and 80% even worse, but still the Plunkett and
Juola model is the most relevant to compare the KPCA model to, since it maps from an input feature
representation to an output feature representation, based on analogy.

The model by Taatgen and Anderson (2002) is geared towards children’s learning of the English
past tense: Simulating the U-shape in the inflection of irregular verbs. First, they are stored; then, the
rule is learned and they are over-regularized; finally, evidence for the irregular form becomes stable
again, and they are excluded from the general pattern. It is in this light that Taatgen and Anderson
(2002) assess the literature on English past tense modeling, and that they test on seen data items
only. Therefore the performance approaches 100% and cannot be compared to the present model. In
contrast to simulating the U-shaped learning curve, the KPCA model describes a steady state, and
does not need to be trained and updated.10

As in English past tense the irregular forms rarely surface, not the question of how to form the
past tense is studied in the literature, but the question of how acceptable an irregular form would
be. These studies are about predicting relative likelihoods / acceptance rates for either the regular or
an irregular form, and thus goes beyond prediction of a single form. Accordingly, these model do
not give a performance value directly comparable to the present model. Data is usually taken from
CELEX (Baayen et al. 1996), and nonce items are classified into two (regular vs. irregular) or three
classes (regular, vowel mutation, other) according to a similarity measure.

Eddington (2000) bases similarity on 10 hand selected features (phonemes in certain positions,
and stress). Albright and Hayes (2003) criticize that this is tailored towards English past tense
and not a general method for inflectional morphology. They admit a similar restriction for their
rewrite rules in Albright and Hayes (2002): These cannot describe circumfixes (e.g. in German past
participles).

In their own study, Albright and Hayes (2003) perform a production and a rating study, which
both confirm islands of reliability: Subjects are more likely to produce irregular forms if the test
(nonce) word is phonetically close to existing irregular verbs. Similarity is captured by edit distance
with substitutions weighted for the similarity of the phonemes. Production is modeled by rewrite
rules extracted from a data set.

Keuleers (2008) uses the Tilburg Memory Based Learner (Daelemans et al. 2007) to classify
words by similarity and assign rewrite rules to new items. His rewrite rules are position-bound, in
that he uses a CV-template for the final syllable only, aligning all items by its nucleus. By applying
these rules, he generates fully specified outputs, not only class labels. In his model, islands are

10This would be possible by either adding more data to the training set and performing a new KPCA, or by using an
incremental variant (Chin and Suter 2007).
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characterized by taking into account only a small number of nearest neighbors. The more of them,
the more weight is put onto regular inflection.

The most recent study along this line is Chandler (2010). In future work, the KPCA may be
exploited in a way to obtain comparable results. According to Chandler, there is no established
way to accommodate polysyllabic verbs, which were absent from the nonce test words. This is why
Keuleers (2008) only encoded the last syllable. Kernels offer a way to overcome the problems of
templates.

6.6 The difference kernel

This section introduces the difference kernel as a means to study the relation between two annotation
layers. While an annotation cannot be directly subtracted from another, their feature lists can. Via
the kernel trick these subtracted feature lists do not have to be made explicit. They can be compared
(and, for instance, clustered) using the kernel. Section 6.6.1 defines this method. Section 6.6.2
applies it to German plural formation, thus identifying the possible patterns involved.

Note that a KPCA with regard to singular or plural forms (or even both at the same time) identifies
variation in the word forms, not in the exponents of plural. Nowhere the model refers to plural
formation. In order to learn something about inflectional classes, the primary data type in the factor
analysis needs to be the change in each singular-plural pair. This change can be denoted by the
difference in features. Imagine subtracting the singular from the plural, nullifying the stem and
leaving only the suffix. Technically, data items are linear combinations of 1 times the plural form
and −1 times the singular. From this follows the calculation (6.6.1 and appendix A.1).

6.6.1 Definition

The appendix defines how to calculate kernel values from pairs of linear combinations of data items.
Assume that both layers are of the same data type (e.g., singular and plural forms are both strings),
such that they are in the domain R of the kernel. Let x1 be the first annotation layer of data item x,
and x2, y1, y2 accordingly. x is comprised of 1×x1 and−1×x2. Then the difference kernel follows
from definition 5 (cf. definition 10 in appendix A):

kdiff (x, y) := k(x1, y1) + k(x2, y2)− k(x1, y2)− k(x2, y1)

If one wants to classify the layer relations when the layers are of a different data type — with
associated kernel k1 and k2 and their respective feature lists φ1 and φ2 — then the layer-internal
kernel values are calculated using the appropriate kernel, and the cross-layer kernel values are 0 due
to the non-overlap of features. The difference kernel reduces to a simple addition of layers. Thus it
is only meaningful if the layers’ features overlap at least partially. One then considers a new feature
list φ3 which contains the set union of the features of φ1 and φ2.
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6.6.2 Experiment

I now apply the difference kernel to German plural formation. As seen from an n-gram difference
kernel (plural minus singular), an item’s positive features derive from the plural exponent; modulo
some boundary effects, that is, larger features covering the suffix and part of the stem. Negative
features are what is to be removed from the singular. These are mostly the features containing the
final #, since what comes before is no longer word-final. Word-internal changes introduce more
feature differences.

As an example, consider the pair “Baum — Bäume” (tree — trees) under a bigram difference ker-
nel, encoded as #baum# and #bäume#. This example contains an internal change (umlaut) as well
as a suffix. The unigrams and bigrams of the singular are #,b,a,u,m,#,#b,ba,au,um,m#,
and those of the plural #,b,ä,u,m,e,#,#b,bä,äu,um,me,e#.

Their difference is 1× ä,e,bä,äu,me,e#, −1× a,ba,au,m#. Note that these are quite a
few changes. Over a larger data set, boundary features (covering the exponent and its surroundings)
such as bä,-ba will be rare compared to the representation of umlaut ä,-a. One can therefore
expect that boundary features will just be noise, whereas the real plural exponents emerge as stable
patterns.

With a bigram kernel, I ran a KPCA on 1000 German nouns. In the following, I discuss the
results. First, I turn to the data mean. On the negative side (features characteristic for singular), it
contains — to various degrees — the following:

(6.11) • The umlaut-able vowels a, u, o (in that order, which follows their relative frequencies)

• Many combinations of consonant + sentinel #

On the positive, plural side there are:

(6.12) • The umlauts: ä, ü, ö.

• Many combinations of consonant + e (from either -e or -en).

• Most notably, the exponents of the most frequent plural classes: n, e, en, n#.

The data mean is no more than a statistical summary of German plural. The principal components
show the dimensions of variation, that is, in which directions plural forms deviate from the mean.
The first component is free from orthogonality constraints, as it is derived first. It divides the data
set into the two most frequent plural classes: -e vs. -en.

(6.13) Predominant features of the first principal component:

0.515× n#
0.507× n
0.491× en
−0.404× e#
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The second seems to separate the -e plural from -∅.

(6.14) Predominant features of the second principal component:

0.587× e#
0.663× e

Starting with the third component, arbitrary properties of the data outweigh the classes. This
is a division of . . .t → . . .te and . . .g → . . .ge. Instances of these patterns would take a value
of (roughly) +2 or -2 along this dimension. It is ranked so high because words in t or g (think
derivations in ‘-ung’) appear very often in the data.

(6.15) Predominant features of the third principal component:

−0.503× g#
−0.469× te
0.477× t#
0.505× ge

The fourth component is used with -s plurals, but it also plays a role in distinguishing the -t
and -g cases from above. Such weird behavior is a result of forced orthogonality and the focus on
remaining variance. Linguistically, it is not useful.

(6.16) Predominant features of the fourth principal component:

−0.399× t#
−0.365× ne
−0.226× g#
0.227× ge
0.280× n#
0.308× te
0.371× s#
0.434× s

Interpretability of the components further deteriorates from here. Therefore KPCA is not the
right way to extract classes from the difference representations. In order to use rotation as described
in 4.2.3, classes need to be known in advance.

6.6.3 Discussion

The difference kernel is a nice trick to get to the surface features in which singular and plural differ.
Here I used a difference kernel on annotation layers of the same type: Both the singular and the
plural are given as strings over the same alphabet. This allows for a short set of non-zero features
for each item, when made explicit. Most features (n-grams of the stem) are shared and thus vanish
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in the difference. Yet a difference kernel may be used to describe any sort of difference. Its feature
set is the union of the feature sets of the kernels for each layer. In the current case, both layers have
the same features, but this is not a prerequisite.

Feature differences are useful in determining edit operations, as seen in the string pre-imager
(6.2.1). There, a unigram difference kernel extracts the necessary insertions and deletions to get from
one form to another. Further, difference kernel representations of the data set could be clustered to
obtain plural classes. However the dimensions of variation (the principal components) within the
singular-plural differences do not tell much about classes, as seen in this section.

6.7 Conclusion

This method assumes that the singular and plural space have a shape similar enough that the mapping
between them can be as simple as this: assuming that the plural forms is close to a linear combination
of plural forms such that the linear combination of singular forms calculated to approximate the
singular form has the same coefficients. As seen with the German plural, this assumption yields a
linear model (as opposed to networks) which fares no worse than the best existing models (again,
a network). In addition, it outputs inflected surface forms, not classes. This has rarely been done
with similarity-based models. Notable are the network model used by Plunkett and Nakisa (1997)
and Plunkett and Juola (1999), and the Wickelfeature model by Rumelhart and McClelland (1986).
The relevant point is that the output layer structurally resembles the input layer, and does not only
comprise nodes for different classes. A more thorough discussion is found in the introduction (2.1.4),
here I only repeat and emphasize the points of the network model relevant to the KPCA models built
in this chapter.

Plunkett and Nakisa build a network model for the Arabic plural, with explicit features both in
the input and in the output layer. This goes beyond simple classification. The layers are given as
CV-templates. Using a phoneme-by-phoneme pre-imager (finding the closest admissible phoneme
to the weighting of features which is found in the output), they derive inflected output forms. Using
templates allows for such local pre-imaging; with the position-free features of the n-gram kernel, I
have to use a more complex pre-imager. On the other hand, the kernel is able to also treat words that
do not fit into the template, and it does not suffer from the problem of how to align words with the
template (see Bullinaria 1997).

The Arabic plural exhibits different classes, out of which two are regular (one for masculine, one
for feminine nouns), but only used in cases similar to the German -s plural: derivations, conversions
etc. The irregular classes are productive even for loan words, and hard to describe with rules. Plun-
kett and Nakisa’s model achieves 95% correctness on the training data. Unfortunately, they test only
classification, not production, on unseen nouns (in 10-fold cross-validation).

Their paper also stands out in that they use PCA to visualize the space of Arabic singular nouns.
This PCA is performed on the explicit feature vectors that are also input to the network. The paper
dates back to a time without Kernel PCA, otherwise they would have been well advised to use a
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kernel. In conclusion, Plunkett and Nakisa (1997) is the closest predecessor to the present thesis: It
maps from surface features to surface features in tasks of inflection rules are struggling with due to
the analogical nature of the problem.

In case of competing evidence for different plural forms, the feature space representation of a
test item will be a linear combination of plural forms with different exponents. Just as these points
in feature space had loadings for each possible abstract feature (3.1), such a representation can also
be interpreted as being loaded for different plural forms, as a weighted sum. Now hopefully the
pre-imager will identify the most prominent of them, discarding the others. A more sophisticated
method would recognize and savor the fact that several plural forms are superimposed here, and
possibly extract all of them, along with their respective loadings. This conceptually more compli-
cated interpretation might explain the relative proportions of different plural forms given by human
subjects in production tasks. This is entirely parallel to the situation with gender assignment.

However, I do not see a general way to arrive at a superimposition of only a few possible plural
forms. The search space for such representations is continuous, because even only two competing
plural forms can stand in any proportion. A pre-imager for such outputs would have to be much
more complex than the one for finding pre-images composed of single words.

6.7.1 Outlook

The method presented here extends to all paradigms in inflectional morphology. Depending on the
task, the pre-imager might have to be adjusted, e.g. by allowing for substitutions. A paradigm
extends to more than two layers, but it could be broken down to pairs of the base form and each
inflected form. These would be learned as illustrated in this chapter, but the models for each inflec-
tional form collapse into one, since there is only one model built (the space of base forms). The
extension of the notion of analogical proportion to full paradigms is also found in Albright (2008)
and Pirrelli and Yvon (1999).

I expect the method to deal well with affixation and internal changes (umlaut etc.), but I expect
serious problems with other morphological processes such as reduplication. Although the kernel
does not only look at presence or absence of features, but counts their occurrences, the represen-
tations cannot simply be multiplied by 2. The general pre-imaging strategy used here immediately
runs into a problem when what is to be added is already there. Reduplication is hardly analogical on
the surface. Rather it generalizes on some abstract level, where stems are available as a whole. The
method is most useful in fusional/inflectional morphology.



Chapter 7

Applications to Syntax

7.1 Introduction

In this thesis I have touched three usages of KPCA models: classification, mapping to fully-specified
forms, and interpretation of the extracted basis vectors (factors). All models so far concerned the
space of words. This chapter explores possibilities in the space of sentences. Sentences can be seen
as sequences of words and thus be modeled with string kernels. The other option is to use tree
representations of syntactic structures. The main ingredient then is a tree kernel (Collins and Duffy
2001a,b, 2002, Shawe-Taylor and Cristianini 2004). Other structural representations (dependencies
etc.) are possible, and appropriate kernels can be defined.

7.1.1 Classification tasks

There are some possible classifications for sentences. One might attempt to classify them according
to their truth value (true or false), although it is questionable whether syntactic structure is informa-
tive with respect to truth.1 A classification properly within the syntactic domain is grammaticality.
Sentences are either grammatical or not, or one might assume graded grammaticality. Both categor-
ical and graded judgments can be obtained from a KPCA model via the notion of a planar language

(Clark et al. 2006): The data items define a subspace in feature space, which is the considered the
space of all grammatical items. That is, linear combinations of grammatical items are in turn taken
as grammatical. Graded judgments arise from the normalized kernel value between a test item and
its projection onto the subspace, or from its distance to the subspace. Clark et al. did their study
with string kernels; I take this to tree kernels in 7.2 (cf. the notion of tree planar languages, Costa
Florêncio 2007).

Planar languages learn from positive data, and thus only have one class. Collins and Duffy
(2002) train a kernel-based classifier on pairs of sentences with correct or incorrect parses, so they
have two different classes. An external parser is used to list a set of parse candidates. This might be a
simple Probabilistic Context-Free Grammar (PCFG). Candidates are then evaluated by the classifier,

1Except for the anecdote that “certainly” correlates with false statements, for which I currently lack the reference.
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according to their distance to the separating hyperplane. For PCFGs, they use a tree kernel with
subtrees as features (see the definition in A.3). These subtrees are defined as in Data-Oriented
Parsing (DOP; Bod 1998). Collins and Duffy (2001a) also define a kernel for dependency structures,
and one for paired sequences which is used in POS tagging. Basically, any type of syntactic structure
can be assigned, when having a way of listing candidates.

Since their methods relies on negative data, and natural language is usually believed to be learned
solely from positive examples (the language learner considers all input part of the language), I devise
a similar candidate-based parsing strategy in section 7.2.6.

7.1.2 Mapping tasks

As argued earlier, while morphological processes are adequately described in terms of analogical
proportion based on similarity, this is much less clear for syntax. Processes in question would be
the mapping from sentences to sentence structures (with a tree pre-imager to be devised efficiently;
cf. string pre-imagers in section 6.2.1), or to corresponding sentences in other languages. This can
all be tried, but the simple linear model — estimating the output as the same linear combination of
multi-layer data items that is needed to describe the input — is not likely to get us very far in this
endeavor. I leave this to future research.2

7.1.3 Interpretation of the factors

The last usage of KPCA, interpreting the factors, has turned out to be infeasible earlier (4.6). I
conclude that what cannot be done reasonably for string kernels will not yield meaningful results for
syntactic structures either. Factors may be forced to denote certain surface or hidden features (see
4.5), but they will not uncover such features.

This chapter continues with my only application to syntax: applying the notion of tree planar
languages to the artificial languages studied in Clark et al. (2006).

7.2 Tree planar languages

7.2.1 Introduction

In their 2006 study, Clark, Costa Florêncio, and Watkins show how even (mildly) context-sensitive
languages can be learned using Kernel Principal Component Analysis (KPCA) with string kernels.
From a training corpus, a model of the language is built which assigns goodness ratings to test items
(see section 7.2.2). Some of the string languages they investigate have a natural representation as
trees; others are not learnable by a string kernel. In this paper, I enrich these languages with tree
structures, and apply a tree kernel (Collins and Duffy 2001b). The results largely depend on the

2In theoretical work, one is tempted to excessively use this phrase. I apologize.
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information encoded in the trees, but even with simple structures the tree kernel always outperforms
the string kernels.

Costa Florêncio (2007) takes this notion of planar languages to tree planar languages. Tree
kernels encode information not contained in strings, such as grammatical relations. This is one step
closer to parsing; however a tree kernel cannot be applied to a raw input string. Candidate trees have
to be generated first. This can be done efficiently, e.g. with a context-free grammar (CFG) trained
on the same corpus. The language model then identifies candidates with perfectly grammatical
structure, or, more generally, ranks them according to their goodness rating. As we will see the tree
kernel is able to capture restrictions beyond context-freeness. This gives rise to a parsing method:
using a CFG to generate candidates, and the kernel-induced language model to sort them out.

7.2.2 Method

I adopt the method of Clark et al., with a few minor changes. In a nutshell, it proceeds as follows:

1. Input: a kernel, a set of training data, a set of test data.

2. Perform a Kernel Principal Component Analysis (KPCA) on the training data.

3. Generate grammatical and ungrammatical test items.

4. Project the test data into the hyperplane.

5. Evaluate:

(a) Compute the distance (via the kernel, see lemma 1 in appendix A) between a test item
and its projection.

(b) If it stays below a threshold, classify it as grammatical.

(c) Count the correctly and incorrectly classified items.

Whenever Clark et al. refer to strings (a kernel for strings, strings as training and testing data), I
will use trees. Next, I will elaborate on each step.

7.2.2.1 Kernels

Classical PCA looks at vector representations of data items. By means of a kernel this representation
never needs to be accessed explicitly. This is useful in handling complex data, such as natural
language representations. One still needs to specify the features. Here, I compare three kernels: A
tree kernel, and the two string kernels of Clark et al.:

• 1+2SUBSEQ: The subsequence kernel with features of length 1 and 2.

• GAPWEIGHTED: Likewise, with λ = 0.5.
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For the definitions, see sections 2.2.3.1 and 2.2.3.2 as well as appendices A.2 and A.3.
In the tree kernel defined in Collins and Duffy (2001b), every subtree of a tree (in the fashion

of data-oriented parsing; Bod (1998)) is a feature in its vector representation. A subtree is “any
subgraph which includes more than one node, with the restriction that entire (not partial) rule pro-
ductions must be included” (Collins and Duffy 2001a).

There always is one feature covering the whole data item, because the whole tree is a feature
of itself. Therefore the kernel is injective (Costa Florêncio 2007): each data item is projected onto
a distinct point in feature space. This makes generalizations (and computation, because of more
features) harder, because unseen items will never exactly be recognized.

A variant of the kernel restricts subtrees to a height of h. A height of 1 yields the bag-of-labels

kernel (cf. Costa Florêncio 2007). I will use h = 2 only: context-free productions. This kernel
is strictly local, as opposed to the non-contiguous features in the string kernels. However, this is
locality within the tree structure added to a string. The kernel can see long dependencies if the trees
are constructed accordingly.

In the literature, there has been a slight confusion in terminology which may require clarification:
In Costa Florêncio’s (2007) more extensive collection of tree kernels this is mistakingly identified
with Kashima and Koyanagi’s (2002) labeled ordered tree kernel. They claim Collins and Duffy’s
kernel “is limited to trees where no node shares its label with any of its siblings”. This is repeat-
ed by Costa Florêncio. The claim is true in Kashima and Koyanagi’s understanding of a subtree,
which allows including partial rule productions (contrary to Bod 1998, Collins and Duffy and Costa
Florêncio!), because it is ambiguous which one of two identically-labeled sibling nodes is left out. In
consequence, Costa Florêncio’s definition of the labeled order tree kernel is identical to Collins and
Duffy’s tree kernel, not to Kashima and Koyanagi’s. In Costa Florêncio’s terminology, the kernel is
best described as a fixed height count-based all-subtree kernel, but for the sake of simplicity I will
refer to it as the tree kernel.

7.2.2.2 Normalization

All of the kernels used here tend to be peaked: they assign very high values to identical items, and
comparably low values elsewhere. This can be overcome by normalizing the kernel function (ap-
pendix A.1.3). However, in the experiments to follow, this resulted in fewer correct classifications.
When interested in strict grammaticality (i.e., exact membership in a language), a peaked kernel is
actually a benefit.

7.2.3 Experiments

Experiments are conducted on several artificial languages described in section 7.2.3.1. For each of
them, training and testing data are generated automatically and randomly. 100 training items and
500 (positive) testing items are drawn from the grammar, and an additional 500 (negative) testing
items are constructed to be very close to grammatical items.



7.2. TREE PLANAR LANGUAGES 147

7.2.3.1 Languages

In order to investigate a string language by means of a tree kernel, an appropriate tree structure is
needed. Trees encode additional information via their structure and via non-terminal node labels.
Not all structures over a given grammatical surface string are grammatical themselves; typically,
only one of them will be. Here is an overview of the languages (all taken from Clark et al.):

(7.1) Languages used by Clark et al.:

Language Class |Σ| Definition as context-free grammar

Even-1
REG 3 {Σ2n|n ∈ N}

X → XΣ|ΣΣ

Even-2 X → X ′Σ|ΣΣ, X ′ → XΣ

Even-3 X → XX|ΣΣ

Bracket CF 2 {ab, avb, vw|v, w ∈ Bracket} X → XX|aXb|ab
PalinDisj CF 4+4 {vwR|v ∈ Σ+

1 , w = z(v)} X → Σ1 (X) z(Σ1)

Palin CF 4 {vvR|v ∈ Σ+} X → Σ1 (X) Σ1

An–Dn MCS 4 {anbncndn|n > 0} X → aXd|b (X) c

Copy MCS 8 {ww|w ∈ Σ+} X → ΣX|XΣ|ΣΣ

GermScramb MCS 4+4 {π(z(w))w|w ∈ Σ+} X → ΣX|XΣ|ΣΣ

The Chomsky hierarchy class labels are REG for regular, CF for context-free, and MCS for mildly
context-sensitive. z is a one-to-one mapping between symbols in Σ1 and Σ2. π denotes all permuta-
tions. Copy is Clark et al.’s CrossDepND. Some languages are altered to exclude empty strings.

Negative test items are drawn from closely related grammars, positive items from the true gram-
mar. The context-free grammars (in most cases) merely illustrate the tree structures; they heavily
overgeneralize. In these cases, negative items are drawn from a subset of the language defined by that
CFG. This subset explicitly generates near-positives, which are especially hard to classify correctly.
The CFG rules use a few shortcuts: | separates right-hand sides, parentheses denote optionality, Σ

denotes any symbol in the alphabet, and Σ with an index denotes repetition of the same symbol.
Different strategies to construct trees are exemplified with Even. Even-1 is trivial and unin-

formative, Even-2 encodes information in non-terminal labels, and Even-3 makes use of the tree
structure. All other languages are described by CFGs with a single non-terminal label. So they all
depend on the structure of the trees.

The three CF languages are naturally suited for a tree kernel. Bracket is the context-free language
per se, the language of well-formed embeddings. Palin depicts center-embedding. PalinDisj is
somewhat closer to natural language. It uses different alphabets, just as verbs and their arguments
are not drawn from the same set.

Some of Clark et al.’s languages are defined entirely on surface counts: anbncn(dn(en)), anbmcndm

and Mix. These are suitably described using a string kernel, and the description lengths grow just
linearly. However, the languages’ complexity increases rapidly: an is a regular language, anbn

is context-free, anbncn and anbncndn are mildly context-sensitive, anbncndnen is context-sensitive.
Exemplary for the counting languages, I test anbncndn.
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The tree structures for An-Dn and Copy resemble the ones derived by schoolbook tree adjoining
grammars for these languages. Copy has an upper, right-branching part, and a lower left-branching
part. The scrambling language (GermScramb) resembles PalinDisj with free permutation in the
first half. Its tree structure follows the one of Copy. For both languages though, it is non-informative:
It does not establish direct connections between corresponding symbols, for this requires crossing
branches, which in turn would require to specify a tree kernel for crossing branches.

Two context-sensitive languages from Clark et al. remain: ChinNr and MultCop. They exhibit
dependencies which are covered neither by the string kernels’ nor by the tree kernel’s features.
Therefore I do not expect the tree kernel to add any insights here.

7.2.3.2 Results

The presentation of results (table 7.2) follows Clark et al. FP is the ratio of false positives: negative
test items wrongly labeled as positive; conversely, FN stands for false negatives. R is the rank, the
number of dimensions in the data identified by the kernel. Values in parentheses are from Clark
et al., for comparison; stated only when they differ.

(7.2) Results:

Language 1+2-SUBSEQ GAPWEIGHTED TREE

FP FN R FP FN R FP FN R

Even-1
100 0 12 100 0 12

100 0 11
Even-2 0 0 13
Even-3 0 0 9

Bracket 27.4 (10.8) 0 3 27.4 (10.8) 0 5 0 0 2

PalinDisj 0 0 20 0 0 30 0 0 7

Palin 15.4 (16.1) 0 14 17.8 (16.1) 0 14 0 0 7

An–Dn 0 0 24 0 0 38 0 0 8

Copy 100 (70.0) 0 72 (71) 100 0 72 0 5.0 67

GermScramb 0 0 26 0 0 51 0 0 19

Even has 3 symbols, hence 9 symbol pairs, hence 12 features, and hence a rank of 12. The first
tree language for Even does not add any information, and thus the tree kernel performs as poorly as
the string kernels. Even-2 encodes evenness in alternating non-terminal symbols, Even-3 does so
solely via structure, using a single non-terminal. Both strategies let the tree kernel grasp the relevant
information.

Not surprisingly, the tree kernel learns Bracket, Palin and PalinDisj. It does not treat the latter
two differently (in terms of rank), which is an improvement over the string kernels. The difference in
the reported FP value can be ascribed to the construction of negative testing examples. These values
also differ from one run of the experiment to another.

Although its features are only (tree-)local — as opposed to the string kernels’ unbounded fea-
tures — the tree kernel can solve the counting problem An–Dn and GermScramb. Copy is most
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interesting, as it is the only case with false negatives. The tree kernel clearly outperforms the string
kernels here. Copy has 72 string features, and 80 height-2 tree features. The PCAs with string
kernels have a rank of 72, and therefore could not abstract anything. The tree kernel PCA’s rank
indicates that the language has not been learned successfully, but it fares remarkably well for a MCS

language. 100 data items are barely enough given 72 features, so I used 250 instead of 100 training
examples. The tree kernel kept improving slowly on more data.

7.2.4 Towards natural language

The languages examined so far are highly artificial. This section looks at a small context-free gram-
mar, which models a very small fragment of English down to pre-terminal nodes (lexical categories).
The rules are as follows:

(7.3) S→ NP VP | NP v
NP→ d n | d N′ | NP PP
N′→ a N′ | a n
PP→ p NP
VP→ v NP | v NP PP | v NP S

In addition to the three kernels so far, tree kernels with features up to height 3 and with all
subtrees are tested. The models are again built from 100 training items, but tested on 80 test items
only. All items were restricted to a maximum height of 8. The main computational bottleneck is the
parallel storage of all those items along with a pre-calculated list of all their subtrees, the number of
which grows exponentially with tree size. Results are as follows:

(7.4)

1+2-Subseq GapWeighted Tree (2) Tree (3) Tree (all)

FP FN R FP FN R FP FN R FP FN R FP FN R

12.5 0 18 38.7 0 20 0 0 6 0 0 22 0 37.5 48

String kernels are not able to learn context-free restrictions. The height-unbounded tree kernel
is injective (Costa Florêncio 2007), and therefore cannot generalize to unseen trees. The threshold
might be set differently, but it is generally unable to distinguish between a short ungrammatical item
and a long grammatical item, as both introduce unseen material.

Given enough data, larger features (height 3) eventually cover the grammar. Yet the optimal
solution is the one with the most appropriate feature selection: trees of height 2. In this experiment,
results were the same for features with exactly height 3 and for features with up to height 3. So
adding more features can only increase the rank, yet it does not if these features are already contained
within larger ones (as are height-2 trees within height-3 trees).

A rank of 6 here indicates 6 dimensions of variation in the data. Each non-terminal introduces
n − 1 dimensions, where n is the number of rewrite rules for this non-terminal. The remaining
rule is reflected in the data mean. Consider the single PP-rule: It has no alternatives, and therefore
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does not add any variation to the data. In the example grammar there are 11 rules and 5 different
non-terminals; this leaves 6 rewrite rules as alternatives to an arbitrarily fixed default rule for each
non-terminal.

The language model defines a hyperplane in feature space. For the height-2 tree kernel, every
production rule is a feature. Given enough data randomly generated by a CFG, the KPCA establishes
all features as independent (modulo the restriction that there has to be a rule with the unique start
symbol of the grammar). Any relative proportion of features can be modeled. Now we need to see
how this extends to all feature combinations in absolute terms.

Consider a test item larger than any seen training item. As the linear combination coefficients
add up to 1, its subtree counts cannot be modeled as a linear combination of each training item’s
features. Clark et al. suggest to drop this restriction. This could also be achieved by evaluating test
items via the normalized kernel (appendix A.1.3) instead of taking the distance. Then all items with
a normalized kernel value of 1 (or close to 1) are considered to be inside the planar language.

Assume x can be modeled, and x′ with φ(x′) = aφ(x) (a > 0) is to be modeled. This effectively
means coefficients add up to any value a (instead of 1). Then the normalized kernel between x and
x′ is:

k̂(x, x′) =
< φ(x), aφ(x) >√

< φ(x), φ(x) > · < aφ(x), aφ(x) >
=

aφ(x)2√
a2 · φ(x)2 · φ(x)2

= 1

Thus items x′ of any size are within the language as long as a reference item x with the same
feature proportions is. Once the independence of the context-free productions has been established,
every tree built via the CFG is accepted as grammatical.

7.2.5 Discussion

There is an upper bound to the rank given by the number of features. A high rank means little
abstraction, a low rank means good abstraction. The tree kernel often succeeds to find a rank near
the number of independent rules in the grammar, see Bracket. Even when the string kernels perform
flawlessly, they often do so at a much higher rank, see An–Dn.

The most important lesson to be learned is that the recognition of a language depends on the tree
structure superimposed. The regular language Even demonstrates this point. Informative nontermi-
nal symbols or a clever tree structure both do the trick. In the former case, even the bag-of-labels
kernel (Costa Florêncio 2007) will do.

The kernels induce language models on positive evidence only. A model recognizes members
of the language, and approximates them with already seen members which have similar features.
They crucially do not need to share any more structure than the one captured by the features. So this
method does not parse.

The advantage of the tree representation is that it encodes grammatical relations. Consider
An–Dn: a’s and d’s (and b’s and c’s) are organized in pairs. Although this language is mildly
context-sensitive, the tree kernel correctly recognizes valid structures. Even for Copy, it gives a
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good estimate of grammaticality. However, there is a way to exploit a tree kernel for parsing, as
follows.

7.2.6 Parsing with tree kernels

A recipe for parsing, making use of a (tree) kernel, explained in more detail afterwards:

1. Input: A phrase-structure-annotated corpus, and a kernel

2. Read a CFG off the corpus.

3. Perform a KPCA on the same data.

4. Parsing: For each test string:

(a) Generate parse candidates via the CFG.

(b) Evaluate each candidate via the KPCA language model.

(c) Rank the parses according to the distance (or the normalized kernel value) between them
and their projection onto the hyperplane defining the language.

(d) Pick the best one.

5. Optional: Update the language model.

Possible applications deal with natural language corpora, annotated with phrase structures. A
CFG is read off a corpus by listing all occurring production rules. An input string can be parsed in
cubic time using this grammar (and a standard, Earley-style chart parser), producing candidate parses
(as in Collins and Duffy 2001a). Assumably the corpus exhibits some non-local dependencies,
restrictions on distributional patterns and the like. As the CFG cannot capture them at all, it will
largely over-generate. This is similar to the CFG descriptions I devised manually in section 7.2.3.1.
As seen with the MCS artificial languages, the tree kernel can capture some restrictions, and thus find
good parses among the candidates.

The method differs from Collins and Duffy (2001a) in the machine learning algorithm used (KP-
CA), and in that it does not need negative (ungrammatical) training items. The set of candidate
parses for an input string is ranked by the KPCA language model trained on the same corpus, ac-
cording to their distance to the point in feature space denoting the parse. The best one is chosen as
the correct parse.

7.2.7 Conclusion

This section has shown how a simple tree kernel with local features outperforms string kernels in
recognizing the languages studied in Clark et al. (2006). It is more precise, or it finds a solution of
lower rank, or even both; also for context-sensitive languages. The crucial point is where to get the
tree structures from. For the artificial languages, I have devised context-free grammars not relying



152 CHAPTER 7. APPLICATIONS TO SYNTAX

on informative node labels, but on structure alone. Either strategy works. For natural language, trees
can be generated by a CFG read off an annotated corpus.

I have devised a method for parsing, employing a tree kernel to rank parse candidates output by
a CFG. As suggested by the experiments on artificial languages, the kernel is able to capture some
context-sensitive restrictions in the data. For context-free languages, the tree kernel with subtree
height 2 finds the optimal solution.

7.3 Discussion

In this chapter, I have looked at classification as an application of (tree) kernels to syntax only. I have
demonstrated the notion of tree planar languages (Costa Florêncio 2007) with the languages from
Clark et al. (2006), as the logical next in this line of research. Grammaticality is defined as being
close to the hyperplane in which all grammatical items lie. Dimension reduction can be used here
for noise reduction; assuming that annotation errors and some ungrammatical items enter a corpus
as noise. Collins and Duffy (2002) exploit kernels for parse re-ranking: sorting candidates by kernel
value. It may also be possible to compare kernel values to graded judgments of grammaticality.

Parse re-ranking closely resembles pre-imaging, the difference being that they take a fixed candi-
date set as output by a parser. With a general-purpose tree pre-imager (imagine minimal operations
on trees) and an efficient implementation parsing could be attempted directly with a kernel. Parsing
would work just like all other applications in this thesis: Locate a sentence in the space of sentences
according to its surface similarity to items in the training set, and find a pre-image for the same linear
combination of the corresponding trees. According to C. Costa Florêncio (p.c., October 2009), A.
Clark has tried to learn a mapping from sentences as described by string kernels to trees, but never
published on the topic.

The syntactic structures do not have to be trees. Remember that the tree kernel takes all subtrees
— as defined in Data-oriented Parsing (DOP; Bod 1998) — as features. There are DOP-approaches
to Lexical Functional Grammar (Bod and Kaplan 2003) and Head-Driven Phrase Structure Grammar
(Arnold and Linardaki 2007). Basically, any syntactic structure is some sort of graph and can thus
be decomposed into partial structures, which can serve as implicit features for a kernel. Given an
efficient implementation, the features do not have to be stored explicitly. Their large number is the
major drawback of DOP. Kernels offer a solution to it.

The third use of kernels is also the most problematic: Interpreting the basis vectors in feature
space (e.g. the principal components of KPCA) linguistically. I have argued earlier (2.3.4.3) that
unrotated principal components are meaningless. A rotation towards features (VARIMAX) is in con-
flict with the use of kernels, however a rotation towards pre-defined classes is possible (see 4.2.3).
The classes considered in this chapter were only grammatical vs. ungrammatical. As ungrammatical
items are not within the hyperplane (by the assumption of planar languages), there is only one class,
grammatical, into which all items fall. Just as the three gender values fell into a two-dimensional
plane (see the gender experiment, 3.2.4), the problem of grammaticality (one class) has zero dimen-
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sionality. In plain words: There is no vector to rotate. Therefore there is no interpretable factor
denoting grammaticality.



Chapter 8

Conclusion

Following the goals outlined in 1.3, I will now conclude to what extent they have been reached with
the models and methods presented in this thesis.

8.1 How to employ kernel methods in linguistics

The main application of kernels in linguistics is in classification, and the predominant kernel-based
classifier is the Support Vector Machine (SVM; Cristianini and Shawe-Taylor 2000). Classification
can also be done with Kernel Principal Component Analysis (KPCA; Schölkopf and Smola 2002,
Shawe-Taylor and Cristianini 2004). In this thesis I have presented a way to get fully specified output
forms instead of just classes, which is interesting in inflection (see chapter 6). The combination
of analogical models and full output forms is rare; examples are the artificial neural networks of
Plunkett and Nakisa (1997) and Plunkett and Juola (1999), and the Wickelfeatures of Rumelhart and
McClelland (1986). Previously, linguistic tasks had to be broken down into binary classifications,
see for example the semantic parser of Kate (2007).

8.1.1 Abstracting over exemplar models

Exemplar and prototype models differ from rules in that they place the knowledge about a class
where the data is (that is, at the exemplars themselves, resp. at the center of the class), and not at
its boundary, where exemplars are sparse and judgments largely differ. Graded class membership
depends on closeness to the center (or prototype) in exemplar models, but on distance to the boundary
in — for example — the parse re-ranking approach of Collins and Duffy (2002). In that respect a
KPCA model is psychologically more valid than an SVM, because it classifies new items according
to their similarity to others, and not via their relation to a decision boundary.

The model is built from individual exemplars, yet its final units, the principal components, nev-
er refer to single exemplars. Therefore it deserves to be called ‘connectionist’. New exemplars
will change the model. Under real-world circumstances, every word’s many occurrences would be
distinguishable by minimal (phonetic or circumstantial) deviations. These would be reflected in
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low-ranked components. Leaving out those, the model gets more and more abstract.
Connectionist models rely on a notion of similarity between the data items. Kernels are the

state-of-the-art technique in machine learning to define similarities. Kernels can be built for any data
structure, according to the researcher’s understanding of similarity in a particular case. Schölkopf
and Smola (2002) devote an entire chapter (13) to the design of kernels.

8.1.2 Pre-Images

In order to interpret a point in feature space, a discrete pre-image has to be found. This can be a
majority vote for mutually exclusive abstract class labels, but for concrete linguistic objects such as
word it is much more difficult. In this thesis I have used special-purpose instances (e.g. in section
6.2.1) of a general pre-imaging strategy (D.2). The first trick is to limit the search space by choosing
an initial item as close as deterministically possible to the output. In inflection tasks, this is the
base form. The second trick is to define a set of minimal operations as small as possible. For
string in general, these are insertions, deletions and substitutions of characters. The set of necessary
operations can be further limited by evaluating the unigram differences between the current candidate
and the target. Similar tricks would have to be devised for other data types and tasks.

An analogy to finding a pre-image is looking for something one only knows implicitly, something
one only has a description of. This description is given as a combination of known data points: things
you actually know. You would immediately recognize something that befits the description, but you
could not create or make it explicitly. The question now is, what object in the real world best befits
that description? Take the description of a chimera: part lioness, part goat, part snake. Once you
have seen it1, you know what it looks like.

Descriptions might be well-formed, but without an extension in the real world (‘round squares’).
In general, what you imagine (as a new combination of previous experiences) will not exist precisely
in that form. A pre-imager will still try to find the next thing possible. It is not guaranteed that the
human mind finds the closest match; it will be satisfied with the next best thing (i.e., it will run into
local maxima). When presented with a better solution, it is able to adopt it. Brainstorming is a way
of widening the search space, when the conventional solution does not feature all desired properties.
There is a description of what the solution should look like, but the actual, possible solutions have to
compromise. A measure of similarity (between the candidate and the mental description) will sort
them out. In that sense, kernels capture associations, and pre-imaging relates imaginative things to
real things.

8.1.3 Weighted KPCA

KPCA is a statistical model, but all data items are weighted alike. Models in computational lin-
guistics often call for data weighted by frequencies. Weighted KPCA (Wang et al. 2005) is a way
to enrich KPCA with frequencies. Under an informative kernel and full rank, WKPCA and KPCA

1Or rather its canonical interpretation.
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perform equivalently. Using less features (see section 3.2.3) or less dimensions (section 4.1.1) puts
WKPCA at a disadvantage. Apparently frequencies bias the model too far towards the frequent
cases, such that the model will heavily over-generalize. Compare this to exemplar models (section
2.1.1), where frequent classes are actually discounted by means of bias weights on classes. The
unweighted model takes all information into account alike, which seems to help in the applications
tested here.

8.1.4 Factor rotations and interpretation

Connectionist models trade off performance for interpretability: The closer the model is to human
behavior, the more complicated it gets. The high-level terms of the scientific description of the prob-
lem become implicit. For example, there is hardly an interpretation to the weights in an artificial
neural network, and its nodes are aggregations of information. Nodes usually do not have a sin-
gle, identifiable function. They only function in conjunction. In designing a network, one usually
reserves certain hidden layers to aggregate some parts of the input (see the architecture in MacWhin-
ney et al. 1989), but within these limits one allows for full connection. There is no constraint that
weights should be either close to zero or very high.

Such a restriction would be an analogue to rotation techniques in factor analysis (see section
4.2). The overall functionality of the model is distributed differently among its parts (the factors),
such that the variance of the feature loadings is maximized. Before that, the factors are just as
uninterpretable as nodes in neural network: There are correlations between certain high-level terms
and nodes (or principal components), but they are fuzzy. Rotations try to reduce fuzziness, and to
focus the hidden factors on a small number of features.

In Kernel PCA, the features are not directly accessible, so this is not an option. Rotation towards
data items (with an intended interpretation as prototypes) is also problematic. In chapter 4, I showed
how a rotation towards known, hidden features allows constructing a model of data variation with
respect to these hidden features. In the example (3.2), this model was of minimal dimension: The
three abstract classes fell into a plane. Still these factors were opaque: They are optimized towards
performance, not interpretability.

This type of rotation relies on pre-defined classes. As it seems, factor analysis does not substitute
the researcher in defining abstractions. It is the ability to abstract over exceptions, to accept worse
performance for the sake of a smaller model, that the KPCA models presented here lack. Discarding
directions of low explanatory value (see section 4.1) is the KPCA’s way of abstraction, but its def-
inition of ‘low explanatory value’ can only exclude noise, not deliberately reject certain data items
as exceptions. The rotation method mentioned above allows identifying negligible dimensions —
those that are neutral towards the hidden classes. Again, the researcher’s insight comes first.

KPCA models thus are geared towards performance. This is a lot easier to achieve than in-
terpretability, because performance is measurable, and the optimal model is computed exactly (for
example as finding maxima in the rotation algorithm by differentiation, see the algorithm in E.2).
Formalizing interpretability such that the models can be made (rotated) towards this end is the hard
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part.

8.2 Outlook

Considering that there are numerous applications of KPCA and other kernel methods outside lin-
guistics, and only a few (see 2.3) within the field, there are many ways to proceed. I conclude this
thesis with an outlook on some exemplary ideas.

8.2.1 Other kernels

n-gram kernels are a good choice within string kernels, when it comes to words, but for sentences
substring kernels (n-grams with gaps) are also viable (see Clark et al. 2006). To better capture pho-
netic similarity, n-grams should not only match when identical, but according to their similarity. See
e.g. the soft matching string kernel of Shawe-Taylor and Cristianini (2004, p. 370). This similarity
is given explicitly by a matrix, or by an inner kernel on phonemes. This is an instance of kernel
convolution (Haussler 1999): Similarity is the sum of the similarity of the parts. Shawe-Taylor and
Cristianini assume values between 0 and 1; thus a normalized kernel. In preliminary experiments
with such a normalized kernel over phonemes (represented as vectors of phonetic features) I found
significantly worse results for German plural formation (cf. 6.4.7), probably also due to the nor-
malization step, which hinders exact recognition of features. An intermediate solution would be a
kernel over a CV-skeleton: taking all consonants and all vowels as equal. This kernel more easily
abstracts over patterns in syllabification etc., but it already encodes linguistic knowledge. A more
flexible way would be to consider two phonemes equal if their similarity (as calculated by a kernel
over phonemes, see above) exceeds a certain threshold.

I also did not employ kernel addition and multiplication in the examples here. Addition allows
combining evidence from several annotation layers, such as gender in plural formation, or semantic
similarity in gender prediction (cf. Schwichtenberg and Schiller 2004). Semantic similarity may be
specified in a matrix, or it could be calculated, possibly by Latent Semantic Analysis, that is, from
vector representations of a word’s environment. Multiplication creates pairs of features as the new
features. The simplest example is a quadratic kernel: By taking the square of each kernel value,
the implicit features are all pairs of the original features. Also, features can be weighted, and so
can kernels in kernel addition. In its maximal extension, one can construct kernel polynomials with
weighted tuples of features. A kernel polynomial k3 + k2 + k has as features all triples and pairs
of features of the original kernel k, plus those features themselves. Thus we get exponentially more
features with negligible computational cost: The original kernel value has to be derived only once.
It remains to be seen whether these tuples of features turn out to be informative, or whether this only
leads to too many unseen features. 6-grams, for example, were not always better than 4-grams (see
figure 6.2).

For syntactic structures, any of them can be split into parts as in Data-Oriented Parsing (Bod
1998). These parts then form the features of a kernel. Kernels could overcome the main problem of
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DOP: the excessive amount of features. See the discussion in 7.3.

8.2.2 Alternative kernel methods

Of course there are Support Vector Machines (Cristianini and Shawe-Taylor 2000), which can be
applied to all classification tasks. Among the factor analyses, KPCA is by far not the only one. In
the initial review, I mentioned Independent Component Analysis (as employed by Honkela et al.
2010), of which there is also a kernelized variant (Bach and Jordan 2003). The choice of KPCA for
this thesis has a touch of arbitrariness. In this thesis, I made particular use of the orthonormal bases
it derives, and of its sorting of factors by maximal variance.

The initial sorting is lost during rotation; so as an initial basis any one suffices. It can howev-
er be employed to reduce the dimension beforehand, which greatly facilitates rotation. There are
more (orthogonal and non-orthogonal) rotations. Future research may reveal rotations leading to an
increased linguistic interpretability of factors.

I also explored Weighted KPCA (Wang et al. 2005), but an application where its incorporation
of frequencies yields a better model is yet to be found.

8.2.3 Other domains in linguistics

As argued in various places, similarity is best put to use in processes that crucially rely on analogy,
such as abstract grammatical features and inflectional/fusional morphology. In this thesis, I have
only treated the realization of a single grammatical feature (plural, or past tense); several (e.g. plural
and case, or tense and person) can be modeled simultaneously, see the extension of proportional
analogy to paradigms (Albright 2008, Pirrelli and Yvon 1999). More structured linguistic objects
(more than one morpheme) could be treated step by step; see the iterative method of multi-layer
markup in section 5.3.3.

While edge-of-word sentinels are a nice way of pointing the kernel to certain relevant positions
in a word, other morphological processes call for other ways of specializing the kernel. As an
example, vowel harmony spreading through a word is captured with non-contiguous substrings.
Then, sequences of vowels will be implicit features of the kernel. The word space model will only
contain vowel sequences obeying the harmony conditions. The general question always is to find the
right kernel for a given task. This is done by selecting the right features.

Finally, kernels can be applied wherever explicit feature vectors are in use today. For example,
language or author recognition are based on n-grams in practical applications. These tasks and many
others can be kernelized.
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A Kernels

I adapt and extend definitions from Schölkopf and Smola (2002).

(8.1) Variable names:

Definition Name / Interpretation

R original space
n number of data items

−→a ∈ Rn data vector
ai ith data item
m number of implicit features

H := Rm implicit feature space
φ : R→ H implicit mapping

k : R×R→ R kernel function

Definition 1 (Mapping of data vectors).
∀n ∈ N Φn : Rn → Rm×n, (ak)nk=1 7→ (φ(ak))nk=1

In an abuse of notation, write φ(−→a ) for Φn(−→a ) with the appropriate n. Then, A := φ(−→a ) are
the data points in H .

Definition 2 (Kernel). A kernel is an inner product in the feature space, defined via the mapping φ:

k(ai, aj) := 〈φ(ai), φ(aj)〉

〈·, ·〉 is the dot product.

Definition 3 (Injectivity). A kernel is injective iff ∀x, y ∈ R : φ(x) = φ(y)→ x = y.

Lemma 1 (Distance in the feature space). (Shawe-Taylor and Cristianini 2004, p. 113)

∀x, y ∈ R :

√
|φ(x)− φ(y)|2 =

√
〈φ(x)− φ(y), φ(x)− φ(y)〉

=
√
k(x, x) + k(y, y)− 2k(x, y) := d(x, y)

Definition 4 (Kernel vector).

∀z ∈ R :
−→
k (−→a , z) :=


k(a1, z)

...
k(an, z)


Definition 5 (Kernel matrix (or Gram matrix)).

∀i, j ≤ n : Ki,j := k(ai, aj)

Or, equivalently: K := ATA
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Definition 6 (Positive semi-definiteness). A matrix K is positive semi-definite iff

∀ζ ∈ Rn : ζTKζ ≥ 0

Lemma 2. Every kernel matrix is positive semi-definite.

Proof. (Shawe-Taylor and Cristianini 2004, p. 57f.)

∀ζ ∈ Rn : ζTKζ = ζTATAζ = ‖Aζ‖2 ≥ 0

(‖·‖ is the Euclidean vector norm.)

Lemma 3. A positive semi-definite matrix K is a kernel matrix.

Proof. (Shawe-Taylor and Cristianini 2004, p. 57f.). A positive semi-definite matrix k has an eigen-
value decomposition KZ = Z∆. Let A := ∆

1
2ZT . Then:

ATA = Z∆
1
2 ∆

1
2ZT = Z∆ZT = KZZT = KI = K

Hence K is a kernel matrix.

Lemma 4. A kernel matrix K is symmetric (Schölkopf and Smola 2002, ch. 2).

∀i, j ≤ n : Ki,j = Kj,i

Proof.

∀i, j : Ki,j = A1:n,i · A1:n,j = A1:n,j · A1:n,i = Kj,i

A.1 Operations on kernels

A.1.1 Addition

For kernels k1, k2 defined on the same domain R, k1+2(x, y) := k1(x, y) +k2(x, y) (for all x, y ∈ R)
is again a kernel.

A.1.2 Multiplication

For kernels k1, k2 defined on the same domain R, k1×2(x, y) := k1(x, y)×k2(x, y) (for all x, y ∈ R)
is again a kernel.

For further closure properties of kernels see Shawe-Taylor and Cristianini (2004, p. 75).
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A.1.3 Normalization

Definition 7 (Normalized kernel). For every kernel k : R × R → R, there is a (geometrically)
normalized kernel k̂ : R×R→ [0, 1] defined as:

∀x, y ∈ R : k̂(x, y) :=
k(x, y)√

k(x, x) · k(y, y)

A.1.4 Kernels over linear combinations

Definition 8 (Linear combination). ∀−→a ∈ Rn,∀δ ∈ Rn : −→a δ is a linear combination of the data
vector.

Definition 9 (Kernel value between an item and a linear combination).

∀x ∈ R, ∀−→a ∈ Rn,∀δ ∈ Rn : k(x,−→a δ) :=
n∑

i=1

δik(x, ai) = δT
−→
k (x,−→a )

Lemma 5 (Kernel value between two linear combinations).

∀−→a ∈ Rn,∀δ, η ∈ Rn : k(−→a δ,−→a η) =
n∑

i=1

δi

n∑
j=1

ηik(ai, aj) = δTKη

Definition 10 (Difference kernel). Let δ =

[
1

−1

]
.

∀x, y ∈ R2 k−(x, y) := k(xδ, yδ) = k(x1, y1) + k(x2, y2)− k(x1, y2)− k(x2, y1)

A.2 String kernels

Definition 11 (String). Strings are sequences over an alphabet Σ. Σn is the set of all strings of length
n. Σ∗ :=

⋃∞
k=0 Σk is the set of all strings over Σ, Σ+

⋃∞
k=1 Σk = Σ∗ \ {ε} is the set of all non-empty

strings (where ε denotes the empty string).
Write |u| (= n) for the length of a string u ∈ Σn.

Definition 12 (Substring). u ∈ Σn is a substring of length n (an n-gram) of s ∈ Σ+ (written u v s)
iff ∃v1, v2 ∈ Σ∗ : s = v1uv2.2 The set of all n-grams with n ≤ nmax is Σnmax =

⋃nmax

n=1 Σn.

Definition 13 (Substring kernel). The substring kernel is defined via its feature mapping φ(x) =

[φu(x)]u∈Σ+ ,3 where φu(x) counts the occurrences of the substring u in x:

∀u ∈ Σ+ : φu(x) = |{(v1, v2) : s = v1uv2}|

Replacing Σ+ with Σn yields the n-gram kernel, and replacing it with Σnmax yields the up-to-
nmax-gram kernel.

2Juxtaposition of string variables (u, v) denotes concatenation.
3This presupposes that the set of strings Σn is enumerable. I omit the proof here. The enumeration could follow an

ordering first by length and then by Σ.
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The n-gram kernel is equivalent to the ‘blended spectrum kernel’ (Shawe-Taylor and Cristianini
2004, ch. 11.2) with equal weights (λ = 1) on all spectra. The special case n = 1 is called the Parikh

kernel.

Definition 14 (Subsequence). Let a list of indices i = (i1, . . . , in) be ordered iff ∀j, k ≤ n : j <

k ⇔ ij < ik.
u ∈ Σ+ is a subsequence of x ∈ Σ+ (written u = x(i)) iff there is an ordered list of indices

i = (i1, . . . , i|u|) (where |u| is the length of u) such that uj = xij for 1 ≤ j ≤ |u|.

Definition 15 (Subsequence kernel). Define φu(x) as the number of instances of u as a subsequence
of x, and the subsequence kernel via φ(x) as above (13).

Definition 16 (Gap-weighted subsequence kernel). The gap-weighted subsequence kernel discounts
gaps in subsequences by λ (0 < λ ≤ 1):

φu(x) :=
∑

i : u=x(i) λ
(i|u|−i1+1) where i ranges over lists of indices.

Algorithm 1 (n-gram kernel).
Input: strings s, t ∈ Σ∗, bound n
Output: k(s, t)

z ← 0;
foreach i ∈ {1, . . . , |s|} do

foreach j ∈ {1, . . . , |t|} do
foreach k ∈ {0, . . . ,min(n− 1, |s| − i, |t| − j)} do

if si+k = tj+k then z ← z + 1;
else break k-loop;

end
end

end
return z

For an algorithm for the gap-weighted subsequence kernel, see Shawe-Taylor and Cristianini
(2004, Code Fragment 11.3, p. 369).

Lemma 6. The bounded n-gram kernel is not injective.

Proof. Assume a fixed, finite n and an alphabet of at least two distinct symbols: {a, b} ⊆ Σ. Further
assume a string x = anban, and two strings x1 = ax and x2 = xa. They each contain the n-grams
of x and an additional instance of an, whether on the left (x1) or on the right (x2)

A.3 Tree kernels

The tree kernel definitions are adapted from Collins and Duffy (2001b).
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Definition 17 (Tree). A tree t is a directed, connected, acyclic and ordered graph with a set of nodes
Nt, a set of edges Et and a unique root r ∈ Nt.

Let ≺ be an irreflexive, transitive partial ordering relation on Nt. The order is defined only on
nodes which are siblings:

∀t ∈ T : ∀n1, n2 ∈ Nt : (n1 ≺ n2 ∨ n2 ≺ n1)↔ ∃n3 ∈ Nt : (n3, n1) ∈ Et ∧ (n3, n2) ∈ Et

A labeled tree is a tree with a labeling function lt : Nt → L, where L is a set of node labels.
A proper tree contains at least two nodes.
A path is a sequence of edges p = (e1, . . . , ek) with edges ei ∈ Et where ∀i < k : ei2 = ei+11.
The height of a tree h(t) is defined as the length of the longest path over its edges.
Let equality (=) of trees/nodes be defined as equality of all labels.

In the following, I will assume trees to be proper and labeled. Let T (Tk) be the set of all trees
(of height k) over a set of labels L.

Definition 18 (Children of a node).
∀t ∈ T ∀n ∈ Nt : ch(n) := 〈n1, . . . , nk〉 where ∀i ≤ k : (n, ni) ∈ Et and ∀i, j ≤ k : i < j ↔ ni ≺ nj

∀t ∈ T ∀n ∈ Nt : nc(n) := |ch(n)| (= |{(n,m) ∈ Et,m ∈ Nt}|)

Definition 19 (Subtree). (Collins and Duffy 2001b) u is a subtree of a tree t (written u v t) iff

1. u ∈ T ,

2. Nu ⊆ Nt,

3. ∀n ∈ Nu : lu(n) = lt(n),

4. ∀n1, n2 ∈ Nu : (n1, n2) ∈ Et ↔ (n1, n2) ∈ Eu, and

5. ∀n ∈ Nu : (∀m ∈ Nt : (n,m) ∈ Et → m ∈ Nu) ∨ (∀m ∈ Nt : (n,m) ∈ Et 6→ m ∈ Nu)

u is a proper subtree of t if u 6= t.
u is a co-rooted subtree of t if the root of u is the root of t.

Condition 5 is not generally assumed, only in (parts of) linguistics, such as Data-Oriented Pars-
ing (Bod 1998). This difference in definitions is also the reason for the confusion of tree kernel
definitions clarified in 7.2.2.1. The present definition is called a general subtree in Costa Florêncio
2007, but that name is no clarification either.

Definition 20 (Tree kernel). (From Collins and Duffy 2001a,b; equivalently the labeled ordered tree

kernel in Costa Florêncio 2007.4)
4Also see the remark in section 7.2.2.1.
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Let the indicator function Iu(n) be 1 if the subtree u is rooted at node n ∈ Nt in a tree t, and 0
otherwise.

Define the tree kernel via its feature mapping φ (as in def. 13):5

φu(t) :=
∑
n∈Nt

Iu(n)

Replacing T with Tk yields a height-k tree kernel, and replacing it with
⋃k

i=1 Ti yields a height-
bounded tree kernel (cf. the substring kernel, def. 13).

Definition 21 (Count of shared co-rooted subtrees).

∀n1, n2 ∈ N : C(n1, n2) :=


0 if n1 6= n2 ∨ ch(n1) 6= ch(n2)

1 if nc(n1) = 0 ∨ nc(n2) = 0∏nc(n1)−1
j=0 (1 + C(ch(n1)j, ch(n2)j)) else

Algorithm 2 (Tree kernel). This presentation follows Collins and Duffy (2001b); see there for a
proof of correctness.

Input: trees t1, t2 ∈ T
Output: k(t1, t2)

z ← 0;
foreach n1 ∈ Nt1 do

foreach n2 ∈ Nt2 do
z ← z + C(n1, n2);

end
end
return z

To implement a bound k on the height of subtrees, replace C with Ck:

Definition 22 (Count of height-bounded shared co-rooted subtrees).

∀n1, n2 ∈ N : Ck(n1, n2) :=


0 if n1 6= n2 ∨ ch(n1) 6= ch(n2) ∨ k = 0

1 if nc(n1) = 0 ∨ nc(n2) = 0∏nc(n1)−1
j=0 (1 + Ck−1(ch(n1)j, ch(n2)j)) else

C can be computed recursively, filling a chart for all pairs n1 ∈ Nt1 , n1 ∈ Nt2 .

5Again this presupposes an enumeration. Consider a bracket notation for trees: these are strings, and strings can be
enumerated; see fn. 3.
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B Kernel Principal Component Analysis

(8.2) Definitions for KPCA:

Definition Dimension Name

v := 1
n
1n,1 n× 1 averaging vector

V := In − 1
n
1n,n n× n centering matrix for K

M := V ATAV n× n centered kernel matrix
M = Q∆QT n× n eigenvalue decomposition of M

r rank of M
Qr := Q1:n,1:r first r eigenvectors
∆r := ∆1:r,1:r first r eigenvalues

αr := Qr∆
− 1

2
r n× r

Ur := Aα m× r principal components
µ := Av m× 1 center

Lemma 7. ATA = K, the kernel matrix.

Proof. [ATA]i,j = 〈φ(ai), φ(aj)〉 = k(ai, aj) for all 0 < i, j ≤ n.

Remark 1. If the subscript r is omitted, the full rank of M is implied.

Remark 2. The eigenvectors and eigenvalues in Q resp. ∆ are assumed to be in descending order.

Definition 23 (Centered). A matrix X’s columns (nX by mX) are centered iff 11,nX = 01,m. Its
rows are centered iff X1m,1 = 0n,1. A matrix is centered iff both its rows and its columns are
centered.

Algorithm 3 (Kernel Principal Component Analysis (Schölkopf and Smola 2002, p. 431)).
Input: kernel matrix K
Output: α, rank
center: M = V KV ;
diagonalize: M = Q∆QT ;
normalize eigenvectors: αr = Qr∆

− 1
2

r ;

B.1 Mappings

Definition 24 (Projection into feature space). An item z ∈ R is centered and projected onto the first
r principal components Ur as follows:

fr(z) := UT (φ(z)− µ) = (Aαr)
T (φ(z)− Av) = αT

r

(
ATφ(z)− ATAv

)
= αT

r

(−→
k (−→a , z)−Kv

)
Definition 25 (Projecting a point in feature space into the original space).

∀o ∈ Rr : −→a ζ := −→a αro+ v
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Lemma 8 (Reconstruction). Insert def. 24 into def. 25.

∀z ∈ R : −→a ζ = −→a αrf(z) + v = −→a αrα
T
r

(−→
k (−→a , z)−Kv

)
+ v

B.2 Hidden features

(8.3) Analogously to m,φ,A define:

Definition Name

l number of hidden features
ψ : R→ Rl mapping
B := ψ(−→a ) matrix of hidden features

Definition 26 (Extraction of hidden features). The hidden features of a linear combination −→a ζ are
given by Bζ .

Lemma 9 (Feature inference). By lemma 8 and def. 26, the vector of hidden features h(z) of z ∈ R
is inferred as:

h(z) := BααT
(−→
k (−→a , z)−Kv

)
B.3 Planar languages

Definition 27 (Planar language; after Clark et al. 2006). L0 = −→a is the initial language. The planar

language L1 is extrapolated from L0 (where d is the distance, see lemma 1):

L1 := {x ∈ R | d(x,−→a αf(x)) < ε} with a threshold ε
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C Weighted Kernel Principal Component Analysis

(8.4) Definitions for KPCA with explicit frequencies:

Definition Dimension Name

f ∈ Nn n× 1 vector of frequencies
∀x ∈ R : fx : (fx)i = (f)xi , 1 ≤ i ≤ n n× 1 pointwise operations on f

s := 11,nf sum of frequencies

P : Pi,j :=

1 if
∑j−i

k=1 fk < i ≤
∑j

k=1 fk

0 else
n× s

expansion matrix
(see ex. 2.31 in sec. 2.4.2)

K ′ = P TKP s× s expanded kernel matrix
V := Is − 1

s
1s,s s× s centering matrix for K ′

M := V K ′V n× n centered expanded kernel matrix
M = Q∆QT n× n eigendecomposition of M

αr := PQr∆
− 1

2
r n× r

Definitions for WKPCA (Wang et al. 2005):

Definition Dimension Name

W :=
(
In,n − 1

s
f

1
2f

1
2
T
)
diag(f

1
2 ) n× n weighted centering matrix for K

MW := WATAW T (= WKW T ) n× n weighted and centered kernel matrix
MW = QW∆WQ

T
W n× n eigendecomposition of MW

αWr := W TQWr∆
− 1

2
r n× r

Lemma 10. QWr’s columns are centered after weighting with f
1
2 .

Proof. (I omit the subscript r.)

WKW T = QW∆WQ
T
W by definition

⇒ f
1
2
T
WKW Tf

1
2 = f

1
2
T
QW∆WQ

T
Wf

1
2

⇒ 01,nK0n,1 = f
1
2
T
QW∆WQ

T
Wf

1
2 (by 8.6, p. 171)

⇒ 01,1 =
(
f

1
2
T
QW∆

1
2
W

)(
f

1
2
T
QW∆

1
2
W

)T
⇒ f

1
2
T
QW∆

1
2
W = 01,r by definition of inner products

⇒ f
1
2
T
QW = 01,r ⇒ 11,ndiag(f

1
2 )QW = 01,r
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Lemma 11. P−1W TQW is (column-)centered.

Proof.

11,sP
−1W TQW

= 11,sP
Tdiag(f−1)

((
In,n −

1

s
f

1
2f

1
2
T
)
diag(f

1
2 )

)T

QW

= fTdiag(f−1)diag(f
1
2 )

(
In,n −

1

s
f

1
2f

1
2
T
)
QW = 11,n

(
diag(f

1
2 )− 1

s
ff

1
2
T
)
QW

=

(
f

1
2
T
− 1

s
11,nff

1
2
T
)
QW =

(
f

1
2
T
− 1

s
sf

1
2
T
)
QW =

(
f

1
2
T
− f

1
2
T
)
QW = 01,nQW = 01,r

Lemma 12. KPCA is a special case of WKPCA, where all frequencies are set to 1.

Proof. Let f = 1n,1. W = Is,s − 1
s
1n,111,n = V . Hence M = MW , therefore Q = QW and

∆ = ∆W , from which follows α = αW .

Lemma 13 (Equivalence of expanded and weighted Kernel PCA). Both KPCA on the expanded
kernel matrix and the weighted KPCA derive the same set of principal components:

α = αW and ∆ = ∆W

Proof. Both expanded KPCA and WKPCA start with the kernel matrix K, apply some normaliza-
tion and/or weighting, decompose that matrix, and derive a set of principal components (α, αW ).
Deducing α = αW from M = Q∆QT and MW = QW∆WQ

T
W is difficult because of the eigenvalue

decompositions. Instead, this proof will assume α = αW and MW = QW∆WQ
T
W , and deduce that

this defines a Q which is in fact an orthonormal eigenbasis of M (with eigenvalues ∆), and thus the
unique eigenvalue decomposition of M .

Assume αW derived from WKPCA. Then Q is defined as follows:

α = αW∧∆ = ∆W → PQr∆
− 1

2
r = W TQW∆

− 1
2

r → PQr = W TQW → Qr = P Tdiag(f−1)W TQW

Q and QW need to be reduced to the vectors with non-zero eigenvalue, otherwise ∆−
1
2 is un-

defined. Note that no information is lost by this: QW∆WQ
T
W = QWr∆WrQ

T
W r and Q∆QT =

Qr∆rQ
T
r. From here, I omit the subscript r.

WKWQW = QW∆W by definition of MW

⇒ W TWKWQW = W TQW∆W
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⇒ W TWKPQ = PQ∆W substitute QW

⇒ P−1W TWKPQ = P−1PQ∆W

⇒ P Tdiag(f−1)W TWKPQ = Q∆W

⇒ V P Tdiag(f−1)W TWKPQ = V Q∆W

Since Q = P Tdiag(f−1)W TQW is centered (lemma 11), is is not affected by centering: V Q =

Q = V TQ.

⇒ V P T (In,n −
1

s
1n,1f

T )KPV TQ = Q∆W (by 8.7, p. 171)

⇒ (V P T − 1

s
V 1s,1f

T )KPV TQ = Q∆W (by 8.5)

⇒ (V P T − 1

s
0s,1f

T )KPV TQ = Q∆W (by 8.8)

⇒ V P TKPV TQ = Q∆W

⇒MQ = Q∆W

This proves that all vectors in Q are eigenvectors of M . Now I prove that they are orthonormal.

QTQ = QT
WWdiag(f−1)PP Tdiag(f−1)W TQW

= QT
WWdiag(f−1)diag(f)diag(f−1)W TQW

= QT
W

(
In,n −

1

s
f

1
2f

1
2
T
)
diag(f

1
2 )diag(f−1)diag(f

1
2 )

(
In,n −

1

s
f

1
2f

1
2
T
)
QW

=

(
QT

W −
1

s
QT

Wf
1
2f

1
2
T
)(

QW −
1

s
f

1
2f

1
2
T
QW

)

=

(
QT

W −
1

s
0r,1f

1
2
T
)(

QW −
1

s
f

1
201,r

)
by lemma 10

= QT
WQW = Ir,r by orthogonality of QW
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Hence Q is the (unique) orthonormal eigenvector basis of M , with eigenvalues ∆ = ∆W .

Details glossed over in the derivations above:

P T1n,1 = 1s,1 (8.5)

f
1
2
T
W = f

1
2
T
(
In,n −

1

s
f

1
2f

1
2
T
)
diag(f

1
2 ) = fT − 1

s
f

1
2
T
f

1
2fT = fT − 1

s
sfT = 01,n (8.6)

diag(f−1)W TW = diag(f−1)(diag(f
1
2 )− 1

s
ff

1
2
T

)(diag(f
1
2 )− 1

s
f

1
2fT )

= (diag(f−
1
2 )− 1

s
1n,1f

1
2
T

)(diag(f
1
2 )− 1

s
f

1
2fT )

= In,n −
1

s
1n,1f

T − 1

s
1n,1f

T +
1

s2
1n,1sf

T

= In,n −
1

s
1n,1f

T (8.7)

V 1s,1 = (Is −
1

s
1s,s)1s,1 = 1s,1 −

1

s
1s,s1s,1 = 1s,1 −

1

s
s1s,1 = 1s,1 − 1s,1 = 0s,1 (8.8)

Definition 28 (Extension to the (positive) real numbers). By definition, allow f ∈ Rn
+.
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D Pre-imaging

Pre-imaging is the process of finding an item in input space which best corresponds to a point in
feature space (Schölkopf and Smola 2002, ch. 18), according to some kernel k.

Definition 29 ((Approximate) Pre-image; cf. Schölkopf and Smola 2002, p. 547).
p(−→a δ) = arg max

x∈R
k̂(x,−→a δ)

In the general case, there is not necessarily a perfect pre-image x ∈ R : k̂(x,−→a δ) = 1 (Schölkopf
and Smola 2002, p. 545).

D.1 Abstract feature pre-imagers

Definition 30 (Pre-image for independent binary features). Count a hidden binary feature as present
in a data item x ∈ R if it exceeds some threshold d, and as absent (0) otherwise.

∀i, 1 ≤ i ≤ l : ψi(x) =

1 if (h(x))i > d

0 else

Definition 31 (Pre-image for abstract features). Assume that the features in ψ are binary and mutu-
ally exclusive.

∀i, 1 ≤ i ≤ l : ψi(x) =

1 if ∀j ≤ l (δTB)1,i ≥ (δTB)1,j

0 else

D.2 Generic pre-imaging

R is searched for a pre-image xmax ∈ R iteratively. Starting at an initial item x0 ∈ R, each step
finds the best item xi+1 in a set of candidates derived from xi by a set of structural operations O.

Definition 32 (Structural operation).
o : R→ ℘(R)
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Algorithm 4 (Generic Pre-Imaging).
Input: set of operations O, linear combination −→a δ, initial item x0

Output: pre-image xmax

xmax ← x0;
dmax ← k̂(x0,

−→a δ);
while previous dmax < current dmax do

foreach x ∈
⋃

o∈O o(xmax) do
d← k̂(x,−→a δ);
if d > k̂(xmax,

−→a δ) then
dmax ← d;
xmax ← x;

end
end

end

D.3 String pre-imager

Definition 33 (String pre-imager operations). Deletions od, insertions oi and substitutions os of
single characters (cf. Levenshtein distance) are used as operations.

∀x ∈ Σ+ : od(x) :=
{
y ∈ Σ|x|−1 : y v x

}
∀x ∈ Σ∗ : oi(x) :=

{
y ∈ Σ|x|+1 : x v y

}
∀x ∈ Σ+ : os(x) :=

{
y ∈ Σ|x| : ∃i ≤ |x| : x1:i−1x(i+1):|x| = y1:i−1y(i+1):|x|

}
Operations can be further restricted by allowing only characters to be inserted or deleted the

unigram count of which differs between −→a δ and x0. This requires making the features of a unigram
kernel explicit. The choice of x0 depends on the task.
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E Rotation methods

This section gives definitions for VARIMAX (Kaiser 1958) and rotation towards hidden features (see
section 4.2.3). The general algorithm (5) rotates a pair of factors such that a given criterion of
variance is maximized. This is done iteratively until the criterion does not improve any more for any
pair of factors and any angle. The two methods differ in the criterion they aim to maximize, which
determines the calculation of the optimal rotation angle γmax.

Definition 34 (Rotation matrix).

R(γ) :=

[
cos(γ) −sin(γ)

sin(γ) cos(γ)

]

Algorithm 5 (Rotation algorithm).
Input: factors α, function γmax

Output: rotated factors α
calculate var(α);
repeat

for each pair of columns αj , αl do
rotate: [αjαl]← [αjαl]R(γmax(αj, αl));

end
until previous var(α) ' current var(α) ;

A mathematically more precise description would index α for every step of each iteration. Here,
I opt for the more legible version, which is also more readily implemented in a procedural program-
ming language, where re-assignment of variables is possible.

E.1 Variation maximization

Definition 35 (VARIMAX criterion (Kaiser 1958)).

µj :=
1

n

n∑
l=1

α2
l,j

var(α) :=
1

n

k∑
j=1

n∑
i=1

(α2
i,j − µj)

2,

Kaiser (1958) derives the following variance-maximizing rotation angle for a pair of columns:

γmax(αj, αl) = tan−1

(
n
∑n

i=1 2αj,iαl,i(α
2
j,i − α2

l,i)−
∑n

i=1(α2
j,i − α2

l,i)
∑n

i=1 2αj,iαl,i

n
(∑n

i=1(α2
j,i − α2

l,i)
2 − (2αj,iαl,i)2)− (

∑n
i=1 α

2
j,i − α2

l,i)
2 − (

∑n
i=1 2αj,iαl,i)2

)) /4
Variance is periodic with respect to γ, with a period of π/2 (rotating by 90◦ exchanges the factors

and does not change the variance). tan−1 is ambiguous with respect to adding multiples of π. As its
outcome is divided by 4, there are two solutions per period; one of them a maximum and the other a
minimum, necessarily. A direct comparison is faster than looking into the second derivative.
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E.2 Rotation towards hidden features

Definition 36 (Rotation towards hidden features).

µ′B,i :=
1

n

n∑
l=1

(
BTαi,l

)2

var2B(α) :=
1

n

n∑
i=1

k∑
j=1

((
BTαi,j

)2 − µ′B,i

)2

This criterion differs from def. 35 in substitutingHTα for α, and in switching rows and columns.
We look at pairwise rotated vectors αx, αy: C := BT [α1:n,xα1:n,x]R(γ). Then:

var2′(C) := var2B([α1:n,xα1:n,x]R(γ))

=
1

l

l∑
i=1

2∑
j=1

(
C2

i,j −
1

2

2∑
k=1

C2
i,k

)2

=
1

l

l∑
i=1

2∑
j=1

(
C2

i,j −
C2

i,1 + C2
i,2

2

)2

=
1

l

l∑
i=1

2∑
j=1

( 2∑
f=1

R(γ)f,j(Bα)i,f

)2

−

(∑2
g=1R(γ)g,1(Bα)i,x

)2

+
(∑2

h=1R(γ)h,2(Bα)i,y
)2

2


2

=
1

l

l∑
i=1

2∑
j=1

(
(R(γ)1,j(Bα)i,x +R(γ)2,j(Bα)i,y)

2 −
(Bα)2

i,x + (Bα)2
i,y

2

)2

=
1

l

l∑
i=1

(
(cos(γ)(Bα)i,x + sin(γ)(Bα)i,y)

2 − µ
)2

+
(
(−sin(γ)(Bα)i,x + cos(γ)(Bα)i,y)

2 − µ
)2

=
1

4l

l∑
i=1

(Bα)4
i,xcos(4γ) + (Bα)4

i,x + 4(Bα)3
i,x(Bα)i,ysin(4γ)− 6(Bα)2

i,x(Bα)2
i,ycos(4γ)

+2(Bα)2
i,x(Bα)2

i,y − 4(Bα)i,x(Bα)3
i,ysin(4γ) + (Bα)4

i,ycos(4γ) + (Bα)4
i,y

Finding the maximum via differentiation:

∑l
i=1 −(Bα)4

i,xsin(4γ) + 4(Bα)3
i,x(Bα)i,ycos(4γ) + 6(Bα)2

i,x(Bα)2
i,ysin(4γ)

−4(Bα)i,x(Bα)3
i,ycos(4γ)− (Bα)4

i,ysin(4γ) = 0

⇒ γmaxB(αx, αy) = tan−1

(
4
∑l

i=1(Bα)3
i,x(Bα)i,y − (Bα)i,x(Bα)3

i,y∑l
i=1(Bα)4

i,x + (Bα)4
i,y − 6(Bα)2

i,x(Bα)2
i,y

)
/4

The remark about periodicity also applies here.
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F Naive discriminative learning

(8.9) These definitions are taken from Baayen et al. (2011, appendix), with the notation adapted to
match my exposition of KPCA (appendix B).

n number of words
m number of cues (surface features)
l number of outcomes (hidden features)

φ(x) function from items to cues
ψ(x) function from items to outcomes
A m× n matrix of cue occurrences
B l × n matrix of outcome occurrences

f ∈ Nn vector of word frequencies
F = diag(f) n× n diagonal matrix of frequencies
C = AFAT cue-cue co-occurrences
O = AFBT cue-outcome co-occurrences

D = diag
(
(Ck,1:m1n,1)−1

k=1...m

)
normalization factors

C ′ = DC cue-cue conditional probabilities
O′ = DO cue-outcome conditional probabilities

W Mixing matrix, via C ′W = O′

Normalization (conditioning the probabilities) is unnecessary in determining W :

W = C ′−1O′ = (DC)−1DO = C−1D−1DO = C−1O

Algorithm 6 (Baayen et al.’s method).
Input: A, B, F
Output: W
solve: AFATW = AFBT ;

Definition 37 (Mapping). The hidden features of a data item x are calculated as: ψ′(x) = W Tφ(x)

Application to the full data set: B′ = W TS

If A is invertible, the mapping is faithful:

B′ = W TA = (C−1O)TA = ((AFAT )−1AFBT )
T
A = B(AF )T (AF TAT )−1A

= B F TAT (F TAT )−1︸ ︷︷ ︸A−1A︸ ︷︷ ︸ = B
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G Data

The word lists used in this thesis are all derived from CELEX (Baayen et al. 1996). There are some
general encoding issues, and the particularities of the two word lists.

Orthography

All words are cast to lower case for the kernel, but given in actual orthography in here. Equivalently,
assume that the kernel considers ‘A’ and ‘a’ identical.

Transcription

CELEX comes with four different transcription schemes, all using ASCII characters only. One
of them (PhonDISC) is unique in using exactly one character per phoneme. This seems like a
good choice for a string kernel, but it also has linguistically undesired side-effects regarding fine-
grainedness, such as all tense vowels being necessarily long. All other transcriptions are derived
from PhonDISC, so those problems remain. As input to the kernel, I use X-SAMPA notation, but
in this thesis I present the words in IPA transcription. Diacritics (: for vowel length, ~ for nasality)
belong to their head and do not count as separate symbols. Thus Ẽ: is a unigram.

Encoding word edges

I encoded all words with edge-of-word sentinels #, both for orthography and transcription. word
thus becomes #word#. This allows n-gram kernels to see features such as ‘word-initial w.

G.1 English Verbs

From CELEX — specifically, the files EMW.cd and EPW.cd (English words, morphology and
phonology) — I collected all verbs except auxiliaries and particle and complex verbs (defined as
containing a hyphen or whitespace). In the final corpus, there are 5555 regular verbs, 311 irregular
verbs, yielding 5866 in total.

Each word has three forms: infinitive/non-3rd-person-singular present, simple past, and past
participle; in orthography and transcription. The two derived forms are either marked as irregular,
or carry a string denoting the change applied to the word, which in the example given below is read
as “subtract y, and add ied”.
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(8.10)

present past participle

occupy occupied occupied
-y+ied -y+ied

"6.kjU.paI "6.kjU.paId "6.kjU.paId

weave wove woven
irregular irregular

"wi:v "w@Uv "w@U.v@n

. . . . . . . . .

G.2 German Nouns

The set of German nouns is used in the gender (3.2) and plural (6.4) prediction tasks. I extracted all
non-compounds with both a singular and a plural form. These are 13873 words. 6642 of them are
polymorphemic. The gender distribution is as follows: feminine 47.0%, masculine 36.7%, neuter
16.3%. Some words have more than one gender:

(8.11) m/f Wulst, Topinambur, Spachtel, Ambra, Hode, Karnivore, Batik, Sellerie, Krem,
Backhand, Hybride, Haspel, Geisel, Servela. (14)

m/n Meter, Iglu, Indigo, Liter, Input, Radar, Break, Streusel, Avis, Knaul, Tetrachord, Ocker,
Bonbon, Makadam, Rhododendron, Indult, Essay, Portable, Tentakel, Knäuel, Nugat,
Schlamassel, Kratt, Anastigmat, Sylvester, Paravent, Schelf, Joghurt, Aquädukt, Silo,
Trajekt, Spind, Schemen, Spier, Rebus, Zoophyt, Klafter, Sims, Teil, Kardamom,
Output, Yoghurt, Dekor, Spart, Supremat, Spray, Bloch, Gummi, Silvester, Tarock,
Virus, Ridikül, Tabernakel, Willkommen, Azimut, Tingeltangel, Ar, Match, Gulasch,
Semaphor, Flakon, Katapult, Frottee. (62)

f/n Säumnis, Elastik, Nocturne. (3)

There is only one word which can have any gender: “Dingsbums” (thingamajig). However, it
does not have a plural, and is thus excluded.

The format of an entry is shown in 8.12. For a discussion of the morphological information, see
section 3.2.1.2.

(8.12)
singular plural gender morphology

Schrift Schriften fem. schreib-
"SrIft "SrIf.t@n

Frequency data is obtained from the field ‘Mannheim written frequency’, which is based on a
5.4 million word newspaper corpus. In all applications, I added 1 to each frequency to smooth out
zero frequencies.



G. DATA 179

G.2.1 Gender assignment

This is the list of manually evaluated test items for the experiment in 3.2.2. The KPCA model is
compared to the cues of Köpcke (1988). The last column gives the cue used to determine gender.
‘default’ refers to the many phonological cues for masculine.

Table G.1: Comparison of gender assignment

word gender KPCA model rules cue

intuition f f f morph
strebung f f f morph
husar m m m phon
taschenspielerei f f f morph
generosität f f f morph
quote f f f -e
halter m m m morph
pelz m n m phon
ertränkung f f f morph
absurdität f f f morph
rötling m m m morph
erblindung f f f morph
gastronom m m m default
beuge f f f -e
lein m n m default
toxikum n n n morph
bänkchen n n n morph
trünklein n m n morph
empfindlichkeit f f f morph
depot n m m phon
wollkämmer m m m morph
balsa n m m default
manko n m m default
haft m?? f f phon
versäumnis n n f/n ambiguous
orientale m m f -e
einzeichnung f f f morph
bestrafung f f f morph
linguist m m m morph
vinkulierung f f f morph
sträßchen n n n morph
minderheit f f f morph
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Table G.1: Comparison of gender assignment

word gender KPCA model rules cue

studium n n n morph
fuchtel f n m phon
akromegalie f f f morph
elektrotechniker m m m morph
tartrat n m m/n ambiguous
edikt n n m phon
kapelan m f m default
filigran n m m default
wall m m m phon
rekrut m m m default
entschiedenheit f f f morph
natter f m m default
feinheit f f f morph
integral n m m default
schirmung f f f morph
abkömmling m m m morph
verweigerer m m m morph
xylometer n m m default
fragwürdigkeit f f f morph
bereinigung f f f morph
trimmung f f f morph
renunziation f f f morph
karikatur f f f morph
evangelium n n n morph
reiterin f f f morph
synesis f n f morph
anschluß m m m phon
punch m m m phon
schauder m n m default
senke f f f -e
giraffe f f f -e
tampen m m m default
geheimnis n n f/n ambiguous
beleuchtung f f f morph
shampoo n m m default
dichte f f f -e
okkupant m m m morph
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Table G.1: Comparison of gender assignment

word gender KPCA model rules cue

legalisierung f f f morph
pogrom n m m default
bühne f f f -e
spezifität f f f morph
perversität f f f morph
aufseherin f f f morph
kohle f f f -e
niednagel m f m phon
stabilisator m m m morph
sekretär m n m/n ambiguous
fender m m m default
aufkauf m m m phon
pilgrim m m m default
storch m m m phon
herbst m n m phon
leber f m m default
sukzession f f f morph
rächer m m m morph
holzung f f f morph
metaller m m m morph
seismometrie f f f morph
zentner m m m default
salami f m m default
bolschewik m m m default
korpus m m m morph
nationalisierung f f f morph
kommutation f f f morph
spray n m m phon
aufrechnung f f f morph
kontakt m m m default
krach m m m phon

correct 100 77 81



182 APPENDIX



Bibliography

Adam Albright. Islands of reliability for regular morphology: Evidence from Italian. Language, 78
(4):684–709, 2002.

Adam Albright. Modeling analogy as probabilistic grammar. Unpublished manuscript, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2008.

Adam Albright and Bruce Hayes. Modeling english past tense intuitions with minimal generaliza-
tion. In Proceedings of the ACL-02 workshop on Morphological and phonological learning -
Volume 6, MPL ’02, pages 58–69, 2002.

Adam Albright and Bruce Hayes. Rules vs. analogy in English past tenses: a computational/ exper-
imental study. Cognition, 90(2):119–161, 2003.

Doug Arnold and Evita Linardaki. A data-oriented parsing model for HPSG. In Anders Søgaard
and Petter Haugereid, editors, 2nd International Workshop on Typed Feature Structure Grammars
(TFSG’07), pages 1–9, 2007.

F. Gregory Ashby and Leola A. Alfonso-Reese. Categorization as probability density estimation.
Journal of Mathematical Psychology, 39(2):216–233, 1995.

R. Harald Baayen. Corpus linguistics and naive discriminative learning. Brazilian Journal of Applied
Linguistics, submitted.

R. Harald Baayen, R. Piepenbrock, and L. Gulikers. CELEX2. Technical report, Linguistic Data
Consortium, University of Pennsylvania, 1996.

R. Harald Baayen, Petar Milin, Dusica Filipović Ðurd̄ević, Peter Hendrix, and Marco Marelli. An
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